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Abstract In this paper we consider the problem of state estimation of a dynamic

system whose evolution is described by a nonlinear continuous-time stochastic

model. We also assume that the system is observed by a sensor in discrete-time

moments. To perform state estimation using uncertain discrete-time data, the sys-

tem model needs to be discretized. We compare two methods of discretization. The

first method uses the classical forward Euler method. The second method is based

on the continuous-time simulation of the deterministic part of the nonlinear sys-

tem between consecutive times of measurement. For state estimation we apply an

unscented Kalman Filter, which—as opposed to the well known Extended Kalman

Filter—does not require calculation of the Jacobi matrix of the nonlinear transfor-

mation associated with this method.

Keywords Continuous-time stochastic systems ⋅ Nonlinear dynamics ⋅ Discrete-

time measurements ⋅ State estimation ⋅ Kalman filtering

1 Introduction

The main tool for state estimation of dynamic systems is Kalman filtering [4, 8, 9].

If the system observed is described by continuous-time equations there are two

main approaches to state estimation. In the first method one derives discrete-time

model describing the process and uses a standard method for estimating it [4, 10],

namely the Kalman Filter for a linear approach, or one of its variants for a nonlinear

approach: for example the Extended Kalman Filter [2, 4], the Unscented Kalman
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Filter [7, 14], or the Particle Filter [1, 3, 6, 12]. The second method consists in

directly utilizing a continuous-time estimator: the Kalman-Bucy Filter [4] in a linear

approach or various nonlinear filters [3, 13].

Both approaches have their merits. Implementation of discrete-time filters is

straightforward, yet the discrete-time model is only an approximation dependent on

the sampling period. Thus another layer of design uncertainty is introduced. On the

other hand, implementation of continuous-time filters is more complex (moreover,

the measurement equations are also given in continuous time).

For most physical systems the respective continuous-time (CT) description gives

best approximation of the actual phenomena which govern the process behavior. On

the other hand, it is the discrete-time (DT) measurement process which is typically

associated with the principle of operation of sensors. There is therefore a need for a

so-called hybrid CT/DT method of state estimation.

In this article we will investigate some hybrid method in which a predictive part

of the estimation algorithm is performed by continuous-time simulation of a deter-

ministic part of a stochastic differential equation that describes an analyzed system.

In the stochastic differential equations modeling the process, the stochastic part has

the zero mean (in the probabilistic sense), thus we assume that it does not contribute

to the evolution of the prediction
1
. We will compare this method with a classical

one using the standard forward Euler discretization. Though the simulation-based

method is computationally more expensive than the Euler method, it gives accurate

results independent of the sampling time.

The paper is organized as follows. In Sect. 2 a nonlinear continuous-time sto-

chastic system model and a discrete-time measurement equation are presented. Two

methods for discrete-time discretization are described in Sect. 3. The Unscented

Kalman filter which is a basis for state estimation is recalled in Sect. 4. A simulation

example is presented in Sect. 5. Section 6 contains conclusions.

2 System Model

We consider a dynamic system described by the following nonlinear stochastic dif-

ferential equation:

dx(t) = a(x(t))dt + b(x(t))dw(t), t ∈ ℝ+ = [0,∞) (1)

where an independent variable t is interpreted as time, dx ∈ ℝn
is an infinitesimal

increment of the system state x ∈ ℝn
, dw ∈ ℝr

is an infinitesimal increment of

r-dimensional Wiener process w ∈ ℝr
describing the uncertainty, a ∶ ℝn → ℝn

is

1
This assumption is only valid for linear models, since in the general case, one can not find an

explicit equation describing the evolution of the mean value for a stochastic differential equation.

For nonlinear systems this means an approximation whose impact will be studied in future work.
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a nonlinear vector function describing the dynamics of the system, and b ∶ ℝn →
L(ℝr

,ℝn) is a nonlinear map describing the influence of the noise on the system
2
,

where L(ℝr
,ℝn) is the space of n × r matrices.

3 Model Discretization

To be able to perform state estimation using Kalman methods, we need to obtain

a discrete-time version of the model (1). However, due to the nonlinearity of (1),

only approximate methods are applicable. As has been mentioned we will apply two

different methods: the forward Euler method and the simulation method.

The well-known forward Euler method results in the following discrete-time ver-

sion of (1):

xk = xk−1 + Ta(xk−𝟏) + b(xk−𝟏)𝛥wk−1, k ∈ ℕ = {1, 2, 3,…} (2)

where T is the sampling time (in seconds), xk ∈ ℝn
is the state of the discrete-time

model (2) at time kT , and 𝛥wk ∈ ℝr
is a vector random variable with a multivariate

normal distribution  (𝟎,Q), with the zero mean and the covariance matrix

Q = TIr (3)

where Ir is the r × r identity matrix.

Based on (2), since 𝛥w is a zero mean noise, the model-based prediction equation

needed for estimation has the following (homogeneous) form:

xk = xk−1 + Ta(xk−𝟏), k ∈ ℕ (4)

The second discretization method is based on simulation of the deterministic part

of model (1). In this method the following (homogeneous) deterministic ordinary

differential equation is simulated between consecutive sampling instants:

dx(t)
dt

= a(x(t)), for t ∈ [(k − 1)T , kT] , k ∈ ℕ (5)

A numerical solution to equation (5) can be computed, for example, using one of

the standard Runge-Kutta methods, to obtain a prediction of the state xk for the time

instant kT based on the state xk−1 computed at the time instant (k − 1)T .

Besides the fact that the simulation method gives more accurate results of the

prediction, it has two drawbacks, as compared to the forward Euler discretization.

First, it is computationally more expensive. Second, the simulation method ignores

2
We assume that maps a and b fulfill the necessary conditions so an appropriate solution to (1)

exists for t ≥ 0.
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the random part of the model (1), and thus the noise covariance matrix of the dis-

crete noise is not computed. A simple, yet not faultless solution to this problem is to

assume the same noise component b(xk−𝟏)𝛥wk−1 as for the Euler method (2). Other,

more suitable solutions of this problem will be investigated in the future work.

Finally, we supplement both the discrete-time models with a standard discrete-

time measurement equation

yk = c(xk) + ζk (6)

where yk ∈ ℝp
is the measurement vector, c ∶ ℝn → ℝp

is (in general) a nonlinear

vector function describing the measurement principle, and ζk ∈ ℝp
is a vector ran-

dom variable (measurement noise) with a multivariate normal distribution  (𝟎,R),
with the zero mean and a known covariance matrix R.

4 State Estimation

To perform state estimation we use the discrete-time model (2)–(6) and an Unscented

Kalman Filter described below.

4.1 Unscented Kalman Filter

Calculation of the Jacobi matrix for the nonlinear functions a, b and c can be a diffi-

cult task (for the discrete-time model based on the Euler method) or even not feasible

(for the simulation method, since the explicit form of the discrete-time model is not

available). To overcome this problem we utilize an approach which does not require

the computation of Jacobi matrix—the Unscented Kalman Filter (UKF).

The UKF is based on an unscented transform that is used to determine the mean

value and the covariance matrix of a random variable subjected to a nonlinear trans-

formation. In this method, the multivariate normal probability density function of a

random variable (before the nonlinear transformation) is represented by a specific,

small set of the so-called σ-points. Next, each of these points is transformed using the

nonlinear function (the Euler discrete-time model (4)) or each is simulated using the

differential equation (5). From the transformed points, the mean value of the random

variable and its covariance matrix can next be easily computed.

The UKF has some similar features to particle filters (PF). There are, however,

two significant differences described below.

1. The number of the UKF σ-points is not large, and they are chosen ‘optimally’ so

as to best preserve the shape of the multivariate normal distribution, whereas in

the particle filter the number of particles is large and they are sampled from some

initial distribution. Thus the UKF is less computationally expensive.
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2. In the UKF, the initial (pre nonlinear transformation) and the final (post nonlin-

ear transformation) random variables are assumed to have multivariate normal

distribution, thus the σ-points (post nonlinear transformation) are ‘fitted back’

into the multivariate normal distribution, whereas in the PF the particles deter-

mine the resulting probability distribution function (it can thus be arbitrary, not

normal, multimodal, etc.). Therefore, using UKF it is not possible to model other

probability distributions than multivariate normal distribution. It is a significant

simplification, as a nonlinear transformation of a normal random variable is gen-

erally not normal.

One step of the UKF algorithm for discrete-time models presented in Sect. 2 is

described below.

First, based on the results from the previous step, i.e. the state xk−1|k−1 and the

corresponding covariance matrix Pk−1|k−1, a new set of σ-points is computed. If the

state is an n-dimensional multivariate normal random variable, then this set contains

(2n + 1) σ-points xik−1|k−1, i = 0, 1, 2,… , 2n with the corresponding weights Wi
,

calculated as [7]

x0k−1|k−1 = x̂k−1|k−1, W0 ∈ (−1, 1)

xjk−1|k−1 = x̂k−1|k−1 +
(√

n
1 −W0Pk−1|k−1

)j

, Wj = 1 −W0

2n

xj+nk−1|k−1 = x̂k−1|k−1 −
(√

n
1 −W0Pk−1|k−1

)j

, Wj+n = 1 −W0

2n
j = 1, 2,… , n

(7)

where a new index j is introduced to emphasize the symmetry of the points, the vector

(√
n

1 −W0Pk−1|k−1

)j

is the j-th row (and the j-th column) of the square root (in the matrix sense) of the

matrix

n
1 −W0Pk−1|k−1

The value of the weight W0 ∈ (−1, 1) controls the position of σ-points. For W0
> 0

the σ-points are further from the central σ-point x0, whereas for W0
< 0 they are

closer to the central σ-point x0. For a more detailed discussion on the choice of

weights refer to [7] and [14]. Note that, naturally, the weights satisfy the relationship
∑2n

i=0W
i = 1.
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Next, the σ-points

{

xjk−1|k−1
}

are transformed to the new state according to (4)

or using (5). In such a way a new set of the transformed points

{

xik|k−1
}

is obtained

(the weights of the σ-points remain unchanged).

The predicted state x̂k|k−1 is computed as the weighted sum of the transformed

σ-points

x̂k|k−1 =
2n∑

i=0
Wixik|k−1 (8)

To compute a predicted measurement, the set of the transformed σ-points is trans-

formed again, this time using the nonlinear function adequate for observations (6).

This results in the ‘measurement’ points

zik|k−1 = c
(

xik|k−1
)

, i = 0,… , 2n (9)

The predicted measurement is calculated similarly as the predicted state:

ẑk|k−1 =
2n∑

i=0
Wizik|k−1 (10)

Using the above results we calculate the covariance matrix of the predicted state

Pk|k−1 = Q +
2n∑

i=0
Wi

(

xik|k−1 − x̂k|k−1
)(

xik|k−1 − x̂k|k−1
)⊺

(11)

where Q is the covariance matrix (3), and the covariance matrix of the predicted

measurement

Sk = R +
2n∑

i=0
Wi

(

zik|k−1 − ẑk|k−1
)(

zik|k−1 − ẑk|k−1
)⊺

(12)

where R is the covariance matrix of the measurement noise ζk in (6).

The gain of the UKF is:

Kk =
[ 2n∑

i=0
Wi

(

xik|k−1 − x̂k|k−1
)(

zik|k−1 − ẑk|k−1
)⊺

]

S−1k (13)

The UKF innovation is

vk = zk − ẑk|k−1 (14)

where zk is the ‘true’ measurement collected by a sensor.
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The updated state estimate is calculated according to the following equation:

x̂k|k = x̂k|k−1 + Kkvk (15)

with the corresponding covariance matrix

Pk|k = Pk|k−1 − KkSkK
⊺
k (16)

5 Simulation Example

In this section we present an exemplary process model and a simulation example.

5.1 Process Model

We consider a nonlinear continuous-time stochastic model of a mobile robot shown

in Fig. 1. The robot has two wheels of radius r, which are connected by axle of an

length l. Both wheels can rotate at different speeds, thereby changing the orientation

of the robot. We assume that the wheels do not slip and that the robot moves only

in the direction of the body orientation. The angle between the body orientation and

the x-axis is denoted as θ. The model is based on [5, 11, 15], however we add two

additional state variables (ω1 and ω2) describing the angular velocities of the wheels.

The position x-y of each wheel (i = 1, 2) of the robot evolves according to the

equations

Fig. 1 Mobile robot on the

Cartesian plane
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dxi = r cos θdφi

dyi = r sin θdφi
(17)

where (φi, i = 1, 2) are the angles by which the wheels rotate about their axes.

Thus the equations describing the motion of the robot are

dx =
dx1 + dx2

2

dy =
dy1 + dy2

2
ldθ = rdφ1 − rdφ2

(18)

where x and y yield the position of the middle point of the axle, l is the length of the

axle and θ is the angle of orientation of the robot.

By substituting (17) into (18) one obtains

dx =
r cos θdφ1 + r cos θdφ1

2
=

r cos θ(dφ1 + dφ1)
2

dy =
r sin θdφ1 + r sin θdφ1

2
=

r sin θ(dφ1 + dφ1)
2

dθ =
rdφ1 − rdφ2

l

(19)

The angles (φi, i = 1, 2) by which the wheels rotate about their axes are described

by the following differential equations

dφ1 = ω1(t)dt
dφ2 = ω2(t)dt

(20)

where ω1 and ω2 are the angular velocities of the corresponding wheels.

We assume that the angular velocities of the wheels can be described by the fol-

lowing stochastic differential equations:

dω1 = κ1(μ1 − ω1) +
√
Ddw1

dω2 = κ2(μ2 − ω2) +
√
Ddw2

(21)

where κi (i = 1, 2) describes the rate of the ith velocity mean reversion, μi is the

long-term mean of the ith velocity, dw1 and dw2 are infinitesimal increments of two

independent one-dimensional Wiener processes, respectively, and

√
D is a (mod-

eling) noise scaling factor. Using the above equations, the trajectory of the mobile

robot can be described by the following set of stochastic differential equations:
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⎡
⎢
⎢
⎢
⎢
⎣

dx
dy
dθ
dω1
dω2

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r ω1(t)+ω2(t)
2 cos θ(t)

r ω1(t)+ω2(t)
2 sin θ(t)

r
l (ω1(t) − ω2(t))
κ1(μ1 − ω1)
κ2(μ2 − ω2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

dt +
√
D

⎡
⎢
⎢
⎢
⎢
⎣

0 0
0 0
0 0
1 0
0 1

⎤
⎥
⎥
⎥
⎥
⎦

[
dw1
dw2

]

(22)

where the state of the robot is its position (x, y), the angle of the body orientation θ
and the angular velocities of the wheels (ω1,ω2).

We assume that the position (x, y) and the angle θ are measured. Therefore the

map c(xk) in (6) is linear and is independent of the state xk, and can be consequently

described by the following matrix:

c(xk) = C =
⎡
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤
⎥
⎥
⎦

(23)

The covariance matrix of the measurement noise ζ is

R =
⎡
⎢
⎢
⎣

1 0 0
0 1 0
0 0 0.05

⎤
⎥
⎥
⎦

(24)

The initial state is

x0 =
[
0.0, 0.0, π∕4, 1.0, 1.0

]⊺
(25)

and the other parameters of the model are as follows:

D = 0.04
r = 1, l = 4

κ1 = 0.01, κ2 = 0.01
μ1 = 2.0, μ2 = 2.4

(26)

The process was simulated for 0 ≤ t ≤ 50, and 500 trajectories were generated.

The estimation results represent the average of the results obtained in all the simu-

lation runs.

An exemplary trajectory of the robot positions (x, y) on the plane with the corre-

sponding measurements is presented in Fig. 2.
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Fig. 2 Exemplary trajectory (x, y) of the robot with the corresponding measurements

5.2 Estimation Results

The outcomes
3

of the estimation of position x, position y, angle θ and the angular

velocity ω1, for both methods are presented in Figs. 3, 4, 5 and 6, respectively. The

results for the forward Euler method are marked with dashed lines and the results for

the simulation-based method are denoted by solid lines.

The observed correlation between the errors of both methods results from the fact

that the two estimators were tested for the same set of 500 trajectories.

Based on the presented example we can conclude that the estimation errors for the

simulation-based approach are smaller than the errors gained with the forward Euler

method. Clearly, the resulting difference in performance depends on the process

under estimation and the sampling period T . Nevertheless, the estimates for the angu-

lar velocity are almost the same for both methods. This is because the velocities were

modeled as the Wiener processes, for which better prediction has no effect.

3
As the results concerning the velocity ω2 are almost identical to the results for ω1, they are not

included here.
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Fig. 3 Position x estimation errors obtained from: the forward Euler method (dashed line) and the

simulation-based method (solid line)

Fig. 4 Position y estimation errors obtained from: the forward Euler method (dashed line) and the

simulation-based method (solid line)
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Fig. 5 Angle θ estimation errors obtained from: the forward Euler method (dashed line) and the

simulation-based method (solid line)

Fig. 6 Angular velocity ω1 estimation errors obtained from: the forward Euler method (dashed
line) and the simulation-based method (solid line)
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6 Conclusions

To draw a general conclusion about the performance quality of both methods, an

analytic method for determining bounds on the errors is needed. For the Euler

method, the one-step local error is of the order O(T2). Thus, for example, a two

times smaller sampling period leads to a four times smaller prediction error, approx-

imately. Whereas in the simulation-based method the local error can be made arbi-

trary small, depending on the chosen integration step, which can be much smaller

than T . With proper optimization using adaptive methods of integration of ordinary

differential equations (eg. ODE23, ODE45), the increase in the computational cost

of the simulation-based method need not to be high. Moreover, the simulation-based

method yields an additional degree of freedom. By choosing a method of integra-

tion and its parameters one can trade-off between better estimation performance and

lower computational costs.
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