
Chapter 5
From Crisp Sets to Fuzzy Sets

5.1 Introduction

We are now starting the second part of this book. After the introduction to the Lisp
programming language in part I, you are now ready to begin the phase of our travel
that will require the most of you. Not because it is complex, but because it rep-
resents a shift of paradigm not only in the way we think about sets, but also in the
form that we usually reason and analyze things. We shall start revisiting the
essentials of classic sets theory, including the concepts of belonging to a set, union
and intersection of sets, general properties of sets and the concepts of Cartesian
Product and Relations between sets.

Hereafter, we shall leave the traditional way of thinking in sets theory and will
start to introduce fuzzy sets. It will not be an abrupt quantum leap, but a smooth
pathway towards the new paradigm. Here, the exposed material on crisp sets will be
helpful for establishing a contrast between the two worlds, and the Lisp code from
this chapter will help you not only as a pedagogical tool, but also to build your own
fuzzy sets, that is, to experiment with Lisp expressions in your own area of
expertise under the viewpoint of the new theory.

5.2 A Review of Crisp (Classical) Sets

A scientific theory does not appear suddenly. The development of a new scientific
paradigm usually follows several phases. At a given time one or more scientists
develop some ideas and soon they exchange them and derive new knowledge. It
may happen that no clear, defined theory is immediately available, but the scientific
community quickly recognizes that something new is in the air, creating an exciting
scientific ambience. Later, more people is attracted by the fresh concepts and the
theory gains momentum until arriving a point in time where the overall concepts are
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distilled into a new scientific frame. Sets theory is an example of this evolution in
human thinking, appearing in the second half of century XIX in Germany, mainly
from the works of Georg Cantor, Richard Dedekind and Ernst Zermelo, becoming a
recognized branch of mathematical logic from 1915, approximately.

5.2.1 Definition of Sets and the Concept of Belonging

The definition of a set is in some way difficult because it is in itself an extremely
simple concept. A set is a collection of objects, things, or put into a more formal
mathematical language, elements. When put together, physically or conceptually, a
collection of things becomes a set. As an example we can mention the set of odd
numbers from a roulette, the set of Galilean Moons, the set of Messier objects, etc.
In fact, we can describe a set by means of three ways:

1. By simple enumeration where you describe, one by one, the name of all the
elements in a set. For example the set S of Galilean Moons can be mathemat-
ically represented as follows:

S = {Callisto, Ganymede, Europa, Io}

2. Conceptually, by means of an established condition:

S = {x | x is one of the four biggest moons of Jupiter}

This type of expressions can be read as “x such as x is … (condition)”. In this
case, (condition) equals to “one of the biggest moon of Jupiter”.

3. By means of a Venn diagram:
A Venn diagram, as shown in Fig. 5.1, consists in a circle or ellipse containing
the elements of a set, becoming an excellent graphical method for representing
them.

Fig. 5.1 A venn diagram
representing the set S of
Galilean Moons
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4. Additionally, in this book we are going also to represent sets by means of Lisp
expressions. If lists are composed by elements, it seems a natural step to use lists
for representing sets:

(setq S ‘(Callisto Ganymede Europa Io))

Independently from the way of representing sets, we shall always use capital
letters for naming them.

Intrinsically related to the very definition of a set is the concept of belonging. In
crisp, classical sets, a given element x either belongs or does not belong to a given
set A. Formally:

x 2 A x belongs to set Að Þ ð5-1Þ

x 62 A xdoes not belong to set Að Þ ð5-2Þ

In Lisp, we can use the user-defined predicate (belongs?), shown in Code 5-1,
for checking if a given element x belongs or not to a given set A:

;code 5-1
(define (belongs? x A)

(if (or (intersect (list x) A) (= x'()))
true
nil

)
)

Now, after typing (setq S ‘(Callisto Ganymede Europa, Io)) at the Lisp prompt
we can interrogate the system with, for example: (belongs? ‘Europe S)→ true, and,
for example, (belongs? ‘Phobos S) → false.

5.2.2 Subsets

If every element of a set A is also an element of a set B, we say that A is a subset of
B. We can also say that A is included in B. Formally:

A � B ð5-3Þ

Conversely, if at least an element of set A is not an element of set B then we say
that A is not a subset of B. We can also say that A is not included in B:

A 6� B ð5-4Þ
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There is a peculiar set in Sets Theory, named “empty set” that is simply a set
without any elements and is usually represented by the Greek letter ϕ or alterna-
tively by {}. The empty set should not be strange for us because in Lisp we have
extensively used the empty list () in many functions in the previous section of this
book, proving its utility in real world applications. By definition, the empty set is
included in every set. With these ideas on mind, we can write a Lisp predicate for
checking if a set A is a subset of a set B, as shown in Code 5-2:

;code 5-2
(define (subset? A B)

(if (or (= A (intersect A B)) (= A'()))
true
nil

)
)

As an example, if we define the set U as the set of planets in the Solar System,
U = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}, H as the set
of hard planets in the Solar System, H = {Mercury, Venus, Earth, Mars} and then G
as the set of gaseous planets G = {Jupiter Saturn Uranus Neptune}, we can write:

H � U, G � U

Expressing these sets in Lisp notation: (setq U ‘(Mercury Venus Earth Mars
Jupiter Saturn Uranus Neptune)), (setq H ‘(Mercury, Venus, Earth, Mars)), (setq G
‘(Jupiter Saturn Uranus Neptune)), then the following Lisp expressions hold:
(subset? H U) → true, (subset? G U) → true. Please note that following the actual
classification of the Astronomical Union, Pluto is not a planet of the Solar System.

Also by definition, every subset is included into itself, as we can see typing at the
Lisp prompt: (subset? G G) → true.

Another peculiar set in sets theory is the Universal Set, usually represented by
the capital letter U. The most trivial Universal Set would be the set of all things
contained in the known universe, including atoms, quarks and any imaginable thing
the reader can think in this moment. Needless to say, such a set can only be handled
from a philosophical point of view, and from a mathematical and computer science
perspective we define a Universal Set as the Set that contains all the objects under
consideration, that is, the set of all the elements about a given subject matter. For
example the Universal Set of numbers in a French roulette is the set U1 of integer
numbers from 0 to 36. The Universal Set of possible outcomes of throwing a dice is
the set U2 of integers from 1 to 6 and so on. Some example subsets of U1 are, for
example

S1 = {x | x is red}

S2 = {x | x belongs to the first column}
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Remembering the Lisp code from the previous chapter, the set S2 was already
represented by the symbol *column1* as (setq *column1* ‘(1 4 7 10 13 16 19 22 25
28 31 34)). Needless to say, both S1 and S2 are included in U1 and are subsets of it:

S1 � U1, S2 � U1

The imaginable set of “all things contained in the known universe” is, obviously
uncountable, but uncountable sets can be represented mathematically, too. For
example the set of real numbers between 1.0 and 10.0 can be expressed as:

S = {x | x ≥ 1.0 and x ≤ 10.0}, x 2 R

Theoretically, Lisp can handle uncountable sets, too. The previous expression
can be put into Lisp code using the expression (if (and (>= x 1.0) (<= x 10.0)) (lisp-
expression)). Here (lisp-expression) would be the action that Lisp would follow if x
belongs to S, so Lisp can also conceptually describe uncountable sets. However, it
is common, both in mathematics and Lisp, to use countable sets. In this case, the
number of elements contained in a set S is called cardinality, and it is represented
by the Greek letter η, or simply by |S|. For example: η(S1) = |S1| = 18, and η(S2) =
|S2| = 12.

Cardinality in Lisp is trivially expressed by Code 5-3:

;code 5-3
(define (cardinality S)

(length S)
)

Although this function is simply a call to the function (length) it serves us well
for establishing a continuum between Sets Theory and Lisp. Now, for example,
(cardinality *column1*) → 12. Please note that in Lisp we can also re-name any
function at the Lisp prompt:

> (setq cardinality length)
: length<1B3C6>

And then, as before, (cardinality *column1*) → 12.
We define sets S1 and S2 as equivalent if their cardinality is the same, that is:

g S1ð Þ ¼ g S2ð Þ ð5-5Þ

(= (cardinality S1) (cardinality S2)) → true

S1 and S2 are equal if the elements in both elements are exactly the same. We
then write:
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S1 ¼ S2 ð5-6Þ

Conversely, sets S1 and S2 are unequal if their cardinality is different or if their
elements are not the same. Mathematically, we express it as follows:

S1 6¼ S2 ð5-7Þ

From a Lisp point of view, it cannot be easier for checking if two sets are equal
or unequal. Taking as example, (setq A ‘(a b c)), (setq B ‘(a b c d)), (setq C ‘(x y z)),
(setq D ‘(a b c)), we have that (= A B) → nil, (= A D) → true, (= C D) → nil, but
(= (cardinality A) (cardinality D)) → true. These expressions show us the road to
write two simple Lisp predicates, shown in Code 5-3a and 5-3b:

;code 5-3a
(define (equivalent? A B)

(if (= (cardinality A) (cardinality B)))
)

;code 5-3b
(define (equal? A B)

(if (= A B))
)

The previous paragraph can be thus rewritten as: (equal? A B) → nil, (equal?
A D) → true, (equal? C D) → nil, (equivalent?A D) → true.

5.2.3 Union, Intersection, Complement and Difference

The union S1 [ S2 of two crisp sets S1, S2 is a set formed by all the elements of
S1 and all the elements of S2 after eliminating any possible repeated element.
Mathematically:

S1 [ S2 ¼ fx j x 2 S1 or x 2 S2g ð5-8Þ

As an example, if we have two sets A and B composed by some lower-case
letters:

A = {a, b, c, d, e}, B = {b, c, x, y, z}
then,

A [ B = {a, b, c, d, e, x, y, z}

NewLisp incorporates a function, not surprisingly named (union), that returns
the union of two sets as a list, that is, as another set. For example, if we create the
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sets A and B by typing (setq A ‘(a b c d e)) and (setq B ‘(b c x y z)), then (union
A B) → (a b c d e x y z). Figure 5.2 shows graphically the union of two sets.

The intersection S1 \ S2 of two crisp sets S1, S2 is a set formed by all the
common elements of S1 and S2. Mathematically:

S1 \ S2 ¼ fx j x 2 S1 and x 2 S2g ð5-9Þ

Following the previous example with sets A and B, we have:

A \ B = {b, c}

Although the reader should be able to write a Lisp function for obtaining the
intersection of two sets, NewLisp already incorporates it in its library of functions,
and we only need to type the following at the Lisp prompt: (intersect A B) → (b c).
By the way, please note how we have seized the opportunity to use the function
(intersect) for creating the functions (belong?) and (subset?) as shown in Code 5-1
and 5-2, respectively. Figure 5.3 shows graphically the intersection of two sets.

Fig. 5.2 A graphical
representation of the union of
two sets, A and B

Fig. 5.3 A graphical
representation of the
intersection of two sets,
A and B
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If the intersection of two sets, A and B results into the empty set, ϕ, that is;

A\B ¼ / ¼ fg ð5-10Þ

we say that A and B are disjoint. For example, if A = {a, b, c}, B = {x, y, z} then A
and B are disjoint because they do not share any element, that is, its intersection is
null. Code 5-4 shows a simple Lisp predicate for testing if two sets are disjoint:

;code 5-4
(define (disjoint? A B)

(if (= (intersect A B)'()))
)

Now, following the previous example, (setq A ‘(a b c)), (setq B ‘(x y z) then
(disjoint? A B) → true. It is interesting to note that if two sets A and B are disjoint,
then an obvious relationship does exist between the concepts of cardinality and
union of sets:

gðA[BÞ ¼ g Að Þ þ g Bð Þ ð5-11Þ

Using the last example for sets A and B in Lisp for trying expression (5.11),
we have:

(cardinality (union A B)) → 6
(+ (cardinality A) (cardinality B)) → 6

In general, any two sets A and B, despite they are disjoint or not, satisfy the
following property:

gðA[BÞ ¼ g Að Þ þ g Bð Þ � gðA\BÞ ð5-12Þ

Again trying the two non-disjoint sets (setq A ‘(a b c d e)), (setq B ‘(b c x y z)),
then we have: (cardinality A) → 5, (cardinality B) → 5, (cardinality (union
A B)) → 8, (cardinality (intersect A B)) → 2. Expressed in only one line:

(= (cardinality (union A B)) (- (+ (cardinality A) (cardinality B)) (cardinality
(intersect A B))) → true

After a simple manipulation of expression (5-12) we finally obtain:

gðA[BÞ þ gðA\BÞ ¼ g Að Þ þ g Bð Þ ð5-13Þ

136 5 From Crisp Sets to Fuzzy Sets



The complement of a set A with respect to a Universal set U is by definition the
set composed by all the elements belonging to U that are not included in A.
Formally:

A0 ¼ fx j x 2 Uand x 62 Ag ð5-14Þ

A Venn diagram, shown in Fig. 5.4, will help to visualize expression (5-14).
As an example, let us take again the set U as the set of planets in the Solar

System, U = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune} and
then H as the set of hard planets in the Solar System, H = {Mercury, Venus, Earth,
Mars}. Then the complementary of H, H′ is:

H′ = {Jupiter Saturn Uranus Neptune}

Code 5-5 shows a Lisp function for obtaining the complementary set of a set A
with respect to a universal set U:

;code 5-5
(define (complement A U, lU i set-out)

(setq set-out'())
(setq lU (cardinality U))
(setq i 0)

(while (< i lU)
(if (! = (belongs? (nth i U) A) true)

(setq set-out (cons (nth i U) set-out))
)
(++ i);this is equivalent to (setq i (+ 1 i))

);end while
(reverse set-out)

);end function

Fig. 5.4 A graphical
representation of the
complement of a set A, A′
with re-spect to an Universal
set U
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Expressing again sets U and H in Lisp we have: (setq U ‘(Mercury Venus Earth
Mars Jupiter Saturn Uranus Neptune)), (setq H ‘(Mercury, Venus, Earth, Mars)),
(setq G ‘(Jupiter Saturn Uranus Neptune)). And now:

(complement H U) → (Jupiter Saturn Uranus Neptune
(complement G U) → (Mercury Venus Earth Mars)

In this case, G and U are disjoint sets and its union covers the complete
Universal Set:

(intersect H G) → ()
(union H G) → (Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune)

The difference between two sets A and B is another set whose elements belong
to A but do not belong to B. Formally:

A� B ¼ fx j x 2 Aand x 62 Bg ð5-15Þ

A graphic representation of the difference between sets can be seen in Fig. 5.5
with the help of Venn diagrams.

As can be inferred from Fig. 5.5, the difference between two sets A and B can be
also described by the following expression:

A�B ¼ A\B
0 ð5-16Þ

NewLisp incorporates a function named (difference) that automatically calculates
the difference between two sets. As an example, let’s take set A as the sets of
satellites in the solar systems easily to observe with a small quality telescope: (setq A
‘(Moon Callisto Ganymede Europa Io Titan)), and B as the set of Galilean moons in
Jupiter: (setq B ‘(Callisto Ganymede Europa Io)). Then, (difference A B) → (Moon
Titan). It is important to note that the difference between two sets is not commu-
tative, that is: A� B 6¼ B� A, for example: (difference B A) → ().

Fig. 5.5 A graphical
representation of the
difference between sets
A and B
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5.2.4 Set Properties

In this section we are going to expose the main properties of sets. Aside the formal
description we shall give a simple Lisp example for each of the properties using the
following expressions as sets: (setq U ‘(0 1 2 3 4 5 6 7 8 9)), (setq A ‘(1 3 5 7)),
(setq B ‘(5 6 7 8 9)), (setq C ‘(0 1 2 3 4)). Each family of properties will be included
into a single table as follows: Table 5.1 shows the Identity properties of sets,
Table 5.2 the Idempotent ones, Table 5.3 the Complement ones, Table 5.4 the
Associative ones, Table 5.5 the Commutative ones, Table 5.6 the Distributive ones
and Table 5.7 shows the De Morgan’s Laws.

Table 5.1 Identity properties
of sets

A [ ϕ = A
(union A ‘()) → (1 3 5 7)

A [ U = U
(union A U) → (1 3 5 7 0 2 4 6 8 9)

A \ U = A
(intersect A U) → (1 3 5 7)

A \ ϕ = ϕ

(intersect A ‘()) → ()

Table 5.2 Idempotent
properties of sets

A [ A = A
(union A A) → (1 3 5 7)

A \ A = A
(intersect A A) → (1 3 5 7)

(intersect A ‘()) → ()

Table 5.3 Complement
properties of sets

A [ A′ = U
(union A (complement A U)) → (1 3 5 7 0 2 4 6 8 9)

A \ A′ = ϕ

(intersect A (complement A U)) → ()

Table 5.4 Associative
properties of sets

(A [ B) [ C = A [ (B [ C)
(union (union A B) C) → (1 3 5 7 6 8 9 0 2 4)
(union A (union B C)) → (1 3 5 7 6 8 9 0 2 4)

(A \ B) \ C = A \ (B \ C)
(intersect (intersect A B) C) → ()
(intersect A (intersect B C)) → ()
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5.2.5 Cartesian Product and Relations

In sets theory, the Cartesian Product of two sets, A and B, denoted by A × B, is the
set of all possible ordered pairs (x,y) whose first component x is a member of A and
whose second component y is a member of B. Formally:

A� B ¼ f x;yð Þ j x 2 A and x 2 Bg ð5-17Þ

As an example, if A = {a, b, c}, and B = {1, 2, 3, 4}, then:

A × B = {(a,1), (a,2), (a,3), (a,4), (b,1), (b,2), (b,3), (b,4), (c,1), (c,2), (c,3), (c,4)}

Needless to say, the Cartesian Product is not commutative, that is
A × B ≠ B × A. In fact, the commutative property for the Cartesian Product
between two sets A and B only holds when A = B. Using the same previous
example with sets A and B:

B × A = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c), (3,a), (3,b), (3,c), (4,a), (4,b), (4,c)}

Neither Lisp nor the NewLisp dialect incorporate a function for calculating the
Cartesian Product of two sets, but it is not a hard undertaking to write one. Code 5-6
shows a simple Lisp implementation of such a function:

Table 5.5 Commutative
properties of sets

A [ B = B [ A
(union A B) → (1 3 5 7 6 8 9)
(union B A) → (1 3 5 7 6 8 9)

A \ B = B \ A
(intersect A B) → ( 5 7)
(intersect B A) → (5 7)

Table 5.6 Distributive
properties of sets

A [ (B \ C) = (A [ B) \ (A [ C)
(union A (intersect B C)) → (1 3 5 7)
(intersect (union A B) (union A C)) → (1 3 5 7)

A \ (B [ C) = (A \ B) [ (A \ C)
(intersect A (union B C)) → (1 3 5 7)
(union (intersect A B) (intersect A C)) → (5 7 1 3)

Table 5.7 De Morgan’s
Laws

(A [ B)′ = A′ \ B′
(complement (union A B) U) → (0 2 4)
(intersect (complement A U) (complement B U)) → (0 2 4)

(A \ B)′ = A′ [ B′
(complement (intersect A B) U) → (0 1 2 3 4 6 8 9)
(union (complement A U) (complement B U))→ (0 2 4 6 8 9 1 3)
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;code 5-6
(define (cartesian-product A B, lA lB i j set-out)

(setq lA (cardinality A))
(setq lB (cardinality B))
(setq i 0 j 0);initializes i and j at the same time to

zero
(setq set-out'())

(while (< i lA)
(while (< j lB)

(setq set-out (cons (list (nth i A) (nth j B))
set-out))

(++ j)
);end while j
(++ i)
(setq j 0);reinitializes j

);end while i
(reverse set-out)

)

Then, making (setq A ‘(a b c)) and (setq B ‘(1 2 3 4)), we only need to write at
the Lisp prompt: (setq U1 (cartesian-product A B)) and Lisp will answer:

((a 1) (a 2) (a 3) (a 4) (b 1) (b 2) (b 3) (b 4) (c 1) (c 2) (c 3) (c 4))

Conversely, the Lisp expression (setq U2 (cartesian-product B A)) produces,
as expected:

((1 a) (1 b) (1 c) (2 a) (2 b) (2 c) (3 a) (3 b) (3 c) (4 a) (4 b) (4 c))

A Cartesian Product can be represented in two dimensions using a simple
two-axis graphic. Figure 5.6a, b show A × B and B × A, respectively. Please note
from the simple observation of the figures that A × B ≠ B × A, as previously
stated:

The definition of a Relation between a set A and a set B is simple: A Relation
between sets A and B (or from A to B) is any subset R of the Cartesian Product
A × B. After a Relation is established we can say that a 2 A and b 2 B are related
by R. Using the same previous sets A = {a, b, c} and B = {1, 2, 3, 4} a Relation R1

can be, for example:

R1 = {(a,3), (a,4), (b,1), (b,2), (b,3), (b,4)}

R1 can be represented graphically as shown in Fig. 5.7.
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Expressing this into Lisp can not be simpler: (setq R1 ‘((a 3) (a 4) (b1) (b 2)
(b 3) (b 4)). For testing if this is a Relation from A to B, we only need to type at the
Lisp Prompt: (subset? R1 U1) -> true, and, as expected, (subset? R1 U2) -> nil,
since R1 is not a relation from B to A.

Fig. 5.6a A graphical
representation of the
Cartesian product A × B

Fig. 5.6b A graphical
representation of the
Cartesian product B × A

Fig. 5.7 A graphical
representation of relation R1
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5.3 Moving Towards Fuzzy Sets

In the previous sections of this chapter we have seen that probably the most
important concept in sets theory is the concept of belonging or membership of an
element to a set. In fact, without this concept it would be impossible to describe
sets. Aside enumerating the elements of a set or expressing it conceptually, or by
means of a Venn diagram, we can also express the membership of an element x to a
set A using what is known as a membership function, μA(x) or characteristic
function. Such a function can only take two values in classic sets theory: 0 if
an element x does not belong to a set A, or 1 if an element x certainly belongs to
a set A. Formally:

lA xð Þ ¼ 1 for x2A ð5-18aÞ

lA xð Þ ¼ 0 for x 62 A ð5-18bÞ

As an example, let us take the set A as the set of French people, and a very small
subset E of European citizens such as E = {Klaus, Jean, John, Paolo, Maurice,
Juan}. Only two elements from E belong to A. Using expressions (5-18a) and
(5-18b) we have:

μA(Klaus) = 0, μA(Jean) = 1, μA(John) = 0
μA(Paolo) = 0, μA(Maurice) = 1, μA(Juan) = 0

This type of situations is perfectly covered by using classic, crisp sets. Other
examples could be the set of cars that use V12 engines, the set of rockets used in
manned spaceflight missions and so on, where the membership value μ(x) to every
element of their respective universal sets is either one or zero. However, there are
also examples, in fact the most of things we observe in nature, that do not adhere to
this formal framework of yes/no, 1 or 0 belonging.

Let us take the age of a human being as an example, ranging from 0 to 80 years
(here we use 80 years old as a top limit since that figure expresses well an average
of life duration in developed countries from occidental societies). The key question
here is simple at first sight: How do we define the set of old people? That is, where
do we establish a sharp separation between young and old people, at which age?
After a while, you, dear reader, maybe would answer: “well, maybe it would be
better to divide the universal set representing age from 0 to 80 years old in several
subsets such as ‘child, young, mature and old’ in order to have a better represen-
tation of the concept of age”. It is not a bad answer. However, if you reflect a bit
about it you will soon realize that your answer put the question to sleep for a while,
but it does not solve the problem because, for example, it leads to questions such us
“how do we establish the dividing line between mature and old?”. Pressed by my
questions you maybe would tell me, probably with a challenging tone of voice:
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“Well, we can not do infinite partitions in the set that represents age, right?” This is
not a bad reply, either.

For exposing clearly the nature of the problem at hand let us say that there is an
agreement if I say that an 80 years old person is an old person. If we subtract one
year we obtain 79, and a 79 years old person is again an old person. Following the
procedure we have the sequence of numbers 80, 79, 78, 77, 76, … When do we
stop enumerating the concept of old age? Since you are delighted with the classic
set theory exposed until now in this chapter you decisively say: “ok, a decision
must be made. Let us take 50 years old as the dividing line in such a way that we
obtain a set A of young people and a set B of old people. Then for every man of
woman on the entire Earth we can express formally:”

A = {x | x ≥ 0 and x ≤ 50}
B = {x | x > 50 and x ≤ 80}

Sadly, this leads to another set of itching, irritating questions: Is it really a
51 years old person an old person?, or, do you really believe that a 49 years old
person is a young person? Finally you exclaim “well Luis, at least you can not
negate that a 75 years old person is older than a 55 years old person, and that a
23 years old person is younger than a 62 years old person!”. No, I shall not negate
that. In fact I think these are excellent observations.

5.3.1 The “Fuzzy Sets” Paper

The previous “age problem” is in fact an example of the well known “Sorites
Paradox”, a class of paradoxical arguments, based on little-by-little increments or
decrements in quantity. A heap formed by sand grains is the primitive paradox
(in fact “Sorites” means “heap” in ancient Greek) where decrementing the heap size
grain by grain is impossible to establish when a heap turns into a no-heap. The same
paradox arises when we try to describe the set of rich people, the set of ill patients in
a hospital, the set of luminous galaxies, the set of beautiful women…, the number
of instances of the Sorites paradox is quasi-infinite in the real world. These para-
doxes can not be adequately solved by using classic sets theory.

Lofti Zadeh, the father of the fuzzy sets theory, was born in 1921 in Baku,
Azerbaijan. Soon after graduating from the University of Tehran in electrical
engineering in 1942 he emigrated to the United Sates, entering the Massachusetts
Institute of Technology, MIT, in 1944 and getting an MS degree in electrical
engineering in 1946. Not much later he moved again, this time to New York City,
where he received his PhD degree in electrical engineering from the University of
Columbia in 1949. After ten years of lecturing at Columbia he finally moved to
Berkeley in 1959. While I am writing this book (2014) he still continues writing
papers in the famous University on the eastern side of the San Francisco Bay.
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Back in the summer of 1964, Zadeh was preparing a paper on pattern recognition
for a conference to be held at the Wright-Patterson Air Force Base in Dayton. Ohio.
The flight to Dayton made a stopover in New York, so Zadeh enjoyed an evening of
free time, an evening free of academic and social encounters that conceded him the
freedom of thinking at his best. In his own words:

I was by myself and so I started thinking about some of these issues (pattern recognition).
And it was during that evening that the thought occurred to me that when you talk about
patterns and things of this kind, … that the thing to do is to use grades of
membership. I remember that distinctly and once I got the idea, it became grow to be easy
to develop it (Seising 2007)

As it usually happens, inspiration comes when you are working hard into a
problem and you have a strong knowledge not only in the discipline where the
problem to solve is defined, but in other more or less parallel and related disciplines.
Under these conditions the human brain tends to establish new connections from
patterns to patterns of neurons. This neurophysiological process is in fact what we
call inspiration. In the case of Zadeh, the nucleus of his inspiration can be summa-
rized in only five words: “to use grades of membership” and that realization mate-
rialized into what is probably the most famous paper in the history of fuzzy-logic.
This paper, unambiguously titled “Fuzzy Sets”, symbolized a shift of paradigm in the
theory of sets. I cannot renounce to remember the first words of the abstract of such
an important tour de force in the history of computer science and mathematics:

A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is
characterized by a membership (characteristic) function which assigns to each object a
grade of membership ranging between zero and one (Zadeh 1965)

It is difficult to express the definition of a fuzzy set in a better way. Before
presenting some mathematical and Lisp expressions for representing fuzzy sets,
I think it is convenient to show a graphical representation of fuzzy sets. In Fig. 5.8a
we can see a traditional Venn diagram showing a classic, crisp set A. It is a simple
sketch drawn by hand with a pencil, but interesting enough for our discussion. For
convenience we have shown it in black. If you wish so, you can imagine it

Fig. 5.8a A sketch of a crisp
set, A
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represents a set of old people from the traditional point of view of classic sets theory
where every person x belonging to it satisfies the previous expression {x | x > 50
and x ≤ 80}. In this way, every person older than 50 years old would be “located”
inside the black Venn diagram. Needless to say, every young person, less than
50 years old, would be located outside it.

Zadeh’s shift of paradigm can be appreciated from the simple observation of
Fig. 5.8b. There, it is easy to observe how the blackness decreases from its nucleus
towards the exterior in a continuous way, representing different grades of
membership. An element x1 representing an 80 years old person would be located
just in the centre, showing a whole membership degree to the fuzzy set fzA, that is
μfzA = 1. As the age of a person decreases, the location of its corresponding element
xi would move away from the centre, getting diminishing values of μfzA, that is,
μfzA < 1, such as, for example μfzA = 0.7, μfzA = 0.45 or μfzA = 0.2 for decreasing
values of age. Just note that now there is no need to define a threshold value for
separating in a sharp way the set of old people from the set of young people.

Definition A fuzzy set A is defined by a characteristic function μA(x) that maps
every element x belonging to A to the closed interval of real numbers [0,1].
Formally we can write:

A ¼ fðx;lA xð ÞÞ j x 2 A;lA xð Þ 2 0;1½ �g ð5-19Þ

That is, we can create a fuzzy set by means of enumerating a collection of
ordered pairs (xi, μA(xi)) where μA(xi) is the membership degree of an element xi to
the fuzzy set A. In general:

lA : X ! 0;1½ � ð5-20Þ

In this expression, the function µA completely defines the fuzzy set A (Klir and
Yuan 1995). Following the example of age in human beings we can enumerate
a precise, however subjective, characterization of the fuzzy set A of old people as,

Fig. 5.8b A sketch of a fuzzy
set, fzA. The black nucleus
represents a whole
membership degree to the
fuzzy set
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for example: μA(35) = 0.1; μA(45) = 0.2; μA(55) = 0.4; μA(65) = 0.7; μA(75) = 0.9;
μA(80) = 1. Using the formal representation given by (5-19) we would have:

A = {(35,0.1), (45,0.2), (55,0.4), (65,0.7), (75,0.9), (80,1.0)}

Since we are dealing with persons, and admitting Paul is 35 years old, John is
45, Mary is 55, Klaus is 65, Juan is 75 and Agatha is 80, we can also write:

Anames = {(Paul,0.1), (John,0.2), (Mary,0.4), (Klaus,0.7), (Juan,0.9), (Agatha,1.0)}

As the reader has quickly realized, representing these fuzzy sets using Lisp
expressions is straightforward:

(setq A ‘((35 0.1) (45 0.2) (55 0.4) (65 0.7) (75 0.9) (80 1.0)))
(setq A-names ‘((Paul 0.1) (John 0.2) (Mary 0.4) (Klaus 0.7) (Juan 0.9)

(Agatha 1.0)))

For graphically representing fuzzy sets, traditional Venn diagrams are not
enough since they were designed for representing crisp sets. Inspired by the sketch
shown in Fig. 5.8, we can use a radar type diagram as a sort of enhanced Venn
diagram, as shown in Fig. 5.9. The inner the dot in the radar diagram, the higher is
its membership degree to the set. Circles representing membership degrees are
spaced every 0.2 units in the figure.

When elements from a fuzzy set are based on numbers, it is usually more con-
venient to use grid diagrams, as the one shown in Fig. 5.10. The vertical axis

Fig. 5.9 A radar-type
diagram for representing a
fuzzy set. Inner circles
represent higher membership
degrees to the set
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represents the membership degree to the set, while the horizontal axis shows the
numerical elements. In this book we shall use the most suitable type of graphic for our
needs. At the end of this chapter we shall make an intense use of grid-type diagrams.

It is especially important to remark that the subjective definition of a fuzzy set by
means of its characteristic function is an advantage when modeling vague concepts
because we can adapt, or better said, choose the most suitable one depending on
context. Continuing with the fuzzy set of “old people” A, we have exposed a
general example that suits well for a general population of human beings. However,
if we are speaking about professional tennis players we can use, for example, the
following fuzzy set T:

T = {(Dimitrov,0.2), (Djokovic,0.5), (Nadal,0.6), (Federer,0.9), (Borg,1.0)}

where Borg is definitely an old professional tennis player, despite he would have
a membership degree about 0.5 to the set of old people A in 2014. In fact you
should take into account that the definition of set T is valid from the point in time I
am writing this book. If you are reading this book in 2035 all the elements from
T will have a membership degree of 1.0, that is, all of them will be old for playing
tennis professionally.

As it was the case with crisp sets, and as the reader has probably suspected, the
concept of belonging to a fuzzy set deserves a dedicated Lisp function. It is shown
in Code 5-7:

;code 5-7
(define (fz-belongs? x A)

(if (assoc x A)
(last (assoc x A))
nil

)
)

Fig. 5.10 A grid-type diagram for representing a fuzzy set. The vertical axis shows the
membership degree to the set. The horizontal axis shows age in years
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As can be observed after reading the code, the function (fz-belongs?) returns nil
if a given element x is not a member to the fuzzy set A, else, that is, if x belongs to
A, then it returns its membership degree. Taking again the Lisp definition of the
fuzzy set A-names: (setq A-names ‘((Paul 0.1) (John 0.2) (Mary 0.4) (Klaus 0.7)
(Juan 0.9) (Agatha,1.0))), then we would have, for example: (fz-belongs? ‘Klaus A-
names) → 0.7, but (fz-belongs? ‘Paolo A-names) → nil.

5.3.2 Union, Intersection and Complement of Fuzzy Sets

As we did in Sect. 5.2.3, we are going to explore now how the union, intersection
and complement of fuzzy sets are defined. Basically the concepts remain the same,
but the introduction of the idea of membership degree to a given fuzzy set adds
important details that must be taken into account.

Definition The union C = A [ B of two fuzzy sets A and B, determined respectively
by their characteristic functions μA(x), μB(x), is defined formally by the following
expression:

C ¼ A[B ¼ lC xð Þ ¼ max½lA xð Þ; lB xð Þ� ð5-21Þ

As an example, let us take the fuzzy sets A and B:

A = {(1,0.7), (2,0.1), (3,0.3), (4,0.9), (5,0.2)}
B = {(1,0.1), (2,0.8), (3,0.9), (4,0.2), (5,1)}

Figure 5.11a, b show a grid representation of these fuzzy sets:
Then, the union C = A [ B is:

C = {(1,0.7), (2,0.8), (3,0.9), (4,0.9), (5,1)}

Fig. 5.11a Grid
representation of fuzzy set A
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In order to have a Lisp function for obtaining the union of two fuzzy sets (and
also for obtaining its intersection), it is convenient to have first an auxiliary func-
tion, named (clean-md) that given a fuzzy set A returns a related crisp set, that is,
a set that conserves all the elements x in A but cleans all its membership values.
Such a function is shown in Code 5-8:

;code 5-8.
(define (clean-md A, lA i set-out)

(setq lA (cardinality A))
(setq i 0)
(setq set-out'())

(while (< i lA)
(setq set-out (cons (first (nth i A)) set-out))
(++ i)

); end while i
(reverse set-out)

)

Then, for example, is we take (setq A ‘((1 0.7) (2 0.1) (3 0.3) (4 0.9) (5 0.2))) and
(setq B ‘((1 0.1) (2 0.8) (3 0.9) (4 0.2) (5 1.0))), then (clean-md A) → (1 2 3 4 5)
and also (clean-md B) → (1 2 3 4 5). Now, we can easily write the function
(fz-union), as shown in Code 5-9:

;code 5-9
(define (fz-union A B, temp lA lB lt i element md-a md-b
set-out)

(setq temp (union (clean-md A) (clean-md B)))
(setq lA (cardinality A))
(setq lB (cardinality B))
(setq lt (cardinality temp))
(setq i 0)
(setq set-out'())

Fig. 5.11b Grid
representation of fuzzy set B
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(while (< i lt)
(setq element (nth i temp))
(setq md-a (assoc element A))
(setq md-b (assoc element B))
(if (> = md-a md-b)

(setq set-out (cons md-a set-out));
else:
(setq set-out (cons md-b set-out))

)
(++ i)

); end while i
(reverse set-out)

)

Now, for testing the function, we only need to type at the Lisp prompt: (fz-union
A B), obtaining: ((1 0.7) (2 0.8) (3 0.9) (4 0.9) (5 1)). Figure 5.12a, b show a graphic
representation of the union of A and B.

Please observe how for both figures the membership degree of each element in
the resulting union of sets get “higher” in its respective graphic. In the grid rep-
resentation, this raising is clear, while in the radar-type graphic, the elements 1, 2, 3,
4 and 5 are closer to the centre. Imagining the curves representing membership
degrees as contour lines in a terrain, we can appreciate that the resulting elements
are closer to the top.

Definition The intersection C = A \ B of two fuzzy sets A and B, determined
respectively by their characteristic functions μA(x), μB(x), is defined formally by the
following expression:

C ¼ A\B ¼ lC xð Þ ¼ min½lA xð Þ; lB xð Þ� ð5-22Þ

Taking again the same example sets A and B, we have the intersection C = A \ B:

C = {(1,0.1), (2,0.1), (3,0.3), (4,0.2), (5,0.2)}

Fig. 5.12a A grid
representation of A [ B
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Translating this to Lisp results into the function (fz-intersect), shown in
Code 5-10:

;code5-10
(define (fz-intersect A B,

temp lA lB lt i element md-a md-b set-out)
(setq temp (intersect (clean-md A) (clean-md B)))
(setq lA (cardinality A))
(setq lB (cardinality B))
(setq lt (cardinality temp))
(setq i 0)
(setq set-out'())
(while (< i lt)

(setq element (nth i temp))
(setq md-a (assoc element A))
(setq md-b (assoc element B))

(if (<= md-a md-b)
(setq set-out (cons md-a set-out));

else:
(setq set-out (cons md-b set-out))

)
(++ i)

); end while i
(reverse set-out)

)

Fig. 5.12b A radar-type
representation of A [ B
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And testing the function at the Lisp prompt we get: (fz-intersect A B) → ((1 0.1)
(2 0.1) (3 0.3) (4 0.2) (5 0.2)). Figure 5.13a, b show a grid-type and a radar-type
representation of the intersection of fuzzy sets A and B, respectively.

The dashed curves in Fig. 5.13b show the original external shapes (that is, 0.0
membership degrees) of theVenn diagrams corresponding toA andB. SinceA\B has
resulted into a set with lowmembership degrees, you can visualize it as two radar-type
Venn diagrams relatively separated with a common part (continuous lines). If the
resulting fuzzy intersection had elements with high membership degrees, this fact
would imply that the radar-type Venn diagrams would be closer. In fact, A \ A→ A,
and then the separation would be inexistent. Expressing it into Lisp: (fz-intersect
A A) → ((1 0.7) (2 0.1) (3 0.3) (4 0.9) (5 0.2)).

Definition The complement A′ of a fuzzy set A determined by its characteristic
function μA(x) is defined formally by the following expression:

A0 ¼ 1� lA xð Þ ð5-23Þ

Fig. 5.13a A grid
representation of A \ B

Fig. 5.13b A radar-type
representation of A \ B
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The translation of expression (5-23) is not especially complex, and it is shown in
Code 5-11:

;code 5-11
(define (fz-complement A, lA i set-out element)

(setq lA (cardinality A))
(setq i 0)

(setq set-out'())

(while (< i lA)
(setq element (nth i A))
(setq set-out (cons (list (first element)

(sub 1.0 (last element))) set-out))
(++ i)

); end while i
(reverse set-out)

)

Remembering the fuzzy sets A and A-names in Sect. 5.3.1 of this chapter rep-
resenting membership degrees to the concept of “old people”: (setq A ‘((35 0.1)
(45 0.2) (55 0.4) (65 0.7) (75 0.9) (80 1.0))), (setq A-names ‘((Paul 0.1) (John 0.2)
(Mary 0.4) (Klaus 0.7) (Juan 0.9) (Agatha 1.0))), then we have the following calls
to the function (fz-complement):

(fz-complement A) → ((35 0.9) (45 0.8) (55 0.6) (65 0.3) (75 0.1) (80 0))
(fz-complement A-names) → ((Paul 0.9) (John 0.8) (Mary 0.6) (Klaus 0.3)

(Juan 0.1) (Agatha 0))

Now it is easy to realize that the fuzzy complements A′ and A-names’ represent
the concept of “young people”. For example, a 65 years old person had a 0.7
membership degree to the fuzzy set of old people and now has a 0.3 membership
degree to its complement. Juan (75 years old) had a 0.9 membership degree to
A-names, but only a 0.1 membership degree to its fuzzy complement and so on.
Figure 5.14a, b show a grid and a radar-type representation of A′ and A-names’,
respectively.

It is interesting to compare these figure to Figs. 5.9 and 5.10, especially the
radar-type one. Surprisingly at first sight, the geometrical positions of Agatha, Juan,
Klaus, Mary, John and Paul are exactly the same in Figs. 5.9 and 5.14b. However, if
you observe meticulously both figures you will soon realize that the values of the
membership degrees associated to every contour line are reversed. In other words:
while the radar-type diagram of Fig. 5.9 increases the values of its contour lines
from the outside to the center of the diagram, in Fig. 5.14b the external line
represents the maximum membership degree (1.0) and the inner the position in the
diagram of an element the lesser its membership degree to the set. Any hypothetical
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point located outside the external circle, that is, located on the shaded area, would
have a 1.0 membership degree to A-names’.

5.3.3 Fuzzy Sets Properties

Fuzzy sets do not satisfy every property of classic sets as shown in Sect. 5.2.4.
While the identity, idempotent, associative, commutative, De Morgan’s Laws and
distributive properties are perfectly satisfied by fuzzy sets, the complement prop-
erties are not. Especially interesting is the second expression from Table 5.3, named
‘law of non contradiction’ in logic (Trillas 2009):

A \ A′ = ϕ

Fig. 5.14a Grid diagram for
representing the complement
fuzzy set A′

Fig. 5.14b Radar-type
diagram for representing the
complement fuzzy set
A-names’
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Let us take again the fuzzy set A as the set representing the concept of “old
people”, then: A → ((35 0.1) (45 0.2) (55 0.4) (65 0.7) (75 0.9) (80 1)) and
(fz-complement A) → ((35 0.9) (45 0.8) (55 0.6) (65 0.3) (75 0.1) (80 0)). When we
intersect these fuzzy sets, that is, after typing (fz-intersect A (fz-complement A)) at
the Lisp prompt, we obtain the following fuzzy set:

((35 0.1) (45 0.2) (55 0.4) (65 0.3) (75 0.1) (80 0))

And this set is far from being equal to the empty set, ϕ. As we have already seen,
since A represents the concept of “old people”, its complement, A′, represents the
concept of “young people”. If we were dealing with crisp sets, the intersection of A
and A′ would be the empty set, that is, every person is either young or old.
However, when dealing with fuzzy sets we usually have:

A \ A′ ≠ ϕ

So, what is the meaning of this expression translated to normal language? If we
take the example obtained from evaluating (fz-intersect A (fz-complement A)) at the
Lisp prompt, it means that the elements belonging both to the fuzzy sets A and A′
are at the same time young and old people! How can this be possible? Let us
examine some elements of A \ A′: For an 80 years old person her membership
degree to the intersection is zero, so this person is not young and old at the same
time, because from the definition of A she is “entirely” old. In a similar way, a
35 years old person has only a 0.1 membership degree to the intersection. We could
say that he is mainly young, but some oldness has already started to appear in his
physiology, in his organic development. Let us analyze now the element repre-
senting a 55 years old person. We can see that he has a 0.4 membership degree to
A \ A′, so he is clearly young and old at the same time. Is this statemen false?
Under classical sets theory it certainly is. However, it is perfectly true when we use
fuzzy sets, and what is especially interesting: it describes the real world in a very
sensible way because a 55 years old person, while not young at all is still far from
being old. He is transiting in time from young to old, and this transition is what the
use of fuzzy sets represents perfectly well. At the beginning of Sect. 5.3 we defined
the crisp set A as the set of young people and B as the crisp set of old people in the
following way:

A = {x | x ≥ 0 and x ≤ 50}
B = {x | x > 50 and x ≤ 80}

And as you can remember, these crisp definitions were generating serious irri-
tating questions. Now, by means of using fuzzy sets the itching has disappeared.
This key concept, the concept of transition between infinites shades of gray in the
[0,1] interval of real numbers is what makes fuzzy sets theory so attractive for
modelling systems from the real world. We use mathematics, physics, biology,
astronomy and other sciences to model Nature, written here with capital letter at the
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beginning of the word to remark the broad meaning of the term, and we usually get
a good representation of the systems we observe. However, when we introduce
fuzzy sets in these sciences we usually get an even better representation of natural
systems and in some cases we obtain a representation that is impossible to obtain by
means of the simple use of crisp sets.

We are now immersed in the conceptual nucleus of this book, so it is a good time
to remark another interesting matter that usually arises from using the [0,1] interval
of real numbers for describing the membership degree on an element to a fuzzy set
A, as already shown in expressions (5-19), (5-20): Membership degrees are not
probabilities. As the reader already knows, probability is a mathematical concept
for measuring the likeliness that an event E will happen. Formally:

p(E) → [0,1]

When p(E) = 0 we say that an event E will not happen, for example, the
probability that I will finish this book just tomorrow is 0 (I am now writing Chapter
five), while when we write p(E) = 1 we are expressing that an event E will occur
with absolute certainty. For example, the probability that the Sun will be a bright
celestial object tomorrow is 1 (and it will continue being one well after the
extinction of the human race). Any other value of p between 0 and 1 is an attempt to
measure the likeliness that an event E will happen. Just observe the grammar I have
used in this last sentence: As a general feature of probability, this branch of
mathematics deals with things that can or cannot happen in the future. Membership
degrees in fuzzy sets, on the other hand, do not need to deal with future events.
They exclusively deal with actual facts, that is, with intrinsic features of an existing
natural system. When we say, for example that Mary (55 years old) has a 0.4
membership degree to the fuzzy set of old persons we are expressing something that
actually exists in reality without any mention to the future. However, if we say that
the likelihood of Mary to live until 75 years old is p = 0.85 we are speaking about
probabilities, since it is a measure of something that will or will not happen in the
future and that actually we do not know for sure. Another example, taken from the
famous potable drink problem by Bezdek (2013), will help to perfectly distinguish
between membership degrees to a fuzzy set and probabilities.

Just imagine you have decided to spend your holidays in the Sahara desert. Don’t
ask me why, but after a few days and some discomforting adventures you are
suddenly alone and lost in the hot African sands, and what is even worst: without
water. After a while your luck seems to change a bit and you arrive to a small, very
special oasis where you find two bottles with exactly the same shape placed over a
table. Both are big and full of liquid, and the only difference between the two bottles
is their labels: One of them, let us say, bottle A, says: “The liquid in this bottle has a
0.75 membership degree to the set of potable drinks”. On the other hand, bottle B has
a label that says: “The liquid in this bottle has a 0.9 probability of being potable”.
Now the important question is: Which bottle would you choose for drinking?

Bottle B seems attractive, especially if you do not like mathematics (we must
recognize that since you are reading this book this is unlikely) because after all, 0.9 is

5.3 Moving Towards Fuzzy Sets 157



a bigger number than 0.75 and everybody knows that the bigger the better. However,
if p(B) = 0.9, it implies that p(B′) = 0.1, that is, it means that there is also a 0.1
probability value that the content of bottle B is not potable, being, for example,
poisoned water. If you decide to drink from bottle B you are making a bet with two
possible outcomes: To replenish your body with potable, pure water, with an
associated probability p = 0.9 or to drink some poison and die, with an associated
probability p = 0.1. Now, let us think about bottle A. The label tells us that it has a
μ = 0.75 membership degree to the set of potable drinks. Well, as any person versed
in fuzzy sets theory, you know that the label of bottle A is informing you that its
content is not pure water (that would have a 1.0 membership degree to the set of
potable drinks). Maybe it is a commercial drink with lots of sugar, colorants and the
like, but it is, intrinsically, a potable liquid so if you drink from bottle A you will
have more time to find someone in the Sahara and eventually escape the desert. Even
more: before drinking from bottle A you already know that you have find a suitable
solution to your problems of thirst. If you choose to drink from bottle B you do not
know beforehand what will happen. Especially interesting is what happens after, let
us say, one hour after you drink: Bottle A will continue to have a μ = 0.75 mem-
bership degree to the set of potable drinks because membership degrees are intrinsic
to the features of a given element in a set. However, the probability value associated
with bottle B has disappeared: Time has passed by and you now have a complete
knowledge about its content if it was potable liquid. If it was not a potable liquid,
say, poisoned water, then now you have not knowledge at all.

5.3.4 Fuzzy Relations

As we have seen in Sect. 5.2.4, the Cartesian Product A × B between two sets A and
B composes a new set of ordered pairs (x,y) where the first component of each
element belongs to A and the second component belongs to B, as shown by
expression (5-17). Now, we can extend this idea to the realm of fuzzy sets by using
expression (5-24):

R ¼ fð x;yð Þ; lR x;yð ÞÞj x;yð Þ 2 A� B; lR x;yð Þ 2 0;1½ �g ð5-24Þ

A fuzzy relation is a mapping from the Cartesian Product A × B to the closed
interval [0,1]. The membership degree of the Relation is given by the function
lR x; yð Þ, that is, the value of lR x; yð Þ expresses the strength of the relation between
the elements x and y of the pairs (x, y). Let us take, as an example, the following
sets A and B:

A = {a, b, c}
B = {x, y, z}
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Then, a possible fuzzy relation, R1, between A and B could be:

R1 = {(a,x,0.5), (a,z,0.8), (b,y,0.3), (b,z,1.0), (c,x,0.6)}

Expressing fuzzy relations in Lisp is, needless to say, straightforward. R1 can be
represented as (setq R1 ‘((a x 0.5) (a z 0.8) (b y 0.3) (b z 1.0) (c x 0.6))).

The basic operations on fuzzy relations defined in the Cartesian space A × B are
given in Table 5.8.

5.3.4.1 Fuzzy Cartesian Product

Especially interesting is the situation where two sets A and B related by a fuzzy
relation R are also fuzzy. In this case, every element from the pairing (x,y), x 2 A,
y 2 B, already carries a membership degree. For obtaining the resulting ordered
triples (x, y, μR(x,y)) we use the Fuzzy Cartesian Product A × B, given by:

lR x;yð Þ ¼ minðlA xð Þ; lB yð ÞÞ ð5-25Þ

As an example, let us take the following two fuzzy sets A and B:

A = {(x1,0.4), (x2,0.7)}
B = {(y1,0.8), (y2,0.6), (y3,0.4)}

Then, the Fuzzy Cartesian Product A × B is:

A × B = {(x1,y1,0.4), (x1,y2,0.4), (x1,y3,0.4), (x2,y1,0.7), (x2,y2,0.6), (x2,y3,0.4)}

In order to automatically calculating the Fuzzy Cartesian Product of two fuzzy
sets, we only need to translate expression (5-25) into Lisp, as shown in Code 5-12:

;code 5-12
(define (fz-cartesian-product A B, lA lB i j set-out)

(setq lA (cardinality A))
(setq lB (cardinality B))
(setq i 0 j 0)
(setq set-out'())

Table 5.8 Basic operations
on fuzzy relations

Operation Expression

Union μR[S(x,y) = max(μR(x,y), μS(x,y))

Intersection μR\S(x,y) = min(μR(x,y), μS(x,y))

Complement (μR(x,y))′ = 1 - μR(x,y)
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(while (< i lA)
(while (< j lB)

(setq set-out (cons (list (first (nth i A))
(first (nth j B)) (min (last (nth i A))
(last (nth j B)))) set-out))

(++ j)
);end while j
(++ i)
(setq j 0);reinitializes j

);end while i
(reverse set-out)

)

Using the previous example as a test, we only need to type at the Lisp prompt:
(setq A ‘((x1 0.4) (x2 0.7))), (setq B ‘((y1 0.8) (y2 0.6) (y3 0.4))), and then
(fz-cartesian-product A B) → ((x1 y1 0.4) (x1 y2 0.4) (x1 y3 0.4) (x2 y1 0.7) (x2 y2
0.6) (x2 y3 0.4)).

Since the concept of fuzzy relations and fuzzy Cartesian product is of pivotal
importance for the future material in this book, we shall see another example. Let us
say two women, Ana and Mary, belong to the fuzzy set A of highly communicating
woman with membership degrees 0.9 and 0.1, respectively. On the other hand, John
and Paul belong to the fuzzy set B of highly communicating men with membership
degrees 0.8 and 0.4, respectively. The fuzzy Cartesian product between A and
B will give us a fuzzy relation that expresses the strength of the possible com-
munication links between all the members from A and B. Let us type at the Lisp
prompt the following expressions: (setq A ‘((Ana 0.9) (Mary 0.1))), (setq B ‘((John
0.8) (Paul 0.4))). Now we obtain: (fz-cartesian-product A B) → ((Ana John 0.8)
(Ana Paul 0.4) (Mary John 0.1) (Mary Paul 0.1)). That is, Ana and John will be
able to exchange a lot of ideas because their inherent communicating abilities, while
Mary will not be able to communicate well nor with John neither with Paul.
Figure 5.15 shows a graphical representation of A × B:

The three dimensional appearance of the graphical representation of the fuzzy
relation between A and B is important. Since the grade of complexity has grown
from the relations in classic sets theory, a new (third) dimension is needed to
correctly represent fuzzy relations. The vertical axis represents the membership
degree, μR(x,y), of the relation. The other two axes represent the membership
degrees μA(x) and μB(y) to the fuzzy sets A and B, respectively. In future chapters in
this book we shall seize the opportunity of using 3D representations as a tool for a
better understanding of new concepts.
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5.4 Membership Degrees: An Example Application
in Medicine

Since this book has a strong practical vocation we are going to expose in this
section a practical and complete use of the concept of membership degrees, in this
case applied to the medical practice. We have already discussed the fuzzy set of old
people. Now we can improve it in such a way that we are ready to speak about
illness along the life of a person. For this we shall introduce the concept of Life
Illness Curves, learning at the same time how a lot of phenomena in nature can be
modelled by means of membership degrees and time.

We define a Life Illness Curve, LIC, as a graphical representation of the
membership degree that a person has to the fuzzy set I of Illness over time, that is:

y ¼ lI xð Þ; t ð5-26Þ

In these parametric graphics, the vertical axis represents the membership degree
µI(x), defined as usually in the interval [0,1], while the horizontal axis represents
time in years, from 0 to 80 years old. The value µI(x) = 0 means an absolutely
absence of illness that is experienced by the human being only at birth, when no
congenital disorder is present. We emphasize the condition “only at birth” because
cellular deterioration begins just with life, albeit usually extremely slowly. The
value µI(x) = 1 means an integral and definitive presence of illness that happens

Fig. 5.15 3D representation
of the fuzzy relation between
fuzzy sets A and B. Please
note that the membership
degree of the pair
“Mary-Paul” has not be
in-cluded in order to improve
the clarity of the image
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only at the individual’s exitus. In the next paragraphs we present some examples of
Life Illness Curves.

Figure 5.16 shows a LIC of a normal, healthy individual. The value
µI(x) remains low for almost the entire life of the person and only in the last months
of his/her life the organism looses its healthy state.

Figure 5.17 represents the evolution in time of a patient affected by amyotrophic
lateral sclerosis (ALS), where the value lI xð Þ remains low and normal until the
disease’s debut that leads into a relatively quick outcome (Brown 2010). This figure
represents exactly the case of the famous baseball player Lou Gehrig, which suf-
fered this condition from 1938 to 1941. Interestingly, Fig. 5.18 shows the LIC of
the same illness, this time representing the case of the known cosmologist Stephen
Hawking. The curve shows the debut of the condition in his twenties, a tracheotomy

Fig. 5.16 LIC of a healthy person

Fig. 5.17 LIC of a patient suffering Amyotrophic Lateral Sclerosis. Lou Gehrig’s case

Fig. 5.18 LIC of a patient suffering Amyotrophic Lateral Sclerosis. Stephen Hawking’s case
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that resulted into a permanent aphonia in his forties and some severe infectious
disorders at his sixties.

Figure 5.19 shows the LIC of a patient affected by type-1 diabetes mellitus that
debuts at 15 years old, is correctly diagnosed and is treated adequately by means of
insulin therapy, diet and exercise. As can be seen, under such circumstances the
values lI xð Þ; t remain relatively low through his life and only from his sixties he
could start to suffer diabetes-related complications that spark the apparition of other
conditions such as blindness, kidney failure and so on (Guyton 1996).

Figure 5.20 shows two possible evolutions of patients suffering acquired immune
deficiency syndrome (AIDS): one of them living in a third world country (the one
with the less favourable LIC) and another one living in a modern country. The
difference in LICs is due to both a correct diagnostic and an appropriate treatment.

Figure 5.21 shows the LIC of a patient that has suffered a car accident in his
thirties, resulting in permanent spine damage. Two main regions can be seen for the
LIC: the one before the accident and the one after it. Despite the sharp increase in
the µI(x) value resulting from the accident, the shape of each region resembles that
of a normal life, like in Fig. 5.16.

We define a Life Quality Curve (LQC) as a graphical representation of the
membership degree that a person has to the fuzzy set L of good quality of life over
time. This curve is defined by the expression:

y ¼ lL xð Þ ¼ 1� lI xð Þð Þ; t ð5-27Þ

Fig. 5.20 LIC of a patient affected by AIDS. Two posible outcomes

Fig. 5.19 LIC of a patient affected by diabetes with good diagnostic and treatment
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As can be easily seen, such an expression generates a symmetrical curve from
LICs whose axis of symmetry is y = 0.5. In other words, LQCs represent the fuzzy
complement of LICs. Since the meaning of such type of curves is immediate after
having exposed LICs, we shall offer only three examples of LQCs, shown in
Figs. 5.22, 5.23 and 5.24:

At this point we must note an important remark: both LIC and LQC curves are
fuzzy and are not carved in stone, as we can immediately realize from Figs. 5.17
and 5.18, where the same illness, ALS, show two dramatically different behaviours
in two different patients, although we must concede that Hawking’s case is certainly
rare. In any case, it’s really interesting to note that the shape of LIC and LQC curves
are affected by the perception of the person who observes the condition. Let us take
again as an example the LQC of Stephen Hawking as shown in Fig. 5.25: While we
can interpret the bold curve as the perception of a neurologist, it is more than likely

Fig. 5.21 LIC of a patient with permanent spine damage caused by an accident

Fig. 5.22 LQC of a normal
individual

Fig. 5.23 LQC in Amyotrophic Lateral Sclerosis, Stephen Hawking case

164 5 From Crisp Sets to Fuzzy Sets



that the own patient’s perception is different, expressed as an example by the thin
curve in the graphic.

The difference in perception between patient and physician is not the only one at
play. Society also usually perceives a given condition from a different point of view
that the one from the affected person, as we can observe in Fig. 5.26 for diabetes,
where the bold line shows a patient’s possible own perception of the condition, used
to daily subcutaneous insulin injections, while the fine line expresses a possible
generalized external perception as a result of social lack of information about diabetes

Needless to say, the shape of Life Illness Curves and Life Quality Curves are not
only dependent on the perception of the patient, physician or society, but also from
the family environment, social class, economic scenario, politics, etc.

Fig. 5.24 LQC of a patient affected by diabetes with good diagnostic and treatment

Fig. 5.25 Two possible LQC perceptions for ALS: Physician and patient

Fig. 5.26 Two possible LIC perceptions for diabetes: Patient and society
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5.5 As a Summary

Lofti Zadeh was the man that back in 1965 realized that the membership of an
element x to a set A can be expressed as a real number between 0 and 1. Since in
mathematics, any closed interval of real numbers [a,b] contains infinite numbers,
then this holds too for the closed interval [0,1] and hence, there are infinite
membership degrees between 0 (meaning no membership to a set) and 1 (meaning a
whole membership degree to a set). These types of sets are named fuzzy sets.

The seminal paper, written in late 1964 was published in 1965 and titled “Fuzzy
Sets”. The first words of its abstract say: “A fuzzy set is a class of objects with a
continuum of grades of membership. Such a set is characterized by a membership
(characteristic) function which assigns to each object a grade of membership
ranging between zero and one”.

Nowadays, a usual definition of a fuzzy set is the following one: A fuzzy set A is
defined by a characteristic function μA(x) that maps every element x belonging to A
to the closed interval of real numbers [0,1]. Formally:

A = {(x, μA(x)) | x 2 A, μA(x) 2 [0,1]}

That is, we can create a fuzzy set by means of enumerating a collection of
ordered pairs (xi, μA(xi)) where μA(xi) is the membership degree of an element xi to
the fuzzy set A.

Geometry is an excellent tool for understanding fuzzy sets. In fact, grid and
radar-type graphics are convenient and expressive tools for visualizing the meaning
of fuzzy sets. When using grid-type graphics, the elements of the set are represented
on the horizontal axis, while their respective membership degrees are shown on the
vertical axis. Radar-type graphics are an enhancement of classic Venn diagrams
where several contour lines show the different membership degrees. The external
contour line usually shows the 0.0 membership degree, and then, the inner the
circle, the bigger the membership degree until reaching a 1.0 value, located at the
centre of the diagram.

In general, fuzzy sets satisfies all the properties of crisp sets, that is, the identity,
idempotent, associative, commutative, De Morgan’s Laws and distributive prop-
erties are perfectly satisfied by fuzzy sets. However, the complement properties are
not satisfied in fuzzy sets theory. Especially significant is the so named ‘law of non
contradiction’. In classic sets theory it holds that: A \ A′ = ϕ, but when operating
with fuzzy sets, generally it holds that A \ A′ ≠ ϕ. That is, some elements of a
fuzzy set A belong both to A and to its complement A′. As examples, some men can
be young and old at the same time, some cars can be fast and slow, some houses can
be expensive and cheap at the same time, etc. Since we use membership degrees in
fuzzy sets there is no contradiction in these statements. In fact these types of
statements reflect many times just the things we observe in nature. We can
remember in this moment the famous words by A. Einstein: “as far as the laws of
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mathematics refer to reality, they are not certain, and as far they are certain, they do
not refer to reality”.

Another important point in this chapter is the fact that membership degrees are
not probabilities. If I say that an element x has a membership degree of 0.7 to a
fuzzy set A, that is, μA(x) = 0.7, I’m affirming something that actually exists or is
intrinsic to an existing system. I’m in fact describing in a meaningful way a
property of x with respect to the fuzzy set A. On the other hand, if I say that an
event x has an associated probability 0.7, that is, p(x) = 0.7, I’m giving a measure of
the likelihood that this event will happen in the future. As an example: let us
imagine a black bag containing seven red balls and three black balls. The proba-
bility of extracting a red ball is p(x) = 0.7, but this value only exists before
extracting the ball. While in probability there is always a random substratum, fuzzy
sets theory deals with descriptions of existing, observable features of reality.

Fuzzy relations are an extension of classic, crisp relations between sets. While
the classic theory of sets tells us if an element x of a set X is or is not related to an
element y in a set Y, fuzzy relations inform us of the strength of the relation
between elements, expressed in the closed interval [0,1]. Fuzzy relations can be
established between elements from crisp sets or from elements belonging to fuzzy
sets. This latter type of relation is the most interesting one for us in this book.

An engaging application of membership degrees in fuzzy sets is the construction
of parametric curves of the type y = µ(x), t where t represents time along the
horizontal axis and µ(x) represents membership degrees along the vertical axis.
That is, this type of curves show the membership degree of an element x to a fuzzy
set A along time. In this chapter we have seen as an example how the Life Illness
Curves, ILC, and Life Quality Curves, LQC, can be implemented in such a way.

In the following chapter we shall continue exposing material from the fuzzy sets
theory. I am sure many questions have flourished in the reader’s mind after reading
this chapter. I hope at least some of them will find its answer in the next one.
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