ExCuSe: Robust Pupil Detection
in Real-World Scenarios

Wolfgang Fuhl®), Thomas Kiibler, Katrin Sippel, Wolfgang Rosenstiel,
and Enkelejda Kasneci

Eberhard Karls Universitat Tiibingen, 72076 Tiibingen, Germany
wolfgang.fuhlQuni-tuebingen.de
http://www.ti.uni-tuebingen.de/

Abstract. The reliable estimation of the pupil position is one the most
important prerequisites in gaze-based HMI applications. Despite the rich
landscape of image-based methods for pupil extraction, tracking the
pupil in real-world images is highly challenging due to variations in the
environment (e.g. changing illumination conditions, reflection, etc.), in
the eye physiology or due to variations related to further sources of noise
(e.g., contact lenses or mascara). We present a novel algorithm for robust
pupil detection in real-world scenarios, which is based on edge filtering
and oriented histograms calculated via the Angular Integral Projection
Function. The evaluation on over 38,000 new, hand-labeled eye images
from real-world tasks and 600 images from related work showed an out-
standing robustness of our algorithm in comparison to the state-of-the-
art. Download link (algorithm and data): https://www.ti.uni-tuebingen.
de/Pupil-detection.1827.0.html?\&L=1.

1 Introduction

Eye-tracking technology has helped us getting a deeper understanding of human
cognition, answering questions from psychology, medicine, marketing research,
and many other disciplines. With the development of mobile, head-mounted eye
trackers the number of studies conducted in real-world scenarios, such as in
sports, while driving a car, or shopping are increasing. Such eye trackers con-
sist of two or more cameras, recording the subject’s eyes from close-up and the
scenery from the ego-perspective. The most essential step of the analysis of data
recorded by such devices is the accurate identification of the center of the pupil
in the camera image. In 2000, Schnipke and Todd [13] reported several difficul-
ties arising in eye-tracking applications, e.g., changing illumination conditions,
intersection of eyelashes with the image of the pupil, glasses, etc. Frequent illu-
mination changes are often caused by the ego motion and rotation, especially
when moving fast, e.g. while driving. Reflections are caused by a variety of light
sources on the subject’s eye itself or on glasses or contact lenses. Another factor
that may negatively affect the pupil detection rate is the position of the camera
that records the subject’s eye. For best pupil detection the camera should be
positioned directly in front of the subject’s eye. Since this would influence the

© Springer International Publishing Switzerland 2015
G. Azzopardi and N. Petkov (Eds.): CAIP 2015, Part I, LNCS 9256, pp. 39-51, 2015.
DOI: 10.1007/978-3-319-23192-1_4

https://www.ti.uni-tuebingen.de/Pupil-detection.1827.0.html?&L=1
https://www.ti.uni-tuebingen.de/Pupil-detection.1827.0.html?&L=1

40 W. Fuhl et al.

natural viewing behavior, the camera is usually positioned at the borders of the
visual field and, consequently, the images recorded are highly off-axial. While in
the meantime several of the above problems have been solved for pupil detection
under laboratory conditions [3,6-8,10,12,15,19,21], studies employing eye track-
ing in real-world scenarios regularly report low pupil detection rates [5,9]. Thus,
the data collected from such studies has to be processed post-experimentally
and the pupil has to be manually labeled in the recorded images. A popular and
robust algorithm is Starburst by Li et al. [7], which is based on the calculation of
edges along rays from an initial guess of the pupil position in the image. Areas
of high intensity change along these rays are then used as possible pupil border
features. Finally, an ellipse is fitted to these features using RANSAC. In 2012,
Swirski et al. [15] proposed a robust pupil tracking algorithm for highly off-axis
images. Their approach is based on an initial approximation of the pupil position
using Haar Wavelets and a refinement step with RANSAC-based ellipse fitting.
Another approach introduced by Goni et al. [3] is based on the bright-pupil
technique. In [6] and [8] the algorithm searches for the corneal reflection on IR
images. The pupil is expected close to the corneal reflection and extracted using
histograms and thresholds-based techniques [6]. In Long et al. [10] IR images are
thresholded using a symmetric mass center algorithm. Image thresholding and
mass center calculation is also performed in [12], whereas Valenti et al. [19] use
isophotes curvature estimation and select the maximum isocenter as pupil center.
In [21] the image is thresholded and the curvature of the threshold border is cal-
culated. Despite the above approaches, most eye tracking vendors employ their
own pupil detection algorithms, which are specifically tailored for their devices
and mostly unpublished. To the best of our knowledge, the above approaches
have been evaluated on rather small data sets.

We propose a novel algorithm, Exclusive Curve Selector or ExCuSe for short
that is well suited for real-world eye-tracking applications, providing high detec-
tion rates and robustness in images where other algorithms fail. Our algorithm
is based on oriented histograms calculated via the Angular Integral Projection
Function [11]. The coarse pupil center estimation is then refined by ellipse esti-
mation similar to Starburst [7]. The algorithm is evaluated on the Swirski data
set [15] as well as nine other data sets that were collected during an on-road
driving experiment [5] and eight data sets that were collected during a super-
market study [14]. The evaluation data set consists of overall 38,401 images,
where the pupil position was labeled manually on each image. Thus, despite our
algorithmic contribution we provide an enormous evaluation data set that may
serve as ground truth data for further research.

2 Method

Input to our algorithm are 8-bit gray-scale images. The work-flow of the algo-
rithm for pupil detection is depicted in Figure 1. Each step is described in detail
in the following subsections. Furthermore, this paper is accompanied by a supple-
mentary video, which demonstrates the main idea behind each step of ExCuSe
and the processing result on real-world eye videos of different subjects.

ExCuSe: Robust Pupil Detection in Real-World Scenarios 41

2.1 Normalization and Histogram Analysis

The peripheral regions of the input image (i.e., 10% in our application) are
excluded from further processing in order to avoid the frame of eyeglasses. Fur-
thermore, we assume that on images with an overall bright intensity and similar
gray values a reflection on eyeglasses or a bright illumination spot is present.
Using an intensity threshold approach to extract the pupil is hard in such cases,
since the pupil can not be expected to appear dark and is likely to contain a
broad range of intensity values.

o a A~ . . YES (2.2) Pupil center detection with edge
- 2
Input 8 bit gray-scale image. —)((2.1) Normalization and histogram analysis Is a peak detected? ——)[and gray value image

NO

NO
GZAS) Thresholding and coarse posiﬁoning)(_ ‘Was a matching ellipse found?
YES

Ts a coarse pupil position found? Use the center of this ellipse as
o NO pupil center estimation.
Use the corrected position

YES
NO

3 o ¢ (2.5) Find pupil center with the edge (2.4) Correct position using
Wi [? "
Do image and a thresholded image surrounding gray values

YES

Use the center of this ellipse as. Blink assumed
pupil center estimation.

Fig. 1. The algorithmic work-flow in ExCuSe. Light gray boxes represent decisions,
dark gray boxes stand for termination points, and white boxes represent processing
steps.

Tried other method before? memd
YES

Thus, in a first step, the input image is normalized (range 0 to 255) and a
histogram of the image is calculated. Then the algorithm checks whether the
histogram contains a peak in the bright area (Figure 2(d)) with a gray value
above a threshold thy (i.e., thy = 200 chosen empirically). The peak is detected
if a bin in the histogram is higher than a multiple mu; of the average image
intensity (we chose mu; = 10 empirically). If such a peak was detected, the
pupil can be found based on edge-filtering.

2.2 Pupil Center Detection on Edge and Gray Value Image

We assume that the pupil appears as a curved edge encapsulating the darkest
intensity values of the image. To find such an edge, four processing steps are
performed on the Canny-edge-filtered image, Figure 3.

2.2.1 Filtering the Edge Image

Figure 3(a) shows the edge-filtered image from Figure 2(b), which appears clut-
tered and contains many edges that are not relevant for pupil detection. The
pupil edges are difficult to detect since they are crossed by the eyelashes. In a

42 W. Fuhl et al.

210

2

l

W Q;!!r‘lﬂ]” r IWH rf!ﬁrf;Mb

s
Gray value Gray value

s
s

H
H
E
2
g
S
£
H
&

Sum of occurrences

P (J\'f Vv W,rM/W”
' E = 202k

(b) (©) (@

Fig. 2. Figures 2 (a) and (b) show two images from a dataset introduced by Swirski et
al. [15] and their corresponding intensity histograms in (c) and (d). Figure 2 (b) shows
a pupil with a high range of gray values. Eyelashes cover parts of the pupil and reflect
the light.

(a) (b) (© (d) (e

Fig. 3. (a) A Canny edge filter is applied to the image from Figure 2(b). (b) all edge
pixels with less than two neighbors and angels between all neighbors < 90° are removed.
(c) the remaining connected edge pixels represent lines. They are thinned and pixels
connecting two lines orthogonally are removed. (d) for each line the centroid (shown
as white point) is inspected and lines close to their centroid are removed (e). (f) the
longest line which contains the darkest pixels is assumed to encapsulate the pupil.

first filtering step, thin edge lines (i.e., 1 pixel thickness) and pixels of small
rectangular surfaces (2 x 2 pixels) are removed. More specifically, the above cri-
terion is fulfilled by neighboring pixels which (considered as vectors) have angels
greater than 90° between each other. The remaining edge pixels represent lines
which are straight, curved, or consist of both straight and curved parts. The
separation step is here of particular interest, e.g., the edge of the eyelashes in
the pupil are straight and connected to the curved edge of the pupil. To distin-
guish between connected line parts that have to be separated and those that do
not, the connection point between such parts has to be examined in detail. The
assumption is that line parts that have to be separated are orthogonal to each
other at the connection point.

To separate lines consisting of curved and straight parts into the correspond-
ing curved and straight segments, the morphologic operations shown in Figure 4
are applied. If one of these patterns matches to the edge pixels (shown in gray),
that pixel is deleted. Pixels marked black in the Figure are added. After thin-
ning, lines can be separated into segments by deletion of just one pixel. However,
there are still pixels which prevent the patterns from Figure 4(d), (e), or (f) to
match. Therefore, lines are straightened using the patterns shown in Figure 4(b)
and (c). Now the connection points of line parts which are orthogonal to each

ExCuSe: Robust Pupil Detection in Real-World Scenarios 43

= & R OB

BDHE a5 T s
e fE 42

g=-8 =

i L iz i:
@) (b) © (d) @) (f)

Fig. 4. Morphologic pixel manipulation patterns. White and gray boxes represent pix-
els that were detected as edges in the image. If the pattern matches an edge segment,
gray pixels are removed and black pixels are added to the edge image. Operand (a)
thins lines. Operands (b) and (c) are used to straighten lines. (d), (e) and (f) separate
straight parts of a line from curved parts.

other can be separated using the patterns in Figure 4(d),(e), and (f). The result
of this step is shown in Figure 3(c).

2.2.2 Remove Straight Lines

The next step is to detect and remove straight lines. Since the pupil is expected
to be encapsulated in a curved line, straight lines are of no interest. Therefore,
all remaining edge pixels are combined to lines based on their connection to
neighboring edge pixels. The steps that are performed to calculate lines from
the edge image are the following;:

1. Find edge pixels that do not belong to any line yet
2. Create a new line with the edge pixel

3. Add all direct neighbor edge pixels to the line

4. Repeat Steps 3 + 4 for all added neighbor pixels

Calculate the line centroid for each line. If the pixel distance between the
centroid and at least one point of the line segment is smaller than a threshold
diy, the line is assumed to be straight (in our application we chose di; = 3
empirically). Figure 3(d) shows all lines with their centroid (white point) and
Figure 3(e) shows the remaining, curved lines after the removal of straight seg-
ments. We expect that one of the remaining lines belongs to the pupil.

2.2.3 Choose Curved Line

We assume the pupil to be a dark spot in the intensity image. Therefore, the
pupil candidate with the darkest area contained in it is most likely to be the
pupil. To calculate an intensity value for the contained area we choose the pixel
with a distance of dis pixels for each line point which have the smallest euclidean
distance to the line’s centroid (i.e., dis = 2 chosen empirically). For these pixels,
the mean gray value is calculated. It is possible that there is more than one
curved line belonging to the pupil. We choose the longest line found with the
darkest inboard area. To ensure that larger lines are not discarded, we choose a

44 W. Fuhl et al.

range raj in which the mean gray value deemed to be equal (i.e., ra; = 5). The
chosen line is shown in Figure 3(f). All points on this line are collected and the
center is estimated using ellipse fitting.

2.2.4 Fit Ellipse

There are basically three ways of fitting an ellipse to a set of points. First, the
direct least squares method, which is highly affected by pixels not belonging to
the border of the ellipse [2]. The other two possibilities are vote- and search-based
(e.g., RANSAC [1]). These are more robust to in- and outliers, yet computation-
ally expensive [20]. We fit the ellipse based on the direct least squares method.
It is fast to calculate and also used as abort criterion on failure for the step (2.2)
Figure 1.

2.3 Thresholding and Coarse Positioning

If the gray value histogram does not contain a peak (Figure 2(c)), we extract
the pupil based on a threshold thy. Each pixel with a gray value lower than
ths is set to 255 as shown in Figure 5(b). In highly scattered images the pupil
may consist of a range of different intensity values. The threshold the is chosen
dependent on the scattering in the image as half the standard deviation of the
image intensity. In this step we aim at determining a coarse pupil position. It
is not necessary to extract the whole pupil. Therefore a conservative threshold
that reduces noise at the potential cost of cutting part of the pupil is preferable.
The coarse pupil position is estimated utilizing the Angular Integral Projection
Function (AIPF) [11] on the thresholded image. The AIPF allows the calculation
of the Integral Projection Function (IPF) for any specified angle.

N\ | ., I(f)]
71\ [R
©

(e) (@

() (b)

Fig.5. (a) An image from the Swirski et al. [15] data set and (b) its corresponding
thresholded image. In (c) the coarse positioning (white lines) of the four orientations
from the Angular Integral Projection Function (AIPF) [11] are shown. The results of
the AIPF calculated on the threshold image for the orientations 0°, 45°, 90° and 135°
are shown in the histograms (d), (e), (f), and (g) in corresponding order. The chosen
positions are shown as red lines and correspond to the white lines in (c¢) with (d)
defining the vertical white line in (c), (e) the line from the right bottom to the top left
corner, (f) to the horizontal line and (g) to the line from the left bottom to the top
right corner.

ExCuSe: Robust Pupil Detection in Real-World Scenarios 45

2

[PE(y) = / I(z,y) de (1)

1

Y2
IPE,(@) = [1) dy &)
Y1

With I(z,y) as the gray value at the location (z,y) equation (1) (as found in
[11]) defines the IPF}, (Integral Projection Function horizontally) for the interval
[x1, z2] and equation (2) define the IPF, (Integral Projection Function vertically)
for the interval [y1,y2]. The IPF calculates the sum of the intensity values of an
image in one direction. For example, outgoing form the x-axes for each row (pixel
line from the bottom of the image to the top) the pixel values are summed up
and represent one bin in the resulting histogram. Those histograms do not rely
on shape and our assumption is that the region with the highest response is the
pupil. We used the AIPF because it allows to calculate IPFs for different orien-
tations, it is known to be robust and is fast to calculate. Two well known IPFs
are the horizontal (IPF};) and the vertical (IPF,) IPF. The IPF, corresponds
to the AIPF with angle 0° and the IPF; corresponds to the AIPF with angle
90° [11].

With I(x,y) as the gray value at location (z,y) equation (3) (as found in [11])
defines the AIPF. © is the angle of the line to the x-axis from which the inte-
gration rotated by 90° takes place, p is the position on the line or the bin of the
corresponding histogram, h is the number of pixels to be integrated and (x¢, yo)
is the position of the start point of the line along which the integration rotated
by 90° takes place. We used the orientations 0°, 45°, 90° and 135° for the AIPF
to calculate the histograms shown in Figure 5(d),(e),(f), and (g).

h
AIPF(©,p,h) = h—1|—1 * I((xo + pcosO)
+(j cos(9+90), (yo + psinO) (3)

)
+(jsin (© + 900))) dj

In these four histograms the coarse pupil location is assumed at a wide and
high response area. The minimum length of the area is specified by ar; and
the number of consecutive bins allowed to be low is specified by ary (in our
application we chose ar; = 7 and are = 5 empirically). This is done to eliminate
single high responses in the histogram.

Areas of high response are defined by a threshold ths which is a percentage
of the maximum of the histogram (in our application we chose thg = 0.5 empiri-
cally). If there is more than one acceptable area in a histogram, our assumption
is that the pupil can be found at the center of the image. Therefore, the mid-
point of the area which is closest to the bin in the histogram corresponding
to the center of the image is chosen as the pupil position. The white lines in

46 W. Fuhl et al.

Figure 5(c) represent the angle of the AIPF for each histogram rotated by 90°
(angle of the integration) and are the chosen positions. Therefore, these white
lines correspond to the red lines from Figures 5(d), (e), (f), and (g) drawn to the
threshold image shown in Figure 5(b). The pupil position is estimated based on
the intersection of these lines. Our assumption is that the intersection of those
lines orthogonal to each other are close to or hit the pupil. This way, up to two
intersection points are considered. The pupil position is assumed as the point
between these intersections. In the case that no intersection was found, branch
2.2 of the algorithm will take over. If this branch fails to detect the pupil as
well, a blink is assumed.

2.4 Correct Position Using Surrounding Gray Values

Once a coarse pupil center estimation has been established, it has to be improved
because it is possible that the coarse position lays outside or on the boarder of
the pupil. It can be refined within a small area ars around the estimation without
being dependent on the shape or color of the pupil (in our application we chose
ars = 0.1 empirically, which represents 10% of the width and height of the
image in each direction). The only assumption made is that pixels belonging
to the pupil are surrounded by brighter or equally bright pixels. This step is
important for images in which the pupil is especially hard to detect.

vz vz 0 (i) >= I(z,y)

For each pixel the sum PS(z,y) of gray value differences to its neighbors is cal-
culated. Only gray values lower than the value of the pixel under consideration
are taken into account. For the neighborhood area the square root of the diag-
onal of the area specified by ars is used. The mean of the pixel positions with
the lowest sum value is the new corrected position. In equation (4) PS(z,y)
is the sum calculated for the pixel at position (z,y), [£1, 2] is the interval on
the x-axis of the neighborhood area, [y1,y2] is the interval on the y-axis and
I(x,y) is again the gray value at position (x,y).

2.5 Find Pupil Center with the Edge and Threshold Image

This step does not require the corrected position to be the accurate pupil center,
however it is required to lie inside of the pupil. The concept of using a thresh-
old image to improve the edge image and refine finding the pupil edges with
rays outgoing from this position is described in the following chapter. Only the
region ary around the corrected point is of interest for finding the pupil (in our
application we chose ary, = 0.2 empirically, which means 20% of the width and
height of the image in each direction). We use only eight rays because for too
many rays it is more likely that rays hit edges not belonging to the pupil if the
edges belonging to the pupil are not consistently present. Therefore rays missing
the pupil edges can hit other edges that do not belong to the pupil thus making
the pupil center detection incorrect.

ExCuSe: Robust Pupil Detection in Real-World Scenarios 47

2.5.1 Improve Edge Image with Threshold Image

First, an edge-filter of the image region is calculated, as shown in Figure 6(a). The
calculated threshold image from step 2.3 is not useful here because the threshold
chosen was for coarse positioning and there was no need to extract the whole
pupil. In this step, the threshold the (chosen as half the standard deviation)
is increased to the full standard deviation to calculate the new threshold image
(Figure 6(b)). In this step it is important that no part of the pupil gets cut off by
a too conservative threshold. Edges of the edge image are preselected by overlay
with the threshold image. Only edges close to the border of the threshold region
(Figure 6(c)) are considered relevant. This border is calculated by accepting only
white pixels in the threshold image which have black direct neighbors. Only
edges close to the border region are considered, see Figure 6(d). To calculate
this the surrounding area ars of each threshold border pixel is inspected (in our
application we chose ars = 5 empirically which means 5 pixels in each direction
outgoing from the threshold border pixel). If an edge pixel lies within the ary
region of a threshold border pixel it is accepted. Then the border refinement steps
described in 2.2.1 and 2.2.2 are carried out (the result is shown in Figure 6(e)).

(a) (b) (d) (e) ®

Fig. 6. The edge-filtered eye image (a) of the region where the pupil is expected.
A threshold image (b) is calculated to determine the threshold border (c). Only edge
pixels close to this border are used for further calculations (d). After the edge refinement
steps explained in 2.2.1 and 2.2.2 the remaining edges are used for edge selection (e):
rays are sent out from the corrected point (white point in the middle of (f)) into all
directions with an angle step of 45°. If a ray hits an edge (white points on the ellipse
in (f)) the line belonging to this edge is supposed to belong to the pupil.

2.5.2 Find Edges that Represent the Pupil Border

In the resulting edge image, rays from the corrected position (small white point
in the middle of Figure 6(f)) are sent in all directions with an angle step of 45°
until they hit an edge (white points on the elliptic line in Figure 6(f)), similar to
the method used by the Starburst algorithm [7]. The intersection points between
the rays and the edges are used to collect points. All edge pixels connected to a
hit edge pixel and iteratively all that are connected to those pixels are used to
fit an ellipse.

48 W. Fuhl et al.

3 Experimental Evaluation

3.1 Data

We evaluated our approach on eighteen data sets. The first data set was pub-
lished by Swirski et al. [15]. Nine data sets were recorded during an on-road
driving experiment [5] using a head-mounted camera system (Dikablis Mobile
Eye Tracker by Ergoneers GmbH). The remaining eight data sets were recorded
during a supermarket search task [14]. These data sets are highly challenging,
since illumination conditions change often and rapidly. Furthermore reflections
on eyeglasses and contact lenses occur. The data reflect the results of standard
eye-tracking experiments out of the laboratory and was recorded for other stud-
ies that did not focus on pupil detection. Pupil position was hand labeled for all
of the above data sets. The data is available for download under https://www.
ti.uni-tuebingen.de/Pupil-detection.1827.0.html?&L=1.

3.2 Results

The runtime of ExCuSe (C++ implementation) was 7ms per image (averaged
over all images (384 x 288 pixel and 620 x 460 pixel), no multithreading,
CPU: i5-4570 3.2GHz). We compared the performance of our algorithm (with-
out changing any parameter for all data sets) to two state-of-the-art approaches,
namely Swirski et al. [15] (Version June 1st, 2014 runtime:14ms) and to the
Starburst algorithm [7] (Version 1.1.0 from OpenEyes website runtime not com-
parable because of matlab version). The performance was measured in terms of
detection rate for different pixel errors based on the Euclidean distance between
the hand-labeled ground-truth and the pupil center as reported by each algo-
rithm. Table 1 shows the results for each algorithm on each data set with a pixel
error up to 5.

Note that the performance of the pupil tracking software provided by the
eye-tracker manufacturer (Ergoneers GmbH) was very poor on all the above
data sets (without Swirski data) with a detection rate of less than 0.027 % for
15 error pixels. Therefore, the results of the manufacturer software will not be

ogb ot [—EXCUSE
ok ; | ===SWIRSKI
207 ; o --'STARBURST]

N R R S S NN OB [N PR I FR
pixel error
Fig. 7. Average pupil detection rates for different pixel errors achieved by ExCuSe

(solid), the Swirksi et al. algorithm (dashed), and Starburst (double dashed) on all
data sets from Table 1.

https://www.ti.uni-tuebingen.de/Pupil-detection.1827.0.html?&L=1
https://www.ti.uni-tuebingen.de/Pupil-detection.1827.0.html?&L=1

ExCuSe: Robust Pupil Detection in Real-World Scenarios 49

presented here. In addition, Figure 7 shows the average performance of all three
algorithms over the entire evaluation data, i.e., on about 39,000 hand-labeled
images. As shown in the Figure, ExCuSe outperforms the competitor algorithms
with detection rates nearly twice as good as the Swirski et al. algorithm and is
therefore a suitable choice for pupil detection on such difficult data.

Table 1. Detection rate of Starburst, Swirski et al. and ExCuSe on each evaluation
data set. For each data set, the table shows the number of hand-labeled images and
a description of the challenges faced by the image processing as seen by the authors.
The last three columns are the results up to an pixel error of 5.

Data Set‘Images‘Challenges ‘Starburst‘Swirski et al.‘ExCuSe
Swirski 600|Highly off axis, eyelashes 21% 8% 86%
I 6.554|Reflections 5% 5% 70%
I 505 |Reflections, bad illumination 2% 24% 34%
111 9.799|Reflections, recording errors, bad illumination 1% 6% 39%
v 2.655|Contact lenses, bad illumination 4% 34% 81%
\Y% 2.135|Shifted contact lenses 14% 77% 7%
VI 4.400|Bad illumination, Mascara 18% 19% 53%
VII 4.890|Bad illumination, mascara, eyeshadow 2% 39% 46%
VIIT 630|Bad illumination, Eyelashes 8% 41% 56%
X 2.831|Reflections, additional black dot 12% 23% 74%
X 840|Bad illumination, pupil at image boarder 53% 29% 79%
XI 655|Reflections, bad illumination, 26% 20% 56%
additional black dot
XII 524|Bad illumination 61% 70% 79%
XIII 491|Bad illumination, Eyelashes 43% 61% 70%
X1V 469|Bad illumination 21% 52% 57%
XV 363|Shifted contact lenses 8% 62% 52%
XVI 392|Mascara, eyelashes 8% 18% 49%
XVII 268|Bad illumination, eyelashes 0% 68% 78%

4 Conclusions

We presented a pupil detection algorithm, ExCuSe, for application in real-world
eye-tracking experiments. The focus was primarily on the robustness of the algo-
rithm with respect to frequently and rapidly changing illumination conditions,
off-axial camera position, and other sources of noise. We evaluated our algo-
rithm on a total of 39,001 eye images in comparison with two state-of-the-art
approaches. Our method showed high robustness and clearly outperformed the
competitor algorithms. Since robust pupil position tracking under real-world
illumination conditions is a crucial prerequisite towards online analysis of eye-
tracking data in different applications, e.g., driving, where such information can
be used to determine the visual attention focus of the driver [4,16,17], we encour-
age the application of ExCuSe in such tasks. In our future work, we will integrate
ExCuSe in visual search tools (e.g., Vishnoo [18]) to make it available for pupil
detection in search tasks under laboratory conditions.

50

W. Fuhl et al.

References

1.

10.

11.

12.

13.

14.

Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartog-
raphy. Communications of the ACM 24(6), 381-395 (1981)

Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses.
IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5),
476-480 (1999)

Goni, S., Echeto, J., Villanueva, A., Cabeza, R.: Robust algorithm for pupil-
glint vector detection in a video-oculography eyetracking system. In: Pattern
Recognition. ICPR 2004, vol. 4, pp. 941-944. IEEE (2004)

Kasneci, E.: Towards the Automated Recognition of Assistance Need for
Drivers with Impaired Visual Field. Ph.D. thesis, University of Tiibingen,
Wilhelmstr. 32, 72074 Tiibingen (2013)

Kasneci, E., Sippel, K., Aehling, K., Heister, M., Rosenstiel, W., Schiefer,
U., Papageorgiou, E.: Driving with Binocular Visual Field Loss? A Study on
a Supervised On-road Parcours with Simultaneous Eye and Head Tracking.
Plos One (2014). doi:10.1371/journal.pone.0087470

Keil, A., Albuquerque, G., Berger, K., Magnor, M.A.: Real-time gaze track-
ing with a consumer-grade video camera

Li, D., Winfield, D., Parkhurst, D.J.: Starburst: a hybrid algorithm for video-
based eye tracking combining feature-based and model-based approaches.
In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition-Workshops, 2005. CVPR Workshops, pp. 79-79. IEEE (2005)
Lin, L., Pan, L., Wei, L., Yu, L.: A robust and accurate detection of pupil
images. In: 2010 3rd International Conference on Biomedical Engineering
and Informatics (BMEI), vol. 1, pp. 70-74. IEEE (2010)

Liu, X., Xu, F., Fujimura, K.: Real-time eye detection and tracking for driver
observation under various light conditions. In: IEEE Intelligent Vehicle Sym-
posium, 2002, vol. 2, pp. 344-351. TEEE (2002)

Long, X., Tonguz, O.K., Kiderman, A.: A high speed eye tracking system
with robust pupil center estimation algorithm. In: 29th Annual International
Conference of the IEEE on Engineering in Medicine and Biology Society.
EMBS 2007, pp. 3331-3334. IEEE (2007)

Mohammed, G.J., Hong, B.R., Jarjes, A.A.: Accurate pupil features extrac-
tion based on new projection function. Computing and Informatics 29(4),
663—-680 (2012)

Peréz, A., Cordoba, M., Garcia, A., Méndez, R., Munoz, M., Pedraza, J.L.,
Sanchez, F.: A precise eye-gaze detection and tracking system

Schnipke, S.K., Todd, M.W.: Trials and tribulations of using an eye-tracking
system. In: CHI 2000 extended abstracts on Human factors in computing
systems, pp. 273-274. ACM (2000)

Sippel, K., Kasneci, E., Aehling, K., Heister, M., Rosenstiel, W., Schiefer, U.,
Papageorgiou, E.: Binocular Glaucomatous Visual Field Loss and Its Impact
on Visual Exploration - A Supermarket Study. PLoS ONE 9(8), e106089
(2014)

http://dx.doi.org/10.1371/journal.pone.0087470

15.

16.

17.

18.

19.

20.

21.

ExCuSe: Robust Pupil Detection in Real-World Scenarios 51

Swirski, L., Bulling, A., Dodgson, N.: Robust real-time pupil tracking in
highly off-axis images. In: Proceedings of the Symposium on Eye Tracking
Research and Applications, pp. 173-176. ACM (2012)

Tafaj, E., Kasneci, G., Rosenstiel, W., Bogdan, M.: Bayesian online clus-
tering of eye movement data. In: Proceedings of the Symposium on Eye
Tracking Research and Applications, ETRA 2012, pp. 285-288. ACM (2012)
Tafaj, E., Kiibler, T.C., Kasneci, G., Rosenstiel, W., Bogdan, M.: Online
classification of eye tracking data for automated analysis of traffic haz-
ard perception. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G.,
Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol.
8131, pp. 442-450. Springer, Heidelberg (2013)

Tafaj, E., Kiibler, T., Peter, J., Schiefer, U., Bogdan, M., Rosenstiel, W.:
Vishnoo - an open-source software for vision research. In: Proceedings of the
24th IEEE International Symposium on Computer-Based Medical Systems,
CBMS 2011, pp. 1-6. IEEE (2011)

Valenti, R., Gevers, T.: Accurate eye center location through invariant
isocentric patterns. Transactions on pattern analysis and machine intelli-
gence 34(9), 1785-1798 (2012)

Yuen, H., llingworth, J., Kittler, J. Ellipse detection using the hough trans-
form. In: Alvey Vision Conference, pp. 1-8 (1988)

Zhu, D., Moore, S.T., Raphan, T.: Robust pupil center detection using a
curvature algorithm. Computer methods and programs in biomedicine 59(3),
145-157 (1999)

	ExCuSe: Robust Pupil Detection in Real-World Scenarios
	1 Introduction
	2 Method
	2.1 Normalization and Histogram Analysis
	2.2 Pupil Center Detection on Edge and Gray Value Image
	2.3 Thresholding and Coarse Positioning
	2.4 Correct Position Using Surrounding Gray Values
	2.5 Find Pupil Center with the Edge and Threshold Image

	3 Experimental Evaluation
	3.1 Data
	3.2 Results

	4 Conclusions

