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José Meseguer



Preface

This Festschrift volume contains 28 refereed papers—including personal memories,
essays, and regular research papers—by close collaborators and friends of José
Meseguer to honor him on the occasion of his 65th birthday. These papers were
presented at a symposium at the University of Illinois at Urbana-Champaign during
September 23–25, 2015. The symposium also featured invited talks by Claude and
Hélène Kirchner and by Patrick Lincoln. The foreword of this volume adds a brief
overview of some of José’s many scientific achievements followed by a bibliography
of papers written by José.

We are grateful for having the opportunity to express our gratitude and admiration to
José Meseguer by editing this volume and organizing the Festschrift symposium. Two
of us were early PhD students of José who were inspired by the elegance and practi-
cality of José’s ideas, and one of has had the privilege of collaborating with José for
many years. We have continued to be inspired by the wealth of ideas coming from
José, and have to a certain extent lived on “crumbs from the great table of José,” to
paraphrase Aeschylus. Our scientific inspiration and admiration have since grown into
a deep appreciation for José and into treasured lifelong friendships.

Each of the 35 submissions that we received were reviewed by between two and
four expert reviewers. We would like to thank the authors for their contributions and
the reviewers for their timely and very helpful reviews, which together have contrib-
uted to make this Festschrift worthy of José. We thank Claude and Hélène Kirchner
and Patrick Lincoln for accepting our invitations to give invited talks reflecting on
José’s work from different perspectives. We thank Grigore Roşu for being responsible
for the local arrangements, Donna Coleman for her invaluable help with administrative
and a range of other matters, the Department of Computer Science at the University of
Illinois at Urbana-Champaign for providing the workshop facilities, and Alberto
Verdejo for preparing and organizing both José’s bibliography included in this volume
and the list of José’s PhD students in the foreword. We are grateful to Alfred Hofmann
for enthusiastically agreeing to publish this Festschrift in Springer’s LNCS series.

Finally, we would like to congratulate José on his 65th birthday. We look forward to
many more years of friendship and inspiring scientific leadership!

June 2015 Narciso Martí-Oliet
Peter Csaba Ölveczky

Carolyn Talcott
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José Meseguer:
Scientist and Friend Extraordinaire

Narciso Mart́ı-Oliet1, Peter Csaba Ölveczky2(B), and Carolyn Talcott3

1 Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
2 Department of Informatics, University of Oslo, Oslo, Norway

peterol@ifi.uio.no
3 Computer Science Laboratory, SRI International, Menlo Park, CA, USA

1 José’s Origins and Positions

José was born in Murcia, Spain, in 1950, and obtained his PhD in Mathematics in
1975 from the University of Zaragoza with a dissertation on “Primitive Recursion
in Monoidal Categories” advised by Michael Pfender, with José Luis Viviente
and Roberto Moreno-Dı́az as co-advisors. In February 1974, at the age of 23,
José met Joseph Goguen at the First International Symposium on Category
Theory Applied to Computation and Control in San Francisco. This meeting
led to many years of close and successful collaboration, as well as a life-long
friendship between the two, with their first joint paper [24] published in 1977.

After a year as an assistant professor in Zaragoza and a year as a researcher in
Santiago de Compostela, José left Spain to become a postdoctoral researcher at
UC Berkeley from 1977 to 1980. During these years José also had appointments
at UCLA, where Goguen worked, and with the “ADJ” group at IBM Yorktown
Heights that pioneered the initial algebra approach to abstract data types.

Joseph Goguen moved to the Computer Science Laboratory at SRI Interna-
tional in 1979, and in 1980 José became a computer scientist at SRI, occupying
the office next door to another influential computer scientist, Leslie Lamport.

The SRI years were very productive and allowed José to focus on research
in a world-class environment. However, except for advising those of us who were
lucky enough to have our universities allow us to study under José, it was not
possible for José to pursue his passion for teaching at SRI. He therefore left SRI
in 2001 to become a professor at the University of Illinois at Urbana-Champaign,
where he has been thriving ever since.

2 José’s Research

José is a leading researcher with seminal contributions in many fields of theoret-
ical computer science and beyond; from general logics to vision algorithms for
robots. His work is characterized by innovation, conceptual elegance and rigor
combined with practical applicability. Instead of attempting the futile exercise of
trying to mention the various topics in which José has made profound contribu-
tions, we focus here on the core vision and a few cornerstones in José’s research,
c© Springer International Publishing Switzerland 2015
N. Mart́ı-Oliet et al. (Eds.): Meseguer Festschrift, LNCS 9200, pp. 1–47, 2015.
DOI: 10.1007/978-3-319-23165-5 1



2 N. Mart́ı-Oliet et al.

and refer to the bibliography included in this volume for a full list of his research
papers and to José’s own survey papers [41,42] for an overview of his research
program and the applications of rewriting logic, respectively.

It is useful to start by separating system specifications, specifying how a
systems works, and property specifications, specifying the properties that the
system should satisfy. To formally verify whether a system satisfies its specifica-
tion, the system specification must also be a mathematical object. Furthermore,
system specifications should be executable, so that we can view specification and
programming as mathematical modeling. Which leads us to José’s main vision:
programming/modeling language design is logic design. In many ways, José’s
work has been a quest for logics/languages that satisfy the seemingly mutually
contradictory goals of being:

– mathematical;
– amenable to formal reasoning and verification;
– executable;
– expressive enough to deal with complex state-of-the-art systems; and
– simple and intuitive.

If language design is logic design, then what is a logic? A key contribution here
is José’s work on general logics [34], which gives a theory of what a logic and a
declarative language are. General logics therefore provide a design space for log-
ics, and hence for declarative languages. In addition, general logics can be used to
define and reason about different concepts in a logic/language-independent way.
For example, in joint work with Salvador Lucas, José has worked on defining and
analyzing termination for any declarative language using general logics [32]; the
notion of termination is nontrivial for, say, conditional rewrite systems, where
the evaluation of the condition of a rewrite rule may loop forever even though
the rewrite relation is Noetherian. But we digress.

Joseph Goguen was a pioneer in the development of algebraic specifications.
However, many-sorted equational logics were not very good at dealing with par-
tiality. A key innovation in Joseph’s and José’s quest for an expressive yet simple
and elegant (or “lean and mean,” as José writes in [41]) computational logic was
the development in the early eighties of order-sorted equational logic [26] and
order-sorted rewriting [21,28], supported by the algebraic specification languages
OBJ2 [20] and OBJ3 [22], that increased the expressiveness of algebraic spec-
ifications and allowed them to deal with partiality.1 Another important novel
feature of OBJ2 and OBJ3 was the possibility of defining parameterized mod-
ules with semantic requirements, which makes possible a powerful discipline of
parameterized programming.

In the late eighties and early nineties, José led the rewrite rule machine
project, which sought to “produce a highly parallel computer for enormously
efficient term rewriting” [2,23]. This project developed compilers and hardware
prototypes which could execute rewriting more than a thousand times faster
1 Coincidentally, the first research paper the second author ever read, as a M.Sc.

student in Oslo, was the paper [26] on order-sorted equational logic.
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than a single processor. In a sign of what was to come, the 1986 paper [23]
realized that term rewriting is naturally concurrent and proposed “concurrent
term rewriting as a model of computation.”

A significant limitation of the OBJ languages was that they could not specify
concurrent, and therefore nondeterministic, systems in an elegant way, since they
were based on equational logic. A new computational logic was needed.

Inspired by his work on the rewrite rule machine and on the categorical
semantics of Petri nets (with Ugo Montanari) [44] and linear logic (with Narciso
Mart́ı-Oliet) [33], José realized that the intuitive notion of rewriting is not just
the operational counterpart of equational logic, but can be seen as a very simple
and powerful computational logic in which a large number of concurrent sys-
tems, including concurrent object-based systems, can naturally be represented.
Thus, José’s most significant contribution, rewriting logic, was born, and first
presented in 1990 [36]. To quote [41]: “The whole point of rewriting logic and
Maude was to unify within a single logic and associated declarative language:
(i) equational/functional programming; (ii) object-oriented programming; and
(iii) concurrent/distributed programming.” A crucial prerequisite for this new
form of nonterminating and nonconfluent rewriting was the development in
[35,37] of a model theory, using category theory, with initial models and sound-
ness and completeness results for the new logic.

Although order-sorted equational logic is more powerful than the many-
sorted version, it is nevertheless somewhat limited since it cannot define semantic
(sub)sorts; this implied that meaningful expressions such as 4

(3−1) were not well-
defined (since it is impossible to determine by syntactic means that 3−1 belongs
to a sort of non-zero numbers). A key innovation which significantly increased
both the expressiveness and elegance of rewriting logic was the development of
membership equational logic [5,40] as its equational sublogic. This logic sup-
ports the definition of semantic sorts using sort constraints, and has a very nice
solution to problems with partiality that had bedeviled the algebraic specifica-
tion community for so long: Expressions like 4

0 and 4
(3−1) are “legal” terms of

a given kind, and can therefore be reduced, giving these potentially meaningful
expressions “the benefit of doubt,” but only terms such as 4

2 have sorts.
Specification in rewriting logic with membership equational logic as its equa-

tional sublogic, and the formal analysis of such rewriting logic specifications,
have been supported by the language and tool Maude [8], developed by José in
joint work with the “Maude team” and expertly implemented by Steven Eker,
since the mid-nineties. We refer to the paper “Two Decades of Maude” in this
volume for a brief history of the Maude language, and to the survey [42] for an
overview of rewriting logic and Maude as well as their applications.

An early question was how to execute a possibly nondeterministic and non-
terminating rewriting logic specification. To guide the execution of such models,
one could of course have a fixed set of extra-logical strategy constructs whose
interpreter would have to be hard-coded.

A main breakthrough and novelty in Maude was based on the work of
José and Manuel Clavel which showed that rewriting logic is a reflective logic:
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a rewriting logic theory T could be represented as a term T in another rewriting
logic theory U which, furthermore, could simulate the rewrites in T [7,9,10].
Reflection made it possible to define (and reason about) different execution
strategies for rewriting logic specifications in rewriting logic itself, as opposed
to using extra-logical strategies. Equally importantly, reflection allows us to
define and reason about any computable module operation using rewriting logic,
instead of having to resort to a fixed repertoire of extra-logical structuring mecha-
nisms for developing large specifications in a modular fashion. For example, if the
term T has sort Module in U , then a module operation f , such as module union,
can be defined in rewriting logic as a function f : Module× Module → Module.
This allowed making the algebra of module operations user-definable, extensible,
and specifiable within rewriting logic [11].

Reflection is supported in Maude with built-in data types for meta-
representing terms and theories and with a number of descent functions providing
efficient implementation of key metalevel functionality. Maude’s reflective fea-
tures have been absolutely crucial to the Maude project, since they allow anyone
to define and implement extensions of the Maude language in Maude itself—in
a much clearer way and with much less effort than if one had to implement
it in, say, C++. Tools like Full Maude [8]—extending Maude with convenient
syntax for object-oriented specification and powerful module operations—, the
Real-Time Maude tool [50] extending Maude to real-time systems, the Maude-
NPA state-of-the-art cryptanalysis tool [15], the JavaFAN analyzer for Java and
JVM code [19], theorem proving and other analysis tools for Maude such as its
coherence and Church-Rosser checkers [12], and Pathway Logic—a framework
and tool for representing and analyzing (executable) models of cellular processes
[14,30]—are all implemented in Maude using Maude’s reflective features.

The success of rewriting logic and Maude, and the ease with which Maude
can be extended and provide a modeling and analysis environment for other lan-
guages have inspired José and his colleagues to further extend the applicability
of rewriting logic and Maude. We have already mentioned the extension to real-
time systems [51,52]. Other extensions include probabilistic rewrite theories that
extend rewriting logic to probabilistic systems [1,29], and the extension to sto-
chastic hybrid systems [48] and to hybrid systems whose components influence
each other’s continuous behaviors [17].

Rewriting logic and Maude have shown their mettle on a large class of applica-
tions, including as a semantic framework and formal analysis tool for a wide array
of models of concurrency and modeling and programming languages [39,46,47],
as well as for formally modeling and analyzing large and complex state-of-the-art
systems, which are typically beyond the scope of less expressive formal tools,
such as: large network protocols of different kinds, cloud computing sys-
tems [13,27,31], biological systems [30,53], cyber-physical systems [3,18], web
browser security [6] (which uncovered a number of subtle previously unknown
security flaws in Internet Explorer), and so on.

On the property specification and verification side, Maude supports sim-
ulation, reachability analysis, and LTL model checking, and its extensions
support verifying inductive theorems and checking critical properties such



José Meseguer: Scientist and Friend Extraordinaire 5

as being Church-Rosser and coherent [12]. Together with Miguel Palomino,
Narciso Mart́ı-Oliet, Kyungmin Bae, and others, José has also developed abstrac-
tion techniques for rewriting logic [4,45]. Together with Bae, Ölveczky, Mu Sun,
Lui Sha, and others, José has developed a number of formal design patterns that
reduce the modeling and verification problems for certain complex systems to
much simpler ones [43]; the point is that the cost needed to verify the correctness
of the pattern can be amortized over the many instances of the pattern.

More recently, José has focused on developing symbolic analysis techniques.
One key idea has been to use narrowing modulo axioms to solve existential
reachability queries ∃x . t(x) −→∗ u(x), already envisioned as MaudeLog in
1992 [38]. Narrowing for reachability analysis in rewriting logic took off in work
with Prasanna Thati [49]. Narrowing requires efficient unification algorithms,
and the work with Santiago Escobar and Ralf Sasse [16] brought a breakthrough
on finitary unification algorithms for Maude, which enables efficient narrowing
modulo theories for large classes of specifications. Maude-NPA [15], the latest
generation of the NRL Protocol Analyzer, uses such variant narrowing to per-
form backwards reachability analysis to check whether some initial states can be
reached (backwards) from a set of compromised states given as state patterns
containing variables.

In this brief foreword we cannot even mention the vast majority of the many
truly innovative ideas that have come out of José’s brilliant mind, and that are
reflected in the more than 350 research papers he has written or coauthored. Let
us nevertheless point out that Joseph Goguen and José’s 1982 paper [25] on non-
interference—which formalizes security properties restricting information flow,
such as, for example, that commands of high-level users cannot be observed by
lower-level users—remains one of the most cited papers in computer security.

3 José the Person and Scientist

We end this foreword with a few words about José the person and scientist.
José tries to keep the highest ethical and scientific standards—in his research

and in his dealings with colleagues, students, and other people around him;
new students are treated with the same courtesy as leading researchers. This
is reflected in the fact that many former students continue to collaborate with
José when they become more senior researchers. His scientific approach is best
described by his dictum “beauty is our business.” José takes you seriously and
gives you a lot; he therefore also expects a serious effort from you in order for
you to reach your maximal potential.

José is not afraid of venturing into domains far away from what one would
think are his comfort zones; au contraire, he relishes the opportunity to clarify
and impose rigor on other fields and to encounter new challenges that inspire
(and necessitate) new theoretical developments. José is remarkably generous in
sharing and discussing the many ideas emanating from his fertile mind, and is
genuinely curious and appreciative of other opinions. This collaborative spirit is
also witnessed by him having 132 coauthors listed on DBLP.
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Despite being one of our generation’s leading computer scientists, many of
José’s collaborators first and foremost consider José to be a remarkably loyal
and true friend. José takes great interest in literature, theology, history, and
philosophy. It might be less well known that José also is an excellent “fast food”
cook. It is always a pleasure to have a dinner chez Meseguer, which may include
a healthy treatise on some culturilla or advanced philosophy which—possibly
aided by a glass or two of Spanish wine—easily leaves your brain spinning.

José’s contagious intellectual enthusiasm is complemented by his enthusiasm
for other aspects of life. We fondly remember him encouraging us to: hike with
him over Half Dome in Yosemite, camp in the High Sierras, enjoy a special hot
chocolate in a Barcelona café, taste for the first time sophisticated Japanese
food, and organize a scientific workshop among the polar bears in Spitsbergen.

We are convinced that we speak on behalf of a large number of colleagues,
friends, and others when we write: Dear José, for your valued friendship, for
your research leadership and mentoring, for showing us how beautiful theoret-
ical computer science can be, and for your remarkable scientific contributions,
we congratulate you on your first 65 years and wish you a long, happy, and
scientifically productive life!

4 José’s PhD Students

This section lists every PhD student whose PhD thesis was supervised by José.
As already mentioned, José had fairly limited possibility to advise graduate
students until 2001. The majority of José’s students have themselves become
professors and have supervised PhD theses, which are also listed in the following
“PhD tree” of José, which, for each student, gives the title of the dissertation,
the department where the PhD was granted, and the month of the PhD defense.

➤ Narciso Mart́ı-Oliet
About Two Categorical Logics: Linear Logic and Order-Sorted Algebra
Universidad Complutense de Madrid, Spain
June 1991

➙ Isabel Pita Andreu
Rewriting-Logic-Based Techniques for the Formal Specification of Object-
Oriented Systems
Universidad Complutense de Madrid, Spain
March 2003

➙ Alberto Verdejo
Maude as an Executable Semantic Framework
Universidad Complutense de Madrid, Spain
March 2003

➙ Adrián Riesco Rodŕıguez
Declarative Debugging and Heterogeneous Verification in Maude
(with Alberto Verdejo)
Universidad Complutense de Madrid, Spain
June 2011
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➤ Manuel G. Clavel
Reflection in Rewriting Logic: Metalogical Foundations and Metaprogramming
Applications
Universidad de Navarra, Spain
February 1998

➙ Marina Egea
An Executable Formal Semantics for OCL with Applications to Model
Analysis and Validation
Universidad Complutense de Madrid, Spain
November 2008

➙ Miguel A. Garćıa de Dios
Model-Driven Development of Secure Data-Management Applications
Universidad Complutense de Madrid, Spain
April 2015

➤ Francisco Durán
A Reflective Module Algebra with Applications to the Maude Language
Universidad de Málaga, Spain
April 1999

➙ José Eduardo Rivera Cabaleiro
On the Semantics of Real-Time Domain Specific Modelling Languages
(with Antonio Vallecillo)
Universidad de Málaga, Spain
October 2010

➙ Manuel Roldán Castro
Strategies for Guiding and Monitoring the Execution of Systems in Maude
Universidad de Málaga, Spain
September 2011

➤ Peter Csaba Ölveczky
Specifying and Analyzing Real-Time and Hybrid Systems in Rewriting Logic
University of Bergen, Norway
December 2000

➙ Jon Grov
Transactional Data Management for Multi-Site Systems: New Approaches
and Formal Analysis
University of Oslo, Norway
June 2014

➙ Muhammad Fadlisyah
A Rewriting-Logic-Based Approach for the Formal Modeling and Analysis
of Interacting Hybrid Systems
(with Erika Ábrahám)
University of Oslo, Norway
September 2014

➙ Daniela Lepri
Timed Temporal Logic Model Checking of Real-Time Systems: A Rewriting-
Logic-Based Approach
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(with Erika Ábrahám)
University of Oslo, Norway
April 2015

➙ Lucian Bentea
Formal Modeling and Analysis of Probabilistic Real-Time Systems in
Rewriting Logic: A Probabilistic Strategy Language Approach
(with Olaf Owe)
University of Oslo, Norway
June 2015

➤ Christiano Braga
Rewriting Logic as a Semantic Framework for Modular Structural Operational
Semantics
(with Edward Hermann Haeusler and Peter D. Mosses)
Pontif́ıcia Universidade Católica do Rio de Janeiro, Brazil
September 2001

➤ Mark-Oliver Stehr
Programming, Specification, and Interactive Theorem Proving: Towards a
Unified Language based on Equational Logic, Rewriting Logic, and Type
Theory
(with Rüdiger Valk)
Universität Hamburg, Germany
September 2002

➤ Miguel Palomino
Reflection, Abstraction, and Simulation in Rewriting Logic
(with Narciso Mart́ı-Oliet)
Universidad Complutense de Madrid, Spain
March 2005

➙ Ignacio Fábregas Alfaro
Coalgebraic and Categorical Techniques to Study Process Semantics
(with David de Frutos Escrig)
Universidad Complutense de Madrid, Spain
March 2012

➤ Azadeh Farzan
Static and Dynamic Formal Analysis of Concurrent Systems and Languages:
A Semantics-Based Approach
University of Illinois at Urbana-Champaign, US
May 2007

➙ Niloofar Razavi
Effective Heuristic-Based Test Generation Techniques for Concurrent
Software
University of Toronto, Canada
October 2013

➙ Zachary Kincaid
Parallel Proofs for Parallel Programs
University of Toronto, Canada
December 2015
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➤ Artur Boronat
MOMENT: A Formal Framework for Model Management
(with Isidro Ramos and José Á. Carśı)
Universitat Politècnica de València, Spain
December 2007

➙ Nissreen A. S. El-Saber
CMMI-CM Compliance Checking of Formal BPMN Models using Maude
(with Reiko Heckel)
University of Leicester, UK
January 2015

➤ Joseph Hendrix
Decision Procedures for Equationally Based Reasoning
University of Illinois at Urbana-Champaign, US
September 2008

➤ Musab A. AlTurki
Rewriting-Based Formal Modeling, Analysis and Implementation of Real-Time
Distributed Services
University of Illinois at Urbana-Champaign, US
May 2011

➤ Michael Katelman
A Meta-Language for Functional Verification
University of Illinois at Urbana-Champaign, US
July 2011

➤ Ralf Sasse
Security Models in Rewriting Logic for Cryptographic Protocols and Browsers
University of Illinois at Urbana-Champaign, US
July 2012

➤ Camilo Rocha
Symbolic Reachability Analysis for Rewrite Theories
University of Illinois at Urbana-Champaign, US
October 2012

➤ Mu Sun
Formal Patterns for Medical Device Safety
(with Lui Sha)
University of Illinois at Urbana-Champaign, US
December 2013

➤ Kyungmin Bae
Rewriting-Based Model Checking Methods
University of Illinois at Urbana-Champaign, US
June 2014
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José Meseguer: Scientist and Friend Extraordinaire 13

Bibliography of José Meseguer
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foundations to applications. In: López-Fraguas, F.J. (ed.) Proceedings of the
15th Workshop on Functional and (Constraint) Logic Programming, WFLP
2006, Madrid, Spain, November 16–17, 2006. ENTCS, vol. 177, pp. 5–33.
Elsevier (2007)

28. Meseguer, J.: Twenty years of rewriting logic. In: Ölveczky, P.C. (ed.) Rewrit-
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74. Ölveczky, P.C., Keaton, M., Meseguer, J., Talcott, C.L., Zabele, S.: Specifi-
cation and analysis of the AER/NCA active network protocol suite in Real-
Time Maude. In: Hußmann, H. (ed.) Fundamental Approaches to Software
Engineering, 4th International Conference, FASE 2001 Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2001 Genova, Italy, April 2–6, 2001, Proceedings. LNCS, vol. 2029, pp.
333–348. Springer (2001)
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100. Ölveczky, P.C., Meseguer, J.: Specification and analysis of real-time sys-
tems using Real-Time Maude. In: Wermelinger, M., Margaria, T. (eds.)
Fundamental Approaches to Software Engineering, 7th International Con-
ference, FASE 2004, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2004 Barcelona, Spain, March
29 - April 2, 2004, Proceedings. LNCS, vol. 2984, pp. 354–358. Springer
(2004)

101. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference sys-
tem for the NRL protocol analyzer: grammar generation. In: Atluri, V.,
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checker. In: Ölveczky, P.C. (ed.) Rewriting Logic and Its Applications - 8th
International Workshop, WRLA 2010, Held as a Satellite Event of ETAPS
2010, Paphos, Cyprus, March 20–21, 2010, Revised Selected Papers. LNCS,
vol. 6381, pp. 208–225. Springer (2010)

159. Durán, F., Meseguer, J.: A Church-Rosser checker tool for conditional
order-sorted equational Maude specifications. In: Ölveczky, P.C. (ed.)
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E., Leite, J. (eds.) Logics in Artificial Intelligence - 14th European Con-
ference, JELIA 2014, Funchal, Madeira, Portugal, September 24–26, 2014.
Proceedings. LNCS, vol. 8761, pp. 573–581. Springer (2014)

201. Bae, K., Meseguer, J.: Infinite-state model checking of LTLR formulas using
narrowing. In: Escobar, S. (ed.) Rewriting Logic and Its Applications - 10th
International Workshop, WRLA 2014, Held as a Satellite Event of ETAPS,
Grenoble, France, April 5–6, 2014, Revised Selected Papers. LNCS, vol.
8663, pp. 113–129. Springer (2014)

202. Bae, K., Meseguer, J.: Predicate abstraction of rewrite theories. In: Dowek,
G. (ed.) Rewriting and Typed Lambda Calculi - Joint International Confer-
ence, RTA-TLCA 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 14–17, 2014. Proceedings. LNCS, vol. 8560, pp.
61–76. Springer (2014)
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Abstract. This work studies the relationship between verifiable and
computable answers for reachability problems in rewrite theories with an
underlying membership equational logic. These problems have the form

(∃x̄)t(x̄) →∗ t′(x̄)

with x̄ some variables, or a conjunction of several of these subgoals.
A calculus that solves this kind of problems working always with nor-
malized terms and substitutions has been developed. Given a reachabil-
ity problem in a rewrite theory, this calculus can compute any normalized
answer that can be checked by rewriting, or one that can be instantiated
to that answer. Special care has been taken in the calculus to keep mem-
bership information attached to each term, to make use of it whenever
possible.
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Dedicated to José Meseguer on occasion of his 65th birthday. This paper
is based on work he has been developing during the last 30 years, from
order-sorted algebra to narrowing, going through membership equational
logic, rewriting logic, and much more.

1 Introduction

Rewriting logic is a computational logic that has been around for more than
twenty years [20], whose semantics [6] has a precise mathematical meaning allow-
ing mathematical reasoning for proving properties, providing a flexible frame-
work for the specification of concurrent systems. It turned out that it can express
both concurrent computation and logical deduction, allowing its application in
many areas such as automated deduction, software and hardware specification
and verification, security, etc. [19,22].

A deductive system is specified in rewriting logic as a rewrite theory R =
(Σ, E , R), with (Σ, E) an underlying equational theory (in this paper we will
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consider membership equational logic), where terms are given an algebraic data
type, allowing us to identify as semantically equal two syntactically different
terms, and R a set of rules that specify how the deductive system can derive
one term from another. Order-sorted, many-sorted, and unsorted theories can be
formulated as special cases of membership equational logic (Mel) theories.

Reachability problems have the form

(∃x̄)t(x̄) →∗ t′(x̄)

with t, t′ terms with variables in x̄, or a conjunction of several of these subgoals.
They can be solved by model-checking methods for finite state spaces. When
the initial term t has no variables, i.e. it is a ground term, and under certain
admissibility conditions, rewriting can be used in a breadth-first way to traverse
the state space, trying to find a suitable matching of t′(x̄) in each traversed
node. In the general case where t(x̄) is not a ground term, a technique known as
narrowing [14] that was first proposed as a method for solving equational goals
(unification), has been extended to cover also reachability goals [24], leaving
equational goals as a special case. The strength of narrowing can be found in
that it enables us to manage complex concurrent and deductive systems that
cannot be handled by faster, but more limited, specialized methods. Under the
admissibility conditions for rewrite theories, which allow for conditional rules
and equations with extra variables in the conditions under some requirements,
and the assumption of the existence of an E-unification algorithm, we can use
narrowing modulo E to perform symbolic analysis of the possibly infinite set of
initial states t(x̄) in the state space and determine the actual values of x̄ that
allow us to derive t′(x̄) from t(x̄).

What is most striking is the fact that an E-unification algorithm can itself
make use of narrowing at another level for finding the solution to its equational
goals. Specific E-unification algorithms exist for a small number of equational
theories, but if the equational theory (Σ, E) can be decomposed as E ∪A, where
A is a set of axioms having a unification algorithm, and the equations E can
be turned into a set of rules

−→
E , by orienting them, such that the rewrite theory−→E = (Σ,A,

−→
E ) is admissible in the above sense, then narrowing can be used

on
−→E to solve the E-unification goals generated by performing narrowing on R.

For these equational goals the idea of variants of a term has been applied in
recent years to narrowing. A strategy known as folding variant narrowing [13],
which computes a complete set of variants of any term, has been developed by
Escobar, Sasse, and Meseguer, allowing unification modulo a set of unconditional
equations and axioms. The strategy terminates on any input term on those
systems enjoying the finite variant property, and it is optimally terminating. It
is being used for cryptographic protocol analysis [24], with tools like Maude-
NPA [12], termination algorithms modulo axioms [9], algorithms for checking
confluence and coherence of rewrite theories modulo axioms [10], and infinite-
state model checking [4]. Recent development in conditional narrowing have
been made for order-sorted equational theories [7] and also for narrowing with
constraint solvers [26].
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Conditional narrowing without axioms for rewrite theories with an order-
sorted type structure has been thoroughly studied for increasingly complex cat-
egories of term rewriting systems. A wide survey can be found in [25]. The liter-
ature that can be found is scarce when we allow for extra variables in conditions
(e.g. [15,16]), conditional narrowing modulo axioms (e.g. [7]), or conditional nar-
rowing modulo a set of equations(e.g. [5]). Conditional narrowing modulo axioms
for Mel theories has not been addressed, to the best of our knowledge, one of the
main reasons being the lack of fast and effective unification algorithms modulo
axioms for Mel theories. Nonetheless, there are plenty of algebraic data types,
including all types that imply some kind of order between subterms, that are
better expressed inside a Mel theory, so there is a need to give an answer to
these cases. In this paper we focus on conditional narrowing modulo axioms for
rewrite theories with an underlying equational Mel theory.

Our main contribution in this work is the proposal of two narrowing cal-
culi for computing normalized answers to unification and reachability problems
in membership equational logic and membership conditional rewrite theories,
respectively. These calculi normalize all terms before applying any unification
or reachability rule, and only generate normalized instantiations of reachability
terms and intermediate (matching) variables, greatly reducing the state space.
They have been proved sound and weakly complete, i.e., complete with respect
to idempotent normalized answers.

The work is structured as follows: in Sect. 2 all needed definitions and prop-
erties for rewriting and narrowing are introduced. In Sect. 3 we present a rewrite
theory, that only generates normalized substitutions on matching variables, for
checking normalized solutions to unification problems. Section 4 introduces the
narrowing calculus for equational unification. Section 5 introduces the narrowing
calculus for reachability. Section 6 shows the calculi at work. In Sect. 7, related
work, conclusions, and future lines of investigation for this work are presented.
This paper is a continuation of a previous one [1], where non-normalized terms
were allowed by the calculus.

2 Preliminaries

We assume familiarity with term rewriting and rewriting logic [6]. Rewriting
logic is always parameterized by an underlying equational logic. This work is
focused in membership equational logic [21], an equational logic that generalizes
both many-sorted and order-sorted equational theories and that can also handle
partial functions. There are several language implementations of rewriting logic,
one of them being Maude [8], a language whose underlying logic is membership
equational logic.

2.1 Search Tree Example

A search tree implementation will be used as running example to explain the
definitions in a less abstract way. We review the needed terms, enclosing short-
cuts for the definitions between brackets. We have Keys (abbreviated to k)
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a, . . . , f lexicographically ordered, and Values (v) 1, . . . , 9. A pair Key Value
forms a Record (r). A SearchTree (st) can be an EmptyTree (et), which we
call empty, or non-empty, NeSearchTree (nt), containing in this case a Record
at its root and two sub-SearchTrees, left and right. All the Keys in the left
sub-SearchTree must be smaller than the key in the root and all the Keys in
the right sub-SearchTree must be greater than the key in the root. t is the
Boolean (b) result of a valid comparison (<), max and min return the Record on
a NeSearchTree with the highest and lowest Key respectively, and key returns
the Key of a Record. We also have a set of records RecordSet (rs) with none
as identity atom, which are intended to be nondeterministically inserted (ins)
in the SearchTree, hence yielding a NeSearchTree, deleted (del) (we admit
deletion attempts on EmptyTrees), or omitted. Finally, there is a list Path (p),
with nil as identity atom, holding the history - inserted, deleted, or omitted
(i, d, o) - of already processed records. A triple SearchTree, RecordSet, Path
forms a State (s).

2.2 Membership Equational Logic

Let’s take a partially ordered set (S,≤) of sorts, whose connected components
are the equivalence classes corresponding to the least equivalence relation ≡≤
containing ≤.

A membership equational logic (Mel) signature [6] is defined by a kind-
complete triple Σ = (K,Ω, S) meaning that:

– K is a set of kinds.
– S is split into a K-kinded family of disjoint sets of sorts Sk, i.e. S =

⋃
k∈K Sk,

such that if si ≤ sj and si ∈ Sk then sj ∈ Sk. We write [si] = k and say that
the kind of si is k, i.e., each connected component of (S,≤) has the same kind.
≤ is extended so that si ≤ k iff si ∈ Sk, i.e., k is the top sort of its connected
component (we also define [k] = k if k ∈ K for simplicity of notation).

– Ω = {Σκ̄,κ}(κ̄,κ)∈(K∪S)∗x(K∪S) is an algebraic signature of function symbols,
where for each symbol f ∈ Σκ1...κn,κ if n ≥ 1 and at least one of the subindices
is not a kind, then there is another function symbol f ∈ Σ[κ1]...[κn],[κ].

When f ∈ Σε,κ (ε is the empty word), we say that f is a constant with type
(meaning sort or kind) κ. We write f ∈ Σκ instead of f ∈ Σε,κ.

If f ∈ Σκ1...κn,κ, then we display f as f : κ1 . . . κn → κ, and say that f has
arity n. We call this a rank declaration for symbol f . Constant symbols have
only one rank declaration f : → κ (plus the mandatory f : → [κ] if κ is not
a kind). We extend the order ≤ on K ∪ S to (K ∪ S)∗, component-wise. Then
Ω must also satisfy a monotonicity condition: f ∈ Σκ1...κn,κ

⋂
Σκ′

1...κ′
n,κ′ and

κ1 . . . κn ≤ κ′
1 . . . κ′

n imply κ ≤ κ′. If f ∈ Σκ1...κn,κ and t1, . . . , tn have type κ1,
. . . , κn respectively, then the term f(t1, . . . , tn) has type κ. If κ ≤ κ′ and the
term t has type κ, then t has also type κ′. This means that a term may have
several types. In fact, as for every sort s we have that s ≤ [s], if a term has only
one type then it must be a kind.
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A Mel Σ-algebra A contains a set Ak for each kind k ∈ K, an n-ary function
Af : Aκ1 . . . Aκn

→ Aκ for each function f ∈ Σκ1...κn,κ, and a subset As ⊆
Ak for each sort s ∈ Sk such that if si ≤ sj then Asi

⊆ Asj
, and if f ∈

Σκ1...κn,κ

⋂
Σκ′

1...κ′
n,κ′ and κ1 . . . κn ≤ κ′

1 . . . κ′
n then Af : Aκ1 . . . Aκn

→ Aκ

equals Af : Aκ′
1
. . . Aκ′

n
→ Aκ′ on Aκ1 . . . Aκn

.
In membership equational logic the elements in a sort are well-defined, while

the elements in a kind that don’t belong to any sort are usually meant to refer to
error or undefined elements. Kinds also provide a general way of dealing with par-
tial functions in equational specifications. For instance, in the search tree exam-
ple a NeSearchTree must have its Keys correctly ordered. Otherwise we have an
error term with kind [NeSearchTree] (we haven’t defined a sort Tree), so the
constructor function for NeSearchTrees becomes total on [NeSearchTree].

We allow mix-fix notation in Ω, where the symbol is used to identify the
position of each κi ∈ κ̄. For instance, < : Int Int → Bool is a rank declaration
stating that 5 < 4 is a term with sort Bool . If omitted we assume the usual
functional notation f(κ1, . . . , κn), which is an alternative notation admitted for
all functions. We call X =

⋃
κ∈(K∪S) Xκ, where Xκ = {xi

κ} for κ ∈ (K ∪ S), is
a family of pairwise disjoint infinitely countable sets of variables. If κ is a sort
then xi

κ has sort κ (and kind [κ]), otherwise xi
κ has kind κ but no sort. The set

of variables is potentially infinite, but any computation will only require a finite
number of variables. A term that has no variables in it is said to be ground .
A term where each variable occurs only once is said to be linear (ground terms
are linear).

The sets TΣ,κ, TΣ(X )κ denote, respectively, the set of ground Σ-terms with
sort or kind κ and the set of Σ-terms with sort or kind κ over X . We ambigu-
ously use the notation TΣ to refer to the initial Σ-algebra and as a shortcut for⋃

κ∈(K∪S) TΣ,κ. We also ambiguously use the notation TΣ(X ) to refer to the free
Σ-algebra on X and as a shortcut for

⋃
κ∈(K∪S) TΣ(X )κ. Var(t) ⊆ X denotes

the set of variables in t ∈ TΣ(X ). Σ is assumed to be sensible meaning that if
f ∈ Σκ1...κn,κ, f ∈ Σκ′

1...κ′
n,κ′ and [κi] = [κ′

i] for i = 1, . . . , n then [κ] = [κ′]. We
also assume that Σ has non-empty sorts, i.e., TΣ,s 
= ∅ for all s ∈ S.

In the search tree example we have, omitting the implied kinded definition
for each function in Ω, that Σ = (K,Ω, S) is:

K = {[rs], [st], [k], [v], [b], [p], [s]}, S = {r, et, st, nt, k, v, b, rs, p, s},
S[rs] = {r, rs}, S[st] = {et, nt, st}, S[k] = {k}, S[v] = {v}, S[b] = {b},
S[p] = {p}, S[s] = {s},
Ω={{ < }k k,b, { }k v,r, { ; }rs rs,rs, {key}r,k, { i , d , o }p r,p,
{ins}st k v,nt, {del}st k,st, { | | }st rs p,s, { [ ] }st r st,nt,
{min, max}nt,r, {a, . . . , f}k, {1, . . . , 9}v, {t}b, {empty}et, {none}rs, {nil}p}.

We explain the notation used in Ω: { [ ] }st r st,nt means that there is a
mix-fix function symbol [ ] such that if t1, t3 are terms with sort SearchTree
and t2 is a term with sort Record then t1[t2]t3 is a term with sort NeSearchTree.

Positions in a term t: as previously said, a term t can be always expressed
in functional notation as f(t1, . . . , tn). Then we can picture t as a tree with root
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f and children t1, . . . , tn. We refer to the root position of t as ε and to the
other positions of t as strings of nonzero natural numbers, i1 . . . im, meaning the
position i2 . . . im of ti1 . The set of positions of a term is written Pos(t). The set
of nonvariable positions of a term is written PosΣ(t). t|p is the subtree of t below
position p. t[u]p is the replacement in t of the subterm at position p with a term
u. As an example, if t is f(g(a, b), c), then t|1 is g(a, b), t|12 is b, and t[d]12 is
f(g(a, d), c).

A Mel signature Σ is said to be preregular iff for each n, for every function
symbol f with arity n, and for every κ1 . . . κn ∈ (K∪S)n, if the set Sf containing
all the sorts s′ that appear in rank declarations in Σ of the form f : κ′

1 . . . κ′
n → κ′

such that κi ≤ κ′
i, for 1 ≤ i ≤ n, is not empty (so a term f(t1, . . . , tn) where

ti has type κi for 1 ≤ i ≤ n would be a Σ-term), then Sf has a least sort.
Preregularity guarantees that every Σ-term t has a least sort, denoted ls(t),
among all the sorts that t has because of the different rank declarations that can
be applied to t, which is the most accurate classification for t.

A substitution σ : X → TΣ(X ) is a function that matches the identity
function in all X except for a finite set of variables Y ⊆ X , verifying that
for each variable yκ ∈ Y we have that ls(yκσ) ≤ κ. Substitutions are writ-
ten as σ = {y1

κ1
�→ t1, . . . , y

n
κn

�→ tn} where Dom(σ) = {y1
κ1

, . . . , yn
κn

} and
Ran(σ) =

⋃n
i=1 Var(ti). The identity substitution is displayed as id . Substi-

tutions are homomorphically extended to terms in TΣ(X ) (and also to the rest
of syntactic structures introduced along this paper, such as equations, goals,
etc.). The restriction σ|V of σ to a set of variables V is defined as xσ|V = xσ
if x ∈ V and xσ|V = x otherwise. Composition of two substitutions is denoted
by σσ′, with x(σσ′) = (xσ)σ′. If σσ = σ we say that σ is idempotent. For sub-
stitutions σ and σ′ where Dom(σ) ∩ Dom(σ′) = ∅, we denote their union by
σ ∪ σ′.

A Σ-equation is an expression of the form t = t′. A Σ-equation t = t′ is said
to be:

– Regular if Var(t) = Var(t′).
– Sort-preserving if for each substitution σ, we have tσ ∈ TΣ(X )κ (κ ∈ K ∪ S)

implies t′σ ∈ TΣ(X )κ and vice versa.
– Left (or right) linear if t (resp. t′) is linear.
– Linear if it is both left and right linear.

A set of equations E is said to be regular, or sort-preserving, or (left or right)
linear, if each equation in it is so.

A Mel theory [6] is a pair (Σ, E), where Σ is a Mel signature and E is a
finite set of (possibly labeled) Mel sentences, either conditional equations or
conditional memberships of the forms:

t = t′ if A1 ∧ . . . ∧ An, t : s if A1 ∧ . . . ∧ An,

where t = t′ is a Σ-equation, t : s, s ∈ S, is a unary membership predicate
stating that t is a term with sort s, provided that the condition holds, and each
Ai can be of the form t = t′, t : s or t := t′ (a matching equation). Matching
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equations are treated as ordinary Σ-equations. They are a warning that new
extra variables appear in t, imposing a limitation in the syntax of admissible
Mel theories, as we will see. We also admit unconditional sentences in E . xs1 : s2
is an unconditional membership expressing s1 ≤ s2. For each variable xs ∈ Xs,
where s ∈ S, we have that xs : s ∈ E . As an exception, there are two types of
unconditional memberships over kinds, instead of sorts, that are implied by the
Mel signature: if f ∈ Σκ1...κn,k, k ∈ K then f(xκ1 , . . . , xκn

) : k ∈ E ; also for
each variable xκ ∈ Xκ such that [κ] = k, xκ : k ∈ E .

Throughout this paper we will assume that all signatures are preregular
and all their equations and memberships t=t′, t:=t′ and t:s, s ∈ S, satisfy the
conditions [ls(t)] = [ls(t′)] and [ls(t)] = [s], that is, they are well-formed.

Given a Mel sentence φ, we denote by E � φ the fact that φ can be deduced
from E using the rules in Fig. 1 [3,6]; for an equation t = t′, E � t = t′ is also
written t =E t′. These rules, where the symbol = stands for = or := indistinctly,
specify a sound and complete calculus. A Mel theory (Σ, E) has an initial alge-
bra (TΣ/E), whose elements are equivalence classes [t]E ⊆ TΣ of ground terms
identified by the equations in E .

Fig. 1. Deduction rules for membership equational logic.

The Mel theory for the search tree example consists of Σ = (K,Ω, S) and
the following set E of Mel sentences, one of them labeled (i1), where the first
line of Mel sentences represents the subsort ordering in S. We omit the implicit
subsorts for each kind, and the implicit memberships for each variable and kinded
function. For executability requirements of the theory, that will be later defined,
associativity, commutativity, and identity axioms are defined over kinds:

xnt : st, xet : st, xr : rs,
(x[rs]; y[rs]); z[rs] = x[rs]; (y[rs]; z[rs]) (associativity),
x[rs]; y[rs] = y[rs];x[rs] (commutativity), x[rs]; none = x[rs] (identity),
empty[xr]empty : nt, empty[xr]rnt : nt if key(xr) < key(min(rnt)) = t,
lnt[xr]empty : nt if key(max(lnt)) < key(xr) = t,
lnt[xr]rnt : nt if key(max(lnt)) < key(xr) = t∧key(xr) < key(min(rnt)) = t,
a < b = t ... a < f = t, b < c = t ... b < f = t ... e < f = t, key(ykzv) = yk,
min(empty[xr]rst) = xr, min(lnt[xr]rnt) = min(lnt),
max(lst[xr]empty) = xr, max(lnt[xr]rnt) = max(rnt),
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ins(empty, yk, zv) = empty[yk, zv]empty,
ins(lst[ykz′

v]rst, yk, zv) = lst[ykzv]rst,
(i1) ins(lst[xr]rst, yk, zv) = ins(lst, yk, zv)[xr]rst if yk < key(xr) = t,
ins(lst[xr]rst, yk, zv) = lst[xr]ins(rst, yk, zv) if key(xr) < yk = t,
del(empty, yk) = empty, del(empty[ykzv]rst, yk) = rst,
del(lst[ykzv]empty, yk) = lst,
del(lnt[ykzv]rnt, yk) = lnt[min(rnt)]del(rnt, key(min(rnt))),
del(lst[xr]rst, yk) = del(lst, yk)[xr]rst if yk < key(xr) = t,
del(lst[xr]rst, yk) = lst[xr]del(rst, yk) if key(xr) < yk = t.

These axioms correspond to an algebraic specification of search trees similar
to the one found in [8].

2.3 Unification

Given a Mel theory (Σ, E), the E-subsumption preorder �E on TΣ(X )k is
defined by t �E t′ if there is a substitution σ such that t =E t′σ. For substitu-
tions σ, ρ and a set of variables V we define σ|V �E ρ|V if there is a substitution
η such that σ|V =E (ρη)|V . Then we say that ρ is more general than σ with
respect to V. When V is not specified, we assume that Dom(ρ) ⊆ Dom(σ) and
say that ρ is more general than σ.

A system of equations F is a conjunction of the form t1 = t′1 ∧ . . . ∧ tn = t′n
where for 1 ≤ i ≤ n, ti = t′i is a Σ-equation. We define Var(F ) =

⋃
i(Var(ti) ∪

Var(t′i)). An E-unifier for F is a substitution σ such that tiσ =E t′iσ for 1 ≤
i ≤ n. For V = Var(F ) ⊆ W, a set of substitutions CSU W

E (F ) is said to be a
complete set of unifiers modulo E of F away from W if

– each σ ∈ CSU W
E (F ) is an E-unifier of F ;

– for any E-unifier ρ of F there is a σ ∈ CSU W
E (F ) such that ρ|V �E σ|V ;

– for all σ ∈ CSU W
E (F ), Dom(σ) ⊆ V and Ran(σ) ∩ W = ∅.

An E-unification algorithm is complete if for any given system of equations
it generates a complete set of E-unifiers, which may not be finite. A unification
algorithm is said to be finite and complete if it terminates after generating a
finite and complete set of solutions.

2.4 Rewriting Logic

A rewrite theory R = (Σ, E , R) consists of a Mel theory (Σ, E) together with a
finite set R of conditional rewrite rules each of which has the form

l → r if
∧

h

ph = qh ∧
∧

i

ui := vi ∧
∧

j

wj : sj ∧
∧

k

lk → rk,

where l, r, and also each pair lk, rk, are Σ-terms of the same kind, and the
rest of conditions fulfill the same requirements pointed out for Mel sentences.
We will sometimes write l → r if c as a shortcut. Rewrite rules can also be
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unconditional. Equational and membership conditions are intended to be solved
within the Mel theory (Σ, E), i.e., no rewriting with rules from R is allowed
on those conditions, whereas reachability conditions lk → rk are intended to be
inferred using the deduction rules for rewrite theories below.

Such a rewrite rule specifies a one-step transition from a state t[lθ]p to the
state t[rθ]p, denoted by t[lθ]p →1

R t[rθ]p, provided the condition holds. The
subterm t|p is called a redex.

In the search tree example, R has as elements the nondeterministic (labeled)
rewrite rules:

(I1) xst | yk zv; vrs | wp → ins(xst, yk, zv) | vrs | wp i yk zv.
(D1) xst | yk zv; vrs | wp → del(xst, yk) | vrs | wp d yk zv.
(O1) xst | yk zv; vrs | wp → xst | vrs | wp o yk zv.

All three rules have the same left term xst | yk zv; vrs | wp, hence the nonde-
terminism of its application. As an example, rule (I1) states that from a State
formed by any SearchTree (xst), a non-empty RecordSet (yk zv; vrs), and any
Path (wp), we can reach the State formed by the NeSearchTree obtained by
inserting the Record yk zv into xst, the RecordSet vrs, and the Path formed
with the function symbol i applied to the Path wp and the Record yk zv.
Recall that as RecordSets are commutative and associative, the Record is also
nondeterministically chosen.

The inference rules for rewrite theories [3,6] in Fig. 2 specify a sound and
complete calculus for the system specified by R. We can reach a state v from a
state u, written R � u → v, if u → v can be inferred from R using these rules.

Fig. 2. Deduction rules for rewrite theories.

The relation →1
R/E on TΣ(X ) is =E ◦ →1

R ◦ =E . →1
R/E on TΣ(X ) induces a

relation →1
R/E on TΣ/E(X ), the equivalence relation modulo E , by [t]E →1

R/E [t′]E
iff t →1

R/E t′. The transitive (resp. transitive and reflexive) closure of →1
R/E is

denoted →+
R/E (resp. →∗

R/E).
A rewrite rule l → r if c, is sort-decreasing if for each substitution σ we

have that lσ ∈ TΣ(X )κ (κ ∈ K ∪ S) and cσ is verified implies rσ ∈ TΣ(X )κ.
For any relation →1

R we say that a term t is →R-irreducible (or just R-
irreducible) if there is no term t′ such that t →1

R t′ and we say that a substitution
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is R-normalized (or normalized if R can be deduced from the context) if xσ is R-
irreducible for all x ∈ Dom(σ). We also say that a term t is strongly R-irreducible
if for every R-normalized substitution σ the term tσ is R-irreducible.

The relation →1
R is terminating if there are no infinite rewriting sequences

in →1
R. The relation →1

R is confluent if whenever t→∗
Rt′ and t→∗

Rt′′, there exists
a term t′′′ such that t′→∗

Rt′′′ and t′′→∗
Rt′′′. In a confluent, terminating, sort-

decreasing, membership rewrite theory, for each term t ∈ TΣ(X ), there is a
unique (up to E-equivalence) R/E-irreducible term t′ obtained by rewriting to
canonical form, denoted by t →!

R/E t′, or t ↓R/E when t′ is not relevant, which
we call canR/E(t).

2.5 Executable Rewrite Theories

For a rewrite theory R = (Σ, E , R), whether a one step rewrite t →1
R/E t′ holds

is undecidable in general, because it involves searching a potentially infinite, and
even non-computable, set [t]E and checking if for any of its elements ti we have
that ti →1

R t′′ and t′′ =E t′. The approach taken to solve this problem is to
decompose E into a disjoint union E ∪ A, with A a set of equational axioms
(such as associativity, and/or commutativity, and/or identity) and define a new
relation on TΣ(X ) which, under certain assumptions on R, will make t →1

R/E t′

decidable.

Associated Rewrite Theory. Any Mel theory (Σ,E∪A) has a corresponding
rewrite theory RE = (Σ′,A, RE) associated to it [9], that allows us to check
solutions for Mel conditions using rewriting instead of the deduction rules.
Under certain restrictions this will be a finite process. The associated rewrite
theory is constructed in the following way: we add a new connected component
with sort Truth and a constant tt of this sort to Σ, and for each kind k ∈ K a
function symbol eqk,k : k k → Truth. We will use the symbols →1 and → to
refer to single rewrite steps or full rewriting paths in this rewrite theory. There
are rules eqk,k(xk, xk)→tt in RE for each kind k ∈ K. For each equation or
membership in E

t = t′ if A1 ∧ . . . ∧ An t:s if A1 ∧ . . . ∧ An,

RE has a conditional rule or membership of the form

t→t′ if A′
1 ∧ . . . ∧ A′

n t:s if A′
1 ∧ . . . ∧ A′

n

where if Ai ≡ ti:si then A′
i is ti:si, if Ai ≡ ti:=t′i then A′

i is t′i→ti, and if
Ai ≡ ti=t′i then A′

i is eqki,ki
(ti, t′i)→tt , where ki = [ls(ti)].

The inference rules for membership rewriting in RE are the ones in Fig. 3,
adapted from [9, Fig. 4, p. 71], where the rules are defined for context-sensitive
membership rewriting.

Definition 1 (E,A Rewriting). The relation →1
E,A is defined as: t →1

E,A t′ if
there is a position p ∈ Pos(t), a rule l → r if

∧
i∈I A′

i in RE, and a substitution
σ such that t|p =A lσ (A-matching), t′ = t[rσ]p, and for all i ∈ I:
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Fig. 3. Inference rules for membership rewriting.

(i) If A′
i is of the form ti → t′i then there is a term t′′i such that tiσ →∗

E,A

t′′i =A t′iσ.
(ii) If A′

i is of the form ti : si then there is a term t′′i , a conditional membership
u : si if

∧
j∈J B′

j in RE, and a substitution ρ such that tiσ →∗
E,A t′′i ,

t′′i =A uρ, and B′
jρ satisfies one of these same two conditions for all j ∈ J .

The relation should have been called →1
RE ,A, but we prefer →1

E,A for sim-
plicity. It is important to point out that after zero or more rewrite steps from tiσ
in →1

E,A we must check for A-equality the resulting term t′′i against t′iσ in case
i, and against uρ in case ii. This corresponds to an application of the reflexivity
inference rule in RE , which allows us to derive a rewrite step from an A-equality
without applying any rewrite rule from RE . The substitutions σ and ρ are dif-
ficult to find, but the conditions that we are going to impose on the rewrite
theories, in order to make them executable, will make this task decidable.

Definition 2 (R,A Rewriting). The relation →1
R,A is defined as: t →1

R,A t′ if
there is a position p ∈ Pos(t), a rule l → r if

∧
i∈I Ai in R, and a substitution

σ such that t|p =A lσ, t′ = t[rσ]p, and for all i ∈ I:

– if Ai is of the form ti → t′i then there is a term t′′i such that tiσ →∗
R,A t′′i =A

t′iσ.
– if Ai is of the form ti : si then there is a term t′′i , a conditional membership

u : si if
∧

j∈J B′
j in RE, and a substitution ρ such that tiσ →∗

E,A t′′i , t′′i =A uρ,
and B′

jρ satisfies this same condition or the following one for all j ∈ J .
– else we consider A′

i, as in RE, which is of the form ti → t′i. Then there must
be a term t′′i such that tiσ →∗

E,A t′′i =A t′iσ.

We define: →E,A as →∗
E,A ◦ =A; →R,A as →∗

R,A ◦ =A; →1
R∪E,A as →1

R,A

∪ →1
E,A; →R∪E,A as →∗

R∪E,A ◦ =A.
We have replaced searching in E with matching modulo and rewriting with

→1
E,A. There are some problems with →1

E,A, and also with →1
R,A, that must

be solved to make this approach executable. Consider a rewrite theory R
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with only one sort s, and whose only rule is f(a, b) → c, where f is asso-
ciative and commutative. The term f(f(a, a), b) is a normal form in →1

R,A,
but f(f(a, a), b) →1

R/A f(a, c), because f(f(a, a), b) =A f(a, f(a, b)), so the
relations are different. This problem would not happen if R had another rule
f(xs, f(a, b)) → f(xs, c) that could be applied on top of the term f(f(a, a), b)
with matching xs �→ a, modulo associativity and commutativity, leading to
f(f(a, a), b) →1

R,A f(a, c). Rewrite theories that have these rules, avoiding such
problems, are called closed under A-extensions [23].

A problem that can arise when trying to decide t →∗
R t′ in a rewrite theory

is that although →1
R is terminating the proof of a condition may generate a

recursive infinite check of conditions. This leads us to the notion of operational
termination.

Definition 3 (Operational Termination of →1
R). The relation →1

R is oper-
ationally terminating if there are no infinite well-formed proof trees [18].

This notion of operational termination was presented by Lucas, Marché and
Meseguer [17] in an attempt to exclude those conditional term rewriting systems
like the one consisting of the single conditional rule:

a → b if f(a) → b

The absence of unconditional rules makes the relation → trivially empty,
hence terminating. Nevertheless, when trying to reduce the term a, most imple-
mentations will loop because of the following infinite derivation tree:

. . .

a → b

f(a) → b

a → b

The condition of operational termination states that such derivation trees
don’t exist. It may be argued that implementations can be enhanced to identify
repeated terms in the derivation tree and block further derivations. This would
not solve the problem. For instance, let’s consider a specification of natural
numbers in a Mel theory, which is easy to develop. In this specification we
call the sort for natural numbers Nat, and the successor operation s ∈ ΣNat,Nat.
Now we extend this specification with the declaration of a new sort Inf, with
Inf ≤ Nat, and add the following equations:

xInf : Nat (i .e. Inf ≤ Nat)

s(xNat) : Inf if s(s(xNat)) : Inf

If we try to derive s(yNat) : Inf, we get the following infinite derivation tree:
. . .

s(s(s(yNat))) : Inf
s(s(yNat)) : Inf
s(yNat) : Inf
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Now, implementations usually get stuck here and there are no repeated terms
that they can use to end the infinite loop. To avoid this problem, we will restrict
ourselves to operationally terminating rewrite theories.

Another problem with rewrite theories when trying to apply a rule l →
r if c is the value given to new extra variables in c, i.e., variables appearing
in c and not in l. In order not to have to “guess” these values, which may
make a rewrite theory untractable, rewrite theories must be admissible. We will
first define deterministic and strongly deterministic rewrites theories, which is
admissibility for rewrite theories with no Σ-equations at all, and later extend
the definition to cover all rewrite theories.

Definition 4 (Deterministic Rewrite Theory). Let R = (Σ,A,R) be a
rewrite theory. We call R deterministic iff for each l → r if

∧n
i=1 Ai ∈ R,

Ai is of the form ui → vi or ui : s, and for each i, 1 ≤ i ≤ n, we have
Var(ui) ⊆ Var(l) ∪ ⋃i−1

j=1 Var(vj).

In a deterministic rewrite theory, a condition ui → vi in a rule is satisfied
if before attempting a rewriting step there exists a substitution σ such that
ui =A viσ (A-matching). For executability purposes of rewriting and efficiency
of narrowing we limit this checking only to normal forms by using strongly
deterministic rewrite theories.

Definition 5 (Strongly Deterministic Rewrite Theory). A deterministic
rewrite theory R = (Σ,A,R) is called strongly deterministic iff for each l →
r if

∧n
i=1 Ai ∈ R, and for each i, 1 ≤ i ≤ n where Ai is of the form ui → vi, vi

is strongly R,A-irreducible.

As previously said R/E-rewriting may be non-computable. Under certain
conditions we can replace it with R ∪E,A-rewriting and A-matching, and make
a rewrite theory executable.

Definition 6 (Executable Rewrite Theory). A rewrite theory R = (Σ,E ∪
A,R) is executable, and also its underlying Mel theory (Σ,E ∪ A), if Σ is
preregular modulo A; E, A, and R are finite, and the following conditions hold:

1. E and R are admissible [8] and closed under A-extensions, and →1
E/A and

→1
R/A are operationally terminating. Admissibility is a translation of strong

determinism to Mel theories forcing all matching variables in conditions to
be instantiated by A-matching.

2. The axioms in A are regular, linear, and sort-preserving. Any variable appear-
ing in an axiom must be a kinded variable. Furthermore, equality modulo A
must be decidable and there must exist a finite matching algorithm modulo
A producing a finite number of A-matching substitutions, MatchA(t1, t2) =
{σi}n

i=1 meaning that t1 =A t2σi for i = 1, . . . , n, or failing otherwise.
3. The relation →1

E/A is sort-decreasing, terminating, and confluent (where we
again prefer to use →1

E/A instead of →1
RE/A).
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4. →1
R,A is E-consistent with →1

E,A, i.e., for all t1, t2, t3 we have t1 →1
R,A t2 and

t1 →∗
E,A t3 implies that there exist t4, t5 such that t3 →∗

E,A t4, t4 →1
R,A t5,

and t2 =E t5. We represent this property by using a diagram with filled lines
for universal quantification and dotted lines for existential quantification:

t1
1

R,A
��

∗E,A ��

t2

E
t3

∗
E,A

�� t4
1

R,A
�� t5

E-consistency of →1
R,A with →1

E,A

Under the above assumptions →1
E,A is strictly coherent, i.e., for all t1, t2, t3 if

t1 →1
E,A t2 and t1 =A t3 then there exists t4 such that t3 →1

E,A t4 and t2 =A t4
[23]. Also →1

R,A is strictly coherent, i.e., for all t1, t2, t3 we have t1 →1
R,A t2

and t1 =A t3 implies that there exists t4 such that t3 →1
R,A t4 and t2 =A t4.

t1
1

E,A
��

A

t2

A

t3
1

E,A
�� t4

(a) strict coherence of →1
E,A

t1
1

R,A
��

A

t2

A

t3
1

R,A
�� t4

(b) strict coherence of →1
R,A

Technically, strict coherence means that the weaker relations →1
E,A and →1

R,A

become semantically equivalent to the stronger relations →1
E/A and →1

R/A. Under
these conditions we can implement →1

R/E on terms using →1
R∪E,A.

The following lemma links →1
R/E with →1

E,A and →1
R,A.

Lemma 1. Let R = (Σ, E , R) be an executable rewrite theory, that is, it has
all the properties above. Then t1 →1

R/E t2 if and only if t1↓ →1
R,A t3 for some

t3 =E t2, which can be verified by checking t3↓ =A t2↓.
Lemma 2. The rewrite theory RE = (Σ′, A,RE) associated to any executable
Mel theory (Σ,E ∪ A) is strongly deterministic.

The rewrite theory for the search tree example is executable if we decom-
pose E in the following way: the set A contains the associative, commutative,
and identity equations in E ; the set E contains the rest of equations and all
memberships in E .

2.6 Reachability Goals

Given a rewrite theory R = (Σ, E , R), a reachability goal G is a conjunction of
the form t1 →∗ t′1 ∧ . . . ∧ tn →∗ t′n where for 1 ≤ i ≤ n, ti, t

′
i ∈ TΣ(X )κi

for
appropriate κi. We define Var(G) =

⋃
i Var(ti) ∪ Var(t′i). A substitution σ is a
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solution of G if tiσ →∗
R/E t′iσ for 1 ≤ i ≤ n. If the substitution is idempotent

we also say that the solution is idempotent. We define E(G) to be the system of
equations t1 = t′1 ∧ . . . ∧ tn = t′n. We say σ is a trivial solution of G if it is an
E-unifier for E(G). We say G is trivial if the identity substitution id is a trivial
solution of G.

For goals G : t1 →∗ t2 ∧ . . .∧ t2n−1 →∗ t2n and G′ : t′1 →∗ t′2 ∧ . . .∧ t′2n−1 →∗

t′2n we say G =E G′ if ti =E t′i for 1 ≤ i ≤ 2n. We say G →1
R G′ if there is an odd

i such that ti →R t′i and for all j 
= i we have tj = t′j . That is, G and G′ differ
only in one subgoal (ti → ti+1 vs t′i → ti+1), but ti → t′i, so when we rewrite ti
in G to t′i we get G′. The relation →1

R/E over goals is defined as =E ◦ →1
R ◦ =E .

Systems of equations in (Σ,E ∪ A) with form G ≡ ∧m
i=1(ti = t′i), with

[ls(ti)] = ki, become reachability goals in RE of the form
∧m

i=1(eqki,ki
(ti, t′i)→tt).

Using RE we can verify whether a substitution σ is a solution of G by checking
eqki,ki

(tiσ, t′iσ)→tt for i = 1, . . . , m. We will extend our notion of system of
equations to include well-formed sentences

∧n
j=1 tj : κj , i.e. with κj ∈ (S∪K) and

[ls(tj)] = [κj ] for j = 1, . . . , n, equivalent to an equation tj = xκj
with xκj

a fresh
variable, which become reachability goals of the same form. Then σ is a solution
of G if tjσ : κj is derivable in RE for j = 1, . . . , n, and eqki,ki

(tiσ, t′iσ)→tt for
i = 1, . . . , m.

2.7 Narrowing

Let t be a Σ-term and W be a set of variables such that Var(t) ⊆ W. The
R,A-narrowing relation on TΣ(X ) is defined as follows: t �p,σ,R,A t′ if there is a
non-variable position p ∈ PosΣ(t), a rule l → r if c ∈ R, properly renamed, such
that Var(l) ∩ W = ∅, and a unifier σ′ ∈ CSU W′

A (t|p = l) for W ′ = W ∪ Var(l),
such that σ = σ′σ′′ for some σ′′, t′ = (t[r]p)σ and cσ′′ holds. Similarly E,A-
narrowing and R ∪ E,A-narrowing relations are defined.

The substitution σ′′ appears because the use of conditional rules usually
forces the recursive resolution of cσ′ with narrowing, returning some σ′′ as solu-
tion. Then σ = σ′σ′′ is the desired substitution such that t �p,σ,R,A t′.

Example 1. Consider a rewrite theory R = (Σ,E ∪ A,R), where S = {s},
Ω = {{a, b, c}s, {f, g}ss,s}, with A = E = ∅, and R = {g(b, c) → c, f(a, zs) →
b if g(b, zs) → c}.

If we try to narrow the term f(xs, ys) with rule f(a, zs) → b if g(b, zs) → c
and unifier σ′ = {xs �→ a, ys �→ ws, zs �→ ws} we have to prove the condition
g(b, ws) → c, which can be narrowed with rule g(b, c) → c and substitution
σ′′ = {ws �→ c}, so g(b, zs) �σ′′,R,A c. Then, by composition of the substitutions
σ′ and σ′′, we get σ = {xs �→ a, ys �→ c, zs �→ c} and we have f(xs, ys) �σ,R,A b.
As a consequence, that will be later proved, f(xs, ys)σ →1

R,A b.

3 Sentence-Normalized Rewriting

In this paper we are going to prove properties of our calculus with respect to
R ∪ E,A-normalized solutions. Executable rewrite and Mel theories force us
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to check whether there is a match between ui and vi or not before each single
rewriting step for any condition ui →E,A vi or ui →R,A vi. We are going to
restrict ourselves to FPP (Fresh Pattern Property) executable rewrite and Mel
theories [7], meaning that any variable appearing in the left side of a matching
equation is new. These theories allow us to reduce every term to normal form
before each narrowing step in a safe way.

When we check whether some substitution γ is a solution of a reachabil-
ity goal G we can assume that Gγ is a ground term. If Var(Gγ) 
= ∅ we can
extend the signature Σ′ in a way that all these variables become constants in
the extended signature. By doing so, the only variables that will appear at any
rewriting step will be matching variables.

We are going to incrementally construct the substitution used in the replace-
ment and membership rules on FPP executable Mel theories. From now on
we will write ↓ instead of ↓E,A. If the ground term t matches l using σ0

(t =A lσ0), then lσ0 is a ground term and σ0 is a ground substitution. If Ai

has no matching variables then σi = id . If Ai ≡ t′i→ti has matching vari-
ables, then Dom(

⋃i−1
j=0 σj) ∩ Var(ti) = ∅ and eqki,ki

(ti
⋃i−1

j=0 σj , t
′
i

⋃i−1
j=0 σj) =

eqki,ki
(ti, t′i

⋃i−1
j=0 σj). Let σi be an A-matching of ti with (t′i

⋃i−1
j=0 σj)↓, that is

tiσi =A (t′i
⋃i−1

j=0 σj)↓, which is a ground term. As we are matching against an
E,A-normalized ground term and ti is strongly irreducible, σi must be ground
E,A-normalized. The only exception is the first substitution σ0 which is ground
but may not be E,A-normalized. The extended substitution σ that we need to
apply the replacement rule or the membership rule is σ =

⋃n
i=0 σi, where the

instantiation of all matching variables,
⋃n

i=1 σi, is ground E,A-normalized.

Definition 7 (Sentence-Normalized Substitution). Given an FPP exe-
cutable Mel theory (Σ,E ∪ A), its associated rewrite theory RE = (Σ′,A, RE),
for any conditional sentence, c ≡ l → r if (

∧n
i=1 A′

i) or c ≡ l : s if (
∧n

i=1 A′
i),

and substitution σ, the sentence-normalized substitution σc is defined as σc =
σ|Var(l) ∪ σ↓|Mat(c), where Mat(c) is the set of matching variables in c.

Proposition 1. Given an FPP executable Mel theory (Σ,E∪A), its associated
rewrite theory RE = (Σ′,A, RE), and a ground term t ∈ TΣ, if t→1rσ or t : s is
derived with a conditional sentence c ≡ l→r if

∧n
i=1 A′

i or c ≡ l : s if
∧n

i=1 A′
i

and a substitution σ, then t→1rσc or t : s is derivable using the same sentence
c and σc.

We are interested in derivations for reachability goals where we only rewrite
with sentence-normalized substitutions, hence reducing the state space.

Definition 8 (Sentence-Normalized Rewriting). When we want to imply
that only sentence-normalized substitutions are applied in a rewrite step or a
derivation with →1

E,A, will use the terms sentence-normalized rewriting (SNR)
or SNR-derivable, and write t :N s, t→1

N t′, or t→N t′.

Lemma 3 (Completeness of Sentence-Normalized Rewriting). Given an
FPP executable Mel theory (Σ,E ∪ A) and its associated rewrite theory RE =
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(Σ′,A, RE) if eqk(t, t′)→tt, t′→t′′ or t : s, with t′′ a normal form, are derivable in
RE, then eqk(t, t′)→N tt, t′→N t′′ or t :N s are SNR-derivable in RE respectively.

As a direct consequence we get the following theorem telling us that with
respect to reachability goals the solutions are the same using →1

E,A or →1
N .

Theorem 1 (Equivalence of SNR for Reachability Goal Solutions).
Given an FPP executable Mel theory (Σ,E ∪A) and its associated rewrite the-
ory RE = (Σ′,A, RE), σ is a solution of

∧m
i=1(eqki,ki

(ti, t′i)→tt) ∧ ∧n
j=1 t′′j : sj

if and only if eqki,ki
(tiσ, t′iσ)→N tt, i = 1, . . . ,m, and t′′j σ :N sj, j = 1, . . . , n,

are SNR-derivable.

Now we prove that conditions and reduced conditions have the same solu-
tions. This result is important because it will allow us to reduce the state space
in our narrowing problems.

Proposition 2. Given an FPP executable Mel theory (Σ,E ∪A) and its asso-
ciated rewrite theory RE = (Σ′,A, RE), for any conditional Mel sentence c ≡
s if

∧n
i=1 Ai ∈ E and corresponding rule or membership c′ ≡ s′ if

∧n
i=1 A′

i ∈ RE

if there is a substitution σ such that A′
1↓σc, . . . , A

′
n↓σc are derivable in RE then

A′
1σc, . . . , A

′
nσc are SNR-derivable in RE.

Proposition 3. Given an FPP executable Mel theory (Σ,E ∪A) and its asso-
ciated rewrite theory RE = (Σ′,A, RE), for any conditional Mel sentence c ≡
s if

∧n
i=1 Ai ∈ E and corresponding rule or membership c′ ≡ s′ if

∧n
i=1 A′

i ∈ RE

if there is a substitution σ such that A′
1σc, . . . , A

′
nσc are derivable in RE then

A′
1↓σc, . . . , A

′
n↓σc are SNR-derivable in RE.

As SNR-derivations are derivations, we have proved the most strict properties
in both directions. Again, as reachability goals are a special case of sentence
conditions, we have as a direct consequence of the last two propositions the
desired result.

Lemma 4 (Equivalence of Solutions for Reduced Reachability Goals).
Given an FPP executable Mel theory (Σ,E∪A) and its associated rewrite theory
RE = (Σ′,A, RE), σ is a solution of

∧m
i=1(eqki,ki

(ti, t′i)→tt) ∧ ∧n
j=1 t′′j : sj if

and only if it is a solution of
∧m

i=1(eqki,ki
(ti, t′i)↓→tt) ∧ ∧n

j=1 t′′j ↓ : sj.

4 Conditional Narrowing Modulo Unification

Narrowing allows us to assign values to variables in such a way that a reacha-
bility goal holds. We implement narrowing using a calculus with the following
properties:

1. The calculus is weakly complete, i.e., for any idempotent E,A-normalized
solution of a reachability goal G, the calculus can compute a more general
answer for G.

2. The calculus is sound, i.e., if the calculus computes an answer σ for a reach-
ability goal G, then σ is a solution of G.

We are going to split the calculus into two parts: the one that solves unifica-
tion problems and the one that solves reachability problems.
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4.1 Transformations and Calculus Rules for Unification

We assume that we have an A-unification algorithm that returns a complete set
of unifiers modulo A (CSUA) for any pair of terms. A unification equation has
the form t : κ = t′ : κ′, as a shorthand for t = t′ ∧ t : κ ∧ t′ : κ′. A unification
goal is a conjunction of unification equations.

First we introduce an extension for the signature of the transformation
described in Sect. 2.5 (Associated Rewrite Theory) in which we add syntax use-
ful for the calculus, to force left to right solving of subgoals, and change the
rules in RE by turning conditional memberships into conditional rules, adding a
new transformation for matching equations in conditions. Both changes will be
useful in the context of the narrowing calculus.

Transformations of the Associated Rewrite Theory. We associate to any
FPP executable Mel theory (Σ,E∪A) another rewrite theory R̃E = (Σ̃,A, R̃E),
where Σ̃ is an extension of Σ′ in RE . We add in Σ̃:

– A function symbol ∧ : [Truth] [Truth] → [Truth].
– A function symbol eqs,s′ : [s] [s] → Truth for each pair of sorts s, s′ ∈ S such

that [s] = [s′]
– A function symbol : κ : [κ] → Truth for each κ ∈ (S ∪ K).
– For each conditional equation (l = r if

∧n
i=1 Ai) or conditional membership

(l : κ if
∧n

i=1 Ai) in E, we add to R̃E a conditional rule l → r if A•
1 ∧ . . .∧A•

n

or l : κ → tt if A•
1 ∧ . . . ∧ A•

n, where each condition has an implicit → tt ,
if Ai ≡ t : s then A•

i is t : s, and if Ai ≡ t = t′ or Ai ≡ t := t′ then A•
i is

eqk,k(t, t′) with k = [ls(t)].

A unification goal
∧n

i=1(ti:κi = t′i:κ
′
i) has an associated narrowing problem∧n

i=1 eqκi,κ′
i
(ti, t′i)↓ ∧ tt (with an implicit � tt). The trailing ∧ tt will allow us

to work with a simpler set of calculus rules.

Calculus Rules for Unification. As we are computing R ∪ E,A-normalized
solutions, one general rule in our calculus is that we only apply a calculus rule
if the composition of all computed substitutions remains E,A-normalized with
respect to all matching variables and R ∪ E,A-normalized with respect to the
variables in the initial reachability problem. Our calculus is defined by the fol-
lowing inference rules, where t′ has sort Truth and t′′ has kind [Truth]:

– [t] transitivity
t′ ∧ t′′

t′ �1 x[Truth], x[Truth] ∧ t′′

– [n] narrowing
t �1 xk, t′′

(((c) ∧ t′′)ρθ)↓

where l → r (if c) ∈ R̃E , θ ∈ CSUA(t = l), ρ={xk �→ r}
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– [c] congruence
f(t̄) �1 xk, t′′

ti �1 x′
ki

, t′′θ

where ti /∈ X , θ = {xk �→ f(t1, . . ., ti−1, x
′
ki

, ti+1, . . ., tn)}, ki = [ls(ti)]

– [e] elimination
tt ∧ t′′

t′′

– [u] unification
eqκ,κ′(t1, t2) ∧ t′′

((t1 : κ′′ ∧ t′′)θ)↓

where θ ∈ CSUA(t1 = t2), κ′′ maximal such that κ′′ ≤ κ, κ′′ ≤ κ′

Definition 9 (Computed Answer). Given a unification goal u and the cor-
responding narrowing problem G, if there is a narrowing path from G to tt,
G = G0 �σ1 G1 �σ2 . . . �σn

tt, where if in the step i we apply the transitivity
rule or the elimination rule then σi = id, and σ = σ1σ2 . . . σn, then we write
G �∗

σ tt and call σ|Var(G) a computed answer for u.

Theorem 2. The calculus for unification is sound and weakly complete, i.e.,
complete with respect to E,A-normalized solutions.

5 Reachability by Conditional Narrowing

In this part of the calculus we define a new type of reachability goal G ≡∧n
i=1 ti:κi ⇒ t′i:κ

′
i, where the κ’s are meant to carry sort information throughout

the calculus in order to make use of it. Given an FPP executable rewrite theory
with an underlying FPP Mel theory R = (Σ,E ∪A,R), we try to find an idem-
potent R∪E,A-normalized solution σ (ground or not) such that tiσ →R∪E,A t′iσ,
tiσ has type κi and t′iσ has type κ′

i for all i = 1, . . . , n. Since we need additional
syntax to handle reachability goals, we extend R̃E to R̃ in the following way:

– For each pair κ, κ′ ∈ (S ∪ K) such that [κ] = [κ′] we add the function symbol
:κ⇒ :κ′ to Σκκ′,Truth to handle the new reachability goals. As rewrite the-

ories are not sort-decreasing in general, we need a function symbol for each
pair of types with same kind.

– For each kind k ∈ K we add the function symbol ⇒1 to Σkk,Truth . This
function symbol is ad hoc overloaded, i.e. the arguments of each overloaded
function symbol have different kind, and stands for an actual narrowing step
performed using the rules in R.

A conditional rewrite rule l → r if
∧

i Ai becomes l ⇒ r if
∧

i A•
i , where

conditions of the form li → ri become li:ki ⇒ ri:ki, with ki = [ls(ti)] and the
rest of conditions are transformed as in the calculus for unification.
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We turn the reachability goal G into a narrowing problem G′ ≡ ∧
i ti↓:κi ⇒

t′i↓:κ′
i ∧ tt � tt . Admissible goals, or simply goals, are now extended to be a

conjunction of terms t:κ ⇒ t′:κ′, t ⇒1 t′, t � tt , t �1 xk and tt , ending with tt .
As in the calculus for unification we will use t as a shortcut for t � tt .

Any reachability subgoal in our calculus of the form t:κ ⇒ t′:κ′ is equivalent
to t ⇒ t′ ∧ t=xκ ∧ t′=yκ′ (or t ⇒ t′ ∧ t:κ∧ t′:κ′). We will solve normalized reach-
ability goals ti↓:κ ⇒ t′i↓:κ′, which have the same solutions that the reachability
goals ti:κ ⇒ t′i:κ

′ have, because if tiσ ⇒ t′iσ, as ti =E ti↓ and t′i =E t′i↓ then
ti↓σ ⇒ t′i↓σ and vice versa. Also if ti↓σ has type κ, as tiσ →∗ ti↓σ, by subject
reduction tiσ has type κ (and t′iσ has type κ′), and if tiσ has type κ, as → is
sort-decreasing then ti↓σ has type κ (and t′i↓σ has type κ′).

5.1 Calculus Rules for Reachability

Reachability by conditional narrowing is achieved using the calculus rules pre-
sented in Sect. 4, extended with the following calculus rules based on the deduc-
tion rules for rewrite theories in Fig. 2. It is very important to point out that
we only apply replacement on t|p with substitution θ if the whole term tθ is E,
A-normalized, achieving another reduction in the state space:

– [X] reflexivity
t : κ ⇒ t′ : κ′ ∧ G′

eqκ,κ′(t, t′) ∧ G′

– [N ] narrowing
t : κ ⇒ t′ : κ′ ∧ G′

t �1 x[κ], x[κ] : κ ⇒ t′ : κ′ ∧ G′

where t /∈ X
– [T ] transitivity

t : κ ⇒ t′ : κ′ ∧ G′

t ⇒1 x[κ], x[κ] : [κ] ⇒ t′ : κ′ ∧ t : κ ∧ G′

where t /∈ X
– [I] imitation

t|p ⇒1 xp
kp

, t[xp
kp

]p : [κ] ⇒ t′ : κ′ ∧ t : κ ∧ G′

tj ⇒1 xpj
kpj

, t[xpj
kpj

]pj : [κ] ⇒ t′ : κ′ ∧ t : κ ∧ G′

where t|p = f(t1, . . . , tn), tj /∈ X , kpj = [ls(tj)], 1 ≤ j ≤ n

– [R] replacement

t|p ⇒1 xp
kp

, t[xp
kp

]p : [κ] ⇒ t′ : κ′ ∧ t : κ ∧ G′

(((c) ∧ t[r]p : [κ] ⇒ t′ : κ′ ∧ t : κ ∧ G′)θ)↓
where l ⇒ r (if c) ∈ R̃, θ ∈ CSUA(t|p = l), tθE, A-normalized

Theorem 3. The calculus for reachability is sound and weakly complete, i.e.,
complete with respect to R ∪ E, A-normalized solutions.
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6 Example

As an example of application of our calculus we use the specification of search
trees in Sect. 2. We will abbreviate empty to ε, and consider the reachability goal
ε [x1

k y1
v ] ε | f y2

v ; x2
k 2 | nil : s ⇒ (ε [x3

k 2] ε) [c y3
v ] ε | wrs | zp : s, where from

a State composed of a SearchTree with only one Record x1
ky

1
v on the root,

a RecordSet with two Records, f y2
v and x2

k 2 and the nil Path, we want to
reach a State composed of a SearchTree with two Records, x3

k 2 on the left
branch of the root and c y2

v on the root, some RecordSet, wrs, and some Path,
zp. The reachability goal is already normalized, so we only have to add ∧ tt to
get the reachability problem (where we call T1 = (ε [x3

k 2] ε) [c y3
v ] ε | wrs | zp and

T2 = ε [x1
k y1

v ] ε | f y2
v ; x2

k 2 | nil):

1. ε [x1
k y1

v ] ε | f y2
v ; x2

k 2 | nil : s ⇒ T1 : s ∧ tt �[T ]

The transitivity rule is always needed before a narrowing step.
2. ε [x1

k y1
v ] ε | f y2

v ; x2
k 2 | nil : s ⇒1 x[s], x[s] : [s] ⇒ T1 : s ∧ T2 : s ∧ tt �[R],I1

Rule I1 is able to insert the record x2
k 2 thanks to the commutative axiom

on RecordSets. We call P1 = nil i x2
k 2.

3. ins(ε [x1
k y1

v ] ε, x2
k, 2) | f y2

v | P1 : [s] ⇒ T1 : s ∧ tt ∧ tt �[N ]

Now the calculus generates a narrowing for unification step.
4. ins(ε [x1

k y1
v ] ε, x2

k, 2) | f y2
v | P1 �1 x4

[s], x
4
[s] : [s] ⇒ T1 : s ∧ tt ∧ tt �[c]

Congruence chooses the first subterm.
5. ins(ε [x1

k y1
v ] ε, x2

k, 2) �1 x5
[t], x

5
[t] | f y2

v | P1 : [s] ⇒ T1 : s ∧ tt ∧ tt �[n],i1

We apply narrowing for unification with conditional rule i1 :
ins(lst[xr]rst, yk, zv) = ins(lst, yk, zv)[xr]rst if yk < key(xr) = t.

6. eq [b],[b](x2
k < x1

k, t) ∧ (ε [x2
k 2] ε) [x1

k y1
v ] ε | f y2

v | P1 : [s] ⇒ T1 : s ∧ tt ∧ tt �[t]

Transitivity generates another narrowing for unification step.
7. eq [b],[b](x2

k < x1
k, t) �1 x6

[Truth], x
6
[Truth] ∧ (ε [x2

k 2] ε) [x1
k y1

v ] ε | f y2
v | P1 : [s] ⇒

T1 : s ∧ tt ∧ tt �[c]

Congruence chooses the first subterm.
8. x2

k < x1
k �1 x7

[b], eq [b],[b](x7
[b], t) ∧ (ε [x2

k 2] ε) [x1
k y1

v ] ε | f y2
v | P1 : [s] ⇒

T1 : s ∧ tt ∧ tt �[n],b<c=t, {x2
k �→ b, x1

k �→ c}
We apply narrowing for unification.

9. tt ∧ (ε [b 2] ε) [c y1
v ] ε | f y2

v | nil i b 2 : [s] ⇒ T1 : s ∧ tt ∧ tt �[e]

Elimination removes leading tt ’s.
10. (ε [b 2] ε) [c y1

v ] ε | f y2
v | nil i b 2 : [s] ⇒ T1 : s ∧ tt ∧ tt �[X]

The reflexivity rule turns the reachability problem into a unification one.
11. eq [s],s((ε [b 2] ε) [c y1

v ] ε | f y2
v | nil i b 2, (ε [x3

k 2] ε) [c y3
v ] ε | wrs | zp) ∧ tt ∧ tt

�[u],{x3
k �→b,y1

v �→y4
v ,y2

v �→y5
v ,y3

v �→y4
v ,wrs �→f y5

v ,zp �→nil i b 2}
The unification rule solves the problem.

12. ((ε [b 2] ε) [c y4
v ] ε | f y5

v | nil i b 2 : s ∧ tt ∧ tt)↓ ≡
tt ∧ tt ∧ tt �[e]

13. tt ∧ tt �[e]

14. tt
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σ = {x1
k �→ c, x2

k �→ b, x3
k �→ b, y1

v �→ y4
v , y

2
v �→ y5

v , y
3
v �→ y4

v , wrs �→ f y5
v , zp �→

nilib2} is the computed answer (substitutions in steps 8 and 11). The calculus
has found for the given reachability goal an instance ε [cy4

v ] ε |fy5
v , b2 |nil : s ⇒

(ε [b 2] ε) [c y4
v ] ε | f y5

v | nil i b 2 : s where in the final State the SearchTree has
two Records, b 2 and c y4

v , there is still one Record, f y5
v , left in the RecordSet

to process, and the Path nil i b 2 tells us that the system has chosen to insert
the Record b 2 in the SearchTree when building the computed answer.

7 Related Work, Conclusions and Future Work

A classic reference in equational conditional narrowing modulo is the work of
Bockmayr [5]. The topic is addressed here for Church-Rosser equational condi-
tional term rewriting systems with empty axioms, but non-terminating axioms
(like ACU) are not allowed. Non-conditional narrowing modulo order-sorted
equational logics is covered by Meseguer and Thati [24] and it is being used
for cryptographic protocol analysis. Equivalence of R/E and R ∪ E,A rewriting
was proved by Viry [27] for unsorted rewrite theories. Membership equational
logic was defined by Meseguer [21]. A rewrite system for Mel theories that allows
unification by rewriting is presented by Durán, Lucas et al. [9]. Strategies, which
also play a main role in narrowing, have been studied by Antoy, Echahed, and
Hanus [2]. Their needed narrowing strategy, for inductively sequential rewrite
systems, generates only narrowing steps leading to a computed answer. Recently
Escobar, Sasse, and Meseguer [13] have developed the concepts of variant and
folding variant, a narrowing strategy for order-sorted unconditional rewrite the-
ories that terminates on those theories having the finite variant property. Foun-
dations for order-sorted conditional rewriting have been published by Meseguer
[23]. Cholewa, Escobar, and Meseguer [7] have defined a new hierarchical method,
called layered constraint narrowing, to solve narrowing problems in order-sorted
conditional equational theories and given new theoretical results on that matter.
Order-sorted conditional narrowing with constraint solvers has been addressed
by Rocha and Meseguer [26].

In this work we have developed narrowing calculi for unification in mem-
bership equational logic and reachability in rewrite theories with an underlying
membership equational logic. The main features in these calculi are that mem-
bership information is taken into account, all terms are normalized after each
calculus step and only normalized instantiations are allowed for reachability
terms and matching variables, greatly reducing the state space. The calculi have
been proved sound and weakly complete.

Previous work with non-normalized terms and substitutions is available at
http://maude.sip.ucm.es/cnarrowing/, where a strategy for applying the calculi
was shown and implemented using Maude. This new version of the calculi has
not been implemented yet, but we plan to make use of it in our current line
of investigation, that concerns the extension of the calculi to handle constraints
and their connection with external constraint solvers for domains such as finite
domains, integers, Boolean values, etc., that could greatly improve the perfor-
mance of any implementation.

http://maude.sip.ucm.es/cnarrowing/
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Abstract. This paper introduces the idea of using assertion checking
for enhancing the dynamic slicing of Maude computation traces. Since
trace slicing can greatly simplify the size and complexity of the ana-
lyzed traces, our methodology can be useful for improving the diagnosis
of erroneous Maude programs. The proposed methodology is based on
(i) a logical notation for specifying two types of user-defined assertions
that are imposed on execution runs: functional assertions and system
assertions; (ii) a runtime checking technique that dynamically tests the
assertions and is provably safe in the sense that all errors flagged are
definite violations of the specifications; and (iii) a mechanism based on
equational least general generalization that automatically derives accu-
rate criteria for slicing from falsified assertions.

1 Introduction

Back in the mid-80s, while the scientific research in Computer Science was just
taking off in Spain, some magnetic manuscripts written by Joseph Goguen and
José Meseguer came into our hands [17,18]. Although some predicted that no
language as ambitious as that described in [17,18,25] could reach widespread or
practical use, these ground-breaking documents were, for many of us, the starting
point for pursuing the advancement of multi-paradigm declarative languages and
their development environments. Towards this endeavor, the aim of this work
is to contribute to further advancing the state-of-the-art of the leading-edge
multi-paradigm language Maude.

Assertion checking is the problem of deciding whether a certain asser-
tion holds at a given program (or execution) point. Although not universally
used, assertion checking seems to have widely infiltrated common programming
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practice as witnessed by the growth of assertion capabilities in widely used pro-
gramming languages such as C�, C++, and Java [12]. Assertions may be used
statically to support program analysis and also for secondary purposes, such as
documentation and to provide information to an optimizer during code genera-
tion. A brief history of the research ideas that have contributed to the assertion
capabilities of modern programming languages and development tools can be
found in [12]. The most obvious way to dynamically use assertions is to test
them at runtime and report any detected violations. By finding inconsistencies
between asserted properties and the program code, runtime assertion checking
can be used to reveal program faults and to obtain information about their
locations. Since an assertion failure usually reports an error, the user can direct
its attention to the location at which the logical inconsistency is detected and
(hopefully) trace the errors back to their sources more easily.

Program slicing [20] automatically identifies a subset of program statements
that either (i) contribute to the values of a set of variables at a given point, or
(ii) are influenced by the values of a given set of variables. The first approach
corresponds to forms of backward slicing, whereas the second corresponds to
forward slicing. Automatic slicing plays an important role in program diagnosis
and understanding since it allows one to focus on code fragments that are relevant
to a given slicing criterion, that is, the relevant information we want to track
(backwards or forwards) from a given execution point.

Maude [13] is a high-level language and high-performance system that sup-
ports both equational and rewriting logic computations. Maude modules corre-
spond to specifications in rewriting logic [24], which is a logic that allows the
representation of many models of concurrent and distributed systems. In [6,8],
a rich and highly dynamic parameterized scheme for exploring rewriting logic
computations is developed that can significantly reduce the size and complex-
ity of the runs under examination by automatically slicing both programs and
computation traces [4].

The aim of this work is to provide Maude with runtime assertion-checking
capabilities by first introducing a simple assertion language that suffices for the
purpose of improving error diagnosis and debugging of Maude programs, while
remaining tractable. We follow the approach of modern specification and verifi-
cation systems such as Spec� or the Java Modeling Language (JML) where the
specification language is typically an extension of the underlying programming
language and specifications are used as contracts that guarantee certain proper-
ties to hold at a number of execution states, e.g., before or after a given function
call [22]. We believe that this choice of a language is of practical interest because
it facilitates the job of programmers. Even if Maude is a highly declarative lan-
guage that supports a programming style where no conceptual difference exists
between programs and high-level specifications, a separate description given by
the assertions may help developers identify essential program behaviors to be
preserved when modifying code.

We distinguish two groups of assertions: (1) functional assertions, for spec-
ifying properties of functions defined by an equational theory; and (2) system
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assertions, which allow one to express properties concerning the system’s exe-
cution. The assertions we support allow us to express properties that are quite
general, including user–defined programs. However, for the functional assertions,
we require the user to ensure that the execution of any property terminates for
any possible initial state and that the resulting verdict is unique, in the same
spirit of Maude’s (canonical) equational theories. In the proposed framework,
if an assertion evaluates to false at runtime, an assertion failure results, which
typically causes execution to abort while delivering a huge execution trace. By
automatically inferring deft slicing criteria from falsified assertions, we derive
a self-initiating, enhanced dynamic slicing technique that automatically starts
slicing the trace backwards at the time the assertion violation occurs, without
having to manually determine the slicing criterion in advance. As a by-product of
the trace slicing process, we also compute a dynamic program slice that preserves
the program behavior for the considered program inputs [20].

The Maude Formal Environment (MFE) is a recent effort to integrate and
interoperate most of the available Maude analysis and verification tools. These
include among others an inductive theorem prover, a declarative debugger, and
Maude’s model checkers [23]. Maude supports strong typing and subtyping asser-
tions via membership axioms, which are used to automatically ‘narrow’ the type
T of a value into a subtype of T . Nevertheless, to the best of our knowledge,
no general built-in support is provided in Maude or the MFE for the runtime
checking of user-defined assertions. Related to our work, generic strategies are
defined in [16,28] to guarantee that a set of invariants (that can be expressed
in different logics) are satisfied at every computed state. This is achieved by
avoiding the execution of actions that otherwise would conduct the system to
states that do not satisfy the constraints. This is in contrast to our approach
in two ways. On the one hand, our assertions are external and evaluated at
runtime, whereas driving the system’s execution in such a way that every com-
putation state complies with the constraints makes the assertions internal to the
programmed strategy. On the other hand, the strategy of [16,28] never results
in violated assertions, which is essential for automatic trace slicing to be fired
according to our approach. As another difference, we are able to check assertions
that regard: (1) the normalizations carried out by using the equational part of
the rewriting theory; and (2) system properties that are not necessarily global
invariants but can only hold in those states that match a given state template.

Following the discussion above, this work can be seen as the first frame-
work that exploits the synergies we can find between runtime assertion checking
and automated (program and program trace) transformations for improving the
diagnosis of Maude programs.

Plan of the paper. The paper is organized as follows. Section 2 provides a brief
introduction to rewriting logic and Maude and introduces the running example
that we use throughout the paper: a conditional rewrite theory that models a
simple, distributed banking system. Section 3 introduces a very simple assertion
language and the notions of functional and system assertions whose violation
helps signal functional and system error symptoms. Section 4 recalls a trace slic-
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ing methodology for simplifying rewriting logic computations. Section 5 enriches
the slicing methodology with runtime assertion checking in order to improve the
diagnosis of erroneous Maude programs, and describes its implementation in the
ABETS tool. Section 6 concludes. More details and examples, and a thorough
comparison with the related literature, can be found in an extended version of
this article, which is available at [7].

2 Rewriting Logic and Maude

Let us recall some important notions that are relevant to this work. We assume
some basic knowledge of term rewriting [29] and rewriting logic [24] (RWL).
Some familiarity with the Maude language [13,14] is also required. Throughout
the paper, Maude notation will be introduced “on the fly” as required.

2.1 Preliminaries

Let Σ be a signature that allows operators to be specified together with their
type structure by means of suitable sets of sorts and kinds. By τ(Σ), we specify
the term algebra that includes all the ground terms built over Σ, while τ(Σ,V)
is the usual nonground term algebra built over Σ and the set of variables V.
Each operator in Σ is defined along with its sort and axiom declarations that
may specify algebric laws such as associativity (assoc), commutativity (comm),
and identity (id).

A position w in a term t is represented by a sequence of natural numbers that
addresses a subterm of t (Λ denotes the empty sequence, i.e., the root position).
Given a term t, we let Pos(t) denote the set of positions of t. By t|w, we denote
the subterm of t at position w, and by t[s]w, we denote the result of replacing
the subterm t|w by the term s in t.

A substitution σ ≡ {x1/t1, x2/t2, . . . , xn/tn} is a mapping from the set of
variables V to the set of terms τ(Σ,V), which is equal to the identity almost
everywhere except over a set of variables {x1, . . . , xn}. By {}, we denote the
identity substitution. The application of a substitution σ to a term t, denoted
tσ, is defined by induction on the structure of terms as usual [10]. Given two
terms t and t′, we say that t is more general than t′ iff there exists a substitution
σ such that tσ = t′. We also say that t′ is an instance of t.

Given a syntactic expression e, by Var(e), we denote the set of variables
that occur in e. Given a binary relation �, we define the usual transitive (resp.,
transitive and reflexive) closure of � by �+ (resp., �∗).

2.2 Rewrite Theories and Maude Modules

The static state structure as well as the dynamic behavior of a concurrent system
can be formalized as a RWL specification that encodes a conditional rewrite
theory. More specifically, a conditional rewrite theory (or simply rewrite theory)
is a triple R = (Σ,E,R), where:
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(i) (Σ,E) is a membership equational theory that allows us to define the sys-
tem data types via equations, as well as algebraic and membership axioms. Σ
is a signature that specifies the operators of R, while E = Δ ∪ B is the disjoint
union of the set Δ, which contains conditional equations and conditional mem-
bership axioms, and the set B, which contains algebraic axioms associated with
binary operators in Σ. The general Maude syntax of conditional equations and
membership axioms is the following:

ceq [l] : λ = ρ if C . cmb [l] : λ : s if C .

where l is a label (i.e., a name that identifies the equation), λ, ρ ∈ τ(Σ,V), s is a
sort and C is an equational condition, that is, a (possibly empty) conjunction of
equations t = t′, matching equations p := t, and memberships t : s′ that is built
using the binary conjunction connective /\, which is assumed to be associative.
When C is empty, the syntax for equations and memberships is simplified as
follows:

eq [l] : λ = ρ . mb [l] : λ : s .

A membership equational theory (Σ,E) is encoded in Maude through a func-
tional module that is syntactically delimited by keywords fmod and endfm. Func-
tional modules provide executable models for the specified equational theories.

Example 1. The following Maude functional module1 encodes an equational the-
ory that defines the functional part of a simple, distributed banking system.

fmod BANK-EQ is inc BANK-INT+ID . pr SET{Id} .

sorts Account PremiumAccount Status Msg State .

subsort PremiumAccount < Account .

subsorts Account Msg < State .

var ID : Id . op <_|_|_> : Id Int Status -> Account [ctor] .

var BAL : Int . op active : -> Status [ctor] .

var STS : Status . op blocked : -> Status [ctor] .

op Alice : -> Id [ctor] . op Bob : -> Id [ctor] .

op Charlie : -> Id [ctor] . op Daisy : -> Id [ctor] .

cmb < ID | BAL | STS > : PremiumAccount if ID in PreferredClients .

op PreferredClients : -> Set{Id} .

eq PreferredClients = Bob, Charlie .

op updateStatus : Account -> Account .

ceq updateStatus(< ID | BAL | active >) = < ID | BAL | blocked >

if BAL < 0 .

eq updateStatus(< ID | BAL | STS >) = < ID | BAL | STS > [owise] .

endfm

1 BANK-EQ includes the functional module BANK-INT+ID, which (i) imports INT for
integer manipulation and (ii) declares the sort Id that is used to parameterize SET{X
:: TRIV}.
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A bank account is represented as a term of the form < ID | BAL | STS > where
ID is the owner of the account, BAL is the account balance, and STS is the account
status, which can be blocked or active. The defined conditional membership
axiom states that an account is a PremiumAccount if its owner is included in the
PreferredClients set. Finally, the updateStatus operation updates the status
account to blocked when the account balance is negative.

(ii) R is a set of conditional labeled rules whose Maude syntax is the following:

crl [l] : λ => ρ if C .

where l is a label, λ, ρ ∈ τ(Σ,V), and C is a rule condition, i.e., an equational
condition that may also contain rewrite expressions of the form t = t′. When a
rule has no condition, we simply write rl [l] : λ => ρ.

A rewrite theory R = (Σ,E,R) is specified in Maude by means of a system
module, which is introduced by the syntax mod...endm. A system module may
include both a functional representation of the equational theory (Σ,E) and the
specification of the rewrite rules in R.

Example 2. The following Maude rewrite theory models the distributed behavior
of the banking system of Example 1.

mod BANK is inc BANK-EQ .

vars ID ID1 ID2 : Id .

vars BAL BAL1 BAL2 M : Int .

op empty-state : -> State [ctor] .

op _;_ : State State -> State [ctor assoc comm id: empty-state] .

ops credit debit : Id Int -> Msg [ctor] .

op transfer : Id Id Int -> Msg [ctor] .

rl [credit] : credit(ID,M) ; < ID | BAL | active > =>

updateStatus(< ID | BAL + M | active >) .

rl [debit] : debit(ID,M) ; < ID | BAL | active > =>

updateStatus(< ID | BAL - M | active >) .

rl [transfer] : transfer(ID1,ID2,M) ;

< ID1 | BAL1 | active > ; < ID2 | BAL2 | active >

=> updateStatus(< ID1 | BAL1 - M | active >) ;

updateStatus(< ID2 | BAL2 + M | active >) .

endm

Each state of the system is modeled as a multiset (i.e., an associative and com-
mutative list) of elements of the form e1; e2; . . . ...; en. Each element ei is either
(i) a bank account; or (ii) a message modeling a debit, credit, or transfer opera-
tion. These account operations are implemented via three rewrite rules: namely,
debit, credit, and transfer rules.
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2.3 Rewriting and Generalization Modulo Equational Theories

Let us consider a conditional rewrite theory (Σ,E,R), with E = Δ ∪ B, where
Δ is a set of conditional equations and membership axioms, and B is a set of
equational axioms associated with some binary operators in Σ. The conditional
rewriting modulo E relation (in symbols, →R/E) can be defined by lifting the
usual conditional rewrite relation on terms [19] to the E-congruence classes [t]E
on the term algebra τ(Σ,V) that are induced by =E [11]. In other words, [t]E is
the class of all terms that are equal to t modulo E. Unfortunately, →R/E is, in
general, undecidable since a rewrite step t →R/E t′ involves searching through
the possibly infinite equivalence classes [t]E and [t′]E .

The Maude interpreter implements conditional rewriting modulo E by means
of two much simpler relations, namely →Δ,B and →R,B. These allow rules, equa-
tions and memberships to be intermixed in the rewriting process by simply using
an algorithm of matching modulo B. We define →R∪Δ,B as →R,B ∪ →Δ,B .
Roughly speaking, the relation →Δ,B uses the equations of Δ (oriented from left
to right) as simplification rules. Thus, by repeatedly applying the equations as
simplification rules from a given term t, we eventually reach a term t ↓Δ,B to
which no further equations can be applied. The term t ↓Δ,B is called a canon-
ical (or normal) form of t w.r.t. Δ modulo B. An equational simplification of
a term t in Δ modulo B is a rewrite sequence of the form t →∗

Δ,B t ↓Δ,B .
Informally, the relation →R,B implements rewriting with the rules of R, which
might be non-terminating and non-confluent, whereas Δ is required to be ter-
minating and Church-Rosser modulo B in order to guarantee the existence and
unicity (modulo B) of a canonical form w.r.t. Δ for any term [14]. Terms are
rewritten into canonical forms according to their sort structure, which is induced
by the signature Σ and the membership axioms specified in Δ. In particular,
through membership axioms of the form cmb [l] : λ : s if C, we can assert that
any term B-matching λ has a specific sort s whenever a condition C holds.
Equational simplification of terms is naturally lifted to substitutions as fol-
lows: given σ = {x1/t1, x2/t2, . . . , xn/tn}, we define the normalized substitution
σ↓Δ,B= {xi/(ti ↓Δ,B)}n

i=1.
Formally, →R,B and →Δ,B are defined as follows. Given a rewrite rule

crl [r] : λ => ρ if C ∈ R (resp., an equation ceq [e] : λ = ρ if C ∈ Δ),
a substitution σ, a term t, and a position w of t, t

r,σ,w→ R,B t′ (resp., t
e,σ,w→ Δ,B t′)

iff λσ =B t|w, t′ = t[ρσ]w, and C evaluates to true w.r.t σ. When no confusion
arises, we simply write t →R,B t′ (resp. t→Δ,Bt′) instead of t

r,σ,w→ R,B t′ (resp.
t
e,σ,w→ Δ,B t′).

Roughly speaking, a conditional rewrite step on the term t applies a rewrite
rule/equation to t by replacing a reducible (sub-)expression of t (namely t|w),
called the redex, by its contracted version ρσ, called the contractum, whenever
the condition C is fulfilled. Note that the evaluation of a condition C is typically
a recursive process since it may involve further (conditional) rewrites in order
to normalize C to true. Specifically, an equation e evaluates to true w.r.t. σ
if eσ ↓Δ,B=B true; a matching equation p := t evaluates to true w.r.t. σ if
pσ =B tσ↓Δ,B ; a rewrite expression t ⇒ p evaluates to true w.r.t. σ if there
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exists a rewrite sequence tσ →∗
R∪Δ,B u, such that u =B pσ2; and, finally, a

membership t : s evaluates to true w.r.t. σ if tσ has sort s.
Under appropriate conditions on the rewrite theory, a rewrite step s →R/E t

modulo E on a term s can be implemented without loss of completeness by
applying a rewrite strategy that first simplifies the term s into its canonical
form s ↓Δ,B , and then applies a rule r ∈ R to s ↓Δ,B [15].

A computation (trace) C for s0 in the conditional rewrite theory (Σ,Δ∪B,R)
is then deployed as the (possibly infinite) rewrite sequence

s0 →∗
Δ,B s0↓Δ,B →R,B s1 →∗

Δ,B s1↓Δ,B→R,B . . .

that interleaves →Δ,B rewrite steps and →R,B rewrite steps following the strat-
egy mentioned above. After each conditional rewriting step using →R,B , in gen-
eral, the resulting term si, i = 1, . . . , n, is not in canonical normal form. There-
fore, it is normalized before the subsequent rewrite step with →R,B is performed.
Also, in the precise strategy adopted by Maude, the last term of a finite com-
putation is finally normalized before the result is delivered. By ε, we denote the
empty computation.

We define a Maude step from a given term s as any of the sequences s →∗
Δ,B

s↓Δ,B →R,B t →∗
Δ,B t↓Δ,B that head the non-deterministic Maude computations

for s. Note that, for a canonical form s, a Maude step for s boils down to
s →R,B t →∗

Δ,B t↓Δ,B . We define mS(s) as the set of all the non-deterministic
Maude steps from s.

A generalization of a pair of terms t1, t2 is a triple (g, θ1, θ2) such that gθ1 = t1
and gθ2 = t2. The triple (g, φ1, φ2) is the least general generalization (lgg) of the
pair of terms t1, t2, written lgg(t1, t2), if (1) (g, φ1, φ2) is a generalization of t1, t2
and (2) for every other generalization (g′, ψ1, ψ2) of t1, t2, g′ is more general than
g. The lgg of a pair of terms is unique up to variable renaming [21].

In [9], the notion of least general generalization is extended to work modulo
(order-sorted) equational theories, where function symbols can obey any combi-
nation of associativity, commutativity, and identity axioms (including the empty
set of such axioms). Unlike the untyped case, for a pair of terms t1, t2 there is gen-
erally no single lgg, due to order-sortedness or to the equational axioms. Instead,
there is a finite, minimal, and complete set of lggs (denoted by lggE(t1, t2)) so
that any other equational generalizer has at least one of them as an instance.
Given any element (g, φ1, φ2) of the set lggE(t1, t2), we define the function π
from Pos(t) to Pos(t1) that provides an injective correspondence between (the
position of) any variable in g and (the position of) the corresponding term in
t1; we need this because computing modulo algebraic axioms may cause the
term structure of g to be different from both, t1 and t2. For instance, consider
an associative and commutative symbol f and the terms t1 = f(b, c, a) and
t2 = f(d, a, b). Then, a possible lgg modulo the associativity and commutativity
2 Technically, to properly evaluate a rewrite expression t ⇒ p or a matching condition
p := t, the term p is required to be a Δ-pattern modulo B (i.e., a term p such
that, for every substitution σ, if xσ is a canonical form w.r.t. Δ modulo B for every
x ∈ Dom(σ), then pσ is also a canonical form w.r.t. Δ modulo B).
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of f is (f(a, b, X), {X/c}, {X/d}) ∈ lggE(t1, t2), where X is a variable. Note that
both t1 and t2 are syntactically different from f(a, b, X), and the value π(3) = 2
indicates the subterm c of t1 that is responsible for the mismatch with t2. By
l̂ggE(t1, t2) we denote the pair (G, π) where G = (g, φ1, φ2) is arbitrarily chosen
among those lggs in the set lggE(t1, t2) that have fewer variables, and π is the
corresponding position mapping from positions of g’s variables to the relative
subterms of t1.

One of the main motivations of our work is to help automate as much as
possible the validation and debugging of programs with respect to properties
that are outside of Maude’s typing system. Some of the properties we consider
can arguably be expressed by means of sorts and memberships in Maude. Nev-
ertheless, in the following section we deal with properties that these facilities
cannot handle.

3 The Assertion Language

Assertions are linguistic constructions that formally express properties of a soft-
ware system. Throughout this section, we consider a software system that is
specified by a rewrite theory R = (Σ,Δ ∪ B,R). Without loss of generality, we
assume that Σ includes at least the sort State. Terms of sort State are called
system states (or simply states). State transitions are obtained by nondetermin-
istically applying the rewrite rules in R to canonical forms of system states.
A state s is simplified into its canonical form s ↓Δ,B by using equations and
algebraic/membership axioms in Δ ∪ B.

In our specification language, assertions are formulas built on user-defined
functions. The meaning of such functions is specified by a user-defined program.
Our framework supports two kinds of assertions: functional assertions and system
assertions. Functional assertions allow properties to be logically defined on the
equational component of the rewrite theory R while system assertions specify
formal constraints on the possibly nondeterministic rule component of R. The
benefit of using a logic framework is that the definition and checking of all
asserted properties can be performed in a uniform and familiar setting.

3.1 The Assertion Logic

The core of our assertion language is based on (order-sorted) predicate logic,
where first order formulas are built over the signature Σ of the rewrite theory
R enriched with a set of user-defined boolean function symbols (predicates).
The truth values are given by the formulas true and false. The usual conjunc-
tion (and), disjunction (or), exclusive or (xor), negation (not), and implication
(implies) logic operators are used to express composite properties. Variables in
the formulas are not quantified.

Logic formulas can be defined in Maude by means of the predefined functional
module BOOL [14], which specifies the built-in sort Bool, the truth values, the



Combining Runtime Checking and Slicing 81

Fig. 1. System properties specified by the BANK-PRED module.

logic operators, and the built-in operators for membership predicates :: S for
each sort S, and term equality == and inequality =/= .

The built-in Boolean functions == and =/= have a straightforward oper-
ational meaning: given an expression u == v, then both u and v are simplified
by the equations in the module (which are assumed to be Church-Rosser and
terminating) to their canonical forms (perhaps modulo some axioms such as
associativity) and these canonical forms are compared for equality. If they are
equal, the value of u == v is true; if they are different, it is false. The predi-
cate u =/= v is just the negation of u == v. In the module BOOL, valid formulas
are reduced to the constant true, invalid formulas are reduced to the constant
false, and all the others are reduced to a canonical form (modulo associativity
and commutativity) consisting of an exclusive or of conjunctions.

Predicates that are not specified in BOOL are module-dependent and can be
equationally defined as total Boolean functions over the domain formalized by
R. Therefore, we can define basic properties on a given rewrite theory R by
means of a system module PRED(R) that

– imports the (Maude encoding of) the rewrite theory R; and
– specifies predicates via user-defined operators that are associated with ter-

minating and Church-Rosser equational definitions of some total Boolean
function.

In this scenario, a well-formed formula is any term of sort Bool built using
the operators and variables declared in the system module PRED(R).

We say that a formula ϕ holds in R, iff ϕ can be reduced to true in PRED(R)
(in symbols, R |= ϕ).

Example 3. Consider the BANK system module of Example 2 and the new predi-
cates given in the BANK-PRED module of Fig. 1. Then, within BANK-PRED we can
specify the formula

not(isPremium(ACC:Account)) implies getBalance(ACC:Account) > 0

which is true for every nonpremium bank account ACC with a positive balance.
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3.2 System and Functional Assertions

System assertions formalize properties over (portions of) system states. Formally,
a system assertion (also called constrained term in [26]) is an expression of the
form S{ϕ} where S is a (possibly non ground) term in τ(Σ,V) of sort State,
and ϕ is a well-formed formula such that Var(ϕ) ⊆ Var(S).

System assertions are checked against states of the system specified by R.
Roughly speaking, a system assertion S{ϕ} allows us to validate all system states
s that match (modulo the equational theory E) the state “template” S w.r.t.
the formula ϕ. More formally, we define the satisfaction of a system assertion in
a system state as follows.

Definition 1 (System Assertion Satisfaction). Let R = (Σ,E,R) be a
rewrite theory. Let S{ϕ} be a system assertion for R and s be a state in R.
Then, S{ϕ} is satisfied in s (in symbols, s |= S{ϕ}) iff for each w ∈ Pos(s),
for each substitution σ if s|w =E SσthenϕσholdsinR.

Note that, if there is no subterm s|w of s that matches S (modulo E), we
trivially have s |= S{ϕ}. This implies that S{ϕ} is not satisfied in s (in symbols,
s 	|= S{ϕ}) only in the case when there exist w and σ such that s|w =E Sσ, and
the formula ϕσ does not hold in R. We call w a system error symptom. Roughly
speaking, a system error symptom is the position of a subterm of the state s
that is responsible for the violation of the considered assertion in s.

Definition 2 (System Error Symptoms). The set of all system error symp-
toms for a state s and a system assertion S{ϕ} is defined as follows:

SysErr(s, S{ϕ}) = {w | ∃σ. s|w =E Sσ,w ∈ Pos(s), and ϕσ 	|= R}.
Observe that SysErr(s, S{ϕ}) = ∅, whenever s |= S{ϕ}.
Example 4. Consider the extended rewrite theory of Example 3 together with
the system assertion

Θ = < C:Id | B:Int | S:Status > { not(isPremium(< C:Id | B:Int |

S:Status >)) implies B:Int > 0 }

Then, Θ is satisfied in the state

< Alice | 50 | active > ; < Bob | 40 |active > ; debit(Alice,60),

but it is not satisfied in serr=< Alice | -10 |blocked > ; < Bob | 40 | active >, since
Alice’s non-premium account has a negative balance. The detected error symptom
for the considered state and assertion is the position 1 that refers to the subterm
< Alice | -10 | blocked > of serr .

The second type of assertions that we consider are functional assertions.
Functional assertions allow one to specify the general pattern O of the canonical
form for any input term t that matches a given template I, while allowing pre- and
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post-conditions ϕin, ϕout over the equational simplification to also be declared.
Their general form is I {ϕin} → O {ϕout} where I,O ∈ τ(Σ,V), ϕin, ϕout

well-formed formulas, Var(ϕin) ⊆ Var(I) and Var(ϕout) ⊆ Var(I) ∪ Var(O).
Intuitively, functional assertions allow us to specify the I/O behaviour of the
equational simplification of a term t by providing

Input: an input template I that t can match and a pre-condition ϕin that t
can meet;

Output: an output template O that the canonical form of t has to match and
a post-condition ϕout that the computed canonical form of t has to meet
(whenever the input term t matching I meets ϕin).

Note that, while system assertions S{ϕ} resemble Matching Logic (ML) for-
mulas π∧φ (called ML patterns), where π is a configuration term and φ is a first
order logic formula, functional assertions I {ϕin} → O {ϕout} remind Reacha-
bility Logic (RL) formulas ϕ ⇒ ϕ′, where ϕ,ϕ′ are ML patterns (for a survey
on ML/RL, see [27]). Different from our functional assertions, which predicate
on equational simplification sequences, RL formulas are evaluated on system
computations. Namely, the semantics of a RL formula ϕ ⇒ ϕ′ is that any state
satisfying ϕ transits (in zero or more steps) into a state satisfying ϕ′, while ML
formulas are used to express (and reason about) static state properties, similarly
to our system assertions.

The notion of satisfaction for a functional assertion is given w.r.t. the equa-
tional simplification μ = t →∗

Δ,B t ↓Δ,B of term t into its canonical form t ↓Δ,B .

Definition 3 (Functional Assertion Satisfaction). Let R = (Σ,E,R) be
a rewrite theory, with E = Δ ∪ B. Let I {ϕin} → O {ϕout} be a functional
assertion for R, and μ be the equational simplification of the term t in τ(Σ,V)
into its canonical form t ↓Δ,B w.r.t. Δ modulo B. Then, I {ϕin} → O {ϕout} is
satisfied in μ (in symbols, μ |= I {ϕin} → O {ϕout}) iff for each substitution σin

s.t. t =B Iσin, if ϕinσin holds in R, then there exists σout such that t ↓Δ,B=B

O(σin ↓Δ,B)σout and ϕout(σin ↓Δ,B)σout holds in R.

Note that I {ϕin} → O {ϕout} is (trivially) satisfied in μ when either t
does not match Iσin (modulo B) or ϕinσin does not hold in R. Intuitively, a
functional error occurs in an equational simplification μ where the computed
canonical form fails to match the structure or meet the properties of the output
template O. In other words, Φ = I {ϕin} → O {ϕout} is not satisfied in μ only
in the case when there exists an input substitution σin s.t.

– t =B Iσin and ϕinσin holds in R;
– t ↓Δ,B 	=B O(σin ↓Δ,B)σout or ϕout(σin ↓Δ,B)σout does not hold in R, for

any substitution σout.

Definition 4 (Functional Error Symptoms). Let R = (Σ,E,R) be a
rewrite theory, with E = Δ ∪ B. Let Φ = I {ϕin} → O {ϕout} be a functional
assertion for R. Let μ = t →∗

Δ,B t ↓Δ,B be an equational simplification such
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that μ 	|= Φ with input substitution σin. Then, a functional error symptom for μ
w.r.t. Φ is any position in Pos(t ↓Δ,B) that belongs to the following set:

FunErr(μ,Φ) = {π(w) ∈ Pos(t↓Δ,B) | ((g, σ1, σ2), π)
= l̂ggΔ∪B(t↓Δ,B , O(σin ↓Δ,B)) and g|w ∈ Var(g), w ∈ Pos(g)}

Roughly speaking, FunErr(μ,Φ) is computed by “comparing” the canonical form
t ↓Δ,B with the instance O(σin ↓Δ,B) of the output template O by the (nor-
malized) substitution σin ↓Δ,B using a least general generalization algorithm
modulo equational theories. More specifically, an arbitrarily-selected least gen-
eral generalization (g, σ1, σ2) (modulo Δ ∪ B) between t ↓Δ,B and O(σin ↓Δ,B)
is chosen via l̂ggΔ∪B, and potentially erroneous subterms of t↓Δ,B are detected
by selecting every position π(w) ∈ Pos(t ↓Δ,B) in correspondence with a posi-
tion w ∈ Pos(g). The intuition behind this method is that variables in g reflect
possible discrepancies between the canonical form and the instantiated output
template, and, thus, subterms (t↓Δ,B)|π(w) represent, to some extent, a possible
anomalous subterm of t↓Δ,B .

It is worth noting that the use of l̂ggΔ∪B is generally preferable to the adop-
tion of a pure syntactic lgg algorithm since it minimizes the number of variables
in g (and, hence, the points of discrepancy between t ↓Δ,B and O(σin ↓Δ,B),
which facilitates isolating erroneous information. Let us see an example.

Example 5. Let us consider the equational simplification f(0, 0) →+
Δ,B c(1, 3)

w.r.t. an equational theory (Σ,Δ ∪ B) in which the operator c is declared com-
mutative. Let Φ = f(X, Y) {true} → c(Z, 1) {even(Z)} be a functional assertion,
where predicate even(Z) checks whether Z is an even number.

Then, (f(0, 0), c(1, 3)) 	|= Φ (with input substitution σin = {X/0, Y/0}), since
variable Z in the output template c(Z, 1) is bound to 3 and even(3) is false.
Then, l̂ggΔ∪B(c(1, 3), c(Z, 1)) returns a pair ((g, σ1, σ2), π) such that g con-
tains the minimum number of variables. For instance, l̂ggΔ∪B(c(1, 3), c(Z, 1)) =
((c(Z, 1), {Z/3}, {}), {1 → 2}) and FunErr(μ,Φ) = {2}, which precisely detects
that the term c(1, 3)|2 = 3 is what causes the violation of Φ.

By contrast, the computation of a purely syntactic least general generaliza-
tion would have delivered the more general result (c(W, Z), {W/1, Z/3}, {}) and
the larger functional error symptom set {1, 2} (which represents the positions of
both arguments of the canonical form c(1, 3)), thereby hindering the isolation
of the erroneous subterm of c(1, 3).

Example 6. Consider again the extended rewrite theory of Example 3. Then, the
functional assertion

Φ = updateStatus(ACC:Account){isPremium(ACC:Account)}→ ACC:Account{true}
states that premium account statuses (as well as other information in the
account) remain unchanged after updateStatus is invoked. Thus, Φ is not sat-
isfied in the following equational simplification

updateStatus(< Bob | 95-100 | active >) →+
Δ,B < Bob | -5 | blocked >
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with input substitution σin = {ACC/< Bob | 95-100 | active >} and
σin ↓Δ,B= {ACC/< Bob | -5 | active >}. Hence, there is a single (syntatic)
least general generalizer

l̂ggΔ∪B(< Bob | -5 | blocked >,ACC(σin ↓Δ,B)) =
= ((< Bob | -5 | X:Status >,{X/blocked},{X/active}),{3 �→ 3})

where FunErr(μ,Φ) = {3} is the functional error symptom set that pinpoints
the anomalous status on Bob’s premium account < Bob | -5 | blocked >.

Finally, an assertional specification A for a rewrite theory R = (Σ,E,R) is
a set of functional and system assertions for R. By F(A), we denote the set of
functional assertions in A, while S(A) denotes the set of system assertions in A.
By s |= S(A) (resp. μ |= F(A)), we denote that s satisfies all assertions in S(A)
(resp. μ satisfies all assertions in F(A)).

In the following section, we outline our previous work on trace slicing for
RWL theories.

4 Enhancing Trace Slicing

Trace slicing [1–5] is a transformation technique for RWL theories that can
drastically reduce the size and complexity of entangled, textually-large execution
traces by focusing on selected computation aspects. This is done by uncovering
data dependences among related parts of the trace w.r.t. a user-defined slicing
criterion (i.e., a set of symbols that the user wants to observe). This technique
aims to improve the analysis, comprehension, and debugging of sophisticated
rewrite theories by helping the user inspect involved traces in an easier way. By
step-wisely reducing the amount of information in the simplified trace, it is easier
for the user to locate program faults because pointless information or unwanted
rewrite steps have been automatically removed. Roughly speaking, in our slices,
the irrelevant subterms of a term are omitted, leaving “holes” that are denoted
by special variable symbols •.

A term slice of the term s is a term s• that hides part of the information in s;
that is, the irrelevant data in s that we are not interested in are simply replaced
by (fresh) •-variables of appropriate sort, denoted by •i, with i = 0, 1, 2, . . ..

The next auxiliary definition formalizes the function Tslice(t, P ), which
allows a term slice of t to be constructed w.r.t. a set of positions P of t. The
function Tslice relies on the function fresh• whose invocation returns a (fresh)
variable •i of appropriate sort that is distinct from any previously generated
variable •j .

Definition 5 (Term Slice). Let t ∈ τ(Σ,V) be a term and let P be a set
of positions s.t. P ⊆ Pos(t). Then, the term slice Tslice(t, P ) of t w.r.t. P is
computed as follows.

Tslice(t, P ) = recslice(t, P, Λ), where
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recslice(t, P, p)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(recslice(t1, P, p.1), . . . , recslice(tn, P, p.n))
if t=f(t1, . . . , tn), n≥0, and p ∈ P̄

t if t ∈ V and p ∈ P̄

fresh• otherwise

and P̄ = {u | u ≤ p ∧ p ∈ P} is the prefix closure of P .

Roughly speaking, the function Tslice(t, P ) yields a term slice of t w.r.t. a
set of positions P that includes all symbols of t that occur within the paths
from the root of t to any position in P , while the remaining information of t is
abstracted by means of •-variables.

Example 7. Consider the specification of Example 1 and the state t =
< Alice | 50 | active > ; < Bob | 100 | active > ; debit(Alice,20).
Consider the set P = {1.2, 3.1, 3.2} of positions in t. Then,

Tslice(t, P ) = < •1 | 50 | •2 > ; •3 ; debit(Alice,20).

Trace slicing can be carried out forward or backward. While the forward
trace slicing results in a form of impact analysis that identifies the scope and
potential consequences of changing the program input, backward trace slicing
allows provenance analysis to be performed; i.e., it shows how (parts of) a pro-
gram output depend(s) on (parts of) its input and helps estimate which input
data need to be modified to accomplish a change in the outcome. While depen-
dency provenance provides information about the origins of (or influences upon)
a given result, the notion of descendants is the key for impact evaluation. In the
sequel, we focus on backward trace slicing.

Let us illustrate by means of an example how it can help the user think
backwards (i.e., to deduce the conditions under which a program produces some
observed data).

Example 8. Consider the BANK system module of Example 2 and the computa-
tion trace Cbank in program BANK that starts in the initial state

< Alice | 50 | active > ; < Bob | 20 | active > ; < Charlie | 20 |

active > ; < Daisy | 20 | active > ; debit(Alice,80) ; credit(Alice,20)

and ends in the final state

< Alice | - 10 | blocked > ; < Bob | 20 | active > ; < Charlie | 20 |

active > ; < Daisy | 20 | active >

Let us assume we manually define as the slicing criterion the negative balance
-10 for client Alice, which is a possible malfunction of the BANK specification,
since regular account balances must be non-negative numbers according to the
semantics intended by the programmer. Therefore, we execute trace slicing on
the trace Cbank w.r.t. the slicing criterion < •1 | -10 | •2 > ; •3 ; •4 ; •5
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that observes the negative balance of Alice’s account in order to determine the
cause of such a disfunction. The output trace slice delivered by the trace slicing
technique is as follows

< •1 | 50 | •2 > ; •3 ; •4 ; •5 ; debit(•1,80) ; credit(•1,20)credit•→
< •1 | 70 | •2 > ; •3 ; •4 ; •5 ; debit(•1,80)debit•→
< •1 | -10 | •2 > ; •3 ; •4 ; •5

which greatly simplifies the trace Cbank by only showing the origins of the
observed negative balance while excluding all the bank accounts that are not
related to Alice.

Throughout this paper, we assume the existence of a backwardSlicing(s0 →∗
Δ∪B

sn, s•
n) function as defined in [8] that yields the backward trace slice s•

0•→∗

s•
n of the computation trace s0 →∗

Δ∪B sn w.r.t. a term slice s•
n of sn. This

function relies on an instrumentation technique for Maude steps that allows the
relevant information of the step, such as the selected redex and the contractum
produced by the step, to be traced explicitly despite the fact that terms are
rewritten modulo a set B of equational axioms that may cause their components
to be implicitly reordered in the original trace. Also, the dynamic dependencies
exposed by backward trace slicing are exploited in [8] to provide a (preliminary)
program slicing capability that can identify those parts of a Maude theory that
can (potentially) affect the values computed at some point of interest.

The main idea of this work is to enhance backward trace slicing by using
runtime assertion checking to automatically identify the relevant symbols to be
traced back from the erroneous states of the trace, that is, those states where an
assertion is falsified. In conventional program development environments, when
a given assertion check fails, the programmer must thoughtfully identify which
program statements impacted on the value(s) causing the assertion failure. An
additional advantage of blending trace slicing and runtime checking together is
that the runtime checking not only helps automate the trace slicing, but trace
slicing also helps answer the question that immediately arises when an assertion
is violated. This question is “What caused it?”. By using our enhanced, backward
trace slicing methodology, error diagnosis is greatly simplified because accurate
criteria for slicing are automatically inferred from the computed error symptoms
that immediately bootstrap the slicing process so that much of the irrelevant data
that does not influence the falsified assertions is automatically cut off.

5 Integrating Assertion-Checking and Trace Slicing

Dynamic assertion-checking and trace slicing can be smoothly combined together
to facilitate the debugging of ill-defined rewrite theories. In this section, we for-
mulate an assertion-checking methodology to verify whether a given computa-
tion trace C meets the requirements formalized by an assertional specification
A. In the case when a functional or system assertion A ∈ A fails to be satis-
fied over C, a fragment P of C (that exhibits the anomalous behaviour w.r.t.
A) is returned together with the corresponding set of system/functional error
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symptoms. Then, we show how backward trace slicing can take advantage of the
computed error symptoms to produce small, easy-to-inspect computation slices
of all those fragments that have been proven to be erroneous by the assertion-
checking methodology.

5.1 Dynamic Assertion-Checking

We first extend the notion of satisfaction of the functional assertions to state
equational simplifications (i.e., equational simplifications that reduce a state into
its canonical form), where the state may contain an arbitrary number of function
calls that might eventually be simplified. For this purpose, we introduce the
following auxiliary definitions. Given R = (Σ,E,R), with E = Δ ∪ B, the term
t is an equational redex in R if there is (λ = ρ if C) ∈ Δ and substitution σ such
that t =B λσ. Given R and a system state s in R, Top(s) is the set of minimal
positions w ∈ Pos(s) such that s|w is an equational redex in R. Formally,

Top(s) = {w ∈ Pos(s) |s|w is an equational redex and
�w′ ≤ w s.t. s|w′ is an equational redex}.

Roughly speaking, Top(s) selects all the positions in Pos(s) that identify
those outermost subterms of s to be equationally simplified into their canonical
form in order to compute s↓Δ,B . In other words, given the equational simplifica-
tion of the state s, S : s →+

Δ,B s ↓Δ,B , each subterm s|w, with w ∈ Top(s),
is reduced to (s ↓Δ,B)|w in S. This allows functional assertions to be effec-
tively checked over each equational simplification s|w →+

Δ,B (s ↓Δ,B)|w such
that w ∈ Top(s).

Definition 6 (Extended Functional Assertion Satisfaction). Let R =
(Σ,E,R) be a rewrite theory, with E = Δ ∪ B, and let s be a system state in R
such that Top(s) 	= {Λ}. Let s →+

Δ,B s ↓Δ,B be an equational simplification for
the state s in R. Let A be an assertional specification for R. We say that F(A)
is satisfied in s →+

Δ,B s ↓Δ,B (in symbols, s →+
Δ,B s↓(Δ,B)|= F(A)), iff for each

w ∈ Top(s), s|w →+
Δ,B (s↓Δ,B)|w |= F(A).

System and functional error symptoms (whose definitions have been given
in Sect. 3 for a single system/functional assertion) can be naturally extended to
assertional specifications in the following way.

Definition 7 (State Error Symptoms). Let R = (Σ,E,R), with E = Δ∪B,
be a rewrite theory. Let A be an assertional specification for R. Let s be a state
of R. Then,

SysErr(s,A) =
⋃

Θ∈S(A) SysErr(s,Θ)
FunErr(s →+

Δ,B s↓Δ,B ,A) =
⋃

Φ∈F(A),w∈Top(s) {(s|w →+
Δ,B (s↓Δ,B)|w,

FunErr(s|w → (s↓Δ,B)|w, Φ))}
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The notion of satisfaction for an assertional specification in a given compu-
tation is then formalized as follows.

Definition 8 (Satisfaction of an Assertional Specification). Let R =
(Σ,E,R), with E = Δ ∪ B, be a rewrite theory and C be a computation in R.
Let A be an assertional specification for R. Then the specification A is satisfied
in C iff

– for each state s in C that is a canonical form w.r.t. Δ modulo B, s |= S(A);
– for each state s in C that is not a canonical form w.r.t. Δ modulo B, s →+

Δ,B

s↓(Δ,B)|= F(A).

To check an assertional specification A in a given computation C, we can
simply traverse C and progressively evaluate system assertions over states
and functional assertions over state equational simplifications, respectively.
Definition 9 formalizes this methodology into the function check(C,A) that takes
as input a computation C and an assertional specification A and delivers a triple
(P,Err ,flag) where P is a prefix of C, Err is a set of functional or system error
symptoms w.r.t. A, and flag ∈ {none, sys, fun}.

Roughly speaking, function check(C,A) returns (P,Err ,flag) as soon as it
encounters either a state or a state equational simplification in which A is not
satisfied: P represents a prefix of C that reaches a state in which a system/func-
tional assertion is violated, Err specifies the associated error symptom set, and
flag declares the nature of the computed symptoms (fun stands for functional
error symptoms, sys for system error symptoms, and the keyword none indicates
that no symptom has been identified).

Definition 9 (Assertion Checking). Let R = (Σ,E,R), with E = Δ∪B, be a
rewrite theory and C be a computation in R. Let A be an assertional specification
for R.

check(C, A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ε, ∅,none) if C = ε

(μ →∗
R,B C′′,Err ,flag) if C = μ →∗

R,B C′ and μ |= F(A)

and (C′′,Err ,flag) = check(C′, A)

(μ,FunErr(μ, F(A)), fun) if C = μ →∗
R,B C′ and μ �|= F(A)

(s →R,B C′′,Err ,flag) if C = s →∗
R,B C′, s = s ↓(Δ,B)

and s |= S(A)

and (C′′,Err ,flag) = check(C′, A)

(s,SysErr(s, S(A)), sys) if C = s →∗
R,B C′, s = s ↓(Δ,B)

and s �|= S(A)

where μ = s →+
Δ,B s ↓Δ,B is a non-empty equational simplification for s.

The runtime checking methodology formalized in Definition 9 can be inter-
preted either as an asynchronous (and trace-storing) technique or as a synchro-
nous one (by considering that the input trace C is lazily generated as succes-
sive Maude steps are incrementally consumed by the calculus). In the following
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section, we formalize a truly synchronous methodology where traces, or rather
whole search trees, can be stepwisely examined in a forward direction, reporting
a violation at the exact step where it occurs.

5.2 Runtime Assertion-Based Backward Trace Slicing

Given a conditional rewrite theory R = (Σ,E,R), with E = Δ∪B, the transition
space of all computations in R from the initial state s0 can be represented as
a computation tree,3 TR(s0). RWL computation trees are typically large and
complex objects that represent the highly-concurrent, nondeterministic nature
of rewrite theories.

Fig. 2. The analyze function.

Our methodology checks rewrite theories w.r.t. an assertional specification
A at runtime by incrementally generating and checking the computation tree
3 In order to facilitate trace inspection, computations are visualized as trees, although

they are internally represented by means of more efficient graph-like data structures
that allow common subexpressions to be shared.
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TR(s0) until a fixed depth. In fact, the complete generation of TR(s0) is generally
not feasible since some of its branches may be infinite as they encode nontermi-
nating computations. The general analysis algorithm, which is specified by the
routine analyze(s0,R,A, depth), is given in Fig. 2. We use the following auxil-
iary notation: given a position w of a term t, Posw(t) = {w.w′ | w.w′ ∈ Pos(t)}.
The computation tree is constructed breadth-first, starting from a tree T that
consists of a single root node s0. At each expansion stage, the leaf nodes of the
current T are computed by the function frontier(T ). Expansion of an arbitrary
node s is done by deploying all the possible Maude computation steps stemming
from s that are given by mS(s). Whenever a Maude step M is produced, it is
also checked w.r.t. the specification A by calling check(M,A) that computes
the triple (P,Err ,flag). According to the computed flag value, the algorithm
distinguishes the following cases:

flag = none. No error symptoms have been computed; hence, A is satisfied in
the Maude step M, and M can safely expand the node s by replacing s with
the path represented by M (via the invocation of expand(T , s,M)), thereby
augmenting T .

flag = sys. In this case, check returns a set of system error symptoms Err
together with a computation P (which is a prefix of the Maude step M)
that violates a system assertion of A. The computation s0 →∗

R∪Δ,B P is
then generated and backward sliced w.r.t. a term slice l• of the last state of
P. This term slice conveys all the relevant information that we automatically
retrieve by using Definition 5 from the (system) error symptom w selected
by the function selectSysSymptom(Err), while all other symbols in l are
considered meaningless and simply pruned away. This way, the algorithm
delivers a trace slice s•

0•→ P• that removes from the computation all of the
information that does not affect the production of the chosen error symptom.

flag = fun. Some functional assertions have been violated by the considered
Maude step M. Hence, the algorithm selects a functional error symptom
(t →+

Δ,B t↓Δ,B , L) and returns the backward trace slicing of t →+
Δ,B t↓Δ,B

w.r.t. a term slice of t↓Δ,B that includes all the subterms of t↓Δ,B that are
rooted at positions in L. As explained in Sect. 3.2, these subterms indicate
possible causes of the assertion violation.

It is worth noting that, in our framework, we do not attach any specific
semantics to selectSysSymptom and selectFunSymptom functions since many
selection strategies can be specified with different degrees of automation and
associated tradeoffs. For instance, we can simply obtain a fully automatic selec-
tion strategy by selecting the first symptom in Err . On the other hand, a purely
interactive strategy can be implemented by asking the user to choose a symptom
at runtime.

Finally, if the analyze function terminates without detecting any assertion
violation, then a (verified) tree T is delivered that encodes the first depth levels
of the computation tree TR(s0); otherwise, the trace slice of the first computation
that is found to violate an assertion is delivered. When multiple assertions are
violated, analyze can be invoked iteratively.
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5.3 The ABETS system

The assertion-based slicing methodology of Sect. 5.2 has been fully implemented
in a prototype tool we call ABETS (Assertion-BasEd Trace Slicer), which is
publicly available at http://safe-tools.dsic.upv.es/abets together with some doc-
umentation and examples. The implementation comprises: (i) a front-end con-
sisting of a RESTful Web service written in Java, with an intuitive user interface
based on AJAX technology written in HTML5, Canvas, and Javascript; and
(ii) a back-end that implements the proposed trace analysis methodology in
Maude. The implementation of the backend consists of about 350 Maude func-
tion definitions (approximately 2700 lines of source code) that partially reuse the
slicing and exploration machinery developed in previous work [4,5,8], extending
it with the constraint-checking capabilities described in this paper.

To perform dynamic analysis with ABETS, the user must provide (i) the
Maude program to analyze together with an initial state, and (ii) the list of
assertions to be checked together with the module that defines the extra predi-
cates that are used in the assertions. In order to non-deterministically search for
assertion violations, the tree expansion is carried out up to a given depth bound
that is measured in Maude steps. Whenever an assertion fails to be satisfied in
the computation tree, the user is given an automatically generated counterex-
ample trace slice that he/she can fully inspect, query, and slice further.

In ABETS, the trace slices can be easily navigated and all of the relevant infor-
mation of the rewrite steps involved (e.g., equation/rule applications, matching
substitutions, redex/contractum positions) is recorded and made available to
the user. Furthermore, by disregarding rules and equations that are not used
in the computed trace slice, ABETS can also generate a dynamic program slice
where only potentially faulty fragments of the code are kept. Our preliminary
experience has shown that the synergistic capabilities of ABETS can provide a
very powerful Swiss knife in error diagnosis and debugging. The system allows
assertion checking to be disabled when the functions/states they refer to are
no longer under consideration so that no overhead is incurred after program
analysis.

For demonstration purposes, let us analyze the BANK system of Example 2
together with an assertional specification ABANK that includes the system asser-
tion Θ of Example 4 and the functional assertion Φ of Example 6. Let us consider
the expansion of all Maude steps that originate from the initial state

s0 = < Alice | 20 | active > ; < Bob | 50 | active > ; < Charlie | 10 |

active > ; debit(Alice,30) ; transfer(Bob,Charlie,60)

This is achieved in ABETS by calling analyze(RBANK,ABANK, 1), where RBANK is
the rewrite theory specified by the BANK system module.

The assertion checking algorithm immediately discovers that Θ is not satisfied
in the following Maude step M

http://safe-tools.dsic.upv.es/abets
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s0
debit−→ updateStatus(< Alice | 20 - 30 | active >) ; < Bob | 50 | active

> ; < Charlie | 10 | active > ; transfer(Bob,Charlie,60)

−→+ < Alice | -10 | blocked > ; < Bob | 50 | active > ; < Charlie |

10 | active > ; transfer(Bob,Charlie,60)

since Alice’s nonpremium account has a negative balance. Here, the transition
−→+ represents the equational state simplification that follows the rewrite step
from s0 by using the debit rule.

Then, a system error symptom is automatically computed by the tool, which
unambiguously signals the anomalous subterm < Alice | -10 | blocked > of the
last state of M, and produces the associated term slice

l• = < Alice | -10 | blocked > ; •1 ; •2 ; •3
Finally, the algorithm automatically generates the backward trace slice of M
w.r.t. l•, that is,

< Alice | 20 | active > ; •1 ; •2 ; debit(Alice,30) ; •3 •→+

< Alice | -10 | blocked > ; •1 ; •2 ; •3
which suggests an erroneous implementation of the debit rule. Indeed, debit
always authorizes withdrawals from a nonpremium account even when the
intended payout exceeds the account balance, which is in contrast with the state-
ment asserted by Θ.

Similarly, by re-executing the analysis algorithm on a mutation of the original
BANK module that fixes the buggy debit rule, we can also discover a violation
of the functional assertion Φ that detects an anomalous behaviour of function
updateStatus: in fact, updateStatus blocks every bank account with a nega-
tive balance, while premium accounts should always be kept active. The deliv-
ered trace slice is shown in Fig. 3 toghether with the achieved reduction (87 %).

Fig. 3. Trace Slice after refuting the functional assertion Φ of Example 6.
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Finally, by running the program slice option of ABETS, all program statements
related to the updateStatus function are automatically identified and isolated
in a program slice, since they can (potentially) cause the erroneous program
behavior.

6 Conclusions and Further Work

We have formalized a framework that integrates dynamic slicing and runtime
assertion checking to help diagnose programming errors in rewriting logic theo-
ries. A key feature of our approach is that the assertions (or more precisely, their
runtime checks) are used to automatically synthesize advisable slicing criteria
from inferred error symptoms. Our methodology smoothly blends in with the
general framework for the analysis and exploration of rewriting logic computa-
tions that we developed in previous research [8].

The techniques we have developed are adequately fast and usable when
applied to programs of several hundred lines, yet there are certainly several
ways that our prototype implementation can be improved. For instance, one
issue of interest would be to properly extend the current linear representation
of Maude steps in ABETS, which intentionally obviates recording the traces for
the recursive evaluation of conditions for the sake of efficiency. Other planned
improvements are to add more flexibility to the selection and processing of vio-
lated assertions and to refine the slicing criterion C that we infer from the falsified
functional assertion I {ϕin} → O {ϕout}, by further generalizing C using ϕout

to reduce the number of variables of interest. Finally, we are also working on
extending the system to deal with (object-oriented) Full Maude specifications.
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Abstract. Theory and computational modeling have played important roles in
neuroscience. Models of neural systems range from coolly abstract to scrupu-
lously biologically detailed, but the overwhelming majority have been imple-
mented using imperative programming languages. Very recently, declarative
programming approaches have entered the realm of computational neuroscience,
including models implemented in Maude. The declarative approach promises
deeper insights into neurobiology, especially into the pathological processes that
underlie neurological disorders. This chapter will provide a very short overview
of imperative and declarative modeling in neuroscience, and will then describe a
specific example of a model of a key neural process implemented in Maude. The
Maude model provides potential new insights that would be difficult to obtain
using an imperative approach.

Keywords: Neuroscience � Neurobiology � Emotion � Learning � Fear
conditioning � Extinction � Marijuana � Endocannabinoids � Post-traumatic
stress disorder

1 Introduction

Readers of this volume will be aware of the essential difference between imperative and
declarative programming as tools for modeling systems, and for modeling the processes
implemented by systems. They will also know that imperative tools are usually pre-
ferred for computationally intensive simulations of specific behaviors, while declarative
tools are better for exploring and analyzing a system over a much fuller range of its
possible behaviors. Declarative tools are particularly useful for the analysis of com-
plicated systems and processes. To date, declarative tools have been applied mainly in
the analysis of complicated engineered systems, but biological systems can be
extraordinarily complicated and the analytical capabilities of declarative modeling tools
can be brought profitably to bear on them as well.

The brain is arguably the most complicated biological system, and one to which
declarative modeling tools should be applied. The main purpose of this chapter is to
summarize a declarative model of an important neural process, in order to illustrate the
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power of the declarative approach and to motivate its continued use in neuroscience.
But computer modeling has been an important component of neuroscientific research
for some time and the declarative approach is very new. Before describing the
declarative modeling example that is the focus of this chapter, it is important briefly to
outline previous, imperative computational modeling approaches in neuroscience so
that the new declarative approach can be properly situated.

Whether imperative or declarative, computational models in neuroscience can be
either abstract or biologically detailed, and they can be either concept-driven or
data-driven. The declarative model to be described can be characterized as abstract and
data-driven, but declarative models could take various forms just as the imperative
models before them have done and continue to do.

It is difficult to draw a line separating abstract from biologically detailed models in
computational neuroscience. Many of the most detailed models of single neurons have
elegant theoretical underpinnings. Still, a distinction between them can be made. Some
of the most influential abstract models are concept driven, in the sense that the impetus
for model creation is an idea about the nature of the neural system being modeled,
whether that system is a single neuron with many ion channels or an interconnected
network of many neural units. Concept-driven models are usually abstract, but what
they lack in terms of biological detail they make up in theoretical elegance. Despite
that, concept-driven models have not contributed greatly to the kind of understanding
that leads to treatments for neurological disorders.

At the other end of the spectrum, the impetus for the creation of biologically
detailed models is a desire to see what happens when many isolated facts concerning a
neural system are brought together within a consistent computational framework.
Biologically detailed models are generally data-driven. They tend to focus more on
single neurons or small groups of neurons rather than on neural networks, although
hybrid models also exist in which detailed models of neurons are embedded within
larger networks of abstract units. Data-driven models can provide insight into specific
aspects of the behavior of a neural system and this insight often has relevance to
possible treatments for neurological disorders. As mentioned, the great majority of
models in computational neuroscience so far, whether concept- or data-driven, have
been implemented using imperative programming languages. The next section provides
a very brief overview of the types of models that have enlightened neuroscience to date.

2 Brief Survey of Imperative Models in Neuroscience

Biologically detailed modeling in computational neuroscience rests on the twin pillars
of the Hodgkin-Huxley conductance-based model of neuronal action potentials [1],
and the Rall cable-theory model of neuronal membranes [2]. Essentially, the
Hodgkin-Huxley theory explains how specific ion channels (membrane-bound pro-
teins) actively change their conductances as functions of membrane voltage and time
and thereby bring about the action potentials that propagate down the axons of neurons
(axons begin at neuronal somata and end in synaptic terminals; they provide the outputs
from neurons). The Rall cable theory, based on the theory of transmission of electrical
signals down long cables, explains how synaptic potentials propagate and integrate in
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the dendrites and somata of neurons as functions of the resistance and capacitance of
neuronal membranes (dendrites convey synaptic potentials to the somata and provide
the inputs to neurons). These seminal models have been greatly extended by adding
new ion channels as they are discovered, increasing the realism and complexity of
neuronal membrane geometries, exploring interactions between multiple neurons, and
in many other ways [3].

Abstract modeling in computational neuroscience began with the work of Ratliff
and Hartline [4] on the visual system of the Limulus, which resulted in the theory of
lateral inhibition. This theory explains how a network of visual neurons that have
inhibitory connections could compute a function approximating a second derivative in
space that essentially separates the edges and contours from the uniform regions in an
image [5]. Subsequently, similar mechanisms have been described in several other
sensory systems including the auditory and somatosensory systems [6].

The inhibition in lateral inhibitory networks can be feed-forward or recurrent. In the
feed-forward case an input that excites a given model neuron (unit) will inhibit the units
to the side (lateral) of that unit, while in the recurrent case the units inhibit one another.
In the recurrent case, closed loops and positive (excitatory) feedback can occur
(because inhibition of inhibition is excitation), so recurrent lateral inhibition is gen-
erally used in conjunction with bounded nonlinear units. The resulting recurrent net-
work can have multiple stable states as the feedback interactions push some units to the
lower bound, others to the upper bound of the nonlinear unit activation function. Such
networks can form circumscribed regions of active units and might underlie such
functions in the brain as detection and selection [7].

Recurrent, nonlinear networks with excitatory or mixed excitatory/inhibitory con-
nections can also have multiple stable states. The best known examples were described
by Hopfield [8, 9]. Hopfield construed the stable states of his network as memories, and
he showed that the stable states could correspond to a set of desired memory patterns
when the strengths (or weights) of the connections between the units in the network
equaled the covariations between the elements of the patterns. The Hopfield model has
provided potential new insights into the operation of the hippocampus, a brain region
closely associated with memory [10].

While the connection weights in Hopfield networks are set directly, many other types
of neural networks require adaptive learning algorithms to set their weights. In so called
unsupervised learning, a network learns to categorize its inputs on the basis of exposure to
the input alone [11]. The learning is unsupervised in the sense that there are no constraints
placed on the responses of the units, and the network is essentially free to choose its own
categories. One very nice property of these networks is that they form a spatial structure in
which units that respond to inputs of the same or similar category are near each other in
the network, essentially forming a map over the network. Such synthetic maps have
structures similar to the spatial structures found in many map-like brain regions [12].

In supervised learning, in contrast, each input pattern is matched with a required
output pattern, and the network is trained on the basis of the error between the required
output and its actual output over many learning trials [13]. Networks trained using
supervised learning can develop nonuniform distributed representations in which the
required input/output transformation is achieved, but the various components of the
transformation are divided up and distributed in seemingly random ways over the units
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in the network. Such representations are counterintuitive but they resemble many of the
non-map representations that are observed in the brain [14, 15].

It has been proven that units in networks trained using supervised learning algo-
rithms, which may indeed perform a specific input/output transformation, actually also
compute an estimate of the probability that a given input belongs to an output construed
as a category [16]. Supervised training can produce units that estimate probabilities and
in so doing resemble the actual behavior of neurons in certain brain regions [17]. The
probabilistic view of neural computation has been extended to networks that update
beliefs in terms of prior knowledge and current input [18]. This paradigm has been used
to model the behavior of neurons in the visual system that recognize images [19] or
predict the next location of a moving target [20].

All of the computational modeling very briefly outlined in this section was done
using imperative programming. Declarative programming is beginning to catch on in
biology [21], and some interesting models of biological systems have been imple-
mented using Maude [22, 23]. (Maude, for those who may not know her, is the
declarative programming language due to José Meseguer, who is the individual being
honored at the Festschrift symposium from which this chapter proceeds.) Despite its
growing popularity in biology more broadly, declarative programming has been, with a
few exceptions [e.g. 24], nonexistent in neuroscience.

I myself (the author of this chapter) had been deeply involved in computational
neuroscience of the more abstract variety for many years, and wrote an introductory
textbook on it [25], but had also been searching for a computational modality better
suited to analysis of the complicated details associated with real neurobiological and
neuropathological processes. I then had the good fortune to audit a course taught by
JoséMeseguer on Maude, during which he demonstrated to the class how Maude could
marshal the forces of algebra to help us “reason about” complicated systems. José
expressed great enthusiasm for my ideas on using Maude to study neurobiological
processes, and he and his students were generous in providing guidance and help to me
as I got started. Since then I have been active in applying Maude to various problems in
neurobiology. Most of my work so far has been modeling Alzheimer Disease, which is
by far the most lethal neurological killer [26–29]. My lab is currently modeling other
neurobiological processes both normal and abnormal.

To provide an example of how we are applying declarative programming in
computational neuroscience, the rest of this chapter provides a summary of a model of
emotional learning implemented in Maude [30]. This specific example will show how
Maude, and declarative programming in general, naturally provides analysis capabil-
ities of great utility in the effort to understand complicated neurobiological processes.
This example certainly will not exhaust the possibilities for declarative programming in
the analysis of neurobiological processes, but it will illustrate its application to a class
of problems that arises frequently in neuroscience.

Studies of a neurobiological process often uncover seemingly contradictory and
inconsistent findings, where it appears that an essential component of the process does
the opposite of what would be expected given the observed outcome of the process, or
that a component that contributes to process outcome with one effect undoes its own
contribution with another effect. Of course, findings on a neurobiological system can
seem inconsistent because they are actually wrong, but another possibility is more
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interesting. It is that the findings are right but seem inconsistent because our view of the
system is limited, whereas if we could expand our view we might see that the findings
actually fit within a harmonious whole. Declarative tools including Maude are valuable
in neurobiology because they facilitate an expanded view of a system by enumerating
all possible system configurations. Through the use of such tools it is sometimes
possible to see that component effects that seem antithetic given a limited view of a
process are instead seen as consonant in many process configurations, and further, that
analysis of those configurations can expand our view of the outcome of the neuro-
biological process. The emotional learning example described throughout the rest of
this chapter will demonstrate how Maude can be used to generate such an expanded
view of a neurobiological process. In order to appreciate this example it will be nec-
essary to describe the emotional learning context in some detail.

3 Declarative Model of Extinction of Fear Conditioning

It could be argued that fear is the mother of all emotions. It certainly confers survival
advantage, by keeping animals away from threatening but avoidable situations. Our
knowledge of the neurobiological basis of emotion, and particularly of fear, has been
greatly increased by the neuroscientist Joseph LeDoux [31]. To study fear scientifically
in lab animals, LeDoux and others pioneered the use of the fear conditioning paradigm
[32–34]. The goal of psychological conditioning in general is to cause an animal to
associate a normally neutral stimulus with a normally evocative stimulus so that, after
conditioning, presentation of the previously neutral stimulus will evoke the same
response as the normally evocative stimulus. In the parlance of psychological condi-
tioning research, the normally neutral and evocative stimuli are known respectively as
the conditioned stimulus (CS) and the unconditioned stimulus (US), while the
responses to the CS and the US are known respectively as the conditioned response
(CR) and the unconditioned response (UR). The fear conditioning paradigm is con-
sistent with this general framework.

In fear conditioning, a laboratory animal (usually a rat) is placed in a cage, the floor
of which can be electrified to deliver a mild shock. The natural response of a rat to a
shock is to become immobile, or to freeze. To accomplish fear conditioning, a naïve rat
(one without any prior experimental conditioning) is placed in a cage and a shock
(US) and an audible tone (CS) are delivered together. The rat naturally freezes (UR).
Thereafter the rat will freeze (CR) even if the tone is delivered without shock. Such
successful fear conditioning requires only one trial in rats, but the conditioning is not
necessarily permanent. Repeated presentation of the tone without the shock will cause
response extinction, such that the CS by itself no longer evokes the CR. But extinction
is not the same as forgetting. For example, if an extinguished rat is placed in a different
cage it will again produce the CR in response to the CS. In extinction the rat has
essentially learned that it need not respond to the CS in a specific context, but it has not
forgotten the association of CS and US. All of this is of importance to the neuroscience
of emotional learning and it also has practical implications.

Post-traumatic stress disorder (PTSD) has received renewed attention in this era of
wars and atrocities, but a recent historical survey argues that it is not a new
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phenomenon (http://www.vva.org/archive/TheVeteran/2005_03/feature_HistoryPTSD.
htm). PTSD is characterized as a stress response that persists long after the initial
trauma that caused it has terminated (http://www.nimh.nih.gov/health/topics/post-
traumatic-stress-disorder-ptsd/index.shtml). In important ways PTSD resembles a
conditioned fear response that is resistant to extinction, and studies of fear conditioning
and extinction are leading to potential new insights into this prevalent disorder [35].
One intriguing finding is that extinction of fear conditioning in mice is impaired by a
genetic manipulation that blocks the normal functioning of the endogenous cannabi-
noid system [36]. Endogenous cannabinoids are the brain’s own marijuana, or at least
the main active constituent of marijuana, which is Δ9-tetrahydrocannabinol [37].
Further work in rodents confirms that suppression of endocannabinoid functioning
impairs extinction [38] while enhancement of endocannabinoid functioning facilitates
extinction [39]. Clinical trails in humans indicate that oral Δ9-tetrahydrocannabinol is
effective in the treatment of PTSD [40].

On the neurobiological level the link between endocannabinoids and extinction
presents a paradox, the nature of which cannot be appreciated without delving into the
details. The brain region most closely associated with fear conditioning and extinction
is the amygdala, an almond-shaped structure located in the temporal lobe of the
cerebrum [41]. Seen from the outside, the amygdala appears to take input related to
sensory signals including the US and CS of fear conditioning, and to produce output
leading to fear responses such as the UR and CR of fear conditioning. Seen from the
inside, the amygdala is a complicated structure composed of many sub-regions each
containing many neural types. The lateral amygdala is one such sub-region, and among
its neural types are excitatory projection neurons and inhibitory interneurons. The
projection neurons, on the one hand, are responsible for transferring sensory signals
from the input to the output stage of the amygdala. A key event in the acquisition of
fear conditioning occurs when these projection neurons learn to respond to the CS as
well as to the US, after which they can cause a CR to the CS alone. The interneurons,
on the other hand, are responsible for inhibiting the projection neurons under certain
circumstances, including those related to extinction of fear conditioning.

Here is the paradox: the function of endogenous cannabinoids is to weaken the
inhibitory connection from the inhibitory to the projection neurons in the lateral
amygdala. This would seem to oppose, rather than promote, extinction. The paradox is
that endocannabinoids promote extinction on the behavioral level, but their neuro-
biological action is to suppress inhibition of (i.e. to excite) the very neurons that
mediate fear conditioning. One way to solve this paradox is to take account of the many
other connections in the amygdala, and to explore whether endocannabinoid sup-
pression of inhibition of the projection neurons could still be compatible with
extinction of fear conditioning. The purpose of the computational modeling study
described in the rest of this section was to do just that. The approach was to write a
specification characterizing the interconnections between the main neural types in the
amygdala, and to search the space of interconnections for configurations that were
compatible both with weakening of the inhibitory connections onto projection neurons
and with extinction. As it turned out, there were many such configurations, and
exploring them in the context of other facts concerning extinction neurobiology led to
potential new insights.
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3.1 Neurobiology of the Amygdala

There are several competing views of the neurobiology of fear conditioning, but they
share a basic common structure. Probably with most well-established framework is the
one by LeDoux and colleagues [42]. A diagram depicting this framework is shown in
Fig. 1.

The diagram shows the pathway from input to output in the amygdala that is
represented computationally in the model. A great deal of data supports the structure,
function, and adaptability, of the amygdala model. This data is summarized in review
articles [32, 33, 42] and in the original modeling article [30]. Briefly, the input and
output stages of the amygdala are, respectively, the lateral nucleus (LA) and the medial
part of the central nucleus (CEm). The intercalated cell mass (ITC), which has lateral
and medial parts (ITCl and ITCm), constitutes the bridge between LA and CEm.
Neurons in ITC are inhibitory. Functionally, LA excites ITCl, ITCl inhibits ITCm, and
ITCm inhibits CEm, so LA excites CEm over this pathway (since inhibition of inhi-
bition is excitation).

The input can be either or both of CS and US, which in the case of fear conditioning
are sensory signals related to sound and pain, respectively. Neural projections carrying
these signals excite neurons in LA. The diagram depicts two LA projection neurons
(LA1 and LA2) and one inhibitory interneuron (LAi); the reason for having two LA
projection neurons is that some do, but others do not, receive input from LA inhibitory
interneurons. Neurons in LA excite neurons in CEm over the ITC bridge described in
the previous paragraph, and neurons in CEm command the fear response through

Fig. 1. Schematic of the neural pathway through the amygdala that mediates fear conditioning.
CS, US, CR, and UR are conditioned or unconditioned stimulus or response. LA1 and LA2 are
units representing each of two projection neurons, while LAi is a unit representing an inhibitory
interneuron, in the lateral amygdala. Other abbreviations also are units that represent neurons in
the corresponding brain region. IL is the infralimbic part of prefrontal cortex, ITCl and ITCm are
the lateral and medial intercalated cell masses of the amygdala, CEm is the central nucleus of the
amygdala, and PAG is the periaqueductal gray matter. Arrows and balls represent excitatory and
inhibitory connections, respectively (this figure is reproduced from [30]).
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activation of neurons in the periaqueductal gray matter (PAG). The fear response
includes freezing but also includes increases in blood pressure, excretion of stress
hormones, etc. This “fear pathway” is normally activated by pain but can be condi-
tioned to stimuli, such as sound, by which it is not normally activated.

Fear conditioning, like other forms of conditioning, requires learning, and learning
in the brain is mediated by changes in the strengths of the synapse between neurons.
Such changes often take the form of long-term potentiation and long-term depression
(LTP and LTD) by which changes in the activity of two interconnected neurons (e.g.
simultaneous increases in activity of both the pre-synaptic and post-synaptic neuron)
lead to long-term change (e.g. increase) in the strength (or weight) of the synapse
between them. Most of the synapses depicted in Fig. 1 are known to undergo both LTP
and LTD. The infralimbic part of the prefrontal cortex (IL) is critical for extinction
[43]. It excites inhibitory neurons in amygdala including LAi, ITCl, and ITCm. The
adaptability of those connections has not been explored experimentally but they are
likely to be adaptive, at least during extinction.

The model uses a descriptive nomenclature for synapses. To take an example,
wCStoLA1 is the weight of the synapse from CS to LA1. The adaptability of the model
can be described succinctly using this nomenclature. Thus, wCStoLAi, wCStoLA1,
wCStoLA2, wLAitoLA1, wLA1toITCl, and wLA2toITCl can undergo LTP during fear
conditioning and LTD during extinction, while wILtoLAi, wILtoITCl, and wILtoITCm
can undergo LTP during extinction with no weight modification allowed during fear
conditioning. The weights wUStoLAi, wUStoLA1, wUStoLA2, wITCmtoCEm,
wITCltoITCm, and wCEmtoPAG are not modifiable. That makes nine adaptable (i.e.
modifiable) synapses in the model.

In the brain, fear conditioning is associated mainly with LTP of the synapses from
CS to LA projection neurons. Since the pathway from LA to CEm (i.e. from input to
output in the amygdala) is net excitatory, an increase in the connection strength from
CS to LA will enable the CS to activate CEm leading to a fear response via PAG. Fear
conditioning also could occur through increase in the connection strength from LA to
ITCl. What about extinction? Extinction could occur through a decrease in the con-
nection strength from CS to LA, essentially undoing any increase that brought fear
conditioning about in the first place. However, crucial experiments show that CS
continues to excite some neurons in LA (and inhibit none) even after extinction [34],
[44, 45]. Then extinction could occur through decrease in the connection strength from
LA to ITCl. The limitation here is that IL is known to be active during and after
extinction and IL excites ITCl, which could override any decrease in LA to ITCl
excitation. In fact, the contribution of IL poses a conundrum on top of the paradox
posed by endocannabinoids.

IL is necessary for extinction, and during the process of extinction its activity
increases. IL also contacts inhibitory neurons in amygdala and could produce extinc-
tion in at least two ways. By exciting ITCm, IL could produce net inhibition of CEm
and so block the fear command. However, IL also excites ITCl, which inhibits ITCm,
so by exciting ITCl it seems that IL would undo its own excitation of ITCm and fail to
produce extinction. IL seems to pursue opposing goals. How does IL promote
extinction if it can undo its own effects? This is the IL conundrum.
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Also, by exciting LAi, IL could inhibit at least LA1 and reduce transmission of the
fear signal, but this leads us back to the endocannabinoid paradox. In the context of the
model, the effect of the endocannabinoid system, which is crucial to extinction, is to
decrease the strength of the inhibitory connection from LAi to LA1. This would
undermine the ability of IL, or of LAi itself, to suppress the response of LA1 and so
promote extinction. This is again the endocannabinoid paradox.

The purpose of the modeling summarized in this section is to try to resolve both the
IL conundrum and the endocannabinoid paradox. These are the findings that seem
incongruous in the context of the extinction process. The computational approach to
this problem begins with the realization that the connectivity of the amygdala is
complex and there are many configurations of the weights (i.e. strengths) of its nine
modifiable (i.e. adaptable) synapses. Thus, the expanded view of the process we wish
to generate will consist of a complete enumeration of the synaptic-strength configu-
rations of the amygdala fear-pathway system. The hope is that at least some of those
configurations produce extinction, which is the process outcome, but also instantiate
the seemingly incongruent combinations of connections that characterize the IL
conundrum and/or the endocannabinoid paradox. This hope will be fulfilled, and it will
lead to a new and fuller appreciation of what the actual outcome of extinction process
could be. In order to appreciate this potential new view of extinction it will be nec-
essary to describe the analysis in terms of specific model synapses.

For modeling purposes, synaptic weights are limited to only three discrete values
(0, +1, +2 for excitatory synapses or 0, −1, −2 for inhibitory synapses). Even so
there are 39 or 19,683 possible weight combinations. This number of configurations
provides many possibilities for adaptation. The goal of the analysis is to search for
weight combinations (i.e. configurations) that achieve extinction in conjunction with
wLAitoLA1 LTD (i.e. decrease in the weight from LAi to LA1). By imposing the
further constraint that CS must excite at least one of either LA1 or LA2 (and inhibit
neither) after extinction (see above), potential insight into the role of the endocan-
nabinoids can be obtained. Details of the computational model follow.

3.2 Computational Approach Specifics

Fear conditioning and extinction are learning processes that have LTP and LTD of
specific synapses as neurobiological sub-processes. Together these processes can
produce many different synaptic strength configurations, but only some of those will
cause overall system behavior that is consistent with experimental observation. The
approach taken here was first to specify the system of interactions that characterize the
amygdala fear-conditioning pathway, and also to specify the allowed changes in
synaptic connection weights, in Maude. Then the specification could be searched for
specific synaptic weight configurations using the Maude search tool. The raw results of
the analysis are numbers of synaptic weight configurations produced by the model that
satisfy a series of increasingly restrictive, experimentally determined constraints. The
results are summarized in Table 1. Interpretation of the raw results provides potential
insights and delineates experimentally testable predictions from the model.

Computer Modeling in Neuroscience: From Imperative to Declarative Programming 105



The fear pathway through the amygdala is essentially a neural network. Each model
element (unit) represents a neuron from a specific brain region (e.g. unit ITCm rep-
resents a neuron in ITCm). The activity of each unit is meant to represent the activity of
a neuron. Specifically, the activity level of a unit is proportional to the action potential
firing rate of a neuron, but the unit activation functions are very simple, being simply
the sum of the weighted inputs to a unit, bounded from below at 0 (because neurons
cannot have negative firing rates). For example, the activity of element ITCm is
computed as ITCm = bITCm + wITCltoITCm * ITCl + wILtoITCm * IL, where
bITCm is a bias and wITCltoITCm is negative because the ITCl to ITCm connection is
inhibitory. All units have initial activities of 1, except for US, CS, CEm, PAG, and IL,
which are initially 0. Each unit has a bias, which ensures its proper initial activity given
the initial connection weights, which are all of absolute value 1 except those from CS
(wCStoLA1, wCStoLA2, and wCStoLAi) and IL (wILtoLAi, wILtoITCl, and
wILtoITCm), which are initially 0. Switching US from 0 to 1 will activate the fear
pathway, resulting in activation of PAG and production of UR. Initially, switching CS
from 0 to 1 will have no effect, because the initial weights from CS to LA are all zero.
Fear conditioning requires LTP of those connection weights.

In the model, fear conditioning is accomplished by setting CS to 1 and allowing
weight modifications to occur until CS is able to activate PAG. When fear conditioning
has ended, extinction is accomplished by keeping CS at 1 and again allowing weight
modifications to occur until CS is no longer able to activate PAG. IL takes value 1
during extinction training but is otherwise 0. For both phases of learning, connection
weights are modified one at a time, and every individual weight change is followed by
evaluation of the effects of that weight change on the responses to CS (i.e. changes in
activation) of all units in the model. Weight modification terminates if PAG goes to 1
during fear conditioning or to 0 during extinction.

In the Maude specification, rules produce allowed weight modifications while
equations determine the effects of each weight change on unit activities (especially in
responses to the CS). Thus rule executions cause the model system to transition from
one connection weight configuration (i.e. model state) to another, while the equations
elaborate the state by finding all the new unit activities. In Maude search, the number of
states (i.e. connection weight configurations) that produce extinction following fear
conditioning (see also next sub-section) is the same as the number of terminal states.
Thus, the specification terminates for all possible paths and can achieve extinction
following fear conditioning in all of them.

The model was also instantiated in MATLAB™, which is an imperative pro-
gramming language widely used in neurobiology. The main reason for the MATLAB
program was to serve as a crosscheck for the Maude specification, and herein lies an
interesting difference between declarative modeling approaches in biology versus
computer engineering. In computer engineering, the analyst typically specifies an
engineered system (software, firmware, etc.), the details of which are all known, and
the behavior of the specification can be thoroughly compared with that of the system to
be analyzed to ensure the adequacy of the specification. In contrast in biology, the
system to be analyzed can only be specified incompletely, and thorough comparison
between the behavior of the specification and of the biological system is not practical.
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It is therefore useful to have two versions of the same computational model, each
written in a different programming language, to serve as crosschecks for each other.

For the model, the initial weight configuration and a battery of fear conditioned and
extinguished weight configurations were checked for consistency between the pro-
grams written in the two different languages, Maude and MATLAB. The check was
valid for the equational part of the Maude specification. In all cases the results agreed,
providing assurance that the findings are not corrupted by programming error.

Another use for the MATLAB program was to use it for directed searches to find
sets of weight changes that would produce extinction following fear conditioning. The
directed search involved systematic exploration of the neighborhoods of randomly
selecting start states for states of interest. Connection weight absolute values were
restricted to the range between 0 and 2, inclusive, for both the directed searches in
MATLAB and the state-space searches in Maude, but the latter allowed only
integer-valued weight changes while the former allowed real-valued weight changes. In
both cases, the number of connection weight configurations that produced extinction
was compared with the number that did so in conjunction with LTD of wLAitoLA1,
which represents endocannabinoid action in the model and is critical to this analysis. It
was found that 56 % of all configurations found by the exhaustive Maude search met
this criterion while only 18 % of all configurations found by the MATLAB directed
search did so. Comparison of the results of exhaustive, integer-valued search versus
random, real-valued search provided some assurance that the Maude search is not
missing configurations that rely on non-integer weights.

3.3 Analysis of the Model

There are 39 or 19,683 possible weight combinations, as explained in Subsect. 3.1,
given that each modifiable weight can take 1 of 3 integer levels and there are 9
modifiable weights. Of critical importance is to search for weight combinations
(configurations) that achieve extinction in conjunction with LTD of the weight of the
connection from LAi to LA1. To record whether wLAitoLA1 has undergone LTD
during extinction, an additional weight-record parameter was added to record its value
immediately following fear conditioning. Because wLAitoLA1 can either get more
negative during fear conditioning (i.e. go to −2) or stay at its initial value (−1), the
weight-record parameter has 2 possible values. This parameter is not a weight per se
but it does increase the number of states of the system, so it increases the number of
possible weight (and weight-record) configurations by a factor of 2 to 39,366.

Of the total of 39,366 weight (including weight-record) configurations, 8394 pro-
duce extinction following fear conditioning (Table 1 Row 1). Of those, 4659 do so in
conjunction with LTD of wLAitoLA1 (Table 1 Row 2). Thus, roughly half of all
extinguished weight configurations are consistent with the experimentally-documented
decrease (i.e. LTD), due to endocannabinoids, of the inhibitory synapse onto LA1 (i.e.
wLAitoLA1). This by itself is a useful finding. It indicates that, given what is known
about the fear pathway through the amygdala, an endocannabinoid-induced decrease of
inhibition onto some LA projection neurons, which should oppose extinction, at least
does not preclude extinction in about half of the space of synaptic weight
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configurations that produce extinction. The finding that there is a relatively large
number of configurations that are consistent both with extinction and with wLAitoLA1
LTD does not exactly resolve the endocannabinoid paradox, but it does leave sub-
stantial room for further refinement.

Some but not all real LA neurons continue to respond to CS after actual extinction
(see Subsect. 3.1), so at least one of LA1 and LA2 should have a CS response after
simulated extinction. Of the 4659 configurations that achieve extinction in conjunction
with LTD of wLAitoLA1, 2335 have LA1 or LA2 responding to CS (Table 1 Row 3).
Although some real LA neurons do not respond to CS, none are actively inhibited by
CS following extinction (see also Subsect. 3.1). The implication of this for the model is
that neither LA1 nor LA2 should be inhibited by CS following extinction (note that CS
can cause net inhibition of LA1 via LAi). The number of configurations that have this
property and also achieve extinction in conjunction with wLAitoLA1 LTD is 957
(Table 1 Row 4). This is a rather special number. In these 957 synaptic weight con-
figurations, extinction has occurred in conjunction with LTD of wLAitoLA1, which
corresponds to the known contribution of endocannabinoids to extinction, and CS
inhibits neither of LA1 nor LA2 but excites at least one of them, which corresponds to
retention of the CS-US association despite extinction (remember that extinction is not
forgetting). The full importance of this number of neurobiologically consistent con-
figurations will be made apparent later in this sub-section.

Table 1. The results of searches of the model state space are tabulated according to conditions
and numbers of compatible weight configurations.

Search conditions and numbers of compatible configurations
Conditions Configurations

(1) No conditions other than that the 9 modifiable weights are each
restricted to three absolute levels (0, +1, +2 or 0, −1, −2) and the 3
weights from IL are limited to LTP during extinction but the other 6 can
undergo LTP during fear conditioning and LTD during extinction

8394

(2) 1 and LTD of wLAitoLA1 4659
(3) 2 but with LA1 or LA2 excited by CS 2335
(4) 3 but neither LA1 nor LA2 inhibited by CS 957
(5) 4 with weights constrained to be equal from CS (wCStoLAi =
wCStoLA1 = wCStoLA2), LA (wLA1toITCl = wLA2toITCl), and IL
(wILtoLAi = wILtoITCl = wILtoITCm)

0

(6) 4 with weights from CS (wCStoLAi, wCStoLA1, and wCStoLA2) free
to be unequal but with these equality constraints: (wLA1toITCl =
wLA2toITCl) and (wILtoLAi = wILtoITCl = wILtoITCm)

0

(7) 4 with weights from LA (wLA1toITCl and wLA2toITCl) free to be
unequal but with these equality constraints: (wCStoLAi = wCStoLA1 =
wCStoLA2) and (wILtoLAi = wILtoITCl = wILtoITCm)

21

(8) 4 with weights from IL (wILtoLAi, wILtoITCl, and wILtoITCm) free to
be unequal but with these equality constraints: (wCStoLAi = wCStoLA1
wCStoLA2) and (wLA1toITCl = wLA2toITCl)

42

(9) 4 (no equality constraints) but no LTD of wLAitoLA1 303
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With the endocannabinoid paradox on hold the IL conundrum can be addressed.
The approach begins by asking whether the weights of all connections from the same
brain area can all change by the same amount to accomplish extinction, or do they need
the flexibility to be independently modifiable. The specific weights in question are
those from CS (wCStoLAi, wCStoLA1, and wCStoLA2), from LA (wLA1toITCl and
wLA2toITCl), and from IL (wILtoLAi, wILtoITCl, and wILtoITCm). Search results
show that if the weights of the connections from CS are constrained to be equal
(wCStoLAi = wCStoLA1 = wCStoLA2), and if the weights from LA projection
neurons are constrained to be equal (wLA1toITCl = wLA2toITCl), and if the weights
from IL are constrained to be equal (wILtoLAi = wILtoITCl = wILtoITCm), then the
number of weight configurations that achieve extinction in conjunction with LTD of
wLAitoLA1, and with LA1 or LA2 excited but neither inhibited by CS, is 0 (Table 1
Row 5). If the connection weights from CS can be differentially modified but not those
from LA and IL, then the number of weight configurations that achieve extinction in
conjunction with LTD of wLAitoLA1, and with LA1 or LA2 excited but neither
inhibited by CS, is again 0 (Table 1 Row 6). These results show that differential
modifiability of the weights of the connections from IL and/or LA will be necessary to
accomplish extinction that is consistent with neurobiological constraints.

Further search results show that if the connection weights from LA alone, or if
those from IL alone, can be differentially modified, with the others (from CS and IL, or
from CS and LA, respectively) constrained to be equal, then there are 21 and 42
configurations, respectively, that achieve extinction in conjunction with LTD of
wLAitoLA1 and LA1 or LA2 excited but neither inhibited by CS (Table 1 Rows 7 and
8). Thus, the model predicts that extinction in conjunction with LTD of the synapses of
inhibitory interneurons onto LA projection neurons (endocannabinoid contribution),
along with some retention of CS responding in LA (extinction is not forgetting), can
occur but only if the synapses of LA projection neurons onto ITCl, or those of IL
neurons onto LA inhibitory interneurons, ITCl, and ITCm, are differentially modifiable.
This prediction should be testable experimentally.

This result also takes us some way toward solving the IL conundrum. Recall that in
the model IL promotes extinction by activating ITCm but opposes extinction by
activating ITCl. Of course, if IL can activate ITCm but not activate ITCl then it would
not thwart its own contribution to extinction, but this requires differential modification
of the weights of the connections from IL. What if IL cannot differentially modify its
connection weights but they are all constrained to change together by the same
amount? Then the fear pathway through the amygdala can still achieve extinction, but
the connections from LA onto neurons in ITCl must be differentially modifiable! Thus,
the analysis shows how the IL conundrum can be solved in principle. Whether it is
solved that way in the actual amygdala awaits experimental verification of the pre-
dictions outlined in the previous paragraph.

This brings us back to the endocannabinoid paradox, or how can a decrease in
inhibition onto an LA projection neuron, which should oppose extinction, actually
contribute to the achievement of extinction along with its neurobiologically known
concomitants. One more search was run in an effort to resolve this paradox. To make it
robust, all equality constraints are dropped (so weights of connections from CS, LA,
and IL can all be differentially modified again). Then LTD of wLAitoLA1 during
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simulated extinction is disallowed in the model. This would correspond to elimination
of endocannabinoid-induced LTD in the amygdala.

With connection weights from CS, LA, and IL all differentially modifiable, and
LA1 or LA2 excited but neither inhibited by CS after extinction, the number of con-
figurations that achieve extinction without LTD of wLAitoLA1 is 303 (Table 1 Row 9).
For direct comparison, a previous search revealed that, with connection weights from
CS, LA, and IL all differentially modifiable, and LA1 or LA2 excited but neither
inhibited by CS after extinction, the number of configurations that achieve extinction
with LTD of wLAitoLA1 is 957 (Table 1 Row 4). These results show that LTD of
inhibitory interneuron synapses is not only compatible with extinction, but it actually
increases (in fact, triples) the number of weight configurations that achieve extinction
while preserving some LA responses to CS in the model. The implications of this will
be discussed more fully in the next sub-section.

3.4 Implications of Main Model Findings

The main finding of the analyses is that endocannabinoid-induced LTD of the synapses
of LA inhibitory interneurons onto LA projection neurons is not only compatible with
extinction, but it increases the number of connection weight configurations that achieve
extinction while also preserving some fear memory in amygdala. By showing that the
number of such configurations is increased threefold in the model, the analysis iden-
tifies preservation of fear memory during extinction as a highly likely outcome of
endocannabinoid-induced LTD in the lateral amygdala.

The analysis was focused on numbers of model weight configurations, and these
are relevant to potential explanations of extinction for two reasons. The first reason is
that the actual mechanisms of synaptic weight (i.e. strength) modifications in the
amygdala are still very incompletely understood. It is known that the amygdala brings
about fear conditioning and extinction by making synaptic strength changes but,
because it is not known exactly how those changes are made, it could justifiably be
assumed that, given a well-established model based on known amygdala connectivity,
the outcome associated with the most numerous synaptic strength configurations is the
one most likely to occur in the real amygdala.

The second reason is that the actual mechanisms that produce synaptic strength
modifications during fear conditioning and extinction may have substantial random
components. A recent (imperative) model of fear conditioning and extinction suggests
that possible adaptive mechanisms in the amygdala are stochastic [46]. In this view, the
synapses in the fear pathway change weight at random as the whole neural system
searches for a configuration that achieves fear conditioning and, subsequently,
extinction. Given an essentially random search, the probability of a given outcome (e.g.
extinction with some preservation of fear memory) should be proportional to the
number of synaptic weight configurations that are compatible with that outcome. In the
model, LTD of the synapses of inhibitory interneurons onto LA projection neurons
increases the number of configurations that are compatible with extinction and some
retention of CS memory. It is possible that the contribution of endocannabinoid-
induced LTD in the real LA is to increases the amygdala’s options for adaptation
sufficiently for extinction with some retention of CS memory to occur.
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4 New Approach in Computational Neuroscience

As noted at the beginning of this chapter, most computer models in neuroscience are
implemented using imperative programming languages, and as such they are largely
limited to simulation. Because models of neurobiological systems can have many
elements and many potential states, the imperative explorations are usually limited to
tiny fractions of their model state-spaces. The declarative approach brings powerful
tools for the exploration of model state spaces and in that way it adds a critical new
dimension to computational neuroscience. It is a highly data-driven approach that can
be taken in order to synthesize a potentially very large quantity of facts and provide
new insights into what those facts mean in the aggregate. Because neurobiological
processes can seem prohibitively complicated, a declarative approach is essential in
order to “reason about” them and ultimately characterize and understand them.

The model summarized in Sect. 3 took a lot of facts into account, and the analysis
of its specification in Maude, involving searches for specific states that met an ever
increasing set of exacting criteria, was admittedly intricate. To most neurobiologists,
the Maude analysis of extinction along the amygdala fear pathway summarized in
Sect. 3 would seem rather arcane, but it does lead to potential new insights into the
seemingly paradoxical contribution of endocannabinoids to this process. Permitting a
bit of speculation, the Maude analysis could suggest that marijuana and its derivatives
are useful in the treatment of PTSD because they allow users to reduce their stressful
reactions to stimuli that, through trauma, they associate with fear, but also allow them
not to forget the original association. Permitting a bit more speculation, the analysis
could even hint that many users find marijuana psychologically beneficial because it
separates them from the stressful reactions they have to real or imagined threats but
does not remove the associations, allowing users to view those associations from a new
perspective. It is amusing to realize that something as technical and intricate as a
Maude analysis of a neural pathway could lead to new ideas about why some people
like to use marijuana. On a more serious level, it is exciting to imagine the new
understandings of brain function that are made possible by the introduction of
declarative programming techniques to computational neuroscience.
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Abstract. Multirate PALS reduces the design and verification of a vir-
tually synchronous distributed real-time system to the design and ver-
ification of the underlying synchronous model. This paper introduces
Hybrid Multirate PALS, which extends Multirate PALS to virtually
synchronous distributed multirate hybrid systems, such as aircraft and
power plant control systems. Such a system may have interrelated local
physical environments, each of whose continuous behaviors may period-
ically change due to actuator commands. We define continuous interre-
lated local physical environments, and the synchronous and asynchro-
nous Hybrid Multirate PALS models, and give a trace equivalence result
relating a synchronous and an asynchronous model. Finally, we illustrate
by an example how invariants can be verified using SMT solving.

1 Introduction

José Meseguer has recently proposed using formal patterns [13] to reduce the cost
and difficulty of designing, implementing, and verifying state-of-the-art systems.
Such a pattern formally specifies a generic solution to a frequently occurring
distributed systems problem and comes with strong formal guarantees. The idea
is that the significant effort invested in developing a formal pattern and proving
its correctness can be amortized over the many instances of the pattern.

Inspired by concrete problems in avionics, José, in joint work with the sec-
ond author and colleagues at Rockwell Collins and UIUC, developed the PALS
(“physically asynchronous, logically synchronous”) formal pattern for virtually
synchronous distributed real-time systems [2,12]. Such a system consists of a
number of distributed components with the same period that should logically
proceed synchronously: at the beginning of each round, each component reads its
inputs, performs a transition, and sends output. Virtually synchronous distrib-
uted systems are very hard to design correctly, due to concurrency, communica-
tion delays, execution times, skews of the local clocks, and so on. Furthermore,
due to the state space explosion caused by the asynchrony of distributed real-
time systems, their model checking verification quickly becomes unfeasible.

The point of PALS is that it is sufficient to design and model check the
much simpler underlying idealized synchronous design SD , provided that the
underlying infrastructure can guarantee bounds on the network delays, execution
times, and imprecision of the local clocks. PALS then transforms a synchronous
c© Springer International Publishing Switzerland 2015
N. Mart́ı-Oliet et al. (Eds.): Meseguer Festschrift, LNCS 9200, pp. 114–134, 2015.
DOI: 10.1007/978-3-319-23165-5 5
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design SD and performance parameters Γ into the distributed (and therefore
asynchronous) real-time system A(SD , Γ ). The formal guarantee of PALS is that
the idealized design SD and its distributed real-time version A(SD , Γ ) satisfy
the same temporal logic properties [12].

The benefits of PALS were first demonstrated on an avionics system provided
by Rockwell Collins. The synchronous design had 185 reachable states and could
be model checked in a fraction of a second, whereas even an unrealistically
simplified distributed version—with perfect local clocks and no network delays—
had more than 3,000,000 reachable states; if the network delay could be 0 or 1,
then no model checking was feasible.

PALS assumes that all components share the same period. However, different
components often operate at different rates, yet need to synchronize. For exam-
ple, the ailerons and the rudder of an airplane must synchronize to smoothly turn
an airplane, even though the aileron controllers and the rudder controller typi-
cally operate with different frequencies. Together with José we therefore devel-
oped the Multirate PALS pattern for hierarchical multirate systems as an exten-
sion of PALS [4]. The effectiveness of the Multirate PALS pattern was illustrated
with the modeling and analysis of an algorithm for turning an airplane [3]. To
make the Multirate PALS methodology available also to domain-specific model-
ers, we have developed the Multirate Synchronous AADL language, which allows
modelers to develop their synchronous designs using the industrial modeling
standard AADL [7]. We have integrated the Real-Time Maude model checking
of such designs inside the OSATE modeling environment for AADL [5,6].

On this festive occasion we extend the Multirate PALS methodology to the
important class of virtually synchronous distributed hybrid systems. Many con-
trol systems can be seen as such systems. One example is the airplane turning
control systems mentioned above; another is the well-known steam-boiler con-
troller in a power plant: in each round, local sensors report their reading of
continuous parameters to the main controller, which decides what action to take
in order for the power plant to function safely and efficiently [1].

Extending the PALS framework to hybrid systems is challenging. PALS is
based on abstracting from the time at which a message is sent (as long as it is sent
within the appropriate time window); this is possible because the advance of time
does not change the state of a system or its environment. However, if the environ-
ment is a physical component with a continuous dynamics, which, furthermore,
may change because of actuator commands, then its state changes continuously
with the elapse of time. Another significant challenge is that, because of the clock
skews, different components will read their physical values at different times in
the asynchronous system; this must be reflected in the synchronous model to
have any hope of obtaining a PALS equivalence.

In this paper we introduce Hybrid Multirate PALS. The key idea is to start
with a synchronous Multirate PALS model SD whose environment is fully
nondeterministic. The different continuous trajectories of an environment,
defined as functions of actuator commands, are specified as a controlled physi-
cal environment E. The synchronous model in Hybrid Multirate PALS is then
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the environment restriction SD �Π E, which considers only those behaviors
of SD that are consistent with the continuous behaviors of the environment.
To account for the timing imprecision of reading from, and writing to, the
environment due to clock skews, the constraint E also takes clock skews into
account. The corresponding asynchronous Hybrid Multirate PALS model is the
environment restriction MA(SD , T, Γ ) �Π E, where MA(SD , T, Γ ) is the multi-
rate asynchronous model of SD with global period T and performance bounds
Γ . This paper then presents a trace equivalence result relating SD �Π E and
MA(SD , T, Γ ) �Π E.

Different components may have different local environments, which, further-
more, can be physically correlated to each other. For example, if we consider
two adjacent rooms, the temperature of one room will immediately affect the
temperature of the other room. In the airplane turning control system, the con-
trollers of the ailerons and rudder are physically correlated to its main controller,
since any angular movement of the ailerons and rudder immediately changes the
position of the airplane. Our environment constraints allow us to express such
continuous interdependencies between multiple physical environments.

The first steps towards extending Multirate PALS with hybrid behaviors
were taken in [3]. However, that work does not take into account the skews of the
local clocks or the continuous interaction between different physical components.
More significantly, [3] does not provide any relationship between the synchronous
model and the asynchronous distributed models.

Adding hybrid behaviors and clock skews to the synchronous model raises
the question of how to analyze it. Explicit-state model checking can no longer be
used. Instead, we propose to symbolically verify invariant properties of the syn-
chronous model using SMT solving, and illustrate our approach with an example.
The verification of a synchronous model, with controlled physical environments
and clock skews, is essentially reduced to the satisfaction of SMT formulas over
the real numbers and ordinary differential equations. The satisfaction problem
over such theories, which is undecidable in general, is decidable up to any given
precision δ > 0 [8]. We use the dReal SMT solver [9] to automatically verify
invariants of the synchronous model up to some precision δ > 0.

This paper is organized as follows. Section 2 gives some background on Mul-
tirate PALS. Section 3 explains how continuous environments can be specified.
Section 4 presents Hybrid Multirate PALS, and gives a trace equivalence result
relating the synchronous and the asynchronous Hybrid Multirate PALS models.
Section 5 illustrates by an example how an invariant in the synchronous model
can be verified by SMT solving, and Sect. 6 gives some concluding remarks.

2 Preliminaries on Multirate PALS

Multirate PALS transforms a synchronous design SD with global period T ,
together with bounds Γ on network delays, execution times, and local clock
skews, into a distributed multirate real-time system MA(SD , T, Γ ) that satisfies
the same temporal logic properties. This section gives an overview of the synchro-
nous models SD , the corresponding asynchronous models MA(SD , T, Γ ), and
the relationship between SD and MA(SD , T, Γ ). We refer to [4,12] for details.
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Discrete Synchronous Models. The synchronous model SD is formally specified
as an ensemble E of nondeterministic typed machines. A typed machine is a
tuple M = (Di, S,Do, δM ), where (i) Di = Di1 × · · · × Din

is an input set
(a value to the k-th input port is an element of Dik

), (ii) S is a set of states,
(iii) Do = Do1 × · · · × Dom

is an output set (a value from the j-th output port
is an element of Doj

), and (iv) δM ⊆ (Di × S) × (S × Do) is a total transition
relation. This model has no explicit notion of time; the next state and the next
outputs of a machine depend only on its current state and its inputs.

A collection of typed machines with different periods can be composed into
a multirate ensemble as illustrated in Fig. 1, where the period of a slow machine
is a multiple of the period of a fast machine. A multirate machine ensemble E is
a tuple E = (JS , JF , e, {Mj}j∈JS∪JF

, E, src, rate, adap), where: (i) JS is a set of
“slow” machine indices, and JF is a set of “fast” machine indices (JS ∩JF = ∅);
(ii) e �∈ JS ∪JF is the environment index; (iii) {Mj}j∈JS∪JF

is a family of typed
machines; (iv) E = (De

i ,De
o) is the environment with De

i the input set and
De

o the output set ; (v) src is a wiring diagram assigning to each input port its
“source” output port so that no connection exists between two “fast” machines;
(vi) rate assigns to each fast machine its rate, denoting how many times faster
than the slow machines it is; and (vii) adap assigns an input adaptor to each Mj

for communication between components with different rates.
In each iteration of the system, all components in an ensemble E perform a

transition in lockstep. A fast component f ∈ JF is slowed down and performs
k = rate(f) internal transitions in one such “global” synchronous step. Such a
fast machine therefore produces k-tuples of outputs in one global synchronous
step; however, since this output is read by a “slow” machine (which only executes
one transition during a global synchronous step), the k-tuples must first be
transformed to single values (e.g., the last value, or the average of the k values).
Likewise, a single output from a slow machine must be transformed to a k-tuple
of inputs (e.g., a k-tuple (d,⊥, . . . ,⊥) for some “don’t care” value ⊥) for the fast
machine Mf . These transformation are performed by input adapters.

The synchronous composition of a multirate ensemble E is equivalent to a
single machine ME , whose state space is SE = (Πj∈JSj)×(Πj∈JDj

OF ), consisting
of the states Sj of its components, and the “feedback” outputs Dj

OF for j ∈
JS ∪JF (that is, the outputs from machine j to some machine in E). For example,
the synchronous composition ME of the ensemble E in Fig. 1 is the machine given
by the outer box.

M1 (rate=1) M2 (rate=1)

M3 (rate=3) M4 (rate=2) M5 (rate=3)

Fig. 1. A multirate ensemble E , with M1 and M2 slow machines.
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Fast Machine

PALS wrapper

Input Adaptor

K-machine
Slow Machine

PALS wrapper

Input Adaptor

Fig. 2. The wrapper hierarchies for fast components (left) and slow components (right).

The behaviors of a multirate ensemble E can be specified as a transition
system ts(E) = (SE × DE

i , −→E), where (s, i) −→E (s′, i′) iff an ensemble in
state s and with input i from the environment has a transition to state s′ (i.e.,
∃o. ((i, s), (s′,o)) ∈ δE) and the environment can generate output i′ in the
next step. Although an environment could be modeled as a normal machine, the
global (“slow”) environment is made explicit for pragmatic reasons in Multirate
PALS. In Multirate PALS, faster machines can have “local environments;” this
is specified by composing the fast machine and its local environment and by
modeling their composition as a single fast machine.

Asynchronous Models. In the distributed real-time model MA(E , T, Γ ), each dis-
tributed component consists of a machine M in E with some “wrappers” around
it, as shown in Fig. 2. In this system, each machine M performs at its own rate.
A wrapper has an input buffer, an output buffer, and access to the component’s
local clock, which deviates by less than ε from the perfect global clock. The out-
ermost wrapper is the PALS wrapper, which encloses an input adaptor wrapper,
which encloses either a (slow) machine or a k-machine wrapper, which encloses
an ordinary (fast) machine.

The PALS wrappers share the same slow period T , and communicate with
the other components by sending and receiving messages. An input adaptor
wrapper reads the inputs from the PALS wrapper and applies an appropriate
input adaptor function at the beginning of each slow period T according to
its local clock. For a fast machine, its k-machine wrapper extracts each value
from the k-tuple input and sends them to the enclosed typed machine at each
fast period T/k. The k-machine wrapper also stores the outputs from the fast
machine, and sends out the resulting k-tuples of outputs to its outer layer for
each slow period T . The innermost typed machine runs at its given rate; at the
beginning of its periods, it reads its input, performs a transition, and sends the
outputs when the execution of the transition is finished.

Due to execution times and network delays, a fast machine in MA(E , T, Γ )
may not be able to finish all of its k internal transitions in a global (“slow”)
round before the messages must be sent in order to arrive before the beginning
of the next round. If a fast machine can only send k′ < k outputs in each slow
round, then the k-machine wrapper only sends the first k′ values, followed by
k − k′ “don’t care” values ⊥. In this case, if the source of the i-th input port of
a slow machine Mj is a fast machine whose k′ is less than its rate k, then its
input adaptor function adap(j)i must be (k′ + 1)-oblivious, that is, it “ignores”
the values vk′+1, . . . , vk in a k-tuple (v1, . . . , vk).
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Relating the Synchronous and Asynchronous Models. In the stable states of the
asynchronous model MA(E , T, Γ ), all the input buffers of the PALS wrappers
are full, and all other input and output buffers are empty. (A stable state is
a snapshot of the system just before the components start performing local
transitions.) The mapping sync : Stable(MA(E, T, Γ )) → SE×DE

i associates each
stable state with the corresponding synchronous state of ME . We can relate two
stable states by t1 ∼obi t2, iff their corresponding input buffer contents cannot
be distinguished by any input adaptors and their machine states are identical.

In the big-step transition system (Stable(MA(E , T, Γ )),−→st) between stable
states, each “big-step transition” corresponds to a single step in the synchronous
transition system ts(E). The relation (∼obi ; sync) is a bisimulation between
the transition systems (Stable(MA(E , T, Γ )),−→st) and ts(E). Furthermore, if
a state labeling function L : SE × DE

i → 2AP for E cannot distinguish between
∼obi-equivalent states, then the two Kripke structures for Stable(MA(E , T, Γ ))
and ts(E) are bisimilar and therefore satisfy the same CTL∗ formulas.

3 Specifying Physical Environments

In Multirate PALS, a “local” environment of a component is assumed to be incor-
porated into the corresponding typed machine, and the “global” environment of
the entire ensemble is given by another typed machine or by environment con-
straints [3,4]. Multirate PALS abstracts from the timing of events (as long they
happen within certain time windows), and the environment constraints mean
that the global environment has the same possible behaviors at any time. This
model is therefore not suitable for distributed hybrid systems, where a (possibly
“local”) physical environment changes its state continuously with time elapse.

This section explains how physical environments with continuous behaviors
can be specified using logical constraints over physical parameters. Such a spec-
ification must also take into account

– the imprecision of the local clocks, since environment “values” are read at
times defined by the local clock;

– actuator/control commands that change the continuous behavior of the envi-
ronment (e.g., “turn the heater off” or “turn the aileron θ degrees”); and

– the physical correlation between different physical environments.

A state of a (local) physical environment is given by a tuple v = (v1, . . . , vl) ∈
R

l of its physical parameters x = (x1, . . . , xl). The behavior of the physical
parameters x can be modeled using differential equations that specify trajecto-
ries τ1, . . . , τl of the parameters x over time. A trajectory [10] of duration T
is a function τ : [0, T ] → R that defines the continuous behavior of a physical
parameter. Let T be the set of all trajectories, and τ (t) = (τ1(t), . . . , τl(t)) for
an l-tuple of trajectories τ = (τ1, . . . , τl). The parameters x = (x1, . . . , xl) can
also be considered as trajectories in such a way that a state of the physical
environment at time t is given by x(t).
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3.1 Controlled Physical Environments

The local physical environment EM of a typed machine M can be specified
as a controlled physical environment that specifies every possible trajectory of
its physical parameters, taking into account the control commands from M . We
assume that the environment EM and its local controller M are tightly integrated
(no communication delay, etc.), and that the controller reads environment values
of EM and gives control commands to EM at the beginning of each period. Since
the local clock of M may differ from the perfect global clock by up to the maximal
clock skew ε, we now take into account the local clock of M in our definition.
Let cM : N → R>0 denote a periodic local clock of M such that cM (0) = 0 and
cM (n) ∈ (nT − ε, nT + ε) for each n > 0; that is, cM (i) denotes the (global) time
at the beginning of the (i + 1)-th period according to M ’s local clock.

Definition 1. A controlled physical environment EM = (C,x, Λ) consists of:

– C a set of control commands, representing “actuator outputs” from M ;
– x = (x1, . . . , xl) a vector of real-number-valued variables; and
– Λ ⊆ (C × R≥0 × R

l) × T l a physical transition relation: ((a, t,v), τ ) ∈ Λ iff
for a control command a ∈ C from M that lasts for duration t, EM’s physical
state follows the trajectory τ ∈ T l from a state v ∈ R

l with τ (0) = v.

For a periodic local clock cM , a physical transition of each i-th period defines
a trajectory τ of x during the time interval [cM (i) + αMmax , cM (i + 1) + αMmax ],
where the extra time value αMmax reflects the execution time of M (the actuator
command will be “delayed” by αMmax as explained in Sect. 4). That is:

((a, cM (i + 1) − cM (i),v), τ ) ∈ Λ

=⇒ ∀t ∈ [cM (i) + αMmax , cM (i + 1) + αMmax ]. x(t) = τ (t − (cM (i) + αMmax))

For example, in the controlled physical environment EM in Fig. 3, each physical
transition defines a trajectory τi from the value vi to vi+1 according to the control
command ai from M during the time interval [cM (i)+αMmax , cM (i+1)+αMmax ].

cM (0) + αMmax cM (1) + αMmax cM (2) + αMmax cM (3) + αMmax cM (4) + αMmax

v0
τ0

a0

v1 τ1

a1 v2
τ2

a2

v3
τ3

τ ′
3

τ ′
1

a′
1

v′
2

τ
′
2

a′
2

v′
3 τ ′′

3

a′′
3

Fig. 3. A controlled physical environment EM of a controller M with a local clock cM .
E.g., ((a0, cM (1) − cM (0), v0), τ0) ∈ Λ, ((a1, cM (2) − cM (1), v1), τ1) ∈ Λ, and so on.
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M

x

out
the outside temperature xo

Fig. 4. Open room environment.

Example 1. Consider the thermostat controller M in Fig. 4 that controls the
temperature of an open room. The temperature x of the room changes based on
the mode out ∈ {on, off } of M and the outside temperature xo. This controlled
physical environment can be specified by EM = ({on, off }, (x, xo), Λ), where:

– {on, off } is the set of control commands from the controller M ;
– the physical parameters x and xo denote, respectively, the room’s temperature

and the outside temperature; and
– Λ ⊆ ({on, off } ×R≥0 ×R

2) × T 2 is the physical transition relation such that(
(out, t, (v, vo)), (τ, τo)

) ∈ Λ iff there are two trajectories τ, τo : [0, t] → R,
where τ(0) = v, τo(0) = vo, and:

dx

dt
=

{
K(h − ((1 − k)x + kxo)) if out = on
−K((1 − k)x + kxo) if out = off .

The values of the constants K,h, k ∈ R depend on the size of the room, the power
of the heater, and the size of the open door, respectively. Given a trajectory τo

of the outside temperature xo, the temperature x rises according to the equation
dx
dt = K(h − ((1 − k)x + kxo)) when the heater is turned on, and falls according
to the equation dx

dt = −K((1 − k)x + kxo) when the heater is turned off. ♠

3.2 Correlating Physical Environments

Several physical environments can be physically correlated to each other, and
one local environment may therefore immediately affect another environment.
Such physical correlations can be naturally expressed as logical constraints over
physical parameters (e.g., some parameter of one physical environment should
always equal some other parameter of another physical environment).

Definition 2. Consider n controlled physical environments EMi
= (Ci,xi, Λi)

with xi = (xi1 , . . . , xili
) for i = 1, . . . , n. Given a variable t for time and unary

function symbols x11 , . . . , x1l1
, x21 , . . . , x2l2

, . . . , xn1 , . . . , xnln
for trajectories,

a time-invariant constraint is a first order logic formula of the form

(∀t) ψ(x1(t),x2(t), . . . ,xn(t)).

For instance, if a parameter x1 of EM1 must be equal to a parameter x2 of
EM2 , then the time-invariant constraint is (∀t) x1(t) = x2(t). In practice, many
physical correlations can be expressed as such time-invariant equality constraints.
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M1 M2

Fig. 5. Two rooms connected by an open door.

Example 2. Consider two adjacent rooms connected by an open door, illustrated
in Fig. 5. The temperature of each room i is separately controlled by a normal
thermostat controller Mi that turns the room’s heater on or off.

The local physical environment of each controller Mi (for i = 1, 2) is just
the open room environment EMi

= ({on, off }, (xi, xoi
), Λi) in Example 1. Each

physical transition relation Λi states that the room’s temperature xi and the
outside temperature xoi

are governed by the differential equation:

dxi

dt
=

{
Ki(hi − ((1 − k)xi + kxoi

)) if outi = on
−Ki((1 − k)xi + kxoi

) if outi = off ,

where Ki, hi ∈ R are constants given by the size of each room and the heater’s
power, respectively, and k ∈ R depends on the size of the open door.

Because the rooms 1 and 2 are physically connected to each other by the
open door, the outside temperature xo1 of room 1 must be the same as the
temperature x2 of room 2, and the outside temperature xo2 of room 2 must be
the same as the temperature x1 of room 1. This requirement can be specified by
the time-invariant constraint (∀t) xo1(t) = x2(t) ∧ xo2(t) = x1(t). ♠

4 Hybrid Multirate PALS

This section introduces Hybrid Multirate PALS, which incorporates physical
environment constraints, specified by controlled physical environments and time-
invariant constraints, into the Multirate PALS framework. The idea is based on
the methodology proposed in [3]: (i) the continuous parts of the system are spec-
ified by physical environments constraints, (ii) the “standard” Multirate PALS
synchronous model is a nondeterministic model defined for any possible envi-
ronment behavior; and (iii) the environment restriction defines the behavior of
the system constrained by the behavior of a specific environment.

In contrast to [3], we now also accommodate continuous correlations between
different physical environments as well as clock skews. The local clocks are now
included also in the synchronous models, since the behaviors of a typed machine
M are restricted by the controlled physical environment EM , which gets com-
mands and produces values at times given by the controller’s local clock. To deal
with the transition execution time of a controller M , the control output to EM

is “delayed” for the maximum execution time αmaxM
of M .
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Section 4.1 describes the Hybrid Multirate PALS synchronous model E �Π EE ,
Sect. 4.2 defines the transition sequences possible in this environment-restricted
synchronous model, Sect. 4.3 defines the Hybrid Multirate PALS asynchronous
model, and Sect. 4.4 gives a trace equivalence result relating the synchronous and
the asynchronous Hybrid Multirate PALS models.

4.1 Environment-Restricted Synchronous Ensembles

A controller machine M = (Di, S,Do, δM ) is a nondeterministic typed machine
parameterized by any possible observable behavior of its physical environment
EM = (C,x, Λ). A controller M is assumed to be tightly integrated with EM : the
controller can immediately observe and affect its environment.1 That is, at the
beginning of each period, a machine in the synchronous model (and therefore
also in the asynchronous model) reads its inputs (which were the outputs in
the previous iteration) and reads the current values of its local environment,
performs a transition, sends output to other components (to be read in the next
iteration), and gives a control command to its local environment, which takes
effect after the maximum transition execution time αmaxM

of M has elapsed.
A machine M that integrates both a controller and its environment should

have a state space of the form S = S′ × R
m, where R

m is the state space of
the m continuous environment parameters that the controller observes. The fact
that the machine M is defined for any values of the environment follows directly
from the definition of typed machines: their transition relations are total.

To compose a machine that already integrates a general parameter environ-
ment with its real environment, we must define the “interface” between the “con-
troller part” and the “environment part” of a such an environment-parametric
machine M . This interface is given by the following projection functions:

Definition 3. For a state s ∈ S of M and a physical state v ∈ R
l of EM ,

the relationship between the controller and its local environment is given by the
following projection functions π = (πC , πT , πx, πS), where

– πC(s) ∈ C denotes the current control command of M to EM ;
– πT (s) ∈ N denotes a “round number”; i.e., πT (s) = i means that the next

iteration of the system is iteration i;
– πx(s) ∈ R

m, m ≤ l, denotes the “observed” parameters of EM by M ; and
– πS(v) ∈ R

m denotes the “observable” part of the physical state v by M .

If a physical state v of EM is observed by M in a certain state s, then the
“observed” parameters πx(s) by M must be identical to the “observable” para-
meters πS(v) of EM ; that is, πx(s) = πS(v).

The environment restriction of M by EM with respect to the projection
function π is defined as a typed machine M �π EM whose transition relation
δM�πEM

is constrained by the observed behavior of EM :

1 “Remote” sensors and actuators that are not tightly integrated can be considered
as parts of another controller that communicates with M through the network.
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Definition 4. The environment restriction of M by its physical environment
EM with respect to projection functions π and maximum transition time αmaxM

is the typed machine M �π EM = (Di, S × R
l × C,Do, δM�πEM

), where its
transition ((i, (s,v, a)), ((s′,v′, πC(s)),o)) ∈ δM�πEM

holds iff:

– M has a transition ((i, s), (s′,o)) ∈ δM , where πT (s′) = πT (s) + 1;
– EM has two consecutive transitions with “middle” physical state v′′:

1. using the previous actuator output a ∈ C, ((a, αmaxM
,v), τ ) ∈ Λ, where

τ (0) = v and τ (αmaxM
) = v′′,2 and then

2. using the current actuator output πC(s), ((πC(s), T,v′′), τ ′) ∈ Λ, where
T = cM (πT (s′)) − (cM (πT (s)) + αmaxM

), τ (0) = v′′ and τ (T ) = v′; and
– πx(s) = πS(v) and πx(s′) = πS(v′).

Since M needs some time α ≤ αmaxM
to compute the next actuator command,

we assume for simplicity that the new actuator command πC(s) affects EM after
time αmaxM

has elapsed in each round.

tM

tm

out

v

mon moff

out ← on out ← off

v > tMv ≤ tM

v < tm

v ≥ tm

Fig. 6. A digital thermostat controller.

Example 3. Figure 6 illustrates a typed machine M = (R2, S, {∗}, δM ) for a dig-
ital thermostat controller that controls the temperature of a room, where:

– R
2 is the input set, since M has two inputs (tM , tm) ∈ R

2, with tM a desired
maximum temperature and tm a desired minimum temperature;

– S = {mon,moff} × N × R, where each state (m,n, v) consists of the heater’s
mode m, a counter n denoting the current “round number,” and the observed
temperature v at time cM (n);

– {∗} is the singleton set, which indicates that M has no output port; and
– δM ⊆ (R2 × S) × (S × {∗}) is M ’s transition relation defining next state

(m′, n + 1, v′) from input (tM , tm) and a current state (m,n, v); that is,(
((tM , tm), (m,n, v)), ((m′, n + 1, v′), ∗)

) ∈ δM if

m′ =

{
if v ≤ tM then mon else moff fi if m = mon

if v ≥ tm then moff else mon fi if m = moff.

2 From the physical state v, the physical state v′ is reachable through some trajectory
τ of duration αmaxM by the control command a.



Hybrid Multirate PALS 125

In each step, M performs a transition based on the mode m, the inputs (tM , tm),
and the observed temperature v at time cM (n). Notice that the next observed
temperature of the nondeterministic controller M can be any value v′.

We now compose M with the environment EM in Example 1 by defining the
environment restriction M �π EM = (R2, S × R

2 × C, {∗}, δM�πEM
) with M ’s

state space S = {mon,moff} × N × R, EM ’s physical state space R
2, and the

delayed controller output C = {mon,moff}. The projection functions π are given
by: πC(mon, n, v) = on and πC(moff, n, v) = off ; πT (m,n, v) = n; πx(m,n, v) =
v, since the controller observes the temperature v; and πS(vroom , voutside) =
vroom , since M observes the current room temperature.
(((tM , tm), (m,n, v, ve, vo, a)), ((m′, n′, v′, v′

e, v
′
o, πC(m,n, v)), ∗)) ∈ δM�πEM

iff:

– M has a transition (((tM , tm), (m,n, v)), ((m′, n + 1, v′), ∗)) ∈ δM ,
– EM has two consecutive transitions with intermediate state (v′′

e , v′′
o )

1. ((a, αmaxM
, (ve, vo)), (τ, τo)) ∈ Λ for some trajectories (τ, τo) ∈ T 2 such

that (τ, τo)(0) = (v, vo) and (τ, τo)(αmaxM
) = (v′′

e , v′′
o ), for a the control

command given in the previous round;
2. ((πC(m,n, v), T, (v′′

e , v′′
o )), (τ ′, τ ′

o)) ∈ Λ for some trajectories (τ ′, τ ′
o) ∈ T 2

of duration T = cM (n′) − (cM (n) + αmaxM
) such that (τ, τo)(0) =

(v′′, v′′
o ) and (τ ′, τ ′

o)(T ) = (v′, v′
o), for πC(m,n, v) the new control

command; and
– M observes EM : the observed temperature πx(m,n, v) = v by M is identical

to the observable parameter πS(ve, vo) = ve of EM . ♠

The synchronous model in Hybrid Multirate PALS is specified as a multi-
rate ensemble, where each component j has a local environment and projection
functions πj , and where physical correlations between their local physical envi-
ronments are specified as time-invariant constraints:

Definition 5 (Hybrid Multirate Ensemble). A hybrid multirate ensemble
is a triple written E �Π EE , where

– E is a multirate ensemble E = (JS , JF , e, {Mj}j∈JS∪JF
, E, src, rate, adap),

– EE = 〈{EMj
}j∈JS∪JF

, (∀t) ψ)〉 is a family of local environments, one for
each machine, where (∀t) ψ specifies the time-invariant constraints over the
physical parameters of the physical environments that define the immediate
physical correlations between their local physical environments, and

– Π = {πj}j∈JS∪JF
is a family of projection functions πj.

Example 4. Figure 7 shows a multirate ensemble E which controls the temper-
atures of two rooms. The ensemble E consists of three discrete components:
the main controller Main sets a maximum temperature tM and a minimum
temperature tm, and each thermostat controller Mi (i = 1, 2)—specified as a
typed machine in Example 3—controls the room’s heater. A controller Mi pro-
duces actuator output outi, and its behavior depends on the temperature xi

of its room. The controllers M1 and M2 have different rates: rate(1) = 1 and
rate(2) = 2.
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The local environments of M1 and M2 are the two adjacent rooms connected
by an open door in Example 2. The behavior of the environment restriction
Mi �πi

EMi
also depends on the local clock cMi

(Mi observes and affects the
temperature based on cMi

). Since the door between the rooms is open, the phys-
ical correlation between EM1 and EM2 is given by the time-invariant constraint
(∀t) ψ ≡ (∀t) xo1(t) = x2(t) ∧ xo2(t) = x1(t). The resulting hybrid multirate
ensemble is E �Π 〈EM1 , EM2 , (∀t) ψ〉, for the obvious Π. ♠

Main (rate = 1)

M1 (rate = 1) M2 (rate = 2)

tM tm

x1 out1 x2 out2

Fig. 7. A multirate ensemble E .

4.2 Realizable Transition Sequences

Intuitively, the behaviors of a hybrid multirate ensemble E �Π EE are a subset of
the behaviors of E ; namely, the behaviors restricted by the physical environment
EE . We formally define the restricted behavior by means of realizable transition
sequences of E �Π EE . The idea is that a typed machine M corresponds to the
transition system ts(M), and a sequence of transitions in ts(M) provides com-
plete information about its local clocks, actuator control output, and observed
physical environment states. A transition sequence is realizable iff its observed
physical states are consistent with valid continuous environment behaviors with
the given actuator control output and local clocks.

Formally, consider a sequence of transitions given by the transition sys-
tem ts(M): ρM = (s0, i0) →M (s1, i1) →M (s2, i2) →M (s3, i3) →M · · · .
The observed behavior of EM is then provided by the projection functions:
πEM

(ρM ) = (πC(s0), πT (s0), πx(s0)) →M (πC(s1), πT (s1), πx(s1)) →M · · · .
Each πT (si) records the beginning of the (i+1)-th period of M , and each πC(si)
affects EM in the (i + 1)-th period of M . If ρ is generated by M under the
environment EM , then πEM

(ρ) must follow EM ’s physical transition relation Λ.

Definition 6. A transition sequence ρM = (s0, i0) →M (s1, i1) →M · · · of M is
realizable with respect to EM = (C,x, Λ), a local clock cM , maximum execution
time αmaxM

, initial control output ainit , and projection functions π, denoted by
EM , π, cM , αmaxM

, ainit |= ρM , iff for some trajectory of x:

– M correctly observes EM : πx(si) = πS(x(cM (i))) for each i ∈ N:, and
– EM ’s two consecutive transition holds:
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• ((ai, αmaxM
,vi), τ i) ∈ Λ for each i ∈ N, where if i = 0, then ai = ainit ,

and if i > 0, then ai = πC(si−1), and x(t) = τ i(t − cM (πT (si))) for
t ∈ [cM (πT (si)), cM (πT (si) + αmaxM

].
• ((πT (si), cM (πT (si+1)) − t0i , τ i(αmaxM

), τ ′
i) ∈ Λ for each i ∈ N, where

t0i = cM (πT (si)) + αmaxM
and x(t) = τ i(t − t0i ) for t ∈ [t0i , cM (πT (si+1))].

It is easy to see that a realizable sequence of M by EM and a sequence of
the environment restriction M �π EM are in a one-to-one correspondence:

Lemma 1. Given a machine M , a physical environment EM , initial control
output ainit , projection functions π, maximum execution time αmaxM

, and a
local clock cM , for each sequence ρM such that EM , π, cM , αmaxM

, ainit |= ρM ,
there exists a corresponding sequence ρM�πEM

of M �π EM , and vice versa.

For a multirate ensemble E = (JS , JF , e, {Mj}j∈JS∪JF
, E, src, rate, adap), its

synchronous transition system ts(E) defines a synchronous transition sequence
ρE = (s0, i0) →E (s1, i1) →E (s2, i2) →E (s3, i3) →E · · · . Recall that each state
si for E consists of the states {sji}j∈JS∪JF

of its subcomponents and the feedback
output. Therefore, there is a local transition sequence sj0 →j sj1 →j sj2 →j · · ·
for each subcomponent Mj . Such local sequences are slow-step transitions that
do not contain information about fast intermediate steps. But by construction
of E with input adaptors, the feedback output in each synchronous state si

contains all input values, including those for fast intermediate steps, used in
the next step of the ensemble E . Therefore, we can construct a complete local
transition sequence sj0 = sj0,1 → sj0,2 · · · → sj0,k →j sj1 = sj1,1 → sj1,2 · · · →
sj1,k →j · · · . Hence, there exists a collection {ρMj

}j∈JS∪JF
of complete machine

transition sequences, where each ρMj
is a transition sequence of Mj at its own

rate, including all the intermediate fast steps.

Definition 7. A sequence ρE = (s0, i0) →E (s1, i1) →E (s2, i2) →E · · · of ts(E)
is realizable w.r.t. {EMj

, πj , cMj
, αmaxMj

, aj
init}j∈JS∪JF

and a time-invariant

constraint (∀t)ψ, denoted by {EMj
, πj , cM , αmaxMj

, aj
init}j∈JS∪JF

, (∀t)ψ |= ρE ,
iff for j ∈ JS∪JF , for ρE ’s complete sequences {ρMj

}j∈JS∪JF
, by some trajectory

xj, EMj
, πj , cMj

, αmaxMj
, aj

init |= ρMj
, and ψ({xj(t)}j∈JS∪JF

) for any t ∈ R≥0.

That is, the semantics of a hybrid multirate ensemble is given by the realizable
behaviors subset of all transition sequences of the synchronous composition ts(E).
Each such realizable behavior consists of one realizable transition sequence for
each machine such that these sequences together also satisfy the time-invariant
constraints correlating the different local environments.

4.3 Hybrid Multirate PALS Distributed Models

Hybrid Multirate PALS maps a hybrid multirate ensemble E �Π EE , together
with performance bounds Γ , to the distributed real-time system

MA(E , T, Γ ) �Π EE
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whose behaviors are the subset of those of the Multirate PALS distributed system
MA(E , T, Γ ) that can be realized by the physical environment(s) EE .

The realizable big-step transitions in (Stable(MA(E , T, Γ )),→st) can be
defined as in the synchronous case. Consider a big-step transition sequence
ρ̄E = (s0, i0) →st (s1, i1) →st (s2, i2) →st · · · in (Stable(MA(E , T, Γ )),→st).
Each stable state si in MA(E , T, Γ ) consists of the states of its components
and the feedback output received in the input buffers. Similarly, there is a
collection of {ρ̄Mj

}j∈JS∪JF
of complete stable local transition sequences in

MA(E , T, Γ ), where each sequence ρ̄Mj
is a stable transition sequence of Mj

in MA(E , T, Γ ) at its own rate. Consider such a complete stable sequence
ρ̄Mj

= (sj
0, i

j
0) → (sj

1, i
j
1) → (sj

2, i
j
2) → · · · in MA(E , T, Γ ). Because Mj can

sample EMj
’s parameters at time cMj

(πT (sj
i )) for i ∈ N and Mj ’s actuator out-

puts only depend on machine states, such sequences completely describe the
interactions between Mj and EMj

in MA(E , T, Γ ), given initial actuator out-
puts {aj

init}j∈JF ∪JS
. The realizability of ρ̄Mj

in MA(E , T, Γ ) can be defined in
the exactly same way, and so can the realizability of the big-step transition
sequence ρ̄E .

That is, the semantics of MA(E , T, Γ ) �Π EE is a set of realizable behaviors in
the big-step transition system (Stable(MA(E , T, Γ )),→st). Each such behavior
consists of a realizable “locally-big” transition sequence for each machine, which
together satisfy the time-invariant constraints correlating the physical behaviors.

4.4 Relating the Synchronous and Asynchronous Models

The correctness of Hybrid Multirate PALS immediately follows from the fact
that a trace ρE for the synchronous model E and ρ̄E for the asynchronous model
MA(E , T, Γ ) only depends on the discrete parts of the systems. Recall that there
is a mapping sync : Stable(MA(E, T, Γ )) → SE × DE

i that associates each sta-
ble state with the corresponding synchronous state of ts(E), so that ts(E) and
Stable(MA(E, T, Γ )) are bisimilar to each other by ∼obi; sync. Therefore, a big-
step transition ρE for E and a big-step stable transition ρ̄E for MA(E , T, Γ ) are in
a one-to-one correspondence, Furthermore, if a machine state s in ρE corresponds
to a machine state s′ in ρ̄E , they must be identical, since sync maps the same
machine states. By construction, local time πT (s) at the beginning of its period,
actuator output πC(s), and observed environment parameter πx(s) only depends
on machine state s. This means that all physical measurements and physical acti-
vation happen at the same time in both synchronous and asynchronous models,
and thus their continuous behaviors must be identical. Consequently:

Theorem 1. E �Π EE and MA(E , T, Γ ) �Π EE have the same set of realiz-
able transition sequences (for ∼obi; sync(s)-equivalent initial states and the same
initial actuator output).

Let L : SE ×DE
i → 2AP be a state labeling function on E . By the correctness

of Multirate PALS, if L cannot distinguish ∼obi-equivalent states, two Kripke
structures for Stable(MA(E , T, Γ )) and ts(E) are bisimilar and satisfy the same
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CTL∗ formulas. By Theorem 1, E �Π EE and MA(E , T, Γ ) �Π EE have the same
set of realizable transition sequences. Consider an ACTL∗ formula ϕ (recall that
ACTL∗ is an universal fragment of CTL∗ whose counterexample is given by a
sequence). If there exists a realizable counterexample ϕ in E �Π EE , then there
also exists a realizable counterexample in MA(E , T, Γ ) �Π EE :

Theorem 2. Given a multirate ensemble E, its physical environment EE =
〈{Ej}j∈JS∪JF

, (∀t) ψ)〉, and a labeling function L : SE × DE
i → 2AP that can-

not distinguish ∼obi-equivalent states. Then the Kripke structures for E �Π EE
and MA(E , T, Γ ) �Π EE satisfy the same ACTL∗ formulas (for (∼obi ; sync(s))-
related initial states and the same initial actuator output).

5 Verifying Invariants Using SMT Solving

This section shows how an invariant of a hybrid multirate ensemble can be
verified, for all possible local clocks, using SMT solving. The idea is to express
a synchronous transition in E �Π EE as a logical formula Ψ(x,x′), where x
denotes the states of its physical environments at the beginning of the round
and x′ denotes those at the end of the round. Suppose that a safety property of
the system is expressed as a formula Φ(x). If we can prove

Φ(x) ∧ Ψ(x,x′) =⇒ Φ(x′)

then the safety property Φ(x) holds in each synchronous state if it holds in the
initial state. This implication can often be checked automatically using SMT
solving by checking the unsatisfiability of the negation Φ(x)∧Ψ(x,x′)∧¬Φ(x′).

5.1 Logical Representations

A controlled physical environment EM can also be expressed as logical con-
straints in first-order logic formulas over reals that involve differential equations.
This representation allows us to analyze the system using SMT solvers.

Definition 8. If EM = (C,x, Λ) is a controlled physical environment with phys-
ical parameters x = (x1, . . . , xl), for unary function symbols x1, . . . , xl, then the
physical transition relation Λ can be expressed as a first order logic formula of
the form ϕEM

(yC ; yt, y
′
t; yv1 , . . . , yvl

), where:

– the variable yC denotes control commands from M ;
– the variables yt and y′

t denote times at the beginning and the end of the tra-
jectory duration, respectively; and

– the variables yv1 , . . . , yvl
denote the initial values of x at time yt.

The formula ϕEM
(yC1 , . . . , yCj

; yt, y
′
t; yv1 , . . . , yvl

) specifies the trajectories of the
physical parameters x = (x1, . . . , xl) from time yt to time y′

t. That is:

ϕEM
(a; t0, t1;v) ⇐⇒ ((a, t1 − t0,v), τ ) ∈ Λ ∧ ∀t ∈ [t0, t1]. x(t) = τ (t − t0).
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Example 5. Consider the open room environment EM = ({on, off }, (x, xo), Λ)
in Example 1. The formula ϕEM

(yout; yt, y
′
t; yv, yvo

) is given by:

xo(yt) = yvo
∧

⎡

⎢
⎢
⎢
⎣

(yout = on ∧ ∀t ∈ [yt, y
′
t]. x(t) = yv +

∫ t−yt

0

K(h − ((1 − k)x + kxo)) dt)

∨ (yout = off ∧ ∀t ∈ [yt, y
′
t]. x(t) = yv +

∫ t−yt

0

(−K((1 − k)x + kxo)) dt)

⎤

⎥
⎥
⎥
⎦

♠
The behavior of a number of controlled physical environments can be

expressed as logical formulas. For EM , the behavior up to its N -th period can
be expressed by the formula:

∧
0≤i<N ϕEM

(ai; cM (i), cM (i+1);x(cM (i))), given
controller inputs a0, . . . , ak−1. Consider two environments EMi

, for i = 1, 2, with
time-invariant constraint (∀t) ψ(x1(t),x2(t)). Suppose that M2 is k times faster
than M1. The combined behavior of EM1 and EM2 is then given by the formula

ϕEM1
(a1; cM1(0), cM1(1);x(cM1(0)))

∧ ∧
0≤j<k ϕEM2

(a2j
; cM2(j), cM2(j + 1);x(cM2(j))) ∧ (∀t) ψ(x1(t),x2(t)),

given controller inputs a1 from M1 and a20 , . . . , a2k−1 from M2. Equality con-
straints, such as x1(t) = x2(t), can be removed from the formula by replacing
equal with equal (for example, by replacing each function symbol x1 with x2).

For a typed machine M , its transition relation δM can be expressed as a
logic formula of the form ϕM (yi;ys;y′

s;yo), with the variables yi for the inputs,
ys for the current state, y′

s for the next state, and yo for the outputs, so that
ϕM (di; s; s′;do) ⇐⇒ ((di, s), (s′,do)) ∈ δM . A formula for an environment
restriction or a connection between input and output ports can be expressed by
adding appropriate equality conditions between the corresponding variables.

Example 6. For the digital thermostat controller in Example 3, the logic formula
ϕM (ytM

, ytm
; ym, yn, yv; y′

m, y′
n, y′

v; ∗) can be defined by:

y′
n = yn + 1 ∧

(

y′
m =

{
if yv ≤ tM then mon else moff fi if ym = mon

if yv ≥ tm then moff else mon fi if ym = moff

)

.

The formula ϕM�πEM
(ytM

, ytm
; ym, yn, yv, yvo

, ya; yt, y
′
t; y

′
m, y′

n, y′
v, y′

vo
, y′

a) for the
environment restriction M �π EM is then given by:

∃y′′
v , y′′

vo
. ϕM (ytM

, ytm
; ym, yn, yv; y′

m, y′
n, y′

v; ∗) ∧
yt = cM (πT (ym, yn, yv)) ∧ y′

t = cM (πT (y′
m, y′

n, y′
v)) ∧

ϕEM
(ya; yt, yt + αmaxM

; yv, yvo
) ∧

yv = x(yt) ∧ yvo
= xo(yt) ∧

ϕEM
(πC(ym, yn, yv); yt + αmaxM

, y′
t; y

′′
v , y′′

vo
) ∧

y′′
v = x(yt + αmaxM

) ∧ y′′
vo

= xo(yt + αmaxM
) ∧

y′
v = x(y′

t) ∧ y′
vo

= xo(y′
t),
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with the interface projection functions πC(ym, yn, yv) = ym, πT (ym, yn, yv) = n,
πx(ym, yn, yv) = yv, and πS(yv, vo) = yv. ♠

5.2 Local Clocks and SMT Solving

It is hard or impossible to predict the concrete values of a local clock cM , since
the values of local clocks are determined on-the-fly by clock synchronization
mechanisms [2,11]. We therefore represent cM by logical formulas. Assuming
PALS bounds Γ , a periodic local clock cM satisfies ∃t ∈ (τ − ε, τ + ε). cM (n) = t
for any time τ > ε when a global round begins. We only need the values of cM

up to its rate k for one synchronous step. Hence, we add the formula ∃tnM ∈ (τ +
n(T/k)−ε, τ +n(T/k)+ε). cM (n) = tnM with a fresh variable tnM for n = 1, . . . , k.
We can define a logical formula Ψ(x,x′) that expresses a synchronous transition
of E during time [τ −ε, τ +T −ε) using the above constructs (e.g., ϕM and ϕEM

),
where tnM is written in Ψ(x,x′) instead of cM .

Example 7. For the multirate ensemble E for two adjacent rooms in Example 2,
the formula Ψ(yv1 , yv2 ; y

′
v1

, y′
v2

) for duration [τ − ε, τ + T − ε) is the conjunction
of the following formulas:

1. symbolic local clocks of M1 and M2 for one synchronous step:

τ − ε < tM1 < τ + ε ∧
τ − ε < t1M2

< τ + ε ∧ τ + T/2 − ε < t2M2
< τ + T/2 + ε

2. the behavior of the physical environments EM1 and EM2 before their rounds
begin (at tM1 and tM2 , respectively):

ϕEM1
(ym1 ; τ − ε, tM1 ; yv1 , yvo1

) ∧ ϕEM2
(ym2 ; τ − ε, t1M2

; yv2 , yvo2
)

3. the behavior of the environment restrictions (see Example 6), where the
ensemble connections are reflected in the input variable names:

ϕM1�π1EM1
(ytM

, ytm
; ym1 , yn1 , yv1 , yvo1

; tM1 , τ + T − ε; y′
m1

, y′
n1

, y′
v1

, y′
vo1

) ∧
ϕM2�π2EM2

(ytM
, ytm

; ym2 , yn2 , yv2 , yvo2
; t1M2

, t2M2
; y′′

m2
, y′′

n2
, y′′

v2
, y′′

vo2
) ∧

ϕM2�π2EM2
(ytM

, ytm
; y′′

m2
, y′′

n2
, y′′

v2
, y′′

vo2
; t2M2

, τ + T − ε; y′
m2

, y′
n2

, y′
v2

, y′
vo2

)

4. the time-invariant constraint (∀t) xo1(t) = x2(t) ∧ xo2(t) = x1(t), which can
be removed from Ψ by replacing each xo1 by x2 and each xo2 by x1.

That is, the whole formula Ψ(yv1 , yv2 ; y
′
v1

, y′
v2

) has the form 1 ∧ 2 ∧ 3 ∧ 4.
We have verified the two-room thermostat system in Example 4 using the

dReal SMT solver [9]. The dReal solver can check the satisfiability of a formula
Ψ over the real numbers—involving non-linear real functions, such as polyno-
mials, trigonometric functions, and solutions of Lipschitz-continuous ordinary
differential equations (ODEs)—up to a given precision δ > 0 If dReal returns
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Fig. 8. The counterexample trajectories of x1 and x2, where τ = 0.02.

false, then Ψ is unsatisfiable. If dReal returns true, then Ψ ’s syntactic numerical
perturbation3 by δ is satisfiable, although Ψ could still be unsatisfiable.

In the analysis, we let αmaxMi
= 0 and use the values h1 = 100, h2 = 200,

K1 = 0.015, K2 = 0.025, k = 0.01, and T = 0.1 for the constants in the
differential equations. The two outputs from Main are always tM = 21 and
tm = 19; that is, the desired temperature is between 19 and 21◦ in both rooms.
This is obviously not achievable, so we analyze the invariant

Φ(x1, x2) ≡ (18 < x1 < 22) ∧ (18 < x2 < 22).

If the maximal local clock skew ε = 0.005, then Φ(yv1 , yv2) ∧ Ψ(yv1 , yv2 ; y
′
v1

, y′
v2

)
∧¬Φ(y′

v1
, y′

v2
) is unsatisfiable,4 which means that Φ(yv1 , yv2)∧Ψ(yv1 , yv2 ; y

′
v1

, y′
v2

)
=⇒ Φ(y′

v1
, y′

v2
) holds, and that Φ therefore is an invariant from any initial state

satisfying Φ. However, if ε = 0.02, then the inductive condition is violated by the
trajectories in Fig. 8, which were generated by dReal, using precision δ = 0.001.5

Figure 8 shows that the temperature of x2 rises for extra 0.02 + δ time units
(where the round begins at time τ = 0.02), so that the value of x2 at time 0.2
(i.e., τ + 0.2 − ε) can be greater than 22. ♠

6 Concluding Remarks

We have extended the complexity-reducing Multirate PALS design and verifi-
cation methodology to the class of virtually synchronous distributed multirate
hybrid systems, which includes avionics, automotive, and power plant control
systems. In such systems, the local continuous environments may be interrelated
and may change trajectories due to actuator commands. We have formalized
Hybrid Multirate PALS by defining its synchronous and asynchronous models,
and have given a trace equivalence result relating a synchronous model and its
asynchronous counterpart; these therefore satisfy the same ACTL* formulas.

A main difference between Multirate PALS and Hybrid Multirate PALS is
that time elapse does not affect the behavior of the system in Multirate PALS,
as long as events take place inside certain time intervals. This is no longer the
3 E.g., if ψ ≡ x > 3 ∧ y = z, then for δ = 0.1, its syntactic numerical perturbation by

δ is x − 3 > −0.1 ∧ y − z ≥ −0.1 ∧ z − y ≥ −0.1.
4 The analysis took 28 min on Intel Xeon 2.0 GHz with 64GB memory.
5 The analysis took 10 h 27 min on the same machine.
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case when the environment has continuous behaviors. To have an equivalence
between a synchronous and an asynchronous model, both must read environment
values, and give actuator commands, at the same time. This means that also the
synchronous model must take local clocks and execution times into account.
Hybrid Multirate PALS should nevertheless significantly reduce the complexity
of designing and verifying a virtually synchronous CPS: it allows us to abstract
from asynchronous communication (and the resulting interleavings), message
buffering, network delays, backoff timers, and so on.

Since the synchronous models now include both clock skews and differential
equations, explicit-state model checking is no longer practical. We therefore show
how system invariants can be symbolically verified using the dReal SMT solver.

Much work remains, including: investigating the effectiveness of Hybrid Mul-
tirate PALS on larger case studies, including the airplane turning system that
was treated in an ad hoc way in [3]; developing verification techniques for proper-
ties beyond invariants; investigating whether a synchronous model and its asyn-
chronous counterpart are bisimilar and hence satisfy the same CTL* proper-
ties; and making the Hybrid Multirate PALS methodology available to domain-
specific modeling by extending industry-standard modeling languages, such as
AADL [7], to specify Hybrid Multirate PALS (synchronous) models, and by
integrating automatic verification into their modeling environments.
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Trento, Italy

Abstract. Exchanging resources often involves situations where a par-
ticipant gives a resource without obtaining immediately the expected
reward. For instance, one can buy an item without paying it in advance,
but contracting a debt which must be eventually honoured. Resources,
credits and debits can be represented, either implicitly or explicitly, in
several formal models, among which Petri nets and linear logic. In this
paper we study the relations between two of these models, namely intu-
itionistic linear logic with mix and Debit Petri nets. In particular, we
establish a natural correspondence between provability in the logic, and
marking reachability in nets.

Gracias, Pepe. Ha sido un privilegio para mi poder observar cómo tu agudo

razonamiento consiga caracterizar los aspectos relevantes de un problema con

precisión y exactitud, desvelando su funcionalidad y rol — Pierpaolo

1 Introduction

The exchange of resources (both physical and virtual) is a natural aspect of many
kinds of interactions, e.g., those involving participants distributed over an open
network. To reason about these interactions, it is beneficial to model them using
a formal system, e.g., a logic, a process calculus, or a Petri net. Typically, parties
exchange resources in a circular way: one provides the other with a resource, and
waits for something in return. If not dealt with properly, circularity can lead to
a deadlock: this is especially the case when parties are mutually distrusting, and
so no one is willing to do the first move. This is a classical issue, discussed by
philosophers at least since Hobbes’ Leviathan [1], and more recently dealt with
by several works in the area of concurrency theory, e.g. [2–7].

As an example, consider the following scenario: Alice wants a birthday cake
(cb), but she only has the ingredients to make an apple cake (ia); Bob wants an
apple cake (ca), but he only has the ingredients to make a birthday cake (ib). They
c© Springer International Publishing Switzerland 2015
N. Mart́ı-Oliet et al. (Eds.): Meseguer Festschrift, LNCS 9200, pp. 135–159, 2015.
DOI: 10.1007/978-3-319-23165-5 6
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make a deal: each one will cook for the other, and then they will exchange cakes
(and eat them). We want to model this situation using logic: in particular, since
we deal with resources to be consumed and produced, we will make use of linear
logic (LL) [8]. Each resource will correspond to an atomic formula; a linear impli-
cation A � B represents a process which consumes the resource A to produce
the resource B, while a tensor product A ⊗ B stands for the conjunction of the
resources A,B. The neutral element 1 of ⊗ denotes the absence of resources.

A first attempt to model the deal between Alice and Bob could be the follow-
ing, where we represent Alice’s and Bob’s proposals as multisets of linear logic
formulas:

– Alice’s proposal: ΓAlice = ia, (ia ⊗ cb) � ca
– Bob’s proposal: ΓBob = ib, (ib ⊗ ca) � cb

After a correct interaction between Alice and Bob, we expect that all
resources have been consumed: in the logical model, this corresponds to deduc-
ing ΓAlice, ΓBob � 1 (where � is the entailment relation of the logic). However,
this sequent is not provable in linear logic. The reason why the entailment fails is
that both Alice and Bob wait for the other to deliver something before starting
to cook, but since no one starts, no cake can be made.

Cancellative linear logic [9] is a logic where Alice and Bob reach an agree-
ment on their respective proposals, as the sequent ΓAlice, ΓBob � 1 is provable.
An explanation of this fact is that the previous proposals are equivalent, in
cancellative linear logic, to those below:

– Alice’s proposal: Γ ′
Alice = ia, ia � (ca ⊗ cb⊥)

– Bob’s proposal: Γ ′
Bob = ib, ib � (cb ⊗ ca⊥)

From the second proposals, it is evident that Γ ′
Alice, Γ

′
Bob � ca⊗cb⊗ca⊥⊗cb⊥

(this latter fact also holds in LL). Differently from LL, cancellative linear logic
proves the annihilation principle A ⊗ A⊥ � 1, allowing dual formulas to cancel
out. A consequence of this fact is that Γ ′

Alice, Γ
′
Bob � 1, as wanted. Intuitively,

negative atoms, like ca⊥, act as debits, while positive ones, like ca, act as credits.
However, the first and the second proposals have a slightly different flavour.

In the first, Alice is using cb in the left-hand side of the implication, and this
could be interpreted as requiring Bob’s cake in advance, in order to produce her
apple cake. Instead, in the second proposal Alice can start producing her cake
without Bob’s one, but she records the debit cb⊥ in the right-hand side of the
implication.

The reason why cancellative linear logic does not capture the difference
between the two proposals is that it proves the inverse annihilation principle
1 � A⊗A⊥, making the two proposals equivalent. This principle models the fact
that it is always possible to generate from scratch a pair debit, credit. However,
we find this principle not always realistic: in our scenario, it would allow Alice
to prepare her cake even in the absence of the needed ingredients (which would
be recorded as debits, though).
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We therefore look for a refinement of the logic, wherein debits can be gener-
ated in a controlled manner: formally, we want annihilation, but not its inverse.
To this purpose, we consider a linear logic which comprises a rule, usually called
[Mix], which makes it possible to prove annihilation [10]. In particular, we focus
on intuitionistic linear logic with [Mix] (ILLmix) [11].

In this logic, the second proposal of Alice and Bob leads to an agreement,
while the first one does not: formally, Γ ′

Alice, Γ
′
Bob � 1, but ΓAlice, ΓBob � 1. This

is because, in the second proposal, the deadlock situation is avoided by allowing
Alice to give an apple cake to Bob, provided that contextually Bob is charged
with a debit to give her a birthday cake.

Contribution. In this paper we focus on the Horn fragment of ILLmix, which
only admits negation, tensor products, linear implications, and exponentials.
We provide this fragment with a big-step operational semantics, as well as a
small-step one, and we prove that Horn ILLmix is sound and complete with
respect to these semantics (Theorems 2 and 3).

Leveraging on these semantics, we proceed to prove our main result, i.e., that
provability in Horn ILLmix is equivalent to the reachability problem for Debit
nets [12] with delayed annihilation (Theorem 4), which is known to be decidable.

2 Intuitionistic Linear Logic with Mix

In this section we recall from [11] the syntax, the sequent calculus, and some
facts about ILLmix.

Definition 1 (Syntax of ILLmix). Assume a denumerable set A of atoms,
ranged over by a, b, . . .. The formulas A,B, . . . of ILLmix are defined as follows:

A ::= a
∣
∣ A⊥ ∣

∣ A ⊗ A
∣
∣ A � A

∣
∣ A&A

∣
∣ A ⊕ A

∣
∣ !A

∣
∣ 1

∣
∣ 0

∣
∣ � ∣

∣ ⊥

The sequent calculus of ILLmix is depicted in Fig. 1; the symbol γ in the
expression Γ � γ may stand either for empty or for a formula A. We say that A
is provable whenever � A can be deduced with the rules in Fig. 1.

We observe that A⊥ can be defined as A �⊥; in this case the rules [negR]

and [negL] become derivable from the other rules of ILLmix. However, we prefer
to regard A⊥ as a primitive, rather than syntactic sugar.

Theorem 1 (Cut elimination [11]). Every provable sequent of ILLmix admits
a proof without the [Cut] rule.

Example 1. As an example of an ILLmix proof, we provide the proof of the
annihilation principle A ⊗ A⊥ � 1:

[ax]
A � A

[negL]
A, A⊥ �

[⊗ L]
A ⊗ A⊥ � [1R]� 1

[mix]
A ⊗ A⊥ � 1
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Fig. 1. Sequent calculus of ILLmix.

We remark that introducing the rule [mix] is equivalent to adding the principle
⊥ � 1. In fact, if ⊥ � 1 is assumed, the rule [mix] becomes derivable:

Γ � γ
[1L]

Γ, 1 � γ
Δ �

[⊥ R]
Δ �⊥

[� L]
Γ, Δ, ⊥� 1 � γ

⊥ � 1
[� R]�⊥� 1
[cut]

Γ, Δ � γ

Inversely, this principle is derivable using the rule [mix], as follows:

[⊥ L]⊥ � [1R]� 1
[mix]⊥ � 1

In cancellative linear logic [9], instead, 1 ��⊥ and A � B �� A⊥ ⊗ B. As a
consequence both the principles 1 � A ⊗ A⊥ and A ⊗ A⊥ � 1 are valid.

2.1 Simple Products and Multisets

We denote by A⊥ the set {a⊥ | a ∈ A}. We call literals the elements of L =
A ∪ A⊥. A simple product (resp. positive simple product) is a tensor product
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a1 ⊗ . . . ⊗ an where ai ∈ L ∪ {1} (resp. ai ∈ A ∪ {1}) for all i. We will use
X,Y,W,Z as metavariables for simple products.

A multiset over L is a function from L to the set N of natural numbers. The
union � of multisets is defined as expected; by ∅ we denote the empty multiset
(that is, the constant function 0). The support set(Σ) of a multiset Σ is the set
{a | Σ(a) > 0}. For each simple product X, we define the multiset msetX as:

– if X = 1 then mset1 is the constant function 0;

– if X = x ∈ L, then msetx is the function: msetx(y) =

{
1 if y = x

0 otherwise
– if X = X1 ⊗ X2, then msetX1⊗X2 = msetX1 � msetX2 .

Given a multiset of simple products Ω = {W1, . . . ,Wn}, we denote by
⊗

Ω
the simple product W1 ⊗ . . .⊗Wn. Hereafter we will often exploit implicitly this
correspondence, and we will use the same metavariables to denote both multisets
of literals and simple products: the difference will be clear from the context.

2.2 Horn ILLmix Sequents

Horn implications, ranged over by H,H ′, are formulas of the form X � Y ,
where X is positive. Horn sequents are sequents of the form:

Ω,Γ, !Δ � Z

where Ω is a multiset of simple products, and Γ and Δ are multisets of Horn
implications; when Z is positive, we say that the Horn sequent is honoured. A
Horn theory is a pair (Γ, !Δ).

Example 2. Figure 2 shows a proof in ILLmix of the Horn sequent corresponding
to the second proposal of Sect. 1:

ia, ib, ia � (ca ⊗ cb⊥), ib � (cb ⊗ ca⊥) � 1

The Horn sequent corresponding to the first proposal, instead, is not provable.

3 Debit Nets

In this section we present a minor variant of the debit nets in [12], in order to
obtain a correspondence with Horn ILLmix.

We assume the reader familiar with Petri nets, and only recall here some basic
notions [13]. A Petri net is a tuple (S, T, F ), where S is a set of places, T is a set
of transitions (with the constraint that S∩T = ∅), and F : (S×T )∪(T ×S) → N
is a weight function. The state of a net is given by a marking, that is a function
m : S → N assigning to each place a certain number of tokens. The behaviour
of a Petri net is described by a transition relation between markings: if m(s)
contains at least F (s, t) tokens for all s, then the transition t can fire, decreasing
m(s) by F (s, t) tokens and increasing it by F (t, s).
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Fig. 2. Proof of the sequent corresponding to the second proposal of Sect. 1.

Debit nets (DPN) [12] extend Petri nets by allowing places to give tokens
“on credit”, so that transitions can fire even in the absence of the required
number of tokens. Technically, each place s contains a number of tokens m(s)
(modelling credits) and of antitokens d(s) (modelling debits). In general, token
and antitokens can co-exist in a place. Transitions affect m in the standard way:
for a transition t to be fired the marking m(s) must contain at least F (s, t)
tokens for all s, and after the firing m(s) will be decreased by F (s, t) tokens and
increased by F (t, s). Instead, upon the firing of t, the number of antitokens d(s)
is increased by L(s, t), where the lending function L : S × T → N specifies how
many tokens are borrowed at each time. Note the differences between m,F and
d,L. First, F and m are used to check whether a transition can be fired, while L
and d are not. This renders the fact that a debit can neither prevent nor cause
a transition to fire. Second, F (t, s) is defined while L(t, s) is not: this is because
the generation of antitokens is already obtained through L(s, t). Hence, debits
can only be increased by firing transitions.

At any time tokens and antitokens can cancel out through a special annihila-
tion step. More precisely, both m(s) and d(s) can be simultaneously decremented
when non-zero (this is the delayed annihilation policy of [12]).

Definition 2 (Debit net). A debit net is a tuple N = (S, T, F,L) where:

– (S, T, F ) is a Petri net,
– L : S × T → N is the lending function.

We now formalise the notion of marking and of honoured markings, i.e. those
where all debits have been honoured.

Definition 3 (Marking). A marking of a debit net N = (S, T, F,L) is a pair
(m, d) of functions such that

– m : S → N is the token function
– d : S → N is the antitoken function

A marking (m, d) of N is honoured iff d(s) = 0 for all places s of N .
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Fig. 3. A Debit Petri net.

Example 3. In Fig. 3 we represent a DPN with places {a, b, c, d}, having initial
marking {a → (1, 0), b → (0, 0), c → (0, 0), d → (1, 0)}. When representing
DPNs, we adopt the following drawing conventions: places are depicted as circles,
transitions as squares, and arcs connecting transition to places are decorated
with their weights. In case of arcs connecting places to transitions we have a
pair of natural numbers, the first representing the weight of the standard arcs
(possibly 0) and the second the weight of the lending ones. We do not write the
weight (1, 0) (from places to transitions) or 1 (from transitions to places), and do
not draw any arc between a place and a transition if both standard and lending
arcs have null weights. Tokens are depicted as filled bullets, while antitokens as
empty bullets.

Definition 4 (Step and computation). Let N = (S, T, F,L) be a DPN, and
let (m, d) be a marking of N . We say that:

– t ∈ T is enabled at (m, d) iff m(s) ≥ F (s, t) for all s;
– annihilation is enabled at (m, d) for s iff m(s) > 0 and d(s) > 0.

A step from (m, d) to (m′, d′) — in symbols (m, d) −→N (m′, d′) — can occur
whenever one of the following holds:

– t is enabled at (m, d), and, for all s ∈ S:

m′(s) = m(s) − F (s, t) + F (t, s) d′(s) = d(s) + L(s, t)

– annihilation is enabled at (m, d) for s̃, and, for all s ∈ S:

m′(s) =

{
m(s) − 1 if s = s̃

m(s) otherwise
d′(s) =

{
d(s) − 1 if s = s̃

d(s) otherwise

A computation is a finite sequence of steps. As usual, we denote with −→∗
N the

reflexive and transitive closure of −→N .

Example 4. In the DPN in Fig. 3 there are two possible computations, depending
on when annihilation occurs. A computation is represented as a sequence of
vectors, the elements of which are pairs (m(s), d(s)).
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a b c d

(1,0) (0,0) (0,0) (1,0)

t1 (0,0) (0,2) (1,0) (1,0)

t2 (0,0) (1,2) (0,0) (1,0)

annihil (0,0) (0,1) (0,0) (1,0)

a b c d

(1,0) (0,0) (0,0) (1,0)

t1 (0,0) (0,2) (1,0) (1,0)

t2 (0,0) (1,2) (0,0) (1,0)

t3 (0,0) (2,2) (0,0) (0,0)

annihil (0,0) (1,1) (0,0) (0,0)

annihil (0,0) (0,0) (0,0) (0,0)

The computation depicted in the left part of the previous table follows an
instantaneous annihilation policy: annihilation occurs as soon as possible (the
leftmost column records the transition taken to obtain the marking in the row).
Indeed, as soon as we find (1, 2) in place b, we annihilate it to (0, 1). Note that
this computation leaves a debit in place b, which can not be honoured by any
further transitions, since the net is stuck. Instead, under the delayed annihilation
policy, settling debits is not prioritized. Hence, when b reaches (2, 1) we can either
annihilate, obtaining the previous computation, or instead perform transition t3,
obtaning the computation in the right part of the previous table, where every
debit is eventually honoured.

4 Debit Nets as a Model of Horn ILLmix

In this section we reduce provability of honoured Horn sequents in ILLmix to
reachability in DPNs. As an intermediate step, we will endow Horn ILLmix with
two operational semantics: a big-step and a small-step one. The proof proceeds
as follows: in Theorem 2 we show that the big-step semantics coincides with
Horn ILLmix provability when applied to honoured sequents; in Proposition 3 we
show that small-step semantics simulate faithfully computations in DPNs. The
equivalence between the two semantics (Proposition 1) then allows to derive our
principal result (Theorem 4) as a corollary. A similar proof technique is used by
Kanovich in [14], to prove the equivalence between reachability in Petri nets and
provability in Horn LL (without mix and negation).

4.1 Big-Step Semantics

The big-step semantics of Horn ILLmix is formalised as a relation ⇓ between
triples (W,Γ, !Δ) and simple products Z. The intuition is that (W,Γ, !Δ) ⇓ Z
holds in the big-step semantics if and only if the sequent (W,Γ, !Δ) � Z is
provable in ILLmix, whenever Z is positive. Note that here we are interpreting
W as a multiset of literals.

Definition 5 (Big-step semantics of Horn ILLmix). We inductively define
the relation (W,Γ, !Δ) ⇓ Z by the rules in Fig. 4.

Intuitively, the axiom [⇓ H] models the consumption of the resource X to
produce Y , by using an implication X � Y . Rule [⇓ S] models the settlement
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Fig. 4. Big-step semantics of Horn ILLmix.

of a debit a⊥ with the corresponding credit a. Rules [⇓ cut] and [⇓ M] deal with
composition of computations; rules [⇓ C!], [⇓ W!], and [⇓ L!] are the counterpart of
the structural rules of LL, stating that !-ed implications may be re-used at will.

Theorem 2. Let Ω,Γ, !Δ � Z be an honoured Horn sequent. Then:

(
⊗

Ω,Γ, !Δ) ⇓ Z ⇐⇒ Ω,Γ, !Δ � Z

4.2 Small-Step Semantics

We now introduce a small-step semantics of Horn ILLmix, which we will show
equivalent to the big-step one in Proposition 1. Together with Theorem 2, we
will obtain a correspondence between the small-step semantics and provability
in Horn ILLmix.

Fig. 5. Small step semantics of Horn ILLmix.

Definition 6 (Small-step semantics of Horn ILLmix). We define the tran-
sition system (Q,�) as follows:

– Q is the set of all triples of the form (W,Γ, !Δ), where W is a multiset of
literals, and Γ,Δ are multisets of Horn implications.

– � is defined by the rules in Fig. 5. As usual, we denote with �∗ the transitive
and reflexive closure of the relation �.
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Fig. 6. Encoding of Horn ILLmix theories into Debit nets.

The multisets W and Γ in the small-step semantics play a role similar to
that of markings in DPNs. In particular, W takes into account the tokens and
antitokens in places, while Γ is used to bound how many times a transition can
be fired. This intuition will be exploited in the following section, to establish a
correspondence between the small-step semantics and computations in DPNs.

We now briefly comment on the rules in Fig. 5. Rule [�H ] applies an impli-
cation in Γ , and then discharges one of its occurrences; rule [�!H ] is similar,
except that it does not discharge any occurrence; finally, rule [�S ] annihilates
a token with an antitoken.

Proposition 1. (W,Γ, !Δ) ⇓ Z ⇐⇒ (W,Γ, !Δ) �∗ (Z, ∅, !Δ)

The following theorem directly follows from Theorem 2 and Proposition 1.

Theorem 3. Let Ω,Γ, !Δ � Z be an honoured Horn sequent. Then

(
⊗

Ω,Γ, !Δ) �∗ (Z, ∅, !Δ) ⇐⇒ Ω,Γ, !Δ � Z

4.3 Encoding Horn ILLmix into Debit Nets

We now provide an encoding of Horn theories into Debit nets. We start by
defining a function 〈A〉 associating a Horn formula A with the set of atoms
occurring in it (this function is extended to sets of formulas as usual):

〈1〉 = ∅ 〈a⊥〉 = 〈a〉 = {a} 〈A ⊗ B〉 = 〈A � B〉 = 〈A〉 ∪ 〈B〉

Given two multisets of Horn implications Γ,Δ, the Horn theory (Γ, !Δ) can
be encoded as a Debit net as follows.

Definition 7. For a pair (Γ, !Δ), we define the DPN N(Γ, !Δ) in Fig. 6.
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We now comment on Definition 7. For every Horn implication in Γ and Δ
we generate a transition in T . We keep the transitions coming from Γ and Δ
separate, using disjoint union � (with left and right injections denoted by in0

and in1, respectively). We use the set function to ignore multiplicity: e.g., if the
multiset Γ contains two equal implications, only a single transition is generated.
Then, for any atom occurring in Δ or Γ (disregarding multiplicity), we generate
an atom place in the net (in Satm). Tokens and antitokens in this place represent
the credits and debits for that atom, respectively. Further, we generate a control
place (in Sctrl) for each implication in Γ . During a computation, the number of
tokens in this place corresponds to the multiplicity of an implication in Γ . Since
implications in Δ are under a !, their multiplicity is immaterial, hence we do not
generate control places for Δ.

The function F (s, t) specifies how many tokens from s are consumed by fir-
ing a transition t. Assume t corresponds to an implication X � Y (either in Γ
or in Δ). Then, firing t consumes tokens in two different ways. First, for each
occurrence of a literal a in X, it consumes a token (msetX(a) tokens removed
from place a). Second, it consumes a single token from the control place asso-
ciated to the implication X � Y in Γ . Technically, t is the left injection in0

of the control place s = X � Y ; with a little abuse of notation, when writing
t = X � Y we mean that t = ini(X � Y ) for i = 0 or i = 1. The function
F (t, s) specifies how many tokens are produced in place s by firing t. When
firing a transition for X � Y (either in Γ or in Δ), we generate a token for
each occurrence of a positive literal a of Y (msetY (a) tokens added to place
a). Finally, the function L(s, t) specifies how many antitokens are produced: the
transition for X � Y generates an antitoken for each occurrence of a negative
literal a⊥ in Y (msetY (a⊥) antitokens added to place a).

Given a DPN N = N(Γ0, !Δ0), we say that a pair (W,Γ ) of a simple product
W and a multiset of Horn implications Γ is compatible with N iff 〈W 〉 ⊆ Satm

(the set of atom places of N), and set(Γ ) ⊆ set(Γ0). Every pair (W,Γ ) compat-
ible with N can be represented with the marking [W,Γ ] of N , defined below.
Roughly, the marking counts the multiplicity of each positive and negative literal
in W , as well as the multiplicity of the implications in Γ .

Definition 8. Let N = N(Γ0, !Δ0) for some Horn theory (Γ0, !Δ0), and let
(W,Γ ) be compatible with N . We define the marking [W,Γ ] = (m, d) of N as:

m(s) =

{
msetW (s) ifs ∈ Satm

Γ (in0(s)) ifs ∈ Sctrl
d(s) =

{
msetW (s⊥) ifs ∈ Satm

0 otherwise

Note that the above operator [W,Γ ] is not injective, since e.g. W ′ = a ⊗ b
and W ′′ = b ⊗ a will lead to the same marking. However, injectivity can be
recovered considering simple products up to commutativity, associativity, and 1
identities. From now on, we will consider simple products up to this equivalence.
The following proposition ensures that the operator is also surjective.

Proposition 2. For all markings (m, d) of N = N(Γ0, !Δ0) there exists a unique
(W,Γ ) compatible with N such that (m, d) = [W,Γ ].
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Fig. 7. The second proposal of Sect. 1 as a DPN (tA = in0(A), tB = in0(B)).

Example 5. Consider the second proposal of Alice and Bob’s in Sect. 1, modelled
as the Horn theory (Γ, !∅), where:

Γ = {A,B} with A = ia � ca ⊗ cb⊥ and B = ib � cb ⊗ ca⊥

In Fig. 7 we show the DPN N(Γ, ∅), with initial marking [{ia, ib}, Γ ]. Note that
after firing tA and tB (in any order), followed by two annihilation steps, the
DPN reaches the empty marking.

We now establish a strict correspondence between the small-step semantics
of ILLmix and DPN computations. First, we relate the states in the semantics
to markings in the DPN, through the [·] operator. Then, we show that each step
in the semantics corresponds to a step in the DPN, and vice versa.

Proposition 3. Let N = N(Γ0, !Δ), and let (W,Γ ) be compatible with N . Then:

(W,Γ, !Δ) � (W ′, Γ ′, !Δ) ⇐⇒ [W,Γ ] −→N [W ′, Γ ′]

Note that, when taking the ⇐ direction in the above statement, assuming
markings of the form [W,Γ ] is not a restriction, because Proposition 2 guarantees
surjectivity.

Combining the above correspondence with the one in Theorem 3, we obtain
our main result: the provability of an honoured Horn sequent in ILLmix is equiv-
alent to reachability of certain honoured markings in DPNs.

Theorem 4. Let N = N(Γ, !Δ). An honoured Horn sequent Ω,Γ, !Δ � Z of
ILLmix is provable iff [

⊗
Ω,Γ ] −→∗

N [Z, ∅].

Example 6. Consider the marked DPN N in Fig. 3. A Horn theory (Γ, !Δ) such
that N(Γ, !Δ) = N is the following:

Γ = ∅ Δ = {a � b⊥ ⊗ b⊥ ⊗ c, c � b, b ⊗ d � b ⊗ b}
The unique pair (W0, Γ0) corresponding to the marking in Fig. 3 is W0 = a ⊗ d,
Γ0 = ∅. Consider again the computation in the rightmost table of Example 4.
According to Theorem 4, the following Horn ILLmix sequent is provable:

a ⊗ d, !(a � b⊥ ⊗ b⊥ ⊗ c), !(c � b), !(b ⊗ d � b ⊗ b) � 1
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Remark 1. Note that the ⇒ direction of Theorem 4 does not hold, in general,
when the sequent is not assumed to be honoured. For instance, the Horn sequent
b, a � b⊥ � a⊥ is provable in ILLmix, but the corresponding DPN has no
computations leading to a marking with an antitoken in place a. In a certain
sense, in ILLmix we can reverse an implication a � b⊥, by using it as b � a⊥,
whereas transitions in DPNs can be taken in only one direction. In honoured
Horn sequents, we can no more reverse transitions, since the right-hand side of
a sequent can only contain positive atoms.

5 Related Work and Conclusions

The starting point of this paper has been cancellative linear logic [9], an extension
of linear logic where ⊥ is identified with 1, and ⊗ with . As a consequence,
both the annihilation principle a ⊗ a⊥ � 1 and its inverse 1 � a ⊗ a⊥ are valid:
interpreting a as a credit and a⊥ as a debit, the annihilation principle states
that debits and credits cancel out. The inverse annihilation principle, instead,
allows for generating a resource along with its corresponding debit. In [9] an
extension of the token game of Petri nets is introduced, called financial game,
where a pair token-antitoken can be either generated or annihilated. Building
on this intuition, in this paper we have shown that adding [Mix] to the Horn
fragment of LL is enough to permit cancelling debits, without identifying ⊗ with

[⇓ H]
(X, X � Y,∅) ⇓ Y

(nor allowing to freely generate credits and debits).
Our main result is that provability in Horn ILLmix corresponds to reachability
in Stott and Godfrey’s Debit nets [12].

Relations between linear logic and Petri nets have been studied by several
authors, using both syntactical [14,15] and semantical methods [16–20]. Most
of the papers in the semantical side connect Petri nets and LL within suitable
algebraic frameworks. In particular, Meseguer and Mart́ı-Oliet [18] compare Petri
nets with multiplicative-additive linear logic, using a common categorical model,
based on symmetric monoidal categories. Using semantics as a bridge, they show
how linear logic can be used as a “specification language” for Petri nets. To do
that, they define a satisfiability relation between Petri nets and linear logic
sequents. The fragment of linear logic we have considered does not include some
linear operators, e.g. internal and external choice, which are instead dealt with
by [18]. To extend our correspondence to &, it seems enough to share control
places in DPNs between &-ed transitions. The operator ⊕ could be dealt with
by considering non-deterministic DPNs, in the same way as [15] relates Horn
LL theories (extended with ⊕) with non-deterministic Petri nets.

On a more syntactical level, Kanovich [14,15] studies the computational
power of the Horn fragment of LL, comparing it with Petri nets and Minsky
machines. In particular, reachability in Petri nets and provability in Horn LL
are shown equivalent. The strategy used to prove our main results is similar
to Kanovich’s; nevertheless, some differences are worth noticing. First, in this
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paper we have considered a different fragment of LL, featuring linear implica-
tion, tensor product, negation, 1 and [Mix], as well as DPNs instead of Petri nets
(we have sketched above how to extend our correspondence to & and ⊕). Second,
the intermediate objects used by Kanovich to connect the logic with nets are a
sort of dags (called Horn programs), while we have used two operational seman-
tics. Third, in Kanovich’s encoding of Horn LL in Petri nets, all implications are
under a !, while we have also allowed transitions to be consumed.

Another variant of Petri nets where tokens can be taken “on credit” has
been presented in [21]. This model, called Lending Petri nets (LPNs), is similar
to our version of DPNs: a main difference is that we have adopted a delayed
annihilation policy, while that of LPNs is instantaneous, i.e. tokens and anti-
tokens cannot coexist in the same place. While the instantaneous policy makes
Debit nets Turing powerful [12], the delayed annihilation policy makes DPNs
equi-expressive to Petri nets.

Reasoning about mutual commitments in a non-linear logic has been
addressed in [4], by extending intuitionistic propositional logic with a contractual
implication connective �. Roughly, a contractual implication a → (b � c) can
be interpreted as a non-linear variant of a � (b⊥ ⊗ c). This logic is related to
Lending Petri nets: indeed, Lending Petri nets form a sound and complete model
of the Horn fragment of the logic [21], analogously to the relation between Horn
ILLmix and DPNs studied in this paper. In [22] the correspondence between
PCL and LPNs is pushed further, by showing that proof traces [6] of a Horn
PCL theory Δ are exactly the honoured firing sequences in N(Δ).
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A Proofs

A.1 Proofs for Sect. 4.1

Lemma 1. If (W,Γ, !Δ) ⇓ Z then W,Γ, !Δ � Z.

Proof. We proceed by induction on the height of the derivation of (W,Γ, !Δ) ⇓ Z.
We have the following cases, according on the last rule used:

– [⇓ I], [⇓ CUT], [⇓ W!], [⇓ C!], or [⇓ L!]. Straightfoward.
– [⇓ H]. We have:

[ax]
X � X

[ax]
Y � Y

[�L]
X, X � Y � Y

and we obtain the thesis as follows:
[⇓ S]

(a ⊗ a⊥,∅,∅) ⇓ 1
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– [⇓ S]. We have:
[ax]

a � a
[negL]

a, a⊥ �
[⊗ L]

a ⊗ a⊥ � [1R]� 1
[mix]

a ⊗ a⊥ � 1

and we obtain the thesis as follows:

(X, Γ, !Δ) ⇓ Y
[⇓ M]

(X ⊗ V, Γ, !Δ) ⇓ Y ⊗ V

– [⇓ M]. We have:

X, Γ, !Δ � Y
[ax]

V � V
[⊗R]

X, V, Γ, !Δ � Y ⊗ V
[⊗L]

X ⊗ V, Γ, !Δ � Y ⊗ V

and by using the induction hypothesis, we obtain the thesis as follows:
[ax]

a � a
[negL]

a, a⊥ �
��

Definition 9 (Almost-Horn honoured sequent). We say that a sequent
Ω,Γ, !Δ � γ is almost-Horn honoured if Ω is a multiset of simple products, Γ,Δ
are multisets of Horn implications, and γ is a positive simple product or empty.

Definition 10. (Clean proof). We say that proof π of an almost-Horn hon-
oured sequent Ω,Γ,Δ � γ is clean when all the applications of a rule [negL] in π
are placed just below an [Ax] rule, as follows:

Ω1, Γ1, !Δ1 � a Ω2, Γ2, !Δ2 �
[Mix]

Ω1, Ω2, Γ1, Γ2, !Δ1, !Δ2 � a
[negL]

Ω1, Ω2, a
⊥, Γ1, Γ2, !Δ1, !Δ2 �

Lemma 2. Any provable almost-Horn honoured sequent admits a clean cut-free
proof.

Proof. Let Ω,Γ,Δ � γ be a provable almost-Horn honoured sequent. By
Theorem 1 it admits a cut-free proof π. We show that every occurrence of the
rule [negL] which does not respect the pattern of Definition 10, can be moved
upwards in the proof. We reason by cases, depending on the rule r just above
[negL] in π. Since π is cut-free and all its sequents are almost-Horn honoured, we
can restrict to the following cases:
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– [Ax], [1L], [⊗L], [!L], [weakL], [coL]. Straightforward.
– [Mix]. We have:

Ω1, Γ1, !Δ1 � a
[negL]

Ω1, a
⊥, Γ1, !Δ1,� Ω2, Γ2, !Δ2 �

[Mix]

Ω1, Ω2, a
⊥, Γ1, Γ2, !Δ1, !Δ2 �

and we obtain the thesis as follows:

Ω1, Y, Γ1, !Δ1 � a Ω2, Γ2, !Δ2 � X
[�L]

Ω1, Ω2, Γ1, Γ2, X � Y, !Δ1, !Δ2 � a
[negL]

Ω1, Ω2, a
⊥, Γ1, Γ2, X � Y, !Δ1, !Δ2 �

– [� L]. We have:
Ω1, Y, Γ1, !Δ1 � a

[negL]

Ω1, Y, a⊥, Γ1, !Δ1,� Ω2, Γ2, !Δ2 � X
[�L]

Ω1, Ω2, a
⊥, Γ1, Γ2, X � Y, !Δ1, !Δ2 �

and we obtain the thesis as follows:

...
a, a⊥ � [1R]� 1

[Mix]

a, a⊥ � 1

��
Definition 11 (Proper proof). For a proof π of ILLmix, we say that an
application of [Mix] rule is proper, whenever it has the following form:

Γ � W Γ ′, W � Z
[Cut]

Γ, Γ ′ � Z

We say that a proof π of an honoured almost-Horn sequent is proper if it is
clean, and every occurrence of the [Mix] rule in π is proper.

Definition 12 (Harmless cut). Given a proof π of ILLmix, we say that the
application of a [Cut] rule is harmless whenever it has the following form:

[Ax]
a � a

[negL]

a, a⊥ �

where W is a positive simple product.
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Lemma 3. A provable Horn honoured sequent admits a proper proof where all
the applications of the [Cut] rule are harmless.

Proof. We prove the following stronger statement. Assume that an almost-Horn
honoured sequent Ω,Γ, !Δ � γ is provable. Then:

(a) if γ = Z, then there exists a proper proof of Ω,Γ, !Δ � Z where all [Cut]

rules are harmless.
(b) if γ is empty, then there exists a proper proof of Ω,Γ, !Δ � 1 where all [Cut]

rules are harmless.

By Lemma 2, consider a clean cut-free proof π of the sequent. We proceed by
induction on the height of π. Since π is cut-free, we can restrict to the following
cases, according to the last rule used in π:

– [Ax], [1R]. In these cases there is nothing to prove.
– [1L], [⊗L], [⊗R], [�L], [!L], [weakL], [coL]. Straightforward by the induction

hypothesis.
– [negL]. Since π is clean, is must have the following form:

[Ax]
a � a

[negL]

a, a⊥ � [1R]� 1
[Mix]

a, a⊥ � 1

which we replace with the following proof:

Ω2, Γ2, !Δ1 � Ω1, Γ1, !Δ1 � Z
[Mix]

Ω1, Ω2, Γ1, Γ2, !Δ1, !Δ2 � Z

– [negR]. This case is not possible, since π is cut-free and γ is either a positive
simple product or empty.

– [Mix]. We have the following two subcases:
1. π has the form:

Ω1, Γ1, !Δ1 � Z Ω2, Γ2, !Δ1 � 1
[⊗R]

Ω1, Ω2, Γ1, Γ2, !Δ1, !Δ2 � Z ⊗ 1

[Ax]
Z � Z

[1L]
Z, 1 � Z

[⊗L]
Z ⊗ 1 � Z

[Cut]
Ω1, Ω2, Γ1, Γ2, !Δ1, !Δ2 � Z

By the induction hypothesis (applied on both premises), we obtain:

Ω1, Γ1, !Δ1 � Ω2, Γ2, !Δ1 �
[Mix]

Ω1, Ω2, Γ1, Γ2, !Δ1, !Δ2 �
where the application of the [Cut] rule is harmless.
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2. π has the form:

Ω1, Γ1, !Δ1 � 1 Ω2, Γ2, !Δ1 � 1
[⊗R]

Ω1, Ω2, Γ1, Γ2, !Δ1, !Δ2 � 1 ⊗ 1

[Ax]
1 � 1

[1L]
1, 1 � 1

[⊗L]
1 ⊗ 1 � 1

[Cut]
Ω1, Ω2, Γ1, Γ2, !Δ1, !Δ2 � 1

By the induction hypothesis and harmless application of [Cut], we obtain:

Ω, Γ,H,Δ � Z
[!L]

Ω, Γ, !H, !Δ � Z

where the application of the [Cut] rule is harmless. ��
Lemma 4. Let Ω,Γ, !Δ � Z be a provable honoured Horn sequent. Then:

(
⊗

Ω,Γ, !Δ) ⇓ Z

Proof. By Lemma 3, there exists a proper proof π of Ω,Γ, !Δ � Z containing
only harmless applications of the [Cut] rule. We proceed by induction on the
height of π, and then by cases on the last rule used.

– [Ax]. Trivial by rule [⇓ I].
– [!L]. We have:

(
⊗

Ω, (Γ � {H}), !Δ) ⇓ Z
[⇓ L!]

(
⊗

Ω, Γ, !(Δ � {H})) ⇓ Z

By the induction hypothesis, we obtain:

Ω, X, Y, Γ, !Δ � Z
[⊗L]

Ω, X ⊗ Y, Γ, !Δ � Z

– [negL]. This case is not possible, since the righthand side of the final sequent
of π cannot be empty by hypothesis.

– [negR]. This case is not possible, since the righthand side of the final sequent
of π must be a positive simple product.

– [⊗L]. We have:
Ω1, Γ1, !Δ1 � Z1 Ω2, Γ2, !Δ2 � Z2

[⊗R]
Ω1, Ω2, Γ1, Γ2, !Δ1, !Δ2 � Z1 ⊗ Z2

By the induction hypothesis, (
⊗

(Ω � {X} � {Y }), Γ, !Δ) ⇓ Z. The thesis fol-
lows because

⊗
(Ω � {X} � {Y }) =

⊗
(Ω � {X ⊗ Y }).
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– [⊗R]. We have:
(
⊗

Ω1, Γ1, !Δ1) ⇓ Z1
[⇓ M]

(
⊗

Ω1 ⊗ ⊗
Ω2, Γ1, !Δ1) ⇓ Z1 ⊗ ⊗

Ω2

(Ω2, Γ2, !Δ2) ⇓ Z2
[⇓ M]

(Z1 ⊗ ⊗
Ω2, Γ2, !Δ2) ⇓ Z1 ⊗ Z2

[⇓ Cut]
(
⊗

Ω1 ⊗ ⊗
Ω2, (Γ1 � Γ2), !(Δ1 � Δ2)) ⇓ Z1 ⊗ Z2

By applying the induction hypothesis on both premises, we obtain:

Ω1, Γ1, !Δ1 � X Ω2, Y, Γ2, !Δ2 � Z
[�L]

Ω1, Ω2, Γ1, X � Y, Γ2, !Δ1, !Δ2 � Z

– [�L]. We have:

(
⊗

Ω1, Γ1, !Δ1) ⇓ X
[⇓ H]

(X, X � Y, ∅) ⇓ Y
[⇓ Cut]

(
⊗

Ω1, (Γ1 � {X � Y }), !Δ1) ⇓ Y
[⇓ M]

(
⊗

Ω1 ⊗ ⊗
Ω2, (Γ1 � {X � Y }), !Δ1) ⇓ Y ⊗ ⊗

Ω2 (Y ⊗ ⊗
Ω2, Γ2, !Δ2) ⇓ Z

[⇓ Cut]
(
⊗

Ω1 ⊗ ⊗
Ω2, (Γ1 � {X � Y } � Γ2), !(Δ1 � Δ2)) ⇓ Z

Since X � Y is a Horn implication, then X must be a positive simple product,
and so Ω1, Γ1, !Δ1 � X is an honoured Horn sequent. Therefore we can apply
the induction hypothesis, from which we obtain:

...
a, a⊥ � [1R]� 1

[Mix]

a, a⊥ � 1

– [Mix]. Since π is proper, it must be:

Ω1, Γ1, !Δ1 � Z1 Ω2, Z1, Γ2, !Δ2 � Z
[Cut]

Ω1, Ω2, Γ1, Γ2, !Δ1, !Δ2 � Z

and the thesis follows from rule [⇓ S].
– [Cut]. Since π contains only harmless cuts, by Definition 12 there exist

Ω1, Ω2, Z1, Γ1, Γ2, and Δ1,Δ2 such that Z1 is honoured, and the last rule
in π is:

⊗
Ω1, Γ1, !Δ1 ⇓ Z1

[⇓ M]⊗
Ω1 ⊗ ⊗

Ω2, Γ1, !Δ1 ⇓ Z1 ⊗ ⊗
Ω2

⊗
Ω2 ⊗ Z1, Γ2, !Δ2 ⇓ Z

[⇓cut]
(
⊗

Ω1 ⊗ ⊗
Ω2, Γ1 � Γ2, !(Δ1 � Δ2)) ⇓ Z

By applying the induction hypothesis on both premises, we obtain:
⊗

Ω1, Γ1, !Δ1 ⇓ Z1

⊗
Ω2 ⊗ Z1, Γ2, !Δ2 ⇓ Z
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Therefore, we obtain:
[1R]� 1

– [1R]. We have:
[⇓ I]

(1,∅,∅) ⇓ 1

Since the empty multiset is associated with the simple product 1, we obtain:

Ω, Γ, !Δ � Z
[1L]

1, Ω, Γ, !Δ � Z

– [1L]. We have:
[⇓ H]

(X, X � Y,∅) ⇓ Y
[⇓ M]

(X ⊗ V,X � Y ,∅) ⇓ Y ⊗ V (Y ⊗ V, Γ ′, !Δ) ⇓ Z
[⇓ cut]

(X ⊗ V, (Γ ′ � {X � Y }), !Δ) ⇓ Z

By the induction hypothesis, we know that:

(
⊗

Ω,Γ, !Δ) ⇓ Z

Since mset⊗Ω = mset1⊗⊗Ω , we conclude that:

(1 ⊗
⊗

Ω,Γ, !Δ) ⇓ Z ��
Theorem 2. Let Ω,Γ, !Δ � Z be an honoured Horn sequent. Then:

(
⊗

Ω,Γ, !Δ) ⇓ Z ⇐⇒ Ω,Γ, !Δ � Z

Proof. The (=⇒) direction follows from Lemma 1; the (⇐=) direction follows
from Lemma 4. ��

A.2 Proofs for Sect. 4.2

Lemma 5. The following facts hold:

1. If (W1, Γ1, !Δ1) �∗ (W2, Γ
′
1, !Δ1) and (W2, Γ2, !Δ2) �∗ (W3, Γ

′
2, !Δ2), then

(W1, Γ1 � Γ2, !(Δ1 � Δ2)) �∗ (W3, Γ
′
1 � Γ ′

2, !(Δ1 � Δ2)).
2. If (W,Γ, !Δ) �∗ (W ′, Γ ′, !Δ) and V is a simple product, then (W ⊗

V, Γ, !Δ) �∗ (W ′ ⊗ V, Γ ′, !Δ).
3. If (W,Γ � {H}, !Δ) �∗ (W ′, Γ ′, !Δ) where H is a Horn implication, then

(W,Γ, !(Δ � {H})) �∗ (W ′, Γ ′, !(Δ � {H})).
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4. If (W,Γ, !Δ) �∗ (W ′, Γ ′, !Δ) where H is a Horn implication, then (W,Γ, !(Δ�
{H})) �∗ (W ′, Γ ′, !(Δ � {H})).

5. If (W,Γ, !(Δ�{H,H})) �∗ (W ′, Γ ′, !(Δ�{H,H})) where H is a Horn impli-
cation, then (W,Γ, !(Δ � {H})) �∗ (W ′, Γ ′, !(Δ � {H})).

Proof. Straightforward. ��
Proposition 1. (W,Γ, !Δ) ⇓ Z ⇐⇒ (W,Γ, !Δ) �∗ (Z, ∅, !Δ)

Proof. For the (=⇒) direction, we proceed by induction on the height of the
derivation of (W,Γ, !Δ) ⇓ Z, and then by cases on the last rule applied.

For the base case, we have three possible subcases:

– [⇓ I]. By reflexivity of �∗ (X, ∅, ∅) �∗ (X, ∅, ∅).
– [⇓ H]. By rule [�H ], (X,X � Y, ∅) � (Y, ∅, ∅).
– [⇓ S]. By rule [�S ], (a ⊗ a⊥, ∅, ∅) � (1, ∅, ∅).

For the inductive case, we have the following subcases:

– [⇓Cut]. By applying the induction hypothesis on both premises, we obtain:

(W,Γ1, !Δ1) �∗ (U, ∅, !Δ1) (U, Γ2, !Δ2) �∗ (Z, ∅, !Δ2)

By item (1) of Lemma 5 we obtain the thesis:

(W,Γ1 � Γ2, !Δ1�!Δ2) �∗ (Z, ∅, !Δ1�!Δ2)

– [⇓ M]. By the induction hypothesis and item (2) of Lemma 5.
– [⇓ L!]. By the induction hypothesis and item (3) of Lemma 5.
– [⇓ W!]. By the induction hypothesis and item (4) of Lemma 5.
– [⇓ C!]. By the induction hypothesis and item (5) of Lemma 5.

For the (⇐=) direction, we proceed by induction on the length n of the compu-
tation (W,Γ, !Δ) �n (Z, ∅, !Δ).

– n = 0: then the computation consists of the single state (Z, ∅, !Δ), and
(Z, ∅, !Δ) ⇓ Z is derivable by rule [⇓ I] followed by as many applications
of [⇓ W!] as the cardinality of Δ.

– n > 0: Let s � s′ be the first transition of the computation. Let us call t0 the
sub-computation of lenght n− 1 starting from s′. We have the following three
subcases, depending on the rule used to deduce s � s′:

• [�H ]. By definition, there exist X,Y, V such that s′ = (Y ⊗ V, Γ ′, !Δ),
W = X ⊗ V , Γ = Γ ′ � {X � Y } and
(X ⊗ V, Γ ′ � {X � Y }, !Δ) � (Y ⊗ V, Γ ′, !Δ) �∗ (Z, ∅, !Δ)
The induction hypothesis gives us (Y ⊗ V, Γ ′, !Δ) ⇓ Z, so we can build
the following:
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• [�!H ]. By definition, there exist X,Y, V such that s′ = (Y ⊗ V, Γ, !Δ),
W = X ⊗ V , X � Y ∈ Δ and

((X ⊗ V, Γ, !Δ) � (Y ⊗ V, Γ, !Δ) �∗ (Z, ∅, !Δ)

The induction hypothesis gives us (Y ⊗ V, Γ, !Δ) ⇓ Z, so we can build
the following:

[⇓ H]
(X, X � Y,∅) ⇓ Y

[⇓ M]
(X ⊗ V,X � Y,∅) ⇓ Y ⊗ V (Y ⊗ V, Γ, !Δ) ⇓ Z

[⇓ cut]
(X ⊗ V, (Γ � {X � Y }), !Δ) ⇓ Z

[⇓ L!]
(X ⊗ V, Γ, !(Δ � {X � Y })) ⇓ Z

[⇓ C!]
(X ⊗ V, Γ, !Δ) ⇓ Z

– [�S ]. By definition, there exist V and an atom a such that s′ = (1 ⊗ V, Γ, !Δ),
W = a ⊗ a⊥ ⊗ V , and:

(a ⊗ a⊥ ⊗ V, Γ, !Δ) � (1 ⊗ V, Γ, !Δ) �∗ (Z, ∅, !Δ)

The induction hypothesis gives us (1 ⊗ V, Γ ′, !Δ) ⇓ Z, so we can build the
following:

[⇓ S]

(a ⊗ a⊥,∅,∅) ⇓ 1
[⇓ M]

(a ⊗ a⊥ ⊗ V,∅,∅) ⇓ 1 ⊗ V (1 ⊗ V, Γ, !Δ) ⇓ Z
[⇓ Cut]

(a ⊗ a⊥ ⊗ V, Γ, !Δ) ⇓ Z

Theorem 3. Let Ω,Γ, !Δ � Z be an honoured Horn sequent. Then:

(
⊗

Ω,Γ, !Δ) �∗ (Z, ∅, !Δ) ⇐⇒ Ω,Γ, !Δ � Z

Proof. Straightforward by Proposition 1 and Theorem 2. ��

A.3 Proofs for Sect. 4.3

Proposition 2. For all markings (m, d) of N = N(Γ0, !Δ0) there exists a unique
(W,Γ ) compatible with N such that (m, d) = [W,Γ ].

Proof. We prove that [·] is injective and surjective over (W,Γ ) compatible with
N(Γ0,Δ0); the result then follows straightforwardly. Let us assume (W1, Γ1) �=
(W2, Γ2); then either msetW1(s) �= msetW2(s) for some s ∈ Satm, or Γ1(in0(s)) �=
Γ2(in0(s)) for some s ∈ Sctrl, or msetW1(s

⊥) �= msetW2(s
⊥) for some s ∈ Satm;

but then by compatibility and by definition of [·], [W1, Γ1] �= [W2, Γ2]. This
proves injectivity.

For surjectivity, if (m, d) is a marking of N(Γ0,Δ0), we can build (W,Γ )
compatible with N(Γ0,Δ0) s.t. (m, d) = [W,Γ ] as follows: to retrieve W we
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observe that m, d define a multiset M of occurences of literals as observed in
Sect. 3; we take W to be the tensor product of all the elements of M . Let Γ
comprise every implication s ∈ Sctrl with multiplicity m(s). By construction,
〈W 〉 ⊆ Satm and Γ ⊆ Γ0, so they are compatible with N(Γ0,Δ0) and always by
construction (m, d) = [W,Γ ]. ��
Proposition 3. Let N = N(Γ0, !Δ), and let (W,Γ ) be compatible with N . Then:

(W,Γ, !Δ) � (W ′, Γ ′, !Δ) ⇐⇒ [W,Γ ] −→N [W ′, Γ ′]

Proof. From left to right we reason by cases, depending on the small-step rule
we are using:

– [�!H ]: then W = X ⊗ V , W ′ = Y ⊗ V , Γ = Γ ′ and ((X ⊗ V, Γ, !Δ̄ ∪ {!(X �
Y )}) � (Y ⊗ V, Γ, !Δ̄ ∪ {!(X � Y )})) where !Δ =!Δ̄ ∪ {!(X � Y )}
By Definition 8 we know that [W,Γ ] = (m, d) for some marking (m, d) such
that for all s ∈ Satm we have m(s) = msetW (s) = msetX(s) + msetV (s)
and r = in1(X � Y ) for some transition r of N ; then for all s, msetX(s) =
F (s, r) by Definition 7; since msetX(s) + msetV (s) = msetW (s) = m(s),
r is enabled in (m, d); moreover, for all s, we know by Definition 7 that
msetY (s) = F (r, s) and msetY (s⊥) = L(s, r) so after firing r, msetW ′(s) =
msetY (s) + msetV (s) = m′(s) and msetY (s⊥) + msetV (s⊥) = d′(s) by
Definition 7. Further m(s) = m′(s) when s ∈ Sctrl. Therefore, by Definition 8,
then [W ′, Γ ′] = (m′, d′).

– [�H ]: then W = X⊗V , W ′ = Y ⊗V , Γ = Γ ′�{X � Y } and (X⊗V, Γ ′�{X �
Y }, !Δ) � (Y ⊗ V, Γ ′, !Δ)
By Definition 8 we know that [W,Γ ] = (m, d) for some marking (m, d) such
that for all s ∈ Satm we have m(s) = msetW (s) = msetX(s) + msetV (s)
and r = in0(X � Y ) for some transition r of N ; then for all s, msetX(s) =
F (s, r) by Definition 7; since msetX(s) + msetV (s) = msetW (s) = m(s), r is
enabled in (m, d); moreover, for all s, we know by Definition 7 that msetY (s) =
F (r, s) and msetY (s⊥) = L(s, r) so after firing r, msetW ′(s) = msetY (s) +
msetV (s) = m′(s) and msetY (s⊥) + msetV (s⊥) = d′(s) by Definition 7;
moreover r has been fired in (m′, d′) (so its control place has one fewer token).
By Definition 8, then [W ′, Γ ′] = (m′, d′).

– [�S ]: then W = (a⊗a⊥)⊗V , W ′ = 1⊗V , Γ = Γ ′, and ((a⊗a⊥)⊗V, Γ, !Δ) �
(1 ⊗ V, Γ, !Δ)

By Definition 8 we know that [W,Γ ] = (m, d) for some marking (m, d) such
that for all s ∈ Satm we have m(s) = msetW (s); now since msetW (a) and
msetW (a⊥) > 0, m(a) > 0 and d(a) > 0, so annihilation is enabled at (m, d).
After firing annihilation, we know that m′(a) = m(a)−1 and d′(a) = d(a)−1,
while for all other s �= a, we have m′(s) = m(s) and d′(s) = d(s). Now it is easy
to verify that msetW ′(a) = msetW (a)− 1 and msetW ′(a⊥) = msetW (a⊥)− 1
and for all s �= a msetW ′(s) = msetW (s) (resp. msetW ′(s⊥) = msetW (s⊥)).
Control places are unaffected, so m(s) = m′(s) when s ∈ Sctrl. We conclude
that (m′, d′) = [W ′, Γ ′].

From right to left we reason by cases, depending on the type of step:
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– Suppose we fire r = ini(X � Y ) at (m, d) = [W,Γ ]. We know that (m, d) −→
(m′, d′) by firing r for some m′, d′ and (m′, d′) = [W ′, Γ ′] for some W ′, Γ ′

by Proposition 2; since r is enabled in (m, d), for all s ∈ Satm such that
msetX(s) ≥ 0, we have that m(s) ≥ msetX(s) and since (m, d) = [W,Γ ], we
have that msetW (s) ≥ msetX(s). This means that, W = X ⊗ V for some
V (so when s ∈ Satm we have m(s) = msetX(s) + msetV (s) and d(s) =
msetX(s⊥) + msetV (s⊥)). Now we have two subcases:

• if i = 1, then for all s ∈ Sctrl, m(s) = m′(s) so, since (m, d) = [W,Γ ]
and (m′, d′) = [W ′, Γ ′], Γ = Γ ′; moreover for all s ∈ Satm, m′(s) =
msetY (s)+msetV (s) and d′(s) = msetY (s⊥)+msetV (s⊥) (by definition
of −→, and Definition8). But then, W ′ = Y ⊗ V and ((X ⊗ V, Γ, !Δ ∪
{!(X � Y )}) � (Y ⊗ V, Γ, !Δ ∪ {!(X � Y )}))

• otherwise, i = 0 which implies (m, d) = [W,Γ ] and (m′, d′) = [W ′, Γ ′],
with Γ ′ = Γ \ {X � Y }. Moreover m′(s) = msetY (s) + msetV (s) and
d′(s) = msetY (s⊥) + msetV (s⊥) (by definition of −→, and Definition 8).
But then W ′ = Y ⊗ V and (X ⊗ V, Γ, !Δ) � (Y ⊗ V, Γ ′, !Δ)

– annihilation is enabled in (m, d) = [W,Γ ]. We know that (m, d) −→ (m′, d′)
through an annihilation step and (m′, d′) = [W ′, Γ ′] for some W ′, Γ ′ by Propo-
sition 2. Since an annihilation is enabled, for some atom a, m(a) ≥ 1, d(a) ≥ 1;
now for all s, m(s) = msetW (s), and d(s) = msetW (s⊥), so for some a, V ,
W = (a ⊗ a⊥) ⊗ V . Then (W,Γ, !Δ) � (1 ⊗ V, Γ ′, !Δ) (where Γ = Γ ′). It
remains to prove that W ′ = 1 ⊗ V ; this follows from the fact that for s = a,
m′(s) = msetW (s) − 1 and d′(s) = msetW (s⊥) − 1 (by definition of −→, and
Definition 8). ��

Theorem 4. Let N = N(Γ, !Δ). An honoured Horn sequent Ω,Γ, !Δ � Z of
ILLmix is provable iff [

⊗
Ω,Γ ] −→∗

N [Z, ∅].

Proof. By Theorem 3, we know that Ω,Γ, !Δ � Z is provable if and only if
(
⊗

Ω,Γ, !Δ) �∗ (Z, ∅, !Δ). By Proposition 3, (
⊗

Ω,Γ, !Δ) �∗ (Z, ∅, !Δ) iff
[
⊗

Ω,Γ ] −→∗
N [Z, ∅]. ��
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Abstract. Cryptographic protocols are the backbone of secure com-
munication over open networks and their correctness is therefore cru-
cial. Tool-supported formal analysis of cryptographic protocol designs
increases our confidence that these protocols achieve their intended secu-
rity guarantees. We propose a method to automatically translate text-
book style Alice&Bob protocol specifications into a format amenable to
formal verification using existing tools. Our translation supports specifi-
cation modulo equational theories, which enables the faithful represen-
tation of algebraic properties of a large class of cryptographic operators.

1 Introduction

Internet security builds on cryptographic protocols that achieve properties such
as secrecy, entity authentication, and privacy. The correct operation of these
protocols is critical and manual analysis is not up to the task. Indeed, some
protocols were used for years before flaws were detected using symbolic analy-
sis tools [4,19]. Today, there are many such tools available based on different
formalisms and specification languages: ProVerif [6] uses the applied pi cal-
culus, Scyther [13] uses role scripts, Maude-NPA [15] uses strands [17], and
Tamarin [29] specifies protocols using multiset rewriting. Unfortunately the
input languages of all of these tools are difficult for non-expert users to master,
which hinders the widespread acceptance and use of these tools.

The starting point for this paper is our work on the Tamarin tool, which
has been used successfully to analyze many cryptographic protocols [5,25,30].
Tamarin uses multiset rewriting as its input language, which is very general;
but this generality makes it difficult to use, especially for non-experts. Hence an
attractive proposition is to support, additionally, a simpler and more intuitive
language, closer to the text-book notation that many users know from their
studies. The most popular language of this kind is generally known as Alice&Bob
protocol specifications. Due to its popularity, versions of it have been considered
for other analysis tools [1]. It is indeed simple, but it suffers from ambiguities
and imprecision.

We propose a new way to specify protocols in an Alice&Bob style that
supports specification modulo user-specifiable equational theories. This enables
c© Springer International Publishing Switzerland 2015
N. Mart́ı-Oliet et al. (Eds.): Meseguer Festschrift, LNCS 9200, pp. 160–180, 2015.
DOI: 10.1007/978-3-319-23165-5 7
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one to specify, along with a protocol, the algebraic properties of the crypto-
graphic operators used. To support this, we analyze the protocol specification’s
executability and translate executable specifications into an intermediate lan-
guage based on role scripts. We then determine which checks should be made
on the messages by the participants, based on their current knowledge and the
equational theory, and insert those checks into the compiled role scripts. Non-
executable specifications are rejected, and warnings to the user are displayed
when checks cannot be inserted as expected, for example, when the same name
is used repeatedly, but due to encryption the principal cannot verify if all occur-
rences are instantiated in the same way. The role scripts can then be further
translated to any protocol analysis tool’s input language, as our theoretical
results are general. We have implemented this first general-purpose translation
step and, for Tamarin’s input language, we have also implemented the second
step. Taken together, this provides an automatic translation from Alice&Bob
specifications to the Tamarin tool’s input language [18].

As mentioned, equational theories are used to model the algebraic properties
of cryptographic operators. Support for different equational theories therefore
allows a more precise analysis of protocols. Specifying suitable equational theo-
ries is fundamental for the symbolic analysis of cryptographic protocols as other-
wise attacks may be missed. Moreover, for some protocols, their execution would
even be impossible without algebraic properties. For example, for Diffie-Hellman
key exchange, the partners cannot establish the same key without exponentiation
being commutative. We focus on subterm-convergent theories, which we require
for the results presented in this paper. Note that these theories have the finite
variant property [12,16], which is a prerequisite for many automated protocol
analysis tools as well.

To handle the imprecision inherent in basic Alice&Bob notation, we build
upon previous work that makes explicit many of this notation’s assumptions.
In particular, Caleiro, Viganò, and Basin [9] provide an operational semantics
based on the spi calculus that formalizes how principals construct and parse
messages and makes explicit what checks should be made by honest principals.
Mödersheim [26] studies a similar problem in the context of equational theories.
See Sect. 5 for a more detailed comparison.

We also build upon and take inspiration in our work from the research and
tools of José Meseguer. Tamarin uses Maude [11] as a back-end for unification
modulo equational theories. Moreover, inspired by Maude-NPA [15], Tamarin
computes variants following [16]. This motivated the design decision of support-
ing user-specified subterm-convergent equational theories in addition to built-in
theories with the finite variant property that is used both in Tamarin and in
the translation we present in this paper.

In Sect. 2 we describe Alice&Bob notation. In Sect. 3 we present the role-
script notation for protocols, explain how to decide the executability of given
Alice&Bob protocols and how to add appropriate checks, and provide an exam-
ple. We describe our automated translation to Tamarin in Sect. 4 and compare
to related work in Sect. 5, before we draw conclusions in Sect. 6.
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2 Alice&Bob Protocol Notation

In this section we formalize Alice&Bob notation. First, we highlight ambiguities
with the text-book version of this notation due to its inherent imprecision, and
we explain the general idea of our formalization. Afterwards we specify this
notation in more detail.

2.1 Overview

In Alice&Bob notation, a protocol is specified as a list of message exchange steps
of the form

A → B : msg.

These steps describe the actions that are performed by honest principals in a
protocol run. The semantics of an Alice&Bob specification defines the behavior
of the principals running the protocol. Our semantics is based on the work of
Caleiro, Viganò, and Basin [9].

To illustrate the need for a formal semantics, consider the simplified basic
Kerberos authentication protocol [27] shown in Fig. 1.

At first glance, this protocol’s meaning seems clear. The principal in role C
sends his identity, the name of a resource V , and the nonce n to the authentica-
tion server S. A nonce is an arbitrary number to be used only once in a security
protocol. The principal in role S then responds by returning two ciphertexts, the
first one generated with a shared key kCS between C and S and the second gen-
erated with a key kV S , shared between V and S. The principal C then decrypts
the first ciphertext to obtain the key k and verifies the nonce n and the intended
communication partner V . If these checks succeed, then C encrypts fresh nonces
t and t′ under k and sends this ciphertext along with the second ciphertext to V .
The principal V then responds with the encryption of t under the key k, which
is obtained by decrypting the second ciphertext {k,C}kV S

.
While this account provides a high-level explanation of the protocol’s work-

ings, the precise actions the principals must take are not fully spelled out. In
order to send the message {k, V, n}kCS

, {k,C}kV S
in Step 2, S must first con-

struct it. Intuitively, one would assume that S knows kCS and kV S and generates
a fresh key k and can therefore construct the message. But this is not stated
explicitly. It is possible that the protocol’s designer had in mind that k is known
only to C and V , while S only knows the two ciphertexts in Step 2. The speci-
fication as given does not resolve this ambiguity. It is also unclear whether n is

Fig. 1. An intuitive but ambiguous description of an authentication protocol.
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actually a nonce, even though the choice of name suggests this. It could just as
well be a constant or a publicly known value, neither of which we would assume
of a nonce.

Another aspect left implicit in Fig. 1 is what the principals do with the mes-
sages they receive. If we assume that kCS actually denotes the shared secret
key between C and S and that both know the key and C has no other prior
knowledge, then C should extract the key k by decrypting the first ciphertext of
Step 2 with the secret key kCS . This is the only way C can construct the message
{t, t′}k in Step 3. For this reason, we must formalize the new information gained
by analyzing incoming messages based on the knowledge that a principal has.

We formalize Alice&Bob notation based on the notion of knowledge, given
by a set of messages, which grows during protocol execution when new messages
are received or fresh nonces are generated. We define what information is stored,
how incoming messages are parsed and compared to existing knowledge, and
how messages are composed for sending.

In the rest of this section, we provide a complete formalization of Alice&Bob
notation, which is the basis of our Alice&Bob input language and our translation
to the intermediate representation format that follows. Note that Alice&Bob
notation is independent of the adversary model. We do not define the capabilities
of the adversary as they can be independently specified.

2.2 Messages and Message Model

We use a signature Σ containing three sorts, Fresh, Public, and Msg, where
both Fresh and Public are subsorts of Msg. Each operator f : s1 . . . sn → s
defined on any of the sorts has a top sort overloading, i.e., f : Msg . . . Msg →
Msg. We assume disjoint sets of countably infinite variables Xs for each sort,
with X =

⋃
s Xs. TΣ,s is the set of ground terms of sort s and TΣ,s(X) is the set

of terms of sort s. We use TΣ and TΣ(X) for the corresponding term algebras.
By default, Σ includes the following operators: pairing, projections (first or

second element of a pair), symmetric and asymmetric encryption and decryption,
digital signing, and hashing. The set of equations E defining these operators gives
rise to an equational theory (Σ, E).

In addition to the default operators, users can specify further operators
together with the equations defining them. The user-defined equations must
be subterm-convergent: directed from left to right, the resulting rewrite system
must be convergent and the right-hand side of any equation is either (1) a con-
stant that is in normal form with respect to the rewrite system or (2) a strict
subterm of the left-hand side. Combining the default theory with such additional
user-supplied operators and their equational specification yields a theory that is
also subterm-convergent. We say that a term t is derivable from a set of terms M
if it can be constructed by repeated application of operators in Σ to the terms
in M under the equational theory E .

We define positions in terms as sequences p = [i1, . . . , in] of positive natural
numbers. We use t|p to denote the subterm of t at position p, and for the empty
sequence [ ] we define t = t|[ ]. We use the operator · to concatenate sequences.
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Two positions p, p′ are siblings if |p| = |p′| and there is an immediate parent
position p′′ such that p = p′′ · [i] and p′ = p′′ · [i′] with i �= i′ for two natural
numbers i and i′.

All other standard notation follows the account of Baader and Nipkow [2].

2.3 Alice&Bob in Detail

Prior to defining Alice&Bob notation, we first describe the principal’s initial
knowledge and the knowledge that a principal has during a protocol’s execution.

Knowledge and Basic Sets. Principals remember messages they acquire dur-
ing protocol execution. We call the set of messages that are derivable from
acquired messages the principal’s knowledge. Knowledge is essential for con-
structing messages to be sent, analyzing received messages, and comparing the
messages received in a protocol step to messages received in an earlier step.

A principal’s knowledge is in general infinite; if Alice knows a message m, she
can immediately derive infinitely many messages, for example by concatenating
arbitrarily many copies of m. To finitely represent the knowledge of the principals
participating in a protocol, basic sets proposed by Caleiro et al. [9] can be used.
A basic set for M is a minimal set of terms from which all terms in M can be
derived.

Initial Knowledge. A principal’s initial knowledge is the basic set of messages
that the principal knows prior to performing any protocol actions, that is, before
the first sending or receiving action. A default initial knowledge can be generated
from the protocol’s context, i.e., the protocol and all the roles appearing in it,
or the initial knowledge can be explicitly given.

Alice&Bob Protocol Specifications. We now define Alice&Bob protocol
specifications.

Definition 1. An Alice&Bobprotocol specification is a quadruple (Spec, ρ,Σ, E),
where:

– Spec is a finite sequence step1, . . . , stepn of message exchange steps where,
for t ∈ {1, . . . , n}, stept, has the form

labelt. S → R : (n1, . . . , nv).m .

Here R and S are distinct role names (terms of sort Public), n1, . . . , nv are
distinct variable names of sort Fresh, labelt is a unique name given to this
message exchange step, and m ∈ TΣ(X) is a message.

– ρ is a partial map TΣ,Public(X) → P(TΣ(X)) from role names to sets of mes-
sages representing that role’s explicit initial knowledge in the protocol. Note
that this explicit initial knowledge may very well be empty and can then be
omitted. The notational conventions below explain the standard initial knowl-
edge that is always assumed to be available to each role.
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– (Σ, E) is a subterm-convergent equational theory specifying operators and their
defining equations.

Note that we require fresh nonces (n1, . . . , nv) to be stated explicitly. They
are assumed to be generated randomly by the sender at the beginning of the
step, before the message is constructed and sent. This information is actually
redundant: since we know the initial knowledge, we can find out if a nonce is
fresh. Nevertheless, we explicitly declare fresh nonces to improve readability and
to help catch specification errors.

Our definition says that the fresh nonces must have distinct variable names.
This not only includes the current message exchange step, but also the complete
protocol. Two fresh variables with the same name may not appear in a protocol
and a variable that appears in the initial knowledge of a principal may not be
redefined as a fresh variable. Moreover, a fresh variable name must not coincide
with any role name; this is ensured by having different sorts for role names and
fresh variables.

The labels are given just for reference and we omit them in many cases. Also,
we drop the parentheses enclosing the fresh variable names when there are none.

Notational Conventions. Alice&Bob protocol specifications rely heavily on
implicit notational conventions. For instance, the notation kCS suggests that
this term is a shared key between C and S. There is also no need to mention
that C is the client and S is the server.We need to be a bit more formal in a
computer-interpretable input language, but we also use the following notational
conventions and some short-hands to keep our Alice&Bob notation compact yet
still precise:

– Variables representing fresh terms (of sort Fresh) and general message terms
(of sort Msg) are denoted by lower case letters, possibly with subscripts.

– Variables representing public terms (of sort Public), including role names, are
denoted by capital letters. In the following example, the principal in role A
sends her own name to the principal in role B,

A → B : A.

Note that the ‘A’ before the colon denotes the name of a role while the ‘A’
after the colon denotes the name of the principal that executes role A during
an execution of the protocol.

– Constants are public terms that are denoted as strings in single quotes. Below,
the principal in role A sends the constant ‘Hello!’ to the principal in role B:

A → B : ‘Hello!’.

– The asymmetric encryption of a message m with the public key pk(A) of
principal A is denoted by {m}pk(A). This is syntactic sugar for enc(m, pk(k)),
where enc( , ), dec( , ), and pk( ) are operators defined by the equation

dec(enc(m, pk(k)), k) = m. (1)
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Thus pk(A) is syntactic sugar for pk(k), where k is a private key (a fresh
term) that A knows.

– Digital signatures are a special case of asymmetric encryption, with sk(A)
denoting the secret key k of the principal in role A with the associated public
key denoted as pk(A). Signature verification is defined by the equation

sigverify(sign(m, sk(A)),m, pk(A)) = True. (2)

This equation is treated as a predicate by principals. In protocol analysis tools
such as Tamarin, it is possible to restrict the protocol executions analyzed
to those that fulfill the predicate.

– The symmetric encryption of a message m with the secret key k(A,B) shared
by the principals A and B is denoted by {m}k(A,B). This is syntactic sugar
for senc(m, k), where senc( , ) and sdec( , ) are operators defined by the
equation

sdec(senc(m, k), k) = m (3)

and k(A,B) = k for a shared secret key k (a fresh term) that both A and B
know.

– For each principal A, we assume that A’s initial knowledge contains its own
private key sk(A). Moreover, A’s initial knowledge includes for each princi-
pal B that principal’s public key pk(B), and the shared secret key k(A,B).
These keys need not be explicitly specified as a principal’s initial knowledge.
The corresponding encryption functions and their Definitions (1) and (3) are
included in the equational theory by default. Similarly, pairing and projection
of terms are also included and they satisfy the following two equations.

fst(pair(a, b)) = a

snd(pair(a, b)) = b

For n ≥ 2, we write (a1, . . . , an) for the repeated, left-associative applica-
tion of the pairing operator to the terms a1, . . . , an. We drop the parentheses
whenever the resulting expression is unambiguous.

With these conventions, Fig. 2 shows a specification of the simplified Kerberos
authentication protocol in our Alice&Bob syntax.

Fig. 2. The simplified Kerberos authentication protocol in our Alice&Bob specification.
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3 From Equations to Rewriting Rules

We translate Alice&Bob protocol scripts to a tool’s input language via an inter-
mediate representation called role scripts. A role script represents a principal’s
view of the protocol specification. It consists of the principal’s send and receive
actions, which each take a message as an argument. The principal sends and
receives messages to and from a channel, without information on who the actual
communication partner is.

3.1 Role Scripts for Protocols

Given input in Alice&Bob notation, we first check its executability under the
fine interpretation of Caleiro et al. [9]. We explain this in Sect. 3.2. Then we
translate the protocol to role scripts, one role script for each protocol role. We
add appropriate checks to be taken by the principals receiving messages, in
Sect. 3.3. In Sect. 3.4 we provide an example that illustrates our algorithms.
Afterwards we can generate output in the input language of any suitable protocol
verification tool, and we have implemented this for Tamarin. Output for other
tools could be generated from the intermediate role scripts in a similar fashion.

Role scripts have the same syntax as Alice&Bob messages described in
Sect. 2.2. They also include the knowledge principals acquire from the messages
they receive; in this way, the role scripts make all information explicit.

We represent a protocol by the equational theory its operators support, the
security goals of interest, and a collection of role scripts that specify the mes-
sage exchanges. Each role script consists of a name, an initial knowledge, and an
(ordered) list of actions to be performed. The actions are sending or receiving
a message, creating nonces, and updating the principal’s knowledge afterwards.
Both incoming and outgoing messages contain the name of the designated part-
ner role. In the derived role script specification, our algorithm explicitly states
which generated names are fresh, i.e., nonces, and the checks that need to be per-
formed by roles on received messages. Moreover, the specification of the secrecy
of a given term, as well as non-injective and injective agreement [20] between
roles is supported.

3.2 Deciding Executability

An Alice&Bob specification is a list of message exchange steps. A step is exe-
cutable if the sender’s knowledge (at that point in the protocol’s execution) is
sufficient to create the message specified to be sent. Message creation here refers
to the capability of the principal to (i) generate new nonces and add them to his
knowledge, and (ii) apply operators to messages in his knowledge. Note that to
derive a principal’s knowledge based on the messages he previously received, it is
necessary to apply operators (like decryption) and use their algebraic properties.
An Alice&Bob specification is executable if all steps of all roles are executable.



168 D. Basin et al.

Thus to decide whether an Alice&Bob specification is executable, we must deter-
mine for each step of every role whether the term specified to be sent in the step
can be derived from the principal’s knowledge at that point in the protocol.

Without equational theories, we have a simple separation of knowledge
derivation rules into construction and deconstruction rules, reminiscent of Paul-
son’s inductive approach, where they are called synthesis and analysis rules.
A similar procedure can be used with equational theories that are subterm-
convergent and we now give the high-level description of this. All operators can
be applied as construction rules that produce, bottom-up, constructed terms.
From each equation of the theory, we extract several deconstruction rules that
produce, top-down, (de-)constructed terms.

To prevent endless loops, we split an agent’s knowledge into two sets, the set
of constructed terms C and the set of terms to be deconstructed D. Construction
rules may only be applied to terms in the set C and produce terms that we add to
C. Deconstruction rules take a term from the set D and zero or more terms from
C and produce terms that we add to D. Moreover, we have one rule that may add
any term from D to C. As a result, constructed terms never need be deconstructed
later because deconstruction yields a subterm (due to the subterm-convergence
property) that must have been used in the construction of the term, and thus is
known already and this shorter derivation can be used.

More precisely, construction rules are created as follows: Let Cn denote the n-
fold Cartesian product of C. Let f ∈ Σ be an n-ary function symbol. Then we add
the rule (t1, t2, . . . , tn) ∈ Cn � f(t1, . . . , tn) ∈ C to the set of construction rules.
In particular, there is exactly one construction rule for each function symbol.

For deconstruction rules, let l = r be an equation oriented such that r is
a constant or a strict subterm of l. If r is ground, no deconstruction rule is
necessary, as the specifications of ground terms are public knowledge. Otherwise,
we obtain a set of deconstruction rules for every occurrence of r in l as follows.
(See drules and cprems functions in [28, Section 3.2.3].)

1. Consider the set positions of all positions p in l that mark a subterm equal
to r, i.e., all p such that l|p = r.

2. For each p ∈ positions, consider all positions Dp that are strictly above p and
not equal to [ ], i.e., subterms l|p′ of l that contain the term r at position p′′

in l|p′ , i.e., l|p′.p′′ = r for some p′′ �= [ ], except for l|p and l.
3. For each p′ ∈ Dp, consider the set Cp′ of positions that have a sibling above

or equal to p′.
4. The deconstruction rules are

l|p′ ∈ D ∧
⎛

⎝
∧

q∈Cp′

l|q ∈ C
⎞

⎠ � l|p ∈ D, (4)

for each p′ ∈ Dp, where l|p′ must be a term in D and the terms corresponding
to positions in Cp′ are in C. The deconstructed term l|p is added to D.

In the following, we call these rules drules, and we denote such a rule as
drule(l|p′ , p′′), where p′′ is as in Step 2 above and l|p′ is the left-most term in
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Rule (4). By applying a drule drule(x, q) to a term t we obtain t|q if x matches t
and there exist terms in C fulfilling the remaining requirements of the left-hand
side of the rule, and ⊥ otherwise. We can now use these rules with the following
effective, but computationally expensive, procedure to compute the closure of D
under application of drules to terms in D. The closure algorithm is as follows.

Closure Algorithm. Figure 3 (left) provides pseudo-code for the algorithm
close(M). This algorithm repeatedly applies all drules to all terms in M , adding
the resulting terms to M , until a fixed point is reached.

This algorithm always terminates on finite input sets D. Let D be the set
of all (sub-)terms of elements in D. Let D̂ be the result of applying the closure
algorithm to D. All terms derivable from D are in D due to subterm-convergence,
so D ⊆ D̂ ⊆ D. The closure algorithm monotonically increases its set of derived
terms M . It terminates when no element is added to M in an iteration. As
the resulting set D̂ is bounded above by the finite set of (sub-)terms, i.e., D,
termination is ensured.

Derivability. To decide whether a term t is derivable from a given knowledge set
M , we use the algorithm derivable(M, t), given in Fig. 3 (right). The algorithm
first computes the closure of M and the size of t. It then uses the procedure
constructall, with the closure and t’s size as input, to generate all terms,
up to the given size, which are built from elements of the closure with any
operator application. The term t is then derivable if and only if it is in this set
of constructed terms. Since t is finite, the derivability check terminates.

Our derivability algorithm is sound: the above derivability procedure only
returns true for terms that are actually derivable because it only uses drules
(in the closure algorithm) and construction rules on the initial set of terms. Our
algorithm is also complete as it returns the correct answer true for all derivable
terms. We sketch a proof by contradiction of this: Assume there is a term t that
is derivable from M for which our algorithm returns false. That term is derived
using operator application and simplification with the equational theory on the
terms in M . If t is built using only operator application, then it would trivially
be derivable according to our algorithm, which is a contradiction. Otherwise
an equation in the equational theory must be used in the derivation. Pick the
smallest subterm s of t on which some equation is applicable, i.e., there is no
proper subterm of s for which any equation can be applied. As the equations

Fig. 3. Algorithm close(M) (left) and algorithm derivable(M , t) (right).
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are subterm-convergent, applying an equation results in a subterm s|p at some
position p (or a constant, which is known anyway) which must be constructed
using only operator applications. Then we can replace s by s|p in the derived
term t to create a term t′. Now there is one less equation application possible on
t′. We can repeat this until no more equation can be applied as there is a finite
number of equation applications to start with. Thus our algorithm returns true
for this term t as well, which is a contradiction.

3.3 Checking Received Messages

For cryptographic protocols, it is not only important that all participants can
generate all the outgoing messages, but also that each participant checks each
incoming message as thoroughly as possible, to make sure it is as expected and
that the other principals have not deviated from the protocol.

An obvious example of what to check is that a message authentication code
received matches the intended message. Similarly, if a principal generates a
nonce, sends it, and expects to receive it in a subsequent message, he should
check that the nonce he receives actually matches the nonce he generated. These
are sensible checks that should be included in principals’ role scripts; but one
must take care to avoid unrealistic or even infeasible checks.

Example 1. Consider again the Kerberos authentication protocol shown in
Fig. 2. In this protocol, it is not possible for the agent C to verify in Step 2
that the key k appearing in the first ciphertext is equal to the key k in the
second ciphertext. We therefore do not add such a check to C. However, C can
verify that the nonce n generated and sent to S as well as the identity of the
intended communication partner V in Step 1 are equal to the nonce n and the
identity V appearing in the first ciphertext in Step 2. Hence we add these two
checks to C.

In general, whenever the same name appears multiple times in a role script, all
its instances must be identical, except for those that theprincipal in question can-
not actually analyze and check. An example of this is a key inside a ticket created
for a different principal, such as is the case for the principal C in the second cipher-
text in Step 2 of Kerberos. The principal cannot see the content of that ticket and
thus one must not add checks to this principal on this opaque data.

The key ideas of the algorithms, which we describe in detail in the rest of this
section, are as follows. We compute the closure of the agent’s knowledge with
the above closure algorithm, but track additional information on how terms
are derived. Then, for each received message, we check if any of the accessi-
ble parts of the received message were previously known to the agent. If so,
we generate a check that compares the received message part in question to
the previously known terms. To determine which parts are accessible, we use
the closure algorithm as well. Essentially, we store all the received terms and
the terms derived from them in a marked set. We test if any term pattern in
the marked set can be generated in different ways from the current knowledge
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(which includes other received messages), and if so we generate a check that
the resulting role script should make. Note that this includes the possibility of
comparing (parts of) two received messages with each other if they are supposed
to be the same. We now delve into the formal details.

Let M be the agent’s knowledge. We annotate every term in M with its prove-
nance and we distinguish between D-terms and C-terms with different annota-
tions. We can thus partition M into the two subsets D and C. The annotation
is constructed as follows. If m ∈ M was received in the i-th protocol step, it is
in D and annotated with [i] and denoted m[i]. The subterms of a term m[i] are
additionally annotated with their position in m[i], while for the term itself we
use m[i] as shorthand for m[i:[ ]]. We call these annotations locators. These terms
are obtained by applying a drule. For example, suppose that m[3] = 〈t, t〉, then
the two subterms of m[3] are m[3:[1]] = t, m[3:[2]] = t. Terms in C are annotated
by sets of locators rather than a single locator. When a term m[i:p] ∈ D is added
to the set C, its annotation is changed from [i : p] to the one-element set {[i : p]}
and the term is written as m{[i:p]}. Terms that are constructed from terms with
locators are annotated with the set of locators consisting of the union of the
locators of all terms used in the construction. I.e., the term f(tj11 , . . . , tjkk ) is
annotated with the set j1 ∪ . . . ∪ jk. The need for locators will become clear in
the algorithm that computes the checks on the received messages.

Definition 2. We say that a term m[i:p] can be verified with knowledge set M ,
if it can be constructed from M without using its subterms. Formally, m[i:p] ∈ D
is equal to some mL ∈ C, where [i : p] is not a prefix of any element in L (and not
equal to one). We define the function verifies(M,m[i:p]) to return the witness
mL if it exists and ⊥ otherwise.

Note that the only terms that must be verified by an agent in a protocol execution
are D-terms.

While generating an agent’s role script from an Alice&Bob specification we
insert all possible checks that can be performed on received messages. In some
cases, a received message can only be checked after further messages have been
received, for instance in commitment schemes. In such a scheme, a principal
receives an encrypted message first and the decryption key afterwards. The prin-
cipal cannot check the first message until he receives the key. We use the set Γ
to store messages for which checks may still be needed.

We start with the set Γ = ∅ and the set M equal to the agent’s initial knowl-
edge. All terms in the initial knowledge are annotated with [0]. Fresh nonces
generated by the agent are also annotated with [0] and added to M , but not
to Γ . We incrementally build the checks for messages in the order they are
received. Let m be a message received in the i-th protocol step. We generate the
possible checks by applying the algorithm agent-checks(m[i],M, Γ ) described
below on the message m[i], M , and Γ and afterwards update M and Γ with
the algorithm’s output. We define agent-checks in Fig. 4. It uses the algorithm
check, defined in Fig. 5, that checks individual messages.

The algorithm agent-checks takes as input a message m[i], a set of unchecked
terms Γ , and a knowledge set M . It first adds m[i] to both Γ and M . It then closes
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Fig. 4. Algorithm agent-checks(m[i], M , Γ )

the knowledge set M with our knowledge closure algorithm modified to respect
locators. Afterwards, it calls the check algorithm for all terms in the resulting set
Γ . The result from check is used to add checks to the generated role script. Terms
for which checks were added are removed from Γ .

The check algorithm creates checks for individual messages as follows. Its
input is an annotated message m[i:p] (i.e., i-th protocol step, position p), and
knowledge set M . If m[i:p] can be verified with M (see Definition 2) then check
returns the corresponding check m[i:p] =? mL, otherwise it returns ⊥ to signify
that no check is possible for this term with the given knowledge set.

Note that for the term m[i:p], the locator implicitly keeps track of how the
term was derived from m[i]. That way the check created in check compares the
term derived from the received message m[i] with the term mL constructed by
the agent.

We briefly sketch why the checking algorithms are sound and complete. By
construction, all checks m[i:p] =? mL generated by the check algorithm are
computable. Both the left-hand term and the right-hand term are in the agent’s
knowledge. The checks are correct in the sense that m[i:p] is a subterm of a

Fig. 5. Algorithm check(m[i:p], M)
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received message term and none of the subterms of mL are derived from m[i:p].
That is, the terms used to compute the left-hand and right-hand side have dif-
ferent origins. Finally, we generate all possible checks in the agent-checks algo-
rithm since every subterm that can be derived from a received message is added
to the set Γ . Each term in Γ that can be constructed from terms that have a
different origin is checked against such a construction.

3.4 Putting It All Together

For a given protocol, we execute the above algorithms for each role. If the
algorithms decide that the role is executable, they create a role script for the
role’s actions in the protocol. This includes the checks the role needs to make
and warnings that are returned to the user. Essentially, everything left in Γ at
the end of the protocol gives rise to a warning. Of course, if some term t cannot
be checked and a warning is issued, then all terms that use t as a proper subterm
cannot be checked either, and we therefore do not issue warnings for these terms.

The warnings are intended to inform the protocol designer about which mes-
sage (sub-)terms the specified roles must accept as valid without having a way
to check them. The protocol designer should then ensure that these unchecked
parts are intentionally given as part of the specification. In particular, (i) they
could be irrelevant (and should be dropped), or (ii) they are tickets that are
just forwarded and checked by another role (and hence are there for a good
reason), or (iii) they are important and protected under encryption with appro-
priate authentication. In this last case, the unchecked message part contains
new terms for this role that the role must trust, and have confidence in, due
to the overall protocol run. This could be, for example, a fresh key from a key
distribution server, and generally speaking a term that is only received and not
confirmed in any manner. Hence our approach not only creates explicit checks,
but it determines which terms are not actually checked, and it calls the protocol
designer’s attention to this by issuing warnings.

Consider again the Kerberos authentication protocol previously given in
Fig. 2. By the conventions stated in Sect. 2.3, the protocol implicitly uses Eq. (3)
for the symmetric encryption and decryption of terms. Thus Σ contains the sym-
bols senc and sdec. By Sect. 3.2 we first obtain the following two construction
rules:

(x, y) ∈ C2 � senc(x, y) ∈ C (5)

(x, y) ∈ C2 � sdec(x, y) ∈ C. (6)

Next we apply the four step procedure in Sect. 3.2 to obtain a set of deconstruc-
tion rules for Eq. (3).

1. We have l = sdec(senc(m, k), k) and r = m. As illustrated in Fig. 6, there is
one position p in l such that l|p = r, namely p = [1, 1].

2. By Fig. 6, there is exactly one position that is above p = [1, 1] and not equal
to [ ], namely [1], so D[1,1] = {[1]}.
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sdec(senc(m, k), k) [ ]

[1] senc(m, k)

[1, 1] m k [1, 2]

k [2]

Fig. 6. Tree of subterms of sdec(senc(m, k), k) and their positions.

3. Figure 6 shows that C[1], the set of positions that have a sibling above or
equal to [1], is {[2]}.

4. Our deconstruction rule is therefore:

l|[1] ∈ D ∧ l|[2] ∈ C � l|[1,1] ∈ D,

that is
senc(m, k) ∈ D ∧ k ∈ C � m ∈ D.

Similarly, we obtain three construction rules for the pairing operator pair
and the two projections fst and snd, and two deconstruction rules for the two
projections. We omit the details.

We now turn to the role scripts. For readability, we omit irrelevant terms
from a role’s knowledge. The three role scripts in the Kerberos protocol are then
given as follows:

– Role script for role S

S knows: S[0], C [0], V [0], k(C,S)[0], k(V, S)[0]

1. C → S : (n).((C, V ), n)
S checks : (C, V )[1:[1]] = (C [0], V [0])
S checks : C [1:[1,1]] = C [0]

S checks : V [1:[1,2]] = V [0]

S knows: S[0], C [0], V [0], k(C,S)[0], k(V, S)[0], n[1:[2]]

2. S → C : (k).{k, V, n}k(C,S), {k,C}k(V,S),
S warns : n[1:[2]]

This role script is executable because S can generate the message in Step 2
from its knowledge shown above Step 2 by applying pairing and encryption.
Our algorithm obtains the check after Step 1 as the first subterm (C, V )
of the received pair ((C, V ), n) is constructable from the initial knowledge.
Also, both subterms of this pair, namely C and V , are constructable from
the initial knowledge as well, so our algorithm adds an additional check each.
Note that our algorithm produces redundant checks here (those for C [1:[1,1]]

and V [1:[1,2]]), but these can be filtered out afterwards as they are subterms
of the term (C, V )[1:[1]] checked against the same right-hand side. The only
warning produced is for n[1:[2]], which is indeed a term that this principal
cannot check anything about.
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– Role script for role C

C knows: S[0], C [0], V [0], k(C,S)[0]

1. C → S : (n).C, V, n
2. S → C : (k).{k, (V, n)}k(C,S), {k,C}k(V,S)

C checks : (V, n)[2:[1,1,2]] = (V [0], n[0])
C checks : V [2:[1,1,2,1]] = V [0]

C checks : n[2:[1,1,2,2]] = n[0]

C knows: S[0], C [0], V [0], k(C,S)[0], n[0], k[2:[1,1,1]]

3. C → V : (t, t′).{t, t′}k, {k,C}k(V,S)

4. V → C : {t}k

C checks : ({t}k)[4] = {t[0]}k[2:[1,1,1]]

C checks : t[4:[1]] = t[0]

C warns : k[2:[1,1,1]]

This role script is executable because C can generate the first message from its
initial knowledge and the message in Step 3 from its knowledge shown above
Step 3. The term k is obtained by applying Eq. (3) to the first component of
the pair received in Step 2 and picking the first element of the resulting pair.
The only resulting warning is for the received key, which cannot be checked.

– Role script for role V

V knows: S[0], C [0], V [0], k(V, S)[0]

3. C → V : (t, t′).{t, t′}k, {k,C}k(V,S)

V checks : C [3:[2,1,2]] = C [0]

V knows: S[0], C [0], V [0], k(V, S)[0], k[3:[2,1,1]], t[3:[1,1,1]], t′[3:[1,1,2]]

4. V → C : {t}k

V warns : k[3:[2,1,1]], t[3:[1,1,1]], t′[3:[1,1,2]]

This role script is executable because V can generate the message {t}k from
its knowledge. The resulting warning is about the three terms for which no
check can be included: the key k and the two nonces t and t′.

4 Automated Translation to Tamarin

An instance of our Alice&Bob translation to a tool-supported protocol specifi-
cation language is described in more detail in [18]. The translation goes from
Alice&Bob via an intermediate representation format to Tamarin’s input lan-
guage. The intermediate representation is functionally the same as the role
scripts described in this paper, with minor syntactic differences. Tamarin uses
the tool-generated input to analyze the given protocol.

On loading a protocol theory, Tamarin detects when a protocol rule is
not executable; however our automatic translation only produces theories that
meet the executability requirement. Tamarin supports user-specified subterm-
convergent equational theories. Our translation therefore simply copies the equa-
tional theory with some minor syntactic changes. Checks on received messages
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are implemented by pattern matching on the premises of rules. The security
goals of secrecy, non-injective agreement, and injective agreement are translated
into their canonical definition used when specifying protocols for Tamarin.

More detail and further examples are available in [18] and the tool is avail-
able at the webpage [3]. Due to space constraints, we do not list the Tamarin
specification for our running example produced by the translation.

There is also a prototype implementation of an explicit check generator,
following our algorithms described above. It is available at [3].

5 Related Work

We will first discuss other research related to Alice&Bob notation. Afterwards we
consider different tools’ input languages, which are the target languages for our
translation effort. Finally, we discuss other proposed translation mechanisms.

Formalization of Alice&Bob Notation. Alice&Bob notation, while intuitive, suf-
fers from ambiguities and imprecision as shown in Sect. 2.1. To clarify what proto-
col specification notation actually means, Caleiro et al. [8,9] and Mödersheim [26]
have investigated the semantics of Alice&Bob notation.

Caleiro et al. work with a fixed message model and consider how princi-
pals’ knowledge increases during a protocol run as principals receive messages.
Moreover, they provide an operational semantics, based on the spi calculus, that
makes explicit the actions that a principal must execute. The key aspect of
the operational semantics is that it provides detailed checks to be performed
by principals to ensure there was no adversary involvement. Our semantics of
Alice&Bob protocol specifications are based on this work.

In contrast to Caleiro et al.’s semantics, which is based on a fixed message
model, Mödersheim gives a formalization of Alice&Bob notation that is defined
over an arbitrary algebraic theory. However, his method does not directly yield
the actions that must be taken by honest principals.

Input Languages. Each automated security protocol verification tool defines
its own input language. Most of these languages look rather different from
Alice&Bob notation. However, their underlying concepts are often similar to
the core idea of Alice&Bob notation: communication is modeled by specifying
the messages that are sent and received by principals participating in a protocol
run. Most input languages however do not explicitly pair the sender and the
receiver as is done in Alice&Bob notation.

In Maude-NPA [15] protocols are specified by defining strands, which are
similar to the roles used in our work. A strand specifies a sequence of sending
and receiving messages, from one participant’s point of view. Using Maude’s [11]
unification capabilities, Maude-NPA then reasons modulo equational theories.

Similarly, protocols in Scyther [13] are specified by explicitly stating which
actions (sending, receiving, generation of fresh numbers, and claims of security
properties) must be taken by principals. Scyther-proof [23] is a tool based on a
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proof-generating variant [24] of the verification theory underlying Scyther. Its
input language uses proper Alice&Bob-style notation for specifying protocols.

In ProVerif [7] protocols are specified in the applied pi calculus as the par-
allel compositions of processes that correspond to roles in Alice&Bob notation.
Checks on received messages must be explicitly stated.

Tamarin’s [29] input language is based on specifying rewriting rules for
multisets of so-called facts. State is usually expressed with the help of user-
defined facts and communication by the predefined In and Out facts, which
represent sending and receiving actions. Hence, Tamarin also works by stating
the send and receive actions of principals.

Even though all of the tools’ input languages have aspects in common with
Alice&Bob notation, they all heavily rely on the specification of additional infor-
mation, such as algebraic properties and typing rules, which must be stated
explicitly. Mödersheim uses an elegant Alice&Bob-style language called AnB [26]
where the algebraic properties of the messagemodel are assumed to be fixed, and
consequently need not be included in the protocol specification itself. In our work,
we fuse the different approaches into an input language that has a pre-defined
message model, similar to [26], but which is extensible with user-specifiable
subterm-convergent equations while leaving the adversary model unspecified.

Existing Translations. There are two steps that a translation from an Alice&Bob
input language into a tool-specific language must perform. The first is to verify
that a given Alice&Bob specification is executable and the second is to extract
the security checks that a role must perform on received messages. It is in these
two steps that existing translations differ. Executability is important, as oth-
erwise protocol participants cannot carry out their steps and run the protocol.
Non-executability indicates either a mistake in the protocol or its formaliza-
tion, for example, a missing setup assumption. Checks on incoming messages
are also important, for example, to ensure that the message authentication code
a participant received refers to the message actually received.

Chevalier et al. [10] translate protocol narrations to strand-like role scripts
that are annotated with explicit unifiability conditions. Their protocol narrations
are similar to our Alice&Bob input, i.e., they specify the messages exchanged
as well as the sending and receiving agent, and the initial knowledge of each
agent. They verify executability during the translation to role scripts. Their
security checks are such that each participant verifies received messages as far
as possible. Namely, a message item that is reused in the description must be
the same for the receiver in all incoming messages. This imposes checks that are
practically infeasible for agents to perform and we give an example in Sect. 3.3,
Example 1. For these cases, we do not add such infeasible checks; instead we warn
the protocol designer that something might not be working as intended due to
the inherent imprecision of such protocol narrations or Alice&Bob specifications.
The output of their translation is not directly analyzable by any existing tool,
unlike ours, which can directly output descriptions that can be analyzed by
Tamarin, in addition to producing role scripts.
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Another alternative translation is based on endpoint projections [22]. The
protocol, given in a language close to Alice&Bob notation, is transformed in
multiple steps to a role script-like language. Along the way, the implicit assump-
tions in the input are made explicit by making choices. The endpoint projection
must, in particular, deal with the asymmetries introduced by security protocols,
for example, the receiver might not (yet) know the key being used in an encryp-
tion. Making these choices to get to an explicit presentation is similar to what we
do. The main restrictions in their work, compared to ours, is that their transla-
tion cannot handle equational theories beyond equations formalizing symmetric
and asymmetric encryption and it does not allow principals to transmit two or
more messages in a row without receiving a message in between.

The Common Authentication Protocol Specification Language CAPSL [14]
uses message list input similar to our Alice&Bob specifications, extended with
Casper’s % operator [21] to indicate receiver patterns. The use of these extended
patterns makes protocol specification more cumbersome, but it substantially sim-
plifies the problem of determining which checks should be made when receiving
messages, which we do in our work without resorting to such patterns. CAPSL
translates the input message lists into an intermediate language CIL, given in
multiset rewriting. Subsequent translations from CIL to different analysis tools,
such as Maude, have also been carried out [14].

6 Conclusions

We have presented an analysis of Alice&Bob style protocol specifications, yield-
ing a translation into an intermediate role script-like format that handles exe-
cutability concerns and generates appropriate checks for correct message recep-
tion. We have also implemented a further translation of this intermediate for-
mat to the input of Tamarin, a cryptographic protocol verification tool that
uses multiset rewriting for protocol specifications. This translation is automated
and allows Alice&Bob protocol specifications to be analyzed and verified with
Tamarin.

Alice&Bob notation is simple and can be used by novices. Indeed we believe
that our work could help to teach undergraduate students about protocol specifi-
cation and analysis in a formal methods course, with some caveats. The students
can specify protocols nicely using Alice&Bob notation, and, when the back-end
verification succeeds, they have proven the security property. However, when
verification fails, the tool’s counter-example is still in a format that is not very
meaningful for students. To make this viable for teaching, one would need to
define and implement a back-translation from the tool’s output representation
to Alice&Bob like syntax that is easier to understand. This back-translation
should benefit from knowledge gained in the initial translation from Alice&Bob
notation to the tool’s input. In particular, for Tamarin, this counter-example
output is in the form of a constraint system of dependency graphs. We are inves-
tigating the conversion of these back to Alice&Bob notation as future work.
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Abstract. Reasoning semantically in first-order logic is notoriously a
challenge. This paper surveys a selection of semantically-guided or model-
based methods that aim at meeting aspects of this challenge. For first-
order logic we touch upon resolution-based methods, tableaux-based me-
thods, DPLL-inspired methods, and we give a preview of a new method
called SGGS, for Semantically-Guided Goal-Sensitive reasoning. For first-
order theories we highlight hierarchical and locality-based methods, con-
cluding with the recent Model-Constructing satisfiability calculus.

1 Introduction

Traditionally, automated reasoning has centered on proofs rather than models.
However, models are useful for applications, intuitive for users, and the notion
that semantic guidance would help proof search is almost as old as theorem
proving itself. In recent years there has been a surge of model-based first-order
reasoning methods, inspired in part by the success of model-based solvers for
propositional satisfiability (SAT) and satisfiability modulo theories (SMT).

The core procedure of these solvers is the conflict-driven clause learn-
ing (CDCL) version [52,60,62,88] of the Davis-Putnam-Logemann-Loveland
(DPLL) procedure for propositional logic [32]. The original Davis-Putnam (DP)
procedure [33] was proposed for first-order logic, and featured propositional, or
ground, resolution. The DPLL procedure replaced propositional resolution with
splitting, initially viewed as breaking disjunctions apart by case analysis, to avoid
the growth of clauses and the non-determinism of resolution. Later, splitting was
understood as guessing, or deciding, the truth value of a propositional variable,
in order to search for a model of the given set of clauses. This led to read DPLL
as a model-based procedure, where all operations are centered around a candidate
partial model, called context, represented by a sequence, or trail, of literals.

DPLL-CDCL brought back propositional resolution as a mechanism to gen-
erate lemmas, and achieve a better balance between guessing and reasoning. The
c© Springer International Publishing Switzerland 2015
N. Mart́ı-Oliet et al. (Eds.): Meseguer Festschrift, LNCS 9200, pp. 181–204, 2015.
DOI: 10.1007/978-3-319-23165-5 8
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model-based character of the procedure became even more pronounced: when the
current candidate model falsifies a clause, this conflict is explained by a heuristi-
cally controlled series of resolution steps, a resolvent is added as lemma, and the
candidate partial model is repaired in such a way to remove the conflict, satisfy
the lemma, and backjump as far away as possible from the conflict. SMT-solvers
integrate in DPLL-CDCL a decision procedure for satisfiability in a theory or
combination of theories T : the T -satisfiability procedure raises a T -conflict when
the candidate partial model is not consistent with T , and generates T -lemmas
to add theory reasoning to the inference component [7,34].

While SAT and SMT-solvers offer fast decision procedures, they typically
apply to sets of propositional or ground clauses, without quantifiers. Indeed,
decidability of the problem and termination of the procedure descend from the
fact that the underlying language is the finite set of the input atoms.

ATP (Automated Theorem Proving) systems offer theorem-proving strate-
gies that are designed for the far more expressive language of first-order logic,
but are only semi-decision procedures for validity, as the underlying language,
and search space, are infinite. This trade-off between expressivity and decidabil-
ity is ubiquitous in logic and artificial intelligence. First-order satisfiability is
not even semi-decidable, which means that first-order model-building cannot be
mechanized in general. Nevertheless, there exist first-order reasoning methods
that are semantically-guided by a fixed interpretation, and even model-based, in
the sense that the state of a derivation contains a representation of a candidate
partial model that evolves with the derivation.

In this survey, we illustrate a necessarily incomplete selection of such methods
for first-order logic (Sect. 2) or first-order theories (Sect. 3). In each section the
treatment approximately goes from syntactic or axiomatic approaches towards
more semantic ones, also showing connections with José Meseguer’s work. All
methods are described in expository style, and the interested reader may find the
technical details in the references. Background material is available in previous
surveys, such as [18,59,67–69] for theorem-proving strategies, [19] for decision
procedures based on theorem-proving strategies or their integration with SMT-
solvers, and books such as [17,70,76].

2 Model-Based Reasoning in First-Order Logic

In this section we cover semantic resolution, which represents the early attempts
at injecting semantics in resolution; hypertableaux, which illustrates model-based
reasoning in tableaux, with applications to fault diagnosis and description logics;
the model-evolution calculus, which lifts DPLL to first-order logic, and a new
method called SGGS, for Semantically-Guided Goal-Sensitive reasoning, which
realizes a first-order CDCL mechanism.

2.1 Semantic Resolution

Soon after the seminal article by Alan Robinson introducing the resolution prin-
ciple [75], James R. Slagle presented semantic resolution in [79]. Let S be the



On First-Order Model-Based Reasoning 183

finite set of first-order clauses to be refuted. Slagle’s core idea was to use a given
Herbrand interpretation I to avoid generating resolvents that are true in I, since
expanding a consistent set should not lead to a refutation. The following example
from [31] illustrates the concept in propositional logic:

Example 1. Given S = {¬A1∨¬A2∨A3, A1∨A3, A2∨A3}, let I be all-negative,
that is, I = {¬A1,¬A2,¬A3}. Resolution between ¬A1 ∨ ¬A2 ∨ A3 and A1 ∨ A3

generates ¬A2∨A3, after merging identical literals. Similarly, resolution between
¬A1 ∨¬A2 ∨A3 and A2 ∨A3 generates ¬A1 ∨A3. However, these two resolvents
are true in I. Semantic resolution prevents generating such resolvents, and uses
all three clauses to generate only A3, which is false in I.

Formally, say that we have a clause N , called nucleus, and clauses E1, . . . , Eq,
with q ≥ 1, called electrons, such that the electrons are false in I. Then, if there
is a series of clauses R1, R2, . . . , Rq, Rq+1, where R1 is N , Ri+1 is a resolvent of
Ri and Ei, for i = 1, . . . , q, and Rq+1 is false in I, semantic resolution generates
only Rq+1. The intuition is that electrons are used to resolve away literals in the
nucleus until a clause false in I is generated.

Example 2. In the above example, ¬A1∨¬A2∨A3 is the nucleus N , and A1∨A3

and A2∨A3 are the electrons E1 and E2, respectively. Resolving N and E1 gives
¬A2 ∨ A3, and resolving the latter with E2 yields A3: only A3 is retained, while
the intermediate resolvent ¬A2 ∨ A3 is not.

Semantic resolution can be further restricted by assuming a precedence > on
predicate symbols, and stipulating that in each electron the predicate symbol
of the literal resolved upon must be maximal in the precedence. The following
example also from [31] is in first-order logic:

Example 3. For S = {Q(x)∨Q(a)∨¬R(y)∨¬R(b)∨S(c), ¬Q(z)∨¬Q(a), R(b)∨
S(c)}, let I be {Q(a), Q(b), Q(c),¬R(a),¬R(b),¬R(c),¬S(a),¬S(b),¬S(c)}, so
that I �|= ¬Q(z)∨¬Q(a) and I �|= R(b)∨S(c). Assume the precedence Q > R > S.
Thus, Q(x) ∨ Q(a) ∨ ¬R(y) ∨ ¬R(b) ∨ S(c) is the nucleus N , and ¬Q(z) ∨ ¬Q(a)
and R(b) ∨ S(c) are the electrons E1 and E2, respectively. Resolution between
N and E1 on the Q-literals produces ¬R(y) ∨ ¬R(b) ∨ S(c), which is not false
in I, and therefore it is not kept. Note that this resolution step is a binary
resolution step between a factor of N and a factor of E1. Resolution between
¬R(y)∨¬R(b)∨S(c) and E2 on the R-literals yields S(c). This second resolution
step is a binary resolution between a factor of ¬R(y) ∨ ¬R(b) ∨ S(c) and E2.
Resolvent S(c) is false in I and it is kept.

In these examples I is given by a finite set of literals: Example 1 is propo-
sitional, and in Example 3 the Herbrand base is finite, because there are no
function symbols. The examples in [79] include a theorem from algebra, where
the interpretation is given by a multiplication table and hence is really of seman-
tic nature. The crux of semantic resolution is the representation of I. In theory, a
Herbrand interpretation is given by a subset of the Herbrand base of S. In prac-
tice, one needs a finite representation of I, which is a non-trivial issue, whenever
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the Herbrand base is not finite, or a mechanism to test the truth of a literal
in I. Two instances of semantic resolution that aimed at addressing this issue
are hyperresolution [74] and the set-of-support strategy [86].

Hyperresolution assumes that I contains either all negative literals or all
positive literals. In the first case, it is called positive hyperresolution, because
electrons and all resolvents are positive clauses: positive electrons are used to
resolve away all negative literals in the nucleus to get a positive hyperresolvent.
In the second case, it is called negative hyperresolution, because electrons and
all resolvents are negative clauses: negative electrons are used to resolve away
all positive literals in the nucleus to get a negative hyperresolvent. Example 1 is
an instance of positive hyperresolution.

The set-of-support strategy assumes that S = T � SOS, where SOS (for
Set of Support) contains initially the clauses coming from the negation of the
conjecture, and T = S \ SOS is consistent, for some I such that I |= T and
I �|= SOS. A resolution of two clauses is permitted, if at least one is from SOS,
in order to avoid expanding the consistent set T . All resolvents are added to
SOS. Thus, all inferences involve clauses descending from the negation of the
conjecture: a method with this property is deemed goal-sensitive.

In terms of implementation, positive hyperresolution is often implemented in
contemporary theorem provers by resolution with selection of negative literals.
Indeed, resolution can be restricted by a selection function that selects negative
literals [4]. A clause can have all, some, or none of its negative literals selected,
depending on the selection function. In resolution with negative selection, the
negative literal resolved upon must be selected, and the other parent must not
contain selected literals. If some negative literal is selected for each clause con-
taining one, one parent in each resolution inference will be a positive clause, that
is, an electron for positive hyperresolution. Thus, a selection function that selects
some negative literal in each clause containing one induces resolution to simulate
hyperresolution as a macro inference involving several steps of resolution.

The set-of-support strategy is available in all theorem provers that feature the
given-clause loop [61], which is a de facto standard for resolution-based provers.
This algorithm maintains two lists of clauses, named to-be-selected and already-
selected, and at each iteration it extracts a given clause from to-be-selected. In its
simplest version, with only resolution as inference rule, it performs all resolutions
between the given clause and the clauses in already-selected; adds all resolvents
to to-be-selected; and adds the given clause to already-selected. If one initializes
these lists by putting the clauses in T in already-selected, and the clauses in SOS
in to-be-selected, this algorithm implements the set-of-support strategy. Indeed,
in the original version of the given-clause algorithm, to-be-selected was called
SOS, and already-selected was called Usable.

State-of-the-art resolution-based theorem provers implement more sophisti-
cated versions of the given clause algorithm, which also accomodate contraction
rules, that delete (e.g., subsumption, tautology deletion) or simplify clauses (e.g.,
clausal simplification, equational simplification). The compatibility of contrac-
tion rules with semantic strategies is not obvious, as shown by the following:
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Example 4. Let T = {¬P, P ∨ Q} and SOS = {¬Q}. Clausal simplification,
which is a combination of resolution and subsumption, applies ¬Q to simplify
P ∨Q to P . If the result is T = {¬P, P} and SOS = {¬Q}, the consistent set T
becomes inconsistent, and the refutational completeness of resolution with set-of-
support collapses, since the set-of-support strategy does not allow us to resolve
P and ¬P , being both in T . The correct application of clausal simplification
yields T = {¬P} and SOS = {¬Q, P}, so that the refutation can be found.

In other words, if a clause in SOS simplifies a clause, whether in T or in
SOS, the resulting clause must be added to SOS. The integration of contraction
rules and other enhancements, such as lemmaizing, in semantic strategies was
investigated in general in [22].

Semantic resolution, hyperresolution, and the set-of-support strategy exhibit
semantic guidance. We deem a method semantically guided, if it employs a fixed
interpretation to drive the inferences. We deem a method model-based, if it builds
and transforms a candidate model, and uses it to drive the inferences.

A beginning of the evolution from being semantically guided to being model-
based can be traced back to the SCOTT system [80], which combined the finite
model finder FINDER, that searches for small models, and the resolution-based
theorem prover OTTER [61]. As the authors write “SCOTT brings semantic
information gleaned from the proof attempt into the service of the syntax-based
theorem prover.” In SCOTT, FINDER provides OTTER with a guide model,
which is used for an extended set-of-support strategy: in each resolution step at
least one of the parent clauses must be false in the guide model. During the proof
search FINDER updates periodically its model to make more clauses true. Thus,
inferences are controlled as in the set-of-support strategy, but the guide model
is not fixed, which is why SCOTT can be seen as a forerunner of model-based
methods. Research on the cooperation between theorem prover and finite model
finder continued with successors of OTTER, such as Prover9, and successors of
FINDER, such as MACE4 [87]. This line of research has been especially fruitful
in applications to mathematics (e.g., [3,38]).

2.2 Hypertableaux

Tableau calculi offer an alternative to resolution and they have been discussed
abundantly in the literature (e.g., Chap. 3 in [76]). Their advantages include no
need for a clause normal form, a single proof object, and an easy extendability to
other logics. The disadvantage, even in the case of clause normal form tableaux,
is that variables are rigid, which means that substitutions have to be applied to
all occurrences of a variable within the entire tableau. The hypertableau calculus
[10] offers a more liberal treatment of variables, and borrows the concept of
hyperinference from positive hyperresolution.

In this section, we adopt a Prolog-like notation for clauses: A1 ∨ . . . ∨ Am ∨
¬B1 ∨ . . . ∨ ¬Bn is written A1, . . . , Am ⇐ B1, . . . , Bn, where A1, . . . , Am form
the head of the clause and are called head literals, and B1, . . . , Bn form the body.
There are two rules for constructing a hypertableau (cf. [10]): the initialization
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Fig. 1. A sample hypertableaux refutation with the clause set on the right.

rule gives a tableau consisting of a single node labeled with �; this one-element
branch is open. The hyperextension rule selects an open branch and a clause
A1, . . . , Am ⇐ B1, . . . , Bn, where m,n ≥ 0, from the given set S, such that
there exists a most general unifier σ which makes all the Biσ’s follow logically
from the model given by the branch. If there is a variable in the clause that has
an occurrence in more than one head literal Ai, a purifying substitution π is used
to ground this variable. Then the branch is extended by new nodes labeled with
Aiσπ, . . . , Amσπ. A branch is closed if it can be extended by a clause without
head literals. S is unsatisfiable if and only if there is a hypertableau for S whose
branches are all closed.

Two major advantages of hyperextension are that it avoids unnecessary
branching, and only variables in the clauses are universally quantified and
get instantiated, while variables in the branches are treated as free variables
(except those occurring in different head literals). The latter feature allows a
superposition-like handling of equality [11], while the former is relevant for hyper-
tableaux for description logic [78], which we shall return to in the next section.
Hypertableaux were implemented in the Hyper theorem prover for first-order
logic, followed by E-Hyper implementing also the handling of equality.

Example 5. An example refutation is given in Fig. 1. The initial tableau is set
up with the only positive clause. Extension at R(a) with the second clause uses
σ = {x ← a}: since y appears only once in the resulting head, π = ε and y
remains as a free variable. In the right subtree R(f(z)) is extended with the
second clause and σ = {x ← f(z)}. In the head P (f(z)), Q(f(z), y) of the
resulting clause z is repeated: an instance generation mechanism produces π =
{z ← b}, or the instance P (f(b)), Q(f(b), y) ⇐ R(f(b)), to find a refutation.
Note how the tableau contains by construction only positive literals, and the
interpretation given by a branch is used to control the extension steps very
much like in hyperresolution.

2.3 Model-Based Transformation of Clause Sets

Hypertableaux use partial models, that is, models for parts of a clause set,
control the search space. An open branch that cannot be expanded further
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represents a model for the entire clause set. In this section we present a trans-
formation method, borrowed from model-based diagnosis and presented in [8],
which is based on a given model and therefore can be installed on top of hyper-
tableaux. In applications to diagnosis, one has a set of clauses S which corre-
sponds to a description of a system, such as an electrical circuit. Very often there
is a model I of a correctly functioning system available; in case of an electrical
circuit it may be provided by the design tool itself. If the actual circuit is fed
with an input and does not show the expected output, the task is to find a
diagnosis, or those parts of the circuit which may be broken. Instead of doing
reasoning with the system description S and its input and output in order to
find the erroneous parts, the idea is to compute only deviations from the initially
given model I.

Assume that S is a set of propositional clauses and I a set of propositional
atoms; as a very simple example take

S = {B ⇐, C ⇐ A,B} and I = {A}.

Each clause in S is transformed by replacing a positive literal L by ¬neg L and
a negative literal ¬L by neg L, if L is contained in I. In other words, a literal
which is contained in the initial model moves to the other side of the arrow and
is renamed with the prefix neg as in

S′ = {B ⇐, C, neg A ⇐ B}.

This transformation is model-preserving, as every model of S is a model of
S′. For this it suffices to assign true to neg L if and only if L is false, for every
L ∈ I, and keep truth values unchanged for atoms outside of I. This property
is independent of I, and it holds even if I is not a model of S. In our example,
after initialization, first hyperextension with B ⇐, and then hyperextension with
C, neg A ⇐ B, yield the open branches {B,C} and {B,neg A}. Hyperextension
with C, neg A ⇐ B can be applied because only B occurs in the body. Since A
is assumed to be true in I, it can be added: adding A to {B,C} yields model
{A,B,C}; adding A to {B,neg A} yields model {B}. If deriving A in S is very
expensive, it pays off to save this derivation by moving A as neg A to the body
of the clause. In this example a Horn clause becomes non-Horn, introducing the
case where A is false, and neg A holds, although A is in I. Symmetrically, a
non-Horn clause may become Horn. This transformation technique enabled a
hypertableau prover to compute benchmarks from electrical engineering [8], and
was also applied to the view update problem in databases [2].

Although this transformation mechanism only works in the propositional
case, it can be extended to description logic [39]. Indeed, most description logic
reasoners are based on tableau calculi, and a hypertableau calculus was used
in [78] as a basis for an efficient reasoner for the description logic SHIQ. For
this purpose, the authors define DL-clauses as clauses without occurrences of
function symbols, and such that the head is allowed to include disjunctions of
atoms, which may contain existential role restrictions as in

∃repairs.Car(x) ⇐ Mechanic(x ).
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In other words, a given SHIQ-Tbox is translated to a large extent into first-
order logic; only existential role restrictions are kept as positive “literals.” Given
a Tbox in the form of a set of DL-clauses, if we have in addition an Abox, or
a set of ground assertions, we can use the interpretation given by the ABox as
initial model for the model-based transformation [39]. On this basis, the already
mentioned E-Hyper reasoner was modified to become E-KRHyper, which was
shown to be a decision procedure for SHIQ in [16].

2.4 The Model Evolution Calculus

The practical success of DPLL-based SAT solvers suggested the goal of lifting
features of DPLL to the first-order level. Research focused on splitting first-
order clauses, seen as a way to improve the capability to handle non-Horn
clauses. Breaking first-order clauses apart is not as simple as in propositional
logic, because a clause stands for all its ground instances, and literals share vari-
ables that are implicitly universally quantified. Decomposing disjunction is a
native feature in tableaux, whose downside is represented by rigid variables, as
already discussed in Sect. 2.2, where we saw how hypertableaux offer a possible
answer.

The quest for ways to split efficiently clauses such as A(x) ∨ B(x) led to
the model evolution calculus [13]. In this method splitting A(x) ∨ B(x) yields a
branch with A(x), meaning ∀xA(x), and one with ¬A(c), the Skolemized form
of ¬∀xA(x) ≡ ∃x¬A(x). Splitting in this way has the disadvantage that the
signature changes, and Skolem constants, being new, do not unify with other
non-variable terms. Thus, the model evolution calculus employs parameters, in
place of Skolem constants, to replace existentially quantified variables. These
parameters are similar to the free variables of hypertableaux.

The similarity between the model evolution calculus and DPLL goes beyond
splitting, as the model evolution calculus aims at being a faithful lifting of DPLL
to first-order logic. Indeed, a central feature of the model evolution calculus is
that it maintains a context Λ, which is a finite set of literals, representing a
Herbrand interpretation IΛ, seen as a candidate partial model of the input set
of clauses S. Thus, the model evolution calculus is a model-based first-order
method. Literals in Λ may contain variables, implicitly universally quantified as
in clauses, and parameters. Clauses are written in the form Λ  C, so that each
clause carries the context with itself.

In order to determine whether IΛ |= L, for L an atom in the Herbrand base
of S, one looks at the most specific literal in Λ that subsumes L; in case of
a tie, L is picked with positive sign. If IΛ is not a model of S, the inference
system unifies input clauses against Λ to find instances that are not true in IΛ:
these instances are subject to splitting, to modify Λ and repair IΛ. Otherwise,
the system recognizes that Λ cannot be fixed and declares S unsatisfiable. As
DPLL uses depth-first search with backtracking, the model evolution calculus
uses depth-first search with backtracking and iterative deepening on term depth,
which however may skew the search towards big proofs with small term depth.
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The model evolution calculus was implemented in the Darwin prover [9], and
extended to handle equality on its own [12] and with superposition [14].

2.5 SGGS: Semantically-Guided Goal-Sensitive Reasoning

SGGS, for Semantically-Guided Goal-Sensitive reasoning, is a new theorem-
proving method for first-order logic [26–29], which inherits features from several
of the strategies that we surveyed in the previous sections. SGGS is semanti-
cally guided by a fixed initial interpretation I like semantic resolution; and it is
goal-sensitive like the set-of-support strategy. With hyperresolution and hyper-
tableaux, it shares the concept of hyperinference, although the hyperinference
in SGGS, as we shall see, is an instance generation inference, and therefore its
closest ancestor is hyperlinking [58,71], an inference rule that uses the most gen-
eral unifier of a hyperresolution step to generate instances of the parents, rather
than a hyperresolvent.

Most importantly, SGGS is model-based at the first-order level, in the sense of
working by representing and transforming a candidate partial model of the given
set S of first-order clauses. This fundamental characteristic is in common with
the model evolution calculus, but while the latter lifts DPLL, SGGS lifts DPLL-
CDCL to first-order logic, and it combines the model-based character with the
semantic guidance and the goal sensitivity. Indeed, SGGS was motivated by the
quest for a method that is simultaneously first-order, model-based, semantically-
guided, and goal-sensitive. Furthermore, SGGS is proof confluent, which means
it does not need backtracking, and it does not necessarily reduce to either DPLL
or DPLL-CDCL, if given a propositional problem.

In DPLL-CDCL, if a literal L appears in the trail that represents the can-
didate partial model, all occurrences of ¬L in the set of clauses are false. If all
literals of a clause C are false, C is in conflict; if all literals of C except one,
say Q, are false, Q is an implied literal with C as justification. The status of C
depends on the decision levels where the complements of its literals were either
guessed (decision) or implied (Boolean propagation). SGGS generalizes these
concepts to first-order logic. Since variables in first-order literals are implicitly
universally quantified, if L is true, ¬L is false, but if L is false, we only know that
a ground instance of ¬L is true. SGGS restores the symmetry by introducing
the notion of uniform falsity: L is uniformly false, if all its ground instances are
false, or, equivalently, if ¬L is true. A first rôle of the given interpretation I is to
provide a reference model where to evaluate the truth value of literals: a literal
is I-true, if it is true in I, and I-false, if it is uniformly false in I.

An SGGS clause sequence Γ is a sequence of clauses, where every literal is
either I-true or I-false, so that it tells the truth value in I of all its ground
instances. In every clause C in Γ a literal is selected: if C = L1 ∨ . . . ∨ Ln and
Ln is selected, we write the clause as L1 ∨ . . . ∨ [Ln], or, more compactly, C[Ln],
with a slight abuse of the notation. SGGS tries to modify I into a model of S
(if I is a model of S the problem is solved). Thus, I-false literals are preferred
for selection, and an I-true literal is selected only in a clause whose literals are
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all I-true, called I-all-true clause. A second rôle of the given interpretation I is
to provide a starting point for the search of a model for S.

An SGGS clause sequence Γ represents a partial interpretation Ip(Γ ): if Γ
is the empty sequence, denoted by ε, Ip(Γ ) is empty; if Γ is C1[L1], . . . , Ci[Li],
and Ip(Γ |i−1) is the partial interpretation represented by C1[L1], . . . , Ci−1[Li−1],
then Ip(Γ ) is Ip(Γ |i−1) plus the ground instances Liσ of Li, such that Ciσ is
ground, Ciσ is not satisfied by Ip(Γ |i−1), and ¬Liσ is not in Ip(Γ |i−1), so that
Liσ can be added to satisfy Ciσ. In other words, each clause adds the ground
instances of its selected literal that satisfy ground instances of the clause not
satisfied thus far.

An interpretation I[Γ ] is obtained by consulting first Ip(Γ ), and then I: for
a ground literal L, if its atom appears in Ip(Γ ), its truth value in I[Γ ] is that in
Ip(Γ ); otherwise, it is that in I. Thus, I[Γ ] is I modified to satisfy the clauses in
Γ by satisfying the selected literals, and since I-true selected literals are already
true in I, the I-false selected literals are those that matter. For example, if Γ
is [P (x)], ¬P (f(y)) ∨ [Q(y)], ¬P (f(z)) ∨ ¬Q(g(z)) ∨ [R(f(z), g(z))], and I is
all negative like in positive hyperresolution, I[Γ ] satisfies all ground instances of
P (x), Q(y), and R(f(z), g(z)), and no other positive literal.

SGGS generalizes Boolean, or clausal, propagation to first-order logic. Con-
sider an I-false (I-true) literal M selected in clause Cj in Γ , and an I-true
(I-false) literal L in Ci, i > j: if all ground instances of L appear negated among
the ground instances of M added to Ip(Γ ), L is uniformly false in I[Γ ] because
of M , and depends on M , like ¬L depends on L in propositional Boolean prop-
agation, when L is in the trail. If this happens for all its literals, clause C[L] is
in conflict with I[Γ ]; if this happens for all its literals except L, L is an implied
literal with C[L] as justification. SGGS employs assignment functions to keep
track of the dependencies of I-true literals on selected I-false literals, realizing
a sort of first-order propagation modulo semantic guidance by I. SGGS ensures
that I-all-true clauses in Γ are either conflict clauses or justifications.

The main inference rule of SGGS, called SGGS-extension, uses the current
clause sequence Γ and a clause C in S to generate an instance E of C and add it
to Γ to obtain the next clause sequence Γ ′. SGGS-extension is a hyperinference,
because it unifies literals L1, . . . , Ln of C with I-false selected literals M1, . . . ,Mn

of opposite sign in Γ . The hyperinference is guided by I[Γ ], because I-false
selected literals contribute to I[Γ ] as explained above. Another ingredient of the
instance generation mechanism ensures that every literal in E is either I-true or
I-false. SGGS-extension is also responsible for selecting a literal in E.

The lifting theorem for SGGS-extension shows that if I[Γ ] �|= C ′ for some
ground instance C ′ of a clause C ∈ S, SGGS-extension builds an instance E of
C such that C ′ is an instance of E. There are three kinds of SGGS-extension:
(1) add a clause E which is in conflict with I[Γ ] and is I-all-true; (2) add a
clause E which is in conflict with I[Γ ] but is not I-all-true; and (3) add a clause
E which is not in conflict with I[Γ ]. In cases (1) and (2), it is necessary to solve
the conflict: it is here that SGGS lifts the conflict-driven clause learning (CDCL)
mechanism of DPLL-CDCL to the first-order level.
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In DPLL-CDCL a conflict is explained by resolving a conflict clause C with
the justification D of a literal whose complement is in C, generating a new con-
flict clause. Typically resolution continues until we get either the empty clause
⊥ or an asserting clause, namely a clause where only one literal Q is falsified
in the current decision level. DPLL-CDCL learns the asserting clause and back-
jumps to the shallowest level where Q is undefined and all other literals in the
asserting clause are false, so that Q enters the trail with the asserting clause as
justification. SGGS explains a conflict by resolving the conflict clause E with
an I-all-true clause D[M ] in Γ which is the justification of the literal M that
makes an I-false literal L in E uniformly false in I[Γ ]. Resolution continues
until we get either ⊥ or a conflict clause E[L] which is I-all-true. If ⊥ arises,
S is unsatisfiable. Otherwise, SGGS moves the I-all-true clause E[L] to the left
of the clause B[M ], whose I-false selected literal M makes L uniformly false in
I[Γ ]. The effect is to flip at once the truth value of all ground instances of L in
I[Γ ], so that the conflict is solved, L is implied, and E[L] satisfied.

In order to simplify the presentation, up to here we omitted that clauses
in SGGS may have constraints. For example, x �≡ y � P (x, y) ∨ Q(y, x) is a
constrained clause, which represents its ground instances that satisfy the con-
straints: P (a, b)∨Q(b, a) is an instance, while P (a, a)∨Q(a, a) is not. The reason
for constraints is that selected literals of clauses in Γ may intersect, in the sense
of having ground instances with the same atoms. Since selected literals deter-
mine Ip(Γ ), whence I[Γ ], non-empty intersections represent duplications, if the
literals have the same sign, and contradictions, otherwise. SGGS removes dupli-
cations by deletion of clauses, and contradictions by resolution. However, before
doing either, it needs to isolate the shared ground instances in the selected lit-
eral of one clause. For this purpose, SGGS features inference rules that replace
a clause by a partition, that is, a set of clauses that represent the same ground
instances and have disjoint selected literals. This requires constraints. For exam-
ple, a partition of [P (x, y)]∨Q(x, y) is {true� [P (f(z), y)]∨Q(f(z), y), top(x) �=
f � [P (x, y)] ∨ Q(x, y)}, where the constraint top(x) �= f means that variable
x cannot be instantiated with a term whose topmost symbol is f . If L and M
in C[L] and D[M ] of Γ intersect, SGGS partitions C[L] by D[M ]: it partitions
C[L] into A1 � C1[L1], . . . , An � Cn[Ln] so that only Lj , for some j, 1 ≤ j ≤ n,
intersects with M , and Aj � Cj [Lj ] is either deleted or resolved with D[M ].

The following example shows an SGGS-refutation:

Example 6. Given S = {¬P (f(x)) ∨ ¬Q(g(x)) ∨ R(x), P (x), Q(y), ¬R(c)}, let
I be all negative. An SGGS-derivation starts with the empty sequence. Then,
four SGGS-extension steps apply:

Γ0 : ε
Γ1 : [P (x)]
Γ2 : [P (x)], [Q(y)]
Γ3 : [P (x)], [Q(y)], ¬P (f(x)) ∨ ¬Q(g(x)) ∨ [R(x)]
Γ4 : [P (x)], [Q(y)], ¬P (f(x)) ∨ ¬Q(g(x)) ∨ [R(x)], [¬R(c)]
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At this stage, the selected literals R(x) and ¬R(c) intersect, and therefore SGGS
partitions ¬P (f(x)) ∨ ¬Q(g(x)) ∨ [R(x)] by [¬R(c)]:

Γ5 : [P (x)], [Q(y)], x �≡ c � ¬P (f(x)) ∨ ¬Q(g(x)) ∨ [R(x)],
¬P (f(c)) ∨ ¬Q(g(c)) ∨ [R(c)], [¬R(c)]

Now the I-all-true clause ¬R(c) is in conflict with I[Γ5]. Thus, SGGS moves it left
of the clause ¬P (f(c))∨¬Q(g(c))∨[R(c)] that makes ¬R(c) false in I[Γ5], in order
to amend the induced interpretation. Then, it resolves these two clauses, and
replaces the parent that is not I-all-true, namely ¬P (f(c)) ∨ ¬Q(g(c)) ∨ [R(c)],
by the resolvent ¬P (f(c)) ∨ ¬Q(g(c)):

Γ6 : [P (x)], [Q(y)], x �≡ c � ¬P (f(x)) ∨ ¬Q(g(x)) ∨ [R(x)], [¬R(c)],
¬P (f(c)) ∨ ¬Q(g(c)) ∨ [R(c)]

Γ7 : [P (x)], [Q(y)], x �≡ c � ¬P (f(x)) ∨ ¬Q(g(x)) ∨ [R(x)], [¬R(c)],
¬P (f(c)) ∨ [¬Q(g(c))]

Assuming that in the resolvent the literal ¬Q(g(c)) gets selected, there is now
an intersection between selected literals ¬Q(g(c)) and Q(y), so that SGGS par-
titions Q(y) by ¬P (f(c)) ∨ ¬Q(g(c)):

Γ8 : [P (x)], top(y) �= g � [Q(y)], z �≡ c � [Q(g(z))], [Q(g(c))],
x �≡ c � ¬P (f(x)) ∨ ¬Q(g(x)) ∨ [R(x)], [¬R(c)], ¬P (f(c)) ∨ [¬Q(g(c))]

At this point, the I-all-true clause ¬P (f(c)) ∨ [¬Q(g(c))] is in conflict with
I[Γ8]. As before, SGGS moves it left of the clause that makes its selected literal
¬Q(g(c)) false, namely [Q(g(c))], in order to fix the candidate model, and then
resolves ¬P (f(c))∨[¬Q(g(c))] and [Q(g(c))], replacing the latter by the resolvent
¬P (f(c)):

Γ9 : [P (x)], top(y) �= g � [Q(y)], z �≡ c � [Q(g(z))], ¬P (f(c)) ∨ [¬Q(g(c))],
[Q(g(c))], x �≡ c � ¬P (f(x)) ∨ ¬Q(g(x)) ∨ [R(x)], [¬R(c)]

Γ10 : [P (x)], top(y) �= g � [Q(y)], z �≡ c � [Q(g(z))], ¬P (f(c)) ∨ [¬Q(g(c))],
[¬P (f(c))], x �≡ c � ¬P (f(x)) ∨ ¬Q(g(x)) ∨ [R(x)], [¬R(c)]

The resolvent has only one literal which gets selected; since [¬P (f(c))] intersects
with [P (x)], the next inference partitions [P (x)] by [¬P (f(c))]:

Γ11 : top(x) �= f � [P (x)], y �≡ c � [P (f(y))], [P (f(c))], top(y) �= g � [Q(y)],
z �≡ c � [Q(g(z))], ¬P (f(c)) ∨ [¬Q(g(c))], [¬P (f(c))],
x �≡ c � ¬P (f(x)) ∨ ¬Q(g(x)) ∨ [R(x)], [¬R(c)]

The next step moves the I-all-true clause [¬P (f(c))], which is in conflict with
I[Γ11], to the left of the clause [P (f(c))] that makes [¬P (f(c))] false in I[Γ11],
and then resolves these two clauses to generate the empty clause:

Γ12 : top(x) �= f � [P (x)], y �≡ c � [P (f(y))], [¬P (f(c))], [P (f(c))],
top(y) �= g � [Q(y)], z �≡ c � [Q(g(z))], ¬P (f(c)) ∨ [¬Q(g(c))],
x �≡ c � ¬P (f(x)) ∨ ¬Q(g(x)) ∨ [R(x)], [¬R(c)]

Γ13 : top(x) �= f � [P (x)], y �≡ c � [P (f(y))], [¬P (f(c))], ⊥,
top(y) �= g � [Q(y)], z �≡ c � [Q(g(z))], ¬P (f(c)) ∨ [¬Q(g(c))],
x �≡ c � ¬P (f(x)) ∨ ¬Q(g(x)) ∨ [R(x)], [¬R(c)]
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This example only illustrates the basic mechanisms of SGGS. This method
is so new that it has not yet been implemented: the hope is that its conflict-
driven model-repair mechanism will have on first-order theorem proving an effect
similar to that of the transition from DPLL to DPLL-CDCL for SAT-solvers. If
this were true, even in part, the benefit could be momentous, considering that
CDCL played a key rôle in the success of SAT technology. Another expectation is
that non-trivial semantic guidance (i.e., not based on sign like in hyperesolution)
pays off in case of many axioms or large knowledge bases.

3 Model-Based Reasoning in First-Order Theories

There are basically two ways one can think about a theory presented by a set of
axioms: as the set of all theorems that are logical consequences of the axioms,
or as the set of all interpretations that are models of the axioms. The two are
obviously connected, but may lead to different styles of reasoning, that we por-
tray by the selection of methods in this section. We cover approaches that build
axioms into resolution, hierarchical and locality-based theory reasoning, and a
recent method called Model-Constructing satisfiability calculus or MCsat.

3.1 Building Theory Axioms into Resolution and Superposition

The early approaches to theory reasoning emphasized the axioms, by build-
ing them into the inference systems. The first analyzed theory was equality:
since submitting the equality axioms to resolution, or other inference systems
for first-order logic, leads to an explosion of the search space, paramodulation,
superposition, and rewriting were developed to build equality into resolution
(e.g., [4,21,48,73,77] and Chaps. 7 and 9 in [76]).

Once equality was conquered, research flourished on building-in theories (e.g.,
[30,36,40,49,53,54,66,72]). Equational theories, that are axiomatized by sets of
equalities, and among them permutative theories, where the two sides of each
axiom are permutations of the same symbols, as in associativity and commu-
tativity, received the most attention. A main ingredient is to replace syntactic
unification by unification modulo a set E of equational axioms, a concept gen-
eralized by José Meseguer to order-sorted E-unification (e.g., [37,43,46]). This
kind of approach was pursued further, by building into superposition axioms for
monoids [42], groups [85], rings and modules [84], or by generalizing superposi-
tion to embed transitive relations other than equality [5]. The complexities and
limitations of these techniques led to investigate the methods for hierarchical
theory reasoning that follow.

3.2 Hierarchical Reasoning by Superposition

Since José Meseguer’s work with Joe Goguen (e.g., [44]), it became clear that
a major issue at the cross-roads of reasoning, specifying, and programming,
is that theories, or specifications, are built by extension to form hierarchies.
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A base theory T0 is defined by a set of sorts S0, a signature Σ0, possibly a set of
axioms N0, and the class C0 of its models (e.g., term-generated Σ0-algebras). An
extended or enriched theory T adds new sorts (S0 ⊆ S), new function symbols
(Σ0 ⊆ Σ), called extension functions, and new axioms (N0 ⊆ N), specifying
properties of the new symbols. For the base theory the class of models is given,
while the extension is defined axiomatically. A pair (T0, T ) as above forms a
hierarchy with enrichment axioms N .

The crux of extending specifications was popularized by Joe Goguen and
José Meseguer as no junk and no confusion: an interpretation of S and Σ, which
is a model of N , is a model of T only if it extends a model in C0, without
collapsing its sorts, or making distinct elements equal (no confusion), or intro-
ducing new elements of base sort (no junk). A sufficient condition for the latter
is sufficient completeness, a property studied also in inductive theorem proving,
which basically says that every ground non-base term t′ of base sort is equal
to a ground base term t. Sufficient completeness is a strong restriction, violated
by merely adding a constant symbol: if Σ0 = {a, b}, N = N0 = {a �� b}, and
Σ = {a, b, c}, where a, b, and c are constants of the same sort, the extension
is not sufficiently complete, because c is junk, or a model with three distinct
elements is not isomorphic to one with two. Although sufficient completeness is
undecidable in general (e.g., [57]), sufficient completeness analyzers exist (e.g.,
[45,47,56]), with key contributions by José Meseguer.

Hierarchic superposition was introduced in [6] and developed in [41] to reason
about a hierarchy (T0, T ) with enrichment axioms N , where N is a set of clauses.
We assume to have a decision procedure to detect that a finite set of Σ0-clauses is
T0-unsatisfiable. Given a set S of Σ-clauses, the problem is to determine whether
S is false in all models of the hierarchic specification, or, equivalently, whether
N ∪ S has no model whose reduct to Σ0 is a model of T0. The problem is solved
by using the T0-reasoner as a black-box to take care of the base part, while
superposition-based inferences apply only to non-base literals.1 First, for every
clause C, whenever a subterm t whose top symbol is a base operator occurs
immediately below a non-base operator symbol (or vice versa), t is replaced by
a new variable x and the equation x � t is added to the antecedent of C. This
transformation is called abstraction. Then, the inference rules are modified to
require that all substitutions are simple, meaning that they map variables of base
sort to base terms. A meta-rule named constraint refutation detects that a finite
set of Σ0-clauses is inconsistent in T0 by invoking the T0-reasoner. Hierarchic
superposition was proved refutationally complete in [6], provided T0 is compact,
which is a basic preliminary to make constraint refutation mechanizable, and
N ∪S is sufficiently complete with respect to simple instances, which means that
for every model I of all simple ground instances of the clauses in N ∪ S, and
every ground non-base term t′, there exists a ground base term t (which may
depend on I) such that I |= t′ � t.

1 Other approaches to subdivide work between superposition and an SMT-solver
appeared in [20,25].
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There are situations where the enrichment adds partial functions: Σ0 con-
tains only total function symbols, while Σ \ Σ0 may contain partial functions
and total functions having as codomain a new sort. Hierarchic superposition was
generalized to handle both total and partial function symbols, yielding a partial
hierarchic superposition calculus [41]. To have an idea of the difficulties posed by
partial functions, consider that replacement of equals by equals may be unsound
in their presence. For example, s �� s may hold in a partial algebra (i.e., a struc-
ture where some function symbols are interpreted as partial), if s is undefined.
Thus, the equality resolution rule (e.g., resolution between C ∨ s �� s and x � x)
is restricted to apply only if s is guaranteed to be defined. Other restrictions
impose that terms replaced by inferences may contain a partial function sym-
bol only at the top; substitutions cannot introduce partial function symbols;
and every ground term made only of total symbols is smaller than any ground
term containing a partial function symbol in the ordering used by the inference
system. The following example portrays the partial function case:

Example 7. Let T0 be the base theory defined by S0 = {data}, Σ0 = {b : →
data, f : data → data}, and N0 = {∀x f(f(x)) � f(x)}. We consider the exten-
sion with a new sort list, total functions {cons : data, list → list, nil : → list, d :→
list}, partial functions {car : list → data, cdr : list → list}, and the following
clauses, where N = {(1), (2), (3)} and S = {(4), (5)}:

(1) car(cons(x, l))�x
(2) cdr(cons(x, l))�l
(3) cons(car(l), cdr(l))�l
(4) f(b)�b
(5) f(f(b))�car(cdr(cons(f(b), cons(b, d))))

The partial hierarchic superposition calculus deduces:
(6) x �� f(f(b)) ∨ y �� f(b) ∨ z �� b ∨ x �� car(cdr(cons(y, cons(z, d)))) Abstr. (5)
(7) x �� f(f(b)) ∨ y �� f(b) ∨ z �� b ∨ x �� car(cons(z, d)) Superp. (2),(6)
(8) x �� f(f(b)) ∨ y �� f(b) ∨ z �� b ∨ x �� z Superp. (1),(7)
(9) ⊥ Constraint refutation (4),(8)

Under the assumption that T0 is a universal first-order theory, which ensures
compactness, the partial hierarchic superposition calculus was proved sound and
complete in [41]: if a contradiction cannot be derived from N ∪S using this calcu-
lus, then N∪S has a model which is a partial algebra. Thus, if the unsatisfiability
of N ∪ S does not depend on the totality of the extension functions, the partial
hierarchic superposition calculus can detect its inconsistency. In certain problem
classes where partial algebras can always be made total, the calculus is complete
also for total functions. Research on hierarchic superposition continued in [1],
where an implementation for extensions of linear arithmetic was presented, and
in [15], where the calculus was made “more complete” in practice.

3.3 Hierarchical Reasoning in Local Theory Extensions

A series of papers starting with [81] identified a class of theory extensions (T0, T ),
called local, which admit a complete hierarchical method for checking satisfiability
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of ground clauses, without requiring either sufficient completeness or that T0 is
a universal first-order theory. The enrichment axioms in N do not have to be
clauses: if they are, we have an extension with clauses; if N consists of formulæ
of the form ∀x̄ (Φ(x̄)∨D(x̄)), where Φ(x̄) is an arbitrary Σ0-formula and D(x̄)
is a Σ-clause, with at least one occurrence of an extension function, we have an
extension with augmented clauses. The basic assumption that T0, or a fragment
thereof, admits a decision procedure for satisfiability clearly remains.

As we saw throughout this survey, instantiating universally quantified vari-
ables is crucial in first-order reasoning. Informally, a theory extension is local, if
it is sufficient to consider only a finite set of instances. Let G be a set of ground
clauses to be refuted in T , and let N [G] denote the set of instances of the clauses
in N where every term whose top symbol is an extension function is a ground
term occurring in N or G. Theory T is a local extension of T0, if N [G] suffices
to prove the T -unsatisfiability of G [81]. Subsequent papers studied variants of
locality, including those for extensions with augmented clauses, and for combi-
nations of local theories, and proved that locality can be recognized by showing
that certain partial algebras embed into total ones [50,51,81,82].

If T is a local extension, it is possible to check the T -satisfiability of G by
hierarchical reasoning [50,51,81,82], allowing the introduction of new constants
by abstraction as in [64]. By locality, G is T -unsatisfiable if and only if there is
no model of N [G] ∪ G whose restriction to Σ0 is a model of T0. By abstracting
away non-base terms, N [G] ∪ G is transformed into an equisatisfiable set N0 ∪
G0 ∪ D, where N0 and G0 are sets of Σ0-clauses, and D contains the definitions
introduced by abstraction, namely equalities of the form f(g1, . . . , gn)�c, where
f is an extension function, g1, . . . , gn are ground terms, and c is a new constant.
The problem is reduced to that of testing the T0-satisfiability of N0 ∪G0 ∪Con0,
where Con0 contains the instances of the congruence axioms for the terms in D:

Con0 = {
n∧

i=1

ci � di ⇒ c � d | f(c1, . . . , cn) � c, f(d1, . . . , dn) � d ∈ D},

which can be solved by a decision procedure for T0 or a fragment thereof.
In the following example T0 is the theory of linear arithmetic over the real

numbers, and T is its extension with a monotone unary function f , which is
known to be a local extension [81]:

Example 8. Let G be (a ≤ b ∧ f(a) = f(b) + 1). The enrichment N = {x ≤ y ⇒
f(x) ≤ f(y)} consists of the monotonicity axiom. In order to check whether G is
T -satisfiable, we compute N [G], omitting the redundant clauses c ≤ c ⇒ f(c) ≤
f(c) for c ∈ {a, b}:

N [G] = {a ≤ b ⇒ f(a) ≤ f(b), b ≤ a ⇒ f(b) ≤ f(a)}.

The application of abstraction to N [G] ∪ G yields N0 ∪ G0 ∪ D, where:

N0 = {a ≤ b ⇒ a1 ≤ b1, b ≤ a ⇒ b1 ≤ a1}, G0 = {a ≤ b, a1 � b1 + 1},
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D = {a1 � f(a), b1 � f(b)}, and a1 and b1 are new constants. Thus, Con0
is {a � b ⇒ a1 � b1}. A decision procedure for linear arithmetic applied to
N0 ∪ G0 ∪ Con0 detects unsatisfiability.

3.4 Beyond SMT: Satisfiability Modulo Assignment and MCsat

Like SGGS generalizes conflict-driven clause learning (CDCL) to first-order logic
and Herbrand interpretations, the Model-Constructing satisfiability calculus, or
MCsat for short, generalizes CDCL to decidable fragments of first-order theories
and their models [35,55].

Recall that in DPLL-CDCL the trail that represents the candidate partial
model contains only propositional literals; the inference mechanism that explains
conflicts is propositional resolution; and learnt clauses are made of input atoms.
These three characteristics are true also of the DPLL(T ) paradigm for SMT-
solvers [7], where an abstraction function maps finitely many input first-order
ground atoms to finitely many propositional atoms. In this way, the method
bridges the gap between the first-order language of the theory T and the propo-
sitional language of the DPLL-CDCL core solver. In DPLL(T ), also T -lemmas
are made of input atoms, and the guarantee that no new atoms are generated is
a key ingredient of the proof of termination of the method in [65].

Also when T is a union of theories T =
⋃n

i=1 Ti, the language of atoms
remains finite. The standard method to combine satisfiability procedures for
theories T1, . . . , Tn to get a satisfiability procedure for their union is equality
sharing [64], better known as Nelson-Oppen scheme, even if equality sharing
was the original name given by Greg Nelson, as reconstructed in [63]. Indeed,
a key feature of equality sharing is that the combined procedures only need
to share equalities between constant symbols. These equalities are mapped by
the abstraction function to proxy variables, that is, propositional variables that
stand for the equalities. As there are finitely many constant symbols, there are
also finitely many proxy variables.

MCsat generalizes both model representation and inference mechanism
beyond satisfiability modulo theories (SMT), because it is designed to decide
a more general problem called satisfiability modulo assignment (SMA). An SMA
problem consists of determining the satisfiability of a formula S in a theory T ,
given an initial assignment I to some of the variables occuring in S, including
both propositional variables and free first-order variables. SMT can be seen as a
special case of SMA where I is empty. Also, since an SMT-solver builds partial
assignments during the search for a satisfying one, an intermediate state of an
SMT search can be viewed as an instance of SMA. A first major generalization of
MCsat with respect to DPLL-CDCL and DPLL(T ) is to allow the trail to contain
also assignments to free first-order variables (e.g., x ← 3). Such assignments can
be semantic decisions or semantic propagations, thus called to distinguish them
from the Boolean decisions and Boolean propagations that yield the standard
Boolean assignments (e.g., L ← true).

The answer to an SMA problem is either a model of S including the initial
assignment I, or “unsatisfiable” with an explanation, that is, a formula S′ that
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follows from S and is inconsistent with I. This notion of explanation is a gen-
eralization of the explanation of conflicts by propositional resolution in DPLL-
CDCL. Indeed, a second major generalization of MCsat with respect to DPLL-
CDCL and DPLL(T ) is to allow the inference mechanism that explains conflicts
to generate new atoms, as shown in the following example in the quantifier-free
fragment of the theory of equality:

Example 9. Assume that S is a conjunction of literals including {v � f(a), w �
f(b)}, where a and b are constant symbols, f is a function symbol, and v and
w are free variables. If the trail contains the assignments a ← α, b ← α, w ←
β1, v ← β2, where α, β1, and β2 denote distinct values of the appropriate sorts,
there is a conflict. The explanation is the formula a � b ⇒ f(a) � f(b), which
is an instance of the substitutivity axiom, or congruence axiom, for function f .
Note how the atoms a � b and f(a) � f(b) need not appear in S, and therefore
such a lemma could not be generated in DPLL(T ).

In order to apply MCsat to a theory T , one needs to give clausal inference
rules to explain conflicts in T . These inference rules generate clauses that may
contain new (i.e., non-input) ground atoms in the signature of the theory. New
atoms come from a basis, defined as the closure of the set of input atoms with
respect to the inference rules. The proof of termination of the MCsat transition
rules in [35] requires that the basis be finite. The following example illustrates
the importance of this finiteness requirement:

Example 10. Given S = {x ≥ 2, ¬(x ≥ 1) ∨ y ≥ 1, x2 + y2 ≤ 1 ∨ xy > 1},
and starting with an empty trail M = ∅, a Boolean propagation puts x ≥ 2
in the trail. Theory propagation adds x ≥ 1, because x ≥ 2 implies x ≥ 1
in the theory, and x ≥ 1 appears in S. A Boolean propagation over clause
¬(x ≥ 1) ∨ y ≥ 1 adds y ≥ 1, so that we have M = x ≥ 2, x ≥ 1, y ≥ 1.
If a Boolean decision guesses next x2 + y2 ≤ 1 and then a semantic decision
adds x ← 2, we have M = x ≥ 2, x ≥ 1, y ≥ 1, x2 + y2 ≤ 1, x ← 2 and a
conflict, as there is no value for y such that 4 + y2 ≤ 1. Learning ¬(x = 2) as
an explanation of the conflict does not work, because the procedure can then
try x ← 3, and hit another conflict. Clearly, we do not want to learn the infinite
sequence ¬(x = 2), ¬(x = 3), ¬(x = 4) . . ..

Similarly, also a systematic application of the inference rules to enumerate
all atoms in a finite basis would be too inefficient. The key point is that the
inference rules are applied only to explain conflicts and amend the current partial
model, so that the generation of new atoms is conflict-driven. This concept is
connected with that of interpolation (e.g., [83] for interpolation and locality,
[23] for a survey on interpolation of ground proofs, and [24] for an approach to
interpolation of non-ground proofs): given two inconsistent formulæ A and B, a
formula that follows from A and is inconsistent with B is an interpolant of A
and B, if it is made only of symbols that appear in both A and B. In a theory
T , the notions of being inconsistent and being logical consequence are relative
to T , and the interpolant is allowed to contain theory symbols even if they are
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not common to A and B. Since an explanation is a formula S′ that follows from
S and is inconsistent with I, an interpolant of S and I (written as a formula) is
an explanation. We illustrate these ideas continuing Example 10:

Example 11. The solution is to observe that x2 +y2 ≤ 1 implies −1 ≤ x∧x ≤ 1,
which is inconsistent with x = 2. Note that −1 ≤ x ∧ x ≤ 1 is an interpolant of
x2 + y2 ≤ 1 and x = 2, as x appears in both. Thus, a desirable explanation is
(x2+y2 ≤ 1) ⇒ x ≤ 1, or ¬(x2+y2 ≤ 1)∨x ≤ 1 in clausal form, which brings the
procedure to update the trail to M = x ≥ 2, x ≥ 1, y ≥ 1, x2 + y2 ≤ 1, x ≤ 1.
At this point, x ≥ 2 and x ≤ 1 cause another theory conflict, which leads the
procedure to learn the lemma ¬(x ≥ 2) ∨ ¬(x ≤ 1). A first step of explanation
by resolution between ¬(x2 + y2 ≤ 1) ∨ x ≤ 1 and ¬(x ≥ 2) ∨ ¬(x ≤ 1) yields
¬(x2 + y2 ≤ 1) ∨ ¬(x ≥ 2). A second step of explanation by resolution between
¬(x2 + y2 ≤ 1) ∨ ¬(x ≥ 2) and x ≥ 2 yields ¬(x2 + y2 ≤ 1), so that the trail
is amended to M = x ≥ 2, x ≥ 1, y ≥ 1, ¬(x2 + y2 ≤ 1), finally repairing the
decision (asserting x2 + y2 ≤ 1) that caused the conflict.2

In summary, MCsat is a fully model-based procedure, which lifts CDCL
to SMT and SMA. Assignments to first-order variables and new literals are
involved in decisions, propagations, conflict detections, and explanations, on a
par with Boolean assignments and input literals. The theories covered in [35,55]
are the quantifier-free fragments of the theories of equality, linear arithmetic,
and boolean values, and their combinations. MCsat is also the name of the
implementation of the method as described in [55].

4 Discussion

We surveyed model-based reasoning methods, where inferences build or amend
partial models, which guide in turn further inferences, balancing search with
inference, and search for a model with search for a proof. We exemplified these
concepts for first-order clausal reasoning, and then we lifted them, sort of speak,
to theory reasoning. Automated reasoning has made giant strides, and state of
the art systems are very sophisticated in working with mostly syntactic infor-
mation. The challenge of model-based methods is to go towards a semantically-
oriented style of reasoning, that may pay off for hard problems or new domains.
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Abstract. In this paper we consider a calculus of connectors that allows
for the most general combination of synchronisation, non-determinism
and buffering. According to previous results, this calculus is tightly
related to a flavour of Petri nets with interfaces for composition, called
Petri nets with boundaries. The calculus and the net version are equipped
with equivalent bisimilarity semantics. Also the buffers (the net places)
can be one-place (C/E nets) or with unlimited capacity (P/T nets). In
the paper we investigate the idea of finding normal form representations
for terms of this calculus, in the sense that equivalent (bisimilar) terms
should have the same (isomorphic) normal form. We show that this is
possible for finite state terms. The result is obtained by computing the
minimal marking graph (when finite) for the net with boundaries corre-
sponding to the given term, and reconstructing from it a canonical net
and a canonical term.

Keywords: Algebras of connectors · Petri nets with boundaries

1 Introduction

One of the foci of our long-standing collaboration with José Meseguer has been
concerned with the algebraic properties of Petri nets and their computations,
exploiting suitable symmetric (strict) monoidal categories [13,14,22,23]. In the
context of the ASCENS project1, we have recently investigated a flavour of
composable Petri nets, called Petri nets with boundaries, originally proposed
by Pawel Sobocinski in [28]. Petri nets with boundaries should not be confused
with bounded nets: the former come equipped with left/right interfaces for com-
position, the latter require the existence of a bound on the number of tokens
that can be present in the same place during the computation. Petri nets with
boundaries allow to conveniently model stateful connectors in component-based
systems and have been related to other widely adopted component-based frame-
works, like BIP [4], in [10]. In particular we have shown in [12] that they are
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equivalent to the algebra of stateless connectors from [8] extended with one-
place buffers. In this paper we consider an algebra of connectors that allow for
the most general combination of synchronisation, non-determinism and buffering
and investigate the idea of finding a normal form representation for terms of this
algebra, under some finiteness hypotheses.

Component-based design is a modular engineering practice that relies on the
separation of concerns between coordination and computation. Component-based
systems are built from loosely coupled computational entities, the components,
whose interfaces comprise the number, kind and peculiarities of communication
ports. The term connector denotes entities that glue the interaction of compo-
nents [25], by imposing suitable constraints on the allowed communications. The
evolution of a network of components and connectors is as if played in rounds:
At each round, the components try to interact through their ports and the con-
nectors allow/disallow some of the interactions selectively. A connector is called
stateless when the interaction constraints it imposes are the same at each round;
stateful otherwise.

In the case of the algebra of stateless connectors [8], terms are assigned input-
output sorts, written P : (n,m) or P : n → m, where n is the arity (i.e., the
number of ports) of the left-interface and m of the right-interface. Terms are
constructed by composing in series and in parallel five kinds of basic connectors
(and their duals, together with identities I : (1, 1)) that express basic forms
of (co) monoidal synchronisation and non-determinism: (self-dual) symmetry
X : (2, 2), synchronisation ∇ : (1, 2) and Δ : (2, 1), mutual exclusion ∧ : (1, 2) and
∨ : (2, 1), hiding ⊥ : (1, 0) and � : (0, 1), and inaction ⊥ : (1, 0) and � : (0, 1).
The parallel composition P1 ⊗ P2 of two terms P1 : (n1,m1) and P2 : (n2,m2)
has sort (n1 + n2,m1 + m2) and corresponds to put the two connectors side by
side, without interaction constraints between them. The sequential composition
P1;P2 : (n,m) is defined only if the right-interface k of P1 : (n, k) matches with
the left-interface of P2 : (k,m) and corresponds to plug together such interfaces,
enforcing port-wise synchronisation. It is immediate to see that each term P :
(n,m) has a corresponding dual P c : (m,n) (defined recursively by letting (P1 ⊗
P2)c = P c

1 ⊗ P c
2 and (P1;P2)c = P c

2 ;P c
1 ) and a normal form axiomatisation

is provided in [8] whose equivalence classes form a symmetric strict monoidal
category (PROduct and Permutation category, PROP [16,21]) of so-called tick-
tables. All such connectors are stateless.

The simplest extension to stateful connectors consists of adding one-place
buffers as basic terms: © : (1, 1) denotes the empty buffer, willing to receive
a “token” when an action is executed on its left port; and

⊙
: (1, 1) denotes

the full buffer, willing to give the “token” away when an action is executed
on its right port. This way, certain interactions can be dynamically enabled
or disabled depending on the presence or absence of “tokens” in the buffers.
Such stateful connectors can be put in correspondence with Petri nets with
boundaries up to bisimilarity [9,12,28]. In fact, the operational semantics of
connectors and Petri nets with boundaries can be expressed in terms of labelled
transition systems (LTS) whose labels are pairs (a, b) with a being a string that
describes the actions observed on the ports of the left-interface and b those on the
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right-interface. In our case a basic action observed on a single port is a natural
number, describing the number of firings on which that port is involved, or
equivalently, the number of “tokens” travelling on that port; therefore a and b
are strings of natural numbers. A transition with such an observation is written
P

a−→
b P ′. In the case of connectors, states are terms of the algebra, while in the

case of nets states are markings. In both cases the “sizes” of the interfaces are
preserved by transitions, e.g., if P

a−→
b P ′ and P : (n,m), then |a| = n, |b| = m

and P ′ : (n,m). Interestingly, the abstract semantics induced by ordinary bisim-
ilarity over such LTS is a congruence w.r.t. sequential and parallel composition.
Regarding the correspondence, first, it is shown that any net N : m → n with
initial marking X can be associated with a connector TNX : (m,n) that pre-
serves and reflects the semantics of N . Conversely, for any connector P : (m,n)
there exists a bisimilar net {[P ]} : m → n defined by structural recursion on P .
Roughly, in both cases, the one-place buffers of the connector correspond to the
places of the Petri net.

The problem of finding an axiomatisation for stateful connectors such that
normal forms can be found for bisimilarity classes is complicated by the fact that
the number of buffers is not preserved by bisimilarity: the same “abstract state”
can be described by a different combination of places. As a simple example, take
a net with two transitions α and β and a place p whose pre-set is {α} and whose
post-set is {β}. Clearly if p is substituted by any number of places connected in
the same way to α and β, then the overall behaviour is not changed.

The solution provided here is to translate a term P to the corresponding net
{[P ]}. Then we build the marking graph of {[P ]}. It must be finite because only
a finite number of markings exist. Moreover we observe that marking graphs
can be represented up to bisimilarity by a Petri net with boundaries that has
one place for each reachable marking of {[P ]} (i.e., one place for each state of
the marking graph). Finally, the translation of such net to the corresponding
connector gives a canonical representation of P , in the sense that any other
term P ′ bisimilar to P will yield the same term (up to suitable permutations).

The same procedure can be followed when Place/Transition (P/T) Petri nets
with boundaries are considered. In this case, places capacity is unconstrained,
i.e., a place can contain any number of tokens. Correspondingly, we start from
terms of the P/T Petri calculus, where the basic constructors © and

⊙
are

replaced by a denumerable set of constructors (|n|) for any natural number n, each
representing a buffer with n tokens. Given the correspondence in [12], between
P/T Petri calculus terms and P/T nets with boundaries, we can again translate
a term P to the corresponding net {[P ]}, but building a finite marking graph
of {[P ]} requires the net to be bounded.2 This is equivalent to require that only
a finite set of terms is reachable from the term P via transitions. The marking
graph can then be minimised (w.r.t. the number of states, up to bisimilarity)
and translated to an equivalent P/T Petri calculus term.

2 Formally, a net is bounded if ∃k ∈ N such that in any reachable marking the number
of tokens in any place is less than or equal to k, i.e., k is a bound for the capacity of
places. Note that the marking graph of a net is finite iff the net is bounded.
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Fig. 1. Graphical representation of terms

Structure of the Paper. Section 2 introduces the P/T and the C/E Petri cal-
culi, together with their bisimilarity semantics. Section 3 recalls Petri nets with
boundaries and their tight correspondence with Petri calculi. Section 4 shows
how to obtain a normal form for a P/T Petri calculus term P by computing
the minimal marking graph for {[P ]} and from it a canonical P/T Petri net N .
Finally, the canonical form of P is obtained by mapping N back into a term of
the P/T calculus. A similar process is outlined in Sect. 5 for terms of the C/E
Petri calculus. Section 6 concludes the paper.

2 Petri Calculi

As a matter of presentation, along the paper we find it convenient to present
first the more general version (P/T case) of the definition and constructions,
because it can be largely reused in the simpler case (C/E).

2.1 The P/T Petri Calculus

The P/T calculus is an algebra of connectors that mixes freely elementary syn-
chronization constraints with mutual exclusion and (unbounded) memory. It is
obtained by extending the algebra of stateless connectors with a denumerable
set of constants (|n|) (one for any n ∈ N), each of them representing a buffer that
currently contains n data items, aka tokens.

The syntax of terms of the P/T Calculus is below, where n ∈ N.

P : := (|n|) buffer withndata items

| I identity wire | X twist

| ∇ | Δ duplicator and its dual | ⊥ | � hiding and its dual

| ∧ | ∨ mutex and its dual | ↓ | ↑ inaction and its dual

| P ⊗ P parallel composition | P ; P sequential composition

The diagrammatical representation of terms is shown in Fig. 1. Any term P
has a unique associated sort (k, l) with k, l ∈ N, that fixes the size k of the left
interface and the size l of the right interface of P (see Fig. 2).
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Fig. 2. Sort inference rules

Fig. 3. Operational semantics of P/T calculus

The operational semantics is defined by means of the LTS in Fig. 3 whose
states are terms P of the algebra and whose transitions are labelled by pairs
(a, b) ∈ N∗ × N∗, written P

a−→
b P ′, where if P : (k, l) then |a| = k, |b| = l and

P ′ : (k, l). For each i ∈ {1 . . . k}, ai is the number of actions executed on the i-th
port of the left interface. Analogously, for each j ∈ {1 . . . l}, bj is the number of
actions executed on the j-th port of the right interface. Since data items can be
created and deleted, but all connectors are maintained by the rules, the target P ′

preserves the overall structure of P (i.e., P and P ′ can differ only for sub-terms
of the form (|n|)).

We remark that some of the rules are more precisely schemes. For instance,
there is one particular instance of rule (TkIOn,h,k) for any possible choice of n, h
and k. We think the rules are self-explanatory: Rule (TkIOn,h,k) models the case
where a buffer with n tokens releases k ≤ n tokens and receives h new tokens
in the same step; at the end n + h − k tokens are left in the buffer. Rule (Idk)

and (Twh,k) just (re)wire the observation on the left interface to the one on the
right. Rules (∇k) and (Δk) enforce action synchronization on all ports. Rules
(⊥k) and (�k) hide any action on its interface. Rules (∧h,k) and (∨h,k) mix
the actions observed on the interface with two ports. Rules (↓) and (↑) enforce
inaction on their (single) ports. Finally, rules (Ten) and (Cut) deal with parallel
and sequential composition.

Notably, the induced bisimilarity is a congruence w.r.t. ⊗ and ; [12].
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Fig. 4. Petri calculus term for a buffer of capacity n

Example 1. As an example, we show one possible way to represent a buffer with
capacity n. First, let Pn = � ; ∇ ; ((|n|)⊗ I) : (0, 2) and Qm = � ; ∇ ; (I⊗ (|m|)) :
(0, 2) shown in Fig. 4(a) and (b). It is immediate to check that, for any h ≤ n the
only transitions for Pn are of the form Pn −→

hk Pn+k−h and symmetrically, for Qm

and k ≤ m, are of the form Qm −→
hk Qm+h−k. Let C = (I⊗X⊗ I) ; (Δ⊗Δ) : (4, 2).

Again, it is immediate to check that the only transitions for C are of the form
C

hkhk−−−−→
hk C. Then, let Dn,m = (Pn ⊗Qm) ; C : (0, 2) shown in Fig. 4(c). We have

that Dn,m −→
hk Dn+k−h,m+h−k with h ≤ n and k ≤ m. Note that (n − h + k) +

(m − k + h) = n − m, i.e., the numbers of tokens in the connector is invariant
under transitions. Thus, the term Bn,m = (I⊗Dn,m) ; ((Δ ; ⊥)⊗ I) : (1, 1) shown
in Fig. 4(d) has transitions Bn,m

h−→
k Bn+k−h,m+h−k with h ≤ n and k ≤ m and

Bn,0 is a buffer of capacity n (the sub-term Pn counts the free positions of the
buffer, while Q0 the busy ones).

2.2 The C/E Petri Calculus

It is quite common to impose some capacity over buffers. For example, we could
think to consider only buffers of the form (|c, n|) with n ≤ c, where n is the
number of tokens in the buffer and c is its maximal capacity. In this case, the
transition (|c, n|) h−→

k (|c,m|) would be possible only if k ≤ n and h ≤ c − n
with m = n + h − k. ((|c, n|) roughly corresponds to the process Bc−n,n from
Example 1).

In this section we focus on the simplest such case, where buffers have capacity
one, also called one-place buffers. The corresponding calculus, originally intro-
duced in [28], can be seen as the consequent restriction of the P/T Petri calculus
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Fig. 5. Operational semantics for the one-place buffer (of the C/E Petri Calculus)

to operate over one-place buffers; in Petri net terminology, this restriction is
called Condition/Event (C/E). Terms of the C/E Petri Calculus are defined by
the grammar:

P : := © | ⊙ | I | X | ∇ | Δ | ⊥ | � | ∧ | ∨ | ↓ | ↑ | P ⊗ P | P ; P

The constructors are the same as the ones of P/T calculus except for © and⊙
that respectively mimic the behaviour of (|0, 1|) and (|1, 1|). As before, any

term P has a unique associated sort, with © : (1, 1) and
⊙

: (1, 1) (remaining
cases are defined as in Fig. 2).

The operational semantics is then defined by replacing Rule (TkIOn,h,k) in
Fig. 3 with the four rules in Fig. 5, representing respectively: the arrival of a
token in the empty buffer (rule (TkI)); the release of a token from the full buffer
(rule (TkO)); the inactivity of the empty/full buffer (rules (TkE), (TkF)).

Remark 1. The semantics of the C/E Petri calculus presented here slightly differs
from the original one in [28] and all its variants considered in [12]. If we restrict
to consider stateless connectors, i.e., terms not involving © and

⊙
, then their

semantics is the one called ‘weak’ in [12], whereas the ‘strong’ semantics would
allow only one action at a time to take place in a port, e.g., only transitions
∧ 0−→

00
∧, ∧ 1−→

10
∧ and ∧ 1−→

01
∧ would be considered for the connector ∧. Dif-

ferently from the weak case, here we forbid tokens to traverse buffers during a
step, in agreement with the classical C/E semantics where a loop cannot fire.
However, other variants can be nicely accounted for by changing the rules for ©
and

⊙
. For example, consume/produce loops can be dealt with by adding the

transition
⊙ 1−→1

⊙
. On the one hand, we think the semantics proposed here

improves the correspondence between C/E Petri calculus and C/E Petri nets
with boundaries (avoiding the use of the ‘contention’ relation from [12]) and, on
the other hand, it yields a more uniform definition with the P/T case, preserving
all good properties, like bisimilarity being a congruence w.r.t. ⊗ and ;.

Example 2. A buffer with capacity n can be represented by combining n buffers
of capacity 1: we just let B1 = © : (1, 1) and Bn+1 = ∧ ; (Bn ⊗ ©) ; ∨ : (1, 1).

3 Nets with Boundaries

Nets with boundaries extends ordinary Petri nets by equipping them with left
and right interfaces made of ports. Ports are different from places in that places
in the pre-set of a transition α impose a bound on the number of instances of
α that can be fired concurrently, while ports do not. In fact ports can account
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for an unbounded number of instances of transitions attached to them to fire
concurrently. This is desirable, not an anomaly, because we can account for any
execution context in which the nets with boundaries are plugged in.

3.1 P/T Petri Nets with Boundaries

Petri nets [26] consist of places, which are repositories of tokens, and transitions
that remove and produce tokens. Places of a Place/Transition net (P/T net) can
hold zero, one or more tokens and arcs are weighted. The state of a P/T net is
described in terms of (P/T) markings, i.e., (finite) multisets of tokens.

A multiset on a set X is a function X → N. The set of multisets on X is
denoted MX . We let U ,V range over MX . For U ,V ∈ MX , we write U ⊆ V
iff ∀x ∈ X : U(x) ≤ V(x) and we use the usual multiset operations for union
(∪), difference (−) and scalar multiplication (·). We use ∅ ∈ MX for the empty
multiset s.t. ∅(x) = 0 for all x ∈ X and we write x for the singleton multiset U
such that U(x) = 1 and U(y) = 0 for all y �= x. Given a finite X, if f : X → MY

and U ∈ MX then we shall abuse notation and write f(U) =
⋃

x∈X U(x) · f(x).

Definition 1 (P/T net). A P/T net is a 4-tuple (P, T, ◦−, −◦) where: P is
a set of places; T is a set of transitions; and ◦−,−◦ : T → MP are functions
assigning pre- and post-sets to transitions.

Let X ∈ MP , we write NX for the marked P/T net N with marking X .

Definition 2 (P/T step semantics). Let N = (P, T, ◦−, −◦) be a P/T net,
X ,Y ∈ MP . For U ∈ MT a multiset of transitions, we write:

NX →U NY
def= ◦U ⊆ X , U◦ ⊆ Y & X − ◦U = Y − U◦.

The remaining of this section recalls the composable nets proposed in [28].
Due to space limitation, we refer to [12] for a detailed presentation. In the fol-
lowing we let n range over finite ordinals, i.e., n

def= {0, 1, . . . , n − 1}.

Definition 3 (P/T net with boundaries). Let m,n ∈ N. A (finite) P/T net
with boundaries N : m → n is a tuple N = (P, T, ◦−,−◦, •−,−•), where:

– (P, T, ◦−,−◦) is a finite P/T net;
– •− : T → Mm and −• : T → Mn are functions that bind transitions to the

left and right boundaries of N ;

Let X ∈ MP , we write NX for the P/T net N with boundaries whose current
marking is X . Note that, for any k ∈ N, there is a bijection �−� : Mk → Nk

between multisets on k and strings of natural numbers of length k, defined by
�U�i def= U(i), namely, the i-th natural number in the string �U� assigned to
the multiset U is the multiplicity of the i-th port in U . For example, given the
multiset U = {0, 0, 2} ∈ M4 we have �U� = 2 0 1 0.
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Fig. 6. Five marked P/T nets with boundaries

Definition 4 (P/T Labelled Semantics). Let N = (P, T, ◦−,−◦, •−,−•) be
a P/T net with boundaries and X ,Y ∈ MP . We write

NX
a−→
b NY

def= ∃U ∈ MT s.t. NX →U NY , a = �•U� & b = �U•�. (1)

Example 3. Figure 6 shows five different marked P/T nets with boundaries.
Places are circles and a marking is represented by the presence or absence of
tokens; rectangles are transitions and arcs stand for pre- and post-set relations.
The left (respectively, right) interface is depicted by points situated on the left
(respectively, on the right). Figure 6(a) shows the marked net Pp : 1 → 1 con-
taining three places, four transitions and initially marked with one token in
place p. Figure 6(b) shows the marked net Q2pq : 1 → 1 containing three places,
two transitions and initially marked with two tokens in p and one in q. These
two nets are bisimilar: they both model a buffer with capacity two, in which
messages are produced over the left interface and consumed over the right inter-
face. Figure 6(c) and (d) show two different models for unbounded buffers. They
are not bisimilar: while Rq serialises all operations on the buffer, S∅ allows for
the concurrent production/consumption of messages. Note that transition γ in
Fig. 6(d) has an empty pre-set and δ has an empty post-set. Figure 6(e) shows
the net I : 1 → 1 that contains no places. The sole transition β has empty pre
and post-sets. This net can forward any quantity of tokens received on its left
port to the right port and, hence, it is neither bisimilar to Rq nor to S∅.

While from the point of view of ordinary Petri nets having empty pre-/post-
sets is quite a peculiar feature, which makes life harder when defining the opera-
tional semantics, we emphasize that in our context of decomposing nets into their
minimal components this is a highly valuable property. In fact, the interfaces of
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Fig. 7. Composition of P/T with boundaries

nets with boundaries have the role of synchronizing the transitions of different
components. In this perspective, it is natural to have nets without places as basic
components.

Nets with boundaries can be composed in parallel and in series.
Given NX : m → n and MY : k → l, their tensor product is the net NX ⊗MY :

m + k → n + l whose sets of places and transitions are the disjoint union of the
corresponding sets in N and M , whose maps ◦−,−◦, •−,−• are defined according
to the maps in N and M and whose initial marking is X ∪ Y. Intuitively, the
tensor product corresponds to put the nets N and M side-by-side.

The sequential composition NX ;MY : m → n of NX : m → k and
MY : k → n is slightly more involved. Intuitively, transitions attached to the
left or right boundaries can be seen as transition fragments, that can be com-
pleted by attaching other complementary fragments to that boundary. When two
transition fragments in N share a boundary node, then they are two mutually
exclusive options for completing a fragment of M attached to the same boundary
node. Thus, the idea is to combine the transitions of N with those of M when
they share a common boundary, as if their firings were synchronised. As in gen-
eral (infinitely) many combinations are possible, the composed nets is defined
by selecting a minimal (multi-)set of synchronisations that suffices to represent
any other possible synchronisation as a linear combinations of the chosen ones
(i.e., as the concurrent firing of several transitions). The initial marking is X ∪Y
(formal definition can be found at [12]). As an example, Fig. 7(b) shows the
sequential composition of the nets M : 0 → 2 and N : 2 → 0 from Fig. 7(a).
A firing of α produces two tokens on the port to which γ is also attached, while
a firing of γ requires three tokens from the same port and one from the other
port, to which β is attached to. Therefore the minimal multi-set of transitions
that allows the synchronization between α, β and γ contains three instances of
α and two instances of β and γ.

3.2 From P/T Nets with Boundaries to P/T Calculus and Back

The contribution in [12] enlightens a tight semantics correspondence between
P/T calculus and P/T nets with boundaries. Concretely, two translations are
defined. The first encoding T shows that each net NX can be mapped into a P/T
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calculus process TNX that preserves and reflects operational semantics (and thus
also bisimilarity). The second encoding {[−]} provides the converse translation,
from a P/T Petri calculus process P to a P/T net with boundaries {[P ]}, defined
by structural induction. We recall here the two main correspondence results and
omit the details due to space constraints.

Theorem 1. Let P be a term of P/T calculus.

(i) if P
a−→
b P ′ then {[P ]} a−→

b {[P ′]}.
(ii) if {[P ]} a−→

b NX then ∃P ′ such that P
a−→
b P ′ and {[P ′]} = NX .

Theorem 2. Let N be a finite P/T net with boundaries, then

(i) if NX
a−→
b

NY then TNX
a−→
b

TNY .

(ii) if TNX
a−→
b

Q then ∃Y such that NX
a−→
b

NY and Q = TNY .

3.3 C/E Nets with Boundaries

A well-known subclass of bounded P/T nets are C/E nets. In C/E nets, places
have maximum capacity 1 and pre- and post-set of transitions are restricted to
sets (instead of multisets). Formally,

Definition 5 (C/E net). A C/E net is a P/T net N = (P, T, ◦−, −◦) where:3

P is a set of places; T is a set of transitions; and ◦−,−◦ : T → 2P are functions.

In addition, a C/E marking is just a subset of places X ⊆ P (not a multiset).
We let NX denote the net N with marking X.

Definition 6 (C/E step semantics). Let N = (P, T, ◦−, −◦) be a C/E net,
X,Y ⊆ P and U ⊆ MT a multiset of transitions s.t. ◦U and U◦ are sets, write:

NX →U NY
def= ◦U ⊆ X, U◦ ∩ X = ∅ & Y = (X\◦U) ∪ U◦.

We remark that the constraint on ◦U and U◦ to be sets ensures that every
pair of transitions in U has disjoint pre- and post-sets. This definition allows the
concurrent firing of several instances of the same transition when its pre- and
post-sets are both empty: As explained before, even if places are bounded this
will allow for ports of unbounded capacity (w.r.t. the number of actions that can
take place concurrently) in C/E nets with boundaries.

Definition 7 (C/E nets with boundaries). A P/T net with boundaries
N = (P, T, ◦−, −◦, •−, −•) is a C/E net with boundaries if (P, T, ◦−, −◦)
is a C/E net.

A marking of a C/E net with boundaries is just a set of places of the net,
i.e., X ⊆ P . Note that while pre- and post-set of transitions are sets and not
multisets, multiplicity are maintained by •− and −• w.r.t. left and right ports:
many tokens can be exchanged concurrently over a single port in one step.
3 In the context of C/E nets some authors call places conditions and transitions events.
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Definition 8 (C/E Labelled Semantics). Let N = (P, T, ◦−, −◦, •−, −•)
be a C/E net with boundaries and X,Y ⊆ P . Write:

NX
a−→
b NY

def= ∃U ⊆ MT s.t. NX →U NY , a = �•U� & b = �U•� (2)

Remark 2. Following the presentation of the C/E Petri Calculus in Sect. 2.2 (see
Remark 1), we have presented here a slightly different definition for C/E Petri
nets with boundaries w.r.t. [12] by allowing richer observations over interfaces
(strings of natural numbers instead of just 0/1).

Example 4. All nets in Fig. 6 except from Q2pq (Fig. 6(b)) can be interpreted as
C/E nets with boundaries. We remark that Pp has the same behaviour when
considering both the P/T net and the C/E labelled semantics (because Pp is a
1-bounded P/T net). Similarly, the semantics of I∅ is also invariant under both
views. Differently, the behaviour of Rq and S∅ changes when considering the
C/E semantics. The former is deadlocked, because of the self-looping transitions,
while the latter models a buffers of capacity one that alternates the production
and consumption of tokens.

The correspondence results in Sect. 3.2 can be restated also for the case of
the Petri Calculus and C/E nets with boundaries along the lines shown in [12].

4 Normal Forms for Finite State P/T terms

This section shows how to obtain normal forms for finite state connectors. We will
take advantage of the mutual encodings between P/T calculus terms and P/T
nets with boundaries summarised in Sect. 3.2. In order to obtain the normal for a
connector, we will proceed as follows: (i) we translate a P/T calculus term into an
equivalent P/T net with boundaries by using the encoding {[ ]}, (ii) we compute
a canonical representation (up to isomorphism) for the corresponding net with
boundaries, (iii) we map back the canonical representation of the net into a term
of the P/T calculus by using the encoding T . The canonical representation of
the net is obtained by analysing its associated marking graph.

Definition 9 (Reachable marking). Let NX : n → m be a P/T net with
boundaries. Then, Y is a reachable marking of NX if there exists a (possibly
empty) finite sequence of transitions NX

a1−−→
b1

NX1

a2−−→
b2

. . .
ak−−→
bk

NY with ai ∈ Nn

and bi ∈ Nm. We write RM(NX ) for the set of all reachable markings of NX .

Definition 10 (Marking graph of a net with boundaries). Let N : n → m
be a P/T net with boundaries with initial marking X . The marking graph of NX
is the state transition graph MG(NX ) = (RM(NX ), T) where T ⊆ MP × Nn ×
Nm × MP is as follows: T = {(Y, a, b,Z) | Y,Z ∈ RM(NX ) ∧ NY

a−→
b NZ}.

We say MG(NX ) is (in)finite state when RM(NX ) is (in)finite. We say
MG(NX ) is finite when it is finite state and T is also finite, we say it is infinite
otherwise.



A Normal Form for Stateful Connectors 217

Fig. 8. Marking graphs

MG(NX ) is finitely branching if for any Y ∈ RM(NX ) it holds that TY =
{(V, a, b,Z) | (V, a, b,Z) ∈ T ∧ V = Y} is finite.

Note that for any NX : n → m, it holds that NX
0n−−→
0m NX . Therefore, every

node in a marking graph of the net has a self-loop with label (0n, 0m).

Example 5. Figure 8 shows the marking graphs for the nets in Fig. 6. We remark
that the marking graphs for Pp and Q2pq are finite and isomorphic. On the
contrary, the remaining three are infinite. The marking graph for Rq and S∅

are infinite state (because the corresponding nets are unbounded). Nevertheless,
while MG(Rq) is finitely branching, MG(S∅) is not (e.g., any state in MG(S∅)
has a transition labelled (k, 0) for any k ∈ N). Although MG(I) is finite state,
it is infinitely branching.

Remark 3. The marking graph of a net with boundaries is finite state only if the
underlying net is bounded. Note that the marking graph of a net containing a
transition with empty pre-set and non-empty post-set is unbounded (for instance,
the net S∅ in Fig. 8(d)).

Remark 4. The marking graph of a P/T net with boundaries containing a tran-
sition with an empty preset is infinitely branching (e.g., the nets I∅ in Fig. 6(e)
and S∅ in Fig. 8(d)). On the contrary, when every transitions in the net has a
non-empty preset, the marking graph is finitely branching because each marking
constraints the number of concurrently fireable instances of each transition.
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The remaining of the section is devoted to the definition of the normal form
of (finite state) connectors. We deal with the general case by using a divide et
impera approach. We solve two sub-problems first: (i) the encoding of nets with
finite marking graphs (Sect. 4.1) and (ii) the encoding of infinitely branching
stateless nets (Sect. 4.2).

4.1 Finite (State and Transition) Marking Graphs

In this section we show how to obtain the normal form for P/T nets with bound-
aries whose marking graph is finite, i.e., when it is bounded and every transition
has a non-empty preset. We leave this as an implicit assumption for all the nets
considered in this section.

We first note that for a finite graph we can apply, e.g., a partition refine-
ment algorithm [18,24] to obtain the smallest (up-to iso) (in terms of states and
transitions) automaton amongst all those bisimilar to the given graph. We write
min(MG) for the minimal graph in the equivalence class of MG.

We note that any finite marking graph can be represented by a P/T net with
boundaries as follows:

Definition 11 (Marking graph as a net with boundaries). Let MG =
(S, T ) with T ∈ S × Nn × Nm × S be a marking graph. The corresponding P/T
net with boundaries is NB(MG) = (S, T ′, ◦−,−◦, •−,−•) : n → m s.t.

– T ′ = T \ {(s, 0n, 0m, s) | s ∈ S} (we can safely omit self-looping transitions
that are not attached to ports);

– ◦(s, a, b, t) = s and (s, a, b, t)◦ = t;
– •(s, a, b, t) = U where U ∈ Mn and �U� = a;
– (s, a, b, t)• = V where V ∈ Mm and �V� = b.

We let can(NX ) def= NB(min(MG(NX ))){X}.

Lemma 1 (Minimal net with boundaries). Let N : n → m be a net with
boundaries, then we have that NX and can(NX ) are bisimilar.

Proof. It follows by noting that NX and MG(NX ) are bisimilar by construction;
MG(NX ) and min(MG(NX )) are bisimilar by definition; and min(MG(NX ))
and NB(min(MG(NX ))){X} are bisimilar by construction.

Corollary 1. can(N) is unique (up-to iso) because NB(−) and MG(−) are
functions and the minimal automaton is also unique (up-to iso).

Corollary 2. Given two bisimilar nets with boundaries NX and MX , the nets
can(NX ) and can(MX ) are isomorphic.

Example 6. Consider the P/T term Q = (∇⊗(�;∇)); (I⊗T⊗I); ((Δ;⊥)⊗Δ) with
T = X; (∇⊗∇); ((|2|)⊗(∨; (|1|);∧)⊗(|0|)); (Δ⊗Δ) depicted in Fig. 9(a). The equiv-
alent P/T net with boundaries {[Q]} is the net Q2pq shown in Fig. 6(b). The cor-
responding marking graphs is in Fig. 8(b). This graph is minimal, i.e., there does
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not exist a bisimilar graph with a smaller number of states and/or transitions.
Therefore, min(MG(Q2pq)) = MG(Q2pq) and can(Q2pr) = NB(MG(Q2pr))2pr,
which is shown in Fig. 9(b). Then, the normal form nf (Q) is obtained by encod-
ing back can(Q2pr) as a P/T term (shown in Fig. 9(c)).

Fig. 9. Normal form of a term with finite marking graph

We remark that the marking graph MG(Pp)) (Fig. 8(a)), corresponding to
Pp in Fig. 6(a), is isomorphic to the marking graph of Q2pq. This implies that
both Pp and Q2pq have the same normal form.
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4.2 Stateless, Infinitely Branching Marking Graphs

The simplest case of finite state, but infinite branching marking graph, is a net
without places, like the net I in Fig. 6(e), whose marking graph is (partially)
depicted in Fig. 8(e).

We introduce a minimization procedure for stateless nets that removes redun-
dant transitions, i.e., transitions that can be mimicked by a combination of other
transitions in the net.

Definition 12 (Redundant transition and minimal net). Let N : m → n
be the stateless P/T net with boundaries N = (∅, T, ◦−,−◦, •−,−•). A transition
t ∈ T is redundant if there exists U ∈ MT−{t} s.t. •t = •U and t• = U•. We say
that a stateless net is minimal if every transition is not redundant.

Lemma 2. Let N : m → n be the stateless P/T net with boundaries N =
(∅, T, ◦−,−◦, •−,−•) with t ∈ T redundant. Define T ′ = T − {t} and

N ′ = (∅, T ′, ◦−|T ′ ,−◦|T ′ , • − |T ′ ,−•|T ′).

Then, N∅ and N ′
∅

are bisimilar.

The above result provides a minimization procedure by iteratively removing
redundant transitions. The procedure is effective: it takes each transition t ∈ T
and compares pre- and post-sets with each possible multisets U of T . Since •t
and t• are finite, there is just a finite number of multisets U of T to consider.
We note Ñ the result of the minimization algorithm over N .

The above procedure converges in a finite number of steps, because T is finite.
The procedure is non-deterministic (w.r.t. the choice of the redundant transition
t to eliminate) but it always converges to the same result.

Lemma 3. Let N be a stateless net with boundaries, then Ñ is uniquely defined
(up-to iso).

Proof. We proceed by contradiction. Suppose that different orders in which
redundant transitions are eliminated can lead to two different outcomes

N ′ = (∅, T ′, ◦−,−◦, •−,−•) and N ′′ = (∅, T ′′, ◦−,−◦, •−,−•).

Clearly it cannot be the case that T ′ ⊂ T ′′ or T ′′ ⊂ T ′ (otherwise T ′ or T ′′

would contain redundant transitions). Hence T ′′ \ T ′ �= ∅ and T ′ \ T ′′ �= ∅.
Let t′ ∈ T ′\T ′′. Since t′ ∈ T ′ ⊆ T , it must be redundant w.r.t. the transitions

in T ′′, i.e., there must exist U ′ ∈ MT ′′ s.t. •t′ = •U ′ and t′• = U ′•. Following
a similar reasoning, any transition t′′ in T ′′ \ T ′ must be redundant w.r.t. the
transitions in T ′ and expressible as a suitable U ′′ ∈ MT ′ .

Moreover, there must be at least one transition t′′ ∈ U ′, non isomorphic to
t′, such that t′′ ∈ T ′′ \ T ′ (otherwise t′ would be redundant w.r.t. transitions in
T ′). Then, since any such t′′ can be expressed in terms of U ′′ ∈ MT ′ , it follows
that t′ can be expressed as a multiset U ∈ MT ′ . Now there are two cases:
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– t′ �∈ U , but this is absurd, because t′ would be redundant;
– t′ ∈ U , but this is absurd, because we would have U = t′ isomorphic to t′′.

Lemma 4. Let N be a stateless net, then Ñ∅ and N∅ are bisimilar.

Lemma 5. Let N and M be two stateless bisimilar nets, then Ñ∅ = M̃∅ (up-to
iso).

Proof. The proof follows by contradiction. Assume that there is a transition t in
Ñ that is not matched by a transition in M̃ . Let Ñ∅ →t Ñ∅. Then, N∅ →t N∅.
Since N∅ and M∅ are bisimilar, M∅ →U M∅ with •t = •U and t• = U•.
Consequently, M∅ →U M∅. If |U| = 1, we are done. Otherwise, U = k1 · t1 ∪
. . .∪kn · tn with n > 1. Then, for any transition ti we conclude that Ñ∅ →ti Ñ∅.
Hence, t is redundant in Ñ , which contradicts the assumption that Ñ is minimal.

Example 7. Consider the stateless term Sl = (∧ ⊗ ∧); (I ⊗ (Δ;∇) ⊗ I); (∨ ⊗ ∨)
depicted in Fig. 10(a). The corresponding net with boundaries {[Sl]} is shown in
Fig. 10(b). Note that the transition β is redundant because it can be expressed as
the concurrent firing of α and β; consequently, it is removed by the minimization
algorithm, which produces the minimal net {̃[Sl]} shown in Fig. 10(c). Finally,
the normal form nf (Sl) for the net Sl is obtained by encoding back {̃[Sl]} as the
Petri calculus term shown in Fig. 10(d).

Fig. 10. A stateless term of the P/T calculus Sl

4.3 Finite State and Infinitely Branching Marking Graph

When the marking graph is finite state but infinitely branching, the associated
net has both transitions with empty pre- and post-set and transitions with non-
empty post-set (by Remark 3, the net cannot contain transitions with empty



222 R. Bruni et al.

pre-set and non-empty post-set). We show first that the behaviour of a net can
be described by combining the behaviour of two subnets containing respectively
the stateless and stateful behaviours.

Definition 13 (Stateless and Stateful subnets). Let N : m → n be the P/T
net with boundaries N = (P, T, ◦−,−◦, •−,−•). A transition t ∈ T is stateless if
◦t = t◦ = ∅. We write T sl for the set of all stateless transitions and T sf = T\T sl

denote the set of stateful transitions. The stateless subnet of N is

N sl = (∅, T sl, ◦ − |T sl ,−◦|T sl , • − |T sl ,−•|T sl)

Similarly, the stateful subnet is

N sf = (P, T sf , ◦ − |T sf ,−◦|T sf , • − |T sf ,−•|T sf )

We can now tightly relate the behaviour of N with those of N sl and N sf .

Lemma 6. Let NX be a marked P/T net with boundaries. Then,

– If NX
a−→
b NY , then there exist a1, a2, b1 and b2 such that a = a1 + a2,

b = b1 + b2, N sfX
a1−−→
b1

N sfY and N sl
∅

a2−−→
b2

N sl
∅.

– If N sfX
a1−−→
b1

N sfY and N sl
∅

a2−−→
b2

N sl
∅, then NX

a1+a2−−−−→
b1+b2

NY .

Proof. The proof follows by definition of the subnets and the operational seman-
tics of P/T nets, as transitions of N are just partitioned into N sl and N sf .

In the following we let In
def=

⊗
n I : (n, n) and define the following terms of

the P/T calculus, ∀n ∈ N:

X0
def= I : (1, 1) Λ0 = V0

def= ↑; ↓: (0, 0)
X1

def= X : (2, 2) Xn+1
def= (Xn ⊗ I) ; (In ⊗ X) : (n + 2, n + 2)

Λ1
def= Λ : (1, 2) Λn+1

def= (Λ ⊗ Λn) ; (I ⊗ Xn ⊗ In) : (n + 1, 2n + 2)
V1

def= V : (2, 1) Vn+1
def= (V ⊗ Vn) ; (I ⊗ Xn ⊗ In) : (2n + 2, n + 1)

It can be proved by induction that the only transitions for Λn and Vn are
Λn

a−→
b

Λn and Vn
b−→
a

Vn with |a| = n, |b| = 2n, and ai = bi + bn+i for all i < n.

Definition 14. Let P be a P/T calculus term s.t. {[P ]} : m → n and MG({[P ]})
is finite state. The normal form of P , written nf (P ), is as follows

nf (P ) = Λm; (T can({[P ]}sf) ⊗ T
˜{[P ]}sl

);Vn

Lemma 7. Let P be a P/T calculus term s.t. MG({[P ]}) is finite state. Then,
P and nf (P ) are bisimilar.

Proof. It follows from the behaviour of Λn and Vn, Lemmata 1, 4 and 6 and the
correspondence Theorems 1 and 2.
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Lemma 8. Let P and Q be two bisimilar P/T calculus terms s.t. MG({[P ]})
and MG({[Q]}) are finite state. Then, nf (P ) = nf (Q) (up-to iso).

Proof. It follows by contradiction. Assume that min({[P ]}sf) = min({[Q]}sf) and

{̃[P ]}sl = {̃[Q]}sl does not hold. Therefore, it should be the case that either i)

min({[P ]}sf) and min({[Q]}sf) are not bisimilar; or ii) {̃[P ]}sl = {̃[Q]}sl are not
bisimilar. In both cases we conclude that min({[P ]}) and min({[Q]}) (and there-
fore P and Q) are not bisimilar. For (i), we note that the marking graphs differ
in a transition connecting two different states (and this cannot be mimicked by
stateless transitions); for (ii) every state will miss at least a self-loop transition
(since MG({[P ]}) and MG({[Q]}) are finite state, all infinite self-loops in the
marking graphs are originated by stateless transitions).

Corollary 3 (Idempotency). nf (P ) = nf (nf (P )) (up-to iso).

5 Normal Forms for the C/E Petri Calculus

The case of C/E Petri calculus is quite interesting, because now any term P
models a finite state connector, so that we can reduce to normal form any term.

Lemma 9. Let P be a Petri calculus term. Then MG({[P ]}) is finite state.

Proof. The C/E net with boundaries MG(P ) has as many places as the number
of subterms © and

⊙
in P and the reachable states of MG(P ) are just subsets

of the places in MG(P ), thus they are finitely many.

Now by using the approach for P/T nets we can obtain the normal form for
every Petri calculus term. The only subtlety to deal with is when mapping a
marking graph into a C/E net, because marking graphs can contain self-loops,
as illustrated by the following example.

Example 8. Consider the C/E net Cp in Fig. 11(a). The corresponding marking
graph is in Fig. 11(b) and the corresponding minimal automaton is in Fig. 11(c).
If we apply NB we obtain the net in Fig. 11(d). Note that transition α cannot be
fired under the C/E semantics because it inhibits consume/produce loops. Hence,
the obtained net is not bisimilar to Cp. In order to translate back the minimal
marking graph to a C/E net, we need to handle self-loops differently. While
NB already removes any trivial self-loop (i.e., with empty observation) from the
minimal marking graph, non-trivial self-loops are handled by duplicating states,
as illustrated in Fig. 11(e). Then, the normal form is obtained by using the C/E
corresponding to the minimal marking graph without non-trivial self-loops.
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Fig. 11. Minimisation of C/E nets

6 Concluding Remarks

In this paper we have considered a calculus of connectors that allows for the
most general combination of synchronisation, non-determinism and buffering.
The touchstone of its generality is its ability of modeling a variety of Petri nets
compositionally, up to bisimilarity. Often bisimilarity implies the existence of a
minimal representative, but such a construction has not been exhibited yet for
Petri nets, at least directly. Thus in the paper we interpret the case graph of a
net as a transition system labelled with the synchronizations observable on its
boundaries. Then we can minimize such a LTS and reinterpret it univocally as a
net and as a term of the calculus. Thus minimality is restricted to a case graph
(step) semantics, which we might say observes parallelism but not concurrency.

Related Work. An algebra consisting of five kinds of basic stateless connectors
(plus their duals) is presented in [8], together with the operational, observational
and denotational semantics and a complete normal-form axiomatisation. The
behaviour of connectors ∧ and ∨ is slightly different from the one considered here,
because in [8] only one action can take place at the time, e.g., only transitions
∧ 1−→10 ∧ and ∧ 1−→01 ∧ are considered instead of ∧ n+m−−−−→

nm ∧.
The Tile Model [15] offers a semantic framework for concurrent systems, of

which the algebra of stateless connectors is just a particular instance. Roughly,
the semantics of component-based systems can be expressed via tiles when con-
figurations and observations form two monoidal categories with the same objects.
Tiles define LTSs whose labels are pairs 〈trigger, effect〉. In this context, the usual
notion of equivalence is called tile bisimilarity, which is a congruence (w.r.t.
sequential and parallel composition) when a suitable rule format is met [15].

Reo [1] is an exogenous coordination model based on channel-like connectors
that mediate the flow of data among components. Notably, a small set of point-
to-point primitive connectors is sufficient to express a large variety of interesting
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interaction patterns, including several forms of mutual exclusion, synchronisa-
tion, alternation, and context-dependency. Components and primitive connec-
tors can be composed into larger Reo circuits by disjoint union up-to the merging
of shared nodes. The semantics of Reo has been formalised in many ways, tile
model included [2]. See [17] for a recent survey.

BIP [4] is a component framework for constructing systems by superposing
three layers of modelling: (1) Behaviour, representing the sequential computation
of individual components; (2) Interaction, defining the handshaking mechanisms
between these components; and (3) Priority, assigning a partial order of privileges
to interactions. In absence of priorities, the interaction layer admits the algebraic
presentation given in [5] and has been related to connectors in [10].

The wire calculus [27] takes inspiration from [19,20] but shares similarities
with the tile model. It is presented as a process algebra where each process comes
with a sort, written P : (n,m) for a process P with n ports on the left and m
on the right. The usual action prefixes a.P of process algebras are extended by
allowing the simultaneous input of a trigger a and output of an effect b, written
a
b .P , where a (resp. b) is a string of actions, one for each port of the process.
The Petri calculus [9,28] can be regarded as a dialect of the wire calculus.

Nets with boundaries [28] take inspiration from the open nets of [3], whose
interfaces consist of places instead of ports.

Future Work. Some recent work [6,7] exploits an algebra of connectors similar
to ours to define a relational denotational semantics and a structural operational
semantics for signal flow graphs, a classical structure in control theory and signal
processing. We plan to investigate connections between Petri nets with bound-
aries and signal flow graphs. We might also consider extending the results of
this paper to other more expressive semantics, observing e.g. causality. Another
direction in which our results could be extended is dealing with systems with a
higher degree of dynamism, that adapt their behavior to evolving environments:
e.g., systems whose structure and interaction capabilities can change at runtime.
Some recent progresses in this direction are discussed in [11].

Acknowledgements. We thank the anonymous reviewers for their careful reading
and helpful suggestions for improving the presentation. We would like to express infinite
gratitude to José, for his guidance, support and friendship during our long-standing
collaboration.
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Enlightening Ph.D. Students
with the Elegance of Logic

My Personal Memory About Prof. José Meseguer

Shuo Chen(&)
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Abstract. This article provides my recollection about how Prof. José Meseguer
enlightened me to study security problems from the logic perspective. His
lectures and advices are having a long term influence on my research career.

1 Preface

For many of us in the academia, the years in the Ph.D. program are the period when our
minds started to open up to the wonder of science and waited to be inspired by some
great pioneers in the field. It is one of the most memorable periods in one’s life.

The Ph.D. program of computer science in the University of Illinois at
Urbana-Champaign (UIUC) consists of three milestones – the qualifying exam, the
thesis proposal and the final defense. The first stage, the qualifying exam, has a nice
property of “fail-fast”. Students are required to pass the exam in the second or the third
semester, or they will be asked to quit. The final stage is also short (typically about one
year) and often predictable (since the advisor understands the time frame of the stu-
dent’s new job). What I would describe as a long and dark tunnel is the second stage –
the baffling period before the thesis proposal. Unlike the first stage, which is mainly to
know the field, the second stage is all about knowing yourself – finding out something
deep about your true passion. Very fortunately, I got to know Prof. José Meseguer, an
enlightening professor who brought the elegance of logic into my mind.

2 My Research Direction Before Knowing José

My advisor is Prof. Ravi Iyer. He is a renowned expert in the field of fault tolerance and
dependable computing. Ravi always encouraged students to study real-world systems
to get first-hand experience. He also put great emphasis on empirical measurements of
operational data on these systems. A really unique advantage of our group is that Ravi
has a strong background in statistics and probability, because his own Ph.D. degree was
in statistics. Our group didn’t have much difficulty publishing papers in the most
prestigious conference in the field, IEEE DSN.

Ravi envisioned that the fault tolerance expertise in our group could be extended to
cover security topics. Under his guidance, a more senior Ph.D. student and I decided to

© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-23165-5_10



devote our effort to security. Looking back, I see this as a very important growth period
in my career. It helped me step into the security area and gave me the confidence to
work on real-world systems. I enjoyed so much the real-world systems work, such as
modifying network server programs, or even hacking into the OS kernel, to change
program behaviors and observe many interesting security consequences caused by
these changes. We built automation technologies to conduct large-scale experiments,
and systematized the findings by classification and statistics. These studies continued to
be published in the fault tolerance community.

Despite the progress, it was difficult to go deeper in my research because there is a
fundamental difference between fault tolerance and security: in fault tolerance research,
it is often valid to consider faults as a natural phenomenon, and model their arrivals as a
stochastic process. Theories of probability and statistics can be nicely applied under
this problem setting. Security research, however, usually needs to consider the threat as
the action of a deliberate and malicious adversary. It is hard to apply probabilistic
approaches to measure the “likelihood of security”. In fact, it is even questionable
whether such a likelihood can be objectively defined while still being useful. How to
formulate a scientific problem then?

This situation baffled me for a few years. On one hand, I was passionate about
studying real-world systems to build up my knowledge and collect many empirical
insights. On the other hand, these didn’t turn into deeper scientific research ideas.

3 José’s Course on Formal Methods

Although I had fulfilled all the course requirements of the Ph.D. program, Ravi strongly
suggested that I should take a few more courses to broaden my scope. He believed that
this might help me walk out of the fog. I don’t remember why I decided to take José’s
course on formal methods. It was surely a wise decision, because it opened up a whole
new horizon for me.

The lectures in the first few weeks were about natural numbers, arithmetic opera-
tions and basic algebras. It amazed me that these elementary-school concepts are so
interesting when they are viewed from the perspective of logic. Even more impres-
sively, they were all concretely expressed in rewriting logic, of which the primitive is
nothing but matching-and-replacing substrings. The elegance of logic resonated with
something hidden in my heart: I like validating claims that can be resolved in a binary
manner, rather than discussing the less exact arguments that are common in other
computer science courses.

The course went on. José started to teach how to model an algorithm using
rewriting logic and prove its correctness using the Maude theorem prover. At this point,
I realized that formal methods are directly relevant to security research. Many
important security problems can be defined as program correctness problems, as long
as researchers concretely understand the program semantics and the security goals to
achieve. In other words, if I was able to define semantics for some insights that I
obtained over the years, I would able to bring scientific rigor to my research.
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4 Face-to-Face Discussions with José

The most beneficial part of taking José’s course was not the lectures, but the invaluable
opportunity to discuss ideas with him face-to-face.

It wasn’t easy for me to set up the first meeting with José. I was concerned that my
ideas were too rudimentary in terms of formal reasoning, and my logic background was
quit lacking, so how could José be interested? Eventually, I settled down to one idea
and wrote a few pages about it. One day, outside the lecture room, I tried to briefly
explain the idea to him. To my surprise, it ended up being a long discussion! José easily
understood what I was trying to do, and offered many valuable comments. More
importantly, he encouraged me to move forward. This discussion meant a lot for me,
because I really needed the encouragement from an expert in the field.

José and I continued the discussion throughout the rest of the semester. We not only
discussed specific ideas, but also our thoughts about research in general, such as how
theoretical research and empirical research are related, how to show success of a
research idea, etc. Through these discussions, it became clear that formal analysis
should be a component in my dissertation.

Under the guidance of Ravi and José, I spent one more semester successfully
developing the framework for my thesis proposal. I am very grateful for José’s
enlightenment and encouragement that helped me find my passion and go through the
baffling period.

5 Our Collaborations After My Graduation

I joined Microsoft Research Redmond as a security researcher after graduation, and
continued to discuss extensively with José. Our project was to use rewriting logic to
model the logic of Internet Explorer’s graphic user interface, in order to find logic flaws
that allow a malicious webpage to spoof the contents in the address bar and the status
bar. José brought one of his best students, Ralf Sasse, into this project. The three of us
collaborated tightly, and spent a tremendous amount of effort understanding and
modeling the source code of Internet Explorer. We flew between Urbana and Redmond
several times to expedite the progress. I still remember the night when José waited in
the Urbana-Champaign Willard Airport for my flight, which was delayed due to a
snowstorm. José brought me to his home and prepared a meal for me. I viewed this as a
very special honor that only a close collaborator could have. Yes, José Meseguer, the
inventor of rewriting logic, cooked for me!

Our effort was paid off, as we discovered 13 security bugs before Internet Explorer
7 was shipped. Because of the severity, Microsoft asked us to withhold the paper
submission. Withholding good new results from publication is a difficult situation for
scientists, but José was very supportive, because he understood the societal aspect of
security research. Eventually, the project had a happy ending: 11 out of the 13 vul-
nerabilities were fixed when Internet Explorer 7 was shipped, and our paper was
accepted to the top security conference, IEEE Symposium on Security and Privacy.

José and I continued to discuss research ideas because of our shared interest. He
invited me to serve on the thesis committee of Ralf Sasse. I know that Ralf and José
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developed a number of innovative technologies to prove security for a real browser and
many cryptographic protocols.

6 Long-Term Influence

I have been working on many security research projects across different areas,
including memory safety, browser security, web/mobile application security, and
security protocols. Interestingly, program semantics always come into the picture from
one angle or another. I continue to be curious about what a program tries to do and
what it actually does. Many of my papers demonstrate that logic flaws are causing
realistic security and privacy breaches in today’s cloud and mobile systems, so formal
methods are a valuable solution.

It is clear that the inspiration I got from José many years ago is having a long term
influence on my research focus and methodology. I feel very honored to know José as a
teacher, a collaborator and a friend. Of course, in his career, José must have inspired
many other scholars in different ways. That’s why he receives so much respect from the
research community. I believe that the respect comes not only from his intellectual
contributions, but are a result of his nature of being open, caring, friendly and
enlightening. It is really joyful that we are celebrating his achievements. Happy 65th

Birthday, José!

Acknowledgement. The author thanks Cormac Herley for proofreading this article.
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Abstract. This paper is a tribute to José Meseguer, from the rest of us
in the Maude team, reviewing the past, the present, and the future of
the language and system with which we have been working for around
two decades under his leadership. After reviewing the origins and the
language’s main features, we present the latest additions to the language
and some features currently under development. This paper is not an
introduction to Maude, and some familiarity with it and with rewriting
logic are indeed assumed.

1 The Origins

The story of Maude does not begin on a dark and stormy night as many sto-
ries do, but on a sunny Californian day. Maude was conceived at the Logic and
Specification Group, part of the Computer Science Laboratory at SRI Inter-
national, in Menlo Park, California, in the Spring of 1990. José Meseguer was
leading that group, after working for several years with J. A. Goguen and other
colleagues on order-sorted equational logic [47] and its implementation in the
OBJ3 language [48], among many other topics. At that time he was proposing a
new computational logic which could provide on the one hand a unified model
of concurrency [63,64], and on the other hand declarative support for (concur-
rent) object-oriented programming [62,66]. This new logic was thought of as
an extension of (order-sorted) equational logic with rules (understood either as
logical inference rules or as transitions in a concurrent system) which, as the
equations, would also be executed by rewriting, and for this reason was called
rewriting logic. The good properties of the logic for unifying several models of
computation, including concurrent ones, were soon generalized to representing
other models of computation and also other logics, so that rewriting logic was
proposed as a logical and semantic framework [58,59].

In the same way that order-sorted equational logic was implemented as a
specification and programming language in OBJ3, behind rewriting logic there
c© Springer International Publishing Switzerland 2015
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was a language waiting to be implemented. But the language, soon to be called
Maude, was there from the beginning. In addition to the papers [62,66] devoted
to the rewriting logic support of object-oriented programming, in those years
several other papers were produced from the programming point of view [65,75,
83], emphasizing the multiparadigm and parallel programming characteristics of
the proposal. Moreover, even the more theoretical papers, such as the ones about
the logical framework [58,59], used the Maude notation for presenting examples
in such a way that, with slight changes, most of them could be executed in the
current implementation of the language. Those examples already used primitive
versions of constructs for parameterized specification and some of them were
associated with a name, Maudelog, for a version of Maude with logical variables
and unification, a feature which has taken much longer to be fully implemented
(see Sect. 3). The way “from OBJ to Maude and beyond” has been well explained
by José Meseguer himself in [70].

Although the implementation of the Maude language and system were not
yet underway, techniques for compilation of rewriting onto parallel architectures
were studied as part of the Rewrite Rule Machine (RRM) project [54,55] in the
early nineties. A sublanguage of Maude, called Simple Maude, which included
term rewriting, graph rewriting, and object-oriented rewriting, was proposed as
part of this project.

The prospects for an implementation of Maude greatly improved in the mid
nineties, with the arrival at SRI International of Steven Eker, as a postdoc
expert on term rewriting implementation, and Manuel Clavel, as a PhD student
to work on rewriting logic reflection [12]. This is indeed the reason for the title
of this paper: it is around this date when the Maude team was born. The work
developed in that period was shown in the first public presentation of the Maude
system [25], which took place at the first Workshop on Rewriting Logic and its
Applications (WRLA) in Asilomar, California, in 1996 [67]. Another presentation
at the same event showed the first realization of the reflection ideas in rewriting
logic and Maude [26].

Coincidentally, Francisco Durán also joined the group during that event, as
a PhD student, to work on the Maude module algebra [29], which led to the
development of Full Maude. Although the advances of all the work being done
by the Maude team in all these areas were shown at the second WRLA in Pont-
à-Mousson, France, in 1998 [53] (implementation [17], reflection [13,15], module
algebra [34]), the first public release of Maude had to wait yet another year until
the end of 1999 [16]. Maude 1 was presented in RTA 1999 [18], in FASE 2000 [21],
in an ETAPS 2000 tutorial [19], and in a journal paper published in 2002 [22].

However, that first public release of Maude was a proof-of-concept. Although
it already had many interesting features, there were so many other missing fea-
tures that it was not the end, but the beginning of much more work, as dis-
cussed by the “Towards Maude 2.0” paper [20] presented at the third WRLA in
Kanazawa, Japan, in 2000 [45]. It required a lot of effort to complete the imple-
mentation and also to write a good manual for Maude 2.0, publicly released in
the Summer of 2003, with a presentation in RTA 2003 [23]. Among other new
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features, this new version provided support for membership equational logic,
support for rewrite expressions in rule conditions, new predefined modules, a
new version of its metalevel, and an LTL model checker.

The Maude 2 features kept increasing and improving along the following
years, when we managed to have yearly releases, helped by intense meetings of
the Maude team, at that time distributed in different locations both in the US
and in Europe, after each edition of the WRLA, in Pisa (2002), Barcelona (2004),
and Vienna (2006). We reached an important milestone with the publication in
2007 of the book “All About Maude” [24]. The book coincided with the release
of Maude 2.3, where the main features of the language and its implementation
stabilized, including parameterized modules, interaction with external objects,
and a greater catalogue of predefined—some of them parameterized—modules
and views, among others.

Since then, the Maude team has produced several additional releases until
the recent Maude 2.7. Most of the new features in Maude 2.4, presented at
RTA 2009 [14], and subsequent versions after it, have been related to order-
sorted unification and narrowing, which is the subject of Sect. 3. In this brief
summary of the work related to the origins of Maude and rewriting logic we
cannot do justice to all the work done by many people around the world in
this area; instead, we direct the reader to the survey written by José Meseguer
himself on twenty years of rewriting logic, published in 2012 [72], together with
an annotated bibliography [60] compiling all the papers on rewriting logic and
its applications written in the period 1990–2012.

2 The Language

The close contact with many specification and programming applications has
served as a good stimulus for a substantial increase in expressive power of the
rewriting logic formalism in general, and of its Maude realization in particular.
Maude is a high-performance language and system supporting both equational
and rewriting logic computation for a wide range of applications, including devel-
opment of theorem-proving tools, language prototyping, executable specification
and analysis of concurrent and distributed systems, and logical framework appli-
cations in which other logics are represented, translated, and executed.

2.1 Generalized Rewrite Theories in Maude

Maude’s functional modules are theories in membership equational logic [9,69],
a Horn logic whose atomic sentences are either equalities t = t′ or membership
assertions of the form t : s, stating that a term t has a certain sort s. Such a logic
extends OBJ3’s [48] order-sorted equational logic and supports sorts, subsorts,
subsort polymorphic overloading of operators, and definition of partial functions
with equationally defined domains.

A Maude (system) module is a generalized rewrite theory, defined as a 4-tuple
R = (Σ, E ∪ Ax, φ,R), where (Σ, E ∪ Ax) is a membership equational the-
ory, Ax is a set of equational axioms for which rewriting modulo is available,
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R is a set of labeled conditional rewrite rules, and φ is a function assigning
to each operator f : k1 . . . kn → k in Σ the subset φ(f) ⊆ {1, . . . , n} of its
frozen arguments. Rewriting in (Σ, E ∪ Ax, φ,R) happens modulo the equa-
tional axioms Ax. Maude supports rewriting modulo different combinations of
associativity (A), commutativity (C), identity (U), left identity (Ul), right iden-
tity (Ur), and idempotence axioms. Computationally, rules are interpreted as
local transition rules in a possibly concurrent system. Logically, they are inter-
preted as inference rules in a logical system. This makes rewriting logic both a
general semantic framework to specify concurrent systems and languages [68],
and a general logical framework to represent and execute different logics [59].
The combination of evaluation strategies and frozen arguments allows Maude
to perform context-sensitive rewriting [57] with both equations E and rules R
modulo Ax.

Maude accepts module hierarchies of functional and system modules with
user-definable mixfix syntax. The Maude system is implemented in C++ and
is highly modular. Maude’s core is its rewrite engine, which is extensible,
and indeed has been extended, in many different ways since its inception. For
instance, new equational theories can be “plugged in” and new built-in symbols
with special rewriting (equation or rule) semantics may be easily added. To date,
rewriting modulo all combinations of associativity, commutativity, left and right
identity, and idempotence have been implemented apart from those that contain
both associativity and idempotence.

Over the years, the development of Maude has been guided by the goal of
providing a better support for both rewriting logic and its underlying member-
ship equational logic. For instance, the duality between its logical and oper-
ational views was completed with the addition of the nonexec attribute in
Maude 2.0. The point is that efficient and complete computation by rewrit-
ing is only possible for equational theories that satisfy properties such as con-
fluence, sort-decreasingness, and termination. Similarly, to be efficiently exe-
cutable, a generalized rewrite theory R = (Σ, E ∪ Ax, φ,R) should first of all
have (Σ, E ∪ Ax) satisfying the above executability requirements, and should
furthermore be coherent [36].

Executability is of course what we want for programming; but it is too restric-
tive for specification, transformation, and reasoning purposes. For this reason,
there is a linguistic distinction between modules, that are typically used for pro-
gramming as executable theories, and theories, which need not be executable
and are used for specification purposes, for example, to specify the semantic
requirements of actual parameters of parameterized modules, or for theorem-
proving purposes. Maude supports specification of arbitrary membership equa-
tional logic theories and of arbitrary rewrite theories, while at the same time
keeping a sharp distinction between executable and non-executable statements
(i.e., equations, memberships, or rules) by means of the nonexec attribute. Fully
executable equational and rewrite theories are called admissible, and satisfy the
above-mentioned executability requirements. This support for a disciplined coex-
istence of executable and non-executable statements allows not only a seamless
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integration of specification and code, but also a seamless integration of Maude
with its formal tools.

Maude includes some built-in functional modules providing convenient high-
performance functionality within the Maude system. In particular, the built-
in modules of integers, natural, rational, and floating-point numbers, quoted
identifiers, and strings provide a minimal set of efficient operations for Maude
programmers.

2.2 Reflection in Maude

Informally, a reflective logic is a logic in which important aspects of its metathe-
ory can be represented at the object level in a consistent way, so that the object-
level representation correctly simulates the relevant meta-theoretic aspects.

Rewriting logic is reflective [12] in the precise sense of having a universal
theory U that can represent any finitely presented rewrite theory T (including
U itself) and any terms t, t′ in T as terms T and t, t′ in U , so that we have the
following equivalence

T � t → t′ ⇐⇒ U � 〈T , t〉 → 〈T , t′〉.

Since U is representable in itself, we can then achieve a “reflective tower” with
an arbitrary number of levels of reflection.

Maude efficiently supports this reflective tower through its META-LEVEL mod-
ule, where Maude terms and modules are reified as elements of a data types Term
and Module, respectively. The processes of reducing a term to normal form in
a functional module and of rewriting a term in a system module using Maude’s
default interpreter are respectively reified by descent functions metaReduce and
metaRewrite. Similarly, the process of applying a rule of a system module to a
subject term is reified by a function metaApply. Furthermore, parsing and pretty
printing of a term in a signature, as well as key sort operations are also reified by
corresponding metalevel functions, and up and down functions to move terms,
modules, and views between levels.

The reflective capabilities of Maude provide a great range of possibilities,
many of which have been exploited with different purposes. It has been used, for
example, to define alternative rewriting strategies, to define strategy languages,
to define module operations, and in general to extend Maude in different ways.
This extensibility by reflection is exploited in Maude’s design and implementa-
tion. Full Maude is an extension of Maude written in Maude itself which has
been used since the beginnings of Maude as a place in which to design and
experiment with new features. For example, a module algebra of parameterized
modules, views, and module expressions in the OBJ style was available in Maude
through Full Maude [30,34,35] long before it was implemented in C++ for (Core)
Maude 2.4. Object-oriented modules, with convenient syntax for object-oriented
applications, or parameterized views are currently available in Full Maude but
not yet in Core Maude. In summary, we have been ‘using our own medicine’,
using Maude to specify our system before facing the effort of implementing it.
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Indeed, Full Maude has been more than a place in which to experiment with
new features, it has provided basic infrastructure on which to define extensions
of Maude such as Real-Time Maude [76].

The reflective capabilities of Maude have also been key for the development
of executable implementations of very different formal models and program-
ming languages. See, e.g., the coordination models for distributed objects in [82]
and [73], the definition of Mobile Maude [32] and its socket-based distributed
implementation [37], or the Maude Action Tool [28], which provides an exe-
cutable environment for action semantics.

2.3 Maude’s Formal Tools

In addition to its core functionality for rewriting, Maude comes with a number
of tools. Some of these tools are directly integrated in the core system, which
provides specific commands for them, as for the search command, for searching
for terms satisfying given pattern and condition reachable from a given initial
term, or through operators in predefined modules, as in the case of its LTL model
checker. Other tools are provided as extensions by different authors, some using
the infrastructure provided by Full Maude, such as the Church-Rosser checker,
the coherence checker [36], the termination tool [33], the explicit-state model
checker for linear temporal logic of rewriting (LTLR) [4,71], or the LTL logical
model checker [2]; and some independently, such as the Maude inductive theorem
prover [12], or the sufficient completeness checker [50]. An attempt to bring these
tools under a common environment so that they can be used together to keep
track of pending proof obligations and help in their interaction to discharge
these proof obligations is currently under development in what is being called
the Maude Formal Environment [38].

3 The Present: Unification and Narrowing

As mentioned before, Maude inherited many features from its predecessors, such
as order-sorted equational logic and the use of commonly occurring attributes like
associativity and commutativity, but other features of its predecessors were left
behind, e.g., Eqlog [46] envisioned an integration of order-sorted equational logic
with Horn logic, providing logical variables, constraint solving, and automated
reasoning capabilities on top of order-sorted equational logic; and MaudeLog [65]
envisioned an integration of order-sorted rewriting logic with queries including
logical variables. The paper [40] revisited this topic and showed how many mod-
ern programming features can be implemented using Maude.

Unification is a fundamental deductive mechanism used in many automated
deduction tasks and it is essential for programming languages with logical vari-
ables. Many functional and logic programming languages use an evaluation mech-
anism called narrowing [1], which is a generalization of term rewriting allowing
free variables in terms (as in logic programming) and replacing pattern matching
by unification in order to (non-deterministically) reduce these terms.
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Unification and narrowing were introduced in Maude in 2009 as part of
the Maude 2.4 release [14]. In that version of Maude, unification worked for
any combination of symbols being either free or associative-commutative (AC),
and it was developed by Eker as a built-in feature in Core Maude. Narrowing
worked for system modules without equations and relied on the built-in unifi-
cation algorithm. It supported the concept of symbolic reachability analysis of
terms with logical variables, computing suitable substitutions for the variables
in both the origin and the destination terms. Narrowing was first implemented
in Full Maude, which allowed us to carry on research on its reasoning capabil-
ities. The latest developments in Maude 2.6 were presented at RTA 2011 [31].
First, Eker improved the built-in unification algorithms to allow any combination
of symbols being either free, commutative (C), associative-commutative (AC),
or associative-commutative with an identity symbol (ACU). The performance
was dramatically improved, allowing further development of other techniques in
Maude. Second, the concepts of variant [27] and variant-based unification [43]
led to a significant improvement in the reasoning capabilities. Given an equa-
tional theory (Σ, E ∪ Ax), the E,Ax-variants of a term t are the set of all pairs
consisting of a substitution σ and the E,Ax-canonical form of tσ. Variant genera-
tion, variant-based unification, and symbolic reachability based on variant-based
unification were all implemented in Full Maude.

In the most recent Maude 2.7 version, Eker has extended the available capa-
bilities. First, the built-in unification algorithm allows any combination of sym-
bols being free, C, AC, ACU, CU, U, Ul, Ur. Second, variant generation and
variant-based unification are implemented in C++ at the Core Maude level with
excellent performance. Note that the former version of variant generation and
variant-based unification in Maude 2.6 was implemented for very simple equa-
tional theories called strongly right irreducible, but the new implementation in
Maude 2.7 got rid of this restriction, allowing really complex equational theories
and their combinations.

The classical application of narrowing modulo an equational theory is to
perform E ∪ Ax-unification by narrowing with oriented equations E modulo
axioms Ax. Indeed, the variant-based equational order-sorted unification algo-
rithm implemented in Maude 2.7 is based on a narrowing strategy, called folding
variant narrowing [43], that terminates when E ∪Ax has the finite variant prop-
erty [27], even though unrestricted narrowing typically does not terminate when
Ax contains AC axioms [27,43].

An interesting example of the flexibility of folding variant narrowing, even
beyond equational unification, is given for the classic missionaries and cannibals
problem. In this problem, three missionaries and three cannibals must cross a
river using a boat. The boat cannot cross the river with no people on board,
and cannot carry more than two people. In any of the banks, the missionaries
cannot be outnumbered by cannibals, otherwise the cannibals would eat the
missionaries.

A solution for this problem was presented by Goguen and Meseguer in [49]
as an equational logic program, requiring constraint-solving features, logical
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variables, order-sorted types, and axioms. Features of the original solution have
been adapted to the current equational variant-based programming features
available in Maude using the ideas of [40], and the resulting module is shown in
Fig. 1.

The imported module TRIPLIST defines trip lists (TripList), with concate-
nation operator * as constructor1 and a length operation # . Module PSET
defines sorts Elem of people and PSet of multisets of people. Multisets are con-
structed with union operator + , which is declared as associative, commutative
and with an identity symbol, and come with operators - for removal and _/\_
for intersection.

Our aim is to find a list of trips, where each trip is a term rooted by a predicate
boat with a set of missionaries and cannibals. Odd positions in the list represent
trips from the left bank to the right bank, and even positions trips from right to
left. The MAC module defines constants for the missionaries (taylor, helen, and
william) and the cannibals (umugu, nzwave, and amoc). lb(L) (resp., rb(L))
represents the people set in the left (resp., right) bank after the sequence of trips
L. mset(PS) (resp., cset(PS)) gives the subset of missionaries (resp., cannibals)
in PS. The function boatok checks whether a trip is ok — one or two people in
the boat, where these are from the set of defined cannibals and missionaries —
and solve is the general predicate for checking/generating the trip list solution
— a trip list is a solution if it is a ‘good’ list, and the sequence of trips leaves
the left bank empty. A trip list L * T is good if T is a valid trip (boatok), the
sublist L is good, and the number of cannibals in each bank is smaller than the
number of missionaries in the same bank for each trip in the sequence.

The key is therefore in the definition of the Success sort in the SUCCESS
module. The success sort has a constant success, an operator >> that defines
the conditional evaluation of constraints, such that the left side is evaluated
before the right side, and =:= , which represents unification between two terms.
For each sort, =:= is defined only in the positive cases, returning success; see
below for its definition for sort Bool.

op _>>_ : [Success] [Success] -> [Success] [frozen(2)] .

rl success >> X:[Success] => X:[Success] .

op _=:=_ : Bool Bool -> [Success] [comm] .

rl X:Bool =:= X:Bool => success .

Folding variant narrowing is performed using those equations labeled with
the variant flag, while the remaining equations are used as usual in Maude. Here
we can ask for solutions to the very general problem of the names of missionaries
and cannibals carried from one side to the other of the river.

1 The original solution assumes that lists are created using an associative symbol, but
unification modulo associativity is infinitary and it is not available in Maude. The
* operator is therefore not declared associative.
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Fig. 1. Missionaries and cannibals example
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Maude> variant unify

solve(nil * boat(E1:Elem E2:Elem) *

boat(E1:Elem) * boat(E3:Elem E4:Elem) *

boat(E2:Elem) * boat(E5:Elem E6:Elem) *

boat(E6:Elem E3:Elem) * boat(E1:Elem E6:Elem) *

boat(E4:Elem) * boat(E2:Elem E4:Elem) *

boat(E6:Elem) * boat(E6:Elem E3:Elem)) =? success .

Unifier #1

E1:Elem --> helen E2:Elem --> amoc E3:Elem --> umugu

E4:Elem --> nzwawe E5:Elem --> william E6:Elem --> taylor

Unifier #2

E1:Elem --> william E2:Elem --> amoc E3:Elem --> umugu

E4:Elem --> nzwawe E5:Elem --> helen E6:Elem --> taylor

...

Unifier #36

E1:Elem --> helen E2:Elem --> umugu E3:Elem --> amoc

E4:Elem --> nzwawe E5:Elem --> taylor E6:Elem --> william

Enumerating all thirty-six solutions takes only a few minutes thanks to the effi-
cient implementation of folding variant narrowing in Core Maude. The most
general question is variant unify solve(L) =? success, which enumerates
all the necessary boat movements from one bank to the other and the mission-
aries and cannibals moved each time. However, we would have to add more
variant equations, for recursive instantiation of a variable of sort Triplist, and
for recursive instantiation of a variable of sort PSet, apart of the current variant
equations for instantation of variables of sort Elem. The current implementation
in Maude is not able to handle the folding variant narrowing search space asso-
ciated to a unification problem like that, though it will enumerate the solutions
given enough resources.

The modern application of narrowing with rules R modulo E ∪ Ax is that
of symbolic reachability analysis [74]. In this case, the rules R are understood as
transition rules instead of equations. Narrowing is a complete deductive method
[74] for symbolic reachability analysis, that is, for solving existential queries of
the form ∃x t(x) →∗ t′(x) in the sense that the formula holds for R iff there is
a narrowing sequence t �∗

R,E∪Ax u such that u and t′ have an E ∪ Ax-unifier.
Furthermore, in symbolic reachability analysis, we may be interested in verifying
properties more general than existential properties of the form ∃X t →∗ t′, since
one can generalize the above reachability property to properties of the form
R, t |= ϕ, for ϕ a temporal logic formula. The papers [2,42] show how narrowing
can be used (again, both at the level of transitions with rules R and at the
level of equations E) to perform logical model checking. Two distinctive features
are: (i) the term t does not describe a single initial state, but a possibly infinite
set of instances of t (i.e., a possibly infinite set of initial states); and (ii) the
set of reachable states does not have to be finite. Therefore, standard model-
checking techniques may not be usable, because of a possible double infinity: in
the number of initial states, and in the number of states reachable for each of
those initial states.
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So far, the most successful story about rewriting logic with narrowing is the
Maude-NPA protocol analyzer [41], where cryptographic protocols are formally
specified as order-sorted rewrite theories and the security analysis is performed
in a backwards way, from an attack state to an initial state.

4 The Near Future: Rewriting Modulo SMT

The rapid progress of satisfiability modulo theories (SMT) solvers [7] has been
one of the most important developments in automated verification and reasoning.
A feature recently added to Maude (in an internal version, not publicly released
at the time of the publication of this paper) is support for rewriting modulo
SMT [78], so that functional and system modules can have conditions dealing
with SMT data types, which are then solved by the usually more effective SMT
solvers.

SMT solvers are decision procedures for an existential fragment of first-order
logic with equality, where variables range over SMT data types, such as Booleans,
integers, and reals. After presenting the way in which rewriting modulo SMT is
being implemented in Maude in Sect. 4.1, we describe a sample application in
Sect. 4.2.

4.1 Maude SMT

When performing rewriting modulo SMT, the object being rewritten is a sym-
bolic representation of a (possibly infinite) family of terms. In its current Maude
implementation, the representation of such family of terms is an ordered pair,
where the first component is a term which may include variables ranging over
data types supported by an SMT solver and SMT operators on those variables,
and the second component is a constraint on those SMT variables. Rewriting
proceeds as a search where each rewrite rule may have a condition, interpreted
as an SMT constraint. In order to make a rewrite step, the accumulated con-
straints must be satisfiable, as checked by an SMT solver; when a conditional
rule succeeds, the constraint it enforced on the SMT variables in the new term
is ‘conjuncted’ with the existing constraint. Since Maude has no built-in knowl-
edge of the SMT theories, no simplification of the accumulated constraint is
performed.

Maude’s interface to SMT data types closely follows the SMT-LIB stan-
dard [6]. In particular there are functional modules BOOLEAN, INTEGER, REAL, and
REAL-INTEGER which provide signatures for the SMT-LIB theories of Booleans,
integers, reals, and reals combined with integers, respectively. Although the cur-
rent implementation has some restrictions, we expect to have a full implemen-
tation of rewriting modulo SMT in a near future release of Maude.

An SMT rewriting search is initiated with the smt-search command, which
has a syntax similar to the syntax of the search command. The start term may
only include SMT variables, which may also appear in the pattern term, and
condition.
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To give a flavor of how rewriting modulo SMT works, let us consider a small
example. We define the gcd function using state transitions on a pair of SMT
integers that encode Euclid’s algorithm.

mod EUCLID is protecting INTEGER .

sort State .

op gcd : Integer Integer -> State .

op return : Integer -> State .

vars I J K X Y Z : Integer .

crl gcd(X, Y) => gcd(X - Y, Y) if X > Y = true .

crl gcd(X, Y) => gcd(X, Y - X) if X < Y = true .

crl gcd(X, Y) => return(X) if X = Y .

endm

We then ask about the existence of a pair of integers X, Y such that gcd(X,Y ) =
3 and X + Y = 27.

Maude> smt-search [1] gcd(X, Y) =>* return(Z)

such that Z = 3 /\ X + Y = 27 .

Solution 1

empty substitution

where Z === 3 and X + Y === 27 and X > Y and X - Y > Y and

X - Y - Y > Y and X - Y - Y - Y < Y and X - Y - Y - Y ===

Y - (X - Y - Y - Y) and Z === X - Y - Y - Y

Maude searches the (typically infinite) tree of SMT rewrites on (term, con-
straint) pairs for a state that matches the pattern and satisfies the constraint on
the variables given in the command. In the success case, it returns a substitu-
tion for non-SMT variables in the pattern and a satisfiable constraint on SMT
variables. If the search graph is infinite as in this case, the command will not
terminate in the failure case unless a depth bound is given.

Like most other Maude commands, smt-search is reflected at the metalevel
by a corresponding descent function.

Currently, Maude uses CVC4 [5] as its backend SMT solver, however calls
to the SMT solver are implemented via an abstract interface and wrappers for
other SMT libraries could easily be added in the future.

4.2 Symbolic Analysis of Distance-Bounding Protocols

Having the possibility of using constrained variables gives us the opportunity of
making finite potentially infinite search spaces. As for a more interesting appli-
cation of rewriting modulo SMT, let us consider the case of distance-bounding
protocols [10], a class of security protocols that infer an upper bound on the
distance between two agents from the round trip time of messages. This is used,
for example, for controlling some kinds of access and for clock synchronization.
In a distance-bounding protocol session, the verifier (V ) and the prover (P )
exchange messages:



244 M. Clavel et al.

V → P : m
P → V : m′

where m is a challenge and m′ is a response message (constructed using the
components of m such as nonces in m). In order to infer the distance to the
prover, the verifier remembers the time, t0, when the message m was sent, and
the time, t1, when the message m′ returns. From the difference t1 − t0 and
the assumptions on the speed of the transmission medium, v, the verifier can
compute an upper bound on the distance to the prover, namely (t1 − t0) × v.

In [52], a novel attack on distance bounding called attack in-between-ticks
is presented. The attack is formalized using a model in which provers, verifiers,
and attackers may have different clock rates, processing speeds, or observation
granularity. The model is based on a multiset-rewriting formalism called timed
local state transition systems [51] which supports both discrete and dense time.
The key insight for the attack is that an attacker can mask his location by
exploiting the fact that a message may be sent at any point between two clock
ticks of the verifier’s clock, while the verifier measures the time at discrete clock
ticks. For example, if the time bound is 3, a message could start at time 1.7,
which is 2 on the verifier’s clock, and the reply received at 4.9, which is 5 on the
verifier’s clock. From the verifier’s perspective the attacker is within range, since
5 − 2 = 3, but in fact the round trip time was 4.9 − 1.7 = 3.2.

The model was formalized in Maude SMT and smt-search was used to find a
symbolic representation of a family of attacks. Using Maude SMT the potentially
infinite search space becomes finite, by treating the distance between the verifier
and the prover as a constrained variable.

To illustrate the use of SMT, we show the Tick rule which advances system
time following the approach of Real-Time Maude [76].

var S : Soup .

vars T T1 T2 : Real .

crl [Tick] : { S (Time @ T) (vTime @ T1) }

=> { S (Time @ T2) (vTime @ T1) }

if (T2 > T and (T2 < T1 + 1/1)) = true

[nonexec] .

Here, a system state is a soup of timed facts (F @ T) enclosed in brackets. There
is a unique fact, Time @ T, representing the physical time. The fact vTime @
T1 represents time as perceived by the verifier. In Real-Time Maude execution
and search use a time sampling strategy. In contrast, using Maude SMT the new
time is left symbolic, with constraints on its range. Here the constraint says that
the next time should be greater than the current time, but should not advance
beyond the next verifier time (T1 + 1).

The following command searches for a state in which the verifier, v, accepts
a reply from the prover, p, (Ok(< p, M:Msg >) @ T:Real), where the distance
bound is 3 (the allowed round trip time is 2 * 3) and the distance from the
verifier to the prover, dvp, (or to an attacker, dva) is greater than 3.
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Maude> smt-search [1] { gensym(0)

dist(dva, dvp)

(Time @ 0/1)

(vTime @ 0/1)

(V0(p) @ 0/1)

(P0(v) @ 0/1) }

=>+ { (Ok(< p, M:Msg >) @ T:Real)

S:Soup }

such that (dva > 3/1 and dvp > 3/1 ) = true .

One (simplified) solution is:

S --> ...

(Time @ toInteger(dvp + dvp) + 1/1)

(RStart(< p, n(0) >) @ 0/1) *** the real start

(RStop(< p, n(0) >) @ dvp + dvp) *** the real stop

(V1(< p, n(0) >) @ toInteger(dvp + dvp) + 1/1) *** the verifiers view

where dva > 3/1 and dvp > 3/1 and

toInteger(dvp + dvp) <= 2/1 * 3/1 *** the discrete time looses here

and T === toInteger(dvp + dvp) + 1/1

...

M --> n(0)

The verifier’s start time is 1/1 thus the elapsed time is toInteger(dvp + dvp)
<= 2/1 * 3/1.

5 Pathway Logic

There have been many applications of Maude in many different areas, including
some as diverse as security [41], cyber-physical systems [3,44], and model-driven
engineering [8,77] (see, for example, the survey [72]). We very briefly discuss in
this section one of them, Pathway Logic, which innovates by modeling nature
rather that the usual digital artifacts, very nicely illustrating the modeling capa-
bilities of Maude.

Pathway Logic (PL) is a system for modeling and reasoning about cellular
processes such as signal transduction, metabolism, and cell-cell communication
in the immune system. The semantic underpinnings of PL is Maude, and José
Meseguer was part of the original PL team that developed the key ideas [39]. The
first instance of a PL model was a model of a cancer-related signaling pathway
crafted in Maude in 2000. In order to facilitate scaling up and interacting with
the PL models, the executable Maude model has been augmented with the Path-
way Logic Assistant (PLA), an interactive graphical interface that allows a user
to easily create specific models, and browse and query them [81]. In addition,
a mechanism for semantically grounding the language with links to standard
databases has been put in place, and a substantial collection of formal models
has been developed [56,80].
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5.1 About Pathway Logic

Signal transduction is the mechanism by which cells sense their environment,
process this information, and make decisions: what proteins to produce, what
metabolic pathways to activate, whether to replicate, move, or possibly die. Typ-
ically, the signal is a chemical or protein in the cells environment that binds to a
receptor protein (in the cell membrane). The receptor becomes active, initiating
the signaling process. The signal is transmitted by change in state and location
of proteins involved.

In PL a cell state is represented as a soup of occurrences, where each occur-
rence has three components: a protein or other biomolecule (gene, metabolite,
etc.), a modifier, and a location. The modifier indicates the state of the protein,
including binding of small molecules or phosphates, or ability to act on other
proteins (enzyme activity). For example, the term < [Hras - GTP], CLi > is
the occurrence of the protein Hras modified by binding to the small molecule GTP
(Guanosine TriPhosphate), attached to the inside of the cell membrane (CLi). 2

Signal transduction steps are formalized as local rewrite rules operating on the
relevant part of the cell state.

As an example, rule 1.EgfR.act formalizes the initiation of signaling in
response to the presence of Egf (Epidermal growth factor) in a cell’s exterior.

rl [1.EgfR.act]

< ?ErbB1L:ErbB1L, XOut > < EgfR, EgfRC >

=>

< ?ErbB1L:ErbB1L :[ EgfR - Yphos], EgfRC >

Here, ?ErbB1L:ErbB1L is a variable of sort ErbB1L, XOut is the cells external
environment, and the infix operator : represents complex formation. In the
model there are two proteins of sort ErbB1L: Egf and Tgfa (Transforming growth
factor alpha).

How does the Egf signal propagate? To answer the question, we use the PLA.
Figure 2 shows the subnet containing all rules relevant to activation (binding to
GTP) of Hras in response to Egf. The subnet is generated by backwards collection
from the goal H = < [Hras - GTP], CLi > in the Egf response network.

A specific execution path can be found by mapping the subnet and goal to
the language of the LoLA model checker [79] asserting that the goal cannot be
reached. If there is a counter example, LoLA returns a list of transitions that can
be fired to reach the goal. Maude then converts this to a network and generates
the expression to display the interactive graph.

Figure 2 also shows the result of comparing two different execution paths,
the second is the result of removing one of the occurrences from the subnet
(simulating a knockout) before asking LoLA.

2 There are in fact two internal syntactic forms for representing cell state: a soup of
locations; and a soup of occurrences. We restrict attention to the latter as occurrences
correspond to places in a Petri net.
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Fig. 2. Activation of Hras in response to Egf. The full subnet with two execution paths
compared. Pink belongs to both paths, blue and cyan to different paths. Ovals represent
occurrences, rectangles represent rules, with input ovals connected by incoming arrows
and output connected by outgoing arrows. Dashed arrows connect occurrences that
both input and output (enzymes) (Color figure online).

5.2 Maude’s Role in Pathway Logic

The integration of the Maude executable model and PLA is achieved using the
IOP platform for communication amongst a group of actors. Maude’s loop mode
and reflection are key to turning Maude into an actor [61]. The PL Maude
actor extends the IMaude actor [61] with rules for handling PL specific requests.
IMaude provides data structures for representing state, managing asynchronous
interaction, and saving and restoring state. The latter makes essential use of
Maude’s capabilities for pretty-printing and parsing. PLA is an actor built using
an interpreter of a Scheme-like language, JLambda, layered on top of Java. The
Maude PL actor listens for requests from PLA and generates expressions in the
JLambda language to instruct PLA to construct and render interactive network
graphs.

Proteins, modifications, and locations are given different names by different
biologists. Thus, to understand what a biological model is talking about it is
important to link the names (constants) used to reference databases that pro-
vide canonical names and additional information. This is accomplished using the
metadata attribute of Maude operator declarations. PL operator metadata is a
string encoding an S-expression that maps key words to values such as database
access identifiers, synonym lists, and biological classifiers. With the aid of a meta-
model (componentInfoSpec) the metadata is rendered as a menu of information
and active links that are presented when the user clicks on a graph element.
The following is the operator declaration for Egf. The metadata includes iden-
tifiers used by two reference databases (spnumber for UniProt and hugosym for
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HGNC), as well as a list of synonyms that can be used when a user unfamiliar
with PL naming is searching for information.

op Egf : -> ErbB1L [ctor metadata"(\

(category Ligand)\

(spnumber P01133)\

(hugosym EGF)\

(synonyms \"Pro-epidermal growth factor\"\

\"EGF_HUMAN\"))"] .

Another important requirement for a model is to justify the rules describing
signal transduction steps. Where do these rules come from? They are inferred
from experimental observations of what is present in a cell (and where) and
of response of a cell or a population of cells to different perturbations. In PL
each rule is linked (via metadata) to an evidence page that contains a formal
representation of the experimental observations used in inferring the rule. 3

As noted above, the PL rule base consists of symbolic rules that have variables
whose sort consists of a finite set of proteins or modifications or locations. Petri
net tools (and graphical representations) need concrete instances. One possibility
is simply to generate all possible instances. This generates many useless rules,
because proteins of a given sort behave similarly in some cases, and differently
in other cases. Thus we take advantage of the Maude function to generate all
matches of a rule to a given state to generate only concrete rules that are possibly
reachable from initial states of interest.

In the spirit of May I borrow your logic [11], PL supports multiple rep-
resentations of a PL knowledge base: Maude signature and rules, Petri nets,
JSON, and SBML (Systems Biology Markup Language). The Petri net repre-
sentation is used for efficient analysis of large networks that takes advantage of
the restricted nature of PL rules. SBML is an exchange format used to share
models between different systems biology tools including simulators and visu-
alizers. The JSON representation is used to treat a PL knowledge base as a
database with efficient query of static relations; for example, finding all rules
that involve the protein whose UniProt identifier is P01112 (Hras). Maude could
be programmed to answer such queries, but putting the information in a data-
base makes it more widely accessible. In addition, the JSON representation is
an easily parsable exchange format that is being used by researchers developing
modeling and analysis tools.

Transformations to different representation systems is done by reflecting the
PL model to the metalevel and transforming it to a representation in the target
system, which can then be written to a file with the help of the PLA actor.

6 Further Ahead

We have presented our view of the two decades we have been involved in the
development of Maude. We have gone from the first years of Maude to the
3 Rules are currently inferred by a human curator.
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current state of the system and the new features currently under development.
What features will Maude users be expecting in the future? Or what features
will have a bigger impact for Maude in the future? As we explained before, a
current trend in programming languages is to become multi-paradigm, offering
flexibility and simplicity for problem specification and solving, and we believe
our efforts will go into that direction.

On the one hand, all the logical and symbolic features will be boosted. For
instance, other SMT libraries such as veriT could be added to Maude. Also,
variant generation and variant-based unification, as well as narrowing in system
theories, consider only unconditional rules and equations: conditional narrowing,
both at the level of equational logic and rewriting logic, should be added. More-
over, more built-in unification algorithms will be included in Core Maude: we
have explored unification algorithms for associativity, for homomorphic encryp-
tion, for exclusive-or, etc. Furthermore, we envision conditional narrowing com-
bined with SMT solvers, so that many different reasoning facilities are seamlessly
combined.

On the other hand, tool support will be incremented. Maude would not be
such a good logical framework without its metalevel capabilities. The Maude For-
mal Environment will be improved with better tool integration. And we should
not forget about tools built on top of Maude, such as the Pathway Logic Assis-
tant, Real-Time Maude, or the Maude-NPA protocol analyzer.
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Abstract. This essay addresses the concerns of the foundations of math-
ematics of the early 20th century which led to the creation of formally
axiomatized universes. These are confronted with contemporary devel-
opments, particularly in computational logic and neuroscience. Our app-
roach uses computational models of mental experiments with the infinite
in set-theory and symbol-manipulation systems, in particular models of
combinatory logic.

1 Introduction

To guide the perplexed, philosophers used to propose their systems, physicists
their Grand Unified Theories, and theologians their faith and scriptures. What
about mathematicians? Formal universes.

In this essay1 I try to tell this story as I see it, distinguishing two kinds
of universes: One is centered in set theory, the other in symbol-manipulating
systems. Both claim universality for mathematics. For evidence both adduce
developments of vast stretches of mathematics, reducing it to the respective
“foundations”. I permit myself some skeptical comments on the whole enterprise.

2 Universalism I : Paradise Lost?

Mathematics creates its own universe, not out of chaos or tohu-wabohu as in
Genesis, but out of nothingness, the empty set. Start with the empty set V0 = ∅
and repeat taking the set of all subsets: V1 = P (∅), V2 = P (P (∅)), . . . , all the
while collecting what you have obtained so far. At the beginning all is finite; the
first time an infinite set obtains is when collecting up after infinitely many steps.
This is the set Vω of hereditarily finite sets, a small universe of mathematical
objects. In it we may recognize (or fashion) the natural numbers, the integers, the
rationals (individually, not as totalities). According to the famous 19th century
algebraist Kronecker this is all that God created, the rest is “Menschenwerk”.
Works of man are for example the real numbers which arise if we take the
power-set of the hereditarily finite sets and, continuing the process, functions,
function spaces, ... the whole menagerie, the universe of mathematics, called the
1 In memory and appreciation of a quarter century of discussion on the foundation
and philosophy of mathematics and computer science with José Meseguer.
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cumulative hierarchy, due to von Neumann and Zermelo [18]. All of this out of
nothingness, insubstantial.

Indeed? What is the substance of mathematics; is there one? Substance is
something that you have to reckon with, can reckon with. Mathematicians can
manipulate, reckon with the objects of their domain, the universe of sets, named
“Cantor’s Paradise” by Hilbert [12].

In this view, the problem of foundations is to capture the kind of reckoning
that goes on in the construction of the universe we just described. Around 1900
this meant to axiomatize: Postulate the empty set, pairing, power set, union,
etc. in fact the axioms of Zermelo. These axioms arguably constitute the basis
of mathematics today, they are still taken as “axiomatic” by most. Zermelo also
produced an axiomatization of thermodynamics, long since forgotten. Axiom-
atization at that time meant mainly to describe compactly and plausibly the
knowledge of a subject matter—with the intention to support logical conclu-
sions, theorems, covering the field—more geometrico (Spinoza.)

Hilbert was one to recognize that axiomatization did not by itself create the
universe of discourse, nor does it automatically fix it. His axiomatization of real
numbers arguably fixes them,2 but their “reality” had to be seen in the system of
logical deductions from these axioms. Consequently, foundations as an axiomatic
discipline became based on formal logic. The problem of foundation was reduced to
proving deductive consistency by finite universally accepted means, and existence
became identified with being free of formal logical contradictions. In the words
of the main adversary, the founding intuitionist Brouwer, this meant that mathe-
matics consisted only of “marks on paper”.—And, as is well known, Hilbert’s pro-
gram was shown to fail by Gödel.—Banned from the Garden of Eden we now follow
Voltaire’s advice and cultivate our own gardens, outside.

This, of course, is not the whole story. In fact, the challenge was taken up by an
impressive and ongoing development of proof theory (e.g. locating incompleteness
of Peano arithmetic in the formal limitations of induction), and of axiomatic set
theory (showing up the limitations of “platonic insight” into the transfinite by set-
theoretic independence results), and much more. In the following we describe a
small section of these developments from a somewhat personal perspective.

3 Universalism II : Paradise Regained?

Of course, nowadays numbers, reals, sets, functions do not only live on paper,
they also live in our computers: as the data types of programming languages, sup-
ported by interpreters and compilers on sophisticated hardware. This universe
of objects “to be reckoned with”,3 the types of objects available for computing
is ever expanding. The definition of data types in most programing languages
proceeds in a more or less pragmatic manner, guided by emerging applications,
including the “internet of things”. This is a valid approach to universality, and
2 With respect to the “naive” set theory in which its structure is discussed.
3 Cf. German “rechnen” = to compute.
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important efforts are being made to provide it with systematic foundations as
we shall see.

To illustrate this second kind of approach to universalism in mathematics,
I shall use its historically first worked-out, and technically simplest, example. It
is based on a development that originated in the 1930s in answer to the same
“crisis of foundations” sketched above: Combinatory logic, lambda calculus, and
type theories. Today these theories can also be seen as a foundational approach to
computer science. Since Turing, in particular since universal Turing Machines,
and also since von Neumann-Machines, inputs and programs are of the same
nature and which we may simply call “data”. They are perhaps marks on the
Turing tape or bits in the computer memory. The basic operation is application:
Programs may be applied to input data and of course result in data, which may
again be programs. Programs may also be applied to programs, again resulting
in data, etc. Indeed, we may admit that all combinations of applications on data
result again in data, (e.g. in the model of Sect. 4 below).

Formally we have a the universe D of data which admits a binary operation on
all its elements: if a and b are in D, then so is a applied to b, written a · b. Any
combination of data is results in data. For example (x ·z) · (y ·z) is a kind of data: If
the program y is used to modify input z to a new input y · z, and x uses the input z
to obtain a new program x ·z, then (x ·z) · (y ·z) is the data resulting from applying
the new program to the new input. Obtaining this data is in fact a programSwhich
is applied to data x, y and z in sequence: ((S · x) · y) · z) equals (x · z) · (y · z).

Universality is expressed by the following axiom scheme: For every combina-
tion φ(x1, . . . xn) of data there is a data tφ such that tφx1 . . . xn = φ(x1, . . . xn),
(association to the left is understood tacitly.) Such tφ are called “combinators”.
A set D with an application operation satisfying the axiom scheme is called a
combinatory algebra. Combinatory Logic, was invented by H.B. Curry in his 1929
Göttingen thesis [3] directed by Paul Bernays, also Doktorvater of the present
author as well as of Saunders MacLane and Gerhard Gentzen. It is the for-
mal theory of equations between combinators as its objects. As Schönfinkel had
already shown, two combinators suffice for expressing all combinators, namely
the above S, characterized by its equation, together with K, characterized by
Kxy = x. These equations may be understood as rewrite rules of the logic. The
two combinators come out in the proof of the axiom scheme.

For Combinatory Logic the question of consistency arises again. But while
Hilbert’s program failed for the first formal universe (of set theory and Peano
arithmetic), Curry’s formal system is consistent, as proved by Church and Rosser
using the same finitist proof-theoretic tools that failed in the first case. This
proof considers combinatory logic and algebra as a rewrite system. As a rewrite
system, with rules such as Sxyz → (xz)(yz), it is surprisingly rich: it admits
natural numbers (as combinations of S and K), partial recursive functions (and
thereby a theory of computability equivalent to Turing Machines), exhibits the
phenomenon of undecidability (of termination of rewriting), etc. It is for this
reason that we may consider combinatory logic as a foundation for computer
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science. It is open to formal extensions. One important such extension results
from the introduction of types (e.g. to Lambda Calculus).

As a symbol manipulation system, Combinatory Logic is the prototype of a
development that has been mastery reviewed by Meseguer [14]. The extensive
development of rewrite logic supports the claim that the concept of mathematics
as a symbol-manipulating enterprise is sustainable.

Rewrite systems prefer to live on computers. The currently successful compu-
tational system COQ offers such an environment. We remarked above that types
are introduced in the classical programming languages in a restricted manner. To
be part of a mathematical, or computational universe, containing the structures
on which mathematics is “really” done, it would need types. COQ introduces
basic types such as natural numbers and allows definition of new types by recur-
sion, products (of dependent types) and continues through a hierarchy of classi-
cal mathematical structures, groups, fields, etc. to contemporary structures such
as homotopy groups; all of this by uniform definitional templates. Moreover, it
embodies procedures which support construction, and checking, of mathemati-
cal proofs—after a process of formalization that is empowered by its structural
richness. The mathematics on which this rests is Homotopy Type Theory.4

A quite different example of universalism akin to rewrite systems is Wolfram’s
proposal to understand the mathematical sciences by rewrite rules in the shape of
rules for cellular automata [17]. As a remarkable single-handed effort it challenges
by its suggestiveness and scope. It should not be blamed for not completely and
convincingly reaching its goal.5

4 Reductionism

Reducing one corpus of knowledge (e.g. chemistry) to another (e.g. quantum
theory) is more a kind of (successful) mind-set than a true methodology. Called
“reductionism”, it is a well-recognized topic in the philosophy of science and
has been the subject of an extensive literature. Whether it has ever been fully
successful in the natural sciences is open to doubt.6 How about mathematics?

Universalism and reductionism go hand in hand. This is the case of the set-
theoretic universe. Indeed it is the tacit understanding of most mathematicians
that all mathematics can “in principle” be reduced to set theory and logic. But
this comes with steep costs: Mathematics, when fully reduced to its set-theoretic
basic components may become quite opaque to mere humans. But not always.

Let us return to the second kind of universe, combinatory logic, which we
introduced as a specimen of a symbol-manipulating systems and whose “exis-
tence” relies on a formal consistency proof. If the first universe, of set the-
ory, is “good enough”, then it should be possible to reduce the second universe
to it, that is: to create a pocket universe for combinatory logic in set theory.
4 An ongoing project accessible online at HomotopyTypeTheory.org.
5 For a critique cf. [11].
6 Among others by my late colleague, the quantum chemist H. Primas, in [1].
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This would be an algebraic structure with elements corresponding to the com-
binators and their laws. My favorite construction7 starts with an arbitrary non-
empty set A, the basic data (e.g. marks on the Turing tape or bits in computer
memory), and builds upon it a set G(A) of formal expressions. It is recursively
defined by G(A) = A ∪ {α −→ x : α ⊆ G(A), x ∈ G(A)}, α finite. It thus
consist of expressions α −→ x obtained by starting with basic data by iterating
replacement of components x and y ∈ α.—From this we define the combina-
tory algebra DA: Its set D of elements is the set of all subsets of G(A), which
stands as the set of data, D = P (G(A)). The application operation is defined by
X · Y = {x : ∃α ⊆ Y, α −→ x ∈ X} for arbitrary data X and Y in D.8

This author’s Combinatory Program [8] shows in detail that much of math-
ematics can be developed by suitably enriching DA with additional operations
and admitting specific basic sets A.

The extension to the theory of dependent types as in Homotopy Type Theory,
mentioned above, also calls for a reduction to the set-theoretic universe. This is
accomplished by Voevodsky in the current univalent foundation project,9 which
we cannot discuss here.

5 Criticism

Universalist tendencies are present in many fields and for many reasons; they are
obviously attractive intellectually. But universality claims can also be the source
of fundamentalism. In religion and politics unspeakable extremes have resulted
throughout history. If such fundamentalism is applied to the natural sciences
it may be strange (geology: disputing the age of the world; biology: disputing
evolution). But occasionally, and frighteningly, there are even cases concerning
mathematics (symbolic logic, banned as “bourgeois idealism” under Stalin; some
“decadent” mathematical developments to be prosecuted, banned and replaced
by “Deutsche Mathematik” by the Nazi).

So there are reasons to be skeptical towards universalism, even if it is esthet-
ically attractive such as in the search for a Grand Unified Theory (for physics)
and in the formal universes for mathematics and computer science of which we
talked above. There are many others, equally attractive such as Feferman and
Jäger’s explicit mathematics and their universes [13].

How could one be skeptical about mathematics? Using the Zermelo-Fraenkel
axioms of set theory ZFC , are we really sure that we fully understand infinite sets
and their properties? Isn’t set theory a kind of story that mathematicians tell
among themselves, somewhat akin to fairy tales: Infinite sets are like the Easter
Bunny which we have never actually seen but about some of whose properties
7 The Plotkin-Scott-Engeler model.
8 Understanding the model may be helped by considering sets of expressions α −→ x
as partial and many-valued function from G(A) to G(A), namely as sets of pairs of
arguments and values in G(A). (If we so wish, we may also see these expressions as
lists with head x and tail α).

9 Reviewed in a recent survey [15].
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we all agree; set theory also hides its precious gifts for us to search for them.
Now, of course this is a doubtful kind of doubting. But still, on what basis rests
the undeniable consent of mathematicians on these axioms? Some even doubt
the power-set axiom for infinite sets, for example Gödel at one time, in his 1933
talk “The present situation in the foundations of mathematics” [9].

Mathematics is what all sufficiently patient learners and inventive practition-
ers of mathematics agree on. Let’s fix on that and make it into a concrete model.
Imagine mathematicians making thought-experiments on that part of the universe
of sets that is immediately available to finite minds: the set of hereditarily finite sets
(the first limit in the cumulative hierarchy, cf. Sect. 2). The goal of experiments is
to verify the axioms of ZFC as expressed in first-order logic. Experiments are per-
formed on the hereditarily finite sets by mentally executing programs based on the
basic operations and basic predicates used in the axioms. The patience of such a
mathematician may be measured by her or his willingness to test a universal quan-
tifier by running through all sets up to rank n in the cumulative hierarchy. The
inventiveness may be measured by the complexity n of programs that this math-
ematician creates to test an existential quantifier (by some measurement of the
complexity of programs, only finitely many programs having smaller complexity
than n). A mathematician of strength n in patience and inventiveness admits his
individual theory ZFCn of sets. Now consider ZFC∞, the statements accepted
by all sufficiently strong mathematicians. It turns out to contain ZFC .10 Unfor-
tunately (for logic?—for the model?), the set ZFC∞, while it does not contain any
theorem together with its negation, is not closed under classical logical
deduction [16]. As were the intuitionists, we may be lead to doubt the reliability of
classical logic when we approach infinite objects. How confident can we be?

Here is an extreme viewpoint: Some years ago van Dantzig [4] asked the
question whether 1010

10
is a finite number, doubting that our mind is able to

conceive this number as being built up by continued attaching individual marks
to a given object (the intuitive basis of the number concept as proposed by
Peano, Whitehead and Russell, Hilbert), or by a series of mental acts. Still, we
seem to be content that 1010

10
+ 1010

20
= 1010

20
+ 1010

10
, trusting a proof by

induction that a + b = b + a for all natural numbers. But does not such a proof
beg the question in that it presumes in the induction step that local laws, verified
in the small, persist in the large?

Again, this doubt is rather doubtful. But it points in another direction, that
of the limits of the mind, of mental imagination.

In view of the exciting advanced of neurology, e.g. in explaining mechanisms
of numerical abilities11 it may be of interest to use mathematical models to
approach the question on how and why the human brain can deal with natural
numbers and conceive of them as a totality.

Let me present this in a somewhat idiosyncratic fashion; let us talk about
thinking. Thinking means to apply thoughts to thoughts, thoughts being things
10 Worked out in a 1971/78 paper by the author, reprinted in his collection Algorithmic

Properties of Structures, World Publ.Co., 1990, pp. 87–95.
11 Cf. the review by an originator of the idea of a number sense [7].
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like concepts, impressions, memories, activities, projects—anything that you can
think about, including mathematics. And, of course, the results of applying
thoughts to thoughts. For example, applying the thought �this object is even�
to the thought �the number 14� results in the thought �14 is an even number�,
a thought that happens to be true, (but this is of no concern.) We can also apply
the thought �this object is green� to �the number 14�, resulting in the possible,
but rather unusual synesthetic thought �the number 14 is green�. Thinking is
free, all combinations of thoughts are admitted into the universe of thoughts. We
arrive again at combinators, now talking about “thoughts” instead of “data”.

The totality of thoughts may thus be understood as a combinatory algebra.
In the following we let neurology suggest a model for the algebra of thoughts.
Consider the brain as a set of connected neurons, firing at discrete times. The
Neural Algebra sketched below describes the total activity of this neural net.
Recall that for the graph model DA (Sect. 4 above), we were free to choose the
base set A. Let A therefore consist here of statements a(t) expressing the fact
that neuron a fires at time t. Assume we have knowledge of the firing history
of some brain and of the underlying firing laws. These laws fix the causality of
the activation of, say, neuron an at time tn by neurons a0, . . . , an−1 connected
to it and firing at (earlier) times t0, . . . , tn−1 respectively. Let the expression
{a0(t0), . . . , an−1(tn−1)} −→ an(tn) denote this fact.

The construction analog to that of DA above, now performed on these givens,
produces a combinatory algebra NA, our Neural Algebra. Its elements are sets
X each of which describes a time segment of the distributed activation history in
respective parts of the brain. The sets X by construction consist of expressions
denoting causal cascades of firings.12

By Crick’s neurological hypothesis [2] all mental activities, perceptions, con-
cepts, etc., “thoughts” for short, correspond to such activation histories and are
therefore modeled here by elements in the algebra NA. Moreover, the operation
of application X · Y describes the causal functioning of the brain: the process-
ing X of an input Y , e.g. a visual input, produces X · Y , the perception of an
observed object. Remark: This is a much simplified version of the model used
in the author’s ongoing project on Neural Algebra. The full model ties more
closely to the basic neural net, and allows to pass from objects in the algebra to
underlying structures of the net.13

The brain model NA allows us to speculate about the presence of the natural
numbers in the human brain. First proposed by Dedekind [6], the infinity of natural
numbers may be constructed “psychologically” as the following thought: Taking
any thought object, e.g. the thought �I am thinking of a number�. Reflecting on
this thought is again a thought; and so on, yielding an infinity of thoughts.14 In the
Neural Algebra context there is no problem: We may assume that the element N0

12 To interpret expression in X as cascades, transform subexpressions such as {a} −→
({b, c} −→ d) successively by absorption into {a, b, c} −→ d.

13 Diverse papers available online from the author’s website, cf. “Neural Algebra”.
14 Proof of theorem 66; dismissed by the critical comment of Emmy Noether, one of the

editors.
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of NA represents thinking of the number zero, and the element R represents the
mental operation of �reflect on a thought�. Then Dedekind’s construction goes like
this: Ni+1 = Ni ∪ R · Ni, i = 0, 1, . . . . Collecting up, this gives the thought N of
the totality, namely N =

⋃
i Ni which solves the recursion equation N = R · N

with initial condition N0. This N is a legitimate object of NA and stands for �I am
thinking of the totality of numbers�. It is a recursively defined object; not an easy
subject, for many people it is too close to a vicious circle. The difficulty is that N
is an infinite set and can therefore not be totally present in a finite brain restricted
to finite time; the brain would be “lost in thought”. At best N is present as an
approximate thought, an illusion. Jumping a few steps to include other concepts
and operations of arithmetic as objects in NA, what we then are “really” able to
conceive about arithmetic remains a sort of illusion, strangely convincing.

Shall we be content with that? Will we have to accept the judgement of the
Erdgeist in Goethe’s Faust?15

The Spirit of Nature, called up by the polymath Doctor Faustus by powerful
formulas, spoke thus:

“You grasp the mind
you understand,
not mine.”16

With all respect for (Goethe’s) Nature: certainly not!

6 Rejoinder

It is a good policy, unfortunately rarely followed, to be skeptical of one’s own
models.

In view of the missing consistency proof, is set theory and indeed most of the
mathematical enterprise, just dogmata implanted in the brains of those students
that we did not fail in our courses? Are we truly only guided by experiences
in the strictly finite and reachable? This goes counter to all experience. The
thriving industry of mathematics, pure, applied and expanding into all sciences
is evidence enough. What seems to be at work here is what Martin Davis calls
“Pragmatic Platonism” [5], which guides the mathematician’s “Anschauung”
into uncharted realms.

Mathematicians, like all scientists, are legitimized to use whatever technical
means are available to aid the naked eye and brain. Otherwise they would be
like savages, frightened by the telescope. Of course there are limits. Proof-finding
algorithms (first satirized by Swift in Gulliver’s Travels) are largely chimeric,
and checking out otherwise inaccessible structures and highly complex and long
proofs on their computer may leave some colleagues wondering about the relia-
bility of coding and supporting software. But it pays to push these limits.

I refuse to believe that numbers are some sort of evanescent ghosts in our
biological brains. Such beliefs were called “the most ridiculous” by Gödel.17 The
15 J.W.v.Goethe, Faust, Der Tragödie erster Teil, Nacht.
16 Free translation by this author. Original: “Du gleichst dem Geist den Du begreifst,

nicht mir”.
17 In a letter to A. Robinson, [10].
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interpretation of N proposed above as the view we have of the natural numbers
(as an object in NA) is simplistic: By combining thought objects we may form
the thought object of composing this N . This is an example of generating an
abstract entity as a manipulable object in NA. Such objects are present in our
minds in a vein similar to the thoughts about the thoughts of another person:
objects that are clearly present in our mind but not completed there. This is
what I think the Pragmatic Platonist experiences as the “strangely convincing”
presence of N mentioned above.

To conclude: Mathematics is a wonderful cultural treasure, shared and expand-
ing by many and pursued pragmatically, without prejudice and mindfully. Univer-
salist tendencies, with moderation and caution, help us to appreciate its coherence
and beauty.
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Abstract. Invariant properties at various program locations play a crit-
ical role in enhancing confidence in the reliability of software. A proce-
dure for checking whether a given set of formulas associated with vari-
ous program locations is an invariant or not is proposed. The procedure
attempts to check whether the formulas are preserved by various program
paths, in which case it declares the formulas to be invariant; otherwise,
it attempts to strengthen them based on verification conditions gener-
ated from the program paths that did not preserve the formulas. This
iterative process is continued until a verification condition along some
path cannot be satisfied or an initial state of the program violates the
formulas strengthened thus far. It is shown that under certain conditions,
for certain theories including conjunctions of polynomial equalities, the
procedure terminates, either declaring the input set of formulas to be
not invariant, or generating a strengthened set of inductive invariant for-
mulas. For other theories including Presburger arithmetic, the procedure
may not terminate in general; heuristics are proposed for such cases for
approximating strengthening of formulas to ensure termination. There
is a direct relationship between this approach for checking formulas to
be invariant and the k-induction approach for verifying properties to be
k-inductive. This relationship is explored in depth.

1 Introduction

Specifying and ensuring program invariants are an excellent way to enhance con-
fidence in the reliability of software. Static type checking is one way to check
simple but useful invariants of expressions in a program for many program-
ming languages. Static program analysis, which attempts to detect errors such
as divide by zero, array index out of bounds, null pointer dereference, buffer
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overflow, etc., is considered particularly useful since many system crashes are
caused by such bugs in software. Loop invariants are of particular interest as
they help in understanding the program behavior. Even though automatically
generating invariants of programs is considered a very difficult problem, consid-
erable progress has been made in developing heuristics for automatically gen-
erating loop invariants both by static and dynamic analyses of software, when
invariants are formulas from certain logical theories.

There are at least two kinds of program invariants associated with specific
program locations: (i) simple invariant properties which hold whenever control
reaches such a program location, and (ii) inductive invariants, which are prop-
erties that are true the first time the location is reached and are preserved by
every program path through that location. While inductive invariants are easier
to check, simple invariants are often easier to state by a programmer and include
in a specification.

Given a program written in a programming language for which an axiomatic
semantics in the form of Floyd-Hoare style proof rules can be given, checking
whether a formula is an inductive invariant is decidable under the assumption
that the theory in which verification conditions get expressed is decidable. In
general, this is however a semidecidable problem since the underlying logical
theory may only be semi-decidable. Much to one’s surprise, checking whether a
formula is an invariant seems to be inherently even more difficult.

In this paper, we propose an approach for checking whether a given for-
mula is an invariant at a program location by attempting to strengthen it so
that the strengthened formula is an inductive invariant. This also enables veri-
fying whether a programmer indeed annotated a program correctly, or whether
the program behavior correctly captures the programmer’s intent. We focus on
invariants expressed as conjunctions of atomic formulas from a logical theory.
The proposed procedure is iterative: it attempts to check whether a given formula
associated with a program location is an inductive invariant or not by examin-
ing whether every basic cycle through that location preserves the formula. If the
procedure succeeds, it declares the formula to be invariant; otherwise, for every
cycle that does not preserve the formula, it attempts to strengthen the formula
by adding additional atomic formulas from the logical theory in an attempt to
fix lack of preservation of the formula through the cycle(s) violating it. Depend-
ing upon how this strengthening is attempted, the procedure can also sometimes
determine whether the original formula is not an invariant. In case the procedure
declares an input formula to be an invariant for a given program location, it also
outputs a possibly strengthened formula which is an inductive invariant for that
program location and implies the original input formula.

For logical theories including propositional calculus, quantifier-free theories
of polynomial equalities and UTVPI [11] (also called octagonal constraints), it
is proved that the procedure is a decision procedure under certain conditions,
i.e., it declares whether an input formula is an invariant or not. When an invari-
ant is a conjunction of linear inequalities (over rationals, integers or reals), the
proposed procedure may not terminate. Heuristics are proposed to ensure ter-
mination of the procedure by computing weak strengthenings of hypothesized
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invariants. The second half of the paper is focused on relating the proposed pro-
cedure for strengthening a formula in an attempt to make it to be inductive to
the k-induction method for verifying invariants. It is shown that under certain
conditions, if the procedure for strengthening a formula does not use approxi-
mations, then the proposed procedure terminates if and only if the k-induction
method for checking whether the formula is an invariant succeeds.

2 Examples

We illustrate the problem formulation and the proposed approach using simple
illustrative examples informally presented at the source code level.

Example 1. Consider the following program fragment:

(x, y, z) ← (1, 1, 0)
while x ≤ n

do (x, y, z) ← (x + y + 2, y + 2, z + 1)

The formula x = (z+1)2 can be shown to be a loop invariant. It is, however, not
an inductive loop invariant since the verification condition (x = (z + 1)2 ∧ x ≤
n) =⇒ x+y+2 = (z +2)2 does not hold. The left-hand side of this implication
can be used to simplify its right-hand side by replacing z2 by x − 2 ∗ z − 1
and subsequent algebraic simplifications. The right-hand side then becomes y =
2 ∗ z + 1. Adding this equality as a conjunct to the loop invariant produces
x = (z + 1)2 ∧ y = 2 ∗ z + 1. Since

(x = 1 ∧ y = 1 ∧ z = 0) =⇒ (x = (z + 1)2 ∧ y = 2 ∗ z + 1),

(x = (z + 1)2 ∧ y = 2 ∗ z + 1) =⇒ (x + y + 2 = (z + 2)2 ∧ y + 2 = 2 ∗ (z + 1) + 1),

this conjunction, which is a strengthening of the original formula x = (z + 1)2,
is an inductive loop invariant implying that x = (z + 1)2 as well as y = 2 ∗ z + 1
are indeed invariants. �

As the reader would have noticed, it was possible in this case to strengthen the
original formula such that the strengthened formula is inductive. The strength-
ening was computed from the simplification of the verification condition arising
from the loop body with the expectation that this strengthening would establish
the verification condition. This process ended in 2 iterations but that need not
be the case as illustrated by the example below.

Example 2. Consider the following program fragment:

(x, y, z) ← (0, 0, 0)
while true

do (x, y, z) ← (x + 1, y + 1, z + x − y)
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Then z ≤ 0 is a loop invariant. Since z ≤ 0 �=⇒ z+x−y ≤ 0, it is not inductive.
It can, however, be strengthened to z ≤ 0 ∧ x − y ≤ 0 which is true initially as
well as preserved by the body of the loop. �

The reader would notice that in the first example, under the assumption
(x = (z + 1)2 ∧ x ≤ n), x + y + 2 = (z + 2)2 is equivalent to y = 2 ∗ z + 1.
However, in the second example, under the assumption z ≤ 0, z + x − y ≤ 0
is not equivalent to x − y ≤ 0 but rather x − y ≤ 0 =⇒ z + x − y ≤ 0. The
use of x − y ≤ 0 is an example of weak (or approximate) strengthening of the
original formula z ≤ 0. How such an approximate strengthening can be obtained
automatically is discussed in Sect. 4. If we had just strengthened the original
formula with the conclusion in the verification condition: z + x − y ≤ 0 without
approximating it by x−y ≤ 0, adding such strengthenings z+k(x−y) ≤ 0, k ≥ 1
would not terminate.

Another observation to make from the above example is that z = 0, which
is stronger than z ≤ 0 is also an invariant; this can be checked as in the first
example. The proposed procedure would compute a strengthening z = 0∧x−y =
0, which is stronger than x − y ≤ 0. But it is unable to first generate the
strengthening z = 0 of the original input formula z ≤ 0. As discussed later, the
proposed approach attempts to generate the weakest strengthening of the input
formula that is inductive.

Consider slight variations of the above examples which illustrate the cases
when the input formulas are not invariants.

Example 3. Consider a slight variation of the first example in which the assign-
ment to y is changed to y + 1.

(x, y, z) ← (1, 1, 0)
while x ≤ n

do (x, y, z) ← (x + y + 2, y + 1, z + 1)

The formula x = (z + 1)2 is not invariant any more. The verification condition
of the body of the loop generated using x = (z + 1)2 remains the same; thus
x = (z+1)2 is strengthened as in the first example to x = (z+1)2∧y = 2∗z+1.
However, the verification condition using this formula now is:

(x = (z+1)2∧y = 2∗z+1∧x ≤ n) =⇒ (x+y+2 = (z+2)2∧y+1 = 2∗(z+1)+1),

which is not valid. It is then possible to claim that the input formula is not
an invariant of the above program. In fact, a test case can be generated from
a satisfying assignment for the negated verification condition which invalidates
the alleged invariant. �

Similarly, consider the following variation of the second example.

Example 4. Is x + y + z = 0 an invariant of the loop from Example 2? The
verification condition generated from the body of the loop is

x + y + z = 0 =⇒ x + 1 + y + 1 + z + x − y = 0
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which is not valid. Simplification leads to a strengthening of the input formula
by x − y + 2 = 0; however, the initial state x = 0, y = 0, z = 0 does not satisfy
the strengthened formula any longer, implying that it is not an invariant and
hence the input formula x + y + z = 0 is also not an invariant. �

3 Preliminaries

Instead of using a specific programming language, we use a more abstract frame-
work of a transition system to which many programs can be translated easily.1

We use a signature Σ consisting of function symbols ΣF and predicate symbols
ΣP. A Σ-model A consists of a non-empty set A (the universe) and a mapping
( )A assigning to each constant symbol a ∈ ΣF an element aA ∈ A, to each
function symbol f ∈ ΣF of arity n > 0 a total function fA : An → A, to
each propositional symbol B ∈ ΣP and element bA ∈ {true, false}, and to each
p ∈ ΣP of arity n > 0 a total function pA : An → {true, false}. The mapping
( )A extends to an interpretation of terms and formulas in the usual way.

Given a signature Σ, we fix a Σ-theory Th, which is just a Σ-model A. We
denote by Φ a (yet undetermined) quantifier-free logic (i.e., subset of quantifier-
free formulas over Σ) for this theory.

Definition 5 (Transition Systems). A transition system (over the logic Φ )
S = 〈X,L, l0, τ0, T 〉 consists of:

– a set X = {x1, . . . , xn} of variables,
– a set L of locations,
– a start location l0 ∈ L,
– a formula τ0 ∈ Φ with V(τ0) ⊆ X that restricts the initial values of the

variables, and
– a set T of transitions of the form 〈l1, τ, σ, l2〉, where l1, l2 ∈ L are locations,

τ ∈ Φ is a formula with V(τ) ⊆ X, and σ : X → Terms(ΣF,X) is a variable
update.

The transition system S is conjunctive if τ0 and τ (for all 〈l1, τ, σ, l2〉 ∈ T )
are conjunctions of atomic formulas in Φ.

A configuration of S has the form 〈l,v〉 for a location l ∈ L and a valuation
v : X → A.2 We write 〈l1,v1〉 →t 〈l2,v2〉 for an evaluation step with a transi-
tion t = 〈l1, τ, σ, l2〉 if v1 satisfies τ and v2 = σ v1 (i.e., v2(x) = v1(σ(x)) for
all x ∈ X. We drop the subscript if we do not care about the used transition.
A run of S is a (finite or infinite) sequence 〈l0,v0〉 → 〈l1,v1〉 → 〈l2,v2〉 . . .
of evaluation steps such that l0 = l0 is the start location and the valuation v0

satisfies the formula τ0.
The transition system S is unconditional if τ = � for all 〈l1, τ, σ, l2〉 ∈ T . In

this paper, � denotes true and ⊥ denotes false.

1 Provided a sufficiently expressive theory is used.
2 Here, v extends to terms in the usual way.
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A transition system S ′ = 〈X,L, l0, τ′0, T ′〉 is an abstraction of another
transition system S = 〈X,L, l0, τ0, T 〉 iff (i) τ0 =⇒ τ′0 and (ii) for every
〈l1, τ, σ, l2〉 ∈ T , there is a corresponding 〈l1, τ′, σ, l2〉 ∈ T such that τ =⇒ τ′.
In particular, it is possible to define an unconditional abstraction of any transi-
tion system by just dropping all the guards τ.

Definition 6 (Invariant Map). For a given transition system, a formula map
is a function IM : L → Φ such that V(IM(l)) ⊆ X for each location l.

A formula map IM2 strengthens a formula map IM1 if IM1(l) =⇒
IM2(l) for all locations l.

A formula map IM is an invariant map if for each run 〈l0,v0〉 → 〈l1,v1〉 →
. . . and each configuration 〈li,vi〉 occurring in this run, the valuation vi satisfies
the formula IM(li).

An invariant map IM is inductive if

– τ0 =⇒ IM(l0), implying that initial states satisfy the invariant map and
– IM(l1) ∧ τ =⇒ IM(l2) σ, the verification condition, for each transition

〈l1, τ, σ, l2〉, where IM(l2) σ stands for updating variables in IM(l2) by σ.

It is easy to see that if IM is an inductive invariant map of an uncondi-
tional S, then it is also an inductive invariant map of any S ′ of which S is an
unconditional abstraction.

4 Inductive Strengthening Procedure

We present below a procedure for strengthening a given input formula map IM
with the objective of computing an inductive invariant map that strengthens
IM or declaring that IM is not an invariant map. The procedure is recursively
invoked on a strengthened formula map until

– executions of all transitions preserve it, thus declaring the strengthened for-
mula map to be an inductive invariant map and hence the original input
formula map to be an invariant map, or either

– the strengthened formula map does not hold at the initial location (i.e., for
the initial state(s)) or

– a verification condition for some transition is invalid.

In the last two cases, the strengthened formula map is not an invariant map,
thus suggesting that the original input formula map may also not be an invariant
map in case approximations are made in strengthening the formula map gen-
erated during the procedure. The strengthening procedure is not guaranteed to
terminate either.

strengthen(IM)
1 if τ0 �=⇒ IM(l0)
2 then return ⊥ � cannot compute inductive strengthening
3 elseif IM(l1) ∧ τ �=⇒ IM(l2) σ for some transition 〈l1, τ, σ, l2〉
4 then construct ψ such that IM(l1) ∧ τ ∧ψ =⇒ IM(l2) σ

5 return strengthen(IM[l1 �→ IM(l1) ∧ ψ]) � recursive call
6 else return IM � IM is inductive
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In the above procedure, line 1 tests whether the input formula map IM holds
in the initial state(s); line 3 tests the verification condition corresponding to a
transition from a location l1 to a location l2 (where l2 could be l1). The reader
should notice that the procedure is always attempting to strengthen its input by
conjoining an additional formula since the objective is to show that the original
formula map is invariant. We thus do not attempt to try formulas obtained by
weakening the input by disjuncting with formulas. If the procedure terminates
resulting in a formula map as its output, the formula map is then an inductive
invariant of the transition system; further, it implies all formula maps, including
the original input, in the recursive calls and thus they are also invariants.

The main challenge in the strengthening procedure is to compute appropriate
formulas ψ in line 4 with the following objectives:

1. The procedure should terminate on a large class of input formula maps, i.e.,
for every location l, the sequence of formulas IM(l), (IM(l)∧ψ1), (IM(l)∧
ψ1) ∧ ψ2, . . . terminates, and it is desired as well that it takes only a few
steps to converge.

2. Soundness: If the input to the procedure is not an invariant, it should ter-
minate declaring so.

3. Completeness: If the input is an invariant, then it should terminate declar-
ing so, as well as produce an inductive invariant map.

Below we discuss some possible ways to compute ψ from IM(l1), τ, and
IM(l2) σ. Leaving aside the case of making ψ false, which does not give any
information, the following possibilities are related to each other.

I. Trivial (I): Choose ψ = IM(l2) σ. While this strategy is attractive given
that ψ is likely to have the same form as IM, for most logical theories
in which the formula map is specified, this strategy is not likely to ter-
minate. However, as discussed below, many interesting properties about
strengthen(IM) can be proved using this strategy.

II. Conditional (II): ψ = (τ =⇒ IM(l2) σ). This strategy, while quite pow-
erful, is not attractive since it requires strengthening using Horn clauses
instead of atomic formulas. If invariants are specified as Horn clauses, then
this strategy can be attractive as well. However, this strategy also suffers
like the previous strategy that it is not likely to terminate.

III. Equivalent (III): ψ is an equivalent simplified form of IM(l2) σ in the
concrete logic Φ under the context of IM(l1) ∧ τ, i.e., IM(l1) ∧ τ =⇒
(IM(l2) σ ⇐⇒ ψ). Making ψ = IM(l2) σ as in Strategy I or (τ =⇒
IM(l2) σ as in Strategy II in the absence of any simplification is always
possible, implying that this strategy subsumes Strategies I and II.
In a concrete logic Φ, IM(l2) σ can typically be simplified using the context,
but the kind of equivalent simplified forms as well as the simplification
process are dependent upon Φ. It is hoped that simplification would be
helpful especially in establishing the termination of strengthen(IM).

For these first three strategies, we will show later that under certain con-
ditions, if the execution of strengthen(IM) leads to a strengthening of the
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input formula map that does not hold for the initial state, then the strength-
ened formula map is not an invariant; furthermore, it implies that the original
formula map given as the input as well as subsequent inputs to the recursive
calls strengthen(IM) are not invariants.

The fourth strategy has a different goal:

IV. Approximating IM(I2) w.r.t. IM(l1)∧τ (IV): This strategy is conservative
in contrast to the first three strategies with the main focus on ensuring
termination of strengthen(IM) by sacrificing completeness. Instead of
computing a formula equivalent to IM(l2), the context IM(l1) ∧ τ is used
in the concrete logic Φ to derive a nontrivial formula ψ (other than false)
such that IM(l1) ∧ τ =⇒ (ψ =⇒ IM(l2) σ). It is also desired that
computations of approximate ψ’s take only a few steps to converge.
It is especially useful when Φ is a quantifier-free theory of conjunctive linear
inequalities. This is discussed later in Sects. 5.2 and 6.1.
Because of approximations made in this strategy, it may not be possible to
declare from the approximated formula not being true in the initial state
that the original formula map is not an invariant.

The procedure strengthen(IM) is said to succeed on IM iff (i) it termi-
nates and (ii) either (a) declares IM to not be an invariant, or (b) produces a
strengthened formula map IM′ that implies IM and is inductive; the outcome
(ii (b) implies that IM is an invariant. strengthen(IM) is said to fail on IM
if (i) it either does not terminate or (ii) terminates at Line 2 because a formula
map does not hold in the initial state but it cannot be asserted that the formula
map is not an invariant due to approximations made.

For a given concrete logic Φ, it is assumed below that for each transition, the
hypotheses and the conclusion in a verification condition generated due to any
transition in a transition system is also in Φ; in particular, we will assume that
each τi as well as each IM(li) associated with any location li is a conjunction of
atomic formulas in Φ; furthermore, IM(li) σ is also a conjunction of atomic for-
mulas. Otherwise, it would become necessary to approximate (abstract) guards
as well as verification conditions.3

5 Application to Specific Logical Theories

In this section, we show how strengthen(IM) can be implemented for some
logics. It is easy to see that in a logic in which there are only finitely many
nonequivalent formulas constructed from a fixed vocabulary, e.g., propositional
logic, the strengthening procedure can be made to terminate using any of the
strategies. For example, for a boolean program for a hardware circuit description
[5], even when IM(l2) σ itself is used to strengthen a formula map (i.e., ψ in
the strengthening procedure is IM(l2) σ), the procedure terminates given that

3 What approximations are necessary and in what cases they must be performed
depends on the manipulation needed to compute ψ in the strengthening procedure.
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there are only finitely many states. It is further possible to simplify IM(l2) σ

using Strategy III [15].
Below, we discuss two logics which have infinitely many nonequivalent for-

mulas: (i) the quantifier-free logic of conjunctive polynomial equalities over an
algebraically closed field, and (ii) the quantifier-free logic of linear arithmetic. It
can be proved that for the quantifier-free logic of UTVPI constraints (also known
as octagonal domains [18]), the strengthen(IM) procedure terminates; we do
not provide details because of space limitations.

5.1 Polynomial Equalities

Consider the theory Φ of the quantifier-free conjunctive logic of polynomial
equalities over Q. Thus, atoms have a form p = 0 for a polynomial p over pro-
gram variables. Invariants under consideration are conjunctions of polynomial
equalities. For this theory, algorithms from computer algebra can be effectively
used; satisfiability check as well as simplification needed for various strength-
ening strategies above can be performed using Buchberger’s Gröbner Basis
algorithm [6]. We briefly review basic concepts related to Gröbner basis com-
putation; more details can be found in [8]. For the application of Gröbner basis
algorithm to automated reasoning, the reader may consult [12,15]; the use of
Gröbner basis algorithm for generating loop invariants is discussed in [14,21,22].

A Gröbner basis G of a finite set F of multivariate polynomials over the
rationals is a special finite basis of the ideal generated by F with the following
properties: (i) every polynomial simplifies to a unique normal form when the
polynomials in G are viewed as rewrite rules with their left hand sides being
the largest monomial with respect to an admissible term ordering; the normal
form of every polynomial in the ideal generated by F (and hence G) is 0, (ii)
the polynomials in F do not have a common solution (i.e., the formula (f1 =
0∧· · ·∧fk = 0), where F = {f1, · · · , fk}, is unsatisfiable) over complex numbers
if and only if G includes 1. Most importantly, G can be computed from F using
Buchberger’s completion algorithm. G can also be used to compute the number
of common solutions of F .

A Gröbner basis algorithm decides satisfiability of a finite conjunction of
polynomial equalities over the complex numbers. If a formula is shown to be
unsatisfiable by a Gröbner basis algorithm, it is unsatisfiable over integers, reals
or rationals as well but the converse is not true. Further, (f1 = 0 ∧ · · · ∧ fk =
0) =⇒ (g = 0) can be simplified to and is equivalent to (g1 = 0 ∧ · · · ∧ gl =
0) =⇒ (ḡ = 0), where G = {g1, · · · , gl} is a Gröbner basis of {f1, · · · , fk} and ḡ
is the normal form of g using G. Strategies requiring simplification of IM(l2) σ

(w.r.t. IM(l1)∧τ or just τ) can be effectively implemented using a Gröbner basis
algorithm.

We assume below that in a transition system, all formulas – the initial state,
guards, formula maps are conjunctions of polynomial equalities, and assignments
are assumed to be polynomials expressions.

A formula map holds in an initial state iff the polynomial in every poly-
nomial equality at l0 reduces to 0 using a Gröbner basis of the polynomials in
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the polynomial equalities specifying the initial state τ0. Similarly, a verification
condition IM(l1) ∧ τ =⇒ IM(l2) σ is valid iff the polynomials in polyno-
mial equalities in IM(l2) σ reduce to 0 using a Gröbner basis of polynomials
appearing in IM(l1) ∧ τ.4

To illustrate, let us revisit the first example discussed in the introduction.
Since the loop condition is not a polynomial equality, it is abstracted to be true.
The formula map x = (z + 1)2 gives the verification condition:

x = (z + 1)2 =⇒ (x + y + 2) = ((z + 1) + 1)2.

The Gröbner basis of {x = (z + 1)2} is itself using the lexicographic ordering
in which x > y > z; it can be used to simplify the conclusion giving y−2∗z−1 = 0
which cannot be simplified any further. The second call to strengthen takes
the input x = (z + 1)2 ∧ y = 2 ∗ z + 1, producing the verification condition:

(x = (z+1)2∧y = 2∗z+1) =⇒ (x+y+2 = ((z+1)+1)2)∧(y+2 = 2∗(z+1)+1).

The validity of this verification condition follows from the Gröbner basis of
{x = (z + 1)2, y = 2 ∗ z + 1} which is again itself; simplifying both polynomial
equations in the conclusion gives true.

Theorem 7. If Strategy III is implemented using Gröbner Bases as described
above, then strengthen(IM) terminates.

Proof (sketch). In order to simplify presentation, we assume for now that |L| =
|T | = 1. The proof extends to the general case without technical complications.

Assume that strengthen(IM) does not terminate. Then, we obtain an
infinite sequence

IM(l)
IM(l) ∧ ψ1

IM(l) ∧ ψ1 ∧ ψ2

...

of conjunctions of polynomial equalities. Now consider the ideals generated by
these polynomial equalities (by abuse of notation, we write 〈ϕ〉 for the ideal
generated by the polynomials p occurring in an atom p = 0 in the conjunctive
formula ϕ):

〈IM(l)〉
〈IM(l) ∧ ψ1〉
〈IM(l) ∧ ψ1 ∧ ψ2〉
...

4 Strictly speaking, Gröbner basis of the radical ideal of the polynomials is computed
for satisfiability check, since x2 = 0 =⇒ x = 0 is valid.
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Clearly, 〈IM(l)〉 ⊆ 〈IM(l) ∧ ψ1〉 ⊆ 〈IM(l) ∧ ψ1 ∧ψ2〉 ⊆ . . .. By construction,
for each polynomial p occurring in an atom p = 0 in the conjunction ψi, we
have p �∈ 〈IM(l) ∧ ψ1 ∧ . . . ∧ ψi−1〉. Therefore, 〈IM(l)〉 ⊂ 〈IM(l) ∧ ψ1〉 ⊂
〈IM(l) ∧ ψ1 ∧ψ2〉 ⊂ . . . and we obtain an infinite ascending chain of ideals.
This is impossible by Hilbert’s basis theorem. ��
Corollary 8. Any strengthening strategy that adds a finite set of polynomial
equalities to any of the formulas in IM terminates.

Proof. The proof follows from the same argument as used in the Theorem above
using Hilbert’s basis theorem. ��

From the above corollary, it follows that all strategies terminate for conjunc-
tive theory of polynomials equalities.

Corollary 9. If S is unconditional, then Strategy III using Gröbner Bases as
described above decides whether IM is an invariant map.

Proof. Easy consequence of Theorems 15 and 7. A formula map IM is not an
invariant map iff during the execution of strengthen(IM), a formula map is
generated which the initial state does not satisfy. ��

As shown later during discussing the relationship between strengthen and
k-induction, if S is not unconditional, then if strengthen fails at Line 2, it
cannot be asserted that the input formula is not an invariant.

5.2 Linear Arithmetic

Consider Φ to be the quantifier-free logic of linear arithmetic over Z (or Q or
R) with atomic formulas of the form

(∑
x∈X ax ∗ x

)
+ c ≥ 0, where ax, c ∈ Z.

Furthermore, each x also ranges over Z. It is unclear how simplification can be
performed in this logic to implement Strategy III; augmenting IM(l2) σ to the
formula map as in Strategy I often leads to strengthen not terminating as
is evident from the second example in the introduction: strengthening after k
iterations generates a formula map

∧n
k=0 z + k(x − y) ≤ 0.

There can be, however, many different heuristics to perform approximation
of IM(l2) σ w.r.t. IM(l1) ∧ τ, i.e., Strategy IV.

Assume two conjunctive formulas ξ and χ (w.l.o.g we can assume that ξ =
(p1 ≥ 0 ∧ . . . ∧ pn ≥ 0) and χ = (q1 ≥ 0 ∧ . . . ∧ qm ≥ 0) for linear polynomials
pi and qj). To find ψ such that ξ ∧ ψ =⇒ χ, consider a linear template for
ψ =

((∑
x∈X ax ∗ x

)
+ c ≥ 0

)
where the ax and c are parameters whose value

needs to be determined.5 The objective is to find values for the ax and c such
that

p1 ≥ 0 ∧ . . . ∧ pn ≥ 0 ∧
(
∑

x∈X

ax ∗ x

)

+ c ≥ 0 =⇒ q1 ≥ 0 ∧ . . . ∧ qm ≥ 0,

5 It would also be possible to let ψ be a conjunction of such atoms.
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This implication is equivalent to:

p1 ≥ 0 ∧ . . . ∧ pn ≥ 0 =⇒ (q1 ≥ 0 ∧ . . . ∧ qm ≥ 0) ∨ ¬
((
∑

x∈X

ax ∗ x

)

+ c ≥ 0

)

and

p1 ≥ 0 ∧ . . . ∧ pn ≥ 0 =⇒ (q1 ≥ 0 ∧ . . . ∧ qm ≥ 0) ∨
((
∑

x∈X

−ax ∗ x

)

− c > 0

)

.

As discussed in [13,14], quantifier elimination in which program variables
x ∈ X are eliminated can be performed, resulting in constraints on parameters
c, αx such that every value of these parameters satisfying these constraints give a
candidate ψ. Often, it is possible to find the strongest possible ψ if all solutions
to the constraints on parameters can be finitely described.

Below we discuss a simple heuristic based on Farkas’ lemma. Since there are
versions of Farkas’ lemma dealing with strict linear inequalities, this heuristic
works on linear inequalities over rationals (Q) and reals (R) as well.

Computing Approximation Using Farkas’ Lemma. The above implication
follows from a conjunction of the following implications for 1 ≤ i ≤ m.

p1 ≥ 0 ∧ . . . ∧ pn ≥ 0 =⇒ qi ≥ 0 ∨
(

∑

x∈X

−ax ∗ x

)

− c > 0

The above problem can be further simplified using another heuristic by
replacing a disjunction a ≥ 0 ∨ b ≥ 0 by a + b ≥ 0 since a + b ≥ 0 =⇒
(a ≥ 0 ∨ b ≥ 0) (as done in [17]). Applying this heuristic on the above formulas
results in stronger requirements (for each 1 ≤ i ≤ m):

p1 ≥ 0 ∧ . . . ∧ pn ≥ 0 =⇒ q1 +

(
∑

x∈X

−ax ∗ x

)

− c > 0

...

p1 ≥ 0 ∧ . . . ∧ pn ≥ 0 =⇒ qm +

(
∑

x∈X

−ax ∗ x

)

− c > 0

For illustration, consider the second example in the introduction. Starting with
the formula z ≤ 0, the verification condition corresponding to the body of the
loop is z ≤ 0 =⇒ (z + x − y ≤ 0) which is not valid. We wish to compute as
general a ψ as possible such that (z ≤ 0∧ψ) =⇒ (z +x− y ≤ 0). Applying the
above heuristic, we have z ≤ 0 =⇒ ((z+x−y ≤ 0)∨(−az−bx−cy−d < 0), where
ψ : (az+bx+cy+d) ≤ 0. Eliminating ∨ using the heuristic that (m+n ≤ 0) =⇒
(m ≤ 0∨n ≤ 0), we have z ≤ 0 =⇒ (((−a+1)z+(−b+1)x+(−c−1)y)−d < 0,
from which a = 0, b = 1, c = −1, d > 0 can be derived as a possible solutions,
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giving ψ : x − y ≤ 0. Examples in [3] which cannot be solved using the IC3
approach [2], can be done using the proposed approach and the above heuristic
for approximating strengthenings.

We are currently investigating various heuristics for computing ψ’s so that
strengthen converges and works for most cases, as well as comparing their
performance vis a vis invariant checking.

6 k-Induction and Strengthening

The above definition of an invariant map being inductive is based on the prin-
ciple of mathematical induction on the length of a sequence of transitions in
computations. Further, a single hypothesis is used in a proof of an induction
step: namely, if an invariant map holds at a particular location l1, and there is a
transition at that location to another location l2, then the invariant map holds
in the newly updated state at l2. Assuming that an invariant map holds in the
initial state l0 and using such a single step transition, it follows that the invariant
map holds at all locations reachable from l0 in finitely many transitions.

There are, however, more general versions of an induction proof rule on nat-
ural numbers in which a proof of an induction step is attempted using many
induction hypotheses: the principle of complete induction (also called strong
induction or total induction) uses a property for all numbers < m+1 as induction
hypotheses (or just k numbers immediately preceding m + 1) while attempting
a proof of the property for m + 1. For loop programs, this amounts to proving
a property holds for first k iterations (including no execution) of the body of
the loop), and then to prove that the property holds for the (m + 1)th itera-
tion of the body of the loop assuming that the property held for the previous k
iterations. In the context of a transition system, this amounts to first showing
that a formula map is preserved for all transition sequences of length ≤ k, and
then proving that it holds for an arbitrary transition in a transition sequence of
length > k, assuming it held for the previous k transitions.

Definition 10 (k-Inductive Invariant Map). Let k ≥ 1. Then an invariant
map IM is k-inductive if

– (base cases):
for each sequence 〈l1, τ1, σ1, l2〉, 〈l2, τ2, σ2, l3〉, . . . , 〈lk, τk, σk, lk+1〉 of transitions
with l1 = l0,

τ
0 =⇒ IM(l1)

τ
0 ∧ τ1 =⇒ IM(l2)ϑ1

τ
0 ∧ τ1 ∧ τ2ϑ1 =⇒ IM(l3)ϑ2

...

τ
0 ∧ τ1 ∧ τ2ϑ1 ∧ . . . ∧ τk−1ϑk−2 =⇒ IM(lk)ϑk−1
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– (step case):
for each sequence 〈l1, τ1, σ1, l2〉, 〈l2, τ2, σ2, l3〉, . . . , 〈lk, τk, σk, lk+1〉 of transitions,

IM(l1) ∧ τ1 ∧ IM(l2)ϑ1 ∧ τ2ϑ1 ∧ IM(l3)ϑ2 ∧ . . . ∧ IM(lk)ϑk−1 ∧ τkϑk−1

=⇒ IM(lk+1) ϑ
k

Here, ϑi for 1 ≤ i ≤ k denotes the variable update with ϑi(x) = x σ1 · · · σi. Note
that the notions of “inductive” and “1-inductive” coincide.

The following procedure can determine if a given formula map IM is k-
inductive for some k ≥ 0 for a given transition system; if such a k is found, then
IM is indeed an invariant map. It is proved below that a formula map IM
could be an invariant but it is not k-inductive for any k ≥ 0.

k-induction(IM)
1 k ← 1
2 while true
3 do if IM is k-inductive
4 then return k
5 elseif a base case fails
6 then return ⊥ � IM is not an invariant map
7 else k ← k + 1

The procedure k-induction is said to succeed if it either declares that IM
is not an invariant map or it returns a positive number k declaring that IM
is k-inductive. The procedure may not terminate however. Unlike strengthen
which can fail also because of approximations, the only way the above procedure
fails is if it does not terminate.

If a transition system allows only transition sequences up to some predeter-
mined fixed length n, then the above procedure is a decision procedure since
it always terminates in ≤ n steps as it would have exhausted all possible tran-
sition sequences of the transition system. In contrast, strengthen attempts
to compute the weakest inductive invariant map of a given transition system
that implies the input formula map under the assumption the input is indeed an
invariant map of the transition system. If the relation computed by a transition
system is a relatively small finite table, then k-induction is likely to perform
better than strengthen because of the exhaustive search being performed by
k-induction.

The following theorem shows that there is a direct relationship between
checking whether a formula map IM being k-inductive for some k and strength-
ening of IM using strengthen with respect to various strategies.

Theorem 11. Using Strategy I in strenghten,

1. k-induction(IM) succeeds if strengthen(IM) succeeds.
2. If S is unconditional, k-induction(IM) succeeds iff strengthen(IM)

succeeds.
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3. If S is unconditional and strengthen(IM) = ⊥, then IM is not an invari-
ant map.

The above theorem is generalized further to Theorem15 using Strategy III
by instantiating ψ to be IM(l2) σ. Its proof is thus omitted.

The following example shows that the converse of 1 in the above theorem
does not hold, i.e., strengthen may fail in cases where k-induction succeeds
if ψ = IM(l2) σ is taken. The reason is that a loop body is never executed for
a nonempty subset of initial states for which the guard associated with the loop
does not hold.

Example 12. Consider the transition system with X = {x, y}, L = {l}, l0 = l,
τ0 = (x = y ∨ x = y + 2), and T = {〈l, x ≤ y + 1, σ, l〉} with σ = {x �→ x + 2}.
Let IM be the invariant map with IM(l) = (y ≤ x ∧ x ≤ y + 2). Then IM is
2-inductive since

(x = y ∨ x = y + 2) =⇒ IM(l)
(x = y ∨ x = y + 2) ∧ x ≤ y + 1 =⇒ IM(l) σ

IM(l) ∧ x ≤ y + 1 ∧ IM(l) σ ∧x + 2 ≤ y + 1 =⇒ IM(l)σ2

are valid (where the last implication is valid since its left-hand side is unsatisfi-
able). On the other hand strengthen(IM) fails. Since

IM(l) ∧ x ≤ y + 1 �=⇒ IM(l) σ

strengthen(IM) causes a recursive call to strengthen(IM[l �→ IM(l)∧y ≤
x + 2 ∧ x + 2 ≤ y + 2]). This recursive call returns ⊥ since

(x = y ∨ x = y + 2) �=⇒ IM(l) ∧ y ≤ x + 2 ∧ x + 2 ≤ y + 2

is not valid (take, e.g., x = 2 and y = 0). The reader would notice that the
guard x ≤ y + 1 is true only for a subset of initial states satisfying x = y ∨ x =
y + 2. If those states are pruned, the subset of initial states is x = y for which
strengthen does terminate giving an inductive invariant x = y which implies
y ≤ x ∧ x ≤ y + 2. �

Example 12 can also be slightly simplified in order to use only polynomial
equalities for similar reasons as in the previous example.

Example 13. Consider the transition system with X = {x, y}, L = {l}, l0 = l,
τ0 = ((x − y) ∗ (x − y − 2) = 0), and T = {〈l, (x − y) ∗ (x − y − 1) = 0, σ, l〉} with
σ = {x �→ x + 2}. Let IM be the invariant map with IM(l) = ((x − y) ∗ (x −
y − 1) ∗ (x − y − 2) = 0). Then IM is 2-inductive since

(x − y) ∗ (x − y − 2) = 0 =⇒ IM(l)

(x − y) ∗ (x − y − 2) = 0 ∧ (x − y) ∗ (x − y − 1) = 0 =⇒ IM(l) σ

IM(l) ∧ (x − y) ∗ (x − y − 1) = 0 ∧ IM(l) σ ∧(x − y + 2) ∗ (x − y + 1) = 0 =⇒ IM(l)
2
σ



When Is a Formula a Loop Invariant? 279

are valid (where the last implication is valid since its left-hand side is unsatisfi-
able). On the other hand strengthen(IM) fails. Since

IM(l) ∧ (x − y) ∗ (x − y − 1) = 0 �=⇒ IM(l) σ

strengthen(IM) causes a recursive call to strengthen(IM[l �→ IM(l) ∧
(x − y + 2) ∗ (x − y + 1) ∗ (x − y) = 0]). This recursive call returns ⊥ since

(x − y) ∗ (x − y − 2) = 0 �=⇒ IM(l) ∧ (x − y + 2) ∗ (x − y + 1) ∗ (x − y) = 0

is not valid (take, e.g., x = 2 and y = 0). As in Example 12, in this case, if the
initial state(s) are pruned by the guard, then strengthen succeeds: (x − y) ∗
(x − y − 2) = 0 ∧ (x − y) ∗ (x − y − 1) = 0 simplifies to x − y = 0. The invariant
map generated then is x−y = 0 implying ((x−y)∗ (x−y −1)∗ (x−y −2) = 0).

�

The same example also shows that strengthen may fail in cases where
k-induction succeeds if ψ is obtained from IM(l2) σ by nontrivial equivalent
simplification w.r.t IM(l1) ∧ τ, i.e., if Strategy III is followed. However, once
again, if initial states are pruned using the guards, then the following example
works if Strategy III is followed. As shown in a later theorem, if the guard is
also incorporated in strengthening as is the case in conditional Strategy II, then
the two approaches are equivalent.

Example 14. Consider the transition system from Example 12 again. Simplifying
the formula IM(l) σ = (y ≤ x + 2 ∧ x + 2 ≤ y + 2) w.r.t. IM(l) ∧ τ = (y ≤
x ∧ x ≤ y + 2 ∧ x ≤ y + 1) gives, e.g., x = y. But (x = y ∨ x = y + 2) �=⇒ x = y.

�

Theorem 11 is generalized below where ψ is computed using Strategy III since
it can be obtained as a corollary if ψ below is instantiated to be IM(l2) σ.

Theorem 15. Assume that ψ is chosen in line 4 of strenghten such that
IM(l1) ∧ τ =⇒ (IM(l2) σ ⇐⇒ ψ), i.e., Strategy III is followed. Then

1. k-induction(IM) succeeds if strengthen(IM) succeeds.
2. If S is unconditional, k-induction(IM) succeeds iff strengthen(IM)

succeeds.
3. If S is unconditional and strengthen(IM) = ⊥, then IM is not an invari-

ant map.

Proof (sketch). In order to simplify presentation, we again assume that |L| =
|T | = 1. The proof extends to the general case without technical complications.

Thus, let T = 〈l, τ, σ, l〉. For the first statement, we show that the obliga-
tions generated at recursion depth k in strengthen(IM) are stronger than
the obligations generated in iteration k of k-induction(IM).
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For iteration k of k-induction(IM) to succeed,

τ0 =⇒ IM(l)

τ0 ∧ τ =⇒ IM(l) σ

τ0 ∧ τ ∧ τσ =⇒ IM(l)σ2

...

τ0 ∧ τ ∧ τ σ ∧ . . . ∧ τσk−1 =⇒ IM(l)σk−1

IM(l) ∧ τ∧IM(l) σ ∧ τ σ ∧IM(l)σ2 ∧ . . . ∧ IM(l)σk−1 ∧ τ σk−1

=⇒ IM(l)σk

need to be valid. For strengthen(IM) to succeed at recursion depth k,

τ0 =⇒ IM(l) ∧ ψ1 ∧ . . . ∧ ψk−1

IM(l) ∧ ψ1 ∧ . . . ∧ ψk−1 ∧ τ =⇒ IM(l) σ ∧ψ1 σ ∧ . . . ∧ ψk−1 σ

need to be valid, where IM(l)∧ψ1 ∧ . . .∧ψi−1 ∧ τ =⇒ (IM(l) σ ∧ψ1 σ ∧ . . .∧
ψi−1 σ ⇐⇒ ψi).

Using the conditions on the ψi imposed during their construction, it is now
relatively easy to see that the first k implications for k-induction(IM) are
valid if the first implication for strengthen(IM) is valid. Similarly, validity of
the last implication for k-induction(IM) follows from validity of the second
implication for strengthen(IM). For unconditional systems, τ = � and valid-
ity of the implications for k-induction(IM) implies validity of the implications
for strengthen(IM) and the second statement follows.

For the third statement, assuming that τ = �, we show below that if ψ is
IM(l2) σ in every step, the statement holds; that would imply that the statement
also holds if ψ is a simplification of IM(l2) σ using IM(l1).

Let strengthen(IM) = ⊥. Thus, τ0 �=⇒ IM(l) ∧ IM(l) σ ∧IM(l) σ2 ∧
. . .∧IM(l) σk−1 for some k ≥ 1 but τ0 =⇒ IM(l)∧IM(l) σ ∧IM(l) σ2 ∧ . . .∧
IM(l) σk−i for all i ≥ 2. Thus, there is a run of S (of length k − 1) leading to a
state not satisfying IM(l), i.e., IM(l) is not an invariant of S. ��
Theorem 16. Assume that ψ = (τ =⇒ IM(l2) σ) is chosen in line 4 of
strengthen, i.e., Strategy II is followed. Then

1. k-induction(IM) succeeds iff strengthen(IM) succeeds.
2. If strengthen(IM) = ⊥, then IM is not an invariant map.

Proof (sketch). As before, in order to simplify presentation, we assume for now
that |L| = |T | = 1. The proof extends to the general case without technical
complications.

Thus, let T = 〈l, τ, σ, l〉. For the first statement, we show that the obligations
generated at recursion depth k in strengthen(IM) following Strategy II are
equivalent to the obligations generated in iteration k of k-induction(IM).
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For iteration k of k-induction(IM) to succeed,

τ0 =⇒ IM(l)

τ0 ∧ τ =⇒ IM(l) σ

τ0 ∧ τ∧ τ σ =⇒ IM(l)σ2

...

τ0 ∧ τ ∧ τ σ ∧ . . . ∧ τ σk−2 =⇒ IM(l)σk−1

IM(l) ∧ τ ∧IM(l) σ ∧ τ σ ∧IM(l)σ2 ∧ . . . ∧ IM(l)σk−1 ∧ τ σk−1

=⇒ IM(l)σk

need to be valid. For strengthen(IM) to succeed at recursion depth k,

τ0 =⇒ ξ0 ∧ ξ1 ∧ ξ2 ∧ . . . ∧ ξk−1

ξ0 ∧ ξ1 ∧ ξ2 ∧ . . . ∧ ξk−1 ∧ τ =⇒ ξ0 σ ∧ξ1 σ ∧ξ2 σ ∧ . . . ∧ ξk−1 σ

need to be valid where ξ0 = IM(l) and ξi+1 = (τ =⇒ ξi σ) for all i ≥ 0. Here,
the first implication can easily be seen to be equivalent to the conjunction of the
first k implications for k-induction(IM). Since ξi+1 ∧ τ =⇒ ξi σ, the second
implication is equivalent to

ξ1 ∧ ξ2 ∧ . . . ∧ ξk−1 ∧ τ =⇒ ξk−1 σ

It is now easy to see that this implication is equivalent to the final implication
for k-induction(IM).

For the second statement, the proof is similar to the proof of the third state-
ment in Theorem 15 (with ξi instead of IM(l) σi). ��

6.1 Strategy Approximation (IV) Can Often Be Effective

As shown above, Strengthen (as well as k-induction) need not termi-
nate using the first three strategies if invariants are specified in richer logics
including Presburger arithmetic. Interestingly, as the following example shows,
strengthen may succeed in cases where k-induction fails if ψ is approxi-
mated instead of using IM(l2) σ when simplified using the context IM(l1) ∧ τ,
i.e., if Strategy IV is followed. We consider this as one of the major advantages
of using strengthen instead of k-induction even for program analysis.

Example 17. Consider the transition system with X = {x, y}, L = {l}, l0 = l,
τ0 = (x = 0 ∧ y = 0), and T = {〈l,�, {x �→ x + y, y �→ 2 ∗ y}, l〉}. Let IM be
the invariant map with IM(l) = (x ≥ 0). Then IM is not k-inductive for any
k ≥ 1 since

x ≥ 0 ∧ x + y ≥ 0 ∧ x + 3 ∗ y ≥ 0 ∧ . . . ∧ x + (2k−1 − 1) ∗ y ≥ 0

=⇒ x + (2k − 1) ∗ y ≥ 0

is not valid for any k ≥ 1 (e.g., if x = 2k−1 − 1 and y = −1).
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Using approximation (Strategy IV), strengthen(IM) succeeds after one
recursive call if ψ is obtained by approximating IM(l) σ by w.r.t. IM(l) ∧ τ:
IM(l) σ = (x+y ≥ 0) and IM(l)∧τ = (x ≥ 0). Using the approach described in
Sect. 5.2, ψ = (y ≥ 0). The strengthened invariant map IM(l) = (x ≥ 0∧y ≥ 0)
is inductive.

It is obvious that the transition system is not doing anything interesting
since in every configuration (state), x = 0 ∧ y = 0. From x = 0, the inductive
invariant x = 0 ∧ y = 0 can be easily generated by strengthen using Strategy
I or II as well k-inductive. Starting with x ≥ 0 causes nontermination of both
strengthen and k-inductive however because neither procedure is able to
strengthen x ≥ 0 to x ≥ 0 ∧ −x ≥ 0 first. �

All examples in [3] in which invariants are expressed in linear arithmetic can
be easily done using Strategy IV; this is in contrast to the IC3 approach which
cannot handle such examples.

This observation raises many interesting issues for further research. Particu-
larly, how can approximations be developed for various logical theories to gen-
erate formulas which are not necessarily equivalent to a given formula subject
to a context, such that strengthen terminates, i.e., successive approximations
converge?

7 Related Work

We were unable to locate any work in literature that focussed on the issue of
deciding whether a given formula is a program invariant at one of its locations
even though there appears to be hints of posing this problem in [5]. There is,
however, a strong relationship between this problem and the automatic invari-
ant generation problem, especially if the strongest possible invariants of certain
shape (equivalently from a particular logical theory) can be generated by an
automatic invariant generation procedure; in that case, for a formula sharing
the shape can be an invariant only if it is implied by the strongest invariant.
Instead of reviewing the literature on automatic invariant generation for pro-
grams, we focus below on approaches that start with a nontrivial candidate
invariant in an attempt to generate an inductive invariant from it as that is a
useful heuristic for showing whether the candidate invariant is an invariant.

In [20], Pasareanu and Visser presented an incremental strengthening method
for generating inductive invariants from post conditions. They combined predi-
cate abstraction and symbolic execution for strengthening, which employs gen-
eralization by considering only those predicates which are common across loop
iterations. They seemed to be the first one to have suggested iterative strength-
ening for inductive invariant generation even though there are similar hints for
a strategy based on strengthening in [16].
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The research reported in this paper was triggered after reading [5].6 We
however addressed a different problem, namely, how it can be determined that
an alleged property (or annotation) about a program is indeed an invariant at
a given location and whether we could develop a decision procedure for this
problem for a subclass of logical theories. Apparently unaware of [20], Bradley
proposed a strengthening approach for generating inductive invariants in [4] in
which inductive strengthenings are computed relative to a property (from the
previous loop iteration); as in [20], generation of strengthenings could also take
into account a post condition. Bradley subsequently proposed a related app-
roach for hardware circuit analysis and implemented it in IC3 [2]. The new
idea requires generating a counter-example as the negation of a boolean clause,
during an attempt to show the validity of a verification condition, generalize
that counter-example by successively dropping literals from the clause by check-
ing whether all such counter-examples can be eliminated, thus computing a
strengthening which is propagated forward (since counter-examples may have to
be traced back for elimination). This approach is claimed by Bradley7 to be an
incremental invariant generation method using a mixture of bottom-up and top-
down approaches for generating strengthening using both forward and backward
propagation. Bradley’s method was improved upon in [19] and called property
directed reachability framework.

The proposed approach in contrast is different; it is based on forward rea-
soning much like abstract interpretation. In contrast to IC3, it does not use
any counter-examples from verification conditions that cannot be established
to rule out states one by one; rather it repeatedly tries to strengthen candi-
date invariants so that the verification conditions from the previous round can
be established, to work toward the strengthened candidate becoming inductive.
The following example from Bradley’s survey paper [3] illustrates the difference
between the power of the proposed approach in contrast to the IC3 approach.8

Example 18. The objective is to decide whether P : y ≥ 1 is an invariant for the
following loop:

(x, y) ← (1, 1)
while ∗

do (x, y) ← (x + y, y + x)

P holds in the initial state. The only verification condition is: y ≥ 1 =⇒ y+x ≥
1; the approximation method discussed in Sect. 4 will generate x ≥ 0 as the
strengthening;9 however, we consider other strategies, particularly Strategy I.

6 We thank John Cochran for bringing that paper to our attention and collaborating
with us during the initial stages of this research activity.

7 See http://theory.stanford.edu/∼arbrad/ic3.txt.
8 It is shown in [3] how a template based approach for generating linear inequalities can

be augmented to generate strengthings from counter-examples. Using this extension,
it is possible to Example 18.

9 All other examples in [3] can also be successfully done using Strategy IV.

http://theory.stanford.edu/~arbrad/ic3.txt
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The candidate invariant is strengthened to (y ≥ 1 ∧ y + x ≥ 1); it holds in
the initial state; the verification condition using this strengthened candidate is:
(y ≥ 1 ∧ y + x ≥ 1) =⇒ (y + x ≥ 1 ∧ 2(x + y) ≥ 1) which is valid, which
establishes that (y ≥ 1 ∧ y + x ≥ 1) and hence y ≥ 1 are invariants. �

There have recently been proposals to extend the IC3 framework to deal with
QFLA [1,7,10] and apply it for software analysis. As commented in [7], extend-
ing the IC3 framework to infinite state systems is nontrivial unless quantifier
elimination to remove the primed variables (variables in the next transition) is
used. Most extensions thus use interpolants and (approximate) quantifier elimi-
nation to compute preimages and counter-examples. Termination of the extended
procedures is also an issue. Comparison of these extensions with the proposed
approach needs to be investigated.

Dillig et al. [9] proposed an abduction based lazy guess-and-check approach
and used quantifier-elimination over Presburger arithmetic to generate strength-
enings. Their approach is also goal-directed since they start backwards from a
given post condition of a program and generate candidate invariants using post
condition and the loop test. Their approach is also iterative. However, instead of
computing the weakest precondition of the loop body, they compute strength-
enings by performing quantifier-elimination of as large a subset of variables as
possible from a verification condition that does not hold along some path. Since
there is no guarantee that the result can lead to an invariant, their procedure
must backtrack and try different subsets of variables for quantifier elimination.
Further, their procedure need not terminate; particularly there is no termina-
tion proof for any logical theory in [9]. It is also unclear whether their procedure
can detect whether a post condition could never be met by a program. Since
they perform quantifier elimination, their procedure can generate invariants of
arbitrary boolean structure if it succeeds. As shown in [14], quantifier elimina-
tion can be used to generate linear invariants in which program variables are
eliminated to identify constraints on parameters used in a template to specify
candidate invariants; so it is no surprise that quantifier elimination can be used
for strengthening as well. In contrast, the proposed approach does not need any
backtracking. Most importantly, it gives a decision procedure for theories which
do not admit infinite chains of stronger formulas (ordered by implication order-
ing). In certain cases (since polynomial equalities can simulate disjunctions (see
Example 13)), the proposed approach can also generate disjunctive invariants.

Most related works also have heuristics for strengthening which can be used
in the proposed strengthen procedure to approximate ψ in Strategy IV.

Except for Zhihai and Kapur [23] which proposed the notion of inner-invari-
ant, which is the formula after the loop test in a loop that is invariant, we were
unable to find any literature on generation of invariants that are not inductive.
An inner-invariant formula associated with a loop, if strong enough, is typically
not an inductive invariant since it is not preserved during the last iteration of a
terminating loop. The paper discussed how such noninductive invariants can be
generated using template based approach first introduced in [13] (see also [14]).
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8 Conclusions

This paper addresses a fundamental question in program analysis: whether a
formula associated with a program location in a program is invariant or not. It
is obvious that this check cannot be performed by testing; a test can only tell if
a formula is not an invariant whereas it cannot tell whether it is an invariant.

It is proved that for the quantifier-free theory of conjunctive polynomial
equalities, there is a decision procedure under certain cases. For other theories,
we are unable to get a decision procedure; however, we propose heuristics using
which it can often be determined whether a given formula is an invariant or not.
While performing this check, the proposed procedure also generates an induc-
tive invariant which implies the formula in case of it being an invariant. The
procedure is iterative: it attempts to check whether a given formula is inductive
invariant; if it succeeds, then it terminates declaring the formula to be an invari-
ant; otherwise, it attempts to strengthen the given formula so that a verification
condition along a program path involving the location of the invariant can be
established. Different strengthening strategies are discussed and their relation-
ship to k-inductive method for checking formulas to be invariant is explored.

The focus in the paper is on formulas which are conjunctions of atomic for-
mulas from a given logical theory. The approach is general and can, in principle,
handle formulas with any boolean structure insofar as it is possible to generate
suitable strengthenings in strengthen.

The proposed approach is discussed starting with a formula alleged to be
an invariant by forward reasoning. It should however be possible to extend the
approach so that it can be directed to achieve a post condition associated with
a program by incorporating backward reasoning.
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Abstract. Generic proof scores for the generate & check method in
CafeOBJ are described. The generic proof scores codify the generate &
check method as parameterized modules in the CafeOBJ language inde-
pendently of specific systems to which the method applies. Basic proof
scores for a specific system can be obtained by instantiating the formal
parameter modules of the parameterized modules with the actual spec-
ification modules of the specific system. The effectiveness of the generic
proof scores is demonstrated by applying them to a couple of non-trivial
examples.

1 Introduction

Constructing specifications and verifying them in the upstream of system devel-
opment are still most important challenges in system development and engi-
neering. It is because many critical defects are caused at the phases of domain,
requirement, and design specifications. Proof scores are intended to meet these
challenges [8,9].

A system and the system’s properties are specified in an executable algebraic
specification language (CafeOBJ [3] in our case). Proof scores are described also in
the same specification language for checking whether the specifications imply the
supposed properties. Specifications and proof scores are expressed in equations,
and the checks are done by reduction with the equations. The logical soundness
of the checks is guaranteed by the fact that the reductions are consistent with
the equational reasoning with the equations [11].

The concept of proof supported by proof scores is similar to that of LP [14].
Proof scripts written in tactic languages provided by theorem provers such as
Coq [6] and Isabelle/HOL [18] have similar nature as proof scores. However,
proof scores are written uniformly with specifications in an executable algebraic
specification language and can enjoy a transparent, simple, executable, and effi-
cient logical foundation based on the equational and rewriting logics [11,17].

The generate & check method is a theorem proving method for transition
systems based on (1) generation of finite state patterns that cover all possible
infinite states, and (2) checking the validity of verification conditions for each
element of the finite state patterns [10]. The state space of a transition system is

c© Springer International Publishing Switzerland 2015
N. Mart́ı-Oliet et al. (Eds.): Meseguer Festschrift, LNCS 9200, pp. 287–310, 2015.
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defined as a quotient set (i.e. a set of equivalence classes) of terms of a topmost
sort State, and the transitions are defined with conditional rewrite rules over
the quotient set. A property to be verified is either (1) an invariant (i.e. a state
predicate that is valid for all reachable states) or (2) a (p leads-to q) property for
two state predicates p and q, where (p leads-to q) means that from any reachable
state s with (p(s) = true) the system will get to a state t with (q(t) = true)
no matter what transition sequence is taken.

The generate & check method is already described in [10], and this paper’s
contribution is the development of the generic proof scores as parameterized
modules that codify the method. Modularization via parameterization of proof
scores is crucial because (a) it helps to identify reusable proof scores, (b) it helps
to give good structures to proof scores, and (c) (a) & (b) make proof scores
easy to understand and flexible enough for transparent interactive deduction via
reductions and modifications (i.e. interactive verification).

The rest of the paper is organized as follows. Section 2 digests preliminary
materials from [10]. Section 3 presents the generic proof scores for the generate
& check method. Section 4 presents the system and property specifications of
QLOCK (a mutual exclusion protocol). Section 5 describes the development of
the QLOCK proof scores using the generic proof scores presented in Sect. 3.
Section 6 presents related works, some features of the method and the generic
proof scores including a sketch of the ABP case, and future issues.

2 Preliminaries

2.1 Transition Systems

A transition system is defined as a three tuple (St ,Tr , In). St is a set of states,
Tr ⊆ St × St is a set of transitions on the states, and In ⊆ St is a set of initial
states. (s, s′) ∈ Tr denotes a transition from state s to state s′. A sequence of
states s1s2 · · · sn with (si, si+1) ∈ Tr for each i ∈ {1, · · · , n − 1} is defined to
be a transition sequence. Note that any s ∈ St is defined to be a transition
sequence of length 1. A state sr ∈ St is defined to be reachable iff (if and only
if) there exists a transition sequence s1s2 · · · sn with sn = sr for n ∈ {1, 2, · · · }
such that s1 ∈ In. A state predicate p (i.e. a function from St to Bool) is defined
to be an invariant (or an invariant property) iff (p(sr) = true) for any reachable
state sr. Let Σ = (S,≤, F ) be a regular order-sorted signature [13] with a set
of sorts S, and let X = {Xs}s∈S be an S-sorted set of variables. Let TΣ(X) be
an S-sorted set of Σ(X)-terms, let TΣ(X)s be a set of Σ(X)-terms of sort s,
let E be a set of Σ(X)-equations, and let (Σ,E) be an equational specification
with a unique topmost sort (i.e. a sort without subsorts) State. Let θ ∈ TΣ(Y )X

be a substitution (i.e. a map) from X to TΣ(Y ) for disjoint X and Y then θ
extends to a morphism from TΣ(X) to TΣ(Y ), and t θ is the term obtained by
substituting x ∈ X in t with x θ. Let tr = (∀X)(l → r if c) be a rewrite rule
with l, r ∈ TΣ(X)State and c ∈ TΣ(X)Bool, then tr is called a transition rule



Generic Proof Scores for Generate & Check Method in CafeOBJ 289

and defines the one step transition relation →tr∈ TΣ(Y )State × TΣ(Y )State for
Y being disjoint from X as follows.

(s →tr s′) def= (∃θ ∈ TΣ(Y )X)((s =E l θ) and (s′ =E r θ) and (c θ =E true))

Note that =E is understood to be defined with ((Σ ∪ Y ), E) by considering
y ∈ Y as a fresh constant if Y is not empty. Let TR = {tr1, · · · , trm} be a
set of transition rules, let →TR

def=
⋃m

i=1→tri
, and let In ⊆ (TΣ)State/(=E)State.

In is assumed to be defined via a state predicate init that is defined with E,
i.e. (s ∈ In) iff (init(s) =E true). Then (Σ,E,TR) defines a transition system
((TΣ)State/(=E)State,→TR, In).1 A specification (Σ,E,TR) is called a transition
specification.

2.2 Verification of Invariant Properties

Let TS = (St ,Tr , In) be a transition system, let p1, p2, · · · , pn (n ∈ {1, 2, · · · })
be state predicates of TS , and let inv(s) def= (p1(s) and p2(s) and · · · and pn(s))
for s ∈ St .

Lemma 1 (Invariant Lemma). The following three conditions are sufficient for
a state predicate pt to be an invariant.

(1) (∀s ∈ St)(inv(s) implies pt(s))
(2) (∀s ∈ St)(init(s) implies inv(s))
(3) (∀(s, s′) ∈ Tr)(inv(s) implies inv(s′)) �

A predicate that satisfies the conditions (2) and (3) like inv is called an
inductive invariant. If pt itself is an inductive invariant then taking p1 = pt

and n = 1 is enough. However, p1, p2, · · · , pn (n > 1) are almost always needed
to be found for getting an inductive invariant, and to find them is the most
difficult part of the invariant verification.

2.3 Verification of (p Leads-to q) Properties

Invariants are fundamentally important properties of transition systems. They
are asserting that something bad will not happen (i.e. safety property). However,
it is sometimes also important to assert that something good will surely happen
(i.e. liveness property).

Let TS = (St ,Tr , In) be a transition system, and let p, q be predicates with
arity (St ,Data) of TS , where Data is a data sort needed to specify p, q.2 A
transition system is defined to have the (p leads-to q) property iff the system
will get to a state t with q(t, d) from a state s with p(s, d) no matter what
1 (TΣ)State/(=E)State is better to be understood as TΣ/=E , for usually the sort State

can only be understood together with other related sorts like Bool, Nat, Queue, etc.
2 We may need some Data for specifying a predicate on a transition system like “the

agent with the name N is working” where N is Data.
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transition sequence is taken.3 The (p leads-to q) property is a liveness property,
and is adopted from the UNITY logic [4].

Lemma 2 (p leads-to q). Based on the original transition system TS = (St ,Tr ,
In), let Ŝt def= St × Data, let (((s, d), (s′, d)) ∈ T̂r) def= ((s, s′) ∈ Tr), let În def=
In × Data, and let T̂S def= (Ŝt , T̂r , În). Let inv1, inv2, inv3, inv4 be invariants
of T̂S and let m be a function from Ŝt to Nat (the set of natural numbers), then
the following 4 conditions are sufficient for the (p leads-to q) property to be valid
for T̂S . Here ŝ

def= (s, d) for any d ∈ Data, p(ŝ) def= p(s, d) and q(ŝ) def= q(s, d).

(1) (∀(ŝ, ŝ′) ∈ T̂r)
((inv1(ŝ) and p(ŝ) and (not q(ŝ))) implies (p(ŝ′) or q(ŝ′)))

(2) (∀(ŝ, ŝ′) ∈ T̂r)
((inv2(ŝ) and p(ŝ) and (not q(ŝ))) implies (m(ŝ) > m(ŝ′)))

(3) (∀ŝ ∈ Ŝt)
((inv3(ŝ) and p(ŝ) and (not q(ŝ))) implies (∃ŝ′ ∈ Ŝt)((ŝ, ŝ′) ∈ T̂r))

(4) (∀ŝ ∈ Ŝt)
((inv4(ŝ) and (p(ŝ) or q(ŝ)) and (m(ŝ) = 0)) implies q(ŝ)) �

2.4 Generate and Check for ∀st ∈ St

A term t′ ∈ TΣ(Y ) is defined to be an instance of a term t ∈ TΣ(X) iff there
exits a substitution θ ∈ TΣ(Y )X such that t′ = t θ.

A finite set of terms C ⊆ TΣ(X) is defined to subsume a (possibly infinite)
set of ground terms (i.e. terms without variables) G ⊆ TΣ iff for any t′ ∈ G there
exits t ∈ C such that t′ is an instance of t. Note that TΣ

def= TΣ(φ).

Lemma 3 (Subsume Lemma). Let a finite set of state terms C ⊆ TΣ(X)State
subsume the set of all ground state terms (TΣ)State, and let p be a state predicate,
then the following holds.

((∀s ∈ C)(p(s) →∗
E true)) implies ((∀t ∈ (TΣ)State)(p(t) →∗

E true)) �

Lemma 3 implies the validity of following Generate&Check-S.

[Generate&Check-S] Let ((TΣ)State/(=E)State,→TR, In) be a transition sys-
tem defined by a transition specification (Σ,E,TR) (see Sect. 2.1). Then, for a
state predicate pst, doing the following Generate and Check are sufficient for
verifying (∀t ∈ (TΣ)State)(pst(t) =E true).

Generate a finite set of state terms C ⊆ TΣ(X)State that subsumes (TΣ)State.
Check (pst(s) �∗

E true) for each s ∈ C. �
Note that (t1 �∗

E t2) means that the term t1 is reduced to the term t2 by
the CafeOBJ ’s reduction engine, and (t1 �∗

E t2) implies (t1 →∗
E t2) but not

necessarily (t1 →∗
E t2) implies (t1 �∗

E t2).
3 See [10] for a more precise definition.
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2.5 Built-in Search Predicate

The verification conditions (3) of Lemma1 and (1), (2) of Lemma 2 contain
universal quantifications over the set of transitions Tr . CafeOBJ’s built-in search
predicate makes it possible to translate a universal quantification over Tr into a
universal quantification over St .

The built-in search predicate is a generic operator like the if_then_else_fi
operator and is declared as follows.

op _=(_,_)=>+_if_suchThat_{_} :

*Cosmos* NzNat* NzNat* *Cosmos* Bool Bool *Cosmos* -> Bool .

*Cosmos* can be any sort, provided that the 1st and the 2nd *Cosmos*s belong
to the same connected component of ordered sorts. NzNat* is a sort consists of
non-zero natural numbers plus * (infinity).

By partially instantiating this built-in search predicate, the predicate for one
step search over sort State with the following rank can be assumed to exit.

op _=(*,1)=>+_if_suchThat_{_} : State State Bool Bool Info -> Bool.

(*,1), i.e. instantiated 2nd and 3rd arguments, represent one step searches with
no limit on the number of objects to be searched. The 1st State is assumed to be
given as the input. The 2nd State and the 1st Bool are bound by CafeOBJ system
to the searched next (i.e. one step later) state and the condition of the transition
used (a condition of an unconditional transition is true), respectively. The 2nd
Bool is declare by a user to be a Boolean expression that usually includes the 1st
State (current state), the 2nd State (next state), and the 1st Bool (condition).
Info is also declare by a user to be any expression. If the reduced value of
the Boolean expression bound to the 2nd Bool is true, the reduced value of
the expression bound to Info is printed out for inspection. The built-in search
predicate returns true if printout exits for some searched next state, and returns
false othewise. The precise definition of the behavior of the built-in search
predicate for one step search over sort State can be found in Sect. 4.2 of [10].

Let q be a predicate “pred q : State State” for stating some relation of the
current state and the next state, like (inv(s) implies inv(s′)) in the condition
(3) of Lemma 1. Note that this q has nothing to do with q of (p leads-to q). Let
the predicates _then_ and valid-q be defined as follows in CafeOBJ using the
built-in search predicate. Note that _then_ is different from _implies_ because
(B:Bool implies true = true) for _implies_ but only (true then true = true)
for _then_.

-- information constructor

[Infom] op (ifm _ _ _ _) : State State Bool Bool -> Infom {constr}

-- for checking conditions of ctrans rules

pred _then _ : Bool Bool .

eq (true then B:Bool) = B . eq (false then B:Bool) = true .

-- predicate to be checked for a State

pred valid-q : State State Bool .

eq valid-q(S:State,SS:State,CC:Bool) =

not(S =(*,1)=>+ SS if CC suchThat

not((CC then q(S, SS)) == true) {(ifm S SS CC q(S,SS))}) .
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Note that defining valid-q(s,SS:State,CC:Bool)using the built-in search predi-
cate is just possible because it is a built-in predicate. That is, the above definition
with an equation in the object level is impossible with the search command in
Maude [16].

For a state term s ∈ TΣ(Y )State, the reduction of the Boolean term:
valid-q(s,SS:State,CC:Bool)

with �∗
E ∪→TR behaves as follows based on the definition of the behavior of the

built-in search predicate (Sect. 4.2 of [10]). Note that the →TR part is effective
only for determining the behavior of the built-in search predicate.

1. Search for evey pair (trj , θ) of a transition rule trj = (∀X)(lj → rj if cj) in
Tr and a substitution θ ∈ TΣ(Y )X such that s = lj θ.

2. For each found (trj , θ), let (SS = rj θ) and (CC = cj θ) and print out (ifm s

SS CC q(s,SS)) and trj if (not((CC then q(s,SS)) == true) �∗
E true).

3. Returns false if any printout exits, and returns true otherwise.

Note that for each found pair (trj , θ) with trj = (∀X)(lj → rj if cj) either (1)
no printout if ((cj θ �∗

E false) or ((cj θ �∗
E true) and (q(lj θ,rj θ) �∗

E ture)))
or (2) print out if (not(cj θ �∗

E false) and (not(cj θ �∗
E true) or not(q(lj θ,rj θ)

�∗
E ture))).

2.6 Generate & Check for ∀tr ∈ Tr

Definition 4 (Cover). Let C ⊆ TΣ(Y ) and C ′ ⊆ TΣ(X) be finite sets. C is
defined to cover C ′ iff for any ground instance t′g ∈ TΣ of any t′ ∈ C ′, there
exits t ∈ C such that t′g is an instance of t and t is an instance of t′. �

Note that C subsumes (TΣ)State if C coveres {S : State} (a singleton of a
variable of sort State).

Lemma 5 (Cover Lemma). Let C ′ ⊆ TΣ(X)State be the set of all the left-
hand sides of the transition rules in TR, and let C ⊆ TΣ(Y ) cover C ′, then the
following holds.

(∀t ∈ C)(valid − q(t, SS : State, CC : Bool) �∗
E ∪→TR true)

implies
(∀(s, s′) ∈ ((TΣ × TΣ)∩ →TR))(q(s, s′) →∗

E true)) �

Lemma 5 implies the validity of following Generate&Check-T1/T2.

[Generate&Check-T1] Let ((TΣ)State/(=E)State,→TR, In) be a transition sys-
tem defined by a transition specification (Σ,E,TR) (see Sect. 2.1), and let
C ′ ⊆ TΣ(X) be the set of all the left-hand sides of the transition rules in TR.
Then doing the following Generate and Check is sufficient for verifying

(∀(s, s′) ∈ ((TΣ × TΣ)∩ →TR))(qtr(s, s′) =E true)

for a predicate “pred qtr : State State”.
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Generate a finite set of state terms C ⊆ TΣ(Y )State that covers C ′.
Check (valid-qtr(t,SS:State,CC:Bool) �∗

E ∪ →TR true) for each t ∈ C. �

Generate&Check-T1 can be modified into Generate&Check-T2.

[Generate&Check-T2] Let TR = {tr1, · · · , trm} be a set of transition rules,
and let tri = (∀X)(li → ri if ci) for i ∈ {1, · · · ,m}. Then doing the following
Generate and Check for all of i ∈ {1, · · · ,m} is sufficient for verifying

(∀(s, s′) ∈ ((TΣ × TΣ)∩ →TR))(qtr(s, s′) =E true)

for a predicate “pred qtr : State State”.

Generate a finite set of state terms Ci ⊆ TΣ(Y )State that covers {li}.
Check (valid-qtr(t,SS:State,CC:Bool) �∗

E ∪ →tri
true) for each t ∈ Ci. �

2.7 Generate&Check for Verification of Invariant Properties

The conditions (1) and (2) of Lemma1 can be verified by using Generate&Check-
S with pst−1(s) and pst−2(s) defined as follows respectively.

(1) pst−1(s) = (inv(s) implies pt(s))
(2) pst−2(s) = (init(s) implies inv(s))

Note that if inv
def= (p1 and · · · and pn) and pt = (pi1 and · · · and pim) for {i1, · · · ,

im} ⊆ {1, · · · , n} then condition (1) is directly obtained.
The condition (3) of Lemma 1 can be verified by using Generate & Check-T1

or T2 with qtr−3(s, s′) defined as follows.

(3) qtr−3(s, s′) = (inv(s) implies inv(s′))

2.8 Generate&Check for Verification of (p Leads-to q) Properties

The conditions (1) and (2) of Lemma2 can be verified by using Generate&Check-
T1 or T2 in Sect. 2.6 with qtr−1(ŝ, ŝ′) and qtr−2(ŝ, ŝ′) defined as follows respec-
tively.

(1) qtr−1(ŝ, ŝ′) = ((inv1(ŝ) and p(ŝ) and (not q(ŝ))) implies (p(ŝ′) or q(ŝ′)))
(2) qtr−2(ŝ, ŝ′) = ((inv2(ŝ) and p(ŝ) and (not q(ŝ))) implies (m(ŝ) > m(ŝ′)))

The conditions (3) and (4) of Lemma 2 can be verified by using Generate&Check-
S in Sect. 2.4 with pst−3(ŝ) and pst−4(ŝ) defined as follows respectively.

(3) pst−3(ŝ) = ((inv3(ŝ) and p(ŝ) and (not q(ŝ))) implies (ŝ = (∗, 1) => + SS : State))

(4) pst−4(ŝ) = ((inv4(ŝ) and (p(ŝ) or q(ŝ)) and (m(ŝ) = 0)) implies q(ŝ))

Note that (s =(*,1)=>+ SS:State) is a simplified built-in search predicate that
returns true if there exits s′ ∈ St such that (s, s′) ∈ Tr .
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2.9 System and Property Specifications, and Proof Scores

For verifying a system, a model of the system should be formalized and described
as system specifications that are formal specifications of the behavior of the
system. In conjunction with the system specifications, functions and predicates
that are necessary for expressing the system’s supposed properties are formalized
and described as property specifications. Note that the supposed property we
are considering is either (1) invariant property or (2) (p leads-to q) property.
Proof scores are developed to verify that the system’s supposed properties are
deduced from the system and property specifications.

The effectiveness of the generic proof scores presented in this paper (Sect. 3)
is demonstrated by applying them to two non-trivial examples ABP (Alternating
Bit Protocol) and QLOCK (Mutual Exclusion Protocol by Locking with Queue).
Because of the limit of space, this paper concentrates on explaining QLOCK
specifications and how QLOCK proof scores can be obtained by applying the
generic proof scores to the QLOCK specifications. The ABP case is sketched in
Sect. 6.

All of the generic proof scores, the ABP specifications and proof scores, and
the QLOCK specifications and proof scores are organized as three directories of
files in the CafeOBJ language and posted at the following web page.

http://www.jaist.ac.jp/∼kokichi/misc/1505gpsgcmco/
Interested readers are encouraged to look into the web page, for the posted Cafe-
OBJ codes contain quite a few comments including the comments on the CafeOBJ lan-
guage itself that are not included in this paper.

3 Generic Proof Scores for Generate & Check Method

This section presents the seven parameterized CafeOBJ modules that codify the three
verification conditions of Sect. 2.7 for invariant properties and the four verification
conditions of Sect. 2.8 for (p leads-to q) properties.4

The seven parameterized modules specify the seven verification conditions in an
executable way, and only by instantiating the formal parameters of the parameterized
modules with an actual specification modules of a specific system, the basic proof scores
for the specific system are completed.

3.1 GENcases: Generating Patterns and Checking on Them

The module GENcases5 specifies the pattern generation and the validity checking of
predicates on the generated patterns.

[ check , [ ], ( || ), ( , ), ( ; ) ]: Function check is specified as follows and performs

the validity checks on all the patterns defined by SST. If all the validity checks are

4 The file genCheck.cafe on the web page contains the seven parameterized modules.
The files exState.cafe, genCases.cafe, pnat.cafe and predCj.cafe are used in
genCheck.cafe. Note that each file without suffix “abp-” or “qlock-” in its name
is not depend on QLOCK or ABP and generic for the generate & check method.

5 The module GENcases is in the file genCases.cafe on the web page.

http://www.jaist.ac.jp/~kokichi/misc/1505gpsgcmco/
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successful, mmi(SST) disappears and check(SST) returns ($):Ind. Otherwise, each
case where checked condition does not reduce to true is included in the reduced
value of mmi(SST). Function mmi_ is explained later in this section (Sect. 3.1).

op check_ : SqSqTr -> IndTr . eq check(SST:SqSqTr) = ($ | mmi(SST)) .

Sort SqSqTr is specified as follows, and an SqSqTr (i.e. an element of sort
SqSqTr) is (1) an SqSqEn or (2) a tree (or a sequence) of SqSqEns (i.e. elements of
sort SqSqEn) composed with the associative binary operator _||_. An SqSqEn is
an SqSq enclosed with [ and ].

[SqSqEn < SqSqTr]

op [_] : SqSq -> SqSqEn . op _||_ : SqSqTr SqSqTr -> SqSqTr {assoc}

Sort SqSq is specified as follows, and an SqSq is (1) a ValSq, (2) a VlSq, or
(3) a sequence of ValSqs or VlSqs composed with the associative binary operator
_,_that has empSS as an identity (id: empSS). A ValSq is (1) a Val or (2) a sequence
of Vals composed with the associative binary operator _,_. A VlSq is (1) a Val or
(2) a sequence of VlSqs composed with the associative binary operator _;_. Note
that the operator _,_ is overloaded (i.e. denotes two different operations), and a
term composed with the same type of associative binary operators inductively
is called a sequence for SqSq, ValSq, and VlSq while a SqSqTr is called a tree.

[Val < ValSq] op _,_ : ValSq ValSq -> ValSq {assoc}

[Val < VlSq] op _;_ : VlSq VlSq -> VlSq {assoc}

[ValSq VlSq < SqSq]

op empSS : -> SqSq . op _,_ : SqSq SqSq -> SqSq {assoc id: empSS}

The operator _;_ specifies possible alternatives and the following equation
reduces the alternatives into a term composed with the operator || .

eq [(SS1:SqSq,(V:Val;VS:VlSq),SS2:SqSq)]

= [(SS1,V,SS2)] || [(SS1,VS,SS2)] .

The equation applies recursively and any subterm with the alternative operator
; is reduced into a term with || . That is, for any term sqSq of sort SqSq

the term [sqSq] is reduced to the term composed with operator || of terms
[valSqi] (i = 1,2,· · · ) for valSqi of sort ValSq. This kind of reductions are called
alternative expansions.

For example, if terms v1, v2, v3 are of sort Val, the following reduction
happens. Note that, because empSS is declared to be an identity for operator
“_,_ : SqSq SqSq -> SqSq”, the equation covers the cases in which SS1 and/or
SS2 in the left-hand side of the equation are/is empSS.

[(v1;v2;v3),(v1;v2)]

=red=>

[ (v1 , v1) ] || [ (v2 , v1) ] || [ (v3 , v1) ] ||

[ (v1 , v2) ] || [ (v2 , v2) ] || [ (v3 , v2) ]
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[ t , g ] : To make the alternative expansions with ; more versatile, functions
t and g are introduced as follows. String is a sort from CafeOBJ built-in
module STRING and denotes the set of character strings like "abc", "v1", " % ".
By using t , a user is assumed to specify term constructors with appropriate
identifiers in the first argument, and the constructors determined by accompany-
ing g can be used to specify the alternative expansions with ; . The following
two equations for g make the expansion of a nested expression with [ ]s and
; s possible, and reduce “g strg sqSqTr” to “t strg sqSqTr” if sqSqTr” is of sort
ValSq.

op t__ : String ValSq -> Val .

op g__ : String SqSqTr -> VlSq .

eq g(S:String)(SST1:SqSqTr || SST2:SqSqTr) = (g(S) SST1);(g(S) SST2) .

eq g(S:String)[VSQ:ValSq] = t(S)(VSQ) .

For example, let the following equations for t be given.6

[Qu Aid Label Aobs State < Val]

eq t("lb[_]:__")(A:Aid,L:Label,AS:Aobs) = ((lb[A]: L) AS) .

eq t("_$_")(Q:Qu,AS:Aobs) = (Q $ AS) .

Then the following expansion by reduction of alternatives is possible for QLOCK
state terms if we assume q is of sort Qu, a1 and a2 are of sort Aid, and as is of
sort Abos.

[(g("_$_")[(empQ;(a1 & q)),(g("lb[_]:__")[a2,(rs;ws;cs),as])])]

=red=>

[(empQ $ ((lb[a2]: rs) as))] || [((a1 & q) $ ((lb[a2]: rs) as))] ||

[(empQ $ ((lb[a2]: ws) as))] || [((a1 & q) $ ((lb[a2]: ws) as))] ||

[(empQ $ ((lb[a2]: cs) as))] || [((a1 & q) $ ((lb[a2]: cs) as))]

The specifications of alternative expansions with ; , [ ], g are called alterna-
tive scripts or alternative expansion scripts. Alternative scripts are simple
but powerful enough to specify a fairly large number of necessary patterns. Note
that an alternative script is a term of sort SqSqTr.

[ IndTr, mmi , mi , v ] : Sort IndTr and function mmi are specified as follows, and
mmi translates a SqSqTr to a IndTr and mmi[sqSq] reduces to mi(sqSq) if sqSq is
of sort ValSq.

-- indicator and indicator tree

[Ind < IndTr]

op $ : -> Ind .

op _|_ : IndTr IndTr -> IndTr {assoc}

-- make make indicator

op mmi_ : SqSqTr -> IndTr .

eq mmi(SST1:SqSqTr || SST2:SqSqTr) = (mmi SST1) | (mmi SST2) .

eq mmi[VSQ:ValSq] = mi(VSQ) .

6 These equations are in the file qlock-genStTerm.cafe on the web page.
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Indicator i and making indicator function mi are specified as follows. Function
ii (information indicator) and predicate v (value) to be checked on ValSq are
assumed to be defined by a user. mi(valSq) reduces to “(i v(valSq) ii(valSq))”,
and disappears if the first argument v(valSq) reduces to true. This implies that
predicate v is valid for all the ValSqs specified by SST if check(SST) returns
($):Ind.

-- indicator

[Info] op i__ : Bool Info -> Ind .

-- making any indicator with’true’ disappear

eq (i true II:Info) | IT:IndTr = IT .

eq IT:IndTr | (i true II:Info) = IT .

-- information constructor

op ii_ : ValSq -> Info .

-- the predicate to be checked

pred v_ : ValSq .

-- make indicator for v_

op mi_ : ValSq -> Ind .

eq mi(VSQ:ValSq) = (i v(VSQ) ii(VSQ)) .

3.2 Three Parameterized Modules for Invariant Properties

[ PREDcj ] : For defining conjunctions of predicates flexibly, the following para-
meterized module PREDcj7 is prepared.

-- defining the conjunction of predicates

-- via the sequence of the names of the predicates

mod! PREDcj (X :: TRIV) {

-- names of predicates on Elt.X and the sequences of the names

[Pname < PnameSeq]

-- associative binary operator for constructing non nil sequences

op _ _ : PnameSeq PnameSeq -> PnameSeq {constr assoc}

-- cj(pns,e) defines the conjunction of predicates

-- whose names constitute the sequence pns

op cj : PnameSeq Elt.X -> Bool .

eq cj((PN:Pname PNS:PnameSeq),E:Elt) = cj(PN,E) and cj(PNS,E) . }

By using the cj (conjunction) operator of PREDcj, a conjunction of predicates can

be expressed just as a sequence of the names of the predicates. This helps prompt mod-

ifications of component predicates of inv in the checks of the conditions (1),(2),(3) of
Sect. 2.7 and of inv1, inv2, inv3, inv4 in the checks of the conditions (1),(2),(3),(4)

of Sect. 2.8.

[ INV-1v, INV-2v ]8 : The following two parameterized modules INV-1v and INV-

2v codify the verification conditions (1) and (2) of Sect. 2.7 directly. The theory
module STEpcj specifies the modules with sorts corresponding to Ste, Pname,

7 The module PREDcj is in the file predCj.cafe on the web page.
8 The modules INV-1v, INV-2v are in the file genCheck.cafe on the web page.
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PnameSeq and a function corresponding to cj that make a predicate be presented
as cj(pNameSeq,ste).

By defining the predicate v from the module GENcases as the predicate pst−1

of the condition (1) or the predicate pst−2 of the condition (2), necessary checks
are done on all state patterns. The PnameSeqs p-iinv (twice), p^t, and p-init are
assumed to be reified after the parameter modules are substituted with actual
specification modules (i.e. after the instantiation of parameter modules).

mod* STEpcj {[Ste] [Pname < PnameSeq] pred cj : PnameSeq Ste .}

mod! INV-1v (ST :: STEpcj) {ex(GENcases)

-- possible inductive invariant and target predicate

ops p-iinv p^t : -> PnmSeq .

[Ste < Val] eq v(S:Ste) = cj(p-iinv,S:Ste) implies cj(p^t,S) . }

mod! INV-2v (ST :: STEpcj) {ex(GENcases)

ops p-init p-iinv : -> PnmSeq .

[Ste < Val] eq v(S:Ste) = cj(p-init,S) implies cj(p-iinv,S) . }

[ VALIDq, G&C-Tv, INV-3q ]9 : The following parameterized module VALIDq

directly specifies valid-q of Sect. 2.5. inc(RWL) declares the importation of the
built-in module RWL that is necessary for using the built-in search predicate.

mod* STE {[Ste]}

mod! VALIDq (X :: STE) {inc(RWL)

-- predicate to be checked for all the transitions

pred q : Ste Ste .

-- information constructor

[Infom] op (ifm _ _ _ _) : Ste Ste Bool Bool -> Infom {constr}

pred _then _ : Bool Bool . pred valid-q : Ste Ste Bool .

eq (true then B:Bool) = B . eq (false then B:Bool) = true .

eq valid-q(S:Ste,SS:Ste,CC:Bool) =

not(S =(*,1)=>+ SS if CC suchThat

not((CC then q(S, SS)) == true) {(ifm S SS CC q(S,SS))}) . }

The following module G&C-Tv defines v(S:Ste,SS:Ste,CC:Bool) as valid-q(S,

SS,CC). Note that S:Ste,SS:Ste,CC:Bool in the left-hand side is of sort ValSq but
S,SS,CC in the right-hand side is of sort Ste,Ste,Bool that is the sort list (or arity)
of the standard form (i.e. without ) operator valid-q. In the module INV-3q,
by defining q of the module VALIDq as qtr−3 of the condition (3) of Sect. 2.7,
necessary checks are done on all state patterns. The PnameSeq p-iinv is assumed
to be reified after the instantiation of the parameter module “ST :: STEpcj”.

mod! G&C-Tv (S :: STE) {ex(VALIDq(S) + GENcases)

[Ste Bool < Val] eq v(S:Ste,SS:Ste,CC:Bool) = valid-q(S,SS,CC) . }

mod! INV-3q (ST :: STEpcj) {ex(G&C-Tv(ST))

op p-iinv : -> PnmSeq .

eq q(S:Ste,SS:Ste) = (cj(p-iinv,S) implies cj(p-iinv,SS)) . }

Note that the three parameterized modules INV-1v, INV-2v, INV-3q have
the same parameter declaration “ST :: STEpcj”. It indicates that the modules

9 The modules VALIDq, G&C-Tv, INV-3q are in the file genCheck.cafe on the web page.
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obtained by applying the parameterized module PREDcj to appropriate modules
can be substituted for the parameter modules of these three parameterized mod-
ules.

3.3 Four Parameterized Modules for (p Leads-to q) Properties

[ EX-STATE, PCJ-EX-STATE ]10 : For specifying the four verification conditions for
(p leads-to q) properties, the states are needed to be extend with data. The
following parameterized module EX-STATE specifies the state extension follow-
ing Lemma 2 directly. The theory module ST-DT requires functions p, q, m for
(p leads-to q) properties, and cj for defining predicates via sequences of their
names. The functions p, q, m on ExState are specified based on the functions p, q,
m on State and Data. The transitions over ExState are specified based on the tran-
sitions over State by declaring two equations with the built-in search predicates
_=(*,1)=>+_if_suchThat_{_} and _=(*,1)=>+_. This succinct and powerful way
to define transitions of extended system based on transitions of base system is
possible because the built-in search predicates are generic and can present tran-
sitions over any sort (i.e. over *Cosmos*, see Sect. 2.5). The equation for t__ is
for composing a term of sort ExState with the constructor _%_ in the alternative
expansion script.

-- theory module with state and data

mod* ST-DT {ex(PNAT)

[Ste Data] ops p q : Ste Data -> Bool . op m : Ste Data -> Nat.PNAT .

[Pnm < PnmSeq] op cj : PnmSeq Ste -> Bool . }

mod! EX-STATE (SD :: ST-DT) {inc(RWL) ex(GENcases)

[ExState Infom]

-- state constructor for extended states

op _%_ : Ste Data -> ExState {constr}

-- the transitions on ExState is the same as the transitons on Ste

eq ((S:Ste % D:Data) =(*,1)=>+ (SS:Ste % D)

if CC:Bool suchThat B:Bool {I:Infom})

= (S =(*,1)=>+ SS if CC suchThat B {I}) .

eq ((S:Ste % D:Data) =(*,1)=>+ (SS:Ste % D)) = (S =(*,1)=>+ SS) .

-- predicates p and q on ExState

ops p q : ExState -> Bool .

eq p(S:Ste % D:Data) = p(S,D) . eq q(S:Ste % D:Data) = q(S,D) .

-- measure function on ExState

op m : ExState -> Nat.PNAT . eq m(S:Ste % D:Data) = m(S,D) .

-- t__ is introduced in the module GENcases

[Ste Data ExState < Val] eq t("_%_")(S:Ste,D:Data) = (S % D) . }

The following parameterized module PCJ-EX-STATE makes the cj available on
ExState and relate that to the cj on Ste.

mod! PCJ-EX-STATE (SD :: ST-DT) {

ex((PREDcj((EX-STATE(SD)){sort Elt -> ExState}))

10 The modules EX-STATE, PCJ-EX-STATE are in the file exState.cafe on the web page.
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*{sort Pname -> ExPname, sort PnameSeq -> ExPnameSeq})

[Pnm < ExPname] [PnmSeq < ExPnameSeq]

eq cj(PN:Pnm,(S:Ste % D:Data)) = cj(PN,S) . }

[ PQ-1q, PQ-2q, PQ-3v, PQ-4v ]11 : The four parameterized modules for the four
verification conditions for (p leads-to q) properties are specified as follows. These
are direct translation from the four conditions of Sect. 2.8. The parameterized
modules PQ-1q and PQ-2q are using Generate&Check-T1 or Generate & Check-
T2, and the parameterized module G&C-Tv is necessary for reifying the predicate
q. The parameterized modules PQ-3v, PQ-4v are using Generate&Check-S, and
only the module GENcases is necessary for reifying the predicate v .

-- theory module with p,q,m,cj on states

mod* STPQpcj {ex(PNAT)

[Ste] ops p q : Ste -> Bool . op m : Ste -> Nat.PNAT .

[Pnm < PnmSeq] op cj : PnmSeq Ste -> Bool . }

mod! PQ-1q (SQ :: STPQpcj) {ex(G&C-Tv(SQ))

op pq-1-inv : -> PnmSeq .

eq q(S:Ste,SS:Ste) =

(cj(pq-1-inv,S) and p(S) and not(q(S))) implies (p(SS) or q(SS)) . }

mod! PQ-2q (SQ :: STPQpcj) {ex(G&C-Tv(SQ))

op pq-2-inv : -> PnmSeq .

eq q(S:Ste,SS:Ste) =

(cj(pq-2-inv,S) and p(S) and not(q(S))) implies (m(S) > m(SS)) . }

mod! PQ-3v (SQ :: STPQpcj) {inc(RWL) ex(GENcases)

op pq-3-inv : -> PnmSeq . [Ste < Val]

eq v(S:Ste,SS:Ste) =

(cj(pq-3-inv,S) and p(S) and not(q(S))) implies (S =(*,1)=>+ SS) . }

mod! PQ-4v (SQ :: STPQpcj) {pr(GENcases)

op pq-4-inv : -> PnmSeq . [Ste < Val]

eq v(S:Ste) =

(cj(pq-4-inv,S) and (p(S) or q(S)) and (m(S) = 0)) implies q(S) . }

Note that the four parameterized modules PQ-1q, PQ-2q, PQ-3v, PQ-4v have
the same parameter declaration “(SQ :: STPQpcj)”. It indicates that the mod-
ules obtained by applying the parameterized module PCJ-EX-STATE to appropriate
modules can be substituted for the parameter modules of these four parameter-
ized modules.

4 QLOCK Specifications

This section gives formal specifications in CafeOBJ of a simple but non-trivial
example. The specifications are going to be used in Sect. 5 for showing the effec-
tiveness of the generic proof scores presented in Sect. 3.

The example is a mutual exclusion protocol QLOCK. A mutual exclusion
protocol can be described as follows:

11 The modules PQ-1q, PQ-2q, PQ-3v, PQ-4v are in the file genCheck.cafe on the web
page.
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Assume that many agents (or processes) are competing for a common
equipment (e.g. a printer or a file system), but at any moment of time
only one agent can use the equipment. That is, the agents are mutually
excluded in using the equipment. A protocol (concurrent mechanism or
algorithm) which can achieve the mutual exclusion is called “mutual
exclusion protocol”.

QLOCK is realized by using a unique global queue (first-in first-out storage)
of agent names (or identifiers) as follows.

– Each of an unbounded number of agents who participates in the protocol
behaves as follows:
• If an agent wants to use the common equipment and its name is not in

the queue yet, put its name at the bottom of the queue.
• If an agent wants to use the common equipment and its name is already

in the queue, check if its name is on the top of the queue. If its name is
on the top of the queue, start to use the common equipment. If its name
is not on the top of the queue, wait until its name is on the top of the
queue.

• If the agent finishes to use the common equipment, remove its name from
the top of the queue.

– The protocol starts from the state with the empty queue.

4.1 QLOCK System Specifications12

The QLOCK protocol is specified by the following three modules WT, TY, EXc.
A state configuration (term of sort State) of QLOCK is modeled as a pair

(term composed with a operator _$_) of the global queue (term of sort Qu) and the
set of terms (lb[A:Aid]: L:Label) for all the agents. Term (lb[A:Aid]: L:Label)

of sort Aob (agent observation) represents that an agent A is at a section denoted
by a label (lb) L. A label is either rs (remainder section), ws (waiting section),
or cs (critical section). A set is composed with associative, commutative, and
idempotent binary operators “_ _”. A term representing a set of terms of sort
Aob is of sort Aobs (agent observation set).

The transition rule of the module TY indicates that if the top element of the
queue is A:Aid (i.e. Qu is (A:Aid & Q:Qu)) and agent A is at waiting section ws (i.e.
the label of A is ws; (lb[A:Aid]: ws)) then A gets into cs (i.e. (lb[A]: cs)) without
changing contents of the queue (i.e. Qu is (A & Q)). The other two transition rules
can be read similarly. Note that the modules WT, TY, EXc formulate the three
actions explained above precisely and succinctly. QLOCKsys1 is just combining
the three modules.

-- wt: want transition

mod! WT {pr(STATE)

trans[wt]: (Q:Qu $ ((lb[A:Aid]: rs) AS:Aobs))

12 The specifications explained in this section are in the file qlock-sys.cafe on the
web page.
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=> ((Q & A) $ ((lb[A ]: ws) AS)) . }

-- ty: try transition

mod! TY {pr(STATE)

trans[ty]: ((A:Aid & Q:Qu) $ ((lb[A]: ws) AS:Aobs))

=> ((A & Q) $ ((lb[A]: cs) AS)) . }

-- exc: exit transition with a condition

mod! EXc {pr(STATE)

ctrans[exc]: ((A1:Aid & Q:Qu) $ ((lb[A2:Aid]: cs) AS:Aobs))

=> ( Q $ ((lb[A2 ]: rs) AS)) if (A1 = A2) . }

-- system specification of QLOCK

mod! QLOCKsys1{pr(WT + TY + EXc)}

An unconditional transition rule starts with trans, contains the rule’s name
[ ]:, a current state term, =>, a next state term, and should end with “�.”.
A conditional transition rule starts with ctrans, contains same components as
trans, and if followed by a condition (a predicate) before “�.”.

Note that the term Q:Qu matches any term of sort Qu and the term (lb[A:Aid]:

rs) matches any term (lb[aid]: rs) with aid of sort Aid. Note also that the sec-
ond component of a state configuration is a set (i.e. a term composed with asso-
ciative, commutative, and idempotent binary constructors “_ _”) These implies
that the left-hand side of the transition rule wt matches to a state in multiple
ways depending on how many agents with rs are in the state, and an unbounded
number of transitions may be defined by the rule wt. The rules ty and exc have
a similar nature.

For STATEn with Aid = {a1, · · · , an}, the transition rules wt,ty,exc define the
one step transition relations →wt,→ty,→exc respectively on the state space State

= TΣSTATEn
. QLOCKsys1n with STATEn defines a set of transitions TrQLOCKsys1n

def=
(→wt ∪ →ty ∪ →exc) ⊆ (TΣSTATEn

× TΣSTATEn
) (see Sect. 2.1).

It is easily seen that the rule ty can be translated to a conditional rule, and
the rule exc can be translated to an unconditional rule.13

4.2 QLOCK Property Specifications14

The property specifications for the generate & check method are assumed to
specify the following predicates.

1. The possible inductive invariant predicate inv, the target state predicate pt,
and the initial state predicate init for verifying invariant properties (Sect. 2.7).

2. The invariant predicates inv1, inv2, inv3, inv4, the predicates p, q
and the measure function m for verifying (p leads-to q) properties (Sect. 2.8).

Usually, the predicates are specified as conjunctions of elemental predicates.

13 The file qlock-sys-ex.cafe on the web page contains the translated tyc and ex

rules.
14 The modules in this section is in the file qlock-prop.cafe unless otherwise stated.
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For QLOCK, we adopt a strategy of formalizing necessary functions and
elemental predicates based on the Peano style natural numbers. The strategy
works well especially for specifying the measure function m for a (p leads-to q)
property as demonstrated in Sect. 5.2.

[Predicates and Measure Function for (p Leads-to q) Property]: Fol-
lowing module PQMonState specifies the p and q predicates and a measure function
m for defining a (p leads-to q) property of QLOCK. The function lags denotes
the label of an agent in a state (see the module STATEfuns). Function #dms is
specified in the following module STATEfuns-pq and intended to denote the prop-
erly decreasing natural numbers according to the state transitions of QLOCK.
Note that function #ls (the number of a label in a state) is specified in module
STATEfuns. PNAT*15 is PNAT with the * (times) operation.

mod! STATEfuns-pq {ex(STATEfuns + PNAT*)

op #daq : Qu Aid -> Nat . op #ccs : State -> Nat .

...

-- decreasing Nat measure for the (p leads-to q) property

op #dms : State Aid -> Nat .

eq #dms(S:State,A:Aid)

= ((s s s 0) * #daq(qu(S),A)) + #ls(S,rs) + #ccs(S) . }

mod! PQMonState {ex(STATEpcj + STATEfuns-pq)

ops p q : State Aid -> Bool . eq p(S:State,A:Aid) = (lags(S,A) = ws) .

eq q(S:State,A:Aid) = (lags(S,A) = cs) .

op m : State Aid -> Nat.PNAT . eq m(S:State,A:Aid) = #dms(S,A) . }

Based on this specification, the (q leads-to q) property of QLOCK is verified
in Sect. 5.2.

4.3 Extended State (State % Aid) and Possible Inductive Invariants

For using Generate&Check-S or Generate&Check-T1/T2 with p(S:State,A:Aid),
q(S:State,A:Aid), and m(S:State,A:Aid) of the module PQMonState, State needs
to be extended with Aid. The following module EX-PQMonST extends State of
PQMonState with Aid for constructing ExState (= (State % Aid)) by applying the
parameterized module PCJ-EX-STATE to the module PQMonState.

-- ExState with PQMonST/State and Aid/Date

-- and a new invariant qas on ExState = (State % Date)

mod! EX-PQMonST {

pr((PCJ-EX-STATE(PQMonST{sort Ste -> State, sort Data -> Aid,

sort Pnm -> Pname, sort PnmSeq -> PnameSeq})))

-- if an agent is in the Qu then the agent is in Aobs

op qas : -> ExPname .

eq cj(qas,((Q:Qu $ AS:Aobs) % A:Aid))

= ((#aq(Q, A) = s 0) implies not(#ass(AS, A) = 0)) . }

15 The module PNAT* is in the file qlock-natQuSet.cafe on the web page.
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A new elemental predicate is defined with the name qas of sort ExPname in
EX-PQMonST. By using the predicate names defined in STATEpred-inv and qas,
possible inductive invariants are specified in the following module INV.

-- possible inductive invariant predicates

mod! INV {ex(EX-PQMonST + STATEpred-inv)

ops inv1 inv2 : -> PnameSeq . ops inv3 : -> ExPnameSeq .

--’wfs mx qep rs ws cs’ are defined in STATEpred-inv

eq inv1 = wfs . eq inv2 = mx qep rs ws cs . eq inv3 = qas . }

In Sect. 5.1, the conjunction “inv1 inv2 inv3” is proved to be an inductive
invariant. As a matter of fact, any of inv1, inv2, or inv3 can be proved to be an
inductive invariant.

5 QLOCK Proof Scores

The three base modules Q-INV-1v, Q-INV-2v, Q-INV-3q for the three invariant
verification conditions and the four base modules Q-PQ-1q, Q-PQ-2q, Q-PQ-3v,
Q-PQ-4v for the four (p leads-to q) property verification conditions of QLOCK
are obtained by instantiating the formal parameter modules of the parameterized
modules INV-1v, INV-2v, INV-3q, and PQ-1q, PQ-2q, PQ-3v, PQ-4v with the module
EX-PQMonST.16

5.1 Proof Scores for Invariant Properties

The following proof scores prove the three verification conditions for invariant
properties under the condition in which each predicate inv, pt, or init is defined
with the predicate name sequence “inv1 inv2 inv3”, mx, or init respectively.
[ Q-INV-1-genCheck17] : The reduction “red ck .” in the following proof score
proves the first verification condition “(cj(inv1 inv2 inv3,S) implies cj(mx,

S)) for any state S of sort ExState” if it returns ($):Ind.

mod! Q-INV-1-genCheck {ex(Q-INV-1)

op ck : -> IndTr . eq ck = check([‘s:ExState]) . }

open Q-INV-1-genCheck . pr(INV)

eq p-iinv = inv1 inv2 inv3 . eq p^t = mx . red ck . close

open opens the module Q-INV-1-genCheck; pr(INV) imports a necessary module
INV; two equations reify predicate names p-iinv and p^t as “inv1 inv2 inv3”
and mx respectively; “red ck .” reduces check([‘s:ExState]) and returns the
result, and close closes the opened tentative module.

cj(inv1 inv2 inv3,S) trivially implies cj(mx,S) for any S because inv2

includes mx, hence the most general trivial state pattern ‘s:ExState is enough.

16 The base modules Q-INV-1v, Q-INV-2v, Q-INV-3q, and Q-PQ-1q, Q-PQ-2q,
Q-PQ-3v, Q-PQ-4v are in the file qlock-genCheck.cafe on the web page.

17 The module Q-INV-1-genCheck is in the file qlock-inv-1-ps.cafe on the web.
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[ Q-INV-2-genCheck18, Q-INV-3-genCheck19 ] : The proof score for the second
verification condition using the module Q-INV-2-genCheck is constructed similarly
to the proof score for the third verification condition using Q-INV-3-genCheck, and
is omitted.

The reduction “red ck .” in the following proof score proves the third veri-
fication condition “(cj(inv1 inv2 inv3,S) implies cj(inv1 inv2 inv3,SS)) for
any transitions (S,SS) of QLOCK with ExState (i.e. S and SS are of sort ExState)”
if it returns ($):Ind.

mod! Q-INV-3-genCheck {ex(Q-INV-3 + GENstTerm + CONSTandLITL)

ops sst1 sst2 sst3 : -> SqSqTr .

eq sst1 = [(g("_%_")[(g("_$_")[empQ,(g("lb[_]:__")[b1,rs,as])]),

(b1;b2)]),SS:ExState,CC:Bool] ||

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[(b1;b2),rs,as])]),

(b1;b2;b3)]),SS,CC] .

eq sst2 = [(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[b1,ws,as])]),

(b1;b2)]),SS:ExState,CC:Bool] .

eq sst3 = [(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[(b1;b2),cs,as])]),

(b1;b2;b3)]),SS:ExState,CC:Bool] .

op ck : -> IndTr . eq ck = check(sst1 || sst2 || sst3) . }

-- Generate&Check-T1

open Q-INV-3-genCheck . pr(QLOCKsys1 + INV + FACTtbu)

eq p-iinv = inv1 inv2 inv3 . red ck . close

The module GENstTerm20 is necessary to use g__ in the alternative script (the
argument of check_). The alternative script sst1 specifies three state patterns
that cover the left-hand side (Q:Qu $ ((lb[A:Aid]: rs) as:Aobs)) of the tran-
sition rule wt. b1, b2, b3 are fresh constant literals declared in the module
CONSTandLITL21. Note that all possibilities of tree occurrences of Aid are cov-
ered by (...[(...[(b1 ...),(...[(b1;b2)...])]),(b1;b2;b3)]). Note also that
SS:State,CC:Bool in sst1 are necessary for using the built-in search predi-
cate “ =(*,1)=>+ if suchThat { }”. The script sst2 specifies the state pattern
((b1 & q) $ ((lb[b1]: ws) as)) that directly cover the left-hand side ((A:Aid

& Q:Qu) $ ((lb[A]: ws) AS:Aobs)) of the transition rule ty. The alternative
script sst3 specifies state patterns that cover the left-hand side ((A1:Aid &

Q:Qu) $ ((lb[A2: Aid]: cs) as:Aobs)) of the transition rule exc. Hence, by
Generate&Check-T1 in Sect. 2.6, the correctness of the above proof score is
implied.

Note that the module FACTtbu22 that declare the fundamental facts like “eq
[NatGt1]: ((N:Nat.PNAT = 0) and (N > 0)) = false .” is necessary here. Facts
declared in FACTtbu can be proved with other proof scores usually by using induc-
tion on term structures.

18 The module Q-INV-2-genCheck is in the file qlock-inv-2-ps.cafe on the web page.
19 The module Q-INV-3-genCheck is in the file qlock-inv-3-ps.cafe on the web page.
20 The module GENstTerm is in the file qlock-genStTerm.cafe on the web page.
21 The module CONSTandLITL is in the file qlock-constAndLitl.cafe on the web page.
22 The module FACTtbu is in the file qlock-factTbu.cafe on the web page.
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By using Generate&Check-T2 instead of Generate&Check-T1, checking the
transition rules one by one is possible.23 Generate&Check-T2 is an effective way
for detecting errors in specifications and for finding necessary lemmas during
proof score developments.

5.2 Proof Scores for (p Leads-to q) Property

This section presents proof scores for the four verification conditions of the
(p( ,A:Aid) leads-to q( ,A:Aid)) property, where the predicates p and q are
defined in the module PQMonState. The property says “if an agent gets the ws

label then it will surely get the cs label”.
[ Q-PQ-1-genCheck24, Q-PQ-2-genCheck25 ] : The reduction “red ck .” in the
following proof score proves the first verification condition “(cj(pq-1-inv,S)
and p(S) and not(q(S))) implies (p(SS) or q(SS)) for any transition (S,SS) of
QLOCK with ExState” if it returns ($):Ind.

mod! Q-PQ-1-genCheck {ex(Q-PQ-1 + GENstTerm + CONSTandLITL)

op ck : -> IndTr .

eq ck = check(

[(g("_%_")[(g("_$_")[empQ,(g("lb[_]:__")[b1,rs,as])]),

(b1;b2)]),SS:ExState,CC:Bool] ||

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[(b1;b2),rs,as])]),

(b1;b2;b3)]),SS,CC] ||

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[b1,ws,as])]),

(b1;b2)]),SS,CC] ||

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[(b1;b2),cs,as])]),

(b1;b2;b3)]),SS,CC] ) . }

open Q-PQ-1-genCheck . pr(QLOCKsys1) red ck . close

pq-1-inv is not reified in the open...close clause, and it means cj(pq-1-inv,S)
in the premises of the first verification condition is not necessary.

The alternative script at the argument position of check specifies state pat-
terns of sort ExState. The same discussion about the module Q-INV-3-genCheck

applies and the alternative script of module Q-PQ-1-genCheck covers the left-hand
sides of the three transition rules on ExState. Note that the three transition rules
on ExState are not defined directly, but induced from the three transition rules
on State with the following two equations defined in the module EX-STATE.

eq ((S:State % D:Data) =(*,1)=>+ (SS:State % D)

if CC:Bool suchThat B:Bool {I:Infom})

= (S =(*,1)=>+ SS if CC suchThat B {I}) .

eq ((S:State % D:Data) =(*,1)=>+ (SS:State % D)) = (S =(*,1)=>+ SS) .

23 You can see the proof score using Generate&Check-T2 in the file qlock-inv-3-ps.

cafe on the web page.
24 The module Q-PQ-1-genCheck is in the file qlock-pq-1-ps.cafe on the web page.
25 The module Q-PQ-2-genCheck is in the file qlock-pq-2-ps.cafe on the web page.
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Hence, by Generate&Check-T1 in Sect. 2.6, the correctness of the above proof
score is implied.

The proof score for the second verification condition using the module Q-PQ-2-
genCheck can be constructed in a similar way and is omitted.

[ Q-PQ-3-genCheck26, Q-PQ-4-genCheck27 ] : The reduction “red ck .” in the
following proof score proves the third verification condition “((cj(pq-3-inv,S)
and p(S) and not(q (S))) implies (S =(*,1)=>+ SS)) for any state S of
QLOCK with ExState” if it returns ($):Ind. Note that the verification condi-
tion is defined on the transitions (S,SS) but the second argument of the built-in
search predicate =(*,1)=> is searched automatically by the CafeOBJ system
when the first argument is fixed.

mod! Q-PQ-3-genCheck {

ex(Q-PQ-3 + CONSTandLITL + GENstTerm)

op ck : -> IndTr .

eq ck = check (

[(g("_%_")[(g("_$_")[q,empty]),b1]),SS:ExState] ||

[(g("_%_")[(g("_$_")[empQ,(g("lb[_]:__")[b1,(rs;ws;cs),as])]),

(b1;b2)]),SS] ||

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[b1,(rs;ws;cs),as])]),

(b1;b2)]),SS] ) . }

open Q-PQ-3-genCheck . pr(QLOCKsys1 + INV)

eq pq-3-inv = inv1 inv2 . red ck . close

Because the predicate defined via “inv3 = qas” is proved to be an invariant by
the proof score including the module Q-INV-3-genCheck, any Aid in the queue is in
Aobs for any reachable state. Therefore, any reachable state is an instance of the
state pattern (((A1:Aid & Q:Qu) $ ((lb[A1]: L:Label) AS:Aobs)) % A2:Aid) of
sort ExState. This fact implies that the alternative script at the argument posi-
tion of check expands to the term of sort SqSqTr that includes the state patterns
subsuming all the reachable states.28 This, in turn, implies the correctness of
the above proof score. The proof score for the fourth verification condition using
Q-PQ-4-genCheck is constructed similarly and omitted.

6 Conclusion

6.1 Related Works

There are many researches on verifications of transition systems, and we only
give a brief general view and point out most related works based on Maude [16].

26 The module Q-PQ-3-genCheck is in the file qlock-pq-3-ps.cafe on the web page.
27 The module Q-PQ-4-genCheck is in the file qlock-pq-4-ps.cafe on the web page.
28 You can see the expanded term after the eof in the file qlocik-pq-3-ps.cafe on

the web page.
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Verification methods for transition systems are largely classified into deduc-
tive and algorithmic ones. The majority of the deductive methods are applica-
tions of theorem proving methods/systems [6,15,18,20] to verifications of con-
current systems or distributed protocols with infinite states. Most dominant
algorithmic methods are based on model checking methods/systems [2,5] and
are targeted on automatic verifications of temporal properties of finite state
transition systems. The generate & check method is a deductive method with
algorithmic combinatorial generations of cover sets. Moreover reduction with
equations is only one deduction mechanism.

Maude [16] is a sister language of CafeOBJ and both languages share
many important features. The idea that underlies the transition specifica-
tion (Σ,E,TR) and the transition system ((TΣ)State/(=E)State,→TR, In) in
Sect. 2.1 is the same as the one for the topmost rewrite theory [17,21,22].
Maude’s basic logic is rewriting logic [17] and verification of transition systems
with Maude focuses on sophisticated model checking with a powerful associative
and/or commutative rewriting engine. There are recent attempts to extend the
model checking with Maude for verifying infinite state transition systems [1,7].
They are based on narrowing with unification, whereas the generate & check
method is based on cover sets with ordinary matching and reduction.

6.2 Some Features of Generic Proof Scores, Generate & Check
Method, and CafeOBJ

Besides the QLOCK example, we have already developed ABP proof scores by
applying the generic proof scores. Three base modules ABP-INV-1v, ABP-INV-2v,
ABP-INV-3q for three ABP invariant verification conditions are obtained by
instantiating the formal parameter modules of the parameterized modules
INV-1v, INV-2v, INV-3q with module STATE.29 The remarkable structural simi-
larity between the three base modules ABP-INV-1v, ABP-INV-2v, ABP-INV-3q and
Q-INV-1v, Q-INV-2v, Q-INV-3q for the three invariant verification conditions of
ABP and QLOCK shows that the generic proof scores work quite nicely.30

Most difficult parts in constructing proof scores using the generate & check
method include (1) finding a cover set in an appropriate abstraction level and
(2) finding necessary lemmas. These inherently require human insight and it is
hard to expect easy solutions. The generation of elements of a cover set, however,
can be guided by inspecting the lefthand sides of transition rules. It also helps
to find lemmas to identify an element of the cover set for which a verification
condition can not be reduced to true.

Several theorem proving methods have been developed in CafeOBJ includ-
ing (a) OTS (Observational Transition System) method [19] (b) the generate &
check method [10] and (c) CITP (Constructor based Inductive Theorem Prov-
ing) method [12]. The generate & check method makes significant use of state
29 The base modules ABP-INV-1v, ABP-INV-2v, ABP-INV-3q are in the file abp-

genCheck.cafe on the web page.
30 You can see the similarity by looking into the files abp-genCheck.cafe and

qlock-genCheck.cafe on the web page.
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configurations and transition (rewriting) rules over them, and is a complement
to the OTS method. The CITP method is another recent development and is
now implemented in CafeOBJ system.31 Current proof scores in CafeOBJ have a
potential to combine these three methods in an appropriate way.

6.3 Future Issues

The generate & check method is more important for large and/or complex sys-
tems, for it is difficult to do case analyses manually for them. Once a state
configuration is properly designed, a large number of patterns (i.e. elements of a
cover set) that cover all possible cases can be generated and checked. The generic
proof scores (i.e. the seven parameterized modules) in Sect. 3 has the potential
to make the applications of the generate & check method easy and transparent.
Although, we are still in an early stage of applying the generic proof scores, the
following can be expected.

– The verifications of larger and/or more complex systems become possible.
– The achieved proof scores are well structured and transparent, and have a

high potential to be good quality verification documents.

Investigating to what extent the above expectations will be realized is inter-
esting and important future issue.

Acknowledgments. It is a great pleasure for the author (KF) to have the chance
to prepare this paper for the Festschrift in honor of Professor José Meseguer who has
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Abstract. Context-sensitive rewriting (CSR) is a variant of rewriting
where only selected arguments of function symbols can be rewritten.
Consequently, the subterm positions of a term are classified as either
active, i.e., positions of subterms that can be rewritten; or frozen, i.e.,
positions that cannot. Frozen positions can be used to denote subexpres-
sions whose evaluation is delayed or just forbidden. A typical example
is the if-then-else operator whose second and third arguments are not
evaluated until the evaluation of the first argument yields either true
or false. Imposing replacement restrictions can improve the termination
behavior of rewriting-based computational systems. Termination of CSR
has been investigated by several authors and a number of automatic
tools are able to prove it. In this paper, we analyze how frozen subterms
affect termination of CSR. This analysis helps us to improve our Context-
Sensitive Dependency Pair (CS-DP) framework for automatically prov-
ing termination of CSR. We have implemented these improvements in our
tool mu-term. The experiments show the power of the improvements in
practice.

Keywords: Context-sensitive rewriting · Termination · Dependency
pairs
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Actually, the idea of strategy annotation (where the list of arguments whose
evaluation is allowed is explicitly given for each function symbol) originally intro-
duced by José and other colleagues as part of the design of OBJ2 [11] anticipated
the main ideas underlying the development of Context-Sensitive Rewriting for a
rather different purpose1. On the basis of previous work in [24,25], in the afore-
mentioned tutorial Context-Sensitive Rewriting (CSR, [23]) was shown useful
to model rewriting-based programming languages like CafeOBJ [12], ELAN [8],
OBJ [15], and Maude [9] that are able to use such kind of strategies.

In CSR, we start with a pair (R, μ) (often called a CS-TRS) consisting of
a Term Rewriting System (TRS) R and a replacement map μ, i.e., a mapping
from a signature F into natural numbers that satisfies μ(f) ⊆ {1, . . . , ar(f)} for
each function symbol f in the signature F , where ar(f) is the arity of f . Here,
μ is used to discriminate the argument positions on which the rewrite steps are
allowed. In this way, we can avoid undesired computations and (in many cases)
obtain a terminating behavior for the TRS (with respect to the context-sensitive
rewrite relation). Strategy annotations are still used in CafeOBJ and Maude. In
Maude, actually, frozen arguments have been recently introduced as a powerful
mechanism to avoid undesired reductions. Frozen arguments are even closer to
CSR, as they are just the complement of the replacing arguments specified by a
replacement map μ: the i-th argument of f is frozen iff i /∈ μ(f).

Using CSR, we can easily model the evaluation of expressions which avoid
or delay the evaluation of some of their arguments. Paramount examples are if-
then-else expressions, some boolean operators (and/or) and lazy cons operators
for list construction.

Example 1. The following TRS R [29] provides a definition of factorial

0+x → x (1) zero(0) → true (6)
s(x)+y → s(x+y) (2) zero(s(x)) → false (7)
p(s(x)) → x (3) fact(x) → if(zero(x), s(0), x∗fact(p(x))) (8)

if(true, x, y) → x (4) 0∗x → 0 (9)
if(false, x, y) → y (5) s(x)∗y → y+(x∗y) (10)

With μ(if) = {1} and μ(f) = {1, . . . , k} for any other k-ary symbol f (i.e., the
only function symbol which is restricted by μ is if), we can advantageously use
CSR for handling the if-then-else operator: the second and third arguments of
an expression if(b, s, t) are not evaluated until the guard b is evaluated to true or
false. Without the replacement map, R is nonterminating because fact(x) calls
fact(p(x)), which then calls fact(p(p(x))) and so on. Thanks to the replacement
restrictions, though, we can evaluate fact(sn(0)) to obtain the factorial sn!(0) of
a number n (encoded as sn(0)) by using CSR as follows:

fact(sn(0)) ↪→(8),μ if(zero(sn(0)), s(0), sn(0)∗fact(p(sn(0))) ↪→(7),μ · · ·
1 The notion of context-sensitive rewriting was developed as part of Lucas’ Master

Thesis (1994) to implement concurrent programming languages that, like the π-
calculus, forbid reductions on some arguments of its operations.
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This can be formally proved (see [23,27] and also [20] for an account of the
algebraic semantics of context-sensitive specifications). Note that zero(sn(0)) is
forced to be reduced first to either true or false before evaluating the ‘then’
or ‘else’ expression, thus avoiding undesired reductions until the guard is fully
evaluated.

Direct techniques and frameworks for proving termination of CSR have been
developed [1,3,17]. But, in practice, proving termination of some CS-TRSs with
certain lazy structures as the if-then-else in the example can be difficult. In fact,
finding an automatic proof of Example 1, and other examples like [13, Example 1]
or [10, Example 3.2.14] are open problems since 1997, 2003 or 2008, respectively.
The reason why these problems cannot be proved terminating by existing termi-
nation tools lies in the lack of sufficiently precise models of how the evaluation
of expressions is delayed in context-sensitive computations. In this paper, we
revisit this problem to obtain easier and mechanizable proofs of termination.

After some preliminaries in Sects. 2, 3 analyzes the role of frozen subterms in
infinite μ-rewrite sequences, Sect. 4 models the activation of delayed subexpres-
sions. Section 5 revises the characterization of the termination of CSR. Section 6
proposes a new notion of CS usable rules, the extended basic CS usables, that
allows us to simplify termination proofs if the application conditions are satisfied,
Sect. 7 shows the experimental evaluation and Sect. 8 concludes. An extended
version of this paper including proofs can be found in [18].

2 Preliminaries

See [7] and [23] for basics on term rewriting and CSR, respectively. Throughout
the paper, X denotes a countable set of variables and F denotes a signature, i.e.,
a set of function symbols each having a fixed arity given by a mapping ar : F →
N. The set of terms built from F and X is T (F ,X ). Terms are viewed as labeled
trees in the usual way. The symbol labeling the root of the term s is denoted as
root(s). Positions p, q, . . . are represented by chains of positive natural numbers
used to address subterms of s. Given positions p, q, we denote their concatenation
as p.q. We denote the empty chain by Λ. Positions are ordered by the standard
prefix ordering: p ≤ q if ∃q′ such that q = p.q′. The set of positions of a term
s is Pos(s). If p is a position, and Q is a set of positions, p.Q = {p.q | q ∈ Q}.
For a replacement map μ, the set of active positions Posμ(s) of s ∈ T (F ,X ) is:
Posμ(s) = {Λ}, if s ∈ X and Posμ(s) = {Λ} ∪ ⋃

i∈μ(root(s)) i.Posμ(s|i), if s 	∈ X .
We write s � t, t is a subterm of s, if there is p ∈ Pos(s) such that t = s|p and
s � t, t is a proper subterm of s, if s � t and s 	= t. Given a replacement map
μ, we write s �μ t, t is a μ-replacing subterm of s, if there is p ∈ Posμ(s) such
that t = s|p and s �μ t, t is a proper μ-replacing subterm of s, if s �μ t and
s 	= t. Moreover, we write s�

�μ
t, t is a non-μ-replacing subterm of s, if there is a

frozen position p, i.e. p ∈ Pos�μ(s) where Pos�μ(s) = Pos(s)−Posμ(s), such that
t = s|p. Let Var(s) = {x ∈ X | ∃p ∈ Pos(s), s|p = x}, Varμ(s) = {x ∈ Var(s) |
∃p ∈ Posμ(s), s|p = x} and Var�μ(s) = {x ∈ Var(s) | s�

�μ
x}. A context is a term
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C ∈ T (F ∪ {�},X ) with zero or more ‘holes’ � (a fresh constant symbol). We
write C[ ]p to denote that there is a (usually single) hole � at position p of C.
Generally, we write C[ ] to denote an arbitrary context (where the number and
location of the holes is clarified ‘in situ’) and C[t1, . . . , tn] to denote the term
obtained by filling the holes of a context C[ ] with terms t1, . . . , tn. C[ ] = � is
called the empty context.

A rewrite rule is an ordered pair (�, r), written � → r, with �, r ∈ T (F ,X ),
� /∈ X and Var(r) ⊆ Var(�). A TRS is a pair R = (F , R) where R is a set of
rewrite rules. Given R = (F , R), we consider F as the disjoint union F = C
D of
symbols c ∈ C, called constructors and symbols f ∈ D, called defined functions,
where D = {root(�) | � → r ∈ R} and C = F − D. Given a CS-TRS (R, μ), we
have s ↪→R,μ t (alternatively s

p
↪→R,μ t if we want to make the position explicit)

if there are � → r ∈ R, p ∈ Posμ(s) and a substitution σ with s|p = �σ and
t = s[rσ]p. A CS-TRS (R, μ) is terminating if ↪→R,μ is well-founded.

3 Minimal Non-µ-Terminating Terms at Frozen Positions

In this section we investigate how frozen subterms affect termination of CSR.
Our analysis is used in Sect. 4 to obtain a more precise model of termination
of CSR using Context-Sensitive Dependency Pairs (CS-DPs, [3]). If a TRS R
is nonterminating, then terms are either terminating or nonterminating. The
subset T∞ of minimal nonterminating terms consists of nonterminating terms
whose proper subterms are all terminating. And the following observations are
in order [21,22]: (1) every nonterminating term s contains a subterm t ∈ T∞,
(2) root(t) is a defined symbol of R, and (3) minimality is preserved under inner
rewritings:

Lemma 1. Let R be a TRS. For every term s ∈ T∞, if s
>Λ−→R t and t is

nonterminating then t ∈ T∞.

In CSR, if a CS-TRS (R, μ) is nonterminating, among non-μ-terminating terms
we distinguish the subset T∞,μ of strongly minimal non-μ-terminating terms,
whose proper subterms are all μ-terminating. But unlike minimality for rewrit-
ing, strong minimality is not preserved under inner μ-rewritings.

Example 2. Consider the following TRS R [3, Example 3]:
a → c(f(a)) (11) f(c(x)) → x (12)

together with μ(c) = ∅ and μ(f) = {1}, and the term f(a) ∈ T∞,μ. If we apply
(11) to the proper subterm a, we obtain f(c(f(a))) /∈ T∞,μ because f(a) is a
subterm of f(c(f(a))).

Unfortunately, strong minimality does not distinguish active and frozen positions
and a result as Lemma 1 is not possible for strongly minimal terms. The set of
minimal non-μ-terminating terms M∞,μ consists of all non-μ-terminating terms
whose proper subterms at active positions are all μ-terminating. Minimal non-
μ-terminating terms are preserved under inner μ-rewritings, as we show in the
following lemma.
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Lemma 2 [3, Lemma 4]. Let (R, μ) be a CS-TRS. For all s ∈ M∞,μ, if s
>Λ
↪→R,μ t

and t is non-μ-terminating, then t ∈ M∞,μ.

Furthermore, T∞,μ ⊆ M∞,μ. And now, f(c(f(a))) in Example 2 is minimal:
f(c(f(a))) ∈ M∞,μ. The following result establishes that, given a minimal non-
μ-terminating term, there are only two ways for an infinite μ-rewrite sequence
to proceed.

Proposition 1 [3, Proposition 5]. Let (R, μ) be a CS-TRS. For all s ∈ M∞,μ,
there exist a rewrite rule � → r ∈ R, a substitution σ and a term u ∈ M∞,μ such

that s >Λ↪−→∗
R,μ �σ

Λ
↪→�→r,μ rσ�μ t and either (1) there is a nonvariable subterm u

at an active position of r such that t = uσ, or (2) there is x ∈ Varμ(r)−Varμ(�)
such that xσ �μ t.

What Proposition 1 says is that minimal non-μ-terminating terms at frozen
positions (as f(a) in f(c(f(a)))) show up at active positions by means of migrating
variables (a variable x is migrating in a rule � → r if x ∈ Varμ(r)−Varμ(�), as x
in rule (12)). If (1) happens, information about the shape of t is provided because
it is partially introduced by an active subterm of r. This information is crucial
to efficiently mechanize proofs of termination. But if (1) happens, information
about the shape of t is hidden below a binding xσ of the matching substitution
σ. The frozen occurrence of x in the left-hand side � of the rule is responsible for
this information showing up later in the sequence. In the following, we analyze
how minimal non-μ-terminating terms appear at frozen positions in infinite μ-
rewrite sequences and how they evolve until getting activated by a migrating
variable. Without loss of generality, in the following all the considered infinite
μ-rewrite sequences start from strongly minimal non-μ-terminating terms.

Example 3. Consider the following non-μ-terminating TRS R [1, modified(I)]:
a → f(g(b)) (13)

f(x) → h(c(x)) (14)
h(x) → x (15)

b → a (16)

with μ(g) = μ(c) = {1} and μ(f) = ∅ for all f ∈ F − {g, c}. Subexpressions
at frozen positions are identified using the overbar. And consider the following
infinite μ-rewrite sequence (Fig. 1 shows it graphically, where shaded triangles
are minimal non-μ-terminating terms2):

a ↪→(13),μ f(g(b)) ↪→(14),μ h(c(g(b))) ↪→(15),μ c(g(b)) ↪→(16),μ c(g(a)) ↪→(13),μ · · ·

As we can see in the sequence, a ∈ T∞,μ, and the first μ-rewriting step introduces
the minimal non-μ-terminating term b at a frozen position by using rule (13)
which introduces the context g(�) where b is located. Afterwards, the context
c(�) is inserted above term g(b) which is “pushed down” by the right-hand side

2 Note that minimal non-μ-terminating terms may contain minimal non-μ-terminating
terms (at frozen positions, though). We use darker shades for such nested minimal
non-μ-terminating terms.
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of rule (14). Finally, the migrating variable x in rule (15) is instantiated (in the
third step) to c(g(b)). The application of rule (15) finally activates b, which is
now active inside c(g(b)).

a ↪→(13),µ

g(�)

b ↪→(14),µ

c(g(�))

b ↪→(15),µ

c(g(�))

b ↪→(16),µ · · ·

Fig. 1. Infinite μ-rewrite sequence in Example 3

Example 3 shows how minimal non-μ-terminating terms are partially “intro-
duced” in an infinite μ-rewrite sequence: there is a rule � → r (in this case (13)),
a subterm u of r at a frozen position (b) and a possible context with a hole at
an active position (g(�)).

As discussed above, the context surrounding those “hidden” minimal non-
μ-terminating terms t can be “increased”, i.e., t can be “pushed down” into a
bigger context. Furthermore, the context can be “decreased” as well, as we can
see in the following example.

Example 4. Consider the following TRS R [1, modified (II)]:
a → f(g(c(g(b)))) (17)

f(g(x)) → h(x) (18)
h(c(x)) → x (19)

b → a (20)

with μ(g) = μ(c) = {1} and μ(f) = ∅ for all f ∈ F − {g, c}, and:

a ↪→(17),μ f(g(c(g(b)))) ↪→(18),μ h(c(g(b))) ↪→(19),μ g(b) ↪→(20),μ g(a) ↪→(17),μ · · ·

Figure 2 shows it graphically. Once again, the first μ-rewriting step introduces
the minimal non-μ-terminating term b at a frozen position by using rule (17)
which introduces the context g(c(g(�))). But, in the second μ-rewriting step,
part of the active context g(c(g(�))) which is frozen at s2 = f(g(c(g(b)))), i.e.
g(�), is removed from s2 due to pattern matching with the left-hand side of rule
(18). Finally, in the same way, part of the active context c(g(�)) which is frozen
at s3 = h(c(g(b))), i.e. c(�), is removed from s3 in the third μ-rewriting step
by pattern matching with rule (19) and, furthermore, the migrating variable x
is instantiated to g(b).

We describe these “incoming” and “outcoming” contexts surrounding frozen
subterms. First, we notice that, when examining the rules (14), (18) and (19)
(which are responsible for the introduction and removal of contexts discussed in
Examples 3 and 4) they all share the following features:
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a ↪→(17),µ

g(c(g(�)))

b ↪→(18),µ

c(g(�))

b ↪→(19),µ

g(�)

b ↪→(20),µ · · ·

Fig. 2. Infinite μ-rewrite sequence in Example 4

– if a rule � → r adds a context Ci, then there is a term s = Ci[x]p such
that r = D[s]q, being q a frozen position of r and p an active position of s.
Furthermore, if � → r is applied in a minimal non-μ-terminating sequence,
the variable x cannot occur at active positions, i.e., x ∈ (Var�μ(�)∩Var�μ(r))−
(Varμ(�) ∪ Varμ(r)) (if not, minimality is violated); and,

– if a rule � → r removes a context Co, then there is a term s = Co[x]p such
that � = D[s]q, being q a frozen position of � and p an active position of s.
Furthermore, if � → r is applied in a minimal non-μ-terminating sequence,
the variable x cannot occur at active positions, i.e., x ∈ (Var�μ(�)∩Var�μ(r))−
(Varμ(�) ∪ Varμ(r)) or �|q.p is migrating (in this case, we are in the second
case of Proposition 1, where the minimal non-μ-terminating term shows up
and is the responsible of continuing the sequence).

Rules involving these incoming and outcoming contexts can be applied several
times and in different orders.

Example 5. Consider the following TRS R [1, modified (III)]:
a → f(g(b)) (21)

f(x) → h(g(c(c(x)))) (22)
h(g(x)) → h(x) (23)

h(c(x)) → x (24)
b → a (25)

with μ(g) = μ(c) = {1} and μ(f) = ∅ for all f ∈ F − {g, c}. And consider the
following infinite μ-rewrite sequence (graphically in Fig. 3):

a ↪→(21),μ f(g(b)) ↪→(22),μ h(g(c(c(g(b))))) ↪→(23),μ h(c(c(g(b)))) ↪→(24),μ c(g(b)) · · ·

Note that the migrating variable x is instantiated to term xσ = C[u] = c(g(b))
where u = b is minimal non-μ-terminating and the context C[�] = c(g(�)) with
a hole at an active position is a combination of fragments of contexts added at
frozen positions by rewrite rules.

a ↪→(21),µ

g(�)

b ↪→(22),µ

g(c(c(g(�))))

b ↪→(23),µ

c(c(g(�)))

b ↪→(24),µ

c(g(�))

b ···

Fig. 3. Infinite μ-rewrite sequence in Example 5
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4 Modeling the Unhiding Process Using Rules

Recapitulating Sect. 3, if we consider an infinite sequence starting from s1 ∈
T∞,μ, following Proposition 1 we extract an infinite sequence of the form:

s1
>Λ

↪−→∗
R,μ �1σ

Λ
↪→�1→r1,μ r1σ �μ s2

>Λ
↪−→∗

R,μ �2σ
Λ
↪→�2→r2,μ r2σ �μ · · ·

where si ∈ M∞,μ, for all i > 0. If Proposition 1(2) is applied on step j, j > 0,
we know that: (a) previously in the chain there is a rule (like (13), (17) and (21))
that introduces the minimal non-μ-terminating term in the sequence together
with an active context, (b) there are rules that modify this active context (like
(14), (18), (22) and (23)) and, finally, (c) rule �j → rj (like (15), (19) and (24))
shows up the minimal non-μ-terminating by means of a migrating variable x
together with part of its active context, xσ = C[u]. In this section, we use the
knowledge of the previous section to define a TRS that can be used to extract
u from C[u] by using a minimum set of rules. Furthermore, we introduce the
new notion of unhidable. All this prepares the introduction of a new notion of
minimality which is the basis of our new characterization of termination of CSR.

Following the observations in the previous section, we can get the patterns
which introduce the minimal non-μ-terminating term at a frozen position in
a μ-rewrite sequence together with its active context, as g(b) in rule (13) in
Example 3 and in rule (21) in Example 5 and g(c(b)) in rule (17) in Example 4.

Definition 1. Let R = (F , R) = (C 
 D, R) be a TRS, � → r ∈ R and μ a
replacement map on F . We say that s = C[t]p is a raw hidden term of � → r if
r = D[C[t]p]q, q ∈ Pos�μ(r), p ∈ Posμ(C[t]p), root(t) ∈ D and q.p is minimal in r

(i.e., there is no q′.p′ such that r = D′[C ′[t]p′ ]q′ , q′ ∈ Pos�μ(r), p′ ∈ Posμ(C ′[t]p′)
and p′ < p). Let Hraw(R, μ) be the set of all raw hidden terms from rules in
(R, μ).

Example 6. In Example 1, we have Hraw(R, μ) = {x∗fact(p(x))}; in Example 3,
we have Hraw(R, μ) = {g(b)}; in Example 4 we have Hraw(R, μ) = {g(c(g(b)))};
and, in Example 5, we have Hraw(R, μ) = {g(b))}.

We identify the shape of the patterns that increase or decrease the active context
attached to delayed subexpressions.

Definition 2. Let u ∈ T (F ,X ) and μ a replacement map on F . We say that s =
C[�]p is a maximal active hiding context in u if u = D[C[x]p]q, q ∈ Pos�μ(u),
p ∈ Posμ(C[x]p) and q.p is minimal in u.

Example 7. In rule (14), c(�) is a maximal active hiding contex of the right-hand
side, in rule (18), g(�) is an maximal active hiding context of the left-hand side
and in rule (19), c(�) is a maximal active hiding context of the left-hand side.

And we clasify the different maximal active hiding contexts existing in a CS-
TRS.
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Definition 3. Let R = (F , R) be a TRS, � → r ∈ R, μ a replacement map on
F , D[�]q a context with a hole at a frozen position q, C[�]p a context with a
hole at an active position and x ∈ X . We say that s = C[�]p is either:

1. An incoming context of � → r if s is a maximal active hiding contex of r,
r = D[C[x]p]q, and x ∈ (Var�μ(�) ∩ Var�μ(r)) − (Varμ(�) ∪ Varμ(r)).

2. An outcoming context of � → r if s is a maximal active hiding contex of �,
� = D[C[x]p]q, and x ∈ (Var�μ(�) ∩ Var�μ(r)) − (Varμ(�) ∪ Varμ(r)).

3. A terminal outcoming context of � → r if s is a maximal active hiding context
of �, � = D[C[x]p]q, and x ∈ Varμ(r) − Varμ(�).

Let Ci(R, μ)/Co(R, μ)/Ct(R, μ) be the set of all incoming / outcoming / terminal
outcoming contexts from rules in (R, μ).

Example 8. In rule (14), c(�) is an incoming contex of the right-hand side, in
rule (18), g(�) is an outcoming context of the left-hand side and in rule (19),
c(�) is a terminal outcoming context of the left-hand side.

In Example 1, we have Ci(R, μ) = Co(R, μ) = Ct(R, μ) = ∅; in Example 3, we
have Ci(R, μ) = {c(�)}, and Co(R, μ) = Ct(R, μ) = ∅; in Example 4, we have
Ci(R, μ) = ∅, Co(R, μ) = {g(�)}, and Ct(R, μ) = {c(�)}; and, in Example 5, we
have Ci(R, μ) = {g(c(c(�)))}, Co(R, μ) = {g(�)}, and Ct(R, μ) = {c(�)}.

Outcoming contexts represent the fragments of active contexts which can
be removed by a rule. Incoming contexts represent the active contexts that
can be added. The following fixed-point definition obtains any combination of
added/removed contexts (this will allow us to model the contexts that appear
in the infinite μ-rewrite sequence in Example 5).

Definition 4. Let R = (F , R) be a TRS and μ ∈ MF . The set XCi(R, μ) and
XCo(R, μ) are the least sets satisfying:

1. Ci(R, μ) ⊆ XCi(R, μ), Co(R, μ) ⊆ XCo(R, μ) and Ct(R, μ) ⊆ XCt(R, μ).
2. If Ci[�] ∈ XCi(R, μ), Co[�] ∈ XCo(R, μ), and there exist θ = mgu(Ci[x],

Co[y]) (rename variables if necessary) where x and y are fresh variables, such
that yθ /∈ X and yθ = C ′

i[x], then C ′
i[�] ∈ XCi(R, μ).

3. If Co[�] ∈ XCo(R, μ), Ci[�] ∈ XCi(R, μ), and there exist θ = mgu(Co[x],
Ci[y]) (rename variables if necessary) where x and y are fresh variables, such
that yθ /∈ X and yθ = C ′

o[x], then C ′
o[�] ∈ XCo(R, μ).

4. If Ct[�] ∈ XCt(R, μ), Ci[�] ∈ XCi(R, μ), and there exist θ = mgu(Ct[x],
Ci[y]) (rename variables if necessary) where x and y are fresh variables, such
that yθ /∈ X and yθ = C ′

t[x], then C ′
t[�] ∈ XCt(R, μ).

Note that, when the most general unifier (mgu) is computed, terms do not
share variables, so a variable renaming is applied if necessary. The computation
of XCi(R, μ), XCo(R, μ) and XCt(R, μ) terminates (in each step, the resulting
context is a instantiated fragment of one of the contexts that are unified).
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Example 9. In Examples 1, 3 and 4, we have XCi(R, μ) = Ci(R, μ), XCo(R, μ) =
XCo(R, μ) and XCt(R, μ) = Ct(R, μ). In Example 5, we have Co(R, μ) =
XCo(R, μ), Ct(R, μ) = XCt(R, μ), but XCi(R, μ) = {g(c(c(�))), c(c(�))}. The
context c(c(�)) represents a fragment of the active incoming context that
remains after applying rule (22) and rule (23).

Terminal outcoming contexts can only be applied just before the minimal non-μ-
terminating term shows up at an active position. Therefore, FXCi(R, μ) extends
XCi(R, μ) obtaining the fragments of contexts obtained after removing the the
terminal outcoming context.

Definition 5. Let R = (F , R) be a TRS and μ ∈ MF . The set FXCi(R, μ)
satisfies:

1. XCi(R, μ) ⊆ FXCi(R, μ).
2. If Ci[�] ∈ XCi(R, μ), Ct[�] ∈ XCt(R, μ), and there exist θ = mgu(Ci[x],

Ct[y]) (rename variables if necessary) where x and y are fresh variables, such
that yθ /∈ X and yθ = C[x], then C[�] ∈ FXCi(R, μ).

Example 10. In Examples 1, 3 and 4, we have FXCi(R, μ) = XCi(R, μ) =
Ci(R, μ). In Example 5, FXCi(R, μ) = {g(c(c(�))), c(c(�)), c(�)}. The context
c(�) represents a final fragment of the active incoming context that remains
after applying rule (24) (when the minimal non-μ-terminating term shows up at
an active position).

In the same way, we apply the outcoming contexts to the raw hidden terms
to obtain the possible shape of those terms when they show up by means of
migrating variables.

Definition 6. The set XHraw is the least set satisfying (1) Hraw ⊆ XHraw, and
(2) if Ci[t] ∈ XHraw, Co[�] ∈ XCo(R, μ) and there exist θ = mgu(Ci[t], Co[x])
where x is a fresh variable, such that xθ = C[tθ], then C[tθ] ∈ XHraw.

The set FXHraw satisfies (1) XHraw ⊆ FXHraw, and (1) if Ci[t] ∈ XHraw,
Ct[�] ∈ XCt(R, μ) and there exist θ = mgu(Ci[t], Ct[x]) where x is a fresh
variable, such that xθ = C[tθ], then C[tθ] ∈ FXHraw.

Example 11. In Examples 1 and 3, FXHraw(R, μ) = XHraw(R, μ) = XHraw(R, μ);
in Example 4, we have XHraw(R, μ) = {g(c(g(b))), c(g(b))} and FXHraw(R, μ) =
{g(c(g(b))), c(g(b)), g(b)}; and, in Example 5, XHraw(R, μ) = FXHraw(R, μ) =
{g(b), b}.

Previous definitions will be helpful in the next section to obtain a notion of
minimality that gives us more information about non-μ-terminating terms at
frozen positions.

4.1 A New Notion of Minimal Non-µ-terminating Term

The following notion of unhidable prepares a notion of minimality that provides
more information about minimal non-μ-terminating terms at frozen positions.
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Definition 7. Let R = (F , R) and S = (F , S0 
 S1) be TRSs, and μ ∈ MF .

Let s, t ∈ T (F ,X ). We say that s unhides t using S if s
Λ→

∗
S0

◦ Λ→S1 t. We say
that a term u is unhidable using S if for every subterm v ∈ M∞,μ such that
u = D[C[v]p]q, q ∈ Pos�μ(u), p ∈ Posμ(C[v]p), q.p minimal, C[v]p unhides v
using S and v is unhidable using S.

Setting S0 = FXCRi(R, μ) and S1 = FXHRraw(R, μ) in Definition 7, where we
define FXCRi(R, μ) = {Ci[x] → x | Ci[�] ∈ FXCi(R, μ)} and FXHRraw(R, μ) =
{Ci[s]p → s | Ci[s]p ∈ FXHraw(R, μ), p ∈ Posμ(Ci[s]p), s ∈ D}, we obtain the
following properties.

Proposition 2. Let R = (F , R) be a TRS, μ ∈ MF , S0 = FXCRi(R, μ), S1 =
FXHRraw(R, μ), S = (F , S0 
S1), σ be a substitution and u, v be terms such that
u unhides v using S. Then,

1. S0 ∩ S1 = ∅.
2. If Co[�] ∈ XCo(R, μ) ∪ XCt(R, μ), and u = Coσ[C[v]] then C[v] unhides v

using S.
3. If Ci[�] ∈ XCi(R, μ), then Ciσ[u] unhides v using S.

We are ready now to introduce our new notion of minimality.

Definition 8 (Unhidable minimal term). Let R = (F , R) be a TRS, μ ∈
MF , S0 = FXCRi(R, μ), S1 = FXHRraw(R, μ) and S = (F , S0 
 S1). We define
the set of unhidable minimal non-μ-terminating terms M∗

∞,μ as follows: s ∈
M∗

∞,μ iff s ∈ M∞,μ and s is unhidable using S.

The following result improves Proposition 1 by using then new notion of minimal
non-μ-terminating term.

Proposition 3. Let R = (F , R) = (C 
 D, R) be a TRS, μ ∈ MF , S0 =
FXCRi(R, μ), S1 = FXHRraw(R, μ) and S = (F , S0
S1). Then for all t ∈ M∗

∞,μ,
there exist � → r ∈ R, a substitution σ and a term u ∈ M∗

∞,μ such that

t >Λ↪−→∗
R,μ �σ

Λ
↪→ rσ �μ u and either:

1. There is a nonvariable active subterm s of r, r �μ s, such that root(s) ∈ D
and u = sσ, or

2. There is x ∈ Varμ(r) − Varμ(�) such that xσ = C[u] for a possibly empty
context C[�] with a hole at an active position and C[u] unhides u using S.

5 From Minimal Terms to the CS-DP Framework

Dependency pairs [6] describe the propagation of minimal non-μ-terminating
terms in non-terminating rewrite sequences. The notion of CS-DP is a con-
sequence of Proposition 1. The notation f � for a given symbol f means that
f is marked. For s = f(s1, . . . , sn), we write s� to denote the marked term
f �(s1, . . . , sn). We often capitalize f and use F instead of f � in our examples.



322 R. Gutiérrez and S. Lucas

Definition 9 (Context-Sensitive Dependency Pairs [3]). Given a CS-
TRS (R, μ), let DP(R, μ) = DPF (R, μ) ∪ DPX (R, μ) the set of CS-DPs where
DPF (R, μ) = {�� → s� | � → r ∈ R, r �μ s, root(s) ∈ D, � �μ s}, and
DPX (R, μ) = {�� → x | � → r ∈ R, x ∈ Varμ(r) − Varμ(�)}. We extend μ
into μ� by μ�(f) = μ(f) if f ∈ F , and μ�(f �) = μ(f) if f ∈ D.

Example 12. For (R, μ) in Example 1, we obtain the following CS-DPs:

s(x)+�y → x+�y (26) FACT(x) → ZERO(x) (30)
s(x)∗�y → y+�(x∗y) (27) IF(true, x, y) → x (31)
s(x)∗�y → x∗�y (28) IF(false, x, y) → y (32)

FACT(x) → IF(zero(x), s(0), x∗fact(p(x))) (29)

DPs (26)-(30) capture the direct function calls and collapsing DPs (31)-(32)
capture the activation of delayed function calls.

As usual when dealing with DPs, we abstract the notion of chain using generic
TRSs P, R and S. Termination of CS-TRSs is characterized by the absence of
infinite chains of CS-DPs [2,3].

Definition 10 (Chain of Pairs [17]). Let P, R and S be TRSs and μ a
replacement map where S = S�μ


 S�, S�μ
are rules of the form s → t ∈ S

such that s �μ t and S� = S − S�μ
. A (P,R,S, μ)-chain is a finite or infinite

sequence of pairs ui → vi ∈ P, together with a substitution σ satisfying that, for
all i ≥ 1,

1. If vi /∈ Var(ui) − Varμ(ui), then viσ = wi ↪→∗
R,μ ui+1σ, and

2. If vi ∈ Var(ui) − Varμ(ui), then viσ
Λ→

∗
S�μ

◦ Λ→S�
wi ↪→∗

R,μ ui+1σ.

An infinite (P,R,S, μ)-chain is called minimal if for all i ≥ 1, wi is (R, μ)-
terminating.

In Definition 10, P plays the role of DP(R, μ) and S has two components S�μ
and

S� which are useful to model the connection between a collapsing pair to another
pair. The connection between the results obtained in the previous section and
the notion of chain is straightforward, we only have to introduce the marking in
our unhiding rules.

Definition 11 (Unhiding TRS). Let R be a TRS and μ ∈ MR. We define
unh(R, μ) = unh�μ

(R, μ) 
 unh�(R, μ), where unh�μ
(R, μ) = FXCRi(R, μ) and

unh�(R, μ) = {s → t� | s → t ∈ FXHRraw(R, μ)}.
Example 13. The unhiding TRS unh(R, μ) in Example 1 consists of the following
rules:

x∗fact(p(x)) → x∗�fact(p(x)) (33) x∗fact(p(x)) → FACT(p(x)) (34)
x∗fact(p(x)) → P(x) (35)
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where FXCi(R, μ) = ∅. In [17], the definition of the unhiding TRS is different.
We would have the following bigger set of rules:

x∗fact(p(x)) → x∗�fact(p(x)) x∗y → y
fact(p(x)) → FACT(p(x)) fact(x) → x

p(x) → P(x)

The following result provides a new characterization of termination of CSR.

Theorem 1. Let R be a TRS and μ ∈ MR. R is μ-terminating if and only if
there is no infinite minimal (DP(R, μ),R, unh(R, μ), μ�)-chain.

Example 14. For (R, μ) in Example 3, we obtain the following CS-DPs:
A → F(g(b)) (36)

F(x) → F(c(x)) (37)
F(x) → x (38)

B → A (39)

The infinite sequence in Example 3 is captured by the following (P,R,S, μ�)-
chain, where P = DP(R, μ) and S = unh(R, μ):

A →(36) F(g(b)) →(37) F(c(g(b))) →(38) c(g(b))
Λ→S�μ

g(b)
Λ→S� B →(39) A →(36) · · ·

5.1 Context-Sensitive Dependency Pair Framework

In the DP framework [14], the focus is on the so-called termination problems
involving two TRSs P and R instead of just the ‘target’ TRS R. In our setting
we start with the following definition (see also [1,3]).

Definition 12 (CS Problem and Processor). A CS problem τ is a tuple
τ = (P,R,S, μ), where P, R and S are TRSs, and μ is a replacement map on
the signatures of R, P and S. The CS problem (P,R,S, μ) is finite if there is
no infinite minimal (P,R,S, μ)-chain.

A CS processor Proc is a mapping from CS problems into sets of CS problems.
A CS-processor Proc is sound if for all CS problems τ , τ is finite whenever
∀τ ′ ∈ Proc(τ), τ ′ is finite3.

In order to prove the μ-termination of a TRS R, we adapt the result from [14]
to CSR.

Theorem 2 (CS-DP Framework [3]). Let R be a TRS and μ a replacement
map on the signature of R. We construct a tree whose nodes are labeled with CS
problems or “yes”, and whose root is labeled with (DP(R, μ),R, unh(R, μ), μ�).
For every inner node labeled with τ , there is a sound processor Proc satisfying
one of the following conditions:

1. Proc(τ) = ∅ and the node has just one child, labeled with “yes”.
2. Proc(τ) 	= no, Proc(τ) 	= ∅, and the children of the node are labeled with the

CS problems in Proc(τ).

If all leaves of the tree are labeled with “yes”, then R is μ-terminating.
3 In order to keep our presentation simple, we do not introduce here the notions related

with completeness of processors, needed for nontermination proofs.
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6 Usable Rules in the CS-DP Framework

One of the most powerful CS processors to deal with CS problems is the μ-
reduction pair processor, a processor that discards pairs that can be strictly
oriented using orderings. A μ-reduction pair (�,�) consists of a stable and μ-
monotonic4 quasi-ordering �, and a well-founded stable relation � on terms in
T (F ,X ) which are compatible, i.e., � ◦ � ⊆ � or � ◦ � ⊆ � [2]. Given a CS
problem τ = (P,R,S, μ), if there is a μ-reduction pair such that P ∪S ⊆� ∪ �
and R ⊆� then (P,R,S, μ) is finite if (P − P�,R,S − S�, μ) is finite, where
P� and S� represent the set of rules from P and S oriented using �. The μ-
reduction pair processor can be improved using the notion of usable rule [5].
Usable rules, initially connected to innermost termination, allow us to discard
those rules from R that are not directly involved in (possible) infinite minimal
(P,R,S, μ)-chains. In rewriting (and also in CSR), the notion of usable rule is
connected with Cε-termination [16,28]. A TRS R = (F , R) is Cε-terminating if
R 
 Cε is terminating, where Cε = {c(x, y) → x, c(x, y) → y} (with c /∈ F).
The idea behind the usable rules is that for every infinite minimal (P,R,S, μ)-
chain we can construct an infinite sequence where rewrite steps using R can be
simulated by rewrite steps using Uτ (R) and Cε, where Uτ (R) is the set of usable
rules of τ . So, instead of R ⊆�, we only need to satisfy Uτ (R) 
 Cε ⊆�.

In [19], the notion of CS usable rule was given for chains of pairs. This
notion is different from the one given in unrestricted rewriting. For example, if
we consider the following CS problem τ1 = ({(29), (31), (32)},R, {(33), (34)}, μ�)
obtained from Example Example 13, the set of CS usable rules in τ1 is R. This
is caused by the presence of migrating variables. In the presence of migrating
variables, every rule headed by a symbol appeared at a frozen positions in the
right-hand side of a rule in R must be considered usable (in this case ∗, fact and
p, and by transitivity +, if and zero).

But, if we look closely at the μ-rewrite sequence from Example 1 and its
translation into a (DP(R, μ),R, unh(R, μ), μ�)-chain:

FACT(sn(x)) →(29) IF(zero(sn(x)), s(0), sn(x)∗fact(p(sn(x)))) ↪→(7),μ

IF(false, s(0), sn(x)∗fact(p(sn(x)))) →(32) s
n(x)∗fact(p(sn(x))) Λ→(34)

FACT(p(sn(x))) ↪→(3),μ · · ·

we notice that x in FACT(p(sn(x))) appears at an active position, but x comes
from the initial term FACT(sn(x)) where it was also at an active position, i.e.,
x does not behave as a migrating variable in the (DP(R, μ),R, unh(R, μ), μ�)-
chain. Intuitively, this is equivalent to consider a pair FACT(x) → FACT(p(x))
and remove the intermediate steps. This “conservative” behavior allows us to
ensure that only the rules defining zero and p are usable and, hence, obtain a

4 A binary relation R on terms is μ-monotonic if for all terms s, t, t1, . . . , tm, and m-ary
symbols f , whenever sR t and i ∈ μ(f) we have f(. . . , ti−1, s, . . .)Rf(. . . , ti−1, t, . . .).
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smaller set of usable rules. Therefore, we have to find the general conditions that
allow us to use this suitable set of usable rules in the μ-reduction pair processor.

6.1 Strongly Minimal Terms

The first stumbling rock in our goal comes when we try to control the shape of
infinite terms (minimal non-μ-terminating terms in infinite μ-rewrite sequences)
that appear at frozen positions. In the analysis of infinite μ-rewrite sequences,
we obtain this control by imposing strong minimality on the initial term of the
sequence, but this notion is lost in the notion of chain. Therefore, our first step
is to introduce the notion of strongly minimal (P,R,S, μ)-chain. This notion
ensures that the initial term of an infinite (P,R,S, μ)-chain does not contain
any subterm that can generate an infinite (P,R,S, μ)-chain.

Definition 13. An infinite (P,R,S, μ)-chain u1 → v1, u2 → v2, . . . is strongly
minimal if it is minimal and there is no rule s → t ∈ S� and substitutions σ, θ
such that u1σ � sθ and tθ starts an infinite minimal (P,R,S, μ)-chain.

But the absence of infinite strongly minimal (P,R,S, μ)-chain do not char-
acterize the finiteness of CS problems. For example, if S� = {a → F(a)},
P = {F(x) → x}, R = ∅ and μ(f) = ∅ for all f in the signature, we have
the infinite minimal (P,R,S, μ)-chain F(a) →P a

Λ→S F(a) →P · · · which is not
strongly minimal. Furthermore, there is no infinite strongly minimal (P,R,S, μ)-
chain. The following result allows us to use strongly minimal chains in the CS-DP
framework by imposing an structural condition on rules in S�. Rules in unh�(R, μ)
always satisfy the condition imposed on S� in Theorem 3.

Theorem 3. Let τ = (P,R,S, μ) be a CS problem such that for every s →
t ∈ S�, s = f(s1, . . . , sm) and t = g(s1, . . . , sm). Then, τ is finite if there is no
infinite strongly minimal (P,R,S, μ)-chain.

6.2 Left-Linearity and µ-Conservativity

The second stumbling rock in our goal comes when we want to ensure that
any term occurring at a frozen position does not show up at an active position
by means of a variable instantiation after pair or rule applications. We will
make use of left-linearity and conservativity conditions. Left-linearity allow us
to discard rules which left-hand side variables are at the same time at frozen and
active positions, because we impose its unicity. A rule � → r is μ-conservative if
Varμ(r) ⊆ Varμ(�), i.e., there is no migrating variable. Collapsing pairs are not
conservative, but if we ensure that when we introduce a possible infinite term
at a frozen position in the chain (as fact(p(x)) in rule (7) or pair rule (29)) it
remains unaltered until it shows up by means of a S� rule application (in this
case, rule (34)), we only need to pay attention to the rule or pair � → r that
introduce the possible infinite term u in the chain at a frozen position, r �

�μ
u,

(i.e., rule (7) or pair rule (29)) and check that � → u (i.e. fact(x) → fact(p(x))
and FACT(x) → fact(p(x))) is conservative. If so, we say that the CS problem is
conservative with respect to S.
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Definition 14 (Conditions for S). Let τ = (P,R,S, μ) be a CS problem. We
say that τ is conservative with respect to S if S is conservative and the following
conditions hold:

– for all s → t ∈ S�, s = f(s1, . . . , sm) and t = g(s1, . . . , sm); and,
– for each s → t ∈ S� and for each u → v ∈ P ∪ R, if there is a nonvariable

subterm v′ of v at a frozen position such that θ = mgu(v′, s), then v′ = s up
to renaming of variables and u → v′ must be conservative.

These conditions always hold if S� ⊆ unh�(R, μ).

6.3 Extended Basic CS Usable Rules

We define our set of usable rule in the usual way. Let Funμ(s) be the set of
symbols at active positions in a term s ∈ T (F ,X ), Funμ(s) = {f | ∃p ∈
Posμ(s), f = root(s|p)}. and Fun�μ(s) the set of symbols at frozen positions in
a term s ∈ T (F ,X ), Fun�μ(s) = {f | ∃p ∈ Pos(s) − Posμ(s), f = root(s|p)}. Let
RlsR(f) = {� → r ∈ R | root(�) = f}.

Definition 15 (Extended Basic μ-Dependency). Given a TRS (F , R) and
a replacement map μ, we say that f ∈ F has an extended basic μ-dependency
on h ∈ F , written f �R,μ h, if f = h or there is a function symbol g with g �R,μ h

and a rule � → r ∈ RlsR(f) with g ∈ Fun�μ(�) ∪ Funμ(r).

Definition 16 (Extended Basic CS Usable Rules). Let τ = (P,R,S, μ) be
a CS problem. The set U�

τ (R) of extended basic context-sensitive usable rules
of τ is

U�
τ (R) =

⋃

u→v∈P∪S,f∈Fun�μ(u)∪Funμ(v),f�R,μg

RlsR(g)

We obtain the processor ProcUR. The pairs P in a CS problem (P,R,S, μ),
where P is a TRS over the signature G, are partitioned as follows: PX = {u →
v ∈ P | v ∈ Var(u) − Varμ(u)} and PG = P − PX .

Fig. 4. CS Dependency Graph for Example 1

Theorem 4. Let τ = (P,R,S, μ) be a CS problem such that (a) PG ∪ U�
τ (R) ∪

S�μ
is left-linear and conservative, and (b) whenever PX 	= ∅ we have that PX

is left-linear and τ is conservative with respect to S. Let (�,�) be a μ-reduction
pair such that (1) P ⊆ � ∪ �, U�

τ (R) 
 Cε ⊆ �, (2) whenever PX 	= ∅ we have
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that S ⊆ � ∪ �. Let P� = {u → v ∈ P | u � v} and S� = {s → t ∈ S | s � t}.
Then, the processor ProcUR given by

ProcUR(τ) =
{{(P − P�,R,S − S�, μ)} if (1) and (2) hold

{(P,R,S, μ)} otherwise

is sound.

Example 15. In Example 1, we start with the CS problem τ0 = (DP(R, μ),R,
unh(R, μ), μ�). Applying the well-known SCC processor [17] to τ0, ProcSCC(τ0),
we get the new set of CS problems ProcSCC(τ0) = {τ1, τ2, τ3} using the com-
puted CS dependency graph from Fig. 4, where τ1 = ({(26)},R, ∅, μ), τ2 =
({(28)},R, ∅, μ) and τ3 = ({(29), (31), (32)},R, {(34)}, μ). Applying the well-
known μ-subterm processor [17] to CS problems τ1 and τ2 we get Procsub(τ1) = τ4

and Procsub(τ2) = τ4, where τ4 = (∅,R, ∅, μ) and, hence, we can conclude that
τ1 and τ2 are finite.

But, until now, CS problem τ3 could not be handled by any automatic tool.
By Definition 16, the set of extended basic CS usable rules U�

τ (R) is:

zero(0) → true zero(s(x)) → false p(s(x)) → x

when in the previous approach all the rules are usable. We can use the extended
basic CS usable rules instead of R because the CS problem satisfies the restric-
tions in Theorem 4 and the following polynomial interpretation [26] allows us to
remove pair (32):

[fact](x) = 2x [∗](x, y) = 1
2xy + 2

[p](x) = 1
2x [zero] = 1

2x2

[0] = 2 [s](x) = 2x + 1
[false] = 1

2 [true] = 2
[FACT](x) = 2x2 + 2 [IF](x, y, z) = 1

2xy + 1
2x + z

The new CS problem τ5 = ({(29), (31)},R, {(34)}, μ) can be handled again using
Theorem 4. The following polynomial interpretation removes pair (31):

[fact](x) = 1 [∗](x, y) = 2x + 2
[0] = 0 [s](x) = 2x
[p](x) = 2x + 1 [zero] = 2x + 1
[false] = 1 [true] = 1
[FACT](x) = 2 [IF](x, y, z) = y + 1

and we obtain a finite CS problem by applying ProcSCC to the resulting CS
problem.

7 Experimental Evaluation

We have performed an experimental evaluation of the new improvements intro-
duced by these new results presented in the paper in our tool for proving
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termination properties, mu-term [4]. We compared our new version, we call
it mu-term 5.1, with respect to the previous version, mu-term 5.08 [17].
The experiments have been performed on an Intel Core 2 Duo at 2.4GHz
with 8GB of RAM, running OS X 10.9.1 using a 120 seconds timeout. We
used the last version of the termination problem database, TPDB 8.0.75,
context-sensitive category. Results are in http://zenon.dsic.upv.es/muterm/
benchmarks/lrc15-csr/benchmarks.html and summarized in Table 1. mu-term
5.1 also participated in the CSR category in the 2014 termination compe-
tition (http://termination-portal.org/wiki/Termination Competition 2014) and
the same results were confirmed.

Table 1. mu-term 5.1 vs. mu-term 5.08 comparison

Tool version Proved Total time (Av. time)

mu-term 5.1 102/109 1.62s

mu-term 5.08 99/109 2.23s

The practical improvements revealed by the experimental evaluation are
twofold. First, we can prove (now) termination of 102 of the 109 exam-
ples, 3 more examples than our previous version, including [29, Example 1],
[13, Example 1] and [10, Example 3.2.14], whose automatic proofs were open
problems since 1997, 2003 and 2008. To our knowledge, there is no other tool
that can prove more than those 99 examples from this collection of problems.
Second, the new definitions yield a faster implementation; this is witnessed by a
speed-up of 1.37 with respect to our previous version.

8 Conclusions

In this paper, we revisit infinite μ-rewrite sequences to obtain a new notion
of minimal non-μ-terminating term and a new set of unhiding rules. Since the
introduction of the CS-DPs in 2006, the constraints introduced by the unhid-
ing process have been a headache for constraint solvers. For example, in the
original approach for each symbol f in the signature and replacing argument
i ∈ μ(f), a projection constraint f(x1, . . . , xn) ≥ xi should be satisfied in order
to find a proof. Subsequent works [1,17] reduced these projection constraints to
a subset of those for the hidden symbols. Now, in many cases, as in the leading
example of the paper, we can avoid these projection/embedding constraints and
the unhiding rules are a very small set of rules. In the context of the CS-DP
framework, we propose a new notion of chain, the notion of strongly minimal
(P,R,S, μ)-chain and a new set of CS usable rules, the extended basic CS usable
rules, that allows us to simplify termination proofs on CS problems with respect
to the set of unhiding rules. The new processor leads us to a faster and more

5 See http://termcomp.uibk.ac.at/termcomp/.

http://zenon.dsic.upv.es/muterm/benchmarks/lrc15-csr/benchmarks.html
http://zenon.dsic.upv.es/muterm/benchmarks/lrc15-csr/benchmarks.html
http://termination-portal.org/wiki/Termination_Competition_2014
http://termcomp.uibk.ac.at/termcomp/
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powerful CS-DP framework. We show an example where the technique is success-
fully applied [29, Example1] (included in the TPDB), whose automatic proof was
an open problem since 1997. An implementation and an experimental evaluation
was performed in our tool for proving termination properties, mu-term [4]. With
these improvements, mu-term won the CSR category in the 2014 termination
competition.
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8. Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P., Ringeissen, C.: An
overview of ELAN. Electr. Notes Theor. Comput. Sci. 15, 55–70 (1998).
http://dx.doi.org/10.1016/S15710661(05)825526

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol.
4350. Springer, Heidelberg (2007)

10. Emmes, F.: Automated Termination Analysis of Context-Sensitive Term Rewrite
Systems. Master’s thesis, Fakultät für Mathematik, Informatik und Naturwis-
senschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen, Aachen,
Germany (2008)

11. Futatsugi, K., Goguen, J.A., Jouannaud, J.P., Meseguer, J.: Principles of OBJ2.
In: Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL 1985, pp. 52–66. ACM (1985)

12. Futatsugi, K., Nakagawa, A.: An overview of CAFE specification environment-an
algebraic approach for creating, verifying, and maintaining formal specifications
over networks. In: Proceedings of the 1st International Conference on Formal Engi-
neering Methods, ICFEM 1997, p. 170. IEEE Computer Society (1997)

13. Giesl, J., Middeldorp, A.: Innermost termination of context-sensitive rewriting. In:
Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 231–244. Springer,
Heidelberg (2003)

14. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006)

http://dx.doi.org/10.1016/S1571-0661(05)82552-6


330 R. Gutiérrez and S. Lucas

15. Goguen, J.A., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.P.: Software
Engineering with OBJ: Algebraic Specification in Action. Kluwer, Boston (2000).
chap. Introducing OBJ

16. Gramlich, B.: Generalized sufficient conditions for modular termination of rewrit-
ing. Appl. Algebra Eng. Commun. Comput. 5, 131–151 (1994)

17. Gutiérrez, R., Lucas, S.: Proving termination in the context-sensitive dependency
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Abstract. The Helena approach allows to specify dynamically evolv-
ing ensembles of collaborating components. It is centered around the
notion of roles which components can adopt in ensembles. In this paper,
we focus on the early verification of Helena models. We propose to
translate Helena specifications into Promela and check satisfaction of
LTL properties with Spin [11]. To prove the correctness of the transla-
tion, we consider an SOS semantics of (simplified variants of) Helena
and Promela and establish stutter trace equivalence between them.
Thus, we can guarantee that a Helena specification and its Promela
translation satisfy the same LTL formulae (without next). Our correct-
ness proof relies on a new, general criterion for stutter trace equivalence.

1 Introduction

The Helena approach [10] proposes to model large distributed systems of goal-
oriented collaborations of components by dynamically evolving ensembles where
the participating components play certain roles. By adopting a role, a component
executes a role-specific behavior. The introduction of roles allows to focus on
the particular tasks which components fulfill in specific collaborations and to
structure the implementation of ensemble-based systems [13,14].

Ensembles always collaborate towards some global goals. Such goals are often
temporal properties which we specify by linear temporal logic (LTL) formu-
lae [17]. In this paper, we focus on the early (pre-implementation) verification
of Helena models for their intended goals. We propose to translate Helena
specifications into Promela and check satisfaction of LTL properties with the
model-checker Spin [11]. Promela is well-suited as a target language since it
supports dynamic creation of concurrent processes and asynchronous communi-
cation. Our contribution is as follows: Firstly, we propose a syntactic translation
of a simplified variant of Helena (called HelenaLight), which restricts ensem-
ble specifications to the core concepts of our modeling approach, to a subset
of Promela (called PromelaLight), which is sufficient to express all Hele-
naLight concepts. Secondly, we prove the correctness of the translation. For this
purpose, we define a formal SOS semantics for HelenaLight and Promela-
Light specifications. The latter is based on the semantics for full Promela
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in [20]. On this semantic basis, we establish stutter trace equivalence between the
semantics of a HelenaLight specification and its PromelaLight translation.
Then, we reuse results from the literature [1] that satisfaction of LTL formulae
(without next) is preserved by stutter trace equivalence. As a consequence, we
can verify LTL properties for a HelenaLight specification by model-checking
its PromelaLight translation with Spin. To prove stutter trace equivalence
between HelenaLight and PromelaLight, we investigate a new, general cri-
terion that Kripke structures are stutter trace equivalent if particular stutter
simulations (called ≈-stutter simulations) can be established in both directions.

In Sect. 2, we explain foundations on LTL and propose our criterion for stut-
ter trace equivalence which entails LTL\X preservation. In Sect. 3, we sum-
marize the Helena modeling approach and present the running example of
a peer-2-peer network storing files. Section 4 defines syntax and semantics of
HelenaLight and Sect. 5 for PromelaLight resp. In Sect. 6, we provide
the formal translation from HelenaLight to PromelaLight and, in Sect. 7,
establish the desired correctness results. Section 8 discusses model-checking of
Helena specifications.

Personal Note. José, Rolf, and Martin know each other since the eighties where
they investigated the foundations of algebraic specifications, José with Joseph
Goguen in the initial algebra setting, and Martin and Rolf inspired by the CIP
program development methodology from the loose and observational seman-
tics point of view. Behavioral specifications and equivalence of algebras were
already studied by José and Joseph in [8] which was a fruitful source for the
thesis of Rolf. In the beginning of the nineties, Martin was looking for an
appropriate semantical framework for underpinning the typically informal or
semi-formal object-oriented methods with a formal framework. Rewriting logic
invented by José a few years earlier appeared to be the perfect tool: a simple
computational logic that supports concurrent computation, logical deduction,
and object-oriented features. Martin is still very grateful that José gave him
the opportunity to present his first results on integrating formal specifications
into pragmatic object-oriented development at the first WRLA in 1996 [22].
Later, José, Rolf, and Martin became all members of IFIP WG 1.3. and José
and Martin worked together on the algebraic foundation and analysis of mod-
ern programming paradigms including studies of the semantic foundations of
multi-paradigm languages [2], the analysis of denial of service attacks [6], and
the specification and correct implementation of the distributed programming
language KLAIM [7]. Our current paper follows the same aim; we present the
formal foundation of Helena ensemble specifications and use results related to
José’s seminal paper on algebraic simulations [19] for proving the correctness of
model-checking Helena ensembles with Spin.

It is a great pleasure to know and work with José since so many years; we
admire his broad and deep knowledge in many areas; it is inspiring to discuss
with him and he is a very kind and warm hearted colleague and friend. We are
looking forward to many further exciting scientific exchanges with José.
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2 Foundations on LTL\X Preservation

In this section, we review Kripke structures, linear temporal logic (LTL), and
satisfaction of LTL formulae. We propose how to induce Kripke structures from
labeled transitions systems (which will be used for the semantics of Hele-
naLight and PromelaLight specifications). Furthermore, we propose a cri-
terion for stutter trace equivalence of Kripke structures which entails LTL\X1

preservation according to the literature in [1].

LTL in Kripke Structures: A Kripke structure consists of a set of states
connected by (unlabeled) transitions. The states are labeled by sets of atomic
propositions which hold in the state and some states are marked as initial states.

Definition 1 (Kripke Structure). Let AP be a set of atomic propositions.
A Kripke structure K over AP is a tuple (SK , IK ,−→K , FK) such that SK is a
set of states, IK ⊆ SK is a set of initial states, −→K ⊆ SK ×SK is an (unlabeled)
transition relation without terminal states (i.e., ∀s ∈ SK .∃s′ ∈ SK . s −→K s′),
and FK : SK → 2AP is a labeling function associating to each state the set of
atomic propositions that hold in it.

For a Kripke structure K = (SK , IK ,−→K , FK), we further define: A path of
K starting in s1 is an infinite sequence p = s1s2s3 . . . (with si ∈ SK for all i ≥ 1)
such that si −→K si+1. A path of K is a path starting in s0 ∈ IK . A trace of K
is an infinite sequence t = t0t1t2 . . . such that there exists a path p = s0s1s2 . . .
in K (starting in s0 ∈ IK) and ti = FK(si) for all i ∈ N.

To describe temporal properties, we use linear temporal logic (LTL).

Definition 2 (LTL [1]). Let AP be a set of atomic propositions. LTL formulae
over AP are inductively defined by:

φ = p ∈ AP (atomic proposition)
| ¬φ | φ∧ψ (proposition logic operators)
| Xφ | ♦φ | �φ | φUψ (linear temporal logic operators)

Disjunction, implication, and equivalence are given by the usual abbreviations.
The set of LTL formulae over AP is denoted by LTL(AP).

Satisfaction of LTL formulae is defined by the usual inductive definition [1].

Definition 3 (Satisfaction of LTL in Kripke Structures). Let K = (SK ,
IK ,−→K , FK) be a Kripke structure over AP, t = t0t1t2 . . . a trace of K, and
φ ∈ LTL(AP); t|i denotes the subsequence titi+1ti+2 . . . of t.

1 LTL\X is the fragment of LTL that does not contain the next operator X.



334 R. Hennicker et al.

The satisfaction of φ for trace t, written t |= φ, is inductively defined by

– t |= p, if p ∈ t0,
– t |= ¬φ, if t 
|= φ,
– t |= φ∧ ψ, if t |= φ and t |= ψ,
– t |= Xφ, if t|1 |= φ,
– t |= ♦φ, if there exists k ≥ 0 such that t|k |= φ,
– t |= �φ, if for all k ≥ 0 holds t|k |= φ,
– t |= φUψ, if there exists k ≥ 0

such that t|k |= ψ and for all 0 ≤ j < k holds t|j |= φ,

The Kripke structure K satisfies an LTL formula φ, written K |= φ, if all
traces of K starting in an initial state satisfy φ.

LTL in Labeled Transition Systems: In contrast to Kripke structures,
labeled transition systems do not label states with atomic propositions, but
transitions with actions.

Definition 4 (Labeled Transition System). A labeled transition system
(LTS) T is a tuple (ST , IT , AT ,−→T ) such that ST is a set of states, IT ⊆ ST is
a set of initial states, AT is a set of actions such that the silent action τ /∈ AT ,
and −→T ⊆ ST × (AT ∪ τ) × ST is a labeled transition relation.

For an LTS T = (ST , IT , AT ,−→T ), we further define: a∗ denotes a (possi-
bly empty) sequence of a actions. If w = a1 . . . an holds for some n ∈ N and
a1, . . . , an ∈ (AT ∪ τ), then s

w−→T s′ stands for s = s′, if n = 0, and s
a1−→T

s1 . . . sn−1
an−−→T s′ with appropriate s1, . . . , sn−1 otherwise. The LTS T together

with a set of atomic propositions AP and a satisfaction relation s |= φ (for
s ∈ ST and φ ∈ LTL(AP)) induces a Kripke structure K(T ) = (ST , IT ,−→•

T , F).
The labeled transition relation −→T is transformed into an unlabeled, total tran-
sition relation −→•

T which forgets the actions and adds a new transition s −→•
T s

for each terminal state s ∈ ST . The labeling function F : ST → 2AP is defined
by F(s) = {p ∈ AP | s |= p}.

Definition 5 (Satisfaction of LTL in Labeled Transition Systems). Let
T = (ST , IT , AT ,−→T ) be a labeled transition system, AP a set of atomic propo-
sitions, s |= φ a satisfaction relation for s ∈ ST and φ ∈ LTL(AP).

T satisfies φ, written T |= φ, if K(T ) |= φ, i.e., the induced Kripke struc-
ture K(T ) satisfies φ.

LTL\X Preservation: Lastly, we investigate when two Kripke structures satisfy
the same set of LTL\X formulae. Therefore, we introduce the notion of stutter
trace equivalence.

– Two paths of Kripke structures over the same set of atomic propositions AP
are stutter trace equivalent if their traces only differ in the number of their
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stutter steps, i.e., there exist sets of atomic propositions Pi ⊆ AP (with
i ∈ N) such that the traces of both paths have the form P+

0 P+
1 P+

2 . . . where
P+

i denotes a non-empty sequence of the same set Pi.
– Two Kripke structures K1 and K2 are stutter trace equivalent if for each path

of K1 there exists a stutter trace equivalent path of K2 and vice versa.

To provide a criterion for stutter trace equivalence of Kripke structures, we
propose the notion of a ≈-stutter simulation.

Definition 6 (≈-Stutter Simulation). Let K1 = (S1, I1,−→1, F1) and K2 =
(S2, I2,−→2, F2) be two Kripke structures over AP. Let ≈⊆ S1 ×S2 be a relation.

A relation ∼⊆ S1 × S2 is a ≈-stutter simulation of K1 by K2 if (1) ∼⊆≈
and (2) for all s ∈ S1, t ∈ S2 with s ∼ t, if s −→1 s′, then s′ ∼ t or there exists
t −→2 t1 −→2 . . . −→2 tn −→2 t′1 −→2 . . . −→2 t′m −→2 t′ (n,m ≥ 0) such that s ≈ ti for
all i ∈ {1, . . . , n}, s′ ≈ t′j for all j ∈ {1, . . . , m} and s′ ∼ t′.

K1 is ≈-stutter simulated by K2 if there exists a ≈-stutter simulation ∼ of K1

by K2 such that s0 ∼ t0 for all s0 ∈ I1, t0 ∈ I2.

Stutter trace equivalence does not require preservation of the branching struc-
ture of the underlying Kripke structures. Therefore, interestingly, the notion of
≈-stutter simulations (compared to stutter bisimulations [19] preserving branch-
ing) is sufficient to provide a criterion whether two Kripke structures are stutter
trace equivalent if we add two conditions.

Let K1 = (S1, I1,−→1, F1) and K2 = (S2, I2,−→2, F2) be two Kripke structures
over AP. A relation ≈ ⊆ S1 × S2 is property-preserving if for all s ∈ S1, t ∈ S2,
s ≈ t implies F1(s) = F2(t). The relation ≈ is divergence-sensitive (see also
[1]) if for all s1 ∈ S1, t1 ∈ S2 with s1 ≈ t1 holds: if there exists an (infinite)
path s1s2s3 . . . in K1 starting in s1 with si ≈ t1 for all i ≥ 1, then there exists
an (infinite) path t1t2t3 . . . in K2 starting in t1 with s1 ≈ tj for all j ≥ 1 and
symmetrically for (infinite) paths in K2 starting in t1.

Theorem 1 (Stutter Trace Equivalence). Let K1 and K2 be two Kripke
structures over AP with states S1, S2 resp. Let ≈ ⊆ S1 × S2 be a property-
preserving and divergence-sensitive relation and ≈−1 its inverse relation. If K1

is ≈-stutter simulated by K2 and K2 is ≈−1-stutter simulated by K1, then K1

and K2 are stutter trace equivalent.

Proof. Since K1 is ≈-stutter simulated by K2, each path of K1 is simulated by
a corresponding path of K2 such that on all paths, the states related by ≈ have
the same properties. The same holds vice versa for ≈−1. ��

The question arises which LTL formulae are satisfied by two stutter trace
equivalent Kripke structures. It is clear that the next operator X of temporal
logic is not preserved since stutter steps are allowed. However, if we restrict
our attention to the temporal logic LTL\X, we can use a result of [1] which
shows that all formulae of LTL\X are preserved. In practice, eliminating the next
operator is not a great loss since interesting properties are not so much concerned
with what happens in the next step as to what eventually happens [16].
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Theorem 2 (LTL\X Preservation). Let K1 and K1 be two stutter trace
equivalent Kripke structures over AP. For any LTL\X formula φ over AP, we
have K1 |= φ ⇔ K2 |= φ.

Proof. The proof can be found in [1, pp. 534–535] (Theorem 7.92 and Corol-
lary 7.93).

3 The HELENA Approach

The role-based modeling approach Helena [10] provides concepts to describe
systems where components team up in ensembles to perform global goal-oriented
tasks. To participate in an ensemble, a component plays a certain role. This
role adds role-specific behavior to the component and allows collaboration with
(the roles of) other components. By switching between roles, the component
changes its currently executed behavior. By adopting several roles in parallel, a
component can concurrently execute different behaviors and participate at the
same time in different ensembles.

Components: Component instances are classified by component types. They are
considered as carriers of basic information relevant across many ensembles. They
provide basic capabilities to store data in attributes and to perform computations
by operations. Additionally, they can be connected to other component instances
by storing references to them.

Roles: Whenever a component instance joins an ensemble, the component
adopts a role by creating a new role instance and assigning it to itself. The
kind of roles a component is allowed to adopt is determined by role types. A
role type defines role-specific attributes and a set of incoming and outgoing mes-
sage types which are supported for interaction and collaboration between role
instances.

P2P Example: We consider a peer-2-peer network supporting the distributed
storage of files which can be retrieved upon request. Several peers are connected
in a ring structure and work together to request and transfer a file: One peer
plays the role of the Requester of the file, other peers act as Routers and the

Fig. 1. Types occurring in the p2p example
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peer storing the requested file adopts the role of the Provider. All these roles
can be adopted by components of type Peer. Figure 1 shows the component type
Peer and the role type Requester in a graphical representation similar to UML
classes. For simplicity, we only consider peers which can store one single file.
The attribute hasFile of a Peer (cf. Fig. 1a) indicates whether the peer has the
file; the file’s content information is represented by the attribute content. A
Peer is connected to its neighbor depicted by the association in Fig. 1a. The role
type Requester indicates by the notation Requester:{Peer} that any component
instance of type Peer can adopt that role. It stores whether it already has the file
in its attribute hasFile and supports two incoming and two outgoing messages.

Ensemble Structures: To define the structural characteristics of a collabo-
ration, an ensemble structure specifies the role types whose instances form the
ensemble, determines how many instances of each role type may contribute by
a multiplicity (like 0..1, 1, ∗, 1..∗ etc.), and defines the capacity of the input
queue for each role type. We assume that between instances of two role types
the messages which are output on one side and input on the other side can be
exchanged on the input queues of the role instances.

P2P Example: Figure 2 shows a graphical representation of the ensemble struc-
ture for the p2p example. It consists of the three role types Requester, Router,
and Provider with associated multiplicities and input queue capacities.

Fig. 2. Ensemble structure Σtransfer for the p2p example

Role Behaviors and Ensemble Specifications: An ensemble specification
adds dynamic behavior to an ensemble structure Σ by equipping each role
type occurring in Σ with a role behavior. A role behavior is given by a process

Fig. 3. Role behavior of a Router



338 R. Hennicker et al.

expression built from the null process nil, action prefix a.P , conditional selection
if (condition1) then {P1}(or (condition2) then {P2})∗ (with nondeterminis-
tic choice if several branches are executable), and process invocation. There are
actions for creating (create) and retrieving (get) role instances, sending (!) or
receiving (?) messages, and invoking operations of the owning component. Addi-
tionally, state labels can be used to mark a certain progress of execution in the
role behavior (we will use these labels in atomic propositions to express goals).
We additionally use predefined variables like self to refer to the current role
instance and owner to refer to the owning component instance. The attributes
of the current role instance and its owning component instance are accessed in
a Java like style and we provide a predefined query plays(rt,ci) to ask whether
the component instance ci currently plays the role rt.

P2P Example: Figure 3 shows the behavior specification of a Router. Initially,
a router can receive a request for an address. Depending on whether its owner
has the file, it either creates a provider role instance and sends it back to the
requester in Pprovide or forwards the request to another router in Pfwd if possible.

LTL for Ensemble Specifications: To express goals over Helena ensemble
specifications, we use linear temporal logic (LTL) formulae over a particular
set of atomic Helena propositions AP: A state label proposition is of the form
rt [i]@label . It is satisfied if there exists a role instance i of type rt whose next per-
formed action is the state label label . An attribute proposition must be boolean
and is built from arithmetic and relational operators, data constants, and propo-
sitions of the form rt [i]:attr (or ct [i]:attr). An attribute proposition rt [i]:attr is
satisfied if there exists a role instance i of type rt such that the value of its
attribute attr evaluates to true (and analogously for component attributes).
LTL formulae over Helena propositions and their satisfaction are inductively
defined as already described in Sect. 2.

For the p2p example, we want to express that the requester will always receive
the requested file if the file is available in the network. We assume a network of
three peers and formulate the following achieve goal in LTL which refers to the
values of the attribute hasFile of component type Peer and role type Requester:

(Peer[1]:hasF ile ∨ Peer[2]:hasF ile ∨ Peer[3]:hasF ile) ⇒ ♦ Requester[1]:hasF ile)

In the next sections we will consider a simpler variant of Helena and present
a precise formalization of ensemble specifications, their semantics, satisfaction
of atomic propositions and model-checking by translation to Promela.

4 HELENALIGHT

We restrict full Helena specifications to some core concepts which leads to
the definition of HelenaLight. We first formally define the syntax of Hele-
naLight ensemble specifications. Afterwards, we introduce an SOS-style seman-
tics for such specifications and define satisfaction of LTL formulae.
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4.1 Syntax of HELENALIGHT Ensemble Specifications

In HelenaLight, we abstract from the underlying component types of a full
Helena specification and consider only role types, whose instances can be
dynamically created, and their interactions. Additionally, we omit any notion
of data such that we do not consider attributes and data parameters anymore.

Role Types: Role types are characterized by their name and a set of outgoing
and incoming message types. In contrast to full Helena, we omit role attributes
and consider message types with exactly one role parameter.

Definition 7 (Message Type). A message type msg is of the form
msgnm(rt X) such that msgnm is the name of the message type and X is a
formal parameter of role type rt.

Definition 8 (Role Type). A role type is a tuple rt = (rtnm, rtmsgsout,
rtmsgsin) such that rtnm is the name of the role type, and rtmsgsout and
rtmsgsin are sets of message types for outgoing and incoming messages sup-
ported by rt.2

Ensemble Structures: Ensemble structures specify which role types are needed
for a collaboration. In contrast to full Helena, we omit multiplicities constrain-
ing the number of admissible role instances for each role type. We assume asyn-
chronous communication and specify for each role type the (positive) capacity
of the input queue of each role instance of that type.

Definition 9 (Ensemble Structure). An ensemble structure Σ is a tuple
Σ = (nm, roletypes , roleconstraints) such that nm is the name of the ensem-
ble structure, roletypes is a set of role types, and for each rt ∈ roletypes,
roleconstraints(rt) is a finite capacity c > 0 of the input queue of rt.

In this paper, we consider only closed ensemble structures Σ. This means that
any outgoing message of some role type of Σ must occur as an incoming message
of at least one role type of Σ and vice versa, and any parameter type occurring
in a message type is a role type of Σ.

Role Behavior Declarations: Given an ensemble structure Σ, process expres-
sions (over Σ) will be used to specify role behaviors. They are built from the
process constructs and actions in Definition 10. Opposed to full Helena, we
omit component instances on which role instances are created and any data in
message exchange. Furthermore, we omit the get action, operation calls and any
attribute setters since we do not have attributes in HelenaLight.

Definition 10 (Process Expression). A process expression is built from the
following grammar, where N is the name of a process, msgnm is the name of a
message type, X and Y are names of variables, rt is a role type (more precisely
the name of a role type), and label is the name of a state label:

2 In the following, we often write rt synonymously for the role type name rtnm.
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P ::= nil (null process)
| a.P (action prefix)
| P1 + P2 (nondeterministic choice)
| N (process invocation)

a ::= X ← create(rt) (role instance creation)
| Y !msgnm(X) (sending a message)
| ?msgnm(rt X) (receiving a message)
| label (state label)

A receive action ?msgnm(rt X) (and resp. a create action X ← create(rt))
declares and opens the scope for a local variable X of type rt . We assume that
the names of the declared variables are unique within a process expression and
different from self which is a predefined variable that can always be used.

Definition 11 (Well-Formedness of Process Expressions). Let Σ =
(nm, roletypes , roleconstraints) be an ensemble structure. A process expression
P is well-formed for a role type rt ′ ∈ roletypes w.r.t. Σ, if all actions occurring
in P are well-formed for rt ′ w.r.t. Σ. This means:

• For a role instance creation action X ← create(rt): rt ∈ roletypes.
• For a send action Y !msgnm(X),

– the role type rt ′ supports the message type msgnm(rt ′′ X ′′) as outgoing
message and the variable X is of type rt ′′,3

– the role type of the variable Y supports the message type msgnm(rt ′′ X ′′)
as incoming message,

– the variables X and Y have been declared before, with the exception that
X can be the special, predefined variable self of type rt ′.

• For a receive action ?msgnm(rt X), the role type rt ′ supports the message type
msgnm(rt X) as incoming message.

• State labels are unique within the process expression P .
• State labels are not the first action of the process expressions P1 or P2 in the

nondeterministic choice P1 + P2.

Building on process expressions, we can now define role behavior declarations.
Opposed to full Helena, a role behavior declaration can not invoke other
processes, but can invoke itself recursively.

Definition 12 (Role Behavior Declaration). Let Σ be an ensemble struc-
ture and rt be a role type in Σ. A role behavior declaration for rt has the form
roleBehavior rt = P where P is a process expression which is well-formed for
rt w.r.t. Σ such that recursive process invocations may occur in P at most for rt
and not immediately.4

3 We must distinguish here between the role type rt ′, whose behavior is going to be
defined, and the role type rt ′′ used for the parameter.

4 Note that in the above definition we use rt also as a process name for the role
behavior of the role type rt .
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Ensemble Specifications: An ensemble specification consists, as in full
Helena, of two parts: an ensemble structure and a set of role behavior dec-
larations for all role types occurring in the ensemble structure.

Definition 13 (Ensemble Specification). An ensemble specification is a pair
EnsSpec = (Σ, behaviors) such that Σ is an ensemble structure and behaviors is
a set of role behavior declarations which contains exactly one declaration role-
Behavior rt = P for each role type rt ∈ Σ.

P2P Example: A simplified variant of the p2p example of Sect. 3, written in
HelenaText [13], is shown in Fig. 4. In contrast to the specification in full
Helena, we omit the underlying component type Peer and all role attributes
as well as data parameters. The ensemble structure names the participating role
types and their capacity, but no multiplicities. HelenaLight also restricts the
specification of dynamic behavior. Process expressions can only use nondeter-
ministic choice instead of conditional selection. Thus, in contrast to the router
behavior in full Helena (cf. Fig. 3), the router nondeterministically either pro-
vides the file or forwards the request (cf. line 16–22 in Fig. 4b).

Fig. 4. The p2p example in HelenaLight

4.2 Semantics of HELENALIGHT Ensemble Specifications

The semantic domain of ensemble specifications are labeled transition systems
describing the evolution of ensembles. Structured operational semantics (SOS)
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rules define the allowed transitions. We pursue an incremental approach, similar
to [9,20], by splitting the semantics into two different layers. The first layer
describes how a single role behavior evolves according to the constructs for
process expressions of the last section. The second layer builds on the first one
by defining the evolution of a whole ensemble from the concurrent evolution of
its constituent role instances.

Evolution of Roles: On the first level, we do not have any information about
the global state of the whole ensemble (involving all active role instances).
Therefore, we only formalize the progress of a single role behavior given by a
process expression. Figure 5 defines the SOS rules inductively over the structure
of process expressions in Definition 10. Note that the rule for process invocation
relies on a given role behavior declaration. We use the symbol ↪−→ to describe
transitions on this level. Since it does not involve instances and considers just
the behavior of single role types, this level concerns behavioral types.

a.P
a

↪−→ P

P1
a

↪−→ P ′
1

P1 + P2
a

↪−→ P ′
1

P2
a

↪−→ P ′
2

P1 + P2
a

↪−→ P ′
2

Q
a

↪−→ Q′

rt
a

↪−→ Q′
if rt = Q

Fig. 5. SOS rules for the evolution of process expressions in HelenaLight

Evolution of Ensembles: On the next level, we consider global states, which
we call ensemble states, and the concurrent execution of role instances. For the
semantics of an ensemble specification EnsSpec = (Σ, behaviors), we describe the
possible evolutions of ensemble states (for any admissible, initial ensemble state).
An ensemble state captures the set of currently existing role instances together
with their local states. Transitions between those ensemble states, denoted by
the symbol −→, describe the evolution of an ensemble. They are initiated by
the actions for sending and receiving messages, role instance creation, and state
labels. According to the specified capacity of input queues (for roles in ensemble
structures), we use bounded asynchronous communication for message exchange
between role instances, i.e., each role instance has exactly one (bounded) input
queue which receives the messages issued by (other) role instances and directed
to the current one.
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Let us now look more closely to the formal definition of an ensemble state.
Intuitively, an ensemble state describes the local states of all participating roles.
Formally, a local state of a role instance is a tuple (rt , v, q, P ) which stores
the following information: the (non modifiable) role type rt of the instance,
a local environment function v mapping local variables to values (the empty
environment is denoted by ∅), the current content q of the input queue of the
instance (the empty queue is denoted by ε, the length of q is denoted by |q|), and
a process expression P representing the current control state of the instance.

We furthermore assume that each role instance has a unique identifier, repre-
sented by a positive natural number. Hence, an ensemble state representing the
local states of all currently existing role instances is given by a finite function
σ : N+ → L, such that L is the set of local states explained before. Finiteness
of σ means that there exists n ∈ N, denoted by size(σ), such that σ(i) = ⊥
for all i > n and σ(i) 
= ⊥ for all 0 < i ≤ n.5 The definition domain of σ is
denoted by dom(σ). For instance creation, an ensemble state σ is extended by
a new role instance together with its local state by assigning an element λ ∈ L
to the next free identifier, which is size(σ) + 1 and denoted by next(σ) in the
following. Such an extension is denoted by σ[next(σ)�→λ]. We can also update the
value of an identifier i < next(σ) with a new value λ which is denoted by σ[i�→λ].
In summary, an ensemble state associates a local state to each currently existing
role instance. Thus, a role instance i is characterized by a unique identifier and
its associated local state λ ∈ L. In the following, we often write i synonymously
for the role instance identifier.

For a given ensemble specification EnsSpec = (Σ, behaviors), the allowed
transitions between ensemble states, denoted by −→, are described by the SOS
rules in Fig. 6. For each rule, the transition between two ensemble states is
inferred from a transition of process expressions on the type level, denoted by
↪−→ in Fig. 5. The rules concern state changes of existing role instances in accor-
dance to communication actions, the creation of new role instances (which start
execution in the initial state of the behavior of their corresponding role type)
and state label actions. The labels on the transitions of −→ indicate which role
instance i currently executes which action from its role behavior specification.

Initial States: An ensemble state σ is an admissible initial state for the ensem-
ble specification EnsSpec, if for all i ∈ dom(σ), σ(i) = (rt , ∅[self �→ i], ε, P ) such
that P is the process expression used in the declaration of the role behavior for
rt , i.e., EnsSpec contains the declaration roleBehavior rt = P .

Well-Definedness of Ensemble States: A HelenaLight ensemble state σ :
N

+ → L is well-defined if for all i ∈ N
+ and σ(i) = (rt , v, q, P ):

– self ∈ dom(v),
– for any (local) variable X ∈ dom(v): v(X) ∈ dom(σ),
– for q = msgnm1(k1) · . . . · msgnmm(km): k1, . . . , km ∈ dom(σ),

5 Here and in the following, we assume that the range of a finite function is implicitly
extended by the undefined value ⊥.
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Well-definedness is not a restriction since any admissible initial state is well-
defined and the SOS rules of HelenaLight preserve well-definedness. This fol-
lows from the syntactic restriction for well-formed role behavior declarations.

Semantics: The rules in Fig. 6 generate, for an ensemble specification EnsSpec
and any admissible initial ensemble state σinit, a labeled transition system
THel = (SHel, IHel, AHel,−→Hel) with IHel = {σinit}.

Pi

Y !msgnm(X)
↪−−−−−−−−→ P ′

i

σ
i:Y !msgnm(X)−−−−−−−−−−→ σ[i�→(rti,vi,qi,P ′

i )][j �→(rtj ,vj,qj ·msgnm(k),Pj)]

if i ∈ dom(σ), σ(i) = (rti, vi, qi, Pi),

vi(Y ) = j ∈ dom(σ), σ(j) = (rtj , vj , qj , Pj),

|qj | < roleconstraints(rtj), vi(X) = k ∈ dom(σ).

Pi

?msgnm(rtj X)
↪−−−−−−−−−→ P ′

i

σ
i:?msgnm(rtj X)−−−−−−−−−−−→ σ[i�→(rti,vi[X �→j],qi,P ′

i )]

if i ∈ dom(σ), σ(i) = (rti, vi,msgnm(j) · qi, Pi),

j ∈ dom(σ), σ(j) = (rtj , vj , qj , Pj).

Pi

X← (rtj)
↪−−−−−−−−−−→ P ′

i

σ
i:X← (rtj)−−−−−−−−−−−−→ σ′

if σ
′
= σ[i�→(rti,vi[X �→next(σ)],qi,P ′

i )][next(σ)�→(rtj ,∅[ �→next(σ)],ε,Pj)],

i ∈ dom(σ), σ(i) = (rti, vi, qi, Pi), rtj = Pj .

Pi
label

↪−−→ P ′
i

σ
i:label−−−−→ σ[i�→(rti,vi,qi,P ′

i )]

if i ∈ dom(σ), σ(i) = (rti, vi, qi, Pi).

Fig. 6. SOS rules for the evolution of ensembles in HelenaLight

4.3 LTL for HELENALIGHT

To express goals over HelenaLight ensemble specifications, we use a subset of
the LTL formulae defined for full Helena in Sect. 3. We omit atomic propo-
sitions involving attributes and only use state label propositions of the form
rt [i]@label where rt is a role type, i ∈ N

+ and label is a state label. Therefore,
the set AP(EnsSpec) of all atomic propositions for a HelenaLight ensemble
specification EnsSpec consists of all such state label expressions rt [i]@label . LTL
formulae are built over these propositions as explained in Sect. 3.

An atomic proposition p = rt [i]@label is satisfied in an ensemble state s, writ-
ten s |= p, if there exists a role instance i of type rt whose next performed action
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in THel is the state label label . This is well-defined since, due to well-formedness,
labels are not allowed as first actions in branches. The LTS THel for a given
HelenaLight ensemble specification and an admissible initial ensemble state
together with the above set AP(EnsSpec) of atomic propositions and the satis-
faction relation s |= p induces a Kripke structure which is denoted by K(THel)
(cf. Sect. 2). Following Definition 5, we define satisfaction of LTL in Hele-
naLight as follows: The LTS THel for an ensemble specification EnsSpec and
an admissible initial state satisfies an LTL formulae φ over the set AP(EnsSpec),
written THel |= φ, if K(THel) |= φ.

P2P Example: We reformulate the goal from Sect. 3 to

�(Provider@stateReqF ile⇒♦Requester@stateSndFile).6

In HelenaLight, we omit component types and cannot refer to attributes.
Therefore, we express that the file exists in the network by the provider reaching
its state labeled by stateReqF ile (note that we have added � since this state
label expression does not hold in the initial state). Similarly, we express that the
file was transferred to the requester by the requester reaching its state labeled
by stateSndFile.

5 PROMELALIGHT

Promela [11] is a language for modeling systems of concurrent processes. Its
most important features are the dynamic creation of processes and support for
synchronous and asynchronous communication via message channels. Promela
verification models serve as input for the model-checker Spin [11]. On the one
hand, Spin can be used to run a randomized simulation of the model. On the
other hand, it can check LTL properties, formulated over a Promela specifica-
tion, and find and display counterexamples.

To verify LTL properties for Helena specifications, we exploit Promela
and Spin. We first translate a Helena specification to Promela and then check
the specified LTL properties with Spin. Dynamic role creation in Helena can
easily be expressed by dynamic process creation in Promela, and asynchronous
message exchange between roles in Helena by asynchronous communication
via message channels in Promela. For formally proving the correctness of the
translation, we use HelenaLight and for the target of the translation into
Promela, we use an appropriate sub-language which we call PromelaLight.

5.1 Syntax of PROMELALIGHT Specifications

The following syntax is a simplified version of the Promela syntax defined
in [20]. The constructs specify a significant sub-language of the Promela defini-
tion which is sufficient as a target for the translation of HelenaLight.
6 Provider@stateReqF ile and Requester@stateSndFile are shorthand notations

without identifier which can only be used if there exists at most one instance of
the role type.
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PromelaLight Specifications: Intuitively, a PromelaLight specification
consists of a set of process types whose behavior is specified by process expres-
sions. We first define process expressions in PromelaLight based on [20]. We
use the same names for nonterminals as in [20], but sometimes we unfold the orig-
inal definitions to get a smaller grammar for our purposes. In contrast to [20],
we added the Promela expression false as an explicit construct (correspond-
ing to nil in HelenaLight). Furthermore, the conditional statement and the
goto statement are not treated as process steps, but as a processes itself. Con-
sequently, gotos can only occur at the end of a process expression. We have also
removed guards from the conditional statements, thus obtaining nondeterministic
choice.

Definition 14 (Process Expressions). A process expression seq is built from
the following grammar, where label is the name of a state label (used for gotos
and verification), var, var1, and var2 are names of variables, const is a constant,
pt is the name of a process type, and typelist is a comma-separated list of types:

seq ::= false (empty process)
| step; seq (sequential composition)
| if :: seq1:: seq2 fi (nondeterministic choice)
| goto label (goto)

step ::= label : true (state label)
| var1!const , var2 (send)
| var1?const , var2 (receive)
| run pt(var) (run)
| chan var (channel declaration)
| chan var = [const ] of {typelist} (channel declaration with initialization)

Note that send and receive steps always concern data tuples const , var2 con-
sisting of a constant and a variable. A channel declaration chan var = . . . opens
the scope for a local channel variable var . We assume that the names of the
declared variables are unique within a process expression and different from self ,
which is a predefined variable of type chan that can always be used. A variable
is initialized if either the variable occurs in a receive step as var2 or in a channel
declaration with initialization as var or is the special variable self .

Definition 15 (Well-Formedness of Process Expressions). A process
expression is well-formed if (1) all variables occurring in a send or run step
have been initialized before, (2) the variable var1 in a receive step has been ini-
tialized before and the variable var2 has been declared before, and (3) label : true
is not the first statement in seq1 or seq2 in if :: seq1:: seq2 fi.

Process expressions are used to define process types. In PromelaLight, a
process type has always one parameter self of type chan which represents a
distinguished input channel for each process instance.

Definition 16 (Process Type Declaration). A process type declaration has
the form proctype pt(chan self){startpt : true; seq} where pt is the name of
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Fig. 7. The p2p example in PromelaLight

the process type, seq is a well-formed process expression not containing a state
label startpt : true, and any goto expression occurring in seq has the form goto
startpt .

The above definition associates a process expression to a process type pt . It
allows a restricted version of recursion by introducing the state label startpt :
true at the beginning of the process and allowing to jump back to that via goto
startpt . This syntactic restriction simplifies the semantics since the continuation
of a goto is then uniquely determined. Hence, we do not need to carry the full
body of a process type declaration in the semantic states and to search for labels
in the body to find the continuation as in [20].

Definition 17 (PromelaLight Specification). A PromelaLight specifi-
cation consists of a set of process type declarations.

P2P Example: The formal translation from HelenaLight to PromelaLight
will be discussed in Sect. 7. To illustrate PromelaLight, we already present
here, in Fig. 7, the PromelaLight translation of the simplified variant of the
p2p example. Let us briefly look at the process type declaration for a router
in Fig. 7b in comparison to the role behavior declaration in Fig. 4b. Nonde-
terministic choice is expressed by the if construct of PromelaLight. Role
instance creation in HelenaLight is translated to starting a new process in
PromelaLight (line 10 and 15 in Fig. 4b). Asynchronous message exchange is
obtained by passing an asynchronous channel to the newly created process for
communication (line 9 and 14 in Fig. 4b).
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5.2 Semantics of PROMELALIGHT Specifications

The semantic domain of PromelaLight specifications are again labeled transi-
tion systems. We also follow a two-level SOS approach which has been advocated
for the formal Promela semantics in [20]. On the first level, the SOS rules only
deal with the progress of process expressions specified by the nonterminal sym-
bol seq in Definition 14. Process instances and their concurrent execution are
considered on the second level.

Evolution of Process Expressions: On the first level, we only formalize the
progress determined by a single process expression. Figure 8 defines the SOS
rules inductively over the structure of PromelaLight process expressions in
Definition 14 where the symbol ↪−→ describes transitions on this level. In contrast
to [20], we postpone not only the treatment of process instances, but also the
treatment of local environments and the consideration of channel instances to
the second level.

Evolution of Concurrent Process Instances: On the next level, we consider
global states and the concurrent execution of process instances. Similarly to
ensemble states in HelenaLight, a global state in PromelaLight captures
the currently existing process instances. However, in contrast to input queues
in HelenaLight, process instances communicate via channels which are not
owned by a local process, but belong to the global state. Hence, a global state
of a PromelaLight specification captures (1) the set of the currently existing
channel instances (together with their states) and (2) the set of the currently
existing process instances (together with their local states). Transitions between
global states are initiated by the actions for sending and receiving a message,
running a new process, channel declarations, gotos, and state labels.

Let us now look more closely to the formal definition of a global state
in PromelaLight. Intuitively, a global state describes the local states of all

step; seq
step

↪−−→ seq

seq1
step

↪−−→ seq′
1

:: seq1 :: seq2
step

↪−−→ seq′
1

seq2
step

↪−−→ seq′
2

:: seq1 :: seq2
step

↪−−→ seq′
2

pt
pt

↪−−−−−−−−→ pt : ; seq

if pt( ){ pt : ; seq}

Fig. 8. SOS rules for the evolution of a process expression in PromelaLight



Model-Checking HELENA Ensembles with Spin 349

currently existing channels and the local states of all currently existing process
instances. Each channel instance is uniquely identified by a positive natural
number and the currently existing channel instances are represented by a finite
function (called channel function) ch : N+ → C such that C is the set of local
channel states. A local state of a channel is a tuple (T, ω, κ) consisting of the
(non-modifiable) type T of entries, the content ω which is a word of T -values
(we write ε for the empty word), and the (non-modifiable) capacity κ > 0 of
the channel7. Similarly, each process instance is uniquely identified by a positive
natural number8, and the currently existing process instances are represented by
a finite function proc : N+ → P such that P is the set of local process (instance)
states. A local state of a process instance is a tuple (pt , β, π) where pt is the
process type of the instance, β is a local environment function mapping local
variables to values (i.e., channel identifiers or null) and π is a process expression
representing the current control state of the instance. Finally, a global state is
a pair (ch, proc) of a channel function ch and a function proc representing the
currently existing process instances.9

For a given PromelaLight specification, the allowed transitions between
global states, denoted by −→, are described by the SOS rules in Fig. 9. They evolve
a set of process instances which execute in accordance with their process types
under the assumption of asynchronous communication. For each rule, the transi-
tion between two global states is inferred from a transition of process expressions
on the type level, denoted by ↪−→ in Fig. 8. The labels on the transitions of −→
indicate which process instance i currently executes which step from its process
type specification. In the rules, we use the shorthand notations for the extension
and update of finite functions from Sect. 4.2.

Initial States: A global state (ch, proc) is an admissible initial state for a
PromelaLight specification, if

– for all c ∈ dom(ch): ch(c) = (T, ε, κ) for some T and κ,
– for all i ∈ dom(proc): proc(i) = (pt , ∅[self �→ ci], startpt : true; seq) such

that ci ∈ dom(ch) with ci 
= cj for i 
= j and the PromelaLight specifica-
tion contains the process type declaration proctype pt(chan self){startpt :
true; seq}.

Concrete initial states in PromelaLight are constructed by running an
appropriate initialization as shown in line 20–23 of Fig. 7b where one channel
and one requester instance, using that channel as input, are created. The initial-
ization is executed by a root process init which implicitly obtains the identifier
0. However, we do not consider this process in a PromelaLight specifica-
tion and are not interested in the verification of properties for the root process

7 In PromelaLight, we only consider asynchronous communication (κ > 0).
8 For technical reasons, explained in the discussion of initial states below, we deviate

from [20] and do not use 0 as an identifier for channels and processes.
9 In [20], ch is denoted by C, proc by act, and β by L.
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Fig. 9. SOS rules for the evolution of concurrent process instances.

(which anyway does not have any counterpart in a Helena specification). Thus,
we use in our semantic framework and in atomic propositions of LTL formulae
only positive natural numbers for process identifiers.

Well-Definedness of Global States: A global PromelaLight state γ =
(ch, proc) with ch : N+ → C and proc : N+ → P is well-defined if for all i ∈ N

+,
ch(i) = (T, ω, κ) and proc(i) = (pt , β, π):
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– β(self) ∈ dom(ch),
– for any (local) variable X ∈ dom(β): β(X) ∈ dom(ch) ∪ {null},
– for ω = (msgnm1, c1) · . . . · (msgnmm, cm): c1, . . . , cm ∈ dom(ch) and κ ≥ m.

Semantics: As for HelenaLight, the rules in Fig. 9 generate, for a Prome-
laLight specification and any admissible initial state γinit, a labeled transition
system TPrm = (SPrm, IPrm, APrm,−→Prm) with IPrm = {γinit}.

5.3 LTL for PROMELALIGHT

To express goals over PromelaLight specifications, we use LTL formulae. As
in HelenaLight, we restrict the atomic propositions of LTL formulae to state
label expressions of the form pt [i]@label where pt is a process type, i ∈ N

+

and label is a state label. Therefore, the set AP(PrmSpec) of all atomic propo-
sitions for a PromelaLight specification PrmSpec consists of all such state
label expressions pt [i]@label . LTL formulae are built over these propositions as
explained in Sect. 3.

An atomic proposition p = pt [i]@label is satisfied in a global state γ, written
γ |= p if there exists a process instance i of type pt whose next performed action
in TPrm is the state label label . The LTS TPrm for a given PromelaLight specifi-
cation and an admissible initial state together with the above set AP(PrmSpec)
of atomic propositions and the satisfaction relation γ |= p induces a Kripke
structure denoted by K(TPrm) (cf. Sect. 2). Following Definition 5, we define
satisfaction of LTL in PromelaLight as follows: The LTS TPrm for a Prome-
laLight specification PrmSpec and an admissible initial state satisfies an LTL
formulae φ over the set AP(PrmSpec), written TPrm |= φ, if K(TPrm) |= φ.

6 Translation of HELENALIGHT to PROMELALIGHT

In this section, we propose a transformation from HelenaLight ensem-
ble specifications to PromelaLight verification models. We assume given a
HelenaLight ensemble specification EnsSpec = (Σ, behaviors) with Σ =
(nm, roletypes , roleconstraints) being an ensemble structure. The translation into
the PromelaLight specification trans(EnsSpec) proceeds in two steps: First,
we provide all message types from HelenaLight in PromelaLight by declar-
ing an enumeration type, called mtype (not shown here).

Translation of Role Behavior Declarations: Then, for each role type and
its corresponding role behavior in HelenaLight, we create a process type in
PromelaLight which reflects the execution of the role behavior and is induc-
tively defined over the structure of process expressions and actions.



352 R. Hennicker et al.

trans ( rt=P) = rt( ) {
rt : ; trans (P ) }

trans ( ) =

trans (a.P ) = trans (a); trans (P )

trans (P1 + P2) = :: trans (P1) :: trans (P2)

trans (N) = N

trans (Y !msgnm(X)) = Y !msgnm, X

trans (?msgnm(rt X)) = X; ?msgnm, X

trans (X ← (rt)) = X = [roleconstraints(rt)] { , };
rt(X)

trans (label) = label :

label 	= rt

As an example, we consider the HelenaLight specification in Fig. 4 which
is translated with the above rules to the PromelaLight specification in Fig. 7.

Translation of Initial States: To be able to show semantic equivalence
between HelenaLight and PromelaLight specifications, we have to trans-
late admissible initial states. We assume given an admissible initial Hele-
naLight ensemble state σ with local states σ(i) = (rt , ∅[self �→ i], ε, P ) for
all i ∈ dom(σ). Its translation is the admissible initial PromelaLight state
trans init(σ) = (ch, proc), such that the content of all existing channels in ch is
empty, dom(proc) = dom(σ), and for all i ∈ dom(proc), proc(i) = (rt , ∅[self �→
ci], startrt : true; transproc(P )) with ci ∈ dom(ch) and ci 
= cj for i 
= j.

7 ≈-Stutter Equivalence of the Translation

We now prove the correctness of the translation from HelenaLight to Prome-
laLight, i.e., that a HelenaLight specification and its PromelaLight trans-
lation satisfy the same set of LTL\X formulae. We first define two relations ∼
and ≈ between the Kripke structures induced from a HelenaLight specification
and its PromelaLight translation. To be able to apply Theorem 1 from Sect. 2,
we show that ≈ preserves satisfaction of atomic propositions and any admissible
initial state of a HelenaLight ensemble specification and its PromelaLight
translation are related by ∼. Furthermore, we prove that the relation ∼ is a ≈-
stutter simulation of the Kripke structure of the HelenaLight specification by
the Kripke structure of the PromelaLight translation and the inverse relation
≈−1 is a ≈−1-stutter simulation in the other direction. Having proven stutter
trace equivalence, we can then apply Theorem 2 entailing preservation of LTL\X.

Silent Actions: To prove stutter trace equivalence of Kripke structures, we
rely on the transitions in the labeled transition systems which induce the Kripke
structures. Thereby, some transitions in HelenaLight are reflected by several
transitions in PromelaLight, e.g., the transition with the action ?msgnm(X)
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is reflected by two transitions with the actions chan X and self?msgnm,X (cf.
definition of transact in Sect. 6). These additional transitions do not change
satisfaction of atomic propositions. Thus, we consider the following steps and
their corresponding actions in PromelaLight as silent and denote them by τ :

– the transition from chan X; self?msgnm,X to self?msgnm,X,
– the transition from chan X = [roleconstraints(rt)] of {mtype,chan}; run rt(X)

to run rt(X),
– the transition startpti : true;π to π since start state labels startpti : true

only exist in PromelaLight, and
– the transition goto startpti ;π to π since in PromelaLight, recursive process

invocation is expressed by a jump (i.e., a goto step) while in HelenaLight,
the body of the invoked role behavior is directly applied without any execution
step for recursion.

Simulation Relations: We define two relations which both express a corre-
spondence between HelenaLight ensemble states and global PromelaLight
states, but require a different level of correspondence.

Definition 18 (Relation ∼ and ≈). Let K(THel) = (SHel, IHel,−→•
Hel, FHel)

be the induced Kripke structure of a HelenaLight ensemble specification
and K(TPrm) = (SPrm, IPrm,−→•

Prm, FPrm) be the induced Kripke structure of
a PromelaLight specification. The relation ∼ ⊆ SHel × SPrm is defined as
follows: σ ∼ (ch, proc) if it holds that

1. dom(σ) = dom(proc) and
2. for all i ∈ dom(σ) with σ(i) = (rt i, vi, qi, Pi) and proc(i) = (pt i, βi, πi):

(a) rt i = pt i,
(b) dom(vi) ⊆ dom(βi) such that for all X ∈ dom(vi):

vi(X) = j ⇔ βi(X) = βj(self) (where proc(j) = (ptj , βj , πj)),
(c) qi = msgnm1(k1) · . . . · msgnmm(km) ⇔

ch(βi(self)) = (T, (msgnm1, βk1(self)) · . . . · (msgnmm, βkm
(self)), κ),

(d) transproc(Pi) = πi or πi

startpti :true
↪−−−−−−−→Prm transproc(Pi).

The relation ≈ ⊆ SHel×SPrm is defined just as the relation ∼ with the exception

of item (2d) where transproc(Pi) = πi is replaced by transproc(Pi)
τ∗

↪−→Prm πi.
Obviously, it holds that ∼ ⊆ ≈.

Firstly, in the defined relations, there must be as many role instances in
HelenaLight as process instances in PromelaLight. Secondly, the local state
of each role instance i must be related to the local state of the process instance
with the same identifier i: (a) The role type rt i must match the process type
pt i. (b) The local variables in vi must have counterparts in βi, but note that the
value types of HelenaLight and PromelaLight are subtly different. A local
variable in HelenaLight points to a role instance whereas a local variable in
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PromelaLight points to a channel. Furthermore, note that vice versa, there
might be local variables in βi which do not have any counterparts in vi. (c) The
content of the input queue of the role instance must match the content of the
corresponding channel of the process instance. As for local variables, the input
queue of the role instance consists of role instance identifiers whereas the related
PromelaLight input channel contains the identifiers of the input channels of
the process instances (corresponding to these role instances). (d) For the process
expression πi occurring in the local state of the process instance, we either require
that it is the same as the translation of the process expression Pi occurring in
the local state of the role instance or that it can evolve by the single action
startpti : true to the translation of Pi. The latter takes into account that the
translation of a role behavior into PromelaLight adds a start label at the
beginning of the translated role behavior. For the relation ≈, we weaken the
first condition such that πi must only be reachable by evolving the translation
of Pi with arbitrary many τ actions.

Properties of the Simulation Relations: Based on the induced Kripke struc-
tures, we show some interesting properties of the two relations: the relation ≈
preserves satisfaction of atomic propositions and any admissible initial state in
HelenaLight and its PromelaLight translation are related by the relation ∼.

Lemma 1 (Preservation of Atomic Propositions). Let K(THel) =
(SHel, IHel,−→•

Hel, FHel) be an induced Kripke structure of a HelenaLight
ensemble specification EnsSpec = (Σ, behaviors) such that no role behavior in
behaviors starts with a state label and let K(TPrm) = (SPrm, IPrm,−→•

Prm, FPrm)
be the induced Kripke structure of a PromelaLight specification.

For all σ ∈ SHel, γ ∈ SPrm, if σ ≈ γ, then FHel(σ) = FPrm(γ).

Proof. A HelenaLight state σ satisfies an atomic proposition p = rt [i]@label
only if there exists a role instance i of type rt whose next performed action is the
state label label ; similarly, γ satisfies p only if there exists a process instance i
of type rt whose next performed action is the state label label . In any other case
p is not satisfied. For each such proposition p, the proof proceeds by induction
on the depth of the derivation of the next action of the process expression for
role instance i. The first interesting case in the induction is nondeterministic
choice. In both, HelenaLight and PromelaLight, labels are not allowed as
first actions in a branch such that the nondeterministic choice and each branch
separately do not satisfy any atomic proposition p. Therefore, the induction
step is trivial. Another interesting case is process invocation. HelenaLight
executes directly the first action of its role behavior. On the other hand, in
PromelaLight process invocation is realized by a goto jump followed by the
start label and the first action of the (translated) role behavior. These steps
(trivially) preserve satisfaction of atomic propositions since start labels are not
allowed as atomic propositions and since the first action of a role behavior cannot
be a state label. ��
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Lemma 2 (Relationship Between Initial States). Let σ be an admissible
initial state of a HelenaLight ensemble specification, then σ ∼ trans init(σ).

Proof. In HelenaLight, an admissible initial state σ consists of local states
σ(i) = (rt , ∅[self �→ i], ε, P ) (cf. definition of admissible initial states in Sect. 4.2).
For the PromelaLight translation holds trans init(σ) = (ch, proc); the con-
tent of all existing channels in ch is empty, dom(proc) = dom(σ), and for all
i ∈ dom(proc), we have proc(i) = (rt , ∅[self �→ ci], startrt : true; transproc(P ))
with ci ∈ dom(ch) (cf. definition of trans init in Sect. 6). Therefore, all condi-
tions for σ ∼ trans init(σ) are satisfied, in particular item (2d) is satisfied since

startrt : true; transproc(P )
startrt :true

↪−−−−−−−→Prm transproc(Pi). ��

Stutter Simulations: Based on the previous two lemmata, we move on to show
that the relation ∼ is a ≈-stutter simulation of a HelenaLight specification by
its PromelaLight translation and that the inverse relation ≈−1 itself is a ≈−1-
stutter simulation in the other direction. Note that ≈ itself would not preserve
the branching structure of K(THel) (due to branching with silent actions in
PromelaLight), but the coarser relation ∼ does.

Proposition 1 (Stutter Simulation of HelenaLight Specifications). Let
K(THel) and K(TPrm) be the induced Kripke structures of a HelenaLight
ensemble specification and of its PromelaLight translation trans(EnsSpec)
as in Lemma 1. Then, ∼ is a ≈-stutter simulation of KHel by KPrm.

Proof. With Lemma 2, we proved that any initial state of a HelenaLight spec-
ification and its PromelaLight translation are in the relation ∼. It remains to
show that the relation ∼ fulfills the property of a ≈-stutter simulation described
in Definition 6. In the proof, we rely on the underlying labeled transition systems
THel and TPrm of the Kripke structures K(THel) and K(TPrm). To reflect labels
of HelenaLight in PromelaLight, we introduce a notation which translates
a HelenaLight label to its corresponding PromelaLight label by omitting
silent actions:

trans label(i : Y !msgnm(X)) = i : Y !msgnm, X

trans label(i :?msgnm(rtj X)) = i : self?msgnm, X

trans label(i : X ← create(rtj)) = i : run rtj(X)

trans label(i : label) = i : label : true

By relying on that notation, we show the following property which entails the
required property for a ≈-stutter simulation:

For all σ ∈ SHel, γ ∈ SPrm with σ ∼ γ, if σ
a−→Hel σ′,

then there exists γ
τ−→Prm γ1 . . .

τ−→Prm γn
translabel(a)−−−−−−−−→Prm γ′(n ≥ 0)

such that σ ≈ γk for all k ∈ {1, . . . , n}, and σ′ ∼ γ′.



356 R. Hennicker et al.

The proof proceeds by induction on the depth of the derivation of σ
a−→Hel

σ′. The induction relies on the following fact: Each action a in HelenaLight
is reflected in PromelaLight, but some internal steps might be necessary in
PromelaLight before the corresponding action trans label(a) can actually be
executed, e.g., message reception with the action i : ?msgnm(rtj X) is translated
to two actions i : chan X and i : self?msgnm,X or process invocation in
PromelaLight uses first a goto step and then a start label step to reach the
beginning of the (translated) role behavior. Since the relation ≈ just requires
that the translation of the HelenaLight process expression P for role instance
i can evolve by τ actions to the PromelaLight process expression π for the
corresponding process instance i, all those intermediate steps result in states
remaining in the relation ≈. Only the translated action trans label(a) evolves the
PromelaLight translation according to the evolution of the HelenaLight
specification such that the resulting states are again in the relation ∼. ��
In the other direction, the inverse relation ≈−1 serves as ≈−1-stutter simulation.

Proposition 2 (Stutter Simulation of PromelaLight Translations). Let
K(THel) and K(TPrm) be the induced Kripke structures of a HelenaLight
ensemble specification and of its PromelaLight translation trans(EnsSpec)
as in Lemma 1. Then, ≈−1 is a ≈−1-stutter simulation of KPrm by KHel.

Proof. We rely on Lemma 2 as before. The proof that the relation ≈−1 satisfies
the property for a ≈−1-stutter simulation is based, as before, on the underlying
labeled transition systems. We show the following property which entails the
required property for a ≈−1-stutter simulation:

For all γ ∈ SPrm, σ ∈ SHel with γ ≈−1 σ, if γ
b−→Prm γ′,

then γ′ ≈−1 σ if b = τ or there exists σ
a−→Hel σ′ if b 
= τ

such that trans label(a) = b and γ′ ≈−1 σ′.

The proof proceeds by induction on the depth of the derivation of γ
b−→Prm

γ′. The induction relies on the following fact: Silent actions in PromelaLight,
denoted by τ might only change the value of local variableswhich are not yet in rela-
tion toHelenaLight, i.e., silent steps preserve the relationship according to ≈−1.
For all non-silent actions, the relation ≈−1 is sufficient to transfer executability
of a PromelaLight action b to its corresponding HelenaLight action a with
trans label(a) = b such that ≈−1 is again established by the transition. ��

Lemmas 1 and 2, Propositions 1 and 2 allow us to infer, by Theorem 1, that
the induced Kripke structures of a HelenaLight ensemble specification and
its PromelaLight translation are stutter trace equivalent. Thus, we can apply
Theorem 2 to show that the both labeled transitions systems satisfy the same
LTL\X formulae.
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Theorem 3 (HELENALIGHT LTL\X Preservation). Let THel be the labeled
transition system of a HelenaLight ensemble specification EnsSpec =
(Σ, behaviors) together with an admissible initial state such that no role behavior
in behaviors starts with a state label. Let TPrm be the labeled transition system of
its PromelaLight translation trans(EnsSpec). We assume that any divergence
introduced by K(TPrm) is reflected w.r.t. ≈ by a divergence in K(THel).

For any LTL\X formula φ over AP(EnsSpec), THel |= φ ⇔ TPrm |= φ.

8 Model-Checking HELENALIGHT with Spin

The results from the previous sections allow us to verify LTL properties for
a HelenaLight ensemble specification by model-checking its PromelaLight
translation in Spin. However, the semantics of HelenaLight and therefore sat-
isfaction of LTL formulae is defined relatively to a given initial state σinit. Thus,
when model-checking the corresponding PromelaLight translation, we have
to establish the corresponding initial state trans init(σinit) in PromelaLight
and verify properties relatively to this initial state. We setup the initial state
in a dedicated init-process (cf. Fig. 7). To reflect satisfaction of LTL formu-
lae relatively to this initial state, we further extend the original HelenaLight
LTL formula φ to �(init⇒φ). The init is thereby a property which only holds
when the initialization in PromelaLight according to the given initial state in
HelenaLight was finished.

P2P Example: Respecting the aforementioned adaptations to LTL formulae,
the goal for our p2p example in Sect. 4.3 is translated to

� ( Requester@startRequester⇒
�(Provider@stateReqF ile⇒♦Requester@stateSndFile) ).

If we restrict the number of routers, this property holds for the Prome-
laLight translation in Fig. 7 and we can therefore conclude that it also holds
for the HelenaLight ensemble specification in Sect. 4.1 for the initial state
where only one requester exists. To model-check the more interesting goal from
Sect. 3, we have to extend the translation to full Helena by supporting two
additional features, data and components, which adopt roles. In [12], we report
the extended translation and argue that stutter trace equivalence holds for this
extension as well. Furthermore, we present an automatic code generator based
on the Xtext workbench of Eclipse which takes a Helena ensemble specifi-
cation written in HelenaText, our domain specific language [13] for Helena
ensembles, as input and generates the Promela translation as output.

9 Conclusion

Helena specifications provide models for dynamically evolving ensembles. This
paper deals with a missing link in the Helena development methodology con-
cerning the early verification of ensemble specifications against goals described
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by LTL formulae. For this purpose, we proposed to translate Helena ensem-
ble specifications into Promela which can be checked with Spin. To prove the
correctness of the translation, we have (a) defined an SOS semantics for simpler
variants of Helena and Promela and (b) shown that both are stutter trace
equivalent. Hence, LTL formulae (without next) are preserved; cf. [1].

Our approach of verification is in-line with goal-oriented requirements
approaches like KAOS [17]. They also specify goals by LTL properties. How-
ever, they translate their system specifications into the process algebra FSP [18],
which is not sufficient to represent the dynamics of ensembles since dynamic
process creation and directed communication are not supported. Techniques
for the development of ensembles have been thoroughly studied in the recent
ASCENS project [21]: In [5], ensemble-based systems are described by simpli-
fied SCEL programs and translated to Promela. However, the translation is
neither proved semantically correct nor automated. DFINDER [4] implements
efficient strategies exploiting compositional verification of invariants to prove
safety properties for BIP ensemble models, but does not deal with dynamic cre-
ation of components. DEECo ensemble models [3] are implemented with the
Java framework jDEECo and verified with Java Pathfinder [4]. Thus, opposed
to Helena, they do not need any translation. However, since DEECo relies on
knowledge exchange rather than message passing, they do not verify commu-
nication behaviors. Finally, we would like to point out, that our approach has
been strongly inspired by the way how the distributed language KLAIM has
been transferred to Maude in [7]. There, the correctness of the translation was
established by a stutter bisimulation which preserves CTL∗ properties (without
next). The translation of Helena into Promela is, however, not stutter bisim-
ilar but stutter trace equivalent and thus only preserves LTL formulae (without
next).

For future work, we plan to conduct more experiments to examine the power
of our verification approach. For instance, the question arises how big ensembles
can get in terms of role instances to still provide results in reasonable time. For
model-checking full Helena, it is also interesting what impact the topology of
the underlying component network (e.g., ring structure, graph structure, etc.)
has on the verification of goals for ensemble specifications. As a larger case study,
we are currently investigating the power of our verification method for the science
cloud platform, a voluntary peer-to-peer cloud computing platform, which was
modeled in Helena in [15].

Acknowledgment. The authors would like to thank Alberto Lluch Lafuente and
Roberto Bruni for useful suggestions.
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Abstract. The notion of module extraction has been studied exten-
sively in the ontology community. The idea is to extract, from a large
ontology, those axioms that are relevant to certain concepts of interest
(formalised as a subsignature). The technical concept used for the defi-
nition of module extraction is that of inseparability, which is related to
indistinguishability known from observational specifications.

Module extraction has been studied mainly for description logics and
the Web Ontology Language OWL. In this work, we generalise previous
definitions and results to an arbitrary inclusive institution. We reveal
a small inaccuracy in the formal definition of inseparability, and show
that some results hold in an arbitrary inclusive institution, while others
require the institution to be weakly union-exact.

This work provides the basis for the treatment of module extraction
within the institution-independent semantics of the distributed ontology,
modeling and specification language (DOL), which is currently under
submission to the Object Management Group (OMG).

1 Introduction

Goguen’s and Burstall’s invention of the concept of institution to formalise the
notion of logical system has stimulated a research programme with the general
idea that modular structuring of complex specifications can be studied largely
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independently of the details of the underlying logical system. José Meseguer
has made important contributions to institutions and their translations [1–4,7,
11–15,19], and to the study of module systems over arbitrary institutions, see
especially [7]. His contributions have been inspiring for our work, and some of his
papers are among those we cite most frequently. In the present work, we study
modularity over an arbitrary institution using a concept of inseparability, which
has some resemblance to José’s notion of indistinguishability [22] of protocols,
although context and technical details are very different. This paper is dedicated
to José on the occasion of his 65th birthday — our congratulations and best
wishes, José!

The notion of modularity studied in the specification community is modular-
ity by construction: complex specifications are formed from basic specifications
(which are simply logical theories in some institution) by means of specification-
building operations [7,20,21].

In the ontology community, a different notion of modularity has emerged:
while even large ontologies with tens of thousands of axioms are often formalised
as flat logical theories, the notion of ontological module extraction [27] provides
an a posteriori extraction of relevant parts of ontologies. Module extraction has
been studied mainly for description logics, but first attempts for first-order logic
have also been made.

In the present paper, we try to cast module extraction in the institution-
independent framework and compare it with module notions from specification
theory. This work thereby also provides a semantics for certain modularity con-
cepts and constructs in the distributed ontology, modeling and specification lan-
guage DOL [16,17], which is currently under submission as a standard to the
Object Management Group (OMG).

The problem of module extraction can be phrased as follows: given a subset
Σ of the signature of an ontology, find a (minimal) subset of that ontology that is
“relevant” for the terms in Σ. For example, the size of well-established ontologies
such as Snowmed CT1 or GALEN2 makes it difficult for current tools to
navigate through them on a standard computer. Therefore, in an application
where only a specific subset of the terms in such huge ontologies is used, it is
more practical to reuse only those parts that cover all the knowledge about that
subset of relevant terms.

The key concept of “relevance” may be formalised in different ways. We
will not discuss in any detail here approaches based on syntactic structure of
axioms and hierarchy of concepts [6,25,26]. Instead, we will focus on logic-based
modules, for which relevance amounts to entailment (or model) preservation
over a signature Σ. That is, given an ontology O, when we say that a module
M (which is a subset of O) “is relevant for” the terms in Σ, we mean that all
consequences of O that can be expressed over Σ are also consequences of M.
Then O is said to be a conservative extension (CE) of M. A stronger property

1 http://ihtsdo.org/snomed-ct/.
2 http://www.opengalen.org/.

http://ihtsdo.org/snomed-ct/
http://www.opengalen.org/
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is that every model of M extends to a model of O — we refer to this as model
conservative extension.

One of the reasons why one might be interested in modularity aspects of an
ontology is for reusing information about relevant terms it captures. Reusing a
module M ⊆ O within another ontology O′ is referred to in the literature as
the module importing scenario. In this scenario, the signature Σ used to extract
M from O acts as the interface signature between O′ and O in the sense that
it contains the set of terms that one is interested in reusing and that might be
shared between O′ and O.

Example 1.1. Assume that we have the following OWL-ontology O:

Male ≡ Human � ¬Female,
Human � ∀has child.Human,

Father � Human,
Father ≡ Male � ∃has child.�

For readers not familiar with OWL, we provide the translation to first-order
logic:

∀x.Male(x) ↔ Human(x) ∧ ¬Female(x),
∀x.Father(x) → Human(x),

∀x.Human(x) → ∀y.has child(x, y) → Human(y)
∀x.Father(x) ↔ Male(x) ∧ ∃y.has child(x, y)

Now further assume that we are interested in the terms in Σ = {Male,Human,
Female, has child}. Then the subset M containing only the grey shaded axioms is
a Σ-module of O. Indeed, one can show that O has the same Σ-consequences as
M. For example, Male�∃has child.� � Human follows from O, but also from M.

��
Ideally, an imported module M should be as small as possible while still

guaranteeing to capture all the relevant knowledge w.r.t. Σ. Importing M into
O′ would have the same observable effect as importing the entire ontology O,
e.g., one should get the same answers to a query in both cases.

Observe that the logical view appears to be theoretically sound and elegant
and guarantees that by reusing only terms from Σ one is not able to distinguish
between importing M and importing O into some ontology O′.

This paper contributes the generalization of central notions of ontology mod-
ule extraction to an arbitrary institution. While doing this, we were also able to
correct a small inaccuracy appearing in the definition of inseparability used in
the literature. Our paper is organized as follows: in Sect. 2, we recall institutions
and inclusion systems (the latter leading to a set-theoretic flavour of signatures,
which is generally assumed in the ontology community). Section 3 studies con-
servative extensions and inseparability as a prequisite for module extraction,
which is studied in Sect. 4, together with some robustness properties. Section 5
concludes the paper.
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2 Institutions

The large variety of logical languages in use can be captured at an abstract level
using the concept of institutions [8]. This allows us to develop results indepen-
dently of the specific features of a logical system. We use the notions of institution
and logical language interchangeably throughout the rest of the paper.

The main idea is to collect the non-logical symbols of the language in sig-
natures and to assign to each signature the set of sentences that can be formed
using its symbols. Informally, in typical examples, each signature lists the sym-
bols it consists of, together with their kinds. Signature morphisms are mappings
between signatures. We do not assume any details except that signature mor-
phisms can be composed and that there are identity morphisms; this amounts to
a category of signatures. Readers unfamiliar with category theory may replace
this with a partial order; signature morphisms are then just inclusions. See [18]
for details of this simplified foundation.

Institutions also provide a model theory, which introduces semantics for the
language and gives a satisfaction relation between the models and the sentences
of a signature. The main restriction imposed is the satisfaction condition, which
captures the idea that truth is invariant under change of notation (and enlarge-
ment of context) along signature morphisms. This relies on two further compo-
nents of institutions: the translation of sentences along signature morphisms, and
the reduction of models against signature morphisms (generalising the notion of
model reduct known from logic).

Definition 2.1. An institution [8] is a quadruple I = (Sign,Sen,Mod, |=)
consisting of the following:

– a category Sign of signatures and signature morphisms;
– a functor Sen : Sign → Set3 giving, for each signature Σ, the set of sentences

Sen(Σ), and for each signature morphism σ : Σ → Σ′, the sentence transla-
tion map Sen(σ) : Sen(Σ) → Sen(Σ′), where Sen(σ)(ϕ) is often written as
σ(ϕ);

– a functor Mod : Signop → Cat4 giving, for each signature Σ, the category of
models Mod(Σ), and for each signature morphism σ : Σ → Σ′, the reduct
functor Mod(σ) : Mod(Σ′) → Mod(Σ), where Mod(σ)(M ′) is often writ-
ten as M ′|σ. Then M ′|σ is called the σ-reduct of M ′, while M ′ is called a
σ-expansion of M ′|σ; and

– a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|,
such that for each σ : Σ → Σ′ in Sign the following satisfaction condition
holds:

(�) M ′ |=Σ′ σ(ϕ) iff M ′|σ |=Σ ϕ

for each M ′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ). ��
3
Set is the category having sets as objects and functions as arrows.

4
Cat is the category of categories and functors. Strictly speaking, Cat is a quasicate-
gory (which is a category that lives in a higher set-theoretic universe).
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As usual, the satisfaction relation between models and sentences determines a
semantic notion of consequence: for any signature Σ ∈ |Sign|, a Σ-sentence
ϕ ∈ Sen(Σ) is a (semantic) consequence of a set of Σ-sentences Φ ⊆ Sen(Σ),
written Φ |=Σ ϕ, if for each model M ∈ |Mod(Σ)|, M |=Σ ϕ whenever M |=Σ Φ
(i.e., M |=Σ ψ for all ψ ∈ Φ). This is an example of how logical notions can be
defined in an arbitrary institution. It is easy to see that semantic consequence
is preserved under translation w.r.t. signature morphisms: given σ : Σ → Σ′, if
Φ |=Σ ϕ then σ(Φ) |=Σ′ σ(ϕ). The opposite implication does not hold in general
though.

It is also possible to complement an institution with a proof theory, introduc-
ing a derivability or deductive consequence relation between sentences, formalised
as an entailment system [13]. In particular, this can be done for the institutions
presented below.

Several institution-independent languages for structured theories have been
defined, see e.g. [7,21]. One of them is the distributed ontology, modeling and
specification language DOL [17], which also provides language constructs for
module extraction.

Example 2.2. In the institution Prop of propositional logic, signatures are sets of
propositional variables and signature morphisms are functions. Models are val-
uations into {T, F} and model reduct is just composition. Sentences are formed
inductively from propositional variables by the usual logical connectives. Sen-
tence translation means replacement of propositional variables along the signa-
ture morphism. Satisfaction is the usual satisfaction of a propositional sentence
under a valuation. ��
Example 2.3. OWL signatures consist of sets of atomic classes, individuals,
object and data properties. OWL signature morphisms map classes to classes,
individuals to individuals, object properties to object properties and data proper-
ties to data properties. For an OWL signature Σ, sentences include subsumption
relations between classes or properties, membership assertions of individuals
in classes and pairs of individuals in properties, and complex role inclusions.
Sentence translation along a signature morphism simply replaces non-logical
symbols with their image along the morphism. The kinds of symbols are class,
individual, object property and data property, respectively, and the set of sym-
bols of a signature is the union of its sets of classes, individuals and properties.
Models are (unsorted) first-order structures that interpret concepts as unary and
properties as binary predicates, and individuals as elements of the universe of
the structure, and satisfaction is the standard satisfaction of description logics.
This gives us an institution for OWL.

Strictly speaking, this institution captures OWL 2 DL without restrictions in
the sense of [23]. The reason is that in an institution, sentences can be used
for arbitrary formation of theories. This is related to the presence of union as
a specification-building operation, which is also present in DOL. OWL 2 DL’s
specific restrictions on theory formation can be modelled inside this institution,
as a constraint on ontologies (theories). This constraint is generally not pre-
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served under unions or extensions. DOL’s multi-logic capability allows the clean
distinction between ordinary OWL 2 DL and OWL 2 DL without restrictions. ��
Example 2.4. In the institution FOL= of many-sorted first-order logic with equal-
ity, signatures are many-sorted first-order signatures, consisting of a set of sort
and sorted operation and predicate symbols. Signature morphisms map sorts,
operation and predicate symbols in a compatible way. Models are many-sorted
first-order structures. Sentences are closed first-order formulae with atomic for-
mulae including equality between terms of the same sort. Sentence translation
means replacement of symbols along the signature morphism. A model reduct
interprets a symbol by first translating it along the signature morphism and then
interpreting it in the model to be reduced. Satisfaction is the usual satisfaction
of a first-order sentence in a first-order structure. ��

A presentation in an institution I = (Sign,Sen,Mod, |=) is a pair P =
(Σ,Φ), where Σ ∈ |Sign| is a signature and Φ ⊆ Sen(Σ) is a set of Σ-sentences.
Σ is also denoted as Sig(P ), Φ as Ax(P ). We extend the model functor to presen-
tations and write Mod(Σ,Φ) (or sometimes Mod(Φ) if the signature is clear)
for the full subcategory of Mod(Σ) that consists of the models of (Σ,Φ), i.e.,
|Mod(Σ,Φ)| = {M ∈ |Mod(Σ)| | M |=Σ Φ}.

A presentation morphism σ : (Σ,Φ) → (Σ′, Φ′) is a signature morphism
σ : Σ → Σ′ such that for all models M ′ ∈ |Mod(Σ′, Φ′)|, M ′|σ ∈ |Mod(Σ,Φ)|.
This defines the category Pres of presentations in I. An easy consequence of
the satisfaction condition is that presentation morphisms preserve semantic con-
sequence:

Proposition 2.5. σ : (Σ,Φ) → (Σ′, Φ′) is a presentation morphism iff for all
Σ-sentences ϕ, if Φ |=Σ ϕ then Φ′ |=Σ′ σ(ϕ). ��

Each presentation (Σ,Φ) generates a theory (Σ, cl|=(Φ)), where cl|=(Φ) =
{ϕ ∈ Sen(Σ) | Φ |=Σ ϕ} is the closure of Φ under semantic consequence. The
category Th of theories in I is the full subcategory of Pres with objects (Σ,Φ)
such that Φ is closed under semantic consequence. The closure under semantic
consequence extends to the functor cl|= : Pres → Th, which together with the
inclusion Th ↪→ Pres establishes the equivalence between Pres and Th.

A presentation morphism σ : (Σ,Φ) → (Σ′, Φ′) is model-conservative if for
each model M ∈ |Mod(Σ,Φ)| there is a model M ′ ∈ |Mod(Σ′, Φ′)| that is a
σ-expansion of M , i.e., M ′|σ = M . A presentation morphism σ : (Σ,Φ) →
(Σ′, Φ′) is consequence-conservative if for all Σ-sentences ϕ ∈ Sen(Σ), Φ |=Σ ϕ
whenever Φ′ |=Σ′ σ(ϕ) (the opposite implication always holds).

Proposition 2.6. If a presentation morphism is model-conservative then it is
consequence-conservative as well. ��
The opposite implication does not hold in general: model-conservativity is a
strictly stronger notion than consequence-conservativity. However, in some log-
ics, the two notions may coincide:
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Example 2.7. In the institution Prop of propositional logic (see Example 2.2), a
presentation morphism is model-conservative iff it is consequence-conservative.
Consider a presentation morphism σ : (V, Φ) → (V′, Φ′) in Prop. Assume that σ
is not model-conservative, and let m : V → {T, F} be such that m |= Φ and m
has no σ-expansion to a model of Φ′. For each propositional variable p ∈ V , let
ϕm,p be p if m(p) = T and ¬p if m(p) = F . Consider Ψ ′ = Φ′∪{σ(ϕm,p) | p ∈ V }.
Since there is no model m′ : V ′ → {T, F} such that m′ |= Φ′ and m′|σ = m, Ψ ′

has no model, and so false is a semantic consequence of Ψ ′. By compactness of
propositional logic, for some finite set of variables p1, . . . , pn ∈ V , the implication
σ(ϕm,p1)∧. . .∧σ(ϕm,pn

) ⇒ false is a consequence of Φ′. However, the implication
ϕm,p1 ∧ . . . ∧ ϕm,pn

⇒ false is not a consequence of Φ, and hence σ is not
consequence-conservative. ��

The signatures of the standard institutions presented above come naturally
equipped with a notion of subsignature, hence signature inclusion, and a well-
defined way of forming a union of signatures. These concepts can be captured in
a categorical setting using inclusion systems [5,9]. However, we will work with
a slightly different version of this notion:

Definition 2.8. An inclusive category is a category with a broad subcategory5

which is a partially ordered class with a least element (denoted ∅), non-empty
products (denoted ∩) and finite coproducts (denoted ∪), such that for each pair
of objects A,B, the following is a pushout in the category:

��
For any objects A and B of an inclusive category, we write A ⊆ B if there is
an inclusion from A to B; the unique such inclusion will then be denoted by
ιA⊆B : A ↪→ B, or simply A ↪→ B.

A functor between two inclusive categories is inclusive if it takes inclusions
in the source category to inclusions in the target category.

Definition 2.9. An institution I = (Sign,Sen,Mod, |=) is inclusive6 if

– Sign is an inclusive category,
– Sen is inclusive and preserves intersections,7 and
– each model category is inclusive, and reduct functors are inclusive.8

5 That is, with the same objects as the original category.
6 Even though we use the same term as in [9], since the overall idea is the same, on

one hand, some of our assumptions here are weaker than in [9], and on the other
hand, we require a bit more structure on the category of signatures.

7 That is, for any family of signatures S ⊆ |Sign|, Sen(
⋂

S) =
⋂

Σ∈S
Sen(Σ).

8 That is, we have a model functor Mod : Signop → ICat, where ICat is the
(quasi)category of inclusive categories and inclusive functors.
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Moreover, we asume that reducts w.r.t. signature inclusions are surjective
on objects. ��
The empty object in the category of signatures will be referred to as the empty
signature (indeed, in typical signature categories it is empty) and will be written
as Σ∅.

Since in any inclusive institution the category of signatures has arbitrary
intersections, for any set of sentences Φ ⊆ ⋃

Σ∈|Sign| Sen(Σ), there exists the
least signature Sig(Φ) such that Φ ⊆ Sen(Sig(Φ)).

The assumption that reducts are surjective on models is rather mild and
ensures that semantic consequence is not only preserved but also reflected under
signature extension. Then, given Φ ⊆ Sen(Σ) and ϕ ∈ Sen(Σ) (or, equivalently,
Sig(Φ) ∪ Sig(ϕ) ⊆ Σ), we have that Φ |=Σ ϕ if and only if Φ |=Sig(Φ)∪Sig(ϕ) ϕ.
In particular, this justifies use of the notation Φ |= ϕ without any explicit
reference to the signature over which sentences and consequence between them
are considered. Moreover, Φ |= ϕ if and only if |Mod(Σ,Φ)| ⊆ |Mod(Σ, {ϕ})|
for every signature Σ ⊇ Sig(Φ) ∪ Sig(ϕ).

The institutions Prop, OWL and FOL= sketched above in Examples 2.2, 2.3
and 2.4 can be equipped with the obvious inclusion system on their signatures
and models, and then become inclusive institutions.

In inclusive institutions, if Σ1 ⊆ Σ2 via an inclusion ι : Σ1 ↪→ Σ2 and M ∈
Mod(Σ2), we write M |Σ1 for M |ι. Note that Sen(ι) : Sen(Σ1) → Sen(Σ2) is
the usual set-theoretic inclusion, hence its application may be omitted.

For some results, we need an amalgamation property on models. An inclusive
institution I is called (weakly) union-exact if all intersection-union signature
pushouts in Sign are (weakly) amalgamable. More specifically, the latter means
that for any pushout

in Sign,any pair (M1,M2) ∈ Mod(Σ1) × Mod(Σ2) that is compatible in the
sense that M1 and M2 reduce to the same (Σ1 ∩Σ2)-model can be amalgamated
to a unique (or weakly amalgamated to a not necessarily unique) (Σ1 ∪ Σ2)-
model: there exists a (unique) M ∈ Mod(Σ1 ∪ Σ2) that reduces to M1 and M2,
respectively.

The institutions Prop, OWL and FOL= sketched above are all union-exact.

3 Conservative Extensions and Inseparability

An ontology is typically presented as a collection of concepts/objects, rela-
tions, properties and axioms — thus a presentation of a theory in some suit-
able logic, with OWL being a typical example. The goal of this paper is to
study some concepts used in the research on ontologies and their modularisa-
tion independently of the logic in use. We make this precise by presenting these
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concepts in the context of an arbitrary (but fixed for now) inclusive institu-
tion I = (Sign,Sen,Mod, |=). The presentation below is based on the general
concepts and facts conerning inclusive institutions, as spelled out in Sect. 2. To
stay in tune with the literature and concerns of the domain we consider, we will
adjust the terminology and notation appropriately.

An ontology O in a logic given as the institution I is just a set of sentences
O ⊆ ⋃

Σ∈|Sign| Sen(Σ) in I. As explained in Sect. 2, for each ontology O we have
its signature Sig(O), which is the least signature over which all the sentences in
O may be considered.

Note that if we want an ontology to be always considered over a larger signa-
ture with some extra symbols without changing its intended meaning, we need
to add trivially true sentences that involve the additional symbols. In many typ-
ical institutions such sentences always exists (for instance, p ∨ ¬p in Prop, etc.);
if this is not the case, we may want to expand our institution by some trivial
sentences to “declare” that some extra symbols are to be considered.

Ontology inclusions give a starting notion to study relationships between
ontologies. If O ⊆ O′ then we say that O′ is an extension of O. As in Sect. 2,
conservativity of such an extension may be defined in two variants: based on
models and based on semantic consequence (deduction), respectively. However,
we are often interested in further nuances, where conservativity is considered
up to an indicated signature of current interest.

Consider ontologies O ⊆ O′ and a signature Σ ∈ |Sign|.
1. O′ is a model Σ-conservative extension (Σ-mCE) of O if for every (Sig(O) ∪

Σ)-model I of O there exists a (Sig(O′)∪Σ)-model I’ of O’ such that I|Σ =
I ′|Σ .

2. O′ is a consequence Σ -conservative extension (Σ-cCE ) of O if for every
Σ-sentence α, we have O′ |= α iff O |= α.

Proposition 2.6 essentially applies here as well, so that the notion of model
Σ-conservative extension is strictly stronger than that of consequence Σ-
conservative extension, and it clearly does not depend on the expressiveness
of the institution. Thus if O′ is a Σ-mCE of O then O′ is a Σ-cCE of O as
well, while the converse does not hold. However, for propositional logic, the two
concepts are equivalent, see Example 2.7.

We have parameterised above both concepts of conservative extension by a
specific signature to indicate the focus of current interest. Further concepts will
be developed in a similar fashion, taking the signature of interest into account.
As this signature may vary here rather arbitrarily, we will need to adjust any
ontology to cover it explicitly, turning the ontology into a presentation in I: for
an ontology O and a signature Σ, we define O↑Σ = (Sig(O) ∪ Σ,Ax(O)).

Now, when a signature of interest is indicated, the notion of ontology exten-
sion may be refined as follows. Again, this comes in two flavours: one based on
models, the other on sentences (consequence).

Given ontologies O′ and O and a signature Σ:

1. O′ is a model Σ-extension of O if for all models I ′ ∈ |Mod(O′↑Σ)| there is
I ∈ |Mod(O↑Σ)| such that I ′|Σ = I|Σ .
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2. O′ is a consequence Σ-extension of O if for all Σ-sentences α, we have O′↑Σ |=
α if O↑Σ |= α.

Clearly, if O ⊆ O′ then O′ is a model Σ-extension of O, for any signature Σ.
Moreover, essentially by Proposition 2.5, if O′ is a model Σ-extension of O then
it is a consequence Σ-extension of O as well.

The model Σ-extension condition may be rewritten as follows:

{I ′|Σ | I ′ ∈ |Mod(O′↑Σ)|} ⊆ {I|Σ | I ∈ |Mod(O↑Σ)|}
One may feel tempted to simplify this and instead write

{I ′|Σ | I ′ |= O′} ⊆ {I|Σ | I |= O}
However, this formally makes little sense unless we assume Σ ⊆ Sig(O′) ∩ Sig(O).
This would be a strong assumption concerning the signature of interest (even if
O ⊆ O′), especially when we come to discussing robustness properties below. If
this condition does not hold, it is not entirely clear what I|Σ should mean. One
possible interpretation might be “remove all model components whose names do
not occur in Σ” (consider reducts to Σ ∩ Sig(O′) and Σ ∩ Sig(O), respectively).
But even then, the two definitions depart: consider (in OWL) O′ = {C � C},
O = {C ′ � C ′}, and Σ = {C,C ′}. Then according to our definition, O′ is
a model Σ-extension of O, but this would not be the case if the apparently
simplified condition was used.9 In fact, the simpler condition cannot be met in
a non-trivial way unless Σ ∩ Sig(O′) = Σ ∩ Sig(O), another strong assumption
we rather avoid.

One may now want to define a module in an ontology O to be another ontol-
ogy M such that M ⊆ O and the inclusion is conservative (either in the model-
based sense, or in the consequence-based sense). However, we want this concept
to work for an arbitrary signature of interest. The appropriate requirement is
formulated in terms of inseparability. One intuition is that inseparability is a
proper generalisation of conservative extension to a more symmetric situation.

Let O1 and O2 be ontologies and Σ a signature. Then O1 and O2 are model
Σ-inseparable, written O1 ≡m

Σ O2 if

{I|Σ | I ∈ |Mod(O1↑Σ)|} = {I|Σ | I ∈ |Mod(O2↑Σ)|}
Note that in the literature, a simpler condition is commonly used:

{I|Σ | I |= O1} = {I|Σ | I |= O2}
However, this “simplification” is dubious — all the comments concerning the
definition of model Σ-extension above apply here as well.

Clearly, O1 and O2 are model Σ-inseparable iff O1 is a model Σ-extension
of O2 and O2 is a model Σ-extension of O1. Moreover if O1 ⊆ O2 and Σ ⊆
9 This remains true even if I varies over models of arbitrary signatures, which seems

to be a widespread understanding in the ontology modularity community. Note that
I |= O still entails that I interprets at least the symbols occurring in O.
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Sig(O1) then O1 and O2 are model Σ-inseparable iff O2 is a model Σ-conservative
extension of O1.

Model Σ-inseparability provides a very strong form of equivalence between
ontologies considered from the perspective given by Σ: O1 ≡m

Σ O2 guarantees
that O1 can be replaced by O2 in any application that refers only to symbols
from Σ. Moreover, since this notion does not depend on the expressibility of the
underlying institution, we may arbitrarily strengthen the logic without affecting
this equivalence.

Weaker versions of inseparability relations can be defined. To begin with, as
usual, we consider a deductive variant: O1 and O2 are consequence Σ-inseparable,
written O1 ≡s

Σ O2, if for all Σ-sentences ϕ

O1 |= ϕ iff O2 |= ϕ

Let us recall here again that the semantic consequences might be taken over
any signatures that encompass all symbols used either in the ontology or in the
sentences considered.

Given a signature Σ, in many contexts we are not interested in preservation
of all Σ-sentences, but it is sufficient to consider only sentences of some specific
form that express the properties we really care about. This extra twist may be
captured by considering a set of Σ-sentences Λ ⊆ Sen(Σ), and weakening conse-
quence Σ-inseparability as follows: O1 and O2 are Λ-consequence Σ-inseparable,
written O1 ≡Λ

Σ O2, if for all Σ-sentences ϕ ∈ Λ

O1 |= ϕ iff O2 |= ϕ

For instance, in OWL, one relevant choice of the set Λ is to consider all sub-
sumptions between atomic concepts.

It is easy to see now that indeed, the above three equivalences are gradually
coarser:

Proposition 3.1. For any signature Σ and set of Σ-sentences Λ ⊆ Sen(Σ),
we have ≡m

Σ ⊆ ≡s
Σ ⊆ ≡Λ

Σ. ��
In particular, this means that if two ontologies are model Σ-inseparable then
they are Σ-inseparable by any set of sentences, even if we strengthen the logic
in use. Whatever sentences we add to our institution, no matter how strong
they would be, two ontologies that are model Σ-inseparable will have the same
consequences among them.

We mentioned above that one may want to consider various signatures Σ,
changing the focus of interest through which ontologies are considered. In partic-
ular, this means that to use Λ-consequence Σ-inseparability, we have to provide
the set of sentences over each such signature Σ. What one wants then is an
inclusive functor Λ: Sign → Set with Λ(Σ) ⊆ Sen(Σ) for all signatures Σ.
This implies that for Σ′ ⊆ Σ, Λ(Σ′) ⊆ Λ(Σ), capturing the intuition that the
sentences to be preserved cannot be disregarded when signature is enlarged. For
any signature Σ, slightly abusing the notation, we write ≡Λ

Σ for ≡Λ(Σ)
Σ .
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Given the above arrangements, the inseparability relations defined are pre-
served when the signature considered is narrowed:

Proposition 3.2. Given any signatures Σ′ ⊆ Σ, we have ≡m
Σ ⊆ ≡m

Σ′ , ≡s
Σ ⊆

≡s
Σ′ , and ≡Λ

Σ ⊆ ≡Λ
Σ′ . ��

For a given institution, an inseparability relation is a family S = 〈≡S
Σ〉Σ∈|Sign|

of equivalence relations on the family of presentations. The informal intuition we
want to capture is that for any two ontologies O1 and O2, O1 ≡S

Σ O2 means that
O1 and O2 are indistinguishable w.r.t. Σ, i.e., they represent the same knowledge
of interest about the topics expressible in the signature Σ. Any specific definition
of the inseparability relation determines the exact meaning of the terms “indis-
tinguishable” and “the knowledge of interest”. However, since “the knowledge of
interest” relevant for a signature should not be disregarded when the signature
is enlarged, it is desirable that the inseparability relations are monotone in the
following sense:

Definition 3.3 ([10]). An inseparability relation S = 〈≡S
Σ〉Σ∈|Sign| is

monotone if

1. forany signatures Σ′ ⊆ Σ, ≡S
Σ ⊆ ≡S

Σ′ (the inseparability relation gets finer
when the signature gets larger), and

2. if O1 ⊆ O2 ⊆ O3 and O1 ≡S
Σ O3 then O1 ≡S

Σ O2 and O2 ≡S
Σ O3 (the

intuition here is: since larger ontologies capture more of “the knowledge of
interest”, we also require that any ontology squeezed between an ontology and
its inseparable extension is inseparable from both of them). ��
The inseparability relations defined above (〈≡m

Σ 〉Σ∈|Sign|, 〈≡s
Σ〉Σ∈|Sign|, and

〈≡Λ
Σ〉Σ∈|Sign|) are typical examples we will use in the following. It is easy to

show that all are monotone.
Monotonicity can be reformulated as robustness under signature restrictions.

We now recall further robustness properties from the literature [10,27].

Definition 3.4. An inseparability relation S = 〈≡S
Σ〉Σ∈|Sign| is

– robust under signature extensions if for all ontologies O1 and O2 and all
signatures Σ, Σ′ with Σ′ ∩ (Sig(O1) ∪ Sig(O2)) ⊆ Σ

O1 ≡Σ O2 implies O1 ≡Σ′ O2

– robust under replacement if for all ontologies O, O1 and O2 and all signatures
Σ with Sig(O) ⊆ Σ, we have

O1 ≡Σ O2 implies O1 ∪ O ≡Σ O2 ∪ O
– robust under joins if for all ontologies O1 and O2 and all signatures Σ with

Sig(O1) ∩ Sig(O2) ⊆ Σ, we have for i = 1, 2

O1 ≡Σ O2 implies Oi ≡Σ O1 ∪ O2 ��
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We have the following result on robustness:

Theorem 3.5. Model inseparability is robust under replacement. In a union-
exact inclusive institution, model inseparability is also robust under signature
extensions and joins.

Proof. Robustness under replacement: Consider ontologies O, O1 and O2 and
a signature Σ such that Sig(O) ⊆ Σ and O1 ≡m

Σ O2. We need to show that
O1 ∪ O ≡m

Σ O2 ∪ O, which amounts to showing

{I|Σ | I ∈ |Mod((O1 ∪ O)↑Σ)|} = {I|Σ | I ∈ |Mod((O2 ∪ O)↑Σ)|}

By symmetry, it suffices to prove one inclusion. Let I ∈ |Mod((O1 ∪ O)↑Σ)|.
Define I ′ = I|Sig(O1)∪Σ . By O1 ≡m

Σ O2, we know that I ′|Σ has an expansion
to an O2↑Σ-model I ′′. But since I |= O and Sig(O) ⊆ Σ, also I ′′ |= O. Hence
I ′′ ∈ |Mod((O2 ∪ O)↑Σ)|, and obviously I|Σ = I|′′Σ .

Robustness under signature extensions: Let O1 and O2 be ontologies Σ, Σ′

be signatures with Σ′ ∩ (Sig(O1) ∪ Sig(O2)) ⊆ Σ. Assume O1 ≡m
Σ O2. We need

to show that O1 ≡m
Σ′ O2, which amounts to showing

{I|Σ | I ∈ |Mod(O1↑Σ′)|} = {I|Σ | I ∈ |Mod(O2↑Σ′)|}

By symmetry, it suffices to prove one inclusion. Let I ′
1 ∈ Mod(O1↑Σ′). Since

O1 ≡m
Σ O2, I|Σ has an expansion to an O1↑Σ-model I2. From Σ ⊆ Σ′ and

Σ′ ∩ Sig(O2) ⊆ Σ we get Σ′ ∩ Sig(O2↑Σ) = Σ. Since also Σ′ ∪ Sig(O2↑Σ) =
Sig(O2↑Σ′) the following diagram

is an intersection-union-pushout in Pres. Hence, by weak union-exactness, we
can amalgamate I ′

1|Σ′ and I2 to I ′
2 ∈ Mod(O2 ↑ Σ′), which gives us the desired

expansion of I ′
1|Σ′ .

Robustness under joins: Consider ontologies O1 and O2 and a signature Σ
such that Sig(O1 ∩ O2) ⊆ Σ and O1 ≡m

Σ O2. Then we need to show O1 ≡m
Σ

O1 ∪ O2 and O2 ≡m
Σ O1 ∪ O2. We only prove the former; the latter follows by

symmetry. We need to show

{I|Σ | I ∈ |Mod(O1↑Σ)|} = {I|Σ | I ∈ |Mod((O1 ∪ O2)↑Σ)|}

The inclusion from right to left is obvious. For the converse inclusion, let I1 ∈
|Mod(O1↑Σ)|. Since O1 ≡m

Σ O2, I1|Σ has an expansion I1 ∈ |Mod(O2↑Σ)|.
From Sig(O1 ∩O2) ⊆ Σ we get Sig(O1↑Σ)∩Sig(O2↑Σ) = Σ. Moreover, we have
Sig(O1↑Σ) ∪ Sig(O2↑Σ) = (O1 ∪ O2)↑Σ. This implies that
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is an intersection-union-pushout in Pres. Hence, by weak union-exactness, we
can amalgamate I1 and I2 to I ′′ ∈ Mod((O1 ∪ O2)↑Σ), which gives us the
desired expansion of I1|Σ .

4 Module Notions

Equipped with the concepts introduced in the previous sections, we are now
ready to introduce the notion of an ontology module. In fact, following the liter-
ature, we will put forward a number of concepts, and will study their properties
and their mutual relationships. As in Sect. 3, we work in the framework of a
logical system formalised as an inclusive institution I = (Sign,Sen,Mod, |=)
(Sect. 2).

The notions of a module we present below may be parameterised by an
arbitrary inseparability relation S = 〈≡S

Σ〉Σ∈|Sign|.

Definition 4.1 ([10]). Let O be an ontology, M ⊆ O and Σ a signature. We
call M
– a (plain) Σ -module of O induced by S if M ≡S

Σ O;
– a self-contained Σ -module of O induced by S if M ≡S

Σ∪Sig(M) O;
– a depleting Σ -module of O induced by S if O \ M ≡S

Σ∪Sig(M) ∅. ��
Example 1.1 shows a plain ontology module. The intuition is that the module

M already contains all the relevant information from O if attention is restricted
to the concepts (symbols) in signature Σ. Note however that the module in
Example 1.1 is not depleting: this follows from the fact that O\M has still some
non-trivial consequences relevant w.r.t. Σ, e.g., O \ M |= Male� ∃has child.� �
Human.

The main advantage of depleting over plain modules is that minimal depleting
modules exist, see Theorem 4.6 below. Therefore, DOL uses the minimal deplet-
ing module as semantics of the module extraction operator. It is unclear how
one could give a definite semantics to this operator in terms of plain modules,
because there may be multiple pairwise incomparable minimal plain modules.

The intuition of depleting modules is as follows: In addition to the properties
of plain Σ-modules, for a depleting Σ-module M of O, the difference O\M has
no knowledge about Σ ∪ Sig(M). This means that the difference of O and its
module M does not entail any axioms over Σ ∪ Sig(M) other than tautologies.
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A different formulation of this observation involves the notion of safety. We
say that O is safe for Σ if, for every ontology O′ with Sig(O) ∩ Sig(O′) ⊆ Σ, we
have that O ∪ O′ is a model Σ-conservative extension of O′. Alternatively, this
notion can be formulated in terms of inseparability: an ontology O is safe for a
signature Σ if and only if O ≡m

Σ ∅.
Now if M is a depleting Σ-module, then O\M is safe for Sig(M) and so the

module can be maintained separately outside of O without the risk of unintended
interaction with the rest of O. Also note that checking depleting Σ modules is
exactly the same problem as deciding Σ-inseparability from the empty ontology.

In the rest of this paper we will focus on modules induced by model insepa-
rability 〈≡m

Σ 〉Σ∈|Sign|, leaving similar developments for other inseparability rela-
tions introduced in Sect. 3 for future study. We therefore drop all qualifications
“induced by S” in the terminology below.

Modules induced by model inseparability are essentially based on model con-
servative extensions:

Proposition 4.2. For any ontology O, M ⊆ O and signature Σ, M is a Σ-
module of O if and only if O is a model Σ-conservative extension of M. ��

We say that a subontology M ⊆ O covers all the knowledge that O has
about Σ if O is a consequence Σ-conservative extension of M, that is, if for
every sentence α ∈ Sen(Σ), we have that O |= α if and only if M |= α.

A “plain” Σ-module M of O covers all knowledge that O has about Σ. In
fact, this claim holds also when any extension of the institution I with arbitrarily
strong sentences (but the same signatures and models) is allowed.

The notion of self-contained module is stronger than the plain Σ-module
notion in that it requires the module to preserve entailments that can be for-
mulated in the interface signature plus the signature of the module. That is, it
covers all the knowledge that O has about Σ ∪ Sig(M). Formally, monotonicity
of the model inseparability relations, see Proposition 3.2, easily implies:

Proposition 4.3. If M is a self-contained Σ-module of O, then M is a (plain)
Σ-module of O as well. ��

Since ≡m
Σ enjoys robustness under replacement (Theorem 3.5), we get as

in [10]:

Proposition 4.4. If M is a depleting Σ-module of O, then it is a self-contained
Σ-module. ��

Comparison of the various module notions can be carried out examining prop-
erties relevant for ontology reuse. The robustness properties for inseparability
(see Definition 3.4) can be transferred to modules as follows:

Robustness under signature restrictions. This property means that a module of
an ontology w.r.t. a signature Σ is also a module of this ontology w.r.t. any
subsignature of Σ. This property is important because it means that we do not
need to import a different module when we restrict the set of terms that we are
interested in.
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Robustness under signature extensions. This means that a module of an ontology
O w.r.t. a signature Σ is also a module of O w.r.t. any Σ′ ⊇ Σ as long as
Σ′ ∩ Sig(O) ⊆ Σ. This means that we do not need to import a different module
when extending the set of relevant terms with terms not from O.

Robustness under replacement. This property means that if M is a module of O
w.r.t. Σ, then the result of importing M into another ontology O′ is a module
of the result of importing O into O′. Formally, for any ontology O′, if M is a
Σ-module of O, then O′ ∪ M is a Σ-module of O′ ∪ O. (The precise restrictions
to signatures that are needed to ensure this property can vary.) This is called
module coverage in the literature: importing a module does not affect its property
of being a module.

Robustness under joins. It seems that this property of inseparability relations
cannot be usefully transferred to ontology modules. However, together with
robustness under replacement, it implies that it is not necessary to import two
indistinguishable versions of the same ontology. This shows that it is still useful
to have the property.

We have summarized the relevant properties of the modules of each kind
in Table 1, which follow from the properties of inseparability relations stated in
Sect. 3:

Theorem 4.5. The module notions appearing as column heads in Table 1 have
the properties appearing as row head, if marked with a � or some additional
assumptions that are needed. If marked with a , there is a counterexample
showing that the property does not hold. It is assumed that all module notions
are based on model inseparability.

Indeed, the condition needed for robustness under replacement is very limited for
plain modules, since the importing ontology O′ must have a signature contained
in the signature of interest Σ. This seems to be unrealistic in practice. The other
module notions have a more liberal condition: Sig(O′) ∩ Sig(O) ⊆ Σ ∪ Sig(M),
which means that the importing ontology O′ may overlap with the imported
ontology O only w.r.t. the signature of interest plus that of the module. This is
more realistic.

Given an ontology O and a signature of interest Σ, the crucial task is to
determine a module M of O w.r.t. Σ. Clearly, such a module always exists: the
entire ontology O is one example. However, what we are really interested in is
small modules of O w.r.t. Σ. The following theorem establishes existence of such
modules (see Theorem 72 in [10]), and so is a starting point for various methods
of module extraction.

Theorem 4.6. Let O be an ontology and Σ be a signature. Then there is a
unique minimal depleting Σ-module of O. ��
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Table 1. Properties of Σ-modules

5 Conclusions

We have generalised the basic notions of ontology module extraction to an arbi-
trary institution. They can now be applied to logics other than OWL, most
notably first-order logic, but also modal logics and more exotic logics. For some
nice properties of modules, union-exactness of the institution is needed. While
many institutions enjoy this property, some do not, e.g. CASL [24].

We have entirely neglected questions of decidability or efficient computability
of modules. While Theorem 4.6 provides a general method for computing the
minimum depleting module, it is based on an oracle for inseparability. Future
work should hence study computationally interesting approaches to module
extraction, like different versions of locality, and generalize these to an arbitrary
institution as well.
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Abstract. This survey aims at providing unified definitions of strate-
gies, strategic rewriting and strategic programs. It gives examples of main
constructs and languages used to write strategies. It also explores some
properties of strategic rewriting and operational semantics of strategic
programs. Current research topics are identified.

1 Introduction

Since the 80s, many aspects of rewriting have been studied in automated deduc-
tion, programming languages, equational theory decidability, program or proof
transformation, but also in various domains such as chemical or biological com-
puting, plant growth modelling, security policies, etc. Facing this variety of appli-
cations, the question arises to understand rewriting in a more abstract way, espe-
cially as a logical framework to encode different logics and semantics. Discovering
the universal power of rewriting, in particular through its matching and trans-
formation power, led first to the emergence of Rewriting Logic and Rewriting
Calculus.

On the other hand, with the development of rewrite frameworks and lan-
guages, more and more reasoning systems have been modeled, for proof search,
program transformation, constraint solving, SAT solving. It then appeared that
straightforward rule-based computations or deductions are often not sufficient
to capture complex computations or proof developments. A formal mechanism is
needed, for instance, to sequentialize the search for different solutions, to check
context conditions, to request user input to instantiate variables, to process sub-
goals in a particular order, etc. This is the place where the notion of strategy
comes in and this leads to the design and study of strategy constructs and strat-
egy languages also in these contexts.

A common understanding is that rules describe local transformations and
strategies describe the control of rule application. Most often, it is useful to
distinguish between rules for computations, where a unique normal form (i.e.
syntactic expressions which cannot be rewritten anymore) is required and where
the strategy is fixed, and rules for deductions, in which case no confluence
nor termination is required but an application strategy is necessary. Due to
the strong correlation of rules and strategy in many applications, claiming the
c© Springer International Publishing Switzerland 2015
N. Mart́ı-Oliet et al. (Eds.): Meseguer Festschrift, LNCS 9200, pp. 380–403, 2015.
DOI: 10.1007/978-3-319-23165-5 18
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universal character of rewriting also requires the formalisation of its control. This
is achieved through strategic rewriting.

This survey aims at providing unified definitions of strategies, strategic
rewriting and strategic programs, with the goal to show the progression of ideas
and definitions of the concept, as well as their correlations. It gives examples of
main constructs and languages used to write strategies, together with the defin-
ition of an operational semantics for strategic programs. Well-studied properties
of strategic rewriting are reviewed and current research topics are identified.

Accordingly, following this introduction, the paper is organised as follows:
after a brief history of the notion of strategy in rewriting and automated deduc-
tion in Sect. 2, we first explain in Sect. 3, what are strategic rewriting and strate-
gic programs. In Sect. 4, several approaches to describe strategies and strategic
rewriting are reviewed. In order to catch the higher-order nature of strategies,
a strategy is first defined as a proof term expressed in rewriting logic then as
a ρ term in rewriting calculus. Looking at a strategy as a set of paths in a
derivation tree, the extensional description of strategies, defined as a subset of
derivations, is briefly explored. Then a strategy is considered as a partial func-
tion that associates to a reduction-in-progress, the possible next steps in the
reduction sequence. Last, positional strategies that choose where rules apply are
studied. Section 5 presents a few strategy languages, and extracts comon con-
structs with their variants. We propose an operational semantics for strategic
programs in Sect. 6, study properties of their executions together with correct-
ness and completeness results. We then address in Sect. 7 various properties,
namely termination, confluence and normalizing properties of strategic rewrit-
ing. The conclusion points out further work and possible improvements.

This survey is an extended version of [45], and of a lecture given at ISR2014.
Although this research on strategies has been largely influenced by related works
on proof search, automated deduction and constraint solvers, this paper does not
cover these domains and restricts to the area of rewriting.

2 Historical Considerations

In programming languages, strategies have been primarily provided to describe
the operational semantics of functional languages and the related notions of call
by value, call by name, call by need. In languages such as Clean [62], OBJ [31],
ML [6], and more recently Haskell [39] or Curry [36], strategies are used to
improve efficiency of interpreters or compilers, and are not directly accessible
to the programmer. In relation with the operational semantics of functional
and algebraic languages, strategies have been studied from a long time in λ-
calculus [9,47], in the classical setting of first-order term and graph rewriting,
or in abstract rewriting systems.

In the context of functional languages, the notions of termination and conflu-
ence of reductions to provide normal forms are meaningful to ensure the existence
and unicity of results. Significant research was devoted to design computable and
efficient strategies that are guaranteed to find a normal form for any input term,
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whenever it exists. Motivated by the need to avoid useless infinite computations
in functional programming languages, local strategies were used in eager lan-
guages such as Lisp (with its lazy cons), in the OBJ family of languages (OBJ,
CafeOBJ, Maude,...) to guide the evaluation using local strategies for functions,
in lazy functional programming, via different kinds of syntactic annotations
on the program (strictness annotations, or global and local annotations). For
instance, Haskell allows for syntactic annotations on the arguments of datatype
constructors.

Besides functional or logic programming, strategies also frequently occur in
automated deduction and reasoning systems which have been developed in a
different community. Beginning with the ML meta-language of LCF [32], strate-
gies are fundamental in several proof environments, such as Coq [20], TPS [4],
PVS [61] but also in automated theorem proving [56], constraint solving [15],
SAT or SMT solvers [19]. In these contexts, they are more often called tactics,
action plans, search plans or priorities.

From the 1990s, attempts have been made to look at the concept of strategy
per se, with the intent to confront point of views and to look at computation
and deduction in a logical and uniform approach. Already in [43], the notion of
computational system, defined as a rewrite theory and a strategy describing the
control for rules application, was applied in a uniform way to straightforward
computations with rewrite rules, to constraint solving and to combination of
these paradigms in the same logical framework. Since 1997, there has been two
series of workshops whose goal was to address the concept of strategy and mix
different point of views. The Strategies workshops held by the CADE-IJCAR
community1 and the Workshops on Reduction Strategies held by the RTA-RDP
community2. More recently in 2013, the International Workshop on Strategic
Reasoning is emerging from the game theory community3.

Once the idea was there, the challenge was to propose good descriptions of
the concept of strategy. The approach followed in the rewriting community was
to formalize a notion of strategy relying on rewriting logic [53] and rewriting
calculus [17] that are powerful formalisms to express and study uniformly com-
putations and deductions in automated deduction and reasoning systems. Briefly
speaking, rules describe local transformations and strategies describe the con-
trol of rule application. Most often, it is useful to distinguish between rules for
computations, where a unique normal form is required and where the strategy
is fixed, and rules for deductions, in which case no confluence nor termination
is required but an application strategy is necessary. Regarding rewriting as a
relation and considering abstract rewrite systems leads to consider derivation
tree exploration: derivations are computations and strategies describe selected
computations.

With the idea to understand and unify strategies in reduction systems and
deduction systems, abstract strategies are defined in [41] and in [14] as a subset

1 See http://www.logic.at/strategies.
2 http://users.dsic.upv.es/∼wrs/.
3 See http://www.strategicreasoning.net/.

http://www.logic.at/strategies
http://users.dsic.upv.es/~wrs/
http://www.strategicreasoning.net/
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of the set of all derivations (finite or not). Another point of view is to see a
strategy as a partial function that, at each step of reduction, gives the possible
next steps. Strategies are thus considered as a way of constraining and guiding
the steps of a reduction. So at any step in a derivation, it should be possible to
say which next step obeys the strategy.

In the 1990s, inspired by tactics in proof systems and by constraint pro-
gramming, the idea came up to provide a strategy language to specify which
derivations we are interested in. Various approaches have followed, yielding dif-
ferent strategy languages such as Elan [12,13,44], APS [46], Stratego [70,71],
Tom [7] or Maude [18,54,55]. For such languages, rules are the basic strategies
and additional constructs are provided to combine them and express the control.

Strategy constructs are also present in graph transformation tools such as
PROGRES [67], AGG [23], Fujaba [58], GROOVE [66], GrGen [27], GP [64]
and Porgy [2,24,25]. Graph rewriting strategies are especially useful in Porgy, an
environment to facilitate the specification, analysis and simulation of complex
systems, using port graphs. In Porgy, a complex system is represented by an
initial graph, a collection of graph rewriting rules, and a user-defined strategy to
control the application of rules. The Porgy strategy language includes constructs
to deal with graph traversal and management of rewriting positions in the graph.
Indeed in the case of graph rewriting, top-down or bottom-up traversals do not
make sense. There is a need for a strategy language which includes operators to
select rules and the positions where the rules are applied, and also to change the
positions along the derivation.

All these languages share the concern to provide abstract ways to express
control of rule applications. In these flexible and expressive strategy languages,
elaborated strategies are defined by combining a small number of primitives.

3 What are Strategic Rewriting and Strategic Programs?

Strategic rewrite programs considered in this paper combine the general concept
of rewriting applied to syntactic structures (like terms, graphs, propositions,
states, etc.) with a strategy to express the control on rule application. In this
way, strategic programming follows the separation of concerns principle [21] since
different strategies can be designed and experimented with a same rewrite sys-
tem. Strategic rewrite programs so contribute to improve agility and modularity
in programming.

This section reminds notions of rewriting and abstract rewrite systems
and introduces related definitions of strategic rewrite programs and strategic
rewriting.

3.1 Rewriting

In the various domains where rewrite rules are applied, rewriting definitions have
the same basic ingredients. Rewriting transforms syntactic structures that may
be words, terms, propositions, dags, graphs, geometric objects like segments, and
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in general any kind of structured objects. In order to emphasize this fact, we use
t, G or a to denote indifferently terms, graphs of any other syntactic structure,
used for instance to abstractly model the state of a complex system.

Transformations are expressed with patterns called rules. Rules are built on
the same syntax but with an additional set of variables, say X , and with a binder
⇒, relating the left-hand side and the right-hand side of the rule, and optionally
with a condition or constraint that restricts the set of values allowed for the
variables. Performing the transformation of a syntactic structure t is applying
the rule labelled � on t, which is basically done in three steps: (1) match to
select a redex of t at position p denoted t|p (possibly modulo some axioms,
constraints,...); (2) instantiate the rule variables by the result(s) of the matching
homomorphism (or substitution) σ; (3) replace the redex by the instantiated
right-hand side.

Formally, t rewrites to t′ using the rule � : l ⇒ r if t|p = σ(l) and t′ = t[σ(r)]p.
This is denoted t −→p,�,σ t′.

The transformation process is similar on graphs (see for instance [34,65]) and
many other structured objects can be encoded by terms or graphs.

When R is a set of rules, this transformation generates a relation −→R
on the set of syntactic structures. Its (reflexive) transitive closure is denoted
( ∗−→R) +−→R.

Given a set of rewrite rules R, a derivation, or computation from G is a
sequence of rewriting steps G →R G′ →R G” →R . . .

In this transformation process, there are many possible choices: for the rule
itself, the position(s) in the structure, the matching homomorphism(s). For
instance, one may choose to apply a rule concurrently at all disjoint posi-
tions where it matches, or using matching modulo an equational theory like
associativity-commutativity, or also according to some probability. Since in gen-
eral, there is more than one way of rewriting a structure, the set of rewrite
derivations can be organised as a derivation tree. The derivation tree of G, writ-
ten DT (G,R), is a labelled tree whose root is labelled by G, the children of
which being all the derivation trees DT (Gi,R) such that G →R Gi. The edges
of the derivation tree are labelled with the rewrite rule and the morphism used
in the corresponding rewrite step. A derivation tree may be infinite, if there is
an infinite reduction sequence out of G.

3.2 Strategic Rewrite Programs

Intuitively, a strategic program consists of an initial structure G (or t when it is
a term), together with a set of rules R that will be used to reduce it, according
to a given strategy expression S, used to decide which rewrite steps should be
performed on G. This amounts to identify the branches in G’s derivation tree
that satisfy the strategy S and to view strategic rewriting derivations as selected
computations.

Formally, a strategic rewrite program consists of a finite set of rewrite rules
R, a strategy expression S, built from R using a strategy language, and a given
structure G.
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We denote it [SR, G], or simply [S,G] when R is clear from the context.
Several questions come up with this definition: how to describe a strategy

expression S, how to characterize strategic rewriting derivations, how to design
a language for strategy expressions, how to define an operational semantics for
strategic programs?

3.3 Abstract Reduction System

Dealing with a general notion of rewriting is well addressed in abstract reduction
systems. There, rewriting is considered as an abstract relation on structured
objects. Even if different variants of the definition of Abstract Reduction System
have been given in the literature [41,42,69], they agree on the following basis.
An Abstract Reduction System (ARS) is a labelled oriented graph (O,S) with
a set of labels L. The nodes in O are called objects. The oriented labelled edges
in S are called steps: a

φ−→ b or (a, φ, b), with source a, target b and label φ.

Two steps a
φ−→ b and c

φ′
−→ d can be composed if b and c are the same object.

Derivations are composition of steps and may be finite or infinite.

For a given ARS A, a finite derivation is denoted π : a0
φ1−→ a1 . . .

φn−1−−−→ an

or a0
π−→ an, where n ∈ N is the length of the derivation. The source of π is

a0 and its domain Dom(π) = {a0}. The target of π is an and applying π to
a0 gives the singleton set {an}, which is denoted π•{a0} = {an}, or π•a0 =
an by abusively identifying elements and singletons. The concatenation of two
finite derivations π1;π2 is defined as a

π1−→ b
π2−→ c if {a} = Dom(π1) and

π1
•a = Dom(π2) = {b}. Then (π1;π2)•{a} = π2

•(π1
•{a}) = {c}, or more simply

(π1;π2)•a = π2
•(π1

•a) = c.
Termination and confluence properties for ARS are then expressed as follows.

For a given ARS A = (O,S):

– An object a in O is irreducible if a is the source of no edge.
– A derivation is normalizing when its target is irreducible.
– An ARS is weakly terminating if every object a is the source of a normalizing

derivation.
– A is terminating (or strongly normalizing) if all its derivations are of finite

length.
– An ARS A = (O,S) is confluent if

for all objects a, b, c in O, and all A-derivations π1 and π2,
when a

π1−→ b and a
π2−→ c,

there exist d in O and two A-derivations π3, π4 such that
c

π3−→ d and b
π4−→ d.

3.4 Strategic Rewriting

Given a rewrite system R, defined on a set of objects O that may be terms,
equivalence classes of terms, graphs, or states, we can consider the rewrite rela-
tion −→R defined in Sect. 3.1 to get the ARS A = (O,−→R).
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Based on the ARS concept, we can consider strategic rewriting in two dual
ways:

– The first one emphasizes the selective purpose of strategies among the set
of rewriting derivations. Abstract strategies are defined in [41] and in [14] as
follows: for a given ARS A, an abstract strategy ζ is a subset of the set of
all derivations (finite or not) of A. To relate this definition to the functional
aspect of strategies, the notions of domain and application are then defined
as follows: Dom(ζ) =

⋃
π∈ζ Dom(π) and ζ•a = {b | ∃π ∈ ζ such that a

π−→
b} = {π•a | π ∈ ζ}.

– The second way emphasizes the reduction relation itself and relies on a restric-
tion of the rewrite relation. Instead of the rewrite relation −→R we may con-
sider on the same set of objects, another relation (induced by strategic steps)
corresponding to strategic rewriting. A strategic reduction step is a relation

S−→ such that S−→ ⊆ +−→R.
This leads to consider another ARS A′ = (O,

S−→) and to compare it with
the previous one A = (O,−→R).

The derivation tree defined in Sect 3.1 is a representation of the ARS A =
(O,−→R). The selected branches in the derivation tree is then a representation
of the ARS=A′ = (O,

S−→).
Indeed termination, confluence and irreducible objects are in general different

for the two ARS. In the term rewriting approach of strategic reduction described
in [10], it is required that moreover NF ( S−→) = NF (R) where NF denotes the
set of terms which are not reducible any more by the considered relation. We
will come back later in Sect. 7 on these properties.

But first, in the following Sect. 4, we consider different ways to describe strate-
gies and strategic rewriting.

4 Strategy Description: Different Points of View

Different definitions of strategy have been given in the rewriting community in
the last twenty years, when strategies began to be studied per se. We review
them in this section, making clear that they all actually define either selected
sets of rewriting derivations, or selected sets of positions where rules should be
applied.

4.1 Rewriting Logic

The Rewriting Logic is due to Meseguer [53,57]: Rewriting logic (RL) is a natural
model of computation and an expressive semantic framework for concurrency,
parallelism, communication, and interaction. It can be used for specifying a wide
range of systems and languages in various application fields. It also has good
properties as a metalogical framework for representing logics. In recent years,
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Fig. 1. Deduction rules for rewriting logic

several languages based on RL (ASF+SDF, CafeOBJ, ELAN, Maude) have been
designed and implemented.4

In Rewriting Logic, the syntax is based on a set of terms T (F ,Y) built with
an alphabet F of function symbols with arities and with variables in Y. A theory
is given by a set R of labeled rewrite rules denoted �(x1, . . . , xn) : l ⇒ r, where
labels �(x1, . . . , xn) record the set of variables occurring in the rewrite rule.
Formulas are sequents of the form π : t → t′, where π is a proof term recording
the proof of the sequent: R � π : t → t′ if π : t → t′ can be obtained by finite
application of equational deduction rules [57] given in Fig. 1. In this context, a
proof term π encodes a sequence of rewriting steps called a derivation.

Let us consider the following example of sorting a list of natural numbers,
where natural numbers are a subsort of lists of natural numbers, which is denoted
as “Nat < List”; the concatenation operateur “ : List x List -> List”
is associatif with the empty list “nil : -> List” as identity; operators profiles
are “sort, rec, fin : List -> List”; natural numbers are denoted as “1,
2, 3,...” for simplicity and compared with the usual ordering “<”. The rules
are expressed as follows:

rules for List
X, Y : Nat ; L L’ L’’ : List;
rec : sort (L X L’ Y L’’) => sort (L Y L’ X L’’)

if Y < X
fin : sort (L) => L

end

For the derivation:

sort(3 1 2) -> sort(1 3 2) -> sort(1 2 3) -> (1 2 3)

4 http://wrla2012.lcc.uma.es/.

http://wrla2012.lcc.uma.es/
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the proof term is

rec(nil,3,nil,1,(2));rec((1),3,nil,2,nil);fin((1 2 3)).

The Elan language, designed in the 1990’s, introduced the concept of strategy
by giving explicit constructs for expressing control on the rule application [11,43].
Beyond labeled rules and concatenation denoted “;”, other constructs for choice,
failure, iteration, were also defined in Elan. A strategy is there defined as a set
of proof terms in rewriting logic and can be seen as a higher-order function : if
the strategy ζ is a set of proof terms π, applying ζ to the term t means finding
all terms t′ such that π : t → t′ with π ∈ ζ. Since rewriting logic is reflective,
strategy semantics can be defined inside the rewriting logic by rewrite rules at
the meta-level. This is the approach followed by Maude in [54,55].

4.2 Rewriting Calculus

The rewriting calculus, also called ρ-calculus, has been introduced in 1998 by
Horatiu Cirstea and Claude Kirchner [17]. The rho-calculus has been introduced
as a general means to uniformly integrate rewriting and λ-calculus. This calculus
makes explicit and first-class all of its components: matching (possibly modulo
given theories), abstraction, application and substitutions.

The rho-calculus is designed and used for logical and semantical purposes.
It could be used with powerful type systems and for expressing the semantics
of rule based as well as object oriented paradigms. It allows one to naturally
express exceptions and imperative features as well as expressing elaborated rewrit-
ing strategies.5

Some features of the rewriting calculus are worth emphasizing here: first-
order terms and λ-terms are ρ-terms (λx.t is (x ⇒ t)); a rule is a ρ-term as well as
a strategy, so rules and strategies are abstractions of the same nature and “first-
class concepts”; application reduction generalizes β−reduction; composition of
strategies is function composition and is denoted explicitely here by the operator
•; recursion can be for example expressed as in λ calculus with a recursion
operator μ.

To illustrate the notion of ρ-term on a simple example, let us come back to
the list sorting algorithm. For the derivation:

sort (3 1 2) -> sort (1 3 2) -> sort (1 2 3) -> (1 2 3)

the corresponding ρ-term can be written :

fin • rec2 • rec1 • sort(312)

with fin=(sort(L3) ⇒ L3), rec2=(sort(L2X2L
′
2Y2L

′′
2) ⇒ sort(L2Y2L

′
2X2L

′′
2))

and rec1 = (sort(L1X1L
′
1Y L′′

1) ⇒ sort(L1Y1L
′
1X1L

′′
1)).

In the ρ-calculus, strategies expressed by a well-typed ρ-term of type term �→
term evaluates to a set of rewrite derivations [16].

5 http://rho.loria.fr/index.html.

http://rho.loria.fr/index.html
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The Abstract Biochemical Calculus (or ρBio-calculus) [3] illustrates a useful
instance of the ρ-calculus. The ρBio-calculus models autonomous systems as
biochemical programs which consist of the following components: collections of
molecules (objects and rewrite rules), higher-order rewrite rules over molecules
(that may introduce new rewrite rules in the behaviour of the system) and
strategies for modelling the system’s evolution. A visual representation via port
graphs and an implementation are provided by the Porgy environment described
in [2]. In this calculus, strategies are abstract molecules, expressed with an arrow
constructor (⇒ for rule abstraction), an application operator • and a constant
operator stk (for stuck) for explicit failure.

4.3 Extensional Strategies

The extensional definition of abstract strategies as a set of derivations of an
abstract reduction system is given in [14]. The concept is useful to understand
and unify reduction systems and deduction systems as explored in [41].

The extensional approach is also useful to address infinite elements. Since
abstract reduction systems may involve infinite sets of objects, of reduction steps
and of derivations, we can schematize them with constraints at different levels:
(i) to describe the objects occurring in a derivation (ii) to describe, via the
labels, requirements on the steps of reductions (iii) to describe the structure of
the derivation itself (iv) to express requirements on the histories. The framework
developed in [42] defines a strategy ζ as all instances σ(D) of a derivation schema
D such that σ is solution of a constraint C involving derivation variables, object
variables and label variables. As a simple example, the infinite set of derivations
of length one that transform a into f(an) for all n ∈ N, where an = a ∗ . . . ∗ a (n
times), is simply described by: (a → f(X) | X ∗a =A a∗X), where =A indicates
that the constraint is solved modulo associativity of the operator ∗.

4.4 Intensional Strategies

Extensional strategies do not capture the idea that a strategy is a partial function
that associates to each step in a reduction sequence, the possible next steps. Here,
the strategy as a function may depend on the object and the derivation so far.
This notion of strategy coincides with the definition of strategy in sequential
path-building games, with applications to planning, verification and synthesis of
concurrent systems [22]. This remark leads to the following intensional definition
given in [14]. Again, the essence of the definition is that strategies are considered
as a way of constraining and guiding the steps of a reduction. So at any step in
a derivation, it should be possible to say which is the next step that obeys the
strategy ζ. In order to take into account the past derivation steps to decide the
next possible ones, the history of a derivation has to be memorized and available
at each step. Through the notion of traced-object [α] a = [(a0, φ0), . . . , (an, φn)] a
in O[A], each object a memorizes how it has been reached with the trace α.
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An intensional strategy for A = (O,S) is a partial function λ from O[A] to
2S such that for every traced object [α] a, λ([α] a) ⊆ {π ∈ S | Dom(π) = a}. If
λ([α] a) is a singleton, then the reduction step under λ is deterministic.

As described in [14], an intensional strategy λ naturally generates an abstract
strategy, called its extension: this is the abstract strategy ζλ consisting of the
following set of derivations:

∀n ∈ N, π : a0
φ0−→ a1

φ1−→ a2 . . .
φn−1−−−→ an ∈ ζλ

iff ∀j ∈ [0, n − 1], (aj
φj−→ aj+1) ∈ λ([α] aj).

This extension may obviously contain infinite derivations; in such a case it also
contains all the finite derivations that are prefixes of the infinite ones, and so is
closed under taking prefixes.

A special case are memoryless strategies, where the function λ does not
depend on the history of the objects. This is the case of many strategies used
in rewriting systems, as shown in the next example. Let us consider an abstract
rewrite system A where objects are terms, reduction is term rewriting and labels
are positions where the rewrite rules are applied. Let us consider an order < on
the labels which is the prefix order on positions. Then the intensional strategy
that corresponds to innermost rewriting is λinn(t) = {π : t

p−→ t′ | p = max({p′ |
t

p′
−→ t′ ∈ S})}. When a lexicographic order is used, the classical rightmost-

innermost strategy is obtained.
Another example, to illustrate the interest of traced objects, is the inten-

sional strategy that restricts the derivations to be of bounded length k. Its def-
inition makes use of the size of the trace α, denoted |α|: λltk([α] a) = {π |
π ∈ S, Dom(π) = a, |α| < k − 1}. However, as noticed in [14], the fact that
intensional strategies generate only prefix closed abstract strategies prevents us
from computing abstract strategies that look straightforward: there is no inten-
sional strategy that can generate a set of derivations of length exactly k. Other
solutions are provided in [14].

4.5 Positional Strategies

In order to build the function that gives the next possible steps in a reduction
sequence, mechanisms to choose the positions in the syntactic structure where
a rule or a set of rules can be applied. This can be done in two different ways:
either by traversing the syntactic structure, or by using annotations to select a
set of positions.

In term rewriting, the first way is illustrated by leftmost-innermost (resp. out-
ermost) reduction strategies on terms that choose the rewriting position accord-
ing to suffix (resp. prefix) ordering on the set of positions in the term. The second
way inspired from OBJ, uses local annotations. Informally, a strategy annotation
is a list of argument positions and rule names [1,26]. The argument positions
indicate the next argument to evaluate and the rule names indicate rules to
apply. For instance, the leftmost-innermost strategy for a function symbol C
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corresponds to an annotation strat(C) = [1, 2, , .., k, R1, R2, ...Rn] that indicates
that all its arguments should be evaluated from left to right and that the rules
Ri should be tried. This is also called on-demand rewriting. Note that includ-
ing (labels of) rules is not allowed in such strategy annotations. It is, however,
allowed in the so-called just-in-time strategies developed in [68].

Context-sensitive rewriting is a rewriting restriction which can be associ-
ated to every term rewriting system [48]. Given a signature F , a mapping
μ : F �→ P(N), called the replacement map, discriminates some argument posi-
tions μ(f) ⊆ {1, ..., k} for each k-ary symbol f . Given a function call f(t1, ..., tk),
the replacements are allowed on arguments ti such that i ∈ μ(f) and are forbid-
den for the other argument positions. Examples are given in [48,50].

A different approach is followed on graphs. Motivated by the need to apply
rules on huge graphs, Porgy [24] introduces annotations to focus on or to avoid
part of the graph. A located graph GQ

P consists of a port graph G and two
distinguished subgraphs P and Q of G, called respectively the position subgraph,
or simply position, and the banned subgraph. In a located graph GQ

P , P represents
the subgraph of G where rewriting steps may take place (i.e., P is the focus of
the rewriting) and Q represents the subgraph of G where rewriting steps are
forbidden. The intuition is that subgraphs of G that overlap with P may be
rewritten, if they are outside Q. The subgraph P generalises the notion of rewrite
position in a term: if G is the tree representation of a term t then we recover the
usual notion of rewrite position p in t by setting P to be the node at position p
in the tree G, and Q to be the part of the tree above P (to force the rewriting
step to apply from P downwards). When applying a port graph rewrite rule, not
only the underlying graph G but also the position and banned subgraphs may
change. A located rewrite rule specifies two disjoint subgraphs M and N of the
right-hand side r that are used to update the position and banned subgraphs,
respectively. If M (resp. N) is not specified, r (resp. the empty graph) is used
as default. In general, for a given located rule and located graph GQ

P , several
rewriting steps at P avoiding Q might be possible. Thus, the application of the
rule at P avoiding Q produces a set of located graphs.

The precise definitions and details are given in [25]. Such definitions of for-
bidden positions are quite useful to formalize deduction process that for instance
prevents rewriting in the parts brought by instantiating rules variables, or needs
to always apply at some interface nodes.

5 Strategy Languages

A strategy language gives syntactic means to describe strategies. Various strategy
languages have been proposed by different teams, giving rise to different fami-
lies. Five of them, representative of these families, are reviewed in this section:
Elan [13] puts emphasis on rules and strategies as a paradigm to combine deduc-
tion and computation by rewriting6, and its successor Tom [7] is strongly based

6 http://elan.loria.fr/elan.html.

http://elan.loria.fr/elan.html
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on the ρ-calculus7. Stratego [70] is a successor of ASF+SDF, mainly dedicated to
program transformation8. Maude [55] inherits from the OBJ family, order-sorted
equational rewriting and strategic annotations of operators, and is strongly based
on rewriting logic9. Porgy [25] took inspiration, partly from the aforementioned
languages and also from graph transformation languages, and puts emphasis on
strategies which can be useful for modeling and analysing big graphs10.

Language design is largely a matter of choice and the idea here is not to give
a catalogue of constructs present in these languages, but rather extract from
them some common features and understand how they address the two main
purposes of strategies: on one hand, build derivation steps and derivations; on
the other hand, operationaly compute the next strategic reduction steps.

Let us classify the constructs to see which ones are commonly agreed and
which ones are specific to one language. Remind that t or G denotes a syntactic
expression (term, graph,...) and S is a strategy expression in a strategy language
on a rewrite rule system R with rules R1, . . . , Rn. Application of S to G is
denoted S•G.

Elementary strategies are the basis of all languages. The most basic strategy
is a labelled rule � : l ⇒ r (� � l ⇒ r). id and fail are two strategies that
respectively denote success and failure. They can be encoded either as constant
or as rules id � X ⇒ X and fail � X ⇒ stk where stk denotes a special
constant denoting failure.

However, even for a single rule, rewriting can be performed in various ways,
according to redexes or homomorphisms. There are mainly two options there:
all(R) denotes all possible applications of the transformation R on the current
object, creating a new one for each application. In the derivation tree, this creates
as many children as there are possible applications. Instead one(R) chooses only
one of the possible applications of the transformation and ignores the others;
again there are some variations here, in the way to choose, either by taking the
first found application, of by making a random choice between all the possible
applications, with equal probabilities.

Note however that the all and one constructs are not available in all strategy
languages and are sometimes implicit.

Building derivations is always present under different syntaxes. Composition
of two strategies S1 and S2 is primarily done by sequential application of S1

followed by S2. It is denoted Sequence(S1, S2) or seq(S1, S2) or S1 Then S2 or
S1 ; S2.

Selection of branches in the derivation tree is obviously needed and present in
all languages although with different syntaxes: first(S1, S2), (S1)orelse(S2)

7 https://gforge.inria.fr/projects/tom/.
8 http://strategoxt.org/Stratego/WebHome.
9 http://maude.cs.uiuc.edu/.

10 http://tulip.labri.fr/TulipDrupal/?q=porgy.

https://gforge.inria.fr/projects/tom/
http://strategoxt.org/Stratego/WebHome
http://maude.cs.uiuc.edu/
http://tulip.labri.fr/TulipDrupal/?q=porgy
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or S1 <+ S2 selects the first strategy that does not fail; it fails if both fail. As a
variant, try(S) tries the strategy S but never fails and try(S) � first(S, id).

While first selects the strategy according to the order of its arguments, in
the Elan language, the don’t care construct dc(R1, . . . , Rn) randomly chooses
one of the rules for application. In its implementation however, the first rule
that is applicable is chosen and the dc construct is actually a first.

Probabilistic choice is provided in Porgy. When probabilities p1, . . . , pn ∈
[0, 1] are associated to strategies S1, . . . , Sn such that p1 + . . . + pn = 1, the
construct ppick(S1, p1, . . . , Sn, pn) picks one of the strategies for application,
according to the given probabilities.

Conditionals and Tests again are present in all languages but with some varia-
tions. if(S)then(S′)else(S′′) checks if application of S is successful (i.e. returns
id), in which case S′ is applied, otherwise S′′ is applied. In Elan, Tom, Stratego
and Porgy, in case the application of S to the current object G succeeds, S′ is
applied to S, while in Maude, S′ is applied to S•G. Maude also provides the
construct match(S) that matches the term S to G and returns G if success or
fail otherwise. As a derived operator, not(S) � if(S)then(fail)else(id) fails
if S succeeds and succeeds if S fails.

Recursive strategies and iterations are essential due to the functional aspect
of strategies. Expressed in Tom with a fixpoint operator μx.S = S[x ←
μx.S], repeat(S) keeps on sequentially applying S until it fails and returns
the last result: repeat(S) = μx.first(Sequence(S, x), id). As a variant,
while(S)do(S′) keeps on sequentially applying S′ while the expression S is suc-
cessful; if S fails, then id is returned.

Stratego [70] instead introduces recursive closure strategies. The recursive
closure recx(S) of the strategy S attempts to apply S to the entire subject term
and the strategy recx(S) to each occurrence of the variable x in S. Iterators are
provided based on this construction.

try(S) = S <+ id
repeat(S) = recx(try(S;x))
while(c, S) = recx(try(c;S;x))
do − while(S, c) = recx(S; try(c;x))
while − not(c, S) = recx(c <+ S;x)
for(i, c, S) = i;while − not(c, S)

Exploiting the structure of objects. Traversal strategies are useful to traverse
structures, be terms or graphs. They are based on local neighbourhood explo-
ration and iteration.

– On a term t = f(t1, ..., tn), AllSuc(S) applies the strategy S on all immediate
subterms: AllSuc(S)•f(t1, ..., tn) = f(t′1, ..., t

′
n) if S•t1 = t′1, ..., S•tn = t′n;

it fails if there exists i such that S•ti fails. OneSuc(S) applies the strat-
egy S on the first immediate subterm (if it exists) where S does not fail:
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OneSuc(S)•f(t1, ..., tn) = f(t1, ..., t′i, ..., tn) if for all 1 ≤ j < i, S•tj fails, and
S•ti = t′i; it fails if f is a constant or if for all i, S•ti fails.

– On a graph G, AllNbg(S) applies the strategy S on all immediate successors of
the nodes in G, where an immediate successor of a node v is a node connected
to v. OneNbg(S) applies the strategy S on one immediate successor of a node
in G, randomly chosen.

Traversal strategies are expressed in Tom with the following fixpoint equa-
tions:

OnceBottomUp(S) = μx.F irst(OneSuc(x), S)
BottomUp(S) = μx.Sequence(AllSuc(x), S)
TopDown(S) = μx.Sequence(S,AllSuc(x))
Innermost(S) = μx.Sequence(AllSuc(x), T ry(Sequence(S, x)))

Focusing strategies. Instead of traversing the structure through a systematic
exploration, one may want to focus on or to avoid on sub-structures. Strategy
annotations may be seen as precursors of this idea. Porgy allows combining appli-
cations of rewrite rules and position updates, using focusing expressions. The
direct management of positions in strategy expressions, via the distinguished
subgraphs P and Q in the target graph and the distinguished graphs M and N
in a located port graph rewrite rule are original features of the language. The
grammar generates expressions that are used to define positions for rewriting in
a graph, or to define positions where rewriting is not allowed. They denote func-
tions used in strategy expressions to change the positions P and Q in the current
located graph (e.g. to specify graph traversals). The constructs CrtGraph (cur-
rent graph), CrtPos (current positions) and CrtBan (current banned positions),
applied to a located graph GQ

P , return respectively the graphs G, P and Q.
To generate traversal strategies on graphs, Porgy uses neighbourhood constructs
Nbg() that returns the neighbours of a set of nodes possibly satisfying some
user-defined properties.

6 Operational Semantics of Strategic Programs

There are several ways to describe the operational semantics of a programming
language. Due to the fact that rewriting logic is reflexive, it is tempting to
describe the operational semantics of a strategy language with a set of rewrite
rules. This has been done for instance for Elan [11], Maude [18] and Porgy [2] at
least. We sketch below another way by defining a transition relation on config-
urations using semantic rules in the SOS style of [63].

Let us consider a strategic rewrite program consisting of a finite set of rewrite
rules R, a strategy expression S (built from R using a strategy language L(R))
and a given structure G. The intuition behind a strategic program is to use the
strategy expression S to decide which rewrite steps should be performed on G.
As already said, in general, there may be more than one way of rewriting a struc-
ture according to S. In order to keep track of the various rewriting alternatives,
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we introduce the notion of a configuration as a multiset of strategic rewrite pro-
grams. A configuration C is a multiset {O1, . . . , On} where each Oi is a strategic
program [Si, Gi]. The initial configuration is {[S,G]}.

The transition relation �−→ is a binary relation on configurations defined as
follows:

{O1, . . . , Ok, . . . , On} �−→ {O1, . . . , O
′
k1

, . . . , O′
km

, . . . , On}

if Ok �→ {O′
k1

, . . . , O′
km

}, for 1 ≤ k ≤ n. The transition relation �→ is defined
through semantic rules. For instance, a few semantic rules are given in Fig. 2
coming from the Porgy operational semantics. More are given in [25].

Given a configuration {O1, . . . , Ok, . . . , On}, there may be several strategic
programs Ok where a �→-step can be applied, so there is also a �−→-derivation tree
whose nodes are configurations. Intuitively these configurations provide another
view of the derivation tree of the strategic program, or equivalently of the ARS
of the relation S−→, with root G. One can recover it by projecting a strategic
program O = [S,G] on its second component G and by associating to a �→-

Fig. 2. Examples of semantic rules for strategy language
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step Ok �→ {O′
k1

, . . . , O′
km

}, for 1 ≤ k ≤ n, a set of m strategic reduction steps

Gk
S−→ G′

ki
for 1 ≤ i ≤ m.

For a given configuration C = {O1, . . . , Ok, . . . , On}, where each Oi is a
strategic program [Si, Gi], let Reach(C) = {G1, . . . , Gk, . . . , Gn} be the set of
associated reachable structures. For a derivation T = C1 �−→ . . . �−→ Cn let
Reach(T ) =

⋃
1≤k≤n Reach(Ck) be the set of associated reachable structures.

As presented in [55], it is expected from a strategy language to satisfy the
properties of correctness and completeness w.r.t. rewriting derivations.
Correctness: If T is the derivation C0 = {[S,G]} �−→ . . . �−→ Ck = {...[S′

k, G′
k]...}

and if G′ ∈ Reach(T ), then G →∗
R G′.

Completeness: If G →∗
R G′, there exists S ∈ L(R) and a derivation T of the

form C0 = {[S,G]} �−→ . . . �−→ Ck = {...[S′
k, G′

k]...} such that G′ ∈ Reach(T ).
Special strategic programs called results in [25], are those of the form [id, G′]

or [fail, G′]. For a given configuration C = {O1, . . . , Ok, . . . , On}, where each
Oi is a strategic program [Si, Gi], let Results(C) (respectively Results(T )) be
the subset of Reach(C) (respectively Reach(T )) that are results. The result set
associated to a configuration or a derivation can be empty, which can be the
case for non-terminating programs.

A configuration is terminal if no transition can be performed. A meaningful
property to prove is that all terminal configurations consist of results of the form
[id, G′] or [fail, G′]. This is expressed through the following Progress property:
Characterisation of Terminal Configurations. For every strategic rewrite pro-
gram [S,G] that is not a result (i.e., S = id and S = fail), there exists a
configuration C such that {[S,G]} �→ C. In other words, in this case, there are
no blocked programs: the transition system ensures that, for any configuration,
either there are transitions to perform, or we have reached results.

Strategic programs are not terminating in general, however it may be suitable
to identify a terminating sublanguage (i.e. a sublanguage for which the transition
relation is terminating). For instance, it is not difficult (but not surprising)
to prove that in Porgy, the sublanguage that excludes iterators (such as the
while/repeat construct) is strongly terminating.

Last, with respect to the computation power of the language, it is easy to
state, as in [35], the Turing completeness property.
Computational Completeness property: The set of all strategic programs [SR, G]
is Turing complete, i.e. can simulate any Turing machine. (Sequential composi-
tion and iteration are enough) [35].

7 Properties of Strategic Rewriting

Since strategic rewriting restricts the set of rewriting derivations, it needs careful
definitions of termination and confluence under strategies, explored in [41,42].

These properties of confluence or termination for rewriting under strate-
gies have been largely addressed in the rewriting community for specific term
rewriting strategies. Different approaches have been explored, either based on
schematization of derivation trees, as in [30], or by tuning proof methods to
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handle specific strategies (innermost, outermost, lazy strategies) as in [28,29].
Termination of on-demand rewriting in the context of OBJ programs is studied
in [1,49,50]. Other approaches as [8] use strategies transformation to equivalent
rewrite systems to be able to reuse well-known methods.

When the concept of normal form is important, like in the context of term
rewriting systems (TRS for short) where rewriting strategies look for efficient
ways to compute normal forms, a relevant question is: which (computable) strate-
gies are guaranteed to find a normal form for any term whenever it exists? Having
in mind that, given a set of rules R, a strategic term rewriting reduction nor-
malizes the term t if there is no infinite S−→-rewrite sequence starting from t,
a strategic rewriting reduction is normalizing or complete if it normalizes every
term that has an R-normal form. Proving completeness of strategic rewriting
w.r.t. normal forms is actually a difficult problem and results have been most
often obtained in the context of orthogonal systems (i.e. with left-linear non-
overlapping left-hand sides). Innermost and outermost reduction are studied for
instance in [10,59] where it is shown that the leftmost outermost strategy is
normalizing for orthogonal left-normal TRS, but not in general [37,38]. Inner-
most strategy is complete for terminating TRS and some other restricted class
as explored in [60].

Special efforts have been devoted to needed reductions. Needed reduction is
interesting for orthogonal term rewriting systems occurring in combinatory logic,
λ-calculus, functional programming. Already in 1979, later published in [38],
Huet and Lévy defined the notions of needed and strongly needed redexes for
orthogonal rewrite systems. The main idea here is to find the optimal way, when
it exists, to reach the normal form of a term. A redex is needed when there
is no way to avoid reducing it to reach the normal form. Reducing only needed
redexes is clearly the optimal reduction strategy, as soon as needed redexes can be
decided, which is not the case in general. In an orthogonal TRS, every reducible
term contains a needed redex and repeated contraction of needed redexes results
in a normal form, if it exists. Unfortunately neededness of a redex is not decid-
able [69] except for some classes of rewrite systems: in sequential TRS [5],
every term which is not in normal form contains a needed redex [10]. Strong
sequentiality is decidable for left-linear TRS. External redexes (outermost until
contracted) are needed. But outermost redexes may fail to be needed if the TRS
is not orthogonal. For instance, with R = {f(a) ⇒ b, a ⇒ b}, the term f(a)
contains two redexes, but the outermost one is not needed: the rewriting step
f(a)−→R f(b) normalizes the term without contracting the outermost redex11.
Again combinatory logic and λ-calculus satisfy these conditions and have moti-
vated their study.

Sufficient conditions to ensure that context-sensitive rewriting is able to com-
pute head-normal forms (terms that do not rewrite into a redex) have been estab-
lished in [48]. In fact, for a given TRS, it is possible to automatically provide
replacement maps supporting such computations. In this setting, the canonical
replacement map (denoted by μcan) specifies the most restrictive replacement

11 Remark due to an external referee.



398 H. Kirchner

map which can be automatically associated to a TRS R in order to achieve com-
pleteness of context-sensitive computations, whenever the TRS is left-linear. So
left-linear, confluent, and μcan-terminating TRS admit a computable normaliz-
ing strategy to head-normal forms.

8 Conclusion and Further Work

A lot of questions about strategies are yet open, going from the definition of
this concept and the interesting properties we may expect to prove, up to the
definition of domain specific strategy languages. As further research topics, sev-
eral directions seem really worth exploring. The first one is the connection with
game theory strategies. In the fields of system design and verification, games
have emerged as a key tool. Such games have been studied since the first half
of 20th century in descriptive set theory [40], and they have been adapted and
generalized for applications in formal verification; introductions can be found in
[33,72]. The coincidence of the term “strategy” in the domains of rewriting and
games is more than a pun. It should be fruitful to explore further the connec-
tion and to be guided in the study of strategies by some of the insights in the
literature of games.

The second research direction is related to proving properties of strategies and
strategic reductions. A lot of work has already begun in the rewriting community
and have been presented in journals, workshops or conferences of this domain.
Properties of confluence, termination, or completeness for rewriting under strate-
gies have been largely addressed. However, as mentioned in Sect. 3.1, the applica-
tion of rules to the considered objects can optionally be restricted by conditions
or constraints, and this generalization has to be carefully studied. When con-
ditional rules are allowed, a number of concepts and computational properties
that are mentioned here may crucially depend on the conditional part of the
rules. For instance, regarding termination, the notion of operational termination
(defined as the absence of infinite proof trees), studied in [51] for conditional
term rewriting (CTRS) systems, is different from the notion of termination con-
sidered here (the absence of infinite reduction sequences). As another example,
a discussion about how irreducible terms and normal forms are also different
for CTRSs can be found in [52]. Taking into account these phenomena could
provide more insights on strategies.

In addition, other properties of strategies such as fairness or loop-freeness could
be worthfully explored, again by making connections between different communi-
ties (functional programming, proof theory, verification, game theory,...).
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33. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001].
LNCS, vol. 2500. Springer, Heidelberg (2002)

34. Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revisited.
Math. Struct. Comput. Sci. 11(5), 637–688 (2001)

35. Habel, A., Plump, D.: Computational completeness of programming languages
based on graph transformation. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001.
LNCS, vol. 2030, pp. 230–245. Springer, Heidelberg (2001)

36. Hanus, M.: Curry: a multi-paradigm declarative language (system description). In:
Twelfth Workshop Logic Programming (WLP 1997), Munich (1997)
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38. Huet, G., Lévy, J.-J..: Computations in orthogonal rewriting systems, I and II. In:
Lassez, J.-L., Plotkin, G. (eds.) Computational Logic, chapter 11, 12, pp. 395–414.
MIT press (1991)

39. Jones, S.L.P.: Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, Cambridge (2003)

40. Kechri, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics,
vol. 156. Springer, New York (1995)

41. Kirchner, C., Kirchner, F., Kirchner, H.: Strategic computations and deductions.
In: Benzmüller, C., Brown, C.E.., Siekmann, J., Statman, R. (eds.) Reasoning
in Simple Type Theory. Festchrift in Honour of Peter B. Andrews on His 70th
Birthday, vol. 17, Studies in Logic and the Foundations of Mathematics, pp. 339–
364. College Publications (2008)

42. Kirchner, C., Kirchner, F., Kirchner, H.: Constraint based strategies. In: Escobar,
S. (ed.) WFLP 2009. LNCS, vol. 5979, pp. 13–26. Springer, Heidelberg (2010)

43. Kirchner, C., Kirchner, H., Vittek, M.: Implementing computational systems with
constraints. In: Principles and Practice of Constraint Programming, pp. 156–165
(1993)

44. Kirchner, C., Kirchner, H., Vittek, M.: Designing constraint logic programming
languages using computational systems. In: Van Hentenryck, P., Saraswat, V. (eds.)
Principles and Practice of Constraint Programming. The Newport Papers, chapter
8, pp. 131–158. The MIT Press (1995)

45. Kirchner., H.: A rewriting point of view on strategies. In: Mogavero, F., Murano,
A., Vardi, M.Y. (eds.) Proceedings 1st International Workshop on Strategic Rea-
soning(SR 2013), Rome, Italy, March 16–17, vol. 112, Electronic Proceedings in
Theoretical Computer Science (EPTCS), pp. 99–105 (2013)

46. Letichevsky, A.: Development of rewriting strategies. In: Penjam, J., Bruynooghe,
M. (eds.) PLILP 1993. LNCS, vol. 714. Springer, Heidelberg (1993)
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Abstract. Mobile devices are in roles where the integrity and confiden-
tiality of their apps and data are of paramount importance. They usually
contain a System-on-Chip (SoC), which integrates microprocessors and
peripheral Intellectual Property (IP) connected by a Network-on-Chip
(NoC). Malicious IP or software could compromise critical data. Some
types of attacks can be blocked by controlling data transfers on the
NoC using Memory Management Units (MMUs) and other access con-
trol mechanisms. However, commodity processors do not provide strong
assurances regarding the correctness of such mechanisms, and it is chal-
lenging to verify that all access control mechanisms in the system are
correctly configured. We propose a NoC Firewall (NoCF) that provides
a single locus of control and is amenable to formal analysis. We demon-
strate an initial analysis of its ability to resist malformed NoC commands,
which we believe is the first effort to detect vulnerabilities that arise from
NoC protocol violations perpetrated by erroneous or malicious IP.

1 Introduction

Personally administered mobile devices are being used or considered for banking,
business, military, and healthcare applications where integrity and confidential-
ity are of paramount importance. The practice of dedicating an entire centrally
administered phone to each of these apps is being abandoned in favor of granting
access to enterprise data from personal devices as workers demand the sophisti-
cation available in the latest consumer mobile devices [6].

Security weaknesses of popular smartphone OSes have motivated isolation
mechanisms for devices handling critical data, including hypervisors that operate
at a lower level within the system [20]. For example, hypervisors can isolate a
personal instance from a sensitive instance of Android, where both instances
run simultaneously within Virtual Machines (VMs) on a single physical device.
However, virtualized and non-virtualized systems both rely on the correctness of
various hardware structures to enforce the memory access control policies that
the system software specifies to enforce isolation.
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Mobile devices are usually based on a System-on-Chip (SoC) containing
microprocessor cores and peripherals connected by a Network-on-Chip (NoC).
Each component on the SoC is referred to as an Intellectual Property (IP) core
or block. A single SoC may contain IP originating from many different entities.
SoC IP may be malicious intrinsically at the hardware level, or it may be used
to perform an attack orchestrated by software, and such IP may lead to compro-
mises of critical data. Such attacks would involve data transfers over the NoC.
Memory Management Units (MMUs) and IO-MMUs can potentially prevent
such attacks.

Commodity processors do not provide strong assurances that they correctly
enforce memory access controls, but recent trends in system design may make it
feasible to provide such assurances using enhanced hardware that is amenable to
formal analysis. In this paper, we propose the hardware-based Network-on-Chip
Firewall (NoCF) that we developed using a functional hardware description lan-
guage, Bluespec. Bluespec is a product of Bluespec, Inc. Although Bluespec has
semantics based on term-rewriting systems, those semantics also reflect charac-
teristics of hardware [1]. We developed an embedding of Bluespec into Maude,
which is a language and set of tools for analyzing term-rewriting systems. At a
high level, term-rewriting systems involve the use of atomic rules to transform the
state of a system. We know of no elegant way to directly express the hardware-
specific aspects of Bluespec in a Maude term-rewriting theory, so we used Maude
strategies to control the sequencing between rules in the theories to match the
hardware semantics [16]. We then used our model to detect attacks that violate
NoC port specifications, which have previously received little attention.

A lightweight processor core is dedicated to specifying the NoCF policy using
a set of policy configuration interconnects to interposers, which provides a single
locus of control. It also permits NoCF to be applied to NoCs lacking access to
memory, avoids the need to reserve system memory for storing policies when
that memory is available, and simplifies the internal logic of the interposers.
The policy can be pre-installed or specified dynamically by some entity such
as a hypervisor within the system. The interposers and associated policies are
distributed to accommodate large NoCs.

To demonstrate one type of attack that can be blocked by NoCF, we con-
struct a malicious IP block analogous to a Graphics Processing Unit (GPU) and
show how it can be instructed to install a network keylogger by any app that
simply has the ability to display graphics. This attack could be used to achieve
realistic, malicious objectives. For example, a government seeking to oppress dis-
sidents could convince them to view an image through a web browser or social
networking app and subsequently record all of their keystrokes.

Our contributions include:

– An efficient, compact NoCF interposer design that is amenable to formal
analysis and provides a single locus of control.

– An embedding of Bluespec into the Maude modeling language.
– Use of formal techniques to discover a new attack.
– A triple-core FPGA prototype that simultaneously runs two completely iso-

lated, off-the-shelf instances of Linux with no hypervisor present on the cores
or attached to the NoCs hosting Linux at runtime.
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The rest of this paper is organized as follows. Section 2 provides background
on SoC technology. Section 3 describes the threat model. Section 4 describes a
core-based isolation approach. Section 5 discusses the design of NoCF inter-
posers. Section 6 describes a NoCF prototype system. Section 7 discusses how
NoCF can help to mitigate a sample attack. Section 8 formally analyzes the pro-
totype. Section 9 discusses related work. Section 10 concludes the paper. Please
refer to our technical report for additional details [14].

2 Background

Each block of IP on an SoC can be provided by an organization within the
SoC vendor or by an external organization. SoCs commonly contain IP originat-
ing from up to hundreds of people in multiple organizations and spread across
multiple countries [27]. Some IP (e.g. a CPU core) may be capable of execut-
ing software whereas other IP may only offer a more rudimentary configuration
interface, e.g. one based on control registers. It is difficult to ensure that all of
the IP is high-quality, let alone trustworthy [5,9]. The general trend is towards
large SoC vendors acquiring companies to bring IP development in-house [24].
However, even in-house IP may provide varying levels of assurance depending on
the particular development practices and teams involved and the exact nature
of the IP in question. For example, a cutting-edge, complex GPU may reason-
ably be expected to exhibit more errors than a relatively simple Wi-Fi controller
that has been in use for several years. Furthermore, malicious hardware can be
inserted at many points within the SoC design and manufacturing process and
can exhibit a variety of behaviors to undermine the security assurances of the
system [4]. Memory Management Units (MMUs) and IO-MMUs are commonly
used to restrict the accesses from IP blocks, which can constrain the effects of
erroneous or malicious IP. Thus, errors that can permit memory access control
policies to be violated are the most concerning. A sample system topology is
depicted in Fig. 1. It shows two CPU cores, a GPU, a two-level interconnect,
and some examples of peripherals. Note that the GPU is both an interconnect
master and a peripheral.

An MMU is a component within a processor core that enforces memory
access control policies specified in the form of page tables that are stored in main
memory. Some SoCs incorporate IO-MMUs that similarly restrict and redirect
peripheral master IP block NoC data transfers. A page table contains entries that
are indexed by part of a virtual address and specify a physical address to which
the virtual address should be mapped, permissions that restrict the accesses
performed using virtual addresses mapped by that entry, whether the proces-
sor must be in privileged (supervisor) mode when the access is performed, and
auxiliary data. Page tables are often arranged hierarchically in memory, necessi-
tating multiple memory accesses to map a particular virtual address. To reduce
the expense incurred by page table lookups, the MMU contains a Translation
Lookaside Buffer (TLB) that caches page table entries in very fast memory inside
the MMU. In the case of an MMU, each isolated software component (such as
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Fig. 1. Example SoC system topology.

a process or VM) is typically assigned a dedicated page table. Correspondingly
for an IO-MMU, one or more page tables may be assigned to each device. By
only mapping a particular region of physical memory in one of the component’s
page tables, that memory is protected from accesses by other components. The
relatively high complexity of modern MMUs and IO-MMUs increases the likeli-
hood of errors that undermine their access control assurances [10]. Since NoCF
does not use page tables nor does it provide address translation support, it is
much less complex and can constrain an attack leveraging a vulnerable MMU
or IO-MMU. Note that these technologies are not mutually exclusive. In fact, it
is useful to provide defense-in-depth by enforcing coarse partitions with NoCF
and relying on MMUs and IO-MMUs to implement finer-grained controls within
each partition.

It could be preferable to formally verify existing MMUs and IO-MMUs rather
than devising new protection mechanisms. However, it is challenging to for-
mally verify MMUs and IO-MMUs. Formal verification techniques can prove the
absence of design errors within commercial processor cores, but they currently
only provide a good return-on-investment when used instead to detect errors [3].
To the best of our knowledge, MMUs have only been formally verified in exper-
imental processors [8,22]. The policy data for MMUs and IO-MMUs is itself
protected by them, so it is likely to be more challenging to verify that the policy
is trustworthy compared to the NoCF policy implemented on an isolated core.
Finally, the MMU is a central part of each processor core with many interfaces
to other parts of the core, complicating analysis. We have not formally verified
NoCF either, but we demonstrate how to develop a model of it that is amenable
to formal analysis. This is a non-trivial precondition for formal verification.

Individual blocks of IP communicate using one or more NoCs within a sin-
gle SoC. A NoC is not simply a scaled-down network comparable to, e.g. an
Ethernet LAN. Networks for large systems, such as LANs, have traditionally
been connection-oriented, predominantly relying on protocols such as TCP/IP.
Networks for small systems, such as NoCs, have traditionally lacked support
for persistent connections. Older SoC designs relied on buses, which are subtly
distinct from NoCs. For our purposes, it is not necessary to distinguish between
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buses and NoCs. We are concerned primarily with their external ports, which
are common between both types of interconnects. Slave devices accessible over a
NoC are assigned physical address ranges, so memory access controls like those
in NoCF can also be used to control access to devices.

The protection mechanisms that we propose are inserted between the NoC
and the IP, and they do not necessitate changes to individual IP blocks. Thus,
NoCF could be added quite late in the design process for an SoC, after the main
functionality of the SoC has been implemented.

3 Threat Model

Software running on a particular core is assumed to be arbitrarily malicious
and must be prevented from compromising the confidentiality, integrity, and
availability of software on other cores. The system software that configures NoCF
must correctly specify a policy to enforce isolation between the cores. Recent
work on minimizing the Trusted Computing Base (TCB) of hypervisors and
formally verifying them may be helpful in satisfying this requirement [13,25].

Our concern in this paper is that isolation between cores that are protected
in this manner could potentially be compromised by misbehaving IP. Note that
the memory controller in Fig. 1 is connected to two Random Access Memories
(RAMs). For the purpose of the threat model discussion, the data in RAM A
should only be accessible to the GPU and CPU Core #0 and RAM B should
only be accessible to CPU Core #1. We now define the types of compromises
we seek to prevent:

1. Confidentiality: Some misbehaving IP may construct an unauthorized infor-
mation flow from some other target IP transferring data that the misbehaving
IP or the VM controlling it is not authorized to receive. This flow may be
constructed with or without the cooperation of the target IP. The misbehav-
ing IP may have authorization to access a portion of the target IP, but not
the portion containing the confidential data. For example, CPU Core #0 or
the GPU could potentially transfer data from RAM B to RAM A, since both
CPU cores and the GPU have access to the shared memory controller. As
another example, a misbehaving memory controller itself could perform that
transfer.

2. Integrity: Some misbehaving IP may unilaterally construct an unauthorized
information flow to other target IP to corrupt data. For example, the GPU or
CPU Core #0 may modify executable code or medical sensor data in RAM
B.

3. Availability: Resource sharing is an intrinsic characteristic of SoCs, so there
is the possibility that misbehaving IP may interfere with other IP using those
shared resources. For example, the GPU or CPU Core #0 could flood the
NoC with requests to monopolize the NoC and interfere with NoC requests
from CPU Core #1.

IP can manipulate wires that form its NoC port in an arbitrary manner.
The IP might not respect the port clock and can perform intra-clock cycle wire
manipulations. The IP might also violate the protocol specification for the port.
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Since NoCF performs address-based access control, the NoC fabric is assumed
to be trusted to selectively and accurately route requests and responses to and
from the appropriate IP to prevent eavesdropping and interference from other IP
cores. The integrity core expects each peripherals to be associated with particular
ranges of addresses and each master IP core to be associated with particular
NoC ports, and it uses that information to configure NoCF policies. Thus, a
necessary condition for the correct enforcement of the security policy intended
by the integrity core is that the NoC fabric operate in a trustworthy manner.
Establishing trust in NoC fabrics is an orthogonal research issue.

We assume that slave devices are trusted to correctly process requests. For
example, the memory controller must properly process addresses that it receives
to enforce policies that grant different IP access to different regions of a memory
accessible through a single shared memory controller. Establishing trust in such
devices is an orthogonal research issue.

Fig. 2. Comparison of TCBs, which are within the thick lines. Colored areas depict
layers of hardware (Color figure online).

Covert channels are more prevalent between components that have a high
degree of resource sharing, such as between software that shares a processor
cache. Thus, NoCF provides tools to limit covert channels by restricting resource
sharing. However, we do not attempt to eliminate covert channels in this work.

A mobile device may be affected by radiation and other environmental influ-
ences that cause unpredictable modifications of internal system state. A variety
of approaches can handle such events and are complementary to our effort to
handle misbehaviors that arise from the design of the device [19].

System software could be maliciously altered so that even if the intended
NoC access control policy is correctly enforced, some overarching system security
objective may still be violated. The operation of each IP core is determined not
only by its hardware design and its connectivity to other IP cores, but also by
how it is configured at runtime and what software it executes (if applicable).
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Trusted computing techniques can defeat attacks that alter system software by
ensuring that only specific system software is allowed to execute [2]. We focus
on techniques whereby the SoC vendor can constrain untrustworthy IP in its
chip designs. Software security and hardware tamper-resistance techniques can
further improve assurances of overall system security by checking for the correct
operation of trusted IP.

4 Core-Based Isolation

Assigning software components to separate cores eliminates vulnerabilities stem-
ming from shared resources such as registers and L1 caches. Regulating their
activities on NoCs with a dynamic policy addresses vulnerabilities from shar-
ing main memory or peripherals. We initially focus on isolating complete OS
instances, since the memory access control policies required to accomplish that
are straightforward and coarse-grained. However, NoCF could also be used to
implement other types of policies.

The NoCF policy either needs to be predetermined or defined by a hypervisor,
like the hypervisor specifies MMU policies. The policy will be maintained by an
integrity kernel that runs on a dedicated integrity core, which will be discussed
further below. The effect that this has on the TCB of a system with minimal
resource sharing, such as our prototype that isolates two Linux instances, is
depicted in Fig. 2. The TCB will vary depending on how the policy is defined,
since any software that can influence the policy is part of the TCB. In this
example, the policy that was originally defined in a hypervisor is now defined in
the integrity kernel, completely eliminating the hypervisor.

NoCF provides a coarser and more trustworthy level of memory protection
in addition to that of the MMU and IO-MMU. These differing mechanisms can
be used together to implement trade-offs between isolation assurances and costs
stemming from an increased number of cores and related infrastructure.

The integrity core must be able to install policies in NoCF interposers and
must have sufficient connectivity to receive policy information from any other
system entities that are permitted to influence policies, such as a hypervisor.
It may be possible to place the integrity kernel in firmware with no capability
to communicate with the rest of the system, if a fixed resource allocation is
desired. On the other end of the spectrum of possible designs, the integrity core
may have full access to main memory, so it can arbitrarily inspect and modify
system state. Alternately, it may have a narrow communication channel to a
hypervisor. Placing the integrity kernel on an isolated integrity core permits the
pair of them to be analyzed separately from the rest of the system. However, it
is also possible to assign the role of integrity core to a main processor core to
reduce hardware resource utilization, even if the core is running other code.

5 NoCF Interposer Design

We now discuss the design decisions underlying NoCF. We base our design on
the widely-used AMBA AXI4 NoC port standard. The rule format and storage
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mechanism of the Policy Decision Point (PDP) are loosely modeled after those
of a TLB. The PDP decides which accesses should be permitted so that a Policy
Enforcement Point (PEP) can enforce those decisions. Policy rules are inserted
directly into the PDP using a policy configuration interconnect to an integrity
core. This reduces the TCB of the PDP relative to a possible alternate design
that retrieves rules from memory like an MMU. The integrity core is a dedicated,
lightweight processor core that is isolated from the rest of the system to help
protect it from attack. The decisions from the PDP are enforced for each address
request channel by that channel’s PEP.

The AXI4 specification defines two matching port types. The master port
issues requests and the slave port responds to those requests. Each pair of ports
has two distinct channels, one for read requests and one for write requests. This
port architecture enables us to easily insert NoCF interposers, each of which
contains a PDP, an integrity core interface, and two PEPs, one for each channel.
Each interposer provides both a master and slave port so that it can be interposed
between each IP master port and the NoC slave port that it connects to. A single
interposer is depicted in Fig. 3.

Fig. 3. Internal configuration of NoCF interposer. Each interposer contains all of these
components. Hatched regions are formally analyzed in Sect. 8.

We evaluate our design in a prototype system containing two main processor
cores in addition to the integrity core, plus a malicious GPU. We now consider it
as a sample system arrangement, although many other system arrangements are
possible. Each main core has four AXI4 master ports. They connect to two NoCs
in the system, one of which solely provides access to the DDR3 main memory
controller, while the other connects to the other system peripherals. Each main
core has two ports connected to each NoC, one each for instruction and data
accesses. The GPU has a single master port connected to the NoC with the main
memory, along with a slave port connected to the peripheral NoC (not shown).
We depict this topology in Fig. 4. One interposer is assigned to each of the ports
between the master IP and the NoCs, with a corresponding policy configuration
interconnect to the integrity core. The depicted interconnect topology is slightly
simplified compared to the one used in the commercial ARM Cortex-A9 MP
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processor, which shares an L2 cache between up to four cores. Thus, it would
be necessary in that processor to place interposers between the cores and the L2
cache controller and to trust that controller to implement memory addressing
correctly.

Fig. 4. System topology. A brick wall represents a NoCF interposer on one NoC port.
Dashed lines denote policy configuration interconnects. Solid lines denote NoC ports.
For interconnects and ports, thin lines denote single items and thick lines denote pairs.

Since NoCF interposers are distributed, they can each use a policy tailored
to the port being regulated and this also concentrates the internal interfaces
containing many wires between the PDP and PEPs in a small area of the chip
while using an interface containing few wires to span the potentially long distance
to the integrity core. However, it may be useful in some cases to share a PDP
between several interposers that are subject to a single policy. That approach
would reduce the number of policy configuration interconnects and the total
PDP policy storage. A more complex approach would be to support selectively-
shared rules for separate interposers in a single PDP, which would still reduce
interconnect logic and could provide some reduction in PDP storage.

Each policy rule specifies a region of memory to which read and/or write
access is permitted. A region is defined by a base address and a mask length
specifier, which indicates the size of the region as one of a set of possible powers
of two. This type of policy can be implemented very efficiently in hardware and
corresponds closely to the policies defined by conventional MMU page tables.

Address requests are regulated by PEPs in cooperation with the PDP. The
PDP stores a fixed number of rules in its database. The PDP checks the address
in the request against all policy rules in parallel. Whenever a request matches
some rule that has the appropriate read or write permission bit set, it will be
permitted to pass through the PEP. Otherwise, the PDP sends an interrupt to
the integrity core and also sends it information about the failing request. It then
blocks the request until the integrity core instructs it to resume.

The integrity core can modify the policy rules prior to issuing the resume
command. To modify policy rules, the integrity core sends commands over the



Network-on-Chip Firewall 413

policy configuration interconnect to insert a policy rule or flush all existing policy
rules. Other commands could be defined in the future. When the interposer
receives the resume command, it re-checks the request and either forwards it
if it now matches some rule, or drops it and returns an error response to the
master. It could also do something more drastic, such as blocking the clock signal
or power lines feeding the master that issued the bad request.

Addresses other than the one in the request may be accessed during the
ensuing data transfer. A variety of addressing modes are supported by AXI4
that permit access to many bytes in a burst of data transfers initiated by a
single request. The policy administrator must account for these complexities by
ensuring that all bytes that can actually be accessed should be accessible.

It can be useful to physically separate a protection mechanism from the
surrounding logic and constrain its interfaces to that logic so that it can be
independently analyzed [11]. This is possible in the case of NoCF, since its only
interfaces are the controlled NoC ports and the policy configuration interconnect.

The PDP, integrity core interface, and PEP are all implemented in Bluespec
to leverage its elegant semantics and concision, with interface logic to the rest of
the prototype hardware system written in Verilog and VHDL. For details, please
see our technical report [14].

6 Prototype Implementation

We used a Xilinx ML605 evaluation board, which includes a Virtex-6 FPGA,
to implement a prototype of NoCF. We use MicroBlaze architecture processor
cores implemented by Xilinx, because they are well-supported by Xilinx tools and
Linux. The integrity core is very lightweight, with no cache, MMU, or superfluous
optional instructions. It is equipped with a 16KiB block of on-chip RAM directly
and exclusively connected to the instruction and data memory ports on the
integrity core. This RAM is thus inaccessible from the other cores.

The prototype runs Linux 3.1.0-rc2 on both main cores, including support
for a serial console from each core and exclusive Ethernet access from the first
core. We compiled the Linux kernel using two configurations corresponding to
each core so that they use different regions of system memory and different sets
of peripherals. This means that no hypervisor beyond the integrity kernel is
required, because the instances are completely separated. The system images
are loaded directly into RAM using a debugger.

The integrity kernel specifies a policy that constrains each Linux instance to
the minimal memory regions that are required to grant access to the memory
and peripherals allocated to the instance. Attempts to access addresses outside
of an instance’s assigned memory regions cause the instance to crash with a bus
error, which is the same behavior exhibited by a system with or without NoCF
when an instance attempts to access non-existent physical memory.

The interposers each contain two policy rules and replace them in FIFO
order, except that the interposers for data loads and stores to the peripherals
contain four policy rules each, since they are configured to regulate fine-grained
memory regions.
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7 Constraining a Malicious GPU

A malicious GPU could perform powerful attacks, since it would have bus-master
access and be accessible from all apps on popular mobile OSes. Almost all apps
have a legitimate need to display graphics, so software protection mechanisms
that analyze app behavior could not be expected to flag communications with
the GPU as suspicious, nor could permission-based controls be configured to
block such access.

We constructed hardware IP that is analogous to a hypothetical malicious
GPU. It has both master and slave AXI4 interfaces. In response to commands
received on its slave interface, the IP reads data from a specified location in
physical memory. This is analogous to reading a framebuffer. The IP inspects
the least significant byte of each pixel at the beginning of the framebuffer. This
is a very basic form of steganographic encoding that only affects the value of a
single color in the pixel, to reduce the chance of an alert user visually detecting
the embedded data. More effective steganographic techniques could easily be
devised. If those bytes have a specific “trigger” value, then the IP knows that
part of the framebuffer contains a malicious command. The trigger value is
selected so that it is unlikely to appear in normal images. The IP then continues
reading steganographically-embedded data from the image and interprets it as a
command to write arbitrary data embedded in the image to an arbitrary location
in physical memory.

We developed a simple network keylogger to be injected using the malicious
IP. The target Linux system receives user input via a serial console, so the
keylogger modifies the interrupt service routine for the serial port to invoke
the main keylogger routine after retrieving each character from the serial port
hardware. This 20 byte hook is injected over a piece of error-checking code that
is not activated in the absence of errors. The physical address and content of this
error-checking code must be known to the attacker, so that the injected code
can gracefully seize control and later resume normal execution. The keylogger
hook is generated from a short assembly language routine.

The main keylogger routine is 360 bytes long and sends each keystroke as
a UDP packet to a hardcoded IP address. It uses the optional netpoll API in
the Linux kernel to accomplish this in such a compact payload. This routine is
generated from C code that is compiled by the attacker as though it is a part of
the target kernel. The attacker must know the addresses of the relevant netpoll
routines as well as the address of a region of kernel memory that is unused, so
that the keylogger can be injected into that region without interfering with the
system’s business functions. We chose a region pertaining to NFS functionality.
The NFS functionality was compiled into the kernel, but is never used on this
particular system.

All of the knowledge that we identified as being necessary to the attacker
could reasonably be obtained if the target system is using a standard Linux
distribution with a known kernel and if the attacker knows which portion of
the kernel is unlikely to be used by the target system based on its purpose. For
example, other systems may use NFS, in which case it would be necessary to
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find a different portion of the kernel that is unused on that system in which to
store the keylogger payload.

To constrain the GPU in such a way that this attack fails, it is simply nec-
essary to modify the NoCF policy to only permit accesses from the GPU to its
designated framebuffer in main memory, as is depicted in Fig. 5.

Fig. 5. NoCF can be configured to block attacks that rely on writes by malicious
hardware to specific memory locations that it has no legitimate need to access.

This particular attack could also be blocked by a kernel integrity monitor,
which ensures that only approved kernel code is permitted to execute [23]. The
malware injected by the GPU would not be approved, so it would be unable to
execute. However, kernel integrity monitors fail to address attacks on userspace
and can be complex, invasive, and high-overhead.

8 Formal Analysis

8.1 Analysis Overview

We developed a shallow embedding of a subset of Bluespec into Maude, a native
term rewriting system, and used a Maude model of NoCF to precisely identify
a subtle vulnerability in NoCF. A shallow embedding is one where source terms
are mapped to target terms whose semantics are natively provided by the target
system. We only model the portion of the system that is shown with a hatched
background in Fig. 3. This model was sufficient to detect an interesting vulnera-
bility, although a complete model would be necessary to analyze the entire NoCF
system in the future.

We manually converted substantial portions of the Bluespec code for NoCF
to Maude using a straightforward syntactic translation method that could be
automated. The hardware design is described in our technical report [14]. We
developed our Bluespec description with no special regard for its amenability
to analysis, so the subset of the Bluespec syntax that we modeled has not been
artificially restricted. We modeled each variable name and value for Bluespec
structures, enumerations, and typedefs as a Maude term. We defined separate
sorts for variable names and for data values that can be placed in Bluespec
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registers or wires. We defined subsorts for specific types of register data, such
as the types of data that are transferred through AXI interfaces and the state
values for each channel. We defined a separate sort for policy rules.

The model was structured as an object-oriented system. Several distinct mes-
sage types can be sent between objects. All of them specify a method to be
invoked, or that was previously invoked and is now returning a value to its
caller. Anonymous and return-addressed messages are both supported. The lat-
ter specify the originator of the message. These are used to invoke methods
that return some value. There are staged variants of the anonymous and return-
addressed message types that include a natural number indicating the stage of
processing for the message. This permits multiple rewrite rules to sequentially
participate in the processing of a single logical message. Return messages wrap
some other message that was used to invoke the method that is returning. They
attach an additional piece of content, the return value, to the wrapped message.
Special read and write token messages regulate the model’s execution, as will
be described below. Finally, two special types of messages are defined to model
interactions over the FSL interface. An undecided message contains an address
request, modeling an interposer notifying the integrity core of a blocked request.
An enforce write message models the integrity core instructing the interposer to
recheck the blocked request. Those two message types abstract away the details
of FSL communication, since those are not relevant to the Critical Security
Invariant described below.

We defined equations to construct objects modeling the initial state of each
part of the system. We defined Maude object IDs as hierarchical lists of names to
associate variables with the specific subsystem in which they are contained and
to represent the hierarchical relationships between subsystems. We defined five
classes corresponding to the Bluespec types of variables in the model. Registers
persistently store some value. The value that was last written into the register in
some clock cycle prior to the current one is the value that can be read. A register
always contains some value. Wires can optionally store some value within a single
clock cycle. Pulse wires behave like ordinary wires, but they can only store a
single unary value. OR pulse wires behave like pulse wires, but it is possible for
them to be driven multiple times within a single clock cycle. They will only store
a unary value if they are driven at least once during the clock cycle.

We modeled Bluespec methods as rewrite rules. The required activation state
for the relevant objects is written on the left hand side of the rule, and the trans-
formed state of those objects is written on the right hand side. Either side can
contain Maude variables. Simple Bluespec rule conditions can be represented
by embedding the required variable values into the left hand side of the corre-
sponding Maude rule. More complex conditions can be handled by defining a
conditional Maude rule that evaluates variables from the left hand side of the
Maude rule. Updates to register variables require special handling in Maude.
We define a wire to store the value to be written to the register prior to the
next clock cycle, and include a Maude rewriting rule to copy that value into the
register before transitioning to the next cycle.
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We modeled Bluespec functions as Maude equations. We also defined Maude
functions to model complex portions of Bluespec rules, such as a conditional
expression.

The main challenge that we overcame in embedding Bluespec in Maude stems
from the fact that Maude by default implements something similar to pure term
rewriting system semantics, in which no explicit ordering is defined over the set
of rewrite rules. To model the modified term rewriting semantics of Bluespec,
we imposed an ordering on the rules in the Maude theory that correspond to
Bluespec rules and restricted them to fire at most once per clock cycle. This
includes rules to model the implicit Bluespec rules that reset ephemeral state
between cycles. We used and extended the Maude strategy framework to control
rule execution [16]. The Bluespec compiler output a total ordering of the rules
that was logically equivalent to the actual, concurrent schedule it implemented
in hardware. We applied that ordering to the corresponding Maude rules.

To model bit vectors, we relied on a theory that had already been developed
as part of a project to model the semantics of Verilog in Maude [17].

To search for vulnerabilities in NoCF, we focused on the following Critical
Security Invariant:

Invariant 1. If an address request is forwarded by a NoCF interposer, then it
is permitted by the policy within that interposer.

We modeled some basic attack behaviors to search for ways in which that
invariant could be violated. In particular, we specified that during each clock
cycle attackers may issue either a permissible or impermissible address request,
relative to a predefined policy, or no address request. The AMBA AXI4 spec-
ification requires master IP to wait until its requests have been acknowledged
by the slave IP before modifying them in any way, but our model considers the
possibility that malicious IP could violate that.

We used the Maude “fair rewriting” command to perform a breadth-first
search of the model’s possible states for violations of the Critical Security Invari-
ant. We extended the Maude strategy framework to trace the rule invocations
so that the vulnerabilities underlying detected attacks could be independently
verified and remedied.

8.2 Formalization Details

We extended each solution term with an ordered list of quoted identifiers iden-
tifying the rules that were invoked to reach the solution. Correspondingly, we
extended each task term with a list of quoted identifiers, so that the extended
signature of the primary task constructor is as follows:

op <_@_via_> : Strat Term QidList -> Task .

We extended the equations and rules for evaluating strategies that were nec-
essary for our particular model to also propagate and modify the list of invoked
rules.
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We defined an object-based model, so we adapted the Maude strategy frame-
work to encapsulate a Maude term of sort Configuration directly in each solu-
tion term to enhance readability of the output [7]. We marked the solution terms
as frozen to prevent any further transformation of the encapsulated configuration
term. We used Maude reflection to transform the representation of the config-
uration term being manipulated by the strategy framework when a solution is
recorded. For example, consider our modified definition for the rule for the idle
strategy:

vars T T’ : Term .
var QL : QidList .
rl < idle @ T via QL > => sol-from(T, QL) .

For reference, the original definition was:

rl < idle @ T > => sol(T) .

Analogous modifications were made to other rules in the strategy framework.
We defined sol-from as follows:

var CNF : Configuration .
op sol-from : Term QidList -> Task .
eq sol-from(T, QL) = sol(downTerm(T, err-cnf), QL) .

Note that this relies on a term of kind Configuration we defined to represent
an error, err-cnf.

The reverse transformation is needed in the concatenation rules and other
rules that need to manipulate the configuration term in the solution, such as:

var TASKS : Tasks .
var E : Strat .
eq < sol(CNF, QL) TASKS ; seq(E) > =

< E @ upTerm(CNF) via QL > < TASKS ; seq(E) > .

The rule application equations extend the list of invoked rules, as in the
following:

var L : Qid .
var Sb : Substitution .
var N : Nat .
var Ty : Type .
ceq apply-top(L, Sb, T, N, QL) =

sol-from(T’, QL L) apply-top(L, Sb, T, N + 1, QL)
if { T’, Ty, Sb’ } := metaApply(MOD, T, L, Sb, N) .

We now describe the specific strategy used for model checking the Critical
Security Invariant. The following defines the initial state for model checking.
mkNoCF is defined elsewhere to initialize the configuration term for the main
NoCF model, and read-tok and write-tok are the read and write tokens, resp.,
that were described previously.
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op init-stt : -> Configuration .
eq init-stt = mkNoCF(nocf) read-tok write-tok .

The following represents an abbreviated list of the methods and rules in the
Bluespec model in the order in which they should be invoked, as specified by the
Bluespec compiler:

sort FireRule .
ops mandatory-fr fr : NeBluespecIdList Qid -> FireRule .

op bluespec-sched : -> NeFireRuleList .
eq bluespec-sched =

fr(nocf wrtAddrFilter, ’in_issue)
fr(nocf wrtAddrFilter, ’ready)
...
fr(nocf, ’wrt_addr_resume)
fr(nocf, ’upd_wrt_stt)
...
fr(nocf wrtAddrFilter, ’clear)
mandatory-fr(nocf, ’nocf_clear) .

The first parameter for each FireRule, a term of sort NeBluespecIdList, is a
list of identifier terms that identifies an object in a hierarchical Bluespec design
relative to which the modeled Bluespec method or rule should be invoked. The
second parameter is the name of the Maude rule that models the corresponding
Bluespec method or rule. The objects in the configuration term use these same
hierarchical identifiers prepended to individual variable identifers. The distinc-
tion between fr and mandatory-fr rules is that fr rules are invoked iff they
can possibly be applied and strategy execution continues regardless whereas
mandatory-fr rules are always invoked. We use mandatory invocation only at
the end of the schedule list for a special rule that models the Bluespec behavior
of clearing certain variables at the end of a hardware clock cycle. It is a con-
ditional rule that is only enabled if a NoC request has not been finally denied.
Thus, if a NoC request has been finally denied, then the rule is disabled and
strategy execution terminates for that branch of the model state space.

The rules below convert the concise list of ordered Bluespec rules into a
Maude strategy to enforce the desired ordering of rule invocation. They also
bind the PFX variable that is used in the Maude rule identified by Q to the
specified identifier, so that the Maude rule is applied specifically to the Bluespec
object with that identifier.

op bluespec-strat : -> Strat .
eq bluespec-strat = sched-to-strat(bluespec-sched) .

op sched-to-strat : FireRuleList -> Strat .
eq sched-to-strat(fr(BI:NeBluespecIdList, Q:Qid)) =

try(Q:Qid[’PFX:NeBluespecIdList <-
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upTerm(BI:NeBluespecIdList)]) .
eq sched-to-strat(mandatory-fr(BI:NeBluespecIdList, Q:Qid)) =

Q:Qid[’PFX:NeBluespecIdList <- upTerm(BI:NeBluespecIdList)] .
eq sched-to-strat(FR:FireRule FRL:FireRuleList) =

sched-to-strat(FR:FireRule) ;
sched-to-strat(FRL:FireRuleList) [owise] .

The following strategy fragment may install zero or one out of a set of two
policy rules to the NoCF interposer:

op add-policy : -> Strat .
eq add-policy =

try(’add_pol_rule_1[none]) | try(’add_pol_rule_2[none]) .

The amatch test below searches each state term for any subterm that matches
the term provided as the first parameter such that the condition in the second
parameter is satisfied.

op bad-match : -> Strat .

eq bad-match = amatch(’_~>_[’_<‘{_‘}-_[’PFX:NeBluespecIdList,
’PFX1:NeBluespecIdList,’out-read.Method],’RD:RegData],

’_==_[’RD:RegData,upTerm(good-addr-req)] = ’false.Bool) .

The first parameter is a term representing a return message in our model. Taking
it down a level in reflection makes the syntax more clear:

(PFX:NeBluespecIdList <{PFX1:NeBluespecIdList}- out-read)
~> RD:RegData

PFX is the object to which the original method call was directed, PFX1 is the
object that invoked the method and to which this return message is directed,
out-read is the identifier of a method that was invoked with no parameters, and
RD is the returned term resulting from modeling the method’s execution. The
out-read method models the interposer passing an approved address request
along to the NoC. The condition in the amatch test checks for any such approved
request that is not the single request that we defined to be allowed by policy in
our Maude model. Thus, this test checks for any address requests that violate
policy and yet are still (incorrectly) approved by the NoCF interposer. The
Critical Security Invariant specifies that this test should never be satisfied.

The terms below define the initial state and strategy for the model checker.

op issue-addr-req : -> Strat .
eq issue-addr-req =

(’issue_good[none]) | (’issue_bad[none]) | idle .

op init-term : -> Term .
op init-strat : -> Strat .
op init-task : -> Task .
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eq init-term = upTerm(init-stt) .
eq init-strat =

((((’issue_read[none]) | idle) ; (issue-addr-req) ;
(add-policy) ; (bluespec-strat)) *) ; bad-match .

eq init-task = < init-strat @ init-term via nil > .

The strategy is simply a loop representing zero or more hardware clock cycles of
the device being modeled, followed by the test for violations of the Critical Secu-
rity Invariant. The model can inject stimuli at the beginning of each clock cycle.
The issue read rule consumes the read token and updates the state to cause any
currently approved address request from the NoCF interposer to be read out in
that clock cycle, or any address request that is approved in a future clock cycle to
be read out as soon as possible after that approval. This non-determinism mod-
els the fact that the NoC may not be immediately ready to accept an approved
address request in the same clock cycle that the NoCF interposer approves it.
The issue good and issue bad rules likewise consume the write token and issue
an address request that either complies with or violates the policy, respectively,
to the NoCF interposer. The possibility that the idle strategy may be selected
instead of issuing an address request models the fact that address requests may
or may not be issued every clock cycle in the hardware design. A rule is in place
to reintroduce a new write token after an address request has been issued so
that zero or one address requests can be issued during each clock cycle. Finally,
fair rewriting is used to check the model represented by init-task. Solutions
represent counterexamples to the Critical Security Invariant.

8.3 Analysis Results

We detected a subtle possible attack applicable to a straightforward implemen-
tation of the interposer. First, the attacker issues the permissible request, when
the slave IP is not yet ready to accept a new request. The attacker then issues
the impermissible request after the PEP has approved the first request and is
simply waiting for the slave IP to accept the request. The PEP assumes the mas-
ter adheres to the protocol specification and will wait for the initial request to
be acknowledged, so it passes the request through from the master. This attack
is depicted in Fig. 6. This type of model is powerful, since it is a simple matter
to model basic attacker behaviors which can then be automatically analyzed to
detect complex attacks.

We implemented a countermeasure in the Bluespec code to block this attack.
It now buffers the request that is subjected to access control checking, and then
issues that exact request to the slave if it is allowed, regardless of the current
state of the request interface from the master. This countermeasure introduces
additional space overhead, so it is not something that a designer would reason-
ably be expected to include at the outset in a straightforward implementation.
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Fig. 6. Timing of address requests at port relative to PEP state for an attack forward-
ing an unchecked address request.

8.4 Analysis Discussion

We extended the Verilog specification of the NoC ports to interface with the
Verilog generated by the Bluespec compiler. This implies that we must trust or
verify the Verilog interface code. The interface code consists almost entirely of
straightforward wire connections, so it should be amenable to manual or for-
mal analysis. We must also trust the Bluespec compiler to output Verilog code
corresponding to the input Bluespec code.

Our threat model allows malicious IP to perform intra-clock cycle manipula-
tions of the wires in the port to the interposer. The effects of such manipulations
are difficult to analyze at the level of abstraction considered in this section. If
this type of behavior is a concern, it can be easily suppressed by buffering the
port using a slice of registers that effectively forces the IP to commit to a sin-
gle port state for a full clock cycle from the perspective of the interposer. The
commercial NoC IP that we used in our prototype supports the creation of such
register slices with a simple design parameter. This solution would introduce a
single clock cycle delay at the port.

Ultimately, NoCF and other elements of the TCB should be formally verified
to be resistant to foreseeable attack types, and the analysis described here sug-
gests that the elegant semantics of Bluespec helps to make such an effort more
tractable than it would be if we had used Verilog or VHDL.

As an intermediate goal, it will be important to model more potential attacker
behaviors to potentially identify additional vulnerabilities and formally verify
the absence of vulnerabilities when possible. The model should be expanded to
model all possible sequences of values that misbehaving IP could inject into the
NoC ports to which it has access. A challenge is that each master controls a large
number of input wires that feed into the NoC. Many of these wires carry 32-bit
addresses and data, so inductive proof strategies may permit that number to be
substantially reduced by showing that a model using narrower address and data
ports is equivalent to the full model in the context of interesting theorems. Simi-
larly, induction may permit long sequences of identical input values or repetitive
sequences of input values to be collapsed to shorter sequences, if in fact the NoC
logic does not impart significance to the patterns in question.

We considered one theorem for which we detected a counterexample, but
there are many other theorems that are foundational to the system’s trustwor-
thiness and that should be used as guidance while analyzing NoCF. The process
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of identifying these theorems should be informed by past vulnerabilities, system
requirements, and desirable information-theoretic properties.

Analyzing NoCF and the rest of the TCB with respect to the theorems and
the detailed model we have proposed is an important step towards providing
strong assurance that the system can be trusted to process sensitive data along-
side potentially misbehaving hardware and software components. Our formal
analysis of the existing NoCF prototype demonstrates the improved analysis
capabilities that are enabled by formal hardware development practices and
modern formal analysis tools. This suggests that the broader analysis effort we
have proposed is feasible, given sufficient resources.

9 Related Work

In this section, we consider tools and techniques that enable formal reasoning
about hardware. The primary novelty of NoCF is that it is a NoC access control
mechanism designed to be amenable to formal analysis.

Advances have been made in languages for formally specifying information-
flow properties in hardware like Caisson [15]. Tiwari et al. developed and veri-
fied an information-flow secure processor and microkernel, but that was not in
the context of a mobile-phone SoC and involved radical modifications to the
processor compared to those required by NoC-based security mechanisms [26].
Volpano proposed dividing memory accesses in time to limit covert channels [28].
Information-flow techniques could be generally applicable to help verify the secu-
rity of the trusted components identified in Sect. 3.

Other techniques are complementary to these lines of advancement in that
they offer approaches for satisfying the assumptions of our threat model. “Moats
and Drawbridges” is the name of a technique for physically isolating components
of an FPGA and connecting them through constrained interfaces so that they
can be analyzed independently [11,12].

SurfNoC schedules multiple protection domains onto NoC resources in such
a way that non-interference between the domains can be verified at the gate
level [29]. This could complement NoCF by preventing unauthorized communi-
cations channels between domains from being constructed in the NoC fabric.

Richards and Lester defined a shallow, monadic embedding of a subset of
Bluespec into PVS and performed demonstrative proofs using the PVS theorem
prover on a 50-line Bluespec design [21]. Their techniques may be complemen-
tary to our model checking approach for proving properties that are amenable to
theorem proving. Katelman defined a deep embedding of BTRS into Maude [18].
BTRS is an intermediate language used by the Bluespec compiler. Our shallow
embedding has the potential for higher performance, since we translate Bluespec
rules into native Maude rules. Bluespec compilers could potentially output mul-
tiple BTRS representations for a single design, complicating verification. Finally,
our embedding corresponds more closely to Bluespec code, which could make it
easier to understand and respond to output from the verification tools.
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10 Conclusion

Mobile devices that became popular for personal use are increasingly being relied
upon to process sensitive data, but they are not sufficiently trustworthy to make
such reliance prudent. Various software-based techniques are being developed to
process data with different levels of sensitivity in a trustworthy manner, but they
assume that the underlying hardware memory access control mechanisms are
trustworthy. We discuss how to validate this assumption by introducing a NoC
Firewall that is amenable to formal analysis. We present a prototype NoCF that
is implemented using a hardware description language with elegant semantics.
We demonstrate its utility by using it to completely isolate two Linux instances
without running any hypervisor code on the cores hosting the instances.
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Abstract. This paper presents an approach to specify and check discre-
tionary information flow properties of concurrent systems. The approach
is inspired by the success of the interaction-oriented paradigm to con-
current systems (cf. choreographies, behavioural types, protocols,...) in
providing behavioural guarantees of global properties such as deadlock-
absence. We show how some information flow properties are easier to
formalise and check on a global interaction-oriented description of a con-
current system rather than on a local process-oriented description of the
components of the system. We use a simple choreography description lan-
guage adapted from the literature of choreographies and session types.
We provide a generic method to instrument the semantics with informa-
tion flow annotations. Policies are used to specify the admissible flows of
information. The main contribution of the paper is a sound type system
for statically checking if a system specification ensures an information
flow policy. The approach is illustrated with two archetypal examples of
distributed and parallel computing systems: a protocol for an identity-
secured data providing service and a parallel MapReduce computation.

Keywords: Information flow control · Discretionary access control ·
Choreographies · Communication protocols · Interaction-oriented com-
puting · Parallel computing · Service-oriented computing · High-
performance computing

1 Introduction

The flow of information within a concurrent system is often expected to satisfy
some properties related to which components can access which data and how.
Such properties are known as discretionary access control policies and provide
a fine-grained control over the flow of information, as opposed to other kinds of
security policies that often regard the non-interference between security levels
of information. Consider for instance, the following concurrent program:

[
k!x

]
p

[
k?y ; k’ !“go” ; k!y’

]
q

[
k’?z ; k?z

]
r

c© Springer International Publishing Switzerland 2015
N. Mart́ı-Oliet et al. (Eds.): Meseguer Festschrift, LNCS 9200, pp. 427–450, 2015.
DOI: 10.1007/978-3-319-23165-5 20



428 A. Lluch Lafuente et al.

where u!v denotes the sending of a message v over a channel u, u?w denotes
the reception on variable w of a message on channel u, sequential composition is
denoted by ; and the sequential code of the concurrent processes p, q, r composing
the system is enclosed between square brackets. Is there a flow of information
from variable x to variable z? A simple analysis of all possible executions of the
system may provide a negative answer depending on the kind of information flow
one is interested in (explicit, implicit and so on). However, such an a posteriori
verification is undecidable in general and often unfeasible (e.g. due to state space
explosion). An a priori static analysis, however, should be smart enough to
discard the potential flow of information over channel k if one is interested in
explicit data flows. Indeed, x is sent over channel k and z is obtained from k as
well. It is a matter of synchronisation that z will not receive the value of x.

Fig. 1. A flow of information

Figure 1 shows a graphical representation of
some flow of information in our example. A
detailed explanation of our graphical notation
will be provided later, here it suffices to under-
stand that the flow of information is represented
with a graph (circles and arrows) equipped with
an interface (left and right list of principal and
variable names). Of course, the figure depicts
only some flows of information, in particular it
represents explicit data flows between variables,
write access from principals to variables and con-
trol dependencies due to interactions. The pre-
cise notion of information flow one would like to consider may vary, depend-
ing of the properties of interest, the application domain, the context of exe-
cution where the system will be deployed and so on. Note, in particular, the
absence of channels in the depicted flow, which may be an appropriate choice
in case of deployment on a framework with synchronous channels that retain
no data after synchronisation. Letting apart this simple illustrative example, a
priori verification of discretionary information flow policies in concurrent sys-
tems is a challenging task that urges suitable solutions to ease the engineering
of trustworthy-by-design systems in the era of big data, data-drivenness and
massive parallel/concurrent/high-performance computing.

Contribution. We investigate in this paper an application of the interaction-
oriented paradigm to the specification of trustworthy-by-design concurrent sys-
tems. Our work shares the same constructive attitude towards security promoted
in [4] of providing methodologies and techniques to support security-by-design.
Even if the work was motivated by security concerns, our approach can be applied
to other aspects of concurrent and distributed systems where information flows
play a fundamental role, like performance issues related to locality of data access,
or robustness issues related to control dependencies among processes. Our work
is also inspired by the success of the interaction-oriented paradigm in providing
deadlock-freedom by design in distributed systems (see e.g. [8]). Many informa-
tion flow properties are global in nature, which suggests that they should be
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easier to formalise and check on a global description of the system rather than
on the local description of the individuals.

The basis of the approach is the specification of the system by means of a
choreography, i.e. a global description of the expected interactions of a system in
terms of the messages exchanged between its components. Our choreographies
are also enriched with a specification of the information being used by processes
in their decision points and about local updates of data. Such descriptions allow
one to design and analyse information systems top-down, where the behaviour of
the individuals is synthesised from (or specified in) the description of the global
behaviour of the system. As an example, consider the following choreography:

C1 � p.x -> q.y : k ; q.“go” -> r.z : k’ ; q.y’ -> r.z : k

where u.e -> u′.e′ : c specifies that component u sends expression e over channel
c to component u′, that stores the message according to the pattern e′. This
choreography specifies the very same concurrent system we saw before. However,
statically checking the absence of an explicit data flow from x to z is easier
as the choreography-based description resembles a sequential program where
traditional information flow analysis techniques may be adapted and applied.
For instance, the flow of Fig. 1 can be easily extracted from the static description
of C1.

We start our work defining a formal choreography description language for
specifying the global behaviour of the system. The language is strongly inspired
by existing approaches based on process calculi (e.g. session calculi) and behav-
ioural types (e.g. session types). As usual in those traditions, we consider a notion
of well-formedness for choreographies, to rule out systems for which providing
information flow guarantees is not trivial. The main contribution of the paper
is a sound type system for information flow policies, i.e. one that ensures that if
a choreography C is typed with a policy Π, denoted Ent � C : Π, we can con-
clude that C is Π-secure, i.e. the information flows of the behaviours described
by C satisfy the policy Π, denoted C |= Π. In the judgement Ent � C : Π,
Ent denotes the set of entities (principals, variables, channels) involved in C
and Π. A key role in our approach is played by the use of an instrumented
semantics [24] for our language, where semantic rules are enriched with annota-
tions relevant to the flows of information. The instrumentation of the semantics
is parametric with respect to the flows associated to the main events in the
choreography (interactions, local updates, choices). This provides a convenient
degree of flexibility to the user, who can specify the notion of information flow
that better suits his purposes. This is one of the reasons why information flow
assurances in our approach are not related to a non-interference [10,16] result.
In our experience, non-interference cannot be easily conveyed to software, safety
or security engineers and often provides a too strong requirement with respect to
the kind of information flow properties of interest. Our information flow policies
are based on the Decentralized Label Model [23]. We use here a graphical notation
for information flows and policies based on graphs with interfaces [6,11]. Though
not technically different from relational-based notations we think that the use of
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u.name -> rp.user : a ;
rp.user -> ip.id : b ;
u.my pwd -> ip.pwd : a ;
if check(id,pwd)@ip then

ip.“ok” -> rp.“ok” : b ;
rp.class(user) -> s.class : c

else
ip.“fail” -> rp.“fail” : b ;
rp.“na” -> s.class : c ;

( ip.rep(id) -> rp.report : b
| ( data := first(class) @ s;

while data �= nil @s do
s.data -> u.info : a ;
data := data.next @ s

then
s.“end” -> u.info : a ) )

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a!name ;
a!my pwd ;
loop

a?info
⊕ (a?“end” ;

break )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

u

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b?id ;
a?pwd ;
if check(id,pwd) then

b!“ok”
else

b!“fail” ;
b!rep(id) ;

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ip

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a?user ;
b!user ;
( (b?“ok” ;

c!class(user))
⊕ (b?“fail” )

c!“na”) ;
b?report ;

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

rp

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c?class ;
data := first(class) ;
while data �= nil then

a!data ;
data := data.next ;

then
a!“end” ;

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

s

Fig. 2. Interaction- (left) and process-oriented (right) specification of a service

graphs provides a formal and visually appealing presentation, suitable for soft-
ware, safety and security engineers and in line with other successful graphical
notations such as message sequence charts, fault trees and attack trees. The type
system is as well parametric with respect to the flows associated to the chore-
ography events and its soundness relies on some well-formedness constraints of
the flow annotations.

Structure of the Paper. Section 2 presents two paradigmatic case studies aimed
at providing some additional motivation and insights, and to serve as running
examples. Section 3 presents a simple choreography description language, defin-
ing its formal semantics and a notion of well-formedness. Section 4 presents our
graphical notation for information flows, the annotation-parametric instrumen-
tation of the semantics and the well-formedness conditions on flow annotations.
Section 5 formalises the notion of satisfaction of a policy by a choreography and
presents the sound type system that allows us to statically check if a choreog-
raphy satisfies a security policy. Section 6 discusses related works, concludes the
paper and describes our current and future research investigations.

2 Applications: Protocols, Services and HPC

We present in this section two case studies from different domains, to pro-
vide additional motivations and insights on the approach, as well as to serve
as running examples throughout the paper. The first case study (Sect. 2.1) is
a archetypal example of a distributed system, namely a protocol used in an
identity-secured data providing service. The second case study (Sect. 2.2) is an
archetypal example of a parallel program, namely a parallel MapReduce com-
putation.
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2.1 An Identity-Secured Data Providing Service

Our first case study is inspired on the OpenID example of [22], slightly adapted
for presentation purposes. The system consists of a user u trying to retrieve some
data from a server s. The access to the desired data is subject to authentication
by an identity authentication party ip. The interaction between u, s and ip is
coordinated by a relying party rp.

Figure 2 provides two descriptions of this case study. The one on the left pro-
vides an interaction-oriented description (namely, a choreography), while the one
on the right provides a process-oriented description (i.e. a distributed specifica-
tion). The choreography, P for short, is specified in our language, to be presented
later, while the process-oriented description is specified in a language based on
standard constructs of concurrent languages (featuring asymmetric, binary, syn-
chronous, pattern-based communication over channels). The four components
of the system (u, rp, ip and s) exchange some information through three chan-
nels (a, b and c). Some information may be sensitive (e.g. passwords, data, user
classes, etc.) so that we may want to impose some policy on the way such infor-
mation flows.

As in the simple example presented in the Introduction, a first look at the
process-oriented specification may suggest some potential flows of information.
For instance, we can see that the content of data is sent over channel a, from
which both the relying party rp and the authentication party ip read messages.
The user password and the user class are involved in similar situations. A security
engineer may want to restrict and check those flows of information.

An example of a policy that one may be interested in is depicted in Fig. 3.
The policy focuses on explicit data flows only. The policy allows explicit data
flows between some of the variables involved in the system but forbids others.
For instance, flows from my pwd to report or data, which could compromise the
password of the user, are not allowed. Information contained in data is only
allowed to flow to data itself or to info, thus we forbid data to flow to any of the
other variables that principals ip and rp may access.

The satisfaction of this policy depends on the kind of information flows one
wants to consider. If only explicit flows are considered, the policy is satisfied.
This may not be trivial by inspecting the process-oriented specification but a look
at the interaction-oriented specification may be more reassuring. For instance,
my pwd flows only directly to pwd through the interaction u.my pwd -> ip.pwd : a,

Fig. 3. Policy Πs,1 for the data providing service
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but pwd is not explicity used to update any variable and is never communicated.
Moreover, the choreography clearly specifies that data is only used to calculate
the next piece of data or to be transferred to u’s info, and similarly for the rest
of the sensitive informations we have mentioned.

The situation is different, of course, if explicit flows are considered as well.
We will see this and examples of other policies in the rest of the paper.

2.2 A Binary Parallel Map-Reduce Computation

Our next case study is an archetypal example of parallel computations, namely
MapReduce [12]. MapReduce is very popular pattern for processing large data
sets in parallel, which has its origins in functional programming primitives such
Lisp’s map and reduce and High-Performance Computing primitives such as
MPI’s scatter and reduce operations. We consider here a simple case in which
the programmer is interested in computing the function red(map(x0, . . . , xm)),
where map : T → T ′ is a function that processes single values of some type
T into single values of some other type T ′ (and that can be piece-wise lifted
to vectors as we do above) and red : T ′∗ → T ′ is a function to accumulate a
vector of values of type T ′ into a single value of type T ′. We assume, as usual in
MapReduce, that red is associative and commutative and amounts to the iden-
tity function on vectors of size 1. This allows one to decompose function red as
a binary function, which greatly helps the accumulation of values in parallel.

Mi,0 � yi:= map(xi)@pi
Mi,n+1 � pi->pi+2n : ki,i+2n ;

(Mi,n | Mi+2n,n) ;
pi+2n->pi: ki+2n,i ;
yi:= red(yi, yi+2n)@pi

Fig. 4. MapReduce scheme

Figure 4 is a general scheme of a possi-
ble interaction-oriented MapReduce spec-
ification in our choreography description
language. The main idea of the scheme
is that in a MapReduce choreography
Mi,n+1, a principal pi will act as the leader
of 2n+1 principals in the computation
of red(map(xi, . . . , xi+2n+1)) to be stored
in yi. The leader principal will decom-
pose that computation into the problem
of computing red(map(xi, . . . , xi+2n)) in yi and red(map(xi+2n+1, . . . , xi+2n+1))
in yi+2n first, and accumulating the results afterwards. The first sub-problem
will be solved by pi itself, while the second sub-problem will be delegated to
principal pi+2n . Both sub-problems are solved applying the very same scheme.
The interactions do not involve any value passing and are simply used to trigger
the computations first (roughly, pi wakes up pi+2n) and later to ensure that the
data to be accumulated has been indeed computed (roughly, pi waits for pi+2n

to finish). For this purpose the choreography uses pairs of channels ku,v to be
used exclusively for pu to synchronise with pv.

Figure 5 presents an instance M0,2 of the above choreography scheme on a
scenario with four principals, together with an equivalent process-oriented spec-
ification. In this example an information flow analysis can reveal interesting
information regarding data locality or control dependencies. For instance, one
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p0->p2: k0,2 ;
(

p0->p1: k0,1 ;
( y0:= map(x0)@p0 | y1:= map(x1)@p1 ) ;
p1->p0: k1,0 ;
y0:= red(y0, y1)@p0|
p2->p3: k2,3 ;
( y2:= map(x2)@p2 | y3:= map(x3)@p3 ) ;
p3->p2: k3,2 ;
y2:= red(y2, y3)@p2

) ;
p2->p0: k2,0 ;
y0:= red(y0, y2)@p0

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k0,2! ;
k0,1! ;
y0:= map(x0) ;
k1,0? ;
y0:= red(y0, y1)@p0 ;
k2,0? ;
y0:= red(y0, y2)@p0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

p0

⎡

⎣
k0,1? ;
y1:= map(x1) ;
k1,0!

⎤

⎦

p1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

k0,2? ;
k2,3! ;
y2:= map(x2) ;
k3,2? ;
y2:= red(y2, y3)@p0 ;
k2,0!

⎤

⎥
⎥
⎥
⎥
⎥
⎦

p2

⎡

⎣
k2,3? ;
y3:= map(x3) ;
k3,2!

⎤

⎦

p3

Fig. 5. Interaction- (left) and process-oriented (right) specification of MapReduce

would be interested in controlling which principals can affect which other prin-
cipals for the sake of analysing the robustness of the computation in terms of
failure dependencies. In addition, one would like to control the access of data by
principals for the sake of ensuring performance by maximising access locality.

Fig. 6. Policy Πm,1 for MapRe-
duce

As an example of a concrete policy, con-
sider Fig. 6. The policy focuses on how principals
access data, i.e. which principal in the computa-
tion is accessing which data variable. The policy
allows each principal pi to read variable xi and to
read and write on variable yi. Additional write
permissions are granted to allow accumulation:
p0 is allowed to read y2 and y1 and p2 is allowed
to read y3. This policy is actually satisfied by
the choreography (and its distributed process-
oriented counterpart) and is indeed more permissive than needed. For instance,
p1 is allowed to read variable y1 but that does not occur. This policy illustrates
that sometimes one is not interested in explicit data flows. Indeed, controlling
similar policies can be very useful when the system is to be deployed on a par-
allel architecture and principals and data have to be allocated in computational
resources such as processors, machines, memory locations, etc.

All in all, the case studies we have presented and the examples of information
flow policies motivate the need to consider different notions of information flow
and that is the reason why our framework is parametric with respect to the
notion of flow to be considered.

3 Choreographic Specifications of Concurrent Systems

A choreography describes the expected interactions of a system in terms of the
messages exchanged between its components. Choreographies can be used to
automatically derive (via endpoint projections) distributed code skeletons or
local specifications to be checked on existing implementations. The latter case is
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typical, for instance, of legacy systems (where existing implementations may be
available) or open systems (where the principals may be governed by indepen-
dent parties). Choreographies are usually given a so called weak (or partial or
constraint) interpretation [21]: a (distributed) realisation S of a choreography C
is admitted if it exhibits a subset of the behaviours specified by the choreography.
In a trace-based setting, the question can be rephrased as Traces(C) ⊆ Trace(S).
This does not necessarily prescribe the presence of unobservable/hidden interac-
tions aimed at realising the choreography. For instance, in a trace-based setting
the above mentioned notion of admissibility of realisations can be relaxed to
Traces(C)|O ⊆ Trace(S)|O, where |O is the projection on a set of observables O
that would discard hidden interactions. However, most approaches to choreogra-
phies are based on the idea that the choreography specifies all the interactions
that may be observed in the system and assume that no additional interactions
will take place in the realisation of the choreography. We believe that this is
methodologically more adequate for information flow control: implicit hidden
interactions may introduce unexpected flows of informations, whereas requiring
all interactions to be explicitly declared should help understanding the actual
flows of information and should mitigated the unintentional introduction of unde-
sired flows.

As a consequence, not all choreographies are realisable in a distributed way.
A typical example is the choreography p.e -> q.x : k ; r.e’ -> s.y : k’ where, clearly,
there is no way of imposing the order of the interactions without introducing
additional ones. Typically, well-formedness conditions are given to impose some
semantic and syntactic constraints on choreographies that ensure good properties
in terms of realizability and soundness of the endpoint projections.

Choreographies: Syntax. We consider a simple choreography description language
inspired by process calculi and session types approaches to choreographies. In
particular, the syntax of our language is close to the interaction oriented lan-
guage [20], the choreography calculus [8,22] and the global types used in [3,9].

We use universes of variables Var, pattern expressions Expr over variables,
principals Prin, and channels Chan. We denote the union of principals, variables
and channels the entities and denote them with Ent = Prin ∪ Var ∪ Chan.

C ::= C; C′ (sequential composition)
| C | C′ (parallel composition)
| if e@p then C else C′ (choice)
| while e@p do C then C′ (loop)
| A (actions)

A ::= x := e @p (update)
| p.e -> q.e′ : k (interaction)
| skip (skip)

Fig. 7. A simple choreography description language
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Definition 1 (syntax of choreographies). The syntax of our choreography
description language is defined by the grammar of Fig. 7, where e, e′ ∈ Expr,
x ∈ Var, p, q ∈ Prin are distinct principals (p �= q), and k ∈ Chan.

The set of principals (reps. entities) in a choreography C is denoted by pn(C)
(reps. en(C)), the set of variables in an expression e is denoted by v(e). These
functions are defined as expected and we hence neglect their formal definition.
We assume that variable names cannot be used as values in expressions, to forbid
mechanisms such as indirect references and name passing in interactions, which
may pose additional challenges in our technique.

The syntactic category C corresponds to choreographies. To avoid confusion
between individual choreographies and the syntactic category, we sometimes
use C to denote the set of all terms generated by C. The syntactic category
A corresponds to actions. This syntactic category is not strictly necessary but
simplifies the presentation of our approach. We shall use a set A of events defined
as the union of all terms generated by A and all expressions of the form e@p.

The language includes classical constructs such as sequential and parallel
composition, branching and loops. One feature to be remarked is that decision
points are annotated with the name of a principal (cf. @p in loops and choices).
By doing so one can specify which principal p is the selector, i.e. the principal
responsible for taking the control decision. Another remarkable difference with
respect to standard languages is that the while construct has a termination code
in addition to the body. Similar annotations are not new in choreographies and
are used e.g. in [3,9]. The idea is that such code is used by the selector principal
to notify termination to all passive processes involved in the body. This feature
is not strictly necessary in our work but we prefer to have it in order make our
language closer to the ones used in the literature of choreographies.

Actions include local updates of the form x := e @p where principal p updates
variable x with the result of evaluating expression e, the void action skip and a
binary interaction p.e -> q.e′ : k between principals p and q. In such an interaction
principal p aims at sending over channel k the result of evaluating expression e to
principal q. Expression e is to be matched against the pattern e′ whose variables
act as binders to collect the result of the interaction. As we have seen, e and e′ can
be void in which case we use the simplified notation p -> q : k.

Semantics of Choreographies. We present two semantics for our language: an
operational semantics, aimed at providing a first insight to the reader, and a
denotational semantics, which eases the presentation of the main results.

The operational semantics of our language is the relation → ⊆ C × A × C
defined by the rules in Fig. 8. The rules are very similar to those of standard
parallel programming languages or process calculi. We just remark here that the
semantics is abstract with respect to the actual evaluation of expressions: the
branching in choices and loops can be seen as non-deterministic choices.

The denotational semantics defines the traces of a choreography as words over
the alphabet of events A. As in some approaches to choreographies (e.g. [9]), we
restrict ourselves to finite words, and hence finite traces.
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C1
α−−→ C′

1

C1; C2
α−−→ C′

1; C2 skip; C
skip−−−→ C

A �= skip

A
A−−→ skip

i �= j ∈ {1, 2} Ci
α−−→ C′

i C′
j = Cj

C1 | C2
α−−→ C′

1 | C′
2

i ∈ {1, 2}
if e@p then C1 else C2

e@p−−−→ Ci

i ∈ {1, 2} C1 = C ; while e@p do C then C2

while e@p do C then C2
e@p−−−→ Ci

Fig. 8. Operational semantics of choreographies

Definition 2 (trace semantics). The trace semantics of our language is given
by function Traces : C → 2A∗

defined by

Traces(C1;C2) = Traces(C1)Traces(C2)
Traces(C1 | C2) = Traces(C1) �� Traces(C2)

Traces(if e@p then C1 else C2) = e@p (Traces(C1) ∪ Traces(C2))
Traces(while e@p do C1 then C2) = e@p (Traces(C1) e@p)∗Traces(C2)

Traces(A) = {A}
Above, juxtaposition denotes the concatenation of traces, the unary operator

∗ is the usual Kleene star of regular expressions, and the binary operator ��
denotes the shuffling of trace sets, i.e. T �� T ′ = {σ1σ

′
1 . . . σnσ′

n | σ1 . . . σn ∈
T ∧ σ′

1 . . . σ′
n ∈ T ′}. The empty trace will be denoted by ε. Both semantics can

be shown to be equivalent for finite behaviours: the finite traces of the transition
system defined by the operational semantics coincide with the traces defined by
the denotational semantics (up to occurrences of skip).

Well-Formed Choreographies. As mentioned, choreographies should enjoy a cou-
ple of properties to be useful in practice, e.g. to ensure distributed realizability
and soundness of endpoint projections. It is common practice to define a notion
of well-formed choreography and, possibly, syntactic restrictions to ensure well-
formedness. In our work, well-formedness is just needed for the correctness of
our type system and we hence provide a simple notion tailored for our purpose.

Definition 3 (well-formed choreography). Let C be a choreography. We say
that C is well-formed if the following conditions hold:

1. every occurrence of C1 | C2 in C should be such that en(C1) ∩ en(C2) = ∅;
2. all traces σ ∈ Traces(C) satisfy the following condition: If σ = σ′αβσ′′, with

α, β ∈ A then pn(α) ∩ pn(β) �= ∅ or σ′βασ′′ ∈ Traces(C).

Our notion of well-formedness is reminiscent of the semantic notion of well-
formedness used in [9] and some syntactic restrictions taken from [19]. Intu-
itively, well-formedness requires (1) no entity can be involved in both branches
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of a parallel composition, and (2) that the set of traces of a choreography is
closed under the transposition of actions involving disjoint principals. Note also,
that our notion of well-formedness is not strong enough to guarantee realisabil-
ity. For example, the choreography p . e->q . e’ : k ; r . e”->q . e’’’ : k (adapted
from examples of ill-formed choreographies of [19]) is well-formed according to
our notion, but cannot be realised due to the race condition on channel k. This is
not a problem: it just means that our technique applies to more choreographies
than needed in practice.

4 Information Flows in Choreographies

We provide in this section our notion of information flows and the mechanism
to instrument the semantics of choreographies with flow annotations.

Information Flows as Graphs with Interfaces. A flow F is essentially a relation
among entities, possibly expressing how entities influence or depend on each
other. We represent flows in this paper using graphs with interfaces [6,11] as they
provide an intuitive visual representation and elegant and well-defined notions
of flow composition.

A graph with a discrete interface (cf. Definition 11 in Sect. A) is denoted by
I i−→ G o←− O and is defined by an input interface I (a set of nodes), and output
interface O (a set of nodes), a body graph G and a pair i, o of injective mappings
from I and O to the nodes of G. A detailed presentation of graphs with interfaces
can be found in Sect.A.

Definition 4 (flow graph). A flow graph (or briefly a flow) is a graph with
interface I i−→ G o←− O.

Examples of flow graphs can be found in Figs. 1 and 9. The visual represen-
tation places the input and output interfaces to the left and to the right of the
body graph, respectively. The mappings are denoted with dotted lines, while
normal arrows are used for the edges. We use two sorts of nodes to distinguish
principals (•) from variables (◦). We neglect channels in our examples, for the
sake of simplicity, so we do not use any specific node sort for them.

As we have seen in the case studies of Sect. 2 we sometimes distinguish dif-
ferent kinds of information flows. A direct flow between two entities is denoted
by an arrow, but we sometimes use a specific terminology depending on the sort
of the source and the target of an edge. More precisely, we call an edge between
variables a data flow, an edge between processes a control flow, and edge from
a variable to a process an data-to-control flow and vice versa for control-to-data
flows. We also call flow to a path in a body graph. A path between variables
is called explicit flow if it does not contain any control point. Otherwise it is
called implicit flow. The input interface can be understood as the entities being
used in the flow, while the output interface can be seen as the entities being
provided by the flow. Note that the input and output mappings may not agree
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Fig. 9. Flows F1 (top left), Id{r,y′,z} (bottom left), F1⊗Id{r,y′,z} (mid) and F2 (right).

on a given entity η, see e.g. how the overwrite of variable of z is modelled in the
flow of Fig. 1.

In the following we denote the set of entities I ∪ O involved in a flow graph
F = I i−→ G o←− O by en(F ). Our flow graphs can be related to standard concepts
and terminology of information flow control. For instance, given a flow F = I i−→
G o←− O, we can define the set of influencers of a set of entities E ⊆ O, denoted
IF (E), as {η ∈ I | i(η) →+

G η′ ∧ η′ ∈ o(E)}, i.e. the set of input entities that
have a flow towards some entity in E exposed in the output of F . Conversely,
we can define the set of readers of a set of entities E ⊆ I, denoted RF (E), as
{η ∈ O | ∃η′ ∈ i(E)∧η′ →+

G o(η)}, i.e. the set of output entities that have a flow
from some entity in E exposed in the input of F . Here u →+

G v denotes that v
is reachable from u through a path of positive length in graph G.

Flow graphs are equipped with suitable operations such as the empty flow
0, a family of identities IdN indexed by a set of entities N (see e.g. Id{r,y′,z} in
the bottom left of Fig. 9), a binary (associative, commutative) parallel compo-
sition operation ⊗ (see e.g. F1 ⊗ Id{r,y′,z} in the middle of Fig. 9) and a binary
(associative) sequential composition operation ◦ (e.g. the flow graph in Fig. 1
can be obtained as the composition (F1 ⊗ Id{r,y′,z}) ◦ F2 of the flows in Fig. 9).
A precise definition of those operations can be found in Sect.A (taken from [15]),
which recasts the original presentations of [6,11] in the exact shape we need. The
intuitive idea is that the sequential composition of a flow F with a flow G is the
result of identifying the outputs of F with the inputs of G and merging their
body graphs accordingly. The resulting graph has the input interface of F as
input and the output of G as output. Instead, the parallel composition of a
flow F with a flow G is the result of identifying inputs of F with inputs of G
and outputs F with outputs G and merging their body graphs accordingly. The
resulting graph has as input (resp. output) interface the union of the input (resp.
output) interfaces of F and G.

Instrumenting the Semantics. We denote the set of all flows by F . The instru-
mentation of the semantics with flows is obtained by mapping actions in A into
flows via some suitable function flows : A → F .
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Fig. 10. Mapping of events into flows: explicit data flows

Figure 10 presents an example of such a mapping function, where v(e) =
{x1, . . . , xn} and v(e′) = {y1, . . . , ym}. In particular, the function represents an
annotation based on explicit data flows, where one is not interested in channels
or principals, but just in direct transfer of data in interactions and assignments.
The example function flows relies on a function lflows that defines the local flow
of an event α. Such local flow is composed in parallel with IEnt\en(α), i.e. the
identity on all entities not involved in α. The local flows for skip are defined to
be the empty graph (no flow at all). It is worth remarking that in those flows the
variables x or yi can belong to v(e) and hence coincide with some variable xi.
This kind of flow annotation can be useful, for instance, in the data providing
case study of Sect. 2.1. We will refer to this flow annotation by flowse.

Another example is depicted in Fig. 11. This flow annotation considers
explicit data flows and some implicit data and control flows. For example, the
local flows associated to conditions in decision points record the data-to-control
flow from the free variables of e to the principal p and the data flow to variable
x. Moreover, the flows for assignments and interactions are similar with the dif-
ference being that in interactions we record the mutual control flow between the
interacting principals. We call this flow annotation function flowse.

Yet another example can be found in Fig. 12. In this case, that we will refer to
as flowsa, we are interested in flows related to how processes directly access data
by either reading or writing variables. Note that, contrary to the previous cases,
we are not interested in observing the fact that a variable has been overwritten.
This is the kind of flow annotation that would make sense in the example we
saw in Sect. 2.2, related to the MapReduce computation, where one is interested
in controlling the locality of data accesses.

As we have seen, our approach provides some flexibility in the definition of
flow annotations. However, the soundness of our approach relies on some well-
formedness restrictions of those annotations.
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Fig. 11. Mapping of events into flows: explicit and implicit flows

Definition 5 (well-formed flow annotation). A flow annotation function
flows : A → F is well-formed iff ∀α ∈ A : flows(α) = F ⊗ IEnt\en(F ) ∧ en(F ) ⊆
en(α).

Intuitively, the idea is that a well-formed flow annotation associates a flow to
an event α which is composed by an arbitrary flow F on some entities occurring
in α and the identity on all other entities not occurring in F . It is easy to
see that the flow annotations of Figs. 10, 11 and 12 are well-formed. Note that
well-formedness also forbids the introduction of fresh entities outside Ent in the
interface of the defined flows. Of course, flow annotations are a doubly-sharped
mechanism: it provides a lot of flexibility to the information flow engineer, but it
also discharges on him the responsibility of specifying the local flows of interest.
As an extreme case consider that a flow annotation could be just defined as the
constant IdEnt. In this case, no flow would be observed and all policies would
be satisfied.

From now on, we restrict our attention to well-formed annotation functions.
Given a well-formed flow annotation function flows the flow-instrumentation
of the operational semantics of our language can be obtained as the relation
→ ⊆ C×F×C defined as {C

flows(α)−−−−→ C ′ | C
α−−→ C ′}. Similarly, the traces defined

by the denotational semantics can be transformed into flows by sequentially
composing the flows associated to the events of a trace.

Definition 6 (trace flows). The flows of a trace σ, denoted flows(σ), is given
by function flows : A∗ → F defined as

flows(ε) = IdEnt flows(σσ′) = flows(σ) ◦ flows(σ′)

The above definition does not define flows(α) to provide the afore mentioned
flexibility in the observation of flows in events. Function flows is lifted to set of
traces T and choreographies C in the obvious way, i.e. flows(T ) = {flows(σ) |



Discretionary Information Flow Control 441

Fig. 12. Mapping of events into flows: data access flows

σ ∈ T} and flows(C) = flows(Traces(C)). As a simple example, the flow in
Fig. 1 represents the flow of the only trace of the choreography C1 discussed
in the Introduction obtained with the mapping of events into flows defined in
Fig. 11.

5 Typing Choreographies

We represent information flow policies with flow graphs with the idea that a flow
graph denotes all flows that are allowed in a system.

Definition 7 (information flow policy). An information flow policy Π is a
graph with interface Ent i−→ G o←− Ent. The set of all policies is denoted by P.

It is worth to note that we require the input and output of a policy to
coincide with the set of all entities Ent of interest. We call a policy coherent if
i = o, i.e. if all entities are mapped to the same node in the body by both input
and output mappings. Note that when a policy F = Ent i−→ G o←− Ent agrees
in its input and output interfaces, we can rename some nodes in the body G
with their (unique) images in the interface, possibly after alpha-renaming some
internal nodes to avoid name clashes. This way we can provide the more compact
notation that we use some of our figures. An additional simplification that we do
in our graphical notation is that if a flow or policy is the identity on some entity
η, then we neglect η in the visual notation. For instance, in all our examples we
neglect the channels used in the choreographies.

We have already seen some examples of policies in Sect. 2, namely in Figs. 3
and 6. An additional example can be found in Fig. 13. It specifies a policy for
the data providing case study which extends the policy of Fig. 3 to implicit
flows. Figure 14, instead, provides two additional policies for the MapReduce
case study. The one on the left focuses on control flows and may be useful to
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Fig. 13. Policy Πs,2 in the Data Providing Service

control how principals depend on each other, e.g. in case of failure. The one on
the right is oriented to explicit data flows.

Fig. 14. Policies Πm,2 (left) and Πm,3 (right) for MapReduce

The following definition formalizes the notion of satisfaction of an information
flow policy by a choreography, resp. a set of traces, a decomposable trace, an
atomic trace, and an information flow. Here, a decomposable refers to the fact
that we are interested in observing all components (i.e. subtraces) of a trace and
atomic refers to the fact that we want to observe the trace as a whole.

Definition 8 (policy satisfaction). The set of policy satisfaction relations
|= : C ∪ 2A∗ ∪ A∗ ∪ F → P, � : A∗ → P, is defined by:

C |= Π iff Traces(C) |= Π
T |= Π iff ∀σ ∈ T : σ |= Π
σ |= Π iff σ = σ′′σ′σ′′′ ⇒ σ′ � Π
σ � Π iff flows(σ) |= Π
F |= Π iff ∀η, η′ ∈ en(Π) : iF (η) →∗

GF
oF (η′) ⇒ iΠ(η) →∗

GΠ
oΠ(η′)

Intuitively, the idea is that a choreography satisfies a policy Π if all its traces
satisfy the policy Π. A trace σ satisfies Π if no subtrace of σ introduces a flow
from an entity η to an entity η′ that is not allowed in Π.

Our type system statically checks if a choreography C satisfies a policy Π.
Our types are thus policies and our type judgements are of the form Ent � C : Π.
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Ent � C1 : Π Ent � C2 : Π

Ent � C1; C2 : Π

Ent � C1 : Π Ent � C2 : Π

Ent � C1 | C2 : Π

A |= Π

Ent � A : Π

e@p |= Π Ent � C1 : Π Ent � C2 : Π

Ent � if e@p then C1 else C2 : Π

e@p |= Π Ent � C1 : Π Ent � C2 : Π

Ent � while e@p do C1 then C2 : Π

Fig. 15. Type system

The type system is sound for coherent policies, i.e. policies whose input and
output interfaces agree.

Definition 9 (type system). The type system for judgements Ent � C : Π is
defined by the rules of Fig. 15.

The main result of our work is the soundness of the type system (cf.
Theorem 1). In order to prove such result we have first to prove the following
lemma that formalises the fact that trace concatenation preserves the satisfac-
tion of policies.

Lemma 1 (concatenation). Let σ1, σ2 ∈ A∗ be two traces and Π ∈ P a
coherent policy. If σ1 |= Π and σ2 |= Π then σ1σ2 |= Π.

Proof. The proof is by induction on the length of σ1 and σ2.

[σ1 = ε or σ2 = ε] These are trivial cases.
[σ1 = α1 and σ2 = α2, αi ∈ A]. To prove σ1σ2 |= Π we have to show that

σ � Π for all subtraces of α1α2. Those are four: ε, α1, α2 and α1α2. The
first three cases are trivial. The interesting case is the latter. The proof
is by contradiction. Suppose that α1α2 �|= Π. This means that there exist
two different entities η, η′ ∈ en(Π) such that η ∈ Rflows(α1α2)(η

′) but η /∈
RΠ(η′). Since αi |= Π, i ∈ {1, 2} we know that η �∈ Rflows(αi)(η

′). Hence, the
flow from η′ to η must have been introduced in the composition of the flows
of α1 and α2. There must exist an entity η′′ such that η′′ ∈ Rflows(α1)(η

′)
and η′′ ∈ Iflows(α2)(η). But since η′′ ∈ Ent (by well-formedness of flows) and
αi |= Π, i ∈ {1, 2} it must be the case that η′′ ∈ RΠ(η′) and η′′ ∈ IΠ(η).
Moreover, since Π s coherent, we know that i(η′′) = o(η′′). Hence Π must
be such that η ∈ RΠ(η′). This is a contradiction. Hence, σ1σ2 � Π. Since
we have shown that all subtraces of α1α2 satisfy Π we can conclude that
σ1σ2 |= Π.

[σ1 = α1σ
′
1, α1 ∈ A] We have to show that σ � Π for all subtraces σ of α1σ

′
1σ2.

We distinguish two cases (i) traces of the form σ′ with σ′σ′′ = σ1σ2 and (ii)
traces of the form α1σ

′ with σ′σ′′ = σ1σ2. Consider case (i) first. We know
that σ′

1 |= Π and σ2 |= Π. By induction, we can conclude that σ′
1σ2 |= Π.

Hence all sub-traces of σ1σ2 not starting with α1 satisfy Π. Consider now
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case (ii), i.e. traces of the form α1σ
′ with σ′σ′′ = σ1σ2. Again, we can apply

induction since α1 |= Π and σ′ |= Π (by case i). Thus we conclude that
σ1σ2 |= Π. ��

Theorem 1 (soundness). Let C ∈ C be a well-formed choreography and Π ∈ P
be a coherent policy. If Ent � C : Π then C |= Π.

Proof. The proof is by induction on the structure of C.

[C = A] This case is trivial since A |= Π is precisely the premise for typing A.
[C = C1;C2] By definition, every trace of C1;C2 is of the form σ1σ2 with

σi ∈ Traces(Ci), i ∈ {1, 2}. We have that σi |= Π, i ∈ {1, 2} by induction
since the typing rules for C1;C2 require Ent � Ci : Π, i ∈ {1, 2}. Hence, we
can apply Lemma 1 to conclude that σ1σ2 |= Π.

[C = C1 | C2] The proof of this case relies on well-formedness, which allows us
to transform every trace σ ∈ Traces(C1 | C2) into a trace σ′ in one of the
forms used in the above case, while having flows(σ) = flows(σ′).

We start proving that the transformation is possible and later prove that
it indeed preserves the flows. Every trace σ ∈ Traces(C1 | C2) is of the form
σ1,1σ1,2 . . . σn,1σn,2 with σ1,i . . . σn,i ∈ Traces(Ci), i ∈ {1, 2}. It is easy to see
if σ is of the form σ′σk,2σk+1,1σ

′′ with σk,2 = σ′
k,2α and σk+1,1 = βσ′

k+1,1,
with α, β ∈ A, we can transform σ into trace σ′′′ = σ′σ′

k,2βασ′
k+1,1σ

′′ which
belongs to Traces(C1 | C2) by conditions (1) and (2) of well-formedness.
Indeed, condition (1) requires α and β two involve disjoint entities (en(α) ∩
en(β)) and (2) ensures that transposing α and β in σ yields a trace that
belongs to Traces(C1 | C2).

It remains to show that σ and σ′′′ have the same flows. The main idea is
that flows(αβ) = flows(βα) since en(α) ∩ en(β) = ∅. This can be shown as
follows

flows(αβ) = flows(α) ◦ flows(β)
= (F ⊗ IdEnt\en(F )) ◦ (G ⊗ IdEnt\en(G)) (well-formed flows)

=

⎛

⎜
⎜
⎜
⎝

F
⊗
IdEnt\(en(F )∪en(G))
⊗
Iden(G)

⎞

⎟
⎟
⎟
⎠

◦

⎛

⎜
⎜
⎜
⎝

Iden(F )
⊗
IdEnt\(en(F )∪en(G))
⊗
G

⎞

⎟
⎟
⎟
⎠

(since en(F ) ∩ en(G) = ∅)

=

⎛

⎜
⎜
⎜
⎝

(F

(IdEnt\(en(F )∪en(G))

(Iden(G)

◦
⊗
◦
⊗
◦

Iden(F ))

IdEnt\(en(F )∪en(G)))

G)

⎞

⎟
⎟
⎟
⎠

(distribution)

= F ⊗ IdEnt\(en(F )∪en(G)) ⊗ G (identity)
= G ⊗ IdEnt\(en(F )∪en(G)) ⊗ F (commutativity)

from which we can apply the same equations (upwards, replacing G by F )
to obtain flows(βα).

Applying the above described transpositions in σ as much as needed
results in σ being rewritten into σ1σ2 with σi ∈ Traces(Ci), i ∈ {1, 2}. Since
Ent � Ci : Π, i ∈ {1, 2}, the proof schema based on the application of
Lemma 1 used in the above case can then be applied to conclude that C |= Π.
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[C = if e@p then C1 else C2] By definition, every trace σ in Traces
(if e@p then C1 else C2) is of the form e@p σ′ with σ′ ∈ Traces(Ci), i ∈
{1, 2}. The typing rule for C requires e@p |= Π and Ent � Ci : Π, i ∈ {1, 2}.
By induction we have Ci |= Π, i ∈ {1, 2} so that we can apply the Lemma 1
to conclude that e@p σ′ |= Π.

[C = while e@p do C1 then C2] This case is similar to the above one. ��
Let us now consider the choreographies P and M0,2 of our case studies, the

flow annotation functions flowse, flowsi, and flowsa and the policies Πs,1, Πs,2,
Πm,1, Πm,2 and Πs,3. For ease of notation, let us use the notation C |=f Π to
refer to C |= Π when flows is f .

One can easily see that the following satisfaction statements regarding the
choreography P of the identity-secured data providing service can be concluded
from our type system: P |=flowse

Πs,1, P |=flowse
Πs,2, and P |=flowsi

Πs,2. An
easy way to see this is to note that all events in the choreography (actions and
expressions used in the branching statements) satisfy the corresponding policy.
Instead the statement P |=flowsi

Πs,1 cannot be concluded. As a matter of fact,
policy Πs,1 is not satisfied by P, since Πs,1 does not allow implicit flows, that P
actually has. For instance, the flow annotation function flowsi would reveal an
implicit flow from my pwd to class that is not allowed by the policy Πs,1.

Fig. 16. Mapping of events into flows: control flows with temporal dependencies

Fig. 17. Policy Πm,4

Regarding the MapReduce case study, we can
conclude, for instance that M0,2 |=flowsa

Πm,1,
M0,2 |=flowse

Πm,3, and M0,2 |=flowsi
Πm,3. How-

ever, we cannot conclude that M0,2 |=flowsi
Πm,2

since flowsi requires us to observe data flows that
Πm,2 does not allow. A flow annotation function
like flowse but limited to control flows would then
allow us to check the policy.

Actually, the policy Πm,2 is more permissive
than it could be. It allows one to have dependen-
cies between all principals, including p1 and p3, whose respective controls do not
actually depend on each other in P. A more relaxed policy forbidding control
flow dependencies between p1 and p3 can be found in Fig. 17. Contrary to all
policies we have presented so far, policy Πm,4 is not coherent, i.e. it does not
agree in the interface and, thus, our type system cannot be applied. That is,
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some entities in the interface correspond to different nodes in the body graph.
This is essential to capture some information about the temporal order of flows.
It is easy to check that the policy allows flows from p1 to p0 and p2 but not
to p3.

Fig. 18. Control dependencies in MapReduce

To check policies like Πm,4 we
would have to consider the richer
control flow annotation flowsd of
Fig. 16 to avoid spurious flows.
Indeed, flow annotation functions
like flowse abstract away from
temporal information in the con-
trol flow. Such abstractions intro-
duce spurious flows between, for
instance, p1 and p3 whose respec-
tive controls do not depend on each
other. Instead, flowsd records some
basic information about the temporal order of interactions. Figure 18 illustrates
the flow of all maximal traces of choreography P. The policy Πm,4 would be
satisfied. For example, the above mentioned spurious flows between p1 and p3
are not present now. Indeed, p1 interacts directly with p0 and indirectly with p2
but only after p2 has finished interacting with p3. Extending our type system to
deal with such policies is subject of current work.

6 Related Works and Conclusion

The use of typing disciplines for security systems has a long tradition. The
recent years have seen an increasing interest in applying techniques based on
behavioural types to security analysis. We refer to [2] for a comprehensive survey
and limit our discussion to the most relevant and recent works in that area.

A first work worth mentioning is [7], which presents an approach for dealing
with non-interference properties in distributed systems where components inter-
act within multiparty sessions. Systems are described with a session calculus
featuring, among others, session creation, inter-session interaction, and session
delegation. The approach includes a session type system whose rules include
information flow requirements to ensure both behavioural and non-interference
properties. Another relevant work is presented in [14]. The work focuses on data
provenance, i.e. the problem of keeping track of how data flow and are processed.
The authors present a calculus to describe how processes use, consume and pub-
lish linked data. The approach is equipped with type systems for the calculus
to ensure mandatory access control properties based on security levels [14] and
role-based access control properties [13].

There are two main differences between the above discussed works and our
own work. The first one is our focus on discretionary information flow, instead of
other forms of information flow control (mandatory, role-based, non-interference,
etc.). A second difference lies in the specification languages used; our choreog-
raphy description language differs from the calculi used in the above mentioned
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works. It would not be trivial, for instance, to integrate our type system with the
type system of [7] as both focus on related but significantly different languages
and properties. We would also like to remark that our work is still in a prelimi-
nary phase and does not yet consider aspects of choreography realizability, local
projections and systems with multiple-sessions.

As a matter of fact, those aspects are part of our research agenda. We are
currently developing a suitable notion of local projections and a type system that
ensure that projections enjoy suitable semantic relations with choreographies,
from which we can conclude that local projections do not introduce flows not
specified in the choreography. The main contribution of the paper would then
be applied to ensure Π-secure distributed implementations.

We also plan to investigate the development of our approach in several direc-
tions, including the possibility to specify and check temporal aspects by extend-
ing our type system beyond coherent policies. We would also like to develop
an inference system to compute over- and under-approximations of information
flows, and to consider intransitive information flow properties. On the applica-
tion side, we plan to investigate the suitability of our approach to popular par-
allel programming frameworks such as MPI. There is indeed an urgent demand
of formal guarantees for systems developed in such frameworks [18] and some
flow analysis works already exist (e.g. [1,5]) also based on behavioural types
(e.g. [17]).

Acknowledgement. We would like to dedicate this work to José Meseguer, for his
inspiring and influencing works in the areas of Concurrency Theory, Algebraic Specifi-
cations and Security. We hope that José will understand (and forgive!) the absence of a
non-interference result in our work. The first author would like to express his gratitude
to José for honouring him with his friendship and giving him the unique experience
of scientific collaboration. The first author is also grateful to Fabrizio Montesi, Emilio
Tuosto and Marco Carbone for fruitful feedback on early versoins of this work, and to
the organizers of the BETTY COST Action for their gentle invitation to present an
early version of the work in a meeting.

A Graphs with Interfaces

We recall and adapt a few definitions concerning graphs, and their extension
with interfaces, referring to [6,11,15] for a more detailed presentation.

Definition 10 (graphs). A is a four-tuple 〈V,E, s, t〉 where V is the set of
nodes, E is the set of edges and s, t : E → V are the source and target functions.
A graph morphism is a pair of functions 〈fV , fE〉 preserving the source and target
functions, i.e. fV ◦ s = s ◦ fE and fV ◦ t = t ◦ fE.

Definition 11 (graphs with interfaces). A graph with interfaces is a span
of graph morphisms I i−→ G o←− O, where G is a body graph, I and O are the
input and output graph interfaces, and i : I → G, o : O → G are the input and
output graph morphisms. An interface graph morphism f : G ⇒ H is a triple
of graph morphisms 〈fI , f, fO〉, preserving the input and output morphisms.
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With an abuse of notation, we sometimes refer to the image of the input
and output morphisms as inputs and outputs, respectively, and we use the term
graph to refer to abbreviate graphs with interfaces. We restrict our attention to
graphs with discrete interfaces, i.e., such that their set of edges is empty.

The following definitions define the sequential and parallel composition of
graphs with interfaces, whose informal description can be found in Sect. 4.

Definition 12 (sequential composition of graphs). Let G = I i−→ G
j←−

J and G′ = J
j′−→ G′ o←− O be graphs with interfaces. Then, their sequential

composition is the graph G ◦ G′ = I i′−→ G′′ o′←− O, for G′′ the disjoint union
G�G′, modulo the equivalence on nodes induced by j(x) = j′(x) for all x ∈ NJ ,
and i′, o′ the uniquely induced arrows.

Definition 13 (parallel composition of graphs). Let G = I i−→ G o←− O

and H = I ′ i′−→ H o′←− O′ be two graphs with interfaces. Then, their parallel
composition is the gwdi G ⊗ H = (I ∪ I ′) i′′−→ G′ o′′←− (O ∪ O′), for G′ the
disjoint union G � H, modulo the equivalence on nodes induced by o(y) = o′(y)
for all y ∈ NO ∩NO′ and i(y) = i′(y) for all y ∈ NI ∩NI′ , and i′′, o′′ the uniquely
induced arrows.

With an abuse of notation, the set-theoretic operators are defined component-
wise. The operations are concretely defined, modulo the choice of canonical rep-
resentatives for the set-theoretic operations: the result is independent of such a
choice, up-to isomorphism of the body graphs.

A graph expression is a term over the syntax containing all graphs with
discrete interfaces as constants, and parallel and sequential composition as binary
operators. An expression is well-formed if all occurrences of those operators
are defined for the interfaces of their arguments, according to Definitions 12
and 13; its interfaces are computed inductively from the interfaces of the graphs
occurring in it, and its value is the graph obtained by evaluating all operators
in it. For the axiomatic properties of the operations (e.g. associativity, identity
of ◦, associativity, commutativity and identity of ⊗) we refer to [6,11].
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Abstract. Rewriting Logic is a simply, flexible, and powerful framework
for specifying and analysing concurrent systems. Reachability Logic is a
recently introduced formalism, which is currently used for defining the
operational semantics of programming languages and for stating prop-
erties about program executions. Reachability Logic has its roots in a
wider-spectrum framework, namely, in Rewriting Logic Semantics. In
this paper we show how Reachability Logic can be adapted for stating
properties of transition systems described by Rewriting-Logic specifica-
tions. We propose a procedure for verifying Rewriting-Logic specifica-
tions against Reachability-Logic properties. We prove the soundness of
the procedure and illustrate it by verifying a communication protocol
specified in Maude.

1 Introduction

Since its original formulation [1] by José Meseguer, Rewriting Logic (rwl) has
been defined both as a semantical framework, suitable for describing concurrent
and distributed systems, and as a logical framework, i.e. a meta-logic where other
logics can be naturally represented. Both directions have dynamic and strong
development. A concurrent system is specified by a rewrite theory (Σ,E,R),
where Σ defines the syntax of the system and of its states, E defines the states
of the system as an algebraic data type, and R is a set of rewriting rules defining
the local transitions of the system. rwl deduction consists of a set of inference
rules used to prove sequents t → t′, meaning that the term-pattern t “becomes”
t′ by concurrently applying the rewrite rules R modulo the equations E. Here
the relation “becomes” refers the dynamics of the specified concurrent system.

Maude [2] is the most well-known and most used implementation of rwl.
Maude is accompanied by a set of tools for analysing rewrite theories and the
systems they describe.

Reachability Logic (hereafter, rl) was introduced in a series of papers [3–6] as
means for specifying the operational semantics of programming languages and for
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stating reachability properties between states of program executions. Reachabil-
ity Logic is a very promising framework. It has emerged from the Rewriting Logic
Semantics project introduced by José Meseguer and Grigore Roşu [7]. Briefly, an
rl formula ϕ ⇒ ϕ′ expresses reachability relationships between two sets of states
of a system, denoted by the patterns ϕ and ϕ′ respectively. Depending on the
interpretation of formulas, the relationships can express either programming-
language semantic steps, or safety properties of programs in the languages in
question. Several widely-used languages (including C [8], Java [9]) have been
completely specified using an rl-based semantics in the K tool [10], and non-
trivial programs have been proved using an implementation of rl 1.

Contributions. In this paper we show that rl can be used beyond its (by now,
traditional) domain of programming languages. Specifically, we adapt rl for
stating properties of systems described in Rewriting Logic [11] (hereafter, rwl).
We propose a procedure for proving rl properties of rwl specifications, we prove
the soundness of our procedure, and illustrate its use by verifying rl properties
of a communication protocol written in Maude [2].

Our contribution with respect to rl is a proved-sound verification procedure.
Previous works [3–6] include sound and relatively complete proof systems for
various versions of rl, but these systems lack strategies for rule applications,
making them unpractical for verification; our procedure can be seen as such a
strategy.

With respect to rwl, our contribution is the adaptation of the above pro-
cedure for verifying rwl theories against reachability properties ϕ ⇒ ϕ′, which
say that all terminating executions starting from a state in the set ϕ eventually
reach a state in the set ϕ′. Both ϕ and ϕ′ denote possibly infinite sets of states.
We note that rl properties for rwl theories are different from the reachability
properties that can be checked in Maude using the search command or the
Linear Temporal Logic (ltl) model checker [2]. The difference resides in the
possibility of using first-order logic for constraining the initial and the final state
terms, and in the interpretation of rl formulas. Specifically, the version of rl
that we consider (the all-paths interpretation) corresponds to a subset of ltl
interpreted on finite paths, whereas Maude’s ltl model checker uses the stan-
dard (infinite-paths) interpretation of ltl; and both the model checker and the
search command are bound to checking reachability properties starting from
finitely many initial states by exploring finitely many execution paths.
Related work. We focus only on related verification approaches for rwl spec-
ifications. These fall under the usual classification of verification techniques:
algorithmic ones, which essentially consist in using an automatic model che-
cker; deductive ones, which involve an interaction with a theorem prover; and
abstraction-based ones, which consist in first reducing the state-space of a sys-
tem from unmanageable (e.g., infinite/large) to manageable (e.g., finite/small),
a step that typically involves human interaction, and then using a model checker
on the reduced system.
1 Available at http://www.matching-logic.org/index.php/Special:MatchCOnline.
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Algorithmic techniques include Maude’s finite-state ltl model checker [12]
with its more recent extensions to the temporal logic of rewriting [13], and a
narrowing-based symbolic model-checker for handling classes of infinite-state
systems [14]. Among the deductive techniques, [15,16] propose two different
approaches for reducing safety properties of rwl to equational reasoning, and
then using equational reasoning tools for proving the resulting encoded prop-
erties. We note that the encoding of rwl into equational logic was proposed
earlier in [17] for defining the semantics of rwl. Among the abstraction-based
techniques, equational abstractions [18], and algebraic simulations [19] are key
contributions.

Finally, our verification procedure uses an operation called derivative that
consists in computing the symbolic successors of a given set of states (represented
by a formula). This symbolic computation is inspired from [20,21].
Outline. After preliminaries in Sect. 2, we introduce in Sect. 3 the notion of deriv-
ative, which is essential for our approach. We then introduce in Sect. 4 our pro-
cedure for verifying rl properties on transition systems also defined by rl for-
mulas, and state its soundness. In Sect. 5, we adapt our approach to transition
systems defined by rwl theories. We illustrate in Sect. 6 the usability of our pro-
cedure by applying it to a communication protocol described in Maude. Proofs
of the technical results are included in an Appendix.

2 Preliminaries

2.1 Matching Logic

We recall the syntax and the semantics of Matching Logic (ml) as presented
in [3]. Since ml is based on the many-sorted first-order logic (fol), we recall first
the basic definitions from fol.

Given S a set of sorts, an S-sorted first order signature Φ is a pair (Σ,Π),
where Σ is an algebraic S-sorted signature and Π is an indexed set of the form
{Πw | w ∈ S∗} whose elements are called predicate symbols, where π ∈ Πw

is said to have arity w. A Φ-model consists of a Σ-algebra M together with a
subset Mp ⊆ Ms1 × · · · × Msn

for each predicate p ∈ Πw, where w = s1 . . . sn.
Next, we define the syntax of fol formulas over a first order signature Φ =

(Σ,Π) and a possible infinite S-indexed set of variables Var . We let S denote
the set of sorts in Φ and TΣ(Var) the algebra of Σ-terms with variables in Var .

The set of Φ-formulas is defined by

φ : := � | p(t1, . . . , tn) | ¬φ | φ ∧ φ | (∃V )φ

where p ranges over predicate symbols Π, each ti ranges over TΣ(Var) of appro-
priate sort, and V over finite subsets of Var .

Given a first order Φ-model M ,a Φ-formula φ, and a valuation ρ : Var → M ,
the satisfaction relation ρ |= φ is defined as follows:
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1. ρ |= �;
2. ρ |= p(t1, . . . , tn) iff (ρ(t1), . . . , ρ(tn)) ∈ Mp;
3. ρ |= ¬φ iff ρ |= φ does not hold;
4. ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2;
5. ρ |= (∃V )φ iff there is ρ′ : Var → M with ρ′(X) = ρ(X), for all X 	∈ V ,

such that ρ′ |= φ.

A formula φ is valid in M , denoted by M |= φ, if it is satisfied by all valuations ρ.
We recall below the ml concepts and results used in this paper. Their pre-

sentation is based on [3].

Definition 1 (ML Formulas). An ml signature Φ = (Σ,Π,State) is a first-
order signature (Σ,Π) together with a distinguished sort State for states. The
set of ml-formulas over Φ is defined by

ϕ : := π | � | p(t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | (∃V )ϕ

where the basic pattern π ranges over TΣ,State(Var), p ranges over predicate
symbols Π, each ti ranges over TΣ(Var) of appropriate sorts, and V over finite
subsets of Var.

The sort State is intended to model system states. The free occurrence of vari-
ables in ml formulas is defined as usual (i.e., like in fol) and we let FreeVars(ϕ)
denote the set of variables freely occurring in ϕ. We often use particular ml for-
mulas ϕ � π ∧ φ, where π represents a state and φ is a fol formula used for
constraining this state.

Example 1. Assume that S includes the sorts Nat ,State, Σ includes a binary
operation symbol 〈 , 〉 : Nat × Nat → State, and Π the predicate symbols div
and > , with arguments of sort Nat . Then ϕ � 〈x, y〉∧(∃z)((z > 1)∧div(z, x)∧
div(z, y)) is an ml formula. We have FreeVars(ϕ) = {x, y}.

Definition 2 (ML satisfaction relation). Given Φ = (Σ,Π,State) an ml
signature, M a (Σ,Π)-model, ϕ an ml formula over Φ, γ ∈ MState a state, and
ρ : Var → M a valuation, the satisfaction relation (γ, ρ) |= ϕ is defined as
follows:

1. (γ, ρ) |= π iff ρ(π) = γ;
2. (γ, ρ) |= �;
3. (γ, ρ) |= p(t1, . . . , tn) iff (ρ(t1), . . . , ρ(tn)) ∈ Mp;
4. (γ, ρ) |= ¬ϕ iff (γ, ρ) |= ϕ does not hold;
5. (γ, ρ) |= ϕ1 ∧ ϕ2 iff (γ, ρ) |= ϕ1 and (γ, ρ) |= ϕ2; and
6. (γ, ρ) |= (∃V )ϕ iff there is ρ′ : Var → M with ρ′(X) = ρ(X), for all X 	∈ V ,

such that (γ, ρ′) |= ϕ.

Example 2. Let M be a model defined such that MNat is the set of natural num-
bers, M< is the inequality “greater than” over natural numbers, and Mdiv (m,n)
holds iff m divides n. Let ϕ denote the ml formula 〈x, y〉∧((∃z)(z > 1)∧div(z, x)∧
div(z, y)). If we consider ρ(x) = 4 and ρ(y) = 6 then we have (〈4, 6〉, ρ) |= ϕ
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because ρ(〈x, y〉) = 〈4, 6〉 and ρ |= ((∃z)(z > 1) ∧ div(z, x) ∧ div(z, y)). We do
not have (〈3, 5〉, ρ) |= ϕ because ρ(〈x, y〉) 	= 〈3, 5〉. Even if we consider ρ′(x) = 3
and ρ′(y) = 5 we still have (〈3, 5〉, ρ′) 	|= ϕ because there is no m greater than 1
such that Mdiv (m, 3) and Mdiv (m, 5) hold.

Definition 3 (FOL encoding of ML). If ϕ is an ml-formula then ϕ=? is the
fol formula (∃z)ϕ′, where ϕ′ is obtained from ϕ by replacing each basic pattern
occurrence π with z = π, and z is a variable that does not occur in ϕ.

Example 3. Here are a few examples of ml formulas and their fol encodings:

ϕ ϕ=?

(π1 ∧ φ1) ∨ (π2 ∧ φ2) (∃z)((z = π1 ∧ φ1) ∨ (z = π2 ∧ φ2))
¬π (∃z)¬(z = π)
π1 ∧ ¬π2 (∃z)((z = π1) ∧ ¬(z = π2))
π ∨ ¬π (∃z)(z = π ∨ ¬(z = π))

The relationship between ml formulas and their fol encodings is given by
the following result:

Proposition 1. ρ |= ϕ=? iff there is γ such that (γ, ρ) |= ϕ.

The following proposition is needed later for our soundness result.

Proposition 2. If φ is a fol (i.e. structureless) formula, then (φ ∧ ϕ)=? is
equivalent to φ ∧ ϕ=?. Moreover, if ρ |= φ and (γ, ρ) |= ϕ then (γ, ρ) |= φ ∧ ϕ.

Example 4. We consider first an ml formula including two state terms. Let ϕ
denote the ml formula 〈x, y〉 ∧ x < 5 ∧ 〈u, v〉 ∧ 8 < v. Then ϕ=? is equivalent
to (∃z)z = 〈x, y〉 ∧ z = 〈u, v〉 ∧ x < 5 ∧ 8 < v, which in turn is equivalent to
〈x, y〉∧ = 〈u, v〉∧x < 5∧8 < v. We have ρ |= ϕ=? iff ρ(〈x, y〉) = ρ(〈u, v〉)∧ρ(x) <
5 ∧ ρ(v) > 8 iff (γ, ρ) |= ϕ, where γ = ρ(〈x, y〉) = ρ(〈u, v〉).

If ϕ1 is an ml formula not including a state term (i.e., it is structureless
according to ml terminology), then ϕ=?

1 is the same with ϕ1.

2.2 Reachability Logic

In this section we recall reachability-logic formulas, the transition systems that
they induce, and their all-paths interpretation [6]. We consider a fixed ml signa-
ture Φ = (Σ,Π,State), a set of variables Var , and a fixed Φ-model M .

Definition 4 (RL Formulas). An rl formula is a pair ϕ ⇒ ϕ′ of ml-formulas.

Definition 5 (Transition-System Specification). An rl transition-system
specification is a set S of rl-formulas. The transition system defined by S
over M is (MState ,⇒S), where ⇒S = {(γ, γ′) | (∃ϕ ⇒ ϕ′ ∈ S)(∃ρ)(γ, ρ) |=
ϕ ∧ (γ′, ρ) |= ϕ′}. We write γ ⇒S γ′ for (γ, γ′) ∈ ⇒S .
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Example 5. The following set of rules is meant to compute the gcd of two natural
numbers:

S = {〈x, y〉 ∧ x > y ∧ y > 0 ⇒ (∃k)〈y, x − k ∗ y〉 ∧ x ≥ k ∗ y ∧ k > 0,

〈x, y〉 ∧ y ≥ x ⇒ 〈y, x〉}
We further assume that M interprets + and ∗ as being the usual operations
over natural numbers; m − n is the difference between m and n, if m > n, or
0, otherwise. Examples of transitions are: 〈8, 2〉 ⇒S 〈2, 0〉 as instance of the first
rule, and 〈8, 10〉 ⇒S 〈10, 8〉 and 〈2, 2〉 ⇒S 〈2, 2〉 as instances of the second rule.

In the sequel we consider a fixed transition system (MState ,⇒S).

Definition 6 (Execution Paths). An execution path is a (possibly infinite)
sequence of transitions τ � γ0 ⇒S γ1 ⇒S · · · .

If i ≥ 0 then τ |i.. is the execution path consisting of the (possibly infinite)
subsequence starting from γi, if any. An execution path is complete iff it is not
a strict prefix of an another execution path.

A pair (τ, ρ), consisting of an execution path τ � γ0 ⇒S · · · and a valuation
ρ, starts from an ml formula ϕ if (γ0, ρ) |= ϕ.

Example 6. Examples of executions are τ � 〈8, 10〉 ⇒S 〈10, 8〉 ⇒S 〈8, 2〉 ⇒S
〈2, 0〉 and τ ′ � 〈8, 10〉 ⇒S 〈10, 8〉 ⇒S 〈8, 2〉 ⇒S 〈2, 2〉 ⇒S 〈2, 2〉 ⇒S · · · . Both
executions are complete.

Since an infinite execution path cannot be the prefix of an another one, it
follows that infinite execution paths are complete and hence the above definition
is slightly different from that given in [6].

Definition 7 (All-Paths Interpretation of rl formulas). We say that a
pair (τ, ρ) satisfies an rl formula ϕ ⇒ ϕ′, written (τ, ρ) |= ϕ ⇒ ϕ′, iff (τ, ρ)
starts from ϕ and one of the following two conditions holds: there exists i ≥ 0
such that (γi, ρ) |= ϕ′ or τ is infinite. We say that ⇒S satisfies ϕ ⇒ ϕ′, written
⇒S |= ϕ ⇒ ϕ′, iff (τ, ρ) |= ϕ ⇒ ϕ′ for all (τ, ρ) starting from ϕ with τ complete.

We let [[ϕ ⇒ ϕ′]] � {τ | (∃ρ)(τ, ρ) |= ϕ ⇒ ϕ′}. If F is a set of rl formulas,
then [[F ]] =

⋃
ϕ⇒ϕ′∈F [[ϕ ⇒ ϕ′]].

Example 7. An rl formula specifying that any execution path satisfying it com-
putes the greatest common divisor (gcd) is 〈x, y〉 ⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y),
where gcd is a predicate symbol with the interpretation: Mgcd(d,m, n) holds iff d
is the gcd of m and n. If ρ(x) = 10, ρ(y) = 8, τ and τ ′ are the execution paths
defined in Example 6, then both (τ, ρ) and (τ ′, ρ) satisfy the given formula.

The definition of all-paths interpretation of ml formulas given above is slightly
different from that given in [6], where ⇒S |= ϕ ⇒ ϕ′ iff (τ, ρ) |= ϕ ⇒ ϕ′ for all
(τ, ρ) starting from ϕ with τ finite and complete. By contrast, our definition lets
infinite paths satisfy formulas vacuously. The infinite paths are introduced from
technical reasons,e.g., in order to prove (τ, ρ) |= ϕ ⇒ ϕ′ we do not need to prove
or know that τ is finite and complete.
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2.3 Rewrite Theories

In this paper we propose a new approach for analysing rewrite theories. Our app-
roach is dedicated to rewrite theories that model systems having at least some
terminating executions, since nonterminating executions satisfy rl formulas vac-
uously. Communication protocols, such as the one we illustrate our approach on
later in the paper, are an example of such systems. A counterexample are reac-
tive systems, which (in the ideal case) execute forever in interaction with their
environment.

Here we briefly recall the definition for (a particular case of) rewrite theo-
ries and their rewriting relation. A rewrite theory R = (Σ,E ∪ A,R) consists
of a signature Σ, a set of equations E, a set of axioms A, e.g., associativity,
commutativity, identity or combinations of these, a set of rewrite rules R of the
form l → r if b, where l and r are terms with variables and b is a term of a
distinguished sort Bool. We further assume that there is a special constant true
of sort Bool.

In this paper we shall consider rewrite theories R = (Σ,E ∪ A,R) with a
distinguished sort State such that R is topmost w.r.t. State. Moreover, the actual
theories R that we can analyse impose some additional technical restrictions on
their components, which are briefly discussed in Sect. 5.

We use the standard notation for rwl artefacts: =E∪A denotes the equality
modulo the equations given by E and A, TΣ,E∪A(X) denotes the set of =E∪A-
equivalences classes of Σ-terms with variables in X, TΣ,E∪A � TΣ,E∪A(∅) is the
set of =E∪A-equivalences classes of ground Σ-terms, and FreeVars(t) denotes the
set of variables occurring in the term t2. The relation →R denotes the one-step
rewriting relation defined by applying a rule from R modulo axioms E ∪ A over
ground terms of sort State: [u] →R [v] iff there are a rule l → r if b in R and a
(ground) substitution σ : FreeVars(l, r, b) → TΣ,E∪A such that σ(l) =E∪A σ(u),
σ(r) =E∪A σ(v), and σ(b) =E∪A true.

3 Derivatives of ML and RL Formulas

The notion of derivative is essential for our approach. Roughly speaking, the
derivative of a formula specifies states/execution paths obtained from those sat-
isfying the initial formula after executing one step. For the remaining part of this
section we consider a fixed transition system specification S and its associated
transition system (MState ,⇒S) over a fixed model M .

Assumption 1. In what follows we consider only ml formulas ϕ with the fol-
lowing property: if ϕ does not occur as a member of a rule in S and ϕl ⇒ ϕr ∈ S
then FreeVars(ϕ) ∩ FreeVars(ϕl, ϕr) = ∅. This is not a real restriction since the
free variable in rules can always be renamed.
2 For the sake of uniformity, we keep the notation FreeVars(t) for the set of variables

occurring in the term t. This is a consistent notation since all occurrences of variables
in term are considered as being free. FreeVars(t1, t2) is FreeVars(t1) ∪FreeVars(t2).
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Definition 8 (Semantic Definition of Derivatives for rl Formulas). We
say that ϕ1 ⇒ ϕ′ is a S-derivative of ϕ ⇒ ϕ′ if for all (τ1, ρ) |= ϕ1 ⇒ ϕ′ there
is (τ, ρ) |= ϕ ⇒ ϕ′ such that τ1 = τ |1...

Example 8. An S-derivative for 〈x, y〉 ⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y) is the fol-
lowing formula: 〈y, x − y〉 ∧ x > y ∧ y > 0 ⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y).

Definition 9 (Complete Sets of Derivatives). A set D of S-derivatives of
ϕ ⇒ ϕ′ is complete iff [[ϕ1 ⇒ ϕ′]] ⊆ [[D]] for each S-derivative ϕ1 ⇒ ϕ′ of
ϕ ⇒ ϕ′.

Example 9. The set

{(∃k)〈y, x − k ∗ y〉 ∧ y > 0 ∧ x ≥ k ∗ y ∧ k > 0 ⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y),
〈y, x〉 ∧ y ≥ x ⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y)}

is a complete set of S-derivatives for 〈x, y〉 ⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y).

The next definition and lemma provide us with syntactical means of com-
puting complete sets of derivates for rl formulas.

Definition 10 (Syntactic Definition of Derivative for RL Formulas). If
ϕ is an ml formula then

ΔS(ϕ) � {(∃FreeVars(ϕl, ϕr))(ϕl ∧ ϕ)=? ∧ ϕr | ϕl ⇒ ϕr ∈ S}.
If ϕ ⇒ ϕ′ is an rl-formula then

ΔS(ϕ ⇒ ϕ′) � {ϕ1 ⇒ ϕ′ | ϕ1 ∈ ΔS(ϕ)}.

Lemma 1. If ϕ1 ∈ ΔS(ϕ) then ϕ1 ⇒ ϕ′ is an S-derivative of ϕ ⇒ ϕ′.

Lemma 2. Let ϕ1 ⇒ ϕ′ be an S-derivative of ϕ ⇒ ϕ′, τ1 be an execution path
and ρ a valuation. If (τ1, ρ) |= ϕ1 ⇒ ϕ′ then there is ϕ′

1 ∈ ΔS(ϕ) such that
(τ1, ρ) |= ϕ′

1 ⇒ ϕ′.

From Lemmas 1 and 2 we directly obtain:

Proposition 3. ΔS(ϕ ⇒ ϕ′) is a complete set of S-derivatives for ϕ ⇒ ϕ′.

Example 10.

ΔS(〈x, y〉∧y ≥ 0)={(∃x′, y′, k)〈y′, x′−k ∗ y′〉 ∧ 〈x′, y′〉=〈x, y〉 ∧ y′ > 0 ∧ x′ > y′

∧ x′ ≥ k ∗ y′ ∧ k > 0 ∧ y ≥ 0,

(∃x′, y′)〈y′, x′〉 ∧ 〈x′, y′〉 = 〈x, y〉 ∧ y′ ≥ x′ ∧ y ≥ 0},

which can be simplified to

ΔS(〈x, y〉 ∧ y ≥ 0) = {(∃k)〈y, x − k ∗ y〉 ∧ y > 0 ∧ x ≥ k ∗ y ∧ k > 0,

〈y, x〉 ∧ y ≥ x ∧ y ≥ 0},

using the implications M |= 〈x′, y′〉 = 〈x, y〉 −→ (x = x′ ∧ y = y′), M |= (x ≥
k ∗ y ∧ k > 0) −→ x > y and M |= y > 0 −→ y ≥ 0, where M is the model
defined in the previous examples, and −→ is the usual implication in fol.

ΔS(〈x, y〉 ⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y)) is the set given in Example 9.
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The following definition of S-derivability is used in our verification procedure
for rl formulas. The lemma following it gives an equivalent characterisation in
terms of fol, which enables the checking of S-derivability using smt solvers.

Definition 11 (S-derivability of ML-formulas). An ml formula ϕ is S-
derivable iff there is at least a transition starting from it, i.e., there exist a
model (γ, ρ) |= ϕ and a transition γ ⇒S γ1.

Lemma 3. ϕ is S-derivable iff
∨

ϕ1∈ΔS(ϕ) ϕ=?
1 is satisfiable.

Lemma 3 also shows the strong relationship between the S-derivability of a
ml formula ϕ and the S-derivatives of rl-formulas ϕ ⇒ ϕ′. Hence it does make
sense to name the elements of the set ΔS(ϕ) as being S-derivatives of ϕ.

The notion of totality, defined below, is essential for the soundness of our
verification procedure. Intuitively, a transition-system specification S is total if
its rules cover all models (γ, ρ) of any S-derivable formula ϕ. For instance, if
〈x, y〉 ∧ y 	= 0 ⇒ 〈y, x% y〉 ∈ S then in order to be total S must also include a
rule for the case y = 0.

Definition 12. S is total iff for for each S-derivable ϕ and each pair (γ, ρ) such
that (γ, ρ) |= ϕ, there is γ1 such that γ ⇒S γ1.

Note the difference between S-derivability and totality: S-derivability requires
to have at least one transition starting from ϕ and the totality requires to have at
least one transition starting from γ for any model (γ, ρ) of ϕ.

The next result enables the use of sit solvers for checking totality.

Proposition 4. S is total iff for each S-derivable ϕ,

M |= ϕ=? −→
∨

ϕ1∈ΔS(ϕ)

ϕ=?
1 .

We note that in general smt solvers do not support theories for high-level alge-
braic structures. However, in practice, one can either introduce the theories in
the solver, or use simplifications rules before sending the formulas to the solver.

4 A Procedure for Verifying RL Properties

We now introduce our procedure for verifying rl properties on transition systems
also defined by rl formulas. We assume given an ml signature Φ and Φ-model M .

The soundness result, stated below, says that if the procedure returns success
when presented with a given input (consisting of a transition system rl specifica-
tion S, a set of goals G0, and the S-derivatives of G0, then the transition system
⇒S satisfies all the goals. We note that this result is not a trivial consequence of
the soundness of the rl proof system [6]; our initial attempts at proving soundness
by reducing it to the soundness of the rl proof system showed that one step of our
procedure corresponds to several (many) steps of the rl proof system. Thus, the
soundness of several nontrivial derived rules of the rl proof system would have
to be proved first before attempting to prove the soundness of our procedure. We
thus opted for a direct proof.
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Fig. 1. rl verification procedure.

Theorem 1 (Soundness). Let prove be the procedure given in Fig. 1. Assume
that S is total. Let G0 be such that for each ϕc ⇒ ϕ′

c ∈ G0, ϕc is S-derivable
and satisfies FreeVars(ϕ′

c) ⊆ FreeVars(ϕc). If prove(S, G0,ΔS(G0)) returns
success then ⇒S |= G0.

Example 11. Let S be the rl specification defined in Example 5 and G0 �
{ϕ0 ⇒ ϕ′

0}, where ϕ0 ⇒ ϕ′
0 is

〈x, y〉 ∧ y ≥ 0 ⇒ (∃x′, y′)〈x′, y′〉 ∧ gcd(x′, x, y).

We illustrate in a step-by-step manner the procedure call prove(S, G0, G), where
G is initially ΔS(G0) = {ϕ1 ⇒ ϕ′

0, ϕ2 ⇒ ϕ′
0}, and

ϕ1 � (∃k)〈y, x − k ∗ y〉 ∧ y > 0 ∧ x ≥ k ∗ y ∧ k > 0 ⇒ ϕ′
0,

ϕ2 � 〈y, x〉 ∧ y ≥ x ∧ y ≥ 0 ⇒ ϕ′
0}.

Let us consider that ϕ1 ⇒ ϕ′
0 is the current chosen goal from G. Obviously,

M |= ϕ1 −→ ϕ′
0 does not hold. Since M |= x ≥ k ∗y −→ x−k ∗y ≥ 0, we obtain

M |= ϕ1 −→ (∃x′, y′)〈x′, y′〉 ∧ y′ ≥ 0 (i.e. the condition of the if statement at
line 4 holds) and hence the goal ϕ1 ⇒ ϕ′

0 is replaced with ϕ11 ⇒ ϕ′
0 by the

statement in line 5, where

ϕ11 � (∃x1, y1, x
′
1, y

′
1, k)〈x′

1, y
′
1〉 ∧ gcd(x′

1, x1, y1) ∧ 〈y, x − k ∗ y〉 = 〈x1, y1〉
∧ y > 0 ∧ x ≥ k ∗ y ∧ k > 0

Since M |= (gcd(x′, y, x − k ∗ y) ∧ k > 0 ∧ x ≥ k ∗ y) −→ gcd(x′, x, y), it
follows that M |= ϕ11 −→ ϕ′

0 and the goal ϕ11 ⇒ ϕ′
0 is removed from G by the

if statement in line 2.
Now the only goal in G is ϕ2 ⇒ ϕ′

0. It is easy to see that M 	|= ϕ2 −→ ϕ′
0

and M 	|= ϕ2 −→ (∃FreeVars(ϕ′
0))ϕ

′
0, i.e. the conditions on then lines 3 and 4

do not hold. We have ΔS(ϕ2 ⇒ ϕ′
0) = {ϕ21 ⇒ ϕ′

0, ϕ22 ⇒ ϕ′
0}, where

ϕ21 � (∃k)〈x, y − k ∗ x〉 ∧ x > 0 ∧ y ≥ k ∗ x ∧ k > 0 ∧ y > x ⇒ ϕ′
0,

ϕ22 � 〈x, y〉 ∧ x ≥ y ∧ y ≥ x ∧ y ≥ 0 ⇒ ϕ′
0}.
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Fig. 2. The graph G corresponding to the prove procedure call for Example 11

The ϕ21 ⇒ ϕ′
0 is processed in the same way like ϕ1 ⇒ ϕ′

0. Since M |= ϕ22 −→
(∃x′, y′)〈x′, y′〉∧y′ ≥ 0 and hence the goal ϕ22 ⇒ ϕ′

0 is replaced with ϕ221 ⇒ ϕ′
0

by the if statement in line 4, where

ϕ221 � (∃x1, y1, x
′
1, y

′
1, k)〈x′

1, y
′
1〉 ∧ gcd(x′

1, x1, y1) ∧ 〈x, y〉 = 〈x1, y1〉
∧ x ≥ y ∧ y ≥ x ∧ y ≥ 0

It is easy to see that M |= ϕ221 −→ ϕ′
0 and hence the goal ϕ221 ⇒ ϕ′

0 is
removed from G by the if statement in line 2.

Now the set of current goals G is empty and the execution of the proce-
dure call prove(S, G0,ΔS(G0)) returns success. The execution of the proce-
dure prove corresponding to this call is graphically represented in Fig. 2: the
sinks correspond to the implications on line 3, the forward arrows correspond to
the calls on line 7, and the backward arrows correspond to the calls on line 5 in
the procedure. This graph covers the symbolic executions starting from ϕ0.

Remark 1. A sound approximated check for validity statements M |= ϕ is a pro-
cedure that, when presented with M and ϕ, if it answers true then M |= ϕ.
We conjecture that Theorem 1 still holds when one uses sound approximated
checks for the various validity statements occurring in the procedure (includ-
ing S-derivability and totality of S, which amount to validity, cf. the previous
section). Approximated checks, such as those implemented in smt solvers, are
required here since exact checks do not exist due to undecidability issues.

Remark 2. Theorem 1 says nothing about executions of the procedure that
return failure or that do not terminate. Such outcomes may mean either
⇒S 	|= G0, or ⇒S |= G0 but the information contained in the goals G0 is not suffi-
cient for proving them, or, again, that the approximation induced by the validity
checkers was too coarse. It is the user’s burden to come up with a set of goals
containing enough information such that the procedure terminates successfully.

This is similar to proving loop invariants in imperative programs, which
requires users to provide a strong-enough invariant (i.e., one that can be proved).
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Remark 3. Unlike the original proof system [6] we do not aim at (relative) com-
pleteness for our procedure. The relative completeness result is a very nice but
essentially theoretical construction, which is based on strong assumptions (an
oracle for deciding first-order theories) and is essentially of no practical use (it
does not actually help in finding proofs).

5 Reachability Properties for Rewrite Theories

In this section we show that rl formulas can be used to specify properties of
transition systems defined by rwl theories. This is achieved by extending the
signature of an rwl theory R to an ml-signature, which includes predicates that
can be used to define rl properties of the transition system defined by R.

We also show how the verification procedure in Sect. 4 can be adapted in order
to take advantage of rwl-specific operations such as matching. More precisely,
we prove that, under reasonable assumptions, a complete set of derivatives of an
rl formula can be computed using standard matching-modulo algorithms.

We note that rl properties for rewrite theories are different from the reacha-
bility properties that can be checked in Maude using the search command. The
difference is given by the possibility of using fol for constraining the initial and
the final state terms, and by the interpretation of rl formulas.

Definition 13 (ML Extension of a Rewrite Theory). Consider a rewrite
theory R = (Σ,E ∪A,R) with a distinguished sort State such that R is topmost
w.r.t. State. An ml extension of R consists of an ml signature (Σ,Π,State)
together with an interpretation (TΣ,E∪A)p ⊆ TΣ,E∪A,s1 × · · · × TΣ,E∪A,sn

for
each predicate symbol p ∈ Πs1,...,sn

. In this way, TΣ,E∪A is a model of the ml
extension of R.

The above definition allows one to see the operations bop ∈ Σs1...sn,Bool as
predicates bop ∈ Πs1...sn

with the interpretation ([t1], . . . , [tn]) ∈ (TΣ,E∪A)bop iff
bop(t1, . . . , tn) =E∪A true. Consequently, each term b of sort Bool defines a fol
formula such that, if ρ : Var → TΣ,E∪A, then ρ |= b iff ρ(b) =E∪A true.

Any rewrite rule l → r if b can be viewed as an rl formula l ∧ b ⇒ r and
the transition relation ⇒R is exactly the same with the one-step topmost rewrit-
ing relation →R. This allows one to naturally define when rl formulas specify
properties for rwl theories.

Definition 14 (RL Properties for RWL Theories). An rl property for R =
(Σ,E ∪A,R) is an rl formula ϕ ⇒ ϕ′, where ϕ and ϕ′ are ml formulas defined
over an ml extension of R (cf. Definition 13). We say that R satisfies ϕ ⇒ ϕ′

iff →R |= ϕ ⇒ ϕ′ (cf. Definition 7).

We next focus on adapting the prove procedure for verifying rl properties of
rwl theories. Specifically, we show the derivatives can be computed using match-
ing algorithms (under certain assumptions). We give first a technical definition.
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Definition 15 (Ground (E ∪ A)-unifier). Consider a rewrite theory R =
(Σ,E ∪ A,R). Two Σ-terms t and t′ are ground (E ∪ A)-unifiable if there is
σ : FreeVars(t, t′) → TΣ such that σ(t) =E∪A σ(t′). The substitution σ is called
(E ∪ A)-unifier of t and t′.

The following assumptions are required for computing derivatives using match-
ing. The first assumption restricts the class of rl formulas that can be used as
properties to those that are useful in practice (i.e., having more than one pattern,
or having negations of patterns, in either side of formulas is not really useful).

Assumption 2. We assume that FreeVars(b) ⊆ FreeVars(l, r) for each rule l →
r if b in R. In this paper we also assume that the rl properties of rwl theories
R are of particular form (∃X)(π ∧ φ) ⇒ (∃X ′)(π′ ∧ φ′) with FreeVars(φ) ⊆
FreeVars(π) (and hence X ⊆ FreeVars(π)).

The second assumption relates ground unifiers to matching substitutions.

Assumption 3. We assume that for each l → r if b in R with l and π ground
(E ∪ A)-unifiable, there is a set of matching substitutions match(l, π) such that

– σ0(l) = π for each σ0 ∈ match(l, π), and
– for each ground E ∪ A-unifier σ of l and π there are σ0 ∈ match(l, π) and

σ′ : FreeVars(π) → TΣ satisfying σ =E∪A σ′ ◦ σ0
3.

Assumption 3 holds under reasonable constraints, cf. the Matching Lemma [21].
In a nutshell, the constraints distinguish a builtin subtheory for the equational
subtheory of the rewrite theory R, with corresponding builtin equations and
axioms, assumed to be manageable by an smt solver; there are no non-builtin
equations, while non-builtin axioms may include the usual combinations of asso-
ciativity, commutativity, and unity. The next results show that the matching
substitutions can be used to compute the derivatives of ml formulas and, conse-
quently, the derivatives of rl formulas.

Lemma 4 (Computing ML Derivatives by Matching). Let ϕ ⇒ ϕ′ be an
rl property for R = (Σ,E ∪ A,R), where ϕ � (∃X)π ∧ φ. Then, for each
derivative ϕ1 ∈ ΔR(ϕ) there exists a rewrite rule l → r if b in R such that

TΣ,E∪A |= ϕ1 ←→
∨

σ0∈match(l,π)

(∃X ∪ FreeVars(r) \ FreeVars(l))σ0(r) ∧ σ0(b) ∧ φ.

The following theorem directly follows from Lemma 4:

Theorem 2 (Computing rl Derivatives by Matching). For each ϕ1 ⇒
ϕ′ ∈ ΔR(ϕ ⇒ ϕ′) with ϕ � (∃X)π ∧ φ, there is l → r if b ∈ R such that

[[ϕ1 ⇒ ϕ′]] = [[
∨

σ0∈match(l,π)

(∃X ∪ FreeVars(r) \ FreeVars(l))σ0(r) ∧ σ0(b) ∧ φ ⇒ ϕ′]].

3 σ1 =E∪A σ2 iff dom(σ1) = dom(σ2) and (∀x ∈ dom(σ1))σ1(x) =E∪A σ2(x).
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Symbolic Rewrite Rules. We now show that Theorem 2 enables the use of sym-
bolic rewrite rules to efficiently compute derivatives and hence to implement the
procedure prove in rwl. For ϕ � (∃X)(π ∧ φ), let Δmatch

R (ϕ ⇒ ϕ′) be the set

{(∃X ∪ FreeVars(r) \ FreeVars(l))σ0(r) ∧ σ0(b) ∧ φ ⇒ ϕ′

| l → r if b ∈ R, σ0 ∈ match(l, π)} (1)

We have [[Δmatch
R (ϕ ⇒ ϕ′)]] = [[ΔR(ϕ ⇒ ϕ′)]] by Theorem 2, which implies

that Δmatch
R (ϕ ⇒ ϕ′) is a complete set of R-derivatives. This allows us to use of

Δmatch
R in the procedure prove instead of ΔR. Next, we note that formulas ϕ1 ⇒

ϕ′ in Δmatch
R (ϕ ⇒ ϕ′) (where ϕ � (∃X)(π ∧ φ)) can be computed by applying

a symbolic rewrite rule of the form l ∧ ψ ⇒ r ∧ b ∧ ψ to the left-hand side of
ϕ ⇒ ϕ′, where ψ is a fresh variable of sort Bool , with a matching substitution
σ0 such that σ0(ψ) = φ. Moreover, ϕ is R-derivable iff there are a rule l → r if b
in R and σ0 ∈ match(l, π) such that (∃X ∪ FreeVars(r) \ FreeVars(l))σ0(b) ∧ φ
is satisfiable, by Lemma 4. This is equivalent to saying that ϕ is R-derivable iff
the symbolic rewrite rule l ∧ ψ ⇒ r ∧ b ∧ ψ is applicable to ϕ.

Overall, R-derivatives of rl formulas ϕ ⇒ ϕ′ (where ϕ � (∃X)(π ∧ φ)) can
be computed by transforming each rule l → r if b ∈ R into a symbolic rewrite
rule l ∧ ψ ⇒ r ∧ b ∧ ψ and by applying the symbolic rewrite rule. This is how
derivatives are computed in our rwl adaptation of the prove procedure.

6 Verifying RL Properties of a Communication Protocol

We illustrate the theory on a simple communication protocol described in Maude.

Protocol Description. The protocol transmits a file between a sender and a
receiver. The file is a sequence of records. The sender and receiver communicate
through unidirectional, lossy channels, one of which carries messages (a record in
the file, together with a sequence number) from send to receiver, while the other
one carries retransmission requests (natural numbers) from receiver to sender.

Both the sender and the receiver maintain a counter in order to keep track of
the next record to be sent, respectively received. The sender transmits the next
record in the file together with the current value of its counter, which then is
incremented by one. The receiver accepts a message only if the sequence number
of the message is equal to the receiver’s counter; if this is the case, the counter is
incremented and the record from the message is saved. The receiver discards all
other messages (i.e., whose sequence number is not the expected one). It may also
(nondeterministically) request a retransmission, by sending the current value of
its counter over the retransmission request channel. This nondeterminism can be
seen as an abstraction of a timeout mechanism, not modeled here for simplicity.

Upon reception of a retransmission request, the sender ignores it if it is greater
than or equal to its counter (indicating a wrong retransmission request). Other-
wise the sender updates its counter to the number it received on retransmission
request channel, in order to start resending messages from that number on.
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Fig. 3. Communication Protocol (excerpt).

The protocol’s State structure is given as a constructor with five arguments:
<_,_,_,_,_> : Nat List{Pair} List{Nat} Nat List{Element} -> State,
where Pair is a sort of pairs consisting of an Element and a natural number, and
List{} are parameterised lists. They respectively denote: the index of the next
record to be sent, the sender-to-receiver channel, the receiver-to-sender channel,
the next expected record on the receiver side, and the list of records currently
accepted and stored by the receiver.

The file to be sent is modelled by a function fileToSend : Nat -> Elements,
of size Max. The sender and receiver’s rules are shown in Fig. 3. There are also rules
for the channels losing elements, not shown here due to lack of space.

Reachability Properties. The protocol’s initial state is <0,nil,nil,0,nil>. Its
expected reachability property states that all terminating executions starting
from the initial state should end up in a state of the form

< (s Max),nil,nil,(s Max),file:List{Element}>
where file should satisfy (∀j) 0 ≤ j ≤ Max −→ fileToSend(j) = file[j],
where _[_] is a function returning an element at a given position in a list. (That
is, the file received is the same as the file sent.) In order to specify the constraints
on the final states we defined in Maude a subset of rl, so that the reachability
property specifying the protocol is written as the following Maude rewrite rule:

< 0,nil,nil,0,nil > //\\ True =>
Exists file : < (s Max),nil,nil,(s Max),file >
//\\ Forall j : ((0 <=? j And (j <=? Max)

Implies (fileToSend(j) === file[j]))

The operation _//\\_ is the constructor for our defined subset of ml, which
takes a term of sort State and term of sort FOL and builds a term of sort ML.
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Note that the Maude search command cannot be used to prove this RL formula:
to do so it would have to explore all terminating executions starting from the
initial state, which are infinitely many (and can be arbitrarily long).

Thus, we use our verification procedure. Unsurprisingly, the above rl formula
is not enough by itself for our procedure to succeed. For this to happen, a
“helper” rl formula is required, whose right-hand side is the same as for the
one above, but whose left-hand side describes an invariant (to hold for all states
reachable from the initial states):

< n, R, L, m, file > //\\
(Forall j : ((0 <=? j And j <? m)

Implies (fileToSend(j) === file[j]))) And
(Forall e :

Forall nb : (< e, nb > In? R
Implies e === fileToSend(nb))) And

size(file) + 1 === m
=>
Exists file : < (s Max),nil,nil,(s Max),file > //\\
Forall j : ((0 <=? j And (j <=? Max)

Implies (fileToSend(j) === file[j]))

This formula says that the currently received file (whose size is m -1) equals the
portion of the file being sent (up to that size); and that all messages currently
in transition from sender to receiver are records in the fileToSend file. It was
obtained by trial-and-error, while applying the following verification technique.

Verification. We have implemented key functionality from our verification pro-
cedure at Maude’s metalevel. A first transformation is applied to rewrite rules
as described in the Symbolic rewrite rules paragraph of Sect. 5. This reduces the
application of rules with unification to application with matching. Derivatives
are computed based on matching and rewriting as described in Sect. 5. We also
use Maude’s metalevel to achieve the following executions of our verification
procedure:

– for the first rl formula (the protocol’s specification): deriving it with respect
to the protocol’s rules S, then applying the second formula as a circularity;

– for the second rl formula (designated above as the “helper” formula): deriving
it with respect to the protocol’s rules, then applying itself as a circularity.

By requiring that these two executions return success, Maude generates sev-
eral proof obligations: essentially, that the condition for applying circularities
holds (at line 4 in our verification procedure), and that the condition for return-
ing success (line 3) also holds. Several of those proof obligations are dis-
charged automatically by simplification rules we included in Maude (e.g., that
fol disjunction is commutative). The remaining ones are axioms satisfied by
the assumed model for the various elements in our problem domain (e.g., lossy
channels, files consisting on records, and natural numbers). For example, one
proof obligation says that if all messages in a channel contain records from the
fileToSend file, then by losing a message all the remaining messages satisfy the
same property.

There are four such proof obligations left after automatic simplification. We
have (manually) checked that they hold (in the assumed model for our problem
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domain). The trial-and-error process for finding the helper rl formula consisted
in examining the generated proof obligations, and noting that some do not hold
unless more information is added about the problem domain.

7 Conclusion and Future Work

In this paper we propose a procedure for verifying reachability properties on
symbolic transition systems. While the reachability properties are stated as rl
formulas, we allow symbolic transition systems to be described by either rl
specifications or by rwl specifications. We prove that our procedure is sound.
We show with a concrete example that our procedure works in practice.

The paper also contributes to establishing connections between rl and rwl.
In [22] it is shown how rl specifications can be encoded as rwl theories. Here,
we take an alternative approach, which consists in using rl as a property lan-
guage for rwl. The proposed procedure adapted for rwl can be implemented in
Maude, using reflection and the recently added support for sat checking and one-
step rewriting modulo smt using the CVC4 library (http://cvc4.cs.nyu.edu/).

In terms of future work there are several directions to follow. First, starting
from our prototype, we shall develop a tool in the Maude environment that will
efficiently implement our procedure; we envision that the tool will generate proof
obligations to be discharged by Maude’s inductive theorem prover itp [23]. We
also intend to formalise in the Coq proof assistant our procedure and its sound-
ness proof in order to be able not only to verify properties but also to generate
certificates. Finally, we will use the extraction mechanism of Coq to obtain cer-
tified OCaml code for our procedure and use it as a reference implementation.

Acknowledgments. This paper is to celebrate the 65th birthday of Professor José
Meseguer. His seminal achievements, together with his warm and professional advices
often guided and inspired the research activity of the first author.

The second author has spent his postdoc a couple of offices away from José’s. At
the time he was working on another topic and did not really understand what rewriting
logic and Maude were about. He became aware of both of them several years later, and
has been inspired by them and enjoying them ever since.

Proofs of Technical Results

Proof of Proposition 1, Page 5. We use the notation convention from
Definition 3.
⇐. If (γ, ρ) |= ϕ then we consider ρ′ such that ρ′(z) = γ and ρ′(x) = ρ(x) for all
x 	= z. We obtain ρ′ |= ϕ=, which implies ρ |= (∃z)ϕ=.
⇒. Let � be a fresh variable (� 	∈ Var) of sort State and ϕ� defined in the same
way like ϕ=, but using � instead of z. Note that ϕ� is defined on a extended
signature. If ρ : Var → M and γ ∈ MState , then let ργ : Var ∪ {�} → M denote
the extension of ρ with ρ(�) = γ. By Proposition 1 in [3] we have ργ |= ϕ�

iff (γ, ρ) |= ϕ. Assume that ρ |= ϕ=?. It follows that for any extension ρ′ of
ρ to Var ∪ {�} we have ρ′ |= ϕ=?. Since ϕ=? can be obtained from (∃�)ϕ�

http://cvc4.cs.nyu.edu/
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by alpha conversion, we obtain ρ′ |= (∃�)ϕ�. It follows that there exists ρ′′ :
Var ∪ {�} → M such that ρ′′(x) = ρ′(x) for x 	= � and ρ′′ |= ϕ�. Since ρ′

extends ρ, we obtain ρ′′(x) = ρ(x) for x ∈ Var . If we take γ = ρ′′(�), then
ρ′′ = ργ and hence (γ, ρ) |= ϕ. ��
Proof of Proposition 2, Page 2. The fol formula φ=? is the same as φ because
φ has no basic patterns, and hence φ=? is equivalent to φ because the existential
variable z does not occur in φ. It follows that (φ ∧ ϕ)=? � (∃z)(φ ∧ ϕ)= is
equivalent (∃z)(φ= ∧ ϕ=), which in turn is equivalent to φ ∧ (∃z)ϕ=, which is
the same as φ ∧ ϕ=?.

We now prove the second part of the proposition. By Proposition 1 and
(γ, ρ) |= ϕ we obtain ρ |= ϕ=?. By applying the definition of the fol satisfaction
relation to ρ |= φ and ρ |= ϕ=? we obtain ρ |= φ ∧ ϕ=?, which, by the first part
of this proposition, is equivalent to ρ |= (φ ∧ ϕ)=?. Then, using Proposition 1
and its proof we obtain that (γ, ρ) |= φ ∧ ϕ, which concludes the proof. ��
Proof of Lemma 1, Page 8. Assume that ϕ1 is (∃FreeVars(ϕl, ϕr))(ϕl∧ϕ)=?∧ϕr

for some ϕl ⇒ ϕr ∈ S. If [[ϕ1]] = ∅ then ϕ1 ⇒ ϕ′ is an S-derivative of ϕ ⇒ ϕ′ by
Definition 8. Assume [[ϕ1]] 	= ∅, i.e. there exists (τ1, ρ1) starting from ϕ1, with
τ1 � γ1 ⇒S · · · . Then

(γ1, ρ1) |= ϕ1 ←→
(∃ρ)(γ1, ρ) |= ((ϕl ∧ ϕ)=? ∧ ϕr) ←→
(∃ρ)(ρ |= (ϕl ∧ ϕ)=? ∧ (γ1, ρ) |= ϕr) ←→
(∃ρ)((∃γ0)(γ0, ρ) |= (ϕl ∧ ϕ) ∧ (γ1, ρ) |= ϕr) ←→
(∃ρ)((∃γ0)((γ0, ρ1) |= ϕ ∧ (γ0, ρ) |= ϕl) ∧ (γ1, ρ) |= ϕr) ←→
(∃γ0)(γ0, ρ1) |= ϕ ∧ (∃ρ)((γ0, ρ) |= ϕl ∧ (γ1, ρ) |= ϕr) −→
(∃γ0)(γ0, ρ1) |= ϕ ∧ γ0 ⇒S γ1

where, by Assumption 1, we may w.l.o.g. choose ρ such that ρ(x) = ρ1(x) for all
x 	∈ FreeVars(ϕl, ϕr). Hence there is τ = γ0 ⇒S γ1 ⇒S · · · such that τ |1.. = τ1
and (γ0, ρ1) |= ϕ. If τ1 is infinite then τ is infinite. If (∃i ≥ 1)(γi, ρ1) |= ϕ′ then
(∃i ≥ 0)(γi, ρ1) |= ϕ′. So, finally, we obtain that (τ1, ρ1) |= ϕ1 ⇒ ϕ′ implies
(τ, ρ1) |= ϕ ⇒ ϕ′. Since γ1 and ρ1 have been chosen arbitrarily we conclude that
ϕ1 ⇒ ϕ′ is an S-derivative of ϕ ⇒ ϕ′. ��
Proof of Lemma 2, Page 8. Suppose that (τ1, ρ) |= ϕ1 ⇒ ϕ′ and τ1 � γ1 ⇒S · · · .
Then (τ1, ρ) starts from ϕ and one of the following two claims holds: a) there
exists i ≥ 1 such that (γi, ρ) |= ϕ′ or b) τ is infinite. So, to prove that (τ1, ρ) |=
ϕ′
1 ⇒ ϕ′ it is enough to prove that (τ1, ρ) starts from some ϕ′

1 ∈ ΔS(ϕ). The
pair (τ1, ρ) can be extended to (τ, ρ) such that τ |1.. = τ1 and (τ, ρ) |= ϕ ⇒ ϕ′ by
the definition of the S-derivative. It follows that there is γ0 such that τ � γ0 ⇒S
γ1 ⇒S · · · , (γ0, ρ) |= ϕ, and (γ1, ρ) |= ϕ1. There is ϕl ⇒ ϕr ∈ S and ρ′ such
that (γ0, ρ′) |= ϕl and (γ1, ρ′) |= ϕr by the definition of ⇒S . By Assumption 1,
we may w.l.o.g. choose ρ′ such that ρ′(x) = ρ(x) for all x /∈ FreeVars(ϕl, ϕr).
Hence (γ0, ρ′) |= ϕ ∧ ϕl. We take ϕ′

1 � (∃FreeVars(ϕl, ϕr))(ϕ ∧ ϕl)=? ∧ ϕr. We
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obviously have ϕ′
1 ∈ ΔS(ϕ) and (γ1, ρ) |= ϕ′

1 because there exists ρ′ (defined
above) such that (γ1, ρ′) |= (ϕ∧ϕl)=? ∧ϕr. Since τ1 = γ1 ⇒S · · · , it follows that
(τ1, ρ) starts from ϕ′

1 ∈ ΔS(ϕ), which implies (τ1, ρ) |= ϕ′
1 ⇒ ϕ′. Since (τ1, ρ)

has been chosen arbitrary, the conclusion of the lemma follows. ��
Proof of Lemma 3, Page 9. The following equivalences hold:

∨

ϕ1∈ΔS(ϕ)

ϕ=?
1 is satisfiable ←→

(∃ρ1)ρ1 |=
∨

ϕ1∈ΔS(ϕ)

ϕ=?
1 ←→

(∃ρ1)(∃ϕ1 ∈ ΔS(ϕ))ρ1 |= ϕ=?
1 ←→

(∃ρ1)(∃ϕl ⇒ ϕr ∈ S)ρ1 |= ((∃FreeVars(ϕl, ϕr))(ϕl ∧ ϕ)=? ∧ ϕr)=? ←→
(∃ρ1)(∃ϕl ⇒ ϕr ∈ S)(∃γ1)(γ1, ρ1) |= (∃FreeVars(ϕl, ϕr))(ϕl ∧ ϕ)=? ∧ ϕr

Then, we have:

(γ1, ρ1) |= (∃FreeVars(ϕl, ϕr))(ϕl ∧ ϕ)=? ∧ ϕr ←→
(∃ρ)(γ1, ρ) |= (ϕl ∧ ϕ)=? ∧ ϕr ←→
(∃ρ)ρ |= (ϕl ∧ ϕ)=? ∧ (γ1, ρ) |= ϕr ←→
(∃ρ)(∃γ)(γ, ρ) |= (ϕl ∧ ϕ) ∧ (γ1, ρ) |= ϕr ←→
(∃ρ)(∃γ)(γ, ρ) |= ϕ ∧ (γ, ρ) |= ϕl ∧ (γ1, ρ) |= ϕr ←→
(∃(γ, ρ))(γ, ρ) |= ϕ ∧ γ ⇒S γ1

where, by the definition of |=, ρ satisfies ρ(x) = ρ1(x) for all x 	∈ FreeVars(ϕl, ϕr).
We obtained that

∨
ϕ1∈ΔS(ϕ) ϕ=?

1 is satisfiable iff there exists (γ, ρ) such that
(γ, ρ) |= ϕ and there exists γ1 such that γ ⇒S γ1, i.e., iff ϕ is S-derivable. ��

Proof of Proposition 4, Page 9. We use the notation convention in Definition 3.

M |= ϕ=? −→
∨

ϕ1∈ΔS(ϕ)

ϕ=?
1 ←→

(∀ρ)ρ |= ϕ=? −→ ρ |=
∨

ϕ1∈ΔS(ϕ)

ϕ=?
1 ←→

(∀ρ)(∃γ)(γ, ρ) |= ϕ −→
(∃ϕl ⇒ ϕr ∈ S)ρ |= (∃FreeVars(ϕl, ϕr))((ϕl ∧ ϕ)=? ∧ ϕr)=? ←→

(∀ρ)(∃γ)(γ, ρ) |= ϕ −→
(∃ϕl ⇒ ϕr ∈ S)ρ |= (∃FreeVars(ϕl, ϕr))(ϕl ∧ ϕ)=? ∧ ϕ=?

r ←→ (2)
(∀ρ)(∃γ)(γ, ρ) |= ϕ −→
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(∃ϕl ⇒ ϕr ∈ S)(∃ρ′)ρ′ |= (ϕl ∧ ϕ)=? ∧ (∃γ1)(γ1, ρ′) |= ϕr ←→ (3)
(∀ρ)(∃γ)(γ, ρ) |= ϕ −→

(∃ϕl ⇒ ϕr ∈ S)(∃ρ′)(γ, ρ′) |= (ϕl ∧ ϕ) ∧ (∃γ1)(γ1, ρ′) |= ϕr ←→ (4)
(∀ρ)(∃γ)(γ, ρ) |= ϕ −→ (∃γ1)γ ⇒S γ1

where, by Assumption 1, we may w.l.o.g. choose ρ′ such that ρ′(x) = ρ(x)
for all x 	∈ FreeVars(ϕl, ϕr), which implies (γ′, ρ′) |= ϕ iff γ′ = γ and (γ, ρ) |= ϕ.
Therefore in the equivalence (3) ←→ (4) we could take (γ, ρ′) |= (ϕl ∧ ϕ). The
equivalence (2) follows by Proposition 2. ��
Proof of Theorem 1, Page 10. The following lemmas are needed in the proof.

Lemma 5 (Coverage Step). Let γ, γ′, ρ, ϕ, and α � ϕl ⇒ ϕr ∈ S such that
γ ⇒{α} γ′ and (γ, ρ) |= ϕ. Then, (γ′, ρ) |= Δ{α}(ϕ).

Proof. From γ ⇒{α} γ′ we obtain a valuation ρ′ such that (γ, ρ′) |= ϕl and
(γ′, ρ′) |= ϕr. By Assumption 1, FreeVars(ϕl, ϕr) ∩ FreeVars(ϕ) = ∅. Hence we
can choose ρ′ such that ρ′(x) = ρ(x) for all x ∈ FreeVars(ϕ). Thus, (γ, ρ′) |=
ϕ. From the latter and (γ, ρ′) |= ϕl we obtain (γ, ρ′) |= ϕ ∧ ϕl, and using
Proposition 1 we have ρ′ |= (ϕ ∧ ϕl)=?. Using Proposition 2 we obtain (γ′, ρ′) |=
(ϕ ∧ ϕl)=? ∧ ϕr which implies (γ′, ρ) |= (∃FreeVars(ϕl, ϕr))(ϕ ∧ ϕl)=? ∧ ϕr

(using Assumption 1). By Definition 10 (∃FreeVars(ϕl, ϕr))(ϕ ∧ ϕl)=? ∧ ϕr is
just Δ{α}(ϕ), which ends the proof. ��
Lemma 6 (Coverage by Derivatives). Any computation τ � γ0 ⇒S γ1 ⇒S
· · · with (τ, ρ) starting from ϕ is “covered” by derivatives, i.e., there exists a
sequence ϕ0, ϕ1, . . . of ml formulas such that

1. ϕ0 = ϕ
2. ϕi+1 ∈ ΔS(ϕi), i = 0, 1, . . .
3. (γi, ρ) |= ϕi, i = 0, 1, . . .

Proof. By induction on i using Lemma 5 in the induction step. ��

A successful execution of prove(S, G0,ΔS(G0)) consists of a sequence of calls

prove(S, G0,G1), . . . , prove(S, G0,Gn)

such that

– G0 = G0,
– G1 = ΔS(G0),
– Gn = ∅,
– for all i ∈ 0 . . . n − 1, Gi+1 = Gi \ {ϕ ⇒ ϕ′} ∪ Gϕ⇒ϕ′ , for some ϕ ⇒ ϕ′ ∈ Gi,

where

Gϕ⇒ϕ′ =

⎧
⎪⎨

⎪⎩

∅ , if M |= ϕ −→ ϕ′

Δϕc⇒ϕ′
c
(ϕ ⇒ ϕ′) , if there is ϕc ⇒ ϕ′

c ∈ G0, s.t.M |= ϕ −→ ϕc,

ΔS(ϕ ⇒ ϕ′
c) , if ϕ S-derivable
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In the following we let F =
⋃n

i=0 Gi.

Lemma 7. Let ϕ ⇒ ϕ′ ∈ F . Then M |= ϕ −→ ϕ′ or ϕ is S-derivabile.

Proof. Let ϕ ⇒ ϕ′ ∈ F . If ϕ ⇒ ϕ′ ∈ G0 = G0 then ϕ is S-derivabile (any formula
in G0 has the lhs S-derivable). Otherwise, there is i such that ϕ ⇒ ϕ′ ∈ Gi\Gi+1.
By the definition of Gi+1 the formula ϕ ⇒ ϕ′ was eliminated from Gi in one of
the three situations:

1. M |= ϕ −→ ϕ′

2. M |= ϕ −→ ϕc for some ϕc ⇒ ϕ′
c ∈ G0

3. ϕ is S-derivable.

In the first and the third cases we obtain directly the conclusion of our lemma.
The only case we have to discuss is the second one. Note that there are γ and
ρ such that (γ, ρ) |= ϕ. Otherwise, we have M |= ϕ −→ ϕ′ which corresponds
to the first case. From (γ, ρ) |= ϕ and M |= ϕ −→ ϕc we have (γ, ρ) |= ϕc. By
Definition 2, there is ρ′ such that (γ, ρ′) |= ϕc. Since ϕc is derivable (because
ϕc ⇒ ϕ′

c ∈ G0 and S is total, there exists a transition γ ⇒S γ1, which, by
Definition 11, implies that ϕ is S-derivable. ��
Lemma 8. For all τ , for all ρ, for all ϕ ⇒ ϕ′ ∈ F , if τ is finite and complete,
and (τ, ρ) starts from ϕ then (τ, ρ) |= ϕ ⇒ ϕ′.

Proof. We proceed by induction on the length of τ . We an consider arbitrary
ϕ ⇒ ϕ′ ∈ F and ρ satisfying the hypotheses of the lemma.

Base case. Assume that τ = γ0 and that (γ0, ρ) |= ϕ. Since τ is complete then
there is no γ1 such that γ0 ⇒S γ1. Therefore, any ϕ′ such that (γ0, ρ) |= ϕ′, is not
S-derivable (otherwise, it contradicts Definition 11). Thus, ϕ is not S-derivable.

By Lemma 7 we have M |= ϕ −→ ϕ′, and using the fact that (γ0, ρ) |= ϕ we
obtain (γ0, ρ) |= ϕ′, i.e. (τ, ρ) |= ϕ ⇒ ϕ′.

Induction step. Assume that τ = γ0 ⇒S γ1 · · · , and (γ0, ρ) |= ϕ. In this case
ϕ is S-derivable (by Definition 11). Since ϕ ⇒ ϕ′ ∈ F then ϕ ⇒ ϕ′ has been
eliminated at some point, so there is i such that ϕ ⇒ ϕ′ ∈ Gi \ Gi+1.

Again, by the definition of Gi+1, we have three possible cases:

1. M |= ϕ −→ ϕ′. Since (γ0, ρ) |= ϕ we obtain (γ0, ρ) |= ϕ′, which implies
(τ, ρ) |= ϕ ⇒ ϕ′.

2. M |= ϕ −→ ϕc. From (γ0, ρ) |= ϕ we obtain (γ0, ρ) |= ϕc, and, by
Definition 2, there is ρ′ with ρ′(x) = ρ(x) for all x 	∈ FreeVars(ϕc) such
that (γ0, ρ′) |= ϕc. If γ0 ⇒S γ1 then there is a rule α � ϕl ⇒ ϕr ∈ S such
that γ0 ⇒{α} γ1 (Definition 5). From (γ0, ρ′) |= ϕc and Lemma 5 we obtain
ϕ1 ∈ Δ{α}(ϕc) ⊆ ΔS(ϕc) such that (γ1, ρ′) |= ϕ1. Since ϕ1 ∈ ΔS(ϕc) and
ϕc ⇒ ϕ′

c ∈ G0 = G0 then ϕ1 ⇒ ϕ′
c ∈ ΔS(ϕc ⇒ ϕ′

c) ⊆ G1 ⊆ F . Now, the
inductive hypothesis holds for ϕ1 ⇒ ϕ′

c, and we have (τ |1.., ρ
′) |= ϕ1 ⇒ ϕ′

c.
Since τ is finite, there exists j ≥ 1 such that (γj , ρ

′) |= ϕ′
c.

Next, we want show that (γj , ρ) |= (∃FreeVars(ϕc, ϕ
′
c))((ϕc ∧ ϕ)=? ∧ ϕ′

c).
This is equivalent (by Definition 2) to showing that there is a valuation ρ′′

with ρ′′(x) = ρ(x) for all x 	∈ FreeVars(ϕc′) such that (γj , ρ
′′) |= (ϕc ∧
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ϕ)=? ∧ ϕ′
c. Let us consider ρ′′ = ρ′. From the hypothesis of Theorem 1 we

have FreeVars(ϕ′
c) ⊆ FreeVars(ϕc), which implies that FreeVars(ϕc, ϕ

′
c) ⊆

FreeVars(ϕc). Also, note that ρ′(x) = ρ(x), for all x 	∈ FreeVars(ϕc). Using
Assumption 1, i.e. FreeVars(ϕ)∩FreeVars(ϕc) = ∅, and (γ0, ρ) |= ϕ we obtain
(γ0, ρ′) |= ϕ. Given the fact that (γ0, ρ′) |= ϕc, by Definition 2, (γ0, ρ′) |=
ϕc ∧ ϕ. By Proposition 1, from (γ0, ρ′) |= ϕc ∧ ϕ we obtain ρ′ |= (ϕc ∧
ϕ)=?. Moreover, by Proposition 2 and the fact that (γj , ρ

′) |= ϕ′
c we obtain

(γj , ρ
′) |= (ϕc ∧ ϕ)=? ∧ ϕ′

c. Therefore, there is ρ′′ = ρ′, such that (γj , ρ
′′) |=

(ϕc∧ϕ)=?∧ϕ′
c, and we can conclude that (γj , ρ) |= (∃FreeVars(ϕc, ϕ

′
c))((ϕc∧

ϕ)=? ∧ ϕ′
c).

Note that the set Gi+1 includes Δϕc⇒ϕ′
c
(ϕ ⇒ ϕ′

c), and we can apply again the
inductive hypothesis: (τ |j.., ρ) |= (∃FreeVars(ϕc, ϕ

′
c))((ϕc ∧ ϕ)=? ∧ ϕ′

c) ⇒
ϕ′, i.e. there is k ≥ j such that (γk, ρ) |= ϕ′, which implies (τ, ρ) |= ϕ ⇒ ϕ′.

3. ϕ is S-derivable. Then ΔS(ϕ ⇒ ϕ′) ⊆ Gi+1 ⊆ F . If γ0 ⇒S γ1 then there is
a rule α � ϕl ⇒ ϕr ∈ S s. t. γ0 ⇒{α} γ1 (Definition 5). Since (γ1, ρ) |= ϕ1,
then, by Lemma 5, there is ϕ1 ∈ Δ{α}(ϕ) ⊆ ΔS(ϕ) such that (γ1, ρ) |= ϕ1.
We obtain (τ |1.., ρ) |= ϕ1 ⇒ ϕ′ by the inductive hypothesis, which implies
that there is j ≥ 1 s. t. (γj , ρ) |= ϕ′. Hence (τ, ρ) |= ϕ ⇒ ϕ′. ��

Proof (of Theorem 1). Let τ � γ0 ⇒S γ1 ⇒S · · · be a complete execution path,
and let the valuation ρ be such that (τ, ρ) starts from ϕ0 with ϕ0 ⇒ ϕ′

0 ∈ G0. If
τ is finite then (τ, ρ) |= ϕ ⇒ ϕ′

c by Lemma 8. If τ is infinite then (τ, ρ) |= ϕ ⇒ ϕ′
c

by Definition 7. ��

Proof of Lemma 4, Page 13. By definition of ΔR(ϕ), ϕ1 is (∃FreeVars(l, r))(l ∧
b ∧ (∃X)(π ∧ φ))=? ∧ r for some rewrite rule l → r if b ∈ R. By Assumption 1,
FreeVars(l, r) ∩ X = ∅ and hence ϕ1 is equivalent to (∃X ∪ FreeVars(l, r))(l =
π) ∧ b ∧ φ ∧ r. We have:

(γ1, ρ1) |= ϕ1 ←→
(γ1, ρ1) |= (∃X ∪ FreeVars(l, r))(l = π) ∧ b ∧ φ ∧ r ←→
(∃ρ)(ρ(l) = ρ(π)) ∧ ρ |= (b ∧ φ) ∧ (ρ(r) = γ1) ←→
(∃σ)(σ(l) =E∪A σ(π)) ∧ ρ |= b ∧ ρ1 |= φ ∧ (σ(r) ∈ γ1) ←→
(∃σ0)(∃σ′′)(σ0(l) =E∪A π) ∧ ρ |= b ∧ ρ1 |= φ ∧ (σ′′(σ′(σ0(r))) ∈ γ1) ←→
(∃σ0 ∈ match(l, π))(∃σ′′)ρ |= b ∧ ρ1 |= φ ∧ (σ′′ � σ′(σ0(r)) ∈ γ1) ←→

∨

σ0∈match(l,π)

(∃σ′′)ρ |= b ∧ ρ1 |= φ ∧ (σ′′ � σ′(σ0(r)) ∈ γ1) ←→
∨

σ0∈match(l,π)

(∃ρ0)ρ0 |= σ0(b) ∧ ρ0 |= φ ∧ ρ0(σ0(r)) = γ1) ←→
∨

σ0∈match(l,π)

(∃ρ0)(γ1, ρ0) |= (σ0(b) ∧ φ ∧ σ0(r)) ←→
∨

σ0∈match(l,π)

(γ1, ρ1) |= (∃X ∪ FreeVars(r) \ FreeVars(l))(σ0(b) ∧ φ ∧ σ0(r)) ←→
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(γ1, ρ1) |=
∨

σ0∈match(l,π)

(∃X ∪ FreeVars(r) \ FreeVars(l))(σ0(b) ∧ φ ∧ σ0(r))

where

– γ1 ∈ TΣ,E∪A of sort State, i.e., γ1 is an (E ∪ A)-equivalence class [t] with
t ∈ TΣ,State ;

– by Assumption 1, we may assume w.l.o.g. that ρ(x) = ρ1(x) for all x 	∈
X ∪ FreeVars(l, r);

– σ : FreeVars(l, r, φ) → TΣ with [σ(x)] = ρ(x);
– the substitutions σ0 : FreeVars(l) → FreeVars(π) and σ′ : FreeVars(π) → TΣ

are given by Assumption 3, i.e., σ|FreeVars(l,π) = σ′◦σ0; note that σ′ is uniquely
determined by σ and σ0;

– σ′′ = σ|FreeVars(r)\FreeVars(l);
– σ′′ � σ′(x) = σ′′(x) if x ∈ FreeVars(r) \ FreeVars(l), and σ′′ � σ′(x) = σ′(x) if

x ∈ FreeVars(σ0(l));
– ρ0(x) = [σ′(x)], for x ∈ FreeVars(π), ρ0(x) = [σ′′(x)], for x ∈ FreeVars(r) \

FreeVars(l), and ρ0(x) = ρ(x) in the rest (hence ρ0(x) = ρ1(x) for x 	∈
X ∪ FreeVars(r) \ FreeVars(l)); and

– ρ |= b iff σ′′(σ0(b)) =E∪A true iff ρ0 |= σ0(b). ��
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Abstract. In 2003 I published a paper “Formal Methods in Crypto-
graphic Protocol Analysis: Emerging Issues and Trends”, in which I
identified the various open problems related to applying formal meth-
ods to the analysis of cryptographic protocols as we saw them then, and
discussed the state of the art and the problems that still needed to be
solved. Twelve years later, it is time for a an update and a reassessment.
In this paper I revisit the open problems that I addressed in the origi-
nal paper, discussing the progress that has been made in the intervening
years, and the problems that still remain to be solved. I also discuss some
new open problems that have arisen since then.

1 Introduction

In 2003 we published a paper “Formal Methods in Cryptographic Protocol
Analysis: Emerging Issues and Trends” [63], in which we identified the vari-
ous open problems as we saw them then, and discussed the state of the art and
the problems that still needed to be solved. Twelve years later, we believe it is
time for an update and a reassessment. Formal analysis of cryptographic proto-
cols has come a long way since then, both in power and range. Fifteen years ago,
most work in formal verification relied on what is known as the “Dolev-Yao”
model, in which the network is assumed to be under the complete control of an
attacker and the cryptographic algorithm is treated like a black box. The proto-
cols verified were generally authentication and key exchange protocols, and the
properties proved were either various forms of authentication (if X happens, did
Y happen before it?) and simple secrecy (can the intruder learn a term in the
clear)?.

Now the classes of protocols examined include such varied applications as
voting protocols, routing protocols, security APIs, and zero knowledge proto-
cols. The classes of properties proved have also been greatly extended. Most
notable is the development of theorem-provers that provide automated assis-
tance in the generation and verification of game transformation proofs used by
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cryptographers. There are also tools that can be used to prove a symbolic form
of indistinguishability. Finally, the black box itself has been pried upon to allow
the treatment of various algebraic properties on the symbolic level.

This raises a number of questions. First of all, how thoroughly have the prob-
lems discussed in the 2003 paper been addressed? Which ones are still relevant,
and which ones have turned out to be dead ends? What new problems have
arisen that we were not considering then, and how are they being addressed?

In this paper we revisit the open problems that we addressed in the original
paper, discussing the progress that has been made in the intervening years, and
the problems that still remain to be solved. We also discuss some new open
problems that have arisen since then.

The rest of this paper is organized as follows. In Sect. 2 we give an overview
of the Dolev-Yao model that provides the basis for much of the work in this
area. In Sect. 3 we revisit our 2003 paper and discuss the progress that has been
made and the open problems that remain. In Sect. 4 we discuss some new areas
of research that have arisen in the last twelve years. In Sect. 5 we conclude the
paper and summarize.

2 Overview of the Dolev-Yao Model

Much symbolic protocol analysis is based on the simple but powerful paradigm
developed by Dolev and Yao in the late 70s and early 80s [40]. In this para-
digm messages are represented by symbolic terms constructed using constants,
function symbols, and variables. Furthermore, the network is controlled by an
intruder who can intercept, destroy, and redirect traffic, and create and send
messages of its own. Thus, we can think of the protocol as a distributed pro-
gram for generating elements of a term algebra, defined by a set of rules I that
defines actions executed by the intruder, and a set of rules P describing actions
executed by the honest principals.

This structure makes it possible to develop decision procedures for evaluating
the security of protocols, e.g., whether or not the intruder is able to learn a secret
or violate authentication requirements. Indeed, such problems have been shown
to be NP-complete in the bounded session model [74], that is, when the honest
principals are restricted to a bounded number of executions of the rules in P.
But even in the unbounded session model there are a number of tools that offer
semi-decision procedures.

Another approach to symbolic protocol analysis is to develop logics that can
be used to derive what the receiver of a message can conclude about it, given
certain assumptions about the communication channel and the cryptosystems
involved. The most prominent early example is the Burrows, Abadi, and Need-
ham logic [27], but there have been a number of later logics that use approach,
e.g., [70,73]. They have the disadvantage over state exploration tools in that
they are at a higher level of abstraction and cannot be used to find attacks on
insecure protocols. On the positive side, it is more straightforward to specify dif-
ferent properties of communication channels, and a failed proof can help the user
understand hidden assumptions. CPSA [39] is an example of a logic-based tool.
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3 Revisiting the Old Questions

In this section we consider the problems that were addressed in the original 2003
paper. They are presented in the original order.

3.1 Open-Ended Protocols

In the 2003 paper the term “open-ended protocol” was applied to protocols in
which some feature of a given protocol execution may be parametrized, such
as the number of principals involved, or the size of a data structure used. If
the size of the parameter is unbounded, then the protocol is open-ended. We
note that even protocols in the traditional “Dolev-Yao” model can be consid-
ered open-ended in a sense, since they can involve an arbitrarily large number
of sessions. The approach used with respect to unbounded sessions has been to
rely on semi-decision procedures. These may not be practical if one has multi-
ple unbounded parameters, so in these cases researchers have generally taken a
different approach, e.g., by putting additional conditions on the protocol.

The most general class of open-ended protocol is the class that makes use of
recursive tests, where the depth of the recursion is the parameter. The approach
here, first used by Küsters and Wilke in [56], and later followed in [6,82] and
others, is to develop a restricted language for expressing the recursive tests, and
to show that size of any possible attack is bounded when the number of sessions
is bounded. As work has progressed in this area, the class of protocols that can
be handled this way has grown, but there are also some negative results. For
example, Kurtz et al. have shown [53] that, for a class of languages expressible
as selecting theories, if certain terms are allowed to be of unlimited complexity,
then the security problem becomes undecidable.

For some classes of open-ended protocols it has been possible to come up,
not only with decidability results for the bounded session model, but decidable
approximations for the unbounded session model. In [69] Paiola and Blanchet
show that under certain conditions, one use approximations to translate a pro-
tocol that uses unbounded lists into a protocol that uses lists of length one,
whose security implies the security of the original protocol. Progress of this kind
has also been made on protocols parametrized by the number of principals in a
protocol (aka group protocols). For example, Cortier et al. show in [35] that for
a certain class of routing protocols and properties, it is sufficient to analyze only
four node topologies. Both these results make it possible to analyze some open-
ended protocols using general-purpose cryptographic protocol analysis tools.

What perhaps is most needed in this area is consolidation of these results and
methods for using them together, since more than one of these open-ended prop-
erties may appear in the same protocol. We discuss this issue further in Sect. 4.4.

3.2 Applications and Threats from the Early Twenty-First Century

Denial of Service. In 2003 denial of service (DoS) was a relatively new prob-
lem, and it was not well understood how to manage it. However, one common
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way that denial of service is implemented is to initiate multiple sessions of a
protocol with a responder but not carry them through. The responder would
have to devote resources to responding to the protocols and maintaining state,
ultimately leading to it being overwhelmed. This suggested that one way of mak-
ing protocols more secure against denial of service was first, to make it harder
to initiate protocols than to respond to them, and secondly, to perform weak
(and inexpensive) authentication early on in the protocol, and stronger authen-
tication later on. This approach was formalized in my denial of service attack
model [62].

Although this attack model made sense for defense a against a single attacker,
it needed further elaboration to be effective against distributed denial of service
attacks, in which multiple attackers (e.g., a botnet) would be unleashed by a
single controller. What was needed was, not only for protocols to be harder to
initiate, but to remain harder to initiate even when the opponent was operating
on a massive scale. This observation has led to the invention of client puzzles [50],
whereby clients are requested to solve a problem of moderate difficulty before
the server responds. These puzzles are designed to be resistant to large-scale
efforts to break them by the incorporation of computational properties such as
their solution being difficult to parallelize.

Client puzzles also have the advantage that different puzzle strategies can be
used depending on the threat level perceived by the server. Moreover, they have
other applications besides denial of service, such as in Bitcoin [68]. However, they
must be carefully designed and deployed. This has lead to an substantial amount
of work in formalizing desired properties of both puzzles and the protocols that
use them, although mostly on the computational level (see [48] for a survey of
recent literature). However, perhaps at this point client puzzles are well enough
understood at the computational level that symbolic analysis of the protocols
that use them would also be possible and useful.

Anonymous Communication. In 2003 a number of anonymous communi-
cation systems had been deployed, including systems such as Onion Routing
[46], The Anonymizer, and Crowds [72], although mostly on a relatively small
scale. Now the Onion Router has developed into the Tor Network [81], which
is used worldwide to protect privacy of communications. In particular, experi-
ence with Tor has given a much greater degree of insight into how anonymous
communication works in a real environment, and the kinds of threats it faces.

However, it turned out to be difficult to develop formal models and analyses
of large-scale anonymous communication. The main stumbling block is the threat
model. It is possible to design key distribution and authentication protocols that
are secure against a very strong and simple model in which the attacker controls
the entire network. However, even in 2003 it was clear that it was not possible
to design practical anonymous communication protocols that are secure against
such a strong attacker. Instead, one must assume that an attacker has access to
only part of the network at the time, and even then the probability of breaking
anonymity is usually non-negligible. These features are harder to capture in a
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formal model, and even harder to analyze; thus research in this area has depended
heavily on experimentation and simulation.

That does not mean, however, that mathematical modeling and analysis of
anonymous communication is impossible. However, work has concentrated on
modeling and proofs of security instead of automated analysis, and on iden-
tifying the exact types of guarantees that an anonymous communication sys-
tem provides. Indeed several researchers, e.g., [8,44] have applied mathematical
systems for reasoning about cryptography such as Canetti’s Universal Compos-
ability Framework [30] to prove results about the types of security properties
guaranteed by different types of anonymous communication systems against dif-
ferent types of attackers. These analyses are not formal in the strict sense, since
they are not based on logical systems, but they do use precise definitions and
rigorous proofs, and increase our understanding of the systems. In the future, as
the hardware and software used for the analysis of formal systems becomes more
powerful, it may become practical and desirable to produce logical formalizations
of these models that can be analyzed with machine assistance.

Electronic Commerce. The 1990s were the years when electronic commerce
became a reality, and it was not surprising that there was an explosion of research
in electronic commerce protocols, even leading to the founding of a conference in
that area, Financial Cryptography. Many of these protocols supported complex
security policies (SET [78] was the most famous example), and a substantial
number supported various sorts of anonymity as well. Thus the application of
formal methods to electronic commerce acted as a spur on the development of
cryptographic protocol analysis methods. For example, the formalization of the
SET requirements by myself and my colleagues [64] had a substantial impact on
our development of the NPATRL protocol requirements language. SET was also
formally analyzed by Bella et al. [17,18], making it probably the most complex
protocol analyzed with machine assistance at the time.

Twelve years later, electronic commerce is more mature, and although
research still continues, it is no longer such a hot topic. However, other new
applications come forward. One of the most prominent is electronic voting. Like
electronic commerce in the 90’s, it is on the point of becoming generally used,
but security considerations are holding it back, and indeed are seen as even more
of an impediment than they were for electronic commerce. This has lead to a
sizable amount of work in formal analysis as well. The challenges faced in the
design and verification of voting protocols, which involve assuring both account-
ability and privacy, are similar to those of electronic commerce. However, they
also pose additional problems, most importantly the assurance of the correct-
ness of a function computed over the voters’ input. This has provided impetus
to areas such as verification of group protocols (discussed in Sect. 3.1) and of
symbolic indistinguishability (discussed in Sect. 4.1).

3.3 High Fidelity

By “high fidelity” I mean approaching the computational model of cryptographic
protocols as closely as possible. From the very beginning, the gap between
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symbolic and computational models has been a concern. By 2003 we were start-
ing to see more work in this area, and it has increased dramatically over the
years. In this section I consider three ways of approaching high fidelity that
have been investigated the most thoroughly. The first is by adding more detail
to the symbolic model. The second is by proving computational soundness of a
symbolic model. The third is by automating computational proofs directly.

Adding More Information to the Symbolic Model. One can add more
detail to the symbolic model by adding equational theories to the term algebras
used to construct messages sent in a protocol. For example, instead of using a
rule that says that if an intruder knows a key K and the encryption of a message
M with K, then it can derive M , one can express this directly vie the equation
d(K, e(K,M)) = M , where e and d stand for encryption and decryption, respec-
tively. This not only allows us to potentially find attacks that are not possible
to find in the free algebra model (empty equational theory), but also enables
the specification of protocols (e.g., Diffie-Hellman key exchange) with would be
difficult to describe without the inclusion of algebraic properties.

In 2003 we were already seeing work in this area, although for the most part
it concerned itself with specific equational theories, e.g., exclusive-or or can-
cellation of encryption and decryption. Twelve years later this work has been
substantially expanded to include classes of theories that can be handled with
the same general-purpose unification or matching algorithm. This is important,
because it allows us to mix and match different cryptographic algorithms that
obey different equational theories. The biggest divide at this point is between
rewrite theories, which consist of equations that can be given an orientation, and
AC theories, which include associative-commutative axioms which are left with-
out an orientation. For example, ProVerif supports subterm convergent rewrite
theories [22], while Maude-NPA supports AC theories with finite variant decom-
positions [34], using a technique called variant narrowing [43], and tamarin [65]
concentrates on Diffie-Hellman and related theories.

There are still problems that remain. One of these is how to handle important
classes of theories, such as associativity without commutativity and homomor-
phic encryption over AC operators, that do not fall into either of the above
categories, and cannot be handled by other means. If we can find workable solu-
tions for these theories, this will greatly expand the types of problems we can
handle. Associativity without commutativity will allow us to represent the asso-
ciative properties of concatenation, which will make realistic analysis of type
confusion attacks a possibility. Homomorphic encryption over AC operators will
allow us to analyze the many privacy-preserving protocols that use this feature.

Another, potentially more wide-reaching problem, is managing complexity.
As theories become more complex, the task of reasoning about them in a sound,
complete, and efficient manner becomes harder. General-purpose approaches,
although they guarantee soundness and completeness, may not scale well for
complex theories. One possible solution is to develop hybrid algorithms that
have some but not all of the features of the general purpose algorithms, for
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example asymmetric unification [42], which is being explored as an alternative
to the general purpose method of variant unification [43].

Computational Soundness. Another approach to achieving higher fidelity
to the computational model is to prove soundness of the symbolic model with
respect to a computational model. That is, security in the symbolic model should
imply security in the computational model. In 2003, work was just starting in
this area, with Abadi and Rogaway’s initial result relating symbolic and compu-
tational and models of encryption [2], followed by Backes, Pfitzmann, and Waid-
ner’s Universally Composable Cryptographic Library [11] based on Canetti’s
Universal Composability Framework (UC) [30], which was used to produce what
may have been the first computationally sound symbolic analysis of a key dis-
tribution protocol [10]. Work has continued on refining and expanding this UC-
based symbolic model. In particular, it was applied by Backes et al. [7] to proving
computational security properties of the Kerberos protocol. Research has also
focused on different models and on problems such as indistinguishability prop-
erties (e.g., [13]), and symbolic models equipped with equational theories (e.g.,
[16]). We are also seeing new applications, in particular to the symbolic verifi-
cation of automatically generated cryptographic algorithms [14,58].

However, there is a problem that has been noticed as this work has pro-
gressed: the difficulty of finding proofs of computational soundness, and the
complexity of the proofs once they are found. This is a problem that seems to
be inherent, and it results from the gap between the two different models. For
example, the symbolic model has two different notions of secrecy: one defined
in terms of the attacker not seeing the secret in the clear, the other being a
symbolic notion of indistinguishability. The computational model however has
many different notions of secrecy, based on the way in the which the attacker
may interact with the algorithm. Furthermore, there are situations such as key
cycles (e.g., expressions of the form e(k, k), e(k1, e(k2, k1)), etc., where e(k,m)
denotes encryption of m with key k) that the symbolic model treats as innocu-
ous, but for which there are no computational proofs of security. Techniques
for avoiding these must either be built into the symbolic model, or states that
contain them must be treated as insecure. All this complicates both the model
and the soundness proofs.

Comon-Lundh et al. [33] have pointed out that many of these types of prob-
lems arise because in the symbolic model proving security depends on show-
ing the absence of attacks, while in the computational model proving security
depends on showing the presence of indistinguishability proofs, and suggest sim-
ilar approach to symbolic verification. Indeed protocol verification logics have
already applied an approach like this to producing computationally sound sym-
bolic systems for proving security protocols correct, e.g., by Roy et al. [73],
although at a higher level of abstraction then what Comon-Lundh et al. had
in mind. The idea is carried out further by Bana and Comon-Lundh in [12],
in which a system is constructed in which the symbolic attacker can make any
symbolic deduction that is not explicitly ruled out by an axiom. These axioms
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themselves are derived from cryptographic properties, e.g. indistinguishability
against chosen ciphertext attacks. One then attempts to prove the protocol is
secure by proving that any attack is inconsistent with the protocol’s axioms.
This work suggests that the question we should be asking is, not only how to
prove computational soundness of symbolic models, but what is the symbolic
model that provides the best interface to the computational model, in terms of
both concreteness and the ease of proving computational soundness?

Automation of Computational Proofs of Security. One way of avoiding
the disconnect between symbolic and computational models is to automate com-
putational proofs directly. This involves game transformation proofs [19,49,79]
that were introduced to add rigor to computational proofs. In this style of proof
one tries to prove that, given certain computational assumptions, the probabil-
ity of an attacker’s winning a certain type of game is a negligible function of
the security parameters. The game is transformed, step by step, to a series of
equivalent games until finally we wind up with a game in which the attacker’s
advantage is clearly negligible. For example, one might want to prove security of
a cryptoalgorithm by showing that an attacker has only a negligible advantage
of winning a game in which it attempts to distinguish between the encryptions of
two different messages, even when it chooses the messages. This could be proven
by transforming the original game into one in which the attacker attempts to
distinguish between two random numbers.

The clearly defined format and the fact that many of the transformation
steps can be standardized make game transformation proofs a natural candidate
for automation, and indeed the goal of automation was proposed by Halevi [49]
as early as 2005. More recently, researchers have been taking up the challenge,
with CryptoVerif [21] and EasyCrypt [15] being probably the best known tools.
Generally, the tools require substantial interaction with the user, who provides
the tool input on the sequence of game transformations, and, in the case of
EasyCrypt, guidance for proving equivalence.1

Some questions of interest here are: how wide is the range of cryptographic
algorithms and protocols that can be verified with these methods, and to what
degree do the methods scale up? In particular, if these methods are successful,
they could be used for the verification of complex cryptographic systems for
which human-generated and human-checkable proofs may not be practical.

3.4 Composability

Protocols do not operate by themselves. Generally they function as a layer in
a protocol stack, making use of channel guarantees provided by a lower level
protocol. The same is true for cryptographic protocols.

There has been a considerable amount of work on the problem of verifying
protocols assuming abstract properties of the channel that they are relying on.
1 CryptoVerif also provides a completely automated option, but it is the interactive

one that seems to be usually applied.
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Probably the earliest work in this direction was Boyd and Mao’s [25] and Mauer
and Schmidt’s [59] calculi that view cryptographic protocols as a means for
transforming communication channels into channels that satisfy progressively
stricter properties. This work, and much that followed upon it, relies on protocol
logics rather than state exploration (see Sect. 4.3 for more examples). This is not
surprising; it is more straightforward to use abstract security properties to derive
other abstract security properties than to translate them into conditions that
can be used by a search-based tool. However, we are also seeing work in both
proving and using abstract channel properties in search-based tools, e.g., the
vertical protocol integration of Gross, Mödersheim, and Vigano [47,67].

It appears that reasoning about communication channels is fairly well under-
stood for protocol logics. The question now is: what is the best way to incorporate
this reasoning in search-based tools, and how do we compose the guarantees?

3.5 Getting it into the Real World

Back in 2003, we were starting to see formal analyses of real-life protocols used in
standards, e.g., SSL/TLS [66], Kerberos [29], SET [17], and IKE Version 1 [61].
In a number of cases this had a positive impact on the standard. However, most
of these analyses were done after the protocol had been standardized, which
made it harder to address any problems that were found during the analysis.
Moreover, most of the analyses were one-offs; a single version of the standard
was analyzed. However, a standard is a living, evolving thing that is constantly
being changed, and one must verify that these changes do not negatively affect
the security functionality. Thus it was clear that in order to be really useful
formal analysis needed to be more tightly integrated into the standards process.

In 2015, we still see very little of this integration, for a number of reasons.
One is that formal analysis of cryptographic protocols still requires a high degree
of skill to specify the protocol and the security properties that it needs to satisfy.
Moreover, it is not always practical to have the formal verification researchers
perform the analyses, as was done in the instances we cited above. Researchers
are interested in research challenges, and not all protocols provide such chal-
lenges. Moreover, researchers are often restricted by the scope of their research
projects, which will generally last about three to five years, while maintaining a
standard can be a long-term commitment.

Although a number of obstacles exist to incorporating formal methods more
closely into the standardization process, there are other paths by which formal
analysis is moving closer to being applied to real world protocols. Skill and inter-
est in protocol analysis has been gradually spreading through the research com-
munity, both via researchers in secure protocol design applying formal methods
tools, and researchers in formal protocol analysis moving into protocol design. An
example in point is the development of secure voting protocols. The consequences
could be severe if a breach of security occurred, so their correctness is important.
This has lead to a significant level of activity on the part of the research commu-
nity in the development and verification of such protocols, including both cryp-
tographic proofs of correctness (e.g., [4,20,32,52,55,75]) and formal symbolic
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verification (e.g., [36,54,77]). Although we are still some way from adopting any
of these as a standard, the need in particular for voter-verifiable protocols in
which voters can verify that their votes were correctly counted, has already lead
to their use on a small scale, e.g., Helios in university elections [3], Scantegrity
II in the 2009 and 2011 Takoma Park elections [31], and a Prêt à Voter-based
system in the 2014 Victoria state elections [28].

We note that there are still some limitations on these analyses. One is that
they often focus on a subset of the security properties, e.g., coercion resistance.
Another is that it is still not clear how easy it would be to update these proofs
as the protocols evolve. But the fact that the systems being introduced have
already been subjected to intense mathematical and formal analysis, in many
cases from more than one party, increases the trust in which they can be held,
and bodes well for the positive effect of formal analysis on future standards.

Finally, we remark that another way of getting formal analysis of crypto-
graphic protocols into the real world is to concentrate on a particular problem
area that the tools can handle really well with minimal input from human beings,
and to build optimized tools for these tasks that can be made available commer-
cially. This is the approach that is being followed by a group of researchers on
security APIs, which is discussed later in Sect. 4.2.

4 Some New Issues and Trends

In this section I discuss some new problems that have emerged in the last twelve
years.

4.1 Privacy and Symbolic Indistinguishability

By privacy we mean the protection of private information from disclosure. How-
ever, there is an important difference between privacy and protection of secret
information such as cryptographic keys. Personal information tends in general to
be low entropy, so even if an attacker cannot get secret information in the clear,
the ability to distinguish between two encryptions of different data could lead to
its guessing it. Inability of an attacker to distinguish in this way is foundation
of the standard cryptographic formulations of security, but it was not originally
supported in the symbolic model.

Work was already beginning in this area by the early 2000s. In [1] Abadi and
Fournet presented a calculus for cryptographic protocol analysis, the applied pi-
calculus, for which they formulated an indistinguishability-based security prop-
erty they called observational equivalence. At about the same time Lowe [57]
developed automated techniques for the analysis of protocols using weak pass-
words, in which the attacker should not be able to tell the difference between
its choice of a correct password and its choice of an incorrect password. Later,
a method for model-checking a property somewhat stronger that observational
equivalence, called uniformity was implemented in the ProVerif tool [22], and it
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has been applied to a number of different protocols. More recently, a similar indis-
tinguishability property was formulated and implemented in Maude-NPA [76],
thus opening up the possibility of model-checking with respect to AC theories.

One challenge in model-checking indistinguishability is that it requires the
solving of disunification problems (find all substitutions to the variables in two
terms f and g guaranteeing nonequality) as well as unification problems. One
reason for ProVerif’s success in this area is that efficient disunification algorithms
are known for the class of theories it handles, subterm convergent rewrite rules.
On the other hand, much less is known about disunification for theories that
involve AC. Thus more understanding of disunification for AC theories is needed
to further extend symbolic reasoning about indistinguishability.

4.2 Security APIs

A security application programmer interface, or security API, is an API that
performs various cryptographic operations upon data input into it by a program
using it. APIs need to enforce various security properties: for example keys man-
aged by the API should not appear in the clear outside the security module.

Some early work on formal methods for cryptographic protocol analysis
focused on security APIs, e.g., [51,60], but increased interest followed upon
Bond’s discovery of an attack on the IBM CCA protocol in 2000 [24].

Security of APIs have much in common with the key exchange protocols ver-
ified using symbolic cryptographic protocol analysis tools. We assume a single
attacker who interacts with a single principal, the API. The attacker can mod-
ify messages it receives from the API and use them to construct new messages,
and is assumed to be able to perform any operation available to the API. Thus,
in theory it should be possible to apply general-purpose symbolic cryptographic
analysis tools to security APIs. But in practice this has proved difficult. For one
thing, there is the question of scale. In a key exchange protocol principals may
have the opportunity to play two or three different roles. A security API, however,
may execute dozens of different types of commands. Furthermore, security APIs
may make use of global state information. Finally, a number of operations that are
used in certain security APIs are simply difficult to model in the standard symbolic
setting, e.g., the format-dependent PIN recovery attacks discussed in [45].

Given the above, the approach taken to research on security APIs has typ-
ically been to develop special purpose models and tools that deal with classes
of APIs instead of developing or adapting general-purpose tools. This is made
more cost-effective by the fact that the same or similar tools can be applied to
installations of APIs as well as the API specification. This makes it possible to
develop a tool that is optimized for a single API such as PKCS#11 that can be
applied to multiple installations. This is, for example, the idea behind the busi-
ness model of Cryptosense [37], a recent start-up that is seeking to commercialize
security API analysis techniques.

The formal analysis of security APIs is an example of a field that has come to
a high level of maturity in a relatively short time, partly because concentrated
focus of the problem allows totally automated methods.
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4.3 Multi-channel Protocols, Ceremonies, and Procedures

In Sect. 3.4 we discussed research on modeling communication channels. In recent
years work in this area has expanded as new protocols have been developed
that take into account the special properties of certain communication chan-
nels. These include e.g., distance bounding protocols [26], that make use of timed
channels to verify a principal’s location, and short authenticated string (SAS)
[83] protocols, that make use of the fact that a human being observing a device
can easily verify the source of a message, but cannot remember a long string,
to provide low-bandwidth authenticated channels. As mentioned in Sect. 3.4 the
logic-based approach to cryptographic protocol analysis seem to lend themselves
well to reasoning about channels with special properties. In particular, the Pro-
tocol Derivation Logic of Pavlovic and myself [70] is a logic that allows the
specification of the properties of a channel in terms of what the receiver of a
message can conclude about it.

More recently, researchers have begun to take note of the fact that chan-
nels and protocols not only appear in computer networks but pervade human
life in general, and have started to look at ways for formalizing then. In [41]
Ellison notes that cryptographic protocols are embedded in larger ceremonies
that involve the humans who make use of the protocols. In [23] Blaze notes that
many interactions between human beings follow rules and procedures similar to
protocols and could be analyzed the same way protocols are.

We note that the concept of ceremony has been of particular interest to people
analyzing the security of web browsers, whose security depends in part upon
correctly modeling the way human beings interact with the browser interface.
However, we believe that a much wider application is possible. In [71] Pavlovic
and I consider a model that applies to the class of procedures that govern the
interactions between groups of humans and machines. Consider, for example, a
protocol that involves a customer performing a bank transaction. This involves a
customer interacting with her keyboard and monitor, which in turn interact with
her computer, which in turn communicates across the Internet with a machine
at the bank. Each of these principals and devices uses different communication
channels with different properties. We model these groups as actor networks
inspired by the idea of actor networks in sociology, and communication between
principals in an actor network is modeled using a successor to the Protocol
Derivation Logic: the Procedure Derivation Logic [71].

Although this area is still in its infancy, we believe it has great potential for
application as the Internet of Things evolves.

4.4 Combining Models and Proof Methods

In any area of formal methods, there is always one problem to deal with: the
large number of different models and formal systems that need to be dealt with,
and that stand in the way of making tools and techniques work together. To
some degree this is unavoidable, as we have seen for example in the disconnect
between symbolic and computational security; different problems require differ-
ent techniques. But often different formal systems will be developed to handle
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the same general problems. The problem comes when one wants to combine two
tools a apply a result proved for one system to another. How can we be sure
that what is valid for one system remains valid for another? Symbolic protocol
analysis is perhaps lucky in that a fairly small number of formal systems appear
to dominate: e.g., strand spaces [80], and the applied pi calculus [1]. However,
even when different tools use the same formal system, they often modify it. So
even though the systems used by two tools may be close, it may still be hard to
tell if they are equivalent.

One way of dealing with this problem is to develop interfaces between dif-
ferent tools and formal systems. For example, the AVISPA system [5] provides
a single front-end to a number of different tools, and the CoSP framework [9],
gives a computationally sound back-end to protocol verification tools. The idea
behind CoSP is that, instead of re-proving soundness results for one’s own sys-
tem, one can prove soundness of the system with respect to the CoSP, and then
inherit the computational soundness results of CoSP for free.

Building these kinds of interfaces can be tedious, and for that reason it is
perhaps not surprising that they are still relatively rare. But as the field matures,
and more people want to make use of results without having to reprove them for
different systems, we expect that interfaces will become more prevalent.

5 Conclusion

I have given an update of the overview of formal cryptographic protocol analysis
that I presented twelve years ago in [63]. As can be expected, although some
research directions appear to have led to a (perhaps temporary) dead end, and
others still have yet to fulfill their promise, others have made significant advances
and are having positive effects on the security of cryptographic protocols. But
what is most heartening is the sheer variety of research in this area. Although
early research started by concentrated on the very simple Dolev-Yao model,
researchers are now developing models and techniques for all types of extensions
and variations, as well as totally different models such as game-based cryptog-
raphy. We can conclude that formal cryptographic protocol analysis is a healthy
field that we expect to keep on growing and contributing.
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voter-verifiable voting system. IEEE Trans. Inf. Forensics Secur. 4(4), 662–673
(2009)

76. Santiago, S., Escobar, S., Meadows, C., Meseguer, J.: A formal definition of proto-
col indistinguishability and its verification using Maude-NPA. In: Mauw, S., Jensen,
C.D. (eds.) STM 2014. LNCS, vol. 8743, pp. 162–177. Springer, Heidelberg (2014)

77. Schneider, S., Teague, V., Culnane, C., Heather, J.: Special section on vote-id 2013.
J. Inf. Sec. Appl. 19(2), 103–104 (2014)

78. SET Secure Electronic Transactions LLC. SET Secure Electronic Transactions,
Version 1.0 (2002). http://www.exelana.com/set/

79. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive 2004:332 (2004)

80. Thayer, J.F., Herzog, J.C., Guttman, J.D.: Strand spaces: proving security proto-
cols correct. J. Comput. Secur. 7(1), 191–230 (1999)

81. Tor Project. The Tor Project: Anonymity Online. https://www.torproject.org/
82. Truderung, T.: Selecting theories and recursive protocols. In: Abadi, M., de Alfaro,

L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 217–232. Springer, Heidelberg
(2005)

83. Vaudenay, S.: Secure communications over insecure channels based on short
authenticated strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 309–326. Springer, Heidelberg (2005)

https://bitcoin.org
https://bitcoin.org
http://www.exelana.com/set/
https://www.torproject.org/


A Denotational Semantic Theory
of Concurrent Systems

Jayadev Misra(B)

Department of Computer Science, University of Texas, Austin 78712, USA
misra@utexas.edu

Abstract. This paper proposes a general denotational semantic theory
suitable for most concurrent systems. It is based on well-known concepts
of events, traces and specifications of systems as sets of traces. Each
programming language combinator is modeled by a transformer that
combines the specifications of the components to yield the specification
of a system. We introduce smooth and bismooth transformers that corre-
spond to monotonic and continuous functions in traditional denotational
theory. We show how fairness under recursion can be treated within this
theory.
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1 Introduction

This paper proposes a general denotational semantic theory suitable for most
concurrent systems. It is based on well-known concepts of events, traces and
specifications of systems as sets of traces.

A concurrent system consists of a number of components that are combined
using the combinators of a specific programming language. A specification of
a component is a prefix-closed set of traces. A transformer combines the spec-
ifications of the components to yield the specification of a system; thus, each
combinator of a programming language is modeled by a transformer. The two
most significant concepts in this paper are smooth and bismooth transformers.
A smooth transformer is a monotonic function on traces, ordered by prefixes.
A bismooth transformer is smooth, and, analogous to continuous functions in
traditional denotational theory [13], preserves the upward-closures of specifi-
cations. These transformers can model various features of concurrent systems
such as, concurrent interactions with memory and objects, independent as well
as causally dependent threads, unbounded non-determinism, shared resource,
deadlock, fairness, divergence and recursion.

Note on Proofs: A complete paper, that includes proofs of all propositions in an
Appendix, is at http://www.cs.utexas.edu/users/misra/DenotationalSemantics.pdf.
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Treatment of recursion, Sect. 4, requires us to introduce bismooth trans-
former, the counterpart of a continuous function that preserves the limits of
chains (upward-closure) as well as the prefixes of traces (downward-closure). We
develop a version of the well-known fixed point theorem [7,13] that shows that
first computing a simple fixed point and then taking its limit is appropriate
for bismooth transformers, see Sect. 4.4. Transformers that encode fairness are
smooth (monotonic) but not bismooth (continuous); so this theorem does not
apply. We generalize the least fixed point theorem, to min-max fixed point theo-
rem, for smooth transformers that allows treatment of certain forms of fairness;
see Sects. 4.5 and 4.6.

Monotonic and continuous functions in denotational semantics operate on
elements of any complete partial order without any pre-assumed structure. Even
though smooth and bismooth transformers are the counterparts of monotonic
and continuous functions, they operate on specifications which have structure
as sets of traces. We exploit this structural information to obtain strong results
about various classes of transformers and fixed points.

We do not to develop the semantics of a specific programming language but
of transformers that are of general applicability in all conceivable concurrent
systems. Features of specific programming languages can be treated by combin-
ing a few elementary transformers, as we demonstrate in the example below.
The long-term goal of the research is to suggest a framework for analysis of
concurrent programming language constructs.

A Motivating Example. Let ⊕ be a 3-way combinator so that in ⊕(A,B,C)
synchronization of the executions A and B initiates the execution of C. Opera-
tionally, A and B are parent threads that execute concurrently at start. Child
thread C starts executing only when the parents synchronize, by A engaging
in event e and B in e. In case both events occur, they have completed a “ren-
dezvous”, C is started and A and B resume execution. Neither e nor e is shown
explicitly as occurring in the execution in case of a rendezvous.

It is possible that a synchronization may never be completed even though
one of A and B, say A, has engaged in its synchronization event e. In that case,
A remains waiting to synchronize and C is never started, though B may continue
to execute forever or halt without synchronization.

We define a transformer ⊕′, corresponding to the combinator ⊕, that trans-
forms the specifications of A, B and C to yield the specification of ⊕(A,B,C).
The definition of ⊕′ uses a few transformers described in this paper.

Let the specifications of A, B and C be p, q and r, respectively. Introduce
C ′ that behaves as C but indicates the start of its execution by a specific event
a; event a does not occur in p, q or r. The specification of C ′ is cons(a, r) that
appends a as the first event to every trace in r; see the definition of cons in
Sect. 3.3.5. The execution of ⊕(A,B,C ′) interleaves their individual executions
arbitrarily, subject to the constraint that the events e, e and a be synchronized.
The interleaved executions of A, B and C ′ is given by their unfair merge, written
as p | q | cons(a, r); see Sect. 3.3.11. The synchronization of e, e and a is written
using a transformer, called rendezvous, that introduces a new event τ to indicate
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the simultaneous occurrences of e, e and a; see Sect. 3.3.14. Finally, event τ is
removed from the specification, using transformer drop; see Sect. 3.3.4. Thus,

⊕′(p, q, r) = drop({τ}, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))

We can now assert certain properties of ⊕′. For example, that it is bismooth,
because all the transformers in its definition are bismooth and composition of
bismooth transformers is bismooth.

2 Basic Concepts

A trace represents one possible execution of a component. The specification of a
component is a set of prefix-closed traces. We define these concepts and explore
their properties in this section.

2.1 Event and Trace

2.1.1 Event
Event types are uninterpreted symbols drawn from an event alphabet. The choice
of event types for a component constitutes a design decision about the granularity
at which we may wish to examine the component. For the systems that we
consider in this paper, event types could be many including, for instance: input
and output, binding of a parameter to a value, calling a shared resource for
read/write access, receiving a response from a resource, locking and unlocking
of a resource, allocation and disposal of storage, or publishing a value as a result
of a computation. Each event is an instance of some event type in an execution.
Instances of the same event type are distinguished, say by subscripts, so that all
events in an execution are distinct. The semantic theory makes no assumption
about the meanings of events.

2.1.2 Trace
A trace is the formal counterpart of partial or complete execution of a program.
A trace includes a sequence of events, the events occurring in the execution, and
the state at the end of the execution if it is finite; the state is called status in
this paper1. An execution that has halted, i.e., one that can engage in no further
event, has status H. A finite execution that is waiting for an event to happen or
waiting to halt has status W . An infinite execution has status D, representing
divergence. A finite execution may also have status D; this represents an infinite
execution that has only a finite prefix of visible events; see Sect. 2.4. A trace is
written in the form y[m] where y is the status from {H, W, D}, and m is a
finite or infinite sequence of distinct events. If y is H or W then m is finite.

For notational simplicity, different instances of the same event are sometimes
written as the same symbol in examples; thus, given that tl is an event type, we
may abbreviate the trace W [tl1 tl2] by W [tl tl].
1 We use the term status to distinguish the state of execution from the states of other

mutable objects in the system.
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2.1.3 Example
Consider a component that has the following behavior. It tosses a coin repeatedly
until the coin lands heads. Then it halts. Let hd and tl denote the events of coin
landing heads and tails, respectively, and tli a sequence of length i of tl events.
Then any finite execution is represented by, for some i ≥ 0, either (1) W [tli], (2)
W [tli hd], or (3) H[tli hd]. If the coin is fair we expect it to land heads eventually;
so, these are the only traces of the component. If the coin is unfair, it is possible
to have an infinite sequence of tails, and the corresponding trace is D[tlω]. If the
coin toss events are invisible, then the only traces in an external spec for fair
coin are W [ ] and H[ ], and for unfair coin are W [ ], H[ ] and D[ ]. Thus, with
an unfair coin an external observer can assert only that this component may
eventually halt or may compute forever.

The component described in this example does not interact with any other
component. To see interaction, suppose the component does not actually toss the
coin but requests another component to do so and communicate the result to it.
Let toss be a request for a toss, and rcvhd and rcvtl are the events correspond-
ing to the responses received when the toss lands heads and tails, respectively;
assume that a response is guaranteed. A trace of the component with a fair
coin is, for some i ≥ 0, either (1) W [(toss rcvtl)i], (2) W [(toss rcvtl)i toss],
(3) W [(toss rcvtl)i toss rcvhd], or (4) H[(toss rcvtl)i toss rcvhd]. An external
observer can assert eventual termination, because there is no external event for
which the program may wait forever. With an unfair coin there is an additional
trace D[(toss rcvtl)ω], and termination can not be asserted.

Tuples of traces. In this paper, transformers are functions that map a set of traces
to a set of traces. In dealing with programs that contain several components,
a transformer, such as merge, maps each tuple of traces, with one trace from
each component, to a set of possible traces of the program. In most contexts the
distinction between a trace and a tuple of traces is immaterial, so we use the
term “trace” to denote a single trace or a finite tuple of traces, the tuple size
depending on the context. A tuple of traces is finite if each component trace is
finite.

Traceset. A traceset is a non-empty set of traces. A finitary traceset is one in
which each trace is finite. Tracesets are partially ordered by subset order.

2.2 Prefix Order Over Traces

Informally, trace s is a prefix of t when the execution corresponding to s can
possibly be extended to that for t. For sequences m and n, let m � n denote that
m is a prefix of n. Impose a partial order ≤ over the status values as follows:
W ≤ H and W ≤ D. The partial order mimics the causal order in an execution
so that W [m] may evolve to H[m] by changing state silently, and W ≤ D because
any finite computation precedes an extension of it to an infinite computation.

Trace y[m] is a prefix of z[n] (z[n] an extension of y[m]) if y ≤ z and m � n.
And, y[m] is a proper prefix of z[n], if y[m] ≤ z[n] and y[m] �= z[n]. So, a trace
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with status H or D has no extension. An infinite trace is a prefix only of itself.
And W [ ] ≤ y[m] for every trace y[m].

For tuples of traces define one tuple as a prefix of another if each entry
in the former tuple is a prefix of the corresponding entry in the latter. And
(s0, s1, · · · , sk) < (t0, t1, · · · , tk) if si ≤ ti for each i and sj < tj for some j.

Properties of prefix order. The following properties are easy to prove.

1. Prefix order, ≤, is a partial order over traces.
2. The inverse of proper prefix order, >, is a well-founded order over traces.
3. The set of prefixes of a trace are totally ordered.

An Induction Principle over traces. The inverse of proper prefix order, >, is
a well-founded order even in the presence of infinite traces. This allows us to
formulate the following induction principle. Let P be a predicate over traces,
both finite and infinite.

If for all t, (∀s : s < t : P (s)) ⇒ P (t),
then P (t) holds for all traces t.

2.3 Prefix Closure

The prefix-closure, also called downward-closure, of trace t is denoted by t∗; it is
the set of all prefixes of t. For a traceset p, p∗ is the set of prefixes of all traces
of p. That is,

t∗ = {s s ≤ t} and p∗ = ∪{t∗ t ∈ p}.

It follows that for traces s and t, (s, t)∗ = s∗ × t∗.

Finite Prefix-Closure. Denote the set of finite prefixes of trace t by t∗′ . Define
p∗′ for traceset p analogously. Note that an infinite trace t is not in t∗′ , though
t ∈ t∗.

Notational Conventions.

1. Prefix-closure and finite prefix-closure operators have the highest binding
power among all operators.

2. Prefix closure and finite prefix-closure apply to event sequences, not just
traces and tracesets.

3. Write C∗(p) for (C(p))∗ for any p in any context C.
4. (singletons and sets) A singleton trace may appear wherever a traceset is

expected to appear. That is, if C(p) is a valid expression for any traceset p,
so is C(t) for a trace t, and it denotes C({t}).

Conversely, if C(t) is a valid expression for any trace t, so is C(p) for any
traceset p, and it denotes ∪t∈pC(t).
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Thus, W [m∗] is a shorthand for {W [k] k ∈ m∗}. And, W∗[m] = (W [m])∗ =
{s s ≤ W [m]}.

Elementary Properties of Prefix-Closure. Below p and q are tracesets, and t any
trace. The following properties are easy to show. Closure expansion, item (4), is
used extensively in subsequent proofs.

1. Prefix-closure is an algebraic closure, i.e., for tracesets p and q,
(a) (extensive) p ⊆ p∗
(b) (monotonic) p ⊆ q ⇒ p∗ ⊆ q∗
(c) (idempotent) (p∗)∗ = p∗.

2. Finite prefix-closure of tracesets is monotonic and idempotent. Extensive
property does not hold for the traceset {t} where t is an infinite trace.

3. (t∗)∗′ = (t∗′)∗ = t∗′ .
4. (Closure expansion) For any trace z[m], z∗[m] = {z[m]} ∪ W [m∗′ ].
5. (closure distributes over set union) For a family F of tracesets, F possibly

infinite, (∪p∈F (p))∗ = (∪p∈F (p∗)).
6. (closure distributes over Cartesian product) (p × q)∗ = p∗ × q∗.

2.4 Specification

Informally, a specification of a component, henceforth abbreviated as spec, is a
set of traces, where each trace corresponds to an execution of the component
in some environment. Different traces may correspond to executions in different
environments. Properties of a component may be deduced from its spec, such as
that its publications are monotonic in value (a safety property), every execution
eventually halts (a progress property), or that the component’s execution may
deadlock (the spec includes a trace W [m] that has no extension).

Spec. A spec is a prefix-closed traceset. A finitary spec is a spec consisting of
finite traces.

Note that a spec of n-tuples includes the bottom trace, (W [ ],W [ ], · · · ,W [ ]),
consisting of n individual empty traces.

2.4.1 Properties of Specs
The proofs of the following properties are elementary.

1. For any traceset p, p∗ and p∗′ are both specs.
2. Union of a finite or infinite family of specs is a spec.
3. Intersection of a finite or infinite family of specs is a spec.
4. Cartesian product of a pair of specs is a spec.

Consider the coin toss example of Sect. 2.1.3. With a fair coin we expect the
spec to be H∗[tli hd], and for an unfair coin to be H∗[tli hd] ∪ {D[tlω]}.
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2.4.2 Chains and Their Limits
A chain is a finitary spec whose elements are totally ordered under ≤. A chain
may be finite or infinite. For any trace t the set of its finite prefixes, t∗′ , is a
chain.

The limit of chain c, written as lim(c), is the least upper bound of the traces
in c with respect to the ≤ ordering. For a finite chain c, lim(c) is the longest
trace in c. For an infinite chain c, lim(c) is the unique infinite trace such that
every trace in c is its prefix. Note that lim(c) does not belong to c for infinite c
because c consists of finite traces only. Notationally, use lim(c) as a trace and
also as a singleton traceset.

Define the limit of a finite tuple of chains as the tuple of limits of the corre-
sponding chains. That is,

lim(c0, c1, · · · cn) = (lim(c0), lim(c1), · · · lim(cn))

2.4.3 Complete Lattice of Specs
The least upper bound of a set of specs is their union, and the greatest lower
bound is the intersection. Thus, specs form a complete lattice under subset order,
where ⊥ = W [ ] and  is the union of all specs.

3 Transformer

Any component of a system is either a primitive component or a structured com-
ponent. A primitive component is defined by its spec. A structured component
consists of one or more subcomponents that are combined using the combinators
of the language. A spec transformer, or simply a transformer, corresponding to
each combinator is a function mapping the Cartesian product of the specs of
the subcomponents to the spec of the structured component. The number of
subcomponents, therefore the length of the tuples in the argument of the trans-
former, is the arity of the transformer. A language semantic thus consists of the
specs of the primitive components and the transformers corresponding to each
combinator. For the moment assume that the domain of a transformer is the set
of all traces. We show how to restrict the domain of a transformer in Sect. 3.2.2.

Convention. We develop the theory for transformers of arity 1, a transformer
that maps a spec to a spec. Generalizations for other arities are straightforward.
Examples of transformers of higher arity appear in Sects. 3.3.2, 3.3.11, 3.3.12
and 3.3.15. For a transformer of arity 2 we adopt infix notation, as in p ⊕ q.

We restrict ourselves to a class of transformers, called smooth. Smooth trans-
formers correspond to monotonic functions in denotational semantic theory.
A subset of smooth transformers, called bismooth, correspond to continuous
functions. We develop the theory of smooth transformers in this section and
bismooth transformers in Sect. 4.3.
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3.1 Trace-Wise Transformer

A trace-wise transformer is a total function from traces to tracesets. Using the
notational convention introduced earlier, a trace-wise transformer f applied to
a traceset p is defined to be: f(p) = ∪{f(t) t ∈ p}. For trace-wise combinator
⊕ over a pair of specs, p ⊕ q = ∪{s ⊕ t s ∈ p, t ∈ q}.

Any transformer maps a spec to a spec. We restrict ourselves to trace-wise
transformers in this paper because a language combinator can combine only indi-
vidual executions of its components. Non-determinism is represented by map-
ping a trace to a traceset, every trace of the latter corresponds to a possible
execution. The size of the result traceset is arbitrary, thus allowing unbounded
non-determinism.

3.1.1 Properties of Trace-Wise Transformers
The following properties follow from the definition of trace-wise transformers.

1. A trace-wise transformer distributes over union (possibly infinite union) of
tracesets. That is, given a family F of tracesets, (∪p∈F f(p)) = f(∪p∈F (p)).

2. Composition of trace-wise transformers is a trace-wise transformer.
3. (Monotonicity) For trace-wise f and tracesets p and q,

p ⊆ q ⇒ f(p) ⊆ f(q).

A trace-wise transformer may not transform a spec to a spec, i.e., the result-
ing traceset may not be prefix-closed (consider a transformer that maps every
trace to W [a] where a is some event; the resulting traceset does not include W [ ],
hence, is not a spec). The smoothness condition, described below, guarantees this
property.

3.2 Smooth Transformer

A transformer f is smooth if and only if for any traceset p

f∗(p) = f(p∗), where f∗(p) stands for (f(p))∗.

And, f is finitely smooth if for finitary p, f∗(p) = f(p∗).

3.2.1 Properties of Smooth Transformers
The following properties are proved in Propositions 1–3.

1. A transformer f is smooth if and only if it preserves prefix-closure over indi-
vidual traces, i.e., f∗(t) = f(t∗), for every trace t.

2. A transformer is smooth if and only if it maps specs to specs.
3. Composition of smooth transformers is smooth.

Terminology and Notation. Henceforth, “transformer” stands for “trace-wise
transformer” in this paper. For a binary smooth transformer ⊕ written in infix
style, (p ⊕ q)∗ = p∗ ⊕ q∗, for tracesets p and q.
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3.2.2 Domain of a Transformer
We have so far assumed that every transformer is defined for all traces. In
many cases a transformer f can meaningfully be defined only over some domain
dom(f); we assume that dom(f) is a spec. We show how to extend the domain
of a transformer while retaining its essential properties. Specifically, we define
transformer g over all traces that induces the same mapping over dom(f) as f
and retains smoothness and bismoothness.

For any t in dom(f) let g(t) = f(t). For t �∈ dom(f) and finite t, let
g(t) = ∪{f(s) s ≤ t and s ∈ dom(f)}. For t �∈ dom(f) and infinite t, let
g(t) = lim(g(t∗′)), where lim is defined in Sect. 2.4.2). It can be shown that if
f is smooth over the traces in dom(f) then so is g over all traces, and if f is
bismooth over any spec in dom(f) then so is g over all specs.

Note: For t �∈ dom(f) and finite t, alternately let g(t) = f(s) where s is the
longest prefix of t in dom(f).

3.3 Some Elementary Smooth Transformers

In this section, we show a number of smooth transformers that are of general
utility. Transformer g with arguments is written as g(args, t) where args is a
set of parameters and t a trace. Here, g represents a family of transformers, one
transformer for each value of args. For a specific value of args we abbreviate
g(args, t) to f(t), and then prove the smoothness of f . Note that the identity
transformer, id(t) = t for all traces t, is smooth.

3.3.1 Status Map
This is a family of transformers each member of which may change the status of
a trace but not its event sequence. Applying statusmap(y[m]), a generic member
of the family, yields y′[m] where y′ may differ from y only if y = H, or y = D
and m is finite; thus, statusmap(y[m]) = y[m], if y = W or m is infinite. Every
transformer in statusmap is smooth; see Proposition 4.

3.3.2 Choice
The choice transformer, or, corresponds to a non-deterministic choice between
two components to execute. For components f and g with specs p and q, f or g
has the spec p ∪ q. As a trace-wise transformer: s or t = {s, t}. We show that or
is smooth, in Proposition 5.

3.3.3 Hide
Transformer hide is parametrized by a set of events E, which may be finite or
infinite; hide(E, t) is the trace obtained after removing all events from t that
also occur in E. Application of hide may remove an unbounded, and possibly
infinite, number of events from a trace. For example, hide({a},D[aω]) results in
D[ ]. To see hide is smooth see Proposition 6.
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3.3.4 Drop
Transformer drop is same as hide except that in drop(E, t) (1) the event set E
is finite, and (2) only the first occurrence, if any, of an event from E is removed
from t, but subsequent occurrences are retained. The proof that drop is smooth
is similar to the proof for hide. The reason we treat drop separately is that drop
is bismooth —see Sect. 4.3.4— whereas hide is not. This property permits drop,
but not hide, to be freely used in recursive equations.

3.3.5 Cons
Append a specific event a as the first event of every trace. To ensure that a spec
is transformed to a spec, cons(a,W [ ]) includes W [ ].

cons(a,W [ ]) = {W [ ],W [a]}, cons(a, y[m]) = {y[am]}
We show that cons is smooth in Proposition 7.

3.3.6 Filter
A class of transformers, called filter, is essential for most applications of this
theory. A filter can be used to model interactions among components by reject-
ing the traces that do not implement acceptable interactions, as in accesses to
shared resources. A filter can also model rendezvous-style interactions and fair-
ness constraints.

Associated with each filter is a predicate b over traces such that:

F1. b(W [ ]) holds, and
F2. If b(t) holds then b(s) holds for all proper prefixes s of t, i.e., writing b(t∗′)

for the conjunction of b(s) over all finite prefixes s of t: b(t) ⇒ b(t∗′).

Filter f corresponding to predicate b accepts t iff b(t) holds and rejects it
otherwise. Thus, if a filter accepts a trace it accepts all prefixes of that trace;
equivalently, if it rejects a trace, it rejects all extensions of that trace. Since
b(W [ ]) holds, not all traces are rejected. A filter applied to a spec retains only
its acceptable traces.

The natural definition of transformer f corresponding to filter predicate b is
f(t) = {t} if b(t) and {} otherwise. This definition violates the requirement that
f(t) be a traceset, a non-empty set of traces, for all t. So, we propose:

f(t) = {s s ≤ t and b(s)}
Transformer f is smooth; see Proposition 17.

Observe that for filter predicates b and b′, b ∧ b′ and b ∨ b′ are also filter
predicates. If transformers g and g′ implement b and b′ respectively, then g ◦ g′

implements b ∧ b′ and g(t) ∪ g′(t), for any trace t, implements the disjunction
of the filters. Any filter transformer is idempotent, and it distributes over union
and intersection of specs. The following identity is used in the min-max fixed
point theorem, Sect. 4.5. For filter g and specs p and q,

g(p ∩ q) = g(p) ∩ g(q) = g(p) ∩ q
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Continuous vs. Discontinuous Filter. We distinguish between two kinds of fil-
ters, continuous and discontinuous, depending on the value of b(t) for infinite t.
A discontinuous filter models fairness wherein an infinite trace may be rejected
even though all its finite prefixes are accepted. A continuous filter rejects an infi-
nite trace only if some finite prefix of it is also rejected. Conversely, a continuous
filter accepts an infinite trace if all its finite prefixes are accepted.

Both types of filter predicates obey the conditions (F1) and (F2) given earlier.
Additionally, a continuous filter predicate b satisfies the stronger condition (F2’)
below in place of (F2):

F2’. b(t) ≡ b(t∗′), for every trace t.

Note that (F2) and (F2’) are equivalent for finite t. It is only for infinite t that
(F2’) imposes the additional constraint: b(t∗′) ⇒ b(t).

For a continuous filter f , we can let f(t) be the longest prefix of t for which b
holds. This is defined for finite t because b(W [ ]) holds, and for infinite t because
the longest prefix is t if b(t) holds and some finite prefix of t if ¬b(t) holds. Con-
tinuous filters are always bismooth, discontinuous filters are not; see Sect. 4.3.4.

Filters are some of the most useful transformers. The following sections list
special cases of filters that arise in concurrent programming.

Partitioning a filter. Any filter can be written as a composition of two filters one
of which is continuous and the other rejects only infinite traces. That is, a filter
f can be written as finf ◦ ffin where (1) finf rejects trace t only if t is infinite,
and f rejects t though it accepts all finite prefixes of t, and (2) ffin rejects all
other traces, finite and infinite, that f rejects. It is possible that neither finf

nor ffin rejects any trace. Clearly, f = finf ◦ ffin. Further, ffin is a continuous
filter because whenever it rejects an infinite trace it also rejects a finite prefix of
it. And, if finf rejects any trace, it is a discontinuous filter.

3.3.7 Restrict by Inclusion of Events
Reject a trace if it contains a specific event a, or, more generally, an event from
a specified set E. This is a filter because (1) it accepts W [ ], and (2) if it accepts
a trace, it accepts all its prefixes. The filter is continuous.

The converse of this rejection criterion is not smooth: accept a trace only if
it is W [ ] or contains a specific event a. Then any trace that has a as its last
event is accepted but all its prefixes except W [ ] are rejected. Therefore, it may
transform a spec to a traceset that is not prefix-closed.

3.3.8 Restrict by Exclusion of Events
Accept a trace only if it is W [ ] or its first event is drawn from a specified set
of events. This condition defines a filter predicate b because: (1) b(W [ ]) holds,
and (2) if b(t) holds, it holds for all prefixes of t. The filter is continuous. The
requirement that the specified event be the first one in the event sequence is
crucial; without this requirement the transformer is not smooth.
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The acceptance criterion here is stronger than a typical filter: whenever a
trace is accepted, all its extensions are also accepted.

3.3.9 Restrict by Precedence Relation
Let R be a binary relation over events. Define a transformer that accepts trace
t iff for every (e, e′) in R, if e′ is in t then e is also in t and e precedes e′. Thus,
an acceptable trace is one that either includes (1) none of e and e′, (2) just e,
or (3) both e and e′ with e preceding e′. It is easy to see that W [ ] is accepted
and the prefix of an acceptable trace is acceptable. Further, this transformer is
a continuous filter.

3.3.10 Atom
Atomicity is a fundamental notion in concurrent programming, particularly in
the theory of transactions. Roughly, trace t is atomic with respect to a specified
set of events if all the specified events occur contiguously in some order in t. We
propose a more general definition that is useful in defining other transformers.

A pattern alphabet is a finite subset of the event alphabet. A pattern is a
finite string over the pattern alphabet. Let P be a finite set of patterns. Trace
t is atomic with respect to P if the event sequence in t can be written uniquely
as a sequence of patterns from P interspersed with events outside the pattern
alphabet, optionally followed by a prefix of some pattern if t is finite. Predicate
atom(P, t), where P is a finite set of patterns and t a trace, holds iff t is atomic
with respect to P .

It is easy to see that atom is a filter predicate, because W [ ] is accepted and if
t is accepted then so are all its prefixes. Additionally, atom defines a continuous
filter because if an infinite trace t is rejected then some finite prefix of it is not
atomic with respect to P .

3.3.11 Unfair Merge
One of the most important transformers, that models concurrent executions of
components, is merge. It interleaves the events of two traces arbitrarily yielding
a traceset from a pair of traces. Besides interleaving the events, merge also
computes the status of the interleaved trace based on those of the given traces.
Assume that the events in the traces to be merged are distinct.

There are two forms of interleavings, unfair and fair, of event sequences m
and n. The distinction is significant only when one or both of m and n are
infinite. If each interleaving includes all elements of m and n then it is fair ; we
treat fair merge in Sect. 3.3.12. An unfair interleaving may include only a finite
prefix of n for infinite m, and analogously for infinite n.

Properties of unfair interleaving. Define unfair interleaving of m and n, m ⊗ n,
by the following program (using pattern matching style):

[ ] ⊗ n = n
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m ⊗ [ ] = m
(a : m) ⊗ (b : n) = (a : (m ⊗ (b : n))) ∪ (b : ((a : m) ⊗ n))

Using fixed point induction it can be shown that ⊗ is symmetric. It can
also be shown that it is monotonic in both arguments, so m ⊗ n ⊆ m′ ⊗ n and
m ⊗ n ⊆ m ⊗ n′, where m ⊆ m′ and n ⊆ n′. Further,

(m ⊗ n)∗ = m∗ ⊗ n∗ (⊗ distributes over prefixes)

Transformer for unfair merge. Unfair merge of two traces applies unfair inter-
leaving to their event sequences. Also, it applies a symmetric binary operation
∩ over their status values: H ∩ y = y and W ∩ W = W . Define unfair merge
transformer, | , as follows, where both y and z are from {H, W}.

y[m] | z[n] = (y ∩ z)(m ⊗ n)
D[m] | z[n] = D[m ⊗ n∗]
D[m] |D[n] = D[m ⊗ n∗] ∪ D[m∗ ⊗ n]

Observe that m and n may be finite or infinite in D[m] and D[n] above. Note
that z[n] |D[m] = D[m] | z[n], and it is not shown explicitly below.

The intuition behind this definition is as follows. Expression y[m] | z[n] denotes
the concurrent execution of two executions, one corresponding to y[m] and
the other to z[n]. Both executions are finite and if either fails to halt then the
concurrent execution does not halt either, as given by the status (y∩z). The event
sequence in y[m] | z[n] is an interleaving of m and n, which justifies the result
expression (y ∩ z)(m ⊗ n).

Next, consider infinite executions defined by the next two cases. In D[m] | z[n],
D[m] denotes an infinite execution D[m′] where m is the sequence of visible
events in m′; thus, m may be finite. The resulting concurrent execution is infi-
nite, so its status is D. Any concurrent execution executes a prefix of z[n] with all
of D[m′]; so the event sequences in all such executions are given by m′ ⊗n. Since
only the events of m are retained from m′, the resulting expression is D[m⊗n∗].
Similar remarks apply for D[m] |D[n], because any execution may use a prefix
of the event sequence of one of D[m] or D[n] and all events of the other.

It can be shown from the above definition that unfair merge is commuta-
tive, associative and H[ ] is its zero. We show that unfair merge is smooth in
Proposition 8.

3.3.12 Fair Merge
Fair merge is based on fair interleaving, which we denote by ⊗′:

m ⊗′ n = {x x ∈ m ⊗ n, x contains m and n as subsequences}

Note that if m is infinite and n non-empty, then m ∈ m ⊗ n and m �∈ m ⊗′ n.
Extend the definition of ∩ to apply to all status values {H,W,D} as follows.

Recall that ∩ is symmetric. For any status value y



506 J. Misra

H ∩ y = y, W ∩ W = W and D ∩ y = D

Define fair merge transformer, |′ , of two argument traces y[m] and z[n] for
y and z from {H,W,D}, and finite or infinite m and n.

y[m] |′ z[n] = (y ∩ z)(m ⊗′ n)

The proof of smoothness of fair merge can be developed in a manner similar
to unfair merge. There is a much simpler alternative proof. Observe that fair
merge of y[m] and z[n] is same as their unfair merge followed by application of
a filter that removes every infinite trace D[k] from y[m] | z[n] where k �∈ m ⊗′ n.
Both unfair merge and filter are smooth; so, their composition, fair merge, is
also smooth.

3.3.13 Replace
We consider a general version of substitution of a sequence of events by a single
event. A source alphabet and a target alphabet are disjoint finite subsets of the
event alphabet. A replacement pair is of the form (σ, τ) where σ, called the
source, is a finite string over the source alphabet, and τ , called the target, is a
single symbol from the target alphabet.

Let R be a finite set of replacement pairs. A source may occur multiple
times in R with different targets, and similarly, a target may have multiple
occurrences in R with different sources. Transformer replace substitutes occur-
rences of a source by all corresponding targets in an event sequence. The effect
of replace(R, t) is to (1) accept t if t is atomic with respect to the sources,
see Sect. 3.3.10 and t contain no symbol from the target alphabet, and (2) if t
is accepted, replace occurrence of every source by all corresponding targets to
obtain a set of traces, and (3) then replace occurrence of any proper prefix of a
source by the empty string. The situation in (3) arises because the prefix of an
atomic trace may contain a prefix of a source as its suffix. The domain of this
transformer can be extended to all traces using domain extension described in
Sect. 3.2.2.

Henceforth, let f(t) denote replace(R, t) for a specific R. The definition of
f for finite t is given in clausal form in a functional style, where the clauses are
attempted in the given order from top to bottom.

f(y[σ′]) = y[ ], where σ′ is a proper prefix of a source
f(y[σm]) = ∪{cons(τ, f(y[m])) (σ, τ) ∈ R}
f(y[am]) = cons(a, f(y[m])), a �∈ source alphabet

Thus the source σ is replaced by every target associated with it in f(y[σm]).
For infinite t, it is easier to specify the transformer using limits from Sect. 2.4.2.

Such a definition permits simpler proofs of smoothness and bismoothness: f(t) =
lim(f(t∗′)).

We prove that replace is smooth in Proposition 9. It can be shown that the
“substitution” transformer, that replaces each event e in a trace by event h(e)
where h is a function over the event alphabet, is smooth.
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3.3.14 Rendezvous
The unfair and fair merge transformers of Sects. 3.3.11 and 3.3.12 implement
independent concurrent processes whose executions can be arbitrarily inter-
leaved. We consider more refined versions of concurrent executions in Sect. 3.5
in which the processes call upon shared resources, and hence, their executions
can not be arbitrarily interleaved. Here, we introduce a form of synchroniza-
tion, called rendezvous in CSP [5] and CCS [10], that ensures that a pair of
complementary events {e, e} from the two processes occur simultaneously. Their
simultaneous occurrence is shown by an event τ in the combined trace that
belongs to neither process.

We define rendezvous by composing the transformers atom and replace.
First, perform an appropriate merge, fair or unfair, of the specs of the two
processes. Then apply transformer atom of Sect. 3.3.10 to eliminate the traces
in which {e, e} do not occur contiguously. Next, using transformer replace of
Sect. 3.3.13, replace all (contiguous) occurrences of {e, e} by τ , and remove any
e or e event that occurs by itself. We generalize this scheme slightly by allowing
rendezvous to occur with any finite set of events E instead of just two events
{e, e}, as follows.

Let E′ be the set of strings obtained by permuting the events of E in all
possible order. Henceforth, write rendezvous(E, τ, t), τ �∈ E, for the transformer
that (1) accepts t provided t is atomic with respect to E′, (2) replaces every
pattern of E′ in trace t by event τ , and then (3) removes any non-empty proper
prefix of a pattern of E′. Here, t would likely be a trace arising out of the
concurrent executions of processes. If required, τ can be eliminated by applying
transformer drop of Sect. 3.3.4. Define rendezvous as follows and note that it is
smooth since atom and replace are smooth.

rendezvous(E, τ, t) = replace({(σ, τ) σ ∈ E′}, atom(E′, t))

A flaw in this definition, as noted by a referee, is that contiguous events of a
single component may perform rendezvous, because there is no distinction among
events from different components. To overcome this flaw distinguish events from
different components so that every pattern in E′ consists of events from different
components.

3.3.15 Sequential Composition
Consider a simple form of sequential composition of f and g in which g starts
executing only when f halts. The corresponding transformer ; is:

H[m] ; z[n] = z[mn],
s ; z[n] = s, otherwise

It can be shown that sequential composition is associative. We show that
sequential composition is smooth in Proposition 10.
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3.4 Fairness

Fairness is a filter that eliminates only certain infinite traces from a spec. For
example, a fairness constraint for the coin toss example of Sect. 2.1.3 may specify
that the coin is fair so that an infinite sequence of tails is impossible; then,
trace D[tlω] is inadmissible. A fairness constraint about a strong semaphore
may specify that any execution in which a P event on the semaphore remains
waiting forever while V events happen infinitely often is inadmissible. In a real-
time computation a fairness constraint may specify that an infinite number of
events may not occur within a bounded time interval.

A fairness constraint can be defined by a filter predicate b, where b holds for
all finite traces and, possibly, some infinite traces. Therefore, b(W [ ]) holds and
if b holds for any trace it holds for all its prefixes. For the coin toss example,
the filter predicate b holds for every finite trace and every infinite trace that
does not have an infinite suffix of either heads or tails (for the example shown,
it does not matter if the coin lands heads infinitely often, because the game is
terminated after the first landing of a head). Being a filter, fairness is a smooth
transformer. Fairness is not bismooth; see Sect. 4.3.4.

Fairness can be composed with other transformers. In particular, different
forms of fairness may apply to different parts of a program; a fair and an unfair
version of the coin toss program may run concurrently, for example, and our
theory would yield their combined spec.

3.5 Shared Resource

Merge transformers, Sects. 3.3.11 and 3.3.12, model independent concurrent exe-
cutions of processes by interleaving the traces of the individual processes. Con-
current executions are rarely independent. For example, trace s of one process
includes the event read(3) that reads value 3 from a read/write shared store,
trace t of another process includes write(3) for the same store, and the store is
local to these two processes. Then write(3) precedes read(3) in the traces for
their concurrent execution; any trace in which the events occur in a different
order has to be rejected. Further, if t includes write(5) instead of write(3), no
trace for the concurrent execution can include read(3).

Shared resource is a filter. Each resource instance is a filter over an alphabet
that denotes the available operations on the resource. Alphabets of different
instances of the same resource and of different resources are disjoint. Applied
to the merge of traces of individual processes, the filter rejects the traces that
violate the semantics of the shared store. For example, for a read/write store
that is local to a pair of concurrently executing processes, first the appropriate
merge of their traces is constructed, and then a filter applied to ensure that: (1) a
value is written to the store before any value is read, and (2) any value that is
read is equal to the value last written. Any trace that violates these constraints
is rejected. Independent resources are independent filters that may be applied
in arbitrary order on a trace.
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Local vs. global resource. Consider concurrently executing processes A and B
that include traces s and t in their specs, respectively. Suppose s includes read(3)
and t includes write(5), as the only events on a shared read/write store. As we
have seen earlier, if the store is local to A and B, no trace for the concurrent
execution of A and B can include read(3). However, if the store is global, so
that other processes may access it, another process may perform write(3). So, a
trace for the concurrent execution of A and B may include read(3) for a global
store.

It follows from this discussion that each resource has two filters corresponding
to its local and global behaviors. Suppose processes A, B and C, whose specs are
p, q and r, respectively, have a local resource. Let fl be the local filter and fg the
global filter for the resource. Then the spec for the concurrent execution of A, B
and C (assuming unfair merge for their concurrent execution) is fl(fg(p | q) | r).
It is easy to see that the global filter for a read/write store accepts all traces,
because for any given trace there is a sequence of accesses to the store that
validates that trace.

It is possible to develop a more elaborate set of filters for a resource based
on access rights that allows different processes to perform different operations
on the resource.

Blocking operations on shared resource. Both filters, local and global, for a
read/write store are continuous. In fact, a resource for which all operations are
non-blocking induces continuous filters. (Note, however, that for processes that
share a read/write store, their concurrent execution is modeled by the fair merge
of their specs. A fair merge introduces discontinuity; see Proposition 31).

For a resource with blocking operations, the filter may be continuous or
discontinuous. Consider a semaphore that has operations P and V on it, where
P is blocking and V non-blocking. It is customary to consider P as consisting
of two events, a request event, which we denote by 〈P and a response event P 〉,
where P 〉 is always preceded by the corresponding 〈P , though a 〈P may never
be followed by a corresponding P 〉.

First, consider a weak semaphore that merely ensures that a request is
granted (response sent), whenever the semaphore is available, to some wait-
ing process (i.e., any that has an outstanding request for it), though any specific
waiting process may never be granted the semaphore. A weak semaphore filter,
both local and global, has to reject an infinite trace in which the semaphore is
continuously available in an infinite suffix, the suffix contains 〈P , but contains
no subsequent P 〉. The weak semaphore filter is continuous.

Next, consider a strong semaphore that ensures that each process that requests
the semaphore is eventually granted it, provided the semaphore is available infi-
nitely often in an infinite execution. The specification of each process identifies
the request and response events by the process identity. The corresponding filter
rejects an infinite trace that contains an infinite number of occurrences of V ,
some occurrence of 〈P1 for a specific process numbered 1, but no subsequent
P1〉. This is a discontinuous filter.
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4 Treatment of Recursion

The theory developed so far is adequate for programs that include no recursive
definition; now, we enhance the theory to treat recursive definitions. Guarded
recursion is usually easier to handle. We treat the general case of unguarded
recursion, as in solving an equation of the form x = f(x) in spec x, for a given
transformer f . Thus, we will compute the spec of a definition such as

def loop() = loop()

where loop(), with no arguments, is defined recursively. As we will see, the spec of
this program will not be the bottom spec {W [ ]} but {D[ ]}∗ denoting a divergent
computation. This is because we expect each recursive call to engage in an
internal event in making the call, so the call entails an infinite computation in
which the internal events are invisible.

4.1 Classical Treatment of Recursion

The least fixed-point theorem due to Kleene [7], and also in Scott [13], applies
for any continuous function f on a complete partial order (cpo).

Theorem 1 (Least Fixed-point Theorem). Let f be a continuous func-
tion on a cpo whose bottom element is ⊥. The least fixed-point of f , lfp(f), is
lub{f i(⊥) i ≥ 0} where
f0(x) = x, f i+1(x) = f(f i(x)) and lub is the least upper bound of a chain. �

In applying this theorem in our context, the set of specs form a complete
lattice, hence a cpo. Any trace-wise transformer is continuous over specs because
given a chain of specs pi, 0 ≤ i, where the least upper bound is union:

f(∪{pi i ≥ 0}) = ∪{f(pi) i ≥ 0)}.

Corollary 1. The least fixed point of a smooth transformer is a spec.

Proof: It is easily shown by induction on i that for any i, i ≥ 0, f i(W [ ]) is a
spec. The union of specs is a spec. So, lfp(f) is a spec, from Theorem 1.

4.1.1 Revisiting the Coin Toss Example
As an example of the application of the least fixed-point theorem consider the
coin toss example of Sect. 2.1.3. Call the toss program stutter. A step of stutter
either halts the computation, or engages in event tl and then calls stutter, the
choice being non-deterministic and unfair in that an infinite number of calls may
be made to stutter.

There are two component computations, halt and the recursive call on stutter,
that are combined through non-deterministic choice. As we have shown in
Sect. 3.3.2, the transformer corresponding to choice is set union. The spec of halt
is {H[ ]}∗. Let x stand for the spec of stutter. The recursive call preceded by event
tl is cons(tl, x); see Sect. 3.3.5 for a definition of cons. Thus, we have:
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x = {H[ ]}∗ ∪ cons(tl, x)

Observe that each of the transformers, ∪ and cons are smooth. So, their com-
position given above is smooth.

The steps in the application of the least fixed-point theorem successively
yield, {W [ ]}, {W [ ],H[ ],W [tl]}, {W [ ],H[ ],W [tl],H[tl],W [tl2]}, · · · , and for any
i, {H[tlj ] 0 ≤ j ≤ i}∗ ∪{W [tli+1]}. Then lfp(stutter), the lub of this sequence,
is {H[tli] 0 ≤ i}∗.

4.1.2 The Need for Upward-Closure of Specs
From lfp(stutter) we may deduce that every execution of stutter is finite, though
unbounded, in length. But this is not what happens in reality. It is possible for
an unfair coin to land tails forever, so the trace D[tlω] ought to be included in
the spec. And, {H[tli] 0 ≤ i}∗ is actually the spec of stutter where a fair coin
is used in the toss so that there is no infinite computation.

The present difficulty arises because subset ordering over specs implies that
the lub of a chain of specs is simply their union. We overcome this difficulty by
introducing the notion of upward-closed specs that include the limits of countable
chains of traces in the spec. The lub of a chain of upward-closed specs is not
simply their union, but the upward-closure of their union. Thus, the lub of the
specs {H[tlj ] 0 ≤ j ≤ i}∗ ∪ {W [tli+1]}, for all i, 0 ≤ i, is {H[tli] 0 ≤
i}∗ ∪ {D[tlω]}.

This discussion suggests that in solving x = f(x), the transformer f needs to
transform an upward-closed spec to an upward-closed spec. Not all smooth trans-
formers have this property. So, we introduce bismooth transformers, a subclass
of smooth transformers, that have this property. We develop the appropriate
concepts of upward-closure, and revisit the least fixed-point theorem.

4.2 Upward-Closure

4.2.1 Definitions
The following definitions use chains and limits from Sect. 2.4.2.

Definition of upward-closure. The upward-closure of spec p is:

p∗ = {lim(c) c a chain in p}.

It follows that c∗, the upward-closure of chain c, is c ∪ lim(c). In particular,
for finite c, c∗ = c. A spec is upward-closed if p∗ = p, i.e., if chain c is in p, then
so is lim(c).

Trace s in p is maximal if there is no t in p such that s < t. An arbitrary
spec may not have a maximal trace, for example the spec {W [ai] i ≥ 0}. But
p∗ always has a maximal trace. Limit of a spec is given by:

lim(p) = {s s a maximal trace in p∗}
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Chain Continuity. Transformer f is chain continuous if f(c∗) = f∗(c) for any
chain c (f∗(c) is (f(c))∗). Each of the following conditions imply chain continuity:
(1) f(lim(c)) = lim(f(c)), for any chain c, (2) f(t) = lim(f(t∗′)) for any infinite
trace t.

4.2.2 Properties of Upward-Closure
Proofs of the following properties are in Propositions 11–19.

1. (Proposition 11) Upward-closure is algebraic closure, i.e., for specs p and q,
(a) (extensive) p ⊆ p∗.
(b) (monotonic) p ⊆ q ⇒ p∗ ⊆ q∗.
(c) (idempotent) (p∗)∗ = p∗.

2. Alternate characterizations of upward-closure: For spec p,
(a) p∗ = p ∪ {lim(c) c an infinite chain in p}.

This is because the limit of every finite chain of p is in p.
(b) (Proposition 12) p∗ = p ∪ lim(p).
(c) (Proposition 13) p∗ = lim∗(p).

It follows that given spec p, p∗ is a spec because p∗ = lim∗(p), and lim∗(p)
is prefix-closed.

3. (Galois Adjoints) Finite prefix closure and upward-closure are Galois Adjoints,
i.e., for traceset p and spec q: p∗′ ⊆ q ≡ p ⊆ q∗.
The following identities are then easily derived for specs p and q.
(a) p∗′ = (p∗)∗′

(b) (p∗′)∗ = p∗
(c) p∗′ ⊆ q∗′ ≡ p∗ ⊆ q∗
(d) p∗′ = q∗′ ≡ p∗ = q∗

4. (Distribution over union and intersection)
(a) (Union) (Proposition 14) Let F be a family of upward-closed specs and

P = ∪p∈F (p). Then P ∗ = ∪p∈F (p∗) iff every chain in P belongs to some
spec in F . For finite F , P ∗ = ∪p∈F (p∗).

(b) (Intersection) (Proposition 15) Let F be a family of specs and P =
∩p∈F (p). Then P ∗ = ∩p∈F (p∗).

(c) (Proposition 16) For any spec q, q∗ = ∪{c∗ c a chain in q}.
5. (upward-closure of tuples) For specs p and q, (p × q)∗ = p∗ × q∗.
6. (Proposition 17) Let f be a finitely smooth transformer, and f(t) = lim(f(t∗′))

for every infinite trace t. Then, f is smooth.
7. (Proposition 18) Let f be chain continuous. If a finite trace s is in f(t), for

some trace t, then s ∈ f(t∗′). Equivalently, f∗′(p) = f∗′(p∗) = f∗′(p∗′), for
any spec p.

8. (Proposition 19) For spec p and filter g, g(p∗) ⊆ g∗(p).

Note on Distribution over union. The result in Item(4a) is of interest only if the
chain is infinite and F is infinite, because any finite chain in P belongs to some
spec in F , and for finite F the result holds unconditionally. To see that P ∗ =
∪p∈F (p∗) does not hold unconditionally for infinite families, let pi = W∗[ai], for
every natural number i. Each pi is a spec, and p∗

i = W∗[ai]. Therefore, (∪i(p∗
i )) =

{W [ai] 0 ≤ i}. But, (∪ipi)∗ = {W [ai] 0 ≤ i}∗ = {W [ai] 0 ≤ i} ∪ D[aω].
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4.3 Bismooth Transformer

A smooth transformer does not necessarily preserve upward-closure. To see this,
consider transformer f where f(t) = t∗′ , for all traces t. It is easy to see that
f is smooth. For an infinite chain of traces c, f(c) = c, so f∗(c) = c∗ whereas
f(c∗) = f(c ∪ {lim(c)) = f(c) ∪ f(lim(c)) = c.

Call a transformer bismooth if it preserves both upward and downward-
closures. That is, for bismooth f :

(smooth; preserves downward-closure) f(p∗) = f∗(p), for any traceset p, and
(preserves upward-closure) f(p∗) = f∗(p), for any spec p.

A finitely bismooth transformer is smooth and it preserves upward-closure
over finitary specs.

4.3.1 Example of a Bismooth Transformer
Consider transformer or from Sect. 3.3.2 where or maps a tuple of specs (p, q)
to p ∪ q. We have shown in that section that or is smooth. To prove that or is
bismooth show that or∗(p, q) = or((p, q)∗).

or((p, q)∗)
= {or((p, q)∗) = or(p∗ × q∗) from item (5); rewriting}

or{(x, y) x ∈ p∗, y ∈ q∗}
= {or{(x, y) x ∈ p∗, y ∈ q∗} = {x x ∈ p∗} ∪ {y y ∈ q∗}; set theory}

p∗ ∪ q∗

= {upward-closure distributes over finite union, item (4)}
(p ∪ q)∗

= {definition of or}
or∗(p, q)

4.3.2 Chain Continuity �= Bismoothness
From its definition every bismooth transformer, even a finitely bismooth trans-
former, is chain continuous. In analogy with the definition of smooth transform-
ers based on traces it may seem that we can give a similar characterization of
bismooth transformers based on chains, namely, that every smooth and chain
continuous transformer is bismooth. The following counterexample is due to
Ernie Cohen.

Consider transformer hide from Sect. 3.3.3 that was shown to be smooth. Let
hidea be its instance that removes every a event from a trace. It is not hard to
see that hidea(c∗) = hidea∗(c) for any chain c. Yet hidea is not bismooth, as
shown below.

Let spec p be {W [aibi] i ≥ 0}∗, where a and b are different symbols from
the event alphabet. Now hidea∗(p) �= hidea(p∗):

p∗ = {W [aibi] i ≥ 0}∗ ∪ D[aω] hidea(p∗) = {W [bi] i ≥ 0}
hidea(p) = {W [bi] i ≥ 0} hidea∗(p) = {W [bi] i ≥ 0} ∪ D[bω]
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4.3.3 Properties of Bismooth Transformers
As the counterexample in the previous subsection shows, chain continuity is
insufficient for bismoothness. Typically, proving that a transformer is bismooth
is considerably more difficult than proving that it is smooth. The properties
given below simplify such proofs.

Properties of Bismooth Transformers.

1. The identity transformer, id(p) = p, is bismooth. Easy to show.
2. (Bismooth composition) (Proposition 20) Composition of bismooth trans-

formers is bismooth.
3. (Proposition 21) A transformer is bismooth if and only if it is finitely bis-

mooth.
4. (Propositions 22 and 23) Smooth transformer f is bismooth if and only if (1) f

is chain continuous, and (2) corresponding to any chain d in f(p), where p is
a spec, there is a chain c in p such that d ⊆ f(c).

5. (Sufficient condition for bismoothness) (Proposition 24) Define a transformer
to be co-finite if it maps only a finite number of finite traces to any finite trace.
A transformer that is smooth, co-finite and chain continuous is bismooth.

Property (2), bismooth composition, permits definition of new bismooth
transformers using the existing ones. Property (3) simplifies many proofs regard-
ing bismooth transformers by eliminating considerations of infinite traces in a
spec. Even though chain continuity by itself is insufficient to guarantee bis-
moothness, Property (4) shows that an additional condition on chains in p and
f(p) is both necessary and sufficient for bismoothness. Property (5), a sufficient
condition for bismoothness, is immensely helpful in proofs when a transformer
is defined without using any known bismooth transformer. Almost all proofs in
Sect. 4.3.4 about the elementary transformers use this sufficient condition. Its
proof uses a recent result, from Misra [11], on a variation of Kőnig’s infinity
lemma [6]. The co-finiteness condition in property (5) is not a necessary condi-
tion for bismoothness; for example if f(t) = {W [ ]} for all t then f is bismooth
though not co-finite.

4.3.4 Bismoothness of Transformers from Sect. 3.3
We showed a number of useful transformers in Sect. 3.3. All transformers of that
section except hide of Sect. 3.3.3, discontinuous filter of Sect. 3.3.6 and fair merge
of Sect. 3.3.12 are bismooth; see Table 1.

4.4 Least Upward-Closed Fixed Point Theorem

An upward-closed fixed point of f is a spec that is both a fixed-point and upward-
closed. The following theorem shows that the least upward-closed fixed-point of
bismooth f , lufp(f), is lfp∗(f). Since lfp(f) is a spec so is lufp(f).

Theorem 2. [Least Upward-Closed Fixed Point Theorem] (Proposition 34)
For bismooth f , lufp(f) = lfp∗(f) �
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Table 1. Summary of bismoothness of elementary transformers

Transformer Bismooth? Proof

Status map Yes Proposition 25

Choice Yes Section 4.3

Hide No Section 4.3

Drop Yes Proposition 26

Cons Yes Proposition 27

Discontinuous filter No Proposition 28

Continuous filter Yes Proposition 29

Restrict by inclusion Yes Special case of continuous filter

Restrict by exclusion Yes Special case of continuous filter

Restrict by precedence Yes Special case of continuous filter

Atom Yes Special case of continuous filter

Unfair merge Yes Proposition 30

Fair merge No Proposition 31

Replace Yes Proposition 32

Rendezvous Yes Composition of bismooth transformers

Sequential Composition Yes Proposition 33

Consider the coin toss example of Sect. 4.1.1 whose least fixed point is
{H[tli] 0 ≤ i}∗. The least upward-closed fixed point corresponding to this
fixed point is {H[tli] 0 ≤ i}∗ ∪ {D[tlω]}, which faithfully describes the finite
and infinite behaviors with an unfair coin.

4.5 Min-Max Fixed Points of Smooth Transformers

A smooth transformer that includes some aspect of fairness, say, a discontinuous
filter, is not bismooth. We develop a theorem that gives a precise characterization
of the appropriate least fixed points of smooth transformers. A similar result for
a model of actors using event diagrams is given in Clinger’s thesis [4] (Chap. 4).

A smooth transformer is monotonic; hence, using the Knaster-Tarski theo-
rem [14], it has a least fixed point. However, this fixed point may not be upward-
closed. Consider the coin toss example of Sect. 4.1.1 that uses a fair coin so that
an infinite run of tails is inadmissible. The recursive equation describing this
component is x = fc({H[ ]}∗ ∪ cons(tl, x)) where transformer fc implements a
fair coin and, hence, is a discontinuous filter. There is no upward-closed fixed
point of this equation. The desired fixed-point is {H[tli] 0 ≤ i}∗, but it is
not upward-closed. So, instead of upward-closed fixed point, we look for a least
fixed-point that includes as many limit traces as possible under the fairness con-
straint.

For any smooth transformer f define p to be a maximal fixed point of f if p
is the greatest fixed point of f in p∗; i.e., p includes as many traces as possible
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from p∗. Observe that the greatest fixed point in any traceset q is the union
of all fixed points in q, because union of fixed points is a fixed point for any
trace-wise transformer. The least maximal fixed point of f , mmfp(f), also called
the min-max fixed point, is: (1) a maximal fixed point of f , and (2) the least
among all maximal fixed points of f . Theorem 3 shows that min-max fixed point
exists for any smooth transformer.

The following equation E(X), for a given X and unknown r, is important in
the study of min-max fixed point:

r = X ∩ f(r). [E(X)]

Theorem 3. [Min-Max Fixed Point Theorem] Let f be a smooth transformer
and p = lfp(f). Then (1) mmfp(f) is the greatest fixed point of f in p∗. Further,
(2) if f(p∗) ⊆ p∗, mmfp(f) is the greatest solution of E(p∗). �

Proof of (1) is in Proposition 35 and of (2) in Proposition 36. This theorem shows
that the min-max fixed point can be “computed” by first computing a least fixed
point and then a greatest fixed point, but there is no need for nested fixed point
computations. The computation of the least fixed point of f is “semi-constructive”
for all smooth transformers using the least fixed point theorem. Unfortunately,
a smooth transformer is not necessarily continuous with respect to the greatest
lower bound. So, the greatest solution of E(p∗) can not be computed in the same
manner. The greatest fixed point of f in p∗, given f(p∗) ⊆ p∗, is ∪{r r ⊆ f(r) ∧
r ⊆ p∗}, using a proof similar to that of the Knaster-Tarski theorem [14].

The min-max fixed point theorem is a generalization of the least upward-
closed fixed point Theorem 2. To see this, let f be bismooth. Given p = lfp(f),
f(p∗) = f∗(p) = p∗. So, p∗ is a fixed point, therefore, the greatest fixed point in
p∗. Hence, mmfp(f) = p∗, from the min-max fixed point theorem.

The condition f(p∗) ⊆ p∗ in (2) holds if f is chain continuous, see Proposi-
tion 37. We consider a class of “fair” transformers in the next section for which
the condition in (2) holds, and we give stronger characterizations of min-max
fixed points for such transformers.

4.6 Fixed Point Under Fairness

A common form of a smooth transformer is g ◦ h where g is a filter, typically
modeling fairness, and h a bismooth transformer. It can then be shown that
f(p∗) ⊆ p∗ where p = lfp(f), so the following stronger version of Theorem 3
applies.

Theorem 4. [Min-Max Fixed Point Theorem under Fairness] (Proposition 38)
Let f = g ◦ h where g is a filter, h is bismooth and p = lfp(f). Then mmfp(f) is
the greatest solution of the equation E(p∗), as well as of E′(p∗), where E′(X) is
the equation r = g(X) ∩ h(r). �

A special case of this theorem often arises in practice: for any infinite trace t,
t ∈ h(t). This holds for the coin-toss example shown previously in this section.
In this case a simpler characterization exists for the min-max fixed point.
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Theorem 5. (Proposition 39) Let f = g ◦ h where g is a filter, h is bismooth,
and for any infinite trace t, t ∈ h(t). Then mmfp(f) = g(lfp∗(f)). �

5 Concluding Remarks

This paper grew out of an effort to develop a proof theory for Orc [12,15], a
concurrent programming language designed by the author and his collaborators.
The concepts developed during that work, such as smooth and bismooth trans-
formers, were found to be applicable for concurrent systems in general. We have
constructed the transformers for Orc constructs by combining some of the ele-
mentary transformers described here. We have also extended the theory to real
time systems.

We are currently developing a proof theory for concurrent systems, based on
the theory developed here. A spec is a predicate over traces. Each elementary
transformer corresponds to some operation on one or more predicates; for exam-
ple, choice is simply disjunction over predicates and a filter is a conjunction of
the filter predicate to eliminate unacceptable traces. Other transformers, such as
merge and rendezvous, have no simple counterpart in predicate calculus though
they can be specified using quantification.

Related Work. Applying denotational semantics to a concurrency calculus was
pioneered by Hoare and his collaborators for CSP [1]. In a series of papers, they
have developed a number of models culminating in a failure-divergence model [2].
They have defined all the relevant features of CSP, including rendezvous-based
synchronized communication as well as both internal and external non-deter-
minism. Fairness is not relevant for CSP.

The theory proposed in this paper is inherently asynchronous. Concurrent
execution is modeled via interleaving of actions. Yet, it is possible to simulate
rendezvous, as we show in Sect. 3.3.14. There is no special treatment for failure
in our theory because it can be included as part of the spec of a component.

The distinction between internal and external non-determinism is exemplified
by the expressions ab+ac and a(b+c), where a is an internal event of a component
X, b and c are events on which X synchronizes with another component Y , and
+ denotes non-deterministic choice. In ab+ac the choice is made internally by X
to synchronize on either the b (if it has chosen the ab alternative) or the c event
(with ac alternative). If X has chosen to synchronize on b and Y offers c, there is
a deadlock. This distinction is modeled in our theory by X executing an internal
decision event, say a coin toss, that decides between b and c in ab + ac. The
internal specification of X includes the decision event as a visible event though
it is invisible in the external spec. In a(b + c), the choice of the synchronizing
event is determined externally, by Y offering either b or c.

Broy and Nelson [3] includes a number of important results concerning the
existence and non-existence of fixed-points in the presence of fair choice. Their
paper develops the theory for the “dovetail” operator that combines fair choice
with angelic non-determinism, so that a terminating computation causes com-
peting non-terminating computations to be discarded and rolled-back.
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Meseguer, in personal communication, has observed that the theory presented
here is an instance of more general constructions in ω−posets [8,9,16].
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Abstract. MSOS is a variant of structural operational semantics with
a natural representation of unobservable transitions. To prove various
desirable laws for programming constructs specified in MSOS, bisimula-
tion should disregard unobservable transitions, and it should be a con-
gruence. One approach, following Van Glabbeek, is to add abstraction
rules and use strong bisimulation with MSOS specifications in an exist-
ing congruence format. Another approach is to use weak bisimulation
with specifications in an adaptation of Bloom’s WB Cool congruence
format to MSOS. We compare the two approaches, and relate unobserv-
able transitions in MSOS to equations in Rewriting Logic.

1 Introduction

Rewriting logic comes with a built-in “abstraction dial” [26]. The least abstract
position of the dial is when the specification consists entirely of rules, with no
equations (apart from structural axioms such as associativity, etc.). Turning rules
into equations increases the degree of abstraction: the remaining rules specify
rewrites on equivalence classes of terms. The set of equations is required to be
confluent, so semantic rules for nondeterministic or concurrent constructs cannot
be replaced by equations.

In structural operational semantics (SOS) [1,36,37], specifications usually
consist entirely of transition rules. Abstraction can be introduced by regard-
ing particular transitions as unobservable (conventionally using the label τ) and
ignoring unobservable transitions when defining behavioural equivalences. Con-
fluence of unobservable transitions is not required: nondeterministic choice can
itself be unobservable. So-called ‘structural congruence’ equations such as asso-
ciativity and commutativity are used in the SOS of the π-calculus [28], but their
introduction has a non-trivial impact on the meta-theory of SOS [34]; moreover,
they are not as general as equations in Rewriting Logic, nor do they subsume
the use of unobservable transitions in SOS.

Modular structural operational semantics (MSOS) [29–31] is a variant of SOS
with a particularly natural representation of unobservable transitions: labels are
the morphisms of a category, and unobservable transitions are those labelled
by identity morphisms. This lets us specify unobservable transitions in MSOS
without introducing extra labels such as τ .

For compositional reasoning about behavioural equivalence in SOS and
MSOS, bisimulation needs to be a congruence. Various rule formats ensuring
c© Springer International Publishing Switzerland 2015
N. Mart́ı-Oliet et al. (Eds.): Meseguer Festschrift, LNCS 9200, pp. 519–538, 2015.
DOI: 10.1007/978-3-319-23165-5 24
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congruence have been established for SOS [35]. Recently, a rule format was
given for MSOS such that strong bisimulation is a congruence [7]. MSOS was
there extended with an unlabelled rewriting relation, which was required to be a
precongruence, and used to represent unobservable evaluation steps in the defi-
nition of strong bisimulation. That is sufficient for proving some simple context-
independent absorption laws, such as the null command being a left and right
unit for command sequencing. However, we want to be able to prove also that
various program optimisations preserve observable behaviour, and the precon-
gruence is too restrictive for that purpose.

This led us to investigate how to ignore unobservable transitions in connec-
tion with bisimulation in MSOS, while ensuring that it remains a congruence.
After recalling established concepts, notation and results (Sect. 2), we adopt a
technique proposed by Van Glabbeek [10,12] (Sect. 3): we add abstraction rules
for the unobservable transitions, and use strong bisimulation with MSOS specifi-
cations in an existing congruence format [7]. However, that approach requires the
introduction of stuttering rules, which might be seen as a drawback (e.g., in con-
nection with executability) and motivates an alternative approach (Sect. 4): to
use weak bisimulation with MSOS specifications in an adaptation of Bloom’s WB
Cool congruence format. We conclude (Sect. 5) by comparing the two approaches.
Our main contribution is establishing adequate techniques for disregarding unob-
servable transitions in MSOS.

This paper was written for the Festschrift in honor of José Meseguer. PDM would
like to express the following personal appreciation of José and his research.

As recalled in [23], José and I first met almost 40 years ago, in 1976, in Oxford. I soon
became keenly interested in the initial algebra approach to specification of abstract
data types, and followed the development of the seminal OBJ system for executing
algebraic specifications, initiated by Joseph Goguen [14] and continued through the
1980s in a fruitful collaboration between Joseph, José and their colleagues [9,13,19].
Order-sorted algebra [15–17,25] was a further topic of intense common interest. José
is also a founding member of IFIP WG 1.3 (Foundations of System Specification); in
that connection he chaired an expert panel that assessed the design of Casl [2,32].

The breadth and depth of José’s research is clearly reflected by the hundreds of

carefully written journal and conference papers that he has published. A particularly

prominent topic since the beginning of the 1990 s is Rewriting Logic [21,22] and its

implementation in Maude [8]. When I took a sabbatical in 1998–99, José invited me

to visit him at SRI International, and obtained funding (with Carolyn Talcott) for

a joint research project during the visit. José’s group was a stimulating environment

for the initial development of MSOS [29–31]. In particular, I recall that José made

crucial observations concerning the possibility of treating labels in MSOS as morphisms

of categories, and we subsequently co-authored two papers (together with Christiano

Braga and Hermann Haeusler) [5,6] on an embedding of MSOS in Rewriting Logic. The

recent progress report by José (with Grigore Roşu) on the Rewriting Logic Semantics

Project [26] and his review of 20 years of Rewriting Logic [24] reflect his inspiration to

a multitude of colleagues, as well as his own contributions. I look forward to following

his ongoing research, and to many future meetings.
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2 Background

This section serves as an overview of preliminaries regarding SOS, rule formats
and MSOS. Everywhere in this paper we assume a set of variables X with typical
elements x, y and z, optionally subscripted.

2.1 SOS

Structural operational semantics (SOS) [1,36,37] is a framework for giving oper-
ational semantics of specification and programming languages.

In the most general case, SOS computations are modelled by labelled terminal
transition systems.

Definition 1 (Labelled Terminal Transition System). A labelled terminal
transition system (LTTS) is a tuple 〈Γ,L,−→, T 〉, where γ ∈ Γ are configurations
(or states), l ∈ L are labels, −→ ⊆ Γ ×L×Γ is a transition relation, and T ⊆ Γ
a set of final configurations. An assertion of an l-transition 〈γ, l, γ′〉 ∈−→ is
written γ

l−→ γ′ and we say that γ is the source and γ′ the target, or that γ′

is an l-derivative of γ. If γ ∈ T then there is no γ′ ∈ Γ and l ∈ L such that
γ

l−→ γ′.
A computation in an LTTS is a finite or infinite sequence of transitions

γ0
l0−−→ γ1

l1−−→ · · · such that if the sequence terminates with γn, then γn ∈ T .

In SOS definitions of process calculi, states are usually just closed terms
generated over an algebraic signature Σ, which is a collection of function symbols
(operators) and their arities. For programming languages, the terms may contain
computed values, and states usually contain additional auxiliary entities such as
stores or environments.

The transition relation of an LTTS is generated inductively by a set of SOS
rules of the form H

c , where H is a (possibly empty) set of premises and c is the
conclusion. If H is empty, the rule is an axiom, otherwise it is a conditional rule.
Premises and the conclusion are formulas t

l−→ t′, where t and t′ are configuration
terms optionally containing variables. The intuitive meaning of a rule is that
if all premises in H are satisfied by some closing substitution then so is the
conclusion. Usually, premises will assert transitions for subterms of t, giving the
rules a structural character.

2.2 Bisimulation and Rule Formats

For labelled transition systems, the finest useful notion of equivalence between
states [38] is strong bisimulation. Briefly, a strong bisimulation relates two states
if they both can make transitions with the same label to states that are again
related; final states must be equal.
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Definition 2 (Strong Bisimulation on LTTS). Given an LTTS
〈Γ,L,−→, T 〉, a symmetric relation R ⊆ Γ × Γ is a strong bisimulation if
whenever γ1 R γ2 then γ1

l−→ γ′
1 implies that there is a γ′

2 such that γ2
l−→ γ′

2

and γ′
1 R γ′

2; and γ1 ∈ T implies γ1 = γ2.
Two configurations γ1 and γ2 are strongly bisimilar, written γ1 ∼ γ2 iff

γ1 R γ2 for some strong bisimulation R .

For equational reasoning, an important property of bisimulation is congru-
ence. A bisimulation is a congruence if it is preserved by all operators in the
language. In general, strong bisimulation is not necessarily a congruence: terms
whose subterms are bisimilar might not be bisimilar themselves. While for small
languages one can check the congruence property by checking all constructs in
the language, a more principled way is to make all rules adhere to a particu-
lar congruence format. The positive GSOS format [4] is a congruence format
for SOS; we adapt it to MSOS in Sect. 4. A survey of congruence formats and
associated meta-theory can be found in [35].

Definition 3 (Positive GSOS). A rule for a construct f with arity n is in
the positive GSOS format if it has the form

{xi
lj−−→ yj | i ∈ I, j ∈ Ji}

f(x1, . . . , xn) l−→ t

where I ⊆ {1, . . . , n}, Ji is a finite index set for each i, and all xi and yj are
distinct variables. Only variables xi and yj may appear in t. A language definition
is in the positive GSOS format if all its rules are.

The full GSOS format allows also rules with negative premises. A congruence
theorem for GSOS states that if all rules in a specification are in the GSOS
format, then strong bisimulation is guaranteed to be a congruence. This theorem
was first proved by Bloom et al. [4]; a more succinct proof was subsequently
provided by Van Glabbeek [11].

Traditionally, a designated silent label ‘τ ’ is used for transitions, such as
selecting a branch in a conditional statement, that correspond to internal house-
keeping actions, and are of no inherent interest.

Strong bisimulation does not treat a τ -label differently from other labels: a
τ -transition of one state has to be matched with a τ -transition of the other state.
This results in a notion of equivalence which is too strong for many purposes.

One approach is to modify the transition relation by adding abstraction rules
to a specification. This approach is explored by Van Glabbeek in [10,12] by
adding special τ -rules. These rules allow hiding of silent transitions, or allow an
arbitrary number of silent transitions after an observable transition has been
made. We adapt this approach to our needs in Sect. 3.

The more common approach is to weaken bisimulation itself: weak bisimula-
tion is a notion of bisimulation that permits ignoring τ -transitions.
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Definition 4 (Weak Bisimulation on LTTS). Assume an LTTS
〈Γ,L,−→, T 〉. A symmetric relation R ⊆ Γ ×Γ is a weak bisimulation if when-

ever γ1 R γ2 then γ1
l−→ γ′

1 implies that there is a γ′
2 such that γ2 −→∗ (l)−−→−→∗ γ′

2

and γ′
1 R γ′

2; and γ1 ∈ T implies γ1 = γ2. Here γ
(l)−−→ γ′ iff l = τ and γ = γ′,

or l �= τ and γ
l−→ γ′; and −→∗ is the reflexive transitive closure of τ−→.

Two configurations γ1 and γ2 are weakly bisimilar, written γ1 ≈ γ2 iff γ1 R γ2
for some weak bisimulation R .

Weak bisimulation has less desirable congruence properties than the strong
variant. Even when a language is in the positive GSOS format, weak bisimula-
tion is not guaranteed to be a congruence. The Cool formats [3] impose further
restrictions on positive GSOS to guarantee that weak bisimulation is a congru-
ence. These restrictions prevent constructs in a language from distinguishing
between states based on the number of silent transitions they can make. We
spell out the restrictions, adjusted for MSOS, in Sect. 4.

2.3 Modular SOS

Modular SOS (MSOS) [31] improves the modularity of SOS definitions. This is
achieved by moving auxiliary entities from configurations to labels of transitions,
and letting labels be morphisms of a category. Label components, each corre-
sponding to an auxiliary entity such as environments and stores, are combined
using an indexed product, which can also be regarded as a finite map or record.
Labels on adjacent transitions are required to be composable. This, together
with a record pattern notation akin to that of Standard ML, allows rules to only
mention entities that are required in specifying a particular transition, while
other entities are left unmentioned.

An MSOS specification consists of an algebraic signature, a label profile and
a set of rules. The signature specifies how terms can be formed from a set of
constructors, the label profile specifies the label entities used in the specification,
and rules define the behaviour of terms formed from constructors. We provide
an example set of rules in Table 1. Since information about auxiliary entities is
moved to the labels, configurations in MSOS are limited to program terms and
computed values (value-added syntax). The rules define a transition system with
closed terms as configurations and composites of entity morphisms as labels. We
give more details on the facets of MSOS specifications, how they specify compu-
tations, and how equalities between terms can be established, in the following
subsections.

2.4 MSOS Terms

A basic single-sorted signature is a collection of function symbols (operators, con-
structors) together with a function assigning an arity to each of these symbols.
The terms in the language form a freely generated algebra over the signature. In
this paper we adopt an extension of the basic signature to a value-computation
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Table 1. An example language defined in MSOS. Meta-variables v range over values
and s over arbitrary terms. Environments ρ and stores σ are partial maps.

s1
{...}−−−→ s′

1

if(s1, s2, s3)
{...}−−−→ if(s′

1, s2, s3)
(1)

if(true, s2, s3)
{−}−−−→ s2

(2)

if(false, s2, s3)
{−}−−−→ s3

(3)
s1

{...}−−−→ s′
1

let(i, s1, s2)
{...}−−−→ let(i, s′

1, s2)
(4)

s2
{env=ρ[i�→v1],...}−−−−−−−−−−−−→ s′

2

let(i, v1, s2)
{env=ρ,...}−−−−−−−−→ let(i, v1, s

′
2)

(5)

let(i, v1, v2)
{−}−−−→ v2

(6)
ρ(i) = v

bound(i)
{env=ρ,−}−−−−−−−−→ v

(7)

s
{...}−−−→ s′

print(s)
{...}−−−→ print(s′)

(8)
print(v)

{out′=v,−}−−−−−−−−→ skip

(9)

s1
{...}−−−→ s′

1

assign(s1, s2)
{...}−−−→ assign(s′

1, s2)
(10)

s2
{...}−−−→ s′

2

assign(s1, s2)
{...}−−−→ assign(s1, s

′
2)

(11)

assign(v1, v2)
{sto=σ,sto′=σ[v1 �→v2],−}−−−−−−−−−−−−−−−−−−→ skip

(12)

s
{...}−−−→ s′

stored(s)
{...}−−−→ stored(s′)

(13)
σ(v1) = v2

stored(v1)
{sto=σ,sto′=σ,−}−−−−−−−−−−−−−→ v2

(14)

s1
{...}−−−→ s′

1

seq(s1, s2)
{...}−−−→ seq(s′

1, s2)
(15)

seq(skip, s2)
{−}−−−→ s2

(16)

signature [7], which distinguishes a set of value constructors. This provides an
alternative to specifying a set of final states of a terminal transition system – the
set of final states (values) is the set of terms where the outermost constructor is
a value constructor. In the example of Table 1, the boolean values true and false
are nullary value constructors and so is skip, which represents the successful ter-
mination of a command. Further values assumed by the rules are identifiers and
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locations, which are used as indices for environments and stores, respectively,
and which we have left unspecified in this example.

Definition 5 (Value-computation Signature). A value-computation signa-
ture (vc-signature) Σ consists of a set of constructors CΣ, each with an arity
arΣ : CΣ → N, and a set of value constructors VCΣ ⊆ CΣ.

For a signature Σ, TΣ is the set of open terms generated by the set X of
variables, TΣ ⊆ TΣ the set of closed terms, vars(t) ⊆ X is the set of variables in
a term t, and VΣ ⊆ TΣ is the set of value terms whose outermost constructor
is in VCΣ.

A Σ-substitution is a partial function σ : X → TΣ mapping variables to
terms. The domain of a substitution σ is written dom(σ). A substitution is clos-
ing for a term t ∈ TΣ if vars(t) ⊆ dom(σ) and its image is a subset of the closed
terms TΣ.

2.5 MSOS Labels

MSOS transition labels are aggregates of label components which are morphisms
of their respective categories. The aggregate is formed as an indexed product
or finite map from label indices (for example, sto for stores or env for envi-
ronments) to morphisms. The full label is composable only if it is composable
component-wise. The morphisms-as-labels aspect of MSOS means that it has a
very natural representation of unobservable transitions: instead of having a spe-
cial label, conventionally designated as silent, unobservable transitions in MSOS
are simply those labelled by identity morphisms.

The usual auxiliary entities used in programming language semantics are
covered by three kinds of label categories:

– A category for read-only entities, such as environments ρ, will have just an
identity morphism for each object; then two morphisms are composable only
if they are identical.

– Store, being a read-write entity, is represented by a category with individual
stores σ as objects and pairs of stores as morphisms. The morphism 〈σ, σ′〉
represents an update of store σ (readable component) into σ′ (writeable com-
ponent). The morphisms 〈σ, σ′〉 and 〈σ′′, σ′′′〉 are composable only if σ′ = σ′′;
the result of their composition is 〈σ, σ′′′〉.

– Write-only entities, such as emitted signals, are represented by a category with
a single object. Morphisms are finite (possibly empty) sequences generated
over a set of actions (signals); their composition is concatenation. Individual
signals are singleton sequences and there is a single identity morphism: the
empty sequence.

Label indices are determined by a label profile L, which divides them accord-
ing to what kind of entity they represent. In the example of Table 1 we only have
one label index for each kind of entity: env is a read-only label index for envi-
ronments, sto is a read-write label index for stores, and out is a write-only label
index of the output stream. By convention, indices for write-only entities and
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writeable components of read-write entities are always primed (out′, sto′), while
read-only and readable components of read-write entities are always unprimed
(env, sto). The label profile is instantiated by a set of terms T to L(T ), a set
of finite maps from label indices to label terms. For instance, for any transition
label L ∈ L(T ) that contains a store entity as its component at index sto, L(sto)
is the store at the beginning of the transition and L(sto′) is the store at the end
of the transition.

Definition 6 (MSOS Labels [7]). A label profile is a triple of disjoint sets
L = 〈LRO ,LRW ,LWO〉. The set reads(L) consists of the unprimed indices
l ∈ LRO 
 LRW . The set writes(L) consists of the primed indices {l′ :
l ∈ LWO 
 LRW }. For any set T , the label set L(T ) is the set of maps
(reads(L)
writes(L)) → T . For a label L ∈ L(T ), we write reads(L) and writes(L)
for the restriction of L to reads(L) and writes(L) respectively.

2.6 MSOS Rules and Specifications

The form of MSOS rules is much the same as for SOS rules, except that con-
figurations are now simply terms (possibly with computed values as sub-terms)
and labels contain multiple entities. Although a rule might specify entity mor-
phisms explicitly via side-conditions as in [29], a more readable approach is
using the record pattern notation introduced in [31]. Record patterns allow to
specify labels of transitions directly above the arrows, as illustrated in Table 1.
Label patterns usually only mention entities directly used by the rule, while the
remaining components of the label are propagated throughout the rule using
special meta-variables ‘. . .’ matching any label components, and ‘−’ matching
only label components that are identity morphisms. For example, in Rule 8 the
label pattern ‘{out′ = v,−}’ matches any transition label L where L(out′) is the
value v (representing the morphism v) and any other component is an identity
morphism. The pattern ‘{−}’ matches labels that are completely unobservable,
while ‘{. . .}’ matches any label.

Definition 7 (MSOS Label Patterns). Given a label profile L and a signa-
ture Σ, a label pattern is a sequence of equations ‘ l = t’, enclosed in ‘{}’ and
(optionally) terminated by label meta-variables ‘. . .’ or ‘−’. In ‘ l = t’, l is a
label index from reads(L) 
 writes(L) and t is an open term over Σ. The meta-
variable ‘. . .’ matches any label components, except those already mentioned in
the sequence, and ‘−’ matches all unmentioned components of the label only if
they are identity morphisms. At most one of ‘. . .’ and ‘−’ may appear.

An explicit label pattern is a label pattern that contains no ‘. . .’ or ‘−’.

In practice, label patterns in rules always end with the meta-variables ‘. . .’
or ‘−’ as this ensures that the rules are modular. In the remainder of this paper
we will use the meta-variable P for label patterns as defined above, and L for
labels (maps), as specified in Definition 6.
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Definition 8 (MSOS Rules). Let Σ be a signature and L a label profile. An
MSOS rule is a pair 〈H, c〉, usually written H

c , where H is the set of premises
and c is the conclusion. Premises and the conclusion are formulas of the form
t

P−−→ t′, where t and t′ are open terms over Σ, and P is an MSOS label pattern
over L and Σ.

Definition 9 (MSOS Specifications). An MSOS specification is a tuple
〈Σ,L,D〉, where Σ is a vc-signature (Definition 5), L a label profile (Defini-
tion 6) and D a set of MSOS rules (Definition 8).

2.7 Models of MSOS Specifications

The most general model of computation in MSOS is a generalised transition
system (GTS) 〈Γ,L,−→, T 〉, where L is a category with morphisms L, such that
〈Γ,L,−→, T 〉 is an LTTS (Definition 1). Computations in a GTS are compu-
tations in the underlying LTTS, with the restriction that labels on adjacent
transitions have to be composable.

Since a value-computation signature distinguishes value terms syntactically,
we can have a transition system without a distinguished set of final states. We
simply disallow transitions from value terms. The following notion of a value-
computation transition system is adapted from [7].

Definition 10 (Value-computation Transition Systems). A value-compu-
tation transition system (VCTS) is a tuple 〈Σ,L,−→〉, where Σ is a vc-signature,
L a set of labels, and −→ ⊆ TΣ × L × TΣ a transition relation. If s

l−→ s′, then
s �∈ VΣ.

An MSOS specification 〈Σ,L,D〉 generates a VCTS 〈Σ,L(T ),−→〉 for some
T (usually TΣ) by letting −→ be the least relation closed under rules in D. Since
we do not allow negative premises in our specifications, there is always a model
and it is unique.

The provability of a transition assertion is established by finding a rule in
D and a closing substitution for the rule, such that the conclusion matches the
transition assertion and the premises are also provable in this way.

Definition 11 (Provable Transitions). A transition assertion s
L−→ s′ is

provable in an MSOS specification 〈Σ,L,D〉 iff there is a rule 〈H, t
P−−→ t′〉 ∈ D

and a closing substitution σ, such that, s = t[σ], s′ = t′[σ], L = P [σ] and for all

ti
Pi−−→ t′i ∈ H, ti[σ]

Pi[σ]−−−−→ t′i[σ] is also a provable transition in the specification.

In this definition and in the remainder of the paper we lift substitutions to
terms and label patterns in the obvious way by letting s[σ] denote the term
obtained by replacing all occurrences of variables x ∈ dom(σ) in s by σ(x). P [σ]
for label patterns P is defined similarly.
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2.8 Equivalence in MSOS

Just like with ordinary SOS, bisimulation can be used to prove equivalence
between program terms. As indicated in [31], the usual notion of strong bisim-
ulation can be used on MSOS directly and weak bisimulation just needs to be
modified by replacing τ -transitions with the notion of unobservable transitions
in MSOS. A higher-order MSOS bisimulation theory was developed in [7] for
value-computation transition systems extended with rewriting. In addition to
the usual transition relation (as in Definition 10), such a transition system also
has a rewrite relation ‘⇒’ used for value-computations that are entirely indepen-
dent of any auxiliary entities. The relation is a precongruence, that is, a reflexive
and transitive relation which is preserved by all constructors. MSOS bisimulation
allows bisimilarities between label components and uses the rewriting relation to
achieve some of the advantages of weak bisimulation regarding transitions that
are independent of label components.

A reformulation of the tyft/tyxt format [18] for MSOS guarantees that this
notion of MSOS bisimulation is a congruence. In [7] only the tyft part of the
format is considered but extension to tyxt is straightforward as long as value
terms are not allowed to make any transitions in accordance with Definition 10.

It is simple to identify context-independent transitions in a specification: they
are transitions labelled with ‘{−}’ (e.g. Rules 2, 3, 6 and 16 in Table 1). Replacing
those transition with rewrites (e.g. seq(skip, s) ⇒ s) allows us, for example, to
prove unit laws for sequencing, seq(s, skip) ≡ s ≡ seq(skip, s), which wouldn’t
hold using strong bisimulation with MSOS. In this paper we are, however, also
interested in equivalences between terms that involve unobservable but context-
dependent transitions, such as let(i, v,bound(i)) ≡ v. These terms are not MSOS
bisimilar due to let(i, v,bound(i)) requiring a transition for looking up the bound
value in the environment according to Rule 5. The rest of the paper discusses
two approaches to proving such equivalences.

3 Absorbing Unobservable Transitions

We would like to prove equivalences involving context-dependent unobservable
transitions. These can justify simple optimisations which replace a program term
with a term that takes fewer computation steps but still has the same observable
behaviour and results in the same value. For example, given the specification in
Table 1, we want the following equivalences to hold.

Example 12. let(i, v,bound(i)) ≡ v

Example 13. let(i, v, assign(l,bound(i))) ≡ assign(l, v)

In this section we explore an approach where we allow the unobservable
transitions in a VCTS to be ignored by adding abstraction rules. These rules are
inspired by Van Glabbeek [10] and are similar to built-in rules for the rewriting
relation in [7].
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Absorption rules permit hiding of unobservable transitions occurring before
or after a transition:

AbsL
s

{−}−−−→ s′ s′ L−→ s′′

s
L−→ s′′

AbsR
s

L−→ s′ s′ {−}−−−→ s′′

s
L−→ s′′

Either of these rules also gives us transitivity of unobservable transitions.
These rules allow us to prove strong MSOS simulations (as bisimulations but

not symmetric) between some terms that were excluded before. For example, we
now have that let(i, v, assign(l,bound(i))) strongly simulates assign(l, v). They
are still not bisimilar: the former term can make an unobservable transition that
cannot be matched by ‘assign(l, v)’. We do not get any (bi)similarity between
let(i, v,bound(i)) and v.

To achieve (strong) bisimilarity in such cases, we add a stuttering (or waiting)
rule, allowing a term to make an unobservable transition to itself.

s
{−}−−−→ s

A stuttering transition under this rule is similar to stuttering steps in TLA [20].
In bisimulation proofs, this rule will allow terms to stutter and thus to match an
unobservable transition of the challenger with a transition that has no observable
effect at all.

The rule is less natural than absorption rules since now any term can make an
unobservable transition. It also prevents specification of constructs whose behav-
iour may depend on the number of unobservable transitions their components
make.

In the setting of programming languages we are mainly interested in com-
putations resulting in a value. From this perspective, a general stuttering rule
still has two issues. The first is that now value terms have transitions. As noted
in [7], values should only be inspected. To address this, we argue that stutter-
ing transitions are not proper computation steps. The term that is the target
of the transition is equal to the source and the label is an identity morphism,
thus there is nothing that can be observed about the transition. Additionally, a
value-computation signature distinguishes value terms (final states), so we can
always formulate a condition for when a computation is finished.

The second issue is that now any computation term can perform an infi-
nite sequence of transitions without making any progress. All computations are
potentially non-terminating. Furthermore, computations which do not terminate
in the original system (without abstraction rules) are now identified with stuck
terms (‘deadlock = livelock’). We can address this by limiting stuttering to terms
that either can progress by making an observable transition, or are value terms.
We express this as two stuttering rules. We assume that v ranges over value
terms and the predicate unobs holds if its argument is an unobservable label.

Wait
s

L−→ s′ ¬ unobs(L)

s
{−}−−−→ s

Stutter
v

{−}−−−→ v
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These two rules, together with the two absorption rules introduced before,
can be used to abstract from unobservable transitions and prove the desired
equivalences in Examples 12 and 13 using MSOS bisimulation as illustrated by
Fig. 1.

Fig. 1. Transitions of Examples 12 and 13 with abstraction rules added to the system.
Unlabelled arrows represent unobservable transitions. Dashed arrows are new transi-
tions due to abstraction rules. Dotted lines connect states related by the bisimulation
relation. (L = {sto = σ, sto′ = σ[l �→ v], −}).

For our stuttering rule to be admissible, we need to modify the condition
in Definition 10 which prohibits transitions from value terms. The condition
becomes the following: If there is a transition s

L−→ s′, then s �∈ VΣ, unless
s = s′ and unobs(L). With this restriction relaxed, all our rules are in the MSOS
tyft/tyxt format and thus bisimilarity stays a congruence in the ‘abstracted’
system. The bisimilarity achieved in this way also avoids the usual ‘deadlock =
livelock’ problem.

We stress that the proposed absorption and stuttering rules are to be added to
a MSOS specification as abstraction rules for reasoning about weak equivalences
between terms. They are not useful as computation rules (e.g., when animating
the semantics), since the two stuttering rules may add many potentially infinite
computations.

4 A WB Cool MSOS Format

This section presents a version of the Simply WB Cool format [3] for systems
specified in MSOS. To this end we first present an MSOS version of the positive
GSOS format (GSOS for MSOS). Then we give a definition of weak MSOS
bisimulation and place further restrictions on the GSOS for MSOS format to
guarantee that weak MSOS bisimulation is a congruence.

4.1 Positive GSOS for MSOS

Our notion of strong MSOS bisimulation allows bisimilarities between labels of
transitions as well as configurations. To this end we implicitly lift the relation
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R to finite maps: m1 R m2 holds for two finite maps m1 and m2 with the same
domain, whenever m1(i) R m2(i) for all i in the domain of the two maps.

In the following definition the readable label components of the two transi-
tions are required to be the same. This is due to the composability condition
of categories for read-only and read-write entities, which requires readable com-
ponents to be the same. The possibility of transitions with bisimilar readable
components is a consequence of the format, as shown by Lemma 18 below.

Definition 14 (Strong MSOS Bisimulation). A strong MSOS bisimulation
over a given VCTS 〈Σ,L(TΣ),−→〉 is a symmetric relation R ⊆ TΣ × TΣ such
that, whenever sR t,

1. if s
L−→ s′, then ∃t′, L′.t L′

−−→ t′, reads(L) = reads(L′), writes(L)R writes(L′),
and s′ R t′; and

2. if s = v(s1, . . . , sn) with v ∈ VC, then t = v(t1, . . . , tn) and si R ti for
1 ≤ i ≤ n.

Two terms s and t are strongly MSOS bisimilar, written s ∼msos t, iff sR t for
some strong MSOS bisimulation R .

This version allows us to prove associativity laws for constructs. For exam-
ple, we have seq(p, seq(r, q)) ∼msos seq(seq(p, r), q), since both terms have the
same transitions (observable or unobservable). But unit laws for sequencing,
provable by MSOS bisimulation with rewrites, do not hold under strong MSOS
bisimulation.

Next, we define a positive GSOS format for MSOS. Following [7] we extend
the original GSOS format with value patterns and cater for the data flow disci-
pline between the conclusion and premises of an MSOS rule.

Definition 15 (Patterns [7]). A pattern u is an open term constructed from
value constructors and variables.

The format definitions use new auxiliary functions ins and outs, in addition
to reads and writes lifted to patterns and a selection operation to denote terms
in label patterns. These are defined for a label pattern P (over a profile L) as
follows:

– reads(P ) = reads(L) and writes(P ) = writes(L);
– P (l) denotes the term at label l; and
– ins(P ) denotes the set of all P (l) for l ∈ reads(P ) and outs(P ) the set of all

P (l) for l ∈ writes(P ).

Definition 16 (Positive GSOS for MSOS). A rule for a construct f ∈ (CΣ\
VCΣ) with n = ar(f) is in the positive GSOS for MSOS format if it has the
following form:

{x
Pj−−→ yj | x ∈ Xi, j ∈ Jx}
f(u1, . . . , un) P−−→ t
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where for 1 ≤ i ≤ n, Xi ⊆ vars(ui) and each ui is a pattern; Jx is a finite set
indexing premises for each x; P and each Pj is a label pattern; and all ins(P )
and outs(Pj) are patterns. Variables in all ui, {yj | j ∈ J} (where J is the union
of all Jx), ins(P ) and outs(Pj) are all distinct. No variables from ui or ins(P )
may appear in any outs(Pj). Variables in ins(Pj) must appear in the source of
the conclusion or in ins(P ). Finally, variables in t and in each outs(P ) must
appear in the source of the conclusion, as targets of premises, in ins(P ), or in
outs(Pj).

An MSOS specification is in the positive GSOS for MSOS format if all its
rules are.

The specification in Table 1 is in the positive GSOS for MSOS format, if we
consider the mathematical notation for maps and sequences as syntactic sugar
for value terms, and we allow side conditions such as ρ(i) = v in Rule 7. In
general, side conditions that restrict instantiations of variables with value terms
(such as the environment ρ in Rule 7) do not affect the format. They can be
understood as generating sets of positive GSOS for MSOS rules. We could also
express data operations (such as lookup in maps) using further constructs in the
language which would only have unobservable transitions. This approach is used
in [7] with rewriting instead of transitions.

We can use the following lemma to obtain bisimilar substitutions for bisimilar
value terms.

Lemma 17. Let R be the congruence closure of ∼msos , u a pattern, and σ a
substitution with dom(σ) = vars(u). Assume u[σ]R t. Then there is a substitution
π such that dom(π) = vars(u), t = u[π], and for each x ∈ vars(u), σ(x)Rπ(x).

Proof. By induction on the structure of u. ��
The following lemma shows that if a term makes a transition with the label

L, the same term can make a transition with a label that is point-wise bisimilar
to L. The target terms of the transitions will also be bisimilar. Note that as a
consequence of the positive GSOS for MSOS format, the lemma holds for any
congruence relation, not just bisimulation.

Lemma 18. Given an MSOS specification in the positive GSOS for MSOS for-
mat, let R be a congruence relation and P an explicit label pattern. Assume
s

L−→ s′ and let σ be a closing substitution such that reads(P [σ])R reads(L).

Then there is a term s′′ and a substitution σ′ such that s
P [σ′]−−−−→ s′′,

reads(P [σ′]) = reads(P [σ]), writes(P [σ′])R writes(L) and s′ R s′′.

Proof. By induction on the height of the derivation tree of s
L−→ s′. ��

Theorem 19. Given an MSOS specification, if all rules are in the positive
GSOS for MSOS format, then ∼msos is a congruence for the specified language.

Proof. We show that the congruence closure of ∼msos is also a strong MSOS
bisimulation. The congruence closure R is formed by the following rules:
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1. s ∼msos t implies sR t
2. si R ti implies s = f(s1, . . . , sn)R f(t1, . . . , tn) = t, where n = ar(f) and

1 ≤ i ≤ n.

The proof proceeds by induction on the number of applications of clause 2. The
base case is immediate since ∼msos is a strong MSOS bisimulation.

In the inductive step we assume that the bisimulation property holds for all
si and ti, derived by fewer applications of clause 2, to show that it also holds
for s and t. For condition 1 of Definition 14, we assume s

L−→ s′ and show that

there exists a transition t
L′

−−→ t′ that satisfies the condition. We use the known
format of the rule used to derive s

L−→ s′ together with Lemmas 17 and 18 to

find a substitution for the same rule so that it can be used to prove t
L′

−−→ t′, as
required by Definition 11. Condition 2 of Definition 14 follows immediately from
the induction hypothesis. ��

For a detailed proof see [33].

4.2 Simply WB Cool MSOS

Now we adapt the WB Cool format as presented in [11] to MSOS. The format is
a further restriction of positive GSOS for MSOS. We want the following notion
of weak bisimilarity to be a congruence.

Definition 20 (Weak MSOS Bisimulation). A weak MSOS bisimulation
over a given VCTS 〈Σ,L(TΣ),−→〉 is a symmetric relation R ⊆ TΣ × TΣ such
that, whenever sR t,

1. if s
L−→ s′, then ∃t′, L′.t −→∗ (L′)−−−→−→∗ t′, reads(L) = reads(L′),

writes(L)R writes(L′), and s′ R t′; and
2. if s = v(s1, . . . , sn) with v ∈ VC, then ∃t′, t −→∗ t′ and t′ = v(t1, . . . , tn) with

si R ti for 1 ≤ i ≤ n;

where t
(L′)−−−→ t′ is t

L′
−−→ t′ if L′ is observable, and t

L′
−−→ t′ or t = t′ if it is

unobservable.
Two terms s and t are weakly MSOS bisimilar, written s ≈msos t, iff sR t

for some weak MSOS bisimulation R .

Under this definition, we now have for example, seq(s, skip) ≈msos s ≈msos

seq(skip, s) and we can also justify the equivalences in Examples 12 and 13.
In Cool formats, patience rules allow an argument to perform all its τ -

transitions before an observable transition can be performed. Since a VCTS
usually has many meaningful final states and arguments may be inspected even
after performing all their (observable) transitions, we generalise patience rules
to congruence rules.
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Definition 21 (Congruence Rules). A congruence rule for a construct f with
n = ar(f) is a rule of the following form:

xi
Pi−−→ yi

f(u1, . . . , ui−1, xi, ui+1, . . . un) P−−→ f(u1, . . . , ui−1, yi, ui+1, . . . , un)

where uj (1 ≤ j ≤ n) are patterns for value terms (Definition 15); xi and yi are
term variables and for all l ∈ writes(P ) ∪ writes(Pi), P (l) = Pi(l).

In MSOS, a patience rule is a congruence rule with only unobservable labels.

Similarly, our notion of an active argument has to cater for patterns in rules.

Definition 22 (Active and Receiving Arguments). The ith argument of a
construct f , with 1 ≤ i ≤ ar(f), is active if f has a GSOS rule, where xi is a
variable on the left-hand side of a premise or it appears in ins(Pj) of a premise;
or ui is a pattern v(w1, . . . , war(v)), for v ∈ VCΣ, in the source of the conclusion.

A variable y is receiving in t if t is the target of a rule in which y appears in
the right-hand side of a premise. The ith argument of f is receiving if a variable
y is receiving in a term t that has a subterm f(t1, . . . , tar(f)) and y appears in ti.

Definition 23 (Simply WB Cool MSOS). An MSOS specification is in the
Simply WB Cool MSOS format if it is in the positive GSOS for MSOS format
and

1. no rule has a variable x occurring more than once among the sources of
premises;

2. in any rule, no variable appears both in the target of the conclusion and in
the source of a premise;

3. only congruence rules can have premises with unobservable transitions;
4. there is a congruence rule for every active argument;
5. there is a congruence rule for every receiving argument;
6. patterns in the source of the conclusion have the form v(z1, . . . , zar(v)), where

all zi are all variables;
7. if a variable x appears in the premises, it must be an argument ui = x in the

source of the conclusion; and
8. for all l ∈ writes(Pj), Pj(l) must a variable.

Conditions 1–5 correspond to the original restrictions of the WB Cool for-
mat. Condition 6 forbids nested patterns. (Otherwise one would have to specify
‘nested congruence rules’ for all patterns with nested value constructors. This
generalisation is straightforward, however it complicates the definition of the for-
mat while rarely being used in practice. Moreover, nested pattern matching can
be split among auxiliary constructs.) Condition 7 ensures that congruence rules
can be applied to all terms going into readable components of premise labels.
Due to condition 8, a writeable component of a premise can only be pattern
matched via an auxiliary construct. This again ensures that congruence rules
can be applied to a term obtained this way.
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Note that as a consequence of condition 8 the technique used in [31] for speci-
fying failure and exceptions using write-only entities might become problematic.
A rule cannot check for an exception flag directly, but has to use an auxiliary
construct with intermediate unobservable transitions. This could be alleviated
by restricting (writeable) label components to value terms and allowing patterns
(in accordance with condition 6) for matching on writeable components in the
premises.

All rules of Table 1 are in Simply WB Cool MSOS. Rules 1, 4, 5, 8, 10, 11,
13 and 15 are congruence rules.

Theorem 24. Given an MSOS specification, if all rules are in the Simply WB
Cool MSOS format, then ≈msos is a congruence for the specified language.

Proof. We need to show that the congruence closure of ≈msos is also a weak
MSOS bisimulation. The congruence closure R is formed by the following rules:

1. s ≈msos t implies sR t
2. si R ti implies s = f(s1, . . . , sn)R f(t1, . . . , tn) = t, where n = ar(f) and

1 ≤ i ≤ n.

The proof proceeds by induction on the number of applications of clause 2. The
base case is immediate since ≈msos is a weak MSOS bisimulation.

In the induction step we assume that the bisimulation property holds for all
si and ti, derived by fewer applications of clause 2, and show that it also holds
for s and t. For condition 1 of Definition 20, we assume that s

L−→ s′. We use the
known format of the rule d used to derive that transition, the conditions of WB
Cool MSOS, and Lemma 18 to derive the (possibly empty) transition sequence

t = f(t1, . . . , tn) −→∗ (L′)−−−→−→∗ t′.

Congruence rules for active arguments of f can be used to derive the first
sequence of unobservable transitions −→∗. Then rule d, used to derive s

L−→ s′,

can be used to derive the transition
(L′)−−−→ if L is observable, otherwise there

might be no transition. The last unobservable transition sequence −→∗ can
be derived using congruence rules for receiving variables in rule d. Because
we find in each step a substitution related by R to the one used with rule
d to derive s

L−→ s′, we also have that s′ R t′, reads(L) = reads(L′) and
writes(L)R writes(L′) as required. Condition 2 of Definition 20 follows imme-
diately from the assumption in this case. ��

For a detailed proof see [33].

5 Conclusion

By abstracting away from context-free transitions, MSOS bisimulation with pre-
congruence from [7] allows us to prove many useful laws in an MSOS setting that
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do not hold under the usual notions of strong bisimulation. It retains the pleas-
ant properties of strong bisimulation and comes with a liberal tyft congruence
format. However, for many useful equivalences we need to ignore also context-
dependent unobservable transitions.

We have investigated two approaches of abstracting away from unobservable
transitions while ensuring the equivalence is also a congruence. One approach
is based on weakening the transition system generated from a specification by
adding absorption rules. The main advantage of this approach is that it allows
us to use the existing MSOS-tyft congruence format of [7]. However, the cost of
this is that computations become potentially diverging. Also, abstraction rules
modify the semantics of some constructs in unintended ways. A typical example
would be the sum operator from CCS [27].

The other approach we investigated was to define a notion of weak bisim-
ulation for MSOS and equip it with a congruence format. We have chosen the
Simply WB Cool format based on the well-studied (positive) GSOS. Although
checking whether rules in a specification are in that format could be tedious, it
should be straightforward to implement such checks in tool support for MSOS
(this is left as future work). While not as powerful as MSOS tyft/tyxt, the Sim-
ply WB Cool MSOS format seems to be sufficient for specifying most common
programming constructs. The approach based on absorption currently has the
advantage of allowing more general premises of rules. This also includes a more
straightforward specification of exception handling as mentioned in the previous
section.

Finally, let us compare our approach with abstraction in Rewriting Logic.
Turning up the “abstraction dial” in a Rewriting Logic semantics for a program-
ming language involves changing some of its rules into equations, and checking
that these equations are confluent (modulo structural axioms such as associativ-
ity and/or commutativity). This can dramatically reduce the state space. In an
MSOS, in contrast, there is no such dial to turn: unobservable transitions arise
naturally as a special case of general labelled transitions, and they are not subject
to any confluence conditions – although in practice, they are usually determinis-
tic. We conjecture that by identifying the sources of unobservable deterministic
transitions with their respective targets, we would obtain state space reductions
in MSOS comparable to using the abstraction dial in Rewriting Logic. Unfortu-
nately, we cannot simply add equations to (M)SOS specifications, as that could
easily undermine bisimulation being a congruence: even associativity is danger-
ous [34, Example 9]. However, it should be possible to extend our bisimulation
results to specifications in the MSOS tyft format [7], which would allow the
use of a precongruence relation that enjoys similar properties to equations in
Rewriting Logic.
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26. Meseguer, J., Roşu, G.: The rewriting logic semantics project: A progress report.
Inf. Comput. 231, 38–69 (2013)

27. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., New York (1989)
28. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-

versity Press, New York (1999)
29. Mosses, P.D.: Foundations of modular SOS. In: Kuty�lowski, M., Wierzbicki, T.M.,

Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 70–80. Springer, Heidelberg
(1999)

30. Mosses, P.D.: Pragmatics of modular SOS. In: Kirchner, H., Ringeissen, C. (eds.)
AMAST 2002. LNCS, vol. 2422, pp. 21–40. Springer, Heidelberg (2002)

31. Mosses, P.D.: Modular structural operational semantics. J. Log. Algebr. Program.
60–61, 195–228 (2004)

32. Mosses, P.D. (ed.): Casl Reference Manual. LNCS, vol. 2960. Springer, Heidelberg
(2004)

33. Mosses, P.D., Vesely, F.: Weak bisimulation as a congruence in MSOS (extended
version). Technical report, PLanCompS (2015). http://www.plancomps.org/
wbmsos2015

34. Mousavi, M.R.R., Reniers, M.A.: Congruence for structural congruences. In:
Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 47–62. Springer, Heidelberg
(2005)

35. Mousavi, M., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20 years
after. Theor. Comput. Sci. 373(3), 238–272 (2007)

36. Plotkin, G.D.: A structural approach to operational semantics. Technical report
DAIMI FN-19, University of Aarhus (1981)

37. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60–61, 17–139 (2004)

38. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, New York (2011)

http://www.plancomps.org/wbmsos2015
http://www.plancomps.org/wbmsos2015


Satisfiability of Constraint Specifications
on XML Documents

Marisa Navarro1(B), Fernando Orejas2, and Elvira Pino2
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2 Universitat Politècnica de Catalunya, Barcelona, Spain
{orejas,pino}@cs.upc.edu

Abstract. Jose Meseguer is one of the earliest contributors in the area
of Algebraic Specification. In this paper, which we are happy to dedicate
to him on the occasion of his 65th birthday, we use ideas and meth-
ods coming from that area with the aim of presenting an approach for
the specification of the structure of classes of XML documents and for
reasoning about them. More precisely, we specify the structure of docu-
ments using sets of constraints that are based on XPath and we present
inference rules that are shown to define a sound and complete refuta-
tion procedure for checking satisfiability of a given specification using
tableaux.

1 Introduction

The aim of our work is to study how we can specify classes of XML documents
and how we can reason about them. Currently, the standard specification of
classes of XML documents is done by means of DTDs or XML Schemas. In both
cases, we essentially describe the abstract syntax of the class of documents and
the types of its attributes. This is quite limited. In particular, we may want
to state more complex conditions about the structure of documents in a given
class or about their contents. For example, with respect to the structure of
documents, we may want to state that if an element includes an attribute with
a given content, then these documents should not include some other element.
Or, with respect to the contents of documents, we may want to express that the
value of some numeric attribute of a certain element is smaller than the value of
another attribute of a different element.

In this paper, we concentrate on the specification of the structure of docu-
ments, not paying much attention to their contents. In this sense, we present
an abstract approach for the specification of (the structure of) classes of XML
documents using sets of constraints that are based on XPath [17,21] queries, as
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given in [11], using the concept of tree patterns. Roughly, a tree pattern describes
a basic property on the structure of documents. Its root represents the root of
documents. Nodes represent elements that must be present on the given docu-
ments and their labels represent their contents, i.e. the names of elements and
their value, if any. A wildcard (the symbol ∗), means that we don’t know or we
don’t care about the contents of that element. Finally, single edges represent par-
ent/child relations between elements, while double edges represent a descendant
relationship between elements. Again, if any of these two relations is included in
a tree pattern, then it should also be included in the documents satisfying that
property. For instance, on the left of Fig. 1 we show a tree pattern p describing
documents D whose root node is labelled with a, some child node of the root
node in D is labelled b, and some descendant node of the root node in D has
two child nodes labelled c and d, respectively.

a a

b * b e

c d g f

c d

Fig. 1. A tree pattern and a document satisfying the pattern

Similarly, we represent, in an abstract way, XML documents using the same
kind of trees. The difference between a document and a tree pattern is that a
document does not include double edges or wildcards. For example, on the right
of Fig. 1 we show a document that satisfies the pattern on the left. In particular,
we may see that the root of the document is labelled by a. Moreover, that root
has a child node labelled b and a descendant node (the element labelled f) that
has two child nodes labelled c and d, respectively.

We consider three kinds of (atomic) constraints. The first one, called posi-
tive constraints, are tree patterns. The second one are negative constraints, ¬p,
where p is a tree pattern, expressing that documents should not satisfy p. Finally,
the third sort of constraint are conditional constraints, written ∀(c : p → q),
where both p and q are tree patterns. Roughly speaking, these constraints express
that if a document satisfies p then it must also satisfy q. Moreover, these con-
straints can be combined using the connectives ∧ and ∨. These kinds of con-
straints are similar to the graph constraints studied in [15,16] in the context of
graph transformation. Nevertheless, the application of the ideas in [15,16] to our
setting is not trivial, as discussed in Sect. 3.

Obviously, there are conditions on the structure of XML documents that are
not expressible using the kind of constraints studied in this paper. However, our



Satisfiability of Constraint Specifications on XML Documents 541

experience in the area of graph transformation [15,16] shows that, in practice,
these constraints are sufficient in most cases. Nevertheless, we believe that the
ideas presented here can be extended to a class of XML constraints, similar to
the class of nested graph conditions that has been shown equivalent to first-
order logic of graphs [6]. However, we also believe that this extension is not
straightforward.

Since our aim is to be able to reason about these specifications, we present
inference rules that are shown, by means of tableaux, to define a sound and
complete refutation procedure for checking satisfiability of a given specification.

The paper is organized as follows. Section 2 contains some basic notions and
notational conventions we are going to use along the paper. Section 3 intro-
duces the three kinds of constraints that we use as literals of the clauses in a
specification. In Sect. 4 we present our tableau method for reasoning about our
constraints, and in Sect. 5 we show its soundness and completeness. Finally, in
Sects. 6 and 7 we discuss related work and provide some conclusions.

2 Basic Definitions and Notation

In this section we introduce some basic concepts and notations, as well as some
definitions and properties on patterns that will be required in the paper.

2.1 Documents and Patterns

As we have seen in the introduction, we consider a document as a kind of
unordered and unranked tree with nodes labelled from an infinite alphabet Σ
and whose edges represent a parent/child relation between nodes. The symbols
in Σ represent the element labels, attribute labels, and values that can occur
in documents. By considering that the trees are unordered and unranked, the
subtrees can commute (the “sibling ordering” is irrelevant), and there are no
restrictions on the number of children a node can have.

As also seen, patterns describe properties on the structure of documents and
are also represented by trees. However, there is the special label ∗, representing
the wildcard, and there are two kinds of edges: single and double edges. Pat-
terns (and documents) can be represented textually using the following format:
A pattern p with root labelled a and subtrees p1, . . . , pn will be textually written
p = a(!p1) . . . (!pn) where each pi is recursively written in the same format, and !
being / or // to indicate the edge from the root to each subtree pi. Some paren-
thesis can be omitted in the case of having only one subtree. For instance, the
pattern given in Fig. 1 can be textually written a(/b)(// ∗ (/c)(/d)). Similarly,
the document in the same Fig. 1 is textually written a(/b/g)(/e/f(/c)(/d)).

However, even if the documents and the patterns that we would write would
always be finite, in our paper we need to deal with infinite documents and
patterns. The reason, is that (as often done), given a specification for a class
of documents, we will consider that the specification is consistent if there exist
documents that satisfy it, even if these documents are infinite. In this sense, one
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might consider that the results shown in Sect. 5 are not fully adequate, in the
sense that we would not have proved the completeness of our proof rules with
respect to the class of finite documents.

For this reason, we need a more precise definition of what documents and
patterns are. In particular, we define them as follows:

Definition 1 (Patterns and Documents). Given a signature Σ, a pattern
p on Σ is a 5-tuple p = (Nodesp, rootp,Labelp,Edgesp,Pathsp) where, Nodesp

is a set of nodes, rootp ∈ Nodesp is the root node of p, Labelp : Nodesp →
Σ ∪{∗} is the labeling function, and Edgesp,Pathsp ⊆ Nodesp ×Nodesp are two
relations representing edges and paths between nodes in p, such that the following
conditions are satisfied:

1. Edgesp and Pathsp are irreflexive and acyclic (i.e. there are no nodes n, n′

such that 〈n, n′〉 and 〈n′, n〉 are both in Edgesp or Pathsp).
2. Pathsp is transitive and includes Edgesp.
3. There is no node n such that 〈n, rootp〉 is in Edgesp or Pathsp.
4. For any other node n �= rootp in Nodesp, 〈rootp, n〉 ∈ Pathsp. Moreover, if

〈n′, n〉 and 〈n′′, n〉 are both in Pathsp, then either 〈n′′, n′〉 or 〈n′, n′′〉 are in
Pathsp.

Then, a document D on Σ can be defined as a special kind of pattern without
nodes labelled with ∗, that is, LabelD : NodesD → Σ, and, such that, in addition
it satisfies the following condition:

5. For every pair of nodes n, n′ ∈ NodesD, if 〈n, n′〉 ∈ PathsD, then
– 〈n, n′〉 ∈ EdgesD, or
– there exist n1, n2 ∈ NodesD such that 〈n, n1〉, 〈n2, n

′〉 ∈ EdgesD and, either
n1 = n2 or 〈n1, n2〉 ∈ PathsD.

PΣ and DΣ will denote, respectively, the set of all patterns and the set of all
documents on Σ.

Intuitively, the above definition can be easily explained. The relation 〈n, n′〉 ∈
Edgesp represents the existence of an edge / between n and n′ in the given pat-
tern or document, and 〈n, n′〉 ∈ Pathsp represents that there is a path consisting
of edges / or // (in the case of patterns) or just / (in the case of documents)
between n and n′. Conditions 1–4 ensure that our patterns and documents are
trees. Finally, Condition 5 ensures that if 〈n, n′〉 ∈ PathsD then there is a finite
or infinite path, consisting only of edges /, between n and n′. It is easy to see
that, in the case where the given set of nodes is finite, our definition of patterns
and documents would be equivalent to other notions of (finite) trees. In partic-
ular, for finite documents, Condition 5 is equivalent to saying that Paths is the
transitive closure of Edges.

One could think that the second part of Condition 5 could be simplified as
follows:

– there exists n1 ∈ NodesD such that 〈n, n1〉 ∈ Edgesp and 〈n1, n
′〉 ∈ Pathsp.
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However, both conditions are not equivalent. In particular, our Condition
5 would exclude infinite paths like n/n1/n2/ . . . /nk/ . . . , where for every i,
〈ni, n

′〉 ∈ Pathsp, which would be allowed by the simpler condition. That is,
an infinite path for 〈n, n′〉 ∈ Pathsp cannot consist of an infinite sequence
n/n1/n2/ . . . /nk/ . . . approaching n′. Instead, our infinite paths must consist
of two infinite sequences n/n1/n2/ . . . /nk/ . . . and . . . /n′

j/ . . . /n′
2/n′

1/n′, where
for every i, i′, 〈ni, n

′
i′〉 ∈ Pathsp.

For example, consider again the pattern and the document in Fig. 1. Abusing
of notation, let us identify nodes with labels. Then, for the pattern p = a(/b)(//∗
(/c)(/d)) and the document D = a(/b/g)(/e/f(/c)(/d)), we have:
Edgesp = {〈a, b〉, 〈∗, c〉, 〈∗, d〉}
Pathsp = {〈a, b〉, 〈a, ∗〉, 〈a, c〉, 〈a, d〉, 〈∗, c〉, 〈∗, d〉}
EdgesD = {〈a, b〉, 〈b, g〉, 〈a, e〉, 〈e, f〉, 〈f, c〉, 〈f, d〉}
PathsD = {〈a, b〉, 〈a, e〉, 〈a, g〉, 〈a, f〉, 〈a, c〉, 〈a, d〉, 〈b, g〉, 〈e, f〉, 〈e, c〉, 〈e, d〉, 〈f, c〉,

〈f, d〉}
For the sake of readability, from now on we will omit the signature Σ.

Moreover, we will write n/n′ instead of 〈n, n′〉 ∈ Edgesp, and n//n′ instead
of 〈n, n′〉 ∈ Pathsp. Notice that, in our simplified notation, the symbol // is
overloaded to mean a kind of edge in patterns but also, the relation defining
paths in patterns and documents. However, it is easy to distinguish both uses
from the context since, in the first case, we will usually refer to “an edge //”.
If some ambiguity could persist then, we will use //d to denote direct relation
between nodes. That is, given n1, n2 ∈ Nodesp n1//dn2 if not n1/n2 but, n1//n2

such that there does not exist n ∈ Nodesp with n1//n and n//n2. Nevertheless,
for simplicity, in the examples in the rest of the paper we will use the textual
writing for patterns and documents, so that, in those expressions the symbol //
always will stand for edges, that is, the direct relation //d.

2.2 Pattern Morphisms and Pattern Models

Morphisms are very important in our work. A document satisfies a pattern if we
can identify the structure of the pattern in the document. Formally, we do this
by means of morphisms. In addition, we also use a special kind of morphisms to
relate the premise and the conclusion in conditional constraints. We define the
notion of morphism between two patterns, since documents are a special case of
patterns. Then, the same definition applies to morphisms between documents or
between patterns and documents. As said, the latter case will be used to define
which documents are the models of a pattern. That is, from a logical point of
view, we can see patterns as formulae, documents as structures and morphisms
defining a notion of pattern satisfaction.

Definition 2 (Morphisms). Given two patterns p, q ∈ P , a morphism h :
p → q, from p to q, is a function h : Nodesp → Nodesq satisfying the following
conditions:

– Root-preserving: h(rootp)=rootq;



544 M. Navarro et al.

Fig. 2. A pattern p, a document D and a monomorphism h : p → D

Fig. 3. A monomorphism h : p → q between two patterns

– Label-preserving:Foreachn ∈ Nodesp,Labelp(n)=∗orLabelp(n)=Labelq(h(n));
– Edge-preserving: For each n1, n2 ∈ Nodesp, if n1/n2 then, h(n1)/h(n2);
– Path-preserving: For each n1, n2 ∈ Nodesp, if n1//n2 then, h(n1)//h(n2);

As usual, a monomorphism is an injective morphism. PΣ and DΣ denote,
respectively, the category of patterns and its subcategory of documents on Σ.

Definition 3 (Models). Given a pattern p ∈ P and a document D ∈ D, we
say that D satisfies p, denoted D |= p, if there exists a monomorphism from p
to D. The set of models of a pattern p is the set of documents satisfying p, that
is, Mod(p) = {D ∈ D | D |= p}.

In Fig. 2 there is an example of a monomorphism h : p → D from the pattern
p = a(/b)(// ∗ (/c)(/d)) to the document D = a(/e/f(/c)(/d))(/b/g). The mor-
phism h is drawn with dotted arrows. We can see that D satisfies p because its
root is labelled with a, it has a child node labelled b, and it has a descendant
node (in the example labelled with f) with two child nodes labelled with c and
d respectively. In Fig. 3 there is an example of a monomorphism h : p → q from
the pattern p = ∗//e to the pattern q = a(/e)(//b/c). The monomorphism h is
drawn with dotted arrows. The existence of such monomorphism implies that
all models of q are also models of p.

The followingproposition relatesmonomorphisms andmodels for twopatterns.
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Proposition 1. Given two patterns p, q ∈ P :

– If there exists a monomorphism h : p → q then Mod(q) ⊆ Mod(p).
– Mod(q) ⊆ Mod(p) does not imply that there is a monomorphism h : p → q.

Proof. For the first claim, let D be a document in Mod(q), then there exists a
monomorphism f from q to D. Then the composition f ◦ h is a monomorphism
from p to D and therefore the document D is also a model for p. The second
claim can be shown with an example in [11].

3 Constraints, Clauses and Specifications

As said in the Introduction, following [15,16] we consider three kinds of con-
straints: positive, negative and, conditional constraints. The underlying idea of
our constraints is that they should specify that certain patterns must occur
(or must not occur) in a given document. For instance, the simplest kind of
constraint, p, specifies that a given document D should satisfy the pattern p.
Obviously, ¬p specifies that a given document D should not satisfy p. A more
complex kind of constraint is of the form ∀(c : p → q) where c is a prefix mor-
phism, which means that q is a pattern that extends p. Roughly speaking, this
constraint specifies that whenever a document D satisfies the pattern p it should
also satisfy the extended pattern q (see Definition 6 below).

However, translating the ideas in [15,16] to our setting is not trivial, mainly
for two reasons. On the one hand, in [15,16] models and formulas are both
graphs, while in our setting models are documents and formulas are patterns.
This difference adds some complication to our setting. In particular, we have
solved the problem by defining documents and patterns in such a way that
documents are a special case of patterns. This has implied to include explicitly
the paths relation in the definition of documents. On the other hand, and most
importantly, we deal with patterns that are trees having edges of type //, but
the related notion of “path” is not considered for graph constraints in [15,16].
Actually, in the logic defined in [15,16] or in the more general one defined in [6],
the existence of paths is a second order notion [7].

3.1 Constraints and Clauses

Before defining our three kinds of constraints, we must define prefix morphisms.

Definition 4. Given two patterns p and q, a prefix morphism from p to q is a
monomorphism c : Nodesp → Nodesq that satisfies the following conditions:

– Root-preserving: c(rootp)=rootq;
– Label-identity: For each n ∈ Nodesp, Labelp(n)=Labelq(c(n));
– Edge-identity: For each n1, n2 ∈ Nodesp, n1/n2 if, and only if, c(n1)/c(n2);
– Path-identity: For each n1, n2 ∈ Nodesp, n1//dn2 if, and only if, c(n1)//dc(n2);
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Recall that //d stands for direct //-relation in patterns, that is, //-edges.
We will simply write c : p → q and we will say that p is a prefix of q. Not every
monomorphism is a prefix morphism. See for instance that the monomorphism in
Fig. 3 is not a prefix morphism since it violates “Label-identity”, “Edge-identity”,
and “Path-identity”.

Definition 5. Given a pattern p, p denotes a positive constraint and ¬p denotes
a negative constraint. A conditional constraint is denoted ∀(c : p → q) where p
and q are patterns and c : p → q is a prefix morphism.

A clause α is a finite disjunction of literals �1 ∨ �2 ∨ · · · ∨ �n, where, for each
i ∈ {1, . . . , n}, the literal �i is a (positive, negative or conditional) constraint.
The empty disjunction is called the empty clause and it can be represented by
FALSE.

Satisfaction of clauses is inductively defined as follows.

Definition 6. A document D ∈ D satisfies a clause α, denoted D |= α, if it
holds:

– D |= p if there exists a monomorphism h : p → D;
– D |= ¬p if D �|= p (that is, if there does not exist a monomorphism h : p →

D);
– D |= ∀(c : p → q) if for every monomorphism h : p → D there is a monomor-

phism f : q → D such that h = f ◦ c.
– D |= �1 ∨ �2 ∨ . . . ∨ �n if D |= �i for some i ∈ {1, . . . , n}.
Let us see what satisfaction of a conditional constraint means. First recall that
in a conditional constraint ∀(c : p → q) the pattern q is an extension of the
pattern p so a document D will be a model of the conditional constraint if
whenever D satisfies p, it also satisfies q. To be more precise, each part in the
document D satisfying p must satisfy q. Consider, for instance, the conditional
constraint ∀(c : p → q) with p = ∗//a , q = ∗//a/b and c being the obvious prefix
morphism from p to q. By Definition 6, a document satisfies this constraint if
each node (descendant of the root) labelled a has a child node labelled b. Then
the document D = g(/a/b)(/a/h) does not satisfy the constraint. In fact, for the
monomorphism h : p → D that applies the node a in p into the second node a in
D, there does not exist a monomorphism f : q → D such that h = f ◦c. However,
note that D |= q. Therefore, from a logical point of view, we may notice that,
in this framework, ∀(c : p → q) is not equivalent to C = ¬p ∨ q.

3.2 Specifications

We assume that a specification S consists of a set of clauses. As said in the
Introduction, our aim is to find a sound and complete refutation procedure for
checking satisfiability of specifications consisting of clauses as defined above.
Here we give an example of an unsatisfiable specification.
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Example 1. Consider the specification S = {C1, C2, C3, C4} where C1 = (∗//b)∨
(∗//e), C2 = ∀(c2 : ∗//b → ∗(//b)(/e)), C3 = ∀(c3 : ∗//e → ∗(//e)(/b)), and
C4 = ¬(∗(/b)(/e)).

Clause C1 specifies that the document(s) must have a node labelled b or e;
C2 says that if the document has some node labelled b then its root must have
a child node labelled e; similarly, C3 says that if the document has some node
labelled e then the root must have a child node labelled b; and finally, C4 says
that the root cannot have two children nodes labelled b and e. It is easy to
test, for instance, that the document D1 = a(/b)(/f/e) satisfies C1, C3 and C4

but D1 �|= C2. Similarly, the document D2 =a/e satisfies C1, C2 and C4 but
D2 �|= C3. There is no document satisfying all clauses in S.

3.3 Superposition of Patterns

In this section we introduce two operations on patterns that can be seen as a
way of pattern deduction, which will be used for obtaining new clauses from a
specification. Note, for instance, that if a document D satisfies both the patterns
a/b and a/c then its root, labelled a, must have two children nodes labelled b and
c, therefore we can trivially deduce that D must also satisfy the pattern a(/b)(/c).
But not always a single pattern can express the conditions of two patterns: If
D satisfies both the patterns a/b/e and a/b/c, then it must be deduced that D
satisfies one of the patterns obtained by superposing both patterns, what means,
in this example, that D must satisfy either the pattern a/b(/e)(/c) or the pattern
a(/b/e)(/b/c).

The two superposition operations on patterns will be denoted by the symbols
⊗ and ⊗c,m and they are formally introduced in the following definitions.

Given two patterns p1 and p2, the operation p1 ⊗ p2 denotes the set of
patterns that can be obtained by “combining” p1 and p2 in all possible ways.

Definition 7. Given two patterns p1 and p2, p1 ⊗ p2 is defined as the following
set of patterns: p1 ⊗ p2 = {s ∈ P | there exist jointly surjective monomorphisms
inc1 : p1 → s and inc2 : p2 → s} where “jointly surjective” means that Nodess

= inc1(Nodesp1) ∪ inc2(Nodesp2).

For instance, given the patterns p1 = a(/b/e)(//c) and p2 = a//b/x, the set
p1⊗p2 contains the two patterns: s1 = a(/b(/e)(/x))(//c) and s2 = a(/b/e)(//b/x)
(//c). Each one corresponds with a way of combining p1 and p2; the nodes
labelled b are shared in s1 while there are two different nodes b in s2.

The underlying idea is that all patterns s in p1⊗p2 must verify that every
document that is a model of s must be a model of p1 and a model of p2. Con-
versely, every document that is a model of both p1 and p2 must be a model of
some s in p1⊗p2. In some cases the set can be empty.

Proposition 2. Given two patterns p1 and p2, the set of patterns p1 ⊗ p2 is the
empty set if and only if rootp1 and rootp2 have different labels in Σ.
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Proof. If the roots of p1 and p2 have different labels in Σ (for instance, a and
b) then no combination s is possible since inc1 : p1 → s implies that the root
of s must be labelled a and inc2 : p2 → s implies that the root of s must be
labelled b.

Conversely, if the root s of p1 and p2 have the same label a (or if one of them is
a and the other one is ∗) then the document s with root labelled a and whose set
of subtrees is the union of the subtrees of p1 and p2 is an element in p1 ⊗ p2. �

Proposition 3 (Pair Factorization Property). Given three patterns p1, p2,
r, and two monomorphisms f1 : p1 → r and f2 : p2 → r, there exists a pattern
s ∈ p1 ⊗ p2, with monomorphisms inc1 : p1 → s and inc2 : p2 → s, and there
exists a monomorphism h : s → r such that h ◦ inc1 = f1 and h ◦ inc2 = f2. In
the particular case when r is a document, this property means that r is a model
of s. Graphically:

Proof. Since f1, f2 are monomorphisms, the root s of p1 and p2 cannot have
different labels in Σ. Moreover, some pattern s ∈ p1 ⊗ p2 holds this property.
Then, we will have a well-defined morphism h if choose a pattern s such that, for
every m ∈ Nodesp1 and n ∈ Nodesp2 : if f1(m) = f2(n) then inc1(m) = inc2(n)
and if f1(m) is an ancestor (respectively descendant) of f2(n), inc1(m) must not
be a descendant (respectively ancestor) of inc2(n). �

Given a pattern p1, a prefix morphism c : p2 → q and a monomorphism m : p2 →
p1, the operation p1 ⊗c,m q denotes the set of patterns that can be obtained by
combining p1 and q in all possible ways, but sharing p2.

Definition 8. Given a pattern p1, a prefix morphism c : p2 → q, and a monomor-
phism m : p2 → p1, p1⊗c,m q is defined as the following set of patterns: p1⊗c,m q
= {s ∈ P | there exist jointly surjective monomorphisms inc1 : p1 → s and
inc2 : q → s such that inc1 ◦ m = inc2 ◦ c}.

For instance, given the patterns: p1 = a(/b/e)(//c/i), p2 = ∗//b, and q =
∗(//b//a)(//c/d), with the unique possible monomorphism m : p2 → p1 and
the unique possible prefix morphism c : p2 → q, the set p1 ⊗c,m q contains the
patterns s1 = a(/b(/e)(//a))(//c/i)(//c/d) and s2 = a(/b(/e)(//a))(//c(/i)(/d)).
Note that s2 is similar to s1 but with only one node labelled c.

The underlying idea is that all patterns s in p1 ⊗c,m q must verify that
every document D that is a model of s must be a model of p1 and a model of
q. However, such a document D is not necessarily a model of the conditional
constraint ∀(c : p2 → q). Conversely, every document that is a model of both p1
and ∀(c : p2 → q) must be a model of some s in p1 ⊗c,m q.
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Notice that the set p1 ⊗c,m q is always non-empty, since given a prefix mor-
phism c : p2 → q and a monomorphism m : p2 → p1 we can always obtain
a pattern s by extending the nodes in m(p2) as indicated by the function c.
However, if c would be a monomorphism instead of a prefix morphism (i.e. if in
the definition of conditional constraints we would have used arbitrary monomor-
phisms), the resulting set could be empty. Take, for instance, c : p2 → q, with
p2 = a//b and q = a/b (which is not a prefix morphism), and take p1 = a/e/b.
Although there is a monomorphism m : p2 → p1, there is no pattern s obtained
by combining p1 and q sharing p2.

4 Tableau-Based Reasoning for XML-patterns

Analogously to tableaux for plain first-order logic reasoning [8], we introduce
tableaux for dedicated automated reasoning for XML-document properties. In
general, tableaux are trees whose nodes are literals. In our case, these literals
are constraints of the form p, ¬p or ∀(c : p → q).

Definition 9 (Tableau, branch). A tableau is a finitely branching tree whose
nodes are constraints. A branch B in a tableau T is a maximal path in T .

The construction of a tableau for a specification S can be informally explained
as follows. We start with a tableau consisting of the single node true. For every
clause α = �1 ∨ . . . ∨ �n in S we extend all the leaves in the tableau with n
branches, one for each literal �i, as depicted in Fig. 5 (see the four first steps) for
the specification S in Example 1. Then we continue the extension of each leaf
by applying other tableau rules (on two literals in its branch). In Fig. 5 we show
the tableau in the left hand side, and the rules applied in its construction in the
right hand side.

Before defining the rules that build the tableaux associated to our specifica-
tions, we need to introduce some notation. Let p be a positive constraint in B,
such that p contains an edge // (that is, n1//dn2 for some n1, n2 ∈ Nodesp).
Let prefix(n1) denote the path from rootp to the node n1, and hang(n2) the
subtree of p hanging from the node n2; we write p[n1//hang(n2)] to highlight the
edge // from node n1 to node n2 in p. Then p[n1/hang(n2)] denotes the pattern
obtained by replacing // by /. In addition, p[n1 ←] denotes that the subtree
hang(n2) has been pruned from p, and p[n1 ← /A] (equivalently p[n1 ← //A])
denotes that the pattern A is hanged as a subtree of node n1 in p, where /
(equivalently //) is the edge from n1 to rootA.

For instance, given the pattern p = e(/i)(/a(/b)(//c(/d)(/j))) (see Fig. 4) with
an edge // from the node n1 labelled a to the node n2 labelled c, we have
that prefix(n1) = e/a; hang(n2) = c(/d)(/j); p[n1 ←] = e(/i)(/a/b); and p[n1 ←
/A] = e(/i)(/a(/b)(/s/k)) when hanging, for instance, the pattern A = s/k.

Now, the tableau rules that are specific for our logic are the following ones:

Definition 10 (Tableau rules). Given a specification S, a tableau for S is
either a tree consisting of the single node true, or for any node x in the tableau
that is not a leaf, one of the following conditions hold:
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Fig. 4. The pattern p = e(/i)(/a(/b)(//c(/d)(/j)))

Fig. 5. A closed tableau for the specification S in Example 1 (left) and their applied
rules (right)

– ∨-rule (∨): There is a clause �1 ∨ . . . ∨ �n in S and the children of x are
�1, . . . �n.

– Superposition rule (S1): The constraints p1 and p2 are either x or ancestors
of x and p1 ⊗ p2 is not empty, and the children of x are the constraints s, for
each pattern s in p1 ⊗ p2. Otherwise, if p1 ⊗ p2 is empty, x has the only child
FALSE.

– Superposition rule (S2): The constraints p1 and ∀(c : p2 → q) are either
x or ancestors of x such that there is a monomorphism m : p2 → p1, and the
children of x are the constraints s, for each s in p1 ⊗c,m q.

– Unfolding rule (U1): The constraint p where p = p[n1//hang(n2)] is either x
or an ancestor of x and the children of x are the constraint p[n1 ← /hang(n2)],
and the constraints s[inc2(n) ← //hang(n2)] for each s in p[n1 ←] ⊗c,m q,
where q = prefix(n1)[n1 ← /n] with label(n) = ∗, and monomorphisms are
depicted in the diagram below.
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– Unfolding rule (U2): The constraint p where p = p[n1//hang(n2)] is either x
or an ancestor of x and the children of x are the constraint p[n1 ← /hang(n2)],
and the constraints s[inc2(n) ← /hang(n2)] for each s in p[n1 ←]⊗c,mq, where
q = prefix(n1)[n1 ← //n] with label(n) = ∗, and monomorphisms are depicted
in the diagram below.

– Closing rule (Cl): The constraints p and ¬q are either x or ancestors of
x, such that there is a monomorphism m : q → p, and x has the only child
FALSE.

Obviously the above rules not only describe if we can associate a given tableau
to a specification S, but they can also be used in the construction of a tableau for
S. The ∨-rule is the standard tableaux rule for creating the initial tableau from
the clauses of the given specification. The superposition rules state that if we
have two non-negative literals in a given branch, then we can extend that branch
with the immediate consequences of these literals, as we have seen in Sect. 3.3.
We may notice that the superposition rules define a finite number of children
for a given node x, because the set of patterns resulting from a superposition of
finite patterns is a finite set. The closing rule states that if, in a branch B, we
have a positive and a negative literal, p,¬q, that are contradictory, because p
embeds q, then we can close B with FALSE .

Finally, the unfolding rules extend a branch with all the possible ways of
unfolding an edge n1//n2. In principle, we considered two different ways of doing
this unfolding: replacing n1//n2 by n1/n2 and n1/n//n2 (using rule U1) or by
n1/n2 and n1//n/n2 (using rule U2), where label(n) = ∗ in both cases. However,
it is necessary to take into account all possible identifications of such new node
n with other nodes in the obtained literal. Otherwise, the rule may be unsound
as explained in the following example.

Example 2. Consider the specification S = {C1, C2, C3, C4} with C1 = a(//b)(//c),
C2 = ¬(a/b), C3 = ¬(a/c), and C4 = ¬(a(/ ∗ //b)(/ ∗ //c)).

If rule U1 would just unfold an edge // only in / and / ∗ //, then we could
easily find a refutation for this specification as follows: By applying such U1 to
the edge a//b in C1 we could get the constraints C5 = a(/b)(//c) and C6 = a(/ ∗
//b)(//c). The first literal, C5, is directly contradictory with C2. If we now unfold
C6 (on the edge a//c) by applying the rule U1, we could get the literals C7 =
a(/ ∗ //b)(/c) and C8 = a(/ ∗ //b)(/ ∗ //c), which could be directly refuted with
C3 and C4 respectively. But the specification S is not inconsistent because, for
instance, the document D = a/d(/b)(/c) satisfies all its clauses.
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Fig. 6. An open tableau for the specification S in Example 2

However, the situation with the defined unfolding rules is the following. The
application of rule U1 on C1 yields to the literals C5, C6, and the literal C9 = a/c//b
obtained by joining the new node ∗ with the old node c in C6; and the application
of the rule U1 on C6 yields to the literals C7, C8, and the literal C10 = a/∗(//b)(//c)
obtained by joining the new node ∗ with the old node ∗ in C8. While C9 can be
refuted with C3, the literal C10 yields to an open branch as depicted in Fig. 6. See
also Fig. 7 for the rules applied to built the tableau in Fig. 6.

Definition 11 (Open/closed branch, tableau proof). In a tableau T a
branch B is closed if B contains FALSE; otherwise, it is open. A tableau is
closed if all its branches are closed. A tableau proof for (the unsatisfiability
of) a specification S is a closed tableau T for S according to the rules given in
Definition 10.

Finally, it will be useful to define tableau satisfiability.

Definition 12 (Branch and tableau satisfiability). A branch B in a tableau
T is satisfiable if there exists a document D satisfying all the constraints in B.
In this case, we say that D is a model for B, written D |= B. A tableau T is
satisfiable if there is a satisfiable branch B in T . If D |= B for a branch B in
T , we also say that D is a model for T and also write D |= T .
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Fig. 7. The applied rules to build the tableau in Fig. 6

5 Soundness and Completeness of the Tableau Method

In this section we prove that our tableau method is sound and complete. In
particular, soundness means that if we are able to construct a tableau where all
its branches are closed then our original specification S is unsatisfiable. Com-
pleteness means that if a saturated tableau includes an open branch, where the
notion of saturation is defined below, then the original specification is satisfiable.
Actually, the open branch provides a model that satisfies the specification.

Theorem 1 (Soundness). If there is a tableau proof for the specification S,
then S is unsatisfiable.

Proof. We prove that if a specification S is satisfiable, then any associated
tableau cannot have all its branches closed. The proof is by induction on the
structure of the tableau. Specifically, we show by induction on the construction
of T that if D |= S then D |= T .

The base case is trivial since T consists only of the node true.
For the general case, assume that D |= T as inductive hypothesis. We have

to show that if T ′ is constructed by applying a tableau rule to T , then D |= T ′.
By induction, we know that there exists a branch B in T such that D |= B.
If this branch is not extended when constructing T ′, then it trivially holds that
D |= T ′ since B is still a branch in T ′. Otherwise, if B is extended, then we
show that in T ′ there exists an extended branch B′ from B such that D |= B′

and therefore also D |= T ′. Now, we proceed by cases depending on what rule
is applied in the extension:
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– Suppose that the rule applied to construct T ′ is the ∨-rule. We know that one
literal � per clause in S exists such that D |= � because D |= S. The ∨-rule
adds nodes labelled with literals from a clause in S. Therefore, D must satisfy
at least one of these literals.

– Suppose that the rule applied to construct T ′ is the superposition rule S1.
Suppose p1 and p2 are the literals in B that are used for the extension. By
inductive hypothesis we know that D |= p1 and D |= p2. It means that there
are two monomorphisms h1 : p1 → D and h2 : p2 → D. By Proposition 3,
there exists some s ∈ p1 ⊗ p2 verifying the pair factorization property with
h : s → D being a monomorphism, so, D |= s.

– Suppose that the rule applied to construct T ′ is the superposition rule S2.
Suppose p1 and ∀(c : p2 → q) are the literals in B that are used for the exten-
sion. By inductive hypothesis we know that D |= p1 and D |= ∀(c : p2 → q).
Since D |= p1 , there exists a monomorphism h1 : p1 → D. Then h1 ◦m is also
a monomorphism from p2 to D. From here, since D |= ∀(c : p2 → q), there
is a monomorphism h2 : q → D such that h1 ◦ m = h2 ◦ c. By Proposition 3,
there exists some s ∈ p1 ⊗c,m q verifying the pair factorization property with
h : s → D being a monomorphism, so, D |= s. Graphically:

– Suppose that the rule applied to construct T ′ is one of the unfolding rules.
Suppose p[n1//hang(n2)] is the literal in B that is used and that (U1) is
the rule used for the extension. By inductive hypothesis we know that D |=
p. It means that there is a monomorphism h1 : p → D, that is, it holds
h1(n1)//h1(n2). Then, accordingly to Condition 5 in Definition 1 we have three
cases:
1. If h1(n1)/h1(n2) holds, it is clear that there exists a monomorphism h2 :

p[n1 ← /hang(n2)] → D, so we have that D |= p[n1 ← /hang(n2)].
2. If h1(n1)/m1//m2/h1(n2) holds, for some nodes m1 and m2 in D, then the

following f1 and f2 are monomorphisms:
• f1 : p[n1 ←] → D such that f1(p[n1 ←]) = h1(p[n1 ←]),
• f2 : q → D for q = prefix(n1)[n1 ← /n] with label(n) = ∗, such that

f2(prefix(n1)) = h1(prefix(n1)) and f2(n) = m1.
Then, by Proposition 3, there exists some s ∈ p[n1 ←] ⊗c,m q verifying the
pair factorization property with f : s → D being a monomorphism.
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Therefore, D |= s[inc2(n) ← //hang(n2)] since we can define a monomor-
phism h2 : s[inc2(n) ← //hang(n2)] → D such that h2 = h1 except for:
• h2(inc2(n)) = f(inc2(n)) = f2(n) = m1

3. Otherwise, h1(n1)/m′/h1(n2) holds and it is enough to consider morphisms
such that:
• f2(n) = m′,
• h2(inc2(n)) = f(inc2(n)) = f2(n) = m′

Similar arguments serve if the rule used is (U2).

Consequently, in all these cases, there exists an extended branch B′ in T ′ such
that D |= B′ and therefore D |= T ′. �

In order to prove completeness, the following notion of saturation of tableaux
is required. Saturation describes some kind of fairness that ensures that we do
not postpone indefinitely some inference step.

Definition 13 (Saturated Tableau). Given a tableau T for a specification
S, we say that T is saturated if the following conditions hold:

– No new literals can be added to any branch B in T using the ∨-rule.
– For each branch B in T , one of the following conditions is satisfied:

• either it is closed, or
• it is open and all rules have been applied in B.

It should be clear that it is always possible to build a (possibly infinite)
saturated tableau. It is enough to keep, for every branch, a queue of the pending
inferences.

To prove completeness we will show that we can associate a canonical model
DB to any open branch in a given tableau T so that, if T is saturated then DB

can be proven to be a model for T . In particular, this model is obtained by, first,
computing rB , which is the colimit of the diagram consisting of the patterns
in the positive literals in the branch and the monomorphisms induced by rule
applications. And, second, by replacing in rB every ∗ label by a fresh label from
Σ that is not present in any literal in the given specification. The existence of
these colimits (satisfying an additional minimality property) is described in the
Definition 14 and Proposition 4.

Definition 14 (Infinite colimits). We say that P be a (possibly infinite)
directed diagram of patterns, if it is a collection of patterns and monomorphisms
between the patterns, such that for every pair of patterns p1 and p2 there exists a
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pattern r and monomorphisms f1 : p1 → r and f2 : p2 → r in P . We say that P
has a colimit if there exists a pattern rP together with a collection of morphisms
{hp : p → rP | p ∈ P} such that, if f : p1 → p2 in P then hp1 = hp2 ◦ f .
Moreover, we say that the colimit is minimal, if for every finite pattern q such
that there is a monomorphism g : q → rP , then, there is a pattern p in P and a
monomorphism gp : q → p such that the diagram below commutes:

Now, we show that every open branch defines a directed diagram, so that, if
the tableau is saturated, it has a minimal colimit.

Proposition 4 (Colimit of open branches in saturated tableaux). Given
an open branch B in a saturated tableau T then, the set of patterns in positive
literals in B is a directed diagram PB that has a minimal colimit rB.

Proof. First of all, we define the diagram PB associated to a branch B as follows:

– If p is a positive literal in a node of B then p is in PB .
– If s, p1 and p2 are literals on nodes of B such that s is one of the child literals

obtained from p1 and p2 after applying rule (S1), then the corresponding
monomorphisms inc1 : p1 → s and inc2 : p2 → s are in PB .

– If s, p1 and ∀(c : p2 → q) are literals on nodes of B, such that s is one of the
child literals obtained from p1 and ∀(c : p2 → q) after applying rule (S2), then
the corresponding monomorphism inc1 : p1 → s is in PB .

– If s and p are literals on nodes of B such that s is one of the child liter-
als obtained from p after applying rule (U1) or (U2), then the associated
monomorphism f : p → s is in PB .

Then, since T is saturated, if p and q are literals in B, the branch includes
the application of the corresponding superposition rule (S1) to these literals.
Moreover, since B is open, the superposition p ⊗ q is not empty and defines the
morphisms inc1 : p1 → s and inc2 : p2 → s, so PB is a directed diagram.

For the colimit construction, it is enough to define rB as the quotient of the
union of the patterns in the diagram modulo the equivalence relation defined
by the morphisms of the diagram1. For the minimality property, if q is a finite
pattern such that g : q → rP , then there should exist a finite subset of patterns
P0 ⊆ PB such that the union of the nodes of the patterns in P0 includes the set
of nodes g(n), where n is in Nodesq. Then, using that PB is directed we can prove
the existence of a pattern p in PB , obtained by doing superpositions on patterns
in P0, such that there is a monomorphism gp : q → p verifying g = hp ◦ gp. �

1 The least equivalence relation satisfying that if f is a morphism in the diagram and
f(n) = n′, then n ≡ n′.
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Lemma 1 (Canonical models of saturated tableaux). If B is an open
branch of a saturated tableau T , rB is its colimit, and DB is the result of replacing
in rB each ∗ by a label a not present in the given specification S, then DB is a
document such that DB |= B and, hence, DB |= S.

Proof. First, we have to prove that DB is indeed a document. This means proving
that DB satisfies Condition 5 in Definition 1. Let n1, n2 be two nodes in DB

(and, hence, in rB) such that n1//n2 holds. By Proposition 4, there must exist
a pattern p in PB containing such nodes n1 and n2 such that n1//n2 holds in
p2. There are several possibilities:

1. If n1/n2 is in p then n1/n2 is in DB .
2. If n1//dn2 is in p, since the tableau is saturated, at some point in the

branch B we would have applied the unfolding rule (U1) to the literal p.
As a consequence, B would also include the literal p1 where either p1 =
p[n1 ← /hang(n2)] or p1 = s[inc2(n) ← //hang(n2)] for one of the pat-
terns s in p[n1 ←] ⊗c,m q, where q = prefix(n1)[n1 ← /n] with label(n) = ∗.
In the former case, we would know that in DB we have n1/n2. In the latter
case, B has the literal p1 containing a node m1 such that n1/m1//dn2 is in
p1. But because the tableau is saturated, at some later point in the branch
B we would have applied the unfolding rule (U2) to the literal p1 on the
edge m1//dn2. As a consequence, B would also include the literal p2 where
either p2 = p1[m1 ← /hang(n2)] or p2 = s′[inc2(n′) ← /hang(n2)] for one of
the patterns s′ in p1[m1 ←] ⊗c,m q′, where q′ = prefix(m1)[m1 ← //n′] with
label(n′) = ∗. Now, in the former case, we would know that in DB we have
n1/m1/n2. In the latter case, B has the literal p2 containing a node m2 such
that n1/m1//dm2/n2 is in p2. Therefore we know that in DB we have two
nodes m1 and m2 such that n1/m1//m2/n2 holds.

3. Otherwise, there must be at least two edges between the nodes n1 and n2 in
p. That is, there must be nodes m1,m2 in p with n1/m1 or n1//dm1, and
m2/n2 or m2//dn2, such that m1 = m2 or m1//m2 holds in p. Now:
(a) If n1/m1 and m2/n2 then trivially n1/m1//m2/n2 holds in DB .
(b) If n1//dm1 or m2//dn2, then at some point we would apply the first or

the second unfolding rule and, as in case 2, we would also prove that
n1, n2 satisfy Condition 5 in Definition 1.

Now, we prove that DB satisfies each literal � in B. Let renameB : rB → DB

be the isomorphism that renames all the labels ∗ in NodesrB
by a label a. Then,

we have that DB |= � if, and only if, rB |= � because, for every pattern p, the
existence of a monomorphism h : p → DB implies the existence of a monomor-
phism rename−1

B ◦ h : p → rB ; and, conversely, the existence of a monomor-
phism f : p → rB implies the existence of a monomorphism renameB ◦ f :
p → DB . Therefore, it will be enough to prove that rB satisfies each literal � in
B. We proceed by cases:

2 To be more precise there are nodes m1,m2, such thatm1//m2 holds in p, hp(m1) = n1

and hp(m2) = n2.
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– If � = p then, as a direct consequence of the colimit construction, we know
that there exists a monomorphism hp : p → rB , so rB |= p.

– Assume that � = ∀(c : p → q). We will prove that, if there exists h : p → rB

then there is a monomorphism f : q → rB such that h = f ◦ c. First, we know
as a consequence of the colimit construction that since p is finite, there is a
pattern r ∈ PB (with the corresponding monomorphism hr : r → rB) and a
monomorphism gr : p → r, such that the following diagram commutes:

Moreover, since T is saturated, we know that the superposing rule (S2) has
been applied between ∀(c : p → q) and r. Suppose that s ∈ r ⊗c,gr

q is the one
such that s is the literal that was hanged in the branch B. Then, by colimit
definition, we know there is a monomorphism hs : s → rB and the following
diagram defines the required monomorphism f = hs ◦ inc2 : q → rB such that
h = hr ◦ gr = f ◦ c.

– Let � = ¬p and let us see that assuming that there exists h : p → rB leads
to a contradiction. If it was the case, we know that, since p is finite, there is
a pattern r ∈ PB (with hr : r → rB) and a monomorphism gr : p → r, such
that the following diagram commutes:

Then, since T is saturated the closing rule (C) must be applied between ¬p
and r so the branch should be closed, contradicting the premise. �
Finally, we prove completeness of the tableau method.

Theorem 2 (Completeness). If the specification S is unsatisfiable, then there
is a tableau proof for S.

Proof. If there is no tableau proof for S, then every tableau for S has an open
branch. Hence, if T is a saturated tableau for S, it should have an open branch
B and, by Lemma 1, DB |= S. �

6 Related Work

XPath [17,21] is a well-known language for navigating an XML document (or
XML tree) and returning a set of answer nodes. Since XPath is used in many
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XML query languages as XQuery, XSLT or XML Schema among others
[18–20], a great amount of papers deal with different aspects on different frag-
ments of XPath. For instance, in [4] an overview of formal results on XPath is
presented concerning the expressiveness of several fragments, complexity bounds
for evaluation of XPath queries, as well as static analysis of XPath queries. In
[3] they study the problem of determining, given a query p (in a given XPath
fragment) and a DTD D, whether there exists an XML document conforming
to D and satisfying p. They show that the complexity ranges from PTIME to
undecidable, depending on the XPath fragment and the DTD chosen. The work
presented in [5] deals with the same problem (in a particular case) and it uses
Hybrid Modal Logic to model the documents and some class of schemas and
constraints. They provide a tableau proof technique for constraint satisfiability
testing in the presence of schemas.

Our approach is different than the previous ones in two aspects. On the one
hand, we do not consider any DTD or schema, and we use a simple fragment
of XPath. In this sense our approach is simpler than previous ones. But, on
the other hand, our aim is to define specifications of classes of XML documents
as sets of constraints on these documents, and to provide a form of reasoning
about these specifications. In this sense, our main question is satisfiability, that
is, given a set of constraints S, whether there exists an XML document satisfying
all constraints in S.

Some other work, which shares part of our aims, is the approach for the
specification and verification of semi-structured documents based on extend-
ing a fragment of first-order logic [2,12]. They present specification languages
that allow us to specify classes of documents, and tools that allow us to check
whether a given document (or a set of documents) follows a given specification.
However, they do not consider the problem of defining deductive tools to ana-
lyze specifications, for instance to look for inconsistencies. Schematron [9] has a
more practical nature. It is a language and a tool that is part of an ISO stan-
dard (DSDL: Document Schema Description Languages). The language allows
us to specify constraints on XML documents by describing directly XML pat-
terns (using XML) and expressing properties about these patterns. Then, the
tool allows us to check if a given XML document satisfies these constraints.
However, as in the previous approach, Schematron provides no deductive capa-
bilities. Finally, the approach presented in this paper is very related to the work
presented in [15,16], showing how to use graph constraints as a specification
formalism, and how to reason about these specifications. However, as discussed
in Sect. 3, the descendant relation in our constraints makes non-trivial the appli-
cation of the techniques in [15,16]. In particular, the descendent relation would
be second-order in the logic of graph constraints defined in [15,16].

In [1,13] we presented some preliminary work directly related to the work in
this paper. In particular, in [13], we introduced the three kinds of constraints
considered here and three main inference rules called R1, R2 and R3 (similar
to the rules Cl, S1 and S2 in this paper). We proved that these rules were
sound, but some counter-examples showed that they were not complete. So, we
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introduced two new rules, called Unfold1 and Unfold2 (a preliminary version of
U1 and U2), that solved these counter-examples, so we conjectured that this was
enough to prove completeness. Unfortunately, Unfold1 and Unfold2 are unsound
as we explain in Example 2. Moreover, we presented some subsumption and
simplification rules in order to produce a more efficient procedure. In parallel,
we implemented a prototype tool for reasoning with these rules that is described
in [1] by means of examples and screenshots.

7 Conclusion and Further Work

In this paper, we have presented an approach for specifying the structure of
XML documents using three kinds of constraints based on XPath, together with
a sound and complete method for reasoning about them.

We strongly believe that satisfiability problem for this class of constraints is
only semidecidable, since we believe that it would be similar to the (un)decidability
of the satisfiability problem for the Horn clause fragment of first-order logic. As
a consequence, if a given specification is inconsistent, we can be sure that our
procedure will terminate showing that unsatisfiability. However, our procedure
may not terminate if the given specification is satisfiable. In this context, we
may consider that studying the complexity of a procedure that may not ter-
minate is not very useful. Nevertheless, we may like to have an idea about the
performance of our approach when the procedure terminates. One could think,
that this performance would be quite poor, since checking if there is a monomor-
phism between two trees (a basic operation in our deduction procedure) is an
NP-complete problem [10]. Actually, this is not our experience with the tool that
we have implemented [1]. We think that the situation is similar to what happens
with graph transformation tools. In these tools, applying a graph transforma-
tion rule means finding a subgraph isomorphism, which is also a well-known
NP-complete problem. However, the fact that the graphs are typed (in our case,
the trees are labelled), in practice, reduces considerably the search.

In the future, we plan to extend our approach to consider also cross-references
and properties about the contents of documents. The former problem means, in
fact, to extend our approach to graphs and graph patterns. For the latter case,
we plan to follow the same approach that we used to extend our results for
graphs in [15,16] to the case of attributed graphs in [14].
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Abstract. The TG relational reinforcement learning algorithm builds
first-order decision trees from perception samples. To this end, it statisti-
cally checks the significance of hypotheses about state properties possibly
relevant for decision making. The generation of hypotheses is restricted
by constraints manually specified a priori. In this paper we propose Alge-
braic Reinforcement Learning (ARL) for eliminating this condition by
employing rewrite theories for state representation, enabling induction
of hypotheses from perception samples directly via term generalization
with the ACUOS system. We compare experimental results for ARL
with and without generalization, and show that generalization positively
influences convergence rates and reduces complexity of learned trees in
comparison to trees learned without generalization.

1 Introduction

A reinforcement learning agent performs actions, observes the effect and even-
tually perceives a reward when reaching a system goal. Based on this infor-
mation, reinforcement learning allows the agent to build a data structure that
enables lookup of optimal actions with respect to an agent’s situation, proba-
bilistic action effects and system goals [1]. Classical reinforcement learning algo-
rithms build this structure based on propositional state representations, thereby
ignoring any relational or logical structure underlying the domain. This results
in large and unmanageable data structures, and learned results are not easily
transferable to similar situations.

To overcome these problems, relational reinforcement learning (RRL) has been
proposed [2–4]. RRL seeks to incorporate relational domain structure into the
learning process, yielding more compact and transferable results. In particular,
the TG algorithm [5,6] builds first order regression trees as lookup data structure
(i.e. a relational decision tree) by testing whether a state property represented
as first order logic formula has a statistically significant impact on the quality of
executing an action in a given state. This process is repeated recursively, revealing
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relational domain structure that is relevant for decision making. One downside of
the TG algorithm is that the state properties to be tested for relevancy have to
be manually specified by system designers a priori. This so called language bias
constrains the structure of the resulting decision tree. Moreover, this approach
requires domain knowledge before starting the learning process and may lead to
inadequate tree structure.

We propose Algebraic Reinforcement Learning (ARL) as a novel alternative
approach for inducing state properties to be tested for relevancy: Representation
of states as algebraic terms allows us to use term generalization to automatically
construct relational hypotheses about possibly relevant state properties at run-
time. For generalization we use the ACUOS system [7,8] that allows to gener-
alize rewriting logic terms [9,10]. Ax-matching is used to decide whether such
a test holds in a particular state, thus providing data for statistical evaluation
of test significance. This approach alleviates specification requirements for TG
learning by dropping the need for a predefined language bias. We show experi-
mentally that the benefits of relational over propositional representation as faster
learning convergence rates and smaller lookup data structures are maintained.

The paper is structured as follows. Section 2 reviews the TG algorithm and
the ACUOS generalization framework. Section 3 introduces our approach of
Algebraic Reinforcement Learning, and in particular the integration of term gen-
eralization into the TG algorithm to allow for automated hypothesis generation.
In Sect. 4 we present experimental results, comparing algorithm performance
with and without ACUOS generalization. Section 5 discusses related work, and
Sect. 6 concludes this paper and gives a brief outlook on further research direc-
tions in the field.

Personal Note. The authors of this paper are “addicts” of rewriting logic and
Maude: they like to apply rewriting logic in their research and show that the
unique combination of equational reasoning, rewriting and logic leads to new
scientific results and insights. E.g. Lenz has used Maude for reasoning about
runtime decisions of autonomic components [11,12] and for symbolically solving
relational Markov decision processes with rewriting techniques [13]; Martin has
applied rewriting logic to give formal foundations to object-oriented software
development [14], to study an algebraic approach to soft constraints [15], and
Lenz and Martin together to reason about autonomic ensembles [16]. Martin
had the opportunity to work with José on the foundations of multi-modeling
languages [17], on languages for distributed systems [18] and on cloud computing
security [19].

We admire José not only for his creativity, his deep insights, and his broad
knowledge in mathematics and computer science but also because of his warm-
hearted and kind personality. We are looking forward to many further stimulat-
ing exchanges with José.

2 Preliminaries

This section reviews the TG relational reinforcement learning algorithm and the
ACUOS framework for term generalization. For a broader view on the relational
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reinforcement framework the reader is referred to e.g. [2–4]. For in-depth infor-
mation about term rewriting and rewriting logic, we refer to e.g. [9,10].

2.1 TG Learning

We consider the TG relational reinforcement learning algorithm [5,6]. We start
with some definitions.

Definition 1. Let Φ be the set of conjunctions of first-order predicates with
implicit universal quantification. A state formula is a conjunction of first-order
predicates s ∈ Φ.

Definition 2. Let A be the set of possible actions (of an agent), let R ⊂ R

be the set of possible rewards, and let Ξ ⊂ Φ × A × R be the set of perception
samples. A perception sample ξ ∈ Ξ is a triple consisting of an observed state,
an executed action and an observed reward.

Notation: We denote the state formula of a perception sample ξ ∈ Ξ by state(ξ),
the action by action(ξ) and the reward by reward(ξ).

Definition 3. A sample ξ ∈ Ξ satisfies a state formula s ∈ Φ if s is a conse-
quence of state(ξ); i.e. ξ satisfies s ⇔ state(ξ) → s.1

Definition 4. A split test is a state formula.

Definition 5. A split test hypothesis consists of a state formula s ∈ Φ and a
set of statistics consisting of the following elements.

– A number n+ ∈ N, the sum of q-values
∑n+

0 qi and the sum of squared q-values∑n+
0 q2i of samples satisfying s.

– A number n− ∈ N, the sum of q-values
∑n−

0 qi and the sum of squared q-values∑n−
0 q2i of samples not satisfying s.

With these definitions we are able to define first order regression trees. This
is the data structure build incrementally by the TG algorithm to encode a rein-
forcement learning q-function. It can be used by an agent to determine the
quality of executing an action in a particular state according to system goal
specification. See Fig. 1 for an example of a first order regression tree.

Notation: Variables are denoted by capital letters and constants by small letters.

Definition 6. A first order regression tree is a tree with the following properties.

– Every node has either exactly two children or is a leaf.
– Each non-leaf node contains a split test.
– Each leaf node contains a q-value and a set of split test hypotheses.
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Fig. 1. A first order regression tree. A sample for action move(x, p) with state at(x, p)∧
clear(x) ∧ at(v, p) (and arbitrary reward) is sorted into the leaf on the left: It passes
the tests clear(X) and at(V, P ). The q-value of executing this action in the particular
state is 0.1. In other words, the leaf on the bottom left characterizes all states that
satisfy clear(X) ∧ at(V, P ).

The learning agent is provided with the set of actions A it can perform. Envi-
ronmental perceptions are represented as first order logic conjunctions. The agent
is able to observe any reward gained from action execution. The TG algorithm
is shown in Algorithm 1. It is initialized with an empty first order regression tree
for each action. The root node of each tree consists of a q-value of zero and a
set of tests with empty statistics created according to a language bias specified
manually (lines 1–2 of Algorithm1).

The language bias is given in form of rmode constraints [20]. These define
conjunctions of predicates that may appear as split tests, as well as how often
a split test may appear in a path from root to a leaf in a tree to be learned.
For any variable occurring in an rmode constraint, it is also defined whether it
corresponds to a variable already bound in tests further up the tree, or whether
they are unbound. For example, the constraint rmode(3, f(X+, Y −)) states that
the specified test f(X,Y ) may occur three times in a path from the node to a
leaf. The variable X is bound to a variable already occurring in a test further
up the tree; variable Y is unbound (i.e. fresh). Thus, the language bias can be
regarded as a function from a given first-order regression tree to a set of split
test candidates.

1 In the original TG algorithm implementation, entailment is decided by Prolog’s
SLD-resolution.



566 S. Neubert et al.

When learning, the agent performs an action in a particular state and observes
any gained reward. The perception sample is sorted into the tree of the corre-
sponding action from the root to a leaf according to the tests in the nodes (lines
4–5 of Algorithm 1). A sample satisfying a split test in a node gets subsequently
sorted into the true child branch; otherwise it is inserted into the false branch
(see Fig. 1).

The reached leaf’s q-value is updated according to standard q-learning [1],
shown in Eq. 1. It states that an action’s q-value in a particular state s is updated
according to any observed reward R(s) and the currently best value that can be
achieved by performing any possible action a′ ∈ A in the subsequent state s′.
The learning rate α ∈ [0; 1] determines the impact of new information on already
learned structure, and γ is a discount factor defining an agent’s preferences
towards long-term expected rewards over immediate ones.

Q(s, a) ← Q(s, a) + α[R(s) + γ max
a′∈A

Q(s′, a′) − Q(s, a)] (1)

To determine Q(s′, a′), the state formula of the state reached by executing a
is sorted into the corresponding first order regression tree for all a′ ∈ A. The
q-value found in the reached leaf is the actions’ current q-value (see Fig. 1). The
same mechanism can be used by an agent to determine an optimal action.

For each hypothesis stored in the reached leaf it is tested whether the sample
satisfies the hypothesis’ state formula. The results are stored in the hypothesis’
statistics (lines 6–8 of Algorithm 1). If the updated statistics imply a significant
impact of the hypothesis on the expected average q-value of executing the sam-
pled action in a state characterized by the leaf2, the leaf is replaced by a node
containing the significant test. Two new child leaves are attached to the node:
The leaf at the true-branch contains the average q-value of the positive samples
of the significant hypothesis’ statistics, the other leaf at the false-branch the
average q-value of the negative samples. For both leaves a new hypothesis set is
created according to the language bias. To avoid split decisions without sufficient
data, a minimum number of gathered samples (called minimal sample size) has
to be exceeded before a split is performed (lines 9–17 of Algorithm 1).

The TG algorithm converges towards an optimal q-function yielding agent
behavior that maximizes gathered reward. It converges faster than propositional
approaches that do not exploit relational domain structure in their representa-
tions of the q-function [6].

2.2 ACUOS

The ACUOS system [7,8] allows for term generalization for order-sorted terms
from a rewrite theory (Σ,E ∪ A). Σ contains sorts, sort order and operation
symbols to allow for term construction; E ∪ A define equivalence classes for
terms through specification of directed equations and axioms for operators (e.g.
associativity, commutativity, idempotency, identity).
2 This is done with a standard statistical F-Test for variance comparison using the
statistics stored with the hypothesis, for details see [6].
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input : state and action representation signatures Φ and A
list Samples of samples Φ × A × R
integer minimal sample size mss
language bias LB

output: a first-order regression tree ta for each action a ∈ A
1 initialize each ta (for each a ∈ A) with a single empty leaf lainit

2 for each tα add LB(ta) to hypothesis set of lainit

3 foreach sample ξ ∈ Samples do

4 sort ξ into taction(ξ) according to inner node tests, reaching leaf l
5 update q-value in leaf l according to reward(ξ)

6 foreach split test hypothesis h in l do
7 update statistics for h
8 end

9 if number of samples sorted to l exceeds mss then
10 if f-Test indicates a split for a hypothesis h then
11 create new inner node lnew with h as split test
12 add two empty leaves as children to lnew
13 set q-value of children according to h
14 add LB(ta) to hypothesis set of each child of lnew
15 replace current leaf l with lnew
16 end

17 end

18 end

Algorithm 1. The TG algorithm [5,6].

Definition 7. A term t is a generalization of terms u and u′ if they both are
substitution instances of t.

Example 1. The term f(X) is a generalization of the terms f(a) and f(b) because
there are substitutions θ = {X �→ a} and θ′ = {X �→ b} for which θ(f(X)) =
f(a) and θ′(f(X)) = f(b).

ACUOS is able to find least general generalizations for given expressions. For
example, the term at(X,P ) is a generalization of at(x, p0) and at(x, p1). The least
general generalization is in fact at(x, P ), meaning there is no other generalization
of the given terms that is less general. ACUOS generalizes terms from a given
rewrite theory taking into account specified sort orders and equivalence classes.
In contrast to unsorted generalization algorithms, ACUOS generates a minimal
set of least general generalizers. The algorithm has been implemented in the
Maude language [9] that allows to execute formally specified rewrite theories.

Example 2. Let x be of sort Agent, v of sort Victim, p0, p1 of sort Position and
let sorts Agent and Victim be a subsort of sort Spatial. Let ∧ be an associative
and commutative operation. Consider the following two terms.

at(v, p0) ∧ at(x, p1) ∧ clear(x)
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at(v, p1) ∧ clear(x) ∧ at(x, p0)

Generalizing these two terms with the ACUOS system yields a set of least general
generalizations containing the following terms.

at(S:Spatial, p0) ∧ at(S’:Spatial, p1) ∧ clear(x)
at(v,P:Position) ∧ at(x,P’:Position) ∧ clear(x)

Note the induction of sort Spatial due to the given sort order. Also note the
impact of associativity and commutativity of the ∧ operation.

3 Algebraic Reinforcement Learning

This section presents Algebraic Reinforcement Learning, an approach which inte-
grates rewriting logic and algebraic state representations with the TG algorithm.
This enables automated induction of split test hypotheses from perception sam-
ples by term generalization, eliminating the need for the manual specification of
a language bias for split test construction.

3.1 Algebraic Regression Trees

We change the state representation of first order regression trees (see Sect. 2.1)
to use rewriting logic terms for state representation. Definition 1 is changed to
allow for state representation as rewriting logic terms.

Definition 8. Given a rewrite theory (Σ,E ∪ A) with a sort State ∈ Σ, a state
formula s ∈ Φ is a term of sort State.

Also, we adjust the satisfaction relation of perception samples and states
(Definition 3) to employ Ax-matching to decide whether a state satisfies a cer-
tain property. With regards to the TG algorithm, first order logic entailment is
replaced by equational membership logic matching modulo axioms with exten-
sion (denoted ≤Ax,θ for a matching substitution θ, see e.g. [9] for details) to
decide whether a property holds in a state or not.

Definition 9. A sample ξ ∈ Ξ satisfies a state formula s ∈ Φ iff there exists
a matching substitution θ of variables (modulo axioms with extension) for their
corresponding state terms; i.e. ξ satisfies s ⇔ ∃θ : s ≤Ax,θ state(ξ).

These changes allow to define algebraic regression trees, which are similar
to first order regression trees (see Definition 6) but use rewriting logic terms for
state representation in nodes and tests.

3.2 Example Domain Specification

As an example of algebraic state representation consider a search and rescue
scenario. An agent has to find, pick up, transport and deploy victims of an
incident to an ambulance. Agent, ambulance and victims are located at arbitrary
positions. The agent can perform actions for moving to a particular position,
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1 fmod STATE is
2

3 *** State term structure.
4 sort State .
5 op _and_ : State State -> State [assoc comm] .
6

7 *** Domain entities.
8 sort Position Agent Victim Ambulance Spatial .
9 subsort Agent Victim Ambulance < Spatial .

10

11 *** Entity relations.
12 op at : Spatial Position -> State .
13 op clear : Agent -> State .
14 op holds : Agent Victim -> State .
15

16 *** Actions.
17 sort Action .
18 op move : Agent Position -> Action .
19 op grab : Agent Victim -> Action .
20 op drop : Agent Victim -> Action .
21

22 endfm

Listing 1.1. A Maude module for state and action representation.

picking up a victim (if the agent is at the same position not already carrying
another victim), and deploying a victim at the agent’s current position.

The encoding of this domain as a Maude module3 is shown in Listing 1.1.
Domain objects (agents, positions, victims and ambulances) are encoded as
sorted variables; relations between objects are defined as operations parame-
trized by domain objects. Note the polymorphic specification of the relation at,
making use of the specified sort order. Test hypotheses induced by term gener-
alization in the learning process respect this sort order as well as associativity
and commutativity of state terms.

3.3 Hypothesis Induction with ACUOS

With the definitions from Sect. 3.1, it is possible to extend the TG algorithm
to employ term generalization to induce split tests (i.e. hypotheses about rele-
vant state properties) for the tree leaves from perception samples gathered in
the learning process. This effectively eliminates the requirement of the original
TG algorithm to provide a language bias for test construction manually before
runtime. We will discuss the extraction of split test candidates from perception
3 Note that no domain dynamics (e.g. rewrite rules) are encoded, as these are implicitly
learned by the ARL algorithm w.r.t. observed rewards.
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samples and then illustrate the generalization of these candidates. Finally, we
discuss the use of multi-predicate feature lookahead for finding relevant split
criteria consisting of multiple state features.

Feature Extraction. Each sample may contain features (i.e. state properties) that
have impact on the value of an action, as well as features that are not relevant
for decision making. For example, when an agent should deploy victims to an
ambulance site, a relevant feature is that the agent is at the same position as the
ambulance and that the agent carries the victim. On the other hand, it is not
necessary to take into account other victims that are located at the ambulance
site. To allow for such a distinction, perception samples are subdivided into
possibly relevant features. This is done by treating sub-terms of the sample
as individual features. They are extracted from a state term by performing a
breadth-first search of transitive rewrites of a state according to the rewrite rule
in Listing 1.2. Thus, sub-terms are built modulo axioms and equations specified
for state terms. Extracted features are added to the split test hypotheses of
the leaf the sample was sorted into. Their impact on action values is evaluated
statistically as discussed in Sect. 2.1.

1 rl S:State and S’:State => S:State .

Listing 1.2. State feature extraction.

Example 3. Consider the following situation: The agent currently holds v0 and is
co-located with an ambulance a at position p. There is another victim v1 in the
same location. The agent executes action drop(x, v0), dropping the hold victim.
A reward of 1.0 is observed when dropping the victim at the ambulance location.
The corresponding perception sample yields the following.

[at(x, p0) ∧ at(v1, p0) ∧ at(a, p0) ∧ holds(x, v0)] × drop(x, v0) × 1.0

Features are extracted from the perception sample by considering all sub-terms
of the state formula (i.e. a term of sort State). Here, four single predicate features
are extracted: at(x, p0), at(v1, p0), at(a, p0) and holds(x, v0). Also, subsets con-
taining multiple predicates (up to a user-defined number) are extracted (modulo
axioms for sort state), for example at(x, p0) ∧ at(a, p0).

Feature Generalization. To exploit relational domain structure, extracted fea-
tures exposing equal predicates (that differ in arguments) are generalized with
the ACUOS algorithm. This yields new, more general features. They are added
to the current leaf’s hypothesis set. Generalization allows to identify relevant
state features faster: As relational structure and variables are used instead
of propositional feature representation, more samples yield statistical evidence
about the relevancy of that feature. I.e., generalization introduces abstract states
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for classifying samples. Also, if there is a general feature that is relevant for deci-
sion making, the learned tree will be more compact.

Variables introduced by generalization are either treated as fresh variables,
or substituted by variables occurring in (transitive) parent nodes’ split tests
of the algebraic regression tree. Note that variables are only substituted if the
replacing variable is of equal or lower sort (w.r.t. any given sort order) than the
the replaced variable. In other words, the substituted variable has to be of equal
or more general sort than the substituting variable.

Example 4. Let at(x, p0)∧at(a, p0) be a state feature extracted from a perception
sample as described above. Let at(x, p1) ∧ at(a, p1) be a split test hypothesis of
the leaf that the corresponding sample was sorted into. Generalization yields
the term at(x, P ) ∧ at(a, P ), where P is a variable of sort Position. It is added
to the leaf’s hypothesis set for statistical evaluation. Assuming that there is a
Position variable Pup in a split test higher up the tree, an additional hypothesis
at(x, Pup) ∧ at(a, Pup) is added to the current hypothesis set.

Note that generalizing at(x, p0) ∧ at(a, p1) (with different positions) would
yield at(x, P ) ∧ at(a, P ′), not imposing any equality constraints on the intro-
duced variables. Besides this new hypothesis, the introduced variables are sub-
stituted combinatorially with free position variables higher up the tree to form
new hypotheses incorporated in the the current nodes hypothesis set. Assuming
that there is a Position variable Pup in a split test higher up the tree, two addi-
tional hypotheses at(x, Pup)∧at(a, P ′) and at(x, P )∧at(a, Pup) are added to the
current hypothesis set.

Multi-predicate Feature Lookahead. As illustrated in Example 3, not only single
predicate features are extracted from a sample, but also features consisting of
multiple predicates. This is an approach to allow for so-called lookahead, where
a single predicate would not impose any impact on the prediction of the q-value,
but a combination of predicates does (see e.g. [21,22]). This becomes especially
important for invariants (e.g. the position of the ambulance at(a, p0) in a par-
ticular setting) and when variables are introduced to features by generalization.

Example 5. To decide about the quality of dropping a victim, neither the pred-
icate at(x, P ) nor the predicate at(a, P ) alone are relevant criteria (both are
invariants), but using their combination at(x, P ) ∧ at(a, P ) to split samples
greatly reduces observed q-values variances. Note that, as is the case in this
example, multiple predicates may also impose constraints on variables by equal-
ity: at(x, P ) ∧ at(a, P ) as a split test would require that the positions are equal
in order to classify a sample to the true-branch of the corresponding node.

Algorithm 2 shows the ARL algorithm in pseudocode. Note the change to
parameters when compared to the TG algorithm (Algorithm 1). State and action
representations are now required to be a rewrite theory. As split test hypotheses
are extracted from the samples according to the given rewrite theory, there
is no need for a language bias to drive hypothesis generation. Thus, the calls
to the language bias for hypothesis generation in the TG algorithm (lines 2
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and 14 of Algorithm 1) are no longer part of the ARL algorithm. Instead, split
test hypotheses are extracted from perception samples and generalized with the
ACUOS system as described in this section (lines 5–7 of Algorithm 2).

The other parts of the ARL algorithm correspond (up to the change of the
underlying datastructure) exactly to the TG algorithm; in particular, lines 3–4
of Algorithm 2 correspond to lines 4–5 of Algorithm1, lines 8–9 to lines 6–7, lines
11–15 to lines 9–13, and line 16 corresponds to line 15.

input : rewrite theory (Σ, E ∪ A) with sorts State and Action in Σ
list Samples of samples State × Action × R

integer minimal sample size mss
output: a first-order regression tree ta for each action a specified in R

1 initialize each ta with a single empty leaf lainit

2 foreach sample ξ ∈ Samples do

3 sort ξ into taction(ξ) according to inner node tests, reaching leaf l
4 update q-value in leaf l according to reward(ξ)

5 extract features (single- and multi-predicate) from ξ
6 generalize extracted features with ACUOS
7 add generalized features to hypothesis set of l

8 foreach split test hypothesis h in l do
9 update statistics for h

10 end

11 if number of samples sorted to l exceeds mss then
12 if f-Test indicates a split for a hypothesis h then
13 create new inner node lnew with h as split test
14 add two empty leaves as children to lnew
15 set q-value of children according to h
16 replace current leaf l with lnew
17 end

18 end

19 end
Algorithm 2. The ARL algorithm.

4 Experimental Results

This section deals with the experimental evaluation of algebraic reinforcement
learning performance. It also provides a comparison to learning performance
without automated induction of test hypothesis through term generalization.

4.1 Experimental Setup

For experimental evaluation of the ARL algorithm with generalization we used
the search and rescue scenario introduced in Sect. 3.2. The agent observes a
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reward if it deploys a victim at an ambulance. We will refer to the basic experi-
mental setup as rescue victim scenario in the following.

As an extension to the rescue victim scenario consider fires burning at some
positions. Here, the agent only observes reward if all fires are extinguished before
deploying a victim at an ambulance. To this end, the agent is additionally
equipped with an action to extinguish a fire. This setup will be referred to
as extinguish and rescue scenario.

We provided a rewrite theory to allow for term representation of states and
actions in form of a Maude module for the rescue victim scenario (Listing 1.1).
The module was extended by a sort Fire as a subsort of Spatial for the extinguish
and rescue scenario. An action extinguish : Agent×Fire → Action was added as
well in this scenario.

Perception samples were generated by simulation. Initial simulation states
were randomized; name constants for domain objects were also randomly gener-
ated. The learning agent chose its actions according to a Boltzmann exploration
strategy [23]: Usually, it performed the action that yielded the maximum value
according to the q-function (i.e. the algebraic regression trees) learned so far.
However, with some probability a random action was chosen to avoid conver-
gence to local behavior optima. A reward was given when the agent deployed a
victim at the position of an ambulance. A learning episode ended when a reward
was observed, and a new episode was started with random initial state. The
ARL algorithm was used to learn agent behavior to maximize gathered reward
and minimize the required number of actions to reach a goal state.

4.2 Results and Discussion

Figures 2 and 3 show the performance of the ARL algorithm with and with-
out using generalization for hypothesis induction for the two scenarios presented
in Sect. 4.1. The minimal sample size parameter was set to 2000 samples. The
results indicate that automated hypothesis induction with ARL does not affect
the benefits of the original TG algorithm when compared to propositional learn-
ers. The generalizing learner improves its behavior quickly and converges after
ca. 4500 episodes in the rescue victim scenario. Its non-generalizing counterpart’s
behavior improves notably slower. Also, its learned behavior neither converged
within 10000 episodes nor reached the level of the generalizing learner (Fig. 2).
In the extinguish and rescue scenario, the difference is even more explicit: While
the generalizing learner converges after ca. 7000 episodes, the non-generalizing
algorithm does not converge within 10000 episodes (Fig. 3). In both scenarios,
the generalizing variant exploits relations inherent to the domain to structure
the representation of the q-function in terms of algebraic regression trees, thus
reducing the problem space effectively.

Not only does generalization positively influence convergence rates, also the
complexity of the learned trees is reduced in comparison to trees learned with-
out generalization. By introducing equivalence classes of states through term
generalization, samples are classified more compactly, using relational informa-
tion where possible instead of explicitly having to store information about each
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Fig. 2. Required actions to goal per episode in the rescue victim scenario.

Fig. 3. Required actions to goal per episode in the extinguish and rescue scenario.

domain object encountered in the learning process. While learned trees are split
27 times by the non-generalizing learner in the rescue victim scenario, ARL only
introduces 7 splits that are relevant for decision making. In the extinguish and
rescue scenario, the former learns trees with 44 splits; ARL requires 23 splits in
this case. This reduced complexity of the learned algebraic regression trees (i.e.
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Fig. 4. Tree learned for the drop action in the rescue victim scenario.

the q-function) allows the ARL learner to classify gathered perception samples
faster, thus speeding up the learning process as well as the decision process.

Figure 4 shows the algebraic regression tree learned for the drop action in
the rescue victim scenario. The tree indicates that dropping a victim yields
the highest value if the agent currently holds the victim and is located at an
ambulance. The tests in the nodes were extracted without the need for an explicit
language bias. Only a very general rewrite theory for state and action encoding
was provided to the learning agent (see Listing 1.1). The variables for victim V ,
ambulance A and position Q have been introduced by generalization of extracted
state features. Variables V and Q have been unified with (i.e. reference to)
variables in parent nodes (see Sect. 3.3). As there was only a single learning
agent x, it has not been generalized to a variable by ARL. For a discussion of
more complex trees that have been learned, we refer the reader to [24].

5 Related Work

ARL is based on TG learning (see Sect. 2.1), which is in turn based on a first-
order decision tree classification algorithm for relational datasets: The TILDE
algorithm [20], which uses a similar approach to building relational decision trees
by heuristically evaluating split test hypotheses. Other than TG learning, that
classifies data w.r.t. continuous categories of q-value variances, TILDE classifies
data according to nominal categories. TILDE employs an information theoretic
metric instead of a statistical one to decide on the appropriateness of a candidate.
Information theoretic induction of decision trees as e.g. TILDE or Quinlan’s C4.5
[25] are based on Shannon’s notions of information and entropy [26]. The basic
idea is to reduce entropy (i.e. uncertainty) in induced partitions of datasets.

Besides TG learning there exist other approaches to relational reinforcement
learning. Model-free techniques (as TG learning) use sampled data to learn clas-
sifiers that allows to predict action quality. The RIB-RRL algorithm [27] employs
a k-nearest-neighbour approach for sample classification, using a user-defined dis-
tance metric for first-order formulas. KBR-RRL [28] uses Gaussian kernels for
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regression. While both approaches yield faster learning rates than TG learning,
the learned q-functions are not human-readable.

Another approach to relational reinforcement learning are model-based tech-
niques. Here, an explicit model of transitions triggered by action execution is
provided to the learning agent. This model is used to derive goal-based behav-
ior. Symbolic dynamic programming [29–31] uses a relational Markov decision
process (RMDP) for model specification. The RMDP is solved by relational value
iteration, dynamically partitioning the state space and assigning values to the
computed partitions. In effect, a policy is learned that allows to decide on opti-
mal actions for all states from where a given goal is reachable. Relational value
iteration has also been investigated for RMDPs specified as rewrite theories [13].
Here, state space partitioning is achieved by narrowing to compute predecessor
states and Ax-matching is employed to decide on abstract state subsumption.

The induction of general features from perception samples can also be used
to learn explicit action models, for example in the form of action rules [32]
or Markov logic networks [33]. In this case, no q-function for decision making
is learned, but rather the preconditions and effects of action execution on the
environment are identified.

6 Conclusion and Further Work

This paper introduced Algebraic Reinforcement Learning (ARL). We have shown
how to integrate term generalization into the TG relational reinforcement learn-
ing algorithm. This alleviates the need for user-specified language biases in the
learning process. Instead, state properties relevant for learning and decision mak-
ing are automatically induced from perception samples by term generalization
with the ACUOS system. Feature induction respects sort orders and axioms
specified for sample representation. Experimental results show that ARL main-
tains the benefits of using state abstraction in the learning process.

Using a rewrite theory for the specification of perception symbols allows to
incorporate sorts and equivalence classes on a very general level. No assumptions
have to be made about problem related structure of perception samples gathered
at runtime. ARL is able to identify automatically which sampled features are
relevant. Feature candidates extracted from perception samples by generalization
are only concerned with features the learning agent actually encounters, not
with features that the specifier thought could be relevant. This is especially
important in situations where the task to be learned is assigned to an agent
dynamically at runtime, and each task only makes use of a small subset of the
overall specified knowledge. In this case, only features relevant for the currently
assigned task are considered when learning. Also, there may be systems where
generalized or refined predicates are learned dynamically from low-level data or
given high-level predicates at runtime (for example, high-level predicates used to
specify the reward function). It is not trivial to specify a language bias a-priori
for dynamically learned predicates. When learning predicates as rewrite theory
operations, ARL provides a way to still employ relational reinforcement learning
in such a scenario.
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Order-sorted term generalization as done by the ACUOS system is a com-
putationally complex task. On the other hand, lookahead by multi-predicate
feature generalization is a valuable part of the ARL generalization, making it
necessary to generalize more complex terms in particular situations. The cur-
rent implementation of ARL uses predicate permutation, thus performing a lot
of useless or unnecessary generalizations. One approach to systematically reduce
generalization effort is to test ground features for information about q-variance
before attempting to generalize them: The amount ground features add to classi-
fication may eventually indicate classification performance of a correspondingly
lifted (i.e. generalized) feature. Thus, generalization of features that clearly do
not improve sample classification on a ground level could be avoided in a sys-
tematic and mathematically well-defined manner. A problem with this approach
is that statistical hypothesis sampling tests as the F-test used with ARL cur-
rently do not provide an explicit and comparable metric for independence of
split test candidates and q-values. A possible solution could be the combination
of information theoretic and statistical approaches.

ARL uses generalization to exploit relational domain structure, but does not
build an explicit model of environmental dynamics. Term generalization could
as well be used to construct an explicit relational model of the environment, e.g.
STRIPS or PDDL models (see for example [23], Chap. 10) or relational MDPs
as rewrite theories [13]. Action pre- and postconditions could be generalized
explicitly from perception samples, leading to models that are human readable,
and which can directly serve as knowledge bases for reasoning methods as e.g.
action programming or relational value iteration in rewriting logic [11–13].

Another important direction for future research is to extend ARL to multi-
agent scenarios. In its current form, ARL only supports single agent learning. It
would be interesting to combine algebraic representational abstraction and fea-
ture extraction from samples as performed by ARL with state-of-the-art multi-
agent learning algorithms and their corresponding representational models, e.g.
H(L)FAQ-Learning and extended behaviour trees [34].

In this paper we discussed the application of generalization to a model-free
relational reinforcement learner. There are other recent approaches that tackle
the problem of learning in a model-based manner by exploiting explicit, declara-
tive knowledge about domain dynamics [30,31]. Also, there are techniques that
learn explicit relational declarative models of domain dynamics from examples
rather than directly learning action values [32,33]. It would be an interesting
direction for future research to explore the applicability of algebraic term gen-
eralization to these settings.
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Abstract. The logic of E.W. Dijkstra and C.S. Scholten has been shown
to be useful in program correctness proofs and has attracted a substan-
tial following in research, teaching, and programming. However, there is
confusion regarding this logic to the point in which, for some time, it was
not considered a logic, as logicians use the word. The main objections
arise from the fact that: (i) symbolic manipulations seem to be based on
the meaning of the terms involved, and (ii) some notation and the proof
style of the logic are different, to some extent, from those found in the
traditional use of logic. This paper presents the Dijkstra-Scholten logic
as a formal system, and explains its proof-theoretic foundations as a for-
mal system, thus avoiding any confusion regarding term manipulation,
notation, and proof style. The formal system is shown to be sound and
complete, mainly, by using rewriting and narrowing based decision and
semi-decision procedures for, respectively, propositional and first-order
logic previously developed by C. Rocha and J. Meseguer.

1 Introduction

I feel deeply grateful to José Meseguer for our friendship and his tutelage, encour-
agement, and support during our collaborative research. In honoring him for his
65th birthday, I have chosen a topic close to our common interest in logic, alge-
braic specification, and mechanical theorem proving. Mechanizing the logic of
E.W. Dijkstra and C.S. Scholten was the first topic of research during my Ph.D.
studies under José’s guidance starting in the autumn of 2006; it was also a fruitful
‘excuse’ to learn and use Maude as a formal tool for the first time.

Program derivation is a formal style of program construction originated by
the work of E.W. Dijkstra [6] and C.A.R. Hoare [12]. Its formal foundation was
consolidated in the work of E.W. Dijkstra and C.S. Scholten [7], under the name
of Dijkstra-Scholten logic. This logic can be conceived as a logically sound and
complete system, having as its main feature the symbolic manipulation of for-
mulas under the principle known as Leibniz’s rule: the substitution of ‘equals for
equals’ does not change the meaning of an entity. However, since its conception,
the Dijkstra-Scholten logic was controversial because some of its features are not
usual in the traditional study of logic. Also, unsatisfactory presentation has led
to confusion, errors, and fallacies in the literature. The purpose of this paper is
to present the Dijkstra-Scholten logic as a formal system and explain the proof-
theoretic foundations of the logic within this simple setting. This paper relates
c© Springer International Publishing Switzerland 2015
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the novel features of the logic to notions found in the traditional study of logic,
thus contributing in clarifying the overall confusion about the foundations, proof
style, and notation of the Dijkstra-Scholten logic.

Finding proofs à la Hilbert of predicate formulas can be an unpleasant task
even in the presence of results such as the deduction theorem because, for
instance, there is no practical mechanism for discharging overwhelming quan-
tities of assumptions that can appear in formal proofs. What can be learned
from the Dijkstra-Scholten logic is that the importance of assumptions in formal
proofs is overrated; with the right choice of connectives, axioms, and inference
rules, proving logical formulas can be easy even without introducing assump-
tions. This paper presents an axiomatization of the Dijkstra-Scholten logic as a
formal system, both at the propositional and first-order logic levels. The main
logical connective in the Dijkstra-Scholten logic is equivalence (i.e., ‘if and only
if’) which helps, for instance, in the development of formal proofs by minimizing
the use of assumptions.

The Dijkstra-Scholten logic is based on the idea of accumulating a supply of
equivalences proved, mainly, by using Leibniz principle: if two formulas are prov-
ably equivalent, then substituting one for the other in a formula does not alter
the meaning of such a formula. However, Leibniz principle has been tradition-
ally used in the study of traditional logic as a semantic replacement metatheo-
rem [13]. This conception has caused trouble for accepting the Dijkstra-Scholten
logic as such because symbolic manipulation in the system does not seem to be
a purely syntactic task. As is shown in this paper, Leibniz principle can be for-
mally defined within the setting of a formal system and thus lacks any semantic
‘taint’.

The notion of ‘proof’ in the Dijkstra-Scholten logic is a contribution that
has not been fully appreciated by the teaching and research community, in both
mathematics and computer science. It is true that the notion of proof proposed
by E.W. Dijkstra and C.S. Scholten is not a formal proof in the strict sense of a
formal system. For the skeptical, proofs in this logic can be regarded as informal
proofs written in a relatively strict format. This paper presents the formalization
of such proof style in the form of a derivation and relate their meaning to that
of a proof in a formal system. In a nutshell, a derivation can come in different
flavors and it can always be ‘compiled’ into a formal proof.

Some of the important proofs about the formal system of E.W. Dijkstra and
C.S. Scholten presented in this paper heavily rely on previous results of C. Rocha
and J. Meseguer [19–21]. In particular, their equational decision procedure mod-
ulo has been used to mechanize part of the soundness proof for the propositional
fragment of the system. Similarly, their sequent-based semi-decision procedure
modulo for first-order logic has been used in the soundness proof of the system.
Surprisingly, up to today, to the best of the author’s knowledge the implementa-
tion of these procedures in Maude is the only mechanization of a logical system
based on the Dijkstra -Scholten logic.
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This paper is organized as follows. Section 2 covers background material on
formal systems and rewriting logic. Section 3 presents the propositional fragment
of the formal system of E.W. Dijkstra and C.S. Scholten; its first-order formu-
lation appears in Sect. 4. Section 5 presents the notion of derivation, explains
quantifier notation commonly used in the Dijkstra-Scholten style, and presents
an extension of the first-order system with equality. Section 6 presents some
related work and a conclusion.

2 Preliminaries

A formal system [13] consists of a set of symbols and rules for classifying as
formulas certain expressions over the symbols, a set of formulas called axioms,
and a set of inference rules. The sets of formulas of the formal systems introduced
in this paper all have a decidable membership problem. Given a formal system F,
a set of F-formulas Γ , and a formula φn, a proof of φn from Γ in F is a sequence
of F-formulas φ0, φ1, . . . , φn such that for any 0 ≤ i ≤ n: (i) φi is an axiom, (ii)
φi ∈ Γ , or (iii) φi is the conclusion of an inference rule with premises appearing
in φ0, . . . , φi−1. An F-formula φ is a theorem from Γ in F, written Γ �F φ, if and
only if there is a proof of φ from Γ in F; in the case when Γ = ∅, φ is called a
theorem of F and it is written �F φ.

This paper follows notation and terminology from [17] for order-sorted equa-
tional logic and from [5] for rewriting logic. An order sorted signature Σ is a
tuple Σ = (S,≤, F ) with finite poset of sorts (S,≤) and a finite index set of
function symbols F = {Fw,s}(w,s)∈S∗×S . It is assumed that: (i) each connected
component of a sort s ∈ S in the poset ordering has a top sort, denoted by ks,
and (ii) for each operator declaration f ∈ Fs1...sn,s there is also a declaration
f ∈ Fks1 ...ksn ,ks

. The collection X = {Xs}s∈S is an S-sorted family of disjoint
sets of variables with each Xs countably infinite. The set of terms of sort s is
denoted by TΣ(X)s and the set of ground terms of sort s is denoted by TΣ,s,
which are assumed nonempty for each s. The expressions TΣ(X) and TΣ denote
the respective term algebras.

A Σ-equation is a Horn clause t = u if γ, where t = u is a Σ-equality with
t, u ∈ TΣ(X)s for some sort s ∈ S, and the condition γ is a finite conjunction
of Σ-equalities

∧
i∈I ti = ui. An equational theory is a tuple (Σ,E) with order-

sorted signature Σ and finite set of Σ-equations E. For ϕ a Σ-equation, (Σ,E) �
ϕ iff ϕ can be proved from (Σ,E) by the deduction rules in [17] iff ϕ is valid
in all models of (Σ,E); assuming TΣ,s �= ∅ for each s ∈ S, (Σ,E) induces the
congruence relation =E on TΣ(X) defined for any t, u ∈ TΣ(X) by t =E u iff
(Σ,E) � t = u. For an equational theory (Σ,E) and a term t ∈ TΣ(X), the
expression [t]E denotes the equivalence class of t modulo E, i.e., [t]E = {u | u ∈
TΣ(X) ∧ t =E u}.

A Σ-rule is a sentence t → u if γ, where t → u is a Σ-sequent with t, u ∈
TΣ(X)s for some sort s ∈ S and the condition γ is a finite conjunction of Σ-
equalities. A rewrite theory is a tuple R = (Σ,E,R) with equational theory
ER = (Σ,E) and a finite set of Σ-rules R. A topmost rewrite theory is a rewrite
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theory R = (Σ,E,R) such that for some top sort s and for each (t → u if γ) ∈ R,
the terms t, u satisfy t, u ∈ TΣ(X)s and t /∈ X, and no operator in Σ has s as
argument sort. For R = (Σ,E,R) and ϕ a Σ-rule, R � ϕ iff ϕ can be obtained
from R by the deduction rules in [5] iff ϕ is valid in all models of R. For ϕ
a Σ-equation, R � ϕ iff ER � ϕ. A rewrite theory R = (Σ,E,R) induces the
rewrite relation →R on TΣ/E(X) defined for every t, u ∈ TΣ(X) by [t]E →R [u]E
iff there is a one-step rewrite proof R � t → u. The expressions R � t → u and
R � t

∗→ u respectively denote a one-step rewrite proof and an arbitrary length
(but finite) rewrite proof in R from t to u.

It is assumed that the set of equations of a rewrite theory R can be decom-
posed into a disjoint union E	B, with B a collection of axioms (such as associa-
tivity, and/or commutativity, and/or identity) for which there exists a matching
algorithm modulo B producing a finite number of B-matching substitutions, or
failing otherwise. It is also assumed that the equations E can be oriented into a
set of (possibly conditional) sort-decreasing [8], operationally terminating [16],
and confluent [8]. It is finally assumed that the rewrite rules R are weakly coher-
ent relative to the rewrite rules

−→
E modulo B [25].

3 The Propositional Fragment

This section presents the formal system DS, a formulation of the propositional
fragment of the Dijkstra-Scholten logic. Soundness and completeness of DS are
proved, mainly, via the rewrite-based decision procedure for propositional logic
found by C. Rocha and J. Meseguer [19,21].

Definition 1. The following are the symbols of the formal system DS:

– An infinite set of propositional variables {p0, p1, p2, . . .}.
– Left parenthesis ‘(’ and right parenthesis ‘)’.
– The set of logical connectives {true, false,¬,≡, �≡,∨,∧,→,←}.
Connectives true and false are constants, and ¬ is the only unary connective.
Symbols ≡, �≡, ∨, ∧, →, and ← represent binary connectives. Table 1 lists the
logical connectives with their respective names and intuitive meaning.

Definition 2. The formulas (or propositions) of the formal system DS are given
by the following BNF definition, where p is a propositional variable and φ is a
formula:

φ :: = true | false | p | (¬φ) | (φ ≡ φ) | (φ �≡ φ) | (φ ∨ φ) | (φ ∧ φ)
| (φ → φ) | (φ ← φ).

The formal system DS includes the propositional constants true and false
as propositions. They, together with the propositional variables, are the atomic
propositions of the system. The equivalence and disjunction connectives play a
major role in DS. In particular, equivalence is important because it represents
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Table 1. Name and intuitive meaning of propositional connectives.

Connective Name Meaning

true true true

false false false

¬ negation not · · ·
≡ equivalence · · · if and only if · · ·
�≡ discrepancy · · · xor · · ·
∨ disjunction · · · or · · ·
∧ conjunction · · · and · · ·
→ implication if · · · , then · · ·
← consequence · · · if · · ·

Boolean equality and symbolic manipulation in the Dijkstra-Scholten logic is
mainly based on the substitution of ‘equals for equals’. The remaining connec-
tives play a secondary role because, as it will become apparent from the axioms,
they all can be defined in terms of the Boolean constants, equivalence, and dis-
junction.

Definition 3. Let φ, ψ, and τ be formulas of DS. The set of axioms of DS is
given by the following axiom schemata:

(Ax1) ((φ ≡ (ψ ≡ τ)) ≡ ((φ ≡ ψ) ≡ τ)).
(Ax2) ((φ ≡ ψ) ≡ (ψ ≡ φ)).
(Ax3) ((φ ≡ true) ≡ φ).
(Ax4) ((φ ∨ (ψ ∨ τ)) ≡ ((φ ∨ ψ) ∨ τ)).
(Ax5) ((φ ∨ ψ) ≡ (ψ ∨ φ)).
(Ax6) ((φ ∨ false) ≡ φ).
(Ax7) ((φ ∨ φ) ≡ φ).
(Ax8) ((φ ∨ (ψ ≡ τ)) ≡ ((φ ∨ ψ) ≡ (φ ∨ τ))).
(Ax9) ((¬φ) ≡ (φ ≡ false)).
(Ax10) ((φ �≡ ψ) ≡ ((¬φ) ≡ ψ)).
(Ax11) ((φ ∧ ψ) ≡ (φ ≡ (ψ ≡ (φ ∨ ψ)))).
(Ax12) ((φ → ψ) ≡ ((φ ∨ ψ) ≡ ψ)).
(Ax13) ((φ ← ψ) ≡ (ψ → φ)).

Axioms (Ax1), (Ax2), and (Ax3) define, respectively, that equivalence is asso-
ciative, commutative, and has identity element true. Similarly, axioms (Ax4),
(Ax5), and (Ax6) define, respectively, that disjunction is associative, commuta-
tive, and has identity element false. Disjunction is idempotent by Axiom (Ax7)
and distributes over equivalence by Axiom (Ax8). The remaining axioms (Ax9)-
(Ax13) present axiomatic definitions for the remaining connectives in DS. In this
sense, {true, false,≡,∨} is a complete set of connectives for propositional logic.

For formulas φ and ψ, and a propositional variable p, the textual substitu-
tion of p by ψ in φ, denoted φ[p := ψ], is the proposition obtained from φ by
substituting ψ for every occurrence of p.
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Definition 4. Let p be a propositional variable, and φ, ψ, and τ propositions.
The set of inference rules of DS consists of two rules:

ψ (ψ ≡ φ)
φ

Equanimity
(ψ ≡ τ)

(φ[p := ψ] ≡ φ[p := τ ])
Leibniz.

Rule Equanimity is the stronger version of the traditional Modus Ponens
but it is based on equivalence. Rule Leibniz enables the above-mentioned sub-
stitution of ‘equals for equals’ in DS. Additional inference rules such as Modus
Ponens and Modus Tolens for implication, and Associativity, Symmetry,
and Transitivity for equivalence can all be added to DS without changing its
provability relation �DS.

Example 1. Consider the following proof of �DS true:

1. (((true ≡ true) ≡ true) ≡ (true ≡ true)) (Ax3)
2. ((true ≡ true) ≡ true) (Ax3)
3. (true ≡ true) (Equanimity 2 y 1)
4. true (Equanimity 3 y 2).

The next goal is to prove the soundness and completeness of DS. This is
done by using the equational theory TDS in Fig. 1, which corresponds to the
Boolean decision procedure of C. Rocha and J. Meseguer [19,21]. Constants TRUE
and FALSE denote the propositional constants true and false. Function symbols
equ, or, not, xor, imp, and con respectively stand for equivalence, disjunction,
negation, discrepancy, implication, and consequence.

A valuation is a function from the set of propositional variables to the Boolean
set B = {T, F}; valuations are extended homomorphically to propositions in the
natural way assigning T to true and F to false. A valuation v satisfies a set of
propositions Γ if and only if v(γ) = T for each γ ∈ Γ . Given a set of propositions
Γ and a proposition φ, the tautological consequence Γ |= φ is valid if and only if
v(φ) = T for every valuation v that satisfies Γ .

Proposition 1 ([21], Theorem 2). The equational theory TDS is a decision
procedure for propositional logic. In particular, for any set of propositions Γ and
a proposition φ the following equivalence holds:

Γ |= φ ⇐⇒ TDS �
⎛

⎝

⎛

⎝
∧

γ∈Γ

γ

⎞

⎠ → φ

⎞

⎠ .

The theory TDS is the axiomatization of C. Rocha and J. Meseguer [19,21], as a
set of confluent and terminating equations modulo AC, of the Dijkstra-Scholten
propositional logic [7]. The theory TDS is isomorphic to the theory of Boolean
rings TBR, which is based on the isomorphism between Boolean algebras and
Boolean rings discovered by M.H. Stone [23]. As a rewrite system, TBR was
proposed by J. Hsiang in the 1980s as a decision procedure for propositional
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logic [14]. See [19,21] for a more detailed account of these facts and for two more
equational decision procedures for propositional logic found by C. Rocha and J.
Meseguer.

Lemma 1. The formal system DS is sound, namely, for any set Γ of proposi-
tions and for a proposition φ, the following implication is logically valid:

Γ �DS φ =⇒ Γ |= φ.

Proof (Sketch). The proof of the axioms’ soundness is obtained by using
Proposition 1 as intermediate result. In particular, since TDS is a decision proce-
dure for propositional logic, the axioms of DS are shown to be sound by mechan-
ical reduction to TRUE in the functional module DS in Maude. Soundness of Rule
Equanimity is proved by using simple facts about valuations and soundness of
Rule Leibniz can be shown by induction on the structure of φ.

Lemma 2 The formal system DS is complete, namely, for any set Γ of propo-
sitions and for a proposition φ, the following implication is logically valid:

Γ |= φ =⇒ Γ �DS φ.

Proof (Sketch). The proof is obtained by using Proposition 1 as intermediate
result. Given a proof of Γ �TDS

φ, it is shown by induction that there exists a
proof witnessing Γ �DS φ.

Proposition 2. DS is a sound and a complete propositional logic system.

4 The First-Order System

This section presents a formulation of the first-order logic of E.W. Dijkstra and
C.S. Scholten as the formal system DS(L). This system is parametric on a first-
order language L and extends the propositional formal system DS. Soundness
and completeness are proved, mainly, via the rewrite- and narrowing-based semi-
decision procedure for first-order logic found by C. Rocha and J. Meseguer [20,21].

Definition 5. The symbols of DS(L) are:

– An infinite collection X of variables {x0, x1, x2, . . .}.
– A set F of function symbols.
– A set P of predicate symbols, which includes an infinite collection of constants

{P0, P1, P2, . . .}.
– An arity function ar : F ∪ P → N for function and predicate symbols.
– Left parenthesis ‘(’, right parenthesis ‘)’, and comma ‘,’.
– The set of logical connectives {true, false,¬,≡, �≡,∨,∧,→,←,∀,∃}.
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Fig. 1. An equational decision procedure for propositional logic in the syntax of Maude.

The symbols of DS(L) are parametric on the sets of function symbols F and
predicate symbols P defined by the first-order language L. In DS(L) it is assumed
that the set of predicate symbols P contains an infinite collection of constant
predicate symbols; they are key for symbol manipulation in the formal system as
will be shown by the definition of the inference rules. The logical connectives of
DS(L) extend those of DS with the usual symbols ‘∀’ for universal quantification
and ‘∃’ for existential quantification.

Definition 6 introduces the sets of terms and formulas of DS(L).

Definition 6. The set of terms and the set of formulas of the formal system
DS(L) are given by the following BNF definitions, where x ∈ X , c ∈ F with
ar(c) = 0, f ∈ F with ar = m > 0, P ∈ P with ar(P ) = 0, Q ∈ P with
ar(Q) = n > 0, t a term, and φ is a formula:

t ::= x | c | f(t, . . . , t).
φ ::= true | false | P | Q(t, . . . , t) | (¬φ) | (φ ≡ φ) | (φ �≡ φ) | (φ ∨ φ)

| (φ ∧ φ) | (φ → φ) | (φ ← φ) | (∀xφ) | (∃xφ).

The expressions T (X ,F) and T (X ,F ,P) denote, respectively, the set of terms
and the set of formulas over X , F , and P.

The set of terms is built from variables and the application of a function
symbol to a sequence of terms. The set of formulas is built from the Boolean
constants and Boolean combination of formulas, together with the application
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of a predicate symbol to a sequence of terms and universal/existential quantified
formulas. The atomic formulas of DS(L) are the Boolean constants true and
false, and the formulas obtained by applying a predicate symbol to zero or
more terms. Note that by assuming the infinite collection of constant predicate
symbols in DS(L), any propositional variable of DS can be seen as an atomic
formula in DS(L) because of the map from propositional variables to predicate
symbols given by pi �→ Pi; in this way, any DS proposition is a DS(L) formula.

In the Dijkstra-Scholten first-order logic, the textual substitution operator
{ := } is overloaded both for replacing variables for terms and for replacing

constant predicate symbols for formulas. The concept of a free occurrence of a
variable in a formula in the Dijkstra-Scholten logic is the traditional one, i.e.,
an occurrence of a variable x in a formula φ is free iff such an occurrence of x is
not under the scope of a ∀x or ∃x. Similarly, a term t is free for x in a formula
φ iff every free occurrence of x in φ is such that if it is under the scope of a ∀y
or ∃y, then y is not a variable in t.

Definition 7. Let x ∈ X , t ∈ T (X ,F), and φ, ψ ∈ T (X ,F ,P). The set of
axioms of DS(L) is given by the following axiom schemata:

(Ax·) Any axiom of DS.
(Bx1) ((∀xφ) ≡ φ), if x is not free in φ.
(Bx2) ((φ ∨ (∀xψ)) ≡ (∀x (φ ∨ ψ))), if x is not free in φ.
(Bx3) (((∀xφ) ∧ (∀xψ)) ≡ (∀x (φ ∧ ψ))).
(Bx4) ((∀xφ) → φ[x := t]), if t is free for x in φ.
(Bx5) ((∃xφ) ≡ (¬(∀x (¬φ)))).

Any axiom of DS is an axiom of DS(L), taking into account that any propo-
sitional variable pi in DS is represented in DS(L) by the constant predicate
symbols Pi in P. Axiom (Bx1) states that a universal quantifier on variable x
can be omitted whenever the formula it quantifies has no free occurrences of
x. Axiom (Bx2) states that disjunction distributes over universal quantification
whenever there is no variable capture, while Axiom (Bx3) states that conjunc-
tion and universal quantification commute. By Axiom (Bx4), it is possible to
particularize any universal quantification with a term t whenever the variables
in t are not captured by the substitution. Finally, Axiom (Bx5) is an axiomatic
definition for existential quantification. In DS(L) the set {true, false,≡,∨,∀} is
a complete set of connectives for first-order logic.

Definition 8. Let x ∈ X , P ∈ P with ar(P ) = 0, and φ, ψ, τ ∈ T (X ,F ,P).
The set of inference rules of DS(L) consists of three rules:

ψ (ψ ≡ φ)
φ

Equanimity

(ψ ≡ τ)
(φ[P := ψ] ≡ φ[P := τ ])

Leibniz

φ

(∀xφ)
Generalization.
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Rules Equanimity and Leibniz, as in DS, allow symbolic manipulation
based on equality and the substitution of ‘equals for equals’. Rule Generaliza-
tion is the usual first-order rule stating that universally quantifying any theorem
results in a theorem. The assumption about the infinite collection of constant
predicate symbols in DS(L) is key for the Rule Leibniz to work for substituting
formulas in any given formula. Other important fact regarding Rule Leibniz is
that from this rule some interesting meta-properties can be proved with almost
no effort: (i) any substitution instance of a tautology (i.e., of a DS theorem) is a
theorem of DS(L) and (ii) the set of theorems of DS(L) is closed under formula
substitution.

It is fair to say that Leibniz is ultimately at the heart of the Dijkstra-
Scholten logic. When it was initially introduced, Leibniz gave the impression of
being a semantic tool instead of a deductive one. The reason for this situation
may be attributed to an unsatisfactory presentation [2] and also to the fact that
traditionally in logic, and except for some logics such as equational logic, the
substitution of ‘equals for equals’ has been more a semantic tool in the form of
replacement metatheorems rather than part of a proof system.

The rewrite- and narrowing-based semi-decision procedure RDS(L) for first-
order logic of C. Rocha and J. Meseguer [20,21] is used to prove soundness
and completeness of DS(L). The rewrite theory RDS(L) is a mechanization of
the Dijkstra-Scholten logic in a sequent calculus and it satisfies all essential
requirements to be executable by rewriting. Also, RDS(L) is parametric on the
underlying equational theory for solving Boolean theorems; in this paper, TDS is
used as the Boolean decision procedure of choice.

Figure 2 depicts the order-sorted signature of RDS(L) in the form of a dia-
gram, where dashed lines represent sort inclusion. Sort Formula corresponds to
first-order formulas built from the Boolean constants, the binary operators for
equivalence and disjunction, and universal and existential quantification. The
remaining Boolean connectives are added as definitional extensions of the for-
mer Boolean connectives. The atomic building blocks for formulas are predicates
of sort Pred ranging over first-order terms of sort Term, constructed from predi-
cate symbols P,Q, . . . of different arities. Sort Var represents names of variables
and the operator [ / ] stands for textual substitution of a variable for a term in
a formula. Sorts FSet represents finite sets of formulas with the constant symbol
� denoting the empty set of formulas. Sorts Seq and SSet represent first-order
sequents and finite sets of first-order sequents, respectively. The trivial sequent
is denoted with the constant symbol ♦. Union of sets of first-order sequents is
denoted with •.

Figure 3 presents part of the specification of the rewrite theory RDS(L) as
Maude’s system module DSL-SEQ, in which some auxiliary functions have been
added to deal with variables and substitutions. Universal quantification is rep-
resented with square brackets. Constant mts is used to represent ♦ and * for
•. The first rule specifies the situation in which a proof has been found. The
second and third rules deal with equivalence by splitting cases based on mutual
implication. The fourth and fifth rules specify how to deal with disjunction,
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Fig. 2. Order-sorted signature of the rewrite theory RDS(L).

while the remaining two rules specify how to handle universally quantified for-
mulas. It is important to note that the underlying Boolean decision procedure
TDS automatically takes care of the remaining cases of Boolean combinations.
The situation for existential quantifiers is dealt equationally with by the usual
definitional extension using negation and universal quantification. The last two
rules deserve special attention. The next-to-last rule is declared non-executable
(attribute nonexec) because there is an extra variable in its right-hand side and
thus the derivation tree may have infinite branching. The key observation is that
the presence of extra variables in a rule’s right-hand side is not problematic for
narrowing with the rules of a coherent rewrite theory modulo its axioms, under
the assumption that its rewrite rules are topmost. In this scenario, narrowing
with rules is a sound and complete deduction process for solving existential
queries of the form ∃x(t(x) ∗→ t′(x) [18]. The next-to-last rule in Fig. 3 intro-
duces new variables, which are then incrementally instantiated as new terms to
narrow the set of sequents at each step. The last rule makes explicit the need for
auxiliary function newVar to generate fresh variables not occurring in the given
formulas.

Fig. 3. Rewrite rules of RDS(L).
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Proposition 3 ([21], Theorem 3). The rewrite theory RDS(L) is sound and
complete for first-order logic. In particular, a sequent S is provable in the sequent
calculus if and only if RDS(L) � S

∗→ ♦.

The rewrite rules in DS(L) correspond to a deductively complete subset of
the sequent calculus rules presented in [22]. These rules have been implemented
in Maude and are executable thanks to the narrowing modulo features of the
language/system, as explained before.

This paper adopts Tarski’s definition of truth for first-order logic [13]: given
a set of formulas Γ and a formula φ, the semantic entailment Γ |= φ is valid if
and only if φ is true in any L-model of Γ .

Lemma 3. The formal system DS(L) is sound, namely, for any set Γ of for-
mulas and for a formula φ, the following implication is logically valid:

Γ �DS(L) φ =⇒ Γ |= φ.

Proof (Sketch). The proof of the axioms’ soundness is obtained by using Propo-
sition 3 as an intermediate result. The proof follows the same ideas in the proof
of Lemma 1.

Lemma 4. The formal system DS(L) is complete, i.e., for any set Γ of formulas
and for a formula φ, the following implication is logically valid:

Γ |= φ =⇒ Γ �DS(L) φ.

Proof (Sketch). The proof is obtained by using Proposition 3 as an intermediate
result and it follows the same ideas of the proof of Lemma2.

Proposition 4. DS(L) is a sound and a complete first-order logic system.

5 Derivations, Notation, and Equality

This section presents the notion of derivation and quantifier notation that are
specific to the Dijkstra-Scholten logic. This section also presents axioms for
extending DS(L) with equality. Examples can be found at the end of the section.

5.1 Derivations

It is fair to say that one of the main reasons the Dijkstra-Scholten approach
to logic has gained a significant base of users is because this logic comes with
a powerful and agile proof calculus. This situation contrasts with most logical
systems for which, traditionally, semantic reasoning is the preferred inference
mechanism. ‘Proofs’ in the Dijkstra-Scholten style of proof are not proofs in the
strict sense of a formal system, but instead are sequences of formulas related
by equivalence or implication. This approach takes advantage of the transitive
properties of these connectives and allows for deriving proofs compactly, mainly,
by facilitating the substitution of ‘equals for equals’.
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Definition 9. Let Γ be a set of formulas of DS(L). A derivation in DS(L) from
Γ is a non-empty finite sequence of formulas φ0, φ1, . . . , φn of DS(L) such that
Γ �DS(L) (φk−1 ≡ φk) for 0 < k ≤ n.

Derivations are sequences of formulas that are pairwise equivalent. The con-
nection between a derivation and a proof is made precise in Proposition 5.

Proposition 5. Let Γ be a set of formulas of DS(L) and φ0, φ1, . . . , φn be a
derivation in DS(L) from Γ . It holds that Γ �DS(L) (φ0 ≡ φn).

Proof. The proof follows by induction on n ∈ N.

As stated in Proposition 5, any derivation yields a proof in the formal system.
It is important to note that any proof in the formal system DS(L) is a deriva-
tion in DS(L), but a derivation is not necessarily a proof. Consider for instance
the sequence “false, false” which is a derivation because Boolean equivalence is
reflexive, but this sequence is not a proof because false is not a theorem. The
key fact about proofs in a formal system is that every formula in a proof is a
theorem, while this is not necessarily the case in a derivation.

Derivations are not written directly as a sequence of formulas but instead
as a bi-dimensional arrangement of formulas and text explaining the derivation
steps.

Remark 1. A derivation φ0, φ1, . . . , φn in DS(L) from Γ is usually written as
follows:

φ0

≡ 〈 “explanation0” 〉
φ1

... 〈 . . . 〉
φn−1

≡ 〈 “explanationn−1” 〉
φn

in which “explanationi” is a text describing why Γ �DS (φi ≡ φi+1).

There are other types of derivations based on implication or consequence and
not on equivalence. They are called, respectively, weakening and strengthening
derivations.

Definition 10. Let Γ be a set of formulas. A sequence φ0, . . . , φn of formulas
in DS(L) is a:

1. A weakening derivation from Γ iff Γ �DS(L) (φk−1 → φk) for each 0 < k ≤ n.
2. A strengthening derivation from Γ iff Γ �DS (φk−1 ← φk) for each 0 < k ≤ n.
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Note that because equivalence and implication commute, any derivation is a
weakening and strengthening derivation.

Proposition 6. Let Γ be a set of formulas of DS(L) and Φ = φ0, φ1, . . . , φn be
a sequence of formulas in DS(L).

– If Φ is a weakening derivation, then Γ �DS(L) (φ0 → φn).
– If Φ is a strengthening derivation, then Γ �DS(L) (φ0 ← φn).

5.2 Quantifier Notation

The Dijkstra-Scholten logic proposes an alternative notation for writing quan-
tified formulas. Formally, this notation is syntactic sugar that can help in spec-
ifying and reasoning about quantifiers and it is specially suited for symbolic
manipulation.

Remark 2. Let x ∈ X and φ, ψ be formulas of DS(L).

– The expression (∀x | ψ : φ) is syntactic sugar for (∀x (ψ → φ)); in particular,
(∀x | true : φ) can be written as (∀x |: φ).

– The expression (∃x | ψ : φ) is syntactic sugar for (∃x (ψ ∧ φ)); in particular,
(∃x | true : φ) can be written as (∃x |: φ).

In the formulas (∀x | ψ : φ) and (∃x | ψ : φ), ψ is called the range and φ the
subject of the quantification.

This notation has proved in practice to be useful for specifying properties of,
for example, indexed data types. For instance, consider the following specification
about an 0-based array a of integers that stores only perfect squares:

(∀i | 0 ≤ i < len(a) :
(∃n |: a[i] = n2

))
.

The range of the universal quantification states that i is a valid index of the
array a. In general, verification and derivation of code based on specifications of
this sort becomes simpler thanks to the resemblance between the notation and
the semantics, for example, of an imperative programming language.

5.3 Equality

Definition 11 introduces the axioms for equality.

Definition 11. Let x ∈ X , t ∈ T (X ,F), and φ ∈ T (X ,F ,P). The following
axioms define the equality ‘=’ over T (X ,F):

(Bx6) (x = x).
(Bx7) ((x = t) → (φ ≡ φ[x := t])), if t is free for x in φ.
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Equality is reflexive (Axiom (Bx6)) and performing a substitution of ‘equal for
equal’ terms does not affect the truth value of a formula, under some assumptions
about variable capture (Axiom (Bx7)). Together, axioms (Bx6) and (Bx7), allow
for proving in DS(L) that equality is an equivalence relation on the set of terms
T (X ,F).

Theorem 1. Let x ∈ X , t ∈ T (X ,F), and φ ∈ T (X ,F ,P). If t is free for x in
φ and x does not occur in t, then:

1. �DS(L) ((∀x | x = t : φ) ≡ φ[x := t]).
2. �DS(L) ((∃x | x = t : φ) ≡ φ[x := t]).

The formulas in Theorem 1 are known as ‘one-point’ rules. The following proof
of the theorem is presented also as an excuse for performing derivations and
for using the syntactic sugar for quantified formulas, within the formal system
resulting from the extension of DS(L) with the equality axioms.

Proof. In what follows, a proof of (1) is presented; a proof of (1) can be obtained
in a similar way. The proof follows by double implication.

(∀x | x = t : φ)
≡ 〈 notation 〉

(∀x ((x = t) → φ))
→ 〈 (Bx4): t is free for x in φ 〉

((x = t) → φ)[x := t]
≡ 〈 textual substitution; x does not occur in t 〉

((t = t) → φ[x := t])
≡ 〈 (Bx6) 〉

(true → φ[x := t])
≡ 〈 properties of → 〉

φ[x := t] .

For the other direction:

φ[x := t]
→ 〈 weakening 〉

((¬(x = t)) ∨ φ[x := t])
≡ 〈 propositional logic 〉

((x = t) → φ[x := t])
≡ 〈 (Bx7); → distributes over ≡ 〉

((x = t) → φ)
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→ 〈 Generalization 〉
(∀x ((x = t) → φ))

≡ 〈 syntactic sugar 〉
(∀x | x = t : φ) .

Finally, consider a short example regarding a simple property of integer
arithmetic.

Example 2. Consider the following definition of the ‘divides’ relation:

a ·| b ≡ ∃x (ax = b).

The goal is to prove that ‘·|’ is reflexive, namely:

�DS(L) ∀a (a ·| a).

Consider the following derivation:

a ·| a
≡ 〈 definition 〉

∃c (ac = a)
← 〈 Theorem 1.1; strengthening with witness c = 1 〉

(a1 = a)
≡ 〈 arithmetic 〉

(a = a)
≡ 〈 (Bx6) 〉

true.

Therefore, �DS(L) (a ·| a) and by Generalization �DS(L) ∀a (a ·| a).

6 Concluding Remarks

The Dijkstra-Scholten logic was first introduced in [7] by E. Dijkstra and
C. Scholten as an alternative and effective notation, method, and calculus for
imperative program verification and derivation. In that work, the logic is
extended to first-order theories such as integers, sets, and arrays, and is the
test-bed for calculating with second-order predicate transformers. It was first
introduced as a college textbook by D. Gries and F. Schneider in [9]. R. Back-
house proposed a program construction methodology by calculating implemen-
tations from specifications following the style of Dijkstra and Scholten in [1].
More recently, J. Bohórquez has proposed a version of intuitionistic first-order
logic based on the substitution of ‘equals for equals’ [3] and a unified approach
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to program correctness, unifying Hoare and Dijkstra-Scholten’s iterative style of
programming with Hehner’s recursive predicative programming theory [4].

The foundations of the propositional fragment of the Dijkstra-Scholten logic
were first published by D. Gries and F. Schneider in [10]. L. Bijlsma and
R. Nederpelt in [2] focus on the logical backgrounds of the Dijkstra-Scholten
program development style for correct programs. They also present a number of
examples showing that unsatisfactory presentation of DS predicate calculus and
some of its features has led to errors and fallacies in the literature. V. Lifschitz
defines the concept of calculation (or derivation) in the Dijkstra-Scholten style
in terms of proof trees [15]. G. Torulakis presents a metatheory of equational
predicate logic that uses Leibniz’s substitution of ‘equals for equals’ as a pri-
mary rule of inference, and obtains a complete first-order logic [24]. The main
difference between this work and the previous references is that here the foun-
dations of the Dijkstra-Scholten logic are given in terms of the simple notion of
a proof system, and some of the main proofs have been obtained mechanically
by rewriting and narrowing in Maude.

The main contributions of this paper include a formalization of the Dijkstra-
Scholten logic as a formal system, avoiding any confusion regarding term manip-
ulation. Soundness and completeness of the system are proved mainly by induc-
tion, and by means of the decision and semi-decision procedures implemented in
Maude, respectively, in [19,21] and in [20,21]. This paper also makes clear the
distinction between the notions of proof in a formal system and that of derivation,
emblematic of the Dijkstra-Scholten style. Explanation regarding the notation
for quantified formulas has been given, together with a number of examples. To
the best of the author’s knowledge, the executable rewriting logic specifications
for propositional and first-order logic of C. Rocha and J. Meseguer in [21] are
the only theorem proving mechanization developed up to now for the Dijkstra-
Scholten logic.

As future work, it seems to be worth pursuing further results in the mecha-
nization of the Dijkstra-Scholten logic, and its adoption in the area of theorem
proving and mechanical symbolic verification of programs. The window inference
style of reasoning proposed by J. Grundy [11] for the HOL system seems like a
promising start point.

References

1. Backhouse, R.: Program Construction: Calculating Implementations from Specifi-
cations. Wiley, New York (2003)

2. Bijlsma, L., Nederpelt, R.: Dijkstra-Scholten predicate calculus: concepts and mis-
conceptions. Acta Informatica 35(12), 1007–1036 (1998)
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Abstract. Rewriting logic has proven to be an excellent formalism to
define executable semantics of programming languages, concurrent or
not, and then to derive formal analysis tools for the defined languages
with very little effort, such as model checkers. In this paper we give an
overview of recent results obtained in the context of the rewriting logic
semantics framework K, such as complete semantics of large program-
ming languages like C, Java, JavaScript, Python, and deductive program
verification techniques that allow us to verify programs in these languages
using a common verification infrastructure.

1 Introduction

Programming language semantics and program analysis and verification are well
developed research areas with a long history. In fact, one might think that all
problems would have been solved by now: we would hope that any formal seman-
tics for a language should give rise to a proof system and that a verifier for such a
system would simply extend the proof system with a proof strategy; or looked at
from the other side, we would assume that any verification system for a particular
programming language would be grounded in that language’s formal semantics.
However, reality tells us that most program verifiers are not directly based on a
formal semantics, but rather on complex and adhoc hardwired models of their
target programming languages. This has at least two negative consequences.
First, it makes the development and maintenance of program verifiers hard and
uneconomical, particularly for new programming languages or languages which
evolve fast. Second, it allows room for subtle bugs in program verifiers them-
selves. Consider, for example, the following three-line C program:

When compiled with some compilers, e.g., GCC3, ICC, Clang, this program
evaluates to 3, while when compiled with others, e.g., GCC4, MSVC, it evalu-
ates to 4. This is correct behavior for the compilers, because according to the
ISO C11 standard [1] this function is undefined (it writes x twice within the
same sequence-point interval), and language implementations or compilers are
c© Springer International Publishing Switzerland 2015
N. Mart́ı-Oliet et al. (Eds.): Meseguer Festschrift, LNCS 9200, pp. 598–616, 2015.
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free to treat undefined programs however they find fit, in particular to apply
aggressive optimizations, like above. The overall design of the C language has
been conceived in the spirit of improved performance, the price to pay being
that it becomes programmer’s responsibility to ensure that their programs are
well-defined. However, what is scary, and in our view unacceptable, is that state-
of-the-art program verifiers for C code like VCC [2] and Frama-C [3] prove that
this program evaluates to 4! That is because in order to simplify implementation,
these verifiers use code simplification modules similar to those used by compilers,
which work as expected only when the source program is well-defined according
to the C semantics.

The unfortunate consequence is that, in spite of more than 40 years of world-
wide research and in spite of being hard to use, state-of-the-art software verifi-
cation tools cannot be trusted. They encode or implement rather adhoc models
of programming languages, without any guarantee that their model is faithful to
the actual language. The root problem is that most languages do not even have
a formal semantics, their designers wrongly thinking that a formal semantics is
not worth the effort. Hence, the tool developers must rely on informal manuals
and on their subjective understanding of the language. Inspired by countless
hours of discussions with my mentor, colleague and dear friend José Meseguer,
we firmly believe that this can and should change, that programming languages
must have formal semantics! Moreover, that formal analysis tools and language
implementations can and should be derived from such semantics, as shown in
Fig. 1, so they are correct by construction. This is not a dream. Not anymore.

Fig. 1. Rewriting logic semantics can achieve this.

We present a snapshot of recent and current research on using rewriting logic
semantics in the field of programming languages through the K framework, from
giving semantics to real programming languages to using such semantics to verify
programs.
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2 From Rewriting Logic to Language Semantics

Starting with Meseguer’s seminal rewriting logic paper [4], which demonstrated
how naturally rewriting logic can capture the various computational paradigms,
a series of papers have been published on using rewriting logic to give semantics
to programming languages. Verdejo and Mart̀ı-Oliet [5,6] show how to use rewrit-
ing logic and Maude [7] to define and implement executable semantics for sev-
eral languages following both big-step [8] and small-step SOS [9,10] approaches,
and S, erbănuţă et al. [11] show how several other semantic approaches can be
represented in rewriting logic, including Berry and Boudol’s chemical abstract
machine (CHAM) [12,13] and Felleisen’s reduction semantics with evaluation
contests [14,15].

When representing any of these semantic approaches in rewriting logic, the
idea is to define the desired program configurations as an algebraic specification,
that is as a signature representing the syntax of configurations and equations
defining the underlying mathematical domains, and then to define the various
types of transitions uniformly as rewrite rules. For example, in a simple C-
like imperative language a program configuration can be a pair < code, state
>, where code is a fragment of program and state is a finite-domain map
from program variables to values. Fragments of programs are nothing but well-
formed terms over an appropriate algebraic signature, and finite-domain maps
can be defined as an algebraic data type. In a small-step SOS style rewrite logic
semantics, for example, the semantics of the assignment construct can then be
defined with rewrite rules as follows (we use the Maude notation):

crl < X = E,Sigma > => < X = E’,Sigma’ > if < E,Sigma > => < E’,Sigma’ > .

rl < X = V,Sigma > => < V,Sigma[V / X] > .

The first rule reduces the expression E assigned to program variable X step by
step until it becomes a value V, and then the second rule assigns that value to X
in the state Sigma.

A problem faced when attempting the above for real languages, like C or
Java, is that the program configuration tends to be huge, comprising dozens of
semantic cells, most of them being unused in most rules or their changes just
being propagated by rules. The lack of modularity of SOS was visible even in
Plotkin’s original notes [9,10], where he had to modify the definition of simple
arithmetic expressions several times as his initial language evolved. Hennessy also
makes it even more visible in his book [16]. Each time he adds a new feature, he
also has to change the configurations and the entire existing semantics. However,
the lack of modularity of language definitional frameworks was not perceived as
a major problem until late 1990s, partly because there were few attempts to
give complete and rigorous semantics to real programming languages. Hennessy
actually used each language extension as a pedagogical opportunity to teach
what new semantic components the feature needs and how and where those are
located in each sequent.

The first to pinpoint the limitations of plain SOS when defining non-trivial
languages were the inventors of alternative semantic frameworks, such as Berry
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and Boudol [12,13] who proposed the chemical abstract machine model, Felleisen
and his collaborators [14,15] who proposed reduction semantics with evalua-
tion contexts, and Mosses and his collaborators [17–19] who proposed the mod-
ular SOS (MSOS) approach. Among these, Mosses is perhaps the one who
most vehemently criticized the lack of modularity of plain SOS. Meseguer and
Braga [20,21] were the first to observe that rewriting logic, through its powerful
support for multiset matching, can seamlessly support modular semantic frame-
works, by giving a first rewrite logic representation of MSOS. The representation
in [20] also led to the development of the Maude MSOS tool [22].

Learning from previous uses of rewriting logic to define programming lan-
guage semantics, we proposed the K framework [23] (http://kframework.org)
as a formalism and notation inspired from rewrite logic but specialized to the
domain of programming languages. In K, programming languages can be defined
using configurations, computations and rules. Configurations organize the state
in units called cells, which are labeled and can be nested. Computations carry
computational meaning as special nested list structures sequentializing compu-
tational tasks, such as fragments of program. Computations extend the original
language abstract syntax. K (rewrite) rules make it explicit which parts of the
term they read-only, write-only, read-write, or do not care about. This makes K
suitable for defining truly concurrent languages even in the presence of sharing.
Computations are like any other terms in a rewriting environment: they can be
matched, moved from one place to another, modified, or deleted. This makes
K suitable for defining control-intensive features such as abrupt termination,
exceptions or call/cc.

In K, a language is defined in one or more files with extension “.k”. A language
definition consists roughly of three parts: annotated syntax, configuration, and
semantic rules. For syntax, K uses conventional BNF annotated with K-specific
attributes. For example, the syntax of assignment in a language like above can
be defined as

syntax Stmt ::= Id "=" Exp [strict(2)]

The attribute strict(2) states the evaluation strategy of the assignment con-
struct: first evaluate the second argument, and then apply the semantic rule(s)
for assignment.

To allow arbitrarily complex and nested program configurations, K pro-
poses a cell-based approach. Each cell encapsulates relevant information for the
semantics, including other cells that can “float” inside it. For our simple lan-
guage, a “top” cell <T>...</T> containing a code cell <k>...</k> and a state
<state>...</state> suffices:

configuration <T>
<k> $PGM </k>
<state> .Map </state>

</T>

The given cell contents tell K how to initialize the configuration: $PGM says where
to put the input program once parsed, and .Map is the empty map.

http://kframework.org
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Once the syntax and configuration are defined, we can start adding semantic
rules. K rules are contextual: they mention a configuration context in which they
apply, together with local changes they make to that context. The user typically
only mentions the absolutely necessary context in their rules; the remaining
details are filled in automatically by the tool. For example, here is the K rule
for assignment:

rule <k> X:Id = V:Val => V ...</k>
<state>... X |-> (_ => V) ...</state>

The ellipses are part of the K syntax. Recall that assignment was strict(2),
so we can assume that its second argument is a value, say V. The context of
this rule involves two cells, the k cell which holds the current code and the
state cell which holds the current state. Moreover, from each cell, we only need
certain pieces of information: from the k cell we only need the first task, which
is the assignment “X = V”, and from the state cell we only need the binding
“X |-> ”. The underscore stands for an anonymous variable, the intuition here
being that value is discarded anyway, so there is no need to bother naming it.
The irrelevant parts of the cells are replaced with ellipses. Then, once the local
context is established, we identify the parts of the context which need to change,
and we apply the changes using local rewrite rules with the arrow =>, noting that
it has a greedy scoping, grabbing everything to the left and everything to the
right until a cell boundary (open or closed) or an unbalanced parenthesis is
encountered. In our case, we rewrite both the assignment expression and the
value of X in the state to the assigned value V. Everything else stays unchanged.
The concurrent semantics of K regards each rule as a transaction: all changes
in a rule happen concurrently; moreover, rules themselves apply concurrently,
provided their changes do not overlap.

Once the definition is complete and saved in a .k file, say imp.k, the next
step is to generate the desired language model. This is done with the kompile
command:

kompile imp.k

By default, the fastest possible executable model is generated. To generate mod-
els which are amenable for symbolic execution, test-case generation, search,
model checking, or deductive verification, one needs to provide kompile with
appropriate options.

The generated language model is employed on a given program for the various
types of analyses using the krun command. By default, with the default language
model, krun simply runs the program. For example, if sum.imp contains

then the command
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krun sum.imp

yields the final configuration

Using the appropriate options to the kompile and krun commands, we can
enable all the above-mentioned tools and analyses on the defined programming
language and the given program. Many languages are provided with the K tool
distribution, and several others are available from http://kframework.org (start
with the K tutorial). Some of these languages have dozens of cells in their
configurations and hundreds of rules.

Besides didactic and prototypical languages, K has been used to formal-
ize several existing real-life languages and to design and develop analysis and
verification tools for them. The most notable are complete K definitions for the
following languages: C11 (POPL’12 [24], PLDI’15 [25]), Java 1.4 (POPL’15 [26]),
JavaScript ES5 (PLDI’15 [27]). Each of these language semantics has more than
1,000 semantic rules and has been tested on benchmarks and test suites that
implementations of these languages also use to test their conformance, where
available. The C semantics, when executed, catches undefinedness; for exam-
ple, the program discussed in the introduction reports the following error when
executed with the C semantics:

=============================================================

ERROR! KCC encountered an error while executing this program.

=============================================================

Error: EIO1

Description: Unsequenced side effect on scalar object with side effect

of same object.

Type: Undefined behavior.

See also: C11 sec. 6.5

=============================================================

The Java semantics effort has also produced a test suite of several hundreds
of programs that thoroughly and systematically test all the Java language con-
structs, because no such test suite was available.1 The JavaScript semantics
passes all the 2,782 core language tests part of the ECMAScript 5 conformance
1 The official test suite for Java implementations is the Java Compatibility Kit (JCK)

from Oracle, which is not publicly available. Oracle offers free access for non-profit
organizations willing to implement the whole JDK (http://openjdk.java.net/groups/
conformance/JckAccess/), i.e., both the language and the class library. We applied
and Oracle rejected our request, because we did not “implement” the complete Java
library. Also, note that the NIST Juliet testsuite (http://samate.nist.gov/SARD/
testsuite.php) is meant to asses the capability of Java static analysis tools, and not
the completeness of Java implementations.

http://kframework.org
http://openjdk.java.net/groups/conformance/JckAccess/
http://openjdk.java.net/groups/conformance/JckAccess/
http://samate.nist.gov/SARD/testsuite.php
http://samate.nist.gov/SARD/testsuite.php
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testsuite. To put this in perspective, among the existing implementations of
JavaScript, only Chrome’s passes all the tests, and no other existing semantics
attempt of JavaScript passes more than 90 %. In addition to a reference imple-
mentation for a language, a K executable semantics also yields a simple cover-
age metric for a test suite: the set of semantic rules it exercises. The semantics
of JavaScript revealed that the ECMAScript 5 conformance test suite fails to
cover several semantic rules. Guided by the semantics, we wrote tests to exercise
those rules and those tests revealed bugs both in production JavaScript engines
(Chrome, Safari, Firefox) and in other semantics.

3 From Language Semantics to Program Verification

An operational semantics of a programming language, be it defined in K or
not, defines an execution model the language typically in terms of a transition
relation cfg ⇒ cfg′ between program configurations, and can serve as a formal
basis for language understanding, design, implementation, and so on. On the
other hand, an axiomatic semantics defines a proof system typically in terms of
Hoare triples {ψ} code {ψ′}, and can serve as a basis for program verification.
To increase confidence in program verifiers and thus avoid problems like the
one discussed in the introduction, ideally the axiomatic semantics should be
proved sound w.r.t. the operational semantics (see, e.g., [28]). Needless to say
that defining an axiomatic semantics for a real language like C is no simpler
than defining an operational semantics, and that proving their equivalence is
a burden that few can take. Consequently, most program verifiers are actually
based on no formal semantics of their target language at all and, as discussed
above, end up sometimes proving wrong programs correct.

We have recently proposed a different approach to program verification,
reachability logic [29–32], which introduces the notion of a reachability rule to
express dynamic properties of programs, as a generalization of both a rewrite
rule and a Hoare triple. Thus, reachability logic unifies operational and axiomatic
semantics. Reachability logic builds upon matching logic [33–36] as a formalism
to express static state properties. The overall idea of our verification approach is
to start with a rewriting-based semantics of a programming language (which is
operational), and to derive program properties with the same semantics, without
giving the language any other (axiomatic) semantics.

Matching logic allows us to state and reason about structural properties over
arbitrary program configurations. The main intuition underlying matching logic
is that “terms are predicates and their satisfaction is matching”. Syntactically, it
introduces a new formula construct, called a basic pattern, which is a term possi-
bly containing variables, e.g., a configuration term expressing a desired structure
of the program configuration. The formulae, which can be built using basic pat-
terns and arbitrary other conventional logical constructs, are called patterns.
This way, we can compose structural requirements and add logical constraints
over the variables appearing in basic patterns. Semantically, the models of basic
patterns are concrete elements, e.g., concrete configurations regarded as ground
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terms, where such an element satisfies a basic pattern iff it matches it. Consid-
ering some configuration structure with a top-level cell 〈...〉cfg holding, in any
order, other cells with semantic data such as the code 〈...〉k,2 an environment
〈...〉env, a heap 〈...〉heap, an input buffer 〈...〉in, an output buffer 〈...〉out, etc.,
configurations then have the structure:

〈〈...〉k 〈...〉env 〈...〉heap 〈...〉in 〈...〉out ...〉cfg
The contents of the cells can be various algebraic data types, such as trees, lists,
sets, maps, etc. Here are two particular concrete configurations (note that x and
y are program variables, which unlike in Hoare logics are not logical variables;
in matching logic they are constants used to build programs or fragments of
programs):

〈〈x=*y; y=x; ...〉k 〈x �→ 7, y �→ 3, ...〉env 〈3 �→ 5〉heap ...〉cfg
〈〈x �→ 3〉env 〈3 �→ 5, 2 �→ 7〉heap 〈1, 2, 3, ...〉in 〈..., 7, 8, 9〉out ...〉cfg

Different languages may have different configuration structures. For exam-
ple, languages whose semantics are intended to be purely syntactic and based on
substitution, such as λ-calculi, may contain only one cell, holding the program
itself. Other languages may contain dozens of cells in their configurations. For
example, the C semantics has more than 70 nested cells. However, no matter
how complex a language is, its configurations can be defined as ground terms
over an algebraic signature, using conventional algebraic techniques. Matching
logic takes an arbitrary algebraic definition of configurations as parameter and,
as mentioned, allows configuration patterns (i.e., terms with variables) as partic-
ular formulae. To simplify terminology, all matching logic’s formulae are called
patterns. As a purposely artificial example, consider the pattern

∃c :Cells, e :Env , p :Nat , i :Int , σ :Heap
〈〈x �→ p, e〉env 〈p �→ i, σ〉heap c〉cfg ∧ i > 0 ∧ p 	= i

This is satisfied by all configurations where program variable x points to a loca-
tion p holding a positive integer i different from p. Variables matching the irrel-
evant parts of a cell, such as the variables e, σ, and c above, are called structural
frames; when reasoning about languages defined using K, the structural frames
typically result from ellipses in rules, that is, from the parts of the configuration
which do not change. They are needed in order for the pattern to properly match
the expected structure of the desired configurations. For example, if we want to
additionally state that p is the only location allocated in the heap, then we can
just remove σ from the pattern above and obtain:

∃c :Cells, e :Env , p :Nat , i :Int 〈〈x �→ p, e〉env 〈p �→ i〉heap c〉cfg ∧ i > 0 ∧ p 	= i

Matching logic allows us to reason about configurations, e.g., to prove:

|= ∀c :Cells, e :Env , p :Nat
〈〈x �→ p, e〉env 〈p �→ 9〉heap c〉cfg ∧ p > 10
→ ∃i :Int , σ :Heap 〈〈x �→ p, e〉env 〈p �→ i, σ〉heap c〉cfg ∧ i > 0 ∧ p 	= i

2 In mathematical mode, we prefer the notation 〈...〉k for cells instead of the XML-like
notation <k>...</k> preferred in ASCII.
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To specify more complex properties, one can use abstractions (e.g., singly-linked
lists matched in the heap, etc.), which can be axiomatized and proved sound
using conventional means. In fact, as shown in [35–37], like separation logic,
matching logic can also be used as a program logic in the context of conven-
tional axiomatic (Hoare) semantics, allowing us to more easily specify structural
properties about the program state. However, this way of using matching logic
comes with a big disadvantage, shared with Hoare logics in general: the formal
semantics of the target language needs to be redefined axiomatically and tedious
soundness proofs need to be done. Instead, we prefer to use reachability logic,
which allows us to use the operational semantics of the language for program
verification as well.

An unconditional reachability rule is a pair ϕ⇒ϕ′, where ϕ and ϕ′ are match-
ing logic patterns (not necessarily closed). The semantics of a reachability rule
captures the intuition of partial correctness in axiomatic semantics: any configu-
ration satisfying ϕ either rewrites/transits forever or otherwise reaches through
(zero or more) successive transitions a configuration satisfying ϕ′. In K, program-
ming languages can be given operational semantics based on rewrite rules of the
form “l⇒r if b”, where l and r are configuration terms with variables constrained
by boolean condition b. Such rules can be expressed as reachability rules l∧b⇒r.
On the other hand, a Hoare triple of the form {ψ} code {ψ′} can be regarded as
a reachability rule 〈··· 〈code〉k ···〉cfg ∧ψ ⇒〈··· 〈〉k ···〉cfg ∧ψ′ between patterns
over minimal configurations holding only the code. Here the ellipses represent
appropriate structural frames, 〈〉k is the configuration holding the empty code,
and ψ and ψ′ are variants of the original pre/post conditions replacing program
variables with appropriate logical variables (an example will be shown shortly).
Therefore, reachability rules smoothly capture the basic ingredients of both oper-
ational and axiomatic semantics, in that both operational semantics rules and
axiomatic semantics Hoare triples are instances of reachability rules.

Figure 2 shows the reachability logic proof system for unconditional reacha-
bility rules. This is a simplification of a more general proof system in [30], where
conditional reachability rules were also considered, for the particular rewrite
logic theories supported by K (recall that in K the reachability rules are uncon-
ditional, because the side conditions can be moved into the LHS of the rule). We
here only discuss the one-path variant of reachability logic, where ϕ⇒ϕ′ means
that ϕ′ is matched by some configuration reached after some sequence of tran-
sitions from a configuration matching ϕ. The all-path variant is more complex
and can be found in [29]. The one-path and all-path reachability logic variants
are equally expressive when the target programming language is deterministic.
The target language is given as a reachability system S (from “semantics”).
The soundness result in [30] guarantees that ϕ ⇒ ϕ′ holds semantically in the
transition system generated by S if S � ϕ ⇒ ϕ′ is derivable. Note that the
proof system derives more general sequents of the form A �C ϕ ⇒ ϕ′, where A
and C are sets of reachability rules. Rules in A are called axioms and rules in C
are called circularities. If C does not appear in a sequent, it means it is empty:
A � ϕ ⇒ ϕ′ is a shorthand for A �∅ ϕ ⇒ ϕ′. Initially, C is empty and A is S.
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Fig. 2. Proof system for (one-path) reachability using unconditional rules.

During the proof, circularities can be added to C via Circularity and flushed
into A by Transitivity or Axiom.

The intuition is that rules in A can be assumed valid, while those in C
have been postulated but not yet justified. After making progress it becomes
(coinductively) valid to rely on them. The intuition for sequent A �C ϕ ⇒ ϕ′,
read “A with circularities C proves ϕ ⇒ ϕ′”, is: ϕ ⇒ ϕ′ is true if the rules in
A are true and those in C are true after making progress, and if C is nonempty
then ϕ reaches ϕ′ (or diverges) after at least one transition. Let us now discuss
the proof rules.

Axiom states that a trusted rule can be used in any logical frame ψ. The
logical frame is formalized as a patternless formula, as it is meant to only add
logical but no structural constraints. Incorporating framing into the axiom rule
is necessary to make logical constraints available while proving the conditions
of the axiom hold. Since reachability logic keeps a clear separation between
program variables and logical variables the logical constraints are persistent,
that is, they do not interfere with the dynamic nature of the operational rules
and can therefore be safely used for framing.

Reflexivity and Transitivity correspond to homonymous closure prop-
erties of the reachability relation. Reflexivity requires C to be empty to meet
the requirement above, that a reachability property derived with nonempty C
takes one or more steps. Transitivity releases the circularities as axioms for
the second premise, because if there are any circularities to release the first
premise is guaranteed to make progress.

Consequence and Case Analysis are adapted from Hoare logic. In Hoare
logic Case Analysis is typically a derived rule, but there does not seem to
be any way to derive it language-independently. Ignoring circularities, we can
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think of these five rules discussed so far as a formal infrastructure for symbolic
execution.

Abstraction allows us to hide irrelevant details of ϕ behind an existential
quantifier, which is particularly useful in combination with the next proof rule.

Circularity has a coinductive nature and allows us to make a new cir-
cularity claim at any moment. We typically make such claims for code with
repetitive behaviors, such as loops, recursive functions, jumps, etc. If we suc-
ceed in proving the claim using itself as a circularity, then the claim holds. This
would obviously be unsound if the new assumption was available immediately,
but requiring progress before circularities can be used ensures that only diverging
executions can correspond to endless invocation of a circularity.

Consider, for example, the simple imperative language together with the sum
program fragment, SUM, discussed in Sect. 2, but without the initial assignment

, that is:

In conventional Hoare logic, the property to verify here is

{n = oldn ∧ n > 0} SUM {n = 0 ∧ s = oldn ∗Int (oldn +Int 1) /Int 2}

where {n = oldn ∧ n > 0} is the precondition and {n = 0 ∧ s = oldn ∗Int
(oldn+Int 1) /Int 2} is the postcondition, with Int-subscripted operations being
the corresponding mathematical domain operations (note that in Hoare logic no
distinction is made between program variables and logical variables). In order to
prove it, an axiomatic semantics of the language is needed, which is given as a
proof system in terms of such Hoare triples. When correctness is paramount, a
proof of correctness of the Hoare logic proof system wrt a trusted semantics, typ-
ically an executable one which acts as a reference model of the language, is also
needed. This may look easy and even desirable, but the reality is that semantics
of real languages are not trivial to define and they continuously evolve as the
language itself evolves. Therefore, giving two different semantics and maintain-
ing proofs of correctness between them are highly non-trivial and demotivating
tasks. Finally, if one wants the Hoare logic to also be as powerful as it can be for
the target language, that is, to allow us to derive any semantically valid Hoare
triples, then one has to also prove its relative completeness, yet another highly
non-trivial task. Moreover, and even worse from an engineering perspective, each
of the above needs to be done for each programming language separately.

On the other hand, reachability logic requires no additional semantics for the
target language and no correctness or completeness proofs specific to each lan-
guage. It takes the executable semantics of the programming language, which is
regarded as reference model, as input axioms, and then the language-independent
proof rules (e.g., those in Fig. 2) are proved correct and relatively complete once
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and for all languages [29–32]. Without any syntactic sugar, the reachability logic
specifications may be more verbose than the Hoare logic ones. However, we have
found that in practice one spends a lot more time on coming up with the concep-
tually right properties to verify than on writing them in a particular notation.
Moreover, in both Hoare logic and reachability logic we typically develop syntac-
tic sugar notations that reduce the user burden (e.g., writing a loop invariant as
a formal comment in the code). Without any sugar, the reachability rule below
captures the same specification of SUM as the Hoare triple above:

〈〈SUM〉k 〈s �→ s, n �→ n〉state〉cfg ∧ n ≥Int 0
⇒ 〈〈〉k 〈s �→ n ∗Int (n +Int 1)/Int2, n �→ 0〉state〉cfg

We encourage the reader to derive the reachability rule above on her own, using
the proof system in Fig. 2. Complete details can be found in [34]. We here only
give the high-level structure of the proof. By Axiom with the semantic rule of
assignment shown in Sect. 2 and by Transitivity, we reduce the above reach-
ability rule to one where the s in the left-hand-side pattern is replaced with 0.
Let LOOP be the while loop of the SUM program. Like in Hoare logic proofs,
we have to derive an invariant for LOOP. In reachability logic, we formalize
invariants also as reachability rules, in our case as

〈〈LOOP〉k 〈s �→ (n −Int n
′) ∗Int (n +Int n

′ +Int 1)/Int2, n �→ n′〉state〉cfg ∧ n′ ≥Int 0
⇒ 〈〈〉k 〈s �→ n ∗Int (n +Int 1)/Int2, n �→ 0〉state〉cfg

If this “invariant” reachability rule holds, then our original reachability rule can
be derived using Abstraction, Consequence and Transitivity. To derive
this invariant rule, we first use Circularity to claim it as a circularity, and then
unroll the LOOP using the executable semantic rule for while, then do a Case
Analysis for the resulting conditional, and then run the executable semantics
of the corresponding assignments via Axiom, intermingled with applications of
Consequence and Transitivity. Note that we can use the circularity claim
in the proof of the positive branch of the conditional, because the Transitivity
added it to the set of axioms once the unrolling of the while loop took place. We
leave the rest of the details to the reader, as an exercise.

K implements reachability logic, the same way Maude implements rewriting
logic. Since patterns allow variables and constraints on them in configurations,
K rewriting becomes symbolic execution with the semantic rules of the lan-
guage. Its symbolic execution engine is connected to the Z3 SMT solver [38]. We
next show an example C program verified with our current implementation of
reachability logic in K, mentioning that we have similarly verified various pro-
grams manipulating lists and trees, performing arithmetic and I/O operations,
and implementing sorting algorithms, binary search trees, AVL trees, and the
Schorr-Waite graph marking algorithm. The Matching Logic web page, http://
matching-logic.org, contains an online interface to run MatchC, an instance of
our verifier for C, where users can try more than 50 existing examples (or upload
their own). To simplify writing properties, MatchC allows users to write reach-
ability rules and invariant patterns as comments in the C program.

http://matching-logic.org
http://matching-logic.org
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Fig. 3. C function reversing a singly-linked list.

Figure 3 shows the classic list reverse program, together with all the speci-
fications that the user of MatchC has to provide (grayed areas, given as code
annotations). MatchC verifies this program for full correctness, not only memory
safety, in 0.06 s. The user-provided specifications are translated into reachability
rule proof obligations by MatchC and then attempted to be proved automati-
cally. The “$” stands for the function body, the “···” for structural frame vari-
ables, the variables starting with “?” are existentially quantified over the current
formula, etc. We do not mean to explain the MatchC notation in detail here;
we only show this example to highlight the fact that reachability logic verifica-
tion, in spite of being based on “low-level” operational semantics, still allows a
comfortable level of abstraction.

Let A be the rewrite system giving the semantics of the C language, and let
C be the set of reachability rules corresponding to user-provided specifications
(properties that one wants to verify, like the grayed ones above). MatchC derives
the rules in C using the proof system in Fig. 2. It begins by applying Circular-
ity for each rule in C and reduces the task to deriving individual sequents of
the form A �C ϕ ⇒ ϕ′. To prove them, MatchC rewrites ϕ using rules in A ∪ C
searching for a formula that implies ϕ′. Whenever the semantics rule for if in
A cannot apply because its condition is symbolic, a Case Analysis is applied
and formula split into a disjunction. When no rule can be applied, abstraction
axioms are attempted. If application of an abstraction axiom would result into
a more concrete formula, the verifier applies the respective axiom (for instance,
knowing the head of a linked list is not null results in an automatic list unrolling).

Regarding from reachability logic’s perspective, K consists of a collection of
heuristics and optimizations to perform proof search, that is, to derive proof
derivations using the reachability logic proof system. For example, suppose that
the initial configuration pattern is all concrete/ground (i.e., when it contains no
variables) and that K is requested to use its rewrite engine to simply execute
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the program in its initial state. In terms of proof derivation with the one-path
reachability proof system in Fig. 2 and its more general variant in [30], this
corresponds to a derivation of a one-path reachability rule. If K is requested to
search the entire configuration-space to find all the configurations that can be
reached as a consequence of a non-deterministic semantics, that corresponds to
a derivation of an all-path reachability rule using the generalized proof system in
[29]. Similarly, when using K‘s model-checking capabilities or when deductively
verifying programs like above, all we do can be framed in terms of deriving proofs
using a rigorously defined sound and relatively complete proof system.

4 Additional Related Work

The idea of developing K as a programming language semantic framework has
been first suggested in 2003, in a programming language class taught at the
University of Illinois by the author, whose lecture notes were published as a
technical report [39]. One year later, the main idea was published in [40]. At
that time, we used Maude as an execution language and hand-translated K def-
initions to Maude, one language at a time, so K was simply a Maude method-
ology for defining rewriting logic semantics to programming languages. K had
several implementations in the meanwhile, most of them consisting of parsers
and translators to Maude using Perl or Haskell. The current implementation,
reachable from http://kframework.org, is implemented fully in Java except for
the mathematical domain solver needed for program verification, which currently
is Z3 [38].

In addition to the complete language semantics already mentioned in Sect. 2,
there are several incomplete or yet unfinished language semantics, such as
Python [41], Scheme [42], as well as various aspects of features of Haskell [43],
X10 [44], a RISC assembly [45,46], LLVM [47], Verilog [48], as well as a static
policy checker for C [49] and a framework for domain specific languages [50,51].

K’s ability to express truly concurrent computations has been used in
researching safe models for concurrency [52], synchronization of agent sys-
tems [53], models for P-Systems [54,55], and for the x86-TSO relaxed mem-
ory model [56]. K has been used for designing type checkers/inferencers [57],
for model checking executions with predicate abstraction [58,59] and heap
awareness [60], for symbolic execution [61–64], computing worst case execu-
tion times [65–67], studying program equivalence [68,69], programming language
aggregation [70], and runtime verification [56,71]. Additionally, the C definition
mentioned above has been used as a program undefinedness checker to analyze C
programs [72]. The theoretical relationships between K language definitions and
their Maude counterparts, both at the concrete and at the symbolic level, are
studied in [73]. K, through its underlying reachability logic foundation, is orga-
nized as an institution in [74]. Finally, some techniques for automatic inference
of matching logic specifications are investigated in [75,76].

http://kframework.org
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5 Conclusion

This paper presented a glimpse of the K framework for formally defining pro-
gramming languages, which was inspired from using rewrite logic as a semantic
framework. K aims at bringing formal semantics mainstream, by providing an
intuitive notation and an attractive set of language-independent tools that can
be used with any language once a semantics is given to that language. K builds
upon our firm belief that all programming languages must have formal seman-
tics, and that their semantics is not only a mathematical artifact that helps us
better understand the language in question, but that it can in fact be incredibly
useful in practice. Virtually all program analysis tools can be generated auto-
matically from formal semantics. K may not be the final answer to this quest,
but we believe that it has proven the concept, that it is indeed possible to build
an effective collection of language tools based entirely and only on the language
semantics.
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71. Roşu, G., Schulte, W., Şerbănuţă, T.F.: Runtime verification of C memory safety.
In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 132–151.
Springer, Heidelberg (2009)

72. Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., Yang, X.: Test-case reduction
for C compiler bugs. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI, pp. 335–346. ACM
(2012)

73. Arusoaie, A., Lucanu, D., Rusu, V., Şerbănuţă, T.-F., Ştefănescu, A., Roşu,
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75. Feliú, M.A.: Logic-based techniques for program analysis and specification syn-
thesis. Ph.D. dissertation, Universitat Politècnica de València, Departamento de
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76. Alpuente, M., Feliú, M.A., Villanueva, A.: Automatic inference of specifications
using matching logic. In: Proceedings of the ACM SIGPLAN 2013 Workshop on
Partial Evaluation and Program Manipulation, PEPM 2013, Rome, Italy, 21–22
January 2013, pp. 127–136. ACM (2013)

http://dx.doi.org/10.1007/978-3-319-12466-7_2
http://dx.doi.org/10.1007/978-3-319-12466-7_2
https://hal.inria.fr/hal-01065830
https://hal.inria.fr/hal-01030754
https://hal.inria.fr/hal-01076641
https://hal.inria.fr/hal-00950775
https://hal.inria.fr/hal-00950775


ICEMAN: A Practical Architecture
for Situational Awareness at the Network Edge

Samuel Wood1,2, James Mathewson1,2, Joshua Joy3, Mark-Oliver Stehr4,
Minyoung Kim4(B), Ashish Gehani4, Mario Gerla3, Hamid Sadjadpour1,2,

and J.J. Garcia-Luna-Aceves1

1 UC Santa Cruz, Santa Cruz, USA
2 SUNS-tech, Inc., Santa Cruz, USA

{sam,james,hamid}@suns-tech.com, jj@soe.ucsc.edu
3 UC Los Angeles, Los Angeles, USA

{jjoy,gerla}@cs.ucla.edu
4 SRI International, Menlo Park, USA
{stehr,mkim,gehani}@csl.sri.com

Abstract. Situational awareness applications used in disaster response
and tactical scenarios require efficient communication without support
from a fixed infrastructure. As commercial off-the-shelf mobile phones
and tablets become cheaper, they are increasingly deployed in volatile
ad-hoc environments. Despite wide use, networking in an efficient and
distributed way remains as an active research area, and few implemen-
tation results on mobile devices exist. In these scenarios, where users
both produce and consume sensed content, the network should efficiently
match content to user interests without making any fixed infrastructure
assumptions. We propose the ICEMAN (Information CEntric Mobile Ad-
hoc Networking) architecture which is designed to support distributed
situational awareness applications in tactical scenarios. We describe the
motivation, features, and implementation of our architecture and briefly
summarize the performance of this novel architecture.
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a team involving UIUC, SRI, and UCSC in the scope of the DARPA Disruption-
Tolerant Networking (DTN) Program, which also funded a subsequent collabo-
ration between SRI and PARC Palo Alto Research Center. The underlying idea
that delay-/disruption-tolerant and content-based networking should be treated
on an equal footing was already advocated by our team, especially J.J. Garcia-
Luna-Aceves, at that time, but in our view not satisfactorily realized until now.
From a theoretical perspective, we are concerned with an extreme and hence
interesting case of a loosely coupled distributed system that requires new decen-
tralized approaches to content-access, dissemination, reliability, and security.
Hence, the ENCODERS project also benefits from a good amount of theoreti-
cal research that is mostly hidden from the user. In addition to network coding
and attribute-based encryption, it implements a version of the partially-ordered
knowledge sharing model at the content level that we already used as the basis of
our DTN work at UIUC. In this paper, we focus on ICEMAN, which constitutes
the core of the ENCODERS architecture that was first demonstrated in the field
in May 2013 at Ft. AP Hill, VA.

1 Introduction

The immense global adoption of commercial off-the-shelf mobile phones and
tablets has lead to inexpensive devices with sufficient performance, size, weight,
and power (SWAP) characteristics for deployment at the network edge of tactical
and disaster response scenarios [15,16]. The predominate reason for deploying
these devices is to support applications that increase situational awareness for the
user (the warfighter or emergency responder). Increased situational awareness is
paramount in scenarios where fixed infrastructure is limited to non-existent. In
this case, the network must communicate opportunistically by using whatever
resources are available, to provide the most recent information as early as pos-
sible to situational awareness applications. For example, a blue force tracking
application provides the most recent GPS coordinates of each squad member’s
position, to each squad member, to avoid friendly fire. Applications must sup-
port an assortment of sensing and communication hardware to efficiently pro-
duce and consume content to increase situational awareness. Despite the increase
in sensing and communication hardware capabilities in mobile devices, efficient
communication to and from applications on the volatile network edge remains
as a challenging research problem, and large engineering effort.1

This paper highlights problems with applying existing network architectures
to moderate sized networks running situational awareness applications at the tac-
tical edge, and introduces a new architecture, ICEMAN (Information-CEntric
Mobile Ad-hoc Networking) aimed at supporting such networks. Our approach is
practical: we evaluate our implementation (which builds on Haggle [32]) on hard-
ware with similar SWAP characteristics as those found on the tactical edge. ICE-
MAN adopts an Information Centric Networking (ICN) philosophy [18] where
the network provides a data object publish/subscribe abstraction to applications.
1 It is sometimes referred to as the “last tactical mile” problem.
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We use attribute-based naming, where users express queries as a set of attribute-
value pairs and a matching threshold. Among other mechanisms, ICEMAN sup-
ports UDP broadcast, network coding, and utility-based content caching to
increase data object delivery and reduce delivery latency. Due to the modest
size of our target networks, ICEMAN pushes more intelligence into the network
layer to increase performance.

The main contributions of this paper are: (1) a description of a complete
ICEMAN architecture that integrates multiple content-dissemination, utility-
based caching, and transport mechanisms to provide a publish/subscribe API
with attribute-based content naming; (2) a description of content and context-
based policies which utilize these mechanisms to achieve efficient communication
at the tactical edge.

The paper is organized as follows. Section 2 describes related architectures,
and discusses their differences in assumptions and design. Section 3 describes
ICEMAN in detail. A brief summary of our evaluation can be found in Sect. 4
followed by the conclusion in Sect. 5.

2 Related Work

We summarize a few representative architectures related to ICEMAN and high-
light their different assumptions and approaches.

Information centric networking (ICN) encompasses several approaches that
share the same content-centric philosophy. The paradigm that distinguishes ICN
from other approaches is the principle that the network should provide a host-
to-content abstraction, as opposed to the traditional host-to-host abstraction.
Indeed, in most ICN proposals there is not an explicit mechanism to commu-
nicate with a specific host. ICN architectures share three key design principles
[18] that are also used in ICEMAN: (i) publish/subscribe-type primitives, (ii)
universal caching, and (iii) content-oriented security model. Unlike other ICN
architectures, subscribers in ICEMAN specify constraints on how to match the
data object to the interests. Using these constraints, each node can construct a
ranked list of the best data objects that match the subscriber’s interest.

As in most ICN architectures, an ICEMAN node can cache any data object
that it receives, and can forward this data object to any interested node on behalf
of the publisher. ICEMAN does not establish secure tunnels for host-to-host con-
tent transport nor shared group keys. It secures the content directly by crypto-
graphically enforcing access policies using attribute-based encryption [10], which,
by scoping content, plays a role mathematically dual to attribute-based naming.

CCN [21] is a well-known example of an ICN architecture based on hierar-
chical names and prefix matching. It uses an interest-driven paradigm with the
characteristic that an interest is consumed by the first piece of matching con-
tent and needs to be refreshed for each successive piece of content to maintain
a TCP-like flow-balance property. A generalization of CCN that supports push-
and-pull paradigms to make it more suitable for tactical mobile ad-hoc networks
(MANETs) has been developed [33].
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Pocket switching is similar to delay/disruption-tolerant networking (DTN),
and focuses on exploiting contacts between wearable wireless devices. Initial work
started at Intel Research Laboratory in Cambridge, and led to the first prototype
of the Haggle architecture [19]. This line of research has been advanced in the
European Framework Program, which has developed a wide range of routing
algorithms that can naturally deal with mobility and exploit social relation-
ships [20,30,31]. Service discovery [13] and opportunistic routing [17] for low
duty-cycle lossy wireless sensor networks have been recently studied. A range of
innovative approaches to security and metadata privacy has also been developed
in this project [5,34,35]. The European project has led to a second generation
of the Haggle architecture [32]. Due to its inherent content-based foundation, we
have identified Haggle as a suitable basis for ICEMAN.

While most routing algorithms for DTNs are — like IP — based on endpoint
identifiers, previous work on interest-driven routing [36,37] in the context of the
DARPA DTN program allows persistent subscriptions to content under a name
that will be syntactically matched (using simple prefixes or arbitrary patterns)
against content stored in the network caches. Matched content travels to the
subscribers on the reverse path of the interest. DTN approaches are based on
semantically meaningful units of information (content is packaged in so-called
bundles, defined in RFC 5050), which has been extended to include metadata in
so-called extension blocks. Despite this extension, the interface to applications
is based on end-point identifiers or (hierarchical) names (with syntactic match-
ing) and is not sufficiently general to convey the common needs of applications.
Descriptive destinations [9] are a noteworthy generalization that add the capa-
bility to declaratively constrain the scope of destinations, but does not provide a
means for the dual goal of content-based access, e.g., by declaratively expressing
interest. Finally, the notion of single-node custody (and custody transfer) devel-
oped in the context of DTN point-to-point links does not match well with the
capabilities of today’s wireless networks that can utilize broadcast, opportunis-
tically overhear, and assume collective custody of content.

3 Architecture

By using a publish/subscribe paradigm, we attempt to unify two different com-
mon views of a network, namely that of a communication medium (most MANET
research falls into this category) with that of a distributed data store (which is
the focus of most research in peer-to-peer networking). This unification naturally
leads to an architecture for integrated multi-party communication and search
with in-network caching, temporal decoupling, and late binding, as exemplified
by Haggle, which serves as our starting point.

As an extension and partial refactoring of Haggle, the ICEMAN architecture
is an event-based architecture (see Fig. 1), in which multiple managers coop-
erate in a layer-less fashion to provide content-based services. It is a highly
multi-threaded architecture where managers coordinate with each other asyn-
chronously through events and manage a set of dynamically instantiated mod-
ules to perform computationally expensive operations in their own threads. For
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Fig. 1. ICEMAN Architecture and API. The circle depicts the layer-less interaction.
Each wedge of the circle is a Manager, and they interact through the Event Queue and
DataStore in the Kernel (center). The managers may use the options provided by the
modules in the small circles.

instance, data objects are managed by Haggle’s data manager, which uses SQLite
to store metadata and serves as a matching engine running in its own background
thread with a separate task queue.

The fundamental unit of abstraction is a data object C associated with
metadata M(C), represented as a set of attribute/value pairs, and a payload
P(C), which is represented by a file. Each data object has a creation timestamp
attribute, so that its creation time T S(C) is well defined. A data object identifier
ID(C) is defined as the SHA1 hash over all this information, which is globally
unique with high probability.

To provide content-based network services, two classes of data objects are
disseminated: (1) Exogenous data objects that are directly or indirectly (e.g.,
using coding or encryption) used to transport content, i.e., application payload
and associated attributes. (2) Endogenous data objects that support coordina-
tion and awareness between network nodes, such as routing information objects
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(if needed), and node descriptions for devices or applications. A device node
description represents the cache summary of the device, while an application
node description represents the application’s interests. Node descriptions have a
limited lifetime and are periodically disseminated over multiple hops. Each node
maintains node descriptions of other nodes, even if they are not neighbors.

3.1 Declarative Attribute-Based Naming

ICEMAN takes a declarative naming approach where subscribers identify con-
tent through weighted attribute-value pairs with a similarity threshold. This
generalization makes it straightforward to represent keywords and arbitrary com-
binations of conjunctions and disjunctions. By enabling applications to express
interest with a suitable precision, ICEMAN efficiently pushes content discovery
into the network layer.

Given a predicate I(S) that represents the interest of a possible subscriber
N , what matters is if it is satisfied by a piece of content C, written as C |= I(N).
A dual notion is that of a scope S(C) that can be associated with content C, and
to decide if a node N is an eligible receiver, what matters is if it is satisfied by
a given node N |= S(C). At the most abstract level, the objective of ICEMAN
is to efficiently transport content C that is published by some node P to each
node N for which both C |= I(N) and N |= S(C) hold. By employing attribute-
based encryption (see Sect. 3.5) scopes are framed over node attributes (e.g.,
representing roles) and are interpreted as content access policies that can be
cryptographically enforced.

Interest predicates are represented as a set of weighted attribute/value pairs,
i.e., I(N) ⊆ A×V ×N, where A, V, and N denote the domains for attributes,
values, and weights, respectively. ICEMAN’s naming allows applications to logi-
cally specify how to quantify (and refine) the satisfaction of an interest predicate
for a given piece of content C, by the degree of similarity metric. Specifically, we
say that C satisfies I(N) with a threshold t, written as C |=t I(N), iff

∑{wi | (ai, vi, wi) ∈ I(N) ∩ (M(C) × N)}
∑{wi | (ai, vi, wi) ∈ I(N)} ≥ t

In other words, the normalized weighted sum of overlapping attributes between
content M(C) and interest I(N) determines the degree of matching or satisfac-
tion.

ICEMAN considers the matching threshold t and a bound on the number
of matches as part of the interest. Data objects are retrieved, ranked, and pri-
oritized at each node using a lexicographical ordering based on the degree of
matching and the creation time stamp (freshest first). Since an application can
issue multiple concurrent threshold queries/subscriptions, it is straightforward
to represent arbitrary combinations of conjunctions and disjunctions by trans-
forming them into disjunctive normal form. Unlike Haggle, which uses a different
semantics for local vs. remote queries, in ICEMAN matching is uniformly defined
as stated above. In our generalization, interests are represented by application
node descriptions and are disseminated separately from device node descriptions.
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ICEMANperiodically disseminates cache summaries to avoid redundant trans-
missions and further refine the set of matched data objects. Each node maintains
a counting Bloom filter representing the content in its local cache. When a
node description is generated and sent to a neighbor, a compact non-counting
abstraction of the local Bloom filter is included. Prior to sending a data object
to a neighbor, the sender will first check to see if there is a Bloom filter hit
for the data object in its local view of the neighbor’s Bloom filter. Additionally,
the Bloom filter reduces the data base query results to only those data objects
that the interested party does not already have. In other words, if a node N
has interest I(N) and content approximated by BF(N), only data objects sat-
isfying I(N) ∧ ¬BF(N) are sent towards N . Together, the interest and the
Bloom filter define the effective interest of a node in a concise fashion. Bloom
filter abstractions are generated periodically, so that eventual consistency is
maintained between the long-term local Bloom filters and their disseminated
short-term abstractions. To suppress immediate retransmissions each node’s
local perception of the peer’s short-term Bloom filter abstraction is updated
optimistically, and will be replaced by the actual peer’s Bloom filter abstraction
when its next node description is received.

3.2 Content Dissemination

ICEMAN transports data objects in a hop-by-hop fashion. It dynamically selects
which transport protocol to use based on the content transport policy, which
can be content-based, i.e., depending on attributes and payload size. All of the
transport protocols support an application-layer atomic transaction protocol,
the control protocol, which can suppress redundant transmissions at the cost
of additional control messages. Currently we support TCP, UDP unicast, and
UDP broadcast. Both UDP unicast and UDP broadcast can optionally disable
the control protocol, in which case only Bloom filters are used to ensure delivery.

ICEMAN supports both proactive (push-based) as well as reactive (pull-
based) dissemination algorithms, consistent with the observation in [33] that
both paradigms are needed in content-based MANETs. ICEMAN dynamically
selects which dissemination algorithm to use based on the content dissemination
policy (e.g., depending on attributes and payload size).

Flooding and Replication. With proactive flooding, the data objects will
be flooded to all nodes within the connected component of the publisher. This
mechanism has been extended to proactive replication (epidemic propagation
[39]) to push contact across newly discovered connected components.

A typical dissemination policy is to proactively flood important critical sit-
uation awareness information relevant within a squad, thus avoiding the cost of
a round trip with the destination in a pull-based policy. If a message ferry is
needed, then proactive replication may be a better choice to avoid additional
round trip delays. It is also necessary to support one-way message ferrying.

Reactive counterparts of these algorithms are also supported, which means
that content is reactively flooded or reactively replicated as soon as a matching
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interest is detected. Reactive replication provides an alternative method of dis-
semination that can deliver requested content with high probability if proactive
dissemination is not feasible due to the large amount of available content.

Interest-DrivenRouting. DIsruption REsilient Content Transport (DIRECT)
is an interest-driven content dissemination protocol for DTNs developed in the
DARPA DTN program. With some important changes described below, we have
adopted DIRECT’s interest propagation, and added DIRECT’s reverse path
method of content dissemination to ICEMAN. Specifically, interests are peri-
odically epidemically disseminated with a creation timestamp and periodically
purged. Upon a data object match with an interest, the data object is forwarded
to the neighbor from which the interest was first received. We do not adopt
DIRECT’s use of CCN-style hierarchical naming and matching, nor its method
of marking queries inactive upon satisfaction to provide flow-balance between
interest and content.

Unlike DIRECT, ICEMAN decouples interest dissemination from query sat-
isfaction: ICEMAN can support both search and immediate routing of newly
published information, even after the subscription has been issued. Another
difference relative to DIRECT is the use of knowledge about cached content
to minimize the probability of routing content that the subscriber has already
obtained from other sources. This knowledge is explicitly disseminated in [37] and
approximated through Bloom filters in the ICEMAN architecture. Through ran-
domized propagation of node descriptions and hence interest, ICEMAN achieves
multi-path diversity, which is especially useful together with network coding or
fragmentation. Last but not least, interest-driven routing in ICEMAN can be
combined with data object broadcast, which implies that data objects are pushed
to and cached at overhearing nodes even if they were never requested.

Mobility-Driven Routing. ICEMAN supports mobility-driven routing using
PRoPHET [29]. PRoPHET is a routing protocol designed for disconnected net-
works with non-random mobility. Experimental results in [29] show that with
constrained cache sizes, PRoPHET can obtain higher delivery ratios with a mod-
est increase (and sometimes decrease) in delay in comparison to epidemic rout-
ing. It uses a delivery predictability metric to estimate the probability that any
particular destination can be reached through a particular neighbor. This deliv-
ery predictability metric is based on each node’s encounter history: nodes that
meet frequently or for long durations have a high delivery predictability metric.
Each node calculates its delivery predictability to every encountered node, and
nodes exchange their delivery predictability vectors to transitively compute the
probability of reaching a particular destination through a particular neighbor.
In the context of ICEMAN, PRoPHET selects the neighbor with the highest
delivery predictability when forwarding.

To serve as suitable basis for comparison, we have incorporated some of
the newer ideas of the latest PRoPHET Internet Draft [14], most notably an
improved transitivity rule, the periodic dissemination of routing information, and
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the periodic sampling of the current neighborhood to take into account contact
duration. This enhanced version of PRoPHET works together with the periodic
dissemination of node descriptions and matching as discussed previously. These
modifications are needed, because PRoPHET is used in a content-based network
where each node is a potential source, as opposed to its original use to route
between two endpoints in DTNs.

3.3 Content- and Utility-Based Caching

Content-based caching is a feature of ICEMAN that aims to ensure that the
amount of content managed by the network does not grow beyond its bounded
capacity and that resources are primarily used for content that is relevant to
the user. Content caching is a powerful mechanism to reduce latency and band-
width, and mandatory if content needs to be transferred over multiple hops with-
out a contemporaneous end-to-end path (e.g., using message ferrying or due to
intermittent disruptions). Even with an end-to-end path, typical multi-hop loss
rates over TCP will trigger end-to-end retransmissions, and render ICEMAN’s
caching-based store-and-forward solution more economic in terms of bandwidth
if the content is sufficiently large. ICEMAN allows the specification of content-
based caching strategies that enable fine-grained in-network purging of obsolete
content, as opposed to end-to-end purging at the application level.

With time-based purging strategies, content can be purged either by an absolute
or relative expiration time (relative to reception). The user can specify (1) a tag
to denote the class of data objects to be purged, and (2) a metric to determine
the absolute or relative time-to-live.

Another caching strategy inspired by our earlier work [23] is order-based
replacement. While the concept is very general, the most common use is to keep
only the freshest piece of content, while staler content is discarded from the data
store. The user can specify (1) a tag to denote the class of data objects to be
totally ordered, (2) an id to indicate the attribute that needs to match (e.g.,
content originator), and (3) a metric to determine the ordering of the objects
(e.g., content creation time). Formally, (1) and (2) define an equivalence relation
≡ on matching data objects and (3) defines a total order ≺ over all data objects
in each equivalence class. This total-order replacement strategy only keeps the
maximal element in each equivalence class that has been received. Multiple total
replacement strategies can be composed in a prioritized fashion, for instance to
define a lexicographical ordering, which is generally a partial order.

Content-based caching is further generalized to a utility-based caching pipeline
which builds on the work in [11,38] and frames the cache replacement and deci-
sion problem as a utility maximization problem. A caching policy defines a utility
function which assigns a real number between 0 and 1 to each data object in the
cache. This utility function is a composition of multiple utility functions that
are content and context sensitive (they vary in time and space). Data objects
that do not meet a minimum threshold (as specified by the policy) are immedi-
ately evicted. Once the cache exceeds a certain watermark capacity, the pipeline
chooses which data objects to evict in order to bring the cache capacity under
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the watermark. This eviction selection is posed as a 0–1 knapsack problem where
the watermark capacity is the bag size, the data object payload size is the cost,
and the computed utility is the benefit. By specifying suitable utility functions
various combinations of popularity-based and cooperative caching strategies can
be expressed in this framework.

3.4 Network Coding and Fragmentation

In a MANET environment, network coding can take advantage of the broadcast
nature of transmissions as well as node mobility [26]. To overcome intermittent
connectivity and to allow content dissemination in a decentralized setting, ICE-
MAN can perform network coding at the level of data objects (depending on con-
tent size and other factors) rather than individual packets. ICEMAN specifically
exploits the capability of network coding to mitigate the last coupon collector
problem. In our targeted applications, groups may merge and split dynamically.
When groups merge they can exchange innovative blocks which will expedite the
reconstruction of the transmitted content.

In addition to network coding, ICEMAN supports randomized informed frag-
mentation to support scenarios where network coding is not needed or the over-
head incurred by network coding is too high. We call it informed, because the
sender examines the receiver’s Bloom filter and selects a random subset of frag-
ments from the peer’s set of missing fragments. Randomizing the selection sub-
set across multiple nodes increases the likelihood that different fragments are
received by a node concurrently from different sources. Network coding can be
combined with fragmentation, in which case the fragments are also known as
generations. Multiple generations are needed when content is too large to be
solely network coded due to the overhead of the associated vectors.

Blocks and fragments are cached and disseminated by intermediate nodes.
Both coded blocks and uncoded fragments remain unchanged; i.e. different from
random- linear network coding, ICEMAN does not perform mixing of blocks at
intermediate nodes, but peers can become new seeds of innovative blocks upon
reconstruction.

3.5 Security

ICEMAN leverages any underlying link- or network-layer security mechanisms,
but our work focuses on providing an independent layer of security that secures
the content directly. End-to-end security properties, namely non-repudiation and
confidentiality are based on digital signatures and attribute-based encryption
[10]. In both cases, we use protocols that support multiple certification author-
ities. Our current architecture secures the payload, while security for metadata
is a challenging research topic left for future work.

Nodes have their signing keys certified by one or more authorities. Each
node only accepts content from a neighbor if they share a certification authority.
This prevents an attacker (insider or outsider) from polluting the network with-
out exposing his (assumed) identity. Simultaneously, the availability of multiple
authorities ensures that trust can be flexibly and robustly bootstrapped.
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Publishers can limit access to content by specifying access policies framed
over node attributes. Policies are specified with a range of operators, including
conjunction and disjunction, allowing expressive authorization, and can com-
bine attributes from multiple authorities [27]. Similarly, nodes can receive their
attributes from multiple authorities. During publication, content is encrypted
with a policy, ensuring that access control is enforced cryptographically with
an end-to-end guarantee of confidentiality despite the flexible access specifica-
tion. Hybrid encryption is used to optimize performance, with AES [2] used
for the content, and multi-authority attribute-based encryption in the Charm
framework [8] used to encrypt the AES keys.

As a basic mechanism to reject unwanted traffic, signatures are not only used
on exogenous data objects, but on all other endogenous data objects. The over-
head of signing is low due to our choice of a relatively large fragment/block size.
This approach is reasonable under a closed-system model, where it is difficult
for an attacker to generate new valid identities that are accepted by the original
nodes of the network. Taking control of existing nodes is the only practical way
to do so. The capability to exclude nodes from the network is a stepping stone
for an architecture that attempts to maintain network availability by a notion
of trust that evolves over time.

4 Summary of Evaluation

In [40], we conducted an extensive evaluation of ICEMAN through emulation
with CORE/EMANE [7] to understand the performance characteristics of dif-
ferent policies. We modeled a tactical network consisting of 30 nodes (3 squads
of 10) with different classes of situational awareness traffic. We found that dif-
ferent dissemination, transport and caching policies have significantly different
performance characteristics (in terms of total data objects delivered and delay).
A combination of content-based policies was necessary to achieve the best perfor-
mance (e.g., epidemic broadcast for node descriptions and interest driven routing
and network coding for large data objects and high channel contention). Com-
binations of hard- and soft-constraint utility-based caching policies that intelli-
gently rank data according to network context achieved higher performance than
only using hard-constraint policies such as time-based purging and order-based
replacement. Battery life-time results on Nexus S phones demonstrated the fea-
sibility of ICEMAN on current hardware, where CPU intensive policies such as
network coding achieved higher performance than alternative policies. Similarly,
security performance tests demonstrate that policy caching can achieve signif-
icant performance improvements, making efficient attribute-based encryption
feasible on mobile devices. A detailed description of SRI’s evaluation framework
and further performance studies can be found in [25].

5 Conclusion

We have introduced a new ICN architecture where scope and interest are dual
concepts associated with publishers and subscribers, respectively, and uniformly
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expressed in an attribute-based framework. The design of our ICEMAN archi-
tecture emphasizes compositionality in the sense that all features seamlessly
interoperate with each other. Without architectural changes, our system sup-
ports any combination of the discussed caching, transport, and dissemination
mechanisms. All features are independently configurable and for backward com-
patibility and performance comparisons we support the original feature set of
Haggle.

The utility-based caching framework is a first step towards a unified utility-
based architecture that formulates content dissemination, caching, and resource
management policy selection as an online utility maximization problem.

We also plan to add a higher-level distributed monitoring and optimization
component to maximize content availability based on an analysis of the tradeoff
space of policies and parameters. By quantifying their benefit and cost, ICEMAN
can potentially improve the overall system utility, for instance using an approach
similar to cross-layer optimization [22]. Distributed monitoring plays another
role in the detection of unexpected behaviors such as using an excessive amount
of resources. It can also detect violations of properties (expected invariants)
and their combinations that could indicate compromised devices or attacks. An
adaptive trust management component could utilize this information to exclude
misbehaving nodes from the network or require additional confirmation.

Attribute-based naming is a first step towards a logic, but there is much
more potential in the declarative approach to content-based networking by fur-
ther increasing the expressiveness of queries and subscriptions. For instance,
predicate-based naming with OWL/RDF [24] has been implemented on top of
ICEMAN in the context of the DARPA CBMEN [12] Program by the Drexel
university team. ICEMAN has a transport architecture that can support other
transport mechanisms, such as NORM [6] which has been integrated with our
architecture in the scope of the same program. In this program, we have also
developed an interest modeling component [28] to capture and model informa-
tion needs in order to perform proactive actions (e.g., prefetching content).

With ICEMAN we are exploring a new area of the networking space that is
quite different from existing research on MANETs and peer-to-peer networks.
The need for a higher level of abstraction and increased expressiveness means
that data objects have a much higher constant overhead than packets in IP;
ICEMAN operates at a higher time scale and a level of content-granularity to
amortize the cost. On the other hand, the transition to a higher level of abstrac-
tions seems essential to solve the problems that face traditional approaches by
being too distant from the actual needs of applications. More interestingly, it
opens opportunities for new mobile applications of the future, where the net-
work architecture can provide services and optimize resources based on what
the content represents and how it is used.

ICEMAN is the core of the ENCODERS architecture, which is available
under the Apache Open Source License 2.0 [1]. Please refer to the ENCODERS
design documents [3,4] for the details beyond the scope of this overview.
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35. Shikfa, A., Önen, M., Molva, R.: Privacy and confidentiality in context-based and
epidemic forwarding. Comput. Commun. 33, 1493–1504 (2010)

36. Solis, I., Garcia-Luna-Aceves, J.J.: Robust content dissemination in disrupted envi-
ronments. In: Proceedings of the Third ACM Workshop on Challenged Networks,
CHANTS 2008, pp. 3–10. ACM, New York (2008)

37. Stehr, M.-O., Talcott, C.: Planning and learning algorithms for routing in
disruption-tolerant networks. In: IEEE Military Communications Conference
(2008)

38. Obraczka, K., Spyropoulos, T., Turletti, T.: Routing in delay-tolerant networks
comprising heterogeneous node populations. IEEE Trans. Mobile Comput. 8, 1132–
1147 (2009)

39. Vahdat, A., Becker, D. et al.: Epidemic routing for partially connected ad hoc
networks. Technical report, Technical Report CS-200006, Duke University (2000)

40. Wood, S., Mathewson, J., Joy, J., Stehr, M.O., Kim, M., Gehani, A., Gerla, M.,
Sadjadpour, H., Garcia-Luna-Aceves, J.J.: ICEMAN: a system for efficient, robust
and secure situational awareness at the network edge. In: Proceedings of IEEE
Military Communications Conference (2013)



Author Index

Aguirre, Luis 48
Alpuente, María 72
Anastasio, Thomas J. 97
Arusoaie, Andrei 451

Bae, Kyungmin 114
Ballis, Demis 72
Bartoletti, Massimo 135
Basin, David 160
Belzner, Lenz 562
Bonacina, Maria Paola 181
Bruni, Roberto 205

Chen, Shuo 228
Clavel, Manuel 232

Degano, Pierpaolo 135
Di Giamberardino, Paolo 135
Durán, Francisco 232

Eker, Steven 232
Engeler, Erwin 255
Escobar, Santiago 232

Falke, Stephan 264
Frechina, Francisco 72
Furbach, Ulrich 181
Futatsugi, Kokichi 287

Garcia-Luna-Aceves, J.J. 617
Gehani, Ashish 617
Gerla, Mario 617
Gunter, Carl A. 404
Gutiérrez, Raúl 311

Hennicker, Rolf 331

Ibañez, Yazmin Angelica 361

Joy, Joshua 617

Kapur, Deepak 264
Keller, Michel 160

Kim, Minyoung 617
Kirchner, Hélene 380
Klarl, Annabelle 331

LeMay, Michael 404
Lincoln, Patrick 232
Lluch Lafuente, Alberto 427
Lucanu, Dorel 451
Lucas, Salvador 311

Martí-Oliet, Narciso 1, 48, 232
Mathewson, James 617
Meadows, Catherine 475
Melgratti, Hernán 205
Misra, Jayadev 493
Montanari, Ugo 205
Mossakowski, Till 361
Mosses, Peter D. 519

Navarro, Marisa 539
Neubert, Stefanie 562
Nielson, Flemming 427
Nielson, Hanne Riis 427
Nowak, David 451

Ölveczky, Peter Csaba 1, 114
Orejas, Fernando 539

Palomino, Miguel 48
Pino, Elvira 539
Pita, Isabel 48

Radomirović, Saša 160
Rocha, Camilo 580
Roșu, Grigore 598
Rusu, Vlad 451

Sadjadpour, Hamid 617
Sannella, Donald 361
Sapiña, Julia 72
Sasse, Ralf 160
Sofronie-Stokkermans, Viorica 181
Stehr, Mark-Oliver 617



Talcott, Carolyn 1, 232
Tarlecki, Andrzej 361

Vesely, Ferdinand 519

Wirsing, Martin 331, 562
Wood, Samuel 617

Zunino, Roberto 135

634 Author Index


	Preface
	Organization
	Contents
	José Meseguer: Scientist and Friend Extraordinaire
	1 José's Origins and Positions
	2 José's Research
	3 José the Person and Scientist
	4 José's PhD Students
	References

	Sentence-Normalized Conditional Narrowing Modulo in Rewriting Logic and Maude
	1 Introduction
	2 Preliminaries
	2.1 Search Tree Example
	2.2 Membership Equational Logic
	2.3 Unification
	2.4 Rewriting Logic
	2.5 Executable Rewrite Theories
	2.6 Reachability Goals
	2.7 Narrowing

	3 Sentence-Normalized Rewriting
	4 Conditional Narrowing Modulo Unification
	4.1 Transformations and Calculus Rules for Unification

	5 Reachability by Conditional Narrowing
	5.1 Calculus Rules for Reachability

	6 Example
	7 Related Work, Conclusions and Future Work
	References

	Combining Runtime Checking and Slicing to Improve Maude Error Diagnosis
	1 Introduction
	2 Rewriting Logic and Maude
	2.1 Preliminaries
	2.2 Rewrite Theories and Maude Modules
	2.3 Rewriting and Generalization Modulo Equational Theories

	3 The Assertion Language
	3.1 The Assertion Logic
	3.2 System and Functional Assertions

	4 Enhancing Trace Slicing
	5 Integrating Assertion-Checking and Trace Slicing
	5.1 Dynamic Assertion-Checking
	5.2 Runtime Assertion-Based Backward Trace Slicing
	5.3 The ABETS system

	6 Conclusions and Further Work
	References

	Computer Modeling in Neuroscience: From Imperative to Declarative Programming
	Abstract
	1 Introduction
	2 Brief Survey of Imperative Models in Neuroscience
	3 Declarative Model of Extinction of Fear Conditioning
	3.1 Neurobiology of the Amygdala
	3.2 Computational Approach Specifics
	3.3 Analysis of the Model
	3.4 Implications of Main Model Findings

	4 New Approach in Computational Neuroscience
	References

	Hybrid Multirate PALS
	1 Introduction
	2 Preliminaries on Multirate PALS
	3 Specifying Physical Environments
	3.1 Controlled Physical Environments
	3.2 Correlating Physical Environments

	4 Hybrid Multirate PALS
	4.1 Environment-Restricted Synchronous Ensembles
	4.2 Realizable Transition Sequences
	4.3 Hybrid Multirate PALS Distributed Models
	4.4 Relating the Synchronous and Asynchronous Models

	5 Verifying Invariants Using SMT Solving
	5.1 Logical Representations
	5.2 Local Clocks and SMT Solving

	6 Concluding Remarks
	References

	Debits and Credits in Petri Nets and Linear Logic
	1 Introduction
	2 Intuitionistic Linear Logic with Mix
	2.1 Simple Products and Multisets
	2.2 Horn ILLmix Sequents

	3 Debit Nets
	4 Debit Nets as a Model of Horn ILLmix
	4.1 Big-Step Semantics
	4.2 Small-Step Semantics
	4.3 Encoding Horn ILLmix into Debit Nets


	5 Related Work and Conclusions
	A Proofs
	A.1 Proofs for Sect.4.1
	A.2 Proofs for Sect.4.2
	A.3 Proofs for Sect.4.3

	References

	Alice and Bob Meet Equational Theories
	1 Introduction
	2 Alice&Bob Protocol Notation
	2.1 Overview
	2.2 Messages and Message Model
	2.3 Alice&Bob in Detail

	3 From Equations to Rewriting Rules
	3.1 Role Scripts for Protocols
	3.2 Deciding Executability
	3.3 Checking Received Messages
	3.4 Putting It All Together

	4 Automated Translation to Tamarin
	5 Related Work
	6 Conclusions
	References

	On First-Order Model-Based Reasoning
	1 Introduction
	2 Model-Based Reasoning in First-Order Logic
	2.1 Semantic Resolution
	2.2 Hypertableaux
	2.3 Model-Based Transformation of Clause Sets
	2.4 The Model Evolution Calculus
	2.5 SGGS: Semantically-Guided Goal-Sensitive Reasoning

	3 Model-Based Reasoning in First-Order Theories
	3.1 Building Theory Axioms into Resolution and Superposition
	3.2 Hierarchical Reasoning by Superposition
	3.3 Hierarchical Reasoning in Local Theory Extensions
	3.4 Beyond SMT: Satisfiability Modulo Assignment and MCsat

	4 Discussion
	References

	A Normal Form for Stateful Connectors
	1 Introduction
	2 Petri Calculi
	2.1 The P/T Petri Calculus
	2.2 The C/E Petri Calculus

	3 Nets with Boundaries
	3.1 P/T Petri Nets with Boundaries
	3.2 From P/T Nets with Boundaries to P/T Calculus and Back
	3.3 C/E Nets with Boundaries

	4 Normal Forms for Finite State P/T terms
	4.1  Finite (State and Transition) Marking Graphs
	4.2 Stateless, Infinitely Branching Marking Graphs
	4.3 Finite State and Infinitely Branching Marking Graph

	5 Normal Forms for the C/E Petri Calculus
	6 Concluding Remarks
	References

	Enlightening Ph.D. Students with the Elegance of Logic
	Abstract
	1 Preface
	2 My Research Direction Before Knowing Jos00E9
	3 Jos00E9's Course on Formal Methods
	4 Face-to-Face Discussions with Jos00E9
	5 Our Collaborations After My Graduation
	6 Long-Term Influence
	Acknowledgement

	Two Decades of Maude
	1 The Origins
	2 The Language
	2.1 Generalized Rewrite Theories in Maude
	2.2 Reflection in Maude
	2.3 Maude's Formal Tools

	3 The Present: Unification and Narrowing
	4 The Near Future: Rewriting Modulo SMT
	4.1 Maude SMT
	4.2 Symbolic Analysis of Distance-Bounding Protocols

	5 Pathway Logic
	5.1 About Pathway Logic
	5.2 Maude's Role in Pathway Logic

	6 Further Ahead
	References

	Formal Universes
	1 Introduction
	2 Universalism I : Paradise Lost?
	3 Universalism II : Paradise Regained?
	4 Reductionism
	5 Criticism
	6 Rejoinder
	References

	When Is a Formula a Loop Invariant?
	1 Introduction
	2 Examples
	3 Preliminaries
	4 Inductive Strengthening Procedure
	5 Application to Specific Logical Theories
	5.1 Polynomial Equalities
	5.2 Linear Arithmetic

	6 k-Induction and Strengthening
	6.1 Strategy Approximation (IV) Can Often Be Effective

	7 Related Work
	8 Conclusions
	References

	Generic Proof Scores for Generate & Check Method in CafeOBJ 
	1 Introduction
	2 Preliminaries
	2.1 Transition Systems
	2.2 Verification of Invariant Properties
	2.3 Verification of (p Leads-to q) Properties
	2.4 Generate and Check for st St
	2.5 Built-in Search Predicate
	2.6 Generate & Check for tr Tr
	2.7 Generate&Check for Verification of Invariant Properties
	2.8 Generate&Check for Verification of (p Leads-to q) Properties
	2.9 System and Property Specifications, and Proof Scores

	3 Generic Proof Scores for Generate & Check Method
	3.1 GENcases: Generating Patterns and Checking on Them
	3.2 Three Parameterized Modules for Invariant Properties
	3.3 Four Parameterized Modules for (p Leads-to q) Properties

	4 QLOCK Specifications
	4.1 QLOCK System SpecificationsThe specifications explained in this section are in the file qlock-sys.cafe on the web page.
	4.2 QLOCK Property SpecificationsThe modules in this section is in the file qlock-prop.cafe unless otherwise stated.
	4.3 Extended State (State % Aid) and Possible Inductive Invariants

	5 QLOCK Proof Scores
	5.1 Proof Scores for Invariant Properties
	5.2 Proof Scores for (p Leads-to q) Property

	6 Conclusion
	6.1 Related Works
	6.2 Some Features of Generic Proof Scores, Generate & Check Method, and CafeOBJ 
	6.3 Future Issues

	References

	Function Calls at Frozen Positions in Termination of Context-Sensitive Rewriting
	1 Introduction
	2 Preliminaries
	3 Minimal Non--Terminating Terms at Frozen Positions
	4 Modeling the Unhiding Process Using Rules
	4.1 A New Notion of Minimal Non--terminating Term

	5 From Minimal Terms to the CS-DP Framework
	5.1 Context-Sensitive Dependency Pair Framework

	6 Usable Rules in the CS-DP Framework
	6.1 Strongly Minimal Terms
	6.2 Left-Linearity and -Conservativity
	6.3 Extended Basic CS Usable Rules

	7 Experimental Evaluation
	8 Conclusions
	References

	Model-Checking HELENA Ensembles with Spin
	1 Introduction
	2 Foundations on LTLX Preservation
	3 The Helena Approach
	4 HelenaLight
	4.1 Syntax of HelenaLight Ensemble Specifications
	4.2 Semantics of HelenaLight Ensemble Specifications
	4.3 LTL for HelenaLight

	5 PromelaLight
	5.1 Syntax of PromelaLight Specifications
	5.2 Semantics of PromelaLight Specifications
	5.3 LTL for PromelaLight

	6 Translation of HelenaLight to PromelaLight
	7 -Stutter Equivalence of the Translation
	8 Model-Checking HelenaLight with Spin
	9 Conclusion
	References

	Modularity of Ontologies in an Arbitrary Institution
	1 Introduction
	2 Institutions
	3 Conservative Extensions and Inseparability
	4 Module Notions
	5 Conclusions
	References

	Rewriting Strategies and Strategic Rewrite Programs
	1 Introduction
	2 Historical Considerations
	3 What are Strategic Rewriting and Strategic Programs?
	3.1 Rewriting
	3.2 Strategic Rewrite Programs
	3.3 Abstract Reduction System
	3.4 Strategic Rewriting

	4 Strategy Description: Different Points of View
	4.1 Rewriting Logic
	4.2 Rewriting Calculus
	4.3 Extensional Strategies
	4.4 Intensional Strategies
	4.5 Positional Strategies

	5 Strategy Languages
	6 Operational Semantics of Strategic Programs
	7 Properties of Strategic Rewriting
	8 Conclusion and Further Work
	References

	Network-on-Chip Firewall: Countering Defective and Malicious System-on-Chip Hardware
	1 Introduction
	2 Background
	3 Threat Model
	4 Core-Based Isolation
	5 NoCF Interposer Design
	6 Prototype Implementation
	7 Constraining a Malicious GPU
	8 Formal Analysis
	8.1 Analysis Overview
	8.2 Formalization Details
	8.3 Analysis Results
	8.4 Analysis Discussion

	9 Related Work
	10 Conclusion
	References

	Discretionary Information Flow Control for Interaction-Oriented Specifications
	1 Introduction
	2 Applications: Protocols, Services and HPC
	2.1 An Identity-Secured Data Providing Service
	2.2 A Binary Parallel Map-Reduce Computation

	3 Choreographic Specifications of Concurrent Systems
	4 Information Flows in Choreographies
	5 Typing Choreographies
	6 Related Works and Conclusion
	A Graphs with Interfaces
	References

	Verifying Reachability-Logic Properties on Rewriting-Logic Specifications
	1 Introduction
	2 Preliminaries
	2.1 Matching Logic
	2.2 Reachability Logic
	2.3 Rewrite Theories

	3 Derivatives of ML and RL Formulas
	4 A Procedure for Verifying RL Properties
	5 Reachability Properties for Rewrite Theories
	6 Verifying RL Properties of a Communication Protocol
	7 Conclusion and Future Work
	References

	Emerging Issues and Trends in Formal Methods in Cryptographic Protocol Analysis: Twelve Years Later
	1 Introduction
	2 Overview of the Dolev-Yao Model
	3 Revisiting the Old Questions
	3.1 Open-Ended Protocols
	3.2 Applications and Threats from the Early Twenty-First Century
	3.3 High Fidelity
	3.4 Composability
	3.5 Getting it into the Real World

	4 Some New Issues and Trends
	4.1 Privacy and Symbolic Indistinguishability
	4.2 Security APIs
	4.3 Multi-channel Protocols, Ceremonies, and Procedures
	4.4 Combining Models and Proof Methods

	5 Conclusion
	References

	A Denotational Semantic Theory of Concurrent Systems
	1 Introduction
	2 Basic Concepts
	2.1 Event and Trace
	2.2 Prefix Order Over Traces
	2.3 Prefix Closure
	2.4 Specification

	3 Transformer
	3.1 Trace-Wise Transformer
	3.2 Smooth Transformer
	3.3 Some Elementary Smooth Transformers
	3.4 Fairness
	3.5 Shared Resource

	4 Treatment of Recursion
	4.1 Classical Treatment of Recursion
	4.2 Upward-Closure
	4.3 Bismooth Transformer
	4.4 Least Upward-Closed Fixed Point Theorem
	4.5 Min-Max Fixed Points of Smooth Transformers
	4.6 Fixed Point Under Fairness

	5 Concluding Remarks
	References

	Weak Bisimulation as a Congruence in MSOS
	1 Introduction
	2 Background
	2.1 SOS
	2.2 Bisimulation and Rule Formats
	2.3 Modular SOS
	2.4 MSOS Terms
	2.5 MSOS Labels
	2.6 MSOS Rules and Specifications
	2.7 Models of MSOS Specifications
	2.8 Equivalence in MSOS

	3 Absorbing Unobservable Transitions
	4 A WB Cool MSOS Format
	4.1 Positive GSOS for MSOS
	4.2 Simply WB Cool MSOS

	5 Conclusion
	References

	Satisfiability of Constraint Specifications on XML Documents
	1 Introduction
	2 Basic Definitions and Notation
	2.1 Documents and Patterns
	2.2 Pattern Morphisms and Pattern Models

	3 Constraints, Clauses and Specifications
	3.1 Constraints and Clauses
	3.2 Specifications
	3.3 Superposition of Patterns

	4 Tableau-Based Reasoning for XML-patterns
	5 Soundness and Completeness of the Tableau Method
	6 Related Work
	7 Conclusion and Further Work
	References

	Algebraic Reinforcement Learning Using Term Generalization
	1 Introduction
	2 Preliminaries
	2.1 TG Learning
	2.2  ACUOS

	3 Algebraic Reinforcement Learning
	3.1 Algebraic Regression Trees
	3.2 Example Domain Specification
	3.3 Hypothesis Induction with ACUOS

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Related Work
	6 Conclusion and Further Work
	References

	The Formal System of Dijkstra and Scholten
	1 Introduction
	2 Preliminaries
	3 The Propositional Fragment
	4 The First-Order System
	5 Derivations, Notation, and Equality
	5.1 Derivations
	5.2 Quantifier Notation
	5.3 Equality

	6 Concluding Remarks
	References

	From Rewriting Logic, to Programming Language Semantics, to Program Verification
	1 Introduction
	2 From Rewriting Logic to Language Semantics
	3 From Language Semantics to Program Verification
	4 Additional Related Work
	5 Conclusion
	References

	ICEMAN: A Practical Architecture for Situational Awareness at the Network Edge
	1 Introduction
	2 Related Work
	3 Architecture
	3.1 Declarative Attribute-Based Naming
	3.2 Content Dissemination
	3.3 Content- and Utility-Based Caching
	3.4 Network Coding and Fragmentation
	3.5 Security

	4 Summary of Evaluation
	5 Conclusion
	References

	Author Index



