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Abstract. This paper proposes a multiple-object detection and track-
ing method that explicitly handles dynamic occlusions. A context-based
multiple-cue detector is proposed to detect occluded vehicles (occludees).
First, we detect and track fully-visible vehicles (occluders). Occludee
detection adopts those occluders as priors. Two classifiers for partially-
visible vehicles are trained to use appearance cues. Disparity is adopted
to further constrain the occludee locations. A detected occludee is then
tracked by a Kalman-based tracking-by-detection method. As dynamic
occlusions lead to role changes for occluder or occludee, an integrative
module is introduced for possibly switching occludee and occluder track-
ers. The proposed system was tested on overtaking scenarios. It improved
an occluder-only tracking system by over 10% regarding the frame-based
detection rate, and by over 20% regarding the trajectory detection rate.
The occludees are detected and tracked in the proposed method up to 7
seconds before they are picked up by occluder-only method.

1 Introduction

Multiple-object detection and tracking is a main subject in computer vision. Exam-
ples of considered objects are pedestrians [9] or vehicles [15]. Tracking-by-detection
methods are developed for, e.g., surveillance, robotics, or autonomous driving
[1,9,15]. These methods are mainly focusing on data association[1,7,21]. Occlu-
sions pose difficulties for data association due to appearance changes. Because
of occlusions, detection results (i.e. bounding boxes) for the occluded objects are
noisy, containing partially their occluders. An occluder is a fully-visible vehicle;
some fully-visible vehicles may not have any occludee but we still call them occlud-
ers in this paper.

By occludee we denote any partially occluded vehicle. Heavily occluded
objects are often not detected at all, as the object model is designed or learned
to detect non-occluded objects. Instead of taking occludees as exceptions, this
paper proposes to detect occludees explicitly. The visible part of an occludee is
obtained for further tracking, which is considered as being separated from its
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Fig. 1. Left: A sample frame with a tracked occluder (the filled pink rectangle). Middle:
A partially-visible car. Right: Zoom-in view on an occludee (the yellow rectangle).

occluder. In this way, noise introduced by detection is suppressed in subsequent
tracking. There are already methods [5,10] aiming at a detection of occludees
separated from their occluders.

For a heavily occluded object, only weakly visible evidence complicates the
detection task. Consider the scenario shown in Fig. 1. Without context knowledge
it is even challenging for a human observer to recognize the partially-visible
vehicle. But by identifying a vehicle as a (possible) occluder, it is more likely that
we can also recognize occludees. Occludees act as valuable context information
in a traffic scenario; they support the analysis of the behavior of their occluders.
An occluder behaves possibly differently with or without an occludee. On the
other hand, a visible vehicle, being potentially an occluder, also defines context
for scanning for occludees. Simple as is, each occludee has at least one occluder.
In this paper, we propose to detect occludees, using the occluders as priors.

We propose an integrated occluder-occludee object detection and tracking
method Input sequences are recorded from a mobile binocular system. Occlud-
ers are detected and tracked independently. Occludees are explicitly detected
and tracked, adopting occluders as priors. Finally, we integrate the occluder and
occludee tracking systems. Figure 2, top row, shows three consecutive frames from

Fig. 2. Top: Input frames (intensity channel). Middle: A tracked vehicle acts as occluder
(pink rectangles). Bottom: Tracked occludees (green rectangles) and occluders (pink
rectangles).
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a test sequence. The figure illustrates the following scenarios: An occluder switches
to be an occludee (shown in the left and middle frames); an occludee is about to
switch into an occluder (shown in the middle and right frames). The middle row
illustrates results for occluder detection and tracking, shown by red filled rect-
angles; the bottom row shows detection and tracking results from the proposed
system, with occluders and occludees shown by filled pink and green rectangles,
respectively. In this paper we propose a context-based occludee detector, detecting
occludees with occlusion portions up to 80%; we also apply the proposed occludee
detector in an integrated occluder-occludee detection and tracking system to han-
dle dynamic occlusions. Finally, we demonstrate the potential assistance for avoid-
ing collisions in critical highway driving scenarios.

This paper is structured as follows. Section 2 provides a brief review of related
work on occludee detection. Section 3 introduces our occluder detection and
tracking method, followed by a proposed occludee detection and tracking method
in Section 4. Section 5 describes the integration of both the occluder and occludee
tracking systems. Experimental results and evaluations are given in Section 6.
Section 7 concludes.

2 Related Work

Occlusions cause appearance changes and pose difficulties for data association in
tracking. We review papers regarding occludee detection methods. Approaches
used for fully-visible vehicles cannot be simply adapted for partially occluded
vehicles. For example, Haar-like features, horizontal edges, visual symmetry, and
corner density are properties used in [16] for detecting fully-visible vehicles.
The visual appearance of partially occluded vehicles varies, edges might be too
short to be identifiable. We cannot assume visual symmetry. This section reviews
detection methods for occluded or general objects based on context information.

Single Object Model Occlusion Handling. [3] introduces a rich object represen-
tation for a deformable part model, extensively studied for object detection and
pose estimation. For handling occlusion, [4] proposes to introduce a binary vari-
able for each bounding box fragment, denoting whether it is from object or
background; structured SVM and inference methods are used for learning and
testing. In [5], a hierarchical deformable part model is proposed to explicitly han-
dle occluded objects. Each part is further divided into subparts, and a modified
structure SVM is adopted for learning. [20] discusses the training of two detec-
tors (global bounding box-based or part-based); an occlusion map is generated
by the global detector, and used for the part-based detector.

Occluder-occludee Pair Model. Occluders are often modelled together with
occludee for detection. [17] proposes to train a pairwise object detector to detect
occluder-occludee pairs explicitly. In [14], occluder-occludee occlusion patterns are
explored for detection. A clustering method is adopted to obtain the occlusion pat-
terns from a training set of pairs. Two joint deformable part models are proposed
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for learning those occlusion patterns. [11,12] adopt an and-or graph model to cou-
ple the occluders and occludees based on structure SVM. The occluder-occludee
models are manually designed for specific occlusions, e.g. on a parking lot.

Context-Based Methods. Contextual information, adopted for object class recog-
nition tasks, leads to performance improvement [2,8,13,23]. [13] proposes to
adopt a visual-cue surround to improve individual pedestrian detection. [2]
adopts co-occurrence context evolution in a deformable part model. In [23],
touch-codes are explored to model the interaction between two people in a photo.

Single model methods focus on occludees separately from their occluders.
In order to handle dynamic occlusion patterns, designed occluder-occludee-pair
models are not suitable. With promising results achieved by adopting contextual
information, this paper proposes a context-based multiple-cue occludee detector.
It uses occluders for extracting the context cue, the visible part for exploring
appearance information, and stereo pairs for obtaining depth information. The
combined verification of threes cues, context, appearance, and depth, is sufficient
for robust occludee detection.

We handle dynamic occlusions by applying an occludee detector in a vehicle-
detection and tracking system. Occluders are detected and tracked independently,
and subsequently used as priors for occludee detection. Due to dynamic occlusions,
occludees and occluders may change their roles. Thus, we propose an integrative
module to switch occluder-occludee detection and tracking systems while process-
ing an image sequence. The proposed integrated occluder-occludee tracking sys-
tem handles dynamic occlusions efficiently; see Section 6 for experiments.

3 Occluder Detection and Tracking

Vehicles may appear fully visible (occluders) or partially occluded (occludees).
Occluder detection and tracking is done independently from occludees. We use
a stereo pair as input at each time step. A sliding window generates initial
hypotheses H® = {h$ : 1 <i < N}, with h$ = (x4, y:, Wi, H;), where (z;,y;) are
the top-left coordinates, and W; and H; the width and height of the bounding
box of hypothesis h{.

Two layers of classifiers are adopted for classification. The first layer uses a
cascaded AdaBoost classifier as commonly used for face, pedestrian, or vehicle
classification [18,19]. We adopt it for rejecting ’easily’ identifiable false hypothe-
ses. Remaining hypotheses are fed into a small convolutional network. For details
see [22]. Verified hypotheses define the subset B° C H°; they are passed on for
tracking. We note that our overall approach is independent from the actual type
of classifiers used.

We assign a tracker T7" (using tracking-by-detection; superscript “er” for
“occluder”, j denotes the tracker ID) to each verified hypothesis b;e€B°,1<;5<
M < N, which uses a Kalman filter for tracking the vehicle 3D position (X}, Z;).
X denotes the lateral position, Z the longitudinal position, and (X}, Z;) is the
mid-point at the bottom of the vehicle, assuming vertical position Y = 0 (vehicles
are not flying). The 3D location is provided by a disparity map generated by
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a semi-global matching technique [6]. We assume that disparity values inside
b7 are all identical (i.e. we use the mean disparity). To calculate the initial
state x§" = (Xj7Zj)T, we use the mean disparity and the mid-bottom point
coordinates (z;,y;) of the vehicle bounding box.

The sketched detection-by-tracking method uses the trackers 7¢" = {Tfr :
1 < j < M} for generating hypotheses, denoted by He". HE" are verified by
occluder classifiers. In this way we include the trackers’ capabilities into the
detection process which improves the detection rate. The process is robust with
respect to jittering and small scale changes.

By verification we obtain a subset B¢" C H®" of hypotheses, where each
bi" € B is flagged with its tracker ID j. Thus, data association can be done
by matching tracker IDs. Currently active trackers are updated by detections
obtained in initial (detected) hypotheses B° or in tracked hypotheses B¢" when
applying the occluder trackers. Some detected bounding boxes b7 may overlap
with some tracked boxes bg". Mean-shift based non-maximum suppression is used
to merge multiple detection responses. New trackers are initialized if there are
unmatched boxes b7. Overall, our approach effectively combines the tracking-by-
detection and detection-by-tracking paradigms.

4 Occludee Detection and Tracking

This section describes a new occludee detection and tracking method. We employ
multiple cues, occlusion context, appearance, and disparity. Each cue poses indi-
vidually a weak constraint which is not yet sufficient for detecting a vehicle in
general based on a small fragment of its rear side.

Detected occludees, denoted by by, are tagged with their occluder track ID.
Let j denote the occluder tracker ID, and k the index of the occludee (superscript
“ee” for “occludee”). We assume that each occluder has a maximum of two
occludees, with k = [ if on the left, or £ = r if on the right. We adopt again the
tracking-by-detection method to track detected occludees. Different to occluders,
where we apply detection-by-tracking, occludees are detected by our proposed
context-based multiple-cue detector. We do not use tracking of predictions in
this case. The prediction from occludee trackers may not be as reliable, due
to small visible regions. The appearance may change considerably caused by
dynamic occlusions. For occluder j, the occludee trackers Ty? define a set 7%
(of up to two elements).

Context-Based Multiple-cue Occludee Detector. Occludees do not appear
everywhere in the image. The occluder gives hints for scanning for its occludees.
Assuming a (nearly) planar road surface, the occludees are located further away
(in longitudinal direction), and the occludee is occluded by this occluder in the
image plane. The bounding box of an occludee by and that of its occluder b5"
are expected to be overlapping, or adjacent to each other. Considering real-
world applications (e.g. autonomous driving), a range of possible positions of
an occludee can be estimated according to the position of its occluder. Given a
candidate occludee position (X;, Z;) in a defined 3D region, the corresponding
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Fig. 3. Multiple-cue responses shown in heat-color maps. The corresponding 3D top-
view is shown in Fig. 4. A more reddish color denotes large response values, meaning
more likely a 3D position (X, Z) of an occludee. The combined response map (shown
on the bottom, right) denotes that there is possibly an occludee at a distance of about
100 m ahead. Top, left: Quarter-width classifier response. Top, right: Half-width clas-
sifier response. Bottom, left: Disparity response. Bottom, right: Combined multiple-cue
response.

occludee hypothesis h$® in the image plane is obtained with a defined vehicle
size. The context, i.e. occlusion with its occluder in the image plane, is adopted
as context cue. More context cues, e.g. lane detection results, could be included
to further improve the robustness.

Intuitively, since the occludees are partially-visible vehicles, we propose to
train partial-vehicle classifiers. Those classifiers are applied for recognising that
the occluded object is a vehicle, instead of, for example, a traffic sign or any
other object in a traffic scene. We train a quarter- and a half-width classifier.
Both classifiers’ training data are cropped from a fully-visible vehicle training
set used for training of the occluder classifier.

Using an occlusion check, the classifier can be applied to various occlusion
patterns. Adopting occluders as priors, with a given candidate occludee at 3D
position (X;, Z;), the visible part of the occludee is known by occlusion check in
the image plane as mentioned above. When the occludee’s bounding box hA{¢ is
visible more than half of the usual width, both the quarter- and the half-width
classifier are adopted to classify a quarter or half of A$® in the intensity image.

We apply a local convolutional neural network; it could be replaced by
any bounding-box-based classifier. The quarter- or the half-width classifiers’
responses are taken as appearance cues.

Given a candidate occludee’s 3D position (X;, Z;), assuming the disparity
value for a vehicle (considered to be a vertically planar object), the measured
disparity value within the corresponding h{® region should be aligned with the
expected disparity value. We model disparities by a Gaussian distribution with
respect to differences between expected disparity and measured disparity values.

So far we have multiple weak cues, context priors, classifiers, and disparities.
Multiple cues are combined in a particle filter framework. Each particle is the 3D
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location of a candidate occludee. The confidence for each particle presents those
multiple cues. A higher confidence value denotes a larger likelihood of an existing
occludee. The most confident particle is selected as an occludee detection. Left
and right occludees are detected independently.

Let N denote the number of particles (3D locations around an occluder);
see Fig. 4. Colored dots identify particles. For a given occluder, the occludees
are located in a range further away with valid occlusion to their occluder. The
particles are denoted by {(X;;,Z;;) : 1 < i < N}. Each position (X;;, Z;;),
identifying the middle-bottom pomt of a candidate occludee, can be projected
into a hypothesis hff in the image plane with a defined 3D size (width and
height). The occlusion between the candidate hypothesis and its occluder is
valid if their bounding boxes hfj and bj" are non-disjoint. In other words, the
candidate occludee is actually occluded by its occluder. Non-valid hypotheses
are excluded from further processing, formally represented by

cont __ lif 4 > f(hf;,b;r) > Ty
G = { 0 otherwise (1)

where f(h,b) is a function which returns an overlap-ratio for input boxes h and
b, and 7 and 75 are upper and lower thresholds for the overlapping ratio.

The appearance of the visible part is verified by a quarter- or half-vehicle
classifier. According to occlusion patterns, we derive a visible part of an candi-
date occludee from the occluder. Two partial vehicle classifiers are applied to
obtain classifier responses Cyuar and Chqrp. The appearance cue is defined by

O»Class _ wlcquar + WQChalf if f(hfje, ber) < T3 (2)
g Cquar otherwise

Fig. 4. Left, top: Intensity image with tracked occluder (the pink filled rectangle).
Left, bottom: Corresponding disparity map, with close to far away encoded by red to
green. Right: Top view of the shown 3D scene with disparity map shown in lower-left.
The zoom-in region (the light-grey rectangle) shows two sample regions overlaid with
colored dots. Each colored dot denotes a sample. The region highlighted in orange
denotes the same 3D position as show in Fig. 3.
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If more than half of the width of a candidate occludee appears, we adopt the
half-width classifier along with the quarter-width classifier. The ratio threshold
7 is constant. Weights w; and wy define the applied contributions of the two
classifiers.

If there is an occludee then the measured disparity value from hypothesis h?
is aligned to the expected disparity value. Even if being verified by context prior
and classifiers, hypotheses with high scores are still shattered across different
distances, which corresponds to different scaled bounding boxes in the image
plane; see Fig. 3.

Given a candidate occludee (X;;, Z;;), the expected disparity d;"" for the
occludee is obtained by assuming a vertical position ¥ = 0. The measured
disparity dj"*°* is obtained by averaging disparity values in the central subregion
of hf7. A Gaussian distribution is adopted to model the disparity cue with respect
to the difference between d*** and d;"". The value of ¢ is obtained by measuring
the uncertainty of disparity in a statistical manner. The disparity-cue response
is defined by

dis 1 (djre —dgTr)?
Ci"P = ——exp 202 (3)
20m

Each sample (X;;, Z;;) is measured with context, classifier response, and dispar-
ity cues, obtaining responses C'°"t, C¢1%3 and Cf **PThe higher the responses
value, the more likely that there is an occludee located at the sample position.
The confidence (i.e. combined response) of a sample (X;;, Z;;) that contains an
occludee is defined by

Ci _ Cicontciclasscl{iwp (4)

All cues are required for a response with high confidence, as just individual cues
are insufficient. The occludee is detected by a greedy selection of that sample
which has the highest confidence, formally

kj = argmax C; (5)

ij

A low-pass filter is employed to reduce false positives. Figure 3 shows multiple-
cue responses of an occludee candidate; a corresponding 3D top-view is shown
in Fig. 4. The intensity image with a tracked occluder (the pink rectangle) and
a disparity map are shown in Fig. 4. In Fig. 3, the more reddish color denotes
large response values, meaning a larger likelihood of an occludee at that position.
The combined response map (bottom, right) indicates that there is possibly an
occludee at distance 100 m ahead.

Occludee Tracking. We detected occludees in B¢ = {B§¢ : 1 < j < M}. A
Kalman filter-based tracking-by-detection method is adopted for occludee track-
ing. Similar to occluder tracking, the middle-bottom 3D position of an occludee
is defined as tracking state (X, 7). A constant-velocity assumption is adopted.
The detections from a multiple-cue detector are used for updating the state.
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Using the proposed context-based occludee detector, occludee detections are
tagged with their occluder tracker IDs. Instead of doing data association for each
occludee against the occludee trackers, an occludee detection, bi?, is associated
with occludee tracker T)7. The occluder tracker ID j and occludee tracker ID k
specify the corresponding occludee detection to its tracker.

5 Integration of Occluder-Occludee Tracking

In real world scenarios, a vehicle was fully visible (occluder) may be partially
occluded (occludee) in a few seconds. On the other hand, a partially-visible vehi-
cle may become fully visible. We introduce the proposed integration of occluder-
occludee tracking.

Case 1: An occluder is gradually occluded by another occluder. The
detection-by-tracking method will fail to verify the predicted bounding box,
due to occlusion. This vehicle is lost even if it is still partially visible. Case 2: A
tracked occludee is shifting away to another lane and becomes gradually more
visible. The occludee tracker can generate a hypotheses for the occluder classifier
for verification.

To interactively integrate occluder and occludee tracking systems, we propose
to switch occludee and occluder trackers when conditions apply.

Occluders Switch to Occludees. To switch an occluder tracker T to an
occludee tracker kg the occluder has a valid occluder 77" that causes the
occlusion. The occluder j is located further away from its potential occluder.
The overlap in image plane between 05" and bg" is over a given threshold. We
conclude an occludee detection from having occluder g matched to occluder 7,
with b7 overlapped by b5". The conditions are formulated as

T = Ty, st f(057,057) > 74y 35y, f(057,b55) > 75, 25> 25 (6)

Occludees Switch to Occluders. To switch an occludee tracker T to an
occluder tracker 7", the occludee is tracked for a while and overlap ratio with
its occluder are low, defined by

Ty = 14", st.g(T5) > 76, f(055,057) <Ta—¢ (7)
where g(T') denotes the tracked frames for the tracker T', and ¢ is a positive
constant, adopted to prevent a switching loop between occluders and occludees.

6 Experiments

The proposed system is evaluated on two types of sequences, Dynamic and Dense;
see Tab. 1. Dynamic contains four sequences of 1650 frames, approximately one
minute each. 6259 vehicles (occluder and occludees), 992 occludees, and 188
trajectories, are labelled frame by frame. The Dynamic sequences contain scenar-
ios with dynamic occlusions, recorded with regular driving style. To evaluated
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Fig.5. A frame with labelled vehicles. Red rectangles denote the occluders; green
rectangles denote occludees.

the proposed occluder-occludee integrative system, there are scenarios occluders
changing lane with their occludees becoming fully visible, or with occluders on
fast lane driving pass the ego-vehicle becoming occludees. The Dense sequence
contains 8300 frames with every 100 frames labelled (approx. 5.5 minutes). 343
vehicles and 67 occludees are labelled. The number of objects at the first glance
seems limited, but those 83 frames are randomly sampled from thousands of
frames. This sequence is adopted to estimate the proposed system on dense
highway traffic, a more general evaluation. Both Dynamic and Dense sequences
are recorded at 25 fps, from stereo cameras mounted behind the windscreen of
an ego-vehicle.

One example frame with object labels shown in Fig. 5. The occluders and
occludees are explicitly labelled respectively, denoted with different color rectan-
gles. The occludee labels (green rectangles) are overlapped with their occluders.
The proposed integrated system and occludee detector output the visible part
exclusive to its occluder. Thus, the overlap ratio for measuring is set relatively
low 0.25. A zoom-in region shown on top left corner illustrates what the perfect
system is expected to detect. There are occluded vehicles appear further away
from occludees. We will focus on those situations in future work.

6.1 Integrated System wvs Occluder System

We begin the evaluation with comparing the proposed integrated system with
the baseline system (occluders detection and tracking system). The frame-wise
detection rate and precision are adopted. Since tracking is involved, the recall

Table 1. The test sequences.

|Sequences|Frames|Objects|Occludees| Trajectories|

Dynamic | 1,650 | 6,259 992 188
Dense 8,300 343 67 -
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curve is not applicable. The trajectory detection rate is used to evaluate track-
ing performance. A trajectory is counted as detected if 50% frames over the
trajectory length are detected.

For Dynamic sequences, both frame-wise detection and trajectory measures
are shown in Tab.2, left. ‘Integrated’ denotes the proposed integrated system.
‘Occluder’ denotes the occluder detection and tracking system. The proposed
system fires more false positives, but improves both the detection rate and tra-
jectory detection rate by significant margins 11% and 27.9% respectively. The
proposed system detects and tracks occludees with occlusion portion up to 80%.
The detection rate is improved due to the occludee detection and tracking sys-
tem, and the integration between occluder and occludee trackers. The evaluation
results on Dense sequence are illustrated in Tab. 2, right. Similar performance is
observed. ‘Integrated’ outperforms ’Occluder’ by a large margin 17.8%.

6.2 Application Scenario

Different levels of autonomous driving on highways are available in serial pro-
duction cars, e.g auto-brake, distance keeping, lane keeping etc.. In order to
enable more advanced autonomous driving, better understanding the environ-
ment offers better foundation for that purpose. Driving environment in real world
is dynamic. Vehicles changing from one lane to the other, because of the vehi-
cle in front (their occludees) driving slow, or even, suddenly broken down. The
occludees affects the behavior of their occluders. If the ego-vehicle observes a bit
further away (the occludees), a more advanced reaction could be made, instead
of just braking abruptly.

Using occluder detection and tracking system, the occludees are not picked
up due to occlusion, although they are visible, partially. The proposed integra-
tion system detects and tracks the occludees with the occlusion portion up to
80%. Four Dynamic sequences are adopted to measure the time (frame) difference
between the proposed system and the occluder system picking up the previously
heavy occluded then fully-visible vehicles. The evaluation results are shown in
Tab. 3.

In the first three Dynamic sequences, the proposed system picks up the
occludees 30 —40 frames ahead of the occluder. With recording frame rate 25 fps,
the proposed system ‘sees’ the occludee 1.2 —1.6 seconds before the occluder sys-
tem. With high speed, even a few milliseconds make a difference. In ‘sequence
4’ the occludee is partially visible for 7 s before appearing fully visible. This

Table 2. Performance measured on the Dynamic sequences (left) and on the Dense
sequence (right).

Detection .. Trajectory Detection .. Trajectory
Precision N Precision i
rate detection rate rate detection rate
Occluder 59.9 88.9 44.2 Occluder 55.7 89.2 -
Integrated 76.9 79.7 72.1 Integrated 73.5 80.3 -
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Table 3. Frames ahead of occluder tracker by the integrated system picked up the
occluded car in front of a leading car.

| | Frames [Time(s)]
Sequence 1 40 1.6
Sequence 2 35 1.4
Sequence 3|29(27,32)| 1.2
Sequence 4 191 7.64

information can be used for higher level decision making, e.g regarding changing
lane for the ego-vehicle.

7 Conclusions

We proposed a vehicle detection and tracking system for handling dynamic
occlusions. The proposed method integrates detection and tracking of occludees
and occluders. We proposed a context-based multiple-cue method for occludee
detection. The applied classifiers for occluders and occludees may be replaced by
other bounding-box-based classifiers. A tracking-by-detection method is used for
tracking occludee and occluder respectively. The proposed integrated occluder-
occludee tracking system shows promising results on handling dynamic occlu-
sions. The proposed system improves detection rate and trajectory detection rate
by significant margins, compared with the occluder-only system. The proposed
context-based multiple-cue occludee detector detects the immediate occludees
for left and right sides of an occluder. It detects slightly to heavily occluded
vehicles, occlusion portion up to 80%. The proposed system contributes to han-
dle emergency situations in highway autonomous driving. Generally, instead of
focusing on the target-object, e.g occludees in isolation, adopting the contextual
information improves the performance.
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