Chapter 2
Lists Everywhere

2.1 Introduction

As we saw in Chap. 1, Lisp is an acronym for LISt Processing, that is, all the data
and programming in Lisp is based on an organizational structure characteristic of
this programming language called “list”. This chapter is entirely dedicated to this
pivotal aspect of Lisp and we shall dedicate space enough for showing how to
create, manage, modify, reset and eliminate lists.

The previous chapter gave you a quick introduction to simple numerical cal-
culations using Lisp as a way of getting a first touch with the language. Every Lisp
expression exposed was genuinely Lisp, but all the exposed material was even far
from scratching the surface of it. Now it is time to ask you for a bit of concentration
in order to undertake the new material. The concepts you are going to find in the
sections of this chapter will give you a solid understanding of the conceptual pillars
of Lisp. In fact, when you feel you have understood entirely all the ideas exposed in
this chapter you will start to get comfortable with the language, being able to
appreciate its philosophy, elegance, and flexibility.

As usual, we shall use a practical approach, getting help in this case from the use
of examples taken from meteorology, geometry, art and discrete event simulation.
There is a lot of material in this chapter and sometimes you will find that the
information supplied is a bit dense. Be patient and take the time you need. As
Italian people usually say, “piano piano si va lontano”, that is, “going slowly you'll
reach distant places”. This is not a literal translation, of course, but gives you an
idea about the attitude you should take while reading this chapter.

© Springer International Publishing Switzerland 2016 19
L. Argiielles Méndez, A Practical Introduction to Fuzzy Logic using LISP,

Studies in Fuzziness and Soft Computing 327,

DOI 10.1007/978-3-319-23186-0_2

http://dx.doi.org/10.1007/978-3-319-23186-0_1

20 2 Lists Everywhere

2.2 Atoms and Lists

Berlin has a relatively cold climate. Summer is something between mild and warm,
with cold winters, while the rest of the months are more chilly than mild. In any
case, the Berliner Luft (Berlin air) is famous, and Berliners are really proud of it.
This paragraph, almost a small meteorology report, serves us for introducing the
following Lisp expression:

(-3-2148111312962-1)

This is a list formed by the monthly average of low temperatures in Berlin, from
data obtained from Climatedata (2014). Another example of list could be:

(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

This list contains the months of the year. A list is anything enclosed between an
open and a closed parenthesis. If an element from a list can not be expressed in a
simpler way, that element is called an atom. An example of atom is “-3”, as is also
“Jan”. Generalizing we can say:

A list is a formal collection of elements enclosed by parenthesis whose
elements are either atoms or lists

However, a list can not live isolated from the Lisp environment. If we supply a
list to the prompt in a Lisp session we obtain the following:

>(-3-2148111312962-1)
: ERR: illegal parameter type : -2

This error message means that Lisp does not know what to do with a solitary list.
Lisp needs that some activity must be performed on lists, or better said, the
grammar of Lisp uses a structure where solitary lists are not allowed. Here, what we
call structure can be as simple as a function that takes a list as an argument or as
complex as an entire program written in the language. For better fixing ideas we
should remember again that the acronym for Lisp is LISt Processing, and a list
always needs some processing. When we add some structure, things start to work
perfectly well:

> (setq Berlin-lows ‘(-3-2148111312962 -1))
:(-3-2148111312962-1)

As we already know, this is a well-formed Lisp expression because, among other
things, it contains a matched number of parentheses. The setg function is also
known from the previous chapter, and it serves to assign values to a variable. At
least this is what we have learnt so far. In the above expression it seems clear that
something is assigned to the just created variable “Berlin-lows”. Typing it we can
observe that NewLisp returns:

2.2 Atoms and Lists 21

> Berlin-lows
2 (-3-2148111312962-1)

Now the symbol Berlin-lows stores the list (-3-2 148 11131296 2-1), but an
important detail remains unexplained and it is the quote operator that is usually
represented in Lisp by the quote sign ‘. This important operator prevents Lisp from
evaluating lisp expressions located at its right. In order to know how many
expressions are not evaluated, we must distinguish two cases, depending on the lisp
expression located immediately after the quote operator:

e If an atom is found just after the quote operator, Lisp stops its evaluation
processing until finding a new atom or list. That is, only the quoted atom is not
evaluated.

e If an open parenthesis is found just after the quote operator, Lisp stops its
evaluation processing until finding its matching right parenthesis.

We shall understand it better with several examples:

>4+12)
(+12)

Without the quote, Lisp evaluates the list immediately, as you already know:

>+12)
13

By the way, alternatively you can also type:

> (quote (+ 1 2))
(+12)

> (setq a-nested-list ‘(a b (p1 (x1 y1) p2 (x2 y2))))
“(a b (pl (xl yl)p2 (x2 y2)))

The quote operator in Lisp has a powerful counterpart function named (eval) that
is imperative to introduce in this moment. Using it forces Lisp to evaluate the
expression(s) located at its right. Let us type the following expression:

> (setq operation ‘(+ 7 3))
(+73)

Calling (eval) in this moment we shall have:
> (eval operation)
;10

This function is extremely powerful, and although purist Lisp programmers
tended to consider its use as an abuse, it certainly helps to save code in certain
occasions. We shall have the opportunity to observe how does it work in future
chapters of this book.

22 2 Lists Everywhere

Again at our list representing the monthly average of low temperatures in Berlin,
the expression:

(setq Berlin-lows ‘(-3-2148 111312962 -1))

processes the list of temperatures by means of the adequate grammatical use of setq
and quote. As a result the list is bound to the symbol Berlin-lows, converting it into
a variable. The distinction between symbol and variable is important and we are
going to discuss it immediately.

The list introduced some paragraphs above:
(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

is a list composed by the symbols Jan, Feb, ... etc. These symbols are not variables,
since they are not still bound to any value. Lisp itself helps us to identify symbols,
lists and atoms by some useful functions called Predicates. Predicates are special
functions that always return either true or nil, the equivalent of “false” in Lisp. The
name of every predicate always ends with a question mark. Let us type the fol-
lowing Lisp expressions with attention:

> (atom? a)
: true

Since “a”, either containing a value or not, is indivisible, is clearly an atom.

> (symbol? ‘a)
s true

Here “a” is quoted, that is, it is not evaluated by Lisp, so it is a completely legal
symbol for Lisp. It does not matter if it holds any associated value.

>a
: nil

The direct evaluation of “a” returns nil because it does not contains anything. We
have not yet assigned any value to it by means of the function setq so Lisp evaluates
it to nil. Now let us assign a value to “a”, numerical in this case:

> (setq a 10)
10
if now we evaluate it:

>a
210

it is bounded to the value 10, and not only that: after being bounded to a numerical
value “a” is a variable of numeric type. But not only is a variable, it continues being
a symbol:

2.2 Atoms and Lists 23

> (symbol? ‘a)
: true

Note again that in this expression we have quoted “a”. If we evaluate again it
without quoting:

> (symbol? a)
> nil

Lisp immediately evaluates “a”. Since it is now a variable, it stores the numerical
value 10 so this expression is equivalent to:

> (symbol? 10)
s nil

This is absolutely correct since “10” is a numerical value, not a symbol. We can
follow using the number? predicate:

> (number? a)
: true

and as you can easily imagine:

> (number? ‘a)
> nil

Speaking about predicates, The language itself provides a function in order to
know if something is a list:

> (list? 4(-3-2148111312962-1))

:true

> (list? Berlin-lows)
. true

> (symbol? ‘Berlin-lows)
 true

As you can see, this is a wonderful computing game although maybe a bit
confusing at first. Do not worry if these concepts are a bit difficult to grasp in this
moment. As they say, practice makes perfect and my best advice is to enjoy several
Lisp sessions where you create lists, symbols and, by assigning values, variables.
Incidentally, I suspect it is harder if you already know other computer languages as
C++ or Java, languages that are strongly typed. As we wrote in Chap. 1, Lisp
automatically takes care of memory allocation and management so you can con-
centrate in program design and thus, being more productive. Anyway, for C pro-
grammers we could give a hint: symbols in Lisp are in fact pointers in disguise. The
good thing is that Lisp manages both pointers (memory addresses) and values in a
transparent way for the Lisp user.

After these theoretical concepts, and as a small relaxation, we can seize the
opportunity to introduce a practical function embedded in NewLisp for calculating

http://dx.doi.org/10.1007/978-3-319-23186-0_1

24 2 Lists Everywhere

Table 2.1 Calculating basic statistics with the NewLisp built-in function (stats). See text

Statistical element Calculated values for Berlin-lows
Number of values 12

Mean of values 5

Average deviation from mean value 4.833333333

Standard deviation 5.640760748

Variance 31.81818182

Skew 0

Kurtosis -1.661427211

simple statistics. The name of this function is stats, and we can apply it to the list of
low temperatures in Berlin for observing how does it work:

> (stats Berlin-lows)
1 (12 5 4.833333333 5.640760748 31.81818182 0 -1.661427211)

The function (stats) takes as argument a list containing a set of numerical values
and after some almost instantaneous calculations returns statistical values ordered in
the following sequence: Number of values, mean of values, average deviation from
mean value, standard deviation, variance and skew and kurtosis of distribution, as
shown in Table 2.1. The actual version of NewLisp (v.10.5.4 as of this writing)
contains several built-in statistical and probabilistic functions that are useful in
science and engineering. Since the mission of this book is to allow the reader to
understand the theories of fuzzy-sets and fuzzy-logic we shall not dedicate more
space to calculate statistics, but the reader should be aware that these NewLisp
built-in functions deserve to be explored. The NewLisp Manual and Reference
provide all the needed information to start doing statistics with this Lisp
implementation.

For calculating the mean of values with the knowledge learnt from Chap. 1 we
would have used, for example the following expression:

> (setq average-min (div (add -3-2148 11131296 2 -1) 12))
;5

As promised, Lisp offers us a way of making things in a very powerful way. And
we are only starting with it.

2.3 First and Rest

The first element in a list has an enormous importance in Lisp since its combination
of symbol and value determines if it is a list of data or a list with a call to a function.
In fact, when Lisp finds a list, it immediately evaluates its first element in order to
know what to do with it. For example, the first element in the list of low monthly

http://dx.doi.org/10.1007/978-3-319-23186-0_1

2.3 First and Rest 25

temperatures for Berlin (-3-2148 11 131296 2 -1) is “-3”, so Lisp identifies it as
a list where no function is called. On the other hand, the first element of the list (add
-3-2148111312962-1)is “add” and since it is included in the list of symbols
of Lisp that represent functions then treats the rest of the list as arguments that must
be provided to the function call. Having into account this grammatical rule of the
language, it is not a surprise that Lisp incorporates two functions for accessing the
first element of a list and the rest of elements. In the NewLisp implementation, these
functions are named first and rest, respectively (in Common Lisp and many other
Lisp implementations these functions are named car and cdr as an homage to their
first use on the IBM704 computer). Its use is more than intuitive:

> (first ‘(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec))
s Jan

Please note that the list of months is quoted. Let us observe how the function rest
does it work:

> (rest ‘(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec))
: (Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

The natural question now is: OK, it is easy to understand the use of the functions
first and rest, in fact it is one of the more easy concepts exposed so far in the book,
but what kind of things can we do with them aside obtaining the first element and
the rest of elements in a list? Important answer: Using (first) and (rest) we can
access any element on any list. In order to type less code, let us begin typing the
following in a Lisp session:

> (setq months ‘(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec))
: (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

> (first months)
s Jan

> (rest months)
: (Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

You should already know why the variable months is not quoted in the above
two expressions, but the important thing is that the first element from the list
returned after the evaluation of (rest months) corresponds to the second month,
February. Let us rewrite the previous expression in order to store the list it returns
on the variable rest-1:

> (setq rest-1 (rest months))
: (Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

Now, let us continue typing:

> (setq second-month (first rest-1))
: Feb

26 2 Lists Everywhere

> (setq rest-2 (rest rest-1))
: (Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

> (setq third-month (first rest-2))
: Mar

Reiterating this procedure by using several calls to (first rest-i) for i going from 1
to 11 we can access any month from the list from February to December. For
January, in order to generalize the algorithm just exposed, we could have written:

> (setq rest-0 months)
: (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

Now rest-0 contains the full list of months. Obtaining the first element in the
sequence of lists rest-0, rest-1, ..., rest-11, we can access any month in the year.
This type of procedure for traversing lists is typical of Lisp and we shall use them
frequently. Yes, at this stage it is a lot of typing, but our agreement for learning Lisp
and ultimately fuzzy logic at the beginning of the book requires typing Lisp code.
In the next chapter we shall learn to write functions and that will allow us to go
from interactive Lisp sessions to Lisp programming. For now, the typing will
continue. However, and almost without noticing it, you are learning Lisp at a good
pace.

2.4 Building Lists

Without doubt, (first) and (rest) are powerful functions, but accessing elements
from a list is so frequent in Lisp programming that Lisp designers soon realized that
a special function should be created for accessing any element from a list without
using first and rest. The name of this wanted function is nth. Having into account
the previous expression:

(setq months ‘(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec))
Now we can write:

> (nth 0 months)
s Jan

> (nth 5 months)
s Jun

> (nth 11 months)
: Dec

Please note the special indexing for the function nth: the first element in a list is
acceded by the number 0, not by the number 1, so the last element in a list of n
elements can be acceded by using n — 1 as the index for nth. By the way, in the

2.4 Building Lists 27

same manner there is a function for accessing the first member of a list, there is also
another one for directly accessing its last element:

> (last months)
: Dec

When using first, last and especially nth, it is usual, if not mandatory before
making a call to nth, to use the Lisp function length. As its name suggests, it returns
the number of elements in a list:

> (length months)
212

then, another way to access the last element of a list could be:

> (nth (- (length months) 1) months)
: Dec

Nobody does it that way, of course, but it is a safe way to avoid errors while
programming. If we write:

> (nth 12 months)
: ERR: invalid list index in function nth

This error would break the execution of any Lisp program, so as a general rule:

Always use the function length before using nth and remember
that indexing in lists starts at zero

Figure 2.1 helps to shed more light into the relationships between (first), (rest),
(last) and (nth):

The trick to understand it all is as simple as observing the first block, where we
do list = resty. Understanding rest, as the whole list help us to get used to zero
indexing for the function nth. This is exactly what we did with the expression (setg
rest-0 months) some paragraphs above.

Fig. 2.1 A graphical [e | list = rest,
representation of the i
relationships between the Lisp first,)i rest,
functions (first), (rest) and first, = rest.
(nth)

first, rest,

RN

rest = last

nth, | ' nth, | | nth, nth_,

28 2 Lists Everywhere

After arriving to this point, we are ready to learn how to build lists. Until now we
have used the assignment function setq for linking a list to a symbol, and the
symbols Berlin-lows and months were built this way. From these two symbols we
are going to build a more complex list where every month and its correspondent
low temperature will be paired in a sublist. Let us type the following:

> (setq mtl (cons (nth 0 months) (nth 0 Berlin-lows)))
: (Jan -3)

Here the new function is (cons). It takes two arguments, either atoms or lists, and
then constructs a new list with them. Let us see other examples:

> (cons (first months) (rest months))
: (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

> (cons (first months) (last months))
: (Jan Dec)

But take care with the arguments. If we type (cons Jan Feb) Lisp returns the list
(nil nil). Why? Because both Jan and Feb are not yet bounded to any value and
consequently Lisp evaluate these symbols to nil. It is a different story if we type
(cons ‘Jan ‘Feb), then Lisp returns the list (Jan Feb).

We have chosen mtl as the name of the symbol representing January and its
temperature almost like an acronym for month and temperature, appending a figure
one for linking it to the number of the month. It is always a good strategy to choose
the name of symbols and variables with a clear meaning for us as Lisp program-
mers. We shall revisit this idea in the next chapter. For now let us continue for the
rest of months:

> (setq mt2 (cons (nth 1 months) (nth 1 Berlin-lows)))
: (Feb -2)

> (setq mt3 (cons (nth 2 months) (nth 2 Berlin-lows)))
:(Mar 1)

and after some heavy typing (not at all, you can copy, past and modify the code),
we reach December:

> (setq mtl12 (cons (nth 11 months) (nth 11 Berlin-lows)))

: (Dec -1)

And now, another new function, named [lisz, makes the magic:

> (setq months-temps (list mtl mt2 mt3 mt4 mtS mt6 mt7 mt8 mt9 mt10
mtll mtl12))

((Jan -3) (Feb -2) (Mar 1) (Apr 4) (May 8) (Jun 11) (Jul 13) (Aug 12) (Sep 9)
(Oct 6) (Nov 2) (Dec -1))

2.4 Building Lists 29

Now, every element of the list represented by the symbol months-temps is in
itself a list of two elements. The list function takes any number of arguments (12
arguments have been used in this example) and then, every argument is evaluated
and then is used as an element for building a new list. After creating the list months-
temps we can type, for example:

> (nth 5 months-temps)
S (Jun 11)

But this is not the end of the story. This is the perfect moment for introducing
another function named assoc. Let us see how does it works with an example:

> (assoc ‘Aug months-temps)
: (Aug 12)

If you suspect we are entering the realms of database programming you are
completely right. The function assoc takes the first argument passed to the function
and then uses it as a key for searching the list passed as the second argument. If a
match is found, then it returns the member list. If no match is found, it returns nil.
See now how easy is to access any data from the list months-temps:

> (first (assoc ‘May months-temps))
: May

> (last (assoc ‘May months-temps))
;8

This function not only serves for accessing elements in a list, it also permits to
directly change information in lists using setq. Let us see an example for changing
the minimum temperature in July from data from, for example, Canary Islands:

> (setq (assoc ‘Jul months-temps) *(Jul 21))
s (Jul 21)

after setq, assoc uses Jul as the key symbol for finding the sublist (Jul tem-
perature) and then substitutes it by the sublist given in the second argument, in this
case, (Jul 21). Now we can observe the changes made:

> (nth 6 months-temps)
s (Jul 21)

We could have written, for example:

> (setq (assoc ‘Jul months-temps) ’(Jul 21 Canary-Islands))
: (Jul 21 Canary-Islands)

and now, the contents for the July sublist are, obviously:

> (nth 6 months-temps)
: (Jul 21 Canary-Islands)

30 2 Lists Everywhere

Using assoc in this way has a destructive effect on the original list, in this case,
on months-temps. While some Lisp functions preserve the original list (nth or
length, for example, come quickly to mind) other ones modify the original data. In
many cases it is a safe strategy to make first a copy of the original data and then
manipulate the copy. For now, we can restore the original data for minimum
temperature in Berlin in July simply writing:

> (setq (assoc ‘Jul months-temps) ’(Jul 13))
s (Jul 13)

2.5 Some Geometry and then Some Art, Too

In general, lists of the type:
((atom;; atom;,) (atomy; atomy,) ... (atom,; atom,,))

are extremely useful in Lisp, since they can be an excellent representation of many
observational data and phenomena in science, engineering or technical fields.
Needless to say, it is the natural way in Lisp for representing pairs of geometric
coordinates, giving access to the wonderful world of graphics. Since fuzzy-logic
can be seen, as we shall see in the second part of this book, as a matter of geometry,
we must seize the opportunity to play a bit with geometric forms in this moment.

As a general rule, we can represent rectangles, trapeziums and squares by means
of four coordinates, triangles by means of three coordinates and circles by means of
a coordinate for the centre and another number for its radius. Table 2.2 shows some
list structures for representing geometrical shapes in a flat, two dimensions space:

If the shape is a rectangle or a square, its list representation is even simpler by
using the coordinates of the two points of one of its diagonals. Let us type some
values in order to create some rectangles:

> (setq ptl ‘(5 -4) pt2 >(8 12)) (setq R1 (list ptl pt2))

:(812)

2((5-4) (8 12))

The rectangle identified by the symbol R1 now storages two points, defined by
its coordinates. By the way, we have written several Lisp expressions in the same

Table 2.2 List representation of simple 2D geometrical forms

Geometric form Lisp coordinate representation
Rectangle, trapezium, square ((x1 y1) (X2 ¥2) (X3 ¥3) (X4 ya)
Rectangle, square (by diagonal) ((x1 y1) (X2 ¥2)

Triangle ((x1 y1) (X2 y2) (X3 y3)

Circle (1 yD D

2.5 Some Geometry and then Some Art, Too 31

line after the prompt in order to save some space. Now let us repeat the operation
for some other rectangles:

> (setq pt3 ‘(0 0) ptd4 >(10 10)) (setq R2 (list pt3 ptd))
: (10 10)
:((00) (10 10))

> (setq pt5 ‘(2 -1) pt6 (16 2)) (setq R3 (list pt5 pt6))
(16 2)
(2 -1) (16 2))

> (setq pt7 ‘(6.5 1) pt8 *(13.5 8)) (setq R4 (list pt7 pt8))
:(13.58)
2((6.51)(13.58))

After having well defined rectangles R1, R2, R3 and R4, now we can build a
geometrical composition with them named “Mondrian-style” as an homage to Piet
Mondrian, the famous Dutch painter:

> (setq Mondrian-style (list R1 R2 R3 R4))
S(((5-4)(812)) ((00) (10 10)) (2 -1) (16 2)) ((6.5 1) (13.5 8)))

Figure 2.2 is a visual representation of the list Mondrian-style.

Pablo Picasso was a bit more complex than Mondrian. Aside rectangles we must
include now circles and triangles following the structure depicted in Table 2.2. Let
us start with a rectangle:

Fig. 2.2 Four rectangles
representing a composition
inspired in the style of Piet
Mondrian

32 2 Lists Everywhere

> (setq pt9 ‘(5 -4) pt10 (8 12)) (setq RS (list pt9 pt10))
(8 12)
((54)(812))

Now it is the time for circles C1 and C2. We shall define them in only one line of
Lisp code:

> (setq C1 (8 2.5) 1.5) C2 *((6 9) 0.5))
2 ((6 9) 0.5)

And now it is time for the triangles:

> (setq T1 “((6 9) (10 6.75) (6 4.5)))
2 ((6 9) (10 6.75) (6 4.5))

> (setq T2 “((1.438 2.5) (7.5 -1) (7.5 6)))
(1438 2.5) (7.5 -1) (7.5 6))

Finally let us join the shapes in order to build the composition:

> (setq Picasso-style (list R5 C1 C2 T1 T2))
S5 -4) (8 12)) ((8 2.5) 1.5) ((6 9) 0.5) ((6 9) (10 6.75) (6 4.5)) ((1.438 2.5)
(7.5 -1)
(7.56)))

In Fig. 2.3 we can see now our personal, Lisp based Picasso composition.

We have forgotten an important detail: The name of the paintings! For this we
shall use a new function named “append” that, as its name implies, appends data to
the tail of an existing list. Let us use it:

> (setq Mondrian-style (append Mondrian-style ‘(“Composition #968)))
S(((5-4)(812)) ((00) (10 10)) ((2-1) (16 2)) ((6.5 1) (13.5 8)) “Composition
#968”)

> (setq Picasso-style (append Picasso-style ‘(“Pregnant woman”)))
S(((5-4) (8 12)) (8 2.5) 1.5) ((6 9) 0.5) ((6 9) (10 6.75) (6 4.5)) ((1.438 2.5)
(7.5 -1) (7.5 6)) “Pregnant woman”)

This seems a bit complex at first sight, because aside the function (append) we
have introduced at the same time a new type of data named “string”. Let us start
with the function append. It appends anything to an existing list, but first the new
thing(s) to append must be enclosed into a list and second, the function append is
not destructive, meaning that the original list remains unchanged. Let us see this
important detail with a simpler example:

> (setq my-list ‘(a b ¢))
:(abc)

> (append my-list ‘(d))
S(abcd)

2.5 Some Geometry and then Some Art, Too 33

Fig. 2.3 A rectangle, two
circles and two triangles for
representing a Picasso style
composition

but if we evaluate what is now pointed by the symbol my-list, a surprises appears:

> my-list
:(abc)

After applying append to a list it returns another list with an appended new
element at its tail, but it does not even touch the original list. If we want the original
list to be modified we need to use setq as follows: (setq my-list (append my-list (d)))
After introducing this Lisp expression at the prompt then my-list contains (a b ¢ d),
as desired. This is the explanation for using setg in the expressions:

(setq Mondrian-style (append Mondrian-style ‘(“Composition #968)))
(setq Picasso-style (append Picasso-style ‘(“Pregnant woman”)))

“Composition #968” and “Pregnant woman” are strings, that is, a type of data
composed by characters. Interestingly, strings are not symbols:

> (symbol? (last Mondrian-style))
:nil

We shall dedicate more time to strings in a future chapter. This type of date is
important because when we write Lisp programs that ask an user for data, either

34 2 Lists Everywhere

numerical or alphanumerical, Lisp reads the input (usually from the keyboard) and
returns strings.

Returning to our peculiar paintings, yes, I am hearing you about the issue of
having the name of the paintings at the end of the lists. Usually, a painting is
identified by its name, so it seems natural to have it located at the first position.
Well, this is a very easy to solve problem by means of using the function (reverse).
As you have imagined, it reverses the order of elements in a list:

> (reverse Mondrian-style)
: (“Composition #968” ((6.5 1) (13.58)) ((2 -1) (16 2)) ((0 0) (10 10)) ((5 -4)
(8 12)))

(reverse Picasso-style)

: (“Pregnant woman” ((1.438 2.5) (7.5 -1) (7.5 6)) ((6 9) (10 6.75) (6 4.5))
((6 9) 0.5)

((82.5) 1.5) ((5-4) (8 12)))

This function is destructive, modifying the original list. However the use of
reverse over reverse restores the list at its original status, that is: (reverse (reverse a-
list)) — a-list

Now it is time to finally make a small gallery, a collection of two paintings:

> (setq my-gallery (list Mondrian-style Picasso-style))

2 ((“Composition #968” ((6.5 1) (13.58)) ((2 -1) (16 2)) ((0 0) (10 10)) ((5 -4)
(8 12))) (“Pregnant woman” ((1.438 2.5) (7.5 -1) (7.5 6)) ((6 9) (10 6.75) (6 4.5))
((69)0.5) ((82.5) 1.5) ((5-4) (8 12))))

The representation of my-gallery can be shown in Fig. 2.4.

Well, the representation of Fig. 2.4 is not exact, as any attentive reader has
already noticed. First, there is a common rectangle in the two compositions and
second, coordinates from the two compositions share a common space in order to

Fig. 2.4 The my-gallery collection, representing Mondrian and Picasso look-alikes

2.5 Some Geometry and then Some Art, Too 35

Fig. 2.5 The my-gallery
collection, true representation

use small and simple coordinates in the Lisp expressions. The true representation of
my-gallery is shown in Fig. 2.5 that seems to suggest that Mondrian and Picasso
compositions maybe do not mix well.

A positive shift for every x value in the coordinates for the Picasso-style list
should have been applied for obtaining the image shown in Fig. 2.4. We shall learn
how to perform such a shift in the next chapter.

In Table 2.2 we have seen how to represent some geometric shapes in 2D. If we
assume that the geometric forms are resting over a horizontal axis, it is even easier
to represent them. As we can see in Table 2.3, in this case a rectangle only need two
values of x for representing the location of its base and a height, h. A square is even
simpler because given the base by x; and x, then its height is equal to the distance
between x; and X,. The base of a triangle comes represented by its extremes at X; X3
and then its third point is given by the point x,,h. Finally, a trapezium is represented
by the extremes at its base x; and x4 and the points X,,h; and x3,h,.

Let us see a simple example of a triangle and two trapeziums resting over a
horizontal axis using some lisp expressions:

> (setq trapezium-1 ‘(2 (4 4) (6 4) 8))
(244648

> (setq triangle ‘(6 (8 4) 10))

1 (6 (84)10)

> (setq trapezium-2 ‘(8 (10 4) (12 4) 14))
:(8(104) (124) 14)

36 2 Lists Everywhere

Table 2.3 List representation Geometric form Lisp coordinate representation
of simple 2D geometrical
forms when resting over a Rectangle, square (1 x2) b)
horizontal axis Square (x1 X2)
Triangle (x1 (X2 h) x3)
Trapezium (x1 (x2 hy) (x3 hy) x4)

as we know, for joining these geometric forms into a single Lisp expression, we can
type:

(setq simple-composition (list trapezium-1 triangle trapezium-2))
(244 (64)8)(6(84)10) (8 (104) (12 4) 14)

Figure 2.6 shows the graphic representation of the just created symbol simple-
composition. This type of geometry seems simple at first, but as we shall see in this
book, has a big conceptual importance.

Histograms and other related graphics are also based on using both vertical and
horizontal axes where values can be absolute or relative. For example, our list of
minimum temperatures by month in Berlin can be shown easily on a
two-dimensional chart. As previously seen in Sect. 2.2, the symbol Berlin-lows
points to the list (-3 -2 148 11 13 12 9 6 2 -1). The range of stored temperatures
goes from -3 to 13, resulting into a whole range of 16°. Since there are twelve
values corresponding to all the months in the year, we can choose a space between
months of two units for the horizontal axis, yielding a 2D region of 24 x 16 units
for representing the data. Manipulating the list as we saw in Sect. 2.4 by means of
the functions cons and list, or directly by setq, we can easily arrive at the following
list of points (x; y;) where x; are the abscissa values and y; the temperature (ordinate)
values:

((0-3)(2-2)(41)(64)(88) (10 11) (12 13) (14 12) (16 9) (18 6) (20 2) (22 -1))

Joining the points stored in this list with lines we obtain a representation of the
minimum temperatures in Berlin, as shown in Fig. 2.7.

Fig. 2.6 Graphic representation of the list simple-composition

2.5 Some Geometry and then Some Art, Too 37

Fig. 2.7 Minimum temperatures in Berlin by month

Going from two dimensions to three dimensions (3D) graphics implies an
additional degree of complexity. Some simple 3D geometric forms are shown as
lists in Table 2.4.

One of the causes of the bigger complexity of 3D objects is that its orientation in
space must be defined. Hence, for example, the eight points needed for representing
a truncated pyramid. However, if a 3D object rests or hovers over a flat horizontal
surface, some simplification results, especially for parallelepipeds. In this situation,
a parallelepiped can be expressed in list form by:

((x1 y1) (X2 y2) (X3 y3) (X4 y4) hy hy)

where h; and h, are, respectively, the free height over the plane XY (floor), and the
intrinsic height of the parallelepiped. This geometrical element is one of the most
important ones in architecture. Figure 2.8 shows the Barcelona Pavilion (1929) by
the famous architect Mies Van der Rohe. Practically all the components of the
Pavilion could be expressed by means of Lisp expressions as the one shown above.

Before ending this section on geometry and Lisp lists, it deserves to be com-
mented that one of the most popular Computer Aided Design (CAD) applications in
the industry, AutoCAD, uses Lisp as an embedded programming language. Named

Table 2.4 List representation of simple 3D geometrical forms

Geometric form Lisp coordinate representation

Parallelepiped ((x1 y1) (%2 y2) (X3 ¥3) (%4 y4) (X5 ¥5) (X6 ¥6))

Sphere ((x1 y) (%2 y2) (%3 y3) 1)

Pyramid ((x1 y1) (X2 y2) (X3 y3) (X4 y4) h)

Truncated pyramid (X1 y1D) (X2 ¥2) (X3 ¥3) (X4 y4) (X5 ¥5) (X6 Y6) (X7 ¥7) (X3 ¥8))

38 2 Lists Everywhere

Fig. 2.8 Barcelona Pavilion, 1929. Architect: Ludwig Mies van der Rohe Photograph by the
author

“AutoLISP”, it is a close Lisp dialect to NewLisp, so, after reading this book you
would be in a good position to use Lisp in a 3D graphic environment. And not only
that, you could apply fuzzy logic in Computer Aided Design and graphics, too.
Sounds exciting? I can assure you it really is.

2.6 A World Full of Queues

Everyday we experience queues in our lives. Before paying in the supermarket, just
before entering inside a plane at the airport or while being trapped in a traffic jam in
the highway, just to name a few examples. Queue theory is important in factories, in
production management, data processing, financial strategies and so on. Lisp has
two functions, named pop and push that are especially suited to manage and model
queues. They were not created as a direct solution to problems derived from queue
theory but for list management, but since this is a practical book we are going to
learn to use them while modeling a toll station in a highway.

As it is well known, a toll station is basically a facility located on a fixed point in
a highway where cars arrive, are serviced by a human being or a machine (the
driver gets a ticket and/or pays a variable sum of money) and after some service
time, they leave the queue. Let us say we are interested in two things: first, to record
all the cars that enter the facility, their car plate and the enter and exit time from the
toll station. This is very useful to the organism, either public or private, that

2.6 A World Full of Queues 39

manages the highway and it also serves for supplying information in special cases,
let us say, as an example, for a police requirement. Second, we are interested in
modeling the facility itself, that is, to represent how many cars are waiting in the toll
station in real time. Before entering into the details, let us take a quick view at how
pop and push do work. Let us start creating an empty list:

> (setq queue ‘()
)
Now three elements, a, b and c, enter in the list sequentially:

> (push ‘a queue)

2 (a)

> (push ‘b queue)
:(ba)

> (push ‘c queue)
:(chba)

As it can be seen, the push function adds elements into a list “pushing” them
sequentially from the frontal part of the list to its back. Under this point of view, it is
a list builder, but also a function that modifies the original contents of the list just
after being applied. Note also that the list is built in reversal order. This is an
important detail. Let us use now the function pop. It does not need any argument:

> (pop queue)
rc

Let us now observe what remains in qgueue after using pop:

> queue
:(ba)

In other words, while the function push introduces elements into a list, the use of
pop returns the first element of a list and at the same time eliminates it from the list. As
already suggested, it is useful for queue representation, but only for queues where its
discipline is Last-In-First-Out, or LIFO, as it is usually named in queue theory. This is
not what we were waiting for to apply to our model of toll station whose queue
discipline is in fact First-In-First-Out, or FIFO, that is, the first car that enters the toll
station is the first car that leaves it. Sadly, Lisp does not provide a built-in function for
managing elements in a list in a FIFO way, so we shall need to do some list
manipulation management in order to perform the desired behavior in the facility.

To better fix ideas let us assume that some devices are already installed in the toll
station: a camera that reads the car plates from cars by means of an artificial vision
system and another sophisticated device composed by a chronometer and a set of
photoelectric cells for registering the arrival and departure time for every car. We also
assume that the facility starts its morning shift at 8:00. Table 2.5 shows some car plate
data and arrival and departure times for several cars being served at the toll station.

40 2 Lists Everywhere

Table 2'5. Exarrﬁ)le dflta .for Car plate Arrival time Departure time
t toll-stat
P on ering A lOTSIHOR A ckT8623 08:02:12 08:02:54
ighway
GWG2719 08:02:18 08:04:32
MKA8772 08:02:25 08:05:55
DYN2140 13:15:21 13:16:22

For simplicity, we shall represent the arrival and departure times as simple
numbers, i.e., 08:02:12 will be represented by 80212, 13:15:21 by 131521, and so
on. Our desired working model is that every car enters the queue from the “left” of
the list and departs at its “right”. First let us create the queue and then add some cars
to it.

> (setq queue ‘()

10

> (push ‘CKT8623 queue)
: (CKT8623)

> (push ‘GWG2719 queue)
1 (GWG2719 CKT8623)

> (push ‘MKAS8772 queue)
: (MKAS8772 GWG2719 CKT8623)

Between 08:02:12 and 08:02:54 we have three cars in the queue. At 08:02:54 the
first car departs, so it must leave the list. The actual contents of queue are:

> queue
: (MKA8772 GWG2719 CKT8623)

Now the car that must leave the queue must be the one with the car plate
CKT8623, so a call to the function pop is not possible. In order to perform a correct
working model of the queue we must proceed with caution. The first step is to use
the function reverse:

> (reverse queue)
: (CKT8623 GWG2719 MKAS772)

Now we can apply the function pop:

> (pop queue)
: CKT8623

> queue
: (GWG2719 MKAS8772)

We are almost done. A second call to the function reverse will finish the
algorithm for representing a FIFO queue in Lisp:

2.6 A World Full of Queues 41

> (reverse queue)
1 (MKA8772 GWG2719)

Reiterating the procedure, car MKA8772 would leave the queue at 08:05:55. At
this moment, the list queue would be equal to the empty list, () until the car
DYN2140 arrives at 13:16:22.

Meanwhile, and at the same time, we must record all the cars that enter the
facility. This is easier to do:

> (setq toll “())
()

> (push ‘(CKT8623 80212 80254) toll)
:((CKT8623 80212 80254))

> (push ‘(GWG2719 80218 80432) toll)
S ((GWG2719 80218 80432) (CKT8623 80212 80254))

> (push ‘(MKAS8772 80225 80555) toll)
: ((MKA8772 80225 80555) (GWG2719 80218 80432) (CKTS8623 80212
80254))

> (push ‘(DYN2140 131521 131622) toll)
: ((DYN2140 131521 131622) (MKAS8772 80225 80555) (GWG2719 80218
80432) (CKT8623 80212 80254))

The list toll does not need any treatment with the function reverse, because it is
used to register all the vehicles served at the facility, but at the end of the day, it can
help to make the recorded data easier to read:

> (reverse toll)
:((CKT8623 80212 80254) (GWG2719 80218 80432) (MKA8772 80225 80555)
(DYN2140 131521 131622))

Now let us assume the police tries to track a car with car plate MKA8772 and
calls the highway company in order to know if that car has used the facility. At the
company, they only need to type:

> (assoc ‘MKAS8772 toll)
: (MKA8772 80225 80555)

For confirming the police that a car with that plate has been observed at toll
station X from 08:02:25 to 08:05:55. A call to all the toll stations in the country
would result in a map with the route of the car. By the way, NewLisp incorporates a
function named now that can be very useful when we try to record time in an
application. Let us observe the results of a call to now just as I’'m writing:

> (now)
(2014 2 26 13 34 40 592460 56 3 -60 0)

42 2 Lists Everywhere

Table 2.6 Structure of the numerical information returned by the NewLisp function (now)

Element Example Observations

Year 2014 From the Gregorian calendar
Month 2 From 1 to 12

Day 26 From 1 to 31

Hour 13 From 0 to 23, (UT)

Minute 34 From 0 to 59

Second 40 From 0 to 59

Microsecond 592,460 From 0 to 999,999

Day of current year 56 Begins at 1 for January, 1st
Day of current week 3 From 1 to 7. Starts at Monday
Time zone offset (min) -60 West of Greenwich meridian
Daylight saving time 0 From 0 to 6

The meaning of the elements of the list returned by a call to the function (now) is
shown in Table 2.6.

With the use of (now), (pop), (push) and (random) (we shall introduce this
function in the next section) and some other programming resources, Lisp can be
used for solving Discrete Event Simulation problems. See for example Banks et al.
(2009), Sturgul (1999). Until recently, queue studies have been studied mainly by
simulation, but relatively recent works seem to suggest that Fuzzy-Logic represents
a good approach to this kind of problems, too (Zhang 2005).

2.7 Rotate, Extend and Flat

For finishing this chapter we shall introduce yet three NewLisp functions for
managing lists. They are not, comparatively, so nuclear to Lisp as the previously
ones, that is, they are not present in all the Lisp dialects, but they sure have an
additional interest.

For explaining the function (rotate), we should visualize a list as a circular
structure where the first and last element would be contiguous elements. For a better
and complete understanding of this structure there is not a better example than a
French roulette wheel of unique zero located into a casino. Its list representation is
as follows:

> (setq roulette ‘(01234567891011121314151617 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36))

(01234567891011121314151617181920212223242526272829
30 31 32 33 34 35 36)

The function rotate uses an integer n as parameter and it moves every element
for the list n positions towards its right if n is positive or towards left if n is
negative. For example:

2.7 Rotate, Extend and Flat 43

> (rotate roulette 3)
:(34353601234567891011121314151617181920212223242526
27 28 29 30 31 32 33)

As can be easily seen every element has moved three positions towards right,
and the elements 34, 35 and 36 have rotated from their original positions at the tail
of the list to the first ones. Typing (rotate roulette -3) would restore the original
position of the roulette.

While we are speaking about roulettes, casinos and chance, it seems convenient
to introduce the function random. This function simply returns a real number
between 0 and 1 at random (strictly speaking no computer is able to generate pure
random numbers, but the use of pseudo-random numbers is usually enough for
representing random events in the real world). Let us see a simple call to random:

> (random)
:0.283314746

In order to obtain a random integer number from 0 to 36 we should type:

> (setq alpha (integer (mul (random) 37)))
24

Now, we can give a spin with a value alpha to our roulette and obtain the first
element after the rotation of the roulette is applied:

> (first (rotate roulette alpha))
s 13

Now you can argue that a simple call to (mul (random) 37) could produce the
same roulette simulation, and you are true, but our model not only gets a random
number between 0 and 36 but it also models the position of the roulette wheel:

> roulette
2(1314151617 18192021 222324252627 2829303132333435360
1234567891011 12)

Another application for rotate could be to save a programming step in our
example of toll station. As we have seen, after adding some cars to queue it pointed
to the list (MKAS8772 GWG2719 CKT8623). Now if we apply (rotate queue 1), it
turns to (CKT8623 MKAS8772 GWG2719) and therefore, the car with car-plate
CKT8623 can exit from the queue graciously by typing (pop queue). As we can see,
by using (rotate) we have avoided a double use of the function (reverse).

The functions (extend) and (flat) are simple in their working, but help to make
the life of a Lisp user easier. The first one takes several lists as arguments and
returns a single list formed by all the elements from the supplied lists. Let’s type as
an example:

> (setq first-semester ‘(Jan Feb Mar Apr May Jun))
: (Jan Feb Mar Apr May Jun)

44 2 Lists Everywhere

> (setq second-semester ‘(Jul Aug Sep Oct Nov Dec))
: (Jul Aug Sep Oct Nov Dec)

(setq year ()
20

> (extend year first-semester second-semester)
: (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

The function (flat) analyzes the list supplied as its unique argument and then
eliminates any sub-list included in it, returning a list where all the elements are
atoms. As an example, remembering Sect. 2.4, we saw that the symbol months-
temps pointed to the list:

((Jan -3) (Feb -2) (Mar 1) (Apr 4) (May 8) (Jun 11) (Jul 13) (Aug 12) (Sep 9)
(Oct 6) (Nov 2) (Dec -1)))

Now, typing:

> (flat month-temps)
:(Jan -3 Feb -2 Mar 1 Apr 4 May 8 Jun 11 Jul 13 Aug 12 Sep 9 Oct 6 Nov 2
Dec -1)

The function flat is not destructive, so it lefts intact the function supplied as
argument. If we wish that month-temps adopts the new, flattened structure, we
should type:

> (setq months-temps (flat months-temps))
:(Jan -3 Feb -2 Mar 1 Apr 4 May 8 Jun 11 Jul 13 Aug 12 Sep 9 Oct 6 Nov 2
Dec -1)

This function is especially useful when we are creating a list by a repetitive use
of the function cons. As we saw in Sect. 2.4, cons takes two arguments, but
successive calls to cons causes a deepening of the formed list. As an example let us
use cons by building a queue of cars at the toll facility:

> (setq queue (cons ‘CKT8623 *GWG2719))
: (CKT8623 GWG2719)

> (setq queue (cons queue ‘MKAS8772))
: ((CKT8623 GWG2719) MKAS8772)

> (setq queue (cons queue ‘DYN2140))
: (((CKT8623 GWG2719) MKAS8772) DYN2140)

Do you appreciate the problem with the function (cons) when used this way? A
call to flat solves it all:

> (setq queue (flat queue))
: (CKT8623 GWG2719 MKAS8772 DYN2140)

2.7 Rotate, Extend and Flat 45

By the way, have you noticed that the combination of the functions (cons) and
(flat) are still another way to model a queue with FIFO discipline? Multiple solu-
tions to a problem are usual when using programming languages, but it is especially
true with Lisp due to its high flexibility, as you are starting to appreciate.

In the Sect. 2.1 of this chapter we have learnt how to create lists. Now, at the end
of it, we should learn how to reset a list and how to eliminate it from memory. Let
us imagine the list zoll contains now thousands of elements, that is, cars that have
entered the facility along the day. In order to reset it, we only need to type:

> (setq toll ¢())
()

Thus becoming an empty list. If we wish to completely eliminate the list zoll
from memory, it is even easier:

> (setq toll nil)
: nil

If what you want is to eliminate a list from memory, it is not necessary, of
course, to reset it previously. In any case Lisp takes care for handling these memory
issues automatically.

2.8 As a Summary

All the nuclear functions of Lisp, and yet some more, needed for developing
FuzzyLisp have been exposed in this chapter, and what is even more important: you
are now into a position where you are able to understand the basics of the language.
We have made an extensive use of examples, using monthly temperatures in Berlin,
abstract art compositions and some examples of queues from the real world in order
to progressively introduce the most important functions of Lisp. If you have fol-
lowed our advice we know it has been a lot of typing at the keyboard, and if you
have experimented with examples created by your own imagination, the typing has
been certainly impressive. Many typing or conceptual errors have happened you
while cruised along this chapter. If this has been so, congratulations because you are
now more than ready to explore the next step in being fluent in Lisp: Writing you
own functions. We shall dedicate the entire next chapter to functions defined by the
Lisp user. Now, a last reminder to all the functions visited in this section of the
book will help you to have a good view of your position in the travel of learning
Lisp:

e The function (quote) or its more often used quote sign, prevents Lisp from
evaluating Lisp expressions located at its right. If an atom is found just after the
quote operator, Lisp stops its evaluation processing until finding a new atom or
list. If an open parenthesis is found just after the quote operator, Lisp stops its
evaluation processing until finding its matching right parenthesis. Example:
(quote a) or ‘a — a.

46

2 Lists Everywhere

The quote operator in Lisp has a powerful counterpart function named (eval). It
forces Lisp to evaluate the expression(s) located at its right. As an example,
(setq expression ‘(first (this is great))) — (first (this is great)), and then (eval
expression) —> this.

The function (atom?) is a predicate that returns true if its argument is an atom.
Otherwise it returns nil, the Lisp equivalent to false. Predicates always end its
name with a question mark and only return either true or nil. As an example
(atom? bird) — true, but (atom? ‘(bird fish)) The quote operator in Lisp has a
powerful counterpart function named (eval) that is imperative to introduce in
this moment. Using it forces Lisp to evaluate the expression(s) located at its
right. il.

The function (symbol?) is another predicate that returns true if the supplied
argument is a symbol. Otherwise it returns nil. Example: (symbol?
‘bird) — true, but note that (symbol? bird) — nil. The use of the quote operator
is essential in Lisp.

The function (number?) is just another predicate that returns true if its argument
is a number, either integer or real. Otherwise, the predicate number? returns nil.
Example: (number? 3.14159265359) — true.

The function (list?) is the last of the predicates seen in this chapter. It returns
true when the supplied argument is a list and returns nil if its argument is not a
list. Example: (list? ‘(a b c)) — true, but (list? ‘a) — nil.

The function (stats) is a function contained in the mathematical library of
NewLisp. It takes a list of numbers as its argument and returns another list
whose elements are statistical values corresponding to the statistical operations
performed on the numbers of the list used as argument such us mean value,
standard deviation, variance, etc. Example: (stats (-3 -2 14 8 11 131296
2-1)) = (12 5 4.833333333 5.640760748 31.81818182 0 -1.661427211). This
function is an extended feature of NewLisp and may not be available in other
Lisp dialects.

The function (first) takes a list as its argument and returns its first element.
Example: (first ((a b ¢) x y 7)) — (a b c). This function is named (car) in the
Common Lisp dialect.

The function (rest) takes a list as its argument and returns a list composed by all
the elements contained in the original list with the exception of its first one.
Example: (rest ‘(a b ¢ d)) — (b ¢ d). This function is named (cdr) in the
Common Lisp dialect.

The function (nth) takes an index i and a list of n elements as arguments. It
returns the element at position i in the list. The first element in the list is indexed
as zero by (nth). In other words, (nth 0 list) returns the first element of lisz, while
(nth (- n 1) list) returns the last element of lisz. Example: (nth I ‘(this (seems
tricky) at first)) — (seems tricky).

The function (last) takes a list as its argument and returns the last element of the
list supplied as argument. Example: (last ‘(seems tricky)) — tricky.

2.8 As a Summary 47

e The function (length) takes a list as its argument and returns the number of
elements in it. Example: (length ‘(this (seems tricky) at first)) — 4, but note that
(length ‘(this seems tricky at first)) — 5.

e The function (cons) is used for building lists. It takes two arguments, either
atoms or lists, and then constructs a new list with them. Example: (cons ‘not
‘hard) — (not hard) but take care with the use of reiterated conses because it
quickly builds nested lists: (cons ‘(this is) ‘(not hard)) — ((this is) not hard).

e The function (list) is another function for building lists. It takes any number of
atoms or lists and then joins it all, returning another list. As an example, (setq
a-list (list ‘a ‘b ‘c ‘d)) and then (list ‘1 2 3 a-list (xyz)) — (123 (abcd)(xyz))

e The function (assoc) takes the first argument passed to the function and then uses
it as a key for searching the list passed as the second argument. If a match is found,
then it returns the member list. If no match is found, it returns nil. Example: (setq
mountains ‘((Everest 8848) (Kilimanjaro 5895) (Mont-Blanc 4695) (Aconcagua
6962)) and then: (assoc ‘Kilimanjaro mountains)) — (Kilimanjaro 5895).

e The function (append) takes a list as its first argument and then appends the
second argument, which becomes the last element of the list given by the first
argument. As an example: (setq a-list ()) then (setq a-list (append a-list ‘(first-
element))) and then (setq a-list (append a-list ‘(second-element third-ele-
ment))) — (first-element second-element third-element). Note that append is not
destructive, hence the continuous use of setqg for a-list

e The function (reverse) simply reverses all the elements inside a list. Example
(reverse ‘(a b c) — (c b a). Remember that this function is destructive.

e The function (push) adds elements into a list “pushing” them sequentially from the
frontal part of the list to its back. It is a destructive function. Example: (setq names
‘()) then (push ‘John names) and then (push ‘Anna names) — (Anna John).

e The function (pop) extracts and then returns the first element in the list supplied
as its argument. In the previous example, names — (Anna John) and then (pop
names) — Anna. Needless to say, it is also a destructive function.

e The function (now) returns data from the computer’s internal clock when it is
called. Example: (now) — (2014 2 26 13 34 40 592460 56 3 -60 0). This
function is an extended feature of NewLisp and may not be available in other
Lisp dialects.

e The function (rotate) takes a list as its first parameter and then moves every
element contained in it n positions towards its right if the parameter » is positive
or towards left if n is negative. Example: (setq a-list ‘(a b ¢ d)) then (rotate
a-list 3) — (b ¢ d a) and (rotate a-list -3) — (a b ¢ d). This function is destructive.

e The function (random) returns a real number between O and 1. Example:
(random) — 0.7830992238. This function is an extended feature of NewLisp
and may not be available in other Lisp dialects.

e The function (extend) takes several lists as arguments and returns a single list
formed by all the elements from the supplied lists. Example: (setq whole-list ())
then (setq list-1 ‘(a b c)) and (setq list-2 ‘(d e f)), then typing (extend whole-list
list-1 list-2) — (a b ¢ d e f). Since this function modifies the original list, it is a
destructive function.

48 2 Lists Everywhere

e Finally, the function (flat) analyzes the list supplied as its unique argument and
then eliminates any sub-list included in it, returning a list where all the elements
are atoms. Example: (flat ‘(a (b (c d) (ef) g) h)) > (abcdefgh).

A more comprehensive description of these functions and their respective
parameters can be obtained consulting NewLisp’s on-line help from the Menu:
Help — Newlisp Manual and Reference. In this section of the chapter we have only
described the simplest use of some of the functions.

References

Banks, J., et al.: Discrete-Event Simulation, Prentice Hall, Upper Saddle River (2009)

Climatedata.eu.: Climate Berlin, Germany (2014). http://climatedata.eu/climate.php?loc=gmxx0007
&lang=en. Accessed Feb 2014

Sturgul, J.: Mine Design: Examples Using Simulation. Society for Mining Metallurgy and
Exploration (1999)

Zhang, R., et al.: Fuzzy Control of Queuing Systems. Springer, Berlin (2005)

http://climatedata.eu/climate.php?loc=gmxx0007&lang=en
http://climatedata.eu/climate.php?loc=gmxx0007&lang=en

	2 Lists Everywhere
	2.1 Introduction
	2.2 Atoms and Lists
	2.3 First and Rest
	2.4 Building Lists
	2.5 Some Geometry and then Some Art, Too
	2.6 A World Full of Queues
	2.7 Rotate, Extend and Flat
	2.8 As a Summary
	References

