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Abstract. The extraction of scale invariant image features is a funda-
mental task for many computer vision applications. Features are local-
ized in the scale space of the image. A descriptor is build for each feature
which is used to determine the correspondence to a second feature, usu-
ally extracted from a second image. For the evaluation of detectors and
descriptors, benchmark image sets are used. The benchmarks consist of
image sequences and homographies which determine the ground truth
for the mapping between the images. The repeatability criterion evalu-
ates the detection accuracy of the detectors while precision and recall
measure the quality of the descriptors.

Current data sets provide images with resolutions of less than one
megapixel. A recent data set provides challenging images and highly
accurate homographies. It allows for the evaluation at different image
resolutions with the same scene content. Thus, the scale invariant prop-
erties of the extracted features can be examined. This paper presents a
comprehensive evaluation of state of the art detectors and descriptors on
this data set. The results show significant differences compared to the
standard benchmark. Furthermore, it is shown that some detectors per-
form differently on different resolutions. It follows that high resolution
images should be considered for future feature evaluations.

1 Introduction

Scale invariant features play an important role in many computer vision appli-
cations, such as object recognition or scene reconstruction. These applications
require discriminative and accurate features on images with large changes in
illumination and perspective [9,18].

New approaches in feature detection [2,3,11,14,16,17] and description
[1–3,7,11,15,16] usually use the reference test set and the evaluation protocols
provided in [14,15]. It contains sequences of still images (800 × 640 pixel reso-
lution) with changes in illumination, rotation, perspective, and scale. Only two
out of eight sequences provide perspectively distorted images. The mapping from
one image to the next is restricted to a homography. For the benchmark test, the
ground truth homography matrices are provided. The most important criterion
for the accuracy of the detectors is the repeatability criterion. The descriptors
are evaluated with precision and recall curves.

Nowadays, high resolution images become more and more important. Resolu-
tions of 4K (4000×3000 pixels) are required for the digital cinema. Even current
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smartphones provide large resolutions, such as the iPhone 6 with eight megapix-
els. However, feature evaluations are performed on images with resolutions of
less than one megapixel. An evaluation of state-of-the-art feature detectors and
descriptors on high resolution images is still missing. Recently, a high resolu-
tion benchmark data set was published1. It provides image resolution of up to 8
megapixels [6] (a first step towards 4K) and focuses on the scenario of perspec-
tively distorted images, which is demanded by scene reconstruction applications
like in [9,18]. Our contribution is the evaluation of state-of-the-art feature detec-
tors and descriptors on the benchmark [6] compared to [14]. We examine which
of the detectors and descriptors are able to transfer their performance to large
resolutions.

In the following Section 2, the feature detectors and descriptors are intro-
duced. In Section 3, the experimental setup is presented. Section 4 shows the
results and Section 5 gives the conclusions.

2 Overview

Several publications give informative overviews on scale invariant feature detec-
tors and descriptors, e.g. [8,12]. Since we concentrate on the evaluation, we just
give a short overview of the competitors. The evaluated detectors are Wave [17],
A-KAZE [2], ORB [16], BRISK [11], SURF [3], and SIFT [13] (cf. Table 1). The
evaluation criterion is the repeatability using the matlab script provided by the
authors of [14]. The resulting best detector is used in the descriptor evaluation.
The evaluated descriptors are A-KAZE [2], LIOP [19], MROGH [7], GLOH [15],
and SIFT [13] (cf. Table 2). In our evaluation, we exclude the descriptors ORB,
BRISK, and FREAK. These approaches concentrate on fast computation, and
their performance in accuracy is to our experience equal to or lower than SIFT
(cf. [4,8]).

Our evaluation aims at finding the most accurate detector together with the
best possible descriptor. The implementations are taken as they are provided
by the authors (cf. Table 1 and 2) using default parameters. For comparison,
we added the computation times found in our experiments in milliseconds per
feature, computed on i7 CPU, 3.50 GHz.

3 Experimental Setup

Most evaluations employ the benchmark provided in [14]. We mainly use the
recently published benchmark data set [6] for two reasons: (1) it provides higher
accuracy [5] and image resolution (even different resolutions for the same scenes),
(2) it concentrates on the perspective change scenario which is in the focus of
this evaluation. For comparison, we include the most popular perspective change
sequence Graffiti of [14]. The first images of the sequences are shown in Figure 1.

We use the repeatability criterion for the detectors evaluation while precision
and recall determines the quality of the descriptors. The overlap error parameter
is set to 0.4 [14].
1 http://www.tnt.uni-hannover.de/project/feature evaluation/

http://www.tnt.uni-hannover.de/project/feature_evaluation/
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Table 1. The detectors which are compared in the results section.

detector implementation year published computation time [ms]

SIFT [13] Hess code [10] 2004 4.38
SURF [3] Author’s binary 2006 0.54

BRISK [11] OpenCV 2.4 2011 0.99
ORB [16] OpenCV 2.4 2011 0.47

A-KAZE [2] Author’s code 2013 1.04
Wave [17] Author’s binary 2013 5.58

Table 2. The descriptors with their default descriptor lengths dl which are used for
the comparisons in the results section.

descriptors implementation dl year published computation time [ms]

SIFT [13] Oxford binary 128 2004 1.74
GLOH [15] Oxford binary 128 2005 1.87
MROGH [7] Author’s code 192 2011 2.35
LIOP [19] Author’s binary 144 2011 1.43

A-KAZE [2] Author’s code 61 2013 7.97

3.1 Feature Detection

The detectors provide a surprisingly large variation in extracted numbers of fea-
tures. The numbers of features heavily dependent on texture, perspective, and
resolution of the considered image. The detectors provided by OpenCV (ORB,
BRISK) tend to extract many more features (sometimes more than 40000) than
the others. Thus, we have to limit the number of detected points. For this pur-
pose, the attribute response is used for each feature in OpenCV. For the evalua-
tion, we sort the features by their response and choose the first nf features. The
number nf is determined by the maximum of detected features by the others
(A-KAZE, Wave, SURF, SIFT). In most cases, A-KAZE provides the largest
number of features. The results for the repeatability are shown in Section 4.1.

3.2 Feature Descriptors

Since the A-KAZE detector provides the highest accuracy (cf. Section 4.1) and
appropriate numbers of features for all of the sequences it is used for the detection
task. Then, the descriptors are calculated by all methods as shown in Table 2.
We use only original implementations from the authors (source code or binaries).
For each detector, default parameters are used. Note, that for the descriptors
different lengths dl are provided by default (cf. Table 2). The results for precision
and recall of the descriptors are shown in Chapter 4.2.
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(a) Graffiti (b) Posters (c) There (d) Grace (e) Colors (f)Underground

Fig. 1. First images of the input image sequences. The resolution is 800 × 640 for (a)
Graffiti and up to 3456 × 2304 for the sequences (b) - (f).

(a) Underground 1365 1024 (b) Underground 2048 1365 (c) Underground 3456 2304

Fig. 2. Feature detection of the Wave detector on different resolutions.

4 Experimental Results

The results for the detector evaluation is demonstrated in Section 4.1 while the
results for descriptors is shown in Section 4.2. The approaches are subsumed in
Table 1 and Table 2, respectively.

4.1 Detector Evaluation

The results for the repeatability are demonstrated in two sets:

1. A comparison between low-resolution and high-resolution for the same scenes
in Figure 3 and Figure 4. (Grace, Underground, and Colors). Here, different
performances are shown for some competitors.

2. The results for low-resolution input images (Graffiti, Posters, and There)
in Figure 5. For these sequences, the results for higher resolution show no
significant differences (Graffiti and There).

The first set shows that the performance decreases in general when using
larger image resolutions. There are some examples, where the performance drops
drastically. One example is the result of the Wave detector for the Underground
sequence (cf. Figure 3). Here, the numbers of valid feature pairs for 8 megapixels
are even smaller than the numbers for 1.5 megapixels. In Figure 2, the detection
result of Wave is demonstrated on a part of the first image of Underground.
On the full image, 7735 points are detected on resolution 1365 × 1024, 6821 on
2048× 1365, and only 3282 on 3456× 2304. On the contrary, Wave shows good
performance on the Colors sequence. The Colors sequence provides a second
example for a differing performance of a detector. The repeatability of ORB is
significantly lower for 8 megapixels than for 1.5 megapixels. The BRISK detector
gives poor results for the large resolution compared to the low resolution versions.
The best results are provided by the A-KAZE detector.
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The second set demonstrates results using smaller resolutions (cf. Figure 5).
For Graffiti and Posters, ORB performs best, followed by A-KAZE. The chal-
lenging There sequence (strong viewpoint change) shows very low detection per-
formance of Wave. It detects only 23 features in the first image of the sequence.
Again, A-KAZE provides very good results for each of the sequences.

The overall results are subsumed in Table 3. The best results are achieved
with the A-KAZE detector. ORB provides surprisingly good results for most
sequences.

4.2 Descriptor Evaluation

Since A-KAZE provides the best results for feature detection, this approach
is used. For the descriptor evaluation, the sequence test set is extended with
the sequences Wall, Boat, and Bikes [14]. The results are shown in Figure 6
(Graffiti and Wall) and in Figure 7 (Boat and Bikes) for the lower resolution
images (0.5 megapixels). The comparisons with different resolution (1.5 megapix-
els and 8 megapixels) of the same scene are demonstrated Figure 8 (Grace), in
Figure 9 (Underground), in Figure 10 (Colors), and in Figure 11 (There). For
the Posters sequence, too many features are extracted for the large resolution
version (> 45000) to evaluate with the matlab script. We show the results of
the 1.5 megapixels sequence in Figure 12. The overall results are subsumed in
Table 4.
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Fig. 3. Repeatability results for 1.5 megapixels (top row, 1365×1024) and 8 megapixels
(bottom row, 3456 × 2304) for the sequences Grace, Underground, and Colors.
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(e) Underground 8 MPixel
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Fig. 4. Absolute numbers or valid feature pairs for 1.5 megapixels (top, 1365 × 1024)
and 8 megapixels (bottom, 3456 × 2304) for Grace, Underground, and Colors.
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(a) Graffiti: Repeatability
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(b) There: Repeatability
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(c) Posters: Repeatability
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(d) Graffiti: Correspondences
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Fig. 5. Repeatability (top) and absolute numbers of features for the sequences Graffiti
(0.5 megapixels), There, and Posters (1.5 megapixels).
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Table 3. The results for the detectors test field.

Input Ranking
Sequence Resolution 1ST 2ND 3RD 4TH 5TH 6TH

Grace 1.5 MP A-KAZE ORB SURF/SIFT Wave BRISK
Grace 8.0 MP A-KAZE ORB SURF/SIFT Wave BRISK

Underground 1.5 MP A-KAZE/ORB Wave/SURF/SIFT BRISK
Underground 8.0 MP A-KAZE/ORB SURF SIFT Wave BRISK

Colors 1.5 MP A-KAZE/ORB/Wave SURF SIFT BRISK
Colors 8.0 MP A-KAZE/Wave SURF ORB SIFT BRISK

Graffiti 0.5 MP ORB A-KAZE Wave/SURF/SIFT BRISK

There 1.5 MP ORB A-KAZE/SURF SIFT BRISK Wave

Posters 1.5 MP A-KAZE/ORB Wave/SURF/SIFT BRISK

(a) Graffiti 1-2 (b) Graffiti 1-3 (c) Graffiti 1-4

(d) Wall 1-3 (e) Wall 1-4 (f) Wall 1-5

Fig. 6. Precision-recall diagrams for Graffiti (top row) for the image pairs 1-2, 1-3, and
1-4 and Wall (bottom row) for the image pairs 1-3, 1-4, 1-5.
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(a) Boat 1-3 (b) Boat 1-4 (c) Boat 1-5

(d) Bikes 1-2 (e) Bikes 1-4 (f) Bikes 1-6

Fig. 7. Precision-recall diagrams for Boat (top row, image pairs 1-3, 1-4, 1-5) and
Bikes (bottom row, image pairs 1-2, 1-4, and 1-6). The Boat sequence shows scale and
rotation change. The Bikes shows differences in image blur.

(a) Grace 1-2 (b) Grace 1-3 (c) Grace 1-4

(d) Grace 1-2 (e) Grace 1-3 (f) Grace 1-4

Fig. 8. Precision-recall diagrams for Grace with the resolutions 1536× 1024 (top) and
3456 × 2304 (bottom).
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(a) Underground 1-2 (b) Underground 1-3 (c) Underground 1-4

(d) Underground 1-2 (e) Underground 1-3 (f) Underground 1-4

Fig. 9. Precision-recall diagrams for Grace with the resolutions 1536× 1024 (top) and
3456 × 2304 (bottom).

(a) Colors 1-2 (b) Colors 1-3 (c) Colors 1-4

(d) Colors 1-2 (e) Colors 1-3 (f) Colors 1-4

Fig. 10. Precision-recall diagrams for Colors with the resolutions 1536 × 1024 (top)
and 3456 × 2304 (bottom).
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(a) There 1-2 (b) There 1-3 (c) There 1-4

(d) There 1-2 (e) There 1-3 (f) There 1-4

Fig. 11. Precision-recall diagrams for There with the resolutions 1536×1024 (top) and
3456× 2304 (bottom). For this challenging sequence, none of the descriptors provide a
result for the pair 1-4.

(a) Posters 1-2 (b) Posters 1-3 (c) Posters 1-4

Fig. 12. Precision-recall diagrams for Posters with the resolutions 1536 × 1024.
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Table 4. The results for the descriptors test field.

Input Ranking
Sequence Resolution 1ST 2ND 3RD 4TH 5TH

Graffiti 0.5 MP MROGH LIOP GLOH SIFT A-KAZE
Wall 0.5 MP MROGH GLOH/SIFT LIOP A-KAZE
Boat 0.5 MP MROGH LIOP/GLOH SIFT A-KAZE
Bikes 0.5 MP MROGH LIOP SIFT/GLOH/A-KAZE

Grace 1.5 MP MROGH/LIOP GLOH A-KAZE SIFT
Grace 8.0 MP MROGH/LIOP GLOH SIFT A-KAZE

Underground 1.5 MP MROGH LIOP/GLOH A-KAZE SIFT
Underground 8.0 MP MROGH GLOH LIOP/A-KAZE/SIFT

Colors 1.5 MP MROGH/LIOP SIFT A-KAZE/GLOH
Colors 8.0 MP MROGH LIOP/SIFT GLOH A-KAZE

There 1.5 MP MROGH/LIOP A-KAZE/GLOH SIFT
There 8.0 MP MROGH/LIOP A-KAZE/GLOH SIFT

Posters 1.5 MP LIOP MROGH GLOH SIFT A-KAZE

Like in the detectors evaluation, there are several examples with varying
performances of descriptors on different resolutions but the same scene. For the
Grace sequence, the A-KAZE descriptor provides better results than SIFT for 1.5
megapixels while being worse than SIFT for 8 megapixels (cf. Figure 8). A sec-
ond example is the LIOP descriptor on the Underground sequence(cf. Figure 9).
For 1.5 megapixels, it performs very good (ranking 2ND in the test field) while
the performance drops significantly for 8 megapixels. The LIOP descriptor pro-
vides the most varying result for different sequences. For Wall, it ranks 4TH

(cf. Figure 6) while providing the best results for Posters (cf. Figure 12).
As shown in Table 4, the overall best descriptor results are provided by

MROGH, followed by LIOP. The MROGH descriptor is theoretically rota-
tional invariant [7]. Thus, the estimation of a dominant orientation is not
required. The Boat (cf. Figure 7) sequence illustrates this strength. Interest-
ingly, MROGH provides the best results for nearly every sequence tested in this
evaluation. Although the A-KAZE detector provides the most accurate features
(cf. Section 4.1), its descriptor is only ranked 6TH in this test field. As expected,
GLOH is slightly better than SIFT, ranking 3RD and 4TH.

5 Conclusions

A recent benchmark data set [6] allows for the evaluation of scale invariant
feature detectors and descriptors on high resolution images. The benchmark
enables the comparison of the approaches on different resolutions of the same
scene. The evaluation presented in this paper concentrates on the accuracy of
detectors and descriptors at different image resolutions. It is shown that different
resolutions can lead to significantly different results for detectors (Wave, ORB)
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and descriptors (LIOP, A-KAZE). The most accurate detector is the A-KAZE
detector. The A-KAZE regions are used for the evaluation of state of the art
descriptors. Here, the MROGH descriptor leads to the best results.

The evaluation shows that the benchmark [6] offers new and interesting
results regarding accuracy and high image resolutions. Furthermore, it offers
the unique possibility to examine the behavior of the detectors and descriptors
on different resolutions of the same scene.
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