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    Abstract     About 50 % of the increase in agricultural produce during the twentieth 
century was achieved by application of inorganic fertilizers to crop plants. Fertilizer 
application is still an important farm input that is required to achieve challenging 
yield targets of the twenty-fi rst century. However, fertilizer application is known to 
deteriorate the environment around us. Therefore, better fertilizer use effi ciency 
(FUE) is suggested for economical yields and a safer environment. This chapter fi rst 
introduces the concept of FUE for a safer environment and then, subsequent topics 
detail factors affecting FUE and known management practices to enhance FUE at 
agricultural farms. Future research challenges relating to FUE and the environment 
are identifi ed. The chapter, as a whole, summarizes important literature for farmers, 
policy makers, and scientists.  

  Keywords     Fertilizer use efficiency   •   Environmental pollution   •   Soil Fertility  
•  Crop productivity   

1         Introduction 

 In spite of decreased growth rate of the world’s average population from 1.26 to 
1.10 % since 2006, absolute annual increase is continuing to be large. According to 
a recent estimate by the Population Division of the United Nations, about 80 million 
people will be added annually to the world population until the mid-2030s. 
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The major share of this increase is expected to take place in the developing countries. 
More food, feed, and cloth are required for these additional people (Evans  2009 ). 
It has been estimated that the world will need twice as much food within 30 years 
(Glenn et al.  2008 ). 

 Over the previous few decades, dietary patterns around the globe have changed 
due to income growth, urbanization, awareness, and consumer preferences. Diets 
have shifted away from staples such as cereals, roots, and tubers and pulses towards 
more livestock products, vegetable oils, and fruits and vegetables (FAO  2008 ). Total 
meat production in developing countries has increased from 27 million tonnes to 
147 million tonnes between 1970 and 2005, and global meat demand is expected to 
increase by more than 50 % by 2030 (FAO  2011 ). This will further increase the 
pressure on agricultural land, especially in Asia, which has the world’s highest pop-
ulation density per hectare of arable land. Nonetheless, biofuel production would 
also require more land replacing the food crops. As per estimates, if biofuel use 
grows by 50 % over the next 10 years then 21 million hectares of food crops would 
be displaced by bioenergy crops. This would imply greater intensifi cation of agri-
culture to meet food demand. 

 Cultivated soils do not usually contain suffi cient amounts of plant nutrients for 
high and sustained crop yields. Therefore, agricultural yield depends upon avail-
ability of nutrients applied through fertilization and yield of most crops has been 
reported to increase linearly with the amount of absorbing nutrients (Kaur et al. 
 2007 ). Plant nutrition is one of the major factors that control soil productivity and 
quality (Jaga and Patel  2012 ). Fertilizers maintain soil fertility and productivity 
through supplying essential plant nutrients and therefore make a vital contribution 
to economic crop production. 

 Intensive agriculture can have negative effects on the environment: it can upset 
the balance of the food chain, pollute ecosystems, and cause harm to fl ora and fauna. 
To keep food production at the same level as population growth, without using up or 
destroying the resources and environment, is a major task. The main challenges 
include increasing the area of productive land, increasing the yield per unit area of 
land, maintaining soil productivity and reversing the nutrient mining of soil, and 
breeding new crop varieties with higher yield potential and improved tolerance to 
biotic and abiotic stresses. One of the sources of pollution from intensive agriculture 
is the excessive use of fertilizers (Ju et al.  2014 ). Typically a crop plant uses less 
than half of the applied fertilizers (Connor et al.  2011 ). Remaining nutrients attach 
to soil particles, leach into ground or surface water, or cause air pollution such as 
oxides of N (Ongley  1996 ; Hietz et al.  2011 ). 

 Recovery of applied inorganic fertilizer by plants is low in many soils of the 
world and increased fertilizer use effi ciency (FUE) or nutrient use effi ciency (NUE) 
is the only option for sustainable agriculture (Fixen  2009 ). Plants use only about 50 
% of applied N; the remaining 15–25 % reacts with organic compounds in soil, 
2–20 % is lost through volatilization, and 2–10 % is reported to interfere with sur-
face and groundwaters (Raun and Johnson  1999 ; Sonmez et al.  2007 ; Chien et al. 
 2009 ). Average FUE is reported up to 65 % for corn, 57 % for wheat, and 46 % for 
rice (Ladha et al.  2005 ; Chien et al.  2009 ). The recovery of applied P is even lower 
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and on an average only 25 % or less of the applied P is taken up by crop plants in a 
growing season. Moreover, precipitation of applied P with Ca and Mg in calcareous 
soils (Rahmatullah et al.  1994 ) and with Fe and Al oxides in acidic soils further 
reduces P use effi ciency (Vance et al.  2003 ). 

 Overreliance and imbalanced use of mineral fertilizers is reported to pose serious 
public and environmental hazards (Savci  2012 ). The impact of fertilizer on the envi-
ronment must be scrutinized as public infl uence over production is increasing. 
Overuse of N fertilizers contributes several harmful effects on the environment. In 
soil, by the process of microbial nitrifi cation, ammonium ion is converted into 
nitrate and thus a negative charge on nitrate favours its downward movement into 
groundwater. However, the time taken by nitrates to move from the root zone to 
groundwater varies signifi cantly depending upon soil texture and climate. According 
to the World Health Organization (WHO), concentration of NO 3 -N should not 
exceed 10 mg L −1  in drinking water. The main alleged health hazard due to nitrate 
ingestion in food and water is a blue baby disease of young babies. Nitrogen loss as 
gaseous substances generally occurs through volatilization and denitrifi cation, and 
this leads to environmental pollution. Another negative aspect of increased fertiliza-
tion is eutrophication of water bodies. Increased concentration of P promotes luxu-
rious growth of higher aquatic plants and algae that degrade water quality (Conley 
et al.  2009 ). Eutrophication leads towards depletion in oxygen and proliferation of 
unwanted species. As a consequence, it reduces the number of living species such 
as fi sh in the aquatic environment (Ansari et al.  2011 ). 

 Decreased fertilizer recovery not only has heavy costs but also has serious envi-
ronmental concerns. Thus, judicious application of fertilizers to soils and their use 
by plants is needed for sustainable and safer agriculture. Nutrient use effi ciency 
accounts for the acquisition of nutrients from the soil, biomass generation from 
nutrients, and remobilization of nutrients to organs of agronomic interest (Baligar 
et al.  2001 ; Aziz et al.  2011a ,  b ). Nutrient use effi ciency can be described by four 
agronomic indices: partial factor productivity (PFP), that is, crop yield in kg per 
nutrient applied in kg; agronomic effi ciency (AE), that is, a kg crop yield increase 
per kg nutrient applied; apparent recovery effi ciency (RE), that is, nutrient taken up 
in kg per nutrient applied in kg; and physiological effi ciency (PE), that refers to kg 
yield increase per kg nutrient taken up (Mosier et al.  2004 ). Fertilizer use effi ciency 
can be enhanced by adopting best management practices that refer to application of 
nutrient at the right time, from the right source, at the right rate, and at the right 
place (Roberts  2008 ; Epstein  1972 ; Fageria  1992 ).  

2     Fertilizer Use Effi ciency and Environment 

 Agriculture in the world is dependent on manufactured fertilizers and demand of 
fertilizers for crop production is increasing in most of the countries due to cultiva-
tion of modern varieties and intensive cropping systems. Consumption of N, P, and 
K fertilizers for crop production increased from 31 million tons in 1961 to 183 
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million tons in 2011 (FAO  2014 ). The greatest increase of consumption during the 
period was in N fertilizers (Fig.  1 ). The sharp increase in fertilizer consumption 
during the 1960s and 1970s can be attributed to the introduction of fertilizer- 
responsive cultivars of cereals, the Green Revolution cultivars. Even in the twenty- 
fi rst century, the focus of plant breeders seems to be development of hybrids and 
varieties for greater yields. The new cultivars introduced have higher demands for 
nutrients as compared to old cultivars.

   Energy and raw material, utilized for fertilizer manufacturing, often come from 
limited resources. A substantial amount of energy is consumed in the manufacture 
of fertilizers at industries and in transport of manufactured fertilizers to agricultural 
fi elds. From mining to manufacturing, various hazardous chemicals are introduced 
in the soil, water, and atmosphere. A detailed description of environmental hazards 
of the fertilizer industry is given in a technical report of United Nations Environment 
Programmme (UNEP  2000 ). Fertilizer manufacturing plants emit ammonia, fl u-
orine (as SiF 4  and HF), oxides of N (NO x  and N 2 O), oxides of S (SO x ), fertilizer 
dust, acid mists, and radiation in the atmosphere. Effl uents of the industry also have 
these pollutants in toxic concentrations. Moreover, most of the solid wastes and 
by- products of the industry are pollutants. Therefore, manufactured fertilizers are a 
major cause of environmental pollution (Li et al.  2013 ; Ju et al.  2014 ). 

 Based on composition and purity of the raw material, fertilizers may be a source 
of pollutants in soils. As compared with N and K fertilizers, heavy metal contamina-
tions were greater in rock phosphate and P fertilizers (Raven and Loeppert  1997 ). 
Toxic soil Cd concentrations in potato and sugar beet fi elds were related to long- term 
overuse of P fertilizers (Cheraghi et al.  2012 ). 

 Not all of the applied quantity of mineral nutrients is taken up by crop plants. 
More than 90 % of applied fertilizers may be lost in the environment leading to 
increased pollution of soil, water, and atmosphere. The situation gets worse when 
the applied nutrients, such as N and P, end up in water bodies causing  eutrophication. 
Apart from runoff, N can also leach to groundwater and volatilize to atmosphere. 
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About 50 % applied N can be lost through ammonia volatilization and 25 % as 
nitrate leaching beyond the root zone (Zhao et al.  2011 ). Leaching of nitrate and 
contamination of drinking water resources increases health risks for humans and 
animals and volatilized ammonia is itself toxic and it also acts as a greenhouse gas 
and results in acid rains. 

 Due to pollution hazards of fertilizers during mining, manufacturing, and appli-
cation, manufactured fertilizers are not safe for our environment (Table  1 ). Organic 
farming is suggested by some scientists as a sustainable and safer agricultural tech-
nology (Gabriel et al.  2010 ; Koohafkan et al.  2012 ; Strandberg et al.  2013 ). As 
desired yield levels are not achieved in organic farming, scientists have focused on 
integrated nutrient management strategies to improve fertilizer use effi ciency 
(Bruulsema et al.  2008 ). Such strategies are not only good for better farm income, 
but also help us partially to decrease our dependence on manufactured fertilizers. 

   Table 1    Some fertilizer pollution reports from various world locations   

 Source  Location  Observations  Reference 

 N fertilizers  China  Aquifer have nitrate contamination 
about 20-100 mg L -1    

 Zhao et al. ( 2011 ) 

 N fertilizers  India  Eutrophication, NO 3  = 350 mg L −1   Pathak ( 1999 ) 
 N fertilizers  Poland  NH 4  concentration in pine tree bark 

1699 mg kg −1  
 Seniczak et al. 
( 1998 ) 

 Rock phosphate  Pakistan  Contamination of Cr upto 
105 μg g −1  

 Javied et al. ( 2009 ) 

 Rock phosphate  North 
Africa 

 Concentration of Zn about 
420 μg g −1  

 Kongshaug ( 1992 ) 

 N fertilizers  Nigeria  NO 3  = 20–100 (mg L −1 )  Uma ( 1993 ) 
 Phosphate fertilizer  China  Arsenic-contaminated soil with 

concentration about 1.6 to 
20.3 mg kg -1  

 Hartley et al. ( 2013 ) 

 Phosphate fertilizer 
industry 

 Lebanon  Zn = 92 (mg kg −1  soil)  Aoun et al. ( 2010 ) 

 Fertilizer N  China  Total N 2 O emissions 980 (Gg N 
per year) 

 Liu and Zhang 
(2011) 

 Phosphatic fertilizer  China  Ar, Cd, and Pb contamination of 
13.5, 2.6, and 300 mg kg −1 , 
respectively 

 Feng et al. ( 2009 ) 

 Single super 
phosphate 

 North 
Carolina 

 Contamination of Cd about 
79.0 μg g −1  

 Chien et al. ( 2009 ) 

 NPK fertilizer 
contain 

 China  Benzoanthracene 35.6 g kg −1 , 
Chrysene 33.9 μg kg −1  

 Mo et al. ( 2008 ) 

 Fertilizer  Belgium  Polychlorinated dibenzo-p-dioxins 
0.17 ng TEQ/k 

 Elsken et al. ( 2013 ) 

 Multinutrient 
fertilizer 

 Brazil  Contamination of Cr and Pb about 
244 and 273 mg kg −1  soil 

 Nunes et al. ( 2010 ) 

 Rock phosphate  New 
Zealand 

 Contamination of Cd about 
41 mg kg −1  

 Loganathan and 
Hedley ( 1997 ) 
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Less fertilizer consumption at agricultural farms means less mining and manufac-
turing while there are still additional profi ts from crop production. By this, several 
issues of environmental pollution can be minimized. Therefore, increased FUE is a 
milestone towards a safer environment and greater agricultural profi t.

3        Factors Affecting Fertilizer Use Effi ciency 

 A fertilizer is considered effi cient when maximum economical yield is obtained 
with the minimum amount of fertilizer application. Various soil, plant, fertilizer, and 
environmental factors that affect FUE are described below. 

3.1     Leaching Losses 

 Nitrate (NO 3 ) fertilizers are susceptible to leaching losses (Almasri and Kaluarachchi 
 2004a ,  b ). The extent of leaching is more in sandy soil compared to clayey soils. 
The situation is further aggravated when soil is bare than cropped soil. The main 
problems related to NO 3  −  leaching are eutrophication of surface waters, increased 
production of nitrous oxide from receiving water bodies, and a higher concentration 
of NO 3  −  in drinking water (WHO recommends <50 mg NO 3  −  L −1  of drinking water). 

 According to Lehmann and Schroth ( 2003 ), nitrate leaching is lower in subsoil 
due to the increase in net positive charge, and the nitrate held in subsoil can be taken 
up by deep-rooted crops. Therefore, it is important to distinguish between nitrate 
movement within the soil profi le (i.e., topsoil to subsoil), and leaching beyond the 
root zone, into the groundwater. Losses from ammonical fertilizers are higher dur-
ing the summer season because of rapid oxidization by nitrifying organisms. The 
activity of the nitrifying organism can be reduced to minimize leaching losses. 
Various chemical compounds inhibit microbial nitrifi cation of N fertilizers and 
reduce the leaching loss. 

 Phosphorus losses by subsurface leaching are negligible compared to losses by 
erosion and surface runoff. Subsurface leaching increases when P is in soluble 
organic form, as manure; the soil’s capacity to bind inorganic P is saturated; prefer-
ential fl ow of water through channels and cracks in the soil prevents soluble P from 
getting in contact with the soil’s adsorption sites. Furthermore, drained soils have a 
higher rate of subsurface leaching compared to undrained soils. Compared to inor-
ganic P, dissolved organic P is more mobile in soil (Havlin et al.  1999 ; For detailed 
reading see Tunney et al.  1997 ). 

 Potassium can be lost in drainage water in sandy and acid soils and in high rain-
fall areas (Malavolta  1985 ; Havlin et al.  1999 ). Losses can be minimized by modify-
ing the time of application with crop growth stage to maximum plant uptake period 
and also applying the fertilizer in split doses. However, in clayey soils, there are no 
leaching losses. Moreover, recently developed slow-release K fertilizers are not 
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subject to leaching losses, for example, potash frits, potassium metaphosphate, and 
fused potassium phosphate. 

 Sulfate, added to soil as a secondary nutrient along with N and K fertilizers, is 
susceptible to leaching from the topsoil and accumulating in the subsoil. In the sub-
soil SO 4  2−  is only available later in the season to deep-rooted crops. Leaching can 
also result in SO 4  2−  losses to groundwater. Sulphate is also readily leached from 
surface soils; maximum losses are in soils dominated by monovalent cations such as 
K and Na and minimal in soils with high amounts of Al (Havlin et al.  1999 ).  

3.2     Gaseous Losses 

 Gaseous losses of N from soils may be through (1) ammonia volatilization under 
high pH conditions in alkaline soils and (2) loss as N 2 , N 2 O, and NO due to denitri-
fi cation. These losses are infl uenced by soil pH, fresh organic matter, moisture, 
temperature, and soil microbial diversity. Ammonia volatilization at high pH can be 
minimized by proper placement of urea. Cantarella et al. ( 2005 ) reported volatiliza-
tion losses ranging 37–64 % of urea applied to maize crop at various locations. It is 
recommended to apply ammonical fertilizers at least 4–6 inches below the soil sur-
face. Alternatively, urea should be used instead of nitrate fertilizer wherever there 
are high chances of losses of N by denitrifi cation processes.  

3.3     Immobilization 

 Immobilization is a major cause of reduced FUE as nutrients released from fertilizer 
become unavailable for growing crops over a certain period of time via chemical, 
physicochemical, and microbiological immobilization (Keeney and Sahrawat  1986 ; 
FAO  1972 ; Zhang et al.  2013 ). Ammonium and K ions are immobilized by strong 
adsorption by 2:1 type clay minerals such as vermiculite (Allison et al.  1953 ; 
Barshad and Kishk  1970 ). High soil pH further enhances this type of fi xation. 
Practical soil fi xation can be reduced by timely and proper placement of fertilizer. 
Fertilizer should be carefully selected so that it will have minimum interaction with 
the soil. Furthermore, the time and mode of application should be selected to ensure 
minimum immobilization of nutrients, such as preferable use of nitrate fertilizer 
may improve availability. 

 At low pH, the effi ciency of water soluble P is very low. In acidic soils, P is 
known to react with Fe/Al oxides to form insoluble complexes (Vance et al. 
 2003 ). However, rock phosphate has shown increased solubility and availability 
under acidic conditions. In calcareous soils, applied P is invariably converted into 
tri- calcium phosphate, an insoluble P compound (Rahmatullah et al.  1994 ). Under 
such conditions water soluble P are relatively more effi cient than water insoluble 
P such as rock phosphate. 
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 Microbiological fi xation of fertilizer N may be of concern when undecomposed 
organic matter of wider C/N ratio is present in the soil. However, this is a temporary 
type of immobilization. Application of a starter dose of N fertilizer to organic matter 
or by allowing enough time for complete decomposition of undecomposed organic 
matter may improve the N availability for the crop. Sulfate can bind to clays, and it 
is less mobile than nitrate but has higher mobility than phosphate.  

3.4     Soil Compaction and Fertilizer Use Effi ciency 

 Soil compaction is a common observation under mechanized farming and is one of the 
major problems facing modern agriculture. Soil compaction increases soil strength and 
decreases soil physical fertility through decreasing storage and supply of water and 
nutrients, which leads to additional fertilizer requirement and increasing production cost 
(Hamza and Anderson  2005 ). Numerous physical changes in soils due to compaction 
result in a poor response for N and P fertilizers. Soil compaction results in the soil par-
ticles coming closer resultantly decreasing soil bulk density and soil porosity. Because 
the points of contact between soil particles are increased, compaction also results in an 
increase of soil strength. In fi ne-textured soil, compaction reduces the available water 
capacity of soil, resulting in decreasing nutrient availability.  

3.5     Soil Temperature 

 Soil temperature is one of the important environmental factors affecting plant growth 
and fertilizer response of crops (Mackay and Barber  1984 ; Pregitzer and King  2005 ). 
Temperature affects most physical processes occurring in the soil and the rate of 
chemical reactions increases with rise in temperature that controls nutrient availabil-
ity. Soil temperature affects fertilizer effi ciency by changing solubility of fertilizers, 
cation exchange, and ability of the plants to absorb and use nutrients (Pregitzer and 
King  2005 ; Hussain et al.  2010 ; Hussain and Maqsood  2011 ). Volatilization losses of 
N are related to high soil and atmospheric temperature. Soils in warm regions gener-
ally fi x higher amounts of P compared to temperate regions. Soil temperature can be 
managed to an extent by common management practices including tillage, mulching, 
and irrigation. Moreover, root growth is severely affected by either too cold or hot soil 
temperature ultimately affecting nutrient uptake (Marschner  1995 ).  

3.6     Soil Moisture 

 Soil moisture regulates nutrient movement within soil and their uptake by 
plants. Drought conditions can limit nutrient uptake because of decreased 
nutrient movement as well as decreased root growth (Marschner  1995 ). 
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Excessive moisture leads to leaching loss of added fertilizers whereas lack of 
moisture results in poor availability of the added fertilizer and high osmotic 
pressure of the soil solution due to concentration effect fertilizers (Taylor 
et al.  1983 ). Thus, efficient water management is complementary to efficient 
fertilizer management. Maximum efficiency of fertilizers can be obtained only 
in the presence of adequate soil moisture and vice versa. Mengel and Haeder 
( 1973 ) demonstrated that increasing soil moisture from 10 to 28 % increased 
K transport by up to 175 %.  

3.7     Soil pH 

 Soil pH is one of the major edaphic factors that regulate nutrient availability 
(Marschner  1995 ). Most plant nutrients are available at soil pH 6 to 7.5. If soil 
pH is lower or higher than the range, nutrient availability reduces sharply and 
even 1 unit pH increase or decrease can decrease/increase 100 times nutrient 
availability. At low pH, most micronutrients except molybdenum are available 
and even can be present in toxic concentrations because of their increased solu-
bility (Tan  2011 ). In contrast, their availability reduces at alkaline pH particu-
larly of Zn, Fe, Cu, and Mn. 

 Plant nutrient availability depends on the prevalent soil pH. In highly acidic or 
alkali soils, effi ciency of P fertilizers is low. In such situations, effi ciency of fertil-
izers can be increased by correcting the soil condition, using suitable amendments. 
Physiologically alkaline fertilizers such as calcium carbonate and the like should 
receive priority on acid soils and physiologically acid fertilizers, or alternatively use 
of acidic fertilizers such as ammonium sulphate on alkaline soils. At pH higher than 
7, Ca and Mg ions, as well as the presence of carbonates of these metals result in 
precipitation of P fertilizers, decreasing their availability (Cole and Olsen  1959 ; 
Shen et al.  2011 ).  

3.8     Soil Organic Matter 

 The organic matter in soil not only supplies different nutrient elements, but also 
improves physical conditions of soils, stimulates microbial activity, protects the soil 
from erosion, retards the fi xation of nutrients, increases mobility of nutrients in 
soils, increases the buffering capacity, and helps in many other ways (Tan  2011 ; 
Osman  2013a ,  b ). Potential benefi ts of organic matter in soil in turn increase the 
effi ciency of applied inorganic fertilizers. However, a high amount of organic matter 
may not prevent P losses as a result of leaching. This may be due to the absence of 
Al and Fe compounds, which are mainly responsible for P retention under low pH 
conditions (Vance et al.  2003 ).  
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3.9     Plant Characteristics 

 Crop species vary in their ability to remove nutrients form soil. Furthermore, there 
is signifi cant variation within cultivars of the same crop species (Aziz et al.  2006 , 
 2011a ,  b ,  2014 ; Gill et al.  2002 ). Numerous researchers have revealed varietal varia-
tions for K uptake in ryegrass, maize, soybean, and barley (Dunlop et al.  1979 ; 
Terman  1977 ; Glass and Perley  1980 ). Because the roots are the principal organs 
through which plants take up nutrients, the rooting pattern and habit have an impor-
tant bearing on nutrient removal. Crops with shallow extensive fi brous roots are able 
to uptake a greater amount of fertilizer applied per unit area (Lynch  1995 ). The 
fertilizer needs of deep-rooted crops are generally lower than shallow-rooted crops. 
Munson ( 1985 ) identifi ed fi ve plant root factors that signifi cantly infl uence nutrient 
uptake from soil. These include ion fl ux, root radius, rate of water uptake, root 
length, and rate of root growth.  

3.10     Fertilizer Characteristics 

 Nutrient mobility, type of fertilizer, and the time and method of application signifi -
cantly infl uence the FUE (Sadras and Lemaire  2014 ). Nitrogenous fertilizers are 
highly mobile and subjected to both downward and lateral mobility. In contrast, P is 
highly immobile (Smeck  1985 ). Potassium is also mobile but compared to N its 
mobility is lower (Nastri et al.  2000 ). To get maximum effi ciency N and K fertilizer 
should be applied in frequent split doses and P as basal dressing or near the root 
zone (Munson  1985 ; Sowers et al.  1994 ; Awan et al.  2007 ). The type of fertilizer 
also determines the effi ciency (Zaman et al.  2005 ). Ammonium and urea fertilizers 
are more effi cient than nitrate fertilizers for paddy soils (Datta  1986 ). Water-soluble 
P materials are more effi cient for short duration crops and in soils that are neutral to 
alkaline in reaction. There is also a certain amount of interaction noticed among 
crops and fertilizers. For example, paddy performs better when ammonium sulphate 
is applied as N carrier and for tobacco when potassium sulphate is applied as K car-
rier (Craswell et al.  1981 ; Vann et al.  2013 ).   

4     Possible Ways to Improve Fertilizer Use Effi ciency 

 Increase in FUE aims at obtaining more yield while adding a small amount of 
fertilizer materials. This will not only result in minimizing the production cost for 
a certain crop but it will also reduce the risk of environmental contamination. 
Hence, it improves the overall economy of a region/country. The FUE can be 
improved by managing soil and plant factors coupled with improvement in fertil-
izer materials. 
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4.1     Site-Specifi c Nutrient Management 

 Soil is an ultimate reservoir of plant nutrients and their availability depends upon a 
number of soil properties including physical, chemical, and biological (Havlin et al. 
 1999 ). As the soil system is dynamic, hence both temporal and special variability 
exist resulting in a huge variation in nutrient concentrations even in similar soil 
types. Fertilizer recommendations are general for any region or area. This may lead 
to over- or underapplication of applied fertilizer materials, resulting in a decreased 
FUE. Moreover, a plant’s nutrient requirement varies with growth stages. This 
demands site-specifi c fertilization depending upon soil physicochemical properties 
and crop species/varieties. Fertilization according to the need of the crop is one of 
the management options to improve FUE and reduce the risk of environmental con-
tamination. Precision farming technology is a valuable tool to identify and correct 
site-specifi c crop nutrient defi ciencies (Roberts  2008 ). In addition to crop monitor-
ing, modern technologies such as leaf color charts, chlorophyll meters, and remote 
sensing are useful techniques to manage nutrient requirements by crops.  

4.2     Crop-Specifi c Nutrient Management 

 Crop responses to applied fertilizers vary from specie to specie; variability even 
exists among different cultivars of the same species. For example, cereals demand 
more K compared to vegetables and other crops (Greenwood et al.  1980 ), whereas 
dicotyledons require more B than monocots (Neales  1960 ). Thus, application of 
these nutrients to such crops according to their requirement will result in more effi -
cient utilization and reduced losses to the environment. A number of studies have 
been reported on genotypic variation among wheat, maize, cotton, brassica, and rice 
cultivars for different nutrients (Kanwal et al.  2009 ; Maqsood et al.  2009 ; Aziz et al. 
 2011a ,  b ,  2014 ). Hence, application of fertilizers to crop cultivars that are not 
responsive and ineffi cient utilizers leads towards environmental pollution. Moreover, 
as a plant goes through different growth stages during its life cycle, certain stages 
are high-demanding compared to others. Hence, FUE can be improved by applying 
the nutrients at the right time and in the right amount, when there is actual need for 
that nutrient by the growing crop. Split application of N is also one of the manage-
ment options to match the nutrient requirement with the crop demand. Ortiz- 
Monasterio et al. ( 1996 ) found about 50 % reduction in nitrous oxide emission from 
irrigated wheat crop while applying only 33 % of N fertilizer at planting and the 
remainder after 1 month. 

 Nature has bestowed an excellent mechanism in plants by which certain crop 
species/genotypes are more effi cient utilizers of applied as well as indigenous soil 
nutrients. This may be attributed either to more effi cient nutrient uptake or its rapid 
assimilation during metabolic processes. Roots play an important role in this regard. 
However, root growth is also restricted under high nutrient concentration (Shen 
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et al.  2012 ). As FUE aims at obtaining more yield with the application of less fertil-
izer material, therefore nutrient application should be at the optimal rate at which 
root growth is maximum. However, under high input systems, FUE can also be 
improved by maximizing root proliferation in subsurface soils either through breed-
ing or agronomic nutrient management practices (Mi et al.  2010 ; Lynch  2007 , 
 2011 ). More root proliferation leads to more exploration of soil nutrient reserves, 
hence more nutrient uptake. Farmers can achieve better FUE by growing those cul-
tivars that are effi cient utilizers of applied as well as indigenous plant nutrients.  

4.3     Fertilizer Materials 

 Fertilizer use effi ciency can also be improved by changing the morphology of the 
fertilizer material either by coating or by increasing the size of the granule. Fertilizers 
vary in nutrient solubility, availability, and recovery. Fertilizers applied to one crop 
may have residual effects for subsequent crops. Only less than half of the applied P 
may be recovered by the fi rst crop (Sattari et al.  2012 ), whereas most of N fertilizers 
are readily available to plants and mobile in the soil system. This leads to higher 
losses of applied N. Coated N fertilizers with controlled release of N can ensure a 
continuous supply of N to plants for longer periods (Mulder et al.  2011 ; Ni et al. 
 2011a ,  b ; Xie et al.  2011 ; Yang et al.  2011 ). 

 Controlled/slow-release fertilizers for improving NUE from urea have also been 
practiced in many parts of the world. In addition, urease inhibitors were also intro-
duced to minimize N losses from urea. A number of inorganic and organic urease 
inhibitors were tried in the past (readers are referred to the review by Chien et al. 
 2009 ). However,  N -( n -butyl)thiophosphorictriamide (NBTPT) was found to be 
most effective compared to others such as phenylphosphorodiamidate (PPDA) 
(Byrnes  1988 ; Lu et al.  1989 ). NBTPT addition to soil resulted in 60 % reduction in 
ammonia volatilization losses compared to control where no urease inhibitor was 
applied (Cantarella et al.  2005 ). In addition, some other laboratory and fi eld studies 
(Chien et al.  1988 ; Christianson et al.  1990 ; Freney et al.  1995 ) revealed that cyclo-
hexylphosphorictriamide (CHPT) was even more effective than NBTPT. Combined 
nitrate and urease inhibitors were also tried to see their impact on improving FUE 
(Nastri et al.  2000 ; Radel et al.  1992 ; Zaman et al.  2005 ). However, until now urease 
inhibitors can delay NH 3  losses for only 1–2 weeks in the case of surface application 
of urea (Chien et al.  2009 ). Moreover, it also depends upon soil physicochemical 
properties coupled with moisture and temperature. Nevertheless, coating of urea 
with natural biodegradable polymers and micronutrients can also reduce N losses 
from 30 to 67 % (Junejo et al.  2011 ). In addition, the concept of urea supergranules 
has also been reported with some advantages over the routine application of normal 
granules. This will act as a slow-release fertilizer. 

 These controlled released fertilizers only partially reduce nutrient losses and fur-
ther research is required to check nutrient losses by applying the right type of fertil-
izer. Therefore, research efforts must be directed towards cheaper and environmentally 
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friendly fertilizers that have minimal nutrient losses and greater FUE. A number of 
new fertilizer products are now available to improve fertilizer use effi ciency includ-
ing sulphur-coated urea, slow-release fertilizers, smart fertilizers, and nitrifi cation 
inhibitors.  

4.4     Integrated Nutrient Management 

 Integrated nutrient management (INM) (i.e., combined use of organic and inorganic 
sources of nutrients) is also an important key to achieve higher FUE (Yamoah et al. 
 2002 ). Organic amendments not only improve soil fertility status but also result in 
improvement of soil physicochemical properties such as structure and nutrient and 
moisture retention, as well as porosity/aeration. However, while adding organic 
amendments to soil, their C:N ratio and mineralization rate should also be kept in 
mind (Treadweell et al.  2007 ). 

 Incorporation of legumes in crop rotation is also an integral component of 
INM. Legumes not only improve soil nutrient reserves but also improve soil physi-
cal properties helpful in root proliferation, hence more effi cient nutrient uptake. 
Rahman et al. ( 2009 ) observed a signifi cant increase in N use effi ciency while incor-
porating broadbean and hairy vetch legume crops in a rice-based cropping system. 
INM by using green manures, animal manures, and crop residues reduces the fertil-
izer application rate along with reduced emission of N 2 O (Aulakh  2010 ), hence 
more FUE. Long-term studies on INM in China were conducted in multilocation 
fi eld trials for rice by Zhang et al. ( 2011 ). They observed 20–30 % reduction in 
fertilizer use coupled with 20–80 % increase in agronomic FUE. However, success 
of this INM system demands a comprehensive training of the farmers. Otherwise 
imbalanced use of nutrients will not only waste the resources but lead towards envi-
ronmental contamination.  

4.5     Method of Fertilizer Application 

 Nutrient losses can also be minimized by following proper application methods. 
Conventional fertilizer application methods such as broadcasting and side dressing 
are less effi cient compared to fertigation and foliar fertilization techniques (Rehman 
et al.  2012 ). Nevertheless, it also depends upon specifi c mineral nutrient, crop spe-
cies, and soil properties. For example, banded application of P to crops results in 
more P uptake compared to broadcast application. This improved P uptake might be 
attributed to reduced soil contact, hence less fi xation of applied P fertilizers. 
Sitthaphanit et al. ( 2009 ) observed reduced leaching losses of N, P, and K by split 
application and delaying the basal application in a tropical sandy soil. N losses from 
urea and other fertilizers can also be minimized by its deep placement into the soil. 
Deep placement of urea supergranules is one of the best management options to 
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improve FUE in fl ooded rice in Bangladesh and Vietnam (Roy and Hammond 
 2004 ). However, its application is laborious and costly, hence impracticable for 
developed countries of the world. 

 Unconventional methods of fertilizer application are also in practice in many 
parts of the world. Nutrients are applied directly to the leaves (foliar fertilization) or 
to the roots (drip fertigation) where they are actually required. It also involves 
reduced fertilizer and labor cost. Moreover, it will result in improved water use 
effi ciency in arid and semiarid regions of the world. Liang et al. ( 2014 ) found that 
optimal daily fertigation is a better approach to improve cucumber yield and FUE 
under greenhouse conditions. Alam et al. ( 2005 ) conducted a study on wheat crop 
employing different N and P application methods and found 74 % increase in P 
fertilizer effi ciency over top-dressed N and P. Fertigation results in improved N use 
effi ciency as more NO 3  are present in the upper soil surface and NO 3  leaching losses 
to the groundwater decrease (Hebbar et al.  2004 ; Hou et al.  2007 ; Hassan et al. 
 2010 ). However, there are certain limitations that should be addressed before fol-
lowing these practices. In the case of fertigation, fertilizer material should not be 
corrosive and also not react with other chemicals in water. In addition, good quality 
water should also be used otherwise precipitation of salts will result in clogging the 
entire irrigation system. Therefore, generally fertigation is practiced for vegetable 
and fruit plants. 

 Foliar feeding of nutrients to plants is also a promising management strategy to 
improve FUE. With micronutrients that are generally required in small quantities, 
their uniform application to growing plants can also be carried out by foliar applica-
tion. Dixon ( 2003 ) reported that foliar application of N and P is about 7 and 20 % 
more effi cient compared to soil application of these nutrients. Foliar application of 
urea resulted in 80 % recovery of applied N in wheat crop (Smith et al.  1991 ). Foliar 
application along with the bed planting method resulted in improved agronomic 
effi ciency, that is, about 93.82 % compared to conventional methods where it was 
only 43.67 % (Bhuyan et al.  2012 ). However, foliar fertilization of plants should be 
done at very low rates of fertilizer material otherwise leaf burning will result in crop 
damage. In addition, nutrient feeding through foliar application also demands a 
comprehensive knowledge of crop growth stage and nutrient demand.  

4.6     Balanced Fertilization 

 Balanced nutrition is an important key to improve FUE. The major reason for low N 
use effi ciency in many agricultural soils of the world is either high N input or low N 
input. In the case of high input agricultural systems, it leads towards the contamina-
tion of natural resources. Indeed N defi ciency is ubiquitous throughout the world but 
in addition, certain other essential elements such as P, S, K, Zn, and B are also defi -
cient. According to an estimate about half of the world’s cereal-growing soils are Zn 
defi cient (Cakmak  2002 ). Boron defi ciency has also been reported in more than 80 
countries worldwide (Shorrocks  1997 ). However, in many parts of the world mostly 
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farmers apply N coupled with a nominal quantity of P fertilizer while ignoring the 
use of K and other macro- and micronutrients. This imbalanced fertilization results 
in a wider N:P ratio of about 7:1 to 6:1 (Vitousek et al.  2009 ). Furthermore, a very 
wide N:K ratio (i.e., 1:0.23 to 1:0.36) exists throughout the world (Krauss  2004 ). 
This practice is more common in developing countries and is one the major con-
straints to improve nutrient utilization effi ciency in the existing cropping systems. As 
plants need 17 essential elements for their growth and development, so overuse of 
only one nutrient creates a strong imbalance and results in reduced NUE by plants. 
A number of studies reveal that addition of S, K, P, and Zn along with N results in 
enhanced N recovery from the applied fertilizer source, hence more FUE (Aulakh 
and Malhi  2004 ; Gordon  2005 ; Salvagiotti et al.  2009 ; Liu et al.  2012a ,  b ,  c ). 
Dobermann et al. ( 2002 ) observed 30–40 % increases in N recovery effi ciency of rice 
from balanced fertilization. More effi cient recovery of nutrients from applied fertil-
izers will lead towards reducing the burden of contaminants on the environment.   

5     Moisture Conservation and Water Management 

 Moisture conservation in rainfed areas by mulching and deep ploughing will 
enhance fertilizer effi ciency. Similarly management of irrigation water at critical 
crop stages is also important to improve fertilizer effi ciency.  

6     Future Challenges 

6.1     Limiting Resources of Rock Phosphate 

 Limiting raw material for fertilizer manufacturing further increases the importance 
of FUE. Rock phosphate is the only raw material for most P fertilizers. According 
to Global Phosphorus Research Initiative, reservoirs of rock phosphate are esti-
mated to deplete completely in the next 100 years (GPRI  2014 ). This demands wise 
use of available rock phosphate and higher FUE (Cordell et al.  2011 ). Moreover, the 
only option when rock phosphate will not be available will be managing the P cycle 
while adding the required P rates in the form of organic matter (Dawson and Hilton 
 2011 ). Then this organic matter must be mineralized at a rate of crop P demand. 
Related strategies are already known and often listed under organic farming. 
However, organic farming is uneconomical in most developing countries due to 
lower crop yields and greater expense. A great number of scientists are working to 
fi nd a suitable alternative technology for the days when rock phosphate will no lon-
ger be available. Plant breeding for better P uptake and use effi ciency for a P-defi cient 
environment is being advocated and efforts are underway; however, newly devel-
oped cultivars of agronomic crops actually require greater inputs of P fertilizer as 
increase in yield is often related to greater fertilizer demand.  
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6.2     Depleting Soil Fertility 

 Exhausting cropping systems are depleting nutrients from the soils (Foster and 
Magdoff  1998 ) and heavy fertilizer applications can damage the environment due to 
losses of nutrients. Also, higher fertilizer rates decrease FUE and may result in 
uneconomical yield if applied more than the crop demands. Restoration, mainte-
nance, and buildup of soil fertility status require knowledge about various soil 
aspects (Palm et al.  1997 ; Sanchez et al.  1997 ; Lahmar et al.  2012 ). Due to imbal-
anced application of fertilizers, soil is more depleted in micronutrients as compared 
to macronutrients (Fan et al.  2008 ). For many cropping systems, workable strategies 
are still not known to maintain soil fertility and produce greater yield by taking into 
consideration soil and environmental health.  

6.3     Soil-Specifi c Recommendations 

 It is recommended that fertilizers should be applied according to crop requirement 
and soil characteristics (Pierce and Sadler  1997 ). Soil- and crop-specifi c fertilizer 
recommendations take into account soil, crop, and environmental factors for greater 
nutrient recovery and yields (Swinton and Lowenberg-DeBoer  1998 ). The right 
type of fertilizer applied in the right amount, with the right method, and at the right 
time are important considerations of FUE (Bruulsema et al.  2008 ). However, there 
is a need for developing kits for determining site-specifi c crop nutrient defi ciencies. 
This will be a great breakthrough in improving FUE and reducing the risk of envi-
ronmental contamination of land, air, and water resources. 

 Soils differ greatly in physical, chemical, and biological characteristics. 
Therefore, plant-available pools of nutrients in soils also vary (Hussain et al.  2011 ). 
The native status of a particular nutrient in the soil is the most important factor con-
trolling the required rate of fertilizer. Based on this approach, scientists have formu-
lated critical concentrations of plant-available nutrients in soils. These critical limits 
are (in mg kg −1  soil): nitrate-N (extraction with AB-DTPA) >20, P (extraction with 
NaHCO 3 ) >15, K (extraction with NH4OAc) >150, Zn (extraction with DTPA) 
>1.0, Cu (extraction with DTPA) >0.5, Fe (extraction with DTPA) >4.5, Mn (extrac-
tion with DTPA) >2.0, and B (extraction with hot water) >1.0 (Watanabe and Olsen 
 1965 ; Mahler et al.  1984 ; Soltanpour  1985 ; Quevauviller et al.  1996 ). Depletion of 
nutrients from soil solution by plant uptake is restored from various other nutrient 
pools in soils (Viets  1962 ; Barber  1995 ). However, soil buffering capacity is par-
tially ignored when recommending fertilizers on the concentration of plant- available 
nutrients in the soil. Therefore, FUE would differ if soil buffering capacity is suffi -
cient to supply nutrients over a longer period of time. 

 Only soil P and K are investigated in detail by different adsorption and release 
models for soils. Reports suggest recommending fertilizer rates based on adsorption 
isotherms: however, this is limited to P and K only (Zhengli et al.  1988 ; Mehadi 
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et al.  1990 ; Dobermann et al.  1996 ). However, recommendations based on adsorp-
tion isotherms are often too complex to be understood by farmers. Moreover, there 
are site-to-site variations among the fi elds of a farm and even within a single fi eld. 
There is a demand for a more farmer-friendly and dynamic system of fertilizer rec-
ommendations that consider all soil characteristics. Efforts are underway to esti-
mate site-specifi c fertilizer requirements by use of advanced technology (Mueller 
et al.  2001 ; Franzen et al.  2002 ; Mallarino and Wittry  2004 ). However, the desired 
success is still awaited.  

6.4     Biofortifi cation, Environment, and FUE 

 Biofortifi cation of edible plant parts through genetic and agronomic means is being 
advocated on a large scale (Bouis et al.  2011 ). Biofortifi cation strategies currently 
focus on seven mineral elements (Fe, Zn, Cu, Ca, Mg, I, and Se) that are most com-
monly defi cient in human diets (White and Broadley  2009 ). Agronomic biofortifi -
cation strategies require higher rates of fertilizer application to increase food quality 
(Hussain et al.  2013 ). However, the greater the nutrient applied, the lesser will be 
FUE and there will more environmental hazard. 

 Computations for FUE include amount of fertilizer applied, amount of nutrients 
uptaken by plants, and yield of the crop (Jat and Gerard  2014 ). Environmental 
 considerations, food quality parameters, and actual farm profi ts are not considered 
in FUE. Nevertheless, these factors play a key role in suitability and profi tability of 
fertilization (Prasad  2008 ). In future, new computations of FUE are required to 
include these factors. Farm profi t can easily be calculated. However, the most chal-
lenging task is to quantify environmental hazards of fertilization in a given soil-
crop- environment and management combination. Probably, the amount of nutrient 
lost in the atmosphere or water bodies is more hazardous for the environment as 
compared to the amount of fertilizer temporarily retained in the soil.      
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