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Abstract. The purpose of this paper is twofold. First, we develop a
quadratic tracker which computes a locally quadratic optical flow field
by solving a model-fitting problem for each point in its local neighbour-
hood. This local method allows us to select a region of interest for the
optical flow computation. Secondly, we propose a method to compute
the transportation of a motion field in long-time image sequences using
the Wasserstein distance for cyclic distributions. This measure evalu-
ates the motion coherency in an image sequence and detects collapses of
smoothness of the motion vector field in an image sequence.

1 Introduction

In this paper, we develop a method to compute a locally quadratic optical flow
field. Furthermore, we propose a method to evaluate the global smoothness and
continuity of motion fields and detect collapses of smoothness of the motion
fields in long-time image sequences using the Wasserstein distance for cyclic
distributions [2,7,10].

In ref. [13], using the local stationarity of visual motion, a linear method for
motion tracking was introduced. The Lucas-Kanade (LK) method was proposed
as an image-matching and -registration method assuming that the deformation
field between images is locally constant. Subsequently, the method has been
widely used for fast optical flow computation [11].

It is possible to extend the local assumption on the optical flow field to higher-
order constraints on the motion field. In this paper, we assume that optical flow
fields are locally quadratic. This local property of the optical flow field allows
us to decompose an optical flow computation scheme to a collection of systems
of linear equations defined in the neighbourhood of each point. The size of the
system-matrix of each system of linear equations is 14 × 14, where 14 is the
number of parameters used to describe a locally quadratic vector field on a
plane. Furthermore, this decomposition property also allows us to select regions
of interest for the optical flow computation and to construct a parallel method
which computes the optical flow vectors of all points simultaneously.

For the computation of the three-dimensional scene flow from a stereo image
sequence [4,5,6], we are required to solve four image-matching problems and
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their deformation fields. Two of them are optical flow computations for left and
right image sequences. The other two of them are stereo matching for two suc-
cessive stereo pairs. The displacements between stereo pairs are at most locally
affine transformations caused by perspective projections based on the camera
geometry. The displacement between a pair of successive images in left and
right sequences, however, involves higher-order transformations caused by cam-
era motion if a pair of cameras is mounted on a mobile vehicle. Therefore, since
we are required to adopt different-order constraints on the optical flow compu-
tation and stereo matching for a stereo pair sequence, we develop a method with
locally higher-order constraints for the fast computation of the optical flow field.

The Wasserstein distance defines a metric among probability measures [10].
In computer vision and pattern recognition, the 1-Wasserstein [2] distance is
known as the earth movers’ distance (EMD). We deal with the distribution
of optical flow vectors as directional statistics [3]. Then, using the Wasserstein
distance for cyclic distributions [7], we evaluate the temporal total transportation
between a pair of successive optical flow fields. If the motion in an image sequence
has a constant speed, this transportation measure between a pair of successive
images is zero. Therefore, we use this temporal transportation of the flow fields
as a measure to evaluate motion smoothness and continuity. Ustundag-Unel [15]
and Chaudhry et. al. [16] analysed human motion using the orientation histogram
of the optical flow field. There histogram is based on the histogram of oriented
gradient (HoG) method [14] although we deal with the directional statistics to
compute the temporal transportation of the optical flow fields.

Although classical optical flow computation methods [1,12] are based on
least-squares optimisation, the total variation (TV) of the solution as a prior
[20,17] and the L1-constraint allow us to deal with the sparsity of images. The
TV-L1 minimisation for optical flow computation is solved by the primal-dual
method [19]. There are a number of numerical schemes for (TV-L1)-based image
analysis [21,22]. These methods minimise a criterion defined over the whole
image [19].

On the other hand, by dividing the region of interest into windowed areas
and assuming that the optical flow field is locally quadratic in each region,
our method solves a large system of diagonal linear equations. Furthermore,
the local method allows us to select a region of interest for the optical flow
computation, because the method computes the optical flow for each point in
its local neighbourhood with a local constraint on the optical flow field [18].

2 Local Optical Flow Computation

For f(x, y, t), the optical flow vector [12] u = ẋ = (ẋ, ẏ)�, where ẋ = u = u(x, y)
and ẏ = v = v(x, y), of each point x = (x, y)� is the solution of the singular
equation

fxu + fyv + ft = ∇f�u + ∂tf = J�u + ft = 0. (1)
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Assuming u to be constant in the neighbourhood Ω(x) of point x [12], the
optical flow vector is the minimiser of the criterion

E0 =
1

2|Ω(x)|
∫

Ω(x)

|J�u + ft|2dx =
1
2
uGu + a�u +

1
2
c, (2)

where J = (fx, fy)�, for

G =
1

|Ω(x)|
∫

Ω(x)

J�Jdx, (3)

a =
1

|Ω(x)|
∫

Ω(x)

ft∇fdx, c =
1

|Ω(x)|
∫

Ω(x)

|ft|2dx. (4)

If the displacement is locally affine such that u = Dx + d, where D and d
are a 2 × 2 matrix and a two-dimensional vector, we estimate D and d which
minimise the criterion 1

E1 =
1
2

· 1
|Ω(x)|

∫
Ω(x)

|J�(Dx + d) + ft|2dy

=
1
2

· 1
|Ω(x)|

∫
Ω(x)

∣∣(J , (x� ⊗ J)
)

+ ft

∣∣2 d, v(1) =
(

d
vecD

)
(5)

as an extension of eq. (2). From the relation ∂E1
∂v(1)

= 0, we have the system of
linear equations

A(1)v(1) + b(1) = 0 (6)

for

A(1) =
(

G, x� ⊗ G
x ⊗ G, (xx�) ⊗ G

)
, v(1) =

(
d

vecD

)
, b(1) =

(
a

x ⊗ a

)
(7)

for the point x which is the centre point of the windowed area Ω(x).
The piecewise quadratic optical flow field is expressed as

u =
(
x�Px
x�Qx

)
+ Dx + d = (e ⊗ x)�Diag(P ,Q)(e ⊗ x) + Dx + d (8)

for 2× 2 symmetric matrices P and Q, a 2× 2 matrix D and a two-dimensional
vector d. Therefore, the minimiser of the criterion

E2 =
1

2|Ω(x)|
∫

Ω(x)

∣∣∣∣J�
((

x�Px
x�Qx

)
+ Dx + d

)
+ ft

∣∣∣∣
2

dy (9)

is the the matrix equation

G(2)v(2) + b(2) = 0 (10)

1 The matrix equation AXB = C is replaced to the linear system of equations
(B� ⊗ A)vecX = vecC.
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at each point x, for

G(2) =

⎛
⎝ G, x� ⊗ G, x�

⊗ ⊗ GX�
⊗

x ⊗ Ḡ, (xx�) ⊗ G, (xx�
⊗) ⊗ GX�

⊗
x⊗ ⊗ X⊗G, (x⊗x�) ⊗ X⊗G, (x⊗x�

⊗) ⊗ X⊗GX�
⊗

⎞
⎠

v(2) =

⎛
⎝ d

vecD
vecC

⎞
⎠ , b(2) =

⎛
⎝ a

x ⊗ a
((xx�

⊗) ⊗ X)a

⎞
⎠ , (11)

where e = (1, 1)�, C = Diag(P ,Q), x⊗ = e ⊗ x, X⊗ = I ⊗ x and I is
the 2 × 2 identity matrix. This matrix equation is used for the computation of
the piecewise quadratic field as an extension of the LK method. For numerical
experiment, we set Ω(c) = {x| |x − c|∞ ≤ k}, for a positive integer k, where
|x|∞ is the l∞ norm on the plane R2. Therefore, in eq. (11), we set x := x − c
for the computation of the optical flow vector of point c.

3 l22-l2 Optimisation

For the computation of the local optical flow field, we deal with the minimisation
of the functional

J2221(x) =
1
2
|Ax + b|22 + λ|x|2, (12)

where we set A := G\G(2), x := u\v(2) and b := b\v(2). Since the functional
derivative of J2221 with respect to x is

δJ2221(x)
δx

= A�(Ax + b) + λ
x

|x|2 , (13)

the minimiser of eq. (12) is the solution of

(A�A +
λ

|x|2 I)x = A�b. (14)

We compute the solution of eq. (14) using the iteration form

A�Ax(n) = b(n), b(n) = A�b − λ

|x(n−1)|2x
(n−1) (15)

until |x(n+1) − x(n)|2 < ε, where

x(n) = (A�A − λ(n)I)−1A�b, λ(n) =
λ

|x(n−1)| (16)

This procedure is performed in Algorithm 1. In this algorithm, x(i) expresses
the ith element of vector x.
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Algorithm 1. l22 − l2 Minimisation

Data: x0 := 1, k := 0, 0 ≤ δ � 1, 0 < ε
Result: minimiser of 1

2 |Ax − b|22 + λ|x|2
while |x(k) − x(k−1)|2 > δ do

λ(k−1) := λ
|x(k−1)|2 ;

solve (A�A + λ(k)I)x(k) = A�b ;
if x(k)(i) = 0 then

x(k)(i) := x(k)(i) + ε;
end
k := k + 1

end

We call this method of the optical flow computation the l22 − l2 quadratic
Kanade-Lucas-Tomasi tracker (2221QKLT tracker). Moreover, to ensure stable
and robust computation, we use the pyramid-transform-based [8,9] multiple res-
olution method described in Algorithm 2. We call the method based on Algo-
rithm 2 the pyramid-based 2221QKLT (2221PQKLT) tracker.

Algorithm 2. Quadratic-Optical-Flow Computation with Gaussian Pyra-
mid
Data: uL+1 := 0, L ≥ 0, l := L
Data: fL

k · · · f0
k

Data: fL
k+1 · · · f0

k+1

Result: optical flow u0
k

while l ≥ 0 do
f l

k+1 := f l
k+1(· + E(ul+1

k ), k + 1) ;
compute Cl

k, Dl
k and dl

k ;
ul

k := xl�
1 Cl

kx
l
1 + Dl

kx
l + dl

k ;
l := l − 1

end

4 Transportation of Motion Direction

We define the coherency of motion along the time axis and in a scene. Then, we
introduce a measure for the evaluation of the coherency of motion in an image
sequence.

Definition 1. If a vector field on an image generated by the motion of a scene
and moving objects is spatially and temporally smooth, we call this property of
the field motion coherency.

Therefore, rapid changes in the spatial direction of motion causes collapses of
motion coherency on the imaging plane, even if the spatial motion of the object
is smooth. Moreover, the sudden halting of a moving object destroys motion
smoothness and causes the collapses of the motion coherency.
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The p-Wasserstein distance between a pair of distributions f(x) and g(y) for
x ∈ X and y ∈ Y is

Wp(f, g) =
(

min
c

∫
X

∫
Y

|f(x) − g(y)|pc(x, y)dxdy

) 1
p

. (17)

For discrete probabilistic distributions F = {fi}n
i=1 and G = {gj}n

j=1 such that∑n
i=1 fi = 1 and

∑n
i=1 gi = 1, setting dij = |fi − gj |p, the distance between

distributions F and G is computed as

DWp(F,G) = min
xij

⎛
⎝ n∑

i=1

n∑
j=1

dijxij

⎞
⎠ (18)

subject to the conditions
∑n

i=1 xij = fi,
∑n

j=1 xij = gj and xij ≥ 0. The minimi-
sation is achieved by solving the linear programming for transportation problem.
DW1 is called the earth mover’s distance in computer vision and pattern recog-
nition.

Setting f(t) ≥ 0 and g(t) ≥ 0 to be cyclic distributions on [0, 2π],
the Wasserstein distance for the cyclic distributions f(s + 2π) = f(x) and
g(t + 2π) = g(t) is

CWp(f, g) =
(

min
c,θ

∫ 2π

0

∫ 2π

0

|f(t) − g(s − θ)|pc(t, s)dtds

) 1
p

, (19)

where
∫ 2π

0
f(t)dt = 1 and

∫ 2π

0
g(t)dt = 1. For the discrete cyclic distributions

Fc = {fi}N−1
i=0 and Gc = {gi}N−1

i=0 , such that fi+N = fi and gj+N = gj , eq. (19)
becomes

DCWp(Fc, Gc) =

⎛
⎝min

cij ,k

N−1∑
i=0

N−1∑
j=0

|pi − qj−k|pcij

⎞
⎠

1
p

. (20)

Therefore, setting

Dk =
N−1∑
i=0

N−1∑
j=0

dijkcij , dijk = |fi − gj−k|p, (21)

we have the relation
DCWp(Fc, Gc) = (min

k
Dk)

1
p . (22)

We apply CDWp(F,G) to compute the transportation distance between the
directional statistics F and G.

For a vector-valued function f(x) such that x ∈ Rn, setting d = f̂(ω;x)
ω ∈ Sn−1, to be the spherical expression of f at point x, we construct the
directional statistics of f at the point a ∈ Rn as
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h(ω;a, α) = d, x ∈ Ωα,r(a) (23)

for Ωα,r(a) = {x| |x − a|α ≤ r}, where |x|α is the lα-norm.
From the temporal optical flow field u(x, t), we define

ud(θ;a, t, α) =
√

u(x, y)2 + v2(x, y), θ = tan−1 v(x, y)
u(x, y)

(24)

for x = (x, y)� ∈ Ωα,r(a). For the evaluation of motion coherency, we define

W (t, k) =
1

|A|
∫
y∈A⊂R2

∫
Ωr,α(y)

CWp(ud(θ;x, t + 1, α), ud(θ;x, t, α))dxdy.

(25)
If the motion along an image sequence has a constant speed, the transportation
of the optical flow field between a pair of successive images is zero. We use
this transportation computed as the Wasserstein distance along flow fields as a
measure to evaluate the motion smoothness along an image sequence.

In our numerical examples, we set α = ∞ on R2 and 2. Furthermore, for the
sampled optical flow fields, Ω1,r(a) is the 7 × 7 neighbourhood of each point.
Figure 1 shows the procedure for the construction of the directional statistics.
Moreover, we set N = 16 for cyclic histograms, that is, we devide the 0 ≤ θ < 2π
to π

8 i ≤ θ < π
8 (i + 1) for i = 0, 1, · · · , 15.
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Fig. 1. Construction of directional statistics from optical flow field. (a) The optical flow
field is computed from a pair of successive images from an image sequence. (b) For each
point, directional statistics is constructed from flow vectors in the 7×7 neighbourhood
of the point.

5 Numerical Examples

5.1 Effects of Window Size and Pyramid Hierarchy Level

Before the frame-wise evaluation, we evaluated the effects of the regularisation
parameter, the size of the windows and the level of the pyramid hierarchy using
the temporal continuity of the optical flow fields. For the evaluation of temporal
continuity, we use the warp error (RMS error) and the temporal derivative. For
the flow vector u(x, y, t) = (u, v)�, setting

f ′(x, y, t) = f(x − u, y − v, t + 1), (26)
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Table 1. RMS error of 2221PQKLT tracker for Motorway sequence. These experiments
imply that the preferred window size and the pyramid hierarchy level for accurate and
stable computation of the optical flow are 7 × 7 and 6. The preferred regularisation
parameter λ is 0.5.

Pyramid Level 2 4 6
Window Size Window Size Window Size

λ 3 × 3 7 × 7 11 × 11 3 × 3 7 × 7 11 × 11 3 × 3 7 × 7 11 × 11
0.2 37.8 34.5 33.2 32.1 31.7 31.7 33.8 33.2 33.1
0.5 37.8 34.5 33.2 32.1 31.7 31.7 33.8 33.2 33.1
0.7 37.8 34.5 33.2 32.1 31.7 31.7 33.8 33.2 33.1
1.0 37.8 34.5 33.2 32.1 31.7 31.7 33.8 33.2 33.1

K
L
T

2.0 37.8 34.5 33.2 32.1 31.7 31.7 33.8 33.2 33.1

10.0 37.8 34.5 33.2 32.1 31.7 31.7 33.8 33.2 33.1

Pyramid Level 2 4 6
Window Size Window Size Window Size

λ 3 × 3 7 × 7 11 × 11 3 × 3 7 × 7 11 × 11 3 × 3 7 × 7 11 × 11
0.2 35.5 33.7 33.3 31.8 31.4 31.3 32.2 31.8 31.8
0.5 35.5 33.7 33.3 31.8 31.4 31.3 32.2 31.8 31.8
0.7 35.5 33.7 33.3 31.8 31.4 31.3 32.2 31.8 31.8
1.0 35.5 33.7 33.3 31.8 31.4 31.3 32.2 31.8 31.8

Q
K
L
T

2.0 35.5 33.7 33.3 31.8 31.4 31.3 32.2 31.8 31.8

10.0 35.5 33.7 33.3 31.8 31.4 31.3 32.2 31.8 31.8

we define the RMS error as

RMS error =

√
1

|A|
∫ ∫

x∈A

(f(x, y, t) − f ′(x, y, t))2dxdy (27)

in the region of interest A at time t, where |A| is the area measure of region A.
Tables 1 and 2 list the least mean errors and angle errors, respectively, for

several window sizes and pyramid levels for the Motorway sequence. These results
indicate that for all window sizes and pyramid levels, the performance of the
2221PQKLT tracker is superior to that of KLT tracker. These results imply the
the preferred window size and pyramid hierarchy level for accurate and stable
computation of the optical flow field are 7× 7 and 6, respectively. Moreover, the
preferred regularisation parameter λ is 0.5.

5.2 Performance of Motion Recognition

In the top row of Fig. 2, from left ot right, single images from the Crazy turn,
Motorway and CloseObject sequences, respectively, are shown. The second and
third rows of Fig. 2, colour charts of the optical flow fields and radar charts of the
directional statistics, respectivey, are shown. Figure 3 shows the result for the
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Table 2. Motorway Angle error of 2221QKLT tracker (λ = 0.5). These experiments
imply that the preferred window size and the pyramid hierarchy for accurate and stable
computation of the optical flow are 7 × 7 and 6, respectively.

Window Size
Pyramid Level 3 × 3 7 × 7 11 × 11

2 1.72 × 10−1 1.67 × 10−1 1.67 × 10−1
K
L
T

4 1.58 × 10−1 1.52 × 10−1 1.52 × 10−1

6 1.47 × 10−1 1.44 × 10−1 1.43 × 10−1

Window Size
Pyramid Level 3 × 3 7 × 7 11 × 11

2 1.66 × 10−1 1.52 × 10−1 1.50 × 10−1

Q
K
L
T

4 1.53 × 10−1 1.45 × 10−1 1.44 × 10−1

6 1.42 × 10−1 1.41 × 10−1 1.41 × 10−1

(a) Crazy turn (b) Motorway (c) CloseObject

(d) (e) (f)

(g) (h) (i)

Fig. 2. Images from Crazy turn, Motorway and CloseObject data sets. In the first
row, From left ot right, single images from the Crazy turn, Motorway and CloseObject
sequences, respectively. In the second and third rows, colour charts of the optical flow
fields and radar charts of the directional statistics, respectivey.



232 T. Kato et al.

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

FrameNumber

W
D

 

 

all Area

(a)

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

FrameNumber

W
D

 

 

all Area

(b)

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

FrameNumber

W
D

 

 

all Area

(c)

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

FrameNumber

W
D

 

 

all Area

(d)

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

FrameNumber

W
D

 

 

all Area

(e)

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

FrameNumber

W
D

 

 

all Area

(f)

50 100 150 2000

1

2

3

4

5

FrameNumber

Er
ro
r

 

 

AngleError

(g)

0 100 200 300
0

1

2

3

4

5

FrameNumber

E
rr

or

 

 

AngleError

(h)

0 20 40 60
0

1

2

3

4

5

FrameNumber

E
rr

or

 

 

AngleError

(i)

50 100 150 2000

2

4

6

FrameNumber

Er
ro
r

 

 

EndpointError

(j)

0 100 200 300
0

2

4

6

FrameNumber

E
rr

or

 

 

EndpointError

(k)

0 20 40 60
0

2

4

6

FrameNumber

E
rr

or

 

 

EndpointError

(l)

Fig. 3. Motion recognition using 2221PQKLT. From left to results, the results for the
Crazy turn, Motorway and CloseObject sequences are shown. From top to bottom,
temporal trajectories of the 2-Wasserstain distance, temporal trajectories of the cyclic
2-Wasserstain distance, the end point errors and the angle errors are shown. The angle
errors and endpoint errors in the third and fourth rows do not detect events which
brake motion coherency. The Wasserstein distance evaluates the transportation of the
allows to detect events from transition of the optical flow field.

detection of motion coherency. From left to results, the results for the Crazy turn,
Motorway and CloseObject sequences are shown. From top to bottom, temporal
trajectories of the 2-Wasserstain distance, temporal trajectories of the cyclic 2-
Wasserstain distance, the end point errors and the angle errors are shown. The
window size and hierarchy of pyramid transform are 7 × 7 and 6, respectively.
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If the motion displacement in a sequence of images is coherent, the trans-
portation of directions of flow vectors is small, and the Wasserstein distance of
the flow fields between a pair of successive images is small.

For the Crazy turn, Motorway and CloseObject sequences the optical flow
fields and the radar charts of 184th, 127th and 35th frames, respectively are
shown on the first in Fig. 2. In the Crazy turn and CloseObject sequences
turn of a car and motion of men are captured around 184th and 34th frames,
respectively.

In the Crazy turn sequence, a car with a mounted camera system turns to the
left. This event is detected as a mode stated around 100th frame in trajectory
of the Wasserstein distance. However, trajectory of the cyclic Wasserstein dis-
tance processes any modes. This statistical property implies that in a sequence
object turns with a constant speed. The cyclic Wasserstein distance removes
the appearance motion on an image screen. as shown in Fig. 3. Therefore, the
transportation of the direction statics of optical flow fields allows us to detect
the collapses of motion coherency on a screen in a sequence of images. In the
Motorway sequence, cars in the opposite lane periodically moves toward the car-
mounted camera then disappear, and cars in the same lane periodically move
in front of the car-mounted camera. The temporal trajectory of the Wasserstein
distance allows us to detect the temporal transportation of the optical flow fields
as small periodic peaks in the temporal trajectory. In the CloseObject sequence,
two men cross in front of a car. This event is detected as a peak of the temporal
trajectory around 20th frame as shown in Fig. 3(c).

The angle errors and endpoint errors in the third and fourth rows in Fig. 3
do not detect events which brake motion coherency, since these errors evaluate
the pointwise accuracy of the computed optical flow vectors. On the other hand,
since the Wasserstein distance evaluates the transportation of the optical flow
field, the distance allows to detect events from transition of the optical flow field.
These results show that the Wasserstein distance of the directional statistics of
an optical flow field sequence is an effective measure for the evaluation of motion
coherency and its collapses in a sequence of images.

6 Conclusions

In this paper, by extending the KLT tracker, we develop a locally quadratic
tracker for the motion analysis of long-time image sequences. The method com-
putes locally quadratic optical flow fields using a model-fitting scheme. Further-
more, the method can select a region of interest for the optical flow computation.
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