
5Service Semantics

Steffen Stadtmüller, Jorge Cardoso, and Martin Junghans

Summary

The chapter looks at how to enrich the description of cloud services with semantic
knowledge. This enrichment is conducted using Linked USDL (Unified Service
Description Language), a service description language built with semantic web
technologies. Linked USDL provides a business and technical envelope to
describe services’ general information and their Web API. This improves the
search and contracting of services over the web. Using the LastFM cloud service
as a starting point, the chapterdelves into semantic description and explains the
development of a Web API build using the REST paradigm to access cloud
services pragmatically.

Learning Objectives
1. Understand the limitations of describing cloud services in natural

language.
2. Understand how cloud services are programmatically accessed using a

Web API.
3. Use Linked USDL and semantics technologies to describe cloud services.

(continued)

S. Stadtmüller (�) • M. Junghans
Karlsruhe Service Research Institute (KSRI), Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany
e-mail: steffen.stadtmueller@kit.edu

J. Cardoso
Department of Informatics Engineering, Universidade de Coimbra, Coimbra, Portugal

Huawei European Research Center (ERC), Munich, Germany
e-mail: jcardoso@dei.uc.pt; jorge.cardoso@huawei.com

© Springer International Publishing Switzerland 2015
J. Cardoso et al. (eds.), Fundamentals of Service Systems, Service Science: Research
and Innovations in the Service Economy, DOI 10.1007/978-3-319-23195-2_5

137

mailto:steffen.stadtmueller@kit.edu
mailto:jcardoso@dei.uc.pt
mailto:jorge.cardoso@huawei.com

138 S. Stadtmüller et al.

Fig. 5.1 The most well-known companies contributing to the API economy

4. Use graph patterns to describe REST services.
5. Develop search algorithms which leverage semantic service descriptions.

I Opening Case Cloud Services foster the API economy

ACCESS TO CLOUD SERVICES VIA WEB API TECHNOLOGIES
IS PROVIDING A NEW FORM OF INNOVATION

The API economy is an economy where companies providing cloud services
expose their data assets to third parties using Web-accessible Application Pro-
gramming Interfaces (Web API). Many well-known companies are already taking
advantage of this new movement by exposing their businesses through a Web API,
including: Facebook, Twitter, YouTube, Dropbox, and Instagram (Fig. 5.1).

The emergence of Web API technologies goes back to the year 2000. The first
mover was salesforce.com who offered application interfaces to its clients. The
largest impact was made by ebay.com who offered a Web API to the general public.

In the past, a technique called web scraping was the way developers programmat-
ically retrieved data from web pages. It consisted of developing and customizing a
web client to parse the HTML pages of a targeted website to extract formatted data.

salesforce.com
ebay.com

5 Service Semantics 139

Fig. 5.2 Access to the Twitter Web API to retrieve tweets with the term “music”

This process was complex, laborious, expensive, and required the reprogram-
ming of client applications each time the provider made a change to the structure
of web pages. With the emergence of Web API technologies, access to remote data
became extremely simple as shown in Fig. 5.2 using, e.g., Python.

Two trends deserve to be mentioned: internal Web API and API Mashups.

Internal Web API While many interfaces are made publicly visible, a trend is
for companies to also start using Web API technologies internally to capitalize
on important collections of data assets.

Web API Mashups The use of Web API technologies enables third parties to
mash data and functionality from various providers to create and deliver new
products and services in response to emerging demand.

I Opening Case

5.1 Semantics in Cloud Services

As already explained in Chap. 2, cloud computing and cloud services are computing
solutions based on the Internet. In the past, companies would run applications on
computers physically located in their building, cloud computing allows users to

140 S. Stadtmüller et al.

access the same types of applications over the Internet. Google Docs and Dropbox
are well known examples of cloud services.

The landscape of cloud computing is expanding rapidly in size, diversity, and
heterogeneity. Amazon AWS Marketplace,1 which was launched in 2012, has up to
now more than 1250 cloud services available. Noor et al. [1] found that almost 6000
cloud services are already available on the web. The study carried out consisted of
searching the web using a customized cloud service crawler engine to find websites
that offered cloud services. More than half a million links were parsed. Websites
were individually analyzed using a text mining classifier because these cloud
services were described in natural language. Additionally, ProgrammableWeb,2

a popular registry for web-based services lists over 10,000 interfaces to different
services. There is an exponential growth of the service ecosystem on the web that
can be seen over the last years.

The increasing size of the cloud computing landscape brings several challenges.
One of the difficulties is related to search since cloud services are described using
web pages in natural language at providers’ websites. As an example, Fig. 5.3 shows
LastFM (last.fm) and its Web API (last.fm/api). LastFM is a SaaS instance providing
a large online music catalog and recommendation platform. Its Web API provides
programmers access to all data stored by the service. Web search engines like
Google, Yahoo, or Bing work relatively well for finding popular articles on a specific
subject using keywords. However, when search engines based on keyword matching
are applied to the search of a specific type of cloud service, they fail to provide
adequate results. In fact, all currently available search tools suffer either from poor
precision (i.e., too many irrelevant documents) or from poor recall (i.e., too few
relevant documents are found). For example, using the Google search engine to find
a cloud redundant storage service with a cost per TB lower than $25 per month, will
return roughly 125,000 matching documents, but unfortunately it is not possible to
immediately see any that matches the query. The results are littered with many other
types of cloud services (e.g., “Amazon EC2 computing”), news articles on cloud
services (e.g., “Top tips for doing a cloud storage cost analysis”), and reports (e.g.,
“How AWS pricing works”).

This chapter describes how semantics can be used to address problems like the
service search by enriching the description of cloud services using formal languages
that enable computers to automatically interpret the description of the cloud services.
Section 5.2 introduces semantic technologies that can be applied to create effective
machine-readable service descriptions, as well as foundational design principles of
Web APIs. Section 5.3 illustrates how Linked USDL [2], a semantic description
language for services, can be used to enrich the description of a cloud service.
Finally, Sect. 5.4 explains how formal descriptions can be explored by algorithms
to support tasks such as search, matching, and ranking.

Throughout this chapter S-LastFM is used as an example for a cloud service
with a Web API that leverages semantic technologies. S-LastFM is derived from
LastFM, but offers slightly different functionalities and employs a formal language

1Amazon AWS Marketplace http://www.aws.amazon.com/marketplace.
2ProgrammableWeb http://www.programmableweb.com.

last.fm
last.fm/api
http://www.aws.amazon.com/marketplace
http://www.programmableweb.com

5 Service Semantics 141

Fig. 5.3 The natural language description of technical (a and b) and business characteristics (c)
of LastFM

to describe these functionalities: For the purpose of this chapter S-LastFM supports
via its API the lookup of information of music artists, as well as the order of tickets
for upcoming concerts. Further S-LastFM supports two interfaces that allow to
search for such concerts.

5.1.1 Comprehensive Descriptions

Cloud services are complex entities that are not exhaustively characterized with
descriptions for technical access via a Web API. In fact, pricing models, legal
aspects, and service levels are elements that often need to be described explicitly
when dealing with cloud services. While in the past the description of web services
was mainly done at the technical level. Service description languages like WSDL [3]
define the syntactical structure of service functionality descriptions. So-called
semantic service description languages and frameworks like semantic annotations
for WSDL (SA-WSDL) [4] and the semantic markup for web services OWL-S [5]

142 S. Stadtmüller et al.

allow functionality descriptions that can be interpreted by machines. However, cloud
services are more complex entities that also require the description of business and
operational information.

I Definition (WSDL) The Web Service Description Language (WSDL) is an XML
format for describing network services as a set of endpoints operating on mes-
sages containing either document-oriented or procedure-oriented information
(http://www.w3.org/TR/wsdl).

Business Perspective
A business-sensitive perspective represents a paradigm shift from the IT view on
cloud services to a commercial view. For example, LastFM includes a natural
language description of legal terms and policies, a pricing model, contact infor-
mation, and a network of partners. This information is expressed in the form of
natural language published as web pages, which makes it difficult for a computer
to interpret it. Table 5.1 provides a set of examples extracted from the LastFM
website. Section 5.3 explains how Linked USDL is used to include this information
in structured descriptions.

Operational Perspective
The operational perspective is concerned with the elementary operations that a
service provides. For example, LastFM provides more than 140 operations classified
in 14 categories. Figure 5.3 shows the web page that displays all the operations,
which are part of the LastFM Web API. These operations can be orchestrated to
develop more advanced and complex cloud services, which can in turn be sold
to consumers. Formally capturing this information using Linked USDL is also
described in Sect. 5.3.

Technical Perspective
Cloud services are programmatically accessed using a Web API, an application-to-
application communication technique. A Web API enables businesses to integrate

Table 5.1 The business perspective of LastFM

Charact. Description Web page (last.fm)

Terms of use Terms that customers agree to follow to
use the website. It also includes the
definition of what it is considered to be
“Acceptable Use”

/legal/terms

Privacy policy A legal document that discloses some or
all of the ways LastFM gathers, uses,
discloses, and manages customers’ data

/legal/privacy

Subscription terms The terms that subscribers agree to when
they purchase and use their LastFM
subscription

/legal/subscription

http://www.w3.org/TR/wsdl
last.fm
/legal/terms
/legal/privacy
/legal/subscription

5 Service Semantics 143

third party cloud services, such as a customer relationship management system (e.g.,
SugarCRM3), with a minimal effort into their own local software systems. The
technical perspective indicates, which web standards can be used to interact with
cloud services. For example, the Web API provided by LastFM is supported by
REST services. Although the approach to describe a Web API in natural language
(see Fig. 5.3a, b) is the one most often used, it is far from adequate for the goal of
increasing the degree of automation of tools managing cloud services. Section 5.2
looks into the technological approaches to construct a Web API and Sect. 5.3.3
explores how they can be enriched and described using semantic knowledge in the
form of graph patterns.

5.1.2 Cloud Service Tasks

Enriching cloud service descriptions usually does not only provide more compre-
hensive technical access to, and understanding of, the offered functionality, but also
enables a higher degree of automation in performing high level tasks. Examples
include search, composition, comparison, and clustering of cloud services [6].
Section 5.4 explains how algorithms that make use of semantic service descriptions
can be developed to execute high level tasks, specifically, the task of service search,
which consists of:

• Matching a service request with cloud service descriptions.
• Ranking available services according to their degree of match with a request.

Search is particularly interesting as it often serves as the foundation of tasks
related to cloud services, e.g., the development of mashups, which are characterised
as applications that combine content from several sources on the web. Mashups are
often focused on an ad-hoc integration of involved cloud services. In order to build
mashups, an identification of suitable cloud services is necessary, which demands
service search capabilities that go beyond simple keyword search. Additionally,
semantic cloud service descriptions mitigate the challenge of the actual combination
of cloud services [7–9], e.g., by providing a clear understanding of involved input
and output data. Semantic descriptions mitigate the problem of integrating data
from various cloud services within the mashups [10] as data integration based on
Semantic Web Technologies is more robust than the development of individual data
schema mappings between pairs of cloud services.

3http://www.sugarcrm.com.

http://www.sugarcrm.com

144 S. Stadtmüller et al.

5.2 Foundational Technologies

This chapter looks into the use of semantic technologies as a solution to describe
cloud services from a business and technical perspectives. Therefore, this section
provides a brief introduction to the technologies that are used, namely, web
semantics and Linked Data. It also introduces a Web API architecture, which is
broadly used to implement cloud services. The presented material is a prerequisite to
understand the description of cloud services using Linked USDL and graph patterns
in the following sections.

5.2.1 The Semantic Web

The World Wide Web Consortium (W3C) started to work on the concept of a
Semantic Web with the objective of developing solutions for data integration and
interoperability. The goal was to develop ways to allow computers to interpret
(sometimes termed understand) information on the web. The Semantic Web iden-
tifies a set of technologies and standards that form the basic building blocks of an
infrastructure that supports the vision of a meaningful web.

I Definition (Semantic Web) The Semantic Web, as defined by the W3C (http://
www.w3.org/standards/semanticweb/), is an extension of the classical web of
documents and describes a set technologies and standards with regard to common
data formats and exchange protocols to support a web of data.

Linked USDL is a fixed service description schema that was formalized using
two technologies from the Semantic Web: the Resource Description Framework
(RDF) [11] and RDF Schema (RDFS). RDFS was used to define a schema and
vocabulary to describe services. This schema is applied to create RDF graphs that
describe individual services. Both, RDF and RDFS, are used by applications that
need to interpret and to reason over the meaning of information instead of just
parsing data for display purposes.

I Definition (RDF) The Resource Description Framework (RDF) is a standard
model for data interchange on the web (http://www.w3.org/RDF/).

RDF
The Resource Description Framework was developed by the W3C to provide a
common data model enabling the description of information that can be read and
interpreted by computer applications. RDF provides a graph model for describing
resources on the web. A resource is an element (document, web page, printer, user,
etc.) on the web that is uniquely identifiable by a universal resource identifier (URI).

A URI serves as a means for identifying abstract or physical resources. For
example, http://wikipedia.org/wiki/Metallica identifies the location of a web page

http://www.w3.org/standards/semanticweb/
http://www.w3.org/standards/semanticweb/
http://www.w3.org/RDF/
http://wikipedia.org/wiki/Metallica

5 Service Semantics 145

about the band Metallica, and the following encoding urn:isbn:1-420-
09050-X identifies a book using its ISBN. The RDF model is based upon the
idea of making statements about resources in the form of a subject-predicate-object
expression, a triple in RDF terminology. Each element has the following meaning:

Subject is the resource; the “thing” that is being described.
Predicate is an aspect about a resource that expresses the relationship between

the subject and the object.
Object is the value that is assigned to the predicate.

RDF is based on a directed graph data model: A set of nodes are connected by
(directed) edges. Nodes and edges are labeled with identifiers (i.e., URIs) that make
them distinguishable from each other and allow for the reconstruction of the original
graph from the set of triples. RDF offers a limited set of syntactic constructs—only
triples are allowed.

Every RDF document is equivalent to an unordered set of triples, which describe
a graph. For example, the RDF triple that describes the statement: “Metallica is the
artist of Garage Inc.” is shown in Listing 5.1.

1 http://s-last.fm/album/garageInc , http://s-last.fm/artist ,
http://s-last.fm/artist/metallica

Listing 5.1 Example of an RDF triple

The subject, http://s-last.fm/album/garageInc, is a resource
representing a particular album. This resource has the property http://s-last.
fm/artist with the value http://s-last.fm/artist/metallica. The
statement can also be graphically represented as depicted in Fig. 5.4.

RDF blank nodes are used to express statements about individuals with certain
properties without denominating the individual. The anonymity of blank nodes
ensures that nothing besides the existence of the node can be inferred. Blank nodes,
as the name suggests, may only occur in the subject or object position of a triple.

RDF literals describe data values that may only occur as property values. They
are represented as strings and a shared interpretation is assumed to be given.
Therefore, literals can be typed with a data type, e.g., using the existing types from
the XML Schema specification [12]. Untyped literals are interpreted as strings.

Fig. 5.4 An example of an RDF graph

146 S. Stadtmüller et al.

Turtle Syntax
While RDF is a data model, there are several serialization formats that can represent
RDF graphs. Originally, XML was proposed and has been widely adopted by RDF
data processing and management tools. Note that the data model is not affected by
the choice of any of the serialization formats; the graph structures remain unchanged.
Turtle, the Terse RDF Triple Language, is one of the serializations. It is a compact
syntax for RDF that allows for the representation of graphs in natural text form [13].
It will be used in the remainder of this chapter.

In Turtle, every triple is completed by a full stop. A URI is represented in
angle brackets and literals are enclosed in quotation marks. White spaces outside
identifiers and literals are ignored. One way to represent the RDF statement from
Fig. 5.4 using Turtle is shown in Listing 5.2.

Turtle permits abbreviations to further increase readability. For example, multiple
triples with the same subject or triples with same subject and predicate can be pooled
as shown in Listing 5.3 for an extended example.

The first lines introduce prefix abbreviations of the namespaces used. rdf:type
is a property to state that the resource sfmalbum:garageInc is an instance of
the class sfm:Album.4 The property rdf:type is often abbreviated to a. Capital
first letters are used to indicate class names in contrast to individual and property
names. The description of the location of the concert sfmconcert:663239
makes use of a blank node representing the location resource. The location resource
is not named but specified by its geographic coordinates embraced by square
brackets.

1 <http://s-last.fm/album/garageInc> <http://s-last.fm/artist>
<http://s-last.fm/artist/metallica> .

Listing 5.2 Turtle syntax representation of the RDF graph in Fig. 5.4

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2 @prefix sfm: <http://s-last.fm/> .
3 @prefix sfmalbum: <http://s-last.fm/album/> .
4 @prefix sfmartist: <http://s-last.fm/artist/> .
5 @prefix sfmconcert: <http://s-last.fm/concert/> .
6 @prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
7

8 sfmalbum:garageInc sfm:artist sfmartist:metallica ;
9 rdf:type sfm:Album .

10 sfmartist:metallica rdf:type sfm:Artist .
11

12 sfmconcert:663239 a sfm:Concert ;
13 sfm:location [
14 geo:lat "48.7932" ;
15 geo:long "9.2258"
16] .

Listing 5.3 Turtle syntax representation of an RDF graph using abbreviations

4Compare to the collection resources of a REST architecture introduced in Sect. 5.2.2.

5 Service Semantics 147

1 <?xml version="1.0"?>
2 <rdf:RDF xmlns:sfm="http://s-last.fm/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
3 <sfm:Album rdf:about="http://s-last.fm/album/garageInc">
4 <sfm:artist>
5 <sfm:Artist

rdf:about="http://s-last.fm/artist/metallica"/>
6 </sfm:artist>
7 </sfm:Album>
8 </rdf:RDF>

Listing 5.4 RDF/XML serialization of the RDF graph from Listing 5.3

Many tools have been recently developed to support users in modeling structured
data. Knowledge can be described with the support of ontology modeling tools like
Protégé.5 A traditional text editor can also be used to create service descriptions,
but dedicated applications, such as TextMate for Mac, provide syntax highlighting
for Turtle, auto-completion, syntax validation, and format conversions. All helpful
features that facilitate the modeling task. RDF graphs can be validated against
a schema and converted to different serialization formats (including RDF/XML,
Turtle, and others) with web-based tools like validators6;7 and translators [14].
Listing 5.4 shows the RDF graph of Listing 5.3 using the RDF/XML serialization.

RDF Schema
RDF Schema is a vocabulary language for RDF and allows the modeling of simple
ontologies [15]. RDFS describes the logic dependencies among classes, properties,
and values. While RDF provides universal means to encode facts about resources
and their relationships, RDFS is used to express generic statements about sets of
individuals (i.e., classes). RDFS associates the resources with classes (as shown in
Listing 5.3), states the relations between classes, declares properties, and specifies
the domain and range of properties.

I Definition (RDFS) RDF Schema (RDFS) provides a data-modelling vocabulary
for RDF data. RDF Schema is an extension of the basic RDF vocabulary (http://
www.w3.org/TR/rdf-schema/).

Classes in RDFS are much like classes in object oriented programming lan-
guages. They allow resources to be defined as instances of classes (by using the prop-
erty rdf:type) and subclasses of classes. Subclass hierarchies can be specified by
the RDFS property rdfs:subClassOf. The intuitive set theoretic semantics of
class instances and subclasses (defined as member-of- and subset-of-relationships,
respectively) ensures the reflexivity and transitivity of rdfs:subClassOf. The
semantics of RDFS are specified in a W3C Recommendation [16].

5Protégé ontology editor and knowledge-base framework http://www.protege.stanford.edu.
6http://www.rdfabout.com/demo/validator/.
7http://www.w3.org/RDF/Validator/.

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.protege.stanford.edu
http://www.rdfabout.com/demo/validator/
http://www.w3.org/RDF/Validator/

148 S. Stadtmüller et al.

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
3

4 sfm:artist rdf:type rdfs:Property ;
5 rdfs:subPropertyOf sfc:contributor ;
6 rdfs:label "Album artist"@en ;
7 rdfs:domain sfm:album ;
8 rdfs:range sfm:artist .
9

10 sfmalbum:garageInc sfm:artist sfmartist:metallica ;
11 sfm:released "1998-11-23"^^xsd:date .

Listing 5.5 Specification of domain and range of properties in RDFS

Properties can be seen as attributes that are used to describe the resources by
assigning values to them. RDF is used to assert property-related statements about
objects, and RDFS can extend this capability by defining the class domain and the
class range of such properties.

As the example shown in Listing 5.5 indicates, property hierarchies can be
specified with the RDFS property rdfs:subPropertyOf. A complete overview
over the language concepts is provided in [12]. Literals, as shown in line 6 of
Listing 5.5, describe data values for properties. A language tag, such as @en for
English, is used to specify the language of the literal. Data type information can
also be appended to literals following the double caret (cf. line 11). Each data type
is also identified by its URI, which in turn allows applications to interpret their
meaning.

The adoption of semantic technologies in the context of services implies
an increased modeling and development effort. The development of appropriate
domain ontologies, if required, can be time consuming. In order to mitigate this
burden, different ontology learning approaches can automatically compute an
ontological representation of the domain, e.g., from given text documents describing
the domain [17, 18].

Given the logical statement nature of the knowledge represented with ontologies,
traditional relational databases are not the ideal storage and query platform for
RDFS. Knowledge is represented as sets of subject-predicate-object-triples and
these are most efficiently stored and accessed in dedicated triple stores, such as Jena
TDB8 and AllegroGraph.9 Likewise, querying triple stores is done via specific query
languages: the current standard language for querying RDF(S) is SPARQL [19].

8Jena TDB http://www.jena.apache.org/documentation/tdb/index.html.
9AllegroGraph http://www.franz.com/agraph/allegrograph/.

http://www.jena.apache.org/documentation/tdb/index.html
http://www.franz.com/agraph/allegrograph/

5 Service Semantics 149

SPARQL
The RDF information encoded is readable and interpretable by machines, e.g.,
software programs that utilize the knowledge in applications like a concert ticket
selling application. SPARQL is an SQL-like query language that allows the retrieval
of data from RDF graphs. Answers are computed by matching patterns specified in
a query against the given RDF graph.

I Definition (SPARQL) The Simple Protocol and RDF Query Language Protocol
(SPARQL) is a query language for RDF (http://www.w3.org/TR/rdf-sparql-
query/).

Basic graph patterns are used in SPARQL queries when a set of triple patterns is
matched. Listing 5.6 shows the SPARQL graph pattern query syntax. In SPARQL,
Turtle is used to describe the graph patterns. In this example of a query, the set of
artists, i.e., the individuals of the class sfm:Artist, are retrieved and returned.

The answer of SELECT queries are bindings for the variables (denoted with a
question mark) listed directly after the keyword SELECT. In the example, the query
results in variable bindings for ?artist, which comprises, as shown in Table 5.2,
a list of three artists represented by their URI as used in the RDF graph. Other query
forms, e.g., ASK, DESCRIBE, and CONSTRUCT, allow queries for other kinds of
information. ASK returns a boolean answer about the existence of a solution for
a specified graph pattern. A DESCRIBE query returns an RDF graph describing
specified resources.

SPARQL is also able to build RDF graphs and return them as results. The
example from Listing 5.7 shows how the CONSTRUCT query form can be used
to list places in which bands have played. Therefore, this query specifies a template
used to build a graph-based on the matching results of the query.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX sfm: <http://s-last.fm/>
3

4 SELECT ?artist
5 WHERE
6 {
7 ?artist rdf:type sfm:Artist .
8 }

Listing 5.6 SPARQL query to retrieve instances of the class Artist

Table 5.2 Results of the
SPARQL query shown in
Listing 5.6

Artist

<http://s-last.fm/artist/metallica>

<http://s-last.fm/artist/rihanna>

<http://s-last.fm/artist/eminem>

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

150 S. Stadtmüller et al.

1 CONSTRUCT { ?artist sfm:playedIn ?place }
2 WHERE
3 {
4 ?artist rdf:type sfm:Artist .
5 ?artist sfm:event ?event .
6 ?event geo:located ?place .
7 }

Listing 5.7 SPARQL query asking for artists and the places they have performed at

Linked Data
Linked Data is a subset of the Semantic Web that adheres to the principles of
the Semantic Web architecture: commitment to the use of RDF(S) and URIs to
denote things. In particular, Linked Data adheres to the following four design
principles [20]:

• Use URIs to name “things”.
• Use HTTP URIs so that people can lookup the names.
• Lookups on those URIs provide further information describing the “things” in

RDF.
• Include links to other URIs in the descriptions to allow people to discover further

“things”.

The use of an HTTP URI allows machines and humans to lookup the name and
get useful information about resources adhering to the RDF and SPARQL standards.
The HyperText Transfer Protocol (HTTP) is prevalently used to exchange data
on the web.10 The use of an HTTP URI further guarantees the uniqueness of the
identifier.

The resolvable resource description should contain links to other resource
identifiers so that users can discover more things.11 Linkage comprises external
and internal links (for any predicate) and the reuse of external vocabularies, which
can be interlinked. The special property owl:sameAs specifies the equivalence of
different identifiers that refer to the same thing. For example, the band Metallica
is described in different vocabularies or websites. Overlapping data of different
sources can be aligned by equivalence statements as illustrated in Listing 5.8.

Adhering to the Linked Data principles has many advantages that apply in the
context of structured representation of data on the web but also in the context
of the formal description of services. For example, for service search, selection,
composition, and analysis.

10See IETF RFC7230 at http://tools.ietf.org/html/rfc7230 et seq. for details.
11Linked Data—Design Issues http://www.w3.org/DesignIssues/LinkedData.

http://tools.ietf.org/html/rfc7230
http://www.w3.org/DesignIssues/LinkedData

5 Service Semantics 151

1 @prefix owl: <http://www.w3.org/2002/07/owl#> .
2

3 <http://dbpedia.org/resource/Metallica> owl:sameAs
<http://s-last.fm/artist/metallica> .

Listing 5.8 Establishing the equivalence of resources using the property owl:sameAs

Fig. 5.5 Architecture of services provided over a web API and described using web pages

5.2.2 Web API Design Principles

Application Programming Interfaces (API) are used to provide general access to
the functionality of a services. Client applications like mobile applications (apps) or
web pages containing interactive web forms can make use of an API to offer these
functionalities to end users. The resulting layered architecture depicted in Fig. 5.5
provides the advantage that applications using the Web API can be developed by
the service provider as well as third party developers, thus increasing the potential
reach of the service.

For example, the provider of S-LastFM offers the service functionality with an
API described at s-last.fm/api. The S-LastFM homepage makes use of this API to
offer the services to the consumers. Additionally, third party developers can develop
mobile or web applications to provide the services of S-LastFM on mobile devices.
According to a W3C note,12 when constructing a Web API two general alternatives
for the implementation exist:

• An API that exposes an arbitrary set of operations.
• A resource-oriented API with a uniform set of stateless operations.

Both types correspond to the types of cloud services described in Chap. 2. This
section only gives a brief overview of operations oriented approach and focuses on
the architecture of resource-oriented interfaces, since the latter are predominantly
used on the web (see Fig. 5.6): A detailed comparison of both API paradigms is
available from [21, 22].

12http://www.w3.org/TR/ws-arch/#relwwwrest.

s-last.fm/api
http://www.w3.org/TR/ws-arch/#relwwwrest

152 S. Stadtmüller et al.

Fig. 5.6 Protocol usage of
public web interfaces
according to
ProgrammableWeb

Operation-Oriented API
An API with arbitrary operations is often designed by adhering to the variety of
specifications and languages commonly referred to as the WS-* stack. However,
other variants exist, e.g., remote procedure calls. The main characteristic of this
style of API is that the operations that make out the service are directly defined
and offered. When implemented for cloud services such an API uses the web as a
transport layer for the data and entails a high degree of freedom. For example, the
S-LastFM API can offer the following operations. Client applications can invoke
these operations to invoke the desired functionalities.

• findArtistInfo using the name of an artist as input.
• findConcerts using an identifier of concerts as input.
• orderConcertTicket using an identifier of the concert as input.

Resource-Oriented API
A resource-oriented API complies to the constraints of a Representational
State Transfer (REST) architecture [23]. According to the Richardson maturity
model [24], REST is identified as the interaction between a client (i.e., an
application) and a server based on three principles:

1. The use of URI-identified resources.
2. The use of a constrained set of operations, i.e., the HTTP methods, to access and

manipulate resource states.

5 Service Semantics 153

3. The application of hypermedia controls, i.e., the data representing a resource
contains links to other resources. Links allow a client to navigate from one
resource to another during interaction.

According to statistics from ProgrammableWeb, the majority of publicly acces-
sible interfaces are designed according to REST principles (cf. Fig. 5.6). Therefore,
this chapter will elaborate in the following on the concepts of REST in more detail.

Resources
A REST API offers the service functionality under the primacy of resources rather
than operations. A resource can be a real world object or a data object on the web.
Resources are uniquely identified with a URI. The representation of a resource
details its current state, i.e., relevant information associated with the resource.
Resources can be grouped into collections. These collections in turn are also
URI-identified resources themselves (so called collection resources). The resulting
tree-like structure of the resources is similar to the well known directory structure
of file systems. In the case of the S-LastFM API, collection resources representing
artists, concerts, etc. correspond to the folders of a file system, while the concrete
instances of artists and concerts correspond to files put into the corresponding
folders. In order to illustrate this concept, Table 5.3 lists examples of instances and
collection resources of the S-LastFM Web API.

Constrained Operations Set
The interaction of client applications with cloud services via a REST API is not
based on the call of API-specific operations but rather on the direct manipulation
of exposed resource representations or the creation of new resource representations.
A manipulation of the state representation implies that the represented resource is
manipulated accordingly. For such manipulations, REST offers only a constrained
set of operations that can be applied to a resource. These operations are shared
by all interfaces following REST principles, which increases interoperability and
understandability of the interfaces. Nevertheless, not all resources must necessarily
allow the application of all possible methods.

Some of the methods can carry input data as a payload, which describes the
intended new state of the addressed resource.13 On the web, the allowed operations
are the HTTP methods (cf. Table 5.4) and the identifier of a resource is an HTTP
URI, which makes the web the underlying platform for the API. For example,
S-LastFM uses the following methods:

• GET. Almost all resources of S-LastFM allow for the application of GET to
retrieve information. A GET on one of the collection resources gives an overview
of the known instances of concerts and artists. The retrieval of the information

13The HTTP POST method is a noteworthy exception as it permits the submission of data to
process, which is similar to an RPC call and therefore should be used carefully.

154 S. Stadtmüller et al.

Table 5.3 Resources of the S-LastFM web API

URI/description

http://s-last.fm/artist
A collection resource of music artists with a representation that contains links to all artists

http://s-last.fm/artist/metallica
http://s-last.fm/artist/rihanna
http://s-last.fm/artist/eminem
Resources representing individual music artists. The representation contains information
about the artist (e.g., name and genre) and links to upcoming concerts

http://s-last.fm/concert
A collection resource of concerts with links to all concerts

http://s-last.fm/concert/1234
http://s-last.fm/concert/1235
http://s-last.fm/concert/1236
Resources representing individual concerts with information about the concert (e.g.,
location, date, and price per ticket) and links to the performing artist and to the
ticketorder resource

http://s-last.fm/ticketorder
Collection resource of ticket orderings with a representation containing links to all ticket
orderings

http://s-last.fm/ticketorder/567
http://s-last.fm/ticketorder/568
http://s-last.fm/ticketorder/569
Resources representing individual ticket orderings with information about the ordering
(e.g., delivery and address) and link to corresponding concert

Table 5.4 Overview of HTTP methods (excerpt)

Method Safe Idempotent Description

GET X X Retrieve the current state of a resource

OPTIONS X X Retrieve a description of possible interactions

DELETE X Delete a resource

PUT X Create or overwrite a resource with the submitted
input

POST Send input as subordinate to a resource or submit
input to a data-handling process

of a specific ticket order however is only allowed with the correct credentials.
Only a user who created the ordering can look it up again. The retrieval of the
collection resource for all orderings is generally not permitted.

• POST. The collection resource for ticket orderings allows POST to enable users
to add a new ticket order for a specific concert.

• PUT. S-LastFM allows PUT only to overwrite existing ticket orders, to enable
users to update an order.

• DELETE. Ticket orders can also be canceled with DELETE up to a predefined
time before the concert takes place.

http://s-last.fm/artist
http://s-last.fm/artist/metallica
http://s-last.fm/artist/rihanna
http://s-last.fm/artist/eminem
http://s-last.fm/concert
http://s-last.fm/concert/1234
http://s-last.fm/concert/1235
http://s-last.fm/concert/1236
http://s-last.fm/ticketorder
http://s-last.fm/ticketorder/567
http://s-last.fm/ticketorder/568
http://s-last.fm/ticketorder/569

5 Service Semantics 155

Two types of methods exist: safe and unsafe. Safe methods guarantee not to
affect the current states of resources, while unsafe methods change the state of
the resources. Furthermore, most of the methods are idempotent. The repeated
application of an idempotent method on a resource does not change the state of
the resource beyond the first application of the method. For example, if a client
application deletes a resource, deleting it again has no effect.

Hypermedia Controls
A REST API fosters loose coupling between clients and services on the premise
that client applications do not need to know about all resources in advance. The
retrievable representations of some known resources contain links to other resources
that the client can discover during runtime. Applications can use such discovered
resources to perform further interaction steps. Collection resources specifically
contain links to all the resources in the collection. This architectural design allows
client applications to be robust toward changes in the API, because the application
has to react to whatever it finds when it interacts with the API [24, 25].

For example, at the behest of an end user a client application can interact with
the resources of S-LastFM in the following way:

1. Retrieve the information (i.e., representation) of a specific artist, which contains
links to upcoming concerts (method GET).

2. Retrieve the information of one of the concerts, which contains a link to the
collection of ticket orderings (method GET).

3. Create in this collection a new resource representing a new ticket order (method
PUT).

Note that only the identifier of the resource representing the artist needs to be
known in advance (i.e., before the interaction can start). This could be further refined
by providing a search interface over the available artists as contained in the artist
collection resource.

In a REST architecture, no constraints are given on how the status of a resource
has to be represented. There is no defined standard regarding data model or
serialization format of the data that detail the current state of a resource or the input
and output data of a method. Client application and API are, however, supposed
to agree on the format of the exchanged data and implicitly on how the data is
supposed to be interpreted. The process of establishing this agreement is called
content negotiation. For different application scenarios such an agreement requires
vendor specific content types (i.e., content types defined by the service provider)
for the individual services to convey the meaning of the communicated data. The
idea behind vendor specific content types is that service providers can reuse content
types and application developers can make use of specific content type processors
in their applications to work with the data. In practice, however, most Web API
providers simply make use of standard non-specific content types, e.g., text/xml
or application/json [26]. Developers therefore have to write applications that
are individually adapted for the API they make use of. Section 5.3.3 details another
solution to this problem based on Linked Data resource representations.

156 S. Stadtmüller et al.

5.3 Linked USDL

The need for descriptions at the business and operational levels redirected efforts to
the development of new languages to capture these perspectives beside the technical
one. USDL [27], the Unified Service Description Language, is probably the most
comprehensive attempt. It provides a shared semantic vocabulary14 to describe
services.

I Definition (USDL and Linked USDL) The Universal Service Description Lan-
guage (USDL) is a platform-neutral language for describing services. Linked
USDL is a remodeled version of USDL build upon the Linked Data principles.

The initial USDL development started in 2008 to describe business, software,
and real world services using a computer-understandable specification to make them
available on the web. The Internet of Services (see Chap. 2) requires services to be
traded and, thus, places emphasis on the description of business characteristics such
as pricing, legal aspects, and service level agreements. This was the main motivation
to create USDL. In 2012, a new version named Linked USDL [28] was developed
based on Linked Data principles and represented with RDFS. This is the version
which will be explored in this chapter.

5.3.1 Linked USDL Family

Linked USDL is segmented into modules. The objective of this division is to reduce
the overall complexity of service descriptions by enabling providers to only use the
modules needed. Currently, five modules exist:

usdl-core The core module covers concepts central to a service description.
It includes operational aspects such as interaction points between the provider
and consumer that occur during provisioning and the description of the business
entities involved.

usdl-price The pricing module provides a range of concepts which are
needed to adequately describe price structures in the service industry.

usdl-agreement The service level agreement module gathers functional
and non-functional information on the quality of the service provided, e.g.,
availability, reliability, and response time.

usdl-sec This module aims to describe the main security properties of a
service. Service providers can use this specification to describe the security goals,
profiles, and mechanisms.

14A vocabulary is also known called a “schema”, a “data dictionary”, or an“ontology”.

5 Service Semantics 157

usdl-ipr This module captures the usage rights of a service. Rights are often
associated with the concept of copyright which implicitly exists with the creation
of an artifact (i.e., a service) and does not need to be registered with an office in
order to be granted.

For example, customers and providers can use usdl-agreement [29] to
create service level agreements to monitor whether the actual service delivery
complies with the agreed service level. In case of violations, penalties or com-
pensations can be directly derived. The module usdl-ipr is fundamental for
business environments to define rights and obligations when consuming a service.
The official Linked USDL website is available at linked-usdl.org and the current
Linked USDL modules, use cases, and documentation are available at GitHub –
http://www.github.com/linked-usdl/.

5.3.2 The Core Module

The Linked USDL Core can be regarded as the center of the Linked USDL family
since it ties together all aspects of service description distributed across the USDL
modules. Figure 5.7 shows the conceptual diagram on the core module. Classes
are represented with an oval, while properties with an edge. Linked USDL Core
has 12 classes (e.g., Service, ServiceOffering, InteractionPoint,
and Role) and 13 properties (e.g., receives, hasInteractionPoint,
withBusinessRole, and hasInteractionType).

To explain how a service can be described with Linked USDL, S-LastFM will be
used as an example. Most of the information used for the modeling was retrieved
from the LastFM web site and shown in Fig. 5.3. The description was written using
the Turtle language.

Before starting with the formal representation of the S-LastFM service, a set
of prefixes needs to be defined to ease the modeling with Turtle. Listing 5.9
shows the prefixes that refer to the Linked USDL modules which will be used in
this running example (lines 1–5). Other prefixes required, but not shown, refer to
vocabularies such as Dublin Core15 (shown in the example with :dcterms) and
GoodRelations16 (:gr). The extract also shows the standard heading statements
required to create a service instance (lines 7–13).

1 @prefix usdl: <http://linked-usdl.org/ns/usdl-core#> .
2 @prefix usdl-br:

<http://linked-usdl.org/ns/usdl-business-roles#> .
3 @prefix usdl-it:

<http://linked-usdl.org/ns/usdl-interaction-types#> .

15The Dublin Core Schema is a vocabulary that can be used to describe web resources (video,
images, web pages, etc.), as well as physical resources such as books.
16GoodRelations is a vocabulary for product, price, store, and company data that can be embedded
into web pages to be automatically processed by intelligent applications.

linked-usdl.org
http://www.github.com/linked-usdl/

158 S. Stadtmüller et al.

Fig. 5.7 The linked USDL core schema [28]

4 @prefix usdl-ir:
<http://linked-usdl.org/ns/usdl-interaction-roles#> .

5 @prefix usdl-pr: <http://linked-usdl.org/ns/usdl-pricing#> .
6 ...
7 <> a owl:Ontology ;
8 rdfs:label "S-LastFM service description" ;
9 dcterms:title "S-LastFM service description" ;

10 dcterms:description "Enhanced description of last.fm, a
popular music recommendation service." ;

11 dcterms:created "2014-01-17"^^xsd:date ;
12 dcterms:modified "2014-01-18"^^xsd:date ;
13 owl:versionInfo "001" .

Listing 5.9 Prefixes and standard statements for the S-LastFM service description

The Service
The next step is to specify the actual service to be described. The class
usdl:Service provides the entry point for the description. As shown in
Listing 5.10, the new service was named service_SLastFM. The specification
also includes:

5 Service Semantics 159

1 :service_SLastFM a usdl:Service ;
2 gr:description "A semantic recommendation service for

music." ;
3

4 usdl:hasServiceModel :model_SLastFM ;
5 usdl:hasEntityInvolvement [
6 a usdl:EntityInvolvement ;
7 usdl:ofBusinessEntity :be_SLastFM_Ltd ;
8 usdl:withBusinessRole usdl-br:provider
9] ;

10 usdl:hasInteractionPoint :ip_Advertise ;
11 usdl:hasInteractionPoint :ip_TicketOrder .

Listing 5.10 The S-LastFM service class

• Associating a service model with the service.
• Specifying the business entities participating during service provisioning.
• Enumerating the interaction points provided by the service.

The class usdl:ServiceModel is used to create groupings of services that
share a number of characteristics. For example, a service model for S-LastFM
can group services characterized by supplying online music. In the same line
of thought, the service “Vodafone unlimited internet service” may belong to the
grouping “Internet provisioning service”. The example from Listing 5.10 associates
the service service_SLastFM with the service model model_SLastFM17

using the property usdl:hasServiceModel (line 4).
The class usdl:EntityInvolvement captures the gr:BusinessEntity

involved in the service delivery and the usdl:Role they play (lines 5–9). Entity
involvement is a fundamental construct introduced in Linked USDL to enable
capturing service networks [30]. This enables specifying, for instance, that a given
music service is provided by a certain company or that a third party is involved
in the service delivery chain. The properties usdl:ofBusinessEntity and
usdl:withBusinessRole enable to specify the business entities involved
during the provisioning of a service and also the role that each one takes. In
Listing 5.10, the business entity is defined with the class be_SLastFM_Ltd and
its role is defined as usdl-br:provider. Linked USDL provides a default
taxonomy of basic business roles that cover the most typical ones encountered
during service modeling such as regulator, intermediary, producer, and consumer.
The prefix usdl-br identifies the taxonomy usdl-business-roles18 which
defines the default roles available.

17The definition of the service model model_SLastFM is not provided in this running example.
18http://www.linked-usdl.org/ns/usdl-business-roles.

http://www.linked-usdl.org/ns/usdl-business-roles

160 S. Stadtmüller et al.

1 :be_SLastFM_Ltd a gr:BusinessEntity ;
2 foaf:homepage <http://slast.fm/> ;
3 foaf:logo

<http://cdn.last.fm/flatness/badges/lastfm_red.gif> ;
4

5 gr:hasISICv4 "5920"^^xsd:string ;
6 gr:hasNAICS "512220"^^xsd:string ;
7 gr:legalName "SLast.fm Ltd."^^xsd:string ;
8 gr:taxID "830 2738 46"^^xsd:string ;
9

10 vcard:hasAddress
11 [a vcard:Work ;
12 vcard:country-name "UK"@en] .

Listing 5.11 Description of the business entity providing the S-LastFM service

Listing 5.11 illustrates the description of the company providing the S-LastFM
service with the class be_SLastFM_Ltd. The description includes the ISIC
(International Standard Industrial Classification of All Economic Activities) code
for S-LastFM: 5920 – sound recording and music publishing activities. It also
specifies the NAICS (North American Industry Classification System) code, legal
name, tax ID number, and country where the company is located (lines 5–8).

R The North American Industrial Classification System (NAICS) and the International
Standard of Industrial Classification (ISIC) codes are six digit numbers used to describe the
primary economic activity of businesses. They classification codes can be used for looking
up reports on specific industries or to find companies within a certain industry.

Interaction Points
The extract from Listing 5.10 also defines two interaction points, ip_Advertise
and ip_TicketOrder, for the service service_SLastFM. An interaction
point (usdl:InteractionPoint) represents an actual step in performing the
operations made available by a service. On a personal level, an interaction point
can model that consumer and provider need to meet in person to exchange service
parameters or resources during service delivery (e.g., documents that are processed
by the provider). On a technical level, this can translate into calling a web service
operation (most cloud services are accessed and invoked via web services). An
interaction point can be initiated by the consumer or the provider. Since interaction
points may be long running and have an ordering with respect to other interaction
points, they are subclasses of TimeSpanningEntity. It is, therefore, possible
to express temporal relationships between interaction points such as “before” or
“after”. For richer expressions, the time ontology constructs can be used.

Listing 5.12 shows the interaction point ip_Advertise which enables cus-
tomers to book advertising campaigns and inquire about rates and specs. Interaction
points define four main pieces of information:

5 Service Semantics 161

1 :ip_Advertise a usdl:InteractionPoint ;
2 dcterms:title "S-LastFM Advertisement"@en ;
3 dcterms:description "If you are interested in booking a

campaign, seeing our full rates and specs, please send
us the details of your campaign and we will get in
touch."@en ;

4

5 usdl:hasCommunicationChannel [
6 a usdl:CommunicationChannel ;
7 vcard:country-name "UK";
8 vcard:locality "London";
9 vcard:postal-code "SE1 0NZ";

10 vcard:street-address "Last.fm Ltd., 5-11 Lavington
Street" ;

11 usdl:hasInteractionType usdl-it:manual ;
12 usdl:hasInteractionType usdl-it:remote
13];
14

15 usdl:hasCommunicationChannel [
16 a usdl:CommunicationChannel ;
17 vcard:hasEmail <mailto:advertise@slast.fm> ;
18 usdl:hasInteractionType usdl-it:manual ;
19 usdl:hasInteractionType usdl-it:remote
20];
21

22 usdl:hasEntityInteraction [
23 a usdl:EntityInteraction ;
24 usdl:withBusinessRole usdl-br:provider ;
25 usdl:withInteractionRole usdl-ir:participant
26];
27

28 usdl:hasEntityInteraction [
29 a usdl:EntityInteraction ;
30 usdl:withBusinessRole usdl-br:customer ;
31 usdl:withInteractionRole usdl-ir:participant
32];
33

34 usdl:receives dbpedia:Advertising ;
35 usdl:yields dbpedia:Contract .

Listing 5.12 An interaction point involving human interaction

• The communication channels that customers or applications can use to interact
with a service.

• The entities that are involved during the realization of the interaction point.
• The resources that are needed for an interaction point to execute properly.
• The resources that are generated from the execution of an interaction point.

162 S. Stadtmüller et al.

The example identifies two types of communication channels (lines 5–20):

• vcard:Address
• vcard:Email

These classes are not shown in the example since they are all grouped by the
class usdl:CommunicationChannel.

Communication Channels
Communication channels are additionally characterized by their interaction type.
Linked USDL provides two default taxonomies covering the main modes (i.e.,
automated, semi-automated, or manual) and the interaction space (i.e., on-site or
remote). The example describes how customers can ask for information to advertise
a campaign with S-LastFM. This can be done by using “snail” mail or email. All the
communication channels of the example require a manual (usdl-it:manual)
and remote (usdl-it:remote) interaction. This means that humans, not soft-
ware applications, will be involved in the interaction with S-LastFM.

The example also indicates the role of the two entities that will interact
(lines 22–32): both the provider and customer are participants. This information
is represented using the class usdl:EntityInteraction which links
interaction points to business entity types (e.g., provider, intermediary, and
customer) using the property usdl:withBusinessRole and the role they
play within the interaction (e.g., initiator, mediator, and receiver) using the property
usdl:withInteractionRole.

Receives and Yields
Listing 5.12 shows that the interaction point receives (usdl:receives) and
yields (usdl:yields) resources (lines 41–42). Receives is the input required and
yields corresponds to the outcome produced by an interaction point. The example
shows that the interaction point ip_Advertise receives a resource identified
by the concept dbpedia:Advertising and yields a resource identified by the
concept dbpedia:Contract. Since dbpedia is the computer-understandable for-
mal mirror of wikipedia, the use of these two properties reach twofold objectives:

• Provide a natural language description via wikipedia.com which is suitable to be
interpreted by humans.

• Provide a formal description via dbpedia.org which is suitable to be processed by
software applications.

Naturally, other computer-processable data sources such as freebase.com can
also be used.

Automated Communication Channels
While the previous example of an interaction point involved only human partici-
pants, the example from Listing 5.13 illustrates a fully automated interaction which

wikipedia.com
dbpedia.org
freebase.com

5 Service Semantics 163

1 :ip_TicketOrder a usdl:InteractionPoint ;
2 dcterms:title "Ticket Orders"@en ;
3 dcterms:description "Collection of all ticket orders;

allows to submit new ticket orders"@en ;
4

5 usdl:hasCommunicationChannel [
6 a sfm:TicketOrder ;
7 usdl:hasInteractionType usdl-it:automated ;
8 usdl:hasInteractionType usdl-it:remote ;
9] ;

10

11 usdl:hasEntityInteraction [
12 a usdl:EntityInteraction ;
13 usdl:withBusinessRole usdl-br:provider ;
14 usdl:withInteractionRole usdl-ir:participant ;
15] ;
16

17 usdl:hasEntityInteraction [
18 a usdl:EntityInteraction ;
19 usdl:withBusinessRole usdl-br:consumer ;
20 usdl:withInteractionRole usdl-ir:initiator ;
21 usdl:withInteractionRole usdl-ir:receiver ;
22] ;
23

24 usdl:receives sfm:Concert ;
25 usdl:yields sfm:TicketOrder .

Listing 5.13 An interaction point for an application-driven interaction

does not require human intervention (lines 5–9). This means that on both sides of the
communication channel, applications will be involved during service provisioning
by exchanging data. This requires a well-defined API which must be understood by
applications.

The most well-known approaches to describe services semantically are OWL-S,
WSMO, SAWSDL, and WSMO-Lite when it comes to SOAP Web services, and
MicroWSMO and SA-REST for REST Web services [28]. In order to cater for
interoperability, Linked USDL Core uses what can essentially be considered the
maximum common denominator between these formalisms: the minimal service
model.19 The MSM is a simple RDFS vocabulary to capture the semantics of SOAP
and REST Web services in a common model.

The resources exposed in a REST architecture can be seen as communication
channels of the service. However, the hypermedia constrains (cf. Sect. 5.2.2) of
REST imply that clients are supposed to discover many of the resources by
following links. Therefore, not all the exposed resources need to be described and
covered by a Linked USDL description: only the resources a client is expected to
start its interactions with need to be included as interaction points in a Linked USDL

19http://www.iserve.kmi.open.ac.uk/ns/msm/.

http://www.iserve.kmi.open.ac.uk/ns/msm/

164 S. Stadtmüller et al.

description. Additional resources will be discovered. In the case of S-LastFM, the
resource sfm:TicketOrder can be considered an entry point for an interaction.
In contrast, the individual resources representing the artists or concerts are not
necessary to include in the Linked USDL description, since clients do not start their
interactions with these resources directly.20

Listing 5.14 shows how the operation sfm:TicketOrder can be semantically
described. In this example, the class msm:Operation is extended with the prop-
erty gdp:graphPattern to provide a link to graph pattern-based descriptions
(explained in Sect. 5.3.3) that detail the exchanged data when ordering a concert
ticket by interacting via the communication channel. This new property is attached
to the only given part of the message content of input and output respectively.

Service Offering
A usdl:ServiceOffering is an offer made by a gr:BusinessEntity
of one or more instances of usdl:Service to customers. An offering usually
associates a price, legal terms of use, and service level agreement with a service.
In other words, it makes a service a tradable entity. Listing 5.15 illustrates
an offering named offering_SLastFM for the service service_SLastFM
(lines 1 and 11). Such a service offering may have limited validity over geographical
regions or time, the offering adds various pieces of information such as temporal
validity, eligible regions, and accepted payment methods (lines 2–10).

Finally, the last part of the example indicates that the classes legal_SLastFM
and price_SLastFM describe the legal aspects and the price of the S-LastFM
service, respectively (lines 12–13).21

1 sfm:TicketOrder a msm:Operation ;
2 msm:hasInput _:input ;
3 msm:hasOutput _:output ;
4 hrest:hasMethod "POST"^^xsd:string .
5

6 _:input a msm:MessageContent ;
7 msm:hasPart _:in1 .
8 _:in1 gpd:graphPattern <http://s-last.fm/ticketorder/input> .
9

10 _:output a msm:MessageContent ;
11 msm:hasPart _:out1 .
12 _:out gpd:graphPattern <http://s-last.fm/ticketorder/output> .

Listing 5.14 Example of a communication channel of type msm:Operation from Listing 5.13

20Since clients might require descriptions for all resources to interact with them, not included
resources have to provide similar information directly, which can be retrieved at runtime for
example via the HTTP OPTIONS method.
21The description of the legal and price modules are not covered in this chapter.

5 Service Semantics 165

1 :offering_SLastFM a usdl:ServiceOffering ;
2 gr:validFrom "2014-01-24T00:00:00+01:00"^^xsd:dateTime ;
3 gr:validThrough "2015-12-24T00:00:00+01:00"^^xsd:dateTime ;
4 gr:eligibleRegions "DE"^^xsd:string, "US-CA"^^xsd:string ;
5 gr:acceptedPaymentMethods gr:VISA,

gr:ByBankTransferInAdvance ;
6 gr:eligibleDuration [
7 a gr:QuantitativeValue ;
8 gr:hasValueInteger "1"^^xsd:int ;
9 gr:hasUnitOfMeasurement "MON"^^xsd:string

10] ;
11 usdl:includes :service_SLastFM ;
12

13 usdl:legal :legal_SLastFM ;
14 usdl:price :price_SLastFM .

Listing 5.15 A concrete offering of a service

5.3.3 Technical API Descriptions

A Linked USDL description of an application web service with a remote and
automated communication channel also entails a description on the technical level,
besides the business and operation levels. Such technical information can be used
by clients for the invocation of the service or the automation of high level tasks
(see Sect. 5.4). This section explains how technical information can be provided for
REST architectures, where resources are represented with Linked Data.

Service Resource States
For resource-driven or REST-based services, the technical description of the API
does not have to be focused on the operations. Since REST architectures only use a
constrained and shared set of operations, the intuition or meaning of the operations
is always inherently clear and well defined. For example, in the case of a REST
API based on HTTP, the semantics of the available operations22 (cf., Table 5.4)
are defined in an RFC specification23 and therefore do not need to be explicitly
described further in the service description.

A REST architecture offers the functionality of a service by allowing the states of
resources to be changed. It is these possibilities to manipulate a resource that need
to be described. The manipulation of a resource state is the result of an application
of an unsafe method at a resource, where the payload (i.e., input data) details the
desired state change. The output data that is returned after the application of a
method details the new state of the affected resource [31]. Therefore, to describe the
manipulation possibilities of a resource, it is sufficient to detail the possible inputs

22The operations of an HTTP-based REST API are also referred to with the term HTTP methods.
23See IETF RFC7230 at http://tools.ietf.org/html/rfc7230 et seq. for details

http://tools.ietf.org/html/rfc7230

166 S. Stadtmüller et al.

and the resulting outputs for the available operations of the resource. Furthermore,
the relation between the input and output (i.e., how the input influences the resulting
state) needs to be made explicit.

In a REST architecture, client application and server are supposed to form
a contract with content negotiation, not only on the data format but implicitly
also on the semantics of the communicated data, i.e., an agreement on how the
data has to be interpreted [25]. Since the agreement on the semantics is only
implicit, programmers developing client applications have to manually gain a deep
understanding of the provided data and the manipulation possibilities, often based
on natural text descriptions. However, the reliance on natural language descriptions
for the interfaces lead to mashup designs in which programmers are forced to write
glue code with little or no automation and to manually consolidate and integrate the
exchanged data.

Linked Data (see Sect. 5.2.1 “Linked Data”) unifies a standardized interaction
model with the possibility to align vocabularies using RDF, RDFS, and OWL. How-
ever, the interactions are currently constrained to simple data retrieval. Following the
motivation to look beyond the exposure of fixed data sets, the extension of Linked
Data with REST technologies has been explored and many approaches recognize
the value of combining REST services and Linked Data [32–35]. These approaches
propose to use Linked Data to represent the state of a resource, and as a format
for input and output data.24 The use of unique identifiers as central elements of
Linked Data mitigates the problem of the only implicitly negotiated semantics of the
communicated data (see Sect. 5.2.2). Furthermore, Linked Data is already focused
on the interlinkage of resources, which makes the design of a hypermedia control-
driven API architecture straight forward.

Graph Pattern Descriptions
Since Linked Data uses a graph-based data model, many existing approaches
[33–35] propose graph patterns as a means to describe the input and output data of
possible resource manipulations. The use of graph patterns enable to automatically
recognize the vocabularies that are understood by an API and detail how the data
representing the resource states is structured. In the scenario of ordering a concert
ticket via S-LastFM a user has to (mediated by an application) create a new order
resource. An example of the state of an order resource (e.g., identified by http://s-
last.fm/ticketorder/567) expressed with Linked Data is shown in Listing 5.16.

The state representation of the resource details the price of the tickets, the amount,
and the estimated time until the tickets are delivered (lines 11–13). Additionally, the
resource contains links to the user who ordered the tickets and to the concert (lines
8 and 10). Following the link to the resource representing the user can, e.g., bring
results regarding the delivery address or credit card details for payment. Some of the
elements in the state representation are different for every individual order resource.
These variable elements are either provided by the user that submits the order via
the client application or they are set by S-LastFM directly:

24If another format like JSON or XML is used, a description needs to make the implicit semantics
of the data explicit.

http://s-last.fm/ticketorder/567
http://s-last.fm/ticketorder/567

5 Service Semantics 167

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2 @prefix sfm: <http://s-last.fm/> .
3 @prefix sfmorder: <http://s-last.fm/ticketorder> .
4 @prefix sfmuser: <http://s-last.fm/user> .
5 @prefix sfmconcert: <http://s-last.fm/concert> .
6

7 sfmorder:567 rdf:type sfm:Ticketorder .
8 sfmorder:567 sfm:user sfm:JohnDoe .
9 sfm:JohnDoe rdf:type sfm:User .

10 sfmorder:567 sfm:event sfmconcert:1234 .
11 sfmorder:567 sfm:price "120 USD"@en .
12 sfmorder:567 sfm:amount "2" .
13 sfmorder:567 sfm:eta "10 days"@en .
14 sfmconcert:1234 rdf:type sfm:Concert .

Listing 5.16 An example of a state representation of an order resource

1 Method: POST
2 Input:
3

4 _:order rdf:type sfm:Ticketorder .
5 _:order sfm:user ?u .
6 ?u rdf:type sfm:User .
7 _:order sfm:amount ?a .
8 _:order sfm:event ?c .
9 ?c rdf:type sfm:Concert .

Listing 5.17 Input data in the form of a graph pattern

• Provided by the user. For example, the user name sfm:JohnDoe and the
amount of the ordered tickets "2".

• Provided by S-LastFM. For example, the URI of the newly created order
resource sfmorder:567 and the price of the tickets "120 USD".

Input Graph Pattern
To create a new ticket order, a client application has to POST data (see Listing 5.17)
detailing the desired new resource to the collection resource of the ticket orders.
A graph pattern-based description for the input data of a POST to the ticket order
collection resource (http://s-last.fm/ticketorder) uses variables for
the elements that are different for every individual order resource. The client has
to use a blank node _:order for the input data, since it is not possible to know in
advance what identifier the API will assign to the new resource.

Output Graph Pattern
The returned data after the application of POST characterizes the state of the created
resource (see Listing 5.18). Therefore, the description of the output data is similar to
the input description, but contains, additionally, variables for the information added
by the API (e.g., the price of the ordered tickets).

168 S. Stadtmüller et al.

1 Method: POST
2 Output:
3

4 ?order rdf:type sfm:Ticketorder .
5 ?order sfm:user ?u .
6 ?u rdf:type sfm:User .
7 ?order sfm:amount ?a .
8 ?order sfm:event ?c .
9 ?c rdf:type sfm:Concert .

10 ?order sfm:price ?p .
11 ?order sfm:eta ?t .

Listing 5.18 Output data in the form of a graph pattern

Input and output descriptions share common variables (e.g., ?u, the user that
ordered the tickets). The use of the same variable implies that it will be bound by
the same value. This establishes a connection between input and output descriptions
and allows to describe the relation between both.

Finally, it is important that input as well as output descriptions of resources can
be treated as URI-identified resources as well:

• http://s-last.fm/ticketorder/input as URI for the input descrip-
tion

• http://s-last.fm/ticketorder/output as URI for the output
description

Since the descriptions are URI-identified resources themselves, it is possible
provide links to the descriptions. Such links can be used as a response when the
HTTP OPTIONS method is applied to the collection resource of the ticket orders,
which allows a client to look up the descriptions. The links are also used to refer
to the graph pattern descriptions in the USDL document detailing a communication
channel of the service (cf. Sect. 5.3.2).

5.4 Service Search Algorithm

Descriptions for services can be utilized to increase the degree of automation of
higher level tasks, such as service search, composition and discovery. This section
details how graph pattern-based descriptions, which can be provided as part of a
Linked USDL description, can be leveraged for service search [36]. Given a specific
functionality that is required to be fulfilled by a service (e.g., the order of tickets for
concerts), the process of searching for a service refers to the problems of

• Matching, i.e., identifying the subset of services that are suitable to provide the
functionality out of a potentially large set of services

• Ranking, i.e., comparing the identified services in terms of their capability to
satisfy the given requirements.

5 Service Semantics 169

However, service descriptions can be leveraged to improve the automation of other
tasks such as the invocation of a service or the composition of several services to
create a complex service.

5.4.1 Matching

In a scenario where services are described with Linked USDL, which provides links
to graph pattern-based input and output descriptions, service search requests can
be formulated as service templates. These templates follow the same syntax as
the graph pattern descriptions. Therefore a service template consists of two graph
patterns that represent a template of:

• all possible input RDF graphs a client can provide for the invocation of a service,
• the output RDF graphs such an agent expects to be delivered by the service.

Similar to the graph pattern descriptions a service template details a clients
possibilities to provide input for a service operation. Further the template describes
the requirements of the client on the output of a service operation, as well as the
expected relation between the input and output.

Therefore, the question of whether a given service description matches a service
template correlates to the problem of graph pattern containment. The input graph
pattern of a service description must be contained in the service template’s pattern.
This containment relation implies that every graph that satisfies the template
input graph pattern must also satisfy the service description’s input graph pattern.
Intuitively, the input a client is able to provide fulfils the requirements of the service
to be invoked. Note that this also allows for a client to provide additional data, which
it can provide for service invocation even though a matching service does not require
them.

A client can for example express in an input template that it can provide informa-
tion about a location and a music genre. If a service details in an input description
that it requires just the information about the location, template and description
are matching, since the description is contained in the template. However, if a
description details that information about location and an artist is required, template
and description are not matching.

Matching the output graph patterns works in an analogous way. The output graph
pattern of a service description contains the output graph pattern of a template,
which implies that every graph that satisfies the service description output graph
pattern also satisfies the template output graph pattern. So the required containment
relation of the output patterns is dual to that of the input graph patterns. Intuitively
again this means a service output has to provide enough to satisfy the request, but
can provide more.

A client can for example express in an output template that it is looking for infor-
mation from a service about a concert. If a service details in an output description

170 S. Stadtmüller et al.

that it provides information about concerts and genre, template and description are
matching, since the template is contained in the description. However, if template of
the client details it requires information about concerts and ticket prices, template
and description are not matching.

Formulas 5.1 and 5.2 summarize the relations between the patterns in a service
description and a service template in a search process.

Service Description Input Pattern � Template Input Pattern (5.1)

Template Output Pattern � Service Description Output Pattern (5.2)

5.4.2 Ranking

The matching based on graph pattern containment consists of two binary decisions
(one for the input and one for the output), of whether a service description
completely matches a service template. However, it is sensible to assume that often
services only partly satisfy the requirements of an agent, or that an agent has not
all the necessary data for the invocation. Therefore, services should be ordered
according to the degree they match to a given request. To allow for such a flexible
search approach a ranking of service descriptions against service templates has to
be enabled with continuously-valued matching metrics, e.g.:

• The predicate subset ratio (psr) measures to what degree the set of predicates
used in one pattern are subsumed within the set used in another.

• The resource subset ratio (rsr) measures to what degree the set of named
resources, in subject or object position, used in one pattern are subsumed with
those of another pattern.

• The containment ratio (cr) measures to what degree triple patterns in one graph
pattern are contained in the other pattern.

The metrics psr and rsr indicate to what degree a service description and a service
template are using the same vocabulary. These vocabulary-based metrics allow to
test whether a service description and a template use some of the same resources and
predicates (and to what degree). Therefore, they provide a mechanism to discover
services, which are close to a given template, but are not necessarily completely
matching.

Similarly to the pattern containment, metrics for input and output have to be dis-
tinguished. A template input graph pattern can offer more data than actually needed
by a service without endangering their compatibility. Therefore, the subset ratios
for the input patterns have to measure to what degree the resources (respectively
predicates) in the service descriptions are used in the service template. For the subset
ratios of the output patterns this works the other way around, because a service can

5 Service Semantics 171

offer more output than required by the template. In this case the subset ratios have
to measure to what degree the resources (respectively predicates) in the template
are used in the service description. The Eqs. (5.3) to (5.6) show how the metrics
are calculated.

psrinput D jPtempl \ Pdecsrj
jPdescrj (5.3)

psroutput D jPtempl \ Pdecsrj
jPtemplj (5.4)

rsrinput D jRtempl \ Rdecsrj
jRdescrj (5.5)

rsroutput D jRtempl \ Rdecsrj
jRtemplj (5.6)

where,

Ptempl the set of all predicates in the template.
Pdescr the set of all predicates in the service description.
Rtempl the set of all resources in the template.
Rdescr the set of all resources in the service description.

Let the input description pattern use the predicates rdf:type, sfm:per-
former and sfm:location. The input template uses rdf:type, sfm:perf-
ormer and sfm:artist. Then pinput D 2=3, because only two out of three
predicates in the description are used in the template.

The metric cr measures to what degree a graph pattern Psub is contained in
another pattern Psuper. To realize this, the measurement cr is based on the power
set P.Psub/ of triple patterns derived from the graph pattern Psub. The largest set
of triple patterns Tmax 2 P.Psub/ (i.e., the set with the most triple patterns) in the
power set is identified, that is contained in Psuper:

Tmax � Psuper (5.7)

Note that Tmax is not necessarily unique in P.Psub/. However, just one of the largest
triple pattern sets that are contained in Psuper needs to be identified for the calculation
of cr. Equation (5.8) shows how the metric cr is calculated. The metric describes the
ratio between the number of triple patterns in the identified set Tmax and the overall
number of triple patterns in the original pattern Psub, from which the power set is
derived.

cr D jTmaxj
jPsubj (5.8)

172 S. Stadtmüller et al.

cr measures precisely to what degree a graph pattern is subsumed by another, thus
expressing the containment degree of one pattern in relation to another.25 Note, that
if a graph pattern is completely contained in another one (i.e., cr = 1.0), the subset
ratios must necessarily result in a metric of 1.0.

The vocabulary-based metrics do not regard the structure of the graph patterns to
match service descriptions and templates. The metrics rsr and psr are therefore less
precise search metrics compared to cr, i.e., even if all vocabulary-based subset ratios
result in a value of 1.0, it is not guaranteed that a service description and a template
match in terms of pattern containment. On the other hand, if cr D 1.0 for the
input and output patterns, a complete match is guaranteed. However, the vocabulary-
based metrics are computationally less expensive to calculate. To achieve a scalable
service search system rsr and psr can be used to filter service descriptions for a
given template: if either psr or rsr result in a value of 0.0, it can be inferred without
additional calculation that the value of cr has to be 0.0. Furthermore, other low
values for rsr and psr can be used as thresholds. If one of the vocabulary-based
metrics falls below the defined threshold, the calculation of cr can be omitted. The
setting of this threshold depends on the required reaction time of the service search
system, as well as the desired values for precision and recall.

Figure 5.8 and Table 5.5 illustrate an example of a search process in the
S-LastFM scenario. In the example a client is searching for a functionality where the
client can interact with a resource to acquire information about upcoming concerts.
In the input of the interaction with the resource the client can include information

Fig. 5.8 An example of the ranking process

25For a detailed description of how to calculate the described metrics see [36].

5 Service Semantics 173

Table 5.5 An example of
the ranking process (cont.)

Service description Ra Service description Rb

Input Output Input Output

Pattern
containment

Yes No No Yes

cr 1.0 0.71 0.33 1.0

psr 1.0 0.8 0.4 1.0

rsr 1.0 0.66 0.5 1.0

about the artist and the city in which the client is looking for concerts. As output of
the interaction the client expects to find a concert and information about the price
for tickets. The example assumes two descriptions are available for:

• Resource Ra to which requests can be submitted with artist and city. Ra provides
output information about concerts (but no ticket price information).

• Resource Rb to which requests can be submitted including artist and a geograph-
ical point with latitude and longitude. Rb provides output information about
concerts including ticket price information.

In this example the client has enough information to invoke the interaction with
Ra, but this will not provide all the desired information, since no information about
the price of concert tickets are delivered by Ra. Interacting with Rb would provide
all the desired information, but the client does not have enough data to invoke it
(the latitude/longitude coordinates of the city are missing). This is also reflected in
the containment metrics as detailed in Table 5.5. It can be seen how the psr and rsr
metrics can serve as an estimation for the more precise cr metric.

Therefore in the given example no perfect match for the template can be found.
The client has to resolve this problem and decide:

• Resolution 1: Choose Ra and forgo some of the desired results.
• Resolution 2: Choose Rb and try to acquire missing information (e.g., with the

help of another API).

In terms of ranking Ra would be preferred over Rb with regard to the input, but
Rb would be preferred over Ra with regard to the output. If a definite order of the
resources is required, a weighted average can be calculated from the input and output
metrics. The weights reflect which of the resolution strategies is preferred by the
client.

5.5 Conclusions

This chapter looked into how rich and comprehensive service descriptions can be
constructed to facilitate the search of cloud services. Naturally, rich descriptions
improve, not only search, but also other computational tasks such as service
selection, discovery, classification, and composition.

174 S. Stadtmüller et al.

The approach followed started by taking a cloud service Web API and used
semantic web technologies to enrich and formally describe the Web API structure
from a technological perspective as well as from a business perspective. The cloud
service selected was LastFM since it is a popular service on the web. The formal
description was done by relying on Linked USDL to add semantic knowledge.
Linked USDL provides a business and technical envelope to describe services’
general information and their Web API. To exemplify the benefits of using semantic
service descriptions, an algorithm for service search was developed to demonstrate
how semantics can improve precision and recall.

Review Section

Review Questions

1. What are the differences between interfaces and services? What is a Web API?
2. Why is a keyword-based search insufficient for the search for a services or an

API?
3. What is the purpose of the operational perspective on services. Compare it to the

technical perspective, which also includes a formal description of the operations.
4. Draw the RDF graph of the RDF document shown in Listing 5.13 on page 163.
5. Create a SPARQL query to retrieve the business and corresponding interaction

roles of all the entities involved in an interaction from the RDF document given
in Listing 5.13. The correctness of the query and the obtained results can be
evaluated with existing tools such as Jena TDB or AllegroGraph.

6. Explain the concept of a collection resource?
7. Why does REST restrict the set of available interaction methods? Is this

constraint too restrictive?
8. Which aspects of a service can be modeled in the business perspective of Linked

USDL?
9. Name use cases in which structured information about the service provider can

be useful.
10. What is the relationship between an interaction point and an operation in Linked

USDL?
11. What is the main benefit of the use of hypermedia controls?
12. How is the state of a resource described? What kind of information is included?
13. Graph-patterns have been used to describe input and output data of an API. Is it

possible to use RDF(S) descriptions instead?
14. In which cases can other relationships (than the ones introduced in Formu-

las 5.1–5.2 on page 170) between the patterns in service and service template
descriptions be useful?

5 Service Semantics 175

Project

The implementation of services is an extensive task. Besides traditional design,
implementation, and testing of the software that already provides the service
functionality, a number of further task have to be considered in order to effectively
provide a functionality as a service. As this chapter conveyed, the interfaces
provide access to resources and methods of the underlying software systems.
Further, a formal, i.e., machine-readable and machine-interpretable, description of
the provided service is a prerequisite for managing large services automatically.

The use of formal service descriptions increases the degree of automation that is
necessary when a large set of service are managed. Different task of management
may require that information about different perspectives on services. Due to the
importance of expressive and formal service descriptions, the goal of this project is
to practice, apply, and gain a more detailed understanding on service descriptions.
Within this project, we will continue to use Linked USDL as a service description
model in combination with the Semantic Web technologies.

1. Find a service that is publicly available in the Internet. The service should expose
at least a few number of different resources and methods, which are provided
by a public Web API. This API is described in semi-structured web pages that
describe resources and methods in natural language.

2. Make yourself familiar with the involved resources and methods. Identify two
non-trivial methods of the API that will be formally described in the subsequent
steps.

3. At this stage, a vocabulary of the domain of intercourse is needed. Create an
RDFS vocabulary describing the resources of chosen methods. The vocabulary
can be sketched in form of an RDF graph drawn on paper. Alternatively, existing
modeling tools like Protégé or a simple text editors can be used alike.

4. Furthermore, the Linked USDL service description model is used to create a
description for this service and its chosen methods. A complete overview on
Linked USDL can be obtained from http://www.linked-usdl.org.

5. Create a Linked USDL description of the technical perspective of the service.
This description should cover the methods and all the involved resources,
like input and output parameters. Since Linked USDL service descriptions
can be serialized to regular RDF documents, a plain text editor or any RDF
modeling tool can be used. A dedicated Linked USDL editor is currently under
development.

6. Extend this service description, such that the business and operative perspectives
are added. The provider of the service describes legal terms, service quality, and
other information related to these perspectives within web pages, which may
contain large text blocks. The relevant information needs to be identified and
expressed formally. The RDFS domain vocabulary can be extended accordingly,
if required.

http://www.linked-usdl.org

176 S. Stadtmüller et al.

Within this project, it should become obvious how tedious it can be to deal with
and to interpret natural language text descriptions of services. It is easy to imagine
how difficult it can be to analyze, search, or invoke services from a large service
repository. The need and the benefits of formal descriptions as well as the broad
spectrum of perspectives gained by the use of Linked USDL were conveyed.

Key Terms

Web API The acronym API stands for application programming interface and
enables applications to exchange data. A Web API is the web version of this
interface. It is leveraging web technologies (e.g., URI, HTTP, HTML, JSON,
and XML) to enable companies to make their data assets available to external
developers.

Service Description A service description defines and characterizes the services
offered to customers. It includes functional and non-functional characteristics
(properties). Typically, services are described in natural language, but more
modern approaches use semantic web technologies.

USDL The Unified Service Description Language (USDL) was the first compre-
hensive language to describe services using computer-understandable formats. It
described aspects such as legal constraints, pricing models, service level, and
interactions between customers and providers [27, 37].

Linked USDL Linked USDL is a simpler version of USDL which was designed
using Linked Data principles. It is more adequate to work on web environments
since it uses solely web protocols and specifications, and it describes services
semantically [28].

Semantic Web The Semantic Web is a technology stack originally developed
by the W3C which enables people to share knowledge beyond the boundaries
of websites. The specifications which are part of the stack, and include URI,
RDF(S), OWL, and SPARQL, strive to turn unstructured data into computer-
readable formats.

Linked Data Linked Data is a paradigm which applies the principles and tech-
nologies of the web to share and link data. It can be viewed as a pragmatic way of
applying the technology stack provided by the Semantic Web to build worldwide
networks of linked knowledge.

Turtle Turtle (Terse RDF Triple Language) is a serialization for capturing
knowledge expressed using the Resource Description Framework (RDF). It is
relatively simple to read/write when compared to other serializations, e.g., XML.

Further Reading

Jorge Cardoso and Amit Sheth. Semantic Web Services, Processes and Applications.
Springer, 2006.

5 Service Semantics 177

Rudi Studer, Stephan Grimm, and Andreas Abecker. Semantic Web Services:
Concepts, Technologies, and Applications. Springer, 2010.

Leonard Richardson, Mike Amundsen, and Sam Ruby. RESTful Web APIs Paper-
back. O’Reilly Media, 2013.

References

1. Noor T et al (2013) CSCE: a crawler engine for cloud services discovery on the world wide
web. In: IEEE 20th international conference on web services (ICWS). IEEE, Washington, DC,
USA, pp 443–450

2. Cardoso J, Pedrinaci C (2015) Evolution and overview of linked USDL. In: 6th International
conference exploring services science (IESS 2015). Lecture notes in computer science.
Springer, Berlin

3. Christensen E et al (2013) Web services description language (WSDL) 1.1. W3C note. W3C,
Mar 2001. http://www.w3.org/TR/wsdl. Accessed 10 Sep 2015

4. Kopecky J et al (2007) SAWSDL: semantic annotations for WSDL and XML schema. IEEE
Internet Comput 11(6):60–67

5. Martin D et al (2004) OWL-S: semantic markup for web services. W3C member submission
6. Cardoso J, Sheth A (2003) Semantic e-workflow composition. J Intell Inf Syst 21(3):191–225
7. Endres-Niggemeyer B (eds) (2013) Semantic mashups. Intelligent reuse of web resources.

Springer, Berlin/Heidelberg
8. Le Phuoc D et al (2009) Rapid prototyping of semantic mash-ups through semantic web pipes.

In: Quemada J et al (eds) Proceedings of the 18th international conference on world wide web,
WWW 2009, Madrid, 20–24 April 2009. ACM, New York, NY, USA pp 581–590

9. Lathem J, Gomadam K, Sheth AP (2007) SA-REST and (s)mashups: adding semantics to
RESTful services. In: Proceedings of the first IEEE international conference on semantic
computing (ICSC 2007), Irvine, CA, 17–19 Sept 2007. IEEE, Washington, DC, USA,
pp 469–476

10. Di Lorenzo G et al (2009) Data integration in mashups. SIGMOD Rec 38(1):59–66
11. Manola F, Miller E (2013) RDF primer. W3C recommendation. W3C, Feb 2004. http://www.

w3.org/TR/rdf-primer/. Accessed 10 Sep 2015
12. Brickley D, Guha RV (2013) RDF vocabulary description language 1.0: RDF schema. W3C

recommendation. W3C, Feb 2004. http://www.w3.org/TR/rdf-schema/. Accessed 15 Aug 2013
13. Beckett D, Berners-Lee T (2013) Turtle - terse RDF triple language. W3C team submission.

W3C, Mar 2011. http://www.w3.org/TeamSubmission/turtle/. Accessed 10 Sep 2015
14. Stolz A, Rodriguez-Castro B, Hepp M (2013) RDF translator: a RESTful multi-format data

converter for the semantic web. Technical report TR-2013-1, Universität der Bundeswehr
München, July 2013

15. Staab S, Studer R (eds) (2009) Handbook on ontologies, 2nd edn. International handbooks on
information systems. Springer, Berlin.

16. Hayes PJ (2013) RDF semantics. W3C recommendation. W3C, Feb 2004. http://www.w3.org/
TR/rdf-mt/. Accessed 10 Sep 2015

17. Maedche A, Staab S (2001) Ontology learning for the semantic web. IEEE Intell Syst 16(2):
72–79

18. Lehmann J, Voelker J (2014) An introduction to ontology learning. In: Lehmann J, Voelker J
(eds) Perspectives on ontology learning. AKA/IOS Press, Heidelberg, pp 9–16

19. W3C SPARQL Working Group (2013) SPARQL 1.1 overview. W3C recommendation. W3C,
Mar 2013. http://www.w3.org/TR/sparql11-overview/. Accessed 10 Sep 2015

20. Bizer C, Heath T, Berners-Lee T (2009) Linked data - the story so far. Int J Semantic Web Inf
Syst 4(2):1–22

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/sparql11-overview/

178 S. Stadtmüller et al.

21. Pautasso C, Wilde E (2009) Why is the web loosely coupled?: a multi-faceted metric for
service design. In: Quemada J et al (eds) International conference on world wide web. ACM,
New York, NY, USA

22. Stadtmüller S et al (2013) Comparing major web service paradigms. In: Workshop on services
and applications over linked APIs and data, vol 1056. CEUR-WS, 2013

23. Fielding R (2000) Architectural styles and the design of network-based software architectures.
Ph.D. thesis, University of California, Irvine

24. Richardson L, Ruby S (2007) RESTful web services. O’Reilly Media. Sebastopol, CA, USA
25. Webber J (2010) REST in practice: hypermedia and systems architecture. O’Reilly Media,

Farnham, UK
26. Maleshkova M, Pedrinaci C, Domingue J (2010) Investigating web APIs on the world wide

web. In: IEEE 8th European Conference on Web Services (ECOWS), IEEE, Ayia Napa
27. Cardoso J et al (2010) Towards a unified service description language for the internet of

services: requirements and first developments. In: IEEE international conference on services
computing (SCC), FL, pp 602–609

28. Pedrinaci C, Cardoso J, Leidig T (2014) Linked USDL: a vocabulary for web-scale service
trading. Lecture notes in computer science, vol 8465. Springer, Berlin, pp 68–82

29. García JM et al (2015) Linked USDL agreement: effectively sharing semantic service level
agreements on the web. In: The IEEE international conference on web services (ICWS),
New York, 2015

30. Cardoso J et al (2012) Open semantic service networks. In: International symposium on
services science (ISSS), Leipzig, 2012

31. Stadtmüller S et al (2013) Data-Fu: a language and an interpreter for interaction with read/write
linked data. In: International conference on world wide web. International world wide web
conferences steering committee, Geneva, Switzerland, pp 1225–1236

32. Wilde E (2009) REST and RDF granularity. Accessed 10 Sep 2015
33. Krummenacher R, Norton B, Marte A Towards linked open services and processes. In: Future

internet symposium. Springer, Berlin, pp 68–77
34. Speiser S, Harth A (2011) Integrating linked data and services with linked data services. In:

Proceedings of the 8th extended semantic web conference (ESWC’11) part I, Lecture notes in
computer science, vol 6643. Springer, Heraklion

35. Verborgh R et al (2011) Efficient runtime service discovery and consumption with hyperlinked
RESTdesc. In: International conference on next generation web services practices, Salamanca,
2011

36. Stadtmüller S, Norton B (2013) Scalable discovery of linked APIs. J Metadata Semant Ontol
8(2):95–105

37. Cardoso J, Winkler M, Voigt K (2009) A service description language for the internet of
services. In: International symposium on services science (ISSS), Leipzig, 2009

	5 Service Semantics
	5.1 Semantics in Cloud Services
	5.1.1 Comprehensive Descriptions
	Business Perspective
	Operational Perspective
	Technical Perspective

	5.1.2 Cloud Service Tasks

	5.2 Foundational Technologies
	5.2.1 The Semantic Web
	RDF
	Turtle Syntax
	RDF Schema
	SPARQL
	Linked Data

	5.2.2 Web API Design Principles
	Operation-Oriented API
	Resource-Oriented API
	Resources
	Constrained Operations Set
	Hypermedia Controls

	5.3 Linked USDL
	5.3.1 Linked USDL Family
	5.3.2 The Core Module
	The Service
	Interaction Points
	Communication Channels
	Receives and Yields
	Automated Communication Channels
	Service Offering

	5.3.3 Technical API Descriptions
	Service Resource States
	Graph Pattern Descriptions
	Input Graph Pattern
	Output Graph Pattern

	5.4 Service Search Algorithm
	5.4.1 Matching
	5.4.2 Ranking

	5.5 Conclusions
	Review Section
	Review Questions
	Project
	Key Terms
	Further Reading

	References

