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Abstract Multi-material flow describes a situation where several distinct materi-
als separated by sharp material interfaces undergo large deformations. The research
presented in this paper addresses a particular class of multi-material flow situations
encountered in geomechanics and geotechnical engineering which is characterized
by a complex coupled behavior of saturated granular material as well as by a hierar-
chy of distinct spatial scales. Examples include geotechnical installation processes,
liquefaction-induced soil failure, and debris flow. The most attractive numerical
approaches to solve such problems use variants of arbitrary Lagrangian–Eulerian
descriptions allowing interfaces and free surfaces to flow through the computational
mesh. Mesh elements cut by interfaces (multi-material elements) necessarily arise
which contain a heterogeneous mixture of two or more materials. The heterogeneous
mixture is represented as an effective single-phasematerial usingmixture theory. The
paper outlines the specific three-scale mixture theory developed by the authors and
theMMALEnumerical method tomodel and simulate geomechanical multi-material
flow. In contrast to traditional flow models which consider the motion of multiple
single-phase materials or single multi-phase mixture, the present research succeeds
in incorporating both the coupled behavior of saturated granular material and its
interaction with other (pure) materials.
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1 Introduction

Geotechnical installation processes, which may include digging, mixing, displace-
ment, or penetration, are characterized by largematerial deformations, movingmate-
rial interfaces and free surfaces, changing contact conditions, and complex nonlinear
soil mechanical behavior [112]. Soil generally is a mixture of solid grains and one
or more pore fluids (liquid and/or gas). Its mechanical behavior results from the
behavior of each constituent, the internal structure, and from the interfacial cou-
pling due to mass and momentum transfer. The realistic simulation of such complex
processes, either numerically or by experiments, is very challenging but at the same
time of high practical relevance because geotechnical installation processes may
significantly impact on the soil and the load bearing of nearby structures. This is
particularly the case for the installation of vibro-injection piles [84, 92], which has
recently been investigated by the authors [14, 98]; see also Fig. 1a.

There are several more situations encountered in geomechanics and geotechni-
cal engineering that share the characteristics of geotechnical installation processes.
Examples are liquefaction-induced soil failure [104, 105], natural hazards like land-
slides interacting with water [73, 78], and debris flow [63, 64]. Schematic views are
shown in Fig. 1. To make their similarities clear, consider the liquefaction-induced
failure of an earth-fill dam under seismic excitation (Fig. 1b). Usually, the details
of the exact flow fields (e.g., motion of particular grains) are of secondary interest.
However, the consideration of the liquefaction-prone, water-saturated fill material
as a mixture of granular material and pore fluid is indispensable [120]. At the same
time, the instantaneous water level and geometry of the dam (free surfaces and large-
scale interfaces) must be taken into account because they govern the progress of
failure. The initiation and evolution of the liquefied zone is generally unknown and
could only be resolved in a direct numerical simulation of the problem. In this regard,
major achievements have beenmadeusingLagrangian or almost-Lagrangian descrip-
tions in which mesh elements contain only one material throughout the calculation
[81, 120, 121]. However, a simulation of the entire process from flow initiation to
deposit consolidationwill fail due to severemesh distortion unlessmore sophisticated
approaches will be employed.

We refer to each of the situations mentioned above as geomechanical multi-
material flow.Multi-material flow generally contains several pure, physically distinct
materials which are separated by sharp material interfaces and one or more of these
materials undergo large deformations—void (empty space or atmosphere) is consid-
ered as material. In contrast to traditional multi-phase or multi-fluid flow, material
strength and compressibility should be included in the description of multi-material
flow, whereas mass transfer between the materials is usually of secondary interest.
Moreover, in many situations momentum relaxation can be assumed infinitely fast,
resulting in a velocity field common to all materials in the flow.

The notion of multi-material flow has emerged along with the development of
efficient numerical simulation techniques [24, 75]. Problems that have tradition-
ally been modeled include hypervelocity impact, detonation with structure–media
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Fig. 1 Schematic of complex geomechanical multi-material flow situations. a Installation of vibro-
injection piles to tie back the base slab of a deep excavation. b Liquefaction-induced failure of
an earth-fill dam under seismic excitation; in accordance with [104]. c Submarine landslide; in
accordance with [73]
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interaction, dynamics of bubbles and droplets, material processing and manufactur-
ing, as well as astrophysical events. The most attractive approaches use variants of
the multi-material arbitrary Lagrangian–Eulerian (MMALE) description allowing
interfaces and free surfaces to flow through the computational mesh [25, 26, 39, 46,
47, 74, 79, 88, 94, 98, 118]. MMALE methods generalize the classical approaches
in which the mesh either follows the material motion (Lagrangian approach) or is
fixed in space (Eulerian approach). Mesh elements cut by interfaces necessarily arise
which contain a heterogeneousmixture of twoormorematerials. Because themixture
must be represented as an effective single-phase material (homogenized mixture),
the underlying mixture theory is an essential ingredient.

Besides the characteristics common to all multi-material flows, geomechanical
multi-material flows are characterized by a complex coupled behavior of the sat-
urated granular material representing the soil or debris material as well as by a
hierarchy of distinct spatial scales (grain diameter, scale of mixture continuum rep-
resentation, characteristic size of bulkmaterial interfaces, etc.).While certain aspects
of geomechanical multi-material flow can be considered as well understood, a fully
fledged flow model that is able to predict a time history of the material states for
arbitrary compositions and configurations of the mixture is yet missing.

In two previous papers [14, 98], we have developed an MMALE finite element
method accounting for the two-phase coupled response of saturated sand. The present
paper goes into more detail about the three main features of the MMALE method
for geomechanical problems, which are (i) the mixture theory for multi-material
elements, (ii) the determination of the stress field, and (iii) the technique to resolve
material interfaces. Accordingly, the paper has the following structure. Section2
provides an overview of the MMALEmethod. The mathematical modeling of three-
scale mixtures is addressed in Sect. 3, where we summarize the special mixture the-
ory and the homogeneous equilibrium model derived in [14]. In Sect. 4, we focus on
stress decompositions in saturated granularmaterial resp. dense granular suspensions
which enable the description of those arbitrary compositions and mixture configura-
tions present in geomechanical multi-material flow. Section5 is concerned with the
treatment of material interfaces and their evolution (motion) from a non-Lagrangian
point of view, i.e., in multi-material elements. After deriving the governing equa-
tions and introducing the basic discretization techniques, we outline the volume of
fluid (VOF) interface reconstruction and propagation methods implemented into our
MMALE code and present some preliminary results. The paper closes with conclud-
ing remarks and outlook in Sect. 6.

2 Overview of the MMALE Method

Our multi-material method is an extension of the single-material or simplified arbi-
traryLagrangian–Eulerian (ALE) approach [9, 10, 12, 13, 97].Adetailed description
is given in [98], so only the basic equations will be presented in this section. The
continuum mechanical background can be found in [9, 19, 76, 113, 114].
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The MMALE method addresses isothermal mechanical initial boundary value
problems which are governed by conservation of mass

ρ̇ + ρ div v = 0, (1)

and balance of momentum

ρv̇ = ρb + divσ. (2)

The equations are written in updated Lagrangian form referring to the spatial domain
D ⊂ R

3 instantaneously occupied by the materials at time t ∈ [0, T ]. They are
assumed to hold at all points x ∈ D and for all t ∈ [0, T ]. The field v = u̇ is the spatial
image of the material velocity, u is the material displacement, ρ is the spatial mass
density, b is a prescribed body force per unit mass (e.g., gravitational acceleration),
and σ = σT is the symmetric Cauchy stress. The superscribed T refers to the
transpose. Moreover, the superposed dot is shorthand for the material time derivative
q̇ = ∂

∂t q + v · ∇q of a time-dependent spatial field q, div is the spatial divergence
operator, ⊗ is the tensor product, and · denotes the single contraction of tensors.

The stress tensor is decomposed into a pressure stress and an extra stress according
to

σ = −p I + s, (3)

where p is the pressure and I is the second-order unit tensor. We assume that
the extra stress is always deviatoric such that p = − 1

3 trσ and s = σdev, where
σdev = σ − 1

3 (trσ)I is the deviatoric stress, tr a = I : a returns the trace of a
second-order tensor a, and : indicates double contraction.

The rate of pressure is related to the rate of mass density through a compression
model

− 1

V

∂V

∂ p

∣
∣
∣
∣
M

= 1

ρ

dρ

dp
= 1

K
resp. ṗ = K

ρ
ρ̇. (4)

K is the bulkmodulus, V and M = ρV are the volume andmass of a bounded region,
respectively, and |M means that mass is kept constant along with differentiation.

The balance equations (1) and (2) are rewritten using (3) and (4), treating v and
p as the independent variables:

ρv̇ − ρb − div(s − p I) = 0, (5)

ṗ + K div v = 0. (6)

The ALE formulation [8–10, 13, 24, 57] introduces a reference domain which
may move in space at an arbitrary velocityw. This velocity is referred to as the mesh
velocity because the reference domain is represented by the computational mesh
in numerical implementation. The difference c = v − w is called the convective
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velocity. The relative volume change between the referential coordinate system and
the spatial coordinate system is the Jacobian, J , and its rate of change is given by

∂ J

∂t
= J divw. (7)

Moreover, if q̂ is the description of a spatial field q in the referential coordinates,
then the rate of q̂ is related to the material time derivative through

q̇ = ∂q̂

∂t
+ c ·∇q. (8)

Substitution of (8) into the Eqs. (5) and (6), respectively, and using the product rule
yields

∂ρ̂v̂

∂t
+ div(ρv ⊗ c) + ρv divw − ρb − div(s − p I) = 0, (9)

∂ p̂

∂t
+ div(pc) − p div c + K div v = 0. (10)

Multiplication with J , substitution of (7), and arranging terms then results in the
ALE conservation form of (5) and (6),

∂ρ̂v̂ J

∂t
+ J div(ρv ⊗ c) = J (ρb + div(s − p I)), (11)

∂ p̂ J

∂t
+ J div(pc) = J (p − K ) div v. (12)

We write this set of equations in the compact form

∂q̂ J

∂t
+ J divF = S J, (13)

where q ∈ {ρv, p}, F is the convective flux of q, and S is the source term.
The MMALE method is based on the common Lagrange–remap strategy which

divides the incremental solution of the nonlinear problem into a Lagrangian step and
remap step (Fig. 2). Conceptually, (13) is split into two sets of equations which are
solved sequentially:

∂q̂ J

∂t
= S J, (14)

∂q̂ J

∂t
+ J divF = 0. (15)

The first set of equations, (14), is associated with c = 0 resp. v = w. Hence, it
is equivalent to the set of Eqs. (5) and (6), and formalizes a Lagrangian description
of motion. During the Lagrangian step, the set (14) is solved with standard finite
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element methods for the two-field mixed element formulation by accounting for
large deformations [71, 117, 121]. Accordingly, (5) and (6) are written in a weak
form which is discretized in space using finite elements. The solution of the semi-
discreteweak formof the governing equations is advanced implicitly in time using the
Newmark-beta and generalized trapezoidal methods in conjunction with a damped
Newton–Raphson method.

The solution of the second set of equations, (15), is associated with the remap
step. The remap step first relocates the nodes to reduce mesh distortion and then
transfers the solution variables onto themodifiedmesh using a conservative advection
algorithm [9, 13]. Time is advanced only during the Lagrangian step, whereas the
spatial distributions of the solution variables are fixed during the remap step. That is,

v ≡ 0 and
∂q

∂t
≡ 0, but c �= 0, (16)

so that q̇ = 0 holds but ∇q �= 0 in general. The overall Lagrange–remap solution
procedure of the MMALE method is summarized in Algorithm 1.

Because the reference domain (finite element mesh) is moved relative to the
“frozen” material during the remap step, elements may arise in MMALE meth-
ods which intersect with material interfaces and thus contain a mixture of two or
more materials (Fig. 2). However, the spatial distribution of the elements’ degrees of
freedom is homogeneous, so that a lack of information arises within these multi-
material elements. The main difficulties are to accurately determine the states of the
individual material portions and the reaction of the element they will generate [103].
This is particularly true for geomechanicalmulti-material flowswhich exhibit several
spatial scales. For that reason, we have developed a three-scale mixture theory and
derived a homogeneous equilibrium model which provides reasonable, physically
based mixing rules. These are summarized in the following section; the details are
presented elsewhere [11, 14].

Fig. 2 Schematic diagram of the Lagrange–remap strategy in a calculational cycle of the MMALE
method [98]. The blue area indicates a material zone whose initial configuration is assigned to
an element patch highlighted in red. In the Lagrangian step, the governing equations are solved
with respect to the mesh deforming with the material. During the remap step, the mesh distortion
is reduced and the solution variables are transferred to the modified mesh. After the remap step,
several elements intersect with the material interface. These elements contain a mixture of two
materials (blue and white) and are called multi-material elements
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3 Mathematical Modeling of Three-Scale Mixtures

3.1 Averaging Procedure

The three-scale (micro, meso, and macro) system of interest is illustrated in Fig. 3.
A still image of the flow recorded through a spatially fixed and reasonably small
observation window is shown above in the figure. The flow consists of a bulk solid
(S), a bulk fluid (F), and a composite material representing a fluid-saturated granular
material (G). The granular material by itself is an immiscible mixture consisting of
a solid phase (s) and fluid phase (f). Void is considered as a particular fluid.

Algorithm 1: Overall solution procedure of the MMALE method.
Input: initial mesh, geometry, initial conditions, and boundary conditions
Output: velocity, pressure, mass density, stress, and material state

1 initialize time steps;
2 collect topological data required for remap;
3 while number of time steps n ≤ nmax do

4 begin Lagrangian Step
5 re-initialize finite element matrices and compute loads;
6 while number of Newton iteration steps i ≤ imax do
7 determine number of materials per element;
8 update volume fractions and porosity;
9 integrate constitutive equations and compute material stiffness;

10 update element averages of stress, stiffness, mass density etc.;
11 compute internal loads and form vector of residuals;
12 compute effective stiffness matrix;
13 solve system of linearized equations;
14 if convergence criterion met then exit;
15 i ← i + 1;

16 store solution variables;
17 update and store geometry;
18 reconstruct material interfaces using VOF method;

19 begin Remap Step
20 loop mesh elements and evaluate element quality Q;
21 if Q < Qmin then flag nodes of the element;
22 relocate flagged nodes to reduce mesh distortion;
23 gather elements affected by mesh motion step;
24 compute total transport volumes for affected elements;
25 compute material transport volumes using reconstructed interface;
26 advect and store volume fractions;
27 advect and store remaining solution variables;

28 n ← n + 1;
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Fig. 3 Three spatial scales in a particular geomechanical multi-material flow

The granular material is constituted by an assembly of solid grains, whose typical
diameter defines the microscale of the problem, lmicro (Fig. 3 below). The character-
istic length at which the grain assembly can be represented by a continuum is intro-
duced as the mesoscale lmeso. At the mesoscale, the bulk solid, the bulk fluid, and
granularmaterial can be regarded as homogeneousmaterials separated by sharp inter-
faces. Finally, at the macroscale the immiscible mixture of mesoscale continua (bulk
solid, bulk fluid, and granular material) can be equivalently modeled as an effective
single-phasematerial (homogenized immisciblemixture). Hence, we assume that the
multi-material flow has a representative volume element (RVE) with characteristic
length lmacro (Fig. 3 above). The real-world problem is modeled on an even larger
scale.
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To keep our theory as general as possible, each material k ∈ {S,F,G} def=
{1, . . . , M} is initially viewed as containing the same phases α ∈ {s, f} def=
{1, . . . , N }, even though the fractional volume of one phase in a particular mate-
rial might be zero. This means, for example, that the bulk solid is initially viewed as
being composed of a solid phase and a fluid phase, even though the volume fraction
of the fluid is zero. A particular phase α in a particular material k represents an
individual, chemically independent constituent of the flow and will be denoted by
αk. For the particular flow under consideration, we write sS ≡ S and fF ≡ F such
that αk ∈ {S,F, sG, fG}.

The flow takes place in a time interval [0, T ] ⊂ R and in a three-dimensional
modeling domain D ⊂ R

3 of the ambient Euclidian space. The subregions in D
instantaneously occupied by the k-material and the α-phase at time t ∈ [0, T ] are
denoted by Mk and Pα, respectively, with

D = ⋃

αPα = ⋃

kMk . (17)

The (possibly empty) domain of the α-phase in the k-material is given by the inter-
section Pα ∩ Mk . Based on the assumptions above, each two phases and each two
materials do only intersect at their interface (if any).

Let χk be the material indicator function onMk ⊂ D and χα the phase indicator
function on Pα ⊂ D, with χk,χα : D × [0, T ] → {0, 1}. The product of χk and
χα defines another indicator function which picks out the generally time-dependent
α-phase domain of the k-material domain in the modeling domain:

χαk(x, t)
def= (χαχk)(x, t) =

{

1 if x ∈ (Pα ∩ Mk) at time t ,

0 if x ∈ D\(Pα ∩ Mk) at time t .
(18)

This indicator function is unique to our mixture theory. It covers arbitrary flow
compositions bounded between the classical cases of mixtures composed of single-
phase materials (χα = 1) and mixtures represented by a single multi-phase material
(χk = 1).

Indicator functions represent distributions, and hence possess a weak derivative.
Therefore, in accordance with Eqs. (17)–(22) of [41], it can be shown that the sub-
stantial time derivative of χαk defined by (18) is given by the topological equation

∂χαk

∂t
+ vαk

I · ∇χαk = 0, with ∇χαk = δαk
I nαk

I . (19)

Here, vαk
I is the velocity of the α-phase-k-material interface ∂(Pα ∩Mk), nαk

I is the
field of outward normals on that interface, and δαk

I is a Dirac delta function which
picks out the α-phase-k-material interface in D. Accordingly, ∇χαk is everywhere
zero except for ∂(Pα ∩ Mk).

Upscaling information from lower to higher scales can be achieved by different
types of approaches, and each has its advantages and disadvantages [18, 37, 55].
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The approach followed here is known as hybrid mixture theory [1, 21, 22, 54, 55].
The basic idea is to apply local volume averaging [32, 41, 42] to the small-scale
balance equations and to make the constitutive assumptions needed for closure at the
large scale, that is, for the averaged balance equations. The closure relations can be
obtained either by direct postulation of desirable equations, as done in [71] and in
this paper, or based on thermodynamical considerations as in the continuum theory
of mixtures and the theory of porous media [34, 40, 113].

Local volume averaging is carried out with respect to a macroscopic RVE of
the flow at all points x ∈ D, which is defined through a spatially fixed and time-
independent subset H(x) ⊂ R

3. At each instant t , the RVE intersects with the
current configuration of materials and phases as well as with their boundaries. The

subregion of the RVE occupied by the k-material is Mk ∩ H def= Hk , and (Pα ∩
Mk) ∩ H def= Hαk is the subregion occupied by the α-phase of the k-material, with
H = ⋃

k Hk = ⋃

k
⋃

α Hαk by (17). TheH-average of an arbitrary time-dependent
spatial microscopic field q(x, t) is then defined through

〈q〉(x, t)
def= 1

H

∫

H
q(x + a, t) dv for all x ∈ D and t ∈ [0, T ], (20)

in which a is a vector on H, dv is the volume density on R
3, and H

def= ∫

H 1 dv =
const is the volume measure ofH.

Particular examples of the local volume average defined by (20) are the volume
fractions

f k def= 〈χk〉 = Hk

H
and παk def= 1

f k
〈χαk〉 = Hαk

Hk
∈ [0, 1] , (21)

where Hk def= ∫

Hk 1 dv = ∫

H χk dv and Hαk def= ∫

Hαk 1 dv = ∫

H χαk dv. While f k

is the volume fraction of the k-material with respect to the RVE, παk represents the
macroscale volume fraction of the α-phase intrinsic to the k-material. The topology
present inH entails the fundamental properties

∑

k

f k = 1 and
∑

α

παk = 1 for all k ∈ {1, . . . , M} (22)

since phase or material overlaps are precluded. If the physical field q(x, t) is defined
per unit volume, then

〈q〉 =
∑

k

f kqk =
∑

k

∑

α

f kπαkqαk, with qαk def= 〈χαkq〉
f kπαk

, (23)

follows immediately from (22) and the averaging operator (20). For example, ifq = ρ
is the microscopic spatial mass density, then the intrinsic or true mass density ραk
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represents the mass of the constituent αk per unit volume of that constituent, παkραk

is the mass of the constituent αk per unit volume of the k-material, and f kπαkραk

denotes its mass per unit volume of the mixture. Therefore, the latter two are bulk
mass densities.

3.2 Macroscopic Balance Equations

On the microscale, all constituents of the mixture are regarded as compressible
continua, governed by the equations of continuum mechanics [76, 113, 114]. The
balance principles of the problems under consideration are conservation of mass, (1),
and balance of momentum, (2), in conjunction with the interface jump conditions.
We currently do not take care of any thermodynamical issue.Mass is neither supplied
in the interior of any constituent nor at the interfaces.Moreover, there is no interfacial
momentum supply due to surface tension.

Each termof themicroscopic balance equations is averaged by using the procedure
outlined in the previous section; see [11, 14, 41, 42] for details. This results in the
α-phase-k-material macroscopic conservation of mass

∂ f kπαkραk

∂t
+ div( f kπαkραkvαk) = �αk (24)

and macroscopic balance of momentum

∂ f kπαkραkvαk

∂t
+ div( f kπαkραkvαk ⊗ vαk)

= f kπαkραk bαk + div( f kπαkσαk) + �αkvmI + �αk,

(25)

where

�αk def=
〈

(ρ(v − vI))
[αk] · nαk

I

〉

, (26)

�αkvmI
def=

〈

(ρv ⊗ (v − vI))
[αk] · nαk

I

〉

, and (27)

�αk def= −〈σ[αk] · nαk
I 〉. (28)

The superscribed αk denotes macroscopic (i.e., H-averaged) fields related to
the α-phase in the k-material. The mass transfer term �αk denotes the rate of mass
supply per unit volume via theα-phase-k-material interface. Themomentum transfer
term �αk includes drag forces per unit volume generated by the relative motion of
the constituents. Note that �αk accounts for surface forces, but not for momentum
exchange owing to transfer of inertial mass which is described by the term �αkvmI .
Totalmass andmomentum of themixture is conserved. Hence, the sumof the transfer
terms over all constituents must vanish:
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∑

k

∑

α

�αk = 0 and
∑

k

∑

α

(

�αkvmI + �αk
)

= 0. (29)

From this and the conditions (23), summation of (24) and (25) over all phases
α ∈ {1, . . . , N } and all materials k ∈ {1, . . . , M} finally yield the macroscopic
conservation of mass and macroscopic balance of momentum of the mixture:

∂〈ρ〉
∂t

+ div〈ρv〉 = 0 and
∂〈ρv〉

∂t
+ div〈ρv ⊗ v〉 = 〈ρb〉 + div〈σ〉. (30)

The macroscopic balance equations (30) in conjunction with the jump conditions
(29) and the balance equations (24) and (25) provide unified description of non-
reactive isothermal flow of an immiscible mixture of M materials consisting of N
phases. They hold at each spatial point and at all interfaces and refer to a spatial
reference volume instantaneously occupied by the mixture on the macroscale. A
single spatial point is viewed as being simultaneously occupied by all materials
and all phases, that is, the mixture after averaging is viewed as being composed of
overlapping continua.

The equations explicitly account for volume fractions of each bulk material and
for volume fractions of each phase in the bulk materials. Moreover, the equations
include separate physical quantities for each constituent and separate terms repre-
senting the interaction between the constituents. The mechanical behavior of the
mixture is a consequence of the mechanical behavior of its individual constituents,
their volume fractions as well as of their interactions. Therefore, the macroscopic
equations can explicitly represent diverse compositions or evolving configurations
of multi-material flow.

3.3 Homogeneous Equilibrium Model

The particular geomechanical multi-material flow of interest can be locally described
as a mixture consisting of a bulk solid (S), a bulk fluid (F), and a fluid-saturated gran-
ular material (G) composed of a solid phase (sG) and a fluid phase (fG); cf. Fig. 3.
Hence, the materials generally represent binary immiscible mixtures, solely com-
posed of a solid phase and a fluid phase such that α ∈ {s, f}. We denote the fluid
fraction or porosity of the k-material, k ∈ {S,F,G}, by

nk def= πfk, (31)

so the solid fraction within the k-material becomes πsk = 1 − nk by using (22)2.
We remark that in cases where the k-material consists of a solid without significant
porosity (k = S) one has nS = 0. If on the other hand the k-material is a fluid
(k = F), then nF = 1 applies. The mixture represented by a single fluid-saturated
granular material is characterized by f k ≡ f G = 1 and 0 < nG < 1.
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Modeling of a particular multi-material flow requires closure of the set of balance
equations, which is otherwise underdetermined. Generally, the following closure
relations have to be specified [32, 33]:

1. Transfer relations expressing the physics at the material interfaces.
2. Topological relations accounting for the evolution of the interfacial structure.
3. Constitutive relations characterizing the physical behavior of each material.

Concerning the first group of closure relations, we take the simplest approach
by assuming zero mass and momentum exchange, so that �αk = 0 and �αk = 0
for all α ∈ {s, f} and k ∈ {S,F,G}. The former complies with the assumption of
no phase change and no chemical reaction at interfaces. The assumption of zero
momentum transfer, on the other hand, may contradict flow situations in reality in
which interactions, e.g., based on viscous drag, play an important role. Moreover, a
granular material in the mixture, by this assumption, must be either dry (ρfG = 0) or
locally undrained (no consolidation effects).

The topological closure relations restore the information of the flow structure
lost by the application of volume averaging [32, 33]. For the flow situation under
consideration, the only relations required are those that account for the evolution
of the material volume fractions f k . A proper closure relation for volume fraction
has to specify how the volumetric distribution of the bulk solid, the bulk fluid, and
the saturated granular medium evolves during the particular geomechanical multi-
material flow under consideration. Because further research is needed to establish
such a physics-based topological closure law,we have simply assumed homogeneous
distributions of pressure and velocity between the materials:

pk = 〈p〉 and vk = 〈v〉 for all k ∈ {S,F,G} and t ∈ [0, T ]. (32)

From a physical viewpoint, this means that everything is in homogeneous thermo-
dynamic equilibrium [35, 80], and its limitations are discussed in [14].

The description of material behavior and the development of constitutive relations
are major concerns in continuum mechanics. Restrictions on the form of the closure
relations result from the principles of constitutive theory [42, 76, 114]. In order to
treat all materials and material compositions that might be present in geomechanical
multi-material flow in a unified fashion, the stress tensor of any material is decom-
posed into a pressure stress −pαk I and an extra stress sαk [76, 114], in accordance
with (3):

σαk = −pαk I + sαk . (33)

We assume that the extra stress is always deviatoric such that pαk = − 1
3 trσ

αk , and
that all constituents of the flow are compressible, including both the grains and the
fluid phase of the granular material.

A rather long but almost straightforward derivation using all the ingredients yields
the following homogeneous equilibrium model for geomechanical multi-material
flow which is consistent with the set of Eqs. (5) and (6) for a single-material problem
[11, 14]:
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〈ρ〉〈v̇〉 − 〈ρb〉 − div〈s − p I〉 = 0 (34)

〈 ṗ〉 + 〈K 〉div〈v〉 = 0, (35)

where

〈s〉 =
∑

k

f k sk = f SsS + f FsF + f G
(

sG
′ + nGsfG

)

, (36)

〈p〉 =
∑

k

f k pk = f S pS + f F pF + f G
(

pG
′ + pfG

)

, (37)

〈ρ〉 =
∑

k

f kρk = f SρS + f FρF + f G
(

(1 − nG)ρsG + nGρfG
)

, (38)

1

〈K 〉 =
∑

k

f k

K k
= f S

K S + f F

K F + f G

KG , ζG = 1 − KG
dr

K sG, (39)

and KG = KG
dr

(

1 + (ζG)2

ζGKG
dr/K sG + nG

(

KG
dr/K fG − KG

dr/K sG
)

)

. (40)

The model is closed by the constitutive equations for the bulk solid (αk ≡ k = S),
the bulk fluid (αk ≡ k = F), the granular material (k = G) including the solid phase
(αk = sG) and fluid phase (αk = fG), by the evolution equations for the porosity,

ṅG = (1 − nG)

(
ṗsG

K sG + div〈v〉
)

, with ṗsG = ṗG
′ K sG

KG
dr

+ ṗfG, (41)

and volume fractions,

ḟ k = f k
( 〈K 〉

K k
− 1

)

div〈v〉, (42)

and by the compression models for each constituent,

ρ̇S = ρS

K S 〈 ṗ〉, ρ̇F = ρF

K F 〈 ṗ〉 , ρ̇sG = ρsG

K sG ṗsG , ρ̇fG = ρfG

K fG ṗfG . (43)

Besides the quantities already defined, pG
′
and sG

′
are the effective pressure

and effective deviatoric stress, respectively, in the granular material which will be
defined in the subsequent section, 〈K 〉 is the bulk modulus of the mixture, K k is the
bulk modulus of the k-material, with k ∈ {S,F,G}, K sG and K sG are intrinsic bulk
moduli of the granular material solid phase and fluid phase, respectively, KG

dr is the
bulk modulus of the drained granular material, KG

uj ≈ K sG is the unjacketed bulk

modulus [20], and ζG is the Biot-Willis coefficient [29, 30].
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For the stress tensors in thebulk solid and in thebulkfluid, the commonconstitutive
equations can be substituted [19, 42, 76, 114]; effects of turbulence in the bulk fluid
are currently neglected. However, the stress tensor in the granular material (k = G)
needs to be analyzed in more detail. In particular, we have to justify our motivation
to express the extra stress of the granular material in (36) by sG = sG

′ + nGsfG.

4 Stress in Granular Materials and Suspensions

The specificgranularmaterial of interest is a cohesionless granularmaterial inwhich a
single fluid fills the intersticial space. From a formal rheological viewpoint, the mate-
rial can be addressed as a dense (high concentration) grain–fluidmixture or “granular
suspension” [3]. Our current research is particularly concernedwith cohesionless soil
(sand). The smallest diameter of the solid grains is generally larger than 0.075mm
and the solid volume fraction resp. volume concentration is basically higher than
50 % (porosity nG < 0.5) [38]. We assume for simplicity that the grains are perma-
nent, i.e., they are non-abrasive and cannot crush. The fluid can be gas, liquid, or a
suspension (slurry) of liquid and dispersed fines (grain diameter < 0.075mm).

According to [7, 59, 96], two limiting regimes of dry granular flow have to be
considered. Under static or quasi-static loads, the grains are in close contact and form
a network. The contact forces acting between the grains are dominated by the mean
stress and dry friction (granular solid). Grain inertia effects are negligible, and the
material response is rate-independent plastic. This is called the frictional or quasi-
static regime, and it is the granular flow regime extensively studied in soil mechan-
ics [102]. At the other extreme characterized by high rates of shear deformation
and smaller solid volume fractions, the material behaves rate-dependent “viscous”
(granular liquid). Grain inertia and instantaneous grain contacts through collision
dominate [15], and hence this flow regime is called the collisional or dynamic regime.
In many practical flow situations, frictional and collisional interactions are roughly
of the same order, and the contributions of each to the bulk stress of the mixture
cannot be clearly distinguished. However, relatively little is known about this inter-
mediate flow regime, called the frictional–collisional regime, from both theoretical
and experimental viewpoints [4–6, 65].

Furthermore, complexity is introduced by the interstitial fluid in granular mate-
rials. Fluid–solid coupling by Stokes’ drag resulting from the relative velocity has
been recognized for a long time in soil mechanics because it is responsible for con-
solidation [29, 110]. Besides this, indirect grain interactions generally occur through
lubricated contacts [3, 4, 6, 36]. Lubricated contact is characterized by repulsive vis-
cous forces due to squeezing and shearing of the interstitial fluid; the shear-thickening
effect is an exemplary consequence of this phenomenon [36]. The rate of shear at
which lubricational (or macros-viscous [15]) flow may take place at otherwise equal
conditions ranges between those present in the frictional and collisional regimes.
In general, all three flow regimes have to be considered in the analysis of debris
flows [60, 63] and liquefaction-induced flow of soils [69]. However, the description
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of the mechanical behavior of a dense grain–fluid mixture for a wide range of flow
conditions and material properties is still an open problem [6].

Based on (23), the bulk stress in a saturated granular material can be generally
expressed as

σG = (1 − nG)σsG + nGσfG def= σ̃sG + σ̃fG, (44)

with a fluid fraction resp. porosity 0 < nG < 1, and taking f G ≡ 1. The tensors
σ̃sG, σ̃fG on the right are referred to as the partial stresses. These amalgamated stress
tensors are used in many models for saturated porous media [34, 40, 43] and debris
flows [6, 60, 63, 64, 90, 91], particularly those derived from the continuum theory
of mixtures.

In order to model the full frictional–collisional regime, the stress tensors of the
solid andfluid phases are represented as the linear sumof a rate-independent frictional
contribution and a rate-dependent viscous contribution [7, 59, 60, 116]:

σαG def= σαG
fr + σαG

vi , with α ∈ {s, f}, (45)

so that σG = σG
fr + σG

vi likewise. We then assume

trσsG
fr = −3psG , σfG

fr = −pfG I , and trσfG
vi = 0 . (46)

The first assumption formalizes that the solid-phase constituent is not subject to
internal constraints [114]. The second is the interpretation of a saturated intersticial
space [60], and the third assumption is because volume viscosity is usually neglected
in porous media and debris flow theories. The latter two assumptions result inσfG

vi =
sfG.

In accordance with [23], we introduce Terzaghi’s effective stress σG′
fr as the fric-

tional partial stress of the solid phase in which the pressure has been replaced with
the excess pressure psG − pfG. Clearly,

σG′
fr

1 − nG
def= −(psG − pfG)I + ssGfr and

pG
′

1 − nG = psG − pfG, (47)

where pG
′ def= − 1

3 trσ
G′
fr is called the mean effective stress and ssGfr = (σsG

fr )dev
by (46)1. Note that in a suspension without grain contacts each grain would be
completely surrounded by water, resulting in psG = pfG and pG

′ = 0. In the light
of (46) and (47), the total frictional (quasi-static) stress part of the saturated granular
medium can be calculated from

σG
fr = σG′

fr − pfG I, (48)

which is known as Terzaghi’s principle of effective stress [38, 110, 121].
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In contrast to the frictional part, we postulate that the effective stress for the
collisional (dynamic) regime remains unaffected by fluid stresses, i.e., σG′

vi =
(1 − nG)σsG

vi . Therefore, by taking into account (45), the assumptions (46), and
the principle (48), the representation (44) of the total Cauchy stress can be recast
into

σG = σG′
fr + σG′

vi + σfG
fr + nGσfG

vi

= σG′ − pfG I + nGsfG,
(49)

with σG′ = σG′
fr + σG′

vi . We refer to (49) as the principle of effective stress for a
general saturated grain–fluidmixture. The same relation is used in [64] in a continuum
mixture theory to describe the flow of variably fluidized granular masses (debris flow,
rock avalanches, etc.).

Based on the general principle of effective stress (49), and the discussion at the
beginning of this section concerned with the different flow regimes of dense grain–
fluid mixtures, constitutive equations have to be specified for the fluid-phase stress
and for the frictional and viscous parts of the effective stress.

For simplicity, the interstitial fluid (pore fluid) is represented by a Newtonian fluid
with deviatoric viscous stress. Hence, the constitutive behavior can be described by
the standard Navier–Poisson relation together with the Stokes condition [76], leading
to

σfG = σfG
fr + σfG

vi
def= −pfG I + 2μfGdfG

dev, (50)

where d
def= 1

2 (∇v + (∇v)T) is the spatial rate of deformation tensor and μfG is the
dynamic shear viscosity. Effects of turbulence are again neglected. In cases where
the fluid phase does not represent pure liquid but a suspension withmoderate concen-
trations of dispersed fines, estimates for μfG can be found in [82]. Moreover, in order
to account for the fact that the fluid phase fills the interstitial space of the distributed

granular material, we define μfG(nG)
def= (nG)2μfG

0 in accordance with [86], where
μfG
0 is the shear viscosity of the fluid for nG = 1 (pure fluid).
Compared to the fluid phase, the mechanical behavior of cohesionless granular

material is very complex and has several distinctive features [48, 59, 60, 68, 99,
102, 111, 121]. Different approaches can be employed to model this behavior on
the mesoscale. Here, we are interested in exploring fundamental behavior of com-
plex phenomena in geomechanics and geotechnical engineering. In this regard, phe-
nomenological two-phase models relying on a continuum representation of granular
material and not on micromechanics are eminently suited [6, 45, 48, 60, 121]. The
application to general geomechanical multi-material flows calls for constitutive rela-
tions which need only a single set of material constants and then are able to simulate
the mechanical behavior of granular material under complex loading paths over a
wide range of densities and stress states. However, a constitutive relation accounting
for all features and over the entire frictional–collisional regime is still out of reach.
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Constitutive equations should be prescribed for the effective stress σG′ =
σG′
fr + σG′

vi . Concerning the quasi-static frictional stress contribution σG′
fr , attrac-

tive models have been proposed for applications in soil mechanics and fall into the
categories of elasto-plastic [72, 77, 87, 109] or hypoplastic [17, 51, 83, 115] rate
constitutive equations. All of them determine an objective rate of the effective stress
as a function of the rate of deformation, the effective stress, the porosity nG or void

ratio eG
def= nG/(1 − nG), and a (possibly empty) set of additional state variables

hG def= {hG
1 , . . . , hG

m}. As an example, we consider the generic rate constitutive equa-
tion

�
σ
G′
fr

def= cG′
fr (σ

G′
fr , nG, hG) : (dsG − ε̇sG I)

def= �
σ
G′′
fr − ε̇sGcG′

fr : I,

(51)

in which
�
σ

def= σ̇ + σ · ω − ω · σ denotes the Zaremba–Jaumann rate of Cauchy

stress and ω
def= 1

2 (∇v − (∇v)T) is the vorticity tensor. In (51), we subtracted from
the solid-phase rate of deformation dsG the average volumetric strain rate ε̇sG I of
the compressible solid phase due to fluid phase pressure rate ṗfG. The stress tensor
σG′′
fr is responsible for all deformation of the solid phase, including the compression

of grains. We should remark that the spatial gradient of solid-phase volume fraction
has been detected as fundamental in describing the quasi-static mechanical behavior
of granular materials [49, 59, 86, 96], and hence should be included in the list of
arguments of cG′

fr . However, for simplicity we assume here that this gradient is zero
(homogeneous granular material).

It remains to specify a constitutive relation for the dynamic contribution σG′
vi =

(1−nG)σsG
vi = σ̃sG

vi of the effective bulk stress in the dense grain–fluidmixture repre-
senting the saturated granular material. Different approaches are available, but most
of them are restricted to particular flow conditions or to narrow ranges of material
properties. In the present research, we adopt a simple model formulation suggested
by Passman et al. [86] and further investigated in [61, 116]. Its representation in rate
form has been adopted in [31] to model silo discharge:

�
σ
G′
vi

def= 2μG′ �
dsG = μG′

vol(tr
�

dsG)I + 2μG′ �
dsG

dev. (52)

Such a form was also used in [56]. The first term on the right expresses the rate
of stress change due to volume viscosity μG′

vol. The dynamic shear viscosity μG′
is

generally a function of the void ratio (porosity) and shear rate. Relations have been
proposed for different flow situations resp. flow geometries [6, 15, 31, 45, 49, 59,
60, 65, 66, 86]. However, decision on which one is the most appropriate for the
present class of problems requires further investigation.
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5 Interface Reconstruction and Propagation

5.1 Governing Equations

One of the main features of the MMALE method is that material interfaces are
not necessarily aligned with boundaries of the computational cells but may flow
through the mesh (Fig. 2). The interface position needs to be known at each time
step in order to achieve a reasonable accuracy of the overall method (Algorithm 1).
Different approaches are available in this context, as reviewed in [27, 62, 100].
The widely used volume of fluid (VOF) methods [39, 52, 58, 89, 93, 95, 118,
119] do not track the interface directly, but instead track the fractional material
volume in a mesh element using an approximation to the interface. The interfaces
are reconstructed ab initio element by element from the solution data. Once the
interface locations in eachmulti-material element have been determined, thematerial
transport volumes across the element boundaries can be computed as truncation
volumes. Finally, the fractional material volumes are integrated to a new time level
to propagate the interface (Algorithm2). The actual calculation is largely geometrical
in nature, as will be shown in the remainder of this paper.

Algorithm 2: VOF interface reconstruction and propagation.
Input: mesh, velocity field, discrete material volume fraction data
Output: reconstructed material interface, advected volume fraction data

1 reconstruct material interface for each element using volume fraction data;
2 compute material transport volumes as truncation volumes;
3 update fractional material volume by summing material transport volumes;

VOF methods are typically discussed with regard to a fixed, structured computa-
tional mesh of finite difference type. The descriptions use volume coordinates and,
in two dimensions, reduce the element to a unit square [24]. Concerning the present
research, two points have to be considered. First, we seek to apply VOF methods to
unstructured finite element meshes. This requires special data structures and coordi-
nate systems which allow to resemble the classical descriptions. For example, in an
unstructured quadrilateral mesh the parametric coordinates of the parent square ele-
ment are equivalent to volume coordinates. Second, the mesh in MMALE methods
is not fixed.

When using a Lagrangian–remap strategy, Algorithm 2 is implemented by recon-
structing the material interfaces in the Lagrangian elements prior to the remap; see
alsoAlgorithm1. The amount of transportedmaterial is usually defined as the regions
swept out by the element facets during mesh relocation truncated by the interfaces.
The interfaces that should be reconstructed in ourMMALEmethod are not themicro-
scopic interfaces between the grains and the pore fluid in the granular material, but
the interfaces between the bulk materials on the macroscale (Fig. 3). For this rea-
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son, the material volume fraction f k has been introduced as a basic variable of our
three-scale mixture theory. It naturally carries information based on which material
interfaces can be reconstructed using VOF methods.

Recall the situation and the basic notation introduced in Sect. 3.1. For reasons
of simplification, the present study is restricted to two-dimensional problems in
Cartesian coordinates. Moreover, we consider the flow of only two materials k ∈
{1, 2}, say, a light material and a dark material, which are separated by a sharp
material interface. The flow takes place in a time interval [0, T ] ⊂ R and in a
modeling domainD ⊂ R

2 of the ambient Euclidian space. A point inD is identified
with its coordinate vector x = [x, y]T ∈ R

2. Velocities are assumed continuous at
the interface, that is,

v1 = v2 ≡ v̄. (53)

No slip is currently taken into account. Hence, the interface velocity is the velocity
normal to the interface [100]:

vI = vI nI = (v̄ · nI) nI, (54)

where nI is the field of unit normals on the interface, pointing outward the dark
material.

Let χ be the material indicator function on the dark material in accordance with
(18), then (19) and the application of (54) yield

∂χ

∂t
+ v̄ ·∇χ = 0. (55)

Taking the volume1 average resp. H-average of this equation as defined in Sect. 3.1
and respecting the averaging rules [41, 42] results in

∂ f

∂t
+ v ·∇ f = 0, or equivalently ḟ = 0, (56)

where f is the material volume fraction and v is an averaged velocity field, referred
to as the (common) material velocity in what follows. Comparison with Eq. (42) of
the homogeneous equilibrium model derived in Sect. 3.3 indeed shows that the right
sides of (56) are not zero in case of compressible materials. Therefore,

ḟ = f

( 〈K 〉
K

− 1

)

div v (57)

is taken as the basic equation.

1We use the term “volume” and “surface area” even though the present section is restricted to two-
dimensional problems. In fact, area and length in two dimensions can be regarded as volume and
surface area per unit depth in three dimensions.
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The material volume fraction is considered as the primary variable of VOF meth-
ods as it naturally carries information based on which material interfaces can be
reconstructed. In fact, if f = 1 then the zone is filled with dark material, and if
f = 0 the zone is filled with light material. A value 0 < f < 1 indicates that the
interface lies within that zone.

Following the derivations of Sect. 2, the ALE formulation of (57) is

∂ f̂ J

∂t
+ J div( f c) = 〈K 〉

K
f J div v (58)

and the operator split associated with the Lagrange–remap strategy gives the two
equations

∂ f̂ J

∂t
= 〈K 〉

K
f J div v, (59)

∂ f̂ J

∂t
+ J div( f c) = 0. (60)

Again, (59) is equivalent to (57), but its integration in time is left unconsidered
here. We just keep in mind that volume fraction might change during the Lagrangian
step of the MMALE method. The second equation, (60), constitutes a conservation
law and has to be solved during the remap step with respect to a given finite element
mesh. This is outlined in the next sections.

5.2 Basic Topological and Geometrical Functions

The topological and geometrical information required for VOF interface reconstruc-
tion and propagation must be gathered from a given finite element mesh, consisting
of nel two-dimensional elements �e. The unique element number, e, is occasion-
ally dropped. Each element is a simple polygon and represents a discrete portion
of the reference domain moving and deforming in space. It is defined by nodes
I ∈ {1, . . . , nen} and edges �e,I connecting the nodes I and I + 1. Nodes are num-
bered in counter-clockwise order of their occurrence along the element’s perimeter,
and the node I = nen + 1 coincides with I = 1. The global node number is denoted
by X , and for each element e and local node I , there is a unique number X (I, e). The
total number of nodal points in the mesh is nnp. We assume for simplicity that global
node numbering and element numbering is contiguous, so that nnp and nel are equal
to the largest node number and largest element number in the mesh, respectively. In
other words, X ∈ {1, . . . , nnp} and e ∈ {1, . . . , nel}.

The numerical implementation of Algorithm 2 requires topological information
of the adjacent elements to an element, fundamental boolean set-theoretic operations
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applied to lines and polygons, also called clipping, as well as geometrical functions.
In summary, the following functions are required:

1. Adjacent elements
2. Segment–segment intersection
3. Point-in-polygon test
4. Clipped polygon collection
5. Polygon volume

5.2.1 Adjacent Elements

The transport resp. advection of material between elements requires the list of ele-
ments adjacent to each element. Data structures and the implementation of functions
to determine these lists in unstructured quadrilateral meshes have been suggested
in [28]. The basic information required in that reference is the two-dimensional
connectivity array associated with the mesh. A modified approach is taken here.

In unstructured meshes, working with dynamic structures like linked lists and
pointer variables (available in Fortran 90 and above) is more practical than using
fixed dimensional arrays. Beyond that, the current Fortran implementation adopts
a somewhat object-oriented programming. Elements and nodes, for example, are
derived data types which are comparable to those C++ objects defined in [88]. Point-
ers to other data types resp. objects are stored within these data types, enabling the
creation of a linked list with an arbitrary number of entries. By taking advantage of
this option, the list of elements connected to a node is easily generated (Algorithm 3).

Algorithm 3: List of elements connected to all nodes.
Input: mesh elements, nodes connected to each element
Output: list of elements connected to all X ∈ {1, . . . , nnp}

1 while node X ≤ nnp do disassociate pointer to list of elements;
2 while element e ≤ nel do
3 while element node I ≤ nen do
4 add element e to list of X (I, e);

5 while node X ≤ nnp do associate pointer with first list entry;

The element data type has an identifier e ∈ {1, . . . , nel}, the element number,
and points to an array of the local nodes I ∈ {1, . . . , nen} defining the element,
and to an array of adjacent elements. Nodes are defined by a global node number
X ∈ {1, . . . , nnp} and a coordinate array. The global node number X (I, e) assigned
to the local node I of an element e has been traditionally defined as an entry of
a mesh connectivity matrix. Because of their frequent use, the next node and the
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previous node of a particular node are also stored. The best way to do this is to
store arrays containing the corresponding permutations of the local node numbers,
next(I ) = I + 1 and prev(I ) = I − 1, respectively, in the definition of the element
data type.

Once the list of elements connected to all nodes has been generated, the elements
adjacent to an element can be determined according to the following procedure [28].
Edge �I of element e is defined by node I and the node counter-clockwise from it,
next(I ) = I +1. The edge is shared by only two elements, the current element e, and
the adjacent element, adj(e, I ), sharing the edge with index I . A search on the lists of
elements connected to the two nodes of the edge is carried out in order to determine
the two elements in common. The element which is not the current element is the
adjacent element (Algorithm 4).

For the interface normal calculation outlined below, all the adjacent elements con-
nected to all nodes of an element need to be known. Since the elements adjacent to
an edge are known through Algorithm 4, only the corner elements have to be deter-
mined. An easy way to generate this list is to copy the list resulting fromAlgorithm 3
to the local nodes of all elements and to delete the current element and the elements
adjacent to an edge.

5.2.2 Segment–Segment Intersection

One basic function frequently used in VOF methods is the determination of the
intersection point of line segments, i.e., between the interface and the element edges.
A line segment, in contrast to infinite lines, has a finite length. Hence, there might
be no intersection even if the segments are not parallel (invalid intersection). Several
other cases generally have to be considered. We refer to [85, Sect. 7.2] and [107] for
further details and implementation.

Algorithm 4: Elements adjacent to edges for all elements.
Input: elements, nodes connected to each element, elements connected to each node
Output: elements adjacent to edges for all elements

1 while element e ≤ nel do
2 while element node I ≤ nen do
3 forall the elements a connected to X (I, e) do
4 if a �= e then
5 forall the elements b connected to X (next(I ), e) do
6 if b = a then store adj(e, I ) = a;
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5.2.3 Point-in-Polygon Test

The point-in-polygon test is needed to determine whether a particular point or node
lies inside a material zone. It is a basic operation frequently applied in computer
graphics and other areas dealing with processing of geometrical data. One of the
fastest solution strategies that requires only negligible amount of polygon data pre-
processing is the crossing test [53]. A ray is shot from the test point commonly along
an axis. Then, either the even/odd crossing number or winding number is computed
to classify the point for arbitrary closed polygons [2, 44, 53, 85, 101].

5.2.4 Clipped Polygon Collection

VOF methods must frequently determine the partial material volumes (subzones) in
the mesh elements or in the polygonal transport volumes across the element edges.
Mathematically spoken, the subzone is the set-theoretic intersection of the domains
enclosed by two polygons, or by one polygon and a half-plane. In computer graphics,
this is called polygon clipping [44, 108]. The mesh represents a collection of clip
polygons and the total material domain is represented by the subject polygon or
half-plane.

In fact, not the polygon itself but only the vertices of its polygonal boundary line
are stored. Polygon clipping has to determine the line segments belonging to the
boundary of the subzone through intersection and has to merge these segments to
close the boundary line; this decisive latter step is sometimes called “capping” in
the literature. Hence, polygon clipping requires elaborate data structures and has to
implement different boolean operations on polygons.

The data structures and clipping algorithm used in the present research have
been developed in [50] and extended in [67] to handle degenerate cases. In both
neither the clip nor the subject polygon needs to be convex, and they may have
self-intersections. The each input and output polygon is efficiently represented as a
doubly linked edge list, referred to as the half-edge data structure. First, the segment–
segment intersection points between the two input polygons are determined, then
these are assigned specific flags to indicate relative orientation of the polygon edges,
and finally the intersection points are merged into the data structure of the clipped
subject polygons.

5.2.5 Polygon Volume

The signedvolumeof a two-dimensional polygondefinedbyvertices I ∈ {1, . . . , M},
with M + 1 = 1, can be calculated from [44, 85, 101, 106]

V = 1

2

M
∑

I=1

(xI yI+1 − xI+1yI ) = 1

2

M
∑

I=1

xI (yI+1 − yI−1). (61)
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The first summation requires 2M multiplications and (2M − 1) additions, while the
second summation requires only M multiplications and (2M − 1) additions [106].
Note that the signed volume is positive, i.e., |V | = V , if the vertices are placed in
counter-clockwise order along the perimeter, otherwise it is negative.

It should be emphasized that the formula (61) can also be used to calculate the
signedvolumeof a self-intersecting polygon. In this case, the partial volumes adjacent
to an intersection have opposite signs. For example, twisting a rectangle so that it
looks like a Fig. 8 results in two triangular regions. Their volumes sum up to zero,
which is the total signed volume of the twisted rectangle according to (61).

5.3 Interface Reconstruction

Common state-of-the-art VOF methods approximate the interface in each multi-
material element by a straight line; see reviews in [27, 89, 93]. One of the earliest
two-dimensional methods is due to Youngs [118], which forms a basis for the devel-
opments of the present research. Our implementation relies on that described in
[95] because the original paper provides little detail of the interface reconstruction
procedure. An alternative implementation is presented in [27].

A linear interface can be generally described by the Hesse normal form

n · x − d = 0, (62)

in which x is an arbitrary point on the interface, n = [nx , ny]T ∈ R
2 is the unit

normal on that interface (the index I has been dropped for notational brevity), and
d is the line constant representing the shortest distance between the interface and
the origin. Most volume of fluid methods determine a linear reconstruction of the
interface for each element in two steps: (i) estimate n and (ii) determine d such that
the volume fraction of the material lying behind the interface matches the known
value.

Sincewe choose the normal to point outward of thematerial, (62) returns a positive
number if x lies outside of the material. From the viewpoint of implementation, it
proves convenient to introduce the gradient of the volume fraction, m = [mx , my]T,
for which n = −m/‖m‖. The slope of the interface, s, is related to the normal by
s = −mx/my = −nx/ny .

Youngs’ method [118] has been developed for finite difference type uniform
meshes of square elements with edge lengths �x = �y; the original paper uses
a mesh of unit squares. The interface slope is estimated based on the volume fraction
data in the current element and its eight neighbors. Figure4 shows the notation for
the element-centered volume fractions using the principal points of the compass.
According to [95], the components of the volume fraction gradient in the current
element of a uniform mesh can be approximated by the stencil
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mx = 1

�x
( fNE + 2 fE + fSE − fNW − 2 fW − fSW) ,

my = 1

�y
( fNE + 2 fN + fNW − fSE − 2 fS − fSW) .

(63)

The slope angle β = tan−1 s = tan−1(−mx/my) lies in the range −π /2 <

β < π /2. The stencil assumes that the elements are all unit volume. It would be not
optimal, though practical to use the same stencil in structured quadrilateral meshes
where the elements have different sizes.When using an gradient estimation according
to (63), the interface reconstruction is only first-order accurate and linear interfaces
are reproduced exactly only in certain isolated cases [27, 89, 93, 95].

Elements located at mesh boundaries require special treatment because one or
more of the neighbors indicated in Fig. 4 might not exist. In this case, the missing
neighbors are substituted by the so-called ghost elements, and the volume fraction of
the current element is just copied to the ghost elements. The use of ghost elements
also allows boundary conditions (e.g., inflow, outflow) to be handled efficiently in
MMALE methods.

Once the slope or normal direction of the material interface is known, its location
has to be determined by some procedure. The interface truncates the element domain,
and the truncated volume behind the interface represents the partial material volume.
Volume is conserved, i.e., the right location of the interface has been determined, if
the partial volume divided by the element volume matches the given volume fraction
data of that element. The matching can either be achieved through iteration of the
distance parameter d, as done in [93], or by deriving an explicit expression that relates
the truncated element volume to d or to other parameters that locate the interface.
The second approach has been pursued in [27, 52, 119]. We particularly follow the
derivation of [95] again, implementing the original method [118].

Fig. 4 Notation of adjacent
element volume fractions
and side fractions used for
interface slope calculation

Δx

Δy fSW fS fSE

fW f fE

fNW fN fNE

x

y

fr

ft

fl

fb
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Case I Case II

Case III Case IV

Fig. 5 Four principal configurations of reconstructed interface for Youngs’ method; after [95]

If the element is a square, four principal cases of how the interface is located gen-
erally have to be considered (Fig. 5). In each case, the interface intersects a particular
pair of element edges under an angle

α = tan−1
(

�x

�y

− mx

my

)

, with 0 ≤ α ≤ π /2. (64)

The 3×3block of elements eventually has to be rotated in such away thatα lieswithin
the indicated range. The factor �x/�y in the expression is only necessary if mx , my

have been evaluated based on �x �= �y. After the case has been determined using
α and the volume fraction f of the element under consideration, the side fractions
fb, fr, ft , and fl at the bottom, right, top, and left edges, respectively, of the current
element can be calculated (Fig. 4). The side fractions fσ ∈ [0, 1], σ ∈ {b, r, t, l},
are the fractions of the edges that lie within the material and uniquely determine the
intersections of the interface with the element boundary. The logic to determine the
case according to Fig. 5 and the calculation of the side fractions have been presented
in [95]2 and are summarized in Algorithm 5.

As a simple example providing an analytical solution, we consider a linear inter-
face on a fixed mesh of unit squares. The problem statement and mesh, including
the element and global node numbers, is shown in Fig. 6. Application of the inter-
face reconstruction algorithm described above to elements along the mesh boundary
(element numbers 1, 2, 6, etc.) requires a layer of ghost elements to complete the

2TableV in the original paper [95] has typos in the formulas for the side fractions for case IV, in
which C should be in fact 1 − C , where C is the volume fraction. The correct formulas are in
Algorithm 5.
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set of element neighbors for a real element. However, these ghost elements are
not shown in Fig. 6 and in the following figures. The unit normal to the interface
pointing outward the dark material is readily available through

n =
∥
∥
∥
∥

5.0
4.0

∥
∥
∥
∥

−1 [

5.0
4.0

]

=
[

0.780871
0.624697

]

. (65)

The exact coordinates of the intersection points between the interface and the
mesh in the initial configuration as well as the resulting volume fractions for all
elements are plotted in Fig. 7. Since the volume of the elements is one, the volume
fraction of an element is equal to the volume of the intersection between the dark
material half-plane (triangular domain) and the element domain.

Algorithm 5: Case-by-case volume fraction matching using side fractions;
after [95].

Input: f and α for current element
Output: side fractions fb, fr , ft , and fl

1 if α < π /4 then
2 if f ≤ 1

2 tanα then
3 Case I: fb = (2 f cot α)1/2, fr = (2 f tanα)1/2, ft = 0, fl = 0;
4 else if f ≤ 1 − 1

2 tanα then
5 Case II: fb = 1, fr = f + 1

2 tanα, ft = 0, fl = f − 1
2 tanα;

6 else
7 Case IV: fb = 1, fr = 1, ft = 1 − (2(1− f ) cot α)1/2,
8 fl = 1 − (2(1− f ) tanα)1/2;

9 else
10 if f ≤ 1

2 cot α then
11 Case I: fb = (2 f cot α)1/2, fr = (2 f tanα)1/2, ft = 0, fl = 0;
12 else if f ≤ 1 − 1

2 cot α then
13 Case III: fb = f + 1

2 cot α, fr = 1, ft = f − 1
2 cot α, fl = 0;

14 else
15 Case IV: fb = 1, fr = 1, ft = 1 − (2(1− f ) cot α)1/2,
16 fl = 1 − (2(1− f ) tanα)1/2;

The interface is reconstructed by looping all real elements in the mesh and apply-
ing (63) and Algorithm 5. The exact and reconstructed material interface using this
method are compared in Fig. 8. Note that the reconstructed interface is not contin-
uous across element boundaries because VOF methods work on a local level for
reasons of efficiency. The element volume fractions are exactly matched by the
reconstruction, but the interface slopes differ. The relative error of the slope angle,
Eβ = 2

π
||βrecon| − |βexact||, are listed in Table1. It can be seen that the error is larger

for elements located at mesh boundaries. This is because the volume fraction states in
the ghost element neighbors are assigned the values of that element, which is only a
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Fig. 6 Problem statement and mesh for linear interface reconstruction. The ghost elements along
the mesh boundary are not shown

Table 1 Relative error of slope angle for elements with 0 < f < 1

Element
no.

4 8 9 12 13 16 17 21

Eβ (%) 20.72 1.21 0.29 0.65 0.65 16.46 1.21 7.05

rough approximation to the “true” state expected for an interface continuing beyond
the mesh boundary.

5.4 Interface Propagation

For a Lagrange–remap MMALE strategy, the interface is propagated through the
mesh by transporting the fractional material volume across the element boundaries
during the remap step. The time associated with the end of the Lagrangian step is
denoted by t−, while time associated with the end of remap step is t+. The con-
stant time increment is �t = t+ − t−; however, there is actually no physical time
associated with it. On occasion, quantities related to the Lagrangian step and to the
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Fig. 7 Interface-mesh
intersections (numbers in
parentheses) and initial
volume fractions (slanted
numbers in the elements)

Fig. 8 Comparison of exact
(dashed line) and
reconstructed material
interface (solid line) using
Youngs’ method [95, 118].
Numbers in the elements
denote the material volume
fractions, which are exactly
matched by the
reconstruction
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remap step are superscribed with − and +, respectively. Given the distorted geome-
try x− after the Lagrangian step and relocated geometry x+, the convective velocity
is simply approximated by the finite difference formula c = (x− − x+)/�t . Data
assumed to be given in the remap step includes both x− and x+ as well as thematerial
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volume fraction distribution f − constant in each element. If x+ ≡ x0 is the original
geometry at time t = 0, then a Eulerian method is obtained [24].

Owing to (60), the remap takes the form of an advection problem subject to the
initial condition f |t=t− = f −. Its numerical solution is done by a kind of finite
volume method [16, 70]. These methods are conservative by definition because they
solve the integral form of (60). They work on a control volume tessellation which, in
this paper, is assumed to coincidewith the underlying finite elementmesh. Therefore,
the terms “control volume” and “element” can be used interchangeably.

The element boundary∂�e is piecewise oriented andC1-continuous by definition.
It is throughout assumed that the orientation of the boundary ∂�e is compatible with
the orientation of�e such that the unit normals to ∂�e, denoted by n, point outward.
In the context of finite volume methods, the control volume resp. element boundary
is approximated by the set of edges �e,I of element �e, i.e.,

∂�e ≈
nen⋃

I=1

�e,I ≡
⋃

I

�e,I . (66)

Since overlaps and gaps of themesh are precluded, there is a unique element�adj(e,I )

adjacent to the edge �e,I . If a vertex or edge of �e is aligned with the boundary of
the computational domain, a ghost element � j is added such that the intersection
�e ∩ � j is non-zero.

Based on the previous definitions, we seek an approximate solution to the integral
form of the ALE conservation law (60) with respect to each control volume:

d

dt

∫

�e

f dv +
∑

I

∫

�e,I

f c · n da = 0, subject to f |t=t− = f −. (67)

The product f c in the second term on the left side is the convective flux of the field
f , and da is the surface area density on R2 (representing the differential arc length).
In solving the problem defined through (67), the method approximates the evolution
of the element average

fe = 1

Ve

∫

�e

f dv , with Ve =
∫

�e

1 dv > 0 and e ∈ {1, . . . , nel} , (68)

over the pseudo-time interval [t−, t+]. The averaged convective volume flux across
a moving and deforming element edge �e,I is defined by

F V
e,I = 1

Se,I

∫

�e,I

c · n da, where Se,I =
∫

�e,I

1 da > 0. (69)



Theory and Numerical Modeling of Geomechanical Multi-material Flow 219

Note that volume flux is positive if material leaves the moving element through the
boundary. The measure Se,I is the surface area of the edge �e,I .

For every pair of adjacent elements (�e,�adj(e,I )), the true averaged convective
flux of the field f across the edge �e,I = �e ∩ �adj(e,I ) is replaced by a numerical
averaged convective flux

F f
e,I ≈ 1

Se,I

∫

�e,I

f c · n da. (70)

We require F f =1
e,I = F V

e,I for reasons of consistency. This is most easily achieved by
defining

F f
e,I = η�

e,I F V
e,I , (71)

where η�
e,I represents a particular volume fraction at the element edge �e,I deter-

mined by an appropriate volume of fluid algorithm.
Now, substitution of (68)–(71) into (67) yields the space-discrete problem

d

dt
( feVe) +

∑

I

η�
e,I Se,I F V

e,I = 0 (72)

for all e ∈ {1, . . . , nel} and subject to f |t=t− = f −. Discretization in time for solid
mechanical applications is commonly done byfirst-order accurate explicit integration
methods. In particular, application of the forward Euler method to (72) results in the
advection algorithm

f +
e = f −

e V −
e − ∑

I �V f
e,I

V +
e

, with V +
e = V −

e −
∑

I

�Ve,I , (73)

�Ve,I = Se,I F V
e,I �t , and �V f

e,I = η�
e,I �Ve,I . Here, V −

e is the volume of the
deformed element in the Lagrangianmesh, V +

e is the element volume in the relocated
mesh, �Ve,I is the total transported volume across the edge �e,I between �e and
the element �adj(e,I ) adjacent to �e,I , and �V f

e,I represents the material transport
volume across that edge. �Ve,I is defined positive if the nodes defining the edge are
moved further into the element’s region, that is, if the transport volume is leaving the
element.

Explicit advection algorithms, like (73), give rise to stability issues. Stability of a
numerical algorithm ensures that the local errors introduced by the approximate solu-
tion are not amplified and that the global error produced by the algorithm after several
time steps is bounded. A necessary stability condition for any transport algorithm is
the CFL condition [46]
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0 ≤ Co = ‖c �t‖
h

≤ 1. (74)

Here, h > 0 is a characteristic element length and Co is called the CFL number. The
CFL condition phrases that a material particle must not pass an element within one
step.Concerning the remap stepof theMMALEmethod, the condition (74) constrains
the difference of nodal positions before and after the remap through ‖x− − x+‖ ≤ h.

The amount of material transported across an element edge is represented by
the flux term �V f

e,I in the generic advection algorithm (73). This flux term can
be calculated without interface reconstruction once a particular advection scheme
has been assigned [95]. However, it is more common, and yet more accurate, to
incorporate the geometry of the interface and to compute the material transport
volumes as truncation volumes [27, 39, 46, 52, 88, 93, 118]. In this second approach,
the total transport volume across an element edge is the signed volume swept out
by that edge between its two configurations after the Lagrangian step and after the
remap. The material transport volume is simply the set-theoretic intersection of the
total transport volume and the material domain on the left of the interface (for a
normal pointing outward resp. to the right). However, the actual implementation is
more complicated.

The pseudocode of a suitable implementation of the volume fraction update in
the remap step using (73) is provided in Algorithm 6, and it is based on a procedure
outlined in [28]. Note that a negative total transport volume is set to zero, and a
volume subtracted from element e is added to element adj(e, I ) adjacent to edge I
to avoid double counts. Moreover, the value of the total and material volume update
is calculated only once if the total transport volume is positive. This eliminates half
of the remap operations.

6 Conclusions and Outlook

An innovative theoretical and numerical framework has been presented which
accounts for the large deformations and evolving material interfaces as well as for
the complex coupled material behavior of saturated granular material present in
geomechanical multi-material flow. In order to model the large-scale motions and
interactions of materials in such flow situations, an arbitrary Lagrangian–Eulerian
method has been developed in which multi-material elements carry the information
of the material interfaces and free surfaces (MMALE method).

The states of the individual materials in multi-material elements are derived from
a practical three-scale mixture theory and a homogeneous equilibrium model devel-
oped during this research. In contrast to common two-scale theories, the proposed
three-scale approach is able to incorporate both the evolution of bulk material inter-
faces as well as the two-phase phenomena associated with saturated granular mate-
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rial. The essential closure relations are specified with respect to the macroscale. We
have considered an example flow consisting of a bulk solid, a bulk fluid, and a fluid-
saturated granular material with compressible constituents. The mixture approach
allows for the use of phenomenological constitutivemodels describing granularmate-
rial response for the full frictional–collisional flow regime. Accordingly, the apparent
stress tensors in the dense grain–fluid mixture have been split into rate-independent
and rate-dependent parts.

Algorithm 6: Volume fraction transport algorithm for interface propagation;
based on [28].

Input: V −
e , f −

e , and adjacent elements for all elements, mesh at times t−, t+
Output: V +

e , f +
e for all elements

1 set Ve = V −
e and fe = f −

e ;
2 while element e ≤ nel do
3 compute �e = feVe;
4 while element edge I ≤ nen do
5 calculate total transport volume �Ve,I ;
6 set �V ∗

e,I = max(0,�Ve,I );
7 if �V ∗

e,I > 0 then
8 Ve ← Ve − �V ∗

e,I ;
9 Vadj(e,I ) ← Vadj(e,I ) + �V ∗

e,I ;

10 calculate material transport volume �V f
e,I ;

11 �e ← �e − �V f
e,I ;

12 �adj(e,I ) ← �adj(e,I ) + �V f
e,I ;

13 V +
e = Ve and f +

e = �e/V +
e ;

In the MMALE method, material interfaces are reconstructed ab initio and prop-
agated through the computational mesh using a volume of fluid (VOF) approach.
It has been shown that the governing equations are consistent with the developed
three-scale mixture theory and with the Lagrange–remap MMALE strategy. The
geometrical and topological functions required for the VOF method have been out-
lined and efficient algorithms have been presented. The basic features were tested
using a simple example for which an analytical solution is available. Future work
will focus on the extension to unstructured triangle meshes, the implementation into
the MMALE method, and on the solution of full-scale large deformation problems
in geomechanics and geotechnical engineering, including geotechnical installation
processes.
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Nomenclature

Operators and Special Notations

·, :,⊗ Single contraction, double contraction, tensor product
∪,∩, \ Union, intersection, and difference of sets
| · |, ‖ · ‖ Absolute value, Euclidean length
〈·〉 Spatial average
˙(·), ˙(·)αk

Material time derivative, of an αk-related field
ˆ(·) Referential, ALE description

(·)αk αk-intrinsic average
(·)[αk] Limit value at αk-boundary
�
(·) Zaremba–Jaumann rate
∇(·) Covariant derivative, gradient
∂(·) Boundary
div(·) Divergence
tr(·) Trace of a second-order tensor

Superscripts and Subscripts

−,+ Associated with Lagrangian step, remap step
adj Adjacent
dev Deviator of a second-order tensor
dr Drained
f, fG, fk Fluid phase, in granular material, in k-material
fr Frictional (rate-independent) contribution
F Bulk fluid; F ≡ fF
G Fluid-saturated granular material
G′ Related to effective stress in granular material
k k-material; k ∈ {S,F,G} = {1, . . . , M}
s, sG, sk Solid phase, in granular material, in k-material
S Bulk solid; S ≡ sS
T Transpose of a tensor
uj Unjacketed
vi Viscous (rate-dependent) contribution
vol Volume
α α-phase; α ∈ {s, f} = {1, . . . , N }
αk α-phase in k-material; αk ∈ {S,F, sG, fG}



Theory and Numerical Modeling of Geomechanical Multi-material Flow 223

Latin Symbols

b, bαk, 〈b〉 Body force per unit mass
c Convective velocity
cG′
fr Fourth-order material tangent tensor

Co CFL number
d, dαk Spatial rate of deformation
da, dv Surface area density, volume density
d Line constant
D Modeling domain in the ambient space
e Element
eG Void ratio
f, f k, f αk, fe Volume fractions, of k, αk, in element
fb, fr, ft, fl Side fractions
F, F V

e,I , F f
e,I Convective flux, of Ve, fe across �e,I

hG′
Set of material state variables

H, Hk, Hαk Volume measures of H,Hk ,Hαk

H Representative volume element (RVE)
Hk,Hαk Portions of k, αk inH
I Local node, vertex, edge
I Second-order unit tensor
J Jacobian
K , K k, K αk, 〈K 〉 Bulk modulus
lmicro, lmeso, lmacro Microscale, mesoscale, macroscale
m Volume fraction gradient
M Number of materials in the mixture
Mk k-material domain in D
n, nk, nG Fluid fraction, porosity
nel, nen, nnp Number of elements, element nodes, nodal points
n, nαk Outward normals on interface
N Number of phases in the mixture
pαk, pk, 〈p〉 Pressure
pG

′
Mean effective stress

Pα α-phase domain in D
q, qk, qαk Generic spatial field
R,R2,R3 Real numbers, ambient Euclidian space
s Slope
sk, sαk, 〈s〉 Extra stress
Se,I Surface area of �e,I

t, t−, t+ Time
v, vk, vαk, 〈v〉 Spatial velocity
vI, v

m
I Interface velocity

Ve Element volume
w Mesh velocity



224 D. Aubram et al.

x, x Point in the ambient space
x, y Spatial coordinate directions; x = [x, y]T
X Global node number

Greek Symbols

α,β Slope angle
�I , �e,I Edge, element edge
�αk Rate of momentum supply due to drag via ∂Hαk

δαk
I Dirac delta picking out the αk-interface

�Ve,I ,�V f
e,I Total transport volume, material transport volume

�t Time increment
�x,�y Element dimensions
ε̇sG Solid phase volumetric strain rate due to ṗfG

ζG Biot-Willis coefficient
η�

e,I Volume fraction at �e,I

�αk Rate of mass supply via ∂Hαk

μfF,μG′
Dynamic shear viscosity

μG′
vol Volume viscosity

παk Volume fraction of α with respect toHk

ρ, ρk, ραk, 〈ρ〉 Spatial mass density
σ,σk,σαk, 〈σ〉 (Cauchy) stress
σG′

Effective stress
χk,χα,χαk Indicator function
ω Vorticity tensor
�e Element domain, control volume
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