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Preface

The origins of this book are rooted back to the 1990s of the last century. In those
times I was asked to prepare an introductory course on Fuzzy Logic for engineering
students who were eager to take the fundamentals of the theory, especially from a
practical approach. The students (already in their last year at the university) were
certainly bored of theoretical issues and heavy mathematical treatises since they had
suffered a hard curriculum at college. Additionally, some students had varying
programming experience in C language, some others in Pascal and then some others
simply had no programming experience at all. Simultaneously, the most available
publications and books on the subject at that time were either at a popular science
level or excessively theoretical, usually far from the practical approach course they
were expecting.

The solution was to prepare readings from selected material on the subject while
using a teaching vehicle specifically suited to the task. This vehicle was the Lisp
programming language. In that seminal course students would learn both fuzzy
logic theory and the minimum Lisp required to use FuzzyLisp, a set of Lisp
functions that I designed from scratch in such a way that students could easily
understand the theory and at the same time build simple fuzzy models.

More than 15 years later, the overall situation has not changed significantly. The
quantity of information on the Internet is nowadays overwhelming, but requires
time and dedication in order to filter and put into order the essential concepts of the
theory. Excellent books are nowadays on the market on Fuzzy Logic, but they
continue being located either at the academic side or at the popular science level.
The mission of this book is to fill the gap between these two shores of complexity,
always under a practical approach and using Lisp as a sort of computing gateway
that will allow the reader to reach two destinations: To perfectly understand the
basics of Fuzzy Logic and to design and develop from small to medium complexity
models based on this powerful artificial intelligence paradigm. This book is neither
the best book on Fuzzy Logic nor the best available book on Lisp. However, it tries
to be the only book that offers the reader (I sincerely hope it) the perfect balance for
getting the aforementioned mission accomplished. In the first four chapters the
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reader will learn the required level of Lisp and then even more, using a dialect of
this language, NewLisp, that can be freely downloaded from the Internet and runs in
the mainstream computer operating systems as of 2015. From Chap. 5, the theory is
gradually introduced, seizing the opportunity to elaborate every FuzzyLisp lan-
guage function (the complete set of functions that make up the FuzzyLisp pro-
gramming toolbox can be downloaded from the companion book’s website: http://
www.fuzzylisp.com). At a higher level of resolution, this book is based on the
following structure:

Chapter 1 puts Lisp in context, explaining its advantages as a modern computer
language and offering a historical perspective of its development from its inception
back in the last fifties of the twentieth century until nowadays. Then the NewLisp
implementation is introduced and immediately the reader finds the first dialogues
with the language by means of using it as a powerful electronic calculator.

Chapter 2 deals with lists. Lisp derives in fact from the words LISt Processing,
so lists are the building blocks of the language. The fundamental list management
functions are introduced there and soon the reader finds as an example a simple
practical model of queue for a highway toll station.

Chapter 3 is all about user-defined functions in Lisp and explains how to
structure and organize functions, extending first the available set of list management
functions and then showing how to incorporate conditional structures. Later some
loop structures introduce the concept of iteration, a common paradigm to many
other programming languages. Finally, recursion is shown in detail, at a level not
usually shown in Lisp introductory books.

Chapter 4 can be seen almost as a Lisp celebration where all the material
exposed in the previous chapters is assembled in order to show how to build real
applications in Lisp. The first one is a simulation of a French roulette that aside
from dealing with random numbers allows the user to bet and then lose or win. The
second application is a simple but powerful collection of functions for CSV (comma
separated values) database management. This approach of Lisp programming
preludes the architecture of FuzzyLisp.

With Chap. 5 the book enters into the realm of fuzzy sets theory. It starts with a
quick review of classic set theory and soon transits toward the foundations of fuzzy
sets. The central pages of the chapter express the nuclear concepts and ideas of the
theory. If the reader understands well this section then he or she will probably not
have difficulties to digest the rest of the material in the book. For assisting the reader
in its travel through the chapter, plenty of Lisp functions are introduced in order to
test every new concept at the keyboard. Finally, and as a practical application, Life
Illness Curves are presented, a new approach for interpreting human health evo-
lution in medicine.

Chapter 6 introduces a number of additional material about the theory of fuzzy
sets and includes also a big share of the Lisp functions that make up FuzzyLisp. The
code of every FuzzyLisp function is discussed and exhaustively commented in
those rare occasions where some tricky code is used. An important section is
presented about fuzzy numbers, including the notion of intervals and interval
arithmetic for introducing fuzzy numbers arithmetic and then fuzzy averaging,
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together with a first view on defuzzification. After this, linguistic variables are
introduced. The chapter ends with a practical application on fuzzy databases.

Chapter 7 deals with fuzzy logic. Since fuzzy logic is a special and powerful
type of logic it deals also with propositions and logical inferences. The theory
exposed in the chapter is dense but the abundance of Lisp examples helps the reader
to understand every hidden corner in the way. Fuzzy hedges are introduced and
Fuzzy Rule-Based Systems (FRBS) are presented in detail. As practical applica-
tions, an air-conditioner control model is developed in FuzzyLisp as well as an
intelligent model for evaluating performance in regularity rallies, a modality of car
racing.

The last chapter is entirely dedicated to practical applications of Fuzzy Logic
using FuzzyLisp. These applications are exposed as “projects” that try to stimulate
the creativity of the reader. Three applications are developed at an increased
complexity level with respect to models from previous chapters. The first one
merges simulation and fuzzy control, creating a simplified, yet intelligent model for
landing the Apollo XI Lunar Module on the Moon. The second project deals with
speech synthesis where double stars in astronomy are the excuse for elaborating on
the required architecture for the project, but the theoretical aspects described in the
chapter are of direct application in practically every field in science. The last section
introduces Floating Singletons, an advanced modeling technique that shows its
potentiality in an example model for getting an index of pulmonary chronic
obstruction. The book is tail-complemented by two appendices: The first appendix
shows the main differences between NewLisp and ANSI Common Lisp, while the
second is a complete reference of the FuzzyLisp functions developed along this
book.

The audience for this book covers readers not only from the field of computer
science, but also those from the world of engineering and science. The focus is on
undergraduate students and practicing professionals of technical or scientific
branches of knowledge, including engineering, medicine, biology, geology, etc. It
also can serve as a textbook for and introductory course on Fuzzy Logic. The book
assumes basic tertiary mathematical knowledge from the intended reader. Any
first-year student from college should be able to read it without special efforts.
Needless to say, professionals in engineering and scientific fields will find it easy to
follow. No previous programming knowledge is needed in any computer language
since, as already said, it includes a gentle introduction to LISP programming.

Incidentally, the book can also be of huge interest to software developers.
Certain FuzzyLisp functions can be understood as a bridge between FuzzyLisp and
any other programming language. The text files produced by these functions can be
loaded into any software project and then all the expert knowledge from the pre-
viously developed fuzzy models can be incorporated in those software projects. As
an example, this opens the possibility for using FuzzyLisp as a software tool for
developing intelligent apps for smartphones and other mobile devices.

Finally, from these pages I would like to seize the opportunity to thank the many
persons who in some way have helped me to write this book, being well aware that
it is impossible to mention them all, so I shall try to at least thank the people closest
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to this work. First, I would like to show my most intimate gratitude to my wife
Dr. M.D. Ana Fernández-Andres not only for always being there with her patience
and support while writing the manuscript but also for her always useful advice in
the medical examples used in this book. I wish also to express my deepest
appreciation to Dr. Rudolf Seising for giving me the ultimate boost for starting this
project when I shared with him my preliminary ideas of an introductory book on
Fuzzy Logic using Lisp. On the other hand, I must express my deepest gratitude to
Dr. Gracián Triviño for so many conversations while writing the chapters of this
book. It is also impossible to forget the inspiration from the scientific sessions at the
European Centre for Soft Computing from Prof. Michio Sugeno, and last, but not
least, I would like to thank the inspiration from Prof. Enric Trillas. This book owes
him a very special kind of push. Much more than he would ever have imagined.
Also, I would like to thank Dr. Lutz Müller (the creator of NewLisp) for his
kindness when confronted with technical questions concerning his Lisp imple-
mentation. An especial mention must be made also to Dr. Janusz Kacprzyk for
accepting this book in his series Studies in Fuzziness and Soft Computing, and the
Springer Verlag (Heidelberg), in particular to Dr. Leontina di Cecco and Mr. Holger
Schaepe for their support and valuable comments while developing this work.

Oviedo, Spain Luis Argüelles Méndez
June 2015
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Chapter 1
Discovering Lisp

1.1 Introduction

As the old Chinese proverb says, every travel begins with a simple step. This
chapter is our first step in a long voyage that will take us ultimately towards a good
understanding of fuzzy-logic theories. This first step is neither complex nor dense,
as every first step should be when beginning ambitious undertakings, being in fact a
gently introduction to Lisp. We shall start exposing some key features of the
language in order to appreciate what makes it unique among all the existing pro-
gramming languages, exposing at the same time its unique philosophy. Later on we
shall dedicate a well-deserved space to enjoy the history of Lisp because I think this
subject is not sufficiently covered in traditional Lisp books and it helps to give the
reader a good computer science perspective before moving forwards in our voyage.
Finally, the reader will have the opportunity to get their feet wet into the language
by means of a quick practical first session with NewLisp.

1.2 Why Lisp?

Java, Python or PHP are hot these days as programming languages. Other lan-
guages such as C or even actual improved versions of it such as C# or C++ seem to
have lost some momentum when in comparison to the former ones, not to mention
Pascal or Basic, well buried in the eighties last century, although Pascal is still
offered in some schools as a programming language for teaching “correct pro-
gramming” as they say. Java is highly portable. This means that a program written
in Java under Windows can be executed under Mac OS, or even in your smartphone
with some slight additions of XML and some tricky organization. Java, Python and
PHP work extremely well in today’s world of Internet. The money is on the Internet
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while I write these lines in the second decade of century XXI. So, the question
seems obvious: why Lisp?

As we shall see in the next section, Lisp is the second older high-level language
in the history of computer languages, so it can seem a strange decision at first to use
Lisp as a vehicle for teaching Fuzzy Sets theory and Fuzzy Logic. In some way it
could be seen almost as a contradiction: Using a very old language for teaching and
spreading forefront computing concepts that are applied today in robotics, machine
learning, adaptive systems and other fields of Artificial Intelligence (AI).

It can be argued that Lisp was the preeminent computer language for research in
Artificial Intelligence since its inception. Expectations were extremely high in the
sixties and very high in the seventies, before falling in what is known as the AI
Winter. By 1991, the Fifth Generation Computer Project in Japan resulted into a
complete failure. The same happened to similar advanced undertakings in Europe
and US. Expectations in AI had been so high and results were so poor in com-
parison that the term “Artificial Intelligence” has been since used with prudence and
moderation. Even today. However, from my personal point of view, it was more a
case of bad algorithms than bad programming tools. We shall have again the
opportunity to discuss this subject in other sections of this book, but we can say
from now on that Lisp is a computer language extremely well suited to manage
fuzzy sets and fuzzy logic techniques, and, since fuzzy logic is a branch of AI, it
follows that Lisp continues being a great tool for developing Artificial Intelligence
applications.

But there are some strong technical reasons for selecting Lisp as the ideal
programming tool for learning and understanding Fuzzy Logic in a practical way,
too. First of all, Lisp offers the user or programmer (hereafter the terms “pro-
grammer” and “Lisp user” will be interchangeable in this book) an automatic
system of memory management. Other computer languages demand from pro-
grammers a special and constant attention for seizing and liberating memory while
writing programs. Traditionally, this is made with a programming concept named
“pointers”. The C family of languages is full of pointers. If only one pointer is badly
managed by the programmer, the whole program will crash, sooner or later. Java
does not require the use of pointers from the programmer, but still demands from
him the careful allocation of memory for any object in the program. Lisp manages
pointers and memory allocations automatically for you. It does it without notice for
the Lisp user. Smoothly. Securely. This means more confidence in the code and
more speed in writing programs. It means superior productivity.

Lisp is relatively simple. I could show you the basic concepts of the language in
two afternoons of class (well, maybe three or four) and you could start to write from
simple to medium complexity useful programs in Lisp very quickly. As with chess,
the mechanics of the play are simple and powerful, yet the possibilities of play are
practically infinite. Needless to say, as it happens with chess, it takes time to be a
sophisticated Lisp programmer, but the essential movements are easy to grasp. In
this book you will learn all the “movements”, “apertures” and basic strategies
needed to reach a level where you could have written FuzzyLisp and then a bit
beyond.
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Lisp is elegant. Paraphrasing and playing with the famous words from Winston
Churchill, never in the history of computer languages so few powerful concepts
have derived into so many wonderful applications. Take recursion as an example:
Recursion is a programming paradigm (speaking properly it is a mathematical
paradigm, but someone told once that computing is no other thing that living
mathematics) where a function written by the user in Lisp is called inside the same
function. The funny thing is that recursion does happen in nature. It happens even in
human behavior. While recursion is not needed to write Lisp programs, it is an art
in itself and we shall dedicate space for it in this book. Yes, it is true that other
computer languages support recursion, but no one of them does so efficiently.

Lisp builds Lisp-thinking on you. In some way, it happens the same after
learning a human language: Learning the language allows you to understand the
culture of the country that speaks the language. Then, if you are an open-minded
individual, you end up adopting part of that culture in your way of thinking, in your
very own culture. Surprisingly it happens with Lisp, too. It helps you to think on
creating programs with Lisp style, with Lisp organization, with Lisp freedom. This
philosophical aspect of Lisp is not present in any other computer language. After a
while learning the language you will realize, probably with surprise, that Lisp code
is even aesthetically attractive and fine looking, both in the screen and after being
printed, on paper.

Lisp is highly interactive. While you write code you can take apart one function
or a set of them and try how they do behave. You can test functions or fragments of
your program without effort. Even better, you can interactively modify functions in
a Lisp session, make some improvements and then incorporate the transformed
functions into the main program, if you like. This is described as the
“read-eval-print loop” paradigm. You type Lisp expressions at the keyboard, Lisp
interprets and evaluates what you have entered and after evaluation, it prints the
results. You cannot only run complete programs, but parts of it. You feel that you
are talking with the system, and that talk creates a special relationship with the
system and the Lisp language itself. Later in this chapter we will have our first Lisp
session in order to allow you to have a first experience with the language.

Finally, and as previously suggested, Lisp is the best general purpose computer
language for representing fuzzy-sets. You still don’t know, but for describing the
fuzzy set “young” relative to the age of a human being, we could simply write the
following expression in Lisp:

setq young ‘ 12 21 28 35ð Þð Þ

It doesn’t matter in this moment that you don’t understand this line of Lisp code,
but it assigns a membership function representing the fuzzy set “young” to the Lisp
symbol “young”, just created in the expression. We shall dedicate enough time to
describe symbols, membership functions and lots of new concepts, but suffice is to
say for now that no other computer language has at the same time this level of
abstraction and naturalness.

1.2 Why Lisp? 3



1.3 A Short History on Lisp

LISP is one of the oldest high-level languages in the history of computer science
and only FORTRAN, a language whose main goal is to write technical programs
where numbers are the main data type, is older. In fact, it’s highly probable that
you, dear reader, are younger than the LISP language. LISP was born from the
works of John McCarthy and his colleagues at the Massachusetts Institute of
Technology, MIT, back in the last fifties of century XX in an attempt to develop a
language for symbolic data processing, deriving in an extraordinary tool for LISt
Processing. As we shall see in future sections of this book, the main data type of the
LISP programming language are lists. Needless to say, the concept of list will be
introduced in the very first next pages of this work.

The term “high-level” mentioned in the above paragraph is important. It means
that the programmer uses, aside a logical structure and a well-defined grammar,
words from natural language in order to develop programs. It can seem natural
nowadays to think that computers should be able to understand some language at
least not far from the languages we, humans, use to communicate ourselves, but
before the apparition of high-level languages, the usual way to program computers
was to “speak” to them using machine specific code, either writing directly numeric
code or using an assembler, a low-level language that produced a set of instructions
specific to a given computer’s CPU (Central Processing unit). Using machine code
means that every instruction used for programming a computer in the forties and
first half of the fifties last century was expressed in binary code, that is, sets of
zeroes and ones representing either a number, an instruction for a specific CPU, or a
position in memory. As an example, the number 201 is expressed in binary as
11001001. For subtracting 55 (00110111) from 201 some binary expressions were
usually required:

11001001 00110111 01111001

where the last sequence of zeroes and ones, 01111001, would be the instruction,
let’s say, number 121 (subtraction) for a hypothetical CPU. The result of the
subtraction is 10010010 (146). Additionally, some other binary sequences were still
required to access memory positions, and reading and storing the used numerical
values.

Sound complex, right? Let’s do an analogy using human language. Just imagine a
father and his six years old son are having a walk along a park. Suddenly, the young
boy exclaims: “Dad, why trees are so big?” As usually, children like to make not
easy at all questions, so after a while, the father finally replies: “oh, that’s because
they live long lives, so they have plenty of time to grow”. We are not going to decide
in this moment if the answer is a good one. The important thing here is that the father
has transmitted to his son a concept, a chunk of knowledge that will be stored on the
child’s brain. We could use some symbolic language to express this situation with
the question at left of the colon and the answer and short explanation at right:
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Why trees big: long-live ! plenty-of-time-to-grow

This expression is not pure natural language, but it is still a very high level
language. Very interestingly, and without being even aware of it, the brains of both
human beings, father and son, have triggered a complex set of mechanisms in order
to first elaborate a question, supply a reply and then store the new knowledge in
memory. Let’s go a bit more in depth about this reflection: Both brains have used
brain cells, that is, neurons, for getting the job done. Using biochemical energy
some neurons (in the order of thousands or tens of thousands, the exact number
doesn’t matter here) have established a set of connections in their synapses for
manipulating the transfer of information. In computing jargon this is what we call a
low level process. We can go at an even lower level, the lowest of all in our brains,
in order to see what is happening. Observing the chemical processes in the synapses
between neurons, we would see, probably with wonderful awe, how all the pro-
cesses are ruled by the extremely quick exchange of electrons between atoms of
calcium and molecules of neurotransmitters in a huge number of individual
chemical reactions. This chemical reaction, in this analogy, is machine code in our
brains. Natural language, the highest level language we know, is the most important
tool that nature has developed through evolution in order to manage learning and
cognitive abilities. We shall revisit this analogy later in this book when discussing
some artificial intelligence topics. For now, we can appreciate how easy is to use
natural language for us, while the low-level equivalent of managing chemical
processes in the synapses between neurons in a one-by-one basis is far from our
technological abilities. Now, and probably forever.

Albeit using a strong exaggeration, we have used this analogy in order to
appreciate the huge leap in computer science that happened with Fortran and Lisp
languages. From working with sequences of zeroes and ones to using expressions
related to human language, programmers could start to focus their energies on
solving more ambitious problems. The first programs in Lisp were in fact used to
solve symbolic calculations in differential and integral calculus, electrical circuit
theory, mathematical logic, game playing and other projects that required manip-
ulations of symbols.

The seminal paper of LISP, “Recursive Functions of Symbolic Expressions and
Their Computation by Machine” was written by McCarthy himself as a program-
ming system for the IBM704 (the first mass-produced computer with floating point
hardware), in order to facilitate experiments with a proposed system called “Advice
Taker”, that could exhibit some class of “common sense” in carrying out its
instructions (McCarthy 1960). Soon after this theoretical paper, the first real
implementation of Lisp was created by Steve Russell on the 704 using its own
machine language, and not much later, in 1962, Tim Hart and Mike Levin wrote the
first Lisp compiler, written in Lisp, for the IBM7090, a more advanced (and really
expensive) computer at that time.

Two important documents were published by M.I.T Press afterwards: “LISP 1.5
Programmer’s Manual” (McCarthy et al. 1962) and “The Programming Language
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LISP: Its Operations and Applications” (Abrahams et al. 1964). These documents,
together with the seminal paper by McCarthy are easily found today on the Internet
and constitute the real cradle of Lisp.

No doubt those were exciting times. Russia had launched the Sputnik satellite in
October of 1957 and soon took the lead on the spatial race. In the midst of Cold
War, the reaction of the United States was manifold and we should mention at least
two strategic measures that the North American government immediately
announced. First, it sparked a massive federal education funding program, signif-
icantly called the “National Defense Education Act”, to stimulate better teaching of
math and science as well as foreign languages to more students throughout the
country, and second, the “National Space Act” of 1958 that would give birth to the
National Agency of Space Administration, NASA, on the same year. Funding was
immense and computers were high on the buying list of NASA, especially
IBM704s and the IBM709X family of systems.

NASA hired technicians and computer scientists with experience in these
computers. This is equivalent to say that at least some people from the MIT started
to work in the spatial agency. Aside specific machine code, Fortran and Lisp were
already available programming languages, so the Mercury, Gemini and Apollo
missions were developed with the help of these languages. We are not going to say
that Lisp ultimately won the space race, but it was indeed a reliable and creative tool
for accomplishing the mission of landing on July 20th, 1969, on the Moon.

In the late sixties, people at MIT developed an enhanced version of Lisp named
MACLISP for the PDP-6/10, a family of 32 bits computers manufactured by Digital
Equipment Corporation. MACLISP included new data types such as arrays and
strings of characters. It helped to enhance the development of Artificial Intelligence
(AI) until the early 80s. The Reference manual for MACLISP (Moon 1974) has
been preserved and can be consulted freely in the Internet.

While MIT was the cradle of LISP and even today is considered an in-house
development for completing a curriculum in computer science, it soon spread to
other regions, both academic and commercial. Interlisp (Teitelman and Masinter
1981) was, seen with the perspective of an historian, a transfer of computer lan-
guage from MIT to the Palo Alto Research Center (PARC) in California, a division
of Xerox Corporation at mid seventies last century. Also from coast to coast in the
United States, another dialect of Lisp based on MACLISP and named Franz Lisp,
appeared in Berkeley in the seventies and eighties, becoming one of the most
commonly available Lisp dialects on machines running under the Unix operating
system (Gabriel 1985).

The language didn’t take too much time to reach Europe. One of the first dialects
flourished in France under the name of VLISP in 1971. It was developed at the
University of Paris VIII at Vincennes, giving name to the dialect, V(incennes)
LISP. Interestingly, the first book I read about Lisp used VLISP for describing and
teaching the language (Wertz 1985) so in some way, if you are reading this book
you are getting a connection in time with the dialect of Lisp developed at that nice
French village and if you read some French it is still a nice download from the
Internet. After VLISP soon came Le-LISP a close variation from VLISP, also in
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France. Under an historic point of view Le-LISP is a milestone that deserves some
attention because it was one of the first implementations of the Lisp language on the
IBM PC, thus, inaugurating an epoch of, let’s say, personal programming on
microcomputers (Chailloux et al. 1984).

Since Lisp can be written using Lisp itself, it is easy to understand the easy and
quick blooming of versions and dialects of the language, so soon it became evident
that some type of standardization was needed in the community of Lisp pro-
grammers and users. Due to this, the American National Standard Institute pub-
lished in 1994 a language specification document that gave birth to Common Lisp,
also known as ANSI Common Lisp. As of this writing, several companies sell their
Common Lisp products for several operating systems. Some of them even offer
“personal” or “evaluation” editions that can be freely downloaded from the Internet.

1.4 The NewLisp Implementation

Lutz Müller, the designer of NewLisp, is a computer scientist always avid of new
knowledge. Born in Germany, he earned first a Master degree in Psychology and
then a Ph.D. (Magna Cum Laude) in statistical patter recognition, with postgraduate
studies in Computer Science at the University of Hamburg. Psychology, cognitive
processes and computer science tools soon brought him to the Lisp language.
However, Müller quickly realized that Lisp had evolved into large implementations
that usually required a long learning curve for mastering them. At the same time,
the mainstream programming paradigm had deeply changed in the last decades due
to the common accessibility of the microcomputer in the 80s and specially because
the popularization of the Internet since the 90s.

Lisp pioneered concepts such as interpretation, that is, it does not need to be
compiled for having a working application. Another important feature of Lisp is
that is a language with dynamic typing, that is, a Lisp programmer does not need to
declare the type of data he or she is using. The most important thing today in
software development is productivity, and it is not clear that strong typing con-
tributes to this goal (Ousterhout 1998). Müller has created with NewLisp a dialect
of the Lisp language that introduces scripting features, that is, a dialect that give up
some execution of speed (not so much) and strength of typing when in comparison
to system programming languages such a C++, but it provides significantly higher
programmer productivity and software reuse. It is small and has built in most of the
technologies needed in today’s networked and distributed applications. Tomorrow’s
software systems will not be constituted by big monolithic systems but small agile
agents running and cooperating on distributed architectures. For this new horizon,
NewLisp is ideal, and the small loss of execution speed is easily compensated by
the huge evolution in hardware. Last, by not least, NewLisp has been the ideal
programming platform for developing FuzzyLisp.

1.3 A Short History on Lisp 7



1.5 A Quick Start Using NewLisp

As already stated, NewLisp can be downloaded free of charge from Lutz Müller’s
site on the Internet: http://www.newlisp.org/ for different computing platforms,
including Mac OS X, GNU Linux, Unix and Windows. After downloading and
installing it on your computer has the appearance shown in Fig. 1.1, at least on a
Mac OS computer. If you are using other operating system it can show a slight
different appearance.

Aside the usual menus and icons on the upper area of the application window,
we can observe two rectangular areas, the bigger one in white and other, smaller
and light gray colored at the bottom of the window. Between the two areas there is a
bar that we can drag with the mouse in order to resize the white and gray areas until
approximately getting the appearance shown in Fig. 1.2.

Now the gray area is bigger. As in the previous image, the following appears on
the gray area, depending a bit on the NewLisp version and operating system:

Fig. 1.1 NewLisp appearance
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newLISP v.10.5.4 64-bit on OSX IPv4/6 UTF-8 libffi, options: newlisp –h

This indicates that NewLisp is ready for a Lisp session, that is, some computing
time where you “speak” to the system and it answers you. In a Lisp session you
enter Lisp expressions, NewLisp evaluates them and then it provides an answer.
Here “to speak” means “to type”. This is a key concept that deserves some
attention.

Until now, we have exposed material about the history of Lisp and some the-
oretical concepts about the language. Now it is time to use NewLisp. As already
stated, this is a practical book and readers usually feel eager to put his or her fingers
at the keyboard and start typing code. This is the best approach to learn a computer
language. I would like to urge you to type the code in the next sections. You can
read the expressions of the book and learn from the explanations, of course, but this
is not the best approach. In some way it is the same as learning a foreign language,
let us say, Spanish. You can read books about Spanish grammar (boring, Spanish
grammar is huge), you can hear recordings from CDs or mp3 files stored on your

Fig. 1.2 NewLisp, ready for a Lisp session
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favorite device, you can hear Spanish songs and so on. Even you can travel to Spain
in order to get a correct pronunciation (take care, only in the central areas of the
country the language is spoken with a neutral, pure accent). All of this will help, of
course, but if you don’t try to speak you will never be able to learn Spanish well,
nor German, nor any language. Here “typing” is the same and works the same as
“speaking”. Without any trace of doubt you are going to make mistakes, and this is
great because making mistakes is the best way to learn more quickly. If you do not
type and only read you will not make mistakes, and the learning curve will be a lot
longer. If you do not try to speak Spanish you will never learn it well. Even more:
the joy of learning a (computer) language is in fact in the mistakes.

Let us begin. From now on, we shall call “session area” to the gray area on the
NewLisp environment. You can see a cursor blinking at the right of a “bigger than”
(>) sign called “prompt”. In a Lisp session you type expression at the prompt and
the system answer you in the next line. In this very first session I am going to omit
the replies from NewLisp because I want you to feel like an explorer. You are going
to type and you are going to observe the answers. Later we shall revise and
comment the replies. Ready? Let us use NewLisp as an electronic calculator!

> (+ 1 1)
:

> (+ 1 1 1)
:

> (− 3 2)
:

> (− 5 1 1 1)
:

> (* 6 5)
:

> (* 2 2 2 2)
:

> (/ 8 2)
:

> (/ 8 2 2 2)
:

> (/ 3 2)
:

> (/ 2 3)
:
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> (/ 2.0 3)
:
> (+ 5.5 7.3)
:

> (add 5.5 7.3)
:

> (sub 7.3 4)
:

> (mul 2.5 2.5)
:

> (div 7 2)
:

> (div 17 2)
:

> (div 17 2 2 2 2 2 2 2)
:

Congratulations! You have already made your first Lisp session. There have
been some surprises, of course, but we have broken the usual scenic fear and learnt
some very important things on Lisp. Before commenting the expressions one by
one, we are going to seize the opportunity to express two fundamental aspects, or
better said, rules of Lisp. The first one is the following:

Every Lisp expression contains a balanced number of parentheses

Every expression in this first session has two parentheses: One left parenthesis
and one right parenthesis. It does not matter if we are dealing with the simplest Lisp
expression or with a Lisp program composed by thousands of lines of code: The
number of left parenthesis will always be the same as the number of right paren-
thesis. This is of a so capital importance that when we write Lisp programs the
program editor in the system helps us to remember what parenthesis matches which.

Functions are introduced first in a Lisp expression and then the arguments
are located at right from the name of the function

Every function in Lisp, either implemented on the language or defined by the
programmer, must be located immediately after a left parenthesis. Some functions
need a fixed number of arguments, other ones admit a variable number of them, but
the positions always adhere to the same grammatical syntax: First the name of the
function and then the arguments. In this session we have used the basic arithmetical
functions of addition, subtraction, multiplication and division and then numbers
have been used as arguments, with some caveats, as we are going to see in the next
lines:
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> (+ 1 1)
: 2

> (+ 1 1 1)
: 3

It cannot be simpler. The first expression is the simplest arithmetic calculation.
The second expression is more interesting. It shows that the operator ‘+’ can be
used with several numbers (arguments), resulting into the sum of all of them. The
same happens with subtraction, as can be seen in the following two expressions:

> (− 3 2)
: 1

> (− 5 1 1 1)
: 2

For multiplying and dividing it works the same:

> (* 6 5)
: 30

> (* 2 2 2 2)
: 16

> (/ 8 2)
: 4

> (/ 8 2 2 2)
:1

> (/ 3 2)
: 1

> (/ 2 3)
: 0

Here is our first surprise. Dividing 3 by 2 should yield 1.5, not 1, and dividing 2
by 3 should yield 0.666667, not 0. What has happened? Well, it is simple: The
operators ‘+’, ‘−’, ‘*’ and ‘/’ in NewLisp are defined for integer addition, sub-
traction, multiplication and division, respectively. It does not matter if we try to
force them using real numbers by means of writing numbers with decimal points:

> (/ 2.0 3)
: 0

> (+ 5.5 7.3)
: 12
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NewLisp uses other functions for addition, subtraction, multiplication and
division of real numbers, as we can see:

> (add 5.5 7.3)
: 12.8

> (sub 7.3 4)
: 3.3

> (mul 2.5 2.5)
: 6.25

> (div 7 2)
: 3.5

> (div 17 2)
: 8.5

> (div 17 2 2 2 2 2 2 2)
: 0.1328125

These functions are easy to remember, because their names are formed by the
first three letters of their respective functions. Since Fuzzy-Logic, as we shall see, is
ultimately a question of real numbers, only the add, sub, mul, and div functions will
be used in Fuzzy-Lisp and the applications developed with it.

1.6 Using Variables

Any mid-level handheld calculator is able to use variables to store numerical values,
and since NewLisp is more sophisticated that any electronic calculator ever built it
can manage variables, too. In fact, the internal management of variables in Lisp in
general and NewLisp in particular is rather sophisticated, being able to store any
type of data in memory, including lists, symbols, arrays and so on, but for now we
shall concentrate in variable management using real numbers. For this we shall
introduce a very important function named “setq” that has the following syntax:

(setq name-of-variable value-to-store)

This function serves to store almost any thing you can think of while using
NewLisp, but in this first approach to setq, we shall use it to assign numerical
values to numerical variables. Let us start a new Lisp session at the prompt, typing
the following expressions:

> (setq pi 3.141592654)
: 3.141592654
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Pi is not predefined in NewLisp, so this expression will be present in almost any
technical program you write in this language. Since setq is used to store values in
memory, we can recall any stored value at any time simply using its variable name:

> pi
: 3.141592654

The following expression adds some mathematical sophistication and shows the
first blink of how NewLisp evaluates expressions:

> (setq pi-squared (mul pi pi))
: 9.869604404

NewLisp scans first for the innermost expression, in this case it is (mul pi pi),
then it looks for the first element in the list and finds the function “mul”. Since it is a
function for multiplying real numbers, the system looks for the arguments to the
function, finding pi and pi. In this moment, NewLisp finds in memory a numerical
value stored in memory for the symbol pi, so it gets it and makes the multiplication
in such a way that the evaluation of (mul pi pi) produces the real number
9.869604404. Freezing the action at this time, the system now sees this expression:
(setq pi-squared 9.869604404). Finally, the function setq assigns the value
9.869604404 to the just created variable “pi-squared”, returning the result of the last
evaluation, that is, 9.869604404.

> pi-squared
: 9.869604404

As it is well known, the Pythagoras Theorem for a right triangle is given by the
following formula:

h2 ¼ a2 þ b2 ð1-1Þ

where a and b are the sides of the triangle and h is the hypotenuse. For a triangle
where a = 4.0, and b = 3.0, we can type the following:

> (setq h-squared (add (mul 4.0 4.0) (mul 3.0 3.0)))
: 25

alternatively:

> (setq a2 (mul 4.0 4.0))
: 16

> (setq b2 (mul 3.0 3.0))
: 9

> (setq h-squared (add a2 b2))
: 25
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Or, using only a line for getting the length of the hypotenuse, h:

> (setq h (sqrt (add (mul 4.0 4.0) (mul 3.0 3.0))))
: 5

> h
: 5

By the way, “sqrt” is a mathematical function supplied in NewLisp that returns
the squared root of a real number. NewLisp contains an impressive number of
floating point functions: trigonometric, hyperbolic, logarithmic, etc. All of them are
well documented in the NewLisp User manual, always available from the NewLisp
menu: Help → NewLisp Manual and Reference.

A word of caution must be said about trigonometric functions in NewLisp. All of
them use radians as parameters. If we, expecting grads, try to calculate tan(45)
typing the following:

> (tan 45)

NewLisp returns:

: 1.619775191

Very different from the expected value of 1, so we must do some calculations
first for passing a correct value expressed in radians to any trigonometric function
from the language. Since a complete circumference covers an angle of 2π radians,
the following formula converts from an angle α to r radians, as it is well known:

r ¼ ap
180

ð1-2Þ

Some paragraphs above we used an “ad hoc” value for pi. Now we’ll seize the
opportunity to extract pi using the math libraries embedded in NewLisp. As pre-
viously stated, no value comes predefined for pi, but it is sure hidden in the code for
managing trigonometric functions. Remembering that:

acos 1ð Þ ¼ 90 degrees ¼ p=2

then we can type:

> (setq pi (mul 2.0 (asin 1.0)))
3.141592654

Now, for getting the value of tan(45), we can type:

> (tan (div (mul 45.0 pi) 180.0))
: 1
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Using this strategy, we can use the trigonometric functions without effort. For
calculating sin(45) we should type:

> (sin (div (mul 45.0 pi) 180.0))
: 0.7071067812

And for cos(60):

> (cos (div (mul 60.0 pi) 180.0))
: 0.5

Needless to say, if we type now:

> (acos 0.5)
: 1.047197551

The inverse trigonometric functions returns values expressed, yes, you have
guessed, in radians. From (1-2), we can write:

a ¼ 180r
p

ð1-3Þ

And now, armed with our solid foundations learnt in this chapter, we can
express:

> (setq r (acos 0.5))
: 1.047197551

and as expected:

> (div (mul 180.0 r) pi)
: 60

Putting it all into a one line of code:

> (div (mul 180.0 (acos 0.5)) pi)
: 60

You can say, and I am almost sure you are thinking it in this moment, that you
can obtain the same results with an electronic calculator without so much typing. It
is true, but first I have tried that you get used to type code in Lisp in order to feel
comfortable with the language from the very beginning, and second, we shall learn
to design and write functions in later chapters that will allow you to perform any
calculation at speeds not even dreamt for any electronic calculator.
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1.7 As a Summary

In this chapter we have had a gently introduction to the Lisp language. We have not
forgotten to put it into an historical perspective and we have quickly moved into our
first practical movements with it.

Two structural concepts in Lisp are contained in the following sentences: “Every
Lisp expression contains a balanced number of parentheses” and “Functions are
introduced first in a Lisp expression and then the arguments are located at right
from the name of the function”.

About arithmetic operators: NewLisp uses the symbols “+”, “−”, “*” and “/” for
integer addition, subtraction, multiplication and division, respectively. When han-
dling real numbers (the usual scenario in technical and scientific uses of the lan-
guage) the functions add, sub, mul and div must be used instead.
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Chapter 2
Lists Everywhere

2.1 Introduction

As we saw in Chap. 1, Lisp is an acronym for LISt Processing, that is, all the data
and programming in Lisp is based on an organizational structure characteristic of
this programming language called “list”. This chapter is entirely dedicated to this
pivotal aspect of Lisp and we shall dedicate space enough for showing how to
create, manage, modify, reset and eliminate lists.

The previous chapter gave you a quick introduction to simple numerical cal-
culations using Lisp as a way of getting a first touch with the language. Every Lisp
expression exposed was genuinely Lisp, but all the exposed material was even far
from scratching the surface of it. Now it is time to ask you for a bit of concentration
in order to undertake the new material. The concepts you are going to find in the
sections of this chapter will give you a solid understanding of the conceptual pillars
of Lisp. In fact, when you feel you have understood entirely all the ideas exposed in
this chapter you will start to get comfortable with the language, being able to
appreciate its philosophy, elegance, and flexibility.

As usual, we shall use a practical approach, getting help in this case from the use
of examples taken from meteorology, geometry, art and discrete event simulation.
There is a lot of material in this chapter and sometimes you will find that the
information supplied is a bit dense. Be patient and take the time you need. As
Italian people usually say, “piano piano si va lontano”, that is, “going slowly you’ll
reach distant places”. This is not a literal translation, of course, but gives you an
idea about the attitude you should take while reading this chapter.
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2.2 Atoms and Lists

Berlin has a relatively cold climate. Summer is something between mild and warm,
with cold winters, while the rest of the months are more chilly than mild. In any
case, the Berliner Luft (Berlin air) is famous, and Berliners are really proud of it.
This paragraph, almost a small meteorology report, serves us for introducing the
following Lisp expression:

(-3 -2 1 4 8 11 13 12 9 6 2 -1)

This is a list formed by the monthly average of low temperatures in Berlin, from
data obtained from Climatedata (2014). Another example of list could be:

(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

This list contains the months of the year. A list is anything enclosed between an
open and a closed parenthesis. If an element from a list can not be expressed in a
simpler way, that element is called an atom. An example of atom is “-3”, as is also
“Jan”. Generalizing we can say:

A list is a formal collection of elements enclosed by parenthesis whose
elements are either atoms or lists

However, a list can not live isolated from the Lisp environment. If we supply a
list to the prompt in a Lisp session we obtain the following:

> (-3 -2 1 4 8 11 13 12 9 6 2 -1)
: ERR: illegal parameter type : -2

This error message means that Lisp does not know what to do with a solitary list.
Lisp needs that some activity must be performed on lists, or better said, the
grammar of Lisp uses a structure where solitary lists are not allowed. Here, what we
call structure can be as simple as a function that takes a list as an argument or as
complex as an entire program written in the language. For better fixing ideas we
should remember again that the acronym for Lisp is LISt Processing, and a list
always needs some processing. When we add some structure, things start to work
perfectly well:

> (setq Berlin-lows ‘(-3 -2 1 4 8 11 13 12 9 6 2 -1))
: (-3 -2 1 4 8 11 13 12 9 6 2 -1)

As we already know, this is a well-formed Lisp expression because, among other
things, it contains a matched number of parentheses. The setq function is also
known from the previous chapter, and it serves to assign values to a variable. At
least this is what we have learnt so far. In the above expression it seems clear that
something is assigned to the just created variable “Berlin-lows”. Typing it we can
observe that NewLisp returns:
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> Berlin-lows
: (-3 -2 1 4 8 11 13 12 9 6 2 -1)

Now the symbol Berlin-lows stores the list (-3 -2 1 4 8 11 13 12 9 6 2 -1), but an
important detail remains unexplained and it is the quote operator that is usually
represented in Lisp by the quote sign ‘. This important operator prevents Lisp from
evaluating lisp expressions located at its right. In order to know how many
expressions are not evaluated, we must distinguish two cases, depending on the lisp
expression located immediately after the quote operator:

• If an atom is found just after the quote operator, Lisp stops its evaluation
processing until finding a new atom or list. That is, only the quoted atom is not
evaluated.

• If an open parenthesis is found just after the quote operator, Lisp stops its
evaluation processing until finding its matching right parenthesis.

We shall understand it better with several examples:

> ‘(+ 1 2)
: (+ 1 2)

Without the quote, Lisp evaluates the list immediately, as you already know:

> (+ 1 2)
: 3

By the way, alternatively you can also type:

> (quote (+ 1 2))
: (+ 1 2)

> (setq a-nested-list ‘(a b (p1 (x1 y1) p2 (x2 y2))))
: (a b (p1 (x1 y1) p2 (x2 y2)))

The quote operator in Lisp has a powerful counterpart function named (eval) that
is imperative to introduce in this moment. Using it forces Lisp to evaluate the
expression(s) located at its right. Let us type the following expression:

> (setq operation ‘(+ 7 3))
: (+ 7 3)

Calling (eval) in this moment we shall have:

> (eval operation)
: 10

This function is extremely powerful, and although purist Lisp programmers
tended to consider its use as an abuse, it certainly helps to save code in certain
occasions. We shall have the opportunity to observe how does it work in future
chapters of this book.
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Again at our list representing the monthly average of low temperatures in Berlin,
the expression:

(setq Berlin-lows ‘(-3 -2 1 4 8 11 13 12 9 6 2 -1))

processes the list of temperatures by means of the adequate grammatical use of setq
and quote. As a result the list is bound to the symbol Berlin-lows, converting it into
a variable. The distinction between symbol and variable is important and we are
going to discuss it immediately.

The list introduced some paragraphs above:

(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

is a list composed by the symbols Jan, Feb, … etc. These symbols are not variables,
since they are not still bound to any value. Lisp itself helps us to identify symbols,
lists and atoms by some useful functions called Predicates. Predicates are special
functions that always return either true or nil, the equivalent of “false” in Lisp. The
name of every predicate always ends with a question mark. Let us type the fol-
lowing Lisp expressions with attention:

> (atom? a)
: true

Since “a”, either containing a value or not, is indivisible, is clearly an atom.

> (symbol? ‘a)
: true

Here “a” is quoted, that is, it is not evaluated by Lisp, so it is a completely legal
symbol for Lisp. It does not matter if it holds any associated value.

> a
: nil

The direct evaluation of “a” returns nil because it does not contains anything. We
have not yet assigned any value to it by means of the function setq so Lisp evaluates
it to nil. Now let us assign a value to “a”, numerical in this case:

> (setq a 10)
: 10

if now we evaluate it:

> a
: 10

it is bounded to the value 10, and not only that: after being bounded to a numerical
value “a” is a variable of numeric type. But not only is a variable, it continues being
a symbol:
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> (symbol? ‘a)
: true

Note again that in this expression we have quoted “a”. If we evaluate again it
without quoting:

> (symbol? a)
: nil

Lisp immediately evaluates “a”. Since it is now a variable, it stores the numerical
value 10 so this expression is equivalent to:

> (symbol? 10)
: nil

This is absolutely correct since “10” is a numerical value, not a symbol. We can
follow using the number? predicate:

> (number? a)
: true

and as you can easily imagine:

> (number? ‘a)
: nil

Speaking about predicates, The language itself provides a function in order to
know if something is a list:

> (list? ‘(-3 -2 1 4 8 11 13 12 9 6 2 -1))
: true

> (list? Berlin-lows)
: true

> (symbol? ‘Berlin-lows)
: true

As you can see, this is a wonderful computing game although maybe a bit
confusing at first. Do not worry if these concepts are a bit difficult to grasp in this
moment. As they say, practice makes perfect and my best advice is to enjoy several
Lisp sessions where you create lists, symbols and, by assigning values, variables.
Incidentally, I suspect it is harder if you already know other computer languages as
C++ or Java, languages that are strongly typed. As we wrote in Chap. 1, Lisp
automatically takes care of memory allocation and management so you can con-
centrate in program design and thus, being more productive. Anyway, for C pro-
grammers we could give a hint: symbols in Lisp are in fact pointers in disguise. The
good thing is that Lisp manages both pointers (memory addresses) and values in a
transparent way for the Lisp user.

After these theoretical concepts, and as a small relaxation, we can seize the
opportunity to introduce a practical function embedded in NewLisp for calculating
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simple statistics. The name of this function is stats, and we can apply it to the list of
low temperatures in Berlin for observing how does it work:

> (stats Berlin-lows)
: (12 5 4.833333333 5.640760748 31.81818182 0 -1.661427211)

The function (stats) takes as argument a list containing a set of numerical values
and after some almost instantaneous calculations returns statistical values ordered in
the following sequence: Number of values, mean of values, average deviation from
mean value, standard deviation, variance and skew and kurtosis of distribution, as
shown in Table 2.1. The actual version of NewLisp (v.10.5.4 as of this writing)
contains several built-in statistical and probabilistic functions that are useful in
science and engineering. Since the mission of this book is to allow the reader to
understand the theories of fuzzy-sets and fuzzy-logic we shall not dedicate more
space to calculate statistics, but the reader should be aware that these NewLisp
built-in functions deserve to be explored. The NewLisp Manual and Reference
provide all the needed information to start doing statistics with this Lisp
implementation.

For calculating the mean of values with the knowledge learnt from Chap. 1 we
would have used, for example the following expression:

> (setq average-min (div (add -3 -2 1 4 8 11 13 12 9 6 2 -1) 12))
: 5

As promised, Lisp offers us a way of making things in a very powerful way. And
we are only starting with it.

2.3 First and Rest

The first element in a list has an enormous importance in Lisp since its combination
of symbol and value determines if it is a list of data or a list with a call to a function.
In fact, when Lisp finds a list, it immediately evaluates its first element in order to
know what to do with it. For example, the first element in the list of low monthly

Table 2.1 Calculating basic statistics with the NewLisp built-in function (stats). See text

Statistical element Calculated values for Berlin-lows

Number of values 12

Mean of values 5

Average deviation from mean value 4.833333333

Standard deviation 5.640760748

Variance 31.81818182

Skew 0

Kurtosis -1.661427211
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temperatures for Berlin (-3 -2 1 4 8 11 13 12 9 6 2 -1) is “-3”, so Lisp identifies it as
a list where no function is called. On the other hand, the first element of the list (add
-3 -2 1 4 8 11 13 12 9 6 2 -1) is “add” and since it is included in the list of symbols
of Lisp that represent functions then treats the rest of the list as arguments that must
be provided to the function call. Having into account this grammatical rule of the
language, it is not a surprise that Lisp incorporates two functions for accessing the
first element of a list and the rest of elements. In the NewLisp implementation, these
functions are named first and rest, respectively (in Common Lisp and many other
Lisp implementations these functions are named car and cdr as an homage to their
first use on the IBM704 computer). Its use is more than intuitive:

> (first ‘(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec))
: Jan

Please note that the list of months is quoted. Let us observe how the function rest
does it work:

> (rest ‘(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec))
: (Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

The natural question now is: Ok, it is easy to understand the use of the functions
first and rest, in fact it is one of the more easy concepts exposed so far in the book,
but what kind of things can we do with them aside obtaining the first element and
the rest of elements in a list? Important answer: Using (first) and (rest) we can
access any element on any list. In order to type less code, let us begin typing the
following in a Lisp session:

> (setq months ‘(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec))
: (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

> (first months)
: Jan

> (rest months)
: (Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

You should already know why the variable months is not quoted in the above
two expressions, but the important thing is that the first element from the list
returned after the evaluation of (rest months) corresponds to the second month,
February. Let us rewrite the previous expression in order to store the list it returns
on the variable rest-1:

> (setq rest-1 (rest months))
: (Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

Now, let us continue typing:

> (setq second-month (first rest-1))
: Feb
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> (setq rest-2 (rest rest-1))
: (Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

> (setq third-month (first rest-2))
: Mar

Reiterating this procedure by using several calls to (first rest-i) for i going from 1
to 11 we can access any month from the list from February to December. For
January, in order to generalize the algorithm just exposed, we could have written:

> (setq rest-0 months)
: (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

Now rest-0 contains the full list of months. Obtaining the first element in the
sequence of lists rest-0, rest-1, …, rest-11, we can access any month in the year.
This type of procedure for traversing lists is typical of Lisp and we shall use them
frequently. Yes, at this stage it is a lot of typing, but our agreement for learning Lisp
and ultimately fuzzy logic at the beginning of the book requires typing Lisp code.
In the next chapter we shall learn to write functions and that will allow us to go
from interactive Lisp sessions to Lisp programming. For now, the typing will
continue. However, and almost without noticing it, you are learning Lisp at a good
pace.

2.4 Building Lists

Without doubt, (first) and (rest) are powerful functions, but accessing elements
from a list is so frequent in Lisp programming that Lisp designers soon realized that
a special function should be created for accessing any element from a list without
using first and rest. The name of this wanted function is nth. Having into account
the previous expression:

(setq months ‘(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec))

Now we can write:

> (nth 0 months)
: Jan

> (nth 5 months)
: Jun

> (nth 11 months)
: Dec

Please note the special indexing for the function nth: the first element in a list is
acceded by the number 0, not by the number 1, so the last element in a list of n
elements can be acceded by using n − 1 as the index for nth. By the way, in the
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same manner there is a function for accessing the first member of a list, there is also
another one for directly accessing its last element:

> (last months)
: Dec

When using first, last and especially nth, it is usual, if not mandatory before
making a call to nth, to use the Lisp function length. As its name suggests, it returns
the number of elements in a list:

> (length months)
: 12

then, another way to access the last element of a list could be:

> (nth (- (length months) 1) months)
: Dec

Nobody does it that way, of course, but it is a safe way to avoid errors while
programming. If we write:

> (nth 12 months)
: ERR: invalid list index in function nth

This error would break the execution of any Lisp program, so as a general rule:

Always use the function length before using nth and remember
that indexing in lists starts at zero

Figure 2.1 helps to shed more light into the relationships between (first), (rest),
(last) and (nth):

The trick to understand it all is as simple as observing the first block, where we
do list = rest0. Understanding rest0 as the whole list help us to get used to zero
indexing for the function nth. This is exactly what we did with the expression (setq
rest-0 months) some paragraphs above.

Fig. 2.1 A graphical
representation of the
relationships between the Lisp
functions (first), (rest) and
(nth)
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After arriving to this point, we are ready to learn how to build lists. Until now we
have used the assignment function setq for linking a list to a symbol, and the
symbols Berlin-lows and months were built this way. From these two symbols we
are going to build a more complex list where every month and its correspondent
low temperature will be paired in a sublist. Let us type the following:

> (setq mt1 (cons (nth 0 months) (nth 0 Berlin-lows)))
: (Jan -3)

Here the new function is (cons). It takes two arguments, either atoms or lists, and
then constructs a new list with them. Let us see other examples:

> (cons (first months) (rest months))
: (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

> (cons (first months) (last months))
: (Jan Dec)

But take care with the arguments. If we type (cons Jan Feb) Lisp returns the list
(nil nil). Why? Because both Jan and Feb are not yet bounded to any value and
consequently Lisp evaluate these symbols to nil. It is a different story if we type
(cons ‘Jan ‘Feb), then Lisp returns the list (Jan Feb).

We have chosen mt1 as the name of the symbol representing January and its
temperature almost like an acronym for month and temperature, appending a figure
one for linking it to the number of the month. It is always a good strategy to choose
the name of symbols and variables with a clear meaning for us as Lisp program-
mers. We shall revisit this idea in the next chapter. For now let us continue for the
rest of months:

> (setq mt2 (cons (nth 1 months) (nth 1 Berlin-lows)))
: (Feb -2)

> (setq mt3 (cons (nth 2 months) (nth 2 Berlin-lows)))
: (Mar 1)
…
…

and after some heavy typing (not at all, you can copy, past and modify the code),
we reach December:

> (setq mt12 (cons (nth 11 months) (nth 11 Berlin-lows)))
: (Dec -1)

And now, another new function, named list, makes the magic:

> (setq months-temps (list mt1 mt2 mt3 mt4 mt5 mt6 mt7 mt8 mt9 mt10
mt11 mt12))

: ((Jan -3) (Feb -2) (Mar 1) (Apr 4) (May 8) (Jun 11) (Jul 13) (Aug 12) (Sep 9)
(Oct 6) (Nov 2) (Dec -1))
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Now, every element of the list represented by the symbol months-temps is in
itself a list of two elements. The list function takes any number of arguments (12
arguments have been used in this example) and then, every argument is evaluated
and then is used as an element for building a new list. After creating the list months-
temps we can type, for example:

> (nth 5 months-temps)
: (Jun 11)

But this is not the end of the story. This is the perfect moment for introducing
another function named assoc. Let us see how does it works with an example:

> (assoc ‘Aug months-temps)
: (Aug 12)

If you suspect we are entering the realms of database programming you are
completely right. The function assoc takes the first argument passed to the function
and then uses it as a key for searching the list passed as the second argument. If a
match is found, then it returns the member list. If no match is found, it returns nil.
See now how easy is to access any data from the list months-temps:

> (first (assoc ‘May months-temps))
: May

> (last (assoc ‘May months-temps))
: 8

This function not only serves for accessing elements in a list, it also permits to
directly change information in lists using setq. Let us see an example for changing
the minimum temperature in July from data from, for example, Canary Islands:

> (setq (assoc ‘Jul months-temps) ’(Jul 21))
: (Jul 21)

after setq, assoc uses Jul as the key symbol for finding the sublist (Jul tem-
perature) and then substitutes it by the sublist given in the second argument, in this
case, (Jul 21). Now we can observe the changes made:

> (nth 6 months-temps)
: (Jul 21)

We could have written, for example:

> (setq (assoc ‘Jul months-temps) ’(Jul 21 Canary-Islands))
: (Jul 21 Canary-Islands)

and now, the contents for the July sublist are, obviously:

> (nth 6 months-temps)
: (Jul 21 Canary-Islands)
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Using assoc in this way has a destructive effect on the original list, in this case,
on months-temps. While some Lisp functions preserve the original list (nth or
length, for example, come quickly to mind) other ones modify the original data. In
many cases it is a safe strategy to make first a copy of the original data and then
manipulate the copy. For now, we can restore the original data for minimum
temperature in Berlin in July simply writing:

> (setq (assoc ‘Jul months-temps) ’(Jul 13))
: (Jul 13)

2.5 Some Geometry and then Some Art, Too

In general, lists of the type:

((atom11 atom12) (atom21 atom22) … (atomn1 atomn2))

are extremely useful in Lisp, since they can be an excellent representation of many
observational data and phenomena in science, engineering or technical fields.
Needless to say, it is the natural way in Lisp for representing pairs of geometric
coordinates, giving access to the wonderful world of graphics. Since fuzzy-logic
can be seen, as we shall see in the second part of this book, as a matter of geometry,
we must seize the opportunity to play a bit with geometric forms in this moment.

As a general rule, we can represent rectangles, trapeziums and squares by means
of four coordinates, triangles by means of three coordinates and circles by means of
a coordinate for the centre and another number for its radius. Table 2.2 shows some
list structures for representing geometrical shapes in a flat, two dimensions space:

If the shape is a rectangle or a square, its list representation is even simpler by
using the coordinates of the two points of one of its diagonals. Let us type some
values in order to create some rectangles:

> (setq pt1 ‘(5 -4) pt2 ’(8 12)) (setq R1 (list pt1 pt2))
: (8 12)
: ((5 -4) (8 12))

The rectangle identified by the symbol R1 now storages two points, defined by
its coordinates. By the way, we have written several Lisp expressions in the same

Table 2.2 List representation of simple 2D geometrical forms

Geometric form Lisp coordinate representation

Rectangle, trapezium, square ((x1 y1) (x2 y2) (x3 y3) (x4 y4))

Rectangle, square (by diagonal) ((x1 y1) (x2 y2))

Triangle ((x1 y1) (x2 y2) (x3 y3)

Circle ((x1 y1) r)
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line after the prompt in order to save some space. Now let us repeat the operation
for some other rectangles:

> (setq pt3 ‘(0 0) pt4 ’(10 10)) (setq R2 (list pt3 pt4))
: (10 10)
: ((0 0) (10 10))

> (setq pt5 ‘(2 -1) pt6 ’(16 2)) (setq R3 (list pt5 pt6))
: (16 2)
: ((2 -1) (16 2))

> (setq pt7 ‘(6.5 1) pt8 ’(13.5 8)) (setq R4 (list pt7 pt8))
: (13.5 8)
: ((6.5 1) (13.5 8))

After having well defined rectangles R1, R2, R3 and R4, now we can build a
geometrical composition with them named “Mondrian-style” as an homage to Piet
Mondrian, the famous Dutch painter:

> (setq Mondrian-style (list R1 R2 R3 R4))
: (((5 -4) (8 12)) ((0 0) (10 10)) ((2 -1) (16 2)) ((6.5 1) (13.5 8)))

Figure 2.2 is a visual representation of the list Mondrian-style.
Pablo Picasso was a bit more complex than Mondrian. Aside rectangles we must

include now circles and triangles following the structure depicted in Table 2.2. Let
us start with a rectangle:

Fig. 2.2 Four rectangles
representing a composition
inspired in the style of Piet
Mondrian
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> (setq pt9 ‘(5 -4) pt10 ’(8 12)) (setq R5 (list pt9 pt10))
: (8 12)
: ((5 -4) (8 12))

Now it is the time for circles C1 and C2. We shall define them in only one line of
Lisp code:

> (setq C1 ‘((8 2.5) 1.5) C2 ’((6 9) 0.5))
: ((6 9) 0.5)

And now it is time for the triangles:

> (setq T1 ‘((6 9) (10 6.75) (6 4.5)))
: ((6 9) (10 6.75) (6 4.5))

> (setq T2 ‘((1.438 2.5) (7.5 -1) (7.5 6)))
: ((1.438 2.5) (7.5 -1) (7.5 6))

Finally let us join the shapes in order to build the composition:

> (setq Picasso-style (list R5 C1 C2 T1 T2))
: (((5 -4) (8 12)) ((8 2.5) 1.5) ((6 9) 0.5) ((6 9) (10 6.75) (6 4.5)) ((1.438 2.5)

(7.5 -1)
(7.5 6)))

In Fig. 2.3 we can see now our personal, Lisp based Picasso composition.
We have forgotten an important detail: The name of the paintings! For this we

shall use a new function named “append” that, as its name implies, appends data to
the tail of an existing list. Let us use it:

> (setq Mondrian-style (append Mondrian-style ‘(“Composition #968”)))
: (((5 -4) (8 12)) ((0 0) (10 10)) ((2 -1) (16 2)) ((6.5 1) (13.5 8)) “Composition

#968”)

> (setq Picasso-style (append Picasso-style ‘(“Pregnant woman”)))
: (((5 -4) (8 12)) ((8 2.5) 1.5) ((6 9) 0.5) ((6 9) (10 6.75) (6 4.5)) ((1.438 2.5)
(7.5 -1) (7.5 6)) “Pregnant woman”)

This seems a bit complex at first sight, because aside the function (append) we
have introduced at the same time a new type of data named “string”. Let us start
with the function append. It appends anything to an existing list, but first the new
thing(s) to append must be enclosed into a list and second, the function append is
not destructive, meaning that the original list remains unchanged. Let us see this
important detail with a simpler example:

> (setq my-list ‘(a b c))
: (a b c)
> (append my-list ‘(d))
: (a b c d)
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but if we evaluate what is now pointed by the symbol my-list, a surprises appears:

> my-list
: (a b c)

After applying append to a list it returns another list with an appended new
element at its tail, but it does not even touch the original list. If we want the original
list to be modified we need to use setq as follows: (setq my-list (append my-list ‘(d)))
After introducing this Lisp expression at the prompt then my-list contains (a b c d),
as desired. This is the explanation for using setq in the expressions:

(setq Mondrian-style (append Mondrian-style ‘(“Composition #968”)))
(setq Picasso-style (append Picasso-style ‘(“Pregnant woman”)))

“Composition #968” and “Pregnant woman” are strings, that is, a type of data
composed by characters. Interestingly, strings are not symbols:

> (symbol? (last Mondrian-style))
: nil

We shall dedicate more time to strings in a future chapter. This type of date is
important because when we write Lisp programs that ask an user for data, either

Fig. 2.3 A rectangle, two
circles and two triangles for
representing a Picasso style
composition
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numerical or alphanumerical, Lisp reads the input (usually from the keyboard) and
returns strings.

Returning to our peculiar paintings, yes, I am hearing you about the issue of
having the name of the paintings at the end of the lists. Usually, a painting is
identified by its name, so it seems natural to have it located at the first position.
Well, this is a very easy to solve problem by means of using the function (reverse).
As you have imagined, it reverses the order of elements in a list:

> (reverse Mondrian-style)
: (“Composition #968” ((6.5 1) (13.5 8)) ((2 -1) (16 2)) ((0 0) (10 10)) ((5 -4)

(8 12)))

(reverse Picasso-style)
: (“Pregnant woman” ((1.438 2.5) (7.5 -1) (7.5 6)) ((6 9) (10 6.75) (6 4.5))

((6 9) 0.5)
((8 2.5) 1.5) ((5 -4) (8 12)))

This function is destructive, modifying the original list. However the use of
reverse over reverse restores the list at its original status, that is: (reverse (reverse a-
list)) → a-list

Now it is time to finally make a small gallery, a collection of two paintings:

> (setq my-gallery (list Mondrian-style Picasso-style))
: ((“Composition #968” ((6.5 1) (13.5 8)) ((2 -1) (16 2)) ((0 0) (10 10)) ((5 -4)

(8 12))) (“Pregnant woman” ((1.438 2.5) (7.5 -1) (7.5 6)) ((6 9) (10 6.75) (6 4.5))
((6 9) 0.5) ((8 2.5) 1.5) ((5 -4) (8 12))))

The representation of my-gallery can be shown in Fig. 2.4.
Well, the representation of Fig. 2.4 is not exact, as any attentive reader has

already noticed. First, there is a common rectangle in the two compositions and
second, coordinates from the two compositions share a common space in order to

Fig. 2.4 The my-gallery collection, representing Mondrian and Picasso look-alikes
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use small and simple coordinates in the Lisp expressions. The true representation of
my-gallery is shown in Fig. 2.5 that seems to suggest that Mondrian and Picasso
compositions maybe do not mix well.

A positive shift for every x value in the coordinates for the Picasso-style list
should have been applied for obtaining the image shown in Fig. 2.4. We shall learn
how to perform such a shift in the next chapter.

In Table 2.2 we have seen how to represent some geometric shapes in 2D. If we
assume that the geometric forms are resting over a horizontal axis, it is even easier
to represent them. As we can see in Table 2.3, in this case a rectangle only need two
values of x for representing the location of its base and a height, h. A square is even
simpler because given the base by x1 and x2 then its height is equal to the distance
between x1 and x2. The base of a triangle comes represented by its extremes at x1 x3
and then its third point is given by the point x2,h. Finally, a trapezium is represented
by the extremes at its base x1 and x4 and the points x2,h1 and x3,h2.

Let us see a simple example of a triangle and two trapeziums resting over a
horizontal axis using some lisp expressions:

> (setq trapezium-1 ‘(2 (4 4) (6 4) 8))
: (2 (4 4) (6 4) 8)

> (setq triangle ‘(6 (8 4) 10))
: (6 (8 4) 10)

> (setq trapezium-2 ‘(8 (10 4) (12 4) 14))
: (8 (10 4) (12 4) 14)

Fig. 2.5 The my-gallery
collection, true representation
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as we know, for joining these geometric forms into a single Lisp expression, we can
type:

(setq simple-composition (list trapezium-1 triangle trapezium-2))
: ((2 (4 4) (6 4) 8) (6 (8 4) 10) (8 (10 4) (12 4) 14))

Figure 2.6 shows the graphic representation of the just created symbol simple-
composition. This type of geometry seems simple at first, but as we shall see in this
book, has a big conceptual importance.

Histograms and other related graphics are also based on using both vertical and
horizontal axes where values can be absolute or relative. For example, our list of
minimum temperatures by month in Berlin can be shown easily on a
two-dimensional chart. As previously seen in Sect. 2.2, the symbol Berlin-lows
points to the list (-3 -2 1 4 8 11 13 12 9 6 2 -1). The range of stored temperatures
goes from -3 to 13, resulting into a whole range of 16°. Since there are twelve
values corresponding to all the months in the year, we can choose a space between
months of two units for the horizontal axis, yielding a 2D region of 24 × 16 units
for representing the data. Manipulating the list as we saw in Sect. 2.4 by means of
the functions cons and list, or directly by setq, we can easily arrive at the following
list of points (xi yi) where xi are the abscissa values and yi the temperature (ordinate)
values:

((0 -3) (2 -2) (4 1) (6 4) (8 8) (10 11) (12 13) (14 12) (16 9) (18 6) (20 2) (22 -1))

Joining the points stored in this list with lines we obtain a representation of the
minimum temperatures in Berlin, as shown in Fig. 2.7.

Table 2.3 List representation
of simple 2D geometrical
forms when resting over a
horizontal axis

Geometric form Lisp coordinate representation

Rectangle, square ((x1 x2) h)

Square (x1 x2)

Triangle (x1 (x2 h) x3)

Trapezium (x1 (x2 h1) (x3 h2) x4)

Fig. 2.6 Graphic representation of the list simple-composition
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Going from two dimensions to three dimensions (3D) graphics implies an
additional degree of complexity. Some simple 3D geometric forms are shown as
lists in Table 2.4.

One of the causes of the bigger complexity of 3D objects is that its orientation in
space must be defined. Hence, for example, the eight points needed for representing
a truncated pyramid. However, if a 3D object rests or hovers over a flat horizontal
surface, some simplification results, especially for parallelepipeds. In this situation,
a parallelepiped can be expressed in list form by:

((x1 y1) (x2 y2) (x3 y3) (x4 y4) h1 h2)

where h1 and h2 are, respectively, the free height over the plane XY (floor), and the
intrinsic height of the parallelepiped. This geometrical element is one of the most
important ones in architecture. Figure 2.8 shows the Barcelona Pavilion (1929) by
the famous architect Mies Van der Rohe. Practically all the components of the
Pavilion could be expressed by means of Lisp expressions as the one shown above.

Before ending this section on geometry and Lisp lists, it deserves to be com-
mented that one of the most popular Computer Aided Design (CAD) applications in
the industry, AutoCAD, uses Lisp as an embedded programming language. Named

Fig. 2.7 Minimum temperatures in Berlin by month

Table 2.4 List representation of simple 3D geometrical forms

Geometric form Lisp coordinate representation

Parallelepiped ((x1 y1) (x2 y2) (x3 y3) (x4 y4) (x5 y5) (x6 y6))

Sphere ((x1 y1) (x2 y2) (x3 y3) r)

Pyramid ((x1 y1) (x2 y2) (x3 y3) (x4 y4) h)

Truncated pyramid ((x1 y1) (x2 y2) (x3 y3) (x4 y4) (x5 y5) (x6 y6) (x7 y7) (x8 y8))
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“AutoLISP”, it is a close Lisp dialect to NewLisp, so, after reading this book you
would be in a good position to use Lisp in a 3D graphic environment. And not only
that, you could apply fuzzy logic in Computer Aided Design and graphics, too.
Sounds exciting? I can assure you it really is.

2.6 A World Full of Queues

Everyday we experience queues in our lives. Before paying in the supermarket, just
before entering inside a plane at the airport or while being trapped in a traffic jam in
the highway, just to name a few examples. Queue theory is important in factories, in
production management, data processing, financial strategies and so on. Lisp has
two functions, named pop and push that are especially suited to manage and model
queues. They were not created as a direct solution to problems derived from queue
theory but for list management, but since this is a practical book we are going to
learn to use them while modeling a toll station in a highway.

As it is well known, a toll station is basically a facility located on a fixed point in
a highway where cars arrive, are serviced by a human being or a machine (the
driver gets a ticket and/or pays a variable sum of money) and after some service
time, they leave the queue. Let us say we are interested in two things: first, to record
all the cars that enter the facility, their car plate and the enter and exit time from the
toll station. This is very useful to the organism, either public or private, that

Fig. 2.8 Barcelona Pavilion, 1929. Architect: Ludwig Mies van der Rohe Photograph by the
author
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manages the highway and it also serves for supplying information in special cases,
let us say, as an example, for a police requirement. Second, we are interested in
modeling the facility itself, that is, to represent how many cars are waiting in the toll
station in real time. Before entering into the details, let us take a quick view at how
pop and push do work. Let us start creating an empty list:

> (setq queue ‘())
: ()

Now three elements, a, b and c, enter in the list sequentially:

> (push ‘a queue)
: (a)

> (push ‘b queue)
: (b a)

> (push ‘c queue)
: (c b a)

As it can be seen, the push function adds elements into a list “pushing” them
sequentially from the frontal part of the list to its back. Under this point of view, it is
a list builder, but also a function that modifies the original contents of the list just
after being applied. Note also that the list is built in reversal order. This is an
important detail. Let us use now the function pop. It does not need any argument:

> (pop queue)
: c

Let us now observe what remains in queue after using pop:

> queue
: (b a)

In other words, while the function push introduces elements into a list, the use of
pop returns the first element of a list and at the same time eliminates it from the list. As
already suggested, it is useful for queue representation, but only for queues where its
discipline is Last-In-First-Out, or LIFO, as it is usually named in queue theory. This is
not what we were waiting for to apply to our model of toll station whose queue
discipline is in fact First-In-First-Out, or FIFO, that is, the first car that enters the toll
station is the first car that leaves it. Sadly, Lisp does not provide a built-in function for
managing elements in a list in a FIFO way, so we shall need to do some list
manipulation management in order to perform the desired behavior in the facility.

To better fix ideas let us assume that some devices are already installed in the toll
station: a camera that reads the car plates from cars by means of an artificial vision
system and another sophisticated device composed by a chronometer and a set of
photoelectric cells for registering the arrival and departure time for every car. We also
assume that the facility starts its morning shift at 8:00. Table 2.5 shows some car plate
data and arrival and departure times for several cars being served at the toll station.
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For simplicity, we shall represent the arrival and departure times as simple
numbers, i.e., 08:02:12 will be represented by 80212, 13:15:21 by 131521, and so
on. Our desired working model is that every car enters the queue from the “left” of
the list and departs at its “right”. First let us create the queue and then add some cars
to it.

> (setq queue ‘())
: ()

> (push ‘CKT8623 queue)
: (CKT8623)

> (push ‘GWG2719 queue)
: (GWG2719 CKT8623)

> (push ‘MKA8772 queue)
: (MKA8772 GWG2719 CKT8623)

Between 08:02:12 and 08:02:54 we have three cars in the queue. At 08:02:54 the
first car departs, so it must leave the list. The actual contents of queue are:

> queue
: (MKA8772 GWG2719 CKT8623)

Now the car that must leave the queue must be the one with the car plate
CKT8623, so a call to the function pop is not possible. In order to perform a correct
working model of the queue we must proceed with caution. The first step is to use
the function reverse:

> (reverse queue)
: (CKT8623 GWG2719 MKA8772)

Now we can apply the function pop:

> (pop queue)
: CKT8623

> queue
: (GWG2719 MKA8772)

We are almost done. A second call to the function reverse will finish the
algorithm for representing a FIFO queue in Lisp:

Table 2.5 Example data for
cars entering a toll-station in a
highway

Car plate Arrival time Departure time

CKT8623 08:02:12 08:02:54

GWG2719 08:02:18 08:04:32

MKA8772 08:02:25 08:05:55

DYN2140 13:15:21 13:16:22
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> (reverse queue)
: (MKA8772 GWG2719)

Reiterating the procedure, car MKA8772 would leave the queue at 08:05:55. At
this moment, the list queue would be equal to the empty list, () until the car
DYN2140 arrives at 13:16:22.

Meanwhile, and at the same time, we must record all the cars that enter the
facility. This is easier to do:

> (setq toll ‘())
: ()

> (push ‘(CKT8623 80212 80254) toll)
: ((CKT8623 80212 80254))

> (push ‘(GWG2719 80218 80432) toll)
: ((GWG2719 80218 80432) (CKT8623 80212 80254))

> (push ‘(MKA8772 80225 80555) toll)
: ((MKA8772 80225 80555) (GWG2719 80218 80432) (CKT8623 80212

80254))

> (push ‘(DYN2140 131521 131622) toll)
: ((DYN2140 131521 131622) (MKA8772 80225 80555) (GWG2719 80218

80432) (CKT8623 80212 80254))

The list toll does not need any treatment with the function reverse, because it is
used to register all the vehicles served at the facility, but at the end of the day, it can
help to make the recorded data easier to read:

> (reverse toll)
: ((CKT8623 80212 80254) (GWG2719 80218 80432) (MKA8772 80225 80555)

(DYN2140 131521 131622))

Now let us assume the police tries to track a car with car plate MKA8772 and
calls the highway company in order to know if that car has used the facility. At the
company, they only need to type:

> (assoc ‘MKA8772 toll)
: (MKA8772 80225 80555)

For confirming the police that a car with that plate has been observed at toll
station X from 08:02:25 to 08:05:55. A call to all the toll stations in the country
would result in a map with the route of the car. By the way, NewLisp incorporates a
function named now that can be very useful when we try to record time in an
application. Let us observe the results of a call to now just as I’m writing:

> (now)
: (2014 2 26 13 34 40 592460 56 3 -60 0)
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The meaning of the elements of the list returned by a call to the function (now) is
shown in Table 2.6.

With the use of (now), (pop), (push) and (random) (we shall introduce this
function in the next section) and some other programming resources, Lisp can be
used for solving Discrete Event Simulation problems. See for example Banks et al.
(2009), Sturgul (1999). Until recently, queue studies have been studied mainly by
simulation, but relatively recent works seem to suggest that Fuzzy-Logic represents
a good approach to this kind of problems, too (Zhang 2005).

2.7 Rotate, Extend and Flat

For finishing this chapter we shall introduce yet three NewLisp functions for
managing lists. They are not, comparatively, so nuclear to Lisp as the previously
ones, that is, they are not present in all the Lisp dialects, but they sure have an
additional interest.

For explaining the function (rotate), we should visualize a list as a circular
structure where the first and last element would be contiguous elements. For a better
and complete understanding of this structure there is not a better example than a
French roulette wheel of unique zero located into a casino. Its list representation is
as follows:

> (setq roulette ‘(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36))

: (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36)

The function rotate uses an integer n as parameter and it moves every element
for the list n positions towards its right if n is positive or towards left if n is
negative. For example:

Table 2.6 Structure of the numerical information returned by the NewLisp function (now)

Element Example Observations

Year 2014 From the Gregorian calendar

Month 2 From 1 to 12

Day 26 From 1 to 31

Hour 13 From 0 to 23, (UT)

Minute 34 From 0 to 59

Second 40 From 0 to 59

Microsecond 592,460 From 0 to 999,999

Day of current year 56 Begins at 1 for January, 1st

Day of current week 3 From 1 to 7. Starts at Monday

Time zone offset (min) -60 West of Greenwich meridian

Daylight saving time 0 From 0 to 6
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> (rotate roulette 3)
: (34 35 36 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33)

As can be easily seen every element has moved three positions towards right,
and the elements 34, 35 and 36 have rotated from their original positions at the tail
of the list to the first ones. Typing (rotate roulette -3) would restore the original
position of the roulette.

While we are speaking about roulettes, casinos and chance, it seems convenient
to introduce the function random. This function simply returns a real number
between 0 and 1 at random (strictly speaking no computer is able to generate pure
random numbers, but the use of pseudo-random numbers is usually enough for
representing random events in the real world). Let us see a simple call to random:

> (random)
: 0.283314746

In order to obtain a random integer number from 0 to 36 we should type:

> (setq alpha (integer (mul (random) 37)))
: 24

Now, we can give a spin with a value alpha to our roulette and obtain the first
element after the rotation of the roulette is applied:

> (first (rotate roulette alpha))
: 13

Now you can argue that a simple call to (mul (random) 37) could produce the
same roulette simulation, and you are true, but our model not only gets a random
number between 0 and 36 but it also models the position of the roulette wheel:

> roulette
: (13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 0

1 2 3 4 5 6 7 8 9 10 11 12)

Another application for rotate could be to save a programming step in our
example of toll station. As we have seen, after adding some cars to queue it pointed
to the list (MKA8772 GWG2719 CKT8623). Now if we apply (rotate queue 1), it
turns to (CKT8623 MKA8772 GWG2719) and therefore, the car with car-plate
CKT8623 can exit from the queue graciously by typing (pop queue). As we can see,
by using (rotate) we have avoided a double use of the function (reverse).

The functions (extend) and (flat) are simple in their working, but help to make
the life of a Lisp user easier. The first one takes several lists as arguments and
returns a single list formed by all the elements from the supplied lists. Let’s type as
an example:

> (setq first-semester ‘(Jan Feb Mar Apr May Jun))
: (Jan Feb Mar Apr May Jun)
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> (setq second-semester ‘(Jul Aug Sep Oct Nov Dec))
: (Jul Aug Sep Oct Nov Dec)

(setq year ‘())
: ()

> (extend year first-semester second-semester)
: (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)

The function (flat) analyzes the list supplied as its unique argument and then
eliminates any sub-list included in it, returning a list where all the elements are
atoms. As an example, remembering Sect. 2.4, we saw that the symbol months-
temps pointed to the list:

((Jan -3) (Feb -2) (Mar 1) (Apr 4) (May 8) (Jun 11) (Jul 13) (Aug 12) (Sep 9)
(Oct 6) (Nov 2) (Dec -1)))

Now, typing:

> (flat month-temps)
: (Jan -3 Feb -2 Mar 1 Apr 4 May 8 Jun 11 Jul 13 Aug 12 Sep 9 Oct 6 Nov 2

Dec -1)

The function flat is not destructive, so it lefts intact the function supplied as
argument. If we wish that month-temps adopts the new, flattened structure, we
should type:

> (setq months-temps (flat months-temps))
: (Jan -3 Feb -2 Mar 1 Apr 4 May 8 Jun 11 Jul 13 Aug 12 Sep 9 Oct 6 Nov 2

Dec -1)

This function is especially useful when we are creating a list by a repetitive use
of the function cons. As we saw in Sect. 2.4, cons takes two arguments, but
successive calls to cons causes a deepening of the formed list. As an example let us
use cons by building a queue of cars at the toll facility:

> (setq queue (cons ‘CKT8623 ’GWG2719))
: (CKT8623 GWG2719)

> (setq queue (cons queue ‘MKA8772))
: ((CKT8623 GWG2719) MKA8772)

> (setq queue (cons queue ‘DYN2140))
: (((CKT8623 GWG2719) MKA8772) DYN2140)

Do you appreciate the problem with the function (cons) when used this way? A
call to flat solves it all:

> (setq queue (flat queue))
: (CKT8623 GWG2719 MKA8772 DYN2140)
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By the way, have you noticed that the combination of the functions (cons) and
(flat) are still another way to model a queue with FIFO discipline? Multiple solu-
tions to a problem are usual when using programming languages, but it is especially
true with Lisp due to its high flexibility, as you are starting to appreciate.

In the Sect. 2.1 of this chapter we have learnt how to create lists. Now, at the end
of it, we should learn how to reset a list and how to eliminate it from memory. Let
us imagine the list toll contains now thousands of elements, that is, cars that have
entered the facility along the day. In order to reset it, we only need to type:

> (setq toll ‘())
: ()

Thus becoming an empty list. If we wish to completely eliminate the list toll
from memory, it is even easier:

> (setq toll nil)
: nil

If what you want is to eliminate a list from memory, it is not necessary, of
course, to reset it previously. In any case Lisp takes care for handling these memory
issues automatically.

2.8 As a Summary

All the nuclear functions of Lisp, and yet some more, needed for developing
FuzzyLisp have been exposed in this chapter, and what is even more important: you
are now into a position where you are able to understand the basics of the language.
We have made an extensive use of examples, using monthly temperatures in Berlin,
abstract art compositions and some examples of queues from the real world in order
to progressively introduce the most important functions of Lisp. If you have fol-
lowed our advice we know it has been a lot of typing at the keyboard, and if you
have experimented with examples created by your own imagination, the typing has
been certainly impressive. Many typing or conceptual errors have happened you
while cruised along this chapter. If this has been so, congratulations because you are
now more than ready to explore the next step in being fluent in Lisp: Writing you
own functions. We shall dedicate the entire next chapter to functions defined by the
Lisp user. Now, a last reminder to all the functions visited in this section of the
book will help you to have a good view of your position in the travel of learning
Lisp:

• The function (quote) or its more often used quote sign, prevents Lisp from
evaluating Lisp expressions located at its right. If an atom is found just after the
quote operator, Lisp stops its evaluation processing until finding a new atom or
list. If an open parenthesis is found just after the quote operator, Lisp stops its
evaluation processing until finding its matching right parenthesis. Example:
(quote a) or ‘a → a.
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• The quote operator in Lisp has a powerful counterpart function named (eval). It
forces Lisp to evaluate the expression(s) located at its right. As an example,
(setq expression ‘(first (this is great))) → (first (this is great)), and then (eval
expression) → this.

• The function (atom?) is a predicate that returns true if its argument is an atom.
Otherwise it returns nil, the Lisp equivalent to false. Predicates always end its
name with a question mark and only return either true or nil. As an example
(atom? bird) → true, but (atom? ‘(bird fish)) The quote operator in Lisp has a
powerful counterpart function named (eval) that is imperative to introduce in
this moment. Using it forces Lisp to evaluate the expression(s) located at its
right. il.

• The function (symbol?) is another predicate that returns true if the supplied
argument is a symbol. Otherwise it returns nil. Example: (symbol?
‘bird) → true, but note that (symbol? bird) → nil. The use of the quote operator
is essential in Lisp.

• The function (number?) is just another predicate that returns true if its argument
is a number, either integer or real. Otherwise, the predicate number? returns nil.
Example: (number? 3.14159265359) → true.

• The function (list?) is the last of the predicates seen in this chapter. It returns
true when the supplied argument is a list and returns nil if its argument is not a
list. Example: (list? ‘(a b c)) → true, but (list? ‘a) → nil.

• The function (stats) is a function contained in the mathematical library of
NewLisp. It takes a list of numbers as its argument and returns another list
whose elements are statistical values corresponding to the statistical operations
performed on the numbers of the list used as argument such us mean value,
standard deviation, variance, etc. Example: (stats ‘(-3 -2 1 4 8 11 13 12 9 6
2 -1)) → (12 5 4.833333333 5.640760748 31.81818182 0 -1.661427211). This
function is an extended feature of NewLisp and may not be available in other
Lisp dialects.

• The function (first) takes a list as its argument and returns its first element.
Example: (first ‘((a b c) x y z)) → (a b c). This function is named (car) in the
Common Lisp dialect.

• The function (rest) takes a list as its argument and returns a list composed by all
the elements contained in the original list with the exception of its first one.
Example: (rest ‘(a b c d)) → (b c d). This function is named (cdr) in the
Common Lisp dialect.

• The function (nth) takes an index i and a list of n elements as arguments. It
returns the element at position i in the list. The first element in the list is indexed
as zero by (nth). In other words, (nth 0 list) returns the first element of list, while
(nth (- n 1) list) returns the last element of list. Example: (nth 1 ‘(this (seems
tricky) at first)) → (seems tricky).

• The function (last) takes a list as its argument and returns the last element of the
list supplied as argument. Example: (last ‘(seems tricky)) → tricky.
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• The function (length) takes a list as its argument and returns the number of
elements in it. Example: (length ‘(this (seems tricky) at first)) → 4, but note that
(length ‘(this seems tricky at first)) → 5.

• The function (cons) is used for building lists. It takes two arguments, either
atoms or lists, and then constructs a new list with them. Example: (cons ‘not
‘hard) → (not hard) but take care with the use of reiterated conses because it
quickly builds nested lists: (cons ‘(this is) ‘(not hard)) → ((this is) not hard).

• The function (list) is another function for building lists. It takes any number of
atoms or lists and then joins it all, returning another list. As an example, (setq
a-list (list ‘a ‘b ‘c ‘d)) and then (list ‘1 ‘2 ‘3 a-list ‘(x y z))→ (1 2 3 (a b c d) (x y z)).

• The function (assoc) takes the first argument passed to the function and then uses
it as a key for searching the list passed as the second argument. If a match is found,
then it returns the member list. If no match is found, it returns nil. Example: (setq
mountains ‘((Everest 8848) (Kilimanjaro 5895) (Mont-Blanc 4695) (Aconcagua
6962)) and then: (assoc ‘Kilimanjaro mountains)) → (Kilimanjaro 5895).

• The function (append) takes a list as its first argument and then appends the
second argument, which becomes the last element of the list given by the first
argument. As an example: (setq a-list ‘()) then (setq a-list (append a-list ‘(first-
element))) and then (setq a-list (append a-list ‘(second-element third-ele-
ment))) → (first-element second-element third-element). Note that append is not
destructive, hence the continuous use of setq for a-list

• The function (reverse) simply reverses all the elements inside a list. Example
(reverse ‘(a b c) → (c b a). Remember that this function is destructive.

• The function (push) adds elements into a list “pushing” them sequentially from the
frontal part of the list to its back. It is a destructive function. Example: (setq names
‘()) then (push ‘John names) and then (push ‘Anna names) → (Anna John).

• The function (pop) extracts and then returns the first element in the list supplied
as its argument. In the previous example, names → (Anna John) and then (pop
names) → Anna. Needless to say, it is also a destructive function.

• The function (now) returns data from the computer’s internal clock when it is
called. Example: (now) → (2014 2 26 13 34 40 592460 56 3 -60 0). This
function is an extended feature of NewLisp and may not be available in other
Lisp dialects.

• The function (rotate) takes a list as its first parameter and then moves every
element contained in it n positions towards its right if the parameter n is positive
or towards left if n is negative. Example: (setq a-list ‘(a b c d)) then (rotate
a-list 3)→ (b c d a) and (rotate a-list -3)→ (a b c d). This function is destructive.

• The function (random) returns a real number between 0 and 1. Example:
(random) → 0.7830992238. This function is an extended feature of NewLisp
and may not be available in other Lisp dialects.

• The function (extend) takes several lists as arguments and returns a single list
formed by all the elements from the supplied lists. Example: (setq whole-list ‘())
then (setq list-1 ‘(a b c)) and (setq list-2 ‘(d e f)), then typing (extend whole-list
list-1 list-2) → (a b c d e f). Since this function modifies the original list, it is a
destructive function.
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• Finally, the function (flat) analyzes the list supplied as its unique argument and
then eliminates any sub-list included in it, returning a list where all the elements
are atoms. Example: (flat ‘(a (b (c d) (e f) g) h)) → (a b c d e f g h).

A more comprehensive description of these functions and their respective
parameters can be obtained consulting NewLisp’s on-line help from the Menu:
Help→ Newlisp Manual and Reference. In this section of the chapter we have only
described the simplest use of some of the functions.
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Chapter 3
Functions in Lisp

3.1 Introduction

I have been in doubts when thinking about the title for this chapter. A serious
alternative was “Introduction to functional programming” but that title seems to be
better suited for an entire book and not for a single chapter. However, functions and
functional programming have a close interrelationship in Lisp. Both concepts,
together with list structures for representing data, already introduced in the previous
chapter, are the solid core of the language.

This chapter is entirely dedicated to user-defined functions. First we shall
introduce them with simple examples in growing complexity. Then, logical tests
and conditional structures will be added, without forgetting the use of logical
connectives. Later, looping structures are introduced, with multiple examples that
will allow the reader to understand how powerful these programming constructions
really are.

Recursion is introduced in another section of the chapter. This is a relatively
sophisticated concept that can be categorized as “advanced” for a text at an
introductory level on Lisp. However, recursion is of such importance, both his-
torically and computationally in Lisp that I have felt absolutely obligated to include
it. This section is probably the most complex of the chapter under a conceptual
point of view, especially if the reader has some previous experience with other
traditional programming languages. Due to this, special care has been put in
offering a gentle start on recursion without renouncing to show some interesting
examples. Finally, some general ideas are exposed about lambda expressions, that
is, anonymous functions.
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3.2 Starting Functions with Three Simple Examples
and then Came Map

We have already discovered functions in the previous chapters. Functions like (div),
(first), (reverse), or (append), to name only a few, perform interactions with data,
either atoms or lists, and then return an atom, a list or modify the supplied data. In
this way, Lisp supplied functions can be seen as black boxes where some data is
accepted as an input and a result is obtained as an output. We do not need to know
what happens inside these black boxes and in a first approach we can say that we
are not very much interested in the inner workings of the functions supplied in the
language because all we need to know is what data is needed to be supplied to the
functions (arguments) and what type of information results from a function call to
them. The problem is, neither Lisp nor any other programming language, supplies
all the functions needed for all sorts of imaginable computer processing require-
ments. There is not a supplied function for calculating the deformation of a steel
beam under the weight of some loads, nor another function to calculate the Body
Mass Index (BMI) of a person, for example, not to mention a function for imple-
menting a Genetic Algorithm, or a Neural Network. Here is where user defined
functions go into play.

User defined functions mean that the Lisp user must design new black boxes.
The usual starting point is to define the goal of the function (its output) and what
information is available (its input). Hereafter the Lisps user must design the inner
workings of the black box. Through this design, the contents of the black box
become clear for the Lisp programmer: Every black box is full of Lisp expressions.
With these ideas in mind we can now express what a function defined by user is:

ALisp function defined by user is a set of Lisp expressions that; working

together; performs a programming task

The anatomy of a user defined Lisp function always uses the following grammar:

(define (function-name arguments)
(lisp-expression1)
(lisp-expression2)
…..
(lisp-expressionn)

)

As can be observed, the first step for creating a new function is to use the
keyword “define”. When Lisp finds it in the code of a program it understands that
all the Lisp expressions contained until finding a matching closed parenthesis form
part of the function. Just after the keyword define, and starting with an open
parenthesis, comes the name of the function that the user wish to create, and then,
separated by an space, the name of the argument(s) that will be used as the supplied
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information (input) to the function. The set of Lisp expressions (lisp-expression1)
(lisp-expression2)… (lisp-expressionn) constitute what is known as the body of the
function. The function will always return the evaluation of the last Lisp expression
contained in the body function, that is, (lisp-expressionn) in our representation of
function anatomy. Needless to say, (lisp-expressionn) is usually the result of all the
data processing performed by the previous Lisp expressions contained in the body
of the user-defined function. Additionally, the set of Lisp expressions contained in
the body can optionally modify external data in the program. This last feature will
be covered in the next chapter. In this one, all the functions we are going to create
will always return a single output, either an atom or a list.

It is also important to note that in this chapter our Lisp sessions will include
typing at the Lisp prompt in the “session area” (gray background) of the NewLisp
environment, as in the previous chapters, and also typing in the “programming
area” (white background), as can be seen in Fig. 3.1. In other words, we shall create
our functions in the programming area and will test them in the session area, at the
usual Lisp prompt. Additionally we shall use from time to time two icons from the

Fig. 3.1 Programming and session areas in NewLisp, revisited
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icons bar located at the bottom of the NewLisp environment: The blue icon rep-
resenting a computer disk for saving our functions on the computer’s hard disk and
the green “play” icon. Clicking on this green icon have the effect of triggering an
event that tells NewLisp to read and “understand” all the Lisp expressions con-
tained in the programming area and store them in memory in such a way that all the
written expressions and functions will be ready to be used at the session area. As it
usually happens, describing this procedure in words is many times more complex
than doing it and you will soon feel at home with the NewLisp environment.

For writing our first function we are going to remember than in Chap. 1 we saw
how tedious was to use trigonometric functions because the need of supplying
values in radians to them. Specifically, for translating an angle alpha in grads to
radian we used the expression (div (mul alpha pi) 180.0)). Now we shall write a
function named (grad-to-rad) that will automatically do all the required calculations
for us.

The previous analysis for designing the intended function is easy: (a) the name
of the function is grad-to-rad, (b) the supplied information to the function, that is,
its argument, is a numerical value named, for example, alpha, and (c) the last
Lisp-expression in the body of the function must return the desired output, that is,
the value of alpha expressed in radians. The function is shown in code 3-1.

;code 3-1
(define (grad-to-rad alpha)

(div (mul alpha 3.1415926535) 180.0)
)

It is easy to appreciate that the required grammatical structure for defining a
function, previously exposed as the anatomy of a Lisp function, is present in Code
3-1. We have the mandatory keyword define, the function-name is grad-to-rad, the
argument, unique in this case, is alpha, and the body of the function contains only
one expression: (div (mul alpha 3.1415926535) 180.0). Now, after clicking on the
green icon of the NewLisp environment let’s try the function at the session area just
to the right of the Lisp prompt in order to check if it works as expected:

> (grad-to-rad 45)
: 0.7853981634

and now we can test it with any NewLisp built-in trigonometric function:

> (tan (grad-to-rad 45))
: 1

Two important observations deserve to be made at this point. First, the just
created grad-to-rad function is, after clicking the green icon on the NewLisp
environment, just another Lisp function, that is, it converts automatically itself in an
extension of the language and thus, can be combined with any other Lisp function.
The second observation is the use of the semicolon signs in code 3-1: In Lisp,
semicolons are used for writing comments in the programs. When Lisp sees a
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semicolon in a program it treats all the material located at its right in a line as a
comment and thus it’s not included in the code of the program.

Comments are extremely important when using a programming language, and
Lisp is not an exception. They help the Lisp user or other programmers to explain
the code just written or to remark some special data manipulation, procedure or
algorithm in order to make it easy to understand it in the future. I use lots of
comments in my programs, maybe in excess. Although it takes some additional
time, the payoff is that I am able to read and understand code I wrote twenty years
ago. Software maintenance is extremely important, so take the following sentence
as a serious advice:

Always use comments in your Lisp programming

Let us see now another function. This time for converting Celsius degrees to
Fahrenheit. The formula is as follows:

F ¼ 1:8C þ 32 ð3-1Þ

and the corresponding function in Lisp is shown in code 3-2:

;code 3-2
(define (celsius-to-fahr celsius)

(add (mul 1.8 celsius) 32.0)
)

Now, in order to check it, let us type in the session area of the NewLisp
environment:

> (celsius-to-fahr 40)
: 104

As expected, the function (celsius-to-fahr) has converted 40 °C into 104 °F. The
interesting thing now is the existence of a built-in Lisp function named (map). This
functions uses a function as its first argument and then applies its working to all the
elements contained in a list supplied as a second argument. If the function supplied
as argument has itself more than one argument, then (map) applies the function
to several elements, taken one-by-one from each list, where the number of
lists as arguments match the number of arguments of the function to be mapped.
In the following example we shall use (map) with the just created function (celsius-
to-fahr). In Sect. 2.2 of this book, for describing the minimum monthly tempera-
tures in Berlin we wrote:

> (setq Berlin-lows ‘(-3 -2 1 4 8 11 13 12 9 6 2 -1))
: (-3 -2 1 4 8 11 13 12 9 6 2 -1)
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Now is when the magic of Lisp start to shine:

> (map celsius-to-fahr Berlin-lows)
: (26.6 28.4 33.8 39.2 46.4 51.8 55.4 53.6 48.2 42.8 35.6 30.2)

In this example, the function (map) takes the first element in the list Berlin-lows
(-3) and passes it to the function (celsius-to-fahr), resulting in the first element of a
new list (26.6). After reiterating the process for every element in the list pointed by
Berlin-lows, the function (map), applied on the function (celsius-to-fahr), creates a
new list where all the monthly temperatures in Berlin are given in Fahrenheit
degrees. This ability of Lisp to use functions as arguments of other functions is one
of the strongest points in the language.

The functions (grad-to-rad) and (celsius-to-fahr) take one argument as input.
Now, let us see how to design a function that takes two arguments. Some paragraphs
above we spoke about the Body Mass Index, or BMI. It is an index used by phy-
sicians for knowing if the weight of a person is normal or if the patient suffers from
overweight or obesity. It is calculated by means of using the following formula:

BMI ¼ m
h2

ð3-2Þ

where m is the patient’s mass in kilograms and h his or her height in meters. The
analysis for designing this function is as follows: (a) we shall give the name BMI as
the name of the function, (b) the input for the function, that is, the arguments
needed for making it working are the mass and height, m and h, and (c) the last
expression in the body of the function (output) must return the calculated numerical
value for the corresponding Body Mass Index. The functions is shown in code 3-3:

;code 3-3
(define (BMI mass height)

(div mass (mul height height))
)

after the keyword define we use BMI for naming the function and then we group
together mass and height in the same list (BMI mass height). The body of the
function is represented by only one line of code that is the Lisp representation of
expression (3-2): (div mass (mul height height)). The definition of the function ends
with a closing matching parenthesis for the keyword define. Let us observe now
how the function BMI works for a man weighting 80 kg and with 1.80 m height
after clicking on the green “run” icon in the NewLisp environment:

> (BMI 80 1.8)
: 24.69135802

Since overweight begins with a BMI equal or bigger than 25, we can say that an
80 kg man with a height of 1.80 m has a normal weight (in the next part of the book
dedicated to fuzzy-logic we shall make additional and sound comments to this
example).
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3.3 Managing Lists with User Defined Functions

In the previous section we have seen how easy is to build user functions for making
calculations. Any branch of engineering and applied science has a rich toolbox of
formulae. A civil engineer could create his or her own library of functions in Lisp
for calculating, let us say, structures. Such a collection of functions would be the
basis for a Lisp application for structural analysis. Needless to say, this idea extends
to chemistry, physics, astronomy, … you name it.

After these initial concepts on functions we are now ready to extend the Lisp
language itself. As the reader already well knows, list processing is the primordial
basis of Lisp, so defining new functions for list processing is the equivalent to
extend the language. As a first example, and remembering that the function (first)
returns the first element of a list, let us build a function for returning the fourth
element from a list. Such a function is shown in code 3-4:

;code 3-4
(define (fourth a-list)

(first (rest (rest (rest a-list))))
)

As an example of use, after clicking on the green “run” icon in the NewLisp
environment we can type at the Lisp prompt:

> (fourth ‘(a b c d e))
: d

Do you remember what we said about (first) and (rest) in Chap. 2? You can see
it now in the body of the function, where after successive calls to (rest) we finally
extract the first element of the processed list, thus obtaining the fourth element of
the list passed as argument to the new function. Revisiting Fig. 2.1 can help you to
better understand the function (fourth).

It is now the time to write some user functions for removing elements from a list.
The first one, named (remove2-head) removes the two first elements from a list. As
can be seen in code 3-5, it simply calls the function (pop) two times:

;code 3-5
(define (remove2-head a-list)

(pop a-list)
(pop a-list)

a-list
)

Just note the last expression in the body of the function. It is not enclosed into
parenthesis! This is so because we want that Lisp return a list as the result for a
function call to (remove2-head). While running the function, NewLisp will remove
the first element from a-list. Then, since the function (pop) is destructive, a second
call to it will effectively remove the second element from a-list. Since the last
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expression is not preceded by a quote sign, we force Lisp to evaluate the symbol
a-list, thus obtaining the desired result. Trying it at the Lisp prompt we can see how
does it work:

> (remove2-head ‘(a b c d e))
: (c d e)

By the way, the function (remove2-head) is not destructive. Try, for example:
(setq test-list ‘(a b c d)), then (remove2-head test-list) → (c d), but after using the
function, test-list → (a b c d). Let us write now a symmetrical function to
(remove2-head), which is a function that removes the two last elements in a list as
expressed in code 3-6:

; code 3-6
(define (remove2-tail a-list)

(reverse a-list)
(pop a-list)
(pop a-list)
(reverse a-list)

a-list
)

As can be easily seen, (remove2-tail) works in a similar way to (remove2-head).
The important detail is a first call to (reverse) in the body function before popping
two elements and then another call to (reverse) for restoring the original order of
elements in the list. Trying it at the Lisp prompt:

> (remove2-tail ‘(a b c d e))
: (a b c)

By the way, NewLisp has a built-in function named (chop), not destructive,
which removes n elements from the tail of a list supplied to it. As an example, if we
type: (setq some-states ‘(NY AL CA NJ NE)) then (chop some-states 2) → (NY AL
CA), and (chop some-states 4)→ (NY). This is fine, since the function (chop) is more
flexible than the user-defined function (remove2-tail). And this is inspiring, too,
because after observing how (chop) does it work we could design a user function
named, for example, (flex-chop) for removing elements both from the head and tail
of the list at the same time. The syntax of the function will be (flex-chop a-list n1 n2),
where n1 is the number of elements to remove from the head and n2 the number of
elements to remove from the tail of the list. Code 3-7 shows the function (flex-chop):

; code 3-7
(define (flex-chop a-list n1 n2, list1 list2)

(setq list1 (chop a-list n2)) ;chop it at the tail
(setq list2 (reverse list1))
(setq list2 (chop list2 n1))
(reverse list2)

)
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Something new appears in this user-defined function. We already know that a-
list, n1 and n2 are the arguments to the function, that is, its input, but there are other
symbols, named list1 and list2. These are internal variables destined to do internal
calculations. Internal variables in NewLisp are declared just after writing the
arguments to the function, being separated from these by a comma. As we can see,
all this material comes into one only line: (define (flex-chop a-list n1 n2, list1 list2).
Observe again the comma, serving as a delimiter for separating the function
arguments from the definition of the internal variables. Without the comma,
NewLisp would understand all the symbols as arguments. At this moment some-
thing remarkable must be said:

Internal variables live only inside the functions where they are defined

This must be understood perfectly well. A Lisp program, as we shall see, is just a
collection of functions, and local variables can only be used inside the functions
where they are defined. In other words, a function defined by user is absolutely
hermetic to the rest of a Lisp program with respect to its local variables. This is a
very convenient feature in a programming language because it avoids the existence
of errors that could appear if a programmer mistakenly could use the same name of
variable in more than a section of a program. On the other hand, Lisp programs can
also use global variables, that is, variables whose content can be accessed from the
inside of any function. Global variables can also be used as arguments for any
function in a Lisp program. We shall have the opportunity to speak about global
variables in a future chapter. Meanwhile, let us test the (flex-chop) function:

> (flex-chop ‘(a b c d e f g h) 1 3)
: (b c d e)

Since (flex-chop) is really, well, flexible, and in order to save space, some results
from different calls are shown in Table 3.1. The list (a b c d e f g h) will be used by
typing (setq a-list ‘(a b c d e f g h)) first at the Lisp prompt:

It must be noted that some optimization can be done in the function shown in
code 3-6. In fact we can re-write it eliminating the use of local variables. The new
resulting function, named now (flex-chop2) is shown in code 3-8:

;code 3-8
;flex-chop2 in an optimization of the function flex-chop
(define (flex-chop2 a-list n1 n2)

(reverse (chop (reverse (chop a-list n2)) n1))
)

Table 3.1 Several calls to
function (flex-chop)

Function call List returned by (flex-chop)

(flex-chop a-list 0 2) (a b c d e f)

(flex-chop a-list 2 0) (c d e f g h)

(flex-chop a-list 2 2) (c d e f)

(flex-chop a-list 4 4) ()
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as expected, the function (flex-chop2) produces exactly the same results as (flex-
chop) and Table 3.1 is valid for the two functions. The second version need less
code than the first one, but is, without doubt, more cryptic. As a safe bet we can say:

Never try to optimize a function without extensive testing of the non-optimized version

This sentence is complemented by this one

(almost) Never exchange optimization for legibility

Using optimized functions takes less space and usually they are more efficient, but
many times the loss of legibility is so strong that makes the code hard to maintain
along the time for a Lisp user, not to mention for other Lisp programmers.
Fuzzy-Lisp is not strongly optimized because from its inception it was clear to me
that it should be easy to read. The same concept will be applied in this book. My goal
in these chapters is to put in your hands a tool for understanding fuzzy- logic theories.
The easier to learn to use the tool, the quicker the goal will be accomplished.

3.4 The Discovery of Conditional Structures

As we saw in Chap. 1, the Lisp programming language brought revolutionary fea-
tures to the realm of computer science in the last fifties last century. One of them was
the implementation of conditional structures that, simply put, did not exist previ-
ously. The only other high-level programming language at that time, Fortran, only
had a conditional “goto” command, a really poor feature in comparison with the new
possibilities that Lisp brought to the computing community (Graham 2014).

3.4.1 From Predicates to If-Then-Else Structures

We have already experienced an introduction to some of these structures when
talking about those special functions called predicates. A predicate returns only two
possible outcomes: true or nil (the equivalent to false in Lisp). Table 3.2 summa-
rizes the predicates learnt in the previous chapter.

Table 3.2 Some important
predicates in Lisp

Predicate Return value

(atom? arg) true if arg is an atom, either nil

(symbol? arg) true if arg is a symbol, either nil

(number?arg) true if arg is a number, either nil

(list? arg) true if arg is a list, either nil
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Aside predicates, it is possible to use relational expressions in Lisp that, as it
happens with predicates, also return either true or nil. Let us type some of them at
the prompt:

> (< 1 2)
: true

> (< 2 1)
: nil

As it is well known from mathematics, the operator “<” means “less than” so
(< 1 2) → true, and (< 2 1) → nil. In Table 3.3 we can see all the relational
operators included in NewLisp:

All types of expressions (numbers, atoms, symbols, etc.) can be compared
in NewLisp by using the relational operators from Table 3.3. For example if
we type (setq a 1), (setq b 2), (setq c 3), then we can obtain (= (first (list a b))
(sub c b)) → true. (= (list a b) (list a c)) → nil, and so on.

In Sect. 3.2 we developed a function for calculating the Body Mass Index of a
person, named (BMI), shown in code 3-3. Now we are going to create a predicate
named (obesity?) that will return true if the BMI of a person is bigger or equal to
29.9 or nil otherwise. In order to accomplish this, we shall use an “if-then-else”
structure, which is in fact the basis of conditionals in Lisp and in many other
computer languages. This structure has the following grammar:

(if (logical-test) (lisp expressions if test is true) (lisp expressions if test is false))

The keyword of a conditional expression in Lisp, and in many other program-
ming languages born after Lisp, is the word “if”. It must be used immediately after
an opening parenthesis. After that, a logical-test must be included as a list, con-
taining a relational expression and/or a predicate. Then a first set of Lisp
expressions must be specified. This set of Lisp expressions will be executed by
Lisp if the logical-test is evaluated to true. If the logical test is evaluated to nil, then
the second set of Lisp expressions will be used. As usually, an example will
demonstrate that the practical use of a programming concept is usually easier to
understand than pure theory. The code for programming the user-defined predicate
(obesity?) is shown in code 3-9:

Table 3.3 Relational
operators in NewLisp

Operator Meaning Example

< less than (< 3 7) → true

> bigger than (> 7 2) → true

= equal to (= 3 (+ 1 2)) → true

<= less or equal to (<= 5 (sub 7 2)) → true

>= bigger or equal to (> = 30 (mul 5 5)) → true

!= different to (! = 5 7) → true
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;code 3-9
(define (obesity? mass height, result)

(setq result (div mass (mul height height)))
(if (>= result 29.9)

'true
nil

)
)

Let’s try the new predicate before explaining its design for two different persons,
one weighting 80 kg and another one weighting 120 kg. Both are 1.80 meters in
height:

> (obesity? 80 1.8)
: nil

> (obesity? 120 1.8)
: true

Yes, it seems to work perfectly well. Let us go into the details. Since (obesity?),
aside being a predicate is also a function, the code starts with the keyword define,
and then we have the arguments needed as input to the function: mass in kilograms
and height in meters. Finally, in the first line of code we have the variable result,
which will be used for calculating the BMI as we saw in code 3-3. This calculation
is made in the second line. Let us see what we have in the third line:

(If (>= result 29.9)

As it can be observed, here is where the conditional begins by means of the use
of the if keyword. Just after this keyword it comes the logical-test, in this case,
(> = result 29.9). This logical test will be evaluated to true if the calculated BMI is
bigger or equal to 29.9, otherwise it will be evaluated to nil. Hereafter, the Lisp
expressions are very simple: if the logical-test evaluates to true then Lisp finds the
expression ‘true and if the logical-test evaluates to nil, then it finds nil in the
following line. Since either ‘true or nil are the last expression found in the function
after the logical-test is performed, only one of these values can be returned by the
predicate (obesity?)

We can notice in this moment that the function (BMI) and the predicate
(obesity?) inform us, respectively, about the numerical value of the Body Mass
Index and if a person suffers obesity or not, but nothing is said about our weight
condition. Now we are going to improve these functions by taking advantage of
conditional programming in such a way that it will return an interpretation of the
obtained index in natural language. The improved version is shown in code 3-10
and follows the National Heart, Lung, and Blood Institute classification for the BMI
calculation (NHLB Institute 2014).
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;code 3-10
(define (bmi2 mass height, result advice)

(setq result (div mass (mul height height)))

(if (< result 18.5)
(setq advice''You are excessively thin'')

)
(if (and (>= result 18.5) (< result 24.9))

(setq advice''Congrats, your weight is ok'')
)
(if (and (>= result 24.9) (< result 29.9))

(setq advice ''You should try some diet and exer-
cise because you have some overweight'')

)
(if (>= result 29.9)

(setq advice ''Warning, you suffer obesity. Speak
with your doctor'')

)
advice

)

After running this code in the NewLisp environment, let us try it at the Lisp
prompt with two examples:

> (bmi2 80 1.8)
: “Congrats, your weight is ok”

> (bmi2 120 1.8)
: “Warning, you suffer obesity. Speak with your doctor”

Following the information available from the NHLB Institute on the Internet, we
have partitioned the range of possible BMI values in four subsets that we could
name this way: Underweight, Normal Weight, Overweight and Obesity, as can be
seen in Fig. 3.2.

For each of them we have designed an if-then structure. For example, when the
range of BMI values corresponds to a normal weight, we have the following
expression:

(if (and (>= result 18.5) (< result 24.9))
(setq advice''Congrats, your weight is ok'')

)

Fig. 3.2 Body mass index continuum as defined in NHLB (2014)
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That is: if the result of the calculated BMI is bigger or equal to 18.5 and it is less
than 24.9, then the weight/height relationship represents a normal weight. It is
extremely important to note that in this case there is no “else” structure and the if
statement only has an expression that is chosen by Lisp only if the logical-test
evaluates to true. This can be seen observing the matching open and closed
parentheses for the whole if expression: Only a unique Lisp expression appears if
the logical-test evaluates to true: (setq advice “Congrats, your weight is ok”). By
means of this strategy the variable advice always gets its adequate value, which, as
can be seen, is always a string of characters, a type of data especially appropriate for
generating reports in natural language.

Of no less importance is the construction we have used for the logical test. In this
case we have combined two relational operators by the use of the Lisp keyword
and. In Lisp we can combine any number of relational operators by the use of the
keywords and and or. The more internal relational expressions are evaluated first
and then, the obtained values of true or nil are supplied to the logical keywords
and/or, obtaining the results given by Table 3.4.

We can express this concept by using these two simple sentences: For obtaining
a result value of true while using the and logical operator, it must be observed that
both logical values must be true. For obtaining a result value of true while using the
or logical operator it is only required that at least one of the logical values is true.

3.4.2 A Note About Functional Programming

Functional programming in Lisp is at the same time a programming paradigm and a
computing philosophy where every function, either included in the language or
defined by the user, returns a single Lisp expression. Every function generates a
result that depends exclusively on the input to the function. This produces clean and
well behaved programs, but it generates the following question: If every function in
Lisp returns only one element of information, what computing strategy must be
used when we need that a function returns more than one value? For example, let us

Table 3.4 Truth table for the
logical operators and/or

Logical
value1

Logical
value2

Logical
operator

Result

True True and True

True Nil and Nil

Nil True and Nil

Nil Nil and Nil

True True or True

True Nil or True

Nil True or True

Nil Nil or Nil
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take the function (bmi2) described in code 3-9. The only thing it returns is a string
of characters representing a human-like advice. What if we, for example, need a
function that returns both human-like advice and the numerical value for the BMI?
Do we need two separate functions? Code 3-11 shows an improved version to the
function (bmi2) that answers these questions:

;code 3-11
(define (bmi3 mass height, result advice)

(setq result (div mass (mul height height)))

(if (< result 18.5)
(setq advice''You are excessively thin'')

)
(if (and (>= result 18.5) (< result 24.9))

(setq advice''Congrats, your weight is ok'')
)
(if (and (>= result 24.9) (< result 29.9))

(setq advice ''You should try some diet and
exercice because you have some overweight'')

)
(if (>= result 29.9)

(setq advice ''Warning, you suffer obesity.
Speak with your doctor'')

)
(cons result advice) ;here we constructthereturn-list

)

The improvement from (bmi2) is subtle but important. The internal processing is
almost the same: first a numerical value is computed and assigned to the variable
result and then, after a conditional if structure, a string value is assigned to the
variable advice. The trick is on the last line of code:

(cons result advice)

The already known function (cons) takes two arguments and constructs a list
formed by them. Since it is the last expression evaluated inside the function, (bmi3)
will return it. Let us try an example:

> (bmi3 85 1.75)
: (27.75510204 “You should try some diet and exercise because you have some

overweight”)

That is great! It is true that every function in Lisp returns only one element of
information, but that element can be, aside an atom or a number, a list. And any
type and quantity of data can be contained into a list. Hereafter, (first (bmi3 85
1.75))→ 27.75510204, and (last (bmi3 85 1.75))→ “You should try some diet and
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exercise because you have some overweight”. In Chap. 2 we saw how the built-in
NewLisp function (stats) returned a list containing seven numerical values. Now
Code 3-10 show us how to use Lisp for obtaining several pieces of information
integrated in only one list. This is a powerful programming strategy from the Lisp
language.

3.4.3 Robust Functions from the Use of Conditional
Programming

Testing functions is part of the process of function design. Until now in this chapter
we have made simple testing of every exposed function, but we have not stressed
any function in the tests. We have not tried them at their limits. We should not only
create functions that meet the design goals, that is, to produce the intended output,
but also making them robust against failure. As an example, and again at Table 3.1,
after typing (setq a-list ‘(a b c d e f g h)), we can see that:

> (flex-chop a-list 4 4)
: ()

After this expression we obtain an empty list. This is correct, since a-list contains
eight elements. However if we type: (flex-chop a-list 5 5) the function still returns
an empty list. This should not happen, since the function should inform us in some
way, for example, returning nil, that it is simply not possible to chop five elements
from the head and tail of a list of eight elements simultaneously. Similar mistakes
happen when we call the functions (remove2-head) and (remove2-tail) using very
short lists as arguments. Again as an example:

> (remove2-head ‘(a))
: ()

Here the argument is a list with only one element inside, so the function should
inform us about this fact. Code 3-12 solves this problem for the function (remove-
head):

;code 3-12
(define (remove2-head a-list)

(if (< (length a-list) 2)
nil
(begin

(pop a-list)
(pop a-list)
a-list

)
)

)
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Let us try this new version of the function with two simple function calls:

> (remove2-head ‘(a b c d))
: (c d)

> (remove2-head ‘(a))
: nil

This more robust function seems at first more complex than the one shown in
code 3-4, and it is indeed! The key idea in the new design is to check for the number
of elements in the list supplied as argument to the function in such a way that it
returns nil if the list contains less than two elements, or the expected result (pre-
vious behavior) if the list contains two or more elements. It must be noted in code
3-8 that we have used a new keyword named begin. In NewLisp, begin is used for
telling the language that several Lisp expressions are working together under the
same set of conditions. Let us analyze what happens in code 3-11 in order to have a
more clear perspective.

Just after starting the conditional by means of (if (< (length a-list) 2), Lisp
evaluates it to true or nil, as we already know. If the result of the evaluation is true,
then Lisp evaluates the following Lisp line in the code, in this case finding the nil
value. But if the evaluation of the if sentence is nil then Lisp springs to the begin
keyword, and then evaluates all the complete block of expressions enclosed by the
begin matching parentheses:

(begin
(pop a-list)
(pop a-list)
a-list

)

In fact, the complete anatomy for an if-then-else conditional structure is as
follows:

(if (logical-test)
(begin

(lisp-expression1 if logical-test is true)
(lisp-expression2 if logical-test is true)
…..
(lisp-expressionn if logical-test is true)

); first begin block ends
(begin

(lisp-expression1 if logical-test is false)
(lisp-expression2 if logical-test is false)
…..
(lisp-expressionn if logical-test is false)

); second begin ends
); if –then-else structure ends
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In code 3-13a we can observe a more robust version of the function (flex-chop2):

;code 3-13a
(define (flex-chop3 a-list n1 n2)

(if (> (+ n1 n2) (length a-list))
nil
(reverse (chop (reverse (chop a-list n2)) n1))

)
)

The following code, code 3-13b, includes begin blocks, being identical in
computing behavior:

;code 3-13b
(define (flex-chop4 a-list n1 n2)

(if (> (+ n1 n2) (length a-list))
(begin

nil
);end begin block
(begin

(reverse (chop (reverse (chop a-list n2)) n1))
);end begin block
);end if

);end function

Both functions (flex-chop3) and (flex-chop4) work exactly the same. Since only a
single Lisp expression is needed for the corresponding true and nil evaluations of
the logical-test, then there is no need to use begin blocks. Anyway, if you feel more
comfortable, you can always use begin blocks for enclosing a single Lisp expres-
sion and not only when they are strictly needed. It is a question of programming
style. In any case:

Always test formatching parenthesis in begin blocks

Now, for testing function (flex-chop4), after making (setq a-list ‘(a b c d e f g h)),
we have, for example:

> (flex-chop4 a-list 3 2)
: (d e f)

> (flex-chop4 lista 5 4)
: nil

We should comment another detail that represents a good programming practice:
Indentation. This placement of text farther to the right in some lines of code in a
Lisp program is not intended for getting a more aesthetic appearance, but for
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making things more clear and avoid mistakes, specially with the number of
matching parenthesis. Code 3-14 is absolutely equivalent as code 3-11:

;code 3-14
(define (bmi3 mass height, result advice)
(setq result (div mass (mul height height)))
(if (< result 18.5)
(setq advice''You are excessively thin'')
)
(if (and (>= result 18.5) (< result 24.9))
(setq advice''Congrats, your weight is ok'')
)
(if (and (>= result 24.9) (< result 29.9))
(setq advice''You should try some diet and exercise because

you have some overweight'')
)
(if (>= result 29.9)
(setq advice''Warning, you suffer obesity. Speak with your

doctor'')
)
(cons result advice) ;here we construct the return-list
)

Code 3-11 is clearly easier to read and understand. Indentation, while not
mandatory, should be always used, especially with if-then-else constructions and
when using begin blocks inside Lisp structures of expressions. In fact, it is the first
step for constructing robust functions, because indentation avoids many program-
ming mistakes and help to fix mistakes when they appear. On the other hand,
designing robust functions takes more space, time, and effort, that is, more
resources, but it always pays. In this book, and for space requirements, we concede
priority to show new Lisp concepts instead of heavy use of robust function design,
but my advice to you is to always try to design robust, safe functions. The phi-
losophy of the Lisp language and the paradigm of functional programming are of a
huge help in this direction but is not enough. Be always alert against possible
failures in your user-defined functions.

3.4.4 Solving Multiple Conditions Without Using If

When a range of values is classified or divided in sub-ranges it is usual to utilize
several if-then blocks sequentially, as we did in Code 3-10/3-11 for expressing
expert advice from the obtained Body Mass Index. In this type of situation, Lisp
offers us an alternative conditional structure whose keyword is cond. In Code 3-15
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we have completely eliminated the use of the conditional if, yet the function (bmi4)
produces exactly the same results as the function exposed in Code 3-11:

; code 3-15
;bmi4 uses cond as a conditional structure
(define (bmi4 mass height, result advice)

(setq result (div mass (mul height height)))

(cond
((< result 18.5)

(setq advice''You are excessively thin'')
)
((and (>= result 18.5) (< result 24.9))

(setq advice ''Congrats, your weight is
ok'')

)
((and (>= result 24.9) (< result 29.9))

(setq advice''You should try some diet
and exercise because you have some
overweight'')

)
((>= result 29.9)

(setq advice ''Warning, you suffer
obesity. Speak with your doctor'')

)
);end cond
(cons result advice)

)

As you can observe, the cond structure is not very different from the if-then
structure. After the keyword cond, several logical tests are used until covering all
the possible options. The complete anatomy for a cond conditional structure is as
follows:

(cond
((logical-test1)

(lisp-expression1 if logical-test1 is true)
(lisp-expression2 if logical-test1 is true)
…..
(lisp-expressionn if logical-test1 is true)

); logical-test1
…..
((logical-testn)

(lisp-expression1 if logical-testn is true)
(lisp-expression2 if logical-testn is true)
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…..
(lisp-expressionn if logical-testn is true)

);end logical-testn
);end cond

A comfortable feature of a cond structure is that there is no need to use the begin
keyword for grouping several Lisp expressions into the same logical block. Cod
3-16 still represents another function that uses the BMI for showing these concepts.
Just note that every test option has two Lisp expressions and no begin keyword is
needed:

;Code 3-16
(define (bmi5 mass height, result advice subset)

(setq result (div mass (mul height height)))
(cond

((< result 18.5)
(setq advice''You are excessively thin'')
(setq subset ''The first subset of cond
has been used'')

)
((and (>= result 18.5) (< result 24.9))

(setq advice''Congrats, your weight is
ok'')
(setq subset''The second subset of cond
has been used'')

)
((and (>= result 24.9) (< result 29.9))

(setq advice ''You should try some diet
and exercise because you have some
overweight'')
(setq subset ''The third subset of cond
has been used'')

)
((>= result 29.9)

(setq advice ''Warning, you suffer
obesity.
Speak with your doctor'')
(setq subset''The fourth subset of cond
has been used'')

)
);end cond
(list result advice subset)

)
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Testing the function at the Lisp prompt, we obtain, for example:

> (bmi5 80 1.80)
: (24.69135802 “Congrats, your weight is ok” “The second subset of cond has

been used”)

Another important use of the cond structure is quite often used in any application
nowadays: Menu selection. Every menu contains several options to choose from,
and a cond structure is the most appropriate one to use in such cases. Code 3-17
shows how to organize a three-options menu. The function expects a number from
one to three in order to show what option has been chosen:

;Code 3-17
(define (menu option)

(cond
((= option 1)

(setq str1''You have chosen menu option
#1'')

)
((= option 2)

(setq str1''You have chosen menu option
#2'')

)
((= option 3)

(setq str1''You have chosen menu option
#3'')

)
(setq str1''You have made a bad selection'')

);end cond
)

Trying (menu) at the Lisp prompt:

> (menu 3)
: “You have chosen menu option #3”

It is important to note that no else formation happens in a cond structure. The
mere existence of every condition/logical-test eliminates the need of an else alter-
native, or at least this is how it looks as first sight. In fact a cond structure always
has a hidden, automatic, and optional else construction available. Let us just look at
the following function calls:

> (menu 4)
: “You have made a bad selection”

> (menu any-option)
: “You have made a bad selection”
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Just observe the last line of code still located inside the cond structure in Code
3-17:

(setq str1''You have made a bad selection'')

If all the logical tests in a cond structure are evaluated to nil, an optional last
expression can be included as a lifeboat that works as an else statement. This is a
convenient feature included in this type of conditional structure that represents
another step in the right way of robust programming.

3.5 The Discovery of Loop Structures

Computers are not smart (yet) machines, but since its inception they have been
excellent, efficient tools for performing repetitive tasks. It doesn’t matter if a
computer must repeat a task three times, one million times or forever in its life.
While energy is available and no hardware failures do appear, a computer can
perform the same process time after time. Programming languages have control
structures that allow repetition as an easy to implement computing strategy. This
strategy, or computing paradigm, is called looping. The Lisp programming lan-
guage has several looping structures available, although we are going to focus our
time on the most used one in actual programming languages: The while structure.

3.5.1 While Computing

The basic idea behind a while looping structure in Lisp is that a set of Lisp
expressions must be repeated time after time while a logical-test, located at the
beginning of the loop structure, evaluates to true. It is easy to imagine that for
avoiding infinite loops, that is, loops that repeat a task forever, at least one of the
internal Lisp expression in the loop must be able to modify the value of the
logical-test from true to nil. Just after the logical-test evaluates to nil, the program
flow exits the loop.

The anatomy of a while looping structure in Lisp is as follows:

(while ((logical-test)
(begin

(lisp-expression1)
(lisp-expression2)
…..
(lisp-expressionn)

); end begin
); end while
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As said previously, at least one (lisp-expressioni) inside the loop must be able to
change the value of the logical-test, either a predicate-function, an if-then structure,
or an assignation in a Lisp variable. In order to show practically how a while
structure works we are going to design a function, named (my-find) that identifies
the position of an atom in a list, returning its position and the atom itself in a small
list of two elements. Code 3-18 shows this function:

;Code 3-18
(define (my-find atm lst, n i aux result)

(setq n (length lst))
(setq i 0)
(setq result nil)

(while (< i n)
(begin

(setq aux (nth i lst))
(if (= aux atm)

(setq result (cons i
atm))

);end if
(setq i (+ 1 i))

);begin end
);while end
result

)

After defining the name of the function and its required arguments by means of
the keyword define, the first line of the function, (setq n (length lst)), measures the
length of the list supplied to the function and then assigns the numerical result to the
internal variable n. The two following lines are of strategic importance for the
adequate working of the loop and the function, eventually. The expression (setq i 0)
initializes i to zero. This is easy to see, but it is this variable, absolutely innocent at
first sight, what will allow the function to exit the loop. The second assignment
expression, (setq result nil), assumes that no matching element in the supplied list
will be found, and only if something happens inside the loop it will change its
value. In other words: the function (my-find), as a default, is designed to return nil.
This programming strategy is very common in Lisp and in other languages with
looping structures.

The while loops starts with the line (while (< i n). The logical-test is composed
by the relational operator “<”, that compares the values of variables i and n, so
translated in plain-English we can read it as “while the value of i is less than the
value of n, then…”. And now the internal content of the loop starts with a begin
keyword. If the loop had only one Lisp expression inside, then the begin keyword
would not be necessary, but the usual case is to have several Lisp expressions inside
a loop, so here the use of begin is mandatory.
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Now the line of code (setq aux (nth i lst)) gets an element from the list lst
supplied as an argument to the function and assigns it to the internal variable aux.
Here we must remember that the function (nth) takes zero as the required argument
for reaching the first element in a list. This explains also why we have chosen (< i n)
as the logical test for traversing all the elements in the list and not (<= i n).

The following expression, (if (= aux atm) (setq result (cons i atm))) compares
first if the i-element of the list is equal to atm, that is, the element to find in the list.
If the logical-condition belonging to the if test evaluates to true, then a cons of the
index i and the element atm is assigned to the variable result. If the element atm that
we are trying to find does not exist in the list, the evaluation of (= aux atm) will
always be nil and the variable result will maintain its initial assigned value at the
beginning of the function, that is, nil.

The following line, (setq i (+ i 1)) is also critical for the adequate working of the
loop. Here the actual value of i is incremented by one unit and then assigned again
to the same variable. If you are new to programming, this expression can be a bit
difficult to understand, but this concept of incrementing the value of a numerical
variable is strongly used in practically any programming language. Maybe a more
graphical representation of this programming concept can help you to better grasp
it: i ← i + 1.

After a few closed parenthesis, the while loop is entirely described in the
function. When the value of the variable i reaches the number of elements in
the scanned list minus one (remember the zero indexing of function (nth)) then the
logical-test (< i n) evaluates to nil and the program leaves the loop. Now it finds
the expression result, and since it is the last expression in the function it is also what
the function returns. Let us try it at the Lisp prompt:

> (my-find ‘RED ‘(GREEN BLUE RED YELLOW MAGENTA))
: (2 RED)

As we can observe, the symbol RED is found in the third position of the list, and
the function (my-find) returns (2 RED), as expected, since inside the while loop we
are using the function (nth), which starts its indexing at zero. We could easily
transform the line of code inside the if structure as (setq result (cons (+ 1 i) atm)),
and then (my-find ‘RED ‘(GREEN BLUE RED YELLOW MAGENTA)) would return
(3 RED), but this is not advisable since in that case we would be mixing different
indexing concepts, and this can lead to difficulties when trying to find errors in a
program.

If we try to find an element that does not exists in the list:

> (my-find ‘BLACK ‘(GREEN BLUE RED YELLOW MAGENTA))
: nil

no iteration of the while loop gets a match in the expression (if (= aux atm) (setq
result (cons i atm)), so the initial assignment (setq result nil) remains unchanged
and thus the function ultimately returns nil. Incidentally, the function also works for
finding sublists:
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> (first (my-find ‘(a b) ‘(1 2 3 (a b) 4 5)))
: 3

The important concept to learn, or, better said, one of the more important ideas to
understand when using a while structure, consists in its ability for traversing lists. It
allows a Lisp user to sequentially examine a list and performs the desired com-
puting on its elements. The following function (!flex-chop) is the complementary
function to (flex-chop), that is, it returns the original list used as input without some
internal elements. Let us observe code 3-19:

;Code 3-19
(define (!flex-chop lst n1 n2, result-lst i lng)

(setq result-lst'())
(setq i 0)
(while (< i n1)

(begin
(setq result-lst (cons (nth i lst)

result-lst))
(setq i (+ 1 i))

);end begin
);end while

(setq lng (length lst))
(setq i(- lng n2))

(while (< i lng)
(begin

(setq result-lst (cons (nth i lst)
result-lst))

(setq i (+ 1 i))
);end begin

);end while
(reverse result-lst)

)

The algorithm used for (!flex-chop) is rather easy: (a) initialize variables result-
lst and i. (b) enter a loop and copy all the elements in the list until reaching the n1
element in the original list. (c) calculate how many elements must be copied at the
tail of the list, and (d) copy the rest of elements. Let us try this function at the Lisp
prompt:

> (!flex-chop ‘(a b c d e f g h) 2 2)
: (a b g h)

It is interesting to observe a comparison of results between the functions (flex-
chop) and (!flex-chop), using, for example, the list (a b c d e f g h) as the first
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argument for both functions. Table 3.5 show some results for several values of n1
and n2 as the rest of arguments.

As desired, and under the point of view of classical sets theory, the union of
(flex-chop) and its complementary (!flex-chop) over any list always produces the
original list.

(flex-chop lst n1 n2) [ (!flex-chop lst n1 n2) = lst

Very interestingly, NewLisp has some built-in functions related to sets. I would
like to invite the reader to consult the NewLisp manual (from the Menu:
Help → NewLisp Manual and Reference) in order to appreciate the functions
(intersect), (difference) and (unique).

Now it is time to re-visit Mondrian, the painter. In Chap. 2 we had promised to
find a solution to the mess of shapes in Fig. 2.5 in order to obtain the correct
position of compositions shown in Fig. 2.4. This implies to design a function for
moving all the rectangles in the Mondrian-style list:

(setq Mondrian-style ‘(((5-4) (8 12)) ((0 0) (10 10)) ((2-1) (16 2)) ((6.5 1)
(13.5 8))))

Since the required movement is horizontal and towards left, we would only need
to subtract the x values from the sub-lists representing points. However, we are
going to seize the opportunity to design a more general function that allows to move
the composition both in X and Y directions by a given amount delta-x, delta-y. The
difficulty in this moment is that the elements of the list are not 2D points, but
rectangles defined by their diagonals, that are in fact, lists of two 2D points. If we
type at the Lisp prompt:

> (first Mondrian-style)
: ((5 -4) (8 12))

For accessing the first x value of the first point in the first rectangle of the list we
would need to type:

> (first (first (first m)))
: 5

Table 3.5 Results comparison between (flex-chop) and (!flex-chop)

Arguments n1, n2 List returned by (flex-chop) List returned by (!flex-chop)

n1 = 0, n2 = 2 (a b c d e f) (g h)

n1 = 2, n2 = 0 (c d e f g h) (a b)

n1 = 2, n2 = 2 (c d e f) (a b g h)

n1 = 4, n2 = 4 () (a b c d e f g h)

n1 = 0, n2 = 0 (a b c d e f g h) ()
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thus, it is not a surprise that the desired function becomes a bit complex. All the
code is shown in listing Code 3-20. After initializing some variables we enter in a
while loop in order to traverse the list given as argument, in this case
Mondrian-style. With the help of two simple expressions we extract points p1 and
p2, representing the diagonal of every rectangle in the list. After this required step
comes the real list manipulation in order to move points p1 and p2 by the required
magnitudes delta-x, delta-y:

(setq p1 (cons (add (first p1) delta-x) (add (last p1) delta-y)))
(setq p2 (cons (add (first p2) delta-x) (add (last p2) delta-y)))

As can be seen, we obtain the more internal values by using the functions (first)
and (last). Then we add the desired shift given by delta-x, delta-y, and after consing
them into a 2D point structure we re-assign the obtained points to p1 and p2. Please
take the required time to understand these two lines of code. It is not cryptic but it
can take some time at first sight.

After this list manipulation the rest is easy: first we build a list composed by p1
and p2 using the function (list) and then we iteratively cons the resulting list in
every loop pass. Just after the end of the loop all the processing is almost done and
we only need to reverse the obtained list in order to get the desired result, as can be
seen in code 3-20:

;code 3-20
(define (shift-xy lst delta-x delta-y, n i lst-out lst-temp

p1 p2)
(setq i 0)
(setq n (length lst))
(setq lst-out'())

(while (< i n)
(begin

(setq lst-temp (nth i lst))
(setq p1 (first lst-temp))
(setq p2 (last lst-temp))
(setq p1 (cons (add (first p1) delta-x)
(add (last p1) delta-y)))
(setq p2 (cons (add (first p2) delta-x)
(add (last p2) delta-y)))
(setq lst-temp (list p1 p2))
(setq lst-out (cons lst-temp lst-out))
(setq i (+ 1 i))

);end begin
);while end
(reverse lst-out)

);end function
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Now we only need to use the function in order to get a new location for the
rectangles that form the Mondrian-style composition. The required two dimensional
shift is delta-x = -18, delta-y = 0:

> (shift-xy Mondrian-style -18 0)
: (((-13 -4) (-10 12)) ((-18 0) (-8 10)) ((-16 -1) (-2 2)) ((-11.5 1) (-4.5 8)))

3.5.2 Other Looping Structures

Aside the while looping structure, Lisp has four looping alternatives, named for, do-
until, do-while and until.

The for looping structure is useful when we know, beforehand, how much
iterations must happen in a loop. Code 3-21a shows a function, named (calc-
factorial) that returns a list containing the factorial of the first n numbers, given by
the following mathematical expression:

n! ¼ n � ðn� 1Þ � ðn� 2Þ. . .3 � 2 � 1 ð3-3Þ

;code 3-21a
(define (calc-factorial1 n, x last-result lst-out)

(setq last-result 1)
(setq lst-out'())
(for (x 1 n)

(begin
(setq last-result (mul last-result x))
(setq lst-out (cons last-result lst-
out))

);end begin
);for end
(reverse lst-out)

)

As usually, let’s try the (calc-factorial1) function at the Lisp prompt:

> (calc-factorial1 10)
: (1 2 6 24 120 720 5040 40320 362880 3628800)

We all know that the factorial function grows very quickly, but (calc-factorial1)
help us to visualize how much “quickly” really means:

3.5 The Discovery of Loop Structures 77



> (calc-factorial1 171)

: (1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600

6227020800 8.71782912e+10 1.307674368e+12 2.092278989e+13

3.556874281e+14 6.402373706e+15 1.216451004e+17 2.432902008e+18

5.109094217e+19 1.124000728e+21 2.585201674e+22 6.204484017e+23

1.551121004e+25 4.032914611e+26 1.088886945e+28 3.048883446e+29

8.841761994e+30 2.652528598e+32 8.222838654e+33 2.631308369e+35

8.683317619e+36 2.95232799e+38 1.033314797e+40 3.719933268e+41

1.376375309e+43 5.230226175e+44 2.039788208e+46 8.159152832e+47

3.345252661e+49 1.405006118e+51 6.041526306e+52 2.658271575e+54

1.196222209e+56 5.50262216e+57 2.586232415e+59 1.241391559e+61

6.08281864e+62 3.04140932e+64 1.551118753e+66 8.065817517e+67

4.274883284e+69 2.308436973e+71 1.269640335e+73 7.109985878e+74

4.05269195e+76 2.350561331e+78 1.386831185e+80 8.320987113e+81

5.075802139e+83 3.146997326e+85 1.982608315e+87 1.268869322e+89

8.247650592e+90 5.443449391e+92 3.647111092e+94 2.480035542e+96

1.711224524e+98 1.197857167e+100 8.504785886e+101 6.123445838e+103

4.470115462e+105 3.307885442e+107 2.480914081e+109 1.885494702e+111

1.45183092e+113 1.132428118e+115 8.946182131e+116 7.156945705e+118

5.797126021e+120 4.753643337e+122 3.94552397e+124 3.314240135e+126

2.817104114e+128 2.422709538e+130 2.107757298e+132 1.854826423e+134

1.650795516e+136 1.485715964e+138 1.352001528e+140 1.243841405e+142

1.156772507e+144 1.087366157e+146 1.032997849e+148 9.916779349e+149

9.619275968e+151 9.426890449e+153 9.332621544e+155 9.332621544e+157

9.42594776e+159 9.614466715e+161 9.902900716e+163 1.029901675e+166

1.081396758e+168 1.146280564e+170 1.226520203e+172 1.324641819e+174

1.443859583e+176 1.588245542e+178 1.762952551e+180 1.974506857e+182

2.231192749e+184 2.543559733e+186 2.925093693e+188 3.393108684e+190

3.969937161e+192 4.68452585e+194 5.574585761e+196 6.689502913e+198

8.094298525e+200 9.875044201e+202 1.214630437e+205 1.506141742e+207

1.882677177e+209 2.372173243e+211 3.012660018e+213 3.856204824e+215

4.974504222e+217 6.466855489e+219 8.471580691e+221 1.118248651e+224

1.487270706e+226 1.992942746e+228 2.690472707e+230 3.659042882e+232

5.012888748e+234 6.917786473e+236 9.615723197e+238 1.346201248e+241

1.898143759e+243 2.695364138e+245 3.854370717e+247 5.550293833e+249

8.047926057e+251 1.174997204e+254 1.72724589e+256 2.556323918e+258

3.808922638e+260 5.713383956e+262 8.627209774e+264 1.311335886e+267

2.006343905e+269 3.089769614e+271 4.789142901e+273 7.471062926e+275

1.172956879e+278 1.853271869e+280 2.946702272e+282 4.714723636e+284

7.590705054e+286 1.229694219e+289 2.004401577e+291 3.287218586e+293

5.423910666e+295 9.003691706e+297 1.503616515e+300 2.526075745e+302

4.269068009e+304 7.257415615e+306 inf)
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The last element in this long list is not a number, but the NewLisp representation
of infinite. Calculating the factorial of 171 NewLisp reaches the bigger positive
integer it can handle. For those interested in pushing a computer towards its limits
while having a lot of fun in the reading I would suggest reference (Gray and Glynn
1991). Also, and as an exercise, I would recommend to the more mathematical
oriented readers to write a function for creating a list of n elements, given by the
following mathematical expression in order to compare the growing of n! and an:

f ðnÞ ¼ n!
an

ð3-4Þ

Again at the function (calc-factorial1) we must remark the anatomy of a for
loop:

(for (symbol initial-value final-value)
(begin

(lisp-expressioni)
); end begin

); end for

After the keyword for, the name of a symbol must be specified. This symbol
works like an index for running the loop exactly (+ (- final-value initial-value) 1)
times. This means that for loops are used when we know beforehand how many
times it must loop. However, every for loop can be expressed by means of a while
loop, as we can see in Code 3-21b, where an alternate version for creating a list of
the first n factorial numbers is shown:

;code 3-21b
(define (calc-factorial2 n, i last-result lst-out)

(setq i 1)
(setq last-result 1)
(setq lst-out'())

(while (<= i n)
(begin

(setq last-result (mul last-result i))
(setq lst-out (cons last-result lst-
out))

(setq i (+ 1 i))
);end begin

);end while
(reverse lst-out)

)

Trying it at the keyboard we can see that it produces exactly the same results as
its for-based loop alternative:

3.5 The Discovery of Loop Structures 79



> (calc-factorial2 5)
: (1 2 6 24 120)

The do-until, do-while and until loop structures are variations of the same theme.
In order to save space, we shall write a function that sums the first n numbers using
these loop structures, shown in Code 3-22a, 3-22b, and 3-22c, allowing the reader
to discover the subtle differences:

;code 3-22a, using the do-until looping structure:
(define (sum-n1 n, i result)

(setq i 0)
(setq result 0)
(do-until (> i n)

(begin
(setq result (+ result i))
(setq i (+ i 1))

)
)
result

)

;code 3-22b, using the do-while looping structure:
(define (sum-n2 n, i result)

(setq i 0)
(setq result 0)
(do-while (>= n i)

(begin
(setq result (+ result i))
(setq i (+ i 1))

)
)
result

)

;code 3-22c, using the until looping structure:
(define (sum-n3 n, i result)

(setq i 0)
(setq result 0)
(until (> i n)

(begin
(setq result (+ result i))
(setq i (+ i 1))

)
)
result

)
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Testing the three functions at the same time we can confirm they produce the
same result:

> (list (sum-n1 5) (sum-n2 5) (sum-n3 5))
: (15 15 15)

As a hint, it must be noted that the while and for loop structures are the most
used ones in Lisp. The while structure is the more general and flexible one, existing
today in practically any other programming language. The for structure is the better
option when it is known in advance how many loop iterations are needed, but even
so, it can be substituted by a while structure, as we have already seen. My practical
advice would be to master the while structure in order to not get confused by these
multiple looping programming options.

3.6 Recursion Is Based on Recursion

The first time we spoke about recursion in this book, intentionally without men-
tioning it, was in Chap. 2, when we defined what a list is:

“A list is a formal collection of elements enclosed by parenthesis whose
elements are either atoms or lists”

This definition is recursive because the word, or term, that we try to define is
included into the definition itself. Let us take as an example the list (a b c (1 2 3) d e).
From a newcomer to Lisp, and reading from left to right (I already assume you are
not a Lisp newcomer!), the first elements, a, b, c are a collection of atoms that are
enclosed by parenthesis, so for now, it seems a list. Then, the fourth element appears
as a new expression: (1 2 3). It is not an atom, but then we call recursively the
definition of list and then we “jump” inside the fourth element for discovering that
elements 1, 2 and 3 are atoms enclosed by parenthesis, so it is in itself a list, so the
definition seems to work, at least for now. After exiting the fourth element we found
elements d and e, so we finally conclude that it is certainly a list because it is a
collection of elements enclosed by parenthesis. It only happens that one of its
internal elements is also a list. The definition holds completely.

Another example or recursion in natural language is the famous Hofstadter’s
Law, the author of the book “Gödel, Escher, Bach: An Eternal Golden Braid”: “It
always takes longer than you expect, even when you take into account Hofstadter’s
Law” (Hofstadter 1999). This sentence helps to know, for example, how much time
does it takes to write a book: “longer than you expect”, but then the law calls itself
recursively so you intuitively understand that it takes many more time than you
expect. By the way, as you have correctly guessed, the title of this section is
strongly recursive.

From its very first design, Lisp has included recursion. It is a programming
structure where a function is able to call itself. Before introducing a true Lisp
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example of recursive function we are going to comment first some pseudo-code,
shown in Code 3-23a, which will help us to understand the key concepts of
recursion in the language. The example takes an imaginary function, written in Lisp
syntax, for helping a Formula One driver to win a race in a circuit of n laps:

;Code 3-23a
(define (runF1GrandPrix n)

(if (= n 0)
(stop-the-car)
(begin

(run-as-fast-as-you-can)
(runF1GrandPrix (- n 1))

);end begin
);end if

)

It does not matter in this moment what the functions (stop-the-car) and (run-as-
fast-as-you-can) mean, probably a very complex set of cognitive instructions. The
important idea is to understand the recursive structure of the function. Basically
speaking, the F1 driver is instructed to run as fast as he can do until finishing the
last lap of the Grand Prix. Let us observe the details: First, the function needs an
argument n that describes the number of the laps of the Grand Prix. Just after
entering the function, a conditional if appears, testing the number of laps to go. If
n equals zero, that is, if the GP has ended, the pilot is instructed to stop the car. This
programming structure is very important in recursion: we always need a way to exit
the function, a way to stop it. Without an exit-point a recursive function would run
forever, so if you are going to use recursive functions in your Lisp programs, the
first thing you should design is the exit point of these type of functions.

The “else” part of the if structure inside the function contains two lisp expres-
sions enclosed inside the begin block that will be called if any lap remains in the
race. The first, (run-as-fast-as-you-can) has an obvious meaning in this
pseudo-code. The second function call is the nuclear point in a recursive function:
A new call to the function itself. The key-point in this moment is that the argument
for the function has varied its value, decreasing its value in one lap by means of
using the expression (- n 1).

Since Code 3-23a is pseudo-code, we cannot test it at the Lisp prompt. However,
it is rather close in its syntax to authentic Lisp code, so nothing forbids us to replace
the functions (stop-the-car) and (run-as-fast-as-you-can) for something simple but
convenient for our purposes of understanding recursion. For (stop-the-car) we shall
use the Lisp expression “Hey, this has been great!”, and for the (run-as-fast-as-
you-can) we shall employ the expression (print “I’m running lap” n “as fast as I
can do!\n”). This is the first time we use the function (print) in this book, but suffice
is to say for now that it prints string type data in the session area of the NewLisp
environment. We shall introduce it in more detail in the next chapter. The resulting
function runF1GrandPrix is shown in Code 3-23b:
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;Code 3-23b
(define (runF1GrandPrix n)

(if (= n 0) ;the exit to the function is here
''Hey, this has been great!''
(begin

(print''I'm running lap''n'' as fast as I can do!
\n'')
(runF1GrandPrix (- n 1))
);end begin

);end if
)

Now we certainly can test it at the Lisp prompt. In order to save space, we shall
simulate a very short GP, with only five laps:

> (runF1GrandPrix 5)
: I’m running lap 5 as fast as I can do!
: I’m running lap 4 as fast as I can do!
: I’m running lap 3 as fast as I can do!
: I’m running lap 2 as fast as I can do!
: I’m running lap 1 as fast as I can do!
: “Hey, this has been great!”

In this example, the function starts with an n value equal to 5, so the if structure
evaluates its relational expression to nil and enters the begin block. There, after
printing the message “I’m running lap 5 as fast as I can do!” the function is called
recursively: (runF1GrandPrix 4). The value of n decreases in every function call
until becoming zero and then the function reaches its exist-point, meeting the
relational expression (= n 0) and then printing “Hey, this has been great!”.

Maybe one of the most known examples of recursion in Lisp is a function for
calculating the factorial of n. Yes, we have just seen in the previous section how to
calculate it using a for and then a while looping structure. Code 3-24 shows the
recursive version. It does not produce a list with the first n factorial numbers. It
returns only the factorial of n:

;Code 3-24
(define (r-factorial n)

(if (= n 1) ;terminates the function
1
(mul n (r-factorial (- n 1)))

)
)

The first thing we note about this recursive version is the small quantity of code
it uses. Let us try it at the Lisp prompt:

> (r-factorial 5)
: 120
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Now let us examine it meticulously. As you can immediately observe, the
function (r-factorial) has a similar structure to the function (runF1GrandPrix). The
argument n is a natural number that decreases its value in recursive calls to the
function until reaching a value of one. In that moment the function terminates,
returning the value of all the multiplications performed in every function pass. Very
interestingly, NewLisp incorporates a function named (trace) that allows us to
observe the internal working of any function step by step. Let us try it for the
function call (r-factorial 4):

> (trace true)
: true
: 0> (r-factorial 4)
: ———

: (define (r-factorial n)
: #(if (= n 1)
: 1
: (mul n (r-factorial (- n 1))))#)
:
:[-> 2 ] s|tep n|ext c|ont q|uit >

You have now the options “step”, “next”, “cont” and “quit”. Pressing “s” at the
keyboard followed by the Enter key you will appreciate how every Lisp expression
is evaluated, one at a time. The NewLisp environment marks every expression by
means of a double sharp # enclosing symbol, showing the intermediate results until
reaching the returning value: 6. For ending any trace session and exit to the standard
Lisp prompt you only need to press the “q” key and then Enter. Pressing “s” and the
Enter key several times, we arrive a point where n equals one. Now things start to
become fascinating. We have remarked in bold the expression traced, enclosed
between sharp marks:

: (define (r-factorial n)
: (if (= n 1)
: 1
: (mul n #(r-factorial (- n 1))#)))
: RESULT: 1

That’s correct. By definition in the function, when n = 1 the function call
becomes (r-factorial 1) → 1. Now the most interesting thing is going to happen
when we continue pressing “s” and the Enter key: After arriving at the minimum
allowed value of n, Lisp start to increment n in every iteration automatically from
its internal memory management system, performing and storing the partial cal-
culations and values. Now n is two:

: (define (r-factorial n)
: (if (= n 1)
: 1
: #(mul n (r-factorial (- n 1)))#))
: RESULT: 2
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Now n is three:

: (define (r-factorial n)
: (if (= n 1)
: 1
: #(mul n (r-factorial (- n 1)))#))
: RESULT: 6

and finally n reaches four:

: (define (r-factorial n)
: (if (= n 1)
: 1
: #(mul n (r-factorial (- n 1)))#))
: RESULT: 24

In Code 3-25 we can see a recursive function that calculates the sum of the first
n natural numbers:

;Code 3-25
(define (r-sum n)

(if (= n 1) ;terminates the function
1
(+ n (r-sum (- n 1)))

)
)

This function is similar to the previous one and now you should understand it
perfectly well. After testing it at the Lisp prompt, it can help you to (trace) it:

> (r-sum 100)
: 5050

Aside recursion for numerical calculations, Lisp not only allows, but it is
especially useful for traversing lists. Here we must remember the Fig. 2.1. The
bottom area of the figure represents the realm of using while looping structures for
traversing. The top area suggests the world of recursion in lists. The following
function, shown in Code 3-26, prints the elements of a list

;Code 3-26
(define (r-show lst)

(if (null? lst) ;exit condition to the funtion
nil
(begin
(print (first lst)''\n'')
(r-show (rest lst)) ;the trick here is to use
(rest)
);end begin

)
)
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First, let us test the function:

> (r-show ‘(recursion is driving me crazy))
: recursion
is
driving
me
crazy
nil

The performed strategy in this function resides in the exquisite processing of
data by means of the functions (first) and (rest). The test (if (null? lst) allows the
exit point of the function when lst is nil, that is, when we have traversed the entire
list. Meanwhile, the function takes the first element, prints it, and immediately
calls itself, recursively, using (rest lst) as its argument. The second iteration is
equivalent to (print (first (rest lst))) and so on until all the elements in the list are
printed.

Recursion is especially adequate to Lisp system programming, that is, to pro-
gram kern Lisp functions. As an example, Code 3-27 shows a version of (length),
returning, as you can guess, the length of a list:

; Code 3-27
(define (r-length lst)

(if (null? lst) ;exit condition to the function
0
(+ 1 (r-length (rest lst)))

)
)

Testing it is straightforward:

> (r-length ‘(a b c))
: 3

The strategy for this function, aside the usual design for its exit point, is a
mixture of using (rest) and a recursive call similar to the used in the function
(r-sum). Just compare the respective Lisp expressions used in both functions:

(+ n (r-sum (- n 1)))
(+ 1 (r-length (rest lst)))

The first expression adds numbers; the second one counts elements in a list.
Another fundamental function in Lisp, as we already know is (nth). In code 3-28 we
can see an implementation of this function, named in this case (r-nth), using
recursion.
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; code 3-28
(define (r-nth n lst)

(if (null? lst)
nil

(if (zero? n)
(first lst)
(r-nth (- n 1) (rest lst))

);internal if
);external if

)

We can test it at the Lisp prompt comparing it with the original (nth) function:

> (cons (nth 0 ‘(a b c)) (r-nth 0 ‘(a b c)))
: (a a)

As usual, the first thing to do when designing recursive functions is to provide an
exit point. In this case this function has two exit points. The first one checks if the
list supplied as an argument is null: (if (null? lst) → nil, the second one checks if
the n argument is zero, in such case, it return the first element of the list. If n is not
zero, then a recursive call to the function is made, traversing the list using (rest) and
decreasing n at the same time until n becomes zero. Please note the coordinate use
of (first) and (rest), ultimately allowing the extraction of the nth element in the list.
Looking at the code is also clear why the (nth) function is zero indexed.

Through all these function examples exposed in this section of the chapter we
have seen that recursion is just another way of looping. Iterative looping, based on
while and alternative structures such as for or until is usually better understood than
recursion from those readers that already have previous programming knowledge.
Recursion can seem at first sight more obscure than standard iteration, but it really
deserves attention. Recursive functions use few code, are elegant and are the most
pure Lisp you can write. In any case I am not a purist. Feel free to choose the
programming style that suits you best.

3.7 A Note on Lambda Expressions

Until now we have used the keyword define for creating functions. Since the Lisp
environment is so special, where you can establish interactive sessions with the
system in real time, you can use anonymous functions, that is, functions that have
not a name but even so can be called directly from other functions. Such a type of
Lisp structures are called lambda expressions.

Let us imagine, as an example, you have a lists of points (x y), such as:

> (setq lst ‘((1 3) (4 5) (6 1)))
: ((1 3) (4 5) (6 1))
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For swapping the values of x and y, that is, to build a list of (y x) pairs, you could
interactively write at the Lisp prompt:

> (map (lambda (pair) (cons (last pair) (first pair))) lst)
: ((3 1) (5 4) (1 6))

We have already introduced the function (map) at the beginning of this chapter.
It is a function that allows a Lisp user to successively apply another function on the
elements of a list. In those paragraphs we used a function built by means of the
keyword define, that is, a standard Lisp function. The novelty now is the following
expression:

(lambda (pair) (cons (last pair) (first pair)))

This lambda expression is equivalent in its results to the function shown in code
3.29:

;Code 3-29
(define (swap-pair pair)

(cons (last pair) (first pair))
)

The difference with lambda expressions is that the Lisp user can define the
function on the fly, without even needing a name for it. Needless to say, after
defining (swap-pair) you can use it with (map), too:

> (map swap-pair lst)
: ((3 1) (5 4) (1 6))

Alternatively, you could also give a name to a lambda expression and then use it
as an argument for (map). As an example:

> (setq my-exchange (lambda (pair) (cons (last pair) (first pair))))
: (lambda (pair) (cons (last pair) (first pair)))

Now the symbol my-exchange stores a lambda expression:

> my-exchange
: (lambda (pair) (cons (last pair) (first pair)))

And now, as you already suspect:

> (map my-exchange lst)
: ((3 1) (5 4) (1 6))

Lambda expressions are an extremely exciting feature of Lisp and they would
deserve a complete chapter for them alone. However, and aside the fact we are short
on space, they are a relatively advanced topic on Lisp. The interested reader can
obtain further information on advances books on Lisp or even get the whole picture
in specific texts (Michaelson 2011).
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3.8 As a Summary

An important quantity of material has been exposed in this chapter. Together with
the concepts of list structure and list processing, already seen in Chap. 2, these
materials constitute the foundations of the Lisp language. The essentials of this
chapter can be summarized in the following points:

• A user-defined function is a set of Lisp expressions that, working together,
performs a programming task. As it is the case with the functions already
included in the language, every user defined function has an input (available
information), an output (the result of the function) and a body that, containing a
set of Lisp expressions, is the responsible of processing the information obtained
from the input until obtaining the desired function output.

• In the NewLisp environment all the functions are written in the programming
area of the environment and can be tested in the session area, at the Lisp prompt.

• All the functions defined by user become Lisp functions, converting automati-
cally themselves in an extension of the language in such a way that can be
combined with any structure of the language. From the programmer’s viewpoint
there is no difference in use between a user defined function and a function
originally embedded into Lisp.

• Comments are extremely important in Lisp. Every Lisp user should comment
profusely the functions that he or she writes. A semicolon (;) is the sign used in
Lisp to tell the language where a comment begins. Lisp treats all the words
written after a semicolon in a line as a comment.

• Internal variables live only inside the functions where they are defined. This
means that an internal variable cannot be accessed from any other function.
They are usually needed for storing values from internal calculations in the
functions, that is, to help to process information. On the other hand, global
variables can be defined in a Lisp program in such a way that they can be
accessed from any function in the program. Since any function can change the
value of a global variable, these must be handled with care.

• After writing and testing a function it is common practice to try to optimize it.
However, no function should be optimized until an extensive testing of the
non-optimized version is performed. Function optimization usually produces
some lack of legibility and human interpretability of the resulting Lisp code, so a
delicate balance between optimization and legibility must be selected in every
occasion.

• All types of Lisp expressions such as numbers, atoms or symbols can be
compared in NewLisp by using the relational operators: Less than (<), bigger
than (>), equal to (=), less or equal to (<=), bigger or equal to (>=), and different
to (!=). Logical tests in Lisp can be performed by using function predicates
and/or relational operators. A logical test returns only two possible outcomes:
true or nil.

• A multiple logical test can be made by using the logical connectives “and” and
“or”. These connectives can combine function predicates and relational
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operators for producing sophisticated logical expressions. The results of com-
bining logical connectives are obtained from the truth table shown previously in
Table 3.4.

• An if-then-else structure is one of the bases of conditional programming in
Lisp. It begins with a logical test, and depending on its true or nil evaluation, an
alternative set of Lisp expressions is evaluated. In order to group several Lisp
expressions inside the same logical direction NewLisp uses the keyword begin.
Special attention must be observed for matching parenthesis while using begin
blocks.

• Indentation consists in an adequate placement of text farther to the right in some
lines of code inside a function. Such a shift in code location helps to make it
clear the design of the function, helping at the same time to avoid programming
mistakes. The use of indentation, although not mandatory, is specially recom-
mended in if-then-else conditional structures.

• A cond structure is an alternative to an if-then-else construction. After the cond
keyword several logical tests are used until covering all the possible options in
the range where the logical tests are defined. If all the logical tests are evaluated
to nil, an optional last expression can be included as a lifeboat that works as an
else statement.

• A while looping structure is formed by the while keyword followed by a logical
test and then a block of Lisp expressions. This block of expressions is repeated
until reaching a point where the logical test is evaluated to nil. The logical test is
evaluated one time every loop pass. At least one of the Lisp expressions inside
the block must be able to modify the value of the expression contained in the
logical test. Otherwise a while loop would run forever.

• Aside the while looping structure, Lisp has four looping alternatives: for, do-
until, do-while and until. The most important one of these is the for structure. It
is specially suited when we know beforehand how many iterations must happen
in a loop. The while and for structures are the most used ones in this book. Even
so, every for construction can be expressed by means of a while looping
structure.

• Recursion is a very special computing structure where a function calls itself
from inside its own body. Although recursion can be used practically in every
program language, it almost reaches the status of art in Lisp. The design of a
recursive function must include an exit point to the function and an expression
where the function calls itself. In every call, the argument changes. Recursion is
an excellent computing strategy for traversing lists by means of the use of (first)
and (rest).

• Recursive functions are usually more difficult to read and understand that
functions where looping structures are used. This is caused by traditional
computer science inertia, where other computer languages, not naturally ori-
ented towards recursion, establish a traditional way of thinking in the pro-
grammers. The NewLisp function (trace) helps the Lisp user to follow the inner
workings of any function, being a useful tool to better understand recursion.
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• Lambda expressions are a special type of functions. They have not a name, that
is, they are anonymous, but can be called from other functions. Moreover, they
can be defined and applied on the fly, being a first-class computing resource in
interactive Lisp sessions.

In the next chapter we shall try to put in practice all we have learnt so far in the
book. Until now we have played with small pieces of code in order to know the
essentials of the language. The next step will consist in designing, aggregating and
coordinating functions in order to build programs. We shall extensively use con-
ditional structures, looping structures, and lists, of course. We shall even seize the
opportunity to include new programming concepts.

References

Graham, P.: What made Lisp different. http://www.paulgraham.com/diff.html. Acceded Mar 2014
Gray, T., Glynn, J.: Exploring Mathematics with Mathematica. Addison-Wesley, Boston (1991)
Hofstadter, D.: Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books, New York (1999)
Michaelson, G.: An Introduction to Functional Programming Through Lambda Calculus. Dover,

2011
National Heart, Lung, and Blood Institute.: Metric BMI Calculator. http://www.nhlbi.nih.gov/

guidelines/obesity/BMI/bmi-m.htm. Acceded Mar 2014

3.8 As a Summary 91

http://www.paulgraham.com/diff.html
http://www.nhlbi.nih.gov/guidelines/obesity/BMI/bmi-m.htm
http://www.nhlbi.nih.gov/guidelines/obesity/BMI/bmi-m.htm


Chapter 4
Lisp Programming

4.1 Introduction

After reading the three previous chapters, understanding the exposed material and
playing with the examples at the keyboard I must confess that you already know to
program in Lisp. All the heavy stuff of the language has been digested and you only
need to put it all together. Yes, there are advanced programming techniques that
have not been exposed, and in this point we are still far from a professional level of
Lisp programming, but even so you have enough knowledge for creating powerful
applications, and what is more important: You now have understood a program-
ming paradigm that will serve you for exploring the realms of fuzzy sets and fuzzy
logic with confidence in the next part of the book.

This chapter will add the last touches for creating programs with NewLisp. You
will learn to implement simple user interfaces, that is, programming techniques that
allows a human being to interact with a computer in real time. The devices that
allow this interaction are the screen, the keyboard, and a storage device such a hard
disk. Lisp incorporates functions that are designed to perform input/output (I/O)
tasks with these devices and we are going to learn how to use them in this chapter.

For moving forwards in our Lisp experiences we shall develop two complete
applications in this chapter. The first one is a rather complete French roulette
simulation that shows how to structure a Lisp program into a set of functions and to
design a simple user interface. The second application is a small library of functions
for simple database managing. For experimenting with the library we shall use a
database of deep-sky celestial objects, although the database functions can be used
with any CSV (Comma Separated Values) format database, obtained, for example,
from spreadsheet software applications such as Open Office, Excel, etc.
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4.2 From Montecarlo with Love

Being one of the most famous cities in the Mediterranean coast, Montecarlo always
surprises the visitor with its good climate, smiling people, pure blue sea and
glamorous Casino. Inside the historical building, a roulette works seven days a
week, always moving tokens and money behind simple random mechanisms. In this
section of this chapter we are going to develop a Lisp program that emulates a
traditional French single zero roulette. After developing the application, the reader
will be able to simulate a night of play, observing how much money can be won or
lost. Rien ne va plus!

As it happens in every computing problem on simulation, the first step consists
in getting a clear description of the real system. For each roulette run, a small ball is
thrown towards the opposite direction of a spinning wheel (roulette) that contains
37 numbered pockets. After the system loses momentum, the ball ultimately falls
into one pocket of the wheel, producing a resulting number and a corresponding set
of play outcomes, corresponding to a variety of betting options. In our simulation,
the following bets are allowed:

• Single number
• Red or black
• Even or Odd
• Manque (numbers from 1 to 18) or Passe (numbers from 19 to 36)
• Dozens: First, second, or third dozen
• Columns: First, second or third (see Fig. 4.1)

Fig. 4.1 Layout of a French
single zero roulette
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The payouts for every bet are given in Table 4.1.
On a real roulette, some more bets are allowed, as, for example “streets” (three

horizontal numbers), “corners” (four adjoining numbers in a block), and so on. In
order to maintain a suitable degree of complexity in the Lisp code, only the bets
shown in Table 4.1 will be included in the simulation. We encourage the interested
reader to develop a full implementation of this classic casino game.

4.2.1 Declaring Global Variables

In the previous chapter we learnt about local variables inside user-defined functions.
Now it is the time to introduce global variables, that is, variables whose content can
be used—and modified—by any function in a Lisp program. The advantage of such
a data structure is, obviously, the easy availability of them from any part of a
program. On the other hand, such easiness of using them brings as a consequence
the generation of programs that can be confusing, hard to read and ultimately, prone
to failures that can be hard to detect. The trivial solution resides in not using global
variables, but from a practical point of view, the best advice for keeping a good
balance between easy availability of data and minimizing the possibility of errors
consists in using global variables scarcely and giving them a special spelling,
surrounding them, for example, by asterisks. As an example, payout could be the
name of a local variable, and *payout* would be the chosen spelling for a global
variable.

Observing the roulette layout in Fig. 4.1 we can realize that the color assignment
for numbers follows a strange pattern, so instead of generating an algorithm for
describing them, the best is to declare all the number-color relationship inside a
Lisp list. Columns follow a lot simple pattern, but even so, we are going to declare
them as global variables, too. The same will be made for the rewards/payouts, as
can be seen in code 4-1:

;code 4-1
(setq *numbers*'((1 RED) (2 BLACK) (3 RED) (4 BLACK) (5 RED)

(6 BLACK) (7 RED) (8 BLACK) (9 RED) (10 BLACK) (11 BLACK) (12

Table 4.1 Payouts for each
result/bet in a single zero
French roulette

Result Payout

0 Nil, casino wins all

Single number 35:1

Red/black 1:1

Even/odd 1:1

Manque/passe 1:1

Dozen 2:1

Column 2:1
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RED) (13 BLACK) (14 RED) (15 BLACK) (16 RED) (17 BLACK) (18
RED) (19 RED) (20 BLACK) (21 RED) (22 BLACK) (23 RED) (24
BLACK) (25 RED) (26 BLACK) (27 RED) (28 BLACK) (29 BLACK) (30
RED) (31 BLACK) (32 RED) (33 BLACK) (34 RED) (35 BLACK) (36
RED)))

;These are the column patterns:
(setq *column1*'(1 4 7 10 13 16 19 22 25 28 31 34))
(setq *column2*'(2 5 8 11 14 17 20 23 26 29 32 35))
(setq *column3*'(3 6 9 12 15 18 21 24 27 30 33 36))

;These are the rewards for each type of winning bet:
(setq *rewards* '((NUMBER 35) (RED 1) (BLACK 1) (EVEN 1)

(ODD 1) (PASSE 1) (MANQUE 1) (FIRST-DOZEN 2) (SECOND-DOZEN 2)
(THIRD-DOZEN 2) (FIRST-COLUMN 2) (SECOND-COLUMN 2) (THIRD-
COLUMN 2)))

Now the global variable *numbers* contains a list where each sublist follows the
pattern (number color). The number zero is not included in the list because its
outcome signals a game event where the casino wins all the bets on the table. The
local variables *column1*, *column2* and *column3* store in simple lists their
corresponding numbers. Finally, the global variable *rewards* contains a list of
sublists with the following structure (type-of-bet payout). An alternative strategy for
storing this type of information could be to use some files for storing it, but since
the number of data is relatively small it is better to directly include all the infor-
mation in the Lisp code itself. Please note that the program uses only five global
variables, a number small enough to maintain it under good programming practices.
Needless to say, code 4-1, as the rest of the code hereafter, must be put into the
programming area of the NewLisp interface (see Fig. 3.1).

4.2.2 Throwing the Ball and Checking Results

After a roulette spin, a number between 0 and 36 should be generated. We shall
design a dedicated function for this important event later in our roulette simulation.
Before arriving that programming step we are going to concentrate first in a set of
functions that check what betting results produces every roulette spin. That is, we
are going to design a set of functions that, receiving an integer number between 1
and 36 as an input, return the associated game result. For example, if the input
parameter is the integer 16, the goal is to get the associated results RED, EVEN,
MANQUE, SECOND-DOZEN, FIRST-COLUMN. The functions shown in Code
4-2 satisfy this goal. They do not check for number zero because in that case the
casino wins it all:
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;code 4-2:
define (red-or-black number)

(if (= (last (assoc number *numbers*))'RED)
'RED
'BLACK

)
)

(define (even-or-odd number)
(if (= (% number 2) 0)

'EVEN
'ODD

)
)

(define (passe-or-manque number)
(if (> number 18)

'PASSE
'MANQUE

)
)

define (what-dozen number, result)
(if (and (> number 0) (< number 13))

(setq result'FIRST-DOZEN)
)
(if (and (> number 12) (< number 25))

(setq result'SECOND-DOZEN)
)

(if (and (> number 24) (< number 37))
(setq result'THIRD-DOZEN)

)
result

)

(define (what-column number, result)
(if (find number *column1*)

(setq result'FIRST-COLUMN)
)

(if (find number *column2*)
(setq result'SECOND-COLUMN)

)
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(if (find number *column3*)
(setq result ‘THIRD-COLUMN)

)
result

)

Trying them at the Lisp prompt, we can have a first idea of their working:

> (red-or-black 16)
: RED

> (what-column 16)
: FIRST-COLUMN

Let us type a more complex expression:

> (list (red-or-black 16) (even-or-odd 16) (passe-or-manque 16))
: (RED EVEN MANQUE)

This expression is very interesting because it gives us a hint for designing a
function that returns all the associated results after a roulette spin. Such a function,
named (winning-results) is shown in Code 4-3:

;code 4-3
(define (winning-results number)

(list
number (red-or-black number) (even-or-odd number)
(passe-or-manque number) (what-dozen number) (what-

column number)
)

)

Trying it at the Lisp prompt we can observe that we are on the right track. We
include the number given as input as the first element of the result of the function
because we want a list that contains all the data from a wheel spin:

> (winning-results 16)
: (16 RED EVEN MANQUE SECOND-DOZEN FIRST-COLUMN)

In Chap. 2 we already started to explore random numbers and roulettes by means
of the NewLisp function (random). Now we shall design a function that randomly
produces an integer between 0 and 36 and returns two possible outcomes: nil, if the
generated number is zero, that is, if the casino wins, or a list of associated results
after a roulette spin by means of a call to (winning-results). The function, named
(spin-wheel) is shown in Code 4-4:

;code 4-4
(define (spin-wheel, number)
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(setq number (integer (mul (random) 37)))
(if (> number 0)

(winning-results number)
nil

)
)

Trying this function at the Lisp prompt we can observe that the roulette is
already working:

> (spin-wheel)
: (30 RED EVEN PASSE THIRD-DOZEN THIRD-COLUMN)

Please note that you will need several attempts until getting a nil result, but as it
happens in the real world, it always appears. In fact when you bet real money your
perception is that it appears with excessive frequency. Note also that pressing the
“up” and down keys (↑↓) in the keyboard while at the Lisp prompt, NewLisp
repeats the last expression entered by user.

4.2.3 Betting and Playing

For representing a bet, we are going to use a very simple strategy. We only need to
use a list of two elements with the following structure (type-of-bet money), where
type-of-bet is either a number between 1 and 36 or a bet of the type, RED/BLACK,
EVEN/ODD, etc. Money means, obviously, how powerful is our bet. As examples,
we can type at the Lisp prompt:

> (setq my-bet ‘(12 50))
: (12 50)

Meaning that we bet 50 Euros or Dollars to the number 12. For betting 100
Euros or Dollars, or your favorite currency, to the THIRD-COLUMN, we would
type:

> (setq my-bet ‘(THIRD-COLUMN 100))
: (THIRD-COLUMN 100)

In this point of program development we have on one side the function (spin-
wheel) that simulates a casino roulette, and on the other side a simple data structure for
representing a bet. Now what we need is a function that takes a bet and a roulette run
as inputs and then produces the money (payout), if any, we have won with our bet:

f((type-of-bet money) (spin-wheel)) → payout/money

Inside the desired function we are going to use some conditional structures in
order to distinguish, (a) if the roulette spin has produced the number zero for
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checking if we directly have lost our bet (casino wins all bets), (b) we have got a hit
on a number, and (c) we have got a hit on a different roulette bet. Expressing it with
pseudo-code we can write:

(calculate-win bet spin-wheel)
(if (spin-wheel) returns nil then return nil) ;case a
(else

(if the bet is on a number ;case b
(get our number from the bet)
(get the associated payout)
(check if we have got a hit with the number)
(if yes calculate reward, else return zero)

)
(else if the bet is not on a number ;case c

(get the associated payout)
(check if we have got a hit with our bet)
(if yes calculate reward, else return zero)

)
)

)

the desired function is shown in Code 4-5:

;code 4-5
(define (calculate-win bet spin, n reward prize)
(if (= nil spin)

nil; ball falls on 0: Casino wins
(begin

(if (number? (first bet))
(begin

(setq n (first bet))
(setq reward (last (first *rewards*)))
(if (= n (first spin));we have got the number

;calculate reward
(setq prize (mul reward (last bet)))
(setq prize 0);we lose our bet

)
);end-internal begin
;now the else begins, the bet is not a number:
(begin

(setq reward (last (assoc (first bet)
*rewards*)))
(if (! = (find (first bet) spin) nil) ;we've got
the bet

(setq prize (mul reward (last bet)))
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(setq prize 0) ;we lose our bet
); end if

);end second begin
); if number? ends
(cons prize spin);this is only to check prize & results

);end external begin
);end external if
)

as can be seen, this function is relatively complex and a bit long since we, inten-
tionally, have not optimized it. It is important to remark that the input parameters
are in fact two lists, the first one is a bet, for example (THIRD-COLUMN 100) and
the second one is a list produced as the result of a call to the function (spin-wheel),
such as, for example, (31 BLACK ODD PASSE THIRD-DOZEN FIRST-
COLUMN). These lists are stored respectively by the symbols bet and spin.

The first conditional structure is given by (if (= nil spin). If it evaluates to nil,
then (calculate-win) returns nil and terminates (casino wins it all). The second
conditional structure checks if we have made a bet on a number by using the
predicate (number?). If it is the case, the function stores our number in the internal
variable n and takes the first element of the list stored on the global variable
*rewards*, storing the numerical payout in the internal variable reward. Now it is
the time for checking if we have got a hit with our number by means of the
conditional expression (if (= n (first spin)). If the expression evaluates to true then
the function calculates the payout/price and exits the if block. If the expression
evaluates to nil, the function sets zero as the resulting payoff, exiting the if block.

The third conditional structure is in fact an else structure from the expression (if
(number? (first bet)), that is, if that expression evaluates to nil then our bet is not on
a number. As you can see, the (begin) blocks are used appropriately for instructing
Lisp what our programming strategies really are. Hereafter the function works in a
similar way than in the previous case: The expression (setq reward (last assoc (first
bet) *rewards*))) extract the appropriate payout, principally, by using the function
(assoc). Then, please observe how the function (find) makes it easy to check if we
have got a hit with our bet in the conditional expression (if (! = (find (first bet) spin)
nil). From this point the function works as in the previous case. The last step before
terminating is a cons given by the Lisp expression (cons prize spin). It seems at first
a redundant expression, since we theoretically only need to know the prize/payout
we have got, but “consing” it with the list stored on the symbol spin gives us more
information in a Lisp session, at the prompt. Let us try it:

> (setq my-bet ‘(RED 50))
: (RED 50)

That is, we bet 50 units of your favorite currency to RED. Then, let’s see what
happens after a roulette spin is made:
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> (calculate-win my-bet (spin-wheel))
: (50 14 RED EVEN MANQUE SECOND-DOZEN SECOND-COLUMN)

Well, in this case, the resulting number is 14, RED, so we have won our bet.
Since the payment for the bet RED/BLACK is 1:1 (remember Table 4.1) we have
won 50 currency units. This is exactly what appears in the first element of the list
returned by the function (calculate-win). Let us see another run, this time, for
example, betting 50 currency units to the number 8. The expected payout in this
case is 35:1, so if we win, the expected sum would be 1750 currency units:

> (setq my-bet ‘(8 50))
: (8 50)

after placing our bet, let us see what happens:

> (calculate-win my-bet (spin-wheel))
: (0 28 BLACK EVEN PASSE THIRD-DOZEN FIRST-COLUMN)

in this case the resulting number is 28. We have loose our bet. Inspecting the first
element of the returned list we can see that the function reflect this facts showing a
zero in that position.

4.2.4 Building a Simple User Interface

Everything runs fine in our roulette simulation. However, typing bets in lists and
calling (calculate-win) at the Lisp prompt is not the best environment for playing
along hours. Not a single casino in Las Vegas should use such a computing
approach. Casinos need you feel comfortable for losing dollar after dollar. They
need you play quickly.

User interfaces are the way a program interacts with an user. The NewLisp
environment bases its interface on a menu bar and a main window where both the
programming area and the session area, containing the Lisp prompt, are included.
NewLisp allows to build sophisticated graphical user interfaces (GUI) by means of
an extensive set of functions contained in the file “guiserver.lsp”. This material is
out of the scoop of this book, but you can find detailed information in the
NewLisp’s help menu.

Our aim is simpler. We are going to develop an user interface where the user will
be guided interactively through simple questions by the program, usually expecting
a yes/no answer, or better said, a y/n answer from the keyboard. In such type of user
interfaces it is more than convenient to design a function that takes care of the
management of questions and answers. Code 4-6 presents such a function

;code 4-6
(define (yes-no message)

(print message)
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(if (=''Y'' (upper-case (read-line)))
true
nil

)
)

Despite being a short function, it deserves several comments. First, every
function call to (yes-no) expects a string of characters as the input parameter. Here
is where questions in natural language are passed to the function, as, for example,
“are you sure you want to disconnect me, Dave?”, or “do you really want to sell
your portfolio now?” Just after going inside the function, the message is shown in
the session area of the Lisp environment by using the function (print). Then an
important conditional structure appears that must be understood perfectly well. The
more internal Lisp expression is (read-line). This function, by defect, read char-
acters from the keyboard until the user press the Enter/Return key, returning the
string of characters introduced by him. The returned string serves as argument to the
function (upper-case) that converts every character in the returned string to
uppercase. It does not matter if every original character is lower case or upper case,
(upper-case) will return only strings in upper case.

Then, the resulting string is compared to the one-character string constant “Y”. If
they are the same string, the function (yes-no) returns true, otherwise it returns nil.
Let us try the function at the Lisp prompt with a pair of examples:

> (yes-no “Are you sure you want to disconnect me, Dave? (y/n): ”)
: Are you sure you want to disconnect me, Dave? (y/n): y
: true

> (yes-no “Is it true that recursion is certainly recursive? (y/n): ”)
: Is it true that recursion is certainly recursive? (y/n); I’m still not sure
: nil

Two remarks must be made now: first, please note that we add the characters
(y/n): at the end of the question, helping the user to know what to answer at the
keyboard, and second, only if the user types “Y” or “y” at the keyboard the
function (yes-no) will return true. In any other case it will return nil.

Now we are ready to design a function named (bet) for interactively building a
bet for us, that is, it will return a list of the type (type-of-bet money). This function,
shown in Code 4-7, does not need any input argument:

;code 4-7
(define (bet, type-bet amount)

(if (yes-no''Are you going to bet for a number? (y/n):'')
(begin

(print''Enter a number between 1-36:'')
(setq type-bet (int (read-line)))

)
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(begin
(print ''Enter type of bet (RED/BLACK,
EVEN/ODD,.. etc.):'')
(setq type-bet (sym (upper-case (read-line))))

)
);end if

(print''Enter an amount of money you bet:'')
(setq amount (int (read-line)))
(list type-bet amount)

)

Before explaining its working details, let us see how it works at the Lisp prompt
in order to see it in perspective:

> (bet)
: Are you going to bet for a number? (y/n): y
: Enter a number between 1-36: 21
: Enter an amount of money you bet: 50
: (21 50)

> (bet)
: Are you going to bet for a number? (y/n): not this night
: Enter type of bet (RED/BLACK, EVEN/ODD,… etc.): red
: Enter an amount of money you bet: 50
: (RED 50)

Observing Code 4-7 we can realize that, basically, the function first checks if the
user wishes to place a bet on either a number or another type of bet (red/black and
so on) by means of an if conditional structure, then asks for the amount of money to
bet and finally returns the two elements list containing the bet in the desired format.
Now let us comment the details: The expression (setq type-bet (int (read-line))) first
read characters from the keyboard until the user press the Enter/Return key, as we
already know. Then the function (int) converts the string of characters into an
integer. Here please note that (int “3.1416”) → 3, (int “77”) → 77 and (int “this
can not be converted”) → nil.

The expression (setq type-bet (sym (upper-case (read-line)))) is also interesting.
It again takes a string of characters from the user, converts them to upper case and
then converts it to a Lisp symbol by means of the function (sym)! This is a powerful
function in Lisp because it allows us to go from the world of strings to the realm of
symbols. For example: (sym (upper-case “red”)) → RED. Needless to say, this
conversion ultimately will allow us to find a match between the bet we enter at the
keyboard in string format with the list of data stored in the global variable
*rewards*. The rest of the function simply ask the user for the amount of money to
bet, converts it to an integer and stores it in the symbol amount. The last line of the
function builds and returns the bet as a list.

104 4 Lisp Programming



4.2.5 Putting It All Together

It is time to finish the user interface of our roulette simulator and add the last
touches to the program. For this, we shall build a function named (play) that will
put together the entire Lisp pieces built previously in this chapter. The pseudo-code
for this function is as follows:

(play)
(make some initializations)
(while (you wish to continue playing) ;main event loop begins
(place your bet)
(calculate-win)

(if (the casino wins)
(inform you and update your win/lose balance)

(else
(show the results of the roulette run)
(if (you lose your bet)

(inform you and update your win/lose balance)
(if (you win your bet)

(inform you and update your win/lose balance)
));end else, end if (casino wins)
(ask if you wish to continue playing)

);end while –main loop-
)

Code 4-8 shows the function (play) in Lisp code:

;code 4-8. Main function of the program
(define (play, balance yn result your-bet)

(seed (time-of-day)) ;initializes the internal random
generator
(setq balance 0)
(setq continue true)

(while (= continue true)
(setq your-bet (bet))
(setq result (calculate-win your-bet (spin-wheel)))

(if (= result nil)
(begin

(print''Ball has fall on zero. Casino wins\n'')
(setq balance (sub balance (last your-bet)))
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(print ''Your actual balance of money is: ''
balance''\n'')

);end begin

(begin ;casino has not won
(print ''These are the results of this run: ''

(rest result)''\n'')
(if (= 0 (first result)) ;you loose your bet

(begin
(setq balance (sub balance (last your-bet)))
(print''You lose. Your actual balance of money

is:'' balance''\n'')
);end begin
(begin ;you won!

(setq balance (add balance (first result)))
(print''You win. Your actual balance of money

is:''
balance''\n'')

);end begin
);end if (= 0 (first result))

);end begin casino has not won
);en if (= result nil)

(if (yes-no ''\nWould you like to continue playing?
(y/n):'')
(setq continue true)
(setq continue nil) ;else part

);end if
);end while

)

As it is usual in the main function of a program, no arguments are needed for the
function (play). The first line of the function, (seed (time-of-day)), seems a bit
tricky, so let us see it in detail: We must realize that a computer is anything but a
random system, so random numbers used in any program are not strictly random
under a pure mathematical viewpoint, so in computer science we use what it is
known as “pseudo random numbers”; numbers that, not being purely random,
behave almost like real random numbers, that is, they are good enough to develop
applications that require true random numbers. In our roulette application, the use
of the function (random) alone would return a sequence of random numbers that
under an extensive set of runs an expert gambler would start to recognize (this
phenomenon happens exactly the same on on-line casinos in the Internet). The
function (seed) is in fact a seed for the internal random generator algorithm that
takes an integer argument. Since the function (time-of-day) returns the number of
milliseconds from the start of the current day at midnight, the aforementioned

106 4 Lisp Programming



expression (seed (time-of-day)) serve us for generating excellent sequences of
pseudo random numbers.

Two important variables are initialized, too. The variable balance will represent
the balance of money you are getting while playing roulette, while the variable
continue is the key for managing the main event loop. “Main event loops” are the
basis of any interactive program: A program starts and then you interact with it
through its user-interface until you perform a menu selection, a mouse click or
something that breaks the loop, and thus, terminates the program. Initially, the
variable continue is set to true, so your roulette session will continue until this
variable becomes nil. This is exactly the mission of the looping construction (while
(= continue true).

The expressions (setq your-bet (bet)) and (setq result (calculate-win your-bet
(spin-wheel))) are easy to understand: The former interactively ask us for our bet,
assigning the resulting list to the variable your-bet, while the second one spins the
roulette, takes the placed bet and assigns the produced list to the variable result.
Now it is time to see if the result of spinning the wheel returns nil, meaning that the
roulette ball has fallen on the zero pocket, that is, the casino wins. We check for this
event with the expression (if (= result nil). If it evaluates to true, casino wins and we
lose our bet. Almost all the rest of the function is dedicated to an else situation, that
is, the roulette ball has not fallen on the zero pocket, but the program must check if
we have won our bet or not.

Now the first thing to do is to show the results of the roulette run by using the
expression (print “These are the results of this run: ” (rest result) “\n”). Note here
the sub expression “\n”: it instructs NewLisp to be ready to print the next message
on a new line. After printing this message, we check the first element in the list stored
in the variable result. If it equals zero, then it means we have lost our bet. This is
made with the expression (if (= 0 (first result)). If the expression evaluates to true we
calculate the actual balance of money you are winning/losing by using the function
(sub). We use (sub) in order to cover the event you bet on a not integer quantity of
money, say, 100.3 currency units. Yes, nobody does that, but it is another example
on robust programming. If (if (= 0 (first result)) evaluates to nil, it means you have
won, so we update the balance by using (add) and show an adequate message.

All is almost done. The program now asks you if you wish to continue by means
of the expression (if (yes-no “\nWould you like to continue playing? (y/n): ”). If it
evaluates to true, then the program sets the variable continue to true and the main
event loop continues. On the other hand, if it evaluates to nil, then the variable
continue is set to nil and the main event loop and the program terminates because
the while expression (while (= continue true) evaluates to nil. Let us try the program
with a short casino session:

> (play)
Are you going to bet for a number? (y/n): n
Enter type of bet (RED/BLACK, EVEN/ODD,.. etc.): red
Enter an amount of money you bet: 10
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These are the results of this run: (25 RED ODD PASSE THIRD-DOZEN FIRST-
COLUMN)

You win. Your actual balance of money is: 10

Would you like to continue playing? (y/n): y
Are you going to bet for a number? (y/n): n
Enter type of bet (RED/BLACK, EVEN/ODD,… etc.): red
Enter an amount of money you bet: 20
These are the results of this run: (31 BLACK ODD PASSE THIRD-DOZEN

FIRST-COLUMN)
You lose. Your actual balance of money is: -10

Would you like to continue playing? (y/n): y
Are you going to bet for a number? (y/n): n
Enter type of bet (RED/BLACK, EVEN/ODD,… etc.): red
Enter an amount of money you bet: 40
These are the results of this run: (8 BLACK EVEN MANQUE FIRST-DOZEN

SECOND-COLUMN)
You lose. Your actual balance of money is: -50

Would you like to continue playing? (y/n): y
Are you going to bet for a number? (y/n): n
Enter type of bet (RED/BLACK, EVEN/ODD,… etc.): red
Enter an amount of money you bet: 80
These are the results of this run: (17 BLACK ODD MANQUE SECOND-

DOZEN SECOND-COLUMN)
You lose. Your actual balance of money is: -130

Would you like to continue playing? (y/n): y
Are you going to bet for a number? (y/n): n
Enter type of bet (RED/BLACK, EVEN/ODD,… etc.): red
Enter an amount of money you bet: 160
These are the results of this run: (36 RED EVEN PASSE THIRD-DOZEN

THIRD-COLUMN)
You win. Your actual balance of money is: 30

Would you like to continue playing? (y/n): no more today
nil

With this simple roulette simulation you can try many playing strategies in order
to check what would be the outcome of a night at the casino. There is only a
winning strategy: playing with quasi-infinite quantities of money. This is the reason
casinos admit bets up to a top fixed amount of money.

About the Lisp program itself, it must be noted how much resources it takes to
implement a user interface. You only need to compare the function (bet) with
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simply writing a list at the Lisp prompt. If we moreover realize that we have barely
implemented robust constructions in the code in order to save space in the book,
you can imagine the time and quantity of code it takes for building a well-behaved,
friendly program. In fact, a programmer always dedicates a good quantity of time in
order to build a library for managing and design good user interfaces. In the next
section of this chapter we shall develop a set of functions for simple database
processing without an user interface. The goal is to create an extension of Lisp for
managing CSV type databases.

4.3 Messier Was a French Astronomer

Back in century XVIII, one of the most important branches of astronomy was comet
observing. For an astronomer, discovering a new comet was a guarantee of
becoming famous, getting new incomes and obtaining a better position in his career.
Charles Messier (1730–1817) was a French astronomer that soon realized that some
celestial objects in the night skies seemed at first comets but in fact they were not,
because these look-like comets remained fixed in the sky through time, while real
comets showed a change of position month by month or even day by day in some
cases. Messier decided to compile a catalogue of “no-comets” in order to help to
save time to other astronomers, avoiding them wasted observing time. The com-
pilation of such a catalogue, published in 1774, gave to Charles Messier a fixed site
in the history of Astronomy.

The Messier Catalogue consists of a set of 110 celestial objects that can be
observed in the Northern hemisphere. Since they are in a fact a collection of
galaxies, nebulae, globular clusters and, in general, deep-sky objects, the apparent
position of these celestial objects remains “fixed” and can be observed nowadays
with a good pair of binoculars under dark skies. Here “dark skies” means an
observing place without light pollution, an observing place where at night you are
not able to see your own feet. Messier used, seen from the current state of our
technology, archaic telescopes, but the unpolluted skies of Paris in mid 1700s was a
terrific observing advantage.

The complete Messier Catalogue can be easily found on the Internet, and you
can also download it from the book’s web site (http://www.fuzzylisp.com) in CSV
format. CSV is an acronym for “Comma Separated Values” and is a data file
structure in text format used by many programs as a neutral way to exchange data
with other programs. “In text format” means that the entire file is formed by text
characters only, without binary elements. As a result, any CSV file can be opened
with standard programs such as Notepad in Windows, or TextEdit in OSX. In every
CSV file, each line represents a record of the database, with the first line (usually)
describing the names of the fields.

The Messier.csv file is composed by 111 lines, that is, 110 records for the
celestial objects plus one header line for the name of the fields. The Lisp functions
we are going to design are not specific for the Messier Catalogue. They are valid for
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any CSV file where its first line represents the name of the fields in the database.
That means that if you keep any database in, for example, an Excel file, you will be
able to use that information with the Lisp extension to the language we are going to
implement. The name of the fields of the database stored on the file Messier.csv are
shown in Table 4.2 (Dreyer 1888; Burnham 1978).

After having finished the Lisp functions for simple CSV database management,
any database session at the Lisp prompt will be able to manage the following tasks:

• Opening a database from hard-disk or alternative source
• Load it into computer’s memory
• Perform queries
• Add fields to the database
• Supply new info
• Perform database filtering
• Get simple statistics
• Save changes to disk

More specifically, the name of the functions and their intended use are given in
Table 4.3.

Table 4.2 Name of fields for the CSV Messier database

Field’s name Meaning

Name Name of the object in the Catalogue

NGC Reference in the new general catalogue, NGC

Constellation Constellation where the object is located

Class Type of object

Right ascension First celestial coordinate

Declination Second celestial coordinate

Magnitude Measure of apparent bright

Angular size Apparent size in the sky

Burnham Comment in Burnham’s celestial guidebook

Remarks Additional comments

Table 4.3 Functions designed for CSV database management

Function name Use

(db-load) Loads a database into memory

(db-fields) Returns the name of the fields in a database

(db-tell) Returns a record from the database

(db-tell2) Returns the value of a field from a record

(db-new-field) Adds a new field to a database

(db-update) Updates a database with new info into a field from a record

(db-filter) Filters a database

(db-stats) Calculates simple statistics from a numerical field

(db-save) Saves a database to a storage device
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4.3.1 Opening and Loading Databases in CSV Format

Files usually reside in hard disks, CDs, DVDs, solid-state memory devices or in the
Internet. In order to open them we shall have a dedicated function, named (db-open)
that after opening the file will load its content into the computer’s memory. Such a
function is shown in Code 4-9:

;code 4-9
(define (db-load, f1 str lst)

(setq lst'())
(setq f1 (open''/Users/research/Desktop/Messier.csv''
''read''))
(while (setq str (read-line f1))

(setq lst (cons(parse str'','') lst))
);while
(close f1)
(reverse lst)

)

As can be seen, the first line creates a new empty list, lst, where we shall load the
file content. The second line is more interesting because it uses the standard Lisp
function for opening files: (open). This function uses two arguments: the first one is
the name of the file, including the directory (folder) where the file is located. In this
example, the file resides in the Desktop, and the complete path is expressed by the
string “Users/research/Desktop/Messier.csv”. The second argument means the
mode we use to open a file. Since we are going to load the file into memory, that is,
no writing action is needed, we use the mode “read”. NewLisp supports several
access modes for opening a file, as shown in Table 4.4.

The function (open) returns either an integer if the opening process is successful,
or nil, if it fails, for example, if the file does not exist or is located on another folder.
This integer becomes hereafter a handler for subsequent reading or writing oper-
ations on the file. It is usual to employ the symbols f1, f2,…, fn for naming these file
handlers in any computer language, so we shall adhere to this convention in this
book.

Table 4.4 Access modes for
opening a file

File access mode Meaning

“read” or “r” Read only access

“write” or “w” Write only access

“update” or “u” Read/write access

“append” or “a” Append read/write access
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After opening the file, we use a looping structure in order to read every line in
the file and load the content on the lst list. We already know the function (read-line)
from its use in our user-defined function (yes-no). There, we used the keyboard as
input. Since now the input comes from a file we need and additional parameter for
telling Lisp to pay attention to the computer’s file system. This parameter is the file
handler, in this case, f1. The expression (setq str (read-line f1)) reads a line from the
file and stores it into the variable str. When no more lines remain to be read the
function (read) returns nil, so the while loop ends. The body of the while loop
contains an expression that deserves a detailed explanation.

Let us pay attention to the more internal function inside the while loop, (parse).
As its name implies, this function parses a string of characters, returning the
individual tokens contained in the string as a list of string elements. It takes two
arguments: first the original string of characters and then the used delimiter for
separating the elements. Needless to say, in a CSV file the used delimiter by defect
is a comma sign. Let us see an example. The first line of the Messier.csv file, after
being stored in the variable str, has the following appearance:

“Name, NGC, Constellation, Class, Right ascension,
Declination, Magnitude, Angular size, Burnham, Remarks”

Then, by means of the expression (parse str “,”), it converts into this Lisp
expression:

(“Name” “NGC” “Constellation” “Class” “Right ascension” “Declination”
“Magnitude” “Angular size” “Burnham” “Remarks”)

And this list, by means of the function (cons) is additively stored on the list lst.
After exiting the while loop, the entire list, now containing the complete database, is
reversed before becoming the returned value of the function (db-load). Let us call it
from the Lisp prompt:

> (setq messier (db-load))
: ((“Name” “NGC” “Constellation” “Class” “Right ascension” “Declination”

“Magnitude” “Angular size” “Burnham” “Remarks”)
…
(“M110” “205” “Andromeda” “Elliptical galaxy” “0h 40.4m” “41d 41m”

“9.4” “8.0x3.0” “” “E6 - companion of M31”))

The sublists corresponding from celestial objects M1 to M109 have been omitted
in order to allow a shorter output in this text. The important detail now is that we
have stored the complete database in the symbol messier. All the future calls to any
of the functions designed for CSV database management will use this symbol as an
argument. Now our simple Lisp database system converts into a question of list
manipulation, so we should feel ourselves at home.
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4.3.2 Querying the Database

The simplest query to our database comes from the already known Lisp function
(nth). If we wish to retrieve the record number indexed by i in the database we only
need to type (nth i database) at the Lisp prompt. For M42, the famous Orion’s
Nebula, we only need to type:

> (nth 42 messier)
: (“M42” “1976” “Orion” “Diffuse nebula” “5h 35.4m” “-5d 27m” “2.9”

“66x60” “!!!” “Great Orion Nebula”)

Especially important is the first record in the database because it tells us the
name of its fields:

> (nth 0 messier)
: (“Name” “NGC” “Constellation” “Class” “Right ascension” “Declination”

“Magnitude” “Angular size” “Burnham” “Remarks”)

In an interactive database session at the Lisp prompt, this last expression is of
such importance that it deserves, for coherence with the name of the rest of func-
tions, to create a simple function for better representing it. Such a function, named
(db-fields), is shown in Code 4-10:

;code 4-10
(define (db-fields lst)

(nth 0 lst)
)

Needless to say:

> (db-fields messier)
: (“Name” “NGC” “Constellation” “Class” “Right ascension” “Declination”

“Magnitude” “Angular size” “Burnham” “Remarks”)

Things become a bit more complex when we wish to perform more sophisticated
queries. In order to make things easier, we shall use the first field of the database as
a key for the database. In our case, the key field is the name of the Messier object.
For your personal databases, you could, for example, use the social security number
of a person, driving number license, etc. as a key. The function (db-tell) allows us to
perform simple queries to our database. Code 4-11 shows it:

;code 4-11
(define (db-tell db id, i l aux-lst result)

(setq i 0)
(setq l (length db))
(while (< i l)
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(setq aux-lst (nth i db))
(if (= id (first aux-lst))

(setq result aux-lst)
)
(setq i (+ 1 i))

);end while
result

)

After initializing the index i, the function calculates the length of the database by
means of the expression (setq l (length db)) and then it enters a while loop in order
to traverse the entire database. For each loop pass, every record is assigned to the
variable aux-lst. As can be seen, inside the while loop there is a conditional
expression that compares the content of the first field in a record with the supplied
argument id. If a match is found, then the actual record is assigned to the variable
result and the matching record is returned. If no match is found the function returns
nil. Note that the supplied argument id must be a unique key value in the database,
else the last keyed record would be returned by the function. This is not a problem
with well-designed databases, where the first field has always unique values, as for
example, car plates in a car database, or in our example, the Messier object
identifier.

Trying it at the Lisp prompt:

> (db-tell messier “M42”)
: (“M42” “1976” “Orion” “Diffuse nebula” “5h 35.4m” “-5d 27m” “2.9”

“66x60” “!!!” “Great Orion Nebula”)

The output is exactly the same as the produced previously with the expression
(nth 42 messier), but you must note that typing (db-tell messier “M42”) you don’t
know beforehand the position of M42 in the database. Imagine again you have a
CSV database of cars where the first field is, aside the car plate, a key field. Then
typing, for example (db-tell car-database “GWG0560”) would retrieve all the
stored data for a car with that plate, without regards at its position in the database.

Another query function in our Lisp language extension for CSV database
management, (db-tell2), allows us to obtain the value corresponding to a particular
record and a particular field at the same time. In other words, if records are ordered
by lines and fields are ordered by columns (as it happens in spreadsheet programs),
the result of the function (db-tell2) is the value stored in the intersection of a
particular record and field. The function can be seen in Code 4-12:

;code 4-12
(define (db-tell2 db id a-field, i l aux-lst result position)

(setq i 0)
(setq l (length db))
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(while (< i l)
(setq aux-lst (nth i db))

(if (= id (first aux-lst))
(setq result aux-lst)

)
(setq i (+ 1 i))

);end while
(setq position (find a-field (nth 0 db)))
(nth position result);returns the database value

)

The code starts exactly the same as the written one for (db-tell) until obtaining
the desired record stored in the variable result. Then the expression (setq position
(find a-field (nth 0 db))) returns the position of the argument a-field in the list of
fields given by (nth 0 db). After storing this value in the variable position, obtaining
the desired value is straightforward using the expression (nth position result). Let us
see how does it work:

> (db-tell2 messier “M45” “Constellation”)
: “Taurus”

> (db-tell2 messier “M42” “Remarks”)
: “Great Orion Nebula”

4.3.3 Updating the Database

Aside querying a database, it is common to manipulate the data it contains. One of
the most usual activities in database management is the addition of a new field. Let
us imagine we wish to add the field “My own observations” to the Messier data-
base. The function (db-new-field) performs this task by means of the Lisp
expressions shown in Code 4-13:

;code 4-13
(define (db-new-field db name-field, i l lst-out)

(setq lst-out'())
(setq l (length db));number of records in lst

;in the following line we append the new field's name
(setqlst-out(cons(append(nth0db)(listname-field))
lst-out))
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;then we copy the entire database, making space in
every record
;for the new field

(setq i 1)
(while (< i l)

(setq lst-out (cons (append (nth i db) (list ''''))
lst-out))
(setq i (+ 1 i))

);while
(reverse lst-out)

)

The used strategy here consists first in appending the name of the new field at the
rightmost position and then to traverse the entire database, record by record, cre-
ating new space in each record. Since all the new values are empty by default, we
only need to append an empty string “” at the end of each record. The function
starts initializing the list lst-out to an empty list. In this list we shall copy the actual
contents of the database, adding the required new data to it. The expression (setq
lst-out (cons (append (nth 0 db) (list name-field)) lst-out) seem complex at first but
it is not. It takes the first record in the database, that is, the record where the name of
all the fields of the database are stored (nth 0 db), and then appends name-field to it.
Since this function argument will receive a string, we convert it to a list for making
it possible to use the function (append). Then we cons it to the list lst-out.

Now we only need to traverse the entire database using a while looping structure
where we append the empty data “” to every record by using the expression (setq
lst-out (cons append (nth i db) (list “”)) lst-out)). After exiting the while loop we
reverse lst-out and we are done. Let us try the function:

> (setq messier (db-new-field messier “My observations”))
: ((“Name” “NGC” “Constellation” “Class” “Right ascension” “Declination”

“Magnitude” “Angular size” “Burnham” “Remarks” “My observations”)
…..
(“M110” “205” “Andromeda” “Elliptical galaxy” “0h 40.4m” “41d 41m”

“9.4” “8.0x3.0” “” “E6 - companion of M31” “”))

Please note that the field “My observations” has already been added. From the
last record, see also how an adequate empty string has been added at the rightmost
position in the list.

4.3.4 Modifying the Database

No joy can be had from a database manager software if we are not able to supply
new information to it, or modify its content. The function (db-update) will take care
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of this need. This is the most complex function in this section of the chapter, so we
shall use the well-known “divide and conquer” strategy for developing it in order to
break the required tasks into auxiliary functions. We need two auxiliary functions
named respectively (db-get-row-number) and (db-update-record). The former is
shown in Code 4-14a:

;code 4-14a
(define (db-get-row-number db key, i length1 row-number)

(setq i 0)
(setq length1 (length db))

(while (< i length1)
(if (= key (first (nth i db)))

(setq row-number i)
)
(setq i (+ 1 i))

);while end
row-number

)

This function takes two arguments: first the name of the database and then the
first field value that will act as a key field. It will return a number representing the
position of the record in the database. As previously, in our case the key field is the
name of the Messier object. After initializing the variable i and calculating the
number of records in the database, we traverse it with a while loop. Inside the loop
we use the following conditional expression: (if (= key (first (nth i db))) (setq row-
number i)). The expression (nth i db) extracts a record and then we obtain its first
element. If it is equal to the supplied function argument key, then we mark its
position in the variable row-number. The function returns this number. Trying it at
the Lisp prompt:

> (db-get-row-number messier “M42”)
: 42

Please note that if the key value were not unique, then (db-get-row-number)
would return the number corresponding to the last record in the database matching
that value. Needless to say, this can only happen if the database design is poor, with
a key field containing multiple instances of a particular value.

The other auxiliary function has the name (db-update-record), and, as its name
implies, modifies a single record. It requires several arguments: the symbol for the
database itself, the record to update, the name of the field, and the data that will be
supplied for filling or updating the field. The expressions for the function are shown
in Code 4-14b:

;code 4-14b.
;This is an auxiliary function to (db-update).
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(define (db-update-record db record field new-data, position
i l record-out)

(setq record-out'())
(setq i 0)
(setq l (length record))
;gets the position of the field looking in the first
record:
(setq position (find field (nth 0 db)))
;replaces the data:

(while (< i l)
(if (= i position)

;if it evaluates to true
(setq record-out (cons new-data record-out))

;else copy the element
(setq record-out (cons (nth i record)
record-out))

);end if
(setq i (+ 1 i))

)
(reverse record-out)

)

The list record-out will be the list returned by the function, so it is initialized in
the first line. After initializing also an indexing variable i, we calculate the number
of elements (fields) in the record and assign it to the variable l. Then we get the
position of the required field, looking for it in the first record of the database and
then we go inside a while loop. There we traverse the record: when we are located
on the desired field, we update it using the expression (setq record-out (cons new-
data record-out)), else we simply copy the existing information using the Lisp
expression (setq record-out (cons (nth i record) record-out)). After exiting the
while loop, we reverse the list record-out and we are done. Let us try the function:

> (db-update-record messier (nth 42 messier) “Remarks” “great sight with
the Zeiss telescope”)

: (“M42” “1976” “Orion” “Diffuse nebula” “5h 35.4m” “-5d 27m” “2.9”
“66x60” “!!!” “great sight with the Zeiss telescope”)

After having ready for action the functions (db-get-row-number) and (db-
update-record) we now can write the desired function (db-update) more easily, as
shown in Code 4-14c:

;code 4-14c
(define (db-update db key field new-data, row-number i
length1 db-out)

118 4 Lisp Programming



(setq row-number (db-get-row-number db key)) ;get the
row index
(setq i 0)
(setq db-out'())
(setq length1 (length db)) ;number of records in db

;copy the first set of records
(while (< i row-number)

(setq db-out (cons (nth i db) db-out))
(setq i (+ 1 i))

)
;update the record:

(setq db-out (cons (db-update-record db (nth
row-number db) field new-data) db-out))
(setq i (+ 1 i)); advances one row

;copy the rest of records
(while (< i length1)

(setq db-out (cons (nth i db) db-out))
(setq i (+ 1 i))

)
(reverse db-out)

)

We must realize that (db-update) needs four arguments: The symbol for the
database, the key field value, that is, the value located in the first field of the record
where we want to make modifications, the field’s name for telling the function what
value to change and finally, the new value. Let us see a call to the function first
before commenting it. Our aim is to change the Remarks for M1, the Crab Nebula.
The original value in the database can be seen easily:

> (db-tell2 messier “M1” “Remarks”)
“SNR (1054) - Crab Nebula”

> (setq messier (db-update messier “M1” “Remarks” “A Supernova
remnant”))

: ((“Name” “NGC” “Constellation” “Class” “Right ascension” “Declination”
“Magnitude” “Angular size” “Burnham” “Remarks”)

…
(“M110” “205” “Andromeda” “Elliptical galaxy” “0h 40.4m” “41d 41m”

“9.4” “8.0x3.0” “” “E6 - companion of M31”))

Now, let us check the first record (M1):

> > (db-tell2 messier “M1” “Remarks”)
: “A Supernova remnant”

4.3 Messier Was a French Astronomer 119



The function (db-update) starts with a call to (db-get-row-number), assigning its
returning value to the variable row-number. After that, we initialize some variables
and count the number of records in the database. Then we enter inside a while loop
where we simply copy record by record all the records in the database until arriving
to the record marked by row-number. In this moment we use the following Lisp
expression:

(setq db-out (cons (db-update-record db (nth row-number db) field new-data)
db-out))

As can be seen, the key point in the expression is a call to the auxiliary function
(db-update-record), explained some paragraphs above, consing its return value to
db-out, the target list where we are copying the original database. After Lisp
evaluates this expression, the new information, stored in new-data, updates the
record.

Since the record is updated and not copied, we add an important programming
detail in this moment: (setq i (+ i 1)) that advances a record. Hereafter we enter a
second while loop and continue copying records until the entire database is updated.
Finally, we reverse lst-out and the function finishes.

4.3.5 Filtering the Database

Another usual feature of database managing systems is the ability to apply filters to
the records in a database. The filter is in fact a logical expression that, applied to the
database, filters all the records that match the logical expression. The records that do
not match the logical condition are filtered out. The function (db-filter) is shown in
Code 4-15:

;code 4-15
(define (db-filter db expr, i,

length1 header record field-id lst-out str)
(setq i 1)
(setq lst-out'())
(setq lst-out (cons (nth 0 db) lst-out))
(setq length1 (length db))
(setq header (first db));name of fields
(setq field-id (find (nth 1 expr) header));field index

(while (< i length1)
(setq record (nth i db));current record
(setq str (nth field-id record))
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;if (last expr) is a number, convert str into
number:
(if (number? (last expr))

(setq str (float str))
);if

(if (eval (list (eval '(first expr)) str (last
expr)))

(setq lst-out (cons record lst-out))
);if
(setq i (+ 1 i))

);while
(reverse lst-out)

)

The structure of the function is similar to other (db*) functions already seen, so
we shall comment only the essential expressions. The strategy here is to traverse the
entire database. If a record matches the filter then it is copied to the output list,
otherwise it is not. The most interesting argument in the function is expr. This
symbol is used to pass a logical Lisp expression to the function. Examples of valid
logical expressions are (= “Constellation” “Orion”), or (<= “Magnitude” 4). Note
that every logical expression has the following pattern (relational-operator field
value). Inside the function we shall need to evaluate them adequately. Let us see the
processes in detail:

The field index is easily obtained by means of (setq field-id (find (nth 1 expr)
header)) where header is the first record in the database, containing the names of all
the fields. After entering the while loop we get a record by using (setq record (nth i
db)) and then the value of the field of interest in the variable str. Now we examine
the last element of the logical expression expr: If it is a number then we convert the
string stored in str to a number in order to match data types. Now we are ready to
evaluate the filter on the actual record with the following Lisp expression:

(eval (list (eval ‘(first expr)) str (last expr))

Let us imagine we have passed the expression ‘(= “Constellation” “Orion”) to
the function. If the current record is, for example, the corresponding one to M42,
then (first expr) → = , str → “Orion” and (last expr) → “Orion”, and (list (eval
‘(first expr)) str (last expr)) produces the list (= “Orion” “Orion”). Here, both the
quote sign and the function (eval) have worked with exquisite caution for protecting
and evaluating symbols in such a way that we have transformed the original
argument value (= “Constellation” “Orion”) into the corresponding to the current
record (= “Orion” “Orion”). Now we can evaluate this expression again with
(eval), thus producing either a true or a nil value that is passed to the conditional if.
If the expression evaluates to true, then the record is filtered in and consed to
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lst-out. Now, as usual, the while structure terminates and the resulting filtered
database is reversed before finishing the function.

And additional comment must be taken into account. The first expression in the
function is (setq i 1) instead of the usual (nth i 0) initialization, and the third
expression is (setq lst-out (cons (nth 0 db) lst-out)). This is due to the need of
maintaining the first record in the resulting database, that is, the header of the
database is never filtered out. Why? Because the list resulting from using the
function (db-filter) is in fact a sub-database itself. Let us see it in action at the Lisp
prompt:

> (db-filter messier ‘(= “Constellation” “Orion”))
: ((“Name” “NGC” “Constellation” “Class” “Right ascension” “Declination”

“Magnitude” “Angular size” “Burnham” “Remarks”)
(“M42” “1976” “Orion” “Diffuse nebula” “5h 35.4m” “-5d 27m” “2.9”

“66x60” “!!!”
“Great Orion Nebula”)
(“M43” “1982” “Orion” “Diffuse nebula” “5h 35.6m” “-5d 16m” “6.9”

“20x15” “*” “detached portion of M42”)
(“M78” “2068” “Orion” “Diffuse nebula” “5h 46.7m” “0d 3m” “10.5”

“8x6” “*” “spec: B8 - comet shaped”))

This function call produces a sub-database containing all the Messier objects
contained in the Orion constellation. Now let us filter the brighter objects in the
Messier Catalogue, that is, those object with apparent magnitude equal or less
than 3:

> (db-filter messier ‘(<= “Magnitude” 3))
: ((“Name” “NGC” “Constellation” “Class” “Right ascension” “Declination”

“Magnitude” “Angular size” “Burnham” “Remarks”)
(“M42” “1976” “Orion” “Diffuse nebula” “5h 35.4m” “-5d 27m” “2.9”

“66x60” “!!!”
“Great Orion Nebula”)
(“M45” “” “Taurus” “Open cluster” “3h 47m” “24d 7m” “1.2” “110” “*”

“number: 130 - The Pleiades”))

Effectively, the two brighter Messier objects are M45 in Taurus and M42 in
Orion.

4.3.6 Performing Simple Statistics

Databases usually contain numeric fields and sometimes it is useful to get some basic
statistics from these collections of data. The following function, (db-stats) uses the
NewLisp function (stats) in order to obtain statistical data such as mean, standard,
deviation, etc. It is assumed that the contents of the field are strings representing
numbers. The Lisp expressions for building the function are shown in Code 4-16:
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;code 4-16
(define (db-stats db field, header field-id i lst length1)

(setq header (first db));get name of fields
(setq field-id (find field header));find position of field
(setq lst'())
(setq i 1)
(setq length1 (length db))

(while (< i length1)
(setq lst (cons (eval-string (nth field-id (nth i
db))) lst))
(setq i (+ 1 i))

);while
(stats (reverse lst)) ;return the statistics

)

The function takes two arguments, the symbol for the database and the name of
the field that contains the numerical data. As usual, the first lines of the function get
the name of the fields in the database, the position of the field and then a while loop
processes the data. Inside the function, the most interesting expression is the fol-
lowing one:

(setq lst (cons (eval-string (nth field-id (nth i db))) lst))

It first get a record, then gets the string value stored in the field, converts the
string to a number and then conses it in the list lst. After finishing the while loop
this list contains all the numerical data in the field. The last line reverses the list. Let
us try the function with the only field in the Messier database that represents
numerical values, “Magnitude”:

> (db-stats messier “Magnitude”)
: (110 7.534545455 1.540495868 1.914715413 3.666135113 -0.4639868813

0.3590037872)

As we saw in Chap. 2 (see Table 2.1), the list returned by (db-stats) is composed
by the number of values, its mean, the average deviation from the mean value, the
standard deviation, the variance, the skew and the kurtosis.

4.3.7 Saving the Database

In a database session, an user will maybe perform only query actions, but if he or
she makes modifications to the database, sooner or later will wish to save the
modifications to a file in order to make the changes more or less permanent (no
storage device, as of this writing, is able to guarantee data survival for, let us say,
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one hundred years). The function (db-save), shown in Code 4-17, performs this
task:

;code 4-17
(define (db-save db, i j length2 lenght2 record)

(setq f1 (open ''/Users/research/Desktop/Out.csv''
''write''))
(println''saving database…'')
(setq i 0)
(setq length1 (length db)) ;number of records in db

(while (< i length1)
(setq record (nth i db)) ;loads a record
(setq length2 (length record)) ;fields in record
(setq j 0)

;now, for each record:
(while (< j length2)

(write f1 (nth j record))
(if (< j (- length2 1))

(write f1'','')
);end if
(setq j (+ 1 j))

);internal while

(write f1''\n'')
(setq i (+ 1 i))

);end while i
(close f1)
(println''Database saved Ok'')
(println i'' records successfully saved.'')
true

)

Initially, the function opens the file Out.csv in write mode in the computer’s
desktop. The parameter “write” means that the file is opened for writing proce-
dures: If the file does not exist, the call to the function (open) will create it. If the file
already exists, opening the file in this mode will overwrite it. After measuring the
number of records in the database we enter a first while looping structure that
retrieves a record in each loop pass by means of the expression (setq record (nth i
db)) and then measures the number of elements (fields) in the actual record.

The internal while structure processes the actual record in the following way: first
writes an element to the file identified by the file handler f1 by means of the Lisp
expression (write f1 (nth j record)). Then, the most interesting point in the function
happens: If we still have not reached the end of the record, then we write a comma
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sign to the output file and we continue writing elements. When we arrive at the end
of the record, the internal while loop terminates and then we write a new-line code
and a carriage-return code using the expression (write f1 “\n”). After all the records
are saved, we close the file and print two messages for the user “Database saved Ok”
and “x records successfully saved”, where x is the number of saved records in the
database, including the first record containing the number of fields.

4.4 A Word on Function Design for This Chapter

In all the functions developed in this chapter we have not used the most pure Lisp
style, that is, we have not been worried about generating the most academic,
beautiful Lisp code. In fact we have not used some functions that would have made
things easier for us because our aim has been to show how many things can be done
with a relatively small number of kern Lisp functions and to give a helping hand to
those persons used to other programming languages such as C or Pascal. As an
example, we have not used the function (assoc), which would have helped us a lot in
shortening the code for the (db*) functions. As an example, code 4-18a and 4-18b
shows an alternative design for the functions (db-tell) and (db-tell2), respectively:

;code 4-18a, a shorter, more elegant version than code 4-11
(define (ddb-tell db id)

(assoc id db)
)

;code 4-18b, a shorter, more elegant version than code 4-12
(define (ddb-tell2 db id a-field)

(nth (find a-field (first db)) (assoc id db))
)

We have not used recursion, neither, and that would have been an excellent
approach for designing our (db*) functions because almost all of them traverse lists,
and with recursion and the functions (first) and (rest) we would have written pure
Lisp poetry. We have opted instead for looping structures. Probably not a very
romantic style of Lisp, but practical for those with previous knowledge in classical
programming languages.

4.5 As a Summary

This chapter has shown two approaches for developing applications in Lisp. The
first one, a French roulette simulation game, follows the traditional way of pro-
gramming of other functional languages: It builds a set of functions and then a main
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function calls them adequately from the inside of a main event loop. The second
one, a library of CSV database functions, shows the flexibility of Lisp: Every
function is relatively independent and all of them can be called from the Lisp
prompt in an interactive manner.

We have learnt how the functions (read-line) and (print) are the basic tools in
Lisp for Input/Output activities in a program, either for interacting with the key-
board and computer screen or for reading and writing text-type files. The functions
(open) and (close) allows the Lisp user to communicate to the computer’s operating
system for creating, accessing, and closing files.

We have developed a simple user interface for the Roulette application and we
have observed how many lines of code must be devoted to it. We have realized also
that the more sophisticated the user interface, the more time and resources it
requires for developing it. The database library for managing CSV databases has
not an user interface, but code 4-19 suggest a way to implement a simple one:

;code 4-19, a simple menu
(define (db-menu)

(print''\nCSV database manager\n\n'')
(print''1. Load a database into memory\n'')
(print''2. Get the name of fields in a database\n'')
(print''3. Query the database\n'')
(print''4. Add a new field to the database\n'')
(print''5. Update the database\n'')
(print''6. Filter the database\n'')
(print''7. Calculate statistics\n'')
(print''8. Save the database\n'')
(print''\nChoose an option (1-8):'')
(read-line)

)

trying the function (db-menu) at the Lisp prompt:

> (db-menu)
:CSV database manager

1. Load a database into memory
2. Get the name of fields in a database
3. Query the database
4. Add a new field to the database
5. Update the database
6. Filter the database
7. Calculate statistics
8. Save the database

Choose an option (1-8): 1
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In this case, the function (db-menu) would return “1” and hereafter the Lisp user
would only need to link the menu options to the developed (db*) functions, adding
some interface-user touches here and there.

The set of database functions developed in the second part of this chapter is not
extensive. Even so, it has the basic features of a database system. Since this set of
functions is in fact an extension to the language itself, it offers lots of possibilities
for managing data stored in CSV files because all the functions can be directly used
from the language. For example, you can open several databases in a single Lisp
session, you can get information from a database, transfer it to other, filter the
obtained database with some criteria and then save the obtained new (sub)database
to an storage device. You can do these things interactively at the Lisp prompt or
you can write a new application using the (db*) functions as building blocks for
even more sophisticated data processing applications.

FuzzyLisp follows the same philosophy of the (db*) library shown in this
chapter. It is a set of Lisp functions that extends the language itself. We shall
describe it in the next chapters of this book after exposing the basics on fuzzy-sets
theory.
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Chapter 5
From Crisp Sets to Fuzzy Sets

5.1 Introduction

We are now starting the second part of this book. After the introduction to the Lisp
programming language in part I, you are now ready to begin the phase of our travel
that will require the most of you. Not because it is complex, but because it rep-
resents a shift of paradigm not only in the way we think about sets, but also in the
form that we usually reason and analyze things. We shall start revisiting the
essentials of classic sets theory, including the concepts of belonging to a set, union
and intersection of sets, general properties of sets and the concepts of Cartesian
Product and Relations between sets.

Hereafter, we shall leave the traditional way of thinking in sets theory and will
start to introduce fuzzy sets. It will not be an abrupt quantum leap, but a smooth
pathway towards the new paradigm. Here, the exposed material on crisp sets will be
helpful for establishing a contrast between the two worlds, and the Lisp code from
this chapter will help you not only as a pedagogical tool, but also to build your own
fuzzy sets, that is, to experiment with Lisp expressions in your own area of
expertise under the viewpoint of the new theory.

5.2 A Review of Crisp (Classical) Sets

A scientific theory does not appear suddenly. The development of a new scientific
paradigm usually follows several phases. At a given time one or more scientists
develop some ideas and soon they exchange them and derive new knowledge. It
may happen that no clear, defined theory is immediately available, but the scientific
community quickly recognizes that something new is in the air, creating an exciting
scientific ambience. Later, more people is attracted by the fresh concepts and the
theory gains momentum until arriving a point in time where the overall concepts are
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distilled into a new scientific frame. Sets theory is an example of this evolution in
human thinking, appearing in the second half of century XIX in Germany, mainly
from the works of Georg Cantor, Richard Dedekind and Ernst Zermelo, becoming a
recognized branch of mathematical logic from 1915, approximately.

5.2.1 Definition of Sets and the Concept of Belonging

The definition of a set is in some way difficult because it is in itself an extremely
simple concept. A set is a collection of objects, things, or put into a more formal
mathematical language, elements. When put together, physically or conceptually, a
collection of things becomes a set. As an example we can mention the set of odd
numbers from a roulette, the set of Galilean Moons, the set of Messier objects, etc.
In fact, we can describe a set by means of three ways:

1. By simple enumeration where you describe, one by one, the name of all the
elements in a set. For example the set S of Galilean Moons can be mathemat-
ically represented as follows:

S = {Callisto, Ganymede, Europa, Io}

2. Conceptually, by means of an established condition:

S = {x | x is one of the four biggest moons of Jupiter}

This type of expressions can be read as “x such as x is … (condition)”. In this
case, (condition) equals to “one of the biggest moon of Jupiter”.

3. By means of a Venn diagram:
A Venn diagram, as shown in Fig. 5.1, consists in a circle or ellipse containing
the elements of a set, becoming an excellent graphical method for representing
them.

Fig. 5.1 A venn diagram
representing the set S of
Galilean Moons
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4. Additionally, in this book we are going also to represent sets by means of Lisp
expressions. If lists are composed by elements, it seems a natural step to use lists
for representing sets:

(setq S ‘(Callisto Ganymede Europa Io))

Independently from the way of representing sets, we shall always use capital
letters for naming them.

Intrinsically related to the very definition of a set is the concept of belonging. In
crisp, classical sets, a given element x either belongs or does not belong to a given
set A. Formally:

x 2 A x belongs to set Að Þ ð5-1Þ

x 62 A xdoes not belong to set Að Þ ð5-2Þ

In Lisp, we can use the user-defined predicate (belongs?), shown in Code 5-1,
for checking if a given element x belongs or not to a given set A:

;code 5-1
(define (belongs? x A)

(if (or (intersect (list x) A) (= x'()))
true
nil

)
)

Now, after typing (setq S ‘(Callisto Ganymede Europa, Io)) at the Lisp prompt
we can interrogate the system with, for example: (belongs? ‘Europe S)→ true, and,
for example, (belongs? ‘Phobos S) → false.

5.2.2 Subsets

If every element of a set A is also an element of a set B, we say that A is a subset of
B. We can also say that A is included in B. Formally:

A � B ð5-3Þ

Conversely, if at least an element of set A is not an element of set B then we say
that A is not a subset of B. We can also say that A is not included in B:

A 6� B ð5-4Þ
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There is a peculiar set in Sets Theory, named “empty set” that is simply a set
without any elements and is usually represented by the Greek letter ϕ or alterna-
tively by {}. The empty set should not be strange for us because in Lisp we have
extensively used the empty list () in many functions in the previous section of this
book, proving its utility in real world applications. By definition, the empty set is
included in every set. With these ideas on mind, we can write a Lisp predicate for
checking if a set A is a subset of a set B, as shown in Code 5-2:

;code 5-2
(define (subset? A B)

(if (or (= A (intersect A B)) (= A'()))
true
nil

)
)

As an example, if we define the set U as the set of planets in the Solar System,
U = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}, H as the set
of hard planets in the Solar System, H = {Mercury, Venus, Earth, Mars} and then G
as the set of gaseous planets G = {Jupiter Saturn Uranus Neptune}, we can write:

H � U, G � U

Expressing these sets in Lisp notation: (setq U ‘(Mercury Venus Earth Mars
Jupiter Saturn Uranus Neptune)), (setq H ‘(Mercury, Venus, Earth, Mars)), (setq G
‘(Jupiter Saturn Uranus Neptune)), then the following Lisp expressions hold:
(subset? H U) → true, (subset? G U) → true. Please note that following the actual
classification of the Astronomical Union, Pluto is not a planet of the Solar System.

Also by definition, every subset is included into itself, as we can see typing at the
Lisp prompt: (subset? G G) → true.

Another peculiar set in sets theory is the Universal Set, usually represented by
the capital letter U. The most trivial Universal Set would be the set of all things
contained in the known universe, including atoms, quarks and any imaginable thing
the reader can think in this moment. Needless to say, such a set can only be handled
from a philosophical point of view, and from a mathematical and computer science
perspective we define a Universal Set as the Set that contains all the objects under
consideration, that is, the set of all the elements about a given subject matter. For
example the Universal Set of numbers in a French roulette is the set U1 of integer
numbers from 0 to 36. The Universal Set of possible outcomes of throwing a dice is
the set U2 of integers from 1 to 6 and so on. Some example subsets of U1 are, for
example

S1 = {x | x is red}

S2 = {x | x belongs to the first column}
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Remembering the Lisp code from the previous chapter, the set S2 was already
represented by the symbol *column1* as (setq *column1* ‘(1 4 7 10 13 16 19 22 25
28 31 34)). Needless to say, both S1 and S2 are included in U1 and are subsets of it:

S1 � U1, S2 � U1

The imaginable set of “all things contained in the known universe” is, obviously
uncountable, but uncountable sets can be represented mathematically, too. For
example the set of real numbers between 1.0 and 10.0 can be expressed as:

S = {x | x ≥ 1.0 and x ≤ 10.0}, x 2 R

Theoretically, Lisp can handle uncountable sets, too. The previous expression
can be put into Lisp code using the expression (if (and (>= x 1.0) (<= x 10.0)) (lisp-
expression)). Here (lisp-expression) would be the action that Lisp would follow if x
belongs to S, so Lisp can also conceptually describe uncountable sets. However, it
is common, both in mathematics and Lisp, to use countable sets. In this case, the
number of elements contained in a set S is called cardinality, and it is represented
by the Greek letter η, or simply by |S|. For example: η(S1) = |S1| = 18, and η(S2) =
|S2| = 12.

Cardinality in Lisp is trivially expressed by Code 5-3:

;code 5-3
(define (cardinality S)

(length S)
)

Although this function is simply a call to the function (length) it serves us well
for establishing a continuum between Sets Theory and Lisp. Now, for example,
(cardinality *column1*) → 12. Please note that in Lisp we can also re-name any
function at the Lisp prompt:

> (setq cardinality length)
: length<1B3C6>

And then, as before, (cardinality *column1*) → 12.
We define sets S1 and S2 as equivalent if their cardinality is the same, that is:

g S1ð Þ ¼ g S2ð Þ ð5-5Þ

(= (cardinality S1) (cardinality S2)) → true

S1 and S2 are equal if the elements in both elements are exactly the same. We
then write:
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S1 ¼ S2 ð5-6Þ

Conversely, sets S1 and S2 are unequal if their cardinality is different or if their
elements are not the same. Mathematically, we express it as follows:

S1 6¼ S2 ð5-7Þ

From a Lisp point of view, it cannot be easier for checking if two sets are equal
or unequal. Taking as example, (setq A ‘(a b c)), (setq B ‘(a b c d)), (setq C ‘(x y z)),
(setq D ‘(a b c)), we have that (= A B) → nil, (= A D) → true, (= C D) → nil, but
(= (cardinality A) (cardinality D)) → true. These expressions show us the road to
write two simple Lisp predicates, shown in Code 5-3a and 5-3b:

;code 5-3a
(define (equivalent? A B)

(if (= (cardinality A) (cardinality B)))
)

;code 5-3b
(define (equal? A B)

(if (= A B))
)

The previous paragraph can be thus rewritten as: (equal? A B) → nil, (equal?
A D) → true, (equal? C D) → nil, (equivalent?A D) → true.

5.2.3 Union, Intersection, Complement and Difference

The union S1 [ S2 of two crisp sets S1, S2 is a set formed by all the elements of
S1 and all the elements of S2 after eliminating any possible repeated element.
Mathematically:

S1 [ S2 ¼ fx j x 2 S1 or x 2 S2g ð5-8Þ

As an example, if we have two sets A and B composed by some lower-case
letters:

A = {a, b, c, d, e}, B = {b, c, x, y, z}
then,

A [ B = {a, b, c, d, e, x, y, z}

NewLisp incorporates a function, not surprisingly named (union), that returns
the union of two sets as a list, that is, as another set. For example, if we create the
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sets A and B by typing (setq A ‘(a b c d e)) and (setq B ‘(b c x y z)), then (union
A B) → (a b c d e x y z). Figure 5.2 shows graphically the union of two sets.

The intersection S1 \ S2 of two crisp sets S1, S2 is a set formed by all the
common elements of S1 and S2. Mathematically:

S1 \ S2 ¼ fx j x 2 S1 and x 2 S2g ð5-9Þ

Following the previous example with sets A and B, we have:

A \ B = {b, c}

Although the reader should be able to write a Lisp function for obtaining the
intersection of two sets, NewLisp already incorporates it in its library of functions,
and we only need to type the following at the Lisp prompt: (intersect A B) → (b c).
By the way, please note how we have seized the opportunity to use the function
(intersect) for creating the functions (belong?) and (subset?) as shown in Code 5-1
and 5-2, respectively. Figure 5.3 shows graphically the intersection of two sets.

Fig. 5.2 A graphical
representation of the union of
two sets, A and B

Fig. 5.3 A graphical
representation of the
intersection of two sets,
A and B
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If the intersection of two sets, A and B results into the empty set, ϕ, that is;

A\B ¼ / ¼ fg ð5-10Þ

we say that A and B are disjoint. For example, if A = {a, b, c}, B = {x, y, z} then A
and B are disjoint because they do not share any element, that is, its intersection is
null. Code 5-4 shows a simple Lisp predicate for testing if two sets are disjoint:

;code 5-4
(define (disjoint? A B)

(if (= (intersect A B)'()))
)

Now, following the previous example, (setq A ‘(a b c)), (setq B ‘(x y z) then
(disjoint? A B) → true. It is interesting to note that if two sets A and B are disjoint,
then an obvious relationship does exist between the concepts of cardinality and
union of sets:

gðA[BÞ ¼ g Að Þ þ g Bð Þ ð5-11Þ

Using the last example for sets A and B in Lisp for trying expression (5.11),
we have:

(cardinality (union A B)) → 6
(+ (cardinality A) (cardinality B)) → 6

In general, any two sets A and B, despite they are disjoint or not, satisfy the
following property:

gðA[BÞ ¼ g Að Þ þ g Bð Þ � gðA\BÞ ð5-12Þ

Again trying the two non-disjoint sets (setq A ‘(a b c d e)), (setq B ‘(b c x y z)),
then we have: (cardinality A) → 5, (cardinality B) → 5, (cardinality (union
A B)) → 8, (cardinality (intersect A B)) → 2. Expressed in only one line:

(= (cardinality (union A B)) (- (+ (cardinality A) (cardinality B)) (cardinality
(intersect A B))) → true

After a simple manipulation of expression (5-12) we finally obtain:

gðA[BÞ þ gðA\BÞ ¼ g Að Þ þ g Bð Þ ð5-13Þ
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The complement of a set A with respect to a Universal set U is by definition the
set composed by all the elements belonging to U that are not included in A.
Formally:

A0 ¼ fx j x 2 Uand x 62 Ag ð5-14Þ

A Venn diagram, shown in Fig. 5.4, will help to visualize expression (5-14).
As an example, let us take again the set U as the set of planets in the Solar

System, U = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune} and
then H as the set of hard planets in the Solar System, H = {Mercury, Venus, Earth,
Mars}. Then the complementary of H, H′ is:

H′ = {Jupiter Saturn Uranus Neptune}

Code 5-5 shows a Lisp function for obtaining the complementary set of a set A
with respect to a universal set U:

;code 5-5
(define (complement A U, lU i set-out)

(setq set-out'())
(setq lU (cardinality U))
(setq i 0)

(while (< i lU)
(if (! = (belongs? (nth i U) A) true)

(setq set-out (cons (nth i U) set-out))
)
(++ i);this is equivalent to (setq i (+ 1 i))

);end while
(reverse set-out)

);end function

Fig. 5.4 A graphical
representation of the
complement of a set A, A′
with re-spect to an Universal
set U
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Expressing again sets U and H in Lisp we have: (setq U ‘(Mercury Venus Earth
Mars Jupiter Saturn Uranus Neptune)), (setq H ‘(Mercury, Venus, Earth, Mars)),
(setq G ‘(Jupiter Saturn Uranus Neptune)). And now:

(complement H U) → (Jupiter Saturn Uranus Neptune
(complement G U) → (Mercury Venus Earth Mars)

In this case, G and U are disjoint sets and its union covers the complete
Universal Set:

(intersect H G) → ()
(union H G) → (Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune)

The difference between two sets A and B is another set whose elements belong
to A but do not belong to B. Formally:

A� B ¼ fx j x 2 Aand x 62 Bg ð5-15Þ

A graphic representation of the difference between sets can be seen in Fig. 5.5
with the help of Venn diagrams.

As can be inferred from Fig. 5.5, the difference between two sets A and B can be
also described by the following expression:

A�B ¼ A\B
0 ð5-16Þ

NewLisp incorporates a function named (difference) that automatically calculates
the difference between two sets. As an example, let’s take set A as the sets of
satellites in the solar systems easily to observe with a small quality telescope: (setq A
‘(Moon Callisto Ganymede Europa Io Titan)), and B as the set of Galilean moons in
Jupiter: (setq B ‘(Callisto Ganymede Europa Io)). Then, (difference A B) → (Moon
Titan). It is important to note that the difference between two sets is not commu-
tative, that is: A� B 6¼ B� A, for example: (difference B A) → ().

Fig. 5.5 A graphical
representation of the
difference between sets
A and B
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5.2.4 Set Properties

In this section we are going to expose the main properties of sets. Aside the formal
description we shall give a simple Lisp example for each of the properties using the
following expressions as sets: (setq U ‘(0 1 2 3 4 5 6 7 8 9)), (setq A ‘(1 3 5 7)),
(setq B ‘(5 6 7 8 9)), (setq C ‘(0 1 2 3 4)). Each family of properties will be included
into a single table as follows: Table 5.1 shows the Identity properties of sets,
Table 5.2 the Idempotent ones, Table 5.3 the Complement ones, Table 5.4 the
Associative ones, Table 5.5 the Commutative ones, Table 5.6 the Distributive ones
and Table 5.7 shows the De Morgan’s Laws.

Table 5.1 Identity properties
of sets

A [ ϕ = A
(union A ‘()) → (1 3 5 7)

A [ U = U
(union A U) → (1 3 5 7 0 2 4 6 8 9)

A \ U = A
(intersect A U) → (1 3 5 7)

A \ ϕ = ϕ

(intersect A ‘()) → ()

Table 5.2 Idempotent
properties of sets

A [ A = A
(union A A) → (1 3 5 7)

A \ A = A
(intersect A A) → (1 3 5 7)

(intersect A ‘()) → ()

Table 5.3 Complement
properties of sets

A [ A′ = U
(union A (complement A U)) → (1 3 5 7 0 2 4 6 8 9)

A \ A′ = ϕ

(intersect A (complement A U)) → ()

Table 5.4 Associative
properties of sets

(A [ B) [ C = A [ (B [ C)
(union (union A B) C) → (1 3 5 7 6 8 9 0 2 4)
(union A (union B C)) → (1 3 5 7 6 8 9 0 2 4)

(A \ B) \ C = A \ (B \ C)
(intersect (intersect A B) C) → ()
(intersect A (intersect B C)) → ()
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5.2.5 Cartesian Product and Relations

In sets theory, the Cartesian Product of two sets, A and B, denoted by A × B, is the
set of all possible ordered pairs (x,y) whose first component x is a member of A and
whose second component y is a member of B. Formally:

A� B ¼ f x;yð Þ j x 2 A and x 2 Bg ð5-17Þ

As an example, if A = {a, b, c}, and B = {1, 2, 3, 4}, then:

A × B = {(a,1), (a,2), (a,3), (a,4), (b,1), (b,2), (b,3), (b,4), (c,1), (c,2), (c,3), (c,4)}

Needless to say, the Cartesian Product is not commutative, that is
A × B ≠ B × A. In fact, the commutative property for the Cartesian Product
between two sets A and B only holds when A = B. Using the same previous
example with sets A and B:

B × A = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c), (3,a), (3,b), (3,c), (4,a), (4,b), (4,c)}

Neither Lisp nor the NewLisp dialect incorporate a function for calculating the
Cartesian Product of two sets, but it is not a hard undertaking to write one. Code 5-6
shows a simple Lisp implementation of such a function:

Table 5.5 Commutative
properties of sets

A [ B = B [ A
(union A B) → (1 3 5 7 6 8 9)
(union B A) → (1 3 5 7 6 8 9)

A \ B = B \ A
(intersect A B) → ( 5 7)
(intersect B A) → (5 7)

Table 5.6 Distributive
properties of sets

A [ (B \ C) = (A [ B) \ (A [ C)
(union A (intersect B C)) → (1 3 5 7)
(intersect (union A B) (union A C)) → (1 3 5 7)

A \ (B [ C) = (A \ B) [ (A \ C)
(intersect A (union B C)) → (1 3 5 7)
(union (intersect A B) (intersect A C)) → (5 7 1 3)

Table 5.7 De Morgan’s
Laws

(A [ B)′ = A′ \ B′
(complement (union A B) U) → (0 2 4)
(intersect (complement A U) (complement B U)) → (0 2 4)

(A \ B)′ = A′ [ B′
(complement (intersect A B) U) → (0 1 2 3 4 6 8 9)
(union (complement A U) (complement B U))→ (0 2 4 6 8 9 1 3)
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;code 5-6
(define (cartesian-product A B, lA lB i j set-out)

(setq lA (cardinality A))
(setq lB (cardinality B))
(setq i 0 j 0);initializes i and j at the same time to

zero
(setq set-out'())

(while (< i lA)
(while (< j lB)

(setq set-out (cons (list (nth i A) (nth j B))
set-out))

(++ j)
);end while j
(++ i)
(setq j 0);reinitializes j

);end while i
(reverse set-out)

)

Then, making (setq A ‘(a b c)) and (setq B ‘(1 2 3 4)), we only need to write at
the Lisp prompt: (setq U1 (cartesian-product A B)) and Lisp will answer:

((a 1) (a 2) (a 3) (a 4) (b 1) (b 2) (b 3) (b 4) (c 1) (c 2) (c 3) (c 4))

Conversely, the Lisp expression (setq U2 (cartesian-product B A)) produces,
as expected:

((1 a) (1 b) (1 c) (2 a) (2 b) (2 c) (3 a) (3 b) (3 c) (4 a) (4 b) (4 c))

A Cartesian Product can be represented in two dimensions using a simple
two-axis graphic. Figure 5.6a, b show A × B and B × A, respectively. Please note
from the simple observation of the figures that A × B ≠ B × A, as previously
stated:

The definition of a Relation between a set A and a set B is simple: A Relation
between sets A and B (or from A to B) is any subset R of the Cartesian Product
A × B. After a Relation is established we can say that a 2 A and b 2 B are related
by R. Using the same previous sets A = {a, b, c} and B = {1, 2, 3, 4} a Relation R1

can be, for example:

R1 = {(a,3), (a,4), (b,1), (b,2), (b,3), (b,4)}

R1 can be represented graphically as shown in Fig. 5.7.
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Expressing this into Lisp can not be simpler: (setq R1 ‘((a 3) (a 4) (b1) (b 2)
(b 3) (b 4)). For testing if this is a Relation from A to B, we only need to type at the
Lisp Prompt: (subset? R1 U1) -> true, and, as expected, (subset? R1 U2) -> nil,
since R1 is not a relation from B to A.

Fig. 5.6a A graphical
representation of the
Cartesian product A × B

Fig. 5.6b A graphical
representation of the
Cartesian product B × A

Fig. 5.7 A graphical
representation of relation R1
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5.3 Moving Towards Fuzzy Sets

In the previous sections of this chapter we have seen that probably the most
important concept in sets theory is the concept of belonging or membership of an
element to a set. In fact, without this concept it would be impossible to describe
sets. Aside enumerating the elements of a set or expressing it conceptually, or by
means of a Venn diagram, we can also express the membership of an element x to a
set A using what is known as a membership function, μA(x) or characteristic
function. Such a function can only take two values in classic sets theory: 0 if
an element x does not belong to a set A, or 1 if an element x certainly belongs to
a set A. Formally:

lA xð Þ ¼ 1 for x2A ð5-18aÞ

lA xð Þ ¼ 0 for x 62 A ð5-18bÞ

As an example, let us take the set A as the set of French people, and a very small
subset E of European citizens such as E = {Klaus, Jean, John, Paolo, Maurice,
Juan}. Only two elements from E belong to A. Using expressions (5-18a) and
(5-18b) we have:

μA(Klaus) = 0, μA(Jean) = 1, μA(John) = 0
μA(Paolo) = 0, μA(Maurice) = 1, μA(Juan) = 0

This type of situations is perfectly covered by using classic, crisp sets. Other
examples could be the set of cars that use V12 engines, the set of rockets used in
manned spaceflight missions and so on, where the membership value μ(x) to every
element of their respective universal sets is either one or zero. However, there are
also examples, in fact the most of things we observe in nature, that do not adhere to
this formal framework of yes/no, 1 or 0 belonging.

Let us take the age of a human being as an example, ranging from 0 to 80 years
(here we use 80 years old as a top limit since that figure expresses well an average
of life duration in developed countries from occidental societies). The key question
here is simple at first sight: How do we define the set of old people? That is, where
do we establish a sharp separation between young and old people, at which age?
After a while, you, dear reader, maybe would answer: “well, maybe it would be
better to divide the universal set representing age from 0 to 80 years old in several
subsets such as ‘child, young, mature and old’ in order to have a better represen-
tation of the concept of age”. It is not a bad answer. However, if you reflect a bit
about it you will soon realize that your answer put the question to sleep for a while,
but it does not solve the problem because, for example, it leads to questions such us
“how do we establish the dividing line between mature and old?”. Pressed by my
questions you maybe would tell me, probably with a challenging tone of voice:
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“Well, we can not do infinite partitions in the set that represents age, right?” This is
not a bad reply, either.

For exposing clearly the nature of the problem at hand let us say that there is an
agreement if I say that an 80 years old person is an old person. If we subtract one
year we obtain 79, and a 79 years old person is again an old person. Following the
procedure we have the sequence of numbers 80, 79, 78, 77, 76, … When do we
stop enumerating the concept of old age? Since you are delighted with the classic
set theory exposed until now in this chapter you decisively say: “ok, a decision
must be made. Let us take 50 years old as the dividing line in such a way that we
obtain a set A of young people and a set B of old people. Then for every man of
woman on the entire Earth we can express formally:”

A = {x | x ≥ 0 and x ≤ 50}
B = {x | x > 50 and x ≤ 80}

Sadly, this leads to another set of itching, irritating questions: Is it really a
51 years old person an old person?, or, do you really believe that a 49 years old
person is a young person? Finally you exclaim “well Luis, at least you can not
negate that a 75 years old person is older than a 55 years old person, and that a
23 years old person is younger than a 62 years old person!”. No, I shall not negate
that. In fact I think these are excellent observations.

5.3.1 The “Fuzzy Sets” Paper

The previous “age problem” is in fact an example of the well known “Sorites
Paradox”, a class of paradoxical arguments, based on little-by-little increments or
decrements in quantity. A heap formed by sand grains is the primitive paradox
(in fact “Sorites” means “heap” in ancient Greek) where decrementing the heap size
grain by grain is impossible to establish when a heap turns into a no-heap. The same
paradox arises when we try to describe the set of rich people, the set of ill patients in
a hospital, the set of luminous galaxies, the set of beautiful women…, the number
of instances of the Sorites paradox is quasi-infinite in the real world. These para-
doxes can not be adequately solved by using classic sets theory.

Lofti Zadeh, the father of the fuzzy sets theory, was born in 1921 in Baku,
Azerbaijan. Soon after graduating from the University of Tehran in electrical
engineering in 1942 he emigrated to the United Sates, entering the Massachusetts
Institute of Technology, MIT, in 1944 and getting an MS degree in electrical
engineering in 1946. Not much later he moved again, this time to New York City,
where he received his PhD degree in electrical engineering from the University of
Columbia in 1949. After ten years of lecturing at Columbia he finally moved to
Berkeley in 1959. While I am writing this book (2014) he still continues writing
papers in the famous University on the eastern side of the San Francisco Bay.
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Back in the summer of 1964, Zadeh was preparing a paper on pattern recognition
for a conference to be held at the Wright-Patterson Air Force Base in Dayton. Ohio.
The flight to Dayton made a stopover in New York, so Zadeh enjoyed an evening of
free time, an evening free of academic and social encounters that conceded him the
freedom of thinking at his best. In his own words:

I was by myself and so I started thinking about some of these issues (pattern recognition).
And it was during that evening that the thought occurred to me that when you talk about
patterns and things of this kind, … that the thing to do is to use grades of
membership. I remember that distinctly and once I got the idea, it became grow to be easy
to develop it (Seising 2007)

As it usually happens, inspiration comes when you are working hard into a
problem and you have a strong knowledge not only in the discipline where the
problem to solve is defined, but in other more or less parallel and related disciplines.
Under these conditions the human brain tends to establish new connections from
patterns to patterns of neurons. This neurophysiological process is in fact what we
call inspiration. In the case of Zadeh, the nucleus of his inspiration can be summa-
rized in only five words: “to use grades of membership” and that realization mate-
rialized into what is probably the most famous paper in the history of fuzzy-logic.
This paper, unambiguously titled “Fuzzy Sets”, symbolized a shift of paradigm in the
theory of sets. I cannot renounce to remember the first words of the abstract of such
an important tour de force in the history of computer science and mathematics:

A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is
characterized by a membership (characteristic) function which assigns to each object a
grade of membership ranging between zero and one (Zadeh 1965)

It is difficult to express the definition of a fuzzy set in a better way. Before
presenting some mathematical and Lisp expressions for representing fuzzy sets,
I think it is convenient to show a graphical representation of fuzzy sets. In Fig. 5.8a
we can see a traditional Venn diagram showing a classic, crisp set A. It is a simple
sketch drawn by hand with a pencil, but interesting enough for our discussion. For
convenience we have shown it in black. If you wish so, you can imagine it

Fig. 5.8a A sketch of a crisp
set, A
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represents a set of old people from the traditional point of view of classic sets theory
where every person x belonging to it satisfies the previous expression {x | x > 50
and x ≤ 80}. In this way, every person older than 50 years old would be “located”
inside the black Venn diagram. Needless to say, every young person, less than
50 years old, would be located outside it.

Zadeh’s shift of paradigm can be appreciated from the simple observation of
Fig. 5.8b. There, it is easy to observe how the blackness decreases from its nucleus
towards the exterior in a continuous way, representing different grades of
membership. An element x1 representing an 80 years old person would be located
just in the centre, showing a whole membership degree to the fuzzy set fzA, that is
μfzA = 1. As the age of a person decreases, the location of its corresponding element
xi would move away from the centre, getting diminishing values of μfzA, that is,
μfzA < 1, such as, for example μfzA = 0.7, μfzA = 0.45 or μfzA = 0.2 for decreasing
values of age. Just note that now there is no need to define a threshold value for
separating in a sharp way the set of old people from the set of young people.

Definition A fuzzy set A is defined by a characteristic function μA(x) that maps
every element x belonging to A to the closed interval of real numbers [0,1].
Formally we can write:

A ¼ fðx;lA xð ÞÞ j x 2 A;lA xð Þ 2 0;1½ �g ð5-19Þ

That is, we can create a fuzzy set by means of enumerating a collection of
ordered pairs (xi, μA(xi)) where μA(xi) is the membership degree of an element xi to
the fuzzy set A. In general:

lA : X ! 0;1½ � ð5-20Þ

In this expression, the function µA completely defines the fuzzy set A (Klir and
Yuan 1995). Following the example of age in human beings we can enumerate
a precise, however subjective, characterization of the fuzzy set A of old people as,

Fig. 5.8b A sketch of a fuzzy
set, fzA. The black nucleus
represents a whole
membership degree to the
fuzzy set
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for example: μA(35) = 0.1; μA(45) = 0.2; μA(55) = 0.4; μA(65) = 0.7; μA(75) = 0.9;
μA(80) = 1. Using the formal representation given by (5-19) we would have:

A = {(35,0.1), (45,0.2), (55,0.4), (65,0.7), (75,0.9), (80,1.0)}

Since we are dealing with persons, and admitting Paul is 35 years old, John is
45, Mary is 55, Klaus is 65, Juan is 75 and Agatha is 80, we can also write:

Anames = {(Paul,0.1), (John,0.2), (Mary,0.4), (Klaus,0.7), (Juan,0.9), (Agatha,1.0)}

As the reader has quickly realized, representing these fuzzy sets using Lisp
expressions is straightforward:

(setq A ‘((35 0.1) (45 0.2) (55 0.4) (65 0.7) (75 0.9) (80 1.0)))
(setq A-names ‘((Paul 0.1) (John 0.2) (Mary 0.4) (Klaus 0.7) (Juan 0.9)

(Agatha 1.0)))

For graphically representing fuzzy sets, traditional Venn diagrams are not
enough since they were designed for representing crisp sets. Inspired by the sketch
shown in Fig. 5.8, we can use a radar type diagram as a sort of enhanced Venn
diagram, as shown in Fig. 5.9. The inner the dot in the radar diagram, the higher is
its membership degree to the set. Circles representing membership degrees are
spaced every 0.2 units in the figure.

When elements from a fuzzy set are based on numbers, it is usually more con-
venient to use grid diagrams, as the one shown in Fig. 5.10. The vertical axis

Fig. 5.9 A radar-type
diagram for representing a
fuzzy set. Inner circles
represent higher membership
degrees to the set
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represents the membership degree to the set, while the horizontal axis shows the
numerical elements. In this book we shall use the most suitable type of graphic for our
needs. At the end of this chapter we shall make an intense use of grid-type diagrams.

It is especially important to remark that the subjective definition of a fuzzy set by
means of its characteristic function is an advantage when modeling vague concepts
because we can adapt, or better said, choose the most suitable one depending on
context. Continuing with the fuzzy set of “old people” A, we have exposed a
general example that suits well for a general population of human beings. However,
if we are speaking about professional tennis players we can use, for example, the
following fuzzy set T:

T = {(Dimitrov,0.2), (Djokovic,0.5), (Nadal,0.6), (Federer,0.9), (Borg,1.0)}

where Borg is definitely an old professional tennis player, despite he would have
a membership degree about 0.5 to the set of old people A in 2014. In fact you
should take into account that the definition of set T is valid from the point in time I
am writing this book. If you are reading this book in 2035 all the elements from
T will have a membership degree of 1.0, that is, all of them will be old for playing
tennis professionally.

As it was the case with crisp sets, and as the reader has probably suspected, the
concept of belonging to a fuzzy set deserves a dedicated Lisp function. It is shown
in Code 5-7:

;code 5-7
(define (fz-belongs? x A)

(if (assoc x A)
(last (assoc x A))
nil

)
)

Fig. 5.10 A grid-type diagram for representing a fuzzy set. The vertical axis shows the
membership degree to the set. The horizontal axis shows age in years
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As can be observed after reading the code, the function (fz-belongs?) returns nil
if a given element x is not a member to the fuzzy set A, else, that is, if x belongs to
A, then it returns its membership degree. Taking again the Lisp definition of the
fuzzy set A-names: (setq A-names ‘((Paul 0.1) (John 0.2) (Mary 0.4) (Klaus 0.7)
(Juan 0.9) (Agatha,1.0))), then we would have, for example: (fz-belongs? ‘Klaus A-
names) → 0.7, but (fz-belongs? ‘Paolo A-names) → nil.

5.3.2 Union, Intersection and Complement of Fuzzy Sets

As we did in Sect. 5.2.3, we are going to explore now how the union, intersection
and complement of fuzzy sets are defined. Basically the concepts remain the same,
but the introduction of the idea of membership degree to a given fuzzy set adds
important details that must be taken into account.

Definition The union C = A [ B of two fuzzy sets A and B, determined respectively
by their characteristic functions μA(x), μB(x), is defined formally by the following
expression:

C ¼ A[B ¼ lC xð Þ ¼ max½lA xð Þ; lB xð Þ� ð5-21Þ

As an example, let us take the fuzzy sets A and B:

A = {(1,0.7), (2,0.1), (3,0.3), (4,0.9), (5,0.2)}
B = {(1,0.1), (2,0.8), (3,0.9), (4,0.2), (5,1)}

Figure 5.11a, b show a grid representation of these fuzzy sets:
Then, the union C = A [ B is:

C = {(1,0.7), (2,0.8), (3,0.9), (4,0.9), (5,1)}

Fig. 5.11a Grid
representation of fuzzy set A
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In order to have a Lisp function for obtaining the union of two fuzzy sets (and
also for obtaining its intersection), it is convenient to have first an auxiliary func-
tion, named (clean-md) that given a fuzzy set A returns a related crisp set, that is,
a set that conserves all the elements x in A but cleans all its membership values.
Such a function is shown in Code 5-8:

;code 5-8.
(define (clean-md A, lA i set-out)

(setq lA (cardinality A))
(setq i 0)
(setq set-out'())

(while (< i lA)
(setq set-out (cons (first (nth i A)) set-out))
(++ i)

); end while i
(reverse set-out)

)

Then, for example, is we take (setq A ‘((1 0.7) (2 0.1) (3 0.3) (4 0.9) (5 0.2))) and
(setq B ‘((1 0.1) (2 0.8) (3 0.9) (4 0.2) (5 1.0))), then (clean-md A) → (1 2 3 4 5)
and also (clean-md B) → (1 2 3 4 5). Now, we can easily write the function
(fz-union), as shown in Code 5-9:

;code 5-9
(define (fz-union A B, temp lA lB lt i element md-a md-b
set-out)

(setq temp (union (clean-md A) (clean-md B)))
(setq lA (cardinality A))
(setq lB (cardinality B))
(setq lt (cardinality temp))
(setq i 0)
(setq set-out'())

Fig. 5.11b Grid
representation of fuzzy set B
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(while (< i lt)
(setq element (nth i temp))
(setq md-a (assoc element A))
(setq md-b (assoc element B))
(if (> = md-a md-b)

(setq set-out (cons md-a set-out));
else:
(setq set-out (cons md-b set-out))

)
(++ i)

); end while i
(reverse set-out)

)

Now, for testing the function, we only need to type at the Lisp prompt: (fz-union
A B), obtaining: ((1 0.7) (2 0.8) (3 0.9) (4 0.9) (5 1)). Figure 5.12a, b show a graphic
representation of the union of A and B.

Please observe how for both figures the membership degree of each element in
the resulting union of sets get “higher” in its respective graphic. In the grid rep-
resentation, this raising is clear, while in the radar-type graphic, the elements 1, 2, 3,
4 and 5 are closer to the centre. Imagining the curves representing membership
degrees as contour lines in a terrain, we can appreciate that the resulting elements
are closer to the top.

Definition The intersection C = A \ B of two fuzzy sets A and B, determined
respectively by their characteristic functions μA(x), μB(x), is defined formally by the
following expression:

C ¼ A\B ¼ lC xð Þ ¼ min½lA xð Þ; lB xð Þ� ð5-22Þ

Taking again the same example sets A and B, we have the intersection C = A \ B:

C = {(1,0.1), (2,0.1), (3,0.3), (4,0.2), (5,0.2)}

Fig. 5.12a A grid
representation of A [ B
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Translating this to Lisp results into the function (fz-intersect), shown in
Code 5-10:

;code5-10
(define (fz-intersect A B,

temp lA lB lt i element md-a md-b set-out)
(setq temp (intersect (clean-md A) (clean-md B)))
(setq lA (cardinality A))
(setq lB (cardinality B))
(setq lt (cardinality temp))
(setq i 0)
(setq set-out'())
(while (< i lt)

(setq element (nth i temp))
(setq md-a (assoc element A))
(setq md-b (assoc element B))

(if (<= md-a md-b)
(setq set-out (cons md-a set-out));

else:
(setq set-out (cons md-b set-out))

)
(++ i)

); end while i
(reverse set-out)

)

Fig. 5.12b A radar-type
representation of A [ B

152 5 From Crisp Sets to Fuzzy Sets



And testing the function at the Lisp prompt we get: (fz-intersect A B) → ((1 0.1)
(2 0.1) (3 0.3) (4 0.2) (5 0.2)). Figure 5.13a, b show a grid-type and a radar-type
representation of the intersection of fuzzy sets A and B, respectively.

The dashed curves in Fig. 5.13b show the original external shapes (that is, 0.0
membership degrees) of theVenn diagrams corresponding toA andB. SinceA\B has
resulted into a set with lowmembership degrees, you can visualize it as two radar-type
Venn diagrams relatively separated with a common part (continuous lines). If the
resulting fuzzy intersection had elements with high membership degrees, this fact
would imply that the radar-type Venn diagrams would be closer. In fact, A \ A→ A,
and then the separation would be inexistent. Expressing it into Lisp: (fz-intersect
A A) → ((1 0.7) (2 0.1) (3 0.3) (4 0.9) (5 0.2)).

Definition The complement A′ of a fuzzy set A determined by its characteristic
function μA(x) is defined formally by the following expression:

A0 ¼ 1� lA xð Þ ð5-23Þ

Fig. 5.13a A grid
representation of A \ B

Fig. 5.13b A radar-type
representation of A \ B
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The translation of expression (5-23) is not especially complex, and it is shown in
Code 5-11:

;code 5-11
(define (fz-complement A, lA i set-out element)

(setq lA (cardinality A))
(setq i 0)

(setq set-out'())

(while (< i lA)
(setq element (nth i A))
(setq set-out (cons (list (first element)

(sub 1.0 (last element))) set-out))
(++ i)

); end while i
(reverse set-out)

)

Remembering the fuzzy sets A and A-names in Sect. 5.3.1 of this chapter rep-
resenting membership degrees to the concept of “old people”: (setq A ‘((35 0.1)
(45 0.2) (55 0.4) (65 0.7) (75 0.9) (80 1.0))), (setq A-names ‘((Paul 0.1) (John 0.2)
(Mary 0.4) (Klaus 0.7) (Juan 0.9) (Agatha 1.0))), then we have the following calls
to the function (fz-complement):

(fz-complement A) → ((35 0.9) (45 0.8) (55 0.6) (65 0.3) (75 0.1) (80 0))
(fz-complement A-names) → ((Paul 0.9) (John 0.8) (Mary 0.6) (Klaus 0.3)

(Juan 0.1) (Agatha 0))

Now it is easy to realize that the fuzzy complements A′ and A-names’ represent
the concept of “young people”. For example, a 65 years old person had a 0.7
membership degree to the fuzzy set of old people and now has a 0.3 membership
degree to its complement. Juan (75 years old) had a 0.9 membership degree to
A-names, but only a 0.1 membership degree to its fuzzy complement and so on.
Figure 5.14a, b show a grid and a radar-type representation of A′ and A-names’,
respectively.

It is interesting to compare these figure to Figs. 5.9 and 5.10, especially the
radar-type one. Surprisingly at first sight, the geometrical positions of Agatha, Juan,
Klaus, Mary, John and Paul are exactly the same in Figs. 5.9 and 5.14b. However, if
you observe meticulously both figures you will soon realize that the values of the
membership degrees associated to every contour line are reversed. In other words:
while the radar-type diagram of Fig. 5.9 increases the values of its contour lines
from the outside to the center of the diagram, in Fig. 5.14b the external line
represents the maximum membership degree (1.0) and the inner the position in the
diagram of an element the lesser its membership degree to the set. Any hypothetical
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point located outside the external circle, that is, located on the shaded area, would
have a 1.0 membership degree to A-names’.

5.3.3 Fuzzy Sets Properties

Fuzzy sets do not satisfy every property of classic sets as shown in Sect. 5.2.4.
While the identity, idempotent, associative, commutative, De Morgan’s Laws and
distributive properties are perfectly satisfied by fuzzy sets, the complement prop-
erties are not. Especially interesting is the second expression from Table 5.3, named
‘law of non contradiction’ in logic (Trillas 2009):

A \ A′ = ϕ

Fig. 5.14a Grid diagram for
representing the complement
fuzzy set A′

Fig. 5.14b Radar-type
diagram for representing the
complement fuzzy set
A-names’
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Let us take again the fuzzy set A as the set representing the concept of “old
people”, then: A → ((35 0.1) (45 0.2) (55 0.4) (65 0.7) (75 0.9) (80 1)) and
(fz-complement A) → ((35 0.9) (45 0.8) (55 0.6) (65 0.3) (75 0.1) (80 0)). When we
intersect these fuzzy sets, that is, after typing (fz-intersect A (fz-complement A)) at
the Lisp prompt, we obtain the following fuzzy set:

((35 0.1) (45 0.2) (55 0.4) (65 0.3) (75 0.1) (80 0))

And this set is far from being equal to the empty set, ϕ. As we have already seen,
since A represents the concept of “old people”, its complement, A′, represents the
concept of “young people”. If we were dealing with crisp sets, the intersection of A
and A′ would be the empty set, that is, every person is either young or old.
However, when dealing with fuzzy sets we usually have:

A \ A′ ≠ ϕ

So, what is the meaning of this expression translated to normal language? If we
take the example obtained from evaluating (fz-intersect A (fz-complement A)) at the
Lisp prompt, it means that the elements belonging both to the fuzzy sets A and A′
are at the same time young and old people! How can this be possible? Let us
examine some elements of A \ A′: For an 80 years old person her membership
degree to the intersection is zero, so this person is not young and old at the same
time, because from the definition of A she is “entirely” old. In a similar way, a
35 years old person has only a 0.1 membership degree to the intersection. We could
say that he is mainly young, but some oldness has already started to appear in his
physiology, in his organic development. Let us analyze now the element repre-
senting a 55 years old person. We can see that he has a 0.4 membership degree to
A \ A′, so he is clearly young and old at the same time. Is this statemen false?
Under classical sets theory it certainly is. However, it is perfectly true when we use
fuzzy sets, and what is especially interesting: it describes the real world in a very
sensible way because a 55 years old person, while not young at all is still far from
being old. He is transiting in time from young to old, and this transition is what the
use of fuzzy sets represents perfectly well. At the beginning of Sect. 5.3 we defined
the crisp set A as the set of young people and B as the crisp set of old people in the
following way:

A = {x | x ≥ 0 and x ≤ 50}
B = {x | x > 50 and x ≤ 80}

And as you can remember, these crisp definitions were generating serious irri-
tating questions. Now, by means of using fuzzy sets the itching has disappeared.
This key concept, the concept of transition between infinites shades of gray in the
[0,1] interval of real numbers is what makes fuzzy sets theory so attractive for
modelling systems from the real world. We use mathematics, physics, biology,
astronomy and other sciences to model Nature, written here with capital letter at the
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beginning of the word to remark the broad meaning of the term, and we usually get
a good representation of the systems we observe. However, when we introduce
fuzzy sets in these sciences we usually get an even better representation of natural
systems and in some cases we obtain a representation that is impossible to obtain by
means of the simple use of crisp sets.

We are now immersed in the conceptual nucleus of this book, so it is a good time
to remark another interesting matter that usually arises from using the [0,1] interval
of real numbers for describing the membership degree on an element to a fuzzy set
A, as already shown in expressions (5-19), (5-20): Membership degrees are not
probabilities. As the reader already knows, probability is a mathematical concept
for measuring the likeliness that an event E will happen. Formally:

p(E) → [0,1]

When p(E) = 0 we say that an event E will not happen, for example, the
probability that I will finish this book just tomorrow is 0 (I am now writing Chapter
five), while when we write p(E) = 1 we are expressing that an event E will occur
with absolute certainty. For example, the probability that the Sun will be a bright
celestial object tomorrow is 1 (and it will continue being one well after the
extinction of the human race). Any other value of p between 0 and 1 is an attempt to
measure the likeliness that an event E will happen. Just observe the grammar I have
used in this last sentence: As a general feature of probability, this branch of
mathematics deals with things that can or cannot happen in the future. Membership
degrees in fuzzy sets, on the other hand, do not need to deal with future events.
They exclusively deal with actual facts, that is, with intrinsic features of an existing
natural system. When we say, for example that Mary (55 years old) has a 0.4
membership degree to the fuzzy set of old persons we are expressing something that
actually exists in reality without any mention to the future. However, if we say that
the likelihood of Mary to live until 75 years old is p = 0.85 we are speaking about
probabilities, since it is a measure of something that will or will not happen in the
future and that actually we do not know for sure. Another example, taken from the
famous potable drink problem by Bezdek (2013), will help to perfectly distinguish
between membership degrees to a fuzzy set and probabilities.

Just imagine you have decided to spend your holidays in the Sahara desert. Don’t
ask me why, but after a few days and some discomforting adventures you are
suddenly alone and lost in the hot African sands, and what is even worst: without
water. After a while your luck seems to change a bit and you arrive to a small, very
special oasis where you find two bottles with exactly the same shape placed over a
table. Both are big and full of liquid, and the only difference between the two bottles
is their labels: One of them, let us say, bottle A, says: “The liquid in this bottle has a
0.75 membership degree to the set of potable drinks”. On the other hand, bottle B has
a label that says: “The liquid in this bottle has a 0.9 probability of being potable”.
Now the important question is: Which bottle would you choose for drinking?

Bottle B seems attractive, especially if you do not like mathematics (we must
recognize that since you are reading this book this is unlikely) because after all, 0.9 is
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a bigger number than 0.75 and everybody knows that the bigger the better. However,
if p(B) = 0.9, it implies that p(B′) = 0.1, that is, it means that there is also a 0.1
probability value that the content of bottle B is not potable, being, for example,
poisoned water. If you decide to drink from bottle B you are making a bet with two
possible outcomes: To replenish your body with potable, pure water, with an
associated probability p = 0.9 or to drink some poison and die, with an associated
probability p = 0.1. Now, let us think about bottle A. The label tells us that it has a
μ = 0.75 membership degree to the set of potable drinks. Well, as any person versed
in fuzzy sets theory, you know that the label of bottle A is informing you that its
content is not pure water (that would have a 1.0 membership degree to the set of
potable drinks). Maybe it is a commercial drink with lots of sugar, colorants and the
like, but it is, intrinsically, a potable liquid so if you drink from bottle A you will
have more time to find someone in the Sahara and eventually escape the desert. Even
more: before drinking from bottle A you already know that you have find a suitable
solution to your problems of thirst. If you choose to drink from bottle B you do not
know beforehand what will happen. Especially interesting is what happens after, let
us say, one hour after you drink: Bottle A will continue to have a μ = 0.75 mem-
bership degree to the set of potable drinks because membership degrees are intrinsic
to the features of a given element in a set. However, the probability value associated
with bottle B has disappeared: Time has passed by and you now have a complete
knowledge about its content if it was potable liquid. If it was not a potable liquid,
say, poisoned water, then now you have not knowledge at all.

5.3.4 Fuzzy Relations

As we have seen in Sect. 5.2.4, the Cartesian Product A × B between two sets A and
B composes a new set of ordered pairs (x,y) where the first component of each
element belongs to A and the second component belongs to B, as shown by
expression (5-17). Now, we can extend this idea to the realm of fuzzy sets by using
expression (5-24):

R ¼ fð x;yð Þ; lR x;yð ÞÞj x;yð Þ 2 A� B; lR x;yð Þ 2 0;1½ �g ð5-24Þ

A fuzzy relation is a mapping from the Cartesian Product A × B to the closed
interval [0,1]. The membership degree of the Relation is given by the function
lR x; yð Þ, that is, the value of lR x; yð Þ expresses the strength of the relation between
the elements x and y of the pairs (x, y). Let us take, as an example, the following
sets A and B:

A = {a, b, c}
B = {x, y, z}
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Then, a possible fuzzy relation, R1, between A and B could be:

R1 = {(a,x,0.5), (a,z,0.8), (b,y,0.3), (b,z,1.0), (c,x,0.6)}

Expressing fuzzy relations in Lisp is, needless to say, straightforward. R1 can be
represented as (setq R1 ‘((a x 0.5) (a z 0.8) (b y 0.3) (b z 1.0) (c x 0.6))).

The basic operations on fuzzy relations defined in the Cartesian space A × B are
given in Table 5.8.

5.3.4.1 Fuzzy Cartesian Product

Especially interesting is the situation where two sets A and B related by a fuzzy
relation R are also fuzzy. In this case, every element from the pairing (x,y), x 2 A,
y 2 B, already carries a membership degree. For obtaining the resulting ordered
triples (x, y, μR(x,y)) we use the Fuzzy Cartesian Product A × B, given by:

lR x;yð Þ ¼ minðlA xð Þ; lB yð ÞÞ ð5-25Þ

As an example, let us take the following two fuzzy sets A and B:

A = {(x1,0.4), (x2,0.7)}
B = {(y1,0.8), (y2,0.6), (y3,0.4)}

Then, the Fuzzy Cartesian Product A × B is:

A × B = {(x1,y1,0.4), (x1,y2,0.4), (x1,y3,0.4), (x2,y1,0.7), (x2,y2,0.6), (x2,y3,0.4)}

In order to automatically calculating the Fuzzy Cartesian Product of two fuzzy
sets, we only need to translate expression (5-25) into Lisp, as shown in Code 5-12:

;code 5-12
(define (fz-cartesian-product A B, lA lB i j set-out)

(setq lA (cardinality A))
(setq lB (cardinality B))
(setq i 0 j 0)
(setq set-out'())

Table 5.8 Basic operations
on fuzzy relations

Operation Expression

Union μR[S(x,y) = max(μR(x,y), μS(x,y))

Intersection μR\S(x,y) = min(μR(x,y), μS(x,y))

Complement (μR(x,y))′ = 1 - μR(x,y)
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(while (< i lA)
(while (< j lB)

(setq set-out (cons (list (first (nth i A))
(first (nth j B)) (min (last (nth i A))
(last (nth j B)))) set-out))

(++ j)
);end while j
(++ i)
(setq j 0);reinitializes j

);end while i
(reverse set-out)

)

Using the previous example as a test, we only need to type at the Lisp prompt:
(setq A ‘((x1 0.4) (x2 0.7))), (setq B ‘((y1 0.8) (y2 0.6) (y3 0.4))), and then
(fz-cartesian-product A B) → ((x1 y1 0.4) (x1 y2 0.4) (x1 y3 0.4) (x2 y1 0.7) (x2 y2
0.6) (x2 y3 0.4)).

Since the concept of fuzzy relations and fuzzy Cartesian product is of pivotal
importance for the future material in this book, we shall see another example. Let us
say two women, Ana and Mary, belong to the fuzzy set A of highly communicating
woman with membership degrees 0.9 and 0.1, respectively. On the other hand, John
and Paul belong to the fuzzy set B of highly communicating men with membership
degrees 0.8 and 0.4, respectively. The fuzzy Cartesian product between A and
B will give us a fuzzy relation that expresses the strength of the possible com-
munication links between all the members from A and B. Let us type at the Lisp
prompt the following expressions: (setq A ‘((Ana 0.9) (Mary 0.1))), (setq B ‘((John
0.8) (Paul 0.4))). Now we obtain: (fz-cartesian-product A B) → ((Ana John 0.8)
(Ana Paul 0.4) (Mary John 0.1) (Mary Paul 0.1)). That is, Ana and John will be
able to exchange a lot of ideas because their inherent communicating abilities, while
Mary will not be able to communicate well nor with John neither with Paul.
Figure 5.15 shows a graphical representation of A × B:

The three dimensional appearance of the graphical representation of the fuzzy
relation between A and B is important. Since the grade of complexity has grown
from the relations in classic sets theory, a new (third) dimension is needed to
correctly represent fuzzy relations. The vertical axis represents the membership
degree, μR(x,y), of the relation. The other two axes represent the membership
degrees μA(x) and μB(y) to the fuzzy sets A and B, respectively. In future chapters in
this book we shall seize the opportunity of using 3D representations as a tool for a
better understanding of new concepts.
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5.4 Membership Degrees: An Example Application
in Medicine

Since this book has a strong practical vocation we are going to expose in this
section a practical and complete use of the concept of membership degrees, in this
case applied to the medical practice. We have already discussed the fuzzy set of old
people. Now we can improve it in such a way that we are ready to speak about
illness along the life of a person. For this we shall introduce the concept of Life
Illness Curves, learning at the same time how a lot of phenomena in nature can be
modelled by means of membership degrees and time.

We define a Life Illness Curve, LIC, as a graphical representation of the
membership degree that a person has to the fuzzy set I of Illness over time, that is:

y ¼ lI xð Þ; t ð5-26Þ

In these parametric graphics, the vertical axis represents the membership degree
µI(x), defined as usually in the interval [0,1], while the horizontal axis represents
time in years, from 0 to 80 years old. The value µI(x) = 0 means an absolutely
absence of illness that is experienced by the human being only at birth, when no
congenital disorder is present. We emphasize the condition “only at birth” because
cellular deterioration begins just with life, albeit usually extremely slowly. The
value µI(x) = 1 means an integral and definitive presence of illness that happens

Fig. 5.15 3D representation
of the fuzzy relation between
fuzzy sets A and B. Please
note that the membership
degree of the pair
“Mary-Paul” has not be
in-cluded in order to improve
the clarity of the image
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only at the individual’s exitus. In the next paragraphs we present some examples of
Life Illness Curves.

Figure 5.16 shows a LIC of a normal, healthy individual. The value
µI(x) remains low for almost the entire life of the person and only in the last months
of his/her life the organism looses its healthy state.

Figure 5.17 represents the evolution in time of a patient affected by amyotrophic
lateral sclerosis (ALS), where the value lI xð Þ remains low and normal until the
disease’s debut that leads into a relatively quick outcome (Brown 2010). This figure
represents exactly the case of the famous baseball player Lou Gehrig, which suf-
fered this condition from 1938 to 1941. Interestingly, Fig. 5.18 shows the LIC of
the same illness, this time representing the case of the known cosmologist Stephen
Hawking. The curve shows the debut of the condition in his twenties, a tracheotomy

Fig. 5.16 LIC of a healthy person

Fig. 5.17 LIC of a patient suffering Amyotrophic Lateral Sclerosis. Lou Gehrig’s case

Fig. 5.18 LIC of a patient suffering Amyotrophic Lateral Sclerosis. Stephen Hawking’s case
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that resulted into a permanent aphonia in his forties and some severe infectious
disorders at his sixties.

Figure 5.19 shows the LIC of a patient affected by type-1 diabetes mellitus that
debuts at 15 years old, is correctly diagnosed and is treated adequately by means of
insulin therapy, diet and exercise. As can be seen, under such circumstances the
values lI xð Þ; t remain relatively low through his life and only from his sixties he
could start to suffer diabetes-related complications that spark the apparition of other
conditions such as blindness, kidney failure and so on (Guyton 1996).

Figure 5.20 shows two possible evolutions of patients suffering acquired immune
deficiency syndrome (AIDS): one of them living in a third world country (the one
with the less favourable LIC) and another one living in a modern country. The
difference in LICs is due to both a correct diagnostic and an appropriate treatment.

Figure 5.21 shows the LIC of a patient that has suffered a car accident in his
thirties, resulting in permanent spine damage. Two main regions can be seen for the
LIC: the one before the accident and the one after it. Despite the sharp increase in
the µI(x) value resulting from the accident, the shape of each region resembles that
of a normal life, like in Fig. 5.16.

We define a Life Quality Curve (LQC) as a graphical representation of the
membership degree that a person has to the fuzzy set L of good quality of life over
time. This curve is defined by the expression:

y ¼ lL xð Þ ¼ 1� lI xð Þð Þ; t ð5-27Þ

Fig. 5.20 LIC of a patient affected by AIDS. Two posible outcomes

Fig. 5.19 LIC of a patient affected by diabetes with good diagnostic and treatment
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As can be easily seen, such an expression generates a symmetrical curve from
LICs whose axis of symmetry is y = 0.5. In other words, LQCs represent the fuzzy
complement of LICs. Since the meaning of such type of curves is immediate after
having exposed LICs, we shall offer only three examples of LQCs, shown in
Figs. 5.22, 5.23 and 5.24:

At this point we must note an important remark: both LIC and LQC curves are
fuzzy and are not carved in stone, as we can immediately realize from Figs. 5.17
and 5.18, where the same illness, ALS, show two dramatically different behaviours
in two different patients, although we must concede that Hawking’s case is certainly
rare. In any case, it’s really interesting to note that the shape of LIC and LQC curves
are affected by the perception of the person who observes the condition. Let us take
again as an example the LQC of Stephen Hawking as shown in Fig. 5.25: While we
can interpret the bold curve as the perception of a neurologist, it is more than likely

Fig. 5.21 LIC of a patient with permanent spine damage caused by an accident

Fig. 5.22 LQC of a normal
individual

Fig. 5.23 LQC in Amyotrophic Lateral Sclerosis, Stephen Hawking case
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that the own patient’s perception is different, expressed as an example by the thin
curve in the graphic.

The difference in perception between patient and physician is not the only one at
play. Society also usually perceives a given condition from a different point of view
that the one from the affected person, as we can observe in Fig. 5.26 for diabetes,
where the bold line shows a patient’s possible own perception of the condition, used
to daily subcutaneous insulin injections, while the fine line expresses a possible
generalized external perception as a result of social lack of information about diabetes

Needless to say, the shape of Life Illness Curves and Life Quality Curves are not
only dependent on the perception of the patient, physician or society, but also from
the family environment, social class, economic scenario, politics, etc.

Fig. 5.24 LQC of a patient affected by diabetes with good diagnostic and treatment

Fig. 5.25 Two possible LQC perceptions for ALS: Physician and patient

Fig. 5.26 Two possible LIC perceptions for diabetes: Patient and society
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5.5 As a Summary

Lofti Zadeh was the man that back in 1965 realized that the membership of an
element x to a set A can be expressed as a real number between 0 and 1. Since in
mathematics, any closed interval of real numbers [a,b] contains infinite numbers,
then this holds too for the closed interval [0,1] and hence, there are infinite
membership degrees between 0 (meaning no membership to a set) and 1 (meaning a
whole membership degree to a set). These types of sets are named fuzzy sets.

The seminal paper, written in late 1964 was published in 1965 and titled “Fuzzy
Sets”. The first words of its abstract say: “A fuzzy set is a class of objects with a
continuum of grades of membership. Such a set is characterized by a membership
(characteristic) function which assigns to each object a grade of membership
ranging between zero and one”.

Nowadays, a usual definition of a fuzzy set is the following one: A fuzzy set A is
defined by a characteristic function μA(x) that maps every element x belonging to A
to the closed interval of real numbers [0,1]. Formally:

A = {(x, μA(x)) | x 2 A, μA(x) 2 [0,1]}

That is, we can create a fuzzy set by means of enumerating a collection of
ordered pairs (xi, μA(xi)) where μA(xi) is the membership degree of an element xi to
the fuzzy set A.

Geometry is an excellent tool for understanding fuzzy sets. In fact, grid and
radar-type graphics are convenient and expressive tools for visualizing the meaning
of fuzzy sets. When using grid-type graphics, the elements of the set are represented
on the horizontal axis, while their respective membership degrees are shown on the
vertical axis. Radar-type graphics are an enhancement of classic Venn diagrams
where several contour lines show the different membership degrees. The external
contour line usually shows the 0.0 membership degree, and then, the inner the
circle, the bigger the membership degree until reaching a 1.0 value, located at the
centre of the diagram.

In general, fuzzy sets satisfies all the properties of crisp sets, that is, the identity,
idempotent, associative, commutative, De Morgan’s Laws and distributive prop-
erties are perfectly satisfied by fuzzy sets. However, the complement properties are
not satisfied in fuzzy sets theory. Especially significant is the so named ‘law of non
contradiction’. In classic sets theory it holds that: A \ A′ = ϕ, but when operating
with fuzzy sets, generally it holds that A \ A′ ≠ ϕ. That is, some elements of a
fuzzy set A belong both to A and to its complement A′. As examples, some men can
be young and old at the same time, some cars can be fast and slow, some houses can
be expensive and cheap at the same time, etc. Since we use membership degrees in
fuzzy sets there is no contradiction in these statements. In fact these types of
statements reflect many times just the things we observe in nature. We can
remember in this moment the famous words by A. Einstein: “as far as the laws of
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mathematics refer to reality, they are not certain, and as far they are certain, they do
not refer to reality”.

Another important point in this chapter is the fact that membership degrees are
not probabilities. If I say that an element x has a membership degree of 0.7 to a
fuzzy set A, that is, μA(x) = 0.7, I’m affirming something that actually exists or is
intrinsic to an existing system. I’m in fact describing in a meaningful way a
property of x with respect to the fuzzy set A. On the other hand, if I say that an
event x has an associated probability 0.7, that is, p(x) = 0.7, I’m giving a measure of
the likelihood that this event will happen in the future. As an example: let us
imagine a black bag containing seven red balls and three black balls. The proba-
bility of extracting a red ball is p(x) = 0.7, but this value only exists before
extracting the ball. While in probability there is always a random substratum, fuzzy
sets theory deals with descriptions of existing, observable features of reality.

Fuzzy relations are an extension of classic, crisp relations between sets. While
the classic theory of sets tells us if an element x of a set X is or is not related to an
element y in a set Y, fuzzy relations inform us of the strength of the relation
between elements, expressed in the closed interval [0,1]. Fuzzy relations can be
established between elements from crisp sets or from elements belonging to fuzzy
sets. This latter type of relation is the most interesting one for us in this book.

An engaging application of membership degrees in fuzzy sets is the construction
of parametric curves of the type y = µ(x), t where t represents time along the
horizontal axis and µ(x) represents membership degrees along the vertical axis.
That is, this type of curves show the membership degree of an element x to a fuzzy
set A along time. In this chapter we have seen as an example how the Life Illness
Curves, ILC, and Life Quality Curves, LQC, can be implemented in such a way.

In the following chapter we shall continue exposing material from the fuzzy sets
theory. I am sure many questions have flourished in the reader’s mind after reading
this chapter. I hope at least some of them will find its answer in the next one.
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Chapter 6
From Fuzzy Sets to Linguistic Variables

6.1 Introduction

This chapter is a large one. Not only because it introduces lots of additional material
about the theory of fuzzy sets with respect to the previous chapter but because it
includes too a big share of the Lisp functions that make up FuzzyLisp, so you will
maybe find yourself a bit desperate trying to finish the chapter. Please don’t feel so.
Try to enjoy it at your own pace; always remembering that in these moments you
are just at the core of the book.

FuzzyLisp is, simply put, a collection of Lisp functions that allows to explore the
world of Fuzzy Logic theories and develop Fuzzy Logic applications with relative
little effort. You can think of it as a small and compact metalanguage that permits
you to concentrate in the construction of fuzzy models while still retaining full
control of all the Lisp features. Its basic philosophy is the same as the one we
discovered in Chap. 4 with the set of functions for managing CSV databases: To
offer a set of Lisp building blocks for accomplishing a mission. In this case, to be
fluent in fuzzy modeling.

All the functions that make up FuzzyLisp can be downloaded from the book’s
web site http://www.fuzzylisp.com as a single file named fuzzylisp.lsp. This means
that you don’t need to type code for getting them. However I would like to invite
you to read the code in the following pages with attention, and especially, to
develop your own examples while playing with the functions. A complete glossary
of the metalanguage is placed in Appendix II for quick reference.

In this chapter we shall start to introduce triangular and trapezoidal membership
functions with the aid of some geometry, having into account that in this chapter,
and in the rest of the book, the expressions “membership function” and “charac-
teristic function” have the same meaning since they are equivalent expressions in
fuzzy set theory. Geometry will also help us to understand the concepts of support,
nucleus and alpha-cuts.
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Later, fuzzy sets with discrete characteristic functions are introduced before
revisiting the concepts of complement, union and intersection of fuzzy sets. Then an
important section is introduced to the reader about fuzzy numbers, including the
notion of intervals and interval arithmetic for presenting fuzzy numbers arithmetic
and then fuzzy averaging together with a first view on defuzzification.

After all this material is exposed we finally arrive to the concept of linguistic
variables, considering those formed by fuzzy sets with triangular or trapezoidal
membership functions and also by fuzzy sets with discrete characteristic functions.
Before closing the chapter, and from the point of view of a practical application,
fuzzy databases are introduced.

6.2 Towards Geometrical Characteristic Functions

In Sect. 5.3.1 from the previous chapter we introduced an example of a fuzzy set
A representing old people with membership degrees μA(35) = 0.1; μA(45) = 0.2;
μA(55) = 0.4; μA(65) = 0.7; μA(75) = 0.9; μA(80) = 1, that is:

A ¼ fð35; 0:1Þ; 45; 0:2ð Þ; 55; 0:4ð Þ; 65; 0:7ð Þ; 75; 0:9ð Þ; 80; 1:0ð Þg

where a 35 years-old person has a 0.1 membership degree value to the fuzzy set A,
a 45 years old one has a 0.2 membership degree value and so on. However, some
questions quickly arise after reflecting a bit on the definition of A, such as: Given A,
what is the membership degree of, say, a fifty years-old person, or a seventy
years-old one? As smart readers, we can answer that μA(50) will be bigger than 0.2
and smaller than 0.4, while μA(70) will be bigger than 0.7 and smaller than 0.9, that
is:

0:2\lA 50ð Þ\0:4

0:7\lA 70ð Þ\0:9

However, from the definition of A and only from that definition, we cannot
know, under a strictly mathematical point of view, the membership degrees μA(50)
or μA(70). A workaround for solving this question seems at first to declare the fuzzy
set A with bigger resolution, giving, for example, a paired, increasing membership
degree for every age from 35 to 80 years old, such as, for example:

A ¼ fð35; 0:1Þ; ð36; lA 36ð ÞÞ; ð37; lA 37ð ÞÞ; . . .; ð79; lA 79ð ÞÞ; 80; 1:0ð Þg

Now, a grid representation of A could be the one given in Fig. 6.1.
Now for every integer number from 35 to 80 years old we have associated an

increasing membership degree. There is no doubt that the simple comparison of
Fig. 6.1 against Fig. 5.10 shows that the new, enhanced fuzzy set A offers now a
substantially richer description of the concept of old people.
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Nevertheless, this strategy has introduced a disadvantage. The new inconvenient
is the now long enumeration of A, not only in a mathematical expression, but in a
computational one, too: Expressed in Lisp, the new enhanced set A requires a list of
45 sublists representing pairs (age membership-degree), far to be comfortable while
declaring it in a Lisp program. Moreover, another question still arises, as can be
easily observed with only one question: What is the membership degree of a
68.5 years-old person? Yes, the enhanced version of the fuzzy set A covers all the
ages represented with integers from 35 to 80, but nothing can be said if we need to
know the membership degree, for example, of a 68 years and six months old
person. We shall solve these problems later in this chapter, but meanwhile we must
say that the strategy of increasing the resolution in the fuzzy set A is not bad at all in
its very concept. In fact, if we push it further until reaching “infinite resolution” we
can arrive to a new representation of fuzzy sets that offer us, in many cases, a more
practical approach to describe these types of sets.

“Infinite resolutions” can be easily implemented by means of continuous
membership functions, that is, functions of the type x → f(x) where x is a point on
the real axis and f(x) returns a real number always defined in the closed interval
[0,1]. Some examples of this type of functions are given in Table 6.1 (Klir and Yuan
1995).

Fig. 6.1 A grid-type diagram
for representing the fuzzy set
A of old people with bigger
resolution. See Fig. 5.10 for
comparison

Table 6.1 Some families of
membership functions

Membership function x defined in

μ1(x) a(x − b) + 1 [b − 1/a, b]

a(b − x) + 1 [b, b + 1/a]

μ2(x) 1/(1 + a(x − b)2) (−∞, +∞)

μ3(x) e−|a(x−b)| (−∞, +∞)

μ4(x) (1 + cos(aπ(x − b)))/2 [b − 1/a, b + 1/a]

0 Rest of cases
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The parameter b represents a real number that adjusts f(x) in such a way that the
image f(x) has a value exactly of 1.0 for x = b, while the parameter a determines
how fast the function increases from the left and decreases from the right with
respect to its axis of symmetry. For getting a visual representation of these families
of membership functions μ1(x), μ2(x), μ3(x), μ4(x), we can have a look at Fig. 6.2
with given parameters a = 2 and b = 2.

Experience has shown that many practical fuzzy logic based applications can be
developed with the family of membership functions given by μ1(x), and usually
there are no sensible, substantial differences between models built with the trian-
gular family of membership functions and the other ones, μ2(x), μ3(x) and μ4(x), not
to mention the difference in complexity that results from computational processes
between them. In some applications of fuzzy-logic, such as for example fuzzy
control, the algorithms used for computing results from the input variables that
represent the status of a system are in some cases critical from the point of view of
computational speed, and the family of membership functions expressed by μ1(x)
satisfy these requirements.

Triangular membership functions can be enhanced by some minor transforma-
tions until obtaining trapezoidal functions. This new family of membership func-
tions μT(x) can be expressed by the following set of Eq. (6-1):

Fig. 6.2 Graphical representation of the membership functions from Table 6.1. From left to right
and top to bottom, μ1(x), μ2(x), μ3(x), μ4(x)
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a x� bð Þ þ 1; 8 x 2 b� 1=að Þ; b½ �
1; 8 x 2 b; cð Þ
a c� xð Þ þ 1; 8 x 2 c; cþ 1=að Þ½ �

ð6-1Þ

These expressions have four singular points of capital importance for our
understanding of fuzzy sets and its implications when representing them by means
of a computer language:

x1 ¼ b� 1=að Þ; x2 ¼ b; x3 ¼ c; x4 ¼ cþ 1=að Þ ð6-2Þ

Needless to say, f(x) = a(x – b) + 1 is less than 0.0 when x < b – (1/a) and bigger
than 1.0 when x > b. The same applies in a symmetrical way to f(x) = a(c – x) + 1.
Thus, we define adequately the intervals of existence of the function as shown in
Eq. (6-1) in order to guarantee that the values returned by the characteristic function
is always bounded between 0.0 and 1.0. In other words, the equations defined by
(6-1) represent perfectly well trapezoidal shaped fuzzy sets and also triangular
shaped fuzzy sets when b = c.

As an example, when a = 2.0, b = 2.0, and c = 3.0 the characteristic function, or
membership function results as follows:

f xð Þ ¼ 2x� 3; 8 x 2 1:5; 2½ �
f xð Þ ¼ 1; 8 x 2 2; 3ð Þ
f xð Þ ¼ 7� 2x; 8 x 2 3; 3:5½ �

and substituting the a, b and c values into expression (6-2), we have:

x1 ¼ 1:5; x2 ¼ 2:0; x3 ¼ 3:0; x4 ¼ 3:5

Gathering all these ideas into a graphical representation we obtain Fig. 6.3a.
When a = 2.0, b = 2.0 and c = 3.0, the resulting trapezoidal characteristic

function starts at x1 = 1.5, where its membership degree is zero. It increases from

Fig. 6.3a Characteristic
functions for trapezoidal
shaped fuzzy sets
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x1 = 1.5 to x2 = 2.0 until getting a membership degree equal to one. Then it
maintains this value from x2 = 2.0 to x3 = 3.0, and finally it starts to decrease from
x3 = 3.0 until reaching x4 = 3.5 where the membership degree is again zero.
Figure 6.3b shows these values.

6.3 From Geometry to FuzzyLisp

In Sect. 2.5 from Chap. 2 of this book the reader enjoyed (I hope so) how well
suited the Lisp language is to represent geometrical shapes. I would like to invite
the reader to observe again Fig. 2.6. There, the list named simple-composition
stored the value ((2 (4 4) (6 4) 8) (6 (8 4) 10) (8 (10 4) (12 4) 14)), and Fig. 2.6
graphically represented that list. Was it a case of fuzzy-sets? Not exactly, but not far
from it! No mention was made then, but now that we are immersed in the theory I
must confess that in some way I was trying to guide your mind from the start of the
book. We were learning Lisp, of course, but geometry has a tight relationship with
fuzzy sets and fuzzy logic, so it was a great opportunity to pave the way towards
undiscovered (by then) ideas and theories.

The expressions shown in (6-2) give us the key for representing fuzzy sets in
Lisp. The following Lisp expression constitutes what we are going to name
“FuzzyLisp Standard Set Representation”, FLSSR:

fuzzy-set-name x1 x2 x3 x4ð Þ ð6-3Þ

As can be seen, the structure of a list representing a fuzzy set is composed by a
name, expressed as a symbol, and then four real numbers x1, x2, x3 and x4, repre-
senting the singular points from (6-2). The FuzzyLisp Standard Set Representation,
assumes two nuclear, basic points:

Fig. 6.3b Ttrapezoidal
characteristic function when a
= 2.0, b = 2.0 and c = 3.0
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(a) All the fuzzy sets in the FuzzyLisp Standard Set Representation can be
expressed by means of a trapezoidal or triangular shaped characteristic
function.

(b) All the fuzzy sets in the FuzzyLisp Standard Set Representation have at least a
point xi on the real axis such as μ(xi) = 1. That is, all the fuzzy sets created with
this representation must have at least one point whose membership degree
equals to one.

The first point can be seen at first as restrictive, but aside helping to develop an
efficient, compact and elegant layer of Lisp functions for creating fuzzy logic based
applications it still offers a high level of flexibility resulting from several arrange-
ments and combinations of the singular points from trapezoidal and triangular
membership functions. Table 6.2a shows all the possible combinations for trape-
zoidal characteristic functions.

The graphical representation of these combinations can be seen in Fig. 6.4a.

Fig. 6.4a Different types of trapezoidal shaped fuzzy sets

Table 6.2a Combination of singular points in trapezoidal membership functions

Combination Meaning Lisp example

x1 ≠ x2 ≠ x3 ≠ x4 Normal trapezium (normal-tp 1.5 2 3 3.5)

x1 = x2 ≠ x3 ≠ x4 Right trapezium by-left (left-tp 1.5 1.5 3 3.5)

x1 ≠ x2 ≠ x3 = x4 Right trapezium by-right (right-tp 1.5 2 3.5 3.5)
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Conversely, Table 6.2b shows now all the possible combinations for triangular
characteristic functions.

The graphical representation of these combinations can be seen in Fig. 6.4b.
After the exposed material, declaring fuzzy sets at the Lisp prompt is

straightforward:

> (setq mature-age ‘(mature 35.0 45.0 55.0 75.0))
: (mature 35 45 55 75)

Here the symbol mature-age stores a trapezoidal shaped fuzzy set named mature
where x1 = 35, x2 = 45, x3 = 55 and x4 = 75. Let us see some other examples for
representing temperatures. The Universe of discourse, that is, the range of values
over the real axis, X, where the fuzzy sets are defined, is bounded in this example
between 0 and 100 °C. First, let us use a right trapezium by-left for expressing the
meaning of cold temperature:

Fig. 6.4b Different types of triangular shaped fuzzy sets

Table 6.2b Combination of singular points in triangular membership functions

Combination Meaning Lisp example

x1 ≠ x2 = x3 ≠ x4 Normal triangle (normal-tr 1.5 2.5 2.5 3.5)

x1 = x2 = x3 ≠ x4 Right triangle by-left (left-tr 1.5 1.5 1.5 3.5)

x1 ≠ x2 = x3 = x4 Right triangle by-right (right-tr 1.5 2 3.5 3.5)
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> (setq cold-temperature ‘(cold 0.0 0.0 10.0 20.0))
: (cold 0 0 10 20)

Now the same goes for comfortable temperature. We shall use a symmetrical,
normal trapezium:

> (setq comfortable-temperature ‘(medium 10.0 20.0 30.0 40.0))
: (medium 10 20 30 40)

And finally, let us see an example of use of a right trapezium by-right for
expressing hot temperatures:

> (setq hot-temperature ‘(hot 30.0 40.0 100.0 100.0))
: (30 40 100 100)

The previously stated point (b) is also important: The FuzzyLisp Standard Set
Representation only supports fuzzy sets that have at least one point defined on the
universe of discourse whose image f(x), that is, its membership degree, equals to
one. In fuzzy sets theory, this type of sets are named Normal fuzzy sets. Formally:

9 x 2 x1; x4½ �=f xð Þ ¼ 1:0 ð6-4Þ

Conversely, those fuzzy sets whose membership degree is always less than 1.0
are called Subnormal Fuzzy Sets, that is:

8 x 2 x1; x4½ �; f xð Þ\1:0 ð6-5Þ

A graphical example of normal and subnormal fuzzy set is shown in Fig. 6.5.
In the figure is easy to see how the trapezoidal fuzzy set reaches a membership

degree f(x) = 1.0, so it is a normal fuzzy set. On the other hand, the triangular
shaped fuzzy set has a maximum membership degree f(x) = 0.8, so it is a subnormal
fuzzy set.

In order to know if a real number x belongs to a fuzzy set, either triangular or
trapezoidal shaped, we can write a simple FuzzyLisp predicate. In fact we only need
to know if x is included inside the interval [x1, x4]. If it certainly is, the predicate
returns true, else it returns nil. Code 6-1 shows it:

Fig. 6.5 An example of
normal and subnormal fuzzy
sets
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;code 6-1
(define (fl-belongs? fset x)

(if (and (>= x (nth 1 fset)) (<= x (nth 4 fset)))
true
nil

)
)

For testing this predicate, and having into account the previous definitions of the
fuzzy sets cold, medium and hot, we can try, for example: (fl-belongs? cold-tem-
perature 7.0) → true, (fl-belongs? comfortable-temperature 23.0) → true, but as
expected: (fl-belongs? hot-temperature 12.0) → nil.

A step further in computational complexity arises when we are interested not
only in knowing if an element x belongs or not to a fuzzy set A, but also in knowing
its membership degree if it indeed belongs to A. The function (fl-set-membership?)
returns the membership degree of a given element x defined on its correspondent
universe of discourse to a given fuzzy set A. Under a computational point of view
this function plays a key role in FuzzyLisp because it is in fact a characteristic
function in disguise, so we shall call it extensively from many other FuzzyLisp
functions. Code 6-2 shows it:

;code 6-2
(define (fl-set-membership? fset x,

name x1 x2 x3 x4 membership-degree)
(setq name (nth 0 fset));fuzzy set name
(setq x1 (nth 1 fset));support starts
(setq x2 (nth 2 fset));nucleus starts
(setq x3 (nth 3 fset));nucleus finishes
(setq x4 (nth 4 fset));support ends

;x <= x1 | x >= x4 => membership-degree = 0.0
(if (or (<= x x1) (>= x x4))

(setq membership-degree 0.0)
)

;x >x1 && x < x2 => membership-degree increasing
(if (and (> x x1) (< x x2))

(setq membership-degree (div (mul (sub x x1) 1.0)
(sub x2 x1)))

)

;nucleus membership degree is always 1.0
(if (and (> = x x2) (<= x x3))

(setq membership-degree 1.0)
)
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;x > x3 && x < x4 => membership-degree decreasing
(if (and (> x x3) (< x x4))

(setq membership-degree (div (mul (sub x4 x) 1.0)
(sub x4 x3)))

)

(list name membership-degree);gives results as a list
)

The design of the function is easy to follow: On the first lines the name of the
fuzzy-set and the singular values xi are stored in some variables and then it checks if
x is inside x1 and x4. Later, the fuzzy set is scanned from left to right, calculating the
membership values using simple analytic geometry. First it scans the increasing part
of the characteristic function, then it tests if f(x) equals to one in the “normal”
section of the fuzzy set, and finally it scans the decreasing part of the characteristic
function. Let us try the function at the Lisp prompt for the already defined fuzzy
sets for temperature:

> (fl-set-membership? comfortable-temperature 25)
: (medium 1)

Now, let us try another interesting value of temperature, x = 35 °C:

> (fl-set-membership? comfortable-temperature 35)
: (medium 0.5)

> (fl-set-membership? hot-temperature 35)
: (hot 0.5)

As we learned in Sect. 5.3.3 of this book, the “law of non contradiction” does not
hold in fuzzy sets theory. From our definitions of temperatures in a range from 0.0
to 100.0 °C, a temperature x = 35 belongs both to the fuzzy sets
“comfortable-temperature” and “hot-temperature”. Hereafter we assume that the
reader is already familiar with this important concept in the theory and we shall not
make additional comments to it.

As can be seen, and because a consideration of design, the function (fl-set-
membership?) returns a list containing both the name of the fuzzy set and the
calculated membership degree. For obtaining only the membership degree, we only
would need to type the following expression at the Lisp prompt:

> (last (fl-set-membership? hot-temperature 35))
: 0.5

Code 6-1 and Code 6-2 could be unified as follows in Code 6-3:

;Code 6-3
(define (fl-belongs2? fset x)

(if (and (>= x (nth 1 fset)) (<= x (nth 4 fset)))
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(fl-set-membership? fset x)
nil;else returns nil

)
)

And then, for example, (fl-belongs2? comfortable-temperature 22)→ (medium 1),
but (fl-belongs2? comfortable-temperature 42)→ nil.

The reader should note that (fl-set-membership?) and other related FuzzyLisp
functions ending in a quotation mark are not Lisp predicates, that is, functions that
return either true or nil, but functions that are used to interrogate a fuzzy model
about something, usually the membership of a crisp value x. This has been
unavoidable because the English word “set”, aside “collection of things”, also
means “to adjust”, as the reader well knows. The question mark at the end of the
function intends to clarify the true meaning of the functions where it applies. As an
example, the FuzzyLisp function (fl-set-membership?) should be translated into
plain English as “What is the membership degree of x in a fuzzy set A?”

6.4 Support, Nucleus and Alpha-Cuts

As usually happens in science, terminology is important because technical terms
help to explain concepts and to avoid vagueness when handling them. In this
section we are going to explain three basic terms directly related with fuzzy sets.

The support, s, of a fuzzy set A is, conceptually, the horizontal segment of the X
axis where a fuzzy set rests, that is, the horizontal segment bounded by the closed
interval [x1, x4]. Formally:

s ¼ x=x 2 x1; x4½ � ð6-6Þ

In other words, s is the geometrical projection of the entire membership function
of a fuzzy set over the X axis.

The nucleus, k, of a fuzzy set A is the geometrical projection over the real X axis
of the part of the membership function of a fuzzy set whose membership degree
equals to 1.0, that is:

k ¼ x=8 x 2 x2; x3½ �; f xð Þ ¼ 1:0 ð6-7Þ

From this definition is easy to follow that:

• Subnormal fuzzy sets have not a nucleus.
• The nucleus of a triangular shaped, normal fuzzy set is only a point over the X

real axis.
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9 x 2 x1; x4½ �=f xð Þ ¼ 1:0 ð6-4Þ

Figure 6.6 will help the reader to better understand these terms.
An alpha-cut is also a segment, or closed interval, formed by a set of points over

the X axis, but in this case it is produced by the projection of a cut given to the
characteristic function of a fuzzy set by a horizontal line y = α, where α 2 [0,1].
Formally:

aa ¼ x=f xð Þ� a ð6-8aÞ

A strong alpha-cut is another crisp set of points that satisfy the following
expression:

aþa ¼ x=f xð Þ[ a ð6-8bÞ

That is, an alpha-cut produces a closed interval, while a strong alpha-cut results
into an open interval.

Alpha-cuts management is important in fuzzy-sets theory because they represent
a nexus between membership functions and intervals defined on the real axis. Due
to this we need to have in our FuzzyLisp toolbox a function for calculating
alpha-cuts. Code 6-4 shows the function (fl-alpha-cut):

;code 6-4
(define (fl-alpha-cut fset alpha,

name x1 x2 x3 x4 extrem_left
extrem_right tan_phi1 tan_phi2
fraction numerator)

setq name (nth 0 fset)) ;fuzzy set name
(setq x1 (nth 1 fset)) ;support starts

Fig. 6.6 Nucleus (k), support
(s) and an alpha-cut (a) in a
fuzzy set
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(setq x2 (nth 2 fset)) ;nucleus starts
(setq x3 (nth 3 fset)) ; nucleus finishes
(setq x4 (nth 4 fset)) ;support ends

;left extrem of alpha-cut begins, vertical mf case:
(if (= x1 x2)

(setq extrem_left x1)
)

;left extrem of alpha-cut begins, ascending mf case:
(if (! = x1 x2)

(begin
(setq tan_phi1 (div 1.0 (sub x2 x1)))
(setq fraction (mul tan_phi1 x2))
(setq numerator (sub (add fraction alpha) 1.0))
(setq extrem_left (div numerator tan_phi1))

)
)

;right extrem of alpha-cut begins, vertical mf case:
(if (= x3 x4)

(setq extrem_right x4)
)

;right extrem of alpha-cut begins, descending mf case:
(if (! = x3 x4)

(begin
(setq tan_phi2 (div 1.0 (sub x4 x3)))
(setq fraction (mul tan_phi2 x3))
(setq numerator (sub (add fraction 1.0) alpha))
(setq extrem_right (div numerator tan_phi2))

)
)
;returns the alpha-cut as a list
(list name extrem_left extrem_right)

)

The inner workings of this function are not hard to follow. It scans a trapezoidal
or triangular membership function from left to right and after some basic analytic
geometry calculations it returns the obtained alpha-cut as a list, including the name
of the original fuzzy set. Let us try this function at the Lisp prompt:

> (fl-alpha-cut ‘(B1 7 10 12 15) 0.7)
: (B1 9.1 12.9)

For a value of α = 0.7, the trapezoidal shaped fuzzy set (B1 7 10 12 15) produces
an alpha-cut represented by the interval a = [9.1, 12.9]. Please note that the support
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of this set is the interval s = [7, 15], and its nucleus is the interval k = [10, 12]. The
following relationship always holds:

k� a� s ð6-9Þ

Let us try two other interesting values of α, α = 0.0 and α = 1.0:

> (fl-alpha-cut ‘(B1 7 10 12 15) 0.0)
: (B1 7 15)

> (fl-alpha-cut ‘(B1 7 10 12 15) 1.0)
: (B1 10 12)

After experimenting with these values of alpha, we can expose two important
corollaries:

• The support of a fuzzy set is equal to its α = 0 strong alpha-cut, 0+a.
• The nucleus of a fuzzy set is equal to its α = 1 alpha-cut, 1a.

If we observe Fig. 6.6 with attention, and having these two corollaries in mind,
we soon shall realize we can define a triangular or trapezoidal membership function
if two alpha-cuts are given. If both the 0-strong-alpha-cut and 1-alpha-cut from a
triangular or trapezoidal membership function are known the explanation is
immediate: from 0+a we obtain the x1, x4 singular values of the fuzzy set and from
1.0a we obtain the x2, x3 singular values of the fuzzy set. For any other alpha-cuts,
for example, 0.25a and 0.75a, we shall need to compute some analytic geometry.
Figure 6.7 gives an extra help in understanding this notion.

The FuzzyLisp function (fl-def-set) translates these ideas into Lisp code. It has
three parameters: a name for naming the resulting fuzzy set and then two alpha cuts
expressed as lists in the following form: (extreme-left extreme-right alpha-cut-
value). The function automatically identifies if the resulting fuzzy set will have a
triangular or trapezoidal shape. The only required condition for using it is that the

Fig. 6.7 Generating a fuzzy set from two alpha-cuts
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first supplied value for the alpha-cut must be less than the second one, that is,
α1 < α2. Code 6-5a shows the function. Although the function is a bit long it is not
especially complex, especially if you read the comments included in the code. It
must be also mentioned that the internal variables m1 and m2 are used for calcu-
lating the slopes of the lines that represent the resulting triangular or trapezoidal
membership functions. For these calculation a dedicated function, named (fl-aux-
calculate-m) is shown in Code 6-5b:

;Code 6-5a
(define (fl-def-set name a-cut1 a-cut2,

triangle x1-a x1-b x2-a x2-b alpha-1 alpha-2 m1 m2
base-1 base-2 base-3 base-4 temp-x temp-y)

;initially we assume it is not a triangular mf:
(setq triangle nil)
(setq x1-a (nth 0 a-cut1))
(setq x1-b (nth 1 a-cut1))
(setq alpha-1 (nth 2 a-cut1))
(setq x2-a (nth 0 a-cut2))
(setq x2-b (nth 1 a-cut2))
(setq alpha-2 (nth 2 a-cut2))

(if (< (abs (sub x1-a x2-a)) 0.000001)
(setq m1 1e + 300);slope's tangent equals to infinity
(setq m1 (fl-aux-calculate-m x1-a x2-a alpha-1
alpha-2))

)

(if (< (abs (sub x1-b x2-b)) 0.000001)
(setq m2 1e + 300)
(setq m2 (fl-aux-calculate-m x1-b x2-b alpha-1
alpha-2))

)

;calculation of X axis intersections:
;base-1 and base_4 are the extremes of the set's support
(setq base-1 (sub x1-a (div alpha-1 m1)))
(if (< m2 0.0)

(setq m2 (mul m2 -1.0));absolute value
)
(setq base-4 (add (div alpha-1 m2) x1-b))
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;base-2 and base-3 represent the extremes of the set's
nucleus
(setq base-2 (div (add 1 (mul m1 base-1)) m1))
(setq base-3 (div (sub (mul m2 base-4) 1.0) m2))

;check if the set will have a triangular membership
function
(if (> = base-2 base-3)
(begin

(setq triangle true)
(setq temp-x

(div (add (mul m1 base-1) (mul m2 base-4))
(add m1 m2)))

(setq temp-y (mul m1 (sub temp-x base-1)))
);end begin
);end if

(if (= triangle true)
(list name base-1 temp-x temp-x base-4);it's a
triangle
(list name base-1 base-2 base-3 base-4);it's a
trapezium

);end if
);end function

;Code 6-5b
(define (fl-aux-calculate-m x1 x2 y1 y2)

(div (sub y2 y1) (sub x2 x1))
)

Let’s us try the function with two simple alpha cuts expressed by the lists (15.0
35.0 0) and (25.0 25.0 1.0), where we want to create a fuzzy set representing young
age. From the first list we can observe that the support will extend from 15 to
35 years old, while from the second list is easy to see that the nucleus will extend
from 25 to 25 years old (yes, it is a triangular shaped fuzzy set!):

> (fl-def-set ‘young ‘(15.0 35.0 0) ‘(25.0 25.0 1.0))
: (young 15 25 25 35)

Let us now try a call for obtaining a trapezoidal shaped fuzzy set:

> (fl-def-set ‘mature ‘(35.0 75.0 0) ‘(45.0 55.0 1.0))
: (mature 35 45 55 75)

In this moment, is probable that you would like to stop me for a moment and
formulate an interesting question: Wouldn’t be easier to simple type the following
expressions at the Lisp prompt: (setq age1 ‘(young 15 25 25 35)) and (setq age2
‘(mature 35 45 55 75))?. The answer is simple: “horses for courses”, as they usually
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say. Depending on the intended use while programming, (fl-def-set) will be the
natural election, as we shall see later in this chapter.

6.5 Fuzzy Sets with Discrete Characteristic Functions

The FuzzyLisp standard set representation has strong practical advantages derived
from its simplicity and computational compactness for creating fuzzy-logic appli-
cations. However we cannot easily represent subnormal fuzzy sets or other fuzzy
sets where the characteristic function has not a triangular or trapezoidal shape. For
solving this situation we introduce the FuzzyLisp Discrete Set Representation,
FLDSR, where we express a fuzzy set by means of a discrete characteristic function
defined by a Lisp list with the following structure:

ðfuzzy-set-name ðx1l x1ð ÞÞ ðx2l x2ð ÞÞ. . .ðxnl xnð ÞÞÞ ð6-10Þ

where again fuzzy-set-name is an identifier and each sublist (xi μ (xi)) is formed by a
point x on the real axis and its corresponding membership value μ (xi). Figure 6.1
shows an example of a fuzzy set with a discrete characteristic function.

As stated in Sect. 6.2, the main inconvenient for using a FuzzyLisp discrete
representation is its long manual enumeration when writing a Lisp program that
uses it. However, we can use the language itself for helping to build fuzzy sets with
discrete characteristic functions. The following function, named (fl-discretize) takes
a trapezoidal or triangular FuzzyLisp standard set representation and discretizes it
into a FuzzyLisp discrete representation as shown in Code 6-6:

;Code 6-6
(define (fl-discretize fset steps,

name x1 x2 x3 x4 i resolution list-out x
trapezium)

(setq name (nth 0 fset))
(setq x1 (nth 1 fset) x2 (nth 2 fset) x3 (nth 3 fset)

x4 (nth 4 fset))
(setq list-out (list name))
(setq trapezium true)

;discretize from x1 to x2:
(setq resolution (div (sub x2 x1) steps))
(setq i 0)
(setq x x1)
(while (< i steps)

(setq list-out
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(cons (list x (last (fl-set-membership? fset x)))
list-out))

(setq x (add x resolution))
(++ i)

); end while

;discretize from x2 to x3
(if (< (sub x3 x2) 0.0000001) ;testing if fset is a
triangle
(begin

(setq list-out
(cons (list x2 1.0) list-out)) ;if it is only one
point

(setq trapezium nil)
)
;else it is a trapezium:
(begin

(setq resolution (div (sub x3 x2) steps))
(setq i 0)
(setq x x2)
(while (< i steps)

(setq list-out (cons (list x 1.0) list-out))
(setq x (add x resolution))
(++ i)

);end while
);end begin
);end if

;finally, discretize from x3 to x4:
(setq resolution (div (sub x4 x3) steps))
(setq i 0)
(if (= trapezium true)

(setq x x3)
(setq x (add x3 resolution)) ;it's a triangle

);if end
(while (< i steps)

(setq list-out
(cons (list x (last (fl-set-membership? fset x)))

list-out))
(setq x (add x resolution))

(++ i)
); end while
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;add the last element corresponding to x4
;if fset is a trapezium:
(if (= trapezium true)

(setq list-out (cons (list x 0.0) list-out))
)
(reverse list-out)

)

This function takes as arguments a trapezoidal or triangular shaped membership
function and the desired number of steps for discretizing the function. Then, every
line that composes the trapezium or triangle is divided in n steps, and for each
division the membership degree is calculated. For instance, in the trapezium case
we first discretize the segment of the membership function corresponding to the
interval x1, x2, then for the interval x2, x3 and finally for the interval x3, x4. Albeit
being a long function, the Lisp expressions used inside are not especially complex.
One of them, however, deserves our attention:

(cons (list x (last (fl-set-membership? fset x))) list-out))

The key point is the call to the function (fl-set-membership?) that calculates the
membership degree of x to fset, being x a changing value that scans the complete
support of the function fset step by step from left to right. Then the function (list)
merges both the value of x and its obtained membership degree into a list. Finally
the function (cons) adds the sublist to list-out. Another line of code seems initially
intriguing:

ðif \ sub x3 x2ð Þ 0:0000001ð Þ

This conditional structure allows to automatically check if the membership
function to discretize has a triangular or trapezoidal shape. It examines the x2 and x3
values by means of a simple subtraction. Just note that we don’t use the expected
expression (=x3 x2) because in technical programming it is not safe to compare two
real numbers! Not only in Lisp but also in any computer language. Only integer
numbers should be compared in such a way.

Now let us test the function. Under normal use, it is enough to use three or four
steps because the functions to discretize, either triangular or trapezoidal, are linear.
For discretizing the trapezoidal fuzzy set expressed by (B1 7 10 12 15): using four
steps we only need to type:

> (setq dA (fl-discretize ‘(B1 7 10 12 15) 4))
: (B1 (7 0) (7.75 0.25) (8.5 0.5) (9.25 0.75) (10 1) (10.5 1) (11 1) (11.5 1) (12 1)
(12.75 0.75) (13.5 0.5) (14.25 0.25) (15 0))

As expected, FuzzyLisp has divided the three segments of the trapezium from
x = 7 to x = 10, from x = 10 to x = 12 and from x = 12 to x = 15 in four parts,
respectively. It has calculated every associated membership degree and finally has
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produced a FuzzyLisp discrete set representation stored in dA. Figure 6.8 shows
both characteristic functions, discrete and continuous.

Now we need an additional FuzzyLisp function. A function that, given a
FuzzyLisp discrete set representation and any value x from its support, returns its
interpolated membership degree, μ(x). In other words: we need a function equiv-
alent to (fl-set-membership?) for dealing with discrete membership functions. Such
a function is shown in Code 6-7a and 6-7b:

;Code 6-7a
(define (fl-dset-membership? dfset x, i n pair-a pair-b
result)

(setq result (list (first dfset) 0.0))
(setq i 1) ;we are not interested in dfset's name anymore
(setq n (length dfset))

(while (< i (- n 1)) ;traverse list taking care at the end
(setq pair-a (nth i dfset))
(setq pair-b (nth (+ 1 i) dfset))

;if x is bounded:
(if (and (<= (first pair-a) x) (>= (first pair-b) x))

;we pass the shift at right from the left value:
(setq result (list (first dfset)

(interpolation pair-a pair-b (sub x (first
pair-a)))))

); end if
(++ i)

); end while
result

)

Fig. 6.8 Two versions of the same trapezoidal shaped fuzzy set: continuous and discrete
characteristic functions
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For simplicity of design, (fl-dset-membership?) uses an auxiliary function for
interpolation as shown in Code 6-7b:

;code 6-7b
(define (interpolation pair-a pair-b p, a b y1 y2)

;extract values:
(setq a (first pair-a) b (first pair-b))
(setq y1 (last pair-a) y2 (last pair-b))
;calculate the interpolation using simple analytic
geometry
(add y1 (div (mul p (sub y2 y1)) (sub b a)))

)

The function (fl-dset-membership?) is rather simple. It traverses the list repre-
senting a discrete fuzzy set until finding two bounding sublists pair-a, pair-b,
geometrically located at left and right respectively from the x value supplied as an
argument to the function. After both sublists are identified, the function makes a call
to (interpolation), thus obtaining the desired interpolated membership degree.
Figure 6.9 shows the used magnitudes for the interpolation algorithm used in
Code 6-5b.

From the simple observation of Fig. 6.9 we can easily derive the value of q:

q ¼ p y2 � y1ð Þ= b� að Þ ð6-11Þ

Only a few paragraphs above we discretized the trapezoidal fuzzy set expressed
by the list (B1 7 10 12 15), obtaining its FuzzyLisp discrete set representation
counterpart and storing it in the Lisp symbol dA. Now, for testing the function,
when x = 8.2, we can type the following expression at the Lisp prompt.

Fig. 6.9 Analytic geometry for interpolation

190 6 From Fuzzy Sets to Linguistic Variables



> (fl-dset-membership? dA 8.2)
: (B1 0.4)

After obtaining 0.4 as the membership degree from the discretized version of the
fuzzy set I am sure the reader is really interested in knowing the membership degree
corresponding to x = 8.2 when directly using the FuzzyLisp standard set repre-
sentation (B1 7 10 12 15). For testing this, we are going to use the appropriate
FuzzyLisp function, (fl-set-membership?), as follows:

> (fl-set-membership? ‘(B1 7 10 12 15) 8.2)
: (B1 0.4)

The reader can play with different values of x and different fuzzy sets using both
a FuzzyLisp standard and discrete set representation in order to understand the
differences and also the equivalences of using both forms of representation. The
functions (fl-discretize), (fl-dset-membership?) and (fl-set-membership?) open an
entire universe of possibilities for fuzzy set modeling as we are going to discover.

The use of discrete characteristic functions suggest us the opportunity to design a
FuzzyLisp function named (fl-discretize-fx) for discretizing any continuous function
y = f(x). In this way, we shall be able to use any of the membership functions shown
in Fig. 6.1. Code 6-8 shows the way to do it:

;Code 6-8
(define (fl-discretize-fx name fx steps a b,

x resolution list-out)
;the first element is the associated name
(setq list-out (list name))
(setq resolution (div (sub b a) steps))
(setq x a);start from left ro right
(while (<= x (add b 0.00001))

;eval fx, make a list (x fx) and cons it to list-out
(setq list-out (cons (list x (eval fx)) list-out))
(setq x (add x resolution))

); while end
(reverse list-out)

)

The function takes five arguments: The first one is the name for the expected
discretized fuzzy set, then it takes the y = f(x) function to discretize expressed into
Lisp form, and then the number of required steps between the start point x = a and
end point x = b. This FuzzyLisp function is rather simple: First it initializes the
resulting list, that is, the desired discretized fuzzy-set, calculates the required res-
olution and then it evaluates the supplied function inside the while loop with the
following Lisp expression:

(setq list-out (cons (list x (eval fx)) list-out))
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As the reader already recognizes, it is a consing expression where the sublist
formed by the scanning value x and its image f(x) is added to list-out, the expected
return of this FuzzyLisp function. Now let us try it using the membership function
μ4(x) from Fig. 6.2. Adjusting the parameters a and b to a = 2 and b = 2,
respectively, we obtain the following expression:

y ¼ ð1þ cosð2p x� 2ð ÞÞÞ=2; 8 x 2 1:5; 2:5½ �

Translating it into a Lisp expression and assigning it to the symbol f, we have:

setq f ‘ div add 1:0 cos mul 2:0 pi sub x 2:0ð Þð Þð Þð Þ 2:0ð Þð Þ

Since it contains a trigonometric expression we must remember to include the
value of Pi before calling the function by typing (setq pi 3.1415926535) at the Lisp
Prompt. Then we can finally call the function:

> (setq dBell (fl-discretize-fx ‘Bell f 10 1.5 2.5))
(Bell (1.5 0) (1.6 0.09549150283) (1.7 0.3454915028) (1.8 0.6545084972) (1.9

0.9045084972) (2 1) (2.1 0.9045084972) (2.2 0.6545084972) (2.3 0.345491502)
(2.4 0.09549150283) (2.5 0))

The resulting fuzzy set Bell can be seen graphically in Fig. 6.10.
Aside making the call to the function (fl-discretize-fx) we have also assigned the

resulting fuzzy set to the symbol dBell. Now if we wish to obtain the membership
value of any other x 2 [1.5, 2.5], let us say, for example, x = 1.75, we only need to
type the following at the Lisp prompt:

> (fl-dset-membership? dBell 1.75)
: (Bell 0.5)

This is extremely important because as already stated with the function (fl-set-
membership?), (fl-dset-membership?) is also in itself a membership function in

Fig. 6.10 Graphical
representation of the
discretized characteristic
function y = (1 + cos
(2π(x − 2)))/2
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disguise, because both functions determine not only if a value x 2 R belongs to a
given fuzzy set A, but also provides us its membership degree to A.

Some words must be said about resolution before closing this section: If we wish
to discretize a triangular or trapezoidal shaped fuzzy set, the required number of
steps does not need to be big and it can be as low as 2. Let us experiment it:

> (fl-discretize ‘(B1 7 10 12 15) 2)
: (B1 (7 0) (8.5 0.5) (10 1) (11 1) (12 1) (13.5 0.5) (15 0))

Pushing it at the minimum resolution, with only one step, we have:

> (fl-discretize ‘(B1 7 10 12 15) 1)
: (B1 (7 0) (10 1) (12 1) (15 0))

And this is enough to obtain any interpolated μ(x) value. Again:

> (fl-dset-membership? (fl-discretize ‘(B1 7 10 12 15) 1) 8.2)
: (B1 0.4)

The applied extreme discretization shows the big similarity between the discrete
and continuous representation of a trapezoidal or triangular shaped fuzzy set:

B1 7 10 12 15ð Þ
B1 7 0ð Þ 10 1ð Þ 12 1ð Þ 15 0ð Þð Þ

However, when we wish to discretize continuous f(x) functions by means of (fl-
discretize-fx), the resolution must be increased accordingly. For the bell shaped
function shown in Fig. 6.10 we used 10 steps for the sake of simplicity in the
exposition, but in practical applications it is better to take 15 or 20 steps and thus,
still maintaining a good level of precision with respect to the original f(x) function.

6.6 Revisiting Complement, Union and Intersection
of Fuzzy Sets

As we saw in Sect. 5.3.2 from the previous chapter, simple mathematical expres-
sions provide us formal definitions for the complement, union and intersection of
fuzzy sets. When handling fuzzy sets with continuous characteristic functions, these
formal expressions must be slightly rewritten in order to maintain the mathematical
rigor.

Complement:

A0 ¼ 1� lA xð Þ=x 2 x1; x4½ � ð6-12aÞ

A0 ¼ 1 8 x 62 x1; x4½ �; x 2 U ð6-12bÞ
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That is, for every value x included in the universe of discourse U, the mem-
bership degree of the complement A′ of a fuzzy set A is given by the expression
1 − μA(x) when x is contained inside the support of A, and it is equal to 1 when x is
outside the support of A but is still contained into U. Graphically we can see it in
Fig. 6.11, where A′ is shown in thick line.

Union: The union A [ B of two fuzzy sets A and B is formally obtained by the
following expression:

A[B ¼ max½lA xð Þ; lB xð Þ�=x 2 x1A; x4B½ � ð6-13Þ

That is, the union of two fuzzy sets A, B is obtained by the maximum mem-
bership degree of either μA(x) or μB(x) when x is contained in the closed interval
formed by the extreme left of the support of A and the extreme right of the support
of B. Figure 6.12 Graphically shows in a thick line the union of two fuzzy sets
A and B:

Fig. 6.12 Union of two fuzzy
sets, A and B

Fig. 6.11 Complement of
fuzzy set A
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Intersection: The intersection A \ B of two fuzzy sets A and B is formally
obtained by the following expression:

A\B ¼ min½lA xð Þ; lB xð Þ�=x 2 x1A; x4B½ � ð6-14Þ

Similarly as with the case of the union, the intersection of two fuzzy sets A, B is
obtained by the minimum membership degree of either μA(x) or μB(x) when x is
contained in the closed interval formed by the extreme left of the support of A and
the extreme right of the support of B. Figure 6.13 shows the intersection of A and
B by means of a thick line.

Observing the Figs. 6.11, 6.12 and 6.13 we immediately realize that in general
the FuzzyLisp standard set representation is not able to model neither the com-
plement of a fuzzy set nor the union or intersection of two fuzzy sets. Only in the
particular case of two trapezoidal shaped fuzzy sets sharing part of their nuclei we
could obtain a representable union or intersection by the FuzzyLisp Standard Set
Representation.

Nevertheless, we can develop some simple functions for testing if an element
x belongs to the complement of a fuzzy set A, the union of two fuzzy sets, and the
intersection of two fuzzy sets A, B getting at the same time its membership degree,
if any. Code 6-9 shows the function (fl-set-complement-membership?) for obtaining
the membership degree of the complement of a fuzzy set:

;code 6-9
(define (fl-set-complement-membership? fset x)

(list
(first (fl-set-membership? fset x))
(sub 1.0 (last (fl-set-membership? fset x)))

)
)

The function takes two arguments: fset, in FuzzyLisp Standard Set
Representation and then x, the value for which we want to know its complement
membership degree. Let us test the function with the fuzzy set A: (B1 7 10 12 15).

Fig. 6.13 Intersection of two
fuzzy sets, A and B
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When x = 9 its membership degree μA(x) is 0.6666666666. Let us observe the
resulting membership degree of its complement:

> (fl-set-complement-membership? ‘(B1 7 10 12 15) 9)
: (B1 0.3333333333)

For obtaining the union of two fuzzy sets we can design the function (fl-set-
union-membership?) as shown in Code 6-10:

;code 6-10
(define(fl-set-union-membership?namefset1fset2x,mu1mu2)

(setq mu1 (last (fl-set-membership? fset1 x)))
(setq mu2 (last (fl-set-membership? fset2 x)))
(list name (max mu1 mu2))

)

The function takes four arguments: name is used for associating a name to the
resulting list. fset1 and fset2 are two fuzzy sets using FuzzyLisp Standard Set
Representation and finally, x is the value for which we want to know its A [ B
membership degree. For testing it, let us take, for example, two fuzzy sets typing
the following at the Lisp prompt: (setq A ‘(Triangle 0 5 5 10)) and (setq B
‘(Trapezium 5 10 15 20)). Then for obtaining the membership degree of A [ B
when x = 7.5 we can type:

> (fl-set-union-membership? ‘AuB A B 7.5)
: (AuB 0.5)

Finally we shall write a function for getting the membership degree of the
intersection of two fuzzy sets A and B, as shown in Code 6-11:

;code 6-11
(define (fl-set-intersect-membership? name fset1 fset2 x,
mu1 mu2)

(setq mu1 (last (fl-set-membership? fset1 x)))
(setq mu2 (last (fl-set-membership? fset2 x)))
(list name (min mu1 mu2))

)

As it happened with the function (fl-set-union-membership?), (fl-set-intersect-
membership?) takes four arguments, too; again name is used for associating a name
to the resulting list. fset1 and fset2 are two fuzzy sets using FuzzyLisp Standard Set
Representation and finally, x is the value for which we want to know its A \ B
membership degree. Using the same sets A: (Triangle 0 5 5 10)) and B: (Trapezium
5 10 15 20) from the previous example, we can type:

> (fl-set-intersect-membership? ‘AintB A B 8)
: (AintB 0.4)
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In the design of these three functions we would like to remark again the
importance of the function (fl-set-membership?) as a building block for producing
new FuzzyLisp functions. The reader is thus invited to understand its code
(Code 6-2) perfectly well.

6.7 Fuzzy Numbers

Human beings use fuzzy numbers everyday in common language and only a few
examples will be enough to realize how useful they are for processing information
and to transmit it to other persons: “I have parked my car about half a meter from
the wall”, “the distance from the Louvre Museum to Concorde Square is a bit more
that one kilometer”, “the distance between our Milky Way and the Andromeda
galaxy is about two million light years”, “the temperature inside my home in
summer is 24 °C, more or less”, “it takes me about twenty to thirty minutes to go by
car to the train station”. Even in science, when talking between colleagues (that is,
when exchanging information) it is usual to use fuzzy numbers: No doctor will tell
a colleague: “patient from room 122 in the hospital has a platelet count equal to
39,724”, but instead he or she will say: “the patient from room 122 has a very low
platelet count”. If more “precision” is required the colleague will then probably ask:
“how low is her platelet count?” and a possible reply could be “less than 40,000”.
This is enough for both specialists to know that patient from room 122 has
developed a high risk of bleeding (Guyton and Hall 2005). “Less than 40,000” is a
fuzzy number, as also are “about half a meter”, “a bit more than one kilometer”,
“about twenty to thirty minutes” and so on.

Under a practical point of view, fuzzy numbers are the most important type of
fuzzy sets because they have application in important areas of research such as
fuzzy control, approximate reasoning or decision making, to name only a few of
them. This is not strange because both in applied science and technology nothing
can be defined without measuring it and then express the obtained measure with
numbers. As Thomas William, better known as Lord Kelvin, wrote:

… when you can measure what you are speaking about and express it in numbers, you
know something about it; but when you cannot express it in numbers, your knowledge is of
a meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have
scarcely in your thoughts advanced to the state of science, whatever the matter may be
(Gray 2014)

We can update Lord Kelvin’s citation replacing the word “number” with
“numbers that are close to a real number” or “numbers that are around a given
interval of real numbers”. Let us try it: “when you can measure what you are
speaking about and express it in numbers that are close to a real number then you
know something about it”. The reader can complete the rest of the citation, real-
izing, maybe with surprise, that the resulting set of sentences describes even better
the original meaning of the English author.

6.6 Revisiting Complement, Union and Intersection of Fuzzy Sets 197



For fixing ideas, every fuzzy number is a fuzzy set that satisfies the following
properties:

• A fuzzy number must be a normal fuzzy set, that is, there exists at least a value
x belonging to the support of the fuzzy set whose image μ(x) equals one, as we
saw in (6-4).

• A fuzzy number must be a convex fuzzy set.
• The support of a fuzzy number must be bounded.

The first property seems to be the easier one to understand. First, because we
have already seen what a normal fuzzy set is, and second because it seems obvious
(an certainly it is) that if we are speaking about a fuzzy number n, then it will reach
its maximum membership degree μ(x) = 1 just when x = n. For example, if we
define the fuzzy set “around three”, it will reach its maximum membership degree
just at x = 3, and then μ(3) = 1.0.

For defining a convex fuzzy set we need again a helping hand from alpha-cuts.
A convex fuzzy set is a fuzzy set where every alpha-cut on it is represented by one
and only one closed interval on the real axis. For better understanding this concept
it is usually convenient to show what is not a convex fuzzy set: In Fig. 6.12 we
represented a fuzzy set C = A [ B that is not a convex set. While A and B are both
convex fuzzy sets, the union C is not because there is at least one alpha-cut formed
by more than one closed interval, as can be seen in Fig. 6.14 where taking for
example α = 0.8, its alpha-cut 0.8a is represented by two closed intervals a1, a2. By
the way, from the simple observation of Fig. 6.11 it can be said that in general, the
complementary P′ of a fuzzy number P is not a fuzzy number.

Finally, the support of a fuzzy number, that is, its strong alpha-cut 0+a, must be
bounded, that is, it must be a closed interval. Expressed with other words, the strong
alpha cut of a fuzzy number is represented by the closed interval [x1, x4].

6.7.1 Fuzzy Numbers Arithmetic

The existence of only one interval for every possible alpha-cut in a fuzzy number
opens the door to performing arithmetic calculations on fuzzy numbers because it

Fig. 6.14 Example of a
non-convex fuzzy set: A [ B
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translates to perform operations on closed intervals, that is, to perform interval
arithmetic, a branch of mathematics well established since the 50s and 60s last
century. The computational strategy, shown schematically in Fig. 6.15 is simple:
Take the fuzzy numbers involved in the desired arithmetic, obtain some alpha-cuts
of them (thus obtaining closed intervals), perform the required arithmetic operation
on the intervals, and finally, from the obtained intervals, build the resulting fuzzy
number.

We define any arithmetic operator * on two closed intervals I1, I2 as the fol-
lowing expression:

I1 � I2 ¼ fz j there is some x in I1 and some y in I2; such as z ¼ x � yg ð6-15Þ

Then, for the addition, subtraction, multiplication and division of two closed
intervals [a, b], [c, d], and having into account that both [a, b] and [c, d] are subsets
of the real line, expressed in interval form as [−∞, ∞], we have the following
expressions (6-16):

• Addition: [a,b] + [c,d] = [a + c, b + d]
• Subtraction: [a,b] − [c,d] = [a − d, b − c]
• Multiplication: [a,b] ∙ [c,d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]
• Division: [a,b]/[c,d] = [min(a/c, a/d, b/c, b/d), max(a/c, a/d, b/c, b/d)]

Needless to say, the division [a,b]/[c,d] of two intervals is defined only in the
case that the value x = 0 is not contained on the interval [c,d]. With the help of the
Lisp language is easy to define functions that perform interval arithmetic auto-
matically. Code 6-12a through 6-12d shows these functions:

;code 6-12a
(define (fl-intv-add x1 x2 x3 x4)

(list (add x1 x3) (add x2 x4))
)

;code 6-12b
(define (fl-intv-sub x1 x2 x3 x4)

(list (sub x1 x4) (sub x2 x3))
)

;code 6-12c
(define (fl-intv-mult x1 x2 x3 x4, extrm-left extrm-right)

(setq extrm-left (min

Fig. 6.15 Computational strategy for performing fuzzy number arithmetic
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(mul x1 x3) (mul x1 x4) (mul x2 x3) (mul x2 x4))
)
(setq extrm-right (max

(mul x1 x3) (mul x1 x4) (mul x2 x3) (mul x2 x4))
)
(list extrm-left extrm-right)

)

;code 6-12d
(define (fl-intv-div a b d e, extrm-left extrm-right)

(setq extrm-left (min
(div a d) (div a e) (div b d) (div b e))

)
(setq extrm-right (max

(div a d) (div a e) (div b d) (div b e))
)
(list extrm-left extrm-right)

)

Since the Lisp code from these four functions is a direct translation from the
formulas for interval arithmetic we shall not make any additional comment on it.
Let us quickly test these functions with the intervals I1 = [2,4] and I2 = [1,3] at the
Lisp prompt:

> (fl-intv-add 2 4 1 3)
: (3 7)

> (fl-intv-sub 2 4 1 3)
: (-1 3)

> (fl-intv-mult 2 4 1 3)
: (2 12)

> (fl-intv-div 2 4 1 3)
: (0.6666666667 4)

Now, let us apply the algorithm shown in Fig. 6.15 for obtaining the sum of two
fuzzy numbers A, B given by the following Lisp expressions: (setq A ‘(around-2
1.75 2 2 2.25)) and (setq B ‘(around-5 4.8 5 5 5.2)). Then, for each of them let us
obtain their 0.25 and 0.75 alpha-cuts, 0.25a, 0.75a, 0.25b and 0.75b, respectively as
shown in Table 6.3 by means of several calls to the function (fl-alpha-cut):

So we have the following intervals/alpha-cuts: 0.25a → [1.8125 2.1875],
0.75a → [1.9375 2.0625], 0.25b → [4.85 5.15], 0.75b → [4.95 5.05]. Now, adding
the 0.25 and 0.75 alpha-cuts we have: (fl-intv-add 1.8125 2.1875 4.85
5.15) → (6.6625 7.3375), and: (fl-intv-add 1.9375 2.0625 4.95 5.05) → (6.8875
7.1125). That is:
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0:25aþ b ! 6:66257:3375½ �
0:75aþ b ! 6:88757:1125½ �

for obtaining the fuzzy number A + B we only need to call the function (fl-def-
set) from the Lisp prompt:

> (fl-def-set ‘A + B ‘(6.6625 7.3375 0.25) ‘(6.8875 7.1125 0.75))
: (A + B 6.55 7 7 7.45)

Aside obtaining the addition of two fuzzy numbers, the last expression serves us
well for demonstrating the utility of the function (fl-def-set) when dealing with
fuzzy numbers arithmetic. Now, after calculating A + B in a manual way, it would
be interesting to have some functions for automatically calculating some fuzzy
arithmetic. Code 6-13a and 6-13b show two FuzzyLisp functions for calculating the
addition and subtraction of two fuzzy numbers, respectively:

;code 6-13a
(define (fl-fuzzy-add name A B, cut1A cut1B cut2A cut2B sum1
sum2)

(setq cut1A (fl-alpha-cut A 0.25))
(setq cut1B (fl-alpha-cut B 0.25))
(setq cut2A (fl-alpha-cut A 0.75))
(setq cut2B (fl-alpha-cut B 0.75))

;eliminate first element from every cut
(pop cut1A) (pop cut1B)
(pop cut2A) (pop cut2B)

(setq sum1 (fl-intv-add
(nth 0 cut1A) (nth 1 cut1A)
(nth 0 cut1B) (nth 1 cut1B))

)

(setq sum2 (fl-intv-add
(nth 0 cut2A) (nth 1 cut2A)
(nth 0 cut2B) (nth 1 cut2B))

)

Table 6.3 Some alpha cuts performed on the fuzzy numbers A, B

Alpha-cut Function call Function result
0.25a (fl-alpha-cut A 0.25) (around-2 1.8125 2.1875)
0.75a (fl-alpha-cut A 0.75) (around-2 1.9375 2.0625)
0.25b (fl-alpha-cut B 0.25) (around-5 4.85 5.15)
0.75b (fl-alpha-cut B 0.75) (around-5 4.95 5.05)
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;add alpha-cut value at the last position in the list

(push'0.25 sum1 2)
(push'0.75 sum2 2)
(fl-def-set name sum1 sum2)

)

The function for subtracting two fuzzy sets, (fl-fuzzy-sub) has the same structure:

;code 6-13b
(define (fl-fuzzy-sub name A B, cut1A cut1B cut2A cut2B sum1
sum2)

(setq cut1A (fl-alpha-cut A 0.25))
(setq cut1B (fl-alpha-cut B 0.25))
(setq cut2A (fl-alpha-cut A 0.75))
(setq cut2B (fl-alpha-cut B 0.75))

;eliminate first element from every cut
(pop cut1A) (pop cut1B)
(pop cut2A) (pop cut2B)

(setq sum1 (fl-intv-sub
(nth 0 cut1A) (nth 1 cut1A)
(nth 0 cut1B) (nth 1 cut1B))

)

(setq sum2 (fl-intv-sub
(nth 0 cut2A) (nth 1 cut2A)
(nth 0 cut2B) (nth 1 cut2B))

)

;add alpha-cut value at the last position in the list

(push'0.25 sum1 2)
(push'0.75 sum2 2)
(fl-def-set name sum1 sum2)

)

Now we can test these functions simply typing the following at the Lisp prompt:

> (fl-fuzzy-add ‘A + B A B)
: (A + B 6.55 7 7 7.45)

> (fl-fuzzy-sub ‘A-B A B)
: (A-B -3.45 -3 -3 -2.55)
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> (fl-fuzzy-sub ‘B-A B A)
: (B-A 2.55 3 3 3.45)

And very interestingly:

> (fl-fuzzy-sub ‘A-A A A)
: (A-A -0.5 0 0 0.5)

Figure 6.16 is a graphical representation of the fuzzy sets A, B, A + B and B − A.
The addition or subtraction of two fuzzy numbers whose membership function

has a triangular or trapezoidal shape always generates a fuzzy number that also has
a triangular or trapezoidal membership function. However, the fuzzy multiplication
and fuzzy division of two fuzzy numbers does not produce, in general, a triangular
or trapezoidal fuzzy number, so FuzzyLisp cannot represent them directly. Anyway,
let us perform manually the calculations for obtaining A.B and A/B. Table 6.4a is an
enhanced version of Table 6.3.

On the other hand, Table 6.4b shows all the intervals obtained after multiplying
the respective αa ∙ αb and αb/αa.

This example helps to understand that any fuzzy set can be also defined by a set
of its own alpha-cuts. All the previous discussion about resolution applies here in
the same way. Figure 6.17 shows a discretized representation of the fuzzy sets
A × B and A/B. The hidden horizontal lines represent the 0, 0.25, 0.5, 0.75 and 1.0
membership degrees.

Fig. 6.16 Addition and subtraction of fuzzy sets: from left to right: A, B-A, B, A + B

Table 6.4a 0, 0.25, 0.5, 0.75 and 1.0 alpha cuts performed on the fuzzy numbers A, B

Alpha-cut Function call Function result
0a (fl-alpha-cut A 0) (around-2 1.75 2.25)
0.25a (fl-alpha-cut A 0.25) (around-2 1.8125 2.1875)
0.5a (fl-alpha-cut A 0.5) (around-2 1.875 2.125)
0.75a (fl-alpha-cut A 0.75) (around-2 1.9375 2.0625)
1.0a (fl-alpha-cut A 1) (around-2 2 2)
0b (fl-alpha-cut B 0) (around-5 4.8 5.2)
0.25b (fl-alpha-cut B 0.25) (around-5 4.85 5.15)
0.5b (fl-alpha-cut B 0.5) (around-5 4.9 5.1)
0.75b (fl-alpha-cut B 0.75) (around-5 4.95 5.05)
1.0b (fl-alpha-cut B 1) (around-5 5 5)
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As the reader can observe, this is a tedious procedure, so two FuzzyLisp
functions should be developed for calculating the multiplication and division of
fuzzy numbers, respectively. For the inner working of the functions several
alpha-cuts are obtained from every fuzzy set involved in the operation, then the
adequate interval calculations are made and the final result is a discretized fuzzy
number. Code 6-14 shows the function (fl-fuzzy-mult) for obtaining the multipli-
cation of two fuzzy numbers A, B:

;code 6-14
(define (fl-fuzzy-mult name A B n,

i alpha cutA cutB mult head tail interval)
(setq head'() tail'())
(setq interval (div 1.0 n))
(setq alpha 0.0 i 0)

(while (<= i n)
(setq cutA (rest (fl-alpha-cut A alpha)))
(setq cutB (rest (fl-alpha-cut B alpha)))
;perform the multiplication of alpha-cuts
(intervals):
(setq mult

(fl-intv-mult
(first cutA) (last cutA) (first cutB) (last cutB)

)
);setq mult

Table 6.4b Interval multiplication and division for AxB and A/B

Alpha value Interval multiplication Interval division

0 [8.4 11.7] [2.133333333 2.971428571]

0.25 [8.790625 11.265625] [2.217142857 2.84137931]

0.5 [9.1875 10.8375] [2.305882353 2.72]

0.75 [9.590625 10.415625] [2.4 2.606451613]

1.0 [10 10] [2.5 2.5]

Fig. 6.17 Division and multiplication of two fuzzy sets: B/A, AxB
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;carefuly construct the head and tail of the
;discretized resulting set:

(setq head (cons (append (list (first mult))
(list alpha)) head))

(setq tail (cons (append (list (last mult))
(list alpha)) tail))

(setq alpha (add interval alpha))
(++ i)

);while end
(append (list name) (reverse head) (rest tail))

)

Testing the function for sets A, B, we have:

> (fl-fuzzy-mult ‘AxB A B 5)
: (AxB (8.4 0) (8.712 0.2) (9.028 0.4) (9.348 0.6) (9.672 0.8) (10 1) (10.332 0.8)
(10.668 0.6) (11.008 0.4) (11.352 0.2) (11.7 0))

In a similar way, Code 6-15 shows the FuzzyLisp function (fl-fuzzy-div) for
obtaining the division of two fuzzy numbers A, B:

;Code 6-15
(define (fl-fuzzy-div name A B n,

i alpha cutA cutB mult head tail interval)
(setq head'() tail'())
(setq interval (div 1.0 n))
(setq alpha 0.0 i 0)

(while (<= i n)
(setq cutA (rest (fl-alpha-cut A alpha)))
(setq cutB (rest (fl-alpha-cut B alpha)))
;perform the division of alpha-cuts (intervals):
(setq mult

(fl-intv-div
(first cutA) (last cutA) (first cutB) (last cutB)

)
);setq mult

;carefuly construct the head and tail of the
;discretized resulting set:

(setq head (cons (append (list (first mult))
(list alpha)) head))

(setq tail (cons (append (list (last mult))
(list alpha)) tail))
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(setq alpha (add interval alpha))
(++ i)

);while end
(append (list name) (reverse head) (rest tail))

)

Let us divide the fuzzy number B by the fuzzy number A at the Lisp prompt:

> (fl-fuzzy-div ‘B/A B A 5)
: (B/A (2.133333333 0) (2.2 0.2) (2.269767442 0.4) (2.342857143 0.6)

(2.419512195 0.8) (2.5 1) (2.584615385 0.8) (2.673684211 0.6) (2.767567568 0.4)
(2.866666667 0.2) (2.971428571 0))

Again, the result of A × B and A/B is a fuzzy set with a discrete membership
function, so, as the reader already knows, any intermediate membership degree can
be obtained by means of the function (fl-dset-membership?). For example, for
knowing the membership degree for x = 2.4 of B/A, we only need to type:

> (fl-dset-membership? (fl-fuzzy-div ‘B/A B A 5) 2.4)
: (B/A 0.7490909091)

6.7.2 More Numerical Operations on Fuzzy Sets

Aside the basic arithmetic operations described in the previous paragraphs, another
interesting operation is the multiplication and division of fuzzy sets with triangular
or trapezoidal membership functions by a real number k. In general, and remem-
bering the definition of singular points given by (6-2), we have:

kA ¼ kðx1; x2; x3; x4Þ ¼ kx1; kx2; kx3; kx4ð Þ ð6-16Þ

For dividing a fuzzy set with triangular or trapezoidal membership function by a
real number p, we only need to do k = 1/p and then use again the formula given by
(6-16). Translating this into FuzzyLisp we obtain the function (fl-fuzzy-factor).
Shown in Code 6-16, it takes as parameters a fuzzy set and then a real number k:

;code 6-16
(define (fl-fuzzy-factor fset k, x1 x2 x3 x4 list-out)

(setq x1 (mul k (nth 1 fset)))
(setq x2 (mul k (nth 2 fset)))
(setq x3 (mul k (nth 3 fset)))
(setq x4 (mul k (nth 4 fset)))

(if (>= x4 x1);normal case
(setq list-out (list (nth 0 fset) x1 x2 x3 x4))
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;else there is a negative number
(setq list-out (list (nth 0 fset) x4 x2 x3 x1))

); if end
list-out

)

It is easy to foresee the results produced by this function. When k > 1 it will
perform a multiplication and conversely, when k < 1 it will perform a division.
Having, for example a set A : (A1 -2 3 3 8), then

> (fl-fuzzy-factor A 3)
: (A1 -6 9 9 24)

Dividing the same fuzzy set A by the real number 4.0 is as easy as multiplying it
by 0.25:

> (fl-fuzzy-factor A 0.25)
: (A1 -0.5 0.75 0.75 2)

Another interesting FuzzyLisp function serves for shifting a fuzzy set towards
left or right over the real axis X by an amount given by a real value x. Code 6-17
shows the function (fl-fuzzy-shift):

;code 6-17
(define (fl-fuzzy-shift fset x)

(list
(nth 0 fset) ;the name of the set
(add x (nth 1 fset))
(add x (nth 2 fset))
(add x (nth 3 fset))
(add x (nth 4 fset))

); list end
)

Let us imagine we have a fuzzy set for defining a certain age representing those
individuals that, although still young, are transiting to a mature age: (young-plus
15.0 25.0 35.0 45.0). Then, if after a while we think it would be better to represent it
with a five years old shift to the right we can now type:

> (fl-fuzzy-shift ‘(young-plus 15.0 25.0 35.0 45.0) 5.0)
: (young-plus 20 30 40 50)

This seems an innocent function at first, but its true strength appears when we
use it dynamically from inside a program. That is, when some or many variable
states representing a model change in such a way that we need to modify the very
own definition of the fuzzy sets that take part of it while the program is running.

In a complementary way, these last functions inspire other one that allows a
fuzzy set to grow or contract while remaining static on the real axis. This FuzzyLisp
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function is named (fl-expand-contract-set). The function expands or contracts the
support and nucleus of a triangular or trapezoidal fuzzy set by a factor k. As can be
seen from Code 6-18, it first multiplies the fuzzy set by k and then moves it back to
its original position:

;code 6-18
(define (fl-expand-contract-set fset k, center1 center2
result)

;calculate support's centre:
(setq center1 (div (add (nth 2 fset) (nth 3 fset)) 2.0))
(setq result (fl-fuzzy-factor fset k)) ;expand/contract
;calculate new support's centre:
(setq center2 (div (add (nth 2 result) (nth 3 result))
2.0))
;shift it to its original position
(fl-fuzzy-shift result (mul (sub center2 center1) -1.0))

)

Let us play a bit with this function for demonstrating how does it work:

> (fl-expand-contract-set ‘(a 0 1 1 2) 2.0)
: (a -1 1 1 3)

> (fl-expand-contract-set ‘(a -1 1 1 3) 0.5)
: (a 0 1 1 2)

Figure 6.18 shows a graphical representation of these geometrical/numerical
transformations on fuzzy sets. Identical behavior happens with fuzzy sets that have
trapezoidal membership functions, as can be seen typing: (fl-expand-contract-set
‘(a 0 1 2 3) 2.0) → (a -1.5 0.5 2.5 4.5), and then: (fl-expand-contract-set ‘(a -1.5
0.5 2.5 4.5) 0.5) → (a 0 1 2 3).

Fig. 6.18 Expansion/contraction of fuzzy sets with triangular membership functions. At left the
obtained expansion is shown in thick line. At right, the obtained contraction
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6.7.3 Fuzzy Averaging

After learning to calculate the sum of two fuzzy numbers A, B, we can extend these
ideas to calculate the sum of n fuzzy numbers Fn, as expressed in Eq. (6-17):

S ¼ F1 þ F2 þ � � � þ Fn ¼
X

Fi; i ¼ 1. . .n ð6-17Þ

Then, for calculating the fuzzy average of n fuzzy numbers we shall have:

Fav ¼ S=n ¼ F1 þ F2 þ � � � þ Fnð Þ=n ¼
X

Fi

� �
=n ð6-18Þ

The reader should note that both S and Fav are both fuzzy numbers. This remark
is important because for translating expressions (6-17) and (6-18) into FuzzyLisp
functions we are going to use a data structure that is a set of fuzzy sets but it is not a
fuzzy set in itself. An example will suffice for clarifying this concept: Let us take
five fuzzy numbers from F1 to F5 by means of the following Lisp expressions: (setq
F1 ‘(set1 -2 0 0 2)), (setq F2 ‘(set2 3 5 5 7)), (setq F3 ‘(set3 6 7 7 8)), (setq F4
‘(set4 7 9 11 12)) and (setq F5 ‘(set5 8 10 10 12)). All of them are fuzzy sets with
triangular membership functions with the exception of F4, which is a fuzzy interval.
Now let us form the following data structure at the Lisp prompt:

> (setq Fsets ‘(F1 F2 F3 F4 F5))
: (F1 F2 F3 F4 F5)

The information for every Fi fuzzy set seems lost, but it is only a question of
appearance. For checking, let us type, for example:

> (eval (first Fsets))
: (set1 -2 0 0 2)

With these ideas fixed on mind we can now introduce the FuzzyLisp function
(fl-fuzzy-add-sets). It takes two arguments: first the set of fuzzy sets to add and then
a symbol for naming the resulting fuzzy set. Code 6-19 shows the function:

;code 6-19
(define (fl-fuzzy-add-sets fsets name, i n lst-out)

(setq n (length fsets))
(setq lst-out'())

(setq lst-out
(fl-fuzzy-add name (eval (nth 0 fsets)) (eval (nth 1
fsets))))

(setq i 2); we have already added two fuzzy numbers
;now for the rest of fuzzy numbers:

(while (< i n)
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(setq lst-out (fl-fuzzy-add name lst-out (eval (nth i
fsets))))
(++ i)

); while end
lst-out

)

Let us call it from the Lisp prompt, assigning the result to the symbol SFs:

> (setq SFs (fl-fuzzy-add-sets Fsets ‘Sum-of-Fs))
: (Sum-of-Fs 22 31 33 41)

Now, for calculating the fuzzy average of the fuzzy sets F1 through F5 we only
would need to type:

> (fl-fuzzy-factor SFs (div 1 5))
: (Sum-of-Fs 4.4 6.2 6.6 8.2)

It is a nice result, but I think it would be even nicer if we could have a FuzzyLisp
function for directly calculating fuzzy averages. Let us discover it in Code 6-20:

;code 6-20
(define (fl-fuzzy-average fsets name)

(fl-fuzzy-factor
(fl-fuzzy-add-sets fsets name) (div 1.0 (length
fsets))

)
)

Testing it is straightforward:

> (fl-fuzzy-average Fsets ‘Average)
: (Average 4.4 6.2 6.6 8.2)

Figure 6.19 shows graphically all the fuzzy sets involved into this last operation.
Please note that the average is a fuzzy set with a trapezoidal membership function
with a small nucleus as a result of the participation of the fuzzy set F4.

Fig. 6.19 Fuzzy sets F1 through F5. The fuzzy set representing their average is shown in thick
lines
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Sometimes it is useful to obtain a crisp, traditional real number from a fuzzy set.
Let us imagine you have performed several arithmetic operations on fuzzy numbers
and you wish to transform the obtained final fuzzy number into a crisp one. Maybe
you need it in a commercial report, a scientific article or, in general, for using it for
communicating a numerical value. The process for transiting from a fuzzy number
to a real number is named defuzzification. Although we shall dedicate enough space
to this important procedure of fuzzy sets theory on the next chapter, it seems now
convenient to introduce simple defuzzification.

In general, for fuzzy numbers with symmetrical shaped membership functions,
either a triangle or a trapezium, the resulting sharp number is simply the central
position of their support, which coincides with the central point of their nuclei. For
example, the defuzzification of the fuzzy number (fnumber 1 3 3 5) is 3, as it
happens also with the fuzzy interval (finterval 1 2 4 5). Things change a bit when
we handle asymmetrical shaped fuzzy numbers or intervals such as (fanumber 0 1 1
5), or (fainterval 0 1 3 8). In these cases, the central position of their nuclei does not
coincide with the central position of their support. Geometrically, and since we are
dealing with normal fuzzy sets, it seems clear that the point x whose membership
degree equals to one must have an important role to play in the defuzzified,
resulting crisp number, but it is also true that the geometrical bias inherent to the
asymmetrical shape of the characteristic function must be taken into account, too.
Naming m as the point corresponding to the nucleus’ average:

m ¼ x2 þ x3ð Þ=2 ð6-19Þ

then we have the following expressions for calculating simple defuzzification from
fuzzy numbers and fuzzy intervals:

x1 þ mþ x4ð Þ=3 ð6-20aÞ

x1 þ 2mþ x4ð Þ=4 ð6-20bÞ

x1 þ 4mþ x4ð Þ=6 ð6-20cÞ

x1 þ 6mþ x4ð Þ=8 ð6-20dÞ

these expressions concede increasing weight to the nucleus’ average of a fuzzy
number or interval. Translating these formulas to Lisp language is easy, as shown in
Code 6-21:

;code 6-21
(define (fl-simple-defuzzification fset mode, m)

;first, get nucleus average:
(setq m (div (add (nth 2 fset) (nth 3 fset)) 2.0))

;for every mode, we give different weights to m:
(case mode
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(1 (div (add (nth 1 fset) m (nth 4 fset)) 3.0))
(2(div(add(nth1fset)(mulm2.0)(nth4fset))4.0))
(3(div(add(nth1fset)(mulm4.0)(nth4fset))6.0))
(4(div(add(nth1fset)(mulm6.0)(nth4fset))8.0))

)
)

As parameters, the function (fl-simple-defuzzification) takes first a fuzzy number
fset and then a number named “mode” between 1 and 4, corresponding to
expressions [6-20x]. Let us see some examples with the asymmetrical shaped fuzzy
number (fanumber 0 1 1 5):

> (fl-simple-defuzzification ‘(q 0 1 1 5) 1)
: 2

> (fl-simple-defuzzification ‘(q 0 1 1 5) 4)
: 1.375

The second call to the function shows how using 3 as the mode for the function,
the resulting crisp number is closer to the nucleus of the fuzzy number. Now the
question is: what mode should be used in practical applications? The answer is
simple: it all depends on the designer of the fuzzy model to develop. We shall find
several advices for this and other similar questions later in this book.

6.8 Linguistic Variables

A linguistic variable is a finite collection of two or more fuzzy numbers or fuzzy
intervals that, representing linguistic concepts, completely patches a given universe
of discourse defined on a base variable. A base variable represents a range of values
of real numbers from any measurable concept or magnitude such as age, temper-
ature, voltage, currency exchange rates, acceleration, density…, etc. Linguistic
variables contain fuzzy numbers that represent, in linguistic terms, value states from
the base variable. The concept of “patching” is important in this definition and it
implies that the ordered fuzzy numbers that form a linguistic variable intersect
common spaces from the universe of discourse defined on the base variable. As a
counterexample, the set of fuzzy numbers represented in Fig. 6.16 is not a linguistic
variable because it does not patch any possible universe of discourse defined on the
real interval [0,8], not to mention the fact that no linguistic meaning has been
associated to every fuzzy set in the figure. Formally, the condition of “patching” in
a linguistic variable LV formed by Fi fuzzy sets can be expressed as follows:

LV ¼ fFi jFi \Fiþ1 6¼ /g ð6-20Þ

212 6 From Fuzzy Sets to Linguistic Variables



Let us consider again the concept of “age” in order to give a complete example
of linguistic variable. Now we can say that “age” represents a base variable and we
are going to define the universe of discourse U on it for a range from 0 to 90 years
old. Table 6.5 shows some Lisp assignments for creating five fuzzy sets that
completely patch U.

The linguistic labels associated to every fuzzy set are: “young”, “young-plus”,
“mature”, “mature-plus” and “old”. For creating the linguistic variable lv-age in
Lisp, we only need to include the following line of code in our program after the
inclusion of the Lisp assignments shown in Table 6.7:

setq lv-age ‘ age1 age2 age3 age4 age5ð Þð Þ

Figure 6.20 represents graphically the linguistic variable lv-age.
From the simple examination of the figure, it can be seen that the five fuzzy sets

that constitute the linguistic variable completely patch the universe of discourse
where they are defined. Another interesting fact is also relevant in this arrangement
of fuzzy sets: for any crisp value x belonging to the universe of discourse U, the
sum of the all possible corresponding membership degrees fi(x) from the fuzzy sets
in the linguistic variable equals exactly to one. That is:

8 x 2 U;
X

fi xð Þ ¼ 1:0 ð6-21Þ

When the fuzzy sets from a linguistic variable LV are arranged in such a way that
expression (6-21) holds, we say this family of nonempty fuzzy sets are a fuzzy
partition of the linguistic variable LV on U (Belohlavek and Klir 2011).

Fig. 6.20 Graphical representation of the linguistic variable lv-age

Table 6.5 Five fuzzy sets for
building the linguistic
variable lv-age

Lisp symbol Lisp assignment

age1 (setq age1 ‘(young 0 0 15 30))

age2 (setq age2 ‘(young-plus 15 30 30 45))

age3 (setq age3 ‘(mature 30 45 45 60))

age4 (setq age4 ‘(mature-plus 45 60 60 75))

age5 (setq age5 ‘(old 60 75 90 90))
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Since in the rest of this book we are going to use linguistic variables a lot, it
seems convenient to have a FuzzyLisp function that at any time from the Lisp
prompt we can list the fuzzy sets it contains. Such a function, named (fl-list-sets) is
shown in Code 6-22:

;code 6-22
(define (fl-list-sets lv, i n fset)

(setq i 0)
(setq n (length lv))
(while (< i n)

(setq fset (eval (nth i lv)))
(print fset)
(++ i)
(print''\n'')

)
(println)

)

Its only argument is the name of a linguistic variable already stored in Lisp’s
memory. Let us test it:

> (fl-list-sets lv-age)
: (young 0 0 15 30)
: (young-plus 15 30 30 45)
: (mature 30 45 45 60)
: (mature-plus 45 60 60 75)
: (old 60 75 90 90)

The output from this function call is an equivalent to the material exposed in
Table 6.5. As the reader already knows, the high degree of interaction between the
language and the user in a Lisp session means that (fl-list-sets) is a FuzzyLisp
function, that albeit simple, is frequently called when building a fuzzy logic based
model since it allow us to have all the used linguistic variables under control in a
highly readable format.

A function that helps to test the membership degrees fi(x) of a linguistic variable
is the FuzzyLisp function (fl-lv-membership?). It takes the name of an existing
linguistic variable lv and a crisp value x belonging to the universe of discourse
where lv is defined. The function, shown in Code 6-23, returns the membership
degree for every fuzzy set included in the linguistic variable:

;code 6-23
(define (fl-lv-membership? lv x, i n fset answer)

(setq i 0)
(setq n (length lv))
(while (< i n)

;first we obtain every fuzzy set
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(setq fset (eval (nth i lv)))
;now we call the function that performs the
calculations
(setq answer (fl-set-membership? fset x))
(println answer)
(++ i)

);end while
(println)

)

Let us test it with a simple example:

> (fl-lv-membership? lv-age 32)
: (young 0)
: (young-plus 0.8666666667)
: (mature 0.1333333333)
: (mature-plus 0)
: (old 0)

As it happened with (fl-list-sets), this function is well suited to interactively
establish a dialogue with Lisp in order to test and extract information of the
behavior of linguistic variables. However, a slight variation of it proves more
flexible and powerful, especially for programming. Named (fl-lv-membership2?) it
is shown in Code 6-24:

;code 6-24
(define (fl-lv-membership2? lv x, list_out i n fset)

(setq list_out'())
(setq i 0)
(setq n (length lv))
(while (< i n)

;here we obtain a fuzzy set:
(setq fset (eval (nth i lv)))
;and now it's time to perform calculations:

(setq list_out (append list_out
(list (fl-set-membership? fset x))))

(++ i)
);while end
list_out

)

After testing it, the output is very similar to the one produced by (fl-lv-
membership?):

> (fl-lv-membership2? lv-age 32)
: ((young 0) (young-plus 0.8666666667) (mature 0.1333333333) (mature-plus 0)
(old 0))
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However, the difference, while subtle, is important: (fl-lv-membership2?) returns
the membership degrees as a list! This convenience will show by itself in the next
chapter where we shall see how it helps to build an inference engine.

Let us see now an alternative way to describe the concept of age with a linguistic
variable where the entire universe of discourse U is the support of every fuzzy set
included in the linguistic variable. The respective Lisp assignments are shown in
Table 6.6.

For constructing the linguistic variable named lv-age2 in Lisp we only need to
include the following line of code:

setq lv-age2 ‘ agge1 agge2 agge3 agge4 agge5ð Þð Þ

Figure 6.21 represents graphically this linguistic variable.
This example of linguistic variable for describing the concept of age seems

bizarre at first. Interestingly, for any crisp value x belonging to its universe of
discourse, the corresponding membership degree fi(x) from every fuzzy set in the
linguistic variable is always bigger than zero in the open interval (0,90). In other
words: no fuzzy set in the linguistic variable gets a null membership degree for any
x crisp value in the open interval (0,90). We shall name maximum fuzziness lin-
guistic variable to this type of linguistic variables. With the help of the function (fl-
lv-membership2?), let us compare the behavior of the linguistic variables lv-age and
lv-age2 for some values x. The comparison is shown in Tables 6.7a, b.

While every value x from the universe of discourse generates one or two cor-
responding membership degrees in the linguistic variable lv-age, it generates five
membership degrees in lv-age2. If Aristotle had problems for starting to understand

Table 6.6 Five fuzzy sets for
building the linguistic
variable lv-age2

Lisp symbol Lisp assignment

agge1 (setq agge1 ‘(young 0 0 0 90))

agge2 (setq agge2 ‘(young-plus 0 30 30 90))

agge3 (setq agge3 ‘(mature 0 45 45 90))

agge4 (setq agge4 ‘(mature-plus 0 60 60 90))

agge5 (setq agge5 ‘(old 0 90 90 90))

Fig. 6.21 Graphical representation of the linguistic variable lv-age2
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the fall of the ‘law of non contradiction’ as we saw in the previous chapter, the
values represented in Table 6.7b would drive him crazy, probably. However, an
interesting interpretation does exist: Nobody is completely young or old. A one year
old children has an almost 1.0 membership degree to the fuzzy set of young people,
but since his life has already been depleted by twelve months he is not an entirely
new born being. And also, from the point of view of the fuzzy sets included in lv-
age2, he has already started to be an old person, yet with an almost symbolic
membership degree. The opposite is also true: An 84 years old person still keeps
some youth in his mind. Which linguistic variable models better the concept of age?
It depends. Normally, lv-age would be a well-formed fuzzy partition for repre-
senting age, but lv-age2 models better a philosophical approach, showing an
extraordinary smooth transition between linguistic terms.

If this were not enough, yet another way to describe the concept of age would be
to use fuzzy sets with discrete characteristic functions, for example, by using bell
shaped functions. Since FuzzyLisp supports discrete functions this is a good
moment to show an example of it. Let us start writing some Lisp expression for
representing five bell-shaped functions, f1 to f5 (remember the family of functions
given by μ4(x) in Table 6.1 and Fig. 6.2):

(setq f1 ‘(div (add 1.0 (cos (mul 0.0333 pi (sub x 0.0)))) 2.0))
(setq f2 ‘(div (add 1.0 (cos (mul 0.067 pi (sub x 30.0)))) 2.0))
(setq f3 ‘(div (add 1.0 (cos (mul 0.067 pi (sub x 45.0)))) 2.0))
(setq f4 ‘(div (add 1.0 (cos (mul 0.067 pi (sub x 60.0)))) 2.0))
(setq f5 ‘(div (add 1.0 (cos (mul 0.0333 pi (sub x 90.0)))) 2.0))

Now Table 6.8 shows the required expressions for creating every fuzzy set.

Table 6.7a Some membership degrees for the fuzzy sets of the linguistic variable lv-age

x (age) μ(young) μ(young+) μ(mature) μ(mature+) μ(old)

1 1 0 0 0 0

18 0.8 0.2 0 0 0

35 0 0.66667 0.33333 0 0

55 0 0 0.33333 0.66667 0

84 0 0 0 0 1

Table 6.7b Some membership degrees for the fuzzy sets of the linguistic variable lv-age2

x (age) μ(young) μ(young+) μ(mature) μ(mature+) μ(old)

1 0.98888 0.03333 0.02222 0.01667 0.01111

18 0.8 0.6 0.4 0.3 0.2

35 0.61111 0.91667 0.77777 0.58333 0.38888

55 0.38888 0.58333 0.77777 0.91667 0.61111

84 0.0667 0.1 0.13333 0.2 0.93333
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And finally, as usually, we only need to write the following expression for
creating the linguistic variable:

setq lv-age-bells ‘ dBell1 dBell2 dBell3 dBell4 dBell5ð Þð Þ

This linguistic variable is graphically shown in Fig. 6.22.
Now we certainly need a function for obtaining the membership degree of a crisp

value x to a linguistic variable composed by fuzzy sets with discrete characteristic
functions. Code 6-25 shows the function (fl-dlv-membership2?), a variation of
(fl-lv-membership2?) designed to deal with discrete linguistic variables:

;code 6-25
(define (fl-dlv-membership2? lv x, list_out i n fset)

(setq list_out'())
(setq i 0)
(setq n (length lv))
(while (< i n)

;here we obtain a fuzzy set:
(setq fset (eval (nth i lv)))
;and now it's time to perform calculations:
(setq list_out (append list_out

(list (fl-dset-membership? fset x))))
(++ i)

);while end
list_out

)

Table 6.8 Five bell-shaped fuzzy sets for building the linguistic variable lv-age-bells

Lisp symbol Lisp assignment

dBell1 (setq dBell1 (fl-discretize-fx ‘Young f1 20 0 30))

dBell2 (setq dBell2 (fl-discretize-fx ‘Young + f2 20 15 45))

dBell3 (setq dBell3 (fl-discretize-fx ‘Mature f3 20 30 60)

dBell4 (setq dBell4 (fl-discretize-fx ‘Mature + f4 20 45 75))

dBell5 (setq dBell5 (fl-discretize-fx ‘Old f5 20 60 90))

Fig. 6.22 Graphical representation of the linguistic variable lv-age-bells
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The call to this function works in an absolutely similar way to (fl-lv-
membership2?):

> (fl-dlv-membership2? lv-age-bells 23)
: ((Young 0.1302642245) (Young + 0.5478879113) (Mature 0) (Mature + 0)

(Old 0))

For comparison, Table 6.9 shows some membership values for some crisp
values x.

After confronted with such a variety of possible linguistic variable types, I
suspect the reader is now a bit lost when thinking about how to design a good
linguistic model with fuzzy sets. As we have seen, there are many possible com-
binations of fuzzy numbers or fuzzy intervals to use. We can use triangles, trape-
ziums (both symmetrical or asymmetrical), discretized functions… etc. The
variations seem almost infinite. Even so, we can give some simple hints for the
overall design of linguistic variables in order to allow the reader to have a clear
picture for some preliminary design ideas. Later, in Chap. 8, we shall find more
sophisticated models.

One of the first things to decide is the number of fuzzy sets that a linguistic
variable should have. This is known as the granularity of a linguistic variable, and
deep theoretical studies have been conducted about this issue, see for example
(Cordón et al. 2000; Chan and Wong 2006). However, and as a rule of thumb, we
can say that the usual case is to use from three to five fuzzy sets in a linguistic
variable, although there are some cases where only two fuzzy sets are enough. It is
not usual to observe more than five fuzzy sets in a linguistic variable, not only
because the increasing complexity of the resulting models, but from the fact that we
humans tend to qualify things with no more than five adjectives. In fact many times
is easier for us to use only three ones, such as “small”, “medium” and “big”, or
“short”, “medium” and “large”. For example, if we speak about the speed of a car
we can say it runs “slow”, at “medium speed” or “fast”. A richer description would
be “very slow”, “slow”, “medium speed”, “fast” and “very fast”. It all depends from
the nature of the model to design and the experience of the modeler, but for starting,
from three to five fuzzy sets is a good recommendation.

Another complementary question is based on the distribution of the fuzzy sets
over the universe of discourse. In the three previous examples of linguistic variables
representing age the fuzzy sets have been distributed uniformly and in a symmetric

Table 6.9 Some membership degrees for the fuzzy sets of the linguistic variable lv-age2

x (age) μ(young) μ(young+) μ(mature) μ(mature+) μ(old)

1 0.99692 0 0 0 0

18 0.57821 0.09183 0 0 0

35 0.03948 0.74516 0.24812 0 0

55 0 0 0.24812 0.74516 0.03948

84 0 0 0 0 0.94550
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mode with respect to the vertical axis of symmetry of the linguistic variable. While
it is possible to design models where does exist some asymmetry with respect to the
location of the fuzzy sets involved, for now we shall only consider regular spaced
fuzzy sets.

About the question of what type of fuzzy sets are the best for building linguistic
variables, we have already seen that creating bell-shaped or other fuzzy sets with
discrete characteristic functions takes more time, it is more tedious and it also takes
more computing time, although this last point, with the computing power of the
current hardware systems is only a minor problem present only in very large fuzzy
logic based models and/or when an almost instantaneous response from the built
model is required, as is the case with critical fuzzy control systems. In any case, and
for starting, we can recommend to use triangles and trapeziums as the desired
membership functions for the fuzzy sets contained in a linguistic variable.

Finally, while maximum fuzziness linguistic variables present some advantages
in modeling, as we shall see in the next chapter, using standard fuzzy partitions is a
sure bet for starting to create well-behaved fuzzy logic based models. We should
also mention the fact that for designing standard fuzzy partitions we can also use
bell-shaped characteristic functions or other functions that satisfy the properties of
fuzzy numbers.

6.9 Fuzzy Databases

In Chap. 4 we developed a small library of Lisp functions for managing flat dat-
abases in CSV (comma separated values) format. For testing the functions and
evaluating its behavior we used a CSV database formed by the Messier objects, a
collection of 110 deep-sky objects visible from the northern hemisphere with the
aid of a small telescope. Since we have already seen how to load a CSV database
into memory and perform simple queries on it, it seems now natural to enhance the
initial set of Lisp functions in order to incorporate some “fuzzy” functionality.

Fuzzy databases are a branch of fuzzy logic that has grown up to the point to
convert itself into a new discipline of Soft Computing (Pons et al. 2000; Galindo
et al. 2006). Basically speaking, a Fuzzy database is a structured collection of data
that contains fuzzy information and can be exploited using fuzzy queries. Needless
to say, we have not enough space in this book for diving into the nowadays deep
waters of fuzzy databases, but our exploration of the subject will cover at least the
basics of the topic.

We shall concentrate in the simplest approach to fuzzy databases, that is, to
choose a numerical field from a traditional, crisp database, apply a definition of one
or more fuzzy sets on it, convert the crisp numerical values stored in the database’s
field into membership degrees and then store the obtained values into a new field.
Albeit a simply strategy, it will show the power of adding fuzzy capabilities to crisp
databases. The key FuzzyLisp function for bridging the gap between the world of
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CSV databases and the world of fuzzy logic is the function (fl-db-new-field), as
shown in Code 6-26:

;code 6-26
(define (fl-db-new-field lst sharp-field fz-field fset mode,

i l position fz-value lst-out)
(setq lst-out'())
(setq l (length lst)) ;number of records in lst
;get the field's position reading the database header:
(setq position (find sharp-field (nth 0 lst)))
;in the following line we append the new field's name:
(setq lst-out (cons (append (nth 0 lst)

(list fz-field)) lst-out))

;then we copy the entire database,
;calculating every fuzzy value

(setq i 1)
(while (< i l)

;read the value from the sharp-field and fuzzify it:
(case mode

(1 (setq fz-value
(last (fl-set-membership? fset

(float (nth position (nth i lst)))))
))

(2 (setq fz-value
(last (fl-dset-membership? fset

(float (nth position (nth i lst)))))
))

);end case

;then put it on the fz-field (last position):
(setq lst-out

(cons (append (nth i lst) (list (string fz-value)))
lst-out)

)
(++ i)

);while end

(reverse lst-out)
);end function

Although the function seems a bit complex, it is in fact a variation of the
function (db-new-field), already seen in Sect. 4.3.3 with fuzzification features. As
parameters it takes first the Lisp symbol that points to the entire database already
loaded in the computer’s memory, then the name of the database field whose values
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we wish to fuzzify, then the name of the field to be created where the membership
degrees will be stored, then a FuzzyLisp expression representing a fuzzy set and
finally an integer with two possible values: 1, for using triangular or trapezoidal
membership functions or 2, for using a fuzzy set with discrete membership
function.

For testing the function, we shall need to have both the fuzzylisp.lsp and csv.lsp
files loaded into the NewLisp environment, both available from the accompanying
web site of this book. After clicking on the green (run) button on the icons bar for
both files all the functions will be available for use.

Let us suppose we wish to know which are the brightest objects in the Messier
database because we are planning an observing session from the suburbs of a city
where no dark skies are available. The first step is to load the CSV file containing
the Messier database into memory by typing, as we already know, the following at
the Lisp prompt:

> (setq messier (db-load))
: ((“Name” “NGC” “Constellation” “Class” “Right ascension” “Declination”

“Magnitude” “Angular size” “Burnham” “Remarks”)
(“M1” “1952” “Taurus” “Planetary nebula” “5 h 34.5 m” “22d 1 m” “8.2”

“6x4” “!!” “SNR (1054) - Crab Nebula”)

….
(“M110” “205” “Andromeda” “Elliptical galaxy” “0 h 40.4 m” “41d 41 m”

“9.4” “8.0x3.0” ““ “E6 - companion of M31”))

Now, let us define a fuzzy set named, for example, BM, for representing “bright
magnitude”. In astronomy, brighter celestial objects have smaller numbers. In this
moment we don’t remember exactly the range of brightness for all the Messier
objects, but we are sure that no one of them is brighter than Mv = -1, and on the
other hand we know that Mv = 5 is not anymore a bright magnitude for celestial
objects, so we decide to create an asymmetrical trapezium by-left as the desired
characteristic function for the fuzzy set BM by typing:

> (setq BM ‘(bright-magnitude -1 -1 3 5))
: (bright-magnitude -1 -1 3 5).

The name of the field where magnitude values stored on the database is
“Magnitude”, and let us name “fz-magnitude” the name of the field to create where
all the fuzzy values will be stored after being fuzzified by the fuzzy set BM. It is
now time to call the function (fl-db-new-field) as follows:

> (setq messier (fl-db-new-field messier “Magnitude” “fz-magnitude” BM 1))
: ((“Name” “NGC” “Constellation” “Class” “Right ascension” “Declination”

“Magnitude” “Angular size” “Burnham” “Remarks” “fz-magnitude”)
(“M1” “1952” “Taurus” “Planetary nebula” “5 h 34.5 m” “22d 1 m” “8.2”

“6x4” “!!” “SNR (1054) - Crab Nebula” “0”)
…
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(“M110” “205” “Andromeda” “Elliptical galaxy” “0 h 40.4 m” “41d 41 m”
“9.4” “8.0x3.0” ““ “E6 - companion of M31” “0”))

For every record, that is, for every celestial object in the database, (fl-db-new-
field) has added the corresponding membership degree in the new field “fz-mag-
nitude”. If we type, for example: (nth 6 messier) → (“M6” “6405” “Scorpius”
“Open cluster” “17 h 40.1 m” “-32d 13 m” “4.2” “15” “!!” “n: 80 - Butterfly
Cluster” “0.4”), that is, the Open Cluster M6 in Scorpius has received a mem-
bership degree μ(x) = 0.4 to the fuzzy set BM representing Bright Magnitude. For
obtaining the brightest celestial objects in the Catalogue now we can use a threshold
value t for querying the database. Here, t = 0.75 is a good value, so let us call the
function (db-filter):

> (db-filter messier ‘(>= “fz-magnitude” 0.75))
: ((“Name” “NGC” “Constellation” “Class” “Right ascension” “Declination”

“Magnitude” “Angular size” “Burnham” “Remarks” “fz-magnitude”)
(“M7” “6475” “Scorpius” “Open cluster” “17 h 53.9 m” “-34d 49 m” “3.3”

“80” “!!” “nmbr:80-fine naked-eye OC” “0.85”)
(“M42” “1976” “Orion” “Diffuse nebula” “5 h 35.4 m” “-5d 27 m” “2.9”

“66x60” “!!!”
“Great Orion Nebula” “1”)
(“M44” “2632” “Cancer” “Open cluster” “8 h 40.1 m” “19d 59 m” “3.1”

“95” “!!” “Praesepe - Beehive Clustr” “0.95”)
(“M45” ““ “Taurus” “Open cluster” “3 h 47 m” “24d 7 m” “1.2” “110” “*”

“nmber: 130 - The Pleiades” “1”))

That is great. M7, M42, M44 and M45 have been filtered as the brightest
celestial objects in the Messier Catalogue. From experience, these are deep-sky
objects that can be observed with a small refractor or binoculars from light-polluted
suburban skies. By the way, from the Lisp prompt you could save this query typing,
for example:

> (setq query1 ‘(db-filter messier ‘(>= “fz-magnitude” 0.75)))
: (db-filter messier ‘(>= “fz-magnitude” 0.75))

And later, when you need to use the query, you only would need to type (eval
query1) at the Lisp prompt, getting the same result from above. Even more: you can
store several queries in a new document in the NewLisp environment (File->New tab)
and then save it to disk with a specific name, such as, for example, “my-queries.qry”.
Soon you could have a practical fuzzy database management system at your disposal.

Now, let us compare the query we have just made against a “crisp” query. From
the definition of the fuzzy set BM, we can observe that its support is defined in the
interval [-1,5]. Because this, let us take, for example, Mv = 5 as the inferior limit for
obtaining the brighter objects from the Messier Catalogue in a traditional way
typing the following at the Lisp prompt: (db-filter messier ‘(<= “Magnitude” 5))
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For saving space we have not written here the output of this query, but it returns
eleven celestial objects. Table 6.10 compares the output from the crisp and fuzzy
queries.

Let us observe, for example, M31, the Andromeda galaxy. With a visual mag-
nitude Mv = 4.8 it has a membership degree μ(x) = 0.1 to the fuzzy set defined by
BM, so it has not been included in the output of the fuzzy query with a threshold
value t = 0.75 but it has been included in the output of the crisp query. We must say
at this point that M31 can be really hard to observe from an observing place with
light-polluted skies, and it is not, definitely, one of the brightest Messier objects.
What is the main and conceptual difference between the two outputs? The differ-
ence dwells from the fact that the very definition of the fuzzy set BM encompasses
expert knowledge. As an astronomer I know beforehand the features of celestial
objects and can model an appropriate fuzzy set for describing bright deep-sky
objects. On the other hand, the crisp, traditional query (<= “Magnitude” 5) has less
intrinsic information.

The attentive reader can argue that I have arbitrarily selected a crisp threshold
value t = 0.75 to the resulting membership degrees, and it is a good observation, but
first, since all the records in the database receive a membership degree from 0.0 to
1.0, we must select those records that have the highest membership degrees in order
to finish to perform our query and second, a value t = 0.75 is usually a good one as a
threshold when dealing with filtering membership degrees.

If you are not still convinced, we can push even further our exposition. Let us
define a fuzzy set FT for representing a fuzzy-threshold value by typing the fol-
lowing at the Lisp prompt: (setq FT ‘(fuzzy-threshold 0.7 0.9 1.0 1.0)). Now we
shall create another field in the database that will filter the records by applying the
fuzzy set FT on it. Let us type the following expression at the keyboard:

(setq messier (fl-db-new-field messier “fz-magnitude” “after-threshold” FT 1))

Table 6.10 A comparison of the fuzzy query (>= “fz-magnitude” 0.75) versus the crisp query
(<= “Magnitude” 5) for the brightest celestial objects in the Messier Catalogue

(>= “fz-magnitude” 0.75) (<= “Magnitude” 5) fz-magnitude Mv

M7 M7 0.85 3.3

M42 M42 1.0 2.9

M44 M44 0.95 3.1

M45 M45 1.0 1.2

– M6 0.4 4.2

– M24 0.2 4.6

– M25 0.2 4.6

– M31 0.1 4.8

– M39 0.2 4.6

– M41 0.2 4.6

– M47 0.25 4.5
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Lisp will update the messier database with the new field named “after-treshold”,
filling it with the membership degree calculations performed by using FT. Now, let
us finally type:

> (db-filter messier ‘(> “after-threshold” 0.0))
: ((“Name” “NGC” “Constellation” “Class” “Right ascension” “Declination”

“Magnitude” “Angular size” “Burnham” “Remarks” “fz-magnitude” “after-
threshold”)

(“M7” “6475” “Scorpius” “Open cluster” “17 h 53.9 m” “-34d 49 m” “3.3”
“80” “!!” “nmbr:80-fine naked-eye OC” “0.85” “0.75”)

(“M42” “1976” “Orion” “Diffuse nebula” “5 h 35.4 m” “-5d 27 m” “2.9”
“66x60” “!!!”

“Great Orion Nebula” “1” “1”)
(“M44” “2632” “Cancer” “Open cluster” “8 h 40.1 m” “19d 59 m” “3.1”

“95” “!!” “Praesepe - Beehive Clustr” “0.95” “1”)
(“M45” ““ “Taurus” “Open cluster” “3 h 47 m” “24d 7 m” “1.2” “110” “*”

“nmber: 130 - The Pleiades” “1” “1”))

As you can see, the query returns the same celestial objects than in Table 6.10:
M7, M42, M44 and M45. In the next chapter we shall revisit again fuzzy databases,
getting even “smarter” results.

6.10 As a Summary

Together with the previous chapter, the reader should have acquired by now a good
perspective on the theory of fuzzy sets. All the FuzzyLisp functions developed in
these last sections will have probably helped to consolidate this new knowledge. As
usually we are going now to summarize these ideas and concepts in the following
paragraphs.

• Continuous membership functions of the type x→ f(x), where x is a point on the
real axis and its image f(x) is a real number defined in the closed interval [0,1]
are of the maximum interest for defining fuzzy sets. Among this family of
functions, those whose shape is a triangle or a trapezium are the most used for
fuzzy modeling.

• Both triangular and trapezoidal shaped membership functions can be defined
with only four singular points on the real axis, x1, x2, x3, and x4. By adequately
combining these values we can obtain a good variety of characteristic functions,
up to the point that in many practical uses no substantial difference does exist
between models developed with triangular and trapezoidal shaped functions and
other more sophisticated geometrical shapes.

• We call FuzzyLisp Standard Set Representation (FLSSR) to those Lisp
expressions that, representing triangular or trapezoidal functions, are of the type
(fuzzy-set-name x1 x2 x3 x4). All the fuzzy sets with a FLSSR representation
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have at least one point xi on the real axis such as its image f(xi) = 1. When fuzzy
sets satisfy this property we call them Normal fuzzy sets. Those fuzzy sets that
do not satisfy it are called Subnormal fuzzy sets. Additionally, we call height of
a fuzzy set to its maximum membership degree. The height of a normal fuzzy set
is, hence, 1.0.

• We call Support of a fuzzy set to the interval resulting from the geometrical
projection of its membership function over the real axis. Likewise we call
Nucleus of a fuzzy set to the interval resulting from the geometrical projection of
the section of its characteristic function whose membership degree equals one.
The nucleus of a triangular shaped, normal fuzzy set, is exactly one and only
one point over the real axis. An alpha-cut is an interval defined on the real axis
after sectioning a characteristic function by a horizontal line y = α, where α 2
[0,1], in such a way that every crisp value x belonging to the interval satisfies
the expression f(x) ≥ α. The following relationship between nucleus (k), an
alpha-cut (a) and the support of a fuzzy set (s) always holds: k ≤ a ≤ s. Every
fuzzy set with a FLSSR representation can be defined by means of only two
alpha-cuts.

• Aside triangular and trapezoidal shaped membership functions, FuzzyLisp has
an alternative way of representing fuzzy sets named FuzzyLisp Discrete Set
Representation (FLDSR). This form takes a finite list composed by sublists of
elements xi belonging to the universe of discourse where they are defined and
their images μ(xi) with the following structure: (fuzzy-set-name (x1 μ(x1)) (x2 μ
(x2)) … (xn μ(xn))). The key FuzzyLisp functions in a FLDSR are (fl-discretize),
(fl-dset-membership?) and (fl-discretize-fx). These functions open an entire
universe of possibilities for fuzzy set modeling.

• In a similar way as in the previous chapter, we define Complement, Union and
Intersection of fuzzy sets within a FLSSR by means of the following expres-
sions, respectively: A′ = 1 − μA(x)/x 2 [x1, x4], A [ B = max[μA(x), μB(x)]/
x 2 [x1A, x4B] and A \ B = min[μA(x), μB(x)]/x 2 [x1A, x4B]. In general, the
complement, union and intersection of fuzzy sets have not a FLSSR, but they all
indeed have a discrete representation, FLDSR. Three FuzzyLisp functions
returns the membership degree of any crisp value x belonging to A′, A [ B,
A \ B: (fl-set-complement-membership?), (fl-set-union-membership?) and
(fl-set-intersect-membership?).

• Fuzzy numbers are probably the most important type of fuzzy sets for building
practical applications. Every fuzzy number must satisfy the following three
properties: (a) A fuzzy number must be a normal fuzzy set, that is, there exists at
least a crisp value x belonging to the support of the fuzzy set whose image μ(x)
equals one. (b) A fuzzy number must be a convex fuzzy set and (c) The support
of a fuzzy number must be bounded.

• The strategy to perform arithmetic calculations with fuzzy numbers is based on
the following procedure: Take some alpha-cuts from the fuzzy numbers
involved in the calculations, perform the adequate arithmetic operations on the
resulting intervals and then build the resulting fuzzy number from the obtained
intervals. In this book way pay attention to sum, subtraction, multiplication and
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division of fuzzy numbers. Additionally, we focus also on multiplying a fuzzy
number by a crisp, real value k and then on fuzzy averaging. Finally, while the
fuzzy addition and subtraction of two fuzzy numbers always produce a fuzzy
number with a FLSSR, the multiplication and division of two fuzzy numbers
does not. On the other hand, any arithmetic operation on fuzzy sets can be
defined in the frame of a FLDSR.

• A linguistic variable LV is a finite collection of two or more fuzzy numbers or
fuzzy intervals that, representing linguistic concepts, completely patches a given
universe of discourse defined on a base variable. The concept of “patching” in a
linguistic variable composed by Fi fuzzy sets is important in this definition and
it comes defined by the following expression: LV ¼ fFi jFi \Fiþ1 6¼ /g.

• In FuzzyLisp we can define linguistic variables by using either a FLSSR or a
FLDSR, but we cannot mix both types of representation at the same time in the
same linguistic variable. A workaround to this is to “translate” first a triangular
or trapezoidal membership function into a FLDSR by means of the function (fl-
discretize) and then build the entire linguistic variable with fuzzy sets with
discrete characteristic functions.

• Fuzzy databases are one of the most exciting practical applications of
fuzzy-logic nowadays. A Fuzzy database is a structured collection of data that
contains fuzzy information and can be exploited by using fuzzy queries. Our
exploration of fuzzy databases in this chapter covers the simplest approach to the
topic, that is: To choose a numerical field from a traditional, crisp database,
apply a definition of one or more fuzzy sets on it, convert the crisp numerical
values stored in the database’s field into membership degrees and then store the
obtained values into a new field. Even so, the power of this technique has been
shown when applied, as a practical example, to the Messier database of Deep
Sky objects.

In the following chapter we shall apply all the material that we have learnt in this
and in the previous chapter towards the understanding of the key concepts of fuzzy
logic. As we shall see, if we have understood well the theory of fuzzy sets, the
concepts of fuzzy logic are a natural step forwards.
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Chapter 7
Fuzzy Logic

7.1 Introduction

This chapter is probably the densest one in this book and at the same time the more
demanding from the reader. It deals with logic and then with a superset of it, fuzzy
logic, so it covers a lot of material that will need to be digested with calm. Even so,
and for reasons of space, it only scratches the surface of this branch of mathematics.
It must be taken into account that a deep revision or a complete introduction to logic
usually needs an entire book, so we have opted to show a concise and clear set of
concepts that we hope will satisfy the audience. For example, for fuzzy implication
we expose the Lukasiewicz operator as the most classic one in fuzzy logic (Kundu
and Chen 1994), but the reader should be aware that there is much more fuzzy logic
theory out there that can be easily found in theoretical books.

The material already covered in Chaps. 5 and 6 allow us to start the chapter with
a brief introduction to propositional logic that quickly leads us to fuzzy logic,
paying attention to the logical operators in fuzzy compound propositions for con-
junction, disjunction, negation and implication. Later, fuzzy hedges are exposed,
exploring at the same time some of their most interesting properties. Then, the
fuzzy compound expression of the type “if x is A and y is B then z is C” paves the
way to Fuzzy Rule Based Systems, FRBS.

Aside describing the concept of knowledge database and the classic architecture
that makes up a FRBS, we discuss some defuzzification methods, discovering
Singletons at the same time as a useful tool for creating practical fuzzy logic based
applications. Along the chapter new and powerful FuzzyLisp functions will allow
us to develop some real fuzzy logic models at the end of the chapter.
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7.2 The Beginning of Logic

More than 2000 years ago, in a European region bathed by the east Mediterranean
waters a country, or better said, a civilization, was flourishing. Greece not only
consolidated the study of mathematics and astronomy, but brought to history the
development of democracy and then other astonishing consequences of human
reasoning such as philosophy and within it, the study of logic. Although the con-
troversy about whether logic is a part of philosophy or merely an instrument for
progressing in philosophy continued for centuries, the truth is that even today logic
is taught in the universities as a curriculum for philosophy studies. Maybe sur-
prisingly, the study of philosophy and then logic is the reason behind the interest of
many actual philosophers on fuzzy logic.

As it is well known, the most important philosopher from antique Greece was
Aristotle (384BC–322BC). Maybe the most influential philosopher ever, Aristotle
was the founder of logic, a structured pattern of thinking that makes it possible to
arrive to new knowledge from previous established information. Central to
Aristotle’s Logic is his theory of syllogisms, from the Greek term sullogismos
(deduction). In his work titled “Prior Analytics”, Aristotle describes what a syllo-
gism is: “A syllogism is speech (logos) in which, certain things having been sup-
posed, something different from those supposed results of necessity because of their
being so”. In this sentence, the terms “things supposed” mean what we call a
premise, while the terms “results of necessity” are what we understand as a con-
clusion. Translating it into English, we can say that a syllogism is a logic con-
struction where after some premises are given we can reach a conclusion, or a logic
construction that transform some given premises into a conclusion. As an example,
the following syllogism is one of the most famous ones:

• all men are mortal
• all Athenians are men

→ all Athenians are mortal

In this syllogism we have two premises: “all men are mortal” and “all Athenians
are men”. The syllogism produces a conclusion: “all Athenians are mortal”. As
homage to syllogisms, we can express these premises in Lisp simply typing the
following at the Lisp prompt: (setq c1 ‘(men mortal)), (setq c2 ‘(athenians men)).
For obtaining the conclusion we can write a simple Lisp function for dealing with
this naïve type of syllogisms. The function, named (syllogism) is shown in Code 7-1:

;code 7-1
(define (syllogism c1 c2)

(if (= (first c1) (last c2))
(list (first c2) (last c1))
nil

)
)
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For trying this function we only need to type the following at the Lisp prompt:

> (syllogism ‘(men mortal) ‘(athenians men))
: (athenians mortal)

This type of syllogism is only one from the 24 valid types of syllogisms. The
reader can find all of them in a good book of Logic and it would not be a hard task
to translate them all to Lisp functions. In fact, such a Lisp project should be
appealing to students of logic, simply because it would be a good thing for the study
of reasoning itself (McFerran 2014; Priest 2001).

7.3 Modern Bivalent Logic

After the brilliant period of philosophy in Greece, no true revolution happened in
the history of logic until the beginning of the nineteenth century, when the method
of proof used in mathematics was applied to the concepts of logic. Moreover,
Aristotelian logic was unable to satisfy mathematical creations at all because many
arguments used for developing logical mathematical constructions are based on
formulations of the type “if… then…”, and these formulations were absent in
Aristotelian logic. This section of the chapter deals with propositional logic, an
important branch of modern formal logic that is a solid foundation in classical texts
of artificial intelligence (e.g.: Russell and Norvig 2009).

Propositional logic is interested in logic relationships that are based on the study
of propositions, and then in the creation of other propositions by means of logical
operators. The main question for propositional logic is thus the following one: What
can we do with propositions and with combining them by using logical operators?
In this question there are two key words: propositions and logical operators.

A proposition is natural language (Aristotle would name it again logos),
expressing an assertion that can be either true or false, hence the term “bivalent”, but
not true and false at the same time”. Simple propositions take the following form:

x is P

here, x is called the subject of the proposition, and P is called the predicate of the
proposition, usually expressing a property or feature of x. The following are valid
propositions:

Tigers are mammals
The Montblanc is the highest mountain in the Alps

France is a European country
The “Jupiter” Symphony was written by Beethoven

The three first propositions are true, while the last one is false (Mozart would
hate us if stated otherwise!).

7.2 The Beginning of Logic 231



When x is any subject belonging to an universe of discourse X, then a predicate
P converts itself automatically into a function defined on X, forming a different
proposition for every subject x. We shall represent by P(x) to this type of functions,
named propositional functions. From different values x1, x2, …, xn we can obtain
different propositions p(x1), p(x2), …, p(xn). Any of them can be also expressed by:

xi is P

and, as already stated, anyone of them can be true or false until the variable itself is
instanced. As an example, let X be the universe of discourse of some European
countries X = {France, Spain, Germany} and P a predicate meaning “x is a Country
bathed by the Mediterranean Sea”. Then, the propositional function P(x) produces
the following propositions:

p(x1) = “France is a Country bathed by the Mediterranean Sea”
p(x2) = “Spain is a Country bathed by the Mediterranean Sea”
p(x3) = “Germany is a Country bathed by the Mediterranean Sea”

Propositions p(x1) and p(x2) have a truth value equal to true, while proposition
p(x3) has a truth value equal to false. Note again that the propositional function
P(x) = “x is a Country bathed by the Mediterranean Sea” on its own is neither false
nor true, and only when we substitute x by a member from the Universe of dis-
course the resulting proposition becomes true or false.

Things become even more interesting when two or more simple propositions are
combined, forming what is known as a compound proposition. In this case, the
truth-value of a compound proposition results from the truth-values of every simple
proposition and the way they are connected, that is, from the type of logical con-
nective, or logical operator, used for establishing the link between simple propo-
sitions. The main logical operators are the following ones:

Conjunction: Given two propositions p, q, we call their conjunction to the
compound proposition “p and q”, denoting them by the logical expression “p ∧ q”.
This compound proposition is true if and only if both p and q propositions are true.
As an example, the following compound proposition is true: “Japan is a country and
Kyoto is a Japanese city”. The following one is false: “The sun is the brighter sky
object in the solar system and it revolves around Earth”, as for example, Ptolemy
affirmed.

Disjunction: Given two prepositions p, q, we call their disjunction to the com-
pound proposition “p or q”, denoting them by the logical expression “p ∨ q”. This
compound proposition is true when at least one of both propositions, p or q, is true, or,
obviously, when both are true. For being false it needs that both propositions are false.
An example of true compound proposition linked by a disjunction is: “four is bigger
than two or eight is a prime number” (it does not matter than eight is not a prime
number, it suffices with the true proposition “four is bigger than two”. On the other
hand: “Pi is an integer or a circle has two centres” is a false compound proposition.
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Negation: From any proposition p we shall call “negation of p” to the propo-
sition “not p”, denoting it by the expression “¬p”. The proposition ¬p will be true
when p is false and will be false when p is true. As an example, after stating the
proposition p = “the Sun is a star”, then ¬p, that is, “the Sun is not a star”, is false.

Implication: Also known as “conditional proposition”, it is expressed by the
sentence “p implies q”, and it is usually denoted by the expression “p → q”. When
p → q, it means that the conditional proposition is true except when the proposition
p is true and q is false. In other words, if p (also named the “antecedent” in
implication) is true, then q (the consequent) must be also true for satisfying
p → q being true. As an example, the implication “if I breath then I produce CO2”
is true. At the other extreme, please note that we have lots of expressions in
common language where both p and q are false, for example: “if you are the Queen
of Saba then I am Solomon”. These types of implications, where both the ante-
cedent and consequent are false, are always true, because the logical structure of the
conditional is satisfied.

If we define the truth value of a proposition by means of using the number 1 for
expressing true and using 0 for expressing false, we can express formally these
logical operators in the following way:

� Conjunction: p ^ q ¼ min p;qð Þ ð7-1Þ

� Disjunction: p _ q ¼ max p;qð Þ ð7-2Þ

� Negation::p ¼ 1�p ð7-3Þ

� Implication: p ! q ¼ min 1; 1þ q� pð Þ ð7-4Þ

And, hereafter, we can construct a truth table, an arranged table of values that
enumerates all the possible truth-values combinations of pi propositions. Table 7.1
shows the truth table for conjunction, disjunction, negation and implication from
two propositions p, q. In this table we represent false by the number 0 and true by
the number 1.

Translating Table 7.1 into Lisp is easy because Lisp (and all traditional pro-
gramming languages) use standard bivalent logic, including the functionality of
“and”, “or” and “not”, as we have learnt in Part I of this book. For completing the
architecture of Table 7.1 we only need to create a simple function named (impli-
cation), as shown in Code 7-2:

Table 7.1 Truth table for
conjunction, disjunction,
negation and implication

p q p ∧ q p ∨ q ¬p ¬q p → q

1 1 1 1 0 0 1

1 0 0 1 0 1 0

0 1 0 1 1 0 1

0 0 0 0 1 1 1

False = 0, True = 1
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;code 7-2
(define (implication p q)

(if (and p (not q))
nil
true

)
)

Typing the following Lisp expressions row by row and from left to right at the
Lisp prompt we obtain the complete contents of Table 7.2.

Now it is time to make an important assertion. Maybe one of the most important
ones in this chapter. A sentence that will help the reader to give a quantum leap
towards the understanding of fuzzy logic:

There is an isomorphism between the logical operators “and”, “or”,
“not”, “implication” and the set operations “intersection”, “union”,

“complement” and “inclusion”.

In practical terms this means that all the material exposed in Sect. 5.2 about the
classic theory of sets is of entire application in the field of logic after the simple
substitution of the concept of membership or not membership of an element x to a
set A and the concept of true or false when referring to a proposition p.

7.4 Fuzzy Logic

Let us now consider the proposition p = “John is old” when John is 55 years old.
Under a traditional point of view in logic, in order to know if the proposition p is
true or false, we need to define the predicate of p, that is, a definition of an old
person. Arbitrarily, let us assume that an old person is a person older than 50 years
old. Taking into account this definition, then proposition p is true. If we reflect
about this, we immediately realize the isomorphism enunciated some lines above:
When we say “John is old”, we implicitly declare that John belongs to the set of old
persons, defined for example as the set of all persons older than 50 years old. That
is, since John belongs to the set of old persons, then proposition p is true.

However, and as we discussed extensively in Chap. 5, in fuzzy sets theory the
membership of an element x to a fuzzy set S is a question of degree, expressed in

Table 7.2 A translation of Table 7.1 into Lisp

p q (and p q) (or p q) (not p) (not q) (implication p q)

(setq p true) (setq q true) True True Nil Nil True

(setq p true) (setq q nil) Nil True Nil True Nil

(setq p nil) (setq q true) Nil True True Nil True

(setq p nil) (setq q nil) Nil Nil True True True
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the closed interval [0,1]. In fact, the isomorphism continues between the mem-
bership degree of an element x to a fuzzy set A and the truth degree of a predicate
and then of a proposition P, thus conceptually filling the gap between fuzzy sets and
fuzzy logic (Klir and Yuan 1995). This line of reasoning gives birth to the concept
of fuzzy proposition whose definition results from introducing some important
touches in the definition of a traditional proposition:

A fuzzy proposition is natural language declaring an assertion that has implicitly
associated a truth-value expressed by a real number in the closed interval [0,1].
Simple fuzzy propositions have the following structure:

x isP

The reader should note that the subject x of a fuzzy proposition P is usually not
fuzzy. What distinguishes a classic proposition from a fuzzy proposition is the
characterization of the predicate P. The fuzziness of P is what generates fuzzy
propositions. Hereafter we shall refer to fuzzy propositions writing them in italics:
e.g.: p, q, r.

These are sound paragraphs, but these ideas are what really allow us to transit
from classical logic to fuzzy logic. Fortunately we already have learnt lots of
concepts, definitions, and Lisp constructions on fuzzy sets, and all this material is of
immediate application in fuzzy logic. We can even say that we started, without
saying it so, to speak about fuzzy logic from Sect. 5.3 of this book.

In order to evaluate a simple fuzzy proposition p, we need to know the definition
of its predicate, which will be generally given by the definition of a fuzzy set. Let,
for example P, be a fuzzy set representing “old persons” expressed in FuzzyLisp by
the construction (setq P ‘(old 50 90 90 90)). For calculating the truth-value of the
proposition p = “John is old” when John is 55 years old, we can simply type at the
Lisp prompt:

> (last (fl-set-membership? P 55))
: 0.125

So the resulting truth-value of proposition p is 0.125.

In this moment, and more from an aesthetic or even also semantic point of view
than a real disadvantage, you can argue that the name of the function (fl-set-mem-
bership?) does not seem appropriate for evaluating fuzzy propositions. Thanks to
Lisp this is no problem. We can type the following expression at the Lisp prompt:

> (setq fl-truth-value? fl-set-membership?)
: (lambda ….) (output omitted)

and now we can write:

> (last (fl-truth-value? P 55))
: 0.125
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what we have made is to create an alias for the FuzzyLisp function (fl-set-mem-
bership?). If you wish so, you can create new aliases from all the existing
FuzzyLisp functions for your own practical applications. The rest of this book will
not use aliases. By the way, I would like to seize the opportunity to say that if
English is not your mother tongue you can translate all the FuzzyLisp functions to
your language. If you are, for example, a German reader, you could rename (fl-set-
membership?) to:

> (setq fl-Wahrheitswert? fl-set-membership?)
: (lambda ….) (output omitted)

and then again:

> (last (fl-Wahrheitswert? P 55))
: 0.125

After translating all the FuzzyLisp functions, you could put all these definitions
into a single file named, for example, fl-deutsch.lsp and then, for creating your
fuzzy models you would only need to include the following two lines of code at the
beginning of your application:

(load''fuzzylisp.lsp'')
(load''fl-deutsch.lsp'')

And hereafter you can call all the functions in your own language. By the way,
all the original names of the FuzzyLisp functions as described in Appendix II will
be always available at your fingertips despite the translation.

7.5 Logical Connectives in Fuzzy Propositions

In the same way we have defined logical connectives in order to form compound
propositions in classical logic, we can now extend these ideas to compound fuzzy
propositions. Let us review them:

The Conjunction of two fuzzy propositions p, q, represented by p ∧ q, is the
result of the minimum truth-value, Tv, of both p and q. Expressed formally:

Tvðp ^ qÞ ¼ min Tv pð Þ; Tv qð Þð Þ ¼ minðlA xð Þ; lB yð ÞÞ ð7-5Þ

where A and B are fuzzy sets representing the predicates associated to the fuzzy
propositions p and q, respectively, while x and y are feature values associated to
their respective subjects. As an example, we can have the following two fuzzy
propositions: p = “John is old” and q = “Eva is young”. As in the previous example,
let us define a fuzzy set P for representing the concept of old persons by means of
the Lisp expression (setq P ‘(old 50 90 90 90)) and then a fuzzy set Q representing
the concept of a young person by means of the Lisp expression (setq Q ‘(young 0 0
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15 30)). If John is 55 years old, that is, x = 55 and Eva is 18 years old, that is,
y = 18, we shall have:

(last (fl-set-membership? P 55)) → 0.125
(last (fl-set-membership? Q 18)) → 0.8

That is, the fuzzy proposition p has a truth-value 0.125 and the fuzzy proposition
q has a truth-value 0.8. Now using expression (7-5) we arrive to the conclusion that
the compound fuzzy proposition “John is old and Eva is young” has a truth-value
equal to 0.125.

Writing a NewLisp function for obtaining the truth value of a compound fuzzy
proposition with a logical connective “and” is straightforward, as shown in Code
7-3:

;code 7-3
(define (fl-truth-value-p-and-q? P Q x y, a b)

(setq a (last (fl-set-membership? P x)))
(setq b (last (fl-set-membership? Q y)))
(min a b)

)

Trying the function confirms our previous result:

> (fl-truth-value-p-and-q? P Q 55 18)
: 0.125

In a similar way, we define the Disjunction of two fuzzy propositions p, q,
represented by p ∨ q, as the result of the maximum truth-value of both p and q.
Expressed formally:

Tvðp _ qÞ ¼ max Tv pð Þ; Tv qð Þð Þ ¼ maxðlA xð Þ; lB yð ÞÞ ð7-6Þ

where again A and B are fuzzy sets representing the predicates associated to the
fuzzy propositions p and q, respectively, while x and y are feature values associated
to their respective subjects. Using the same example from some lines above, the
fuzzy proposition “John is old or Eva is young” will have a truth value Tv(p ∨
q) = 0.8. Let us prove it by creating the function (fl-truth-value-p-or-q), as shown in
Code 7-4:

; Code 7-4
(define (fl-truth-value-p-or-q? P Q x y, a b)
(setq a (last (fl-set-membership? P x)))
(setq b (last (fl-set-membership? Q y)))
(max a b)

)

Testing the function with the same supplied data P: (old 50 90 90 90), Q: (young
0 0 15 30)), x = 55 years old and y = 18 years old, we obtain:
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> (fl-truth-value-p-or-q? P Q 55 18)
: 0.8

The Negation of a fuzzy proposition p, denoted by ¬p, is the result of subtracting
the truth-value of p from one. Formally:

Tvð:pÞ ¼ 1�TvðpÞ ¼ 1� ðlAðxÞÞ ð7-7Þ

where A is the fuzzy set representing the predicate associated to the fuzzy propo-
sition p and x is the feature value associated to its subject. From all the logical
connectives used on fuzzy propositions, this is the easier one to implement in Lisp,
as shown in Code 7-5:

;Code 7-5
;returns the truth value of the negation of fuzzy
proposition P
(define (fl-truth-value-negation-p? P x)

(sub 1.0 (last (fl-set-membership? P x)))
)

For testing the function, we shall calculate the truth-value of the following
propositions: “John is not old”, “Eva is not young”, using the same definitions of
fuzzy sets P and Q as above. For John we shall have x = 55 and for Eva we shall
have x = 18 years old. Then

> (fl-truth-value-negation-p? P 55)
: 0.875

> (fl-truth-value-negation-p? Q 18)
: 0.2

As expected, the expression that returns the truth-value of a fuzzy conditional
proposition or fuzzy implication p → q is the most complex one from the four
logical connectives from this section:

Tvðp ! qÞ ¼ min 1;1þ TvðqÞ � TvðpÞð Þ ¼ minð1;1þ lBðyÞ � lAðxÞÞ ð7-8Þ

As usually, A and B are fuzzy sets representing the predicates associated to fuzzy
propositions p and q, respectively, while x and y are the feature values associated to
their respective subjects. Code 7-6 shows the code for calculating fuzzy conditional
propositions:

;Code 7-6
(define (fl-truth-value-fuzzy-implication-p-q? P Q x y, a b)

(setq a (last (fl-set-membership? P x)))
(setq b (last (fl-set-membership? Q y)))
(min 1.0 (sub (add 1.0 b) a))

)
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Now, let us suppose Laura (10) is a daughter of John (55). For calculating the
truth value of the fuzzy conditional proposition “if John is old then Laura is young”,
we only need to type:

> (fl-truth-value-fuzzy-implication-p-q? P Q 55 10)
: 1

The only way to get a zero truth value from a fuzzy implication is when the truth
value of the fuzzy proposition p is exactly 1.0 and the truth value of the fuzzy
proposition q is exactly 0.0, as it happens with classical implication. In our
example, given the definitions of fuzzy sets P and Q, then for any pair x, y included
into the supports of their respective fuzzy sets this only happens if x = 90 years old
(John) and y = 30 years old (Laura). Expressed into words: “if John is old then
Laura is young” means, for these values x, y that the proposition “John is old” has a
truth value equal to 1.0, but Laura, from the definition of “being young” in the
fuzzy set Q grows and grows until she is not anymore a young person, hence the
proposition “Laura is young” ultimately reaches a truth value equal to 0.0 resulting
in a zero truth value for the fuzzy implication p → q. Testing it:

> (fl-truth-value-fuzzy-implication-p-q? P Q 90 30)
: 0

Table 7.3 shows several truth values as a result of p → q for the fuzzy condi-
tional implication “if John is old then Laura is young” when different values x, y are
used as the feature values associated to their respective subjects, John and Laura. In
the first row several values xi are given, while the first column represents several yi
values. The shaded cells in the table tell us that when Laura grows and approaches
the right limit of the support of fuzzy set Q, then the truth value of the fuzzy
implication “if John is old then Laura is young” decreases until becoming null.
Once again we must remark that John being 90 and Laura being 30 years old is
entirely possible (in this instance, Laura would have been conceived when John was
60), but the fuzzy implication has a null truth value because the definitions of fuzzy
sets P and specially Q, where Laura at 30 is not anymore a young person:

It is interesting to note that the conjunction/disjunction of two fuzzy proposi-
tions, and also the fuzzy implication, are fuzzy relations. For example, the afore-
mentioned conjunction “John is old and Eva is young” is an instance of the general
fuzzy compound proposition “x is A and y is B” that ultimately produces a truth
value (isomorphic to membership degree) in the closed interval [0,1]. Remembering
the expression [5-24] for defining a fuzzy relation:

Table 7.3 A truth table for
different combinations of
values x, y in a fuzzy
implication p → q

P → q 50 60 70 80 90

0 1 1 1 1 1

10 1 1 1 1 1

20 1 1 1 0.91667 0.66667

30 1 0.75 0.5 0.25 0
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R ¼ fð x; yð Þ; lR x; yð ÞÞ j x; yð Þ 2 AxB;lR x; yð Þ 2 0; 1½ �g

We can see that the general compound fuzzy proposition “x is A and y is B” is a
mapping from the pair x,y to the closed interval [0,1] where A and B are the fuzzy
sets representing the predicates associated to the individual fuzzy propositions “x is
A”, “y is B”, respectively. In the case of the logical connective conjunction, the
mapping is given by the expression:

lR x;yð Þ ¼ minðlAðxÞ; lBðyÞÞ

The same line of reasoning is valid for disjunction and fuzzy implication in
fuzzy compound propositions.

Another important consideration in fuzzy propositions arises when we ask
ourselves about the nature of the fuzzy sets associated to them. Do fuzzy propo-
sitions need associated fuzzy sets with a continuous characteristic function?
Absolutely not. In fact we can use also fuzzy sets with discrete characteristic
functions, so we can use both FuzzyLisp Standard or Discrete Set Representations,
FLSSR, FLDSR for building fuzzy propositions. As an example, let us again
observe the fuzzy proposition p = “John is old”, this time defining a FLDSR for
P. Let us type at the Lisp prompt:

> (setq P (fl-discretize ‘(old 50 90 90 90) 4))
: (old (50 0) (60 0.25) (70 0.5) (80 0.75) (90 1) (90 1) (90 1) (90 1) (90 1))

Now, for calculating the truth vale of p we only need to type:

> (last (fl-dset-membership? P 55))
: 0.125

The same is also valid for compound fuzzy propositions. In this case we need
slight modifications to the functions (fl-truth-value-p-and-q?), (fl-truth-value-p-or-
q?), (fl-truth-value-negation-p?) and (fl-truth-value-fuzzy-implication-p-q?) as
shown in Code 7-3b, Code 7-4b, Code 7-5b and Code 7-6b, respectively:

; Code 7-3b
(define (fl-dtruth-value-p-and-q? dP dQ x y, a b)

(setq a (last (fl-dset-membership? dP x)))
(setq b (last (fl-dset-membership? dQ y)))
(min a b)

)

; Code 7-4b
(define (fl-dtruth-value-p-or-q? dP dQ x y, a b)

(setq a (last (fl-dset-membership? dP x)))
(setq b (last (fl-dset-membership? dQ y)))
(max a b)

)
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;Code 7-5b
(define (fl-dtruth-value-negation-p? dP x)

(sub 1.0 (last (fl-dset-membership? dP x)))
)

;Code 7-6b
(define (fl-dtruth-value-fuzzy-implication-p-q? dP dQ x y,
a b)

(setq a (last (fl-dset-membership? dP x)))
(setq b (last (fl-dset-membership? dQ y)))
(min 1.0 (sub (add 1.0 b) a))

)

Let us test them quickly after defining a fuzzy set Q with a discrete characteristic
function for representing “young people”:

> (setq Q (fl-discretize ‘(young 0 0 15 30) 4))
:(young (0 1) (0 1) (0 1) (0 1) (0 1) (3.75 1) (7.5 1) (11.25 1) (15 1) (18.75 0.75)
(22.5 0.5) (26.25 0.25) (30 0))

Then, considering again the fuzzy propositions p = “John is old” and q = “Eva is
young” when John is 55 years old and Eva is 18 we have:

- “John is old and Eva is young”:
> (fl-dtruth-value-p-and-q? P Q 55 18)
: 0.125

- “John is old or Eva is young”:
> (fl-dtruth-value-p-or-q? P Q 55 18)
: 0.8

- “Eva is not young”
> (fl-dtruth-value-negation-p? Q 18)
: 0.2

Finally, for the proposition q = “Laura is young”, when Laura (ten years old),
being a daughter of John, we have:

“if John is old then Laura is young”
> (fl-dtruth-value-fuzzy-implication-p-q? P Q 55 10)
: 1

Another example (Bojadziev and Bojadziev 1999) will help to understand even
better the fuzzy implication p → q, in this case using fuzzy sets with discrete
characteristic functions. Let P and Q be fuzzy sets formed respectively by the
following Lisp expressions:

(setq P ‘(high-score (0 0) (20 0.2) (40 0.5) (60 0.8) (80 0.9) (100 1)))
(setq Q ‘(good-credit (0 0) (20 0.2) (40 0.4) (60 0.7) (80 1) (100 1)))
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Where P represents the concept of “high score” applied to a bank customer and
Q represents a certain type of measure about the quality of a hypothetical loan. We
can form the fuzzy propositions p = “x is high score” and q = “y is good credit” and
then the fuzzy propositional function “if x is high score then y is good credit”.
When, for example, x = 85 and y = 75 we can type at the Lisp prompt:

> (fl-dtruth-value-fuzzy-implication-p-q? P Q 85 75)
: 1

As the reader can appreciate, there is no practical difference between using a
FLSSR or a FLDSR for evaluating truth-values from fuzzy propositions. When the
related fuzzy sets have a triangular or trapezoidal membership function results are
the same. When other continuous functions are discretized for representing mem-
bership functions the differences are minimal.

7.6 Fuzzy Hedges

Fuzzy hedges are linguistic modifiers applied to fuzzy predicates. This short defi-
nition soon reveals its consequences because if we say they are applied to fuzzy
predicates it immediately means they are also applied to fuzzy sets related to fuzzy
predicates. Then it is easy to follow that they will affect fuzzy propositions and then
their truth-values, too. In general, a fuzzy hedge H can be represented by an unary
operator on the closed interval [0,1] in such a way that a fuzzy proposition of the
type “x is P” converts in:

x is HP

If A is a fuzzy set associated to a fuzzy predicate P, the following expression
shows how A is modified by H for every element x (subject) in A:

HA ¼ HðlAðxÞÞ ð7-9Þ

The most used fuzzy hedges are the linguistic modifiers H1, “very” and H2,
“fairly”, defined respectively by the following expressions:

H1 : H1ðlAðxÞÞ ¼ ðlAðxÞÞ2 ð7-10Þ

H2 : H2ðlAðxÞÞ ¼ ðlAðxÞÞ1=2 ð7-11Þ

As an example, if we take the fuzzy proposition p: “Joe is old”, with a truth
value Tv(p) = 0.8 that is, if x = Joe has a 0.8 membership degree to the fuzzy set
A representing old People, then the fuzzy expression q: “Joe is very old” will have a
truth value:
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Tv(qÞ ¼ H1ðlAðxÞÞ ¼ ðlAðxÞÞ2 ¼ 0:64

On the other hand, the fuzzy proposition r: “John is fairly old” will have a truth
value: Tv(r) = H2(μA(x)) = (μA(x))

1/2 = 0.89. From the intrinsic nature of the
functions y = x2 and y = x1/2 it is easy to follow that the linguistic hedge H1, “very”,
decreases the membership degree of an element x to a fuzzy set A when μA(x) ≠ 1.0
and ultimately, the truth value of an associated fuzzy proposition p. Conversely, the
linguistic hedge H2, “fairly”, increases the membership degree in fuzzy sets and
then in any associated fuzzy proposition when μA(x) ≠ 1.0. In fuzzy logic theory, we
say a linguistic hedge is a Strong modifier when H(μA(x)) < μA(x) and a Weak
modifier when H(μA(x)) > μA(x). Hence, the fuzzy hedge “very” is a strong modifier,
while the fuzzy hedge “fairly” is a weak modifier.

FuzzyLisp has a function named (fl-dset-hedge) that applies a fuzzy hedge to a
discrete fuzzy set. Again from the very nature of the functions y = x2 and y = x1/2

the resulting fuzzy set after applying a linguistic modifier on it can not be generally
represented by a triangular or trapezoidal characteristic function, so the function
always returns the transformed fuzzy set with a FLDSR. This feature invites to
design the function in such a way that the input fuzzy set has also a FuzzyLisp
Discrete Set Representation. Code 7-7 shows this function:

;Code 7-7
(define (fl-dset-hedge dset hedge, i n list-out sublist)

(setq list-out (first dset));we conserve the set's name
(setq i 1 n (length dset))
(while (< i n)

(setq sublist (nth i dset))
(case hedge

(FAIRLY
(setq list-out (cons
(list (first sublist) (sqrt (last sublist)))

list-out))
);end FAIRLY
(VERY

(setq list-out (cons
(list (first sublist) (pow (last sublist)))

list-out))
);end VERY

);end case
(++ i)

);while end
(reverse list-out)

)

(fl-dset-hedge) takes two arguments: The first one is a fuzzy set with a FLDSR
and the second one is a Lisp symbol representing the desired fuzzy hedge to apply
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on it, either FAIRLY or VERY. If our initial fuzzy set has a FLSSR representation
we can first make a call to the function (fl-discretize) and then use the resulting
discretized fuzzy set. Let us see an example of the linguistic modifiers “very” and
“fairly” applied to the fuzzy set (A1 7 10 12 15):

> (fl-dset-hedge (fl-discretize ‘(A1 7 10 12 15) 4) ‘VERY)
: (A1 (7 0) (7.75 0.0625) (8.5 0.25) (9.25 0.5625) (10 1) (10.5 1) (11 1) (11.5 1)
(12 1) (12.75 0.5625) (13.5 0.25) (14.25 0.0625) (15 0))

> (fl-dset-hedge (fl-discretize ‘(A1 7 10 12 15) 4) ‘FAIRLY)
: (A1 (7 0) (7.75 0.5) (8.5 0.7071067812) (9.25 0.8660254038) (10 1) (10.5 1)

(11 1)
(11.5 1) (12 1) (12.75 0.8660254038) (13.5 0.7071067812) (14.25 0.5) (15 0))

it suffices to numerically compare the results from these two functions calls to (fl-
dset-hedge) to realize the impact of both fuzzy hedges on the fuzzy set defined by
the Lisp expression (A1 7 10 12 15), but a graphical representation shows it even
better, as can be easily seen in Fig. 7.1.

Needless to say, we can experiment also with fuzzy sets that require from scratch
of a discrete characteristic function, as it is the case with a bell shaped function. As
we already know, we start defining the function f in Lisp:

> (setq f ‘(div (add 1.0 (cos (mul 2.0 pi (sub x 2.0)))) 2.0))
: (div (add 1 (cos (mul 2 pi (sub x 2)))) 2)

now we discretize it:

> (setq dBell (fl-discretize-fx ‘Bell f 10 1.5 2.5))
: (Bell (1.5 0) (1.6 0.09549150283) (1.7 0.3454915028) (1.8 0.6545084972) (1.9

0.9045084972) (2 1) (2.1 0.9045084972) (2.2 0.6545084972) (2.3 0.3454915028)
(2.4 0.09549150283) (2.5 0))

and then we can apply a linguistic modifier on it. In this case, “very”:

> (fl-dset-hedge dBell ‘VERY)
: (Bell (1.5 0) (1.6 0.009118627113) (1.7 0.1193643785) (1.8 0.4283813729)

(1.9 0.8181356215) (2 1) (2.1 0.8181356215) (2.2 0.4283813729) (2.3
0.1193643785) (2.4 0.009118627113) (2.5 0))

Fig. 7.1 From left to right a fuzzy set A and the fuzzy sets “VeryA” and “FairlyA”
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Something very interesting happens when we reiteratively apply a fuzzy hedge
on a fuzzy set A. Let us define, for example, a fuzzy number “close to seven”
expressed in Lisp as: (about-seven 6.5 7.0 7.0 7.5):

> (setq A ‘(about-seven 6.5 7.0 7.0 7.5))
: (about-seven 6.5 7 7 7.5)

First we discretize this fuzzy number defined by a triangular membership
function. We use an adequate resolution in order to better appreciate the expected
effects of reiteration:

> (setq dA (fl-discretize A 10))
: (about-seven (6.5 0) (6.55 0.1) (6.6 0.2) (6.65 0.3) (6.7 0.4) (6.75 0.5) (6.8 0.6)

(6.85 0.7) (6.9 0.8) (6.95 0.9) (7 1) (7.05 0.9) (7.1 0.8) (7.15 0.7) (7.2 0.6) (7.25
0.5) (7.3 0.4) (7.35 0.3) (7.4 0.2) (7.45 0.1) (7.5 0))

applying the fuzzy hedge “Very” we obtain H1(μdA(x)):

> (setq VERY-7 (fl-dset-hedge dA ‘VERY))
: (about-seven (6.5 0) (6.55 0.01) (6.6 0.04) (6.65 0.09) (6.7 0.16) (6.75 0.25)

(6.8 0.36) (6.85 0.49) (6.9 0.64) (6.95 0.81) (7 1) (7.05 0.81) (7.1 0.64) (7.15 0.49)
(7.2 0.36) (7.25 0.25) (7.3 0.16) (7.35 0.09) (7.4 0.04) (7.45 0.01) (7.5 0))

now we apply it again, obtaining H1(H1(μdA(x))):

> (setq VERY-VERY-7 (fl-dset-hedge VERY-7 ‘VERY))
: (about-seven (6.5 0) (6.55 0.0001) (6.6 0.0016) (6.65 0.0081) (6.7 0.0256)

(6.75 0.0625) (6.8 0.1296) (6.85 0.2401) (6.9 0.4096) (6.95 0.6561) (7 1) (7.05
0.6561) (7.1 0.4096) (7.15 0.2401) (7.2 0.1296) (7.25 0.0625) (7.3 0.0256) (7.35
0.0081) (7.4 0.0016) (7.45 0.0001) (7.5 0))

the fuzzy set “very-very-very-dA”, H1(H1(H1(μdA(x)))) is again:

> (setq VERY-VERY-VERY-7 (fl-dset-hedge VERY-VERY-7 ‘VERY))
: (about-seven (6.5 0) (6.55 1e-08) (6.6 2.56e-06) (6.65 6.561e-05) (6.7

0.00065536) (6.75 0.00390625) (6.8 0.01679616) (6.85 0.05764801) (6.9
0.16777216) (6.95 0.43046721) (7 1) (7.05 0.43046721) (7.1 0.16777216) (7.15
0.05764801) (7.2 0.01679616) (7.25 0.00390625) (7.3 0.00065536) (7.35 6.561e-
05) (7.4 2.56e-06) (7.45 1e-08) (7.5 0))

and after only four iterations, we obtain H1(H1(H1(H1(μdA(x))))), that is, the fuzzy
set “very-very-very-very-dA”:

> (setq VERY-VERY-VERY-VERY-7 (fl-dset-hedge VERY-VERY-
VERY-7 ‘VERY))

: (about-seven (6.5 0) (6.55 1e-16) (6.6 6.5536e-12) (6.65 4.3046721e-09)
(6.7 4.294967296e-07) (6.75 1.525878906e-05) (6.8 0.0002821109907)

(6.85 0.003323293057) (6.9 0.02814749767) (6.95 0.1853020189) (7 1)
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(7.05 0.1853020189) (7.1 0.02814749767) (7.15 0.003323293057) (7.2
0.0002821109907) (7.25 1.525878906e-05) (7.3 4.294967296e-07)

(7.35 4.3046721e-09) (7.4 6.5536e-12) (7.45 1e-16) (7.5 0))

Figure 7.2 shows the comparison of the original fuzzy set dA and the result of
applying the fuzzy hedge “very” reiteratively at four iterations.

The simple observation of Fig. 7.2 explains the following corollary: When n
tends to infinity, the n-iteration of the hedge VERY on a fuzzy number A produces
another special fuzzy set A′ whose nucleus and support is established exactly at x0,
where its membership degree equals one:

VERYn Að Þ ! ðx0; l x0ð Þ ¼ 1:0Þ

In a similar way, when n tends to infinity, the n-iteration of the hedge VERY on
a fuzzy interval I, expressed by a trapezoidal membership function, produces
another fuzzy interval [a, b], where a = x2 and b = x3, as suggested in Fig. 7.3.

Interestingly, the concept of fuzzy hedges is not entirely new for us. In the
previous chapter, Sect. 6.7.2, we created the function (fl-expand-contract-set) that
allows us to expand or to contract the support and nucleus of a fuzzy set by a real
number k. The resulting fuzzy set remains centered on its original position. As an
example, for the fuzzy interval represented by the Lisp expression (a 2 3 5 6), we
would have, for k = 2 and k = 0.5, the following results, respectively:

> (fl-expand-contract-set ‘(a 2 3 5 6) 2.0)
: (a 0 2 6 8)

> (fl-expand-contract-set ‘(a 2 3 5 6) 0.5)
: (a 3 3.5 4.5 5)

The comparison between the resulting fuzzy sets can be appreciated in Fig. 7.4.
Let us see what happens when k = 0, shown at right in the same figure:

> (fl-expand-contract-set ‘(a 2 3 5 6) 0)
: (a 4 4 4 4)

Fig. 7.2 A fuzzy set dA and the resulting fuzzy set after applying four times the fuzzy hedge
“very” on it
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As can be seen, the result of using a value k = 0 as the second parameter in the
FuzzyLisp function (fl-expand-contract-set) is the equivalent to apply the
n-iteration of the hedge VERY on a fuzzy set. These peculiar fuzzy sets where their
nucleus and support are established at a unique point x0 on the real axis such as (x0,
μ(x0) = 1.0) have an important and special role to play in fuzzy logic, and we shall
dedicate enough space to them later in this chapter.

Speaking rigorously, the function (fl-expand-contract-set) is not the same thing
as using a pure fuzzy hedge, but it also concentrates or spreads-out a fuzzy set, and
in some fuzzy modeling circumstances can be a valid alternative to the standard
“very” and “fairly”. Another valid strategy to represent the meaning of these fuzzy
hedges is to conveniently use the FuzzyLisp function (fl-fuzzy-shift). For example, if
we represent the fuzzy set Old by the triangular membership function (setq Old
‘(age-old 75 80 80 85)), we can define “very old” by means of the following
function call:

> (setq Very-old (fl-fuzzy-shift Old 5))
: (age-old 80 85 85 90)

And now, for keeping the semantic FuzzyLisp structure:

> (setq (nth 0 Very-old) ‘age-very-old)
: age-very-old

Fig. 7.3 A fuzzy interval dI and the resulting fuzzy set after applying four times the fuzzy hedge
“very” on it

Fig. 7.4 A comparison between a fuzzy interval and some transformations after applying the
FuzzyLisp function (fl-expand-contract-set) on it. Transformed fuzzy sets are shown in dashed
lines
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and then, evaluating the resulting symbol: Very-old→ (age-very-old 80 85 85 90)

As can be seen in Fig. 7.5 this strategy ultimately invites ourselves to understand
a linguistic variable as the result of starting with a seminal fuzzy set and then add
other fuzzy sets to the linguistic variable by means of applying several shifts
towards left and/or right on that set. The reader should note the huge existing
flexibility in designing linguistic variables as we started to appreciate in the pre-
vious chapter.

7.7 Fuzzy Systems from Fuzzy Propositions

Exactly at 20:17:40 UTC on July 20th, 1969, Neil Armstrong landed the Eagle on
the Moon. He had to land the Lunar Module semi-automatically because the
resulting landing target stored on the onboard computer was not well suited for a
good descent after visual inspection. Buzz Aldrin was providing him a continuous
readout of altitude and velocity data from the instruments on the console and
finally, the commandant of the Apollo XI mission got a successfully touchdown
when less than 30 s of fuel remained available (Kranz 2009). We can guess that for
getting a smooth descent he used his enormous experience as a test pilot and also
the fruits of an extensive training at NASA’s simulators. Even without being aware,
lots of fuzzy compound propositions were inside his brain. The following one was
probably one of them:

“If altitude is low and descent speed is high then thrust must be strong”

This type of fuzzy propositions can be generalized with the following expression:

ðp ^ qÞ ! r ð7-12Þ

Or, expressed more clearly:

Fig. 7.5 The emerging of a linguistic variable from the use of the fuzzy set Old and a shift of it
towards right, obtaining the fuzzy set Very-old
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If x isA and y isB then z isC ð7-13Þ

Until now, all the fuzzy propositions analyzed so far in this chapter, both the
fuzzy sets representing predicates and the feature values associated to their
respective subjects are perfectly determined, that is, they have known parameters
and values that allow to calculate the truth value of a given proposition. Now we
introduce a new situation where the feature value z in the consequent of expression
(7-13) is unknown. This is new with respect to all the previous fuzzy compound
propositions exposed so far in this chapter, but opens a door to new techniques in
fuzzy logic that deserve to be explored since expression (7-13) is perhaps one of the
most useful and practical ones in the theory. As an example, and again in
Armstrong’s mind: Given an altitude x and a descent speed y from the readouts,
what must be the value z for thrust engine? Let us do a formal analysis of
expressions (7-12) and (7-13) first.

Since all the parameters in the antecedent x, y, A, B from expression (7-13) are
known, having into account (7-5) we can write:

Tvðp ^ qÞ ¼ minðlAðxÞ; lBðyÞÞ
Tvððp ^ qÞ ! rÞ ¼ minð1; 1þ lCðzÞ � minðlAðxÞ; lBðyÞÞÞ

ð7-14Þ

Since z is unknown, then μC(z) is unknown, too, so Eq. (7-14) is impossible to
solve. However, if we assume that the truth-value of the antecedent is the same as
the truth-value of the consequent in (7-13), we can write:

lCðzÞ ¼ minðlAðxÞ; lBðyÞÞ ð7-15Þ

and substituting in (7-14):

Tvððp ^ qÞ ! rÞ ¼ min ð1; 1þ lCðzÞ � lCðzÞÞÞ ð7-16Þ

and this simplifies to:

Tvððp ^ qÞ ! rÞ ¼ 1 ð7-17Þ

This is a pivotal result for practical uses of fuzzy logic: When we assume that the
truth value of the antecedent is the same as the truth value of the consequent in
compound fuzzy propositions of the type expressed in (7-13) then the truth-value of
(p ∧ q) → r is always one, that is, the fuzzy implication (p ∧ q) → r always holds.
This should be not new for us, since we already got a hint about this point in
Sect. 7.3 when we stated that if the antecedent is true in an implication then the
consequent must be also true for satisfying the implication.

Expression (7-15) guarantees that we can obtain the membership degree of z to
the fuzzy set C, but we still do not know the crisp value z in (7-13). Following our
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previous example, Armstrong still wouldn’t know the thrust engine to apply for
landing the Eagle. Let us see what can be done with the material learnt so far.

For representing “low altitude” in landing the Eagle, we can create, for example,
a triangular fuzzy set H by means of the Lisp expression (setq H ‘(low-altitude 30
100 100 170)), where the magnitude is expressed in meters. In the same way, “high
descent speed”, in m/s, can be described with a triangular fuzzy set dH with the
expression (setq dH ‘(high-descent-speed 100 200 200 300)). The whole thrust
available in the Eagle propulsion system can be expressed by means of a range from
0.0 to 100.0 percent, so we can formulate “strong thrust” with the fuzzy set sT in the
following way: (setq sT ‘(strong-thrust 50 75 75 100)). Now, giving some readouts
h and s representing altitude and descending speed, respectively, expression (7-13)
converts to:

If h is H and s is dH then z is sT

When readouts from the instruments on the Eagle are, for example, h = 79 m,
and s = 190 m/s, then we can directly evaluate the antecedent in the rule just typing
the following expression at the Lisp console:

> (fl-truth-value-p-and-q? H dH 79 190)
: 0.7

Now, using (7-15), we have that the membership degree of z to sT is μsT(z) = 0.7.
In this moment, the question is: Given a 0.7 membership degree to the fuzzy set
“strong thrust”, what is the resulting crisp value z? A first answer comes from the
FuzzyLisp function (fl-alpha-cut) as follows:

> (fl-alpha-cut sT 0.7)
: (strong-thrust 67.5 82.5)

Both 67.5 and 82.5 are crisp values of thrust that have a 0.7 membership degree
to the fuzzy set “strong thrust”, but Armstrong cannot spend his time doubting
between applying a 67.5 % or a 82.5 % of thrust to the Eagle spacecraft. How can
we solve this situation? The answer is not far from us. In fact is hidden inside the
text written in the first paragraph of this section: “Even without being aware, lots of
fuzzy compound propositions were inside the brain of Armstrong”. That is: in
general, for obtaining an adequate and useful crisp value from expression (7-13) we
need several fuzzy compound propositions working together. In other words, we
need several values and fuzzy sets z1, C1, z2, C2, … zn, Cn for creating a defuzz-
ification procedure that finally will result into a crisp value. With a unique fuzzy
proposition of the type “If x is A and y is B then z is C” the more we can say is that
z has a μC(z) membership degree to C.
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7.7.1 Fuzzy Rule-Based Systems

Fuzzy Rule-Based Systems, FRBS, are logical constructions that bring together
several fuzzy-logic based processes and structures. The architecture of a FRBS is
shown in Fig. 7.6.

The simple observation of Fig. 7.6 shows that a FRBS is a system that receives
information (crisp input), processes it and then produces a crisp result. Usually the
crisp input is based on available numerical information, resulting from measuring
features of a physical system (e.g., density, speed, temperature, etc.) or numerical
values representing any measurable entity (e.g., population, life expectancy at birth,
GPD, etc.). The crisp output represents a numerical magnitude that is initially
unknown but can be calculated by the inner workings of the fuzzy system. It is
important to note that both the crisp input and crisp output can be formed by one or
several numerical values, although in this chapter we shall be specially focused on
FRBS with two numerical values as the crisp input and only one numerical output.

The first process in a fuzzy system is to fuzzify the crisp input (numerical data)
and then translate this information into membership degrees. This process is known
as “Fuzzification” and it is not new for us because we have already seen it in
previous sections of this book. In fact, the key FuzzyLisp functions that allows to
fuzzify any crisp numerical value are the functions (fl-set-membership?), (fl-dset-
membership?) and then their derived functions (fl-lv-membership2?) and (fl-dlv-
membership2?).

A Knowledge Database consists of several linguistic variables and a set of fuzzy
propositions. Hereafter we shall call “rules” or “expert fuzzy rules” to the set of
fuzzy propositions inside a FRBS. The term “expert” is important in this definition
because every rule encompasses human knowledge, usually elicited from experts in
a definite field of knowledge. Human knowledge is also embedded in the very
definition of the linguistic variables at play, as we saw in the previous chapter when
we spoke about fuzzy databases, so linguistic variables are also part of the
knowledge database in a fuzzy system. Traditionally in fuzzy logic theory only the
collection of expert fuzzy rules makes up a knowledge database, but this definition
is incomplete because, as already mentioned, the expert knowledge does not come

Fig. 7.6 Architecture of a Fuzzy Rule-Based System, FRBS
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only from the fuzzy rules in the system, but from the meaning of the fuzzy sets that
form the linguistic variables of the system.

The inference engine in a fuzzy system has a simple mission, as its name
suggests: To make inferences. Until the inference engine starts to work, the only
things we have in a fuzzy system are membership degrees, lots of fuzzy sets and
expert fuzzy rules “floating up in the air”. The inference engine is the glue that
interacts with all these elements. It reads a rule, identifies its antecedent and con-
sequent, finds the definition of a fuzzy set, gets the required membership degree,
notes down this temporal data, obtains more membership degrees until the ante-
cedent is computationally complete and then performs the logical inference in the
rule, passing the obtained numerical values to the consequent. Then it processes the
following rule and repeats the same procedure until finishing the complete set of
rules. Using the same notation as in (7-13), the output of the inference engine in a
FRBS has the following structure:

From Rule1: “z is C1” has an associated truth value μC1(z)
From Rule2: “z is C2” has an associated truth value μC2(z)

…
From Rulen: “z is Cn” has an associated truth value μCn(z)

Or, written it formally, we can say that the inference engine ultimately produces
the following set of numerical values (membership degrees):

FuzzyOutput ¼ flC1ðzÞ; lC2ðzÞ; . . .; lCnðzÞg ð7-18Þ

The procedure for obtaining a crisp output from the set of membership degrees
in (7-18) is called “Defuzzification” and we shall discuss it immediately after
stating an important remark: In a FRBS there is not a nucleus, that is, we can not
say that the inference engine, or the knowledge database is the nucleus of the
system. A Fuzzy Rule Based System has a holistic nature where all the subsystems
work in a status of synergy. This is one of the strongest strengths of fuzzy systems.

7.7.2 Defuzzification

Let us do an analogy between the set of fuzzy rules of a knowledge database and the
board of directors of a Club. In this analogy, every rule is represented by a member
of the board where every member has a definite opinion on a certain subject matter
that is represented in the analogy by a membership degree μCi(z). The members of
the board have a complete analysis and integral representation of the subject matter,
but a final agreement must be reached, a final decision that democratically must take
into account every member’s opinion. This situation describes rather well the
expression (7-18): We have a complete set of membership degrees as the result of
the inferences made in the fuzzy system, but we need to come back to the realm of
crisp values in order to get a final, definite result. Just imagine the Club is trying to

252 7 Fuzzy Logic



approve a final budget for the next year: they need a crisp quantity. The partners
must know how much money the Club will have at its disposal for the next year.
We need to obtain the z, crisp output from the system.

There are several defuzzification methods in fuzzy logic theory. For convenience
in our exposition, we shall assume initially that only some expert fuzzy rules from
the FRBS haven been fired in such a way that only two μCi(z), μCi+1(z) membership
degrees from the fuzzy output expressed by (7-18) have a value bigger than zero.
Then, if Ci, Ci+1 are fuzzy sets belonging to the consequents of the knowledge
database of fuzzy rules, we can create a geometrical shape as shown in Fig. 7.7.

As can be seen at left in the figure, we have chosen μCi(z) = 0.25, μCi+1(z) = 0.75
on the fuzzy sets Ci, Ci+1, producing a sort of mountain-shaped form S than can be
easily observed at right.

An additional step in the process of defuzzification is shown in Fig. 7.8, where
the shape S can be imagined, for a better exposition, as a materialized solid form
made of metal, wood or any solid and rigid material you can name in this moment.
This materialized shape S has, obviously, a center of gravity, G. Projecting the
two-dimensional point G over the horizontal axis we obtain a real value x that
represents the crisp, defuzzified numerical value z.

This method of defuzzification, known as the “Centroid Method” has a strong
advantage that dwells from its intuitive formulation: it is very easy to understand. In
fact, this is the reason why we have chosen it as the first one of the several
defuzzification methods available. However it has two important disadvantages.
First, it can become tedious to calculate, especially if the shape of the characteristic
functions of the fuzzy sets Ci are Gaussian, bell-shaped, etc. The second disad-
vantage is that the Centroid Method is unable to provide a crisp output value z at the

Fig. 7.7 Creating a geometrical shape from membership degrees in the fuzzy sets belonging to
consequents in fuzzy rules

Fig. 7.8 Materializing the shape S and getting a crisp output x
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extremes of the linguistic variable where the fuzzy sets Ci are defined. Figures 7.9a
and 7.9b illustrate this problem.

In Fig. 7.9a we see a linguistic variable composed by seven fuzzy sets. All of
them have an isosceles triangular characteristic function except the two ones located
at the extremes of the universe of discourse of the linguistic variable. These ones
have a right triangle as characteristic functions in order to adapt the linguistic
variable to its extremes a, b.

Very interestingly, Fig. 7.9b shows a situation where despite any possible value
of the membership degrees in the consequents of a FRBS, a crisp value obtained by
means of the Centroid Method of defuzzification never reaches the extremes of the
linguistic variable. The figure shows a shape whose center of gravity is not far from
the extreme a, but it never reaches it, even if only the leftmost fuzzy set had an
associated membership degree equal to one and the rest of fuzzy set in the linguistic

Fig. 7.9a A linguistic variable composed by seven fuzzy sets defined in the range [a, b]

Fig. 7.9b Extreme a at left is never reached using the Centroid Method of defuzzification. The
same happens with the extreme b at right

Fig. 7.10 Creating two geometrical shapes S1, S2 from membership degrees
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variable had a null associated membership degree. The crisp output never reaches
the extreme. FuzzyLisp does not support the Centroid Method of defuzzification
because these two reasons.

Another well-known defuzzification method is the so named “Weighted average
method”. This defuzzification strategy is easily understood if we observe first
Fig. 7.10. Again using only two μCi(z), μCi+1(z) membership degrees from the fuzzy
output expressed by (7-18), then, if Ci, Ci+1 are fuzzy sets belonging to the con-
sequents of the knowledge database of fuzzy rules, we can create two geometrical
shapes S1, S2 as shown in the figure.

Now, taking the vertical axis of symmetry of every shape we obtain the crisp
values x1, x2 just on the real axis. If the associated membership degrees are,
respectively, μ1(z), μ2(z), then the resulting defuzzified crisp value z is given by the
formula:

z ¼ ðx1l1ðzÞ þ x2l2ðzÞÞ=ðl1ðzÞ þ l2ðzÞÞ ð7-19Þ

In general, for n membership degrees from the fuzzy output expressed by (7-18),
the Weighted average method uses the following generalized expression:

z ¼
X

ðximiðzÞÞ=
X

liðzÞ ð7-20Þ

The main advantage of the weighted average method is its easy implementation,
although this method is only valid for cases where the output membership functions
are symmetrical in shape. A variation of the weighted average method results from
substituting membership degrees to “weights” associated to every shape obtained
from fuzzy sets belonging to the consequents of the knowledge database of fuzzy
rules.

As can be seen in Fig. 7.11, to every resulting shape Si we obtain a weight w that
is proportional to the area of the shape. In this example, the area of S2 is 2.14 times
the area of S1. Applying these weights in the center of the basis of their respective

Fig. 7.11 Applying weights to shapes
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shapes we obtain a set of weights wi. The defuzzificated crisp value z corresponds
to a value x (shown in the figure by an arrow pointing upwards) on the real axis that
equilibrates all the weights at play. Then, expression (7-20) converts to:

z ¼
X

xiwi=
X

wi ð7-21Þ

The two exposed weighted average methods are easy to calculate, and the
second one adds the concept of “weighting area” already implicit in the Centroid
Method of defuzzification. However, we still cannot reach the extremes of the
output linguistic variables, unless we strategically design its fuzzy sets as shown in
Fig. 7.12.

This arrangement of fuzzy sets in a linguistic variable can seen bizarre at first,
but does not violate any theoretical matter on fuzzy sets and solves the biggest
inconvenience of the three defuzzification methods exposed so far.

7.7.2.1 Singletons

When fuzzy sets in a linguistic variable defining the output of a FRBS are formed
by isosceles triangles and are arranged strategically as in Fig. 7.12, the two exposed
versions of the weighted average method for defuzzification always apply the
resulting membership degrees/weights on the vertical axis of symmetry of their
characteristic functions. This suggests the use of another type of fuzzy set named
“Singleton” that we are going to introduce just now with the following definition:

In fuzzy sets theory a singleton S is a special fuzzy set whose membership
function is equal to zero except at a point x, where its membership degree is exactly
equal to one. A singleton is always associated to a crisp real number x0 in such a
way that its characteristic function can be defined formally as:

lSðxÞ ¼ 1 if x ¼ x0
lSðxÞ ¼ 0 if x 6¼ x0

The FuzzyLisp function (fl-expand-contract-set) already heralded Singletons in
Sect. 7.6 of this chapter (source code number 6-18) when it takes a fuzzy set in

Fig. 7.12 Defuzzification: reaching the extremes
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FLSSR representation as its first argument and applies zero as its second argument.
Again at the Lisp prompt:

> (fl-expand-contract-set ‘(a 2 3 5 6) 0)
: (a 4 4 4 4)

As can be seen from the list returned by Lisp, both the nucleus and support of a
singleton is a single point on the real axis. The graphical representation of a sin-
gleton S can be seen at the right of Fig. 7.4. Under a practical point of view the list
(a 4 4 4 4) is not computationally efficient for representing singletons, so in
FuzzyLisp they are represented by expressions of the following type:

singleton-label x0ð Þz

After several assignments of the type (setq si (singleton-labeli xi)) a linguistic
variable composed by singletons can be built by means of the following expression:
(setq singleton-LV ‘(s1 s2 … sn)). For our practical interests, we can now represent
the previous linguistic variable composed by seven triangular shaped fuzzy sets
shown in Fig. 7.12 by means of seven singletons S1 … S7 as shown in Fig. 7.13.

Since every singleton can be seen as a geometrical spike resting fixed on a real
point xi, we can apply the weighted average method of defuzzification for single-
tons in order to obtain the crisp output of a FRBS. After some reflection you will
able to appreciate that, for defuzzification purposes, Fig. 7.13 is essentially the same
as 7.12 in disguise. This is the reason behind formula (7-20) serves perfectly well
for the defuzzification procedure if singletons are used as fuzzy sets in the conse-
quents of every fuzzy rule in a FRBS. In fact, the output of an inference engine in a
FRBS will have now the following structure:

From Rule1: “z is S1” has an associated truth value μ1(z) in point x1
From Rule2: “z is S2” has an associated truth value μ2(z) in point x2
…
From Rulen: “z is Sn” has an associated truth value μn(z) in point xn

and finally, for obtaining the crisp output z of the system, we can write again:

Fig. 7.13 Substituting isosceles shaped characteristic functions by singletons, Si
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z ¼
X

ðxiliðzÞÞ=
X

liðzÞ ð7-22Þ

Michio Sugeno from Japan, one of the most important names in Fuzzy Logic, has
been one of the researchers that first explored the elegance and computational power
of singletons in fuzzy systems. As we shall see immediately, singleton defuzzifi-
cation is the standard defuzzification method used by FuzzyLisp (Fig. 7.14).

7.8 Modeling FRBS with FuzzyLisp

Section 7.7 has been strongly theoretical, and it is now the time to introduce a few
important FuzzyLisp functions in order to model Fuzzy Rule Based Systems. Since
this is a practical book following a “learning by doing” approach, the next para-
graphs will show the reader how to model the workings of an air-conditioner
controller by means of fuzzy logic techniques. In this moment it is not important for
us to model the best, finest air-conditioner controller available, but to show how to
organize and process all the required information for the controller, or, expressed
with other words, introduce a practical application example where the FRBS
architecture exposed in Fig. 7.6 is translated into real FuzzyLisp code.

As it is well known, an air-conditioner system’s goal is to maintain the tem-
perature of a given enclosure at a constant value, where the enclosure can be a
room, a building, an aircraft cockpit or the interior of a car, to name only some
examples. The basic information needed to accomplish the goal is usually based on
two values: actual temperature t and temperature variation delta-t obtained from
two readings from a thermometer obtained every s seconds. Other interesting input
values could be the quantity of solar radiation received by the enclosure and the
time of the day and even the day of the year, but t and delta-t will be enough for our
simple model. After the readings are made, our fuzzy controller will calculate the
needed output airflow and temperature, AFT, to stabilize the enclosure’s

Fig. 7.14 Michio Sugeno at
the European Centre for Soft
Computing, Spain, circa 2010
(Photograph by the author)
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temperature at a temperature goal, let us say, T = 21 °C. A general formulation of
the problem is given by the following expression:

AFT ¼ f t; delta-tð Þ ð7-23Þ

Figure 7.15 shows graphically a representation of the intended fuzzy controller.
If the reader is versed on differential equations then is highly probable that a ring
has sounded in his head after the simple observation of expression (7-23). However
no one differential equation will be needed to obtain a good working air-conditioner
controller.

Since we have two input values, we shall create two specific linguistic variables
to represent them. The first step is to define the ranges of these two linguistic
variables: For representing temperature we shall use a range of 0–50 °C, while for
temperature variation we shall use a range from −2.0 to 2.0 °C per minute. Now we
need to create a partition on the linguistic variables by means of defining suitable
fuzzy sets on them. Tables 7.4a and b show the fuzzy sets that make up the input
linguistic variables lv-temperature and lv-delta-t, respectively.

In a similar way, Table 7.4c shows the fuzzy singletons that make up the output
linguistic variable AFT (Air Flow Temperature). The final, crisp output of the
controller will be positive if hot air is needed to stabilize the system. Conversely, it

Fig. 7.15 Temperature and Delta-temperature are the inputs to the air-conditioner controller. The
output is temperature and air flow, AFT

Table 7.4a Fuzzy sets for the linguistic variable lv-temperature

Fuzzy set label Membership function Lisp representation

Very-cold 0, 0, 6, 11 (setq T1 ‘(very-cold 0 0 6 11))

Cold 6, 11, 16, 21 (setq T2 ‘(cold 6 11 16 21))

Optimal 16, 21, 21, 26 (setq T3 ‘(optimal 16 21 21 26))

Hot 21, 26, 31, 36 (setq T4 ‘(hot 21 26 31 36))

Very-hot 31, 36, 50, 50 (setq T5 ‘(very-hot 31 36 50 50))

Table 7.4b Fuzzy sets for the linguistic variable lv-delta-t

Fuzzy set label Membership function Lisp representation

Decreasing −2, −2, −0.2, 0 (setq dT1 ‘(decreasing -2-2 -0.2 0))

No-change −0.2, 0, 0, 0.2 (setq dT2 ‘(no-change -0.2 0 0 0.2))

Increasing 0, 0.2, 2, 2 (setq dT3 ‘(increasing 0 0.2 2 2))
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will be negative if cold air is required. The numerical magnitude expresses the
required flow of air in a range from 0 to 100 %, that is, from null to maximum
output of the system.

Fig. 7.16b Input linguistic variable lv-delta-t

Fig. 7.16c Output linguistic variable AFT

Table 7.4c Fuzzy sets for the
output linguistic variable AFT
(Air Flow Temperature)

Fuzzy set label Singleton at x0 Lisp representation

Cold-strong −100 (cold-strong -100)

Cold-medium −50 (cold-medium -50)

Stop 0 (stop 0)

Heat-medium 50 (heat-medium 50)

Heat-strong 100 (heat-strong 100)

Fig. 7.16a Input linguistic variable lv-temperature
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Figures 7.16a, 7.16b and 7.16c show a graphical representation of the input and
output variables of the air-conditioner controller.

After all the required input and output linguistic variables have been established
we need a set of expert rules of the type given by expression (7-13) that links fuzzy
sets from the input linguistic variables to the fuzzy singletons in the output. One
example of rule for our fuzzy controller is the following one:

If t is very-cold and delta-t is decreasing then AFT is heat-strong

In plain English this rule means that if the temperature of the room is very cold
and the temperature is decreasing, then the controller must react supplying hot air at
a strong high rate flow. In Code 7-8 we can see the complete FuzzyLisp application
for our air-conditioner fuzzy controller:

;code 7-8
(load''my-path/fuzzy-lisp.lsp'')
;fuzzy sets and linguistic variables definitions:
(setq T1'(very-cold 0 0 6 11))
(setq T2'(cold 6 11 16 21))
(setq T3'(optimal 16 21 21 26))
(setq T4'(hot 21 26 31 36))
(setq T5'(very-hot 31 36 50 50))
(setq lv-temperature'(T1 T2 T3 T4 T5))

(setq dT1'(decreasing -2-2 -0.2 0))
(setq dT2'(no-change -0.2 0 0 0.2))
(setq dT3'(increasing 0 0.2 2 2))
(setq lv-delta-t'(dT1 dT2 dT3))

(setq AFT'(
(cold-strong -100)
(cold-medium -50)
(stop 0)
(heat-medium 50)
(heat-strong 100))

)

;fuzzy rules section:

(setq rules-controller'((lv-temperature lv-delta-t AFT)
(very-cold decreasing heat-strong AND-product)
(very-cold no-change heat-strong AND-product)
(very-cold increasing heat-strong AND-product)

(cold decreasing heat-strong AND-product)
(cold no-change heat-medium AND-product)
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(cold increasing heat-medium AND-product)

(optimal decreasing heat-medium AND-product)
(optimal no-change stop AND-product)
(optimal increasing cold-medium AND-product)

(hot decreasing cold-medium AND-product)
(hot no-change cold-medium AND-product)
(hot increasing cold-strong AND-product)

(very-hot decreasing cold-strong AND-product)
(very-hot no-change cold-strong AND-product)
(very-hot increasing cold-strong AND-product))

)

After the first lines of comments, the expression (load “my-path/fuzzy-lisp.lsp”)
tells NewLisp where to find FuzzyLisp. Here you will have to replace “my-path”
for the path where the file fuzzy-lisp.lsp is located in your computer.

The following lines in the code create the fuzzy sets and linguistic variables
already exposed in Tables 7.4a, b and c for the controller. Please note the used
structure for the output linguistic variable AFT. Since singletons can be formed by
very simple Lisp expressions, the output linguistic variable can be expressed in a
more compact way when compared to the input linguistic variables.

After all the fuzzy sets and linguistic variables are created, then it comes the fuzzy
rules section with a very definite ordering. Several important details must be remarked
in this structure of rules. First, the complete set of fuzzy rules need a Lisp symbol for a
proper identification. In this case we have chosen “rules-controller”. In the same line
of code, we have declared the names of the two input variables and the output
linguistic variable, as can be seen in the very first sublist: (lv-temperature lv-delta-t
AFT). FuzzyLisp needs to know beforehand the ordering of the linguistic variables in
the body of rules. Expressed with other words: The first rule in the body of rules in
FuzzyLisp is in itself not a rule but an enumeration of the used linguistic variables.

Another important point is the use of the symbol AND-product in the rules.
FuzzyLisp allows the designer to use several logical connectives in fuzzy rules. If the
symbol AND-min is used, then expression (7-5) will be used for inferences, that is:

Tvðp ^ qÞ ¼ min TvðpÞ; TvðqÞð Þ ¼ minðlAðxÞ; lBðyÞÞ

However, when using AND-product, then the following inference is applied:

Tvðp ^ qÞ ¼ TvðpÞ � TvðqÞ ¼ lAðxÞ � lBðyÞ ð7-24Þ

That is, FuzzyLisp multiplies the membership degrees μA(x), μB(y). This usually
produces a very smooth, continuous crisp output in the system. For expressing an
“or” logical connective FuzzyLisp uses the symbol OR-max as defined by expres-
sion (7-6). Other symbols could be added in future versions of FuzzyLisp
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representing different ways of conjunction and disjunction (the interested reader will
find more information in fuzzy-logic theoretical books under the terms “t-norms” and
“t-conorms”. The study of t-norms and t-conorms is outside the scope of this book).

Another important remark emerges when observing the last rule:

(very-hot increasing cold-strong AND-product))

Just note the double closing parenthesis. As you know, in every Lisp program the
number of left parenthesis equals the number of right parenthesis. Since the con-
struction of a set of expert fuzzy rules in FuzzyLisp usually results into a relatively
complex expression, special care should be put on matching left and right paren-
thesis. If a fuzzy model developed with FuzzyLisp crashes or does not behaves well,
the first place to look is in the declaration part of rules and linguistic variables.

Code 7-8 represents the complete knowledge database for the fuzzy controller.
Now, for fulfilling the architecture of a FRBS as shown in Fig. 7.6, we need a
fuzzification-defuzzification mechanism and an inference engine. All these software
components are included as functions in FuzzyLisp and now it is time to uncover them.

Maybe the most important function in FuzzyLisp is (fl-translate-rule). This
function is the nucleus of its inference engine. It takes a rule at a time from the
fuzzy rules body, performs the adequate inferences and translates it into member-
ship degrees. As arguments, it needs the first sublist from the body of rules where
the enumeration of the used linguistic variables is expressed. In our controller
example, the needed sublist is (lv-temperature lv-delta-t AFT). The second argu-
ment is the rule to “translate”, as for example, (optimal increasing cold-medium
AND-product). Finally, the third and fourth arguments are the crisp input numerical
values to the FRBS. In our example these values correspond to a given crisp values
of temperature t and temperature variation delta-t. For example, t = 22C and delta-
t = 0.25 C/min. Code 7-9 shows the function:

;code 7-9
(define (fl-translate-rule header rule x y,

lv1 lv2 lv3 fset1 fset2 fset3 mu1 mu2 s
operator m1 m2 wi wixi)

;extract linguistic variables from the header:
(setq lv1 (nth 0 header) lv2 (nth 1 header) lv3 (nth 2

header))
;extract fuzzy sets from the rule:
(setq fset1 (nth 0 rule) fset2 (nth 1 rule) fset3 (nth 2

rule))
;extract the operator in the rule:
(setq operator (nth 3 rule))

;get first lv, calculate memberships given x and then
;select the membership degree corresponding to the first
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;set in the rule:
(setqmu1(assocfset1(fl-lv-membership2?(evallv1)x)))

;now do the same for second lv, y and second set in the
rule:

(setqmu2(assocfset2(fl-lv-membership2?(evallv2)y)))

;now get the appropiate singleton, s:
(setq s (assoc fset3 (eval lv3)))

;extract the membership degrees:
(setq m1 (last mu1) m2 (last mu2))
(case operator

(AND-product
;apply AND-product by making wi=m1xm2:
(setq wi (mul m1 m2)) (setq wisi (mul wi (last s)))

)
(AND-min

;apply AND-min by making wi=min(m1,m2):
(setq wi (min m1 m2)) (setq wisi (mul wi (last s)))

)
(OR-max

;apply OR-max by making wi=max(m1,m2):
(setq wi (max m1 m2)) (setq wisi (mul wi (last s)))

)
);case end
;finally return the numerical translation of the rule
(list m1 m2 wi wisi)

)

Function (fl-translate-rule) begins reading the header of the body rules (first
sublist) and extracting the linguistic variables from the header and then the fuzzy
sets at play. Later, several calls to the function (fl-lv-membership2?) are responsible
for the fuzzification of the crisp input, storing the obtained membership degrees in
the internal variables mu1 and mu2. The singleton from the consequent in the rule is
identified as it happens also with the operator located at the end of the analyzed
rule. The second part of the function works by means of a case Lisp statement,
selecting the appropriate inference to be performed on the rule. Finally, the function
returns a list containing the membership degrees to the first and second fuzzy sets in
the antecedent of the rule, then the result of the performed numerical inference, and
finally the numerical value after multiplying it by the corresponding singleton in the
consequent. Let us take as example rule number nine:

(optimal increasing cold-medium AND-product)
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Calling the function we obtain:

> (fl-translate-rule (first rules-controller) (nth 9 rules-controller) 22 0.25)
: (0.8 1 0.8 -40)

The value 0.8 is the membership degree of 22 °C to the fuzzy set optimal, while
1 is the membership degree of 0.25 °C per minute to the fuzzy set increasing. The
third value is the result of multiplying both membership degrees (inference dictated
by the symbol AND-product), and the last value is obtained after multiplying 0.8 by
the value associated to the singleton cold-medium (-50). Just note the appropriate
use of the Lisp functions (first) and (nth) in the previous expression. This gives us
a hint to create a function that will evaluate all the fuzzy rules contained in
the knowledge database. This function, named (fl-translate-all-rules) is shown in
Code 7-10:

;code 7-10
(define (fl-translate-all-rules set-of-rules x y, n i

list-out)
(setq list-out'())
(setq n (length set-of-rules))
(setq i 1);indexed on the first rule

(while (< i n)
(setq list-out (cons

(fl-translate-rule (first set-of-rules)
(nth i set-of-rules) x y) list-out))

(++ i)
);while end
(reverse list-out)

)

as can be easily noted observing the code, this function scans all the rules from the
body of rules and returns a list containing all the calculations made for each of
them. As parameters, the function takes the name of the complete body of rules and
two crisp input values to feed the system. Let us try the function at the Lisp prompt:

> (fl-translate-all-rules rules-controller 22 0.25)
: ((0 0 0 0) (0 0 0 0) (0 1 0 0) (0 0 0 0) (0 0 0 0) (0 1 0 0) (0.8 0 0 0) (0.8 0 0 0)
(0.8 1 0.8 -40) (0.2 0 0 0) (0.2 0 0 0) (0.2 1 0.2 -20) (0 0 0 -0) (0 0 0 0) (0 1 0 0))

From the output we can see that rules #9 and #12 have been fired in the example
when t = 22 °C and delta-t = 0.25 °C/min are used as crisp inputs. This is easy to
observe because the last element in their respective sub-lists is not null. In fact,
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calling the functions (fl-translate-rule) and (fl-translate-all-rules) from the Lisp
prompt is a good strategy when we whish to debug and/or in depth analyze a fuzzy
application made with FuzzyLisp. Now it is time to take the output of the function
(fl-translate-all-rules) and apply a defuzzification procedure to it. A new FuzzyLisp
function, named (fl-defuzzify-rules) is dedicated specifically to this task, as shown in
Code 7-11:

; Code 7-11
(define (fl-defuzzify-rules translated-rules,

i n sum-wi sum-wixi)
(setq i 0)
(setq sum-wi 0) (setq sum-wixi 0)
(setq n (length translated-rules))
(while (< i n)

(setq sum-wi (add sum-wi (nth 2 (nth i translated-
rules))))

(setq sum-wixi (add sum-wixi
(nth 3 (nth i translated-rules))))

(++ i)
)
(div sum-wixi sum-wi)

)

The function takes as arguments the output list of the function (fl-translate-all-
rules) and then traverses it in order to apply the defuzzification mathematical
expression (7-22), providing a crisp numerical result to the fuzzy system. Let us try
this function at the Lisp prompt:

> (fl-defuzzify-rules (fl-translate-all-rules rules-controller 22 0.25))
: -60

So, our model tells that when temperature is t = 22 °C and variation of tem-
perature is delta-t = 0.25 °C/min, the airflow temperature AFT must be AFT = −60.
This is a great result, but once again, the call to the function (fl-defuzzify-rules)
suggests the development a more comfortable to use one, named (fl-inference), as
shown in Code 7-12:

;code 7-12
(define (fl-inference rules x y)

(fl-defuzzify-rules (fl-translate-all-rules rules x y))
)

This function puts it all together, allowing the NewLisp user to obtain the crisp
output of a FRBS using only three parameters: The name of the complete body of
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rules and then the crisp input to the system, that is, two numerical values. The
function call for our air-conditioner controller example cannot be simpler:

> (fl-inference rules-controller 22 0.25)
: -60

In practical terms, this means that for developing fuzzy-models based on the
architecture shown in Fig. 7.6 where two crisp values are used as input, a FuzzyLisp
user only needs to declare fuzzy sets, linguistic variables and a set of expert fuzzy
rules with the structure exposed in Code 7-8 and then, by simple callings to the
function (fl-inference) all the internal processes of fuzzification, knowledge data-
base management and defuzzification are automatically performed. In Chap. 1 of
this book we stated that Lisp is a powerful language. I hope that once we have
reached this milestone the reader will agree.

For extensively testing our air-conditioner fuzzy controller we can make suc-
cessive calls to the function (fl-inference), obtaining, for example, the results shown
in Table 7.5. In the first row you can see some values for temperatures, t, while the
first column at left represents some values for temperature variation, delta-t.Needless
to say, the rest of values in the table represent output airflow temperatures, AFT.

Albeit impressive, this table requires 90 function calls to (fl-inference), and this
is a tedious task to perform manually. Fortunately, Lisp, besides allowing us to
express our ingenuity and mathematical creativity, gives us also, as it happens with
other computer languages, the opportunity to automatize repetitive work. This is the
philosophy behind the function (fl-3d-mesh). This FuzzyLisp function is in fact a
procedure for creating tables as the one shown above these lines. Let us observe it
in Code 7-13:

;code 7-13
(define (fl-3d-mesh namefile rules nx ny,

x1 x2 y1 y2 header lv1 lv2 stepx stepy x y)

Table 7.5 Airflow temperatures AFT obtained as the crisp result of the fuzzy air-conditioner
controller

0 3 8.5 13.5 18.5 23.5 28.5 33.5 36.5 50

−1 100 100 100 100 75 0 −50 −75 −100 −100

−0.15 100 100 93.75 87.5 62.5 −6.25 −50 −75 −100 −100

−0.10 100 100 87.5 75 50 −12.5 −50 −75 −100 −100

−0.05 100 100 81.25 62.5 37.5 −18.75 −50 −75 −100 −100

0 100 100 75 50 25 −25 −50 −75 −100 −100

0.05 100 100 75 50 18.75 −37.5 −62.5 −81.25 −100 −100

0.10 100 100 75 50 12.5 −50 −75 −87.5 −100 −100

0.15 100 100 75 50 6.25 −62.5 −87.5 −93.75 −100 −100

1 100 100 75 50 0 −75 −100 −100 −100 −100

Input temperatures are shown in the first row. Temperature variation is shown in the first column
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(setq header (nth 0 rules))
;get the extremes x1 x2 of the first lv
(setq lv1 (nth 0 header) lv2 (nth 1 header))
(setq x1 (nth 1 (eval (first (eval lv1)))))
(setq x2 (last (eval (last (eval lv1)))))
;now get the extremes y1 y2 of the second lv
(setq y1 (nth 1 (eval (first (eval lv2)))))
(setq y2 (last (eval (last (eval lv2)))))

(setq stepx (div (sub x2 x1) nx))
(setq stepy (div (sub y2 y1) ny))
(setq x x1 y y1)
(println''Writing 3Dmesh …'')
(device (open namefile''write''))
(while (<= x x2)

(while (<= y y2)
(print x'',''y'',''(fl-inference rules x y)''\n'')
(setq y (add y stepy))

); end while y
(setq y y1); reset y value
(setq x (add x stepx))

);end while x
(close (device))
(println''3Dmesh written to file'')

)

Basically speaking, this function scans the range of two linguistic variables used
as antecedents in a FRBS by making successive calls to the function (fl-inference)
with changing input crisp values x,y inside the range of the linguistic variables at
play. Let us try a call example in order to better understand how does it work:

>(fl-3d-mesh “air-conditioner-controller.csv” rules-controller 20 20)
: Writing 3Dmesh …
3D mesh Written to File

As the output of the function call suggests, (fl-3d-mesh) writes a file to the
computer’s hard disk where all the calculations resulting from adequate calls to
(fl-inference) are stored. As arguments, this function requires a string representing a
filename for the desired output file, the name of the complete body of rules of the
fuzzy model and then two numerical values nx, ny that inform the function how
many discretization steps are needed for building the “table” of output data. As a
rule of thumb, values of nx, ny between 20 and 50 are enough for any practical
application. Let us take a view to the contents of the output file air-conditioner-
controller.csv:
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0,-2,100
0,-1.8,100
0,-1.6,100
…

22.5,-0.4,20
22.5,-0.2,20
22.5,0,-15
22.5,0.2,-65
22.5,0.4,-65
…

50,1.6,-100
50,1.8,-100
50,2,-100

As can be seen, the file has a comma separated value (csv) format, so you can
open it not only in any text editor program such as Notepad or TextEdit, but also in
Excel and many other programs that accept csv-type files for data importation.
Since every line can be interpreted as the coordinates of a 3D point in space, many
technical programs allows to create a 3D visualization of the interpolated three
dimensional surface, as we can appreciate in Fig. 7.17.

While the base of the figure is represented by a bi-dimensional plane formed by
t and delta-t (corresponding to the linguistic variables lv-temperature and lv-delta-t,

Fig. 7.17 Output surface of the fuzzy air-conditioner controller
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respectively), the height of every point belonging to the 3D surface represents the
output airflow temperature calculated by the fuzzy controller, AFT. As can be seen,
dark areas in the surface represent low, negative values of AFT, while lighter ones
represent positive AFT values. Several remarks must be made at this point: The first
one is the steep region located about the middle of the surface. This is caused
mainly because the relatively small support of the fuzzy set no-change in the input
linguistic variable lv-delta-t and the large support of the fuzzy sets decreasing and
increasing in the same linguistic variable. The second remark points to the presence
of some flat regions in the output surface that we shall name “terraces”, including
the big decks corresponding to AFT = −100 and AFT = 100. While there are lots of
creative work and parameters to choose when creating a FRBS, one thing is certain:
If trapezoidal fuzzy sets are used on the linguistic variables that make up a fuzzy
application then terraces will always appear on the resulting output surface. The
existence of terraces is not, by itself, an inconvenient, and can be just the desired
design of the fuzzy application, but if you don’t desire terraces in your output
surfaces you will need to use only triangular membership functions in your models.
The reader is invited to modify and play with the fuzzy sets that make up the
linguistic variables lv-temperature and lv-delta-t. As an example, the fuzzy set no-
change can be expanded by means of using the FuzzyLisp function (fl-expand-
contract-set) from the Lisp prompt, the fuzzy sets decreasing and increasing can be
modified, shortening their support and nuclei, etc. The best advice in order to
acquire experience in designing fuzzy systems is to play with them and observe
their behavior. In the rest of this chapter some extra advice will be given for this
conceptual challenge and also in the next chapter, but nothing replaces experience
and experimentation. FuzzyLisp will help you in every step you make, but, as they
say, there is no such a thing as a free lunch.

7.9 Fuzzy Logic in Motor Racing: Scoring in Regularity
Rallies

Regularity rallies are a form of motor sport with strong tradition both in Europe and
North America. The goal in this type of competition is not to complete an itinerary
or a circuit in the shortest possible time but to complete a predefined route (usually
with open traffic) on a precise time specified by the organization of the race. Let us
imagine we are the organizers of a regularity rally where sponsors have asked us for
some innovation in the regulations. Figure 7.18 represents a sort of ring, 18 km. in
length, composed by three route sections. The first one starts in point A and follows
a regional, low traffic road, until reaching point B. In this point the race goes along a
national, heavy traffic road until reaching point C, where again another regional
road leads to complete the ring at Finish (point A). The usual main rule for a race of
this type is to estipulate an ideal time t for completing the route and then to time
every participant car. Cars start the route not at the same time but with a time
difference between them, e.g., one minute apart. After the race is over, every car Ci
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will get a register time t ± dti and the car with the lower dti time will be the winner.
For example, if we think about an average goal speed of 60 km/h, then the ring
should be completed in exactly 18 min. Increasing deviations from this goal time
will get decreasing ranking positions in the final classification.

A more complex rule can be derived from establishing two stages for the race in
such a way that every car will complete the route in two lap times t1, t2. Then, the
winner will be the car with the smaller difference delta-time = abs(t1 − t2). As an
example, if a car has registered lap times t1 = 17:57 and t2 = 18:13, (format is
minutes: seconds) then its overall race time will be delta-time = 16 s.

We are confident this is an improvement with respect to ordinary race regula-
tions in regularity rallies, but after some reflection, we decide to go further. This
time using fuzzy logic. First, we create two sharp rules in order to bind the model:

• Cars with lap time t1 or t2 < 16:00 will be eliminated
• Cars with lap time t1 or t2 > 20:00 will be eliminated

This is so because we do not want pilots achieving extremely high speeds
(remember, roads are open to traffic in this type of competition). On the other hand
slow cars are not the essence of motor sport, so an inferior time limit seems
appropriate to apply. The design goal for our scoring model is to offer the pilots a
variety of strategies to choose from, always having regularity in mind, but also
offering them the possibility to opt for an aggressive strategy (higher speeds), a
defensive, conservative strategy (lower speeds), or something in between. In any
case, extreme aggressive strategies, and at a lesser extent, extreme defensive
strategies, even with lap times well between 16 and 20 min, will have an implicit
penalty. For example, if the pilot of a given car decides to go for lap times

Fig. 7.18 Regularity rally track sections
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t1 = 16:00:00 and t2 = 16:00:00, then he will get 100 points, the maximum score.
But if he gets, for example t1 = 16:00:00 and t2 = 16:00:05, then he will get exactly
zero points in the scoring. In some way the organizers are happy to have aggressive
strategies in the race, but they give the teams the following warning: “if you want to
run fast you must be extremely regular”. The regulation completes with the fol-
lowing overall fuzzy rules:

• If you run really fast then you will need to be extremely regular to score the
highest in the race.

• If you run relatively slow then you will need to be certainly regular to score high
in the race.

• If you run at a moderate speed, then you will have the bigger tolerance with
respect to delta-time, allowing great scoring in the race.

In order to create a fuzzy model for scoring the regularity rally, we shall create
two linguistic variables as input (lap-time and delta-time) and an output linguistic
variable named “points” for representing score. The membership functions and Lisp
representation of the fuzzy set that make up these linguistic variables are shown in
Tables 7.6a, b and c. Time units are expressed in seconds:

Table 7.6a Fuzzy sets for the linguistic variable “lap-time”

Fuzzy set label Lisp representation of membership function

Very-quick (setq t1 ‘(very-quick 960 960 980 1000))

Quick (setq t2 ‘(quick 980 1000 1040 1060))

Slow (setq t3 ‘(slow 1040 1060 1100 1120))

Rather-slow (setq t4 ‘(rather-slow 1100 1120 1160 1180))

Very-slow (setq t5 ‘(very-slow 1160 1180 1200 1200))

Table 7.6b Fuzzy sets for
the linguistic variable
“delta-time”

Fuzzy set label Lisp representation of membership
function

Delta-very-small (setq d1 ‘(delta-very-small 0 0 2 5))

Delta-small (setq d2 ‘(delta-small 2 5 5 10))

Delta-medium (setq d3 ‘(delta-medium 5 10 10 20))

Delta-big (setq d4 ‘(delta-big 10 20 20 40))

Delta-very-big (setq d5 ‘(delta-very-big 20 40 60 60))

Table 7.6c Fuzzy sets for the
output linguistic variable
“points”

Fuzzy set label Singleton at x0 Lisp representation

Very-low 0 (very-low 0)

Low 25 (low 25)

Medium 50 (medium 50)

High 75 (high 50)

Very-high 100 (very-high 100)
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These fuzzy sets and linguistic variables are graphically shown in Figs. 7.19a,
7.19b and 7.19c.

The input variable “lap-time” has nothing special to comment, and, as can be
seen, is composed by trapezoidal shaped fuzzy sets. The second input variable,
“delta-time” is composed by fuzzy sets with both triangular and trapezoidal
membership functions. The most important feature in the design of this linguistic
variable is the non-uniform distribution of its fuzzy sets. These appear “com-
pressed” towards the left because an important reason: As designers we wish the
scoring model to be sensitive to differences of delta-time, and extremely sensitive
when delta-time values are small and very small, hence the concentration of fuzzy

Fig. 7.19b Input linguistic variable delta-time, in seconds

Fig. 7.19c Output linguistic variable representing score from 0 to 100

Fig. 7.19a Input linguistic variable lap-time, in seconds
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sets towards the left of the linguistic variable. The rules for organizing the linguistic
variables in the model are shown in Code 7-14:

;code 7-14
(setq rules-cars'((lap-time delta-time points)

(very-quick delta-very-small very-high AND-product)
(very-quick delta-small very-low AND-product)
(very-quick delta-medium very-low AND-product)
(very-quick delta-big very-low AND-product)
(very-quick delta-very-big very-low AND-product)
(quick delta-very-small high AND-product)
(quick delta-small high AND-product)
(quick delta-medium high AND-product)
(quick delta-big medium AND-product)
(quick delta-very-big very-low AND-product)

(slow delta-very-small very-high AND-product)
(slow delta-small very-high AND-product)
(slow delta-medium very-high AND-product)
(slow delta-big very-high AND-product)
(slow delta-very-big medium AND-product)

(rather-slow delta-very-small very-high AND-product)
(rather-slow delta-small high AND-product)
(rather-slow delta-medium high AND-product)
(rather-slow delta-big high AND-product)
(rather-slow delta-very-big very-low AND-product)

(very-slow delta-very-small high AND-product)
(very-slow delta-small high AND-product)
(very-slow delta-medium medium AND-product)
(very-slow delta-big low AND-product)
(very-slow delta-very-big very-low AND-product))

)

Running the model by means of the FuzzyLisp functions (fl-inference) and
(fl-3d-mesh) we obtain, after exporting the obtained data to a surface graphing
application, the output surface from Fig. 7.20.

We can observe that small values of delta-time lead to the highest scores, and
also an abrupt collapse in scoring when lap-time is very small and delta-time starts
to increase (rightmost region of the Figure), as we desired on the initial design of
the model. However, it is also easy to observe the presence of several terraces on
the output surface. For obtaining a good classification in a sport competition this is
not a desirable result because it may lead to many possible ex-aequo instances
among the participants. As we commented in the previous section, the presence of
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Table 7.7 Changing fuzzy sets for the linguistic variable “lap-time”

Fuzzy set label Lisp representation of membership function

Very-quick (setq t1 ‘(very-quick 960 960 960 1200))

Quick (setq t2 ‘(quick 960 1020 1020 1200))

Slow (setq t3 ‘(slow 960 1080 1080 1200))

Rather-slow (setq t4 ‘(rather-slow 960 1140 1140 1200))

Very-slow (setq t5 ‘(very-slow 960 1200 1200 1200))

Fig. 7.21 Input linguistic variable lap-time, modified

Fig. 7.20 Output surface of the scoring model
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these terraces is due to the existence of trapezoidal membership functions in the
linguistic variable lap-time. A workaround to this problem is to use triangles for the
membership functions in the linguistic variable. Let us experiment what happens
when using a maximum fuzziness linguistic variable where all the fuzzy sets at play
share a common support. Table 7.7 shows the new linguistic variable lap-time.

The new sets are shown in Fig. 7.21.
Running again the model by means of the FuzzyLisp functions (fl-inference) and

(fl-3d-mesh) we obtain a new output surface as shown in Fig. 7.22.
Now we can realize the improvement in smoothness we have got on the output

surface. The overall design of the model is still there, but now we have got a more
adequate result. In any case, the use of maximum fuzziness linguistic variables in
fuzzy modeling sometimes generates too much “smoothness” and many times the
use of standard triangular membership functions for the fuzzy sets in the model is
desirable. The reader is again invited to play with the model, transforming it and
observing the results. The complete Lisp code for this application is shown in Code
7-15:

;code 7-15
(load''my-path/fuzzy-lisp.lsp'')
;fuzzy sets and linguistic variables definitions:
;lap time, all times in seconds
;For qualifying, time must be between 16 and 20 min
;that is, from 960 to 1200 s
(setq t1'(very-quick 960.0 960.0 960.0 1020.0))

Fig. 7.22 Improved output surface of the scoring model
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(setq t2'(quick 960.0 1020.0 1020.0 1200.0))
(setq t3'(slow 960.0 1080.0 1080.0 1200.0))
(setq t4'(rather-slow 960.0 1140.0 1140.0 1200.0))
(setq t5'(very-slow 960.0 1200.0 1200.0 1200.0))
(setq lap-time'(t1 t2 t3 t4 t5))

;delta-time, all times in seconds, from 0 s to 60 s
(setq d1'(delta-very-small 0 0 2 5))
(setq d2'(delta-small 2 5 5 10))
(setq d3'(delta-medium 5 10 10 20))
(setq d4'(delta-big 10 20 20 40))
(setq d5'(delta-very-big 20 40 60 60))
(setq delta-time'(d1 d2 d3 d4 d5))

(setq points'(
(very-high 100.0)
(high 75.0)
(medium 50.0)
(low 25.0)
(very-low 0.0))

)
;fuzzy rules section:

(setq rules-cars'((lap-time delta-time points)
(very-quick delta-very-small very-high AND-product)
(very-quick delta-small very-low AND-product)
(very-quick delta-medium very-low AND-product)
(very-quick delta-big very-low AND-product)
(very-quick delta-very-big very-low AND-product)

(quick delta-very-small high AND-product)
(quick delta-small high AND-product)
(quick delta-medium high AND-product)
(quick delta-big medium AND-product)
(quick delta-very-big very-low AND-product)

(slow delta-very-small very-high AND-product)
(slow delta-small very-high AND-product)
(slow delta-medium very-high AND-product)
(slow delta-big very-high AND-product)
(slow delta-very-big medium AND-product)

(rather-slow delta-very-small very-high AND-product)
(rather-slow delta-small high AND-product)
(rather-slow delta-medium high AND-product)
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(rather-slow delta-big high AND-product)
(rather-slow delta-very-big very-low AND-product)

(very-slow delta-very-small high AND-product)
(very-slow delta-small high AND-product)
(very-slow delta-medium medium AND-product)
(very-slow delta-big low AND-product)
(very-slow delta-very-big very-low AND-product))

)
Before finishing this section, let’s imagine that it’s raining the day of the motor

race. Needless to say, lap times should be changed accordingly in order to allow the
pilots to race safely. For obtaining a new definition of the linguistic variable
“lap-time” we can write a function that internally calls the FuzzyLisp function (fl-
fuzzy-shift). Such a function is shown in Code 7-16:

;code 7-16
(define (shift-lap-time x)

(setq t1 (fl-fuzzy-shift t1 x))
(setq t2 (fl-fuzzy-shift t2 x))
(setq t3 (fl-fuzzy-shift t3 x))
(setq t4 (fl-fuzzy-shift t4 x))
(setq t5 (fl-fuzzy-shift t5 x))
true

)

Now, for shifting two minutes (120 s) the linguistic variable lap-time, we only need
to type at the Lisp prompt:

> (shift-lap-time 120)
: true

and for testing the modified fuzzy-sets we can type:

> (fl-list-sets lap-time)
: (very-quick 1080 1080 1080 1140)
(quick 1080 1140 1140 1320)
(slow 1080 1200 1200 1320)
(rather-slow 1080 1260 1260 1320)
(very-slow 1080 1320 1320 1320)

As the reader can imagine, it is the responsibility of the organization of the race
to give every racing team a copy of the output surfaces in the form of scoring tables
(both in wet and dry conditions) to allow them to choose their race strategy well
ahead of time. Table 7.5 is a simplified example of how to share a fuzzy model.
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Usually more resolution is required, but this is easy to achieve by means of using
the function (fl-3d-mesh).

Incidentally, the use of function (fl-3d-mesh) allows the reader to use FuzzyLisp
as a general purpose fuzzy modeling toolbox that produces neutral text files rep-
resenting the knowledge embedded into the model. Later, if you use Java, C#, or
any other programming language you only need to load the produced text files into
your applications and then, by using bilinear interpolation, you automatically
incorporate fuzzy-logic features in them.

7.10 FRBS Using Fuzzy Sets with Discrete Membership
Functions

In Sects. 7.8 and 7.9 we have introduced two example fuzzy models based on a
FuzzyLisp Standard Set Representation (FLSSR), that is, models whose fuzzy sets
have either a triangular or trapezoidal characteristic function. However, in Chap. 6
we emphasized too on fuzzy sets with a discrete characteristic function (FLDSR). It
would be a pity that after the effort of writing dedicated FuzzyLisp functions to this
type of fuzzy sets we would not have a way to develop fuzzy rule based systems
with them.

For such an undertaking we need only a slight variation of the functions (fl-
translate-rule), (fl-translate-all-rules), (fl-inference) and (fl-3d-mesh) and then some
changes in the Lisp structure of a fuzzy model. The names of the new FuzzyLisp
functions for handling systems composed by discrete fuzzy sets are shown in the
right column from Table 7.8.

As can be seen in the table, the simple addition of the letter “d” inside the name
of the function signals its proper use. The Lisp source code of these functions is
practically identical to their “continuous” counterparts, so we shall not show it here
in order to save space. You can freely examine it after downloading the file
fuzzylisp.lsp from the book’s Web site. The important thing to remember is that
both variations of the functions have exactly the same arguments as inputs and they
produce the same structure of data in their output. Essentially their use is identical.
There is only one restriction: You cannot mix continuous and discrete fuzzy sets for
a given set of fuzzy rules. That is, if you decide to use an input linguistic variable

Table 7.8 FuzzyLisp
functions for developing
Fuzzy Rule Based Systems

Functions for FLSSR Functions for FLDSR

(fl-translate-rule) (fl-dtranslate-rule)

(fl-translate-all-rules) (fl-dtranslate-all-rules)

(fl-inference) (fl-dinference)

(fl-3d-mesh) (fl-3d-dmesh)

Functions for dealing with continuous fuzzy sets are shown on
the left column. Functions for discrete fuzzy sets are shown on
the right column
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composed by fuzzy sets with discrete membership functions, then the other input
variable must be composed also by discrete fuzzy sets. The use of singletons for the
output share exactly the same structure in both cases.

Code 7-17 shows a variation of the model of an air-conditioner controller where
bell-shaped fuzzy sets are used for the input linguistic variables lv-temperature and
lv-delta-t. Please note the needed definitions fi of every bell function and the now
mandatory use of the function (fl-discretize) in order to follow an adequate
FuzzyLisp sets definition. For example, the fuzzy set “optimal” needs first an
adequate function definition, expressed by:

(setq f3 ' (div (add 1.0 (cos (mul 0.2 pi (sub x 21.0)))) 2.0))

and then we only need to create the corresponding fuzzy set by means of the
following expression:

(setq T3 (fl-discretize-fx ‘optimal f3 20 16 26))

the membership function of the fuzzy set “optimal” (T3) is thus centered on x = 21,
and its support is defined in the interval [16,26]. By means of the function (fl-
discretize) we establish also the used resolution on the resulting fuzzy set, in this
case n = 20. Note also that the fuzzy rules remain unchanged, as it happens also
with the singletons for the consequents in the rules, being identical as the ones
shown in Table 7.4c.

;code 7-17
(load''my-path/fuzzy-lisp.lsp'')

;functions and definitions for first linguistic variable:
(setqf1'(div(add1.0(cos(mul0.0909pi(subx0.0))))2.0))
(setq f2'(div (add 1.0 (cos (mul 0.13333 pi (sub x 13.5))))

2.0))
(setq f3'(div (add 1.0 (cos (mul 0.2 pi (sub x 21.0)))) 2.0))
(setq f4'(div (add 1.0 (cos (mul 0.13333 pi (sub x 28.5))))

2.0))
(setq f5'(div (add 1.0 (cos (mul 0.05263 pi (sub x 50.0))))

2.0))

(setq T1 (fl-discretize-fx'very-cold f1 20 0 11))
(setq T2 (fl-discretize-fx'cold f2 20 6 21))
(setq T3 (fl-discretize-fx'optimal f3 20 16 26))
(setq T4 (fl-discretize-fx'hot f4 20 21 36))
(setq T5 (fl-discretize-fx'very-hot f5 20 31 50))
(setq lv-temperature'(T1 T2 T3 T4 T5))

;functions and definitions for second linguistic variable:
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(setq f6'(div (add 1.0 (cos (mul 0.5 pi (sub x -2.0)))) 2.0))
(setq f7'(div (add 1.0 (cos (mul 1.0 pi (sub x 0.0)))) 2.0))
(setq f8'(div (add 1.0 (cos (mul 0.5 pi (sub x 2.0)))) 2.0))

(setq dT1 (fl-discretize-fx'decreasing f6 20 -2.0 0.0))
(setq dT2 (fl-discretize-fx'no-change f7 20 -1.0 1.0))
(setq dT3 (fl-discretize-fx'increasing f8 20 0.0 2.0))
(setq lv-delta-t'(dT1 dT2 dT3))

(setq AFT'(
(cold-strong -100)
(cold-medium -50)
(stop 0)
(heat-medium 50)
(heat-strong 100))

)

(setq rules-controller'((lv-temperature lv-delta-t AFT)
(very-cold decreasing heat-strong AND-product)
(very-cold no-change heat-strong AND-product)
(very-cold increasing heat-strong AND-product)

(cold decreasing heat-strong AND-product)
(cold no-change heat-medium AND-product)
(cold increasing heat-medium AND-product)

(optimal decreasing heat-medium AND-product)
(optimal no-change stop AND-product)
(optimal increasing cold-medium AND-product)

(hot decreasing cold-medium AND-product)
(hot no-change cold-medium AND-product)
(hot increasing cold-strong AND-product)

(very-hot decreasing cold-strong AND-product)
(very-hot no-change cold-strong AND-product)
(very-hot increasing cold-strong AND-product))

)

For running the model when, for example, temperature is 21 °C and temperature
variation is 0.5 °C/min, we only need to type:

> (fl-dinference rules-controller 21 0.5)
: -11.32704597
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Looking into the details at the model is easy with the function (fl-dtranslate-all-
rules):

> (fl-dtranslate-all-rules rules-controller 21 0.5)
: ((0 0 0 0) (0 0.5 0 0) (0 0.1464466094 0 0) (0 0 0 0) (0 0.5 0) (0 0.1464466094

0 0) (1 0 0 0) (1 0.5 0.5 0) (1 0.1464466094 0.1464466094 -7.322330472) (0 0 0 0)
(0 0.5 0 0) (0 0.1464466094 0 0) (0 0 0 0) (0 0.5 0 0) (0 0.1464466094 0 0))

Fig. 7.23 Output surface of the modified fuzzy air-conditioner controller

Table 7.9 Airflow temperatures AFT obtained as the crisp result of a variation of the fuzzy
air-conditioner controller using discrete membership functions

0 7.5 13.5 17.5 21 22.5 28.5 32.5 38 50

−2 100 100 100 84.26 49.99 39.26 −50 −51.80 −100 −100

−1.5 100 100 100 84.26 49.99 39.26 −50 −51.80 −100 −100

−1.0 100 100 100 84.26 49.99 39.26 −50 −51.80 −100 −100

−0.5 100 88.67 61.33 45.58 11.33 4.74 −50 −51.80 −100 −100

0 100 85.35 50 34.26 0 −5.37 −50 −51.80 −100 −100

0.5 100 85.35 50 30.69 −11.33 −16.69 −61.33 −62.72 −100 −100

1.0 100 85.35 50 18.51 −49.99 −55.37 −100 −100 −100 −100

1.5 100 85.35 50 18.51 −49.99 −55.37 −100 −100 −100 −100

2.0 100 85.35 50 18.51 −49.99 −55.37 −100 −100 −100 −100

Input temperatures are shown in the first row. Temperature variation is shown in the first column
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In Table 7.9 we can have a first look at the behavior of the model. It offers
different results when comparing it with the previous model whose linguistic
variables are composed by fuzzy sets with triangular or trapezoidal membership
functions. This is so because an important reason: while it is easy to replace
triangles by bell-shaped functions, trapeziums are more difficult, especially when
their support is large with respect to the whole range of the linguistic variable they
belong. Due to this, the supports of the fuzzy sets belonging to the linguistic
variable lv-delta-t have been more equally spaced.

Figure 7.23 shows the surface output of the model. If we compare it to the
surface output shown in Fig. 7.17 we shall note immediately the effect caused by
the new design of the output linguistic variable lv-delta-t, but at the same time it is
easy to realize the resemblance between the two outputs, showing a familiar
appearance. Besides having, as stated, identical singletons for the consequents and
similar fuzzy sets in the input linguistic variable lv-temperature, the rules belonging
to the knowledge database are exactly the same. Models based on bell shaped fuzzy
sets exhibit a smoother output surface when compared to triangular and trapezoidal
shaped fuzzy sets, but not a big difference of character is observed between them.
On the other hand, creating FRBS with fuzzy sets based on discrete membership
functions require more code in FuzzyLisp, and more internal calculations in gen-
eral. In the rest of the book we shall use triangular and trapezoidal membership
functions in the application models.

7.11 As a Summary

This chapter has allowed us to develop a conceptual transition from fuzzy sets
theory to fuzzy logic. As already stated, this transition has been really smooth due
to the existent isomorphism between membership degree to a (fuzzy) set and the
truth-value of a (fuzzy) proposition. The following paragraphs summarize the main
ideas exposed on this chapter:

• In general terms, logic is a structured pattern of thinking that makes it possible
to arrive to new knowledge from previous established information. In traditional
logic, a proposition is natural language expressing an assertion that can be either
true or false, but not true and false at the same time.

• Simple propositions take the form “x is P” where x is called the subject of the
proposition and P is called the predicate of the proposition, usually expressing a
property or feature of x. After a proposition is evaluated, a truth-value results
from the evaluation. In classic logic there are only two possible results: either
“true” or “false”.

• In compound propositions their truth value results from the truth values of every
simple proposition taking part in it and the way they are connected, that is, from
the type of logical connective, or logical operator, used for establishing the link
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between simple propositions. The main logical operators are “conjunction,
“disjunction”, “negation” and “implication”.

• Conjunction: Given two propositions p, q, we call their conjunction to the
compound proposition “p and q”, denoting them by the logical expression “p ∧
q”. This compound proposition is true if and only if both p and q propositions
are true.

• Disjunction: Given two prepositions p, q, we call their disjunction to the
compound proposition “p or q”, denoting them by the logical expression “p ∨
q”. This compound proposition is true when at least one of both propositions, p
or q, is true, or, obviously, when both are true. For being false it needs that both
propositions are false.

• Negation: From any proposition p we shall call “negation of p” to the propo-
sition “not p”, denoting it by the expression “¬p”. The proposition ¬p will be
true when p is false and will be false when p is true.

• Implication: Also known as “conditional proposition”, it is expressed by the
sentence “p implies q”, and it is usually denoted by the expression “p → q”.
When p → q, it means that the conditional proposition is true except when the
proposition p is true and q is false. In other words, if p (also named the
“antecedent” in implication) is true, then q (the consequent) must be also true to
fulfill a conditional proposition.

• There is an important relationship between set theory and logic in such a way
that an isomorphism do exist between the logical operators “and”, “or”, “not”,
“implication” and the set operations “intersection”, “union”, “complement” and
“inclusion”, respectively. In practical terms this means that all the material
exposed in Sect. 5.2 of this book about the classic theory of sets is of entire
application in the field of logic after the simple substitution of the concept of
membership or not membership of an element x to a set A and the concept of
true or false when referring to a proposition p. Naturally, this isomorphism
extends also to fuzzy sets and fuzzy logic.

• A fuzzy proposition is natural language declaring an assertion that has implicitly
associated a truth-value expressed by a real number in the closed interval [0,1].
Simple fuzzy propositions have the following structure: x is P. It should be
noted that the subject x of a fuzzy proposition P is usually not fuzzy. What
distinguishes a classic proposition from a fuzzy proposition is the character-
ization of the predicate P. The fuzziness of P is what generates fuzzy propo-
sitions. In fact, fuzzy propositions result from the existing isomorphism between
fuzzy sets and fuzzy predicates. In order to evaluate a simple fuzzy proposition
p, we need to know the definition of its predicate, which is generally given by
the definition of a fuzzy set.

• The conjunction of two fuzzy propositions p, q, represented by p ∧ q, is the
result of the minimum truth value of both p and q, that is: Tv(p ∧ q) = min(μA(x),
μB(y)), where A and B are the fuzzy sets representing the predicates associated to
the fuzzy propositions p and q, respectively, while x and y are the feature values
associated to their respective subjects.
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• The disjunction of two fuzzy propositions p, q, represented by p ∨ q, is the result
of the maximum truth value of both p and q, that is: Tv(p ∨ q) = max(μA(x),
μB(y)), where again A and B are the fuzzy sets representing the predicates
associated to the fuzzy propositions p and q, respectively, while x and y are the
feature values associated to their respective subjects.

• The negation of a fuzzy proposition p, denoted by ¬p, is the result of subtracting
the truth-value of p from one, that is: Tv(¬p) = 1 − (μA(x)).

• The fuzzy conditional proposition, denoted by p → q is the most complex one
from the four logical exposed connectives. Its truth-value is given by the
expression Tv(p → q) = min(1, 1 + μB(y) − μA(x)). As it happens with the
previous fuzzy connectives, A and B are the fuzzy sets representing the predi-
cates associated to the fuzzy propositions p and q, respectively, while x and y
are the feature values associated to their respective subjects.

• Fuzzy hedges are linguistic modifiers applied to fuzzy predicates, so they also
modify fuzzy sets related to fuzzy predicates. As a consequence, fuzzy hedges
affect fuzzy propositions and then their truth-values, too. In general, a fuzzy
hedge H can be represented by an unary operator on the closed interval [0,1] in
such a way that a fuzzy proposition of the type “x is P” converts into: x is HP. If
A is a fuzzy set associated to a fuzzy predicate P, then we have: HA = H(μA(x)).
The most used fuzzy hedges are the linguistic modifiers H1, “very” and
H2,“fairly”, defined respectively by the following expressions: H1 :
H1(μA(x)) = (μA(x))

2 and H2 : H2(μA(x)) = (μA(x))
1/2.

• When n tends to infinity, the n-iteration of the hedge VERY on a fuzzy number
A produces another special fuzzy set A’ whose nucleus and support is estab-
lished exactly at x0, where its membership degree equals one, that is:
VERY n(A) → (x0, μ(x0) = 1.0). This happens also using the FuzzyLisp function
(fl-expand-contract-set) when its second argument k equals zero. These peculiar
fuzzy sets, named singletons, play an important role in fuzzy logic.

• Fuzzy compound expressions of the type “if x is A and y is B then z is C” where
A, B, C are fuzzy sets and x, y and z are crisp numerical values (z being the only
data unknown in the expression) are certainly one of the most useful and
practical ones in fuzzy logic theory.

• Fuzzy Rule-Based Systems, FRBS, are logical constructions that bring together
several fuzzy-logic based processes and structures. The most usual structure in a
FRBS is a set of fuzzy compound propositions of the type “if x is A and y is
B then z is C”, named “rules” or “expert rules”. A FRBS is a system that
receives information (crisp input), processes it and then produces a crisp result.
The crisp output represents a numerical magnitude that is initially unknown but
can be calculated by the inner workings of the fuzzy system.

• A Knowledge Database consists of several linguistic variables and a set of fuzzy
propositions (expert rules). Traditionally in fuzzy logic theory only the collec-
tion of expert fuzzy rules makes up a knowledge database, but this definition is
incomplete because the expert knowledge does not come only from the fuzzy
rules in the system, but also from the meaning of the fuzzy sets that make up the
linguistic variables of the system.
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• The inference engine’s task in a fuzzy system is, simply put, to make inferences.
Until the inference engine starts to work, the only things we have in a fuzzy
system are membership degrees, several fuzzy sets and expert fuzzy rules
“floating up in the air”. The inference engine is the glue that interacts with all
these elements.

• The procedure for obtaining a crisp output from an output set of membership
degrees is called “Defuzzification”. There are several defuzzification methods in
fuzzy logic theory. The “Centroid Method” has a strong advantage that dwells
from its intuitive formulation: it is very easy to understand. However it has two
important disadvantages. First, it can become tedious to calculate, and second,
the Centroid Method is unable to provide a crisp output value z at the extremes
of the linguistic variable where the output fuzzy sets are defined. Another
well-known defuzzification method is the so named “Weighted average
method”. In general, for n membership degrees from a fuzzy output the
weighted average method uses the expression z = Σ(xiμi(z))/Σμi(z) for calculating
the crisp output result.

• As previously suggested, a singleton S is a special fuzzy set whose membership
function is equal to zero except at a point x0, where its membership degree is
exactly equal to one. In FuzzyLisp they are represented by expressions of the
type (singleton-label x0). Since every singleton can be seen as a geometrical
spike resting fixed on a real point xi, we can apply the weighted average method
of defuzzification for singletons in order to obtain the crisp output of a FRBS.
Singleton defuzzification is the standard defuzzification method used by
FuzzyLisp.

• Along the chapter new FuzzyLisp functions have been introduced for devel-
oping practical fuzzy logic models. The functions (fl-translate-rule), (fl-trans-
late-all-rules), (fl-inference) and (fl-3d-mesh) provide powerful management of
FRBS when the fuzzy sets contained in their knowledge database are formed by
triangular or trapezoidal membership functions. An alternate set of functions
named (fl-dtranslate-rule), (fl-dtranslate-all-rules), (fl-dinference) and (fl-3d-
dmesh) are offered for dealing with FRBS in those cases when the fuzzy sets
contained in their knowledge database have discrete characteristic functions.

• Functions (fl-3d-mesh) and (fl-3d-dmesh) can be understood as a bridge between
FuzzyLisp and any other programming language. The text files produced by
these functions can be loaded into any software project and then, by using
bilinear interpolation, all the expert knowledge from the previously developed
fuzzy models can be incorporated in those software projects. As an example,
this opens the possibility for using FuzzyLisp as a software tool for developing
intelligent apps for smartphones and other mobile devices.

After all the theory and fundamental FuzzyLisp functions for dealing with fuzzy
logic inferences and FRBS management have been exposed, we have dedicated a
good number of pages to develop two practical examples of fuzzy models: A fuzzy
air-conditioner controller and a fuzzy model for scoring a motor sport regularity
rally. These models are simple but have served us well for discussing their
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construction and for exploring some approaches of fuzzy model design. We shall
continue to explore the development of more sophisticated fuzzy models in the last
chapter of this book.
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Chapter 8
Practical Projects Using FuzzyLisp

8.1 Introduction

In the last sections of the previous chapter we introduced some simple examples of
practical fuzzy logic based applications where a FRBS always had two crisp inputs
and a crisp output. In this chapter we shall discover models of a bigger complexity
that, more than examples, are intended to be a guideline for more ambitious goals.
These models, aside practical, pretend to be inspiring for the reader. Engineers and
scientists will soon find some ideas for using FuzzyLisp in their respective fields of
knowledge, but any attentive reader will find new routes of exploration in order to
tackle complex problems from the real world. There are three practical projects in
this chapter chosen from astronautics, astronomy and medicine. All of them are
exposed in a clear and friendly way, and it is expected that any reader of this book
will find them interesting.

Section 8.2 introduces a simplified version of the Moon landing problem where a
physical model (that is, a set of traditional kinematics equations) describe the
descent movement of the NASA Lunar Module and then a FRBS takes control in
order to get a smooth touchdown on Earth’s satellite, being thus a combined
exercise of simulation systems and fuzzy control. In Sect. 8.3 a sophisticated FRBS
architecture is introduced for speech synthesis where double stars are the excuse for
showing how to automatically generate expert reports in natural language from a set
of numerical data. This is the most complex project in the chapter, but suggests
many real applications in practically every science and branch of technology, from
biology to robotics. Finally, in Sect. 8.4, the reader is invited to an introduction to
adaptive fuzzy models using floating singletons while developing a model to
interpret spirometric results for detecting Chronic Obstruction Pulmonary Disease
(COPD), having into account not only numerical data from a spirometry but also
smoking. Floating singletons theory is introduced adequately before the model’s
development, being the last piece of fuzzy theory in this book.
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Since the complexity of these models, as already stated, has grown with respect
to the models developed in the previous chapter, the same has taken place with the
corresponding Lisp code for every project. All the code is shown in the chapter with
the appropriate comments here and there, but now the reader does not need to type
everything at the keyboard. The “Lisp vision” is already on the reader’s mind and
you will find the complete programs in the book’s web site. Do enjoy these projects.
Maybe they will be the ultimate key for future developments in your life.

8.2 Landing the Eagle: Simulation and Fuzzy Control
in Engineering

Back in 1984 I bought a rather sophisticated (by those days) programmable elec-
tronic calculator. Its programming language, embedded in its ROM circuitry, was a
tiny dialect of BASIC, one of the more simple computer languages in the 80s.
Despite its limitations as a computer language, every manufacturer of small per-
sonal computers offered a version of BASIC in their systems, and the small cal-
culator was not an exception. In order to gain some experience with the system and
its implementation of BASIC I decided to write a program to simulate the landing
of the Eagle module on the Moon. After more than thirty years the program still
runs on the calculator, as can be seen in Fig. 8.1.

Since the RAM memory of the device was less than 2K (yes, the reader is
reading well, that’s about 0.002 MB of RAM) the model was rather simple and
some assumptions were needed to develop it. First a vertical descending trajectory

Fig. 8.1 A simple Moon landing simulator running on a 30+ years old programmable electronic
calculator. Photograph by the author
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was assumed: The simulated Lunar Module (LM) was initially placed at a random
height between 2500 and 6000 m over the Moon surface and no control attitude was
implemented. Also, the LM started its landing trip at an initial descending velocity
of 300 m/s (that would be near Mach 1 speed in terrestrial atmosphere). Under these
conditions, two kinematic equations describe the movement of the LM:

v ¼ v0 þ gmt

s ¼ s0 þ v0tþ 0:5 gmt
2� �

where v0 is the initial velocity, s0 the initial traversed space and then v and s are the
resulting velocity and space after some elapsed time t. The Moon gravity accel-
eration, approximately equal to 1/6 of that of the Earth gravity is a constant
gm = 1.625 m/s2. The variable mass of the LM due to fuel consumption is not
considered in the model.

In this simulation, the user (the command pilot at the LM) must decide an
upward thrust p in order to compensate both the descent speed of the LM and the
pull of the Moon gravity for getting a smooth touchdown. It is assumed that a thrust
p produces a positive and counteracting acceleration a on the LM. Under such
conditions, and observing Fig. 8.2, the above equations transform into these ones:

v ¼ v0 þ gm� að Þt
h ¼ h0 � v0t� 0:5 gm � að Þt2

The original simulation discretized descending time in 2 s intervals, that is, after
a reading of height and velocity is made, the user decides how much thrust must be

Fig. 8.2 A graphical
representation of the LM
descent simulation
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applied, and then, that thrust is applied along 2 s in such a way that the above
equations convert into the expressions shown in Table 8.1.

It is important to note that the thrust system (a rocket) actuates continuously in
the simulation along 2 s and then waits for another new thrust command. In other
words: after a thrust command is launched, nothing can stop the system actuation in
the next 2 s. Fuel consumption is considered too: It is assumed that fuel con-
sumption is directly proportional to thrust magnitude. The simulation has several
possible outcomes:

• The LM gets a smooth touchdown. In this simulation, a smooth touchdown is
considered when the LM final speed is less or equal than 5 m/s.

• The LM reaches the Moon at an excessive speed, that is, bigger than 5 m/s.
A fatal crash is the ultimate result of this outcome.

• The LM runs out of fuel. In this case, the most probable scenario is to enter into
the previous outcome after some free fall time. Neil Armstrong almost got into
this outcome in the Apollo XI mission as stated in the previous chapter.

The translation of the original program written in BASIC to Lisp produces
Code 8-1 as follows:

;code 8-1
(define (init-variables, fuel velocity height)

(setq fuel 250.0) ;fuel units capacity
(setq velocity 300.0) ;descent velocity in m/s
;generate a random height between 2500 and 6000 metres
(while (<= height 2500)

(setq height (rand 6001))
)

(println''Eagle landing on the Moon'')
(println''Fuel:''fuel'' Velocity:''velocity'' Height:''

height)
(list fuel velocity height)

)

;moon gravity, mg = 1.62519 m/s2
(define (update-variables x v h a)

(setq v (sub v (mul 2.0 (sub a 1.625))))
(setq h (add (sub h (mul 2.0 v)) (mul 2.0 (sub a 1.625))))
(setq x (sub x (abs a)))

Table 8.1 Kinematic expressions describing the LM’s movement

Kinematic equations Equivalent kinematic expressions in Lisp

v = v0 + 2(gm − a) (setq v (sub v (mul 2.0 (sub a 1.625))))

h = h0 − 2v0 − 2(gm − a) (setq h (add (sub h (mul 2.0 v)) (mul 2.0 (sub a 1.625))))
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(setq fuel x velocity v height h)
(println''Fuel:''x'' Velocity:''v'' Height:''h)
true

)

(define (simulate ,data fuel velocity height thrust)
(setq data (init-variables))
(setq fuel (first data) velocity (nth 1 data) height

(nth 2 data))
(while (and (> height 0.0) (> fuel 0.0))

(print''\nRocket Thrust (0-25)?:'')
(setq thrust (float (read-line)))
(update-variables fuel velocity height thrust)

);while end

(if (<= fuel 0.0)
(println''Mission failure: Out of rocket fuel.

Unavoidable LM crash'')
)
(if (>= velocity 5.0)

(println ''Mission failure: Excessive velocity. LM
crash'')

)
(println''End simulation'')

)

The listing of the program begins with the function (init-variables) that allows it
to initialize the variables fuel, velocity and height. This last one is chosen randomly
by means of the function (rand), using a while loop that only ends when the initial
height of the LM is placed between 2500 and 6000 m. Then the function prints
these values and returns them as a list.

The function (update-variables) is the mathematical core in the simulation. It
receives the variables representing the system status and then returns the updated
values of these variables after using the expressions shown in Table 8.1. Finally, the
function (simulate) puts it all together: Makes a call to (init-variables) and then
enters the main event loop of the simulation where a thrust value is requested to the
user and the system status is updated. The main event loop only ends when the LM
reaches the Moon’s surface or when the LM runs out of fuel. Finally, some if
statements inform the user about the simulation outcome. Let us see an abbreviated
run of the program:

> (simulate)
: Eagle landing on the Moon
Fuel: 250 Velocity: 300 Height: 5041
Rocket Thrust (0-25)?: 10
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Fuel: 240 Velocity: 283.25 Height: 4491.25
Rocket Thrust (0-25)?:
…
…

Rocket Thrust (0-25)?: 1
Fuel: 45 Velocity: 3.75 Height: -0.12
End simulation

The reader can download Code 8-1 directly from the Book’s website in order to
become familiar with the program. Chances are that several crashes will be the
initial outcomes of the simulation, including also some situations where all the fuel
has been exhausted, especially when the LM is initially located near 6000 m high. It
is not easy to land a spacecraft on the Moon!

Paraphrasing the words of John F. Kennedy at Rice University in 1962, “We
choose to go to the moon in this decade and do the other things, not because they
are easy, but because they are hard”, we have decided for this chapter to develop a
fuzzy system able to get a smooth touchdown on the Moon surface. The next
sections of this chapter will show how to build a FRBS that substitutes the human
user in the previous LM simulation. Entering the realm of fuzzy control.

8.2.1 Fuzzy Control

In general, a control system is an arrangement of physical components designed to
alter, to regulate, or to command, through a control action, another physical system
so that it exhibits certain desired characteristics or behavior (Ross 2010). A good
example of control system is the brake system in a car: the set of disks, brake pads,
brake liquid, etc. is the “arrangement of physical components”, while the car is the
“another physical system” that must behave adequately (in this case to diminish its
speed or to stop it completely). To perform the adequate “control action” we need
yet a model, a complete “understanding” of the system that allows those physical
components to perform the task. In the case of the car, the model for braking it is
installed well inside our brain when we learn to drive. Usually in standard control
theory these models are built by means of differential equations. Interestingly,
traditional control engineers tended to treat their mathematical models of physical
systems as exact and precise though they knew that the models were neither
(Seising 2007). Take a falling body in terrestrial gravity as an example. Kinematics
equations as the ones described in the previous section are exact if we forget the
atmosphere and the mass of the falling body. If we take into account these factors,
then differential equations are needed. If we consider also the shape of the solid,
then aerodynamics enters into play and differential equations are no more an exact
tool for describing the movement of the solid. Then we have no other option
than using simulations at the wind tunnel. And this is a very expensive resource.
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The fuzzy control model exposed in the next section is not only able to get a smooth
touchdown on the Moon surface, but it would work also in the presence of an
atmosphere, taking also into account the variable mass of the LM due to fuel
consumption.

Fuzzy control systems satisfy completely Ross’ definition, but the control action
is obtained not by means of a set of mathematical equations but through the use of a
Fuzzy Rule Based System (FRBS). In fact, a fuzzy control system is basically a
FRBS where two especially important features are always present:

• The output of every fuzzy control system is an action.
• Every fuzzy control system uses time as a fundamental magnitude.

Control systems use sensors for measuring the desired information that describe
the status of the system to control, such as velocity, temperature, density, humidity,
etc. The obtained data from these sensors are the crisp inputs to a FRBS that, as
shown in Fig. 7.6, ultimately produces a crisp output. In control systems this output
represents an action that must be applied to the system to be controlled in order to
modify o maintain its desired characteristics or behavior. Both classic control
systems and fuzzy control systems result into an action, but while classic ones use
mathematical equations, fuzzy based ones do use expert knowledge fuzzy rules.

After the action is applied on the system to control, the effects of the action cause
changes in the behavior of the system. These changes, reflected in the system state
variables, are again measured by the sensors and then a new input to the controller
is created. This circular flow of information between sensor reading, controller and
output action gives name to closed-loop control systems, the ones we are interested
in this section. A pivotal design matter in closed-loop control systems is the concept
of sampling time, the difference of time between two consecutive readings obtained
from the sensors. While sampling time is usually of no importance in general
FRBS, no fuzzy control system (FCS) could be developed without a clock whose
ticks manage the readings of the sensors. In some cases the interval of time can
extend to minutes or even hours while in other cases sampling time will be in the
rank of milliseconds. The importance of sampling time will be evident after
reflecting on the following example.

Imagine we are designing a fuzzy control system for an intelligent insulin pump
for people suffering diabetes. Let us suppose that after a glucose reading obtained
by a glucose meter the model suggests an action based in administering a subcu-
taneous quantity x of insulin to the patient. With a sampling time equal to 5 min
another glucose reading will show about the same levels of glucose because the
previously administrated insulin, including the more rapid acting types of this
hormone, has not still started to show its physiological action. Then, after the
second reading, the model recommends another subcutaneous quantity x of insulin.
The net result is a patient receiving 2x units of insulin in 5 min. This probably will
cause hypoglycemia on the patient and in extreme cases it could mean his/her
exitus. On the other hand, a sampling time of, let us say, 1 h, probably would
translate into weak control actions, producing a failure in lowering blood glucose
levels towards normal values. This example suggests that determining an adequate
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sampling time in a control system is one of the most important parameters of its
design.

Fuzzy Control has produced such a quantity of successful results, patents and
commercial products that by itself has already proven the advantages of the theory
of fuzzy sets and fuzzy logic. Examples run from exact focus determination and
correct exposure in cameras (Chen and Pham 2000) to automatic gearboxes in cars
(Yamaguchi et al. 1993) to modern docking systems in spacecrafts (Dabney 1991),
to name only a few. In fact, real practical applications of Fuzzy Logic are virtually
endless today and Fuzzy Control is taught in every major college of engineering
throughout the world.

In the previous chapter we already introduced an example of fuzzy control when
designing an air-conditioner controller, but we did it while explaining the inner
workings of a FRBS. An in depth discussion of Fuzzy Control is out the scope of
this book, but the interested reader can easily find specific texts about this branch of
engineering and mathematics, e.g. Passino and Yurkovich (1998). Even so,
developing a control model for landing a simplified version of the LM on the Moon
will show the reader more than a basic insight into fuzzy control.

8.2.2 Controlling the Eagle

As we stated at the beginning of Sect. 7.7, Buzz Aldrin was providing a continuous
readout of LM altitude and velocity to Neil Armstrong in order to get a smooth
touchdown of the Eagle on the Moon. It seems then natural to use these parameters
as the input data for developing the LM fuzzy control model. Let us see the
corresponding linguistic variables for each of them.

The first one, named height, is composed by seven fuzzy sets with the following
linguistic labels: near-zero, very-small, medium, medium-high, high, very-high and
extra-high. Just note that the range of this linguistic variable extends from 0 to
8000 m. It’s a huge range as can be seen in Fig. 8.3, so in order to include it
completely in this page the two rightmost fuzzy sets have not been drawn at scale,
as suggested by the obliquely dashed lines. You also have probably realized that the
supports of the corresponding fuzzy sets are shorter and shorter as we approximate

Fig. 8.3 Linguistic variable representing height of LM over the Moon’s surface
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to the left of the linguistic variable until arriving to a very short support fuzzy set
named “near-zero”. This is so because the control becomes critical when we
approach the Moon surface and we shall need to have an excellent linguistic
description of the model when developing its rules.

In Code 8-2a we can see this linguistic variable translated into Lisp expressions:

;code 8-2a
(setq h1'(near-zero 0 0 0 1.5))
(setq h2'(very-small 0 0 5 20))
(setq h3'(medium 5 20 20 50))
(setq h4'(medium-high 20 50 50 100))
(setq h5'(high 50 100 100 500))
(setq h6'(very-high 100 500 500 1000))
(setq h7'(extra-high 500 1000 8000 8000))
(setq height'(h1 h2 h3 h4 h5 h6 h7))

The following input linguistic variable, named velocity, is composed again by
seven fuzzy sets named very-very-small, very-small, small, medium, quick,
very-quick and top (meaning top velocity). The range extends from −1.0 to
300 m/s.

As can be seen in Fig. 8.4, the fuzzy sets belonging to velocity are arranged in a
similar way as in height, showing a skew towards the left of the universe of
discourse where they are defined. At first it can seem strange that the leftmost fuzzy
set has a support defined between −1 and 1 m/s (for clarity, the label of this fuzzy
set, “very-very-small” has been omitted in the figure). This is so to cover those
possible cases where the LM has suffered from excessive thrust in the final
touchdown phase and is not descending but in fact is elevating over the lunar soil.
The corresponding Lisp code for this linguistic variable is shown in Code 8-2b:

;code 8-2b
(setq v0'(very-very-small -1.0 0.0 0.0 1.0))
(setq v1'(very-small 0.0 0.0 0.0 5.0))
(setq v2'(small 0.0 5.0 5.0 10.0))

Fig. 8.4 Linguistic variable representing descent velocity of LM
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(setq v3'(medium 5.0 10.0 10.0 30.0))
(setq v4'(quick 10.0 30.0 30.0 60.0))
(setq v5'(very-quick 30.0 60.0 60.0 120.0))
(setq v6'(top 60.0 120.0 300.0 300.0))
(setq velocity'(v0 v1 v2 v3 v4 v5 v6))

The output of the fuzzy control model is thrust, that is, how much gas must be
ultimately expelled by the nozzle of the LM in order to modify its descent velocity.
As previously assumed, a thrust p produces a positive acceleration a on the LM.
The set of singletons for describing a suitable range of positive accelerations is
named thrust and is composed by the following singletons: no-thrust (0),
thrust-gently (0.6), maintain (1.625), small-minus (2.5), small (5), medium (10),
strong (15) and very-strong (25), where the figures enclosed into parenthesis
indicate the resulting acceleration associated to every single action.

The singleton “maintain” has a special meaning in this arrangement of single-
tons: The Moon gravity causes a downwards acceleration exactly equal to
1.625 m/s2 on a falling body, so a thrust p producing an upwards acceleration
a = 1.625 m/s2 will result into a body moving with no acceleration, that is, a body
moving at a constant velocity in the Moon’s gravitational field. This singleton is
extremely convenient for linguistically describing the expert rules of the fuzzy
control model for the LM.

Additionally, it should be noted that the chosen range of accelerations would
produce a relatively comfortable descending experience to our simulated team of
astronauts. Having into account that 1 g (terrestrial) = 9.8 m/s2, this means that the
maximum thrust of our model is approximately equivalent to 2.55 g, less than the
usual 3.0 g acceleration produced by the past Shuttle missions and even less than
the stark trust of the already historical Saturn V rocket, at 4.0 g (Fortescue et al.
2011). Also important in the last phase of descent are the singletons “no-thrust” and
“thrust-gently”. Figure 8.5 shows the intervening singletons.

The corresponding Lisp code for this set of singletons is given by the Lisp
expressions in Code 8-2c:

Fig. 8.5 Output singletons representing lunar module thrust
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;code 8-2c
(setq thrust ‘(

(no-thrust 0.0)
(thrust-gently 0.6)
(maintain 1.625) ;equivalent to moon gravity
(small-minus 2.5)
(small 5.0)
(medium 10.0)
(strong 15.0)
(very-strong 25.0))

)

For building the rules of the LM fuzzy control model we combine every fuzzy
set from the linguistic variable height with every fuzzy set contained in the lin-
guistic variable velocity, associating an adequate singleton representing thrust to
every rule. This results into a set of 49 expert rules that completely describes the
system. Code 8-2d shows the corresponding Lisp code:

;code 8-2d
(setq rules-LEM ‘((height velocity thrust)

(near-zero very-very-small thrust-gently AND-product)
(near-zero very-small thrust-gently AND-product)
(near-zero small small AND-product)
(near-zero medium maintain AND-product)
(near-zero quick medium AND-product)
(near-zero very-quick very-strong AND-product)
(near-zero top very-strong AND-product)

(very-small very-very-small thrust-gently AND-product)
(very-small very-small maintain AND-product)
(very-small small small-minus AND-product)
(very-small medium small AND-product)
(very-small quick small AND-product)
(very-small very-quick strong AND-product)
(very-small top very-strong AND-product)

(medium very-very-small thrust-gently AND-product)
(medium very-small thrust-gently AND-product)
(medium small maintain AND-product)
(medium medium medium AND-product)
(medium quick medium AND-product)
(medium very-quick strong AND-product)
(medium top very-strong AND-product)
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(medium-high very-very-small thrust-gently
AND-product)
(medium-high very-small maintain AND-product)
(medium-high small maintain AND-product)
(medium-high medium medium AND-product)
(medium-high quick medium AND-product)
(medium-high very-quick strong AND-product)
(medium-high top very-strong AND-product)

(high very-very-small thrust-gently AND-product)
(high very-small thrust-gently AND-product)
(high small maintain AND-product)
(high medium medium AND-product)
(high quick medium AND-product)
(high very-quick medium AND-product)
(high top very-strong AND-product)

(very-high very-very-small no-thrust AND-product)
(very-high very-small no-thrust AND-product)
(very-high small no-thrust AND-product)
(very-high medium maintain AND-product)
(very-high quick maintain AND-product)
(very-high very-quick medium AND-product)
(very-high top very-strong AND-product)

(extra-high very-very-small no-thrust AND-product)
(extra-high very-small no-thrust AND-product)
(extra-high small no-thrust AND-product)
(extra-high medium maintain AND-product)
(extra-high quick medium AND-product)
(extra-high very-quick strong AND-product)
(extra-high top strong AND-product))

)

When the LM is located at high altitude the rules simply try to moderate its
descent velocity. If altitude becomes smaller and velocity is still near its maximum
the model will react applying very strong thrust. Soon the LM falls at approxi-
mately uniform speed under the influence of the singleton named “maintain”. The
most interesting phase of flight happens when the LM approaches the Moon sur-
face. Here the first 28 expert rules of the model show their power, especially those
that contain the fuzzy sets “very-very-small”, “very-small” and “small” from the
linguistic variable velocity. In fact, under normal descent conditions, only twelve
rules get the LM on the Moon.
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This is interesting because the number of rules in the model could be simplified.
As an example, when the LM is located at or near top height, the following rules
could be eliminated:

(very-high very-very-small no-thrust AND-product)
(very-high very-small no-thrust AND-product)
(very-high small no-thrust AND-product)
(extra-high very-very-small no-thrust AND-product)
(extra-high very-small no-thrust AND-product)
(extra-high small no-thrust AND-product)

The reader can play with the model, trying to eliminate those rules that “never
work”, thus obtaining a more efficient set of rules, but make no mistake: the real
world is full of instances where things that would never happen ultimately do
happen. Depending on how critical a control application is robustness is far better
than efficiency.

After building the knowledge database of the model is easy to code the simu-
lation and fuzzy control program for the LM because we only need to take the
fundamentals of code 8-1 and connect it with the fuzzy model description. Code 8-3
shows the resulting Lisp program for completing our Eagle landing simulation
model:

;code 8-3
(define (update-variables x v h a)

(setq v (sub v (mul 2.0 (sub a 1.625))))
(setq h (add (sub h (mul 2.0 v)) (mul 2.0 (sub a 1.625))))
(setq x (sub x (abs a)))
(list h v x);returns current height, velocity and fuel

)

(define (simulate, fuel v h force list-data n)
;initialize variables:
(setq n 0)
(setq force 0.0)
(setq fuel 500.0);fuel capacity
(setq v 300.0);descent velocity in m/s

(setq h 0.0)
;generate a random height between 2500 and 6000 metres:
(while (<= h 2500)

(setq h (rand 6001))
)

(println''Eagle landing on the Moon'')
(while (and (> h 0.0) (> fuel 0.0))
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(println''Fuel:''fuel'' Height:''h'' Velocity:''v)
(print''\nPress return to continue…'')
(read-line)

(if (<= v -1.0)
(setq force 0.0);if LEM elevates at v>1 m/s, apply no
thrust
(setq force (fl-inference rules-LEM h v))

);end if
(print''\nThrust by fuzzy model:'' force)

(print''\nPress return to continue…'')
(read-line)

(setq list-data (update-variables fuel v h force))
(setq h (first list-data))
(setq v (nth 1 list-data))
(setq fuel (last list-data))
(++ n)

);while end

(if (<= fuel 0.0)
(println''Mission failure: Out of rocket fuel.

Unavoidable LEM crash'')
)
(if (>= v 5.0)

(println ''Mission failure: Excessive velocity. LEM
crash'')

)
(println''End simulation. Final velocity:''v'' n:''n)

)

Only these few lines of code put together all the parts:

(if (<= v -1.0)
(setq force 0.0);if LEM elevates at v>1 m/s, apply no
thrust
(setq force (fl-inference rules-LEM h v))

);end if

This conditional construction manages the internals of the simulation. If the LM
velocity is less than −1.0 m/s, that is, if the LM is elevating, then no thrust is applied
and the model will wait until the Moon gravitational field produces again a positive
descending speed. Otherwise, a call to the function (fl-inference) is made and the
crisp output of the fuzzy control module is transferred to the variable force. Trying
the program at the Lisp prompt is easy, pressing the return key for every iteration:
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> (simulate)
: Eagle landing on the Moon
Fuel: 500 Height: 3000 Velocity: 300
Press return to continue…

Thrust by fuzzy model: 15
Press return to continue…
Fuel: 485 Height: 2480.25 Velocity: 273.25

…

Press return to continue…
Thrust by fuzzy model: 2.432348398
End simulation. Final velocity: 0.8998958331 n: 40

When the initial height is h0 = 3000 m the final landing velocity on the Moon
obtained by the fuzzy control mode is less than 1.0 m/s, thus meeting the NASA
real standards for the LM (Klump 1971). Other initial height values can result in
slightly higher final landing speeds. The reader is encouraged to improve the model
using two strategies: modifying the knowledge database (fuzzy sets and/or set of
fuzzy rules) or improving the resolution of sampling-time from 2 to 1 s. Changing
the sampling time will need a redesign of the knowledge database. Moreover, the
sampling time used on the Apollo missions for the LM was bounded between 1 and
2 s and some lags in the systems had to be had into account. I think the use of fuzzy
control theory to the complete LM landing procedures on the Moon is fascinating
and a project on this matter would be a technical delight to the interested reader. For
this undertaking it is nice to know that NASA provides enough documentation on
the Internet (NASA 2015).

8.2.3 Interpreting Results

The first thing to note, aside the final velocity at the end of the simulation, is the
number of iterations produced in the main event loop. When falling from 3000 m
high, the number of iterations is n = 40, so, having into account every loop pass
equals to 2 s this results into a descent flight time of almost one minute and a half.

When running the simulation the user can numerically observe the actual height,
descent velocity and remaining fuel. After some simulations are made it is difficult
to have a clear picture of the system’s behavior, so obtaining a chart where these
magnitudes are plotted is a good way to gain more knowledge of the system.
NewLisp incorporates a complete set of graphical functions but since this would
translate into more complex code in the book we shall use another strategy: to
slightly transform Code 8-3 in order to redirect the program’s output to disk instead
to the console and then use a standard spreadsheet program to plot the file contents.
Code 8-4 shows the transformation to be done inside the function (simulate):
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;code 8-4
(device (open''LEM-OUT.csv''''write''))
(println''Fuel;Height;Velocity;Thrust'')
(println fuel'';''h'';''v'';''force)

(while (and (> h 0.0) (> fuel 0.0))
(if (<= v -1.0)

(setq force 0.0)
(setq force (fl-inference rules-LEM h v))

)
(setq list-data (update-variables fuel v h force))
(setq h (first list-data))
(setq v (nth 1 list-data))
(setq fuel (last list-data))
(println fuel'';''h'';''v'';''force)
(++ n)

);while end
(close (device))

As the reader can see, it is only a question of conveniently using the functions
(open), (print) and (close). Thus, the values of fuel, height, velocity and thrust are
written to a file named LEM-OUT.csv that can easily be imported in many
spreadsheet applications. From this point, graphically representing the output data is
straightforward. Figure 8.6 shows thrust along descent time from the fuzzy control
model:

Fig. 8.6 Thrust along time as calculated by the LM fuzzy control descent model
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As can be seen the model starts the descent flight applying no thrust and then,
just in the second main loop pass of the simulation it produces an interval of
continuous thrust at p = 15, raising it until reaching a peak about p = 22 and then
initiating a smooth thrust descent that ends at values of p around 6-7. Later it still
falls until stabilizing at p values between 1 and 3. The effects of this trust on the rest
of LM system variables can be appreciated on Figs. 8.7, 8.8 and 8.9.

Fig. 8.7 LM obtained descent velocity along time

Fig. 8.8 Height over the Moon surface along descent time
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It is interesting to note how the control model gets initially a quick decrease of
descending velocity and then it limits itself to maintain a virtually constant and
moderate descent speed. A final slight increase in thrust produces a smooth, soft
lunar landing. Fuel consumption is relatively low because the initial height.
Consumption increases, obviously, for higher initial heights.

8.3 Double Stars in Astronomy: Speech Synthesis

When we observe the night sky from a site free from light pollution we can enjoy a
wonderful sight formed by thousands of stars. It is not a generally known fact, but
about half of them are double stars, that is, a set of two or more stars that orbit
around a common center of masses. At the naked eye these systems appear as a
single point of light, but using a telescope many of them can be split through the
eyepiece, thus revealing their true double nature. These celestial objects result from
the gravitational collapse of interstellar molecular clouds composed mainly by
hydrogen that, due to initial inhomogeneities in density in the cloud, suffer a
process of fragmentation. During this process, sections of the cloud collapse locally,
forming protostars that eventually evolve into a set of two or more stars that orbit
their common centre of masses with periods ranging from a few tens to a few
million of years. Since aside metallicity, the main parameter for the life evolution of
a star is its initial mass, such processes determine not only the separation and
rotational period of the system, but also the spectral type of the components (Ostlie
and Carrol 2006).

Fig. 8.9 Fuel consumption in fuel units along descent time
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In strong contrast to optical pairs, i.e., apparent double stars that are simply formed
due to line-of-sight coincidence, visual binaries are true gravitationally bounded pairs
located in our galaxy. When observed through a number of years, they show different
values of relative angle and angular separation between the stellar components,
resulting into a curve when these parameters are plotted (Argyle 2004). In this section
we are especially interested in visual binaries whose angular separation is equal or
more to 1 arcsecond. With the exception of extremely good observing sites in the
world such as the Canary Islands or Hawaii, this is usually the practical resolution
limit of an optical telescope placed on Earth due to the atmosphere steadiness (well,
lack of it), usually known in observational astronomy as “seeing”.

Speech synthesis is, simply put, a computer-generated simulation of human
speech that requires two phases: the first one consists in the grammatical generation
of text on a certain subject matter and the second one is the audible generation of
the obtained text. We are interested in the grammatical generation of double star
reports using as input several intrinsic numerical parameters of this type of celestial
objects. These parameters are: Separation (d), Visual magnitude of components
(Mv1, Mv2) and Spectral class of every star (s1, s2). The aperture D in inches of the
telescope is also taken into account to produce a human-like observing report.
Expressing it formally, we are going to design a fuzzy logic based model F such as:

F(d, Mv1, Mv2, s1 s2, D) → Text report

As an example, when using Albireo, Beta Cygni, as the target double star
(d = 34.3 arcseconds,Mv1 = 3,Mv2 = 5.5, s1 = K3, s2 = B9) observed through a four
inches aperture telescope, the report generation obtained from our model F will be:

“Albireo is a really open double star that can be very easily split using any
observing instrument. Difference of coloration is rather easy to observe and from an
aesthetic point of view is a jewel in the sky. There is a medium difference of
magnitude between components. The primary is a bright star, while the secondary is
medium bright”

In order to obtain this type of speech synthesis we shall use a concatenation
approach, that is, we shall use a fixed pattern of text containing several empty
“pockets” where variable text will be instantiated depending on the numerical
parameters from a given double star. The text structure will be the following one:

“str1 is a str2 double that can be str3 split using str4. Difference of coloration is
str5 and from an aesthetic point of view is str6. There is a str7 difference of mag-
nitude between components. The primary is a str8 star, while the secondary is str9”

The first variable string of text, str1, is the name of the double star. The rest of
variable strings, str2, str3, str4, str5, str6, str7, str8 and str9 will be obtained
from numerical values. Some of the numerical parameters of a double star produce
a direct translation into text, such as angular distance between components or their
visual magnitude. However some other information as difficulty to observe the
celestial object in its true double nature or the perceived beauty of the stellar system
at the eyepiece are subjective. Fuzzy logic based models are, as we already know,
very well suited to this task (Argüelles and Trivino 2013).
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In Chap. 7 we have used the Takagi-Sugeno (TK) model for explaining Fuzzy
Rule Based Systems (Takagi and Sugeno 1985). Although the TK model was
initially developed for Fuzzy Control Systems, it is of general application in FRBS
when the required output is not an action but a numerical description about a certain
system. Until now we have built models with two crisp inputs and a crisp output. It
is time now to see how we can aggregate multiple inputs in FRBS and how we can
use numerical output as new input to other FRBS. For building our intended double
star speech synthesis system we shall use the architecture shown in Fig. 8.10.

The meaning of the complete set of numerical parameters (enclosed in boxes in
the figure) is as follows:

• Separation: When astronomers speak about separation between stars in a double
system they are not using kilometers or miles, but arcseconds, that is, an angular
separation expressed in seconds of arc. Every degree has 60 min of arc, each of
them divided again into 60 s of arc. Thus an arcsecond equals to 1/3600th of a
degree. This angular distance is certainly small and is approximately equivalent
to the view obtained from a one Euro coin located 5 km away from us.
Measuring double stars was a frenetic astronomical activity back in centuries
XVIII and XIX, and still today many amateur astronomers continue to sys-
tematically measure doubles stars. There is an important reason behind this task:
Traditionally, the only way to discover the mass of stars is by means of
observing double stars (Argyle 2004).

• Primary magnitude: In astronomy, the term “magnitude” refers to bright. The
smaller the number, the brighter a star is perceived by an observer’s eye. As a
reference, our Sun has a −27 magnitude, being obviously the brighter celestial

Fig. 8.10 Logical architecture for building double star speech synthesis reports

308 8 Practical Projects Using FuzzyLisp

http://dx.doi.org/10.1007/978-3-319-23186-0_7


object as seen from Earth. Sirius, the brighter star from the North Hemisphere
aside the Sun has a magnitude of −1.4. The scale is logarithmic and every unit in
magnitude scale means about 2.512 times difference in bright from two stars.
Under a really dark observing place the naked eye limit is established around
magnitude 6.5, that is, fainter stars are not visible without using an observing
instrument such a pair of binoculars or a telescope. To make things a bit more
complex, astronomers distinguish between absolute and apparent magnitude.
We are concerned, as catalogues of double stars are, only to apparent magnitude,
that is, the bright of a star observed from Earth. In double stars terminology
“primary magnitude” refers to the brightest star of the pair.

• Secondary magnitude: As the reader can infer from the above, this refers to the
apparent magnitude of the fainter star of the pair.

• Delta magnitude: It is the numerical subtraction between primary and secondary
magnitude values.

• Telescope aperture: The diameter of a telescope is the most important numerical
parameter of these observing instruments because it determines both their
maximum theoretical angular resolution and their limiting magnitude. As stated
several paragraphs above, the usual practical observing resolution limit for a
telescope placed on Earth is about one arcsecond. Observatory first class
instruments such as the 10.4 m GRANTECAN Telescope in Canary Islands can
observe celestial objects as faint as magnitude 25. The Hubble space telescope,
entirely free from atmospheric limitations, is able to reach magnitude 31,
although it must be said that observations made with these telescopes are made
with electronic detectors.

• Delta spectral: We could extend pages about the concept of spectral class in stars
but suffice is to know that when we speak about spectral class we are referring
mainly to the temperature of the atmosphere of a star, that is, the temperature it
has in its external surface. From the hottest to the colder stars astronomers have
created a crisp classification based on capital letters: O, B, A, F, G, K, M (every
astronomy student knows the mnemonics to learn it: “Oh, Be A Fine Girl, Kiss
Me”). With the discovery of even colder, Brown Dwarfs stars the International
Astronomical Union, IAI, has extended this classification to the letters L, T (the
students have extended the mnemonics, too: “Late Tonight”) but we shall not
include them in our FRBS model. Since this is a crisp classification and
Astronomy is a very traditional science, the observation of a continuum of
spectral classes in stars had brought a division of ten subclasses for every
spectral class, numerated from 0, the hottest star in the subclass, to 9, the colder
one. As an example, the G spectral class is divided into G0, G1, G2, G3, G4,
G5, G6, G7, G8 and G9 (our Sun is a G2 star, by the way). The hotter a star is,
the bluer it seems to our eyes while on the other hand the colder a star is, the
redder it appears rendered in the sky. In other words: O and B stars appears blue
to us, while K and M stars seem orange-red and red to our eyes, depending also
on the color sensitivity of the observer. With “Delta spectral” we mean the
numerical distance in spectral classes between the components of a double star.
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For example if the main component is B1 and the companion is B8, its Delta
spectral, B8–B1 equals to 7.

• Theoretical DI (Difficulty Index), TDI: When using an optical telescope for
observing double stars, some of them are more easy to split at the eyepiece into
their components that others. Two numerical quantities describe mainly the
degree of difficulty to visually get the split: angular separation and delta mag-
nitude. Fuzzy logic has proven to be a valuable tool for assessing such a dif-
ficulty by means of a number in the closed interval [0–100] (Argüelles 2011).
As we can see in Fig. 8.10, the theoretical DI builds on two previous parameters.
In the Computational Theory of Perceptions (Zadeh 1999, 2001) such an ele-
ment from the architecture shown is called a second order perception. All the
previous parameters, which can be obtained directly by means of measurable
data, are called first order perceptions. This and the next parameters are called
second order perceptions.

• Detector capabilities: The Theoretical DI for a double star is intrinsic to the
system and it does not dependent on the used observing instrument. Depending
on the telescope’s aperture and how dim is the secondary star in the pair, a factor
K is obtained from a dedicated FRBS.

• Corrected DI, CDI: This parameter is obtained by the simple equation Corrected
DI = K x Theoretical DI. This corrected DI has into account the aperture of the
used telescope in the observation of a given double star.

• Suitable telescope aperture: This parameter is the output result of a dedicated
FRBS that takes into account (inputs) both the Theoretical DI and the Detector
capabilities. It will give the user a recommendation about a suitable size of
telescope to observe a given double star.

• Theoretical beauty: Build upon the primary magnitude and delta spectral of the
celestial objects under study, the theoretical, intrinsic beauty of a double star is
obtained by another FRBS using the expert knowledge of seasoned double star
observers.

• Sight perception (final sight): This is obtained by the last FRBS in the model,
combining Theoretical beauty and Corrected Difficulty Index.

As we can appreciate, all the architecture shown in Fig. 8.10 can be described as
a dance of numerical values that starts with first order perceptions and evolves into
second order perceptions by means of several FRBS. After all the computations are
made then it will be time for translating numbers into natural language descriptions.

8.3.1 Generating Suitable Linguistic Variables

Angular separation is the first parameter that comes to mind when speaking about
double stars. In our model we deal with a numerical range from 1 to 100 arcsec-
onds. When the angular separation between two stars in a double is big, it does not
matter a difference of one or 2 arcseconds for getting an easy split at the eyepiece,
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but when dealing with tight pairs, a difference of only 0.1 arcseconds can become
critical. Wilhelm Struve, one of the greatest double stars observers from all times,
experienced this phenomenon while making a classification for doubles in his
Catalogus Novus (1827) depending on separation: Type I for doubles with less than
4″ separation, Type II for doubles between 4″ and 8″, Type III between 8″ and 16″
and Type IV for separations between 16″ and 32″. He realized the problems arising
for such a sharp classification and again divided Type I into Vicinae, Pervicinae and
Vicinissimae. This is, ultimately, the reason because the linguistic variable repre-
senting angular separation “compresses” its fuzzy sets towards left, as shown in
Fig. 8.11.

Expressed into Lisp, this linguistic variable is expressed by Code 8-5a:

;code 8-5a: angular separation in double stars
(setq s1'(very-tight 1.0 1.0 1.0 3.0))
(setq s2'(rather-tight 1.0 2.0 2.0 4.0))
(setq s3'(tight 1.0 4.0 4.0 7.0))
(setq s4'(open-tight 3.0 7.0 7.0 10.0))
(setq s5'(a-bit-open 7.0 10.0 10.0 15.0))
(setq s6'(open-normal 10.0 15.0 15.0 20.0))
(setq s7'(open-plus 15.0 20.0 100.0 100.0))
(setq separation'(s1 s2 s3 s4 s5 s6 s7))

An important remark on the used Lisp structure for representing fuzzy sets must
be made now. Maybe it has been an itch for the reader from chapter five of this
book. Let us have a look at the first fuzzy set in Code 8-5a:

(setq s1'(very-tight 1.0 1.0 1.0 3.0))

The question is: Why not to use the following, simpler structure:

(setq s1'(1.0 1.0 1.0 3.0))

After all, it would have allowed a more compact and efficient set of Lisp
expressions not only for representing fuzzy sets and linguistic variables, but also an

Fig. 8.11 Graphical representation of the linguistic variable “separation”
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easier work on programming FuzzyLisp functions. Powerful answer: Flexibility and
adaptability are one of the most important factors not only in programming but also
in Artificial Intelligence. At first sight, the symbol very-tight seems super-
fluous, but if we reflect a bit, we shall soon realize that as a symbol, it can point to
practically anything in Lisp. It can point to an atom, a list, a list of lists, a file, an
image…, you name it. Describing fuzzy sets in this form we always have a handle
available for extending their functionality. Since we are now interested in linguistic
descriptions of double star maybe it will not be a bad idea that these symbols point
to string of text, as shown in Code 8-5b:

;code 8-5b
;associated linguistic descriptions to fuzzy sets in
separation:
(setq very-tight''very tight'')
(setq rather-tight''rather-tight'')
(setq tight''tight'')
(setq open-tight''open-tight'')
(setq a-bit-open''bit open'')
(setq open-normal''open'')
(setq open-plus''really open'')

In this way, every fuzzy set from the linguistic variable “separation” not only
stores a membership function, but also it has associated a textual description. This
will be the key for speech synthesis later in this chapter.

The linguistic variable “delta-magnitude” is formed by four fuzzy sets, as shown
in Fig. 8.12.

Translated into Lisp, its fuzzy sets and the associated linguistic descriptions are
shown in Code 8-5c:

;code 8-5c: delta magnitude in double stars:
(setq d1'(very-small 0.0 0.0 0.0 1.0))
(setq d2'(medium 0.0 1.25 1.25 2.5))
(setq d3'(rather-big 1.0 2.5 2.5 4.0))
(setq d4'(very-big 2.5 5.0 9.0 9.0))

Fig. 8.12 Graphical representation of the linguistic variable “delta-magnitude”
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(setq delta-m'(d1 d2 d3 d3 d4))
;associated linguistic descriptions:
(setq very-small''very small'')
(setq medium''small'')
(setq rather-big''medium'')
(setq very-big''rather big'')

Now, for obtaining the Theoretical Difficulty Index, we need first a suitable set
of singletons, shown in Code 8-5d:

;code 8-5d: output singletons for calculating Theoretical
DI
(setq actions-di'(

(very-easy 0.0)
(rather-easy-plus 10.0)
(rather-easy 20.0)
(something-easy 40.0)
(something-difficult 60.0)
(rather-difficult 75.0)
(very-difficult 100.0))

)

And finally, Code 8-5e shows the expert rules to complete the knowledge base
for the Theoretical Difficulty Index:

;code 8-5e: Expert rules
(setq rules-separation'((separation delta-m actions-di)

(very-tight very-small rather-difficult AND-product)
(very-tight medium very-difficult AND-product)
(very-tight rather-big very-difficult AND-product)
(very-tight very-big very-difficult AND-product)

(rather-tight very-small something-difficult AND-
product)
(rather-tight medium rather-difficult AND-product)
(rather-tight rather-big very-difficult AND-product)
(rather-tight very-big very-difficult AND-product)

(tight very-small something-easy AND-product)
(tight medium something-difficult AND-product)
(tight rather-big rather-difficult AND-product)
(tight very-big very-difficult AND-product)

(open-tight very-small rather-easy AND-product)
(open-tight medium something-easy AND-product)
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(open-tight rather-big something-difficult AND-
product)
(open-tight very-big rather-difficult AND-product)

(a-bit-open very-small very-easy AND-product)
(a-bit-open medium rather-easy AND-product)
(a-bit-open rather-big something-easy AND-product)
(a-bit-open very-big something-difficult AND-product)

(open-normal very-small very-easy AND-product)
(open-normal medium very-easy AND-product)
(open-normal rather-big rather-easy AND-product)
(open-normal very-big rather-easy AND-product)

(open-plus very-small very-easy AND-product)
(open-plus medium very-easy AND-product)
(open-plus rather-big very-easy AND-product)
(open-plus very-big rather-easy-plus AND-product))

)

Trying this FRBS at the Lisp prompt is easy. For the double star Castor, Alpha
Geminorum, with separation d = 2″, primary magnitude Mv1 = 2.5 and secondary
magnitude Mv2 = 3.5 we shall have:

> (fl-inference rules-separation 2 1)
: 79.09

This resulting value indicates us that a double star with these parameters for
angular separation and difference of apparent magnitudes is a bit hard to split at the
eyepiece.

Before describing the rest of linguistic variables of the complete model for
speech synthesis we should comment that when complexity in programming
increases, “divide and conquer” is an excellent strategy. It is thus suggested to split
the knowledge database and the final FuzzyLisp application into different files, as
suggested in Fig. 8.13.

Fig. 8.13 Software
engineering structure for
dealing with complex models
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As an example, we can name as “dstar-knowledge-db.lsp” a file where all the
definitions of fuzzy sets, associated linguistic descriptions, linguistic variables and
expert rules are stored and then have another file named, for example,
“speech-dstar-main.lsp” where all the inferences and user interface will be imple-
mented. Aside the comments, the first two lines of such a file should be the
following ones:

;speech-dstar-main.lsp: A program for speech synthesis on
;double stars
(load''fuzzylisp.lsp'')
(load''dstar-knowledge-db.lsp'')

In this way, the main program can make direct calls to Lisp, to the knowledge
database or to FuzzyLisp functions. Naturally, Lisp is always at the foundation base
of the application, but using this structure the code is simpler to write and under-
stand, resulting into less programming errors and thus becoming a better pro-
gramming approach. After having said this, we shall continue describing the
knowledge database for double stars. Now it is the turn for the FRBS that describes
the Detector Capabilities of the optical system.

When we speak about “detector capabilities” we are referring to the sensibility of
the human retina to light. If the secondary component of a double star is faint and
the telescope’s aperture is small then a given double star will be always hard to split
at the eyepiece, especially if the separation between the components of a double star
is small. Thus, we design another FRBS to obtain a real number K in the range
[1,3]. This K value will be later multiplied to the already obtained Theoretical
Difficulty Index, TDI, resulting into the so named “Corrected Difficulty Index”,
CDI. Let us go with the linguistic variables for this FRBS. Figure 8.14 shows the
linguistic variable “secondary magnitude” describing the bright of the fainter
component in a double star.

Code 8-6a shows the translation to Lisp code of this linguistic variable and the
linguistic descriptions associated to its fuzz sets:

;code 8-6a: secondary-magnitude LV
(setq m21'(very-bright -1.5 -1.5 -1.5 1.375))
(setq m22'(bright -1.5 1.375 1.375 4.25))

Fig. 8.14 Graphical representation of the linguistic variable “secondary-magnitude”
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(setq m23'(medium 1.375 4.25 4.25 7.125))
(setq m24'(medium-dim 4.25 7.125 7.125 10.0))
(setq m25'(dim 7.125 10.0 10.0 10.0))
(setq secondary-magnitude'(m21 m22 m23 m24 m25))
;associated linguistic descriptions to fuzzy sets in
;secondary-magnitude:
(setq very-bright''very bright'')
(setq bright''bright or rather bright'')
(setq medium''medium bright'')
(setq medium-dim''dim'')
(setq dim''rather or very dim'')

The second linguistic variable in this FRBS is the aperture of the used telescope,
expressed by its optics diameter (lens or mirror) in inches, the usual unit for
expressing aperture in observational astronomy. Figure 8.15 shows it.

Code 8-6b expresses this in Lisp language. Do note that for the fuzzy sets of this
linguistic variable there are no associated linguistic descriptions. Instead we shall
need descriptions for recommended telescope aperture later.

;code 8-6b: telescope aperture LV
(setq ap1'(a-small 2.0 2.0 2.0 4.0))
(setq ap2'(a-medium 2.0 4.0 4.0 9.0))
(setq ap3'(a-large 4.0 9.0 12.0 12.0))
(setq aperture'(ap1 ap2 ap3))

Since from this FRBS we desire to obtain a real value K in the closed interval
[0–3] we shall design the output singletons accordingly, as shown in Code 8-6c:

;code 8-6c: Singletons for calculating detector
capability
;(expressed by a real value K)
(setq singletons-di-plus'(

(s-low 1.0)
(s-almost-low 1.15)
(s-medium-minus 1.25)

Fig. 8.15 Graphical representation of the linguistic variable “aperture”
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(s-medium 1.35)
(s-medium-high 2.0)
(s-high 3.0))

)

the resulting expert rules are shown in Code 8-6d:

;code 8-6d: Expert rules
(setq rules-di-plus

'((secondary-magnitude aperture singletons-
di-plus)

(very-bright a-small s-low AND-product)
(very-bright a-medium s-low AND-product)
(very-bright a-large s-low AND-product)

(bright a-small s-almost-low AND-product)
(bright a-medium s-low AND-product)
(bright a-large s-low AND-product)

(medium a-small s-medium AND-product)
(medium a-medium s-low AND-product)
(medium a-large s-low AND-product)

(medium-dim a-small s-medium-high AND-product)
(medium-dim a-medium s-medium-minus AND-product)
(medium-dim a-large s-low AND-product)

(dim a-small s-high AND-product)
(dim a-medium s-medium AND-product)
(dim a-large s-almost-low AND-product))

)

Now, let us try this FRBS at the Lisp prompt. If we use a four inches aperture
telescope for observing Castor (Mv2 = 3.5), then we shall have:

> (fl-inference rules-di-plus 3.5 4)
: 1.0

When testing the previous FRBS, we obtained a TDI = 79.09 for the double star
Castor. Taking into account the K = 1.0 value now obtained, the Corrected
Difficulty Index will obviously be CDI = 79.09 × 1.0 = 79.09. The reason for
maintaining the difficulty Index in this case is because Castor is a rather bright
double star, so the detection capability of our retina is more than enough to observe
Castor with a four inches aperture telescope. However, if we observe Castor
through a 2.5 in. aperture telescope, things would change:
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> (fl-inference rules-di-plus 3.5 2.5)
: 1.22

And then, with K = 1.22, the obtained CDI will be CDI = 79.09 × 1.22 = 96.76,
showing that under such circumstances Castor becomes a lot harder to split because
a 2.5 in. telescope gathers less stellar light (dimmer resulting image) and has less
resolution than a four inches telescope.

For those cases where the resulting CDI exceeds 100.0 we shall use the fol-
lowing algorithm expressed in pseudo-code:

(calculate CDI = TDI x K)
(if obtained CDI > 100 then CDI = 100)

This algorithm is, as we know, certainly easy to implement, and we shall do it in
the main program of this project.

For obtaining the Theoretical Beauty we shall use as inputs the Primary’s
magnitude, that is, the apparent visual magnitude of the brightest star in the pair,
and its Delta Spectral, that is, the numerical distance between spectral lasses, as
discussed in the previous section. It happens that the more contrast in coloration,
that is, the bigger its delta spectral between components a double star has, the more
beauty is perceived for an observer (Adler 2006). It also happens that when delta
spectral is very small when the components are both bright, the resulting beauty at
the telescope’s eyepiece is easy to appreciate.

Translating into Lisp the concept of Primary’s magnitude can’t be easier. We
only need a line of code for it:

;code 8-7a: primary magnitude LV
(setq primary-magnitude secondary-magnitude)

That is, we shall use the same fuzzy sets and associated linguistic descriptions as
expressed by Code 8-6a (Fig. 8.14), assigning them to the symbol primary-
magnitude. On the other hand, the linguistic variable “delta-spectral” contains
five fuzzy sets defined on an universe of discourse ranging from 0 to 70, being
equivalent to the numerical distance between the spectral class O0 and M9.
Figure 8.16 shows graphically this linguistic variable.

Fig. 8.16 Graphical representation of the linguistic variable “delta-spectral”
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The Lisp representation of this linguistic variable is straightforward, as shown in
Code 8-7b:

;code 8-7b: delta-spectral LV
(setq ds1'(ds-small 0.0 0.0 0.0 10.0))
(setq ds2'(ds-medium-small 0.0 10.0 10.0 20.0))
(setq ds3'(ds-medium 10.0 20.0 20.0 30.0))
(setq ds4'(ds-medium-large 20.0 30.0 30.0 40.0))
(setq ds5'(ds-large 30.0 40.0 70.0 70.0))
(setq delta-spectral'(ds1 ds2 ds3 ds4 ds5))
;associated linguistic descriptions to fuzzy sets
;in delta-spectral:
(setq ds-small''virtually not existent'')
(setq ds-medium-small''not easy at all to observe'')
(setq ds-medium''neither easy not hard to observe'')
(setq ds-medium-large''rather easy to observe'')
(setq ds-large''easily appreciated'')

We shall create seven output singletons for describing the Theoretical Beauty of
the pair, expressed in the closed interval [0–100] as can be seen in Code 8-7c:

;code 8-7c: Singletons for calculating Theoretical Beauty
(setq singletons-Tbeauty'(

(stb-top-class 100.0)
(stb-high-plus 80.0)
(stb-high 75.0)

(stb-normal 50.0)
(stb-low 25.0)
(stb-uninteresting 0.0))

)

and now, the adequate expert rules for this FRBS are shown in Code 8-7d:

;code 8-7d: Expert rules
(setq rules-Tbeauty '((primary-magnitude delta-spectral
singletons-Tbeauty)

(very-bright ds-small stb-top-class AND-product)
(very-bright ds-medium-small stb-top-class AND-
product)
(very-bright ds-medium stb-high AND-product)
(very-bright ds-medium-large stb-top-class AND-
product)
(very-bright ds-large stb-top-class AND-product)
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(bright ds-small stb-top-class AND-product)
(bright ds-medium-small stb-high AND-product)
(bright ds-medium stb-normal AND-product)
(bright ds-medium-large stb-high-plus AND-product)
(bright ds-large stb-top-class AND-product)

(medium ds-small stb-high AND-product)
(medium ds-medium-small stb-normal AND-product)
(medium ds-medium stb-normal AND-product)
(medium ds-medium-large stb-top-class AND-product)
(medium ds-large stb-high-plus AND-product)

(medium-dim ds-small stb-normal AND-product)
(medium-dim ds-medium-small stb-low AND-product)
(medium-dim ds-medium stb-low AND-product)
(medium-dim ds-medium-large stb-uninteresting AND-
product)
(medium-dim ds-large stb-uninteresting AND-product)

(dim ds-small stb-low AND-product)
(dim ds-medium-small stb-low AND-product)
(dim ds-medium stb-uninteresting AND-product)
(dim ds-medium-large stb-uninteresting AND-product)
(dim ds-large stb-uninteresting AND-product))

)

Following our example with Castor, its Theoretical Beauty will be obtained with
the following expression at the Lisp prompt:

> (fl-inference rules-Tbeauty 2.5 1)
: 87.72

Observing again Fig. 8.10 we shall realize that there is only one FRBS to go.
This one takes as inputs the obtained value of theoretical-beauty and the CDI value.
The design of this FRBS is based on the idea that the theoretical-beauty value
cannot be improved. That is, depending on the Difficulty Index it only can be
worsened. If a double star is easy to observe the resulting Sight Perception will be
the same as its theoretical-beauty value. On the other hand, if the CDI is high then
the final Sight Perception will have a lower value than its corresponding
theoretical-beauty. With these ideas in mind, we can create a linguistic variable for
representing the theoretical-beauty, as shown in Fig. 8.17.

As usually, translating this arrangement of fuzzy sets into Lisp is easy, as shown
in Code 8-8a:
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;code 8-8a: theoretical-beauty LV
(setq tb1'(tb-uninteresting 0.0 0.0 0.0 25.0))
(setq tb2'(tb-low 0.0 25.0 25.0 50.0))
(setq tb3'(tb-normal 25.0 50.0 50.0 75.0))
(setq tb4'(tb-high 50.0 75.0 75.0 100.0))
(setq tb5'(tb-top-class 75.0 100.0 100.0 100.0))
(setq theoretical-beauty'(tb1 tb2 tb3 tb4 tb5))

The other input linguistic variable, Corrected DI (CDI) can be modeled in an
identical fashion, as expressed by Fig. 8.18.

Again, translating this LV into Lisp is immediate, as shown in Code 8-8b:

;code 8-8b: corrected-DI LV
(setq di1'(di-small 0.0 0.0 0.0 33.0))
(setq di2'(di-medium-small 0.0 33.0 33.0 66.0))
(setq di3'(di-medium-high 33.0 66.0 66.0 100.0))
(setq di4'(di-high 66.0 100.0 100.0 100.0))
(setq corrected-DI'(di1 di2 di3 di4))

Now we only need to create a suitable set of singletons for representing the
intended output, that is, the sight-perception value, expressed also in the closed
interval [0–100]. Code 8-8c shows it:

;code 8-8c: Singletons for calculating Sight Perception
(setq singletons-Sight'(

Fig. 8.17 Graphical representation of the linguistic variable “theoretical-beauty”

Fig. 8.18 Graphical representation of the linguistic variable “corrected DI”
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(sgh-top-class 100.0)
(sgh-high 75.0)
(sgh-normal 50.0)
(sgh-low 25.0)
(sgh-uninteresting 0.0))

)

And finally, the rules for relating theoretical-beauty, CDI and sight perception
are described in Code 8-8d:

;code 8-8d: Expert rules
(setq rules-Sight '((theoretical-beauty corrected-DI
singletons-Sight)

(tb-uninteresting di-small sgh-uninteresting AND-
product)
(tb-uninterestingdi-medium-small sgh-uninteresting
AND-product)
(tb-uninteresting di-medium-high sgh-uninteresting
AND-product)
(tb-uninteresting di-high sgh-uninteresting AND-
product)

(tb-low di-small sgh-low AND-product)
(tb-low di-medium-small sgh-low AND-product)
(tb-lowdi-medium-highsgh-uninterestingAND-product)
(tb-low di-high sgh-uninteresting AND-product)

(tb-normal di-small sgh-normal AND-product)
(tb-normal di-medium-small sgh-normal AND-product)
(tb-normal di-medium-high sgh-low AND-product)
(tb-normal di-high sgh-low AND-product)

(tb-high di-small sgh-high AND-product)
(tb-high di-medium-small sgh-high AND-product)
(tb-high di-medium-high sgh-normal AND-product)
(tb-high di-high sgh-normal AND-product)

(tb-top-class di-small sgh-top-class AND-product)
(tb-top-class di-medium-small sgh-top-class AND-
product)
(tb-top-class di-medium-high sgh-high AND-product)
(tb-top-class di-high sgh-high AND-product))

)
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For testing this last FRBS, and for obtaining the final sight perception we shall
use the obtained values of theoretical beauty = 87.72 and CDI = 79.09 at the Lisp
prompt:

> (fl-inference rules-Sight 87.72 79.09)
: 62.72

Table 8.2 summarizes the obtained numerical values for the second order per-
ceptions in our model.

8.3.2 Managing Linguistic Expressions

After obtaining the numerical values for TDI, CDI, Theoretical beauty and Sight
perception it is time to develop the code for speech synthesis, taking numerical data
as input and obtaining text string data as output. The key function to cross the
bridge between numbers and text strings is named (extract-description) and is
shown in Code 8-9:

;code 8-9
(define (extract-description lv x,

a-list n i location mu-value sub-list)
(setq a-list (fl-lv-membership2? lv x))
(setq n (length a-list) i 0 location 0 mu-value 0.0)
(list n i)

(while (< i n)
(setq sub-list (nth i a-list));extracts sublist
(if (> (last sub-list) mu-value)
(begin

(setq mu-value (last sub-list))
(setq location i))

);end if
(++ i)

);while end
(eval (first (nth location a-list)))

)

Table 8.2 Summarized results of theoretical difficult index, corrected difficulty index, theoretical
beauty and sight perception for castor (Alpha Geminorum)

Theoretical DI Corrected DI Theoretical beauty Sight perception

79.09 79.09 87.72 62.72
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This function takes a linguistic variable and a crisp value belonging to its uni-
verse of discourse as inputs and after the internal processing is done it returns the
linguistic description (text string) associated to the fuzzy set with maximum
membership degree for such x value. Let us try an example at the Lisp prompt in
order to observe how it works in practice:

> (extract-description separation 2.7)
: “rather-tight”

While not a especially complex function by itself, it is one of the key compo-
nents in the strategy for this fuzzy based model of speech synthesis. Now in
Fig. 8.19 we can observe, selected with a thick vertical bar located at right in the
selected boxes, what linguistic variables we are interested in for generating the final
text report.

Almost all the required LVs have been already coded into Lisp with three
exceptions: The difficulty to split a double star (expressed from its Corrected DI),
another variable for commenting a suitable telescope (when using the linguistic
variable Telescope aperture” we were referring to the telescope we actually use, the
model will tell us a telescope recommendation for observing a given pair), and
finally, another linguistic variable for describing the perceived final sight at the
eyepiece. Code 8-10 shows the required Lisp code:

;code 8-10: Additional linguistic variables:
;LV-exp-diff is for expressing how hard is to split a double
star:

Fig. 8.19 Linguistic variables involved in the speech synthesis (those with a vertical bar at their
right)
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(setq exp-diff1'(expd-very-easy 0.0 0.0 0.0 25.0))
(setq exp-diff2'(expd-easy 0.0 25.0 25.0 50.0))
(setq exp-diff3'(expd-not-hard 25.0 50.0 50.0 75.0))
(setq exp-diff4'(expd-moderate 50.0 75.0 75.0 100.0))
(setq exp-diff5'(expd-hard 75.0 100.0 100.0 100.0))
(setq LV-exp-diff

'(exp-diff1 exp-diff2 exp-diff3 exp-diff4 exp-diff5))
;associated linguistic descriptions to fuzzy sets in
LV-exp-diff:
(setq expd-very-easy''very easily'')
(setq expd-easy''easily'')
(setq expd-not-hard''not especially hard to'')
(setq expd-moderate''hard to'')
(setq expd-hard''hardly'')

;LV-exp-telescope is for expressing a suitable telescope:
(setq exp-tel1'(expt-very-easy 0.0 0.0 0.0 25.0))
(setq exp-tel2'(expt-easy 0.0 25.0 25.0 50.0))
(setq exp-tel3'(expt-not-hard 25.0 50.0 50.0 75.0))
(setq exp-tel4'(expt-moderate 50.0 75.0 75.0 100.0))
(setq exp-tel5'(expt-hard 75.0 100.0 100.0 100.0))
(setq LV-exp-telescope

'(exp-tel1 exp-tel2 exp-tel3 exp-tel4 exp-tel5))
;associated linguistic descriptions to fuzzy sets in
LV-exp-diff:
(setq expt-very-easy''any observing instrument'')
(setq expt-easy''small telescopes'')
(setq expt-not-hard''small and medium-size telescopes'')
(setq expt-moderate ''good telescopes under good seeing
skies'')
(setq expt-hard ''only first-class instruments under ex-
cepcional seeing'')

;LV-final-sight is for expressing the final observed sight
at the eyepiece:
(setq fsight1'(boring 0.0 0.0 0.0 20.0))
(setq fsight2'(boring-plus 0.0 20.0 20.0 40.0))
(setq fsight3'(snormal 20.0 40.0 40.0 60.0))
(setq fsight4'(snormal-plus 40.0 60.0 60.0 80.0))
(setq fsight5'(good 60.0 80.0 80.0 100.0))
(setq fsight6'(very-good 80.0 100.0 100.0 100.0))
(setq LV-final-sight

'(fsight1 fsight2 fsight3 fsight4 fsight5 fsight6))
;associated linguistic descriptions to fuzzy sets in
LV-final-sight:
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(setq boring''a frankly uninteresting double'')
(setq boring-plus''a not especially interesting pair'')
(setq snormal''a rather normal double'')
(setq snormal-plus''a beautiful pair'')
(setq good''a top-class double'')
(setq very-good''a jewel in the sky'')

Now, for example:

> (extract-description LV-final-sight 87)
: “a top-class double”

We are certainly in the right track for the intended speech synthesis model, but
there is still an important detail that we must solve: Spectral classes are given in a
combination of letters and numbers, such as B4 or G2 and we require a numerical
value for the “Delta spectral” component in the model. For solving this question, we
shall first enumerate all the possible spectral classes, as shown in Code 8-11a:

;code 8-11a: Lisp symbol for representing spectral classes:
(setq s-classes'(
''O0''''O1''''O2''''O3''''O4''''O5''''O6''''O7''''O8''''O9''''B0''''B1''''B2''''B3''''B4''

''B5''''B6''''B7''''B8''''B9''''A0''''A1''''A2''''A3''''A4''''A5''''A6''''A7''''A8''''A9''
''F0''“F1''''F2''''F3''''F4''''F5''''F6''''F7''''F8''''F9''''G0''''G1''''G2''''G3''''G4''
''G5''''G6''''G7''''G8''''G9''''K0''''K1''''K2''''K3''''K4''''K5''''K6''''K7''''K8''''K9''
''M0''''M1''''M2''''M3''''M4''''M5''''M6''''M7''''M8''''M9''))

and now, Code 8-11b shows a function named (find-class-diff) that takes two
spectral classes expressed as strings and then returns its numerical distance:

;code 8-11b: returns numerical distance between two spec-
tral classes

(define (find-class-diff class1 class2, p q)
(setq p (find class1 s-classes))
(setq q (find class2 s-classes))
(abs (- p q))

)

As can be seen, this is just another simple, yet powerful function. Let us try it:

> (find-class-diff “A2” “B3”)
: 9

Almost all the ingredients for the final model are now ready. We still need an
user input function for asking the required numerical dataset. Function (data-in) in
Code 8-12 takes charge of it:
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;code 8-12: Entering input data from the keyboard
(define (data-in, star-name d m1 m2 sp1 sp2 a)
(print''Name of the star:'')

(setq star-name (read-line))
(print''Separation between components:'')

(setq d (float (read-line)))
(print''Magnitude first component:'')

(setq m1 (float (read-line)))
(print''Magnitude second component:'')

(setq m2 (float (read-line)))
(print''Spectral class first component:'')

(setq sp1 (read-line))
(print''Spectral class second component:'')

(setq sp2 (read-line))
(print''Telescope aperture in inches:'')

(setq a (float (read-line)))

(list star-name d m1 m2 sp1 sp2 a)
)

This function is so simple that it does not need further explanation. Only to
comment that it returns a list formed by the data gathered in the input process.

Now it is time to write another function for running all the FRBS in the model at
a time. This function, named (run-the-FRBS) is shown in Code 8-13:

;code 8-13: running all the FRBS in the model
(define (run-the-FRBS, data-list sp-diff delta-mag DI K
DI-OK TB)

(setq data-list (data-in))
(setq sp-diff (find-class-diff (nth 4 data-list)

(nth 5 data-list)))
(setq delta-mag (sub (nth 3 data-list) (nth 2 data-

list)))

;calculate Difficulty Index:
(setq DI (fl-inference rules-separation (nth 1 data-
list)

delta-mag))

;calculate K factor:
(setq K (fl-inference rules-di-plus (nth 3 data-list)

(nth 6 data-list)))

;calculate corrected DI:
(setq DI-OK (mul DI K))
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(if (> DI-OK 100.0)
(setq DI-OK 100.0)

)
;calculate theoretical Beauty:
(setq TB (fl-inference rules-Tbeauty (nth 2 data-list)
sp-diff))

;calculate final Beauty (Sight):
(setq FB (fl-inference rules-Sight TB DI-OK))

;return numerical results as a list:
(append data-list (list DI DI-OK TB FB))

)

The function starts calling (data-in) and then returns a list formed by all the
required information for start the process of pure speech synthesis. The output is a
list whose elements are structured in the following way: Name of the double star,
separation, primary’s magnitude, secondary’s magnitude, spectral class of primary
star, spectral class of secondary, used telescope aperture, TDI and CDI. Let us try it!

> (run-the-FRBS)
: Name of the star: Castor
Separation between components: 2
Magnitude first component: 2.5
Magnitude second component: 3.5
Spectral class first component: A1
Spectral class second component: A2
Telescope aperture in inches: 4
(“Castor” 2 2.5 3.5 “A1” “A2” 4 79.09090909 79.09090909 87.7173913

62.7173913)

Now we are only one step away from finishing our speech synthesis model. The
function (print-report) puts it all together, calling (run-the-FRBS) and then making
successive calls to (extract-description) in order to finally compose the output
linguistic report. Code 8-14 shows this main function:

;code 8-14: main function
(define (print-report,

numerical-data sep mv1 mv2 spc1 spc2 apert
TDI CDI TB FS str1 str2 str3 str4 str5 str6
str7 str8 str9)

(setq numerical-data (run-the-FRBS))
(setq str1 (nth 0 numerical-data));get star’s name
(setq sep (nth 1 numerical-data))
(setq mv1 (nth 2 numerical-data))
(setq mv2 (nth 3 numerical-data))
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(setq spc1 (nth 4 numerical-data))
(setq spc2 (nth 5 numerical-data))
(setq apert (nth 6 numerical-data))
(setq TDI (nth 7 numerical-data))
(setq CDI (nth 8 numerical-data))
(setq TB (nth 9 numerical-data))
(setq FS (nth 10 numerical-data))

;obtain the strings:
(setq str2 (extract-description separation sep))
(setq str3 (extract-description LV-exp-diff CDI))
(setq str4 (extract-description LV-exp-telescope CDI))
(setq str5 (extract-description delta-spectral

(find-class-diff spc1 spc2)))
(setq str6 (extract-description LV-final-sight FS))
(setq str7 (extract-description delta-m (abs (sub mv1
mv2))))
(setq str8 (extract-description primary-magnitude
mv1))
(setq str9 (extract-description secondary-magnitude
mv2))

;finally, concatenate the output report:
(println str1''is a''str2''double star that can be''str3

'' split using''str4''. Difference of coloration
is ''str5 '' and from an aesthetic point of view
is''
str6''. There is a''str7''difference of magnitude
between components. The primary is a '' str8 ''
star, while the secondary is'' str9''.''

);end println
)

Now let us enjoy its working at the Lisp prompt:

> (print-report)
:Name of the star: Castor
Separation between components: 2
Magnitude first component: 2.5
Magnitude second component: 3.5
Spectral class first component: A1
Spectral class second component: A2
Telescope aperture in inches: 4
Castor is a rather-tight double star that can be hard to split using good tele-

scopes under good seeing skies. Difference of coloration is virtually not existent
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and from an aesthetic point of view is a beautiful pair. There is a small difference of
magnitude between components. The primary is a bright or rather bright star,
while the secondary is medium bright.

Depending on your computer, you can copy the report into a new text document
and select the “Speech” option directly from the Operating System. You will hear
the report directly from your computer.

The reader can play the model with double star data from catalogues easily
downloadable from the Internet or with some example data as shown in Table 8.3.

8.4 Spirometry Analysis in Medicine: Floating Singletons

Chronic Obstruction Pulmonary Disease (COPD) is a severe condition caused by
long-term exposure to lung irritants such as dust or micro granular material. Since
many activities in industrial processes in quarries and other extractive industries
generate micro particles (silicates, coal dust, etc.), the resulting atmospheres at
many industrial facilities are aggressive to the human lungs. As a consequence,
many people working in such environments end up developing COPD

Table 8.3 List of selected double stars for testing the model

Star name Constellation Sep Mv1 Mv2 Sp1 Sp2
Sigma Orionis Orion 12.9 4 7.5 O9 B2

Albireo Cygnus 34.3 3 5.5 K3 B9

O. Struve 111 Orion 2.6 6 10 A5 B5

Rigel Orion 9.4 0 7 B8 B5

Struve 747 Orion 36 5.5 6.5 B0 B1

Mintaka Orion 52.8 2 6.5 O9 B2

Zeta Ori Orion 2.5 1.9 4 O9 B0

Iota Ori Orion 11 2.8 6.9 O5 B9

Eta Ori Orion 1.5 3.1 3.4 B1 B2

Beta Cep Cepheus 13 3.2 7.9 B2 A2

Delta Cyg Cygnus 2.5 2.9 6.3 B9 F1

Lambda Ori Orion 4 3.6 5.5 O8 B0

STF 422 Taurus 7 5.9 6.8 G9 K6

Epsilon Per Perseus 9 2.9 7.6 B0 A2

Theta 1 Ori Orion 9 6.4 7.9 B0 B0

Algieba Leo 4.4 2.5 3.5 K0 G7

Theta Per Perseus 20 4.1 9.9 F7 M1

Eta Lyrae Lyra 28 4.4 9.1 B3 B3

Castor Gemini 2 2.5 3.5 A1 A2

Wasat Gemini 6.3 3.5 8 F0 F0
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(Santo-Tomas 2011). It is usual that the medical services at such companies carry
out periodic revisions concerning the health status of their respective working
forces. Spirometric analysis is a fundamental test in such medical revisions.

An spirometry is a clinical test where a device (spirometer) records the volume
of air exhaled by a patient and plots it as a function of time, producing a curve that
shows the lung function, specifically the volume and flow of air that can be exhaled.
The patient inhales maximally and then exhales as rapidly and completely as
possible. This technique is the most common one of the pulmonary function tests,
being a suitable clinical test for detecting COPD. In fact, spirometry is the only
medical test able to detect COPD years before shortness of breath develops (Hyatt
et al. 2009). A typical spirometric curve can be observed in Fig. 8.20.

The most important numerical parameters obtained by means of a spirometry are
the following ones:

• FVC: Forced Vital Capacity: It is the whole volume of air that can be exhaled by
a patient after full inspiration in the test.

• FEV1: Forced Expiratory Volume in one second: It is the volume of air that can
be exhaled in the first second of a spirometric test. Both FVC and FEV1 are
measured in litres.

• TI: Tiffenau Index: It is a relationship between FEV1 and FVC values given by
the following expression: TI = 100 × (FEV1/FVC)

From the height, x, in metres and age, y, in years of an individual, theoretical
values of FEV1 and FVC for men, in litres, can be obtained using the following
expressions (Morris et al. 1971):

Theoretical FVC ¼ 5:76x� 0:026y� 4:34 ð8-1Þ

Theoretical FEV1 ¼ 4:3x� 0:026y� 2:49 ð8-2Þ

Fig. 8.20 A typical
spirometry. The horizontal
axis represents time in
seconds, while the vertical
axis represents litres of
exhaled air. This spirometry
show moderate COPD, with
FEV1 = 3.6 l and
FVC = 4.95 l (see text)
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Comparing the experimental FEV1 and FVC values obtained from a spirometry
with the theoretical values, lung obstruction is detected applying the following,
traditional, algorithm:

If ((Observed FVC > 80 % theoretical FVC) and (Observed FEV1 > 80 %
theoretical FEV1) and (TI > 80 %))

then spirometry is normal
else the individual suffers an obstructive pulmonary disease.

Similar algorithms are given, for example, by Qaseem et al. (2011). However,
expressions (8-1) and (8-2) are in fact equations representing two regression lines
from a general population, thus being a “sharp” approximation for representing
observed cases from the real world. Physicians know that the requirements for
detecting COPD in workers exposed to ambient dust must be more strict than the
simple application of the aforementioned algorithm, and test results must be
evaluated in light of the patient’s clinic history, physical examination and pertinent
laboratory findings. Moreover, medical practice shows that smoking is a strong
factor that worsens COPD. In this section of the chapter we are going to explore a
sophisticated FRBS architecture that gathers the experience of physicians and also
has into account the smoking factor. This architecture uses floating singletons
(Argüelles 2013).

8.4.1 Introducing Floating Singletons

Basically speaking, floating singletons are a special type of singletons belonging to
a first FRBS where their precise location on the real axis is only known at run-time.
At design time some intervals are established in the first FRBS where these special
singletons are allowed to float and later, the defuzzification of a complementary,
second FRBS fixes their location. That is, a floating singleton, sf, has the ability to
move inside an universe of discourse defined in a closed interval [a,b]. A set of
traditional singletons si defines a set of Ii = i − 1 internal intervals in [a,b] as can be
observed in Fig. 8.21a, b:

We say that sfi is a floating singleton by-left if:

si�1 � sfi � si ! sfi 2 Iiþ1 ð8-3Þ

with sf1 = s1. Conversely, sfi is a floating singleton by-right if:

si � sfi � siþ1 ! sfi 2 Ii ð8-4Þ

with sfn = sn (see Fig. 8.21a, b). Now we can expose a more restricted definition: a
floating singleton, sfi, is a special type of singleton that has the ability to move
inside its assigned interval Ii until run-time, that is, when the model is run at the
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computer. The floating nature of floating singletons is described by means of the
existence of a second FRBS composed by fuzzy rules of the type:

if p isMg and q is Nh then zi ¼ ti;j ð8-5Þ

where ti,j 2 [si, si+1] are a set of singletons ti,j, expressed as consequents. Here we
must remark that every singleton ti,j is defined on the interval Ii. This can be
expressed graphically by means of the Fig. 8.22.

Now, the final position of every floating singleton sfi comes from the defuzz-
ification of the singletons ti, expressed, as we already know, by Eq. 7-22. As can be
seen, in this arrangement of models, inferences are made first for the second FRBS
whose rules are given by (8-5), and then, the defuzzification of ti is made for
“fixing” the position of the floating singletons. Finally, after making the inferences
for the first FRBS, the final defuzzification process is made.

Fig. 8.21 a, b At top, a traditional set of singletons, si can be seen. At bottom a set of floating
singletons sfi “by-left” is shown. Note the position of traditional singletons si on the horizontal axis
at bottom
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8.4.2 Modeling Pulmonary Obstruction with FuzzyLISP

For developing a model representing pulmonary obstruction after obtaining the
FVC and FEV1 values from a real spirometry, we shall first create two magnitudes,
f1 and f2, expressed by:

f 1 ¼ 100 FVC from spirometryð Þ= theoretical FVCð Þ ð8-6Þ

f 2 ¼ 100 FEV1 from spirometryð Þ= theoretical FEV1ð Þ ð8-7Þ

where the theoretical FVC and theoretical FEV1 values are obtained from
expressions (8-1) and (8-2), respectively. The following step is to create two lin-
guistic variables, Pct-FVC and Pct-FEV1, for expressing all the possible values of
f1 and f2. These linguistic variables will allow us to create a first FRBS composed
by expert rules of the type:

if f 1i is Pct-FVC and f 2i is Pct-FEV thenObstruction is sfi ð8-8Þ

The key point now is the definition of the floating singletons sfi for describing
pulmonary Obstruction. Since at design time they “float” we do not give fixed real
numbers for them, but some intervals. Table 8.4a shows the floating singletons
involved in our model:

Fig. 8.22 Graphical
interpretation of floating
singletons sfi, and their
relationship with standard
singletons ti,j
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As can be observed in the table, these floating singletons are expressed by a set
of intervals Ii. Please do note also that the last floating singleton, “Extreme” is fixed
at [100], that is, we are creating a model with floating singletons by-right. In this
way, an instance from rules given by (8-8) could be:

if f 1i is Severe and f 2i is Normal thenObstruction is Important 65;85½ � ð8-9Þ

So “Important” is a floating singleton that can adopt numerical values between
65 and 85. Now, how do we get a fixed value for “Important” in such a way that we
can make fuzzy logic inferences from the rules given by (8-8)? The answer comes
from a second FRBS that takes into account smoking. The model will ask for the
number of cigarettes/day and the number of years of smoking associated to the
person passing the spirometric test. If he or she is not a smoker, both values will be
null, and then Table 8.4a would convert to Table 8.4b.

Figure 8.23 shows the whole architecture of the intended model for describing
pulmonary obstruction.

As can be seen, the second FRBS takes the number of smoking years and the
number of cigarettes per day as crisp numerical inputs, ultimately generating an

Table 8.4a List of floating
singletons for describing
pulmonary obstruction

Floating singleton name Floating interval Ii
Null [0,15]

Appreciable [15,65]

Important [65,85]

Very-important [85,100]

Extreme [100,100]

Table 8.4b List of singletons
for describing pulmonary
obstruction in non smokers

Singleton name Singleton defined at

Null 0

Appreciable 15

Important 65

Very-important 85

Extreme 100

Fig. 8.23 FRBS architecture for spirometric and COPD analysis
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output that converts into standard singletons, ready for being used in the defuzz-
ification for the first FRBS. For representing the number of cigarettes/day and the
number of years of smoking we shall create two linguistic variables named,
respectively, “smoking-years” and “cigarettes-day”. The former, composed by three
fuzzy sets, is shown in Fig. 8.24a.

Figure 8.24b shows the graphical representation of the Linguistic Variable
“cigarettes/day”.

Translating these variables to Lisp is immediate, as can be appreciated in
Code 8-15:

;code 8-15: Linguistic variables for floating
;singletons management
;smoking-years:
(setq sy1'(Few 0.0 0.0 2.0 5.0))
(setq sy2'(Quite-a-while 2.0 5.0 5.0 10.0))
(setq sy3'(Many 5.0 10.0 75.0 75.0))
(setq smoking-years'(sy1 sy2 sy3))
;cigarettes-day:
(setq cd1'(Few-cigarettes 0.0 0.0 0.0 10.0))
(setq cd2'(Moderate 0.0 10.0 15.0 20.0))
(setq cd3'(Many-cigarettes 15.0 20.0 100.0 100.0))
(setq cigarettes-day'(cd1 cd2 cd3))

Now we need to define the floating singletons as described in Table 8.4a. This is
shown in code 8-16:

Fig. 8.24a Graphical representation of the linguistic variable “smoking-years”.

Fig. 8.24b Graphical representation of the linguistic variable “cigarettes-day”
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;code 8-16: Definition of all the floating singletons
intervals
;first floating singletons interval:
(setq Sf1'(

(sf1-left 0.0)
(sf1-medium 8.0)
(sf1-right 15.0))

)

;second floating singletons interval:
(setq Sf2'(

(sf2-left 15.0)
(sf2-medium 40.0)
(sf2-right 65.0))

)

;third floating singletons interval:
(setq Sf3'(

(sf3-left 65.0)
(sf3-medium 75.0)
(sf3-right 85.0))

)

;fourth floating singletons interval:
(setq Sf4'(

(sf4-left 85.0)
(sf4-medium 92.5)
(sf4-right 100.0))

)

;fifth floating singletons interval:
(setq Sf5'(

(sf5-left 100.0)
(sf5-medium 100.0)
(sf5-right 100.0))

)

For each of these intervals we shall need a dedicated set of expert rules joining
the linguistic variables “smoking-years” and “cigarettes-day” in the antecedents as
follows:

if xi is smoking-years and yi is cigarettes-day then singleton is ti ð8-10Þ

In this way we shall be able to determine the floating singletons into standard
singletons. Code 8-17 shows all the required expert rules:
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;code 8-17: Expert rules for determining the floating
singletons:
(setq rules-s1'((smoking-years cigarettes-day Sf1)

(Few Few-cigarettes sf1-left AND-product)
(Few Moderate sf1-left AND-product)
(Few Many-cigarettes sf1-medium AND-product)

(Quite-a-while Few-cigarettes sf1-left AND-product)
(Quite-a-while Moderate sf1-medium AND-product)
(Quite-a-whileMany-cigarettes sf1-rightAND-product)

(Many Few-cigarettes sf1-medium AND-product)
(Many Moderate sf1-right AND-product)
(Many Many-cigarettes sf1-right AND-product))

)

(setq rules-s2'((smoking-years cigarettes-day Sf2)
(Few Few-cigarettes sf2-left AND-product)
(Few Moderate sf2-left AND-product)
(Few Many-cigarettes sf2-medium AND-product)

(Quite-a-while Few-cigarettes sf2-left AND-product)
(Quite-a-while Moderate sf2-medium AND-product)
(Quite-a-whileMany-cigarettes sf2-rightAND-product)

(Many Few-cigarettes sf2-medium AND-product)
(Many Moderate sf2-right AND-product)
(Many Many-cigarettes sf2-right AND-product))

)

(setq rules-s3'((smoking-years cigarettes-day Sf3)
(Few Few-cigarettes sf3-left AND-product)
(Few Moderate sf3-left AND-product)
(Few Many-cigarettes sf3-medium AND-product)

(Quite-a-while Few-cigarettes sf3-left AND-product)
(Quite-a-while Moderate sf3-medium AND-product)
(Quite-a-whileMany-cigarettes sf3-rightAND-product)

(Many Few-cigarettes sf3-medium AND-product)
(Many Moderate sf3-right AND-product)
(Many Many-cigarettes sf3-right AND-product))

)
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(setq rules-s4'((smoking-years cigarettes-day Sf4)
(Few Few-cigarettes sf4-left AND-product)
(Few Moderate sf4-left AND-product)
(Few Many-cigarettes sf4-medium AND-product)

(Quite-a-while Few-cigarettes sf4-left AND-product)
(Quite-a-while Moderate sf4-medium AND-product)
(Quite-a-whileMany-cigarettessf4-rightAND-product)

(Many Few-cigarettes sf4-medium AND-product)
(Many Moderate sf4-right AND-product)
(Many Many-cigarettes sf4-right AND-product))

)

(setq rules-s5'((smoking-years cigarettes-day Sf5)
(Few Few-cigarettes sf5-left AND-product)
(Few Moderate sf5-left AND-product)
(Few Many-cigarettes sf5-medium AND-product)

(Quite-a-while Few-cigarettes sf5-left AND-product)
(Quite-a-while Moderate sf5-medium AND-product)
(Quite-a-whileMany-cigarettessf5-rightAND-product)

(Many Few-cigarettes sf5-medium AND-product)
(Many Moderate sf5-right AND-product)
(Many Many-cigarettes sf5-right AND-product))

)

Let us test at the Lisp prompt all these sets of rules for a person that started to
smoke ten years ago and smokes seven cigarettes every day:

> (fl-inference rules-s1 10 7)
: 12.9

> (fl-inference rules-s2 10 7)
: 57.5

> (fl-inference rules-s3 10 7)
: 82

> (fl-inference rules-s4 10 7)
: 97.75

> (fl-inference rules-s5 10 7)
: 100
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In this way, for x = 10 years and y = 7 cigarettes/day, the resulting singletons
(we could say they have just finished their floating nature after inferences are made
in the second FRBS) are shown in Table 8.4c.

Now we need to establish the linguistic variables Pct-FVC and Pct-FEV1, shown
in Fig. 8.25. The fuzzy sets distribution in both of them is identical and only the
linguistic labels do differ, as can be seen next, in the code, where the “fvc” and
“fev” prefixes are used:

As usually, Code 8-18 put these definitions into Lisp:

;code 8-18, linguistic variables Pct-FVC and Pct-FEV1:
(setq fvc1'(fvc-Severe 20.0 20.0 30.0 50.0))
(setq fvc2'(fvc-Moderate 30.0 50.0 50.0 70.0))
(setq fvc3'(fvc-Slight 50.0 70.0 70.0 85.0))
(setq fvc4'(fvc-Normal 70.0 85.0 100.0 120.0))
(setq fvc5'(fvc-Excellent 100.0 120.0 150.0 150.0))
(setq Pct-FVC'(fvc1 fvc2 fvc3 fvc4 fvc5))

(setq fev11'(fev-Severe 20.0 20.0 30.0 50.0))
(setq fev12'(fev-Moderate 30.0 50.0 50.0 70.0))
(setq fev13'(fev-Slight 50.0 70.0 70.0 85.0))
(setq fev14'(fev-Normal 70.0 85.0 100.0 120.0))
(setq fev15'(fev-Excellent 100.0 120.0 150.0 150.0))
(setq Pct-FEV1'(fev11 fev12 fev13 fev14 fev15))

In the first section of this book we learnt that Lisp is a great computer language
where there is not a sharp frontier between code and data. A language that is even

Table 8.4c List of singletons
for describing pulmonary
obstruction for x = 10
smoking years and
y = 7 cigarettes/day

Singleton name Singleton defined at

Null 12.9

Appreciable 57.5

Important 82

Very-important 97.75

Extreme 100

Fig. 8.25 Graphical representation of the linguistic variables “Pct-FVC” and “Pct-FEV1”
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able to generate its own code. Now this is a pretty opportunity to demonstrate it. For
obtaining the required inferences from the expert rules enunciated in (8-8) we now
need that Lisp generate the code for describing the final singletons. It is time to
introduce the most important function for our spirometric analysis model as shown
in Code 8-19:

;code 8-19: generating code for final singletons
(define (create-floating-singletons years cgr-day,

s1 s2 s3 s4 s5 l1 l2 l3 l4 l5)
(setq s5 (fl-inference rules-s5 years cgr-day))
(setq l5 (list'Extreme s5))
(setq s4 (fl-inference rules-s4 years cgr-day))
(setq l4 (list'Very-Important s4))
(setq s3 (fl-inference rules-s3 years cgr-day))
(setq l3 (list'Important s3))
(setq s2 (fl-inference rules-s2 years cgr-day))
(setq l2 (list'Appreciable s2))
(setq s1 (fl-inference rules-s1 years cgr-day))
(setq l1 (list'Null s1))
(list l5 l4 l3 l2 l1)

)

Let us try the function (create-floating-singletons) using again the values x = 10
smoking years and y = 7 cigarettes/day from the previous example:

> (setq Obstruction (create-floating-singletons 10 7))
: ((Extreme 100) (Very-Important 97.75) (Important 82) (Appreciable 57.5)

(Null 12.9))

Please, do appreciate how the list now stored in the symbol “Obstruction” is
completely equivalent to the evaluation of the following Lisp code:

(setq Obstruction'(
(Extreme 100)
(Very-Important 97.75)
(Important 82)
(Appreciable 57.5)
(Null 12.9))

)

Now we can finally describe in Code 8-20 the expert rules corresponding to the
first FRBS, as expressed by (8-8):

;code 8-20
(setq rules-obstruction'((Pct-FVC Pct-FEV1 Obstruction)

(fvc-Severe fev-Severe Extreme AND-product)
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(fvc-Severe fev-Moderate Extreme AND-product)
(fvc-Severe fev-Slight Extreme AND-product)
(fvc-Severe fev-Normal Important AND-product)
(fvc-Severe fev-Excellent Important AND-product)

(fvc-Moderate fev-Severe Extreme AND-product)
(fvc-Moderate fev-Moderate Extreme AND-product)
(fvc-Moderate fev-Slight Very-Important AND-product)
(fvc-Moderate fev-Normal Important AND-product)
(fvc-Moderate fev-Excellent Important AND-product)

(fvc-Slight fev-Severe Extreme AND-product)
(fvc-Slight fev-Moderate Very-Important AND-product)
(fvc-Slight fev-Slight Appreciable AND-product)
(fvc-Slight fev-Normal Appreciable AND-product)
(fvc-Slight fev-Excellent Null AND-product)

(fvc-Normal fev-Severe Extreme AND-product)
(fvc-Normal fev-Moderate Important AND-product)
(fvc-Normal fev-Slight Appreciable AND-product)
(fvc-Normal fev-Normal Null AND-product)
(fvc-Normal fev-Excellent Null AND-product)

(fvc-Excellent fev-Severe Extreme AND-product)
(fvc-Excellent fev-Moderate Appreciable AND-product)
(fvc-Excellent fev-Slight Appreciable AND-product)
(fvc-Excellent fev-Normal Null AND-product)
(fvc-Excellent fev-Excellent Null AND-product))

)

All the ingredients for the design of a fuzzy-logic based model of spirometric
analysis are already prepared. We now only need a final function that puts it all
together. Such a function, named (main) incorporates a tiny user interface and is
shown in Code 8-21:

;code 8-21. Main function for the spirometric analysis
model
(define (main, height age fvc fev1 tfvc tfev1 pctfvc pctfev1 TI

years cigarettes Obstruction)
(print ''Height in metres: '') (setq height (float (read-
line)))
(print''Age in years:'') (setq age (float (read-line)))
(print''Spirometry FVC in litres:'')
(setq fvc (float (read-line)))
(print''Spirometry FEV1 in litres:'')
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(setq fev1 (float (read-line)))
(print ''Years of smoking: '') (setq years (float (read-
line)))
(print''Number of cigarettes/day:'')

(setq cigarettes (float (read-line)))

;calculate theoretical tfvc, tfev1 and then pctfvc and
pctfev1:
(setq tfvc (sub (sub (mul 5.76 height) (mul 0.026 age))
4.34))
(setq tfev1 (sub (sub (mul 4.3 height) (mul 0.026 age))
2.49))
(setq pctfvc (mul (div fvc tfvc) 100.0))
(setq pctfev1 (mul (div fev1 tfev1) 100.0))
(setq TI (mul (div fev1 fvc) 100.0))

;finally run the fuzzy model:
(setq Obstruction (create-floating-singletons years
cigarettes))
(println''Pulmonary obstruction index:''

(fl-inference rules-obstruction pctfvc pctfev1))

(list tfvc tfev1 pctfvc pctfev1 TI);returns partial
results

)

Let us try the model at the Lisp prompt with some real data from a spirometric
test for a 32 years old man, 1.80 m height and with FVC = 4.82 l, FEV1 = 4.15 l
spirometric results. We assume this individual is a ten years old smoker and
smokes, as an average, 7 cigarettes/day:

> (main)
: Height in metres: 1.8
Age in years: 32
Spirometry FVC in litres: 4.82
Spirometry FEV1 in litres: 4.15
Years of smoking: 10
Number of cigarettes/day: 7
Pulmonary obstruction index: 12.9
(5.196 4.418 92.76366436 93.93390675 86.09958506)

Aside obtaining a Pulmonary Obstruction Index, (main) returns also interme-
diate results from the input data as a list. In this example these are: Theoretical
FVC: 5.196, Theoretical FEV1: 4.418, %FVC: 92.76, %FEV1: 93.93 and Tiffenau
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Index = 86.10. Let us quote the traditional algorithm mentioned some pages before
in this chapter for evaluating spirometries:

“If ((Observed FVC > 80 % theoretical FVC) and (Observed FEV1 > 80 %
theoretical FEV1) and (TI > 80 %))

then spirometry is normal
else the individual suffers an obstructive pulmonary disease”

Under such algorithm the spirometry in the example is normal, but the inclusion
of the smoking parameters in the fuzzy model reveals what physicians know from
experience: Even obtaining good spirometric results, smokers usually show a cer-
tain degree of Chronic Obstruction Pulmonary Disease. For long-time smokers a
spirometry always reveals an obstructive pulmonary disease because smoking is the
first cause of COPD in the world. The fuzzy model developed in this section helps
physicians to reveal COPD before it shows in a spirometric test, resulting into a
Pulmonary Obstruction Index bigger than zero (12.9 in this case).

8.5 As a Summary

This is a different summary with respect to summaries in the previous chapters.
Aside the introduction to floating singletons only some paragraphs above (floating
singletons can be understood as an advanced topic in this work), there have not
been theoretical concepts in this chapter, so this section will be short. We have
learnt how to design some medium-complexity projects, including examples of
simulation/control, speech synthesis and a case of expert diagnosis system in
medicine.

Now I would like to seize the reader’s attention in order to remember some little
material from the first chapter in Sect. 1.3 when we spoke about neurons in our
brains and the incredible work developed by chemical reactions in the synapses
when we think. We realized that thinking can be seen as an extremely quick
exchange of electrons between atoms of chemical elements and molecules of
neurotransmitters in a huge number of individual chemical reactions. In a similar
way, artificial intelligence maybe will be only a sophisticated and relatively simple
handling of arithmetic processes happening at really high speeds in a parallel
architecture of processes. In this second decade of century XXI we are still learning
the basics of the game, but even now, just after having read this book, we are ready
to examine the number of simple algebraic operations required to operate the
models developed in this book.

With this goal in mind we only require a line of Lisp code inserted in the
FuzzyLisp function (fl-set-membership?), the most “low-level” function in
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FuzzyLisp that, as the reader well knows, returns the membership degree of an
element x in a fuzzy set X. That line of Lisp code reads as follows:

(setq *number-calls* (add *number-calls* 1))

where *number-calls* is a global variable that can be initialized at the Lisp prompt
before running any of the projects developed in this chapter:

> (setq *number-calls* 0)
: 0

After running any of the projects, we could type *number-calls* at the Lisp
prompt and the language will tell us how many times the function has been required
in the computations. When the resulting membership degree is located in the open
interval (0,1), the function (fl-set-membership?) requires two subtractions, one
multiplication and one division, that is, as a superior bounding limit we can estimate
that every call to this function requires four arithmetic operations. Armed with this
trap we can calculate the whole number of arithmetic calculations for, (a) a Moon
landing sequence from 3000 m high, (b) a linguistic report for the double star
Castor, and c) the spirometry example described some paragraphs above. Results
are given in Table 8.5.

The Moon landing project requires about 30 times more arithmetic calculations
than the other ones because it is an iterative process at a 2 s sampling interval, but
the important thing is that all the expert knowledge embedded in the fuzzy rules of
the models and all the inferences made for running them are in fact reduced to a
finite set of arithmetic operations.

Is this set of arithmetic operations “Artificial Intelligence”? Since Fuzzy Logic is
a branch of AI we must concede that certainly it is. Now let us imagine for a
moment the development of future complex artificial intelligence models based on
fuzzy logic, neural networks, genetic algorithms and other AI strategies not even
formulated yet. Now let us add computing power in the order of tens or hundred of
millions of arithmetic operations per second concentrated in small hardware
computing-units. Without doubt it will be “Artificial Intelligence” too. Let us try to
see 50 years, or still better, two centuries into the future. The question evolves and
now it is not a discussion about if it is or it is not Artificial Intelligence. The
question, probably, will be “is Artificial Intelligence distinguishable from natural
intelligence”?

Time will tell.

Table 8.5 Number of calls to the function (fl-set-membership?) and the resulting number of
simple arithmetic calls for running the fuzzy-logic based projects described in this chapter

Moon landing Castor Spirometry

Function calls 27,440 900 520

Arithmetic calls 109,760 3600 2080
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Appendix A
NewLisp Versus Common Lisp

NewLisp has been used as the computing vehicle for developing this book. Being a
Lisp dialect, it contains the overall Lisp programming paradigm and shares the
standard Lisp features. However, as it happens with languages and dialects, it
differs in details. The most important ones are discussed in this appendix when
compared with Common Lisp. For further details, you can consult the online
NewLisp documentation and/or the documentation of your Common Lisp compiler.

A.1 Arithmetic

As we saw in Chap. 1, NewLisp has different functions for distinguishing between
integer and real arithmetic operations. When handling integers, the functions are +, -,
* and /, so for example: (+2 7)→ 9, (-4 3)→ 1, (*3 4)→ 12, (/12 4)→ 3 and so on.
On the other hand, if we wish to operate with real numbers, we need to use the
functions (add), (sub), (mul) and (div), and then, for example: (add 3.1 6.9) → 10,
(sub 7.2 3) → 4, (mul 2.5 4.3) → 10.75 and (div 7 4) → 1.75. Common Lisp uses
only the +, -, * and / functions, but does it in a different way. It reads the supplies
data first, and then decide if the arithmetic operation involves integer numbers, real
numbers, or a combination of both. For example, (+2 7) → 9, (-4 3) → 1,
(*3 4) → 12, (/12 4) → 3, as in NewLisp, but (+2 7.5) → 9.5, (-5 1.5) → 3.5,
(*2 2.2) → 4.4 and (/2.2 2.2) → 1.0, but, for example:

CL> (/1 3)
: 1/3

When using integers in a division resulting into a rational number, Common
Lisp returns fractions, thus, it never loses precision. If we wish that Common Lisp
returns the decimal expansion of a rational number we shall need to tell it explicitly,
writing at least one of the numbers in decimal format:

CL> (/ 1 3.0)
: 0.33333334
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A practical and useful rule of thumb is to always use decimal points in Common
Lisp when handling real numbers, as it happens in Fuzzy Logic. For example, for
describing a set of young people, you can write in NewLisp:

(setq age1 ‘(young 15 25 25 35))

but in Common Lisp is advisable to always write:

(setq age1 ‘(young 15.0 25.0 25.0 35.0))

A.2 Fundamental Lisp Functions

As we saw in Chap. 2, there are many Lisp functions, but the number of functions
that build up the core of the language are relatively small. Table A.1 shows some
fundamental Lisp functions and their equivalence in both versions of Lisp.

From these functions, some of them show differences in their behavior. After
writing, for example, (setq a ‘(x y z)), then in NewLisp, (last a) → z, but in
Common Lisp, (last a) → (z), that is, instead of returning the last element as an
atom, Common Lisp returns the last element as a list. However, for both Lisp

Table A.1 Fundamental functions of NewLisp and Common Lisp

NewLisp function Common Lisp equivalent

(quote) (quote)

(eval) (eval)

(atom?) (atom)

(symbol?) (symbolp)

(number?) (numberp)

(list?) (lisp)

(first) (car)

(rest) (cdr)

(nth) (nth)

(last) (last)*

(length) (length)

(cons) (cons)*

(list) (list)

(assoc) (assoc)

(append) (append)

(reverse) (reverse)

(pop) (pop)

(rotate) n/a

(random) (random)*

Those with different behavior are marked with an asterisk
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dialects: (nth 2 a) → z. This suggest the following code in Common Lisp for
obtaining the same behavior:

(defun last1 (list)
(nth (- (length list) 1) list))

or, alternatively:

(defun last1 (list)
(car (last list)))

In both cases, now from Common Lisp, (last1 a) → z.

The case of (cons) shows also a difference between dialects. As an example, in
NewLisp (cons ‘a b’)→ (a b), while in Common Lisp (cons ‘a ‘b)→ (a ⋅ b) that is,
in Common Lisp we get a dotted pair while in NewLisp we get a standard list. This
must be handled with care. For example, after writing the following in Common
Lisp: (setq x (cons ‘a ‘b)) → (a ⋅ b), and then: (car x) → a, (cdr x) → b, but (last
x) → (a · b). On the other hand, the Lisp expression (cons '(this is) '(not
hard)) → ((this is) not hard) produces the same result in both dialects.

The NewLisp function (rotate) is not implemented in standard Common Lisp,
but here is an example for moving the first element of a list to its end:

(defun left-rotate (list)
(append (rest list) (list (first list))))

and now, remembering the previous assignment (setq a ‘(x y z)), we have
(left-rotate a) → (y z x).

Finally, the function (random) is differently implemented in both dialects, but
the goal is identical, that is, to produce a random number. In NewLisp we have, for
example: (random) → 0.7830992238, that is, it produces a random real number
between 0 and 1, and no parameter is needed to call the function. On the other hand,
in Common Lisp we need to pass an integer parameter to the function and then the
language will return an integer between 0 and the integer passed as argument. For
example, for generating a number between 0 and 100 we only need to write:
(random 100) → 67.

A.3 Defining Functions

From Chap. 3 we remember that the Basic anatomy of a NewLisp function has the
following structure:

(define (function-name arguments)
(lisp-expressioni)

)
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In Common Lisp, it takes the following form:

(defun function-name (arguments)
(lisp-expressioni)

)

As an example, in Code 3-3 we introduced a function for calculating the Body
Mass Index. In Common Lisp it would be as follows:

(defun BMI(mass height)
(/ mass (* height height))

)

Interesting things happen when we need to use local variables in functions. The
following code is Code 3-9 expressed in Common Lisp.

(defun bmi2 (mass height)
(let

((result) (advice))
)

(setq result (/ mass (* height height)))

(if (< result 18.5)
(setq advice''You are excessively thin'')

)
(if (and (>= result 18.5) (< result 24.9))

(setq advice''Congrats, your weight is ok'')
)
(if (and (>= result 24.9) (< result 29.9))

(setq advice''You should try some diet and exercise
because you have some overweight'')

)
(if (>= result 29.9)

(setq advice''Warning, you suffer obesity.
Speak with your doctor'')

)
advice

)

As you can observe, the internal variables result and advice are declared by
means of the Common Lisp reserved word let, telling the language that the
symbols located inside its matching parenthesis are local variables. Testing the
function, we have, for example:
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CL > (BMI2 75 1.80)
: “Congrats, your weight is ok”

Speaking about variables, we must add that global variables must be declared
explicitly in Common Lisp by means of the keyword defparameter. As an
example, if we wish to create a global linguistic variable glucose for describing
glucose levels in blood in mg/dl, we could write:

(defparameter gl_1 '(Very-low 60 (60 1) (60 1) 82))
(defparameter gl_2 '(Rathar-low 60 (87.5 1) (87.5 1) 115))
(defparameter gl_3 '(Low 60 (115 1) (115 1) 165))
(defparameter gl_4 '(Medium-low 115 (165 1) (165 1) 219.5))
(defparametergl_5'(Medium-high165(219.51)(219.51)274))
(defparameter gl_6 '(High 219.5 (300 1) (300 1) 300))
(defparameter glucose '(gl_1 gl_2 gl_3 gl_4 gl_5 gl_6))

A.4 Iteration

Along this book we have extensively used the while NewLisp keyword in order to
help people with previous experience in other programming languages where
“while loops” are always used. However, in Common Lisp the do macro is the
fundamental iteration operator and the while keyword is usually not included in
the language. The following code implements while loops in Common Lisp:

;a definition of while in Common Lisp
(defmacro while (test &rest body)

'(do ()
((not,test))

,@body)
)

Now, let us rewrite, for example Code 3-17 in Common Lisp:

(defun my-find (atm lst)
(let

((n) (i) (aux) (rest))
)

(setq n (length lst))
(setq i 0)
(setq result nil)
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(while (< i n)
(progn

(setq aux (nth i lst))
(if (eq aux atm)

(setq result (cons i atm))
)
(setq i (+ 1 i))

);progn end
);while end
(list (car result) (cdr result))

)

CL> (my-find 'RED '(YELLOW RED GREEN BLUE WHITE))
: (1 RED)

Several additional things must be noted in this Common Lisp function:

• The (eq) function. In NewLisp we use the comparator operator “=” for
comparing any type of values. In Common Lisp the comparator operator “=”
is only used for comparing numerical values. Everything else must be
compared with the (eq) function.

• The use of (progn): In NewLisp we use (begin). In Common Lisp, (progn) is
used instead.

• The last line differs between both languages: In NewLisp we used simply
result. However in CommonLisp we need to use the expression (list
(car result) (cdr result)) in order to avoid a dotted pair as a
function result since it would return (1 . RED) otherwise.

A.5 nil and true

In NewLisp nil and true are Boolean constants. In Common Lisp nil has an additional
rol as a list terminator. For example, in NewLisp we have: (cons ‘x nil) → (x nil),
while in Common Lisp: (cons ‘x nil) → (x).

As usually, “practice makes perfect”, so the reader used to NewLisp will need
some days in order to get used to Common Lisp. On the other hand, experienced
Common Lisp programmers will find the NewLisp code in this book easy to follow
and I suspect they will soon rewrite the most important functions for adapting them
to their programming styles.

As additional resources, the interested reader can move to Common Lisp using
the excellent introductory book “Common Lisp: A Gentle Introduction to Symbolic
Computation”, by David Touretzky, at about the same level of the introduction to
NewLisp in this book. At a higher level, the de-facto standard in Common Lisp is
the great book “ANSI Common Lisp”, by Paul Graham.
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Appendix B
Glossary of FuzzyLisp Functions

This Appendix alphabetically shows all the functions that build up FuzzyLisp. For
every function the information is structured as follows:

• Name of the function: Gives the name of the function.
• Explanation: Explains how the function works and what the function

returns.
• Syntax: Offers the syntax of the function, that is, its name and all its

required arguments.
• FuzzyLisp representation: either FLSSR (FuzzyLisp Standard Set

Representation) or FLDSR (FuzzyLisp Discrete Set Representation)
• Example: Shows a practical example that helps to put the function in

context.
• Source code number: Gives the source code number in X-Y format,

where X is the number of the chapter and Y is the number of the code
inside the chapter for quickly locating the source code in this book.

fl-3dmesh
Explanation: This function creates an ASCII output file in comma-separated

values format (CSV) where every line adopts the following structure: xi, yi, zi. Both
xi, yi are input crisp values from the universes of discourse of their respective
linguistic variables from a Fuzzy Rule Based System (FRBS). On the other hand, zi
is the inferred value from every possible pair (xi, yi). The output file is in fact a
discretized geometrical 3D mesh.

Syntax: (fl-3d-dmesh namefile set-of-rules nx ny)

• namefile: file name for storing the output data on the computer’s hard disk.
• set-of-rules: The complete set of expert rules of a FRBS expressed in list

format.
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• nx: Resolution of the 3D mesh over the x-axis.
• ny: Resolution of the 3D mesh over the y-axis.

FuzzyLisp representation: FLSSR
Example(s): (fl-3d-mesh “air-conditioner-controller.csv” rules-controller 20

20) → Writing 3Dmesh … 3Dmesh written to file
Source code number: 7-13.
Note: The FuzzyLisp function (fl-3d-dmesh) is suited to deal with FRBS where

input linguistic variables are composed by fuzzy sets with discrete membership
functions (FLDSR).

fl-alpha-cut
Explanation: (fl-alpha-cut) scans a trapezoidal or triangular membership function

from left to right and returns the obtained alpha-cut alpha as a list, including the
name of the original fuzzy set.

Syntax: (fl-alpha-cut fset alpha)

• fset: a list representing a fuzzy set with a continuous membership function,
either a triangle or a trapezium.

• alpha: a real number representing the horizontal line y = alpha for obtaining
an alpha-cut. It is required that α 2 [0,1].

FuzzyLisp representation: FLSSR
Example(s): (fl-alpha-cut '(B1 7 10 12 15) 0.7) → (B1 9.1 12.9)
Source code number: 6-4.

fl-belongs?
Explanation: (fl-belongs?) returns true if a crisp value x defined on the real axis

belongs to the fuzzy set fset, else returns nil.
Syntax: (fl-belongs? fset x)

• fset: a list representing a fuzzy set with a continuous membership function,
either a triangle or a trapezium.

• x: a real number.

FuzzyLisp representation: FLSSR
Example(s): (fl-belongs ‘(medium 10.0 20.0 30.0 40.0) 23.0) → true; (fl-belongs

‘(medium 10.0 20.0 30.0 40.0) 3.0) → nil
Source code number: 6-1.

fl-belongs2?
Explanation: (fl-belongs2?) is a sort of mix of the functions (fl-belongs?) and

(fl-set-membership?). If the crisp value x is contained in the support of fset it returns
the membership degree of x to fset, otherwise, it returns nil.
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Syntax: (fl-belongs2? fset x)

• fset: a list representing a fuzzy set with a continuous membership function,
either a triangle or a trapezium.

• x: a real number.

FuzzyLisp representation: FLSSR
Example(s): After assigning, e.g., (setq S ‘(medium 10 20 30 40)), then

(fl-belongs2? S 22) → (medium 1), (fl-belongs2? S 100) → nil
Source code number: 6-3.

fl-db-new-field
Explanation: This function creates a new field in a CSV format database. The

new field contains the fuzzified values from an already existing numerical field. The
fuzzification is obtained by means of a given fuzzy set.

Syntax: (fl-db-new-field lst sharp-field fz-field fset mode)

• lst: list containing an entire database.
• sharp-field: a string representing the name of a numerical field in the

database.
• fz-field: a string for naming the new field to create.
• fset: a list representing a fuzzy set, either in a FuzzyLisp standard set rep-

resentation or in a discrete set representation.
• mode: an integer. A value of 1 means that fset has a FLSSR. A value of 2

means a FLDSR.

FuzzyLisp representation: FLSSR/FLDSR
Example(s): assuming the fuzzy set BM defined by (setq BM '(bright-magnitude -

1 -1 3 5)) and that all the rest of function parameters have been correctly initialized,
the function call (setq messier (fl-db-new-field messier “Magnitude” “fz-magnitude”
BM 1)) creates a new field named “fz-magnitude” where all the numerical values
from the field “Magnitude” have been fuzzified by the fuzzy set BM.

Source code number: 6-26.

fl-def-set
Explanation: (fl-def-set) defines and creates a fuzzy set by means of two

alpha-cuts a-cut1, a-cut2. The returned fuzzy set has either a triangular or trape-
zoidal membership function.

Syntax: (fl-def-set name a-cut1 a-cut2)

• name: symbol for associating a name to the resulting fuzzy set.
• a-cut1: first alpha-cut expressed by a list in the following format (extreme-left

extreme-right alpha-cut-value).
• a-cut2: second alpha-cut with the same format as a-cut1. It is required that

a-cut1 < a-cut2.
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FuzzyLisp representation: FLSSR
Example(s): (fl-def-set 'young '(15.0 35.0 0) '(25.0 25.0 1.0)) → (young 15 25

25 35)
Source code number: 6-5a.

fl-defuzzify-rules
Explanation: This function takes as input the list obtained from either

(fl-dtranslate-all-rules) or (fl-dtranslate-all-rules) and then converts that fuzzy
information into a crisp numerical value.

Syntax: (fl-defuzzify-rules translated-rules)

• translated-rules: list representing the output of either (fl-dtranslate-all-rules)
or (fl-dtranslate-all-rules)

FuzzyLisp representation: FLSSR/FLDSR
Example(s): (fl-defuzzify-rules (fl-translate-all-rules rules-controller 22

0.25)) → -60
Source code number: 7-11.

fl-discretize
Explanation: (fl-discretize) takes a fuzzy set with triangular or trapezoidal

characteristic function and discretizes it with a resolution given by steps. In other
words, it transforms a FuzzyLisp Standard Set Representation into a FuzzyLisp
Discrete Set Representation.

Syntax: (fl-discretize fset steps)

• fset: a list representing a fuzzy set with a continuous membership function,
either a triangle or a trapezium.

• steps: an integer representing the resolution of the discretization process.

FuzzyLisp representation: FLSSR → FLDSR
Example(s): (fl-discretize '(B1 7 10 12 15) 4) → (B1 (7 0) (7.75 0.25) (8.5 0.5)

(9.25 0.75) (10 1) (10.5 1) (11 1) (11.5 1) (12 1) (12.75 0.75) (13.5 0.5) (14.25
0.25) (15 0))

Source code number: 6-6.

fl-discretize-fx
Explanation: This function discretizes any continuous function y = f(x) in n steps

between x = a and x = b.
Syntax: (fl-discretize-fx name fx steps a b)

• name: Symbol for associating a name to the function’s resulting fuzzy set.
• fx: mathematical continuous function to discretize, expressed in Lisp format

as a list.
• steps: Integer value for expressing the required resolution in the discretization

process.
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• a: starting point for discretization. Real value.
• b: ending point for discretization. Real value.

FuzzyLisp representation: FLDSR
Example(s): After defining a bell-shaped continuous function to the symbol f by

means of the expression (setq f ‘(div (add 1.0 (cos (mul 2.0 pi (sub x 2.0)))) 2.0)),
then, e.g.: (setq dBell (fl-discretize-fx 'Bell f 10 1.5 2.5)) → (Bell (1.5 0) (1.6
0.09549150283) (1.7 0.3454915028) (1.8 0.6545084972) (1.9 0.9045084972) (2 1)
(2.1 0.9045084972) (2.2 0.6545084972) (2.3 0.345491502) (2.4 0.09549150283)
(2.5 0))

Source code number: 6-8.

fl-dlv-membership2?
Explanation: This function returns as a list all the membership degrees of a crisp

value x to every fuzzy set contained in a linguistic variable. All the fuzzy sets from
the linguistic variable have a discrete characteristic function.

Syntax: (fl-dlv-membership2? lv x)

• lv: a list representing a linguistic variable composed by discrete fuzzy sets.
• x: a real number.

FuzzyLisp representation: FLDSR
Example(s): assuming the linguistic variable lv-age-bells has been adequately

initialized, then the function call (fl-dlv-membership2? lv-age-bells 23) produces the
following output: ((Young 0.1302642245) (Young+ 0.5478879113) (Mature 0)
(Mature+ 0) (Old 0))

Source code number: 6-25.

fl-dset-hedge
Explanation: This function applies a fuzzy hedge (linguistic modifier) to a

fuzzy set.
Syntax: (fl-dset-hedge dset hedge)

• dset: a list representing a discrete fuzzy set.
• hedge: a Lisp symbol, either VERY or FAIRLY.

FuzzyLisp representation: FLDSR
Example(s): (fl-dset-hedge (fl-discretize '(A1 7 10 12 15) 4) 'VERY) → (A1 (7 0)

(7.75 0.0625) (8.5 0.25) (9.25 0.5625) (10 1) (10.5 1) (11 1) (11.5 1) (12 1) (12.75
0.5625) (13.5 0.25) (14.25 0.0625) (15 0))

Source code number: 7-7.

fl-dset-membership?
Explanation: (fl-dset-membership?) returns the interpolated membership degree

of a crisp value x defined on the real axis to the discrete fuzzy set fset. In practical
terms the difference with the function (fl-set-membership?) is based on the type of
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used representation for fuzzy sets. (fl-dset-membership?) is used for FLDSR, while
(fl-set-membership?) is used for FLSSR.

Syntax: (fl-dset-membership? dfset x)

• dfset: a list representing a fuzzy set with a discrete membership function.
• x: a real number.

FuzzyLisp representation: FLDSR
Example(s): After assigning, e.g., (setq dA (fl-discretize '(B1 7 10 12 15) 4)),

then (fl-dset-membership? dA 8.2) → (B1 0.4)
Source code number: 6-7a.

fl-dtruth-value-fuzzy-implication-p-q?
Explanation: This function returns the truth-value of a compound fuzzy

implication
p → q.
Syntax: (fl-dtruth-value-fuzzy-implication-p-q? P Q x y)

• P: a list representing a discrete fuzzy set associated to the predicate of a fuzzy
proposition p.

• Q: a list representing a discrete fuzzy set associated to the predicate of a fuzzy
proposition q.

• x: a real number for expressing the subject of a fuzzy proposition p.
• y: a real number for expressing the subject of a fuzzy proposition q.

FuzzyLisp representation: FLDSR
Example(s): ): assuming the fuzzy set P defined by (setq P (fl-discretize '(old

50 90 90 90) 4)) and another fuzzy set Q defined by (setq Q (fl-discretize '(young
0 0 15 30) 4)), the fuzzy implication “if John is old then Eva is young” when
John is 55 years old and Eva is 18 can be represented by the function call
(fl-dtruth-value-implication-p-q? P Q 55 18) → 1.

Source code number: 7-6b.

fl-dtruth-value-negation-p?
Explanation: This function returns the truth-value of the negation of a fuzzy

proposition.
Syntax: (fl-dtruth-value-negation-p?P x)

• P: a list representing a discrete fuzzy set associated to the predicate of a fuzzy
proposition p.

• x: a real number for expressing the subject of a fuzzy proposition p.

FuzzyLisp representation: FLDSR
Example(s): assuming the fuzzy set P defined by (setq Q (fl-discretize '(young 0

0 15 30) 4)), the fuzzy proposition “Eva is not young” when Eva is 18 years old can
be represented by the function call (fl-dtruth-value-negation-p? Q 18) → 0.2

Source code number: 7-5b.
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fl-dtruth-value-p-and-q?
Explanation: This function returns the truth-value of a compound fuzzy prop-

osition containing the logical connective “and”.
Syntax: (fl-dtruth-value-p-and-q?P Q x y)

• P: a list representing a discrete fuzzy set associated to the predicate of a fuzzy
proposition p.

• Q: a list representing a discrete fuzzy set associated to the predicate of a fuzzy
proposition q.

• x: a real number for expressing the subject of a fuzzy proposition p.
• y: a real number for expressing the subject of a fuzzy proposition q.

FuzzyLisp representation: FLDSR
Example(s): assuming the fuzzy set P defined by (setq P (fl-discretize '(old 50 90

90 90) 4)) and another fuzzy set Q defined by (setq Q (fl-discretize '(young 0 0 15
30) 4)), the fuzzy compound proposition “John is old and Eva is young” when John
is 55 years old and Eva is 18 can be represented by the function call
(fl-dtruth-value-p-and-q? P Q 55 18) → 0.125

Source code number: 7-3b.

fl-dtruth-value-p-or-q?
Explanation: This function returns the truth-value of a compound fuzzy prop-

osition containing the logical connective “or”.
Syntax: (fl-dtruth-value-p-or-q?P Q x y)

• P: a list representing a discrete fuzzy set associated to the predicate of a fuzzy
proposition p.

• Q: a list representing a discrete fuzzy set associated to the predicate of a fuzzy
proposition q.

• x: a real number for expressing the subject of a fuzzy proposition p.
• y: a real number for expressing the subject of a fuzzy proposition q.

FuzzyLisp representation: FLDSR
Example(s): assuming the fuzzy set P defined by (setq P (fl-discretize '(old 50 90

90 90) 4)) and another fuzzy set Q defined by (setq Q (fl-discretize '(young 0 0 15
30) 4)), the fuzzy compound proposition “John is old or Eva is young” when John
is 55 years old and Eva is 18 can be represented by the function call
(fl-dtruth-value-p-or-q? P Q 55 18) → 0.8

Source code number: 7-4b.

fl-expand-contract-set
Explanation: This function expands or contracts a fuzzy set. The returned fuzzy

set is still placed over its original position, but its support and nucleus are expanded
or contracted accordingly.

Syntax: (fl-expand-contract-set fset k)
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• fset: a list representing a fuzzy set with a continuous membership function,
either a triangle or a trapezium.

• k: a real number.

FuzzyLisp representation: FLSSR
Example(s): (fl-expand-contract-set '(a 0 1 1 2) 2.0) → (a -1 1 1 3),

(fl-expand-contract-set '(a -1 1 1 3) 0.5) → (a 0 1 1 2)
Source code number: 6-18.

fl-fuzzy-add
Explanation: Returns a fuzzy number as the result of adding two fuzzy numbers

A, B.
Syntax: (fl-fuzzy-add name A B)

• name: a symbol for associating a name to the function’s resulting fuzzy
number.

• A: first fuzzy number to add.
• B: second fuzzy number to add.

FuzzyLisp representation: FLSSR
Example(s): After defining two fuzzy numbers, e.g., (setq A ‘(around-2 1.75 2 2

2.25)) and (setq B ‘(around-5 4.8 5 5 5.2)), then (fl-fuzzy-add 'A+B A B) → (A+B
6.55 7 7 7.45)

Source code number: 6-13a.

fl-fuzzy-add-sets
Explanation: This function returns a fuzzy number as the result of adding all the

fuzzy numbers contained in a set of fuzzy numbers.
Syntax: (fl-fuzzy-add-sets fsets name)

• fsets: A list containing all the fuzzy numbers to add.
• name: a symbol for associating a name to the function’s resulting fuzzy

number.

FuzzyLisp representation: FLSSR
Example(s): After creating several fuzzy numbers, e.g., (setq F1 ‘(set1 -2 0 0 2)),

(setq F2 ‘(set2 3 5 5 7)), (setq F3 ‘(set3 6 7 7 8)), (setq F4 ‘(set4 7 9 11 12)), (setq
F5 ‘(set5 8 10 10 12)), then (setq Fsets '(F1 F2 F3 F4 F5)), and finally: (setq SFs
(fl-fuzzy-add-sets Fsets 'Sum-of-Fs)) → (Sum-of-Fs 22 31 33 41)

Source code number: 6-19.

fl-fuzzy-average
Explanation: This function returns a fuzzy number as the average of n fuzzy

numbers contained in a set of fuzzy numbers.
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Syntax: (fl-fuzzy-average fsets name)

• fsets: A list containing all the fuzzy numbers to average.
• name: a symbol for associating a name to the function’s resulting fuzzy

number.

FuzzyLisp representation: FLSSR
Example(s): (fl-fuzzy-average Fsets 'Average) → (Average 4.4 6.2 6.6 8.2). See

the assignments for building Fsets in the entry for the function (fl-fuzzy-add-sets).
Source code number: 6-20.

fl-fuzzy-div
Explanation: This function returns a fuzzy number as the result of dividing two

fuzzy numbers A, B. A and B are represented by triangular or trapezoidal shaped
membership functions. The resulting fuzzy number A/B is represented by means of
a discrete characteristic function.

Syntax: (fl-fuzzy-div name A B n)

• name: a symbol for associating a name to the function’s resulting fuzzy
number.

• A: first fuzzy number involved in the A/B division process.
• B: second fuzzy number involved in the A/B division process.
• n: integer for expressing the resolution of the process.

FuzzyLisp representation: FLSSR → FLDSR
Example(s): After defining two fuzzy numbers, e.g., (setq A ‘(around-2 1.75 2 2

2.25)) and (setq B ‘(around-5 4.8 5 5 5.2)), then (fl-fuzzy-div 'B/A B A 5) → (B/A
(2.133333333 0) (2.2 0.2) (2.269767442 0.4) (2.342857143 0.6) (2.419512195 0.8)
(2.5 1) (2.584615385 0.8) (2.673684211 0.6) (2.767567568 0.4) (2.866666667 0.2)
(2.971428571 0))

Source code number: 6-15.

fl-fuzzy-factor
Explanation: This function takes a fuzzy number A and then multiplies it by a

crisp number k, returning the fuzzy number k.A. In practical terms when k >1 it
performs a multiplication and when k <1 it performs a division by k.

Syntax: (fl-fuzzy-factor fset k)

• fset: a list representing a fuzzy number with a continuous membership
function, either a triangle or a trapezium (fuzzy interval).

• K: a real number.

FuzzyLisp representation: FLSSR
Example(s): After defining a fuzzy number, e.g., (setq A ‘(A1 -2 3 3 8)), then

(fl-fuzzy-factor A 3) → (A1 -6 9 9 24), and (fl-fuzzy-factor A 0.25) → (A1 -0.5 0.75
0.75 2)

Source code number: 6-16.
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fl-fuzzy-mult
Explanation: Returns a fuzzy number as the result of multiplying two fuzzy

numbers A, B. A and B are represented by triangular or trapezoidal shaped mem-
bership functions. The resulting fuzzy number A.B is represented by means of a
discrete characteristic function.

Syntax: (fl-fuzzy-mult name A B n)

• name: a symbol for associating a name to the function’s resulting fuzzy
number.

• A: first fuzzy number to multiply.
• B: second fuzzy number to multiply.
• n: integer for expressing the resolution of the process.

FuzzyLisp representation: FLSSR → FLDSR
Example(s): After defining two fuzzy numbers, e.g., (setq A ‘(around-2 1.75 2 2

2.25)) and (setq B ‘(around-5 4.8 5 5 5.2)), then (fl-fuzzy-mult 'AxB A B 5) → (AxB
(8.4 0) (8.712 0.2) (9.028 0.4) (9.348 0.6) (9.672 0.8) (10 1) (10.332 0.8) (10.668
0.6) (11.008 0.4) (11.352 0.2) (11.7 0))

Source code number: 6-14.

fl-fuzzy-shift
Explanation: This function shifts (moves horizontally) a fuzzy set towards left or

right over the real axis X by an amount given by a real value x, returning the shifted
fuzzy set.

Syntax: (fl-fuzzy-shift fset x)

• fset: a list representing a fuzzy set with a continuous membership function,
either a triangle or a trapezium.

• x: a real number.

FuzzyLisp representation: FLSSR
Example(s): (fl-fuzzy-shift '(young-plus 15.0 25.0 35.0 45.0) 5.0) → (young-plus

20 30 40 50)
Source code number: 6-17.

fl-fuzzy-sub
Explanation: Returns a fuzzy number as the result of subtracting two fuzzy

numbers A, B.
Syntax: (fl-fuzzy-sub name A B)

• name: a symbol for associating a name to the function’s resulting fuzzy
number.

• A: first fuzzy number involved in the A-B subtraction process.
• B: second fuzzy number involved in the A-B subtraction process.
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FuzzyLisp representation: FLSSR
Example(s): After defining two fuzzy numbers, e.g., (setq A ‘(around-2 1.75 2 2

2.25)) and (setq B ‘(around-5 4.8 5 5 5.2)), then (fl-fuzzy-sub 'A-B A B) → (A-B -
3.45 -3 -3 -2.55)

Source code number: 6-13b.

fl-inference
Explanation: This function is an automatic call to the functions

(fl-translate-all-rules) and (fl-defuzzify-rules) in a sort of black box that directly
transforms two input crisp values entering a Fuzzy Rule Based System (FRBS) into
a resulting crisp value.

Syntax: (fl-inference x y)

• x: first crisp input numerical value to the FRBS.
• y: second crisp input numerical value to the FRBS

FuzzyLisp representation: FLSSR
Example(s): (fl-inference rules-controller 22 0.25) → -60
Source code number: 7-12.
Note: The FuzzyLisp function (fl-dinference) is suited to deal with FRBS where

input linguistic variables are composed by fuzzy sets with discrete membership
functions (FLDSR).

fl-int-div
Explanation: Returns a list representing the division of two intervals.
Syntax: (fl-intv-div x1 x2 x3 x4)

• x1, x2: real numbers expressing the left and right extremes of an interval
[x1, x2].

• x3, x4: real numbers expressing the left and right extremes of an interval
[x3, x4].

FuzzyLisp representation: n/a
Example(s): (fl-intv-div 2 4 1 3) → (0.6666666667 4)
Source code number: 6-12d.

fl-intv-add
Explanation: Returns a list representing the addition of two intervals.
Syntax: (fl-intv-add x1 x2 x3 x4)

• x1, x2: real numbers expressing the left and right extremes of an interval
[x1, x2].

• x3, x4: real numbers expressing the left and right extremes of an interval
[x3, x4].
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FuzzyLisp representation: n/a
Example(s): (fl-intv-add 2 4 1 3) → (3 7)
Source code number: 6-12a.

fl-intv-mult
Explanation: Returns a list representing the multiplication of two intervals.
Syntax: (fl-intv-mult x1 x2 x3 x4)

• x1, x2: real numbers expressing the left and right extremes of an interval
[x1, x2].

• x3, x4: real numbers expressing the left and right extremes of an interval
[x3, x4].

FuzzyLisp representation: n/a
Example(s): (fl-intv-mult 2 4 1 3) → (2 12)
Source code number: 6-12c.

fl-intv-sub
Explanation: Returns a list representing the subtraction of two intervals.
Syntax: (fl-int-sub x1 x2 x3 x4)

• x1, x2: real numbers expressing the left and right extremes of an interval
[x1, x2].

• x3, x4: real numbers expressing the left and right extremes of an interval
[x3, x4].

FuzzyLisp representation: n/a
Example(s): (fl-intv-sub 2 4 1 3) → (-1 3)
Source code number: 6-12b.

fl-list-sets
Explanation: This function prints all the fuzzy sets belonging to a linguistic

variable at the Lisp console.
Syntax: (fl-list-sets lv)

• lv: a list representing a linguistic variable.

FuzzyLisp representation: FLSSR
Example(s): assuming the linguistic variable lv-age has been adequately ini-

tialized, then the function call (fl-list-sets lv-age) produces the following output:
: (young 0 0 15 30)
: (young-plus 15 30 30 45)
: (mature 30 45 45 60)
: (mature-plus 45 60 60 75)
: (old 60 75 90 90)
Source code number: 6-22.
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fl-lv-membership?
Explanation: This function prints all the membership degrees of a crisp value

x to every fuzzy set contained in a linguistic variable at the Lisp console.
Syntax: (fl-lv-membership? lv x)

• lv: a list representing a linguistic variable.
• x: a real number.

FuzzyLisp representation: FLSSR
Example(s): (fl-lv-membership? lv-age 32) produces the following output:
: (young 0)
: (young-plus 0.8666666667)
: (mature 0.1333333333)
: (mature-plus 0)
: (old 0)
Source code number: 6-23.

fl-lv-membership2?
Explanation: This function returns as a list all the membership degrees of a crisp

value x to every fuzzy set contained in a linguistic variable.
Syntax: (fl-lv-membership2? lv x)

• lv: a list representing a linguistic variable.
• x: a real number.

FuzzyLisp representation: FLSSR
Example(s): (fl-lv-membership2? lv-age 32) → ((young 0) (young-plus

0.8666666667) (mature 0.1333333333) (mature-plus 0) (old 0))
Source code number: 6-24.

fl-set-complement-membership?
Explanation: This function returns the membership degree of a crisp value x to

the complementary set of fset.
Syntax: (fl-set-complement-membership? fset x)

• fset: a list representing a fuzzy set with a continuous membership function,
either a triangle or a trapezium.

• x: a real number.

FuzzyLisp representation: FLSSR
Example(s): (fl-set-complement-membership? '(B1 7 10 12 15) 9) → (B1

0.3333333333)
Source code number: 6-9.
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fl-set-intersect-membership?
Explanation: (fl-set-intersect-membership?) returns the membership degree of

the crisp value x to the intersection of fuzzy sets fset1 and fset2.
Syntax: (fl-set-intersect-membership?name fset1 fset2 x)

• name: a symbol for associating a name to the function’s resulting list.
• fset1: a list representing a fuzzy set with a continuous membership function,

either a triangle or a trapezium.
• fset2: a list representing a fuzzy set with a continuous membership function,

either a triangle or a trapezium.
• x: a real number.

FuzzyLisp representation: FLSSR
Example(s): After defining two fuzzy sets A and B e.g.: (setq A ‘(Triangle 0 5 5

10)) and (setq B ‘(Trapezium 5 10 15 20)), then: (fl-set-intersect-membership?
'AintB A B 8) → (AintB 0.4)

Source code number: 6-11.

fl-set-membership?
Explanation: (fl-set-membership?) returns the membership degree of a crisp

value x defined on the real axis to the fuzzy set fset.
Syntax: (fl-set-membership? fset x)

• fset: a list representing a fuzzy set with a continuous membership function,
either a triangle or a trapezium.

• x: a real number.

FuzzyLisp representation: FLSSR
Example(s): (fl-set-membership? ‘(young 12 20 28 36) 24) → 1;

(fl-set-membership? ‘(young 12 20 28 36) 54) → 0
Source code number: 6-2.

fl-set-union-membership?
Explanation: (fl-set-union-membership?) returns the membership degree of the

crisp value x to the union of fuzzy sets fset1 and fset2.
Syntax: (fl-set-union-membership? name fset1 fset2 x)

• name: a symbol for associating a name to the function’s resulting list.
• fset1: a list representing a fuzzy set with a continuous membership function,

either a triangle or a trapezium.
• fset2: a list representing a fuzzy set with a continuous membership function,

either a triangle or a trapezium.
• x: a real number.
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FuzzyLisp representation: FLSSR
Example(s): After defining two fuzzy sets A and B e.g.: (setq A ‘(Triangle 0 5 5

10)) and (setq B ‘(Trapezium 5 10 15 20)), then: (fl-set-union-membership? 'AuB A
B 7.5) → (AuB 0.5)

Source code number: 6-10.

fl-simple-defuzzification
Explanation: This function takes a fuzzy number and produces a crisp number

for it with a simple algorithm.
Syntax: (fl-simple-defuzzification fset mode)

• fset: a list representing a fuzzy set with a continuous membership function,
either a triangle or a trapezium.

• mode: an integer value from 1 to 4. This parameter gives increasing weight to
the nucleus in the process of defuzzification.

FuzzyLisp representation: FLSSR
Example(s): (fl-simple-defuzzification '(q 0 1 1 5) 1) → 2; (fl-simple-

defuzzification '(q 0 1 1 5) 4) → 1.375
Source code number: 6-21.

fl-translate-all-rules
Explanation: This function evaluates all the fuzzy rules contained in the

knowledge database of a Fuzzy Rule Based System (FRBS), calling iteratively to
the function (fl-translate-rule).

Syntax: (fl-translate-all-rules set-of-rules x y)

• set-of-rules: The complete set of expert rules of a FRBS expressed in list
format.

• x: first crisp input numerical value to the FRBS.
• y: second crisp input numerical value to the FRBS

FuzzyLisp representation: FLSSR
Example(s): (fl-translate-all-rules rules-controller 22 0.25) → ((0 0 0 0) (0 0 0

0) (0 1 0 0) (0 0 0 0) (0 0 0 0) (0 1 0 0) (0.8 0 0 0) (0.8 0 0 0) (0.8 1 0.8 -40) (0.2 0 0
0) (0.2 0 0 0) (0.2 1 0.2 -20) (0 0 0 -0) (0 0 0 0) (0 1 0 0))

Source code number: 7-10.
Note: The FuzzyLisp function (fl-dtranslate-all-rules) is suited to deal with

FRBS where input linguistic variables are composed by fuzzy sets with discrete
membership functions (FLDSR).
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fl-translate-rule
Explanation: This function takes an expert rule at a time from a Fuzzy Rule

Based System (FRBS), performs the adequate inferences and translates the rule into
membership degrees, that is, into numerical values.

Syntax: (fl-translate-rule header rule x y)

• header: first sublist from the body of rules in the FRBS where the enumer-
ation of the used linguistic variables is expressed.

• rule: rule to translate from the FRBS in its adequate list format.
• x: first crisp input numerical value to the FRBS.
• y: second crisp input numerical value to the FRBS.

FuzzyLisp representation: FLSSR
Example(s): (fl-translate-rule (first rules-controller) (nth 9 rules-controller) 22

0.25) → (0.8 1 0.8 -40)
Source code number: 7-9.
Note: The FuzzyLisp function (fl-dtranslate-rule) is suited to deal with FRBS

where input linguistic variables are composed by fuzzy sets with discrete mem-
bership functions (FLDSR).

fl-truth-value-fuzzy-implication-p-q?
Explanation: This function returns the truth-value of a compound fuzzy

implication
p → q.
Syntax: (fl-truth-value-fuzzy-implication-p-q? P Q x y)

• P: a list representing a fuzzy set associated to the predicate of a fuzzy
proposition p.

• Q: a list representing a fuzzy set associated to the predicate of a fuzzy
proposition q.

• x: a real number for expressing the subject of a fuzzy proposition p.
• y: a real number for expressing the subject of a fuzzy proposition q.

FuzzyLisp representation: FLSSR
Example(s): assuming the fuzzy set P defined by (setq P ‘(old 50 90 90 90)) and

another fuzzy set Q defined by (setq Q ‘(young 0 0 15 30)), the fuzzy compound
proposition “John is old or Eva is young” when John is 55 years old and Eva is 18
can be represented by the function call (fl-truth-value-implication-p-q? P Q 55
18) → 1. When John is 90 years old and Eva is 30, then (fl-truth-value-
implication-p-q? P Q 90 30) → 0

Source code number: 7-6.

fl-truth-value-negation-p?
Explanation: This function returns the truth-value of the negation of a fuzzy

proposition.
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Syntax: (fl-truth-value-negation-p?P x)

• P: a list representing a fuzzy set associated to the predicate of a fuzzy
proposition p.

• x: a real number for expressing the subject of a fuzzy proposition p.

FuzzyLisp representation: FLSSR
Example(s): assuming the fuzzy set P defined by (setq P ‘(old 50 90 90 90)), the

fuzzy proposition “John is not old” when John is 55 years can be represented by the
function call (fl-truth-value-negation-p? P 55) → 0.875

Source code number: 7-5.

fl-truth-value-p-and-q?
Explanation: This function returns the truth-value of a compound fuzzy prop-

osition containing the logical connective “and”.
Syntax: (fl-truth-value-p-and-q?P Q x y)

• P: a list representing a fuzzy set associated to the predicate of a fuzzy
proposition p.

• Q: a list representing a fuzzy set associated to the predicate of a fuzzy
proposition q.

• x: a real number for expressing the subject of a fuzzy proposition p.
• y: a real number for expressing the subject of a fuzzy proposition q.

FuzzyLisp representation: FLSSR
Example(s): assuming the fuzzy set P defined by (setq P ‘(old 50 90 90 90)) and

another fuzzy set Q defined by (setq Q ‘(young 0 0 15 30)), the fuzzy compound
proposition “John is old and Eva is young” when John is 55 years old and Eva is 18
can be represented by the function call (fl-truth-value-p-and-q? P Q 55
18) → 0.125

Source code number: 7-3.

fl-truth-value-p-or-q?
Explanation: This function returns the truth-value of a compound fuzzy prop-

osition containing the logical connective “or”.
Syntax: (fl-truth-value-p-or-q?P Q x y)

• P: a list representing a fuzzy set associated to the predicate of a fuzzy
proposition p.

• Q: a list representing a fuzzy set associated to the predicate of a fuzzy
proposition q.

• x: a real number for expressing the subject of a fuzzy proposition p.
• y: a real number for expressing the subject of a fuzzy proposition q.
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FuzzyLisp representation: FLSSR
Example(s): assuming the fuzzy set P defined by (setq P ‘(old 50 90 90 90)) and

another fuzzy set Q defined by (setq Q ‘(young 0 0 15 30)), the fuzzy compound
proposition “John is old or Eva is young” when John is 55 years old and Eva is 18
can be represented by the function call (fl-truth-value-p-or-q? P Q 55 18) → 0.8

Source code number: 7-4.
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