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Abstract. This survey aims at providing unified definitions of strate-
gies, strategic rewriting and strategic programs. It gives examples of main
constructs and languages used to write strategies. It also explores some
properties of strategic rewriting and operational semantics of strategic
programs. Current research topics are identified.

1 Introduction

Since the 80s, many aspects of rewriting have been studied in automated deduc-
tion, programming languages, equational theory decidability, program or proof
transformation, but also in various domains such as chemical or biological com-
puting, plant growth modelling, security policies, etc. Facing this variety of appli-
cations, the question arises to understand rewriting in a more abstract way, espe-
cially as a logical framework to encode different logics and semantics. Discovering
the universal power of rewriting, in particular through its matching and trans-
formation power, led first to the emergence of Rewriting Logic and Rewriting
Calculus.

On the other hand, with the development of rewrite frameworks and lan-
guages, more and more reasoning systems have been modeled, for proof search,
program transformation, constraint solving, SAT solving. It then appeared that
straightforward rule-based computations or deductions are often not sufficient
to capture complex computations or proof developments. A formal mechanism is
needed, for instance, to sequentialize the search for different solutions, to check
context conditions, to request user input to instantiate variables, to process sub-
goals in a particular order, etc. This is the place where the notion of strategy
comes in and this leads to the design and study of strategy constructs and strat-
egy languages also in these contexts.

A common understanding is that rules describe local transformations and
strategies describe the control of rule application. Most often, it is useful to
distinguish between rules for computations, where a unique normal form (i.e.
syntactic expressions which cannot be rewritten anymore) is required and where
the strategy is fixed, and rules for deductions, in which case no confluence
nor termination is required but an application strategy is necessary. Due to
the strong correlation of rules and strategy in many applications, claiming the
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universal character of rewriting also requires the formalisation of its control. This
is achieved through strategic rewriting.

This survey aims at providing unified definitions of strategies, strategic
rewriting and strategic programs, with the goal to show the progression of ideas
and definitions of the concept, as well as their correlations. It gives examples of
main constructs and languages used to write strategies, together with the defin-
ition of an operational semantics for strategic programs. Well-studied properties
of strategic rewriting are reviewed and current research topics are identified.

Accordingly, following this introduction, the paper is organised as follows:
after a brief history of the notion of strategy in rewriting and automated deduc-
tion in Sect. 2, we first explain in Sect. 3, what are strategic rewriting and strate-
gic programs. In Sect. 4, several approaches to describe strategies and strategic
rewriting are reviewed. In order to catch the higher-order nature of strategies,
a strategy is first defined as a proof term expressed in rewriting logic then as
a ρ term in rewriting calculus. Looking at a strategy as a set of paths in a
derivation tree, the extensional description of strategies, defined as a subset of
derivations, is briefly explored. Then a strategy is considered as a partial func-
tion that associates to a reduction-in-progress, the possible next steps in the
reduction sequence. Last, positional strategies that choose where rules apply are
studied. Section 5 presents a few strategy languages, and extracts comon con-
structs with their variants. We propose an operational semantics for strategic
programs in Sect. 6, study properties of their executions together with correct-
ness and completeness results. We then address in Sect. 7 various properties,
namely termination, confluence and normalizing properties of strategic rewrit-
ing. The conclusion points out further work and possible improvements.

This survey is an extended version of [45], and of a lecture given at ISR2014.
Although this research on strategies has been largely influenced by related works
on proof search, automated deduction and constraint solvers, this paper does not
cover these domains and restricts to the area of rewriting.

2 Historical Considerations

In programming languages, strategies have been primarily provided to describe
the operational semantics of functional languages and the related notions of call
by value, call by name, call by need. In languages such as Clean [62], OBJ [31],
ML [6], and more recently Haskell [39] or Curry [36], strategies are used to
improve efficiency of interpreters or compilers, and are not directly accessible
to the programmer. In relation with the operational semantics of functional
and algebraic languages, strategies have been studied from a long time in λ-
calculus [9,47], in the classical setting of first-order term and graph rewriting,
or in abstract rewriting systems.

In the context of functional languages, the notions of termination and conflu-
ence of reductions to provide normal forms are meaningful to ensure the existence
and unicity of results. Significant research was devoted to design computable and
efficient strategies that are guaranteed to find a normal form for any input term,
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whenever it exists. Motivated by the need to avoid useless infinite computations
in functional programming languages, local strategies were used in eager lan-
guages such as Lisp (with its lazy cons), in the OBJ family of languages (OBJ,
CafeOBJ, Maude,...) to guide the evaluation using local strategies for functions,
in lazy functional programming, via different kinds of syntactic annotations
on the program (strictness annotations, or global and local annotations). For
instance, Haskell allows for syntactic annotations on the arguments of datatype
constructors.

Besides functional or logic programming, strategies also frequently occur in
automated deduction and reasoning systems which have been developed in a
different community. Beginning with the ML meta-language of LCF [32], strate-
gies are fundamental in several proof environments, such as Coq [20], TPS [4],
PVS [61] but also in automated theorem proving [56], constraint solving [15],
SAT or SMT solvers [19]. In these contexts, they are more often called tactics,
action plans, search plans or priorities.

From the 1990s, attempts have been made to look at the concept of strategy
per se, with the intent to confront point of views and to look at computation
and deduction in a logical and uniform approach. Already in [43], the notion of
computational system, defined as a rewrite theory and a strategy describing the
control for rules application, was applied in a uniform way to straightforward
computations with rewrite rules, to constraint solving and to combination of
these paradigms in the same logical framework. Since 1997, there has been two
series of workshops whose goal was to address the concept of strategy and mix
different point of views. The Strategies workshops held by the CADE-IJCAR
community1 and the Workshops on Reduction Strategies held by the RTA-RDP
community2. More recently in 2013, the International Workshop on Strategic
Reasoning is emerging from the game theory community3.

Once the idea was there, the challenge was to propose good descriptions of
the concept of strategy. The approach followed in the rewriting community was
to formalize a notion of strategy relying on rewriting logic [53] and rewriting
calculus [17] that are powerful formalisms to express and study uniformly com-
putations and deductions in automated deduction and reasoning systems. Briefly
speaking, rules describe local transformations and strategies describe the con-
trol of rule application. Most often, it is useful to distinguish between rules for
computations, where a unique normal form is required and where the strategy
is fixed, and rules for deductions, in which case no confluence nor termination
is required but an application strategy is necessary. Regarding rewriting as a
relation and considering abstract rewrite systems leads to consider derivation
tree exploration: derivations are computations and strategies describe selected
computations.

With the idea to understand and unify strategies in reduction systems and
deduction systems, abstract strategies are defined in [41] and in [14] as a subset

1 See http://www.logic.at/strategies.
2 http://users.dsic.upv.es/∼wrs/.
3 See http://www.strategicreasoning.net/.

http://www.logic.at/strategies
http://users.dsic.upv.es/~wrs/
http://www.strategicreasoning.net/
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of the set of all derivations (finite or not). Another point of view is to see a
strategy as a partial function that, at each step of reduction, gives the possible
next steps. Strategies are thus considered as a way of constraining and guiding
the steps of a reduction. So at any step in a derivation, it should be possible to
say which next step obeys the strategy.

In the 1990s, inspired by tactics in proof systems and by constraint pro-
gramming, the idea came up to provide a strategy language to specify which
derivations we are interested in. Various approaches have followed, yielding dif-
ferent strategy languages such as Elan [12,13,44], APS [46], Stratego [70,71],
Tom [7] or Maude [18,54,55]. For such languages, rules are the basic strategies
and additional constructs are provided to combine them and express the control.

Strategy constructs are also present in graph transformation tools such as
PROGRES [67], AGG [23], Fujaba [58], GROOVE [66], GrGen [27], GP [64]
and Porgy [2,24,25]. Graph rewriting strategies are especially useful in Porgy, an
environment to facilitate the specification, analysis and simulation of complex
systems, using port graphs. In Porgy, a complex system is represented by an
initial graph, a collection of graph rewriting rules, and a user-defined strategy to
control the application of rules. The Porgy strategy language includes constructs
to deal with graph traversal and management of rewriting positions in the graph.
Indeed in the case of graph rewriting, top-down or bottom-up traversals do not
make sense. There is a need for a strategy language which includes operators to
select rules and the positions where the rules are applied, and also to change the
positions along the derivation.

All these languages share the concern to provide abstract ways to express
control of rule applications. In these flexible and expressive strategy languages,
elaborated strategies are defined by combining a small number of primitives.

3 What are Strategic Rewriting and Strategic Programs?

Strategic rewrite programs considered in this paper combine the general concept
of rewriting applied to syntactic structures (like terms, graphs, propositions,
states, etc.) with a strategy to express the control on rule application. In this
way, strategic programming follows the separation of concerns principle [21] since
different strategies can be designed and experimented with a same rewrite sys-
tem. Strategic rewrite programs so contribute to improve agility and modularity
in programming.

This section reminds notions of rewriting and abstract rewrite systems
and introduces related definitions of strategic rewrite programs and strategic
rewriting.

3.1 Rewriting

In the various domains where rewrite rules are applied, rewriting definitions have
the same basic ingredients. Rewriting transforms syntactic structures that may
be words, terms, propositions, dags, graphs, geometric objects like segments, and
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in general any kind of structured objects. In order to emphasize this fact, we use
t, G or a to denote indifferently terms, graphs of any other syntactic structure,
used for instance to abstractly model the state of a complex system.

Transformations are expressed with patterns called rules. Rules are built on
the same syntax but with an additional set of variables, say X , and with a binder
⇒, relating the left-hand side and the right-hand side of the rule, and optionally
with a condition or constraint that restricts the set of values allowed for the
variables. Performing the transformation of a syntactic structure t is applying
the rule labelled � on t, which is basically done in three steps: (1) match to
select a redex of t at position p denoted t|p (possibly modulo some axioms,
constraints,...); (2) instantiate the rule variables by the result(s) of the matching
homomorphism (or substitution) σ; (3) replace the redex by the instantiated
right-hand side.

Formally, t rewrites to t′ using the rule � : l ⇒ r if t|p = σ(l) and t′ = t[σ(r)]p.
This is denoted t −→p,�,σ t′.

The transformation process is similar on graphs (see for instance [34,65]) and
many other structured objects can be encoded by terms or graphs.

When R is a set of rules, this transformation generates a relation −→R
on the set of syntactic structures. Its (reflexive) transitive closure is denoted
( ∗−→R) +−→R.

Given a set of rewrite rules R, a derivation, or computation from G is a
sequence of rewriting steps G →R G′ →R G” →R . . .

In this transformation process, there are many possible choices: for the rule
itself, the position(s) in the structure, the matching homomorphism(s). For
instance, one may choose to apply a rule concurrently at all disjoint posi-
tions where it matches, or using matching modulo an equational theory like
associativity-commutativity, or also according to some probability. Since in gen-
eral, there is more than one way of rewriting a structure, the set of rewrite
derivations can be organised as a derivation tree. The derivation tree of G, writ-
ten DT (G,R), is a labelled tree whose root is labelled by G, the children of
which being all the derivation trees DT (Gi,R) such that G →R Gi. The edges
of the derivation tree are labelled with the rewrite rule and the morphism used
in the corresponding rewrite step. A derivation tree may be infinite, if there is
an infinite reduction sequence out of G.

3.2 Strategic Rewrite Programs

Intuitively, a strategic program consists of an initial structure G (or t when it is
a term), together with a set of rules R that will be used to reduce it, according
to a given strategy expression S, used to decide which rewrite steps should be
performed on G. This amounts to identify the branches in G’s derivation tree
that satisfy the strategy S and to view strategic rewriting derivations as selected
computations.

Formally, a strategic rewrite program consists of a finite set of rewrite rules
R, a strategy expression S, built from R using a strategy language, and a given
structure G.
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We denote it [SR, G], or simply [S,G] when R is clear from the context.
Several questions come up with this definition: how to describe a strategy

expression S, how to characterize strategic rewriting derivations, how to design
a language for strategy expressions, how to define an operational semantics for
strategic programs?

3.3 Abstract Reduction System

Dealing with a general notion of rewriting is well addressed in abstract reduction
systems. There, rewriting is considered as an abstract relation on structured
objects. Even if different variants of the definition of Abstract Reduction System
have been given in the literature [41,42,69], they agree on the following basis.
An Abstract Reduction System (ARS) is a labelled oriented graph (O,S) with
a set of labels L. The nodes in O are called objects. The oriented labelled edges
in S are called steps: a

φ−→ b or (a, φ, b), with source a, target b and label φ.

Two steps a
φ−→ b and c

φ′
−→ d can be composed if b and c are the same object.

Derivations are composition of steps and may be finite or infinite.

For a given ARS A, a finite derivation is denoted π : a0
φ1−→ a1 . . .

φn−1−−−→ an

or a0
π−→ an, where n ∈ N is the length of the derivation. The source of π is

a0 and its domain Dom(π) = {a0}. The target of π is an and applying π to
a0 gives the singleton set {an}, which is denoted π•{a0} = {an}, or π•a0 =
an by abusively identifying elements and singletons. The concatenation of two
finite derivations π1;π2 is defined as a

π1−→ b
π2−→ c if {a} = Dom(π1) and

π1
•a = Dom(π2) = {b}. Then (π1;π2)•{a} = π2

•(π1
•{a}) = {c}, or more simply

(π1;π2)•a = π2
•(π1

•a) = c.
Termination and confluence properties for ARS are then expressed as follows.

For a given ARS A = (O,S):

– An object a in O is irreducible if a is the source of no edge.
– A derivation is normalizing when its target is irreducible.
– An ARS is weakly terminating if every object a is the source of a normalizing

derivation.
– A is terminating (or strongly normalizing) if all its derivations are of finite

length.
– An ARS A = (O,S) is confluent if

for all objects a, b, c in O, and all A-derivations π1 and π2,
when a

π1−→ b and a
π2−→ c,

there exist d in O and two A-derivations π3, π4 such that
c

π3−→ d and b
π4−→ d.

3.4 Strategic Rewriting

Given a rewrite system R, defined on a set of objects O that may be terms,
equivalence classes of terms, graphs, or states, we can consider the rewrite rela-
tion −→R defined in Sect. 3.1 to get the ARS A = (O,−→R).
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Based on the ARS concept, we can consider strategic rewriting in two dual
ways:

– The first one emphasizes the selective purpose of strategies among the set
of rewriting derivations. Abstract strategies are defined in [41] and in [14] as
follows: for a given ARS A, an abstract strategy ζ is a subset of the set of
all derivations (finite or not) of A. To relate this definition to the functional
aspect of strategies, the notions of domain and application are then defined
as follows: Dom(ζ) =

⋃
π∈ζ Dom(π) and ζ•a = {b | ∃π ∈ ζ such that a

π−→
b} = {π•a | π ∈ ζ}.

– The second way emphasizes the reduction relation itself and relies on a restric-
tion of the rewrite relation. Instead of the rewrite relation −→R we may con-
sider on the same set of objects, another relation (induced by strategic steps)
corresponding to strategic rewriting. A strategic reduction step is a relation

S−→ such that S−→ ⊆ +−→R.
This leads to consider another ARS A′ = (O,

S−→) and to compare it with
the previous one A = (O,−→R).

The derivation tree defined in Sect 3.1 is a representation of the ARS A =
(O,−→R). The selected branches in the derivation tree is then a representation
of the ARS=A′ = (O,

S−→).
Indeed termination, confluence and irreducible objects are in general different

for the two ARS. In the term rewriting approach of strategic reduction described
in [10], it is required that moreover NF ( S−→) = NF (R) where NF denotes the
set of terms which are not reducible any more by the considered relation. We
will come back later in Sect. 7 on these properties.

But first, in the following Sect. 4, we consider different ways to describe strate-
gies and strategic rewriting.

4 Strategy Description: Different Points of View

Different definitions of strategy have been given in the rewriting community in
the last twenty years, when strategies began to be studied per se. We review
them in this section, making clear that they all actually define either selected
sets of rewriting derivations, or selected sets of positions where rules should be
applied.

4.1 Rewriting Logic

The Rewriting Logic is due to Meseguer [53,57]: Rewriting logic (RL) is a natural
model of computation and an expressive semantic framework for concurrency,
parallelism, communication, and interaction. It can be used for specifying a wide
range of systems and languages in various application fields. It also has good
properties as a metalogical framework for representing logics. In recent years,
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Fig. 1. Deduction rules for rewriting logic

several languages based on RL (ASF+SDF, CafeOBJ, ELAN, Maude) have been
designed and implemented.4

In Rewriting Logic, the syntax is based on a set of terms T (F ,Y) built with
an alphabet F of function symbols with arities and with variables in Y. A theory
is given by a set R of labeled rewrite rules denoted �(x1, . . . , xn) : l ⇒ r, where
labels �(x1, . . . , xn) record the set of variables occurring in the rewrite rule.
Formulas are sequents of the form π : t → t′, where π is a proof term recording
the proof of the sequent: R � π : t → t′ if π : t → t′ can be obtained by finite
application of equational deduction rules [57] given in Fig. 1. In this context, a
proof term π encodes a sequence of rewriting steps called a derivation.

Let us consider the following example of sorting a list of natural numbers,
where natural numbers are a subsort of lists of natural numbers, which is denoted
as “Nat < List”; the concatenation operateur “ : List x List -> List”
is associatif with the empty list “nil : -> List” as identity; operators profiles
are “sort, rec, fin : List -> List”; natural numbers are denoted as “1,
2, 3,...” for simplicity and compared with the usual ordering “<”. The rules
are expressed as follows:

rules for List
X, Y : Nat ; L L’ L’’ : List;
rec : sort (L X L’ Y L’’) => sort (L Y L’ X L’’)

if Y < X
fin : sort (L) => L

end

For the derivation:

sort(3 1 2) -> sort(1 3 2) -> sort(1 2 3) -> (1 2 3)

4 http://wrla2012.lcc.uma.es/.

http://wrla2012.lcc.uma.es/
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the proof term is

rec(nil,3,nil,1,(2));rec((1),3,nil,2,nil);fin((1 2 3)).

The Elan language, designed in the 1990’s, introduced the concept of strategy
by giving explicit constructs for expressing control on the rule application [11,43].
Beyond labeled rules and concatenation denoted “;”, other constructs for choice,
failure, iteration, were also defined in Elan. A strategy is there defined as a set
of proof terms in rewriting logic and can be seen as a higher-order function : if
the strategy ζ is a set of proof terms π, applying ζ to the term t means finding
all terms t′ such that π : t → t′ with π ∈ ζ. Since rewriting logic is reflective,
strategy semantics can be defined inside the rewriting logic by rewrite rules at
the meta-level. This is the approach followed by Maude in [54,55].

4.2 Rewriting Calculus

The rewriting calculus, also called ρ-calculus, has been introduced in 1998 by
Horatiu Cirstea and Claude Kirchner [17]. The rho-calculus has been introduced
as a general means to uniformly integrate rewriting and λ-calculus. This calculus
makes explicit and first-class all of its components: matching (possibly modulo
given theories), abstraction, application and substitutions.

The rho-calculus is designed and used for logical and semantical purposes.
It could be used with powerful type systems and for expressing the semantics
of rule based as well as object oriented paradigms. It allows one to naturally
express exceptions and imperative features as well as expressing elaborated rewrit-
ing strategies.5

Some features of the rewriting calculus are worth emphasizing here: first-
order terms and λ-terms are ρ-terms (λx.t is (x ⇒ t)); a rule is a ρ-term as well as
a strategy, so rules and strategies are abstractions of the same nature and “first-
class concepts”; application reduction generalizes β−reduction; composition of
strategies is function composition and is denoted explicitely here by the operator
•; recursion can be for example expressed as in λ calculus with a recursion
operator μ.

To illustrate the notion of ρ-term on a simple example, let us come back to
the list sorting algorithm. For the derivation:

sort (3 1 2) -> sort (1 3 2) -> sort (1 2 3) -> (1 2 3)

the corresponding ρ-term can be written :

fin • rec2 • rec1 • sort(312)

with fin=(sort(L3) ⇒ L3), rec2=(sort(L2X2L
′
2Y2L

′′
2) ⇒ sort(L2Y2L

′
2X2L

′′
2))

and rec1 = (sort(L1X1L
′
1Y L′′

1) ⇒ sort(L1Y1L
′
1X1L

′′
1)).

In the ρ-calculus, strategies expressed by a well-typed ρ-term of type term �→
term evaluates to a set of rewrite derivations [16].

5 http://rho.loria.fr/index.html.

http://rho.loria.fr/index.html
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The Abstract Biochemical Calculus (or ρBio-calculus) [3] illustrates a useful
instance of the ρ-calculus. The ρBio-calculus models autonomous systems as
biochemical programs which consist of the following components: collections of
molecules (objects and rewrite rules), higher-order rewrite rules over molecules
(that may introduce new rewrite rules in the behaviour of the system) and
strategies for modelling the system’s evolution. A visual representation via port
graphs and an implementation are provided by the Porgy environment described
in [2]. In this calculus, strategies are abstract molecules, expressed with an arrow
constructor (⇒ for rule abstraction), an application operator • and a constant
operator stk (for stuck) for explicit failure.

4.3 Extensional Strategies

The extensional definition of abstract strategies as a set of derivations of an
abstract reduction system is given in [14]. The concept is useful to understand
and unify reduction systems and deduction systems as explored in [41].

The extensional approach is also useful to address infinite elements. Since
abstract reduction systems may involve infinite sets of objects, of reduction steps
and of derivations, we can schematize them with constraints at different levels:
(i) to describe the objects occurring in a derivation (ii) to describe, via the
labels, requirements on the steps of reductions (iii) to describe the structure of
the derivation itself (iv) to express requirements on the histories. The framework
developed in [42] defines a strategy ζ as all instances σ(D) of a derivation schema
D such that σ is solution of a constraint C involving derivation variables, object
variables and label variables. As a simple example, the infinite set of derivations
of length one that transform a into f(an) for all n ∈ N, where an = a ∗ . . . ∗ a (n
times), is simply described by: (a → f(X) | X ∗a =A a∗X), where =A indicates
that the constraint is solved modulo associativity of the operator ∗.

4.4 Intensional Strategies

Extensional strategies do not capture the idea that a strategy is a partial function
that associates to each step in a reduction sequence, the possible next steps. Here,
the strategy as a function may depend on the object and the derivation so far.
This notion of strategy coincides with the definition of strategy in sequential
path-building games, with applications to planning, verification and synthesis of
concurrent systems [22]. This remark leads to the following intensional definition
given in [14]. Again, the essence of the definition is that strategies are considered
as a way of constraining and guiding the steps of a reduction. So at any step in
a derivation, it should be possible to say which is the next step that obeys the
strategy ζ. In order to take into account the past derivation steps to decide the
next possible ones, the history of a derivation has to be memorized and available
at each step. Through the notion of traced-object [α] a = [(a0, φ0), . . . , (an, φn)] a
in O[A], each object a memorizes how it has been reached with the trace α.
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An intensional strategy for A = (O,S) is a partial function λ from O[A] to
2S such that for every traced object [α] a, λ([α] a) ⊆ {π ∈ S | Dom(π) = a}. If
λ([α] a) is a singleton, then the reduction step under λ is deterministic.

As described in [14], an intensional strategy λ naturally generates an abstract
strategy, called its extension: this is the abstract strategy ζλ consisting of the
following set of derivations:

∀n ∈ N, π : a0
φ0−→ a1

φ1−→ a2 . . .
φn−1−−−→ an ∈ ζλ

iff ∀j ∈ [0, n − 1], (aj
φj−→ aj+1) ∈ λ([α] aj).

This extension may obviously contain infinite derivations; in such a case it also
contains all the finite derivations that are prefixes of the infinite ones, and so is
closed under taking prefixes.

A special case are memoryless strategies, where the function λ does not
depend on the history of the objects. This is the case of many strategies used
in rewriting systems, as shown in the next example. Let us consider an abstract
rewrite system A where objects are terms, reduction is term rewriting and labels
are positions where the rewrite rules are applied. Let us consider an order < on
the labels which is the prefix order on positions. Then the intensional strategy
that corresponds to innermost rewriting is λinn(t) = {π : t

p−→ t′ | p = max({p′ |
t

p′
−→ t′ ∈ S})}. When a lexicographic order is used, the classical rightmost-

innermost strategy is obtained.
Another example, to illustrate the interest of traced objects, is the inten-

sional strategy that restricts the derivations to be of bounded length k. Its def-
inition makes use of the size of the trace α, denoted |α|: λltk([α] a) = {π |
π ∈ S, Dom(π) = a, |α| < k − 1}. However, as noticed in [14], the fact that
intensional strategies generate only prefix closed abstract strategies prevents us
from computing abstract strategies that look straightforward: there is no inten-
sional strategy that can generate a set of derivations of length exactly k. Other
solutions are provided in [14].

4.5 Positional Strategies

In order to build the function that gives the next possible steps in a reduction
sequence, mechanisms to choose the positions in the syntactic structure where
a rule or a set of rules can be applied. This can be done in two different ways:
either by traversing the syntactic structure, or by using annotations to select a
set of positions.

In term rewriting, the first way is illustrated by leftmost-innermost (resp. out-
ermost) reduction strategies on terms that choose the rewriting position accord-
ing to suffix (resp. prefix) ordering on the set of positions in the term. The second
way inspired from OBJ, uses local annotations. Informally, a strategy annotation
is a list of argument positions and rule names [1,26]. The argument positions
indicate the next argument to evaluate and the rule names indicate rules to
apply. For instance, the leftmost-innermost strategy for a function symbol C
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corresponds to an annotation strat(C) = [1, 2, , .., k, R1, R2, ...Rn] that indicates
that all its arguments should be evaluated from left to right and that the rules
Ri should be tried. This is also called on-demand rewriting. Note that includ-
ing (labels of) rules is not allowed in such strategy annotations. It is, however,
allowed in the so-called just-in-time strategies developed in [68].

Context-sensitive rewriting is a rewriting restriction which can be associ-
ated to every term rewriting system [48]. Given a signature F , a mapping
μ : F �→ P(N), called the replacement map, discriminates some argument posi-
tions μ(f) ⊆ {1, ..., k} for each k-ary symbol f . Given a function call f(t1, ..., tk),
the replacements are allowed on arguments ti such that i ∈ μ(f) and are forbid-
den for the other argument positions. Examples are given in [48,50].

A different approach is followed on graphs. Motivated by the need to apply
rules on huge graphs, Porgy [24] introduces annotations to focus on or to avoid
part of the graph. A located graph GQ

P consists of a port graph G and two
distinguished subgraphs P and Q of G, called respectively the position subgraph,
or simply position, and the banned subgraph. In a located graph GQ

P , P represents
the subgraph of G where rewriting steps may take place (i.e., P is the focus of
the rewriting) and Q represents the subgraph of G where rewriting steps are
forbidden. The intuition is that subgraphs of G that overlap with P may be
rewritten, if they are outside Q. The subgraph P generalises the notion of rewrite
position in a term: if G is the tree representation of a term t then we recover the
usual notion of rewrite position p in t by setting P to be the node at position p
in the tree G, and Q to be the part of the tree above P (to force the rewriting
step to apply from P downwards). When applying a port graph rewrite rule, not
only the underlying graph G but also the position and banned subgraphs may
change. A located rewrite rule specifies two disjoint subgraphs M and N of the
right-hand side r that are used to update the position and banned subgraphs,
respectively. If M (resp. N) is not specified, r (resp. the empty graph) is used
as default. In general, for a given located rule and located graph GQ

P , several
rewriting steps at P avoiding Q might be possible. Thus, the application of the
rule at P avoiding Q produces a set of located graphs.

The precise definitions and details are given in [25]. Such definitions of for-
bidden positions are quite useful to formalize deduction process that for instance
prevents rewriting in the parts brought by instantiating rules variables, or needs
to always apply at some interface nodes.

5 Strategy Languages

A strategy language gives syntactic means to describe strategies. Various strategy
languages have been proposed by different teams, giving rise to different fami-
lies. Five of them, representative of these families, are reviewed in this section:
Elan [13] puts emphasis on rules and strategies as a paradigm to combine deduc-
tion and computation by rewriting6, and its successor Tom [7] is strongly based

6 http://elan.loria.fr/elan.html.

http://elan.loria.fr/elan.html
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on the ρ-calculus7. Stratego [70] is a successor of ASF+SDF, mainly dedicated to
program transformation8. Maude [55] inherits from the OBJ family, order-sorted
equational rewriting and strategic annotations of operators, and is strongly based
on rewriting logic9. Porgy [25] took inspiration, partly from the aforementioned
languages and also from graph transformation languages, and puts emphasis on
strategies which can be useful for modeling and analysing big graphs10.

Language design is largely a matter of choice and the idea here is not to give
a catalogue of constructs present in these languages, but rather extract from
them some common features and understand how they address the two main
purposes of strategies: on one hand, build derivation steps and derivations; on
the other hand, operationaly compute the next strategic reduction steps.

Let us classify the constructs to see which ones are commonly agreed and
which ones are specific to one language. Remind that t or G denotes a syntactic
expression (term, graph,...) and S is a strategy expression in a strategy language
on a rewrite rule system R with rules R1, . . . , Rn. Application of S to G is
denoted S•G.

Elementary strategies are the basis of all languages. The most basic strategy
is a labelled rule � : l ⇒ r (� � l ⇒ r). id and fail are two strategies that
respectively denote success and failure. They can be encoded either as constant
or as rules id � X ⇒ X and fail � X ⇒ stk where stk denotes a special
constant denoting failure.

However, even for a single rule, rewriting can be performed in various ways,
according to redexes or homomorphisms. There are mainly two options there:
all(R) denotes all possible applications of the transformation R on the current
object, creating a new one for each application. In the derivation tree, this creates
as many children as there are possible applications. Instead one(R) chooses only
one of the possible applications of the transformation and ignores the others;
again there are some variations here, in the way to choose, either by taking the
first found application, of by making a random choice between all the possible
applications, with equal probabilities.

Note however that the all and one constructs are not available in all strategy
languages and are sometimes implicit.

Building derivations is always present under different syntaxes. Composition
of two strategies S1 and S2 is primarily done by sequential application of S1

followed by S2. It is denoted Sequence(S1, S2) or seq(S1, S2) or S1 Then S2 or
S1 ; S2.

Selection of branches in the derivation tree is obviously needed and present in
all languages although with different syntaxes: first(S1, S2), (S1)orelse(S2)

7 https://gforge.inria.fr/projects/tom/.
8 http://strategoxt.org/Stratego/WebHome.
9 http://maude.cs.uiuc.edu/.

10 http://tulip.labri.fr/TulipDrupal/?q=porgy.

https://gforge.inria.fr/projects/tom/
http://strategoxt.org/Stratego/WebHome
http://maude.cs.uiuc.edu/
http://tulip.labri.fr/TulipDrupal/?q=porgy
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or S1 <+ S2 selects the first strategy that does not fail; it fails if both fail. As a
variant, try(S) tries the strategy S but never fails and try(S) � first(S, id).

While first selects the strategy according to the order of its arguments, in
the Elan language, the don’t care construct dc(R1, . . . , Rn) randomly chooses
one of the rules for application. In its implementation however, the first rule
that is applicable is chosen and the dc construct is actually a first.

Probabilistic choice is provided in Porgy. When probabilities p1, . . . , pn ∈
[0, 1] are associated to strategies S1, . . . , Sn such that p1 + . . . + pn = 1, the
construct ppick(S1, p1, . . . , Sn, pn) picks one of the strategies for application,
according to the given probabilities.

Conditionals and Tests again are present in all languages but with some varia-
tions. if(S)then(S′)else(S′′) checks if application of S is successful (i.e. returns
id), in which case S′ is applied, otherwise S′′ is applied. In Elan, Tom, Stratego
and Porgy, in case the application of S to the current object G succeeds, S′ is
applied to S, while in Maude, S′ is applied to S•G. Maude also provides the
construct match(S) that matches the term S to G and returns G if success or
fail otherwise. As a derived operator, not(S) � if(S)then(fail)else(id) fails
if S succeeds and succeeds if S fails.

Recursive strategies and iterations are essential due to the functional aspect
of strategies. Expressed in Tom with a fixpoint operator μx.S = S[x ←
μx.S], repeat(S) keeps on sequentially applying S until it fails and returns
the last result: repeat(S) = μx.first(Sequence(S, x), id). As a variant,
while(S)do(S′) keeps on sequentially applying S′ while the expression S is suc-
cessful; if S fails, then id is returned.

Stratego [70] instead introduces recursive closure strategies. The recursive
closure recx(S) of the strategy S attempts to apply S to the entire subject term
and the strategy recx(S) to each occurrence of the variable x in S. Iterators are
provided based on this construction.

try(S) = S <+ id
repeat(S) = recx(try(S;x))
while(c, S) = recx(try(c;S;x))
do − while(S, c) = recx(S; try(c;x))
while − not(c, S) = recx(c <+ S;x)
for(i, c, S) = i;while − not(c, S)

Exploiting the structure of objects. Traversal strategies are useful to traverse
structures, be terms or graphs. They are based on local neighbourhood explo-
ration and iteration.

– On a term t = f(t1, ..., tn), AllSuc(S) applies the strategy S on all immediate
subterms: AllSuc(S)•f(t1, ..., tn) = f(t′1, ..., t

′
n) if S•t1 = t′1, ..., S•tn = t′n;

it fails if there exists i such that S•ti fails. OneSuc(S) applies the strat-
egy S on the first immediate subterm (if it exists) where S does not fail:
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OneSuc(S)•f(t1, ..., tn) = f(t1, ..., t′i, ..., tn) if for all 1 ≤ j < i, S•tj fails, and
S•ti = t′i; it fails if f is a constant or if for all i, S•ti fails.

– On a graph G, AllNbg(S) applies the strategy S on all immediate successors of
the nodes in G, where an immediate successor of a node v is a node connected
to v. OneNbg(S) applies the strategy S on one immediate successor of a node
in G, randomly chosen.

Traversal strategies are expressed in Tom with the following fixpoint equa-
tions:

OnceBottomUp(S) = μx.F irst(OneSuc(x), S)
BottomUp(S) = μx.Sequence(AllSuc(x), S)
TopDown(S) = μx.Sequence(S,AllSuc(x))
Innermost(S) = μx.Sequence(AllSuc(x), T ry(Sequence(S, x)))

Focusing strategies. Instead of traversing the structure through a systematic
exploration, one may want to focus on or to avoid on sub-structures. Strategy
annotations may be seen as precursors of this idea. Porgy allows combining appli-
cations of rewrite rules and position updates, using focusing expressions. The
direct management of positions in strategy expressions, via the distinguished
subgraphs P and Q in the target graph and the distinguished graphs M and N
in a located port graph rewrite rule are original features of the language. The
grammar generates expressions that are used to define positions for rewriting in
a graph, or to define positions where rewriting is not allowed. They denote func-
tions used in strategy expressions to change the positions P and Q in the current
located graph (e.g. to specify graph traversals). The constructs CrtGraph (cur-
rent graph), CrtPos (current positions) and CrtBan (current banned positions),
applied to a located graph GQ

P , return respectively the graphs G, P and Q.
To generate traversal strategies on graphs, Porgy uses neighbourhood constructs
Nbg() that returns the neighbours of a set of nodes possibly satisfying some
user-defined properties.

6 Operational Semantics of Strategic Programs

There are several ways to describe the operational semantics of a programming
language. Due to the fact that rewriting logic is reflexive, it is tempting to
describe the operational semantics of a strategy language with a set of rewrite
rules. This has been done for instance for Elan [11], Maude [18] and Porgy [2] at
least. We sketch below another way by defining a transition relation on config-
urations using semantic rules in the SOS style of [63].

Let us consider a strategic rewrite program consisting of a finite set of rewrite
rules R, a strategy expression S (built from R using a strategy language L(R))
and a given structure G. The intuition behind a strategic program is to use the
strategy expression S to decide which rewrite steps should be performed on G.
As already said, in general, there may be more than one way of rewriting a struc-
ture according to S. In order to keep track of the various rewriting alternatives,
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we introduce the notion of a configuration as a multiset of strategic rewrite pro-
grams. A configuration C is a multiset {O1, . . . , On} where each Oi is a strategic
program [Si, Gi]. The initial configuration is {[S,G]}.

The transition relation �−→ is a binary relation on configurations defined as
follows:

{O1, . . . , Ok, . . . , On} �−→ {O1, . . . , O
′
k1

, . . . , O′
km

, . . . , On}

if Ok �→ {O′
k1

, . . . , O′
km

}, for 1 ≤ k ≤ n. The transition relation �→ is defined
through semantic rules. For instance, a few semantic rules are given in Fig. 2
coming from the Porgy operational semantics. More are given in [25].

Given a configuration {O1, . . . , Ok, . . . , On}, there may be several strategic
programs Ok where a �→-step can be applied, so there is also a �−→-derivation tree
whose nodes are configurations. Intuitively these configurations provide another
view of the derivation tree of the strategic program, or equivalently of the ARS
of the relation S−→, with root G. One can recover it by projecting a strategic
program O = [S,G] on its second component G and by associating to a �→-

Fig. 2. Examples of semantic rules for strategy language
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step Ok �→ {O′
k1

, . . . , O′
km

}, for 1 ≤ k ≤ n, a set of m strategic reduction steps

Gk
S−→ G′

ki
for 1 ≤ i ≤ m.

For a given configuration C = {O1, . . . , Ok, . . . , On}, where each Oi is a
strategic program [Si, Gi], let Reach(C) = {G1, . . . , Gk, . . . , Gn} be the set of
associated reachable structures. For a derivation T = C1 �−→ . . . �−→ Cn let
Reach(T ) =

⋃
1≤k≤n Reach(Ck) be the set of associated reachable structures.

As presented in [55], it is expected from a strategy language to satisfy the
properties of correctness and completeness w.r.t. rewriting derivations.
Correctness: If T is the derivation C0 = {[S,G]} �−→ . . . �−→ Ck = {...[S′

k, G′
k]...}

and if G′ ∈ Reach(T ), then G →∗
R G′.

Completeness: If G →∗
R G′, there exists S ∈ L(R) and a derivation T of the

form C0 = {[S,G]} �−→ . . . �−→ Ck = {...[S′
k, G′

k]...} such that G′ ∈ Reach(T ).
Special strategic programs called results in [25], are those of the form [id, G′]

or [fail, G′]. For a given configuration C = {O1, . . . , Ok, . . . , On}, where each
Oi is a strategic program [Si, Gi], let Results(C) (respectively Results(T )) be
the subset of Reach(C) (respectively Reach(T )) that are results. The result set
associated to a configuration or a derivation can be empty, which can be the
case for non-terminating programs.

A configuration is terminal if no transition can be performed. A meaningful
property to prove is that all terminal configurations consist of results of the form
[id, G′] or [fail, G′]. This is expressed through the following Progress property:
Characterisation of Terminal Configurations. For every strategic rewrite pro-
gram [S,G] that is not a result (i.e., S 
= id and S 
= fail), there exists a
configuration C such that {[S,G]} �→ C. In other words, in this case, there are
no blocked programs: the transition system ensures that, for any configuration,
either there are transitions to perform, or we have reached results.

Strategic programs are not terminating in general, however it may be suitable
to identify a terminating sublanguage (i.e. a sublanguage for which the transition
relation is terminating). For instance, it is not difficult (but not surprising)
to prove that in Porgy, the sublanguage that excludes iterators (such as the
while/repeat construct) is strongly terminating.

Last, with respect to the computation power of the language, it is easy to
state, as in [35], the Turing completeness property.
Computational Completeness property: The set of all strategic programs [SR, G]
is Turing complete, i.e. can simulate any Turing machine. (Sequential composi-
tion and iteration are enough) [35].

7 Properties of Strategic Rewriting

Since strategic rewriting restricts the set of rewriting derivations, it needs careful
definitions of termination and confluence under strategies, explored in [41,42].

These properties of confluence or termination for rewriting under strate-
gies have been largely addressed in the rewriting community for specific term
rewriting strategies. Different approaches have been explored, either based on
schematization of derivation trees, as in [30], or by tuning proof methods to
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handle specific strategies (innermost, outermost, lazy strategies) as in [28,29].
Termination of on-demand rewriting in the context of OBJ programs is studied
in [1,49,50]. Other approaches as [8] use strategies transformation to equivalent
rewrite systems to be able to reuse well-known methods.

When the concept of normal form is important, like in the context of term
rewriting systems (TRS for short) where rewriting strategies look for efficient
ways to compute normal forms, a relevant question is: which (computable) strate-
gies are guaranteed to find a normal form for any term whenever it exists? Having
in mind that, given a set of rules R, a strategic term rewriting reduction nor-
malizes the term t if there is no infinite S−→-rewrite sequence starting from t,
a strategic rewriting reduction is normalizing or complete if it normalizes every
term that has an R-normal form. Proving completeness of strategic rewriting
w.r.t. normal forms is actually a difficult problem and results have been most
often obtained in the context of orthogonal systems (i.e. with left-linear non-
overlapping left-hand sides). Innermost and outermost reduction are studied for
instance in [10,59] where it is shown that the leftmost outermost strategy is
normalizing for orthogonal left-normal TRS, but not in general [37,38]. Inner-
most strategy is complete for terminating TRS and some other restricted class
as explored in [60].

Special efforts have been devoted to needed reductions. Needed reduction is
interesting for orthogonal term rewriting systems occurring in combinatory logic,
λ-calculus, functional programming. Already in 1979, later published in [38],
Huet and Lévy defined the notions of needed and strongly needed redexes for
orthogonal rewrite systems. The main idea here is to find the optimal way, when
it exists, to reach the normal form of a term. A redex is needed when there
is no way to avoid reducing it to reach the normal form. Reducing only needed
redexes is clearly the optimal reduction strategy, as soon as needed redexes can be
decided, which is not the case in general. In an orthogonal TRS, every reducible
term contains a needed redex and repeated contraction of needed redexes results
in a normal form, if it exists. Unfortunately neededness of a redex is not decid-
able [69] except for some classes of rewrite systems: in sequential TRS [5],
every term which is not in normal form contains a needed redex [10]. Strong
sequentiality is decidable for left-linear TRS. External redexes (outermost until
contracted) are needed. But outermost redexes may fail to be needed if the TRS
is not orthogonal. For instance, with R = {f(a) ⇒ b, a ⇒ b}, the term f(a)
contains two redexes, but the outermost one is not needed: the rewriting step
f(a)−→R f(b) normalizes the term without contracting the outermost redex11.
Again combinatory logic and λ-calculus satisfy these conditions and have moti-
vated their study.

Sufficient conditions to ensure that context-sensitive rewriting is able to com-
pute head-normal forms (terms that do not rewrite into a redex) have been estab-
lished in [48]. In fact, for a given TRS, it is possible to automatically provide
replacement maps supporting such computations. In this setting, the canonical
replacement map (denoted by μcan) specifies the most restrictive replacement

11 Remark due to an external referee.
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map which can be automatically associated to a TRS R in order to achieve com-
pleteness of context-sensitive computations, whenever the TRS is left-linear. So
left-linear, confluent, and μcan-terminating TRS admit a computable normaliz-
ing strategy to head-normal forms.

8 Conclusion and Further Work

A lot of questions about strategies are yet open, going from the definition of
this concept and the interesting properties we may expect to prove, up to the
definition of domain specific strategy languages. As further research topics, sev-
eral directions seem really worth exploring. The first one is the connection with
game theory strategies. In the fields of system design and verification, games
have emerged as a key tool. Such games have been studied since the first half
of 20th century in descriptive set theory [40], and they have been adapted and
generalized for applications in formal verification; introductions can be found in
[33,72]. The coincidence of the term “strategy” in the domains of rewriting and
games is more than a pun. It should be fruitful to explore further the connec-
tion and to be guided in the study of strategies by some of the insights in the
literature of games.

The second research direction is related to proving properties of strategies and
strategic reductions. A lot of work has already begun in the rewriting community
and have been presented in journals, workshops or conferences of this domain.
Properties of confluence, termination, or completeness for rewriting under strate-
gies have been largely addressed. However, as mentioned in Sect. 3.1, the applica-
tion of rules to the considered objects can optionally be restricted by conditions
or constraints, and this generalization has to be carefully studied. When con-
ditional rules are allowed, a number of concepts and computational properties
that are mentioned here may crucially depend on the conditional part of the
rules. For instance, regarding termination, the notion of operational termination
(defined as the absence of infinite proof trees), studied in [51] for conditional
term rewriting (CTRS) systems, is different from the notion of termination con-
sidered here (the absence of infinite reduction sequences). As another example,
a discussion about how irreducible terms and normal forms are also different
for CTRSs can be found in [52]. Taking into account these phenomena could
provide more insights on strategies.

In addition, other properties of strategies such as fairness or loop-freeness could
be worthfully explored, again by making connections between different communi-
ties (functional programming, proof theory, verification, game theory,...).
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