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Preface

In a previous textbook with similar title, the midterm results of the research group
GEOTECH on the numerical and physical modeling of geotechnical installation
processes have been presented. In this volume emphasis is given to the simulation
strategies of the benchmark problems. The holistic simulation of geotechnical
installation processes takes into account the entire installation of structural elements
into the ground for foundation purposes and considers the serviceability of nearby
structures such as excavation pit supporting systems or adjacent buildings. It refers
to the nonlinear structure–soil–structure interaction.

From the engineering practice, it is well-known that the installation process itself
may cause larger deformations than the excavation or dewatering of a construction
pit on its shoring or the neighboring buildings. The assessment of the deformation
is, on the one hand, required from the codes (EC 7) or regulations but on the other
hand the high-quality prediction based on realistic and proven incrementally, highly
nonlinear constitutive models for the soils under cyclic/dynamic conditions and the
respective simulation tools do not offer up to now the required prediction quality.

The research group GEOTECH is dedicated to this challenging issue with the
performance of fundamental and applied research starting from the modification of
existing or even new development of constitutive modeling for the soil behavior,
the development of new type contact elements for the cyclic/dynamic structure–
soil–structure interaction and the provision of new simulation techniques or
appropriate tools for the description of the vibro-installation of piles.

The research group is organized and operating at three levels:

• benchmarking projects with element-like and large-scale model tests for the
calibration and validation of the developed numerical models

• theoretical fundamental research for the development of high-quality constitu-
tive soil models and contact formulations in combination with efficient
numerical implementations and algorithms

• application of the developed theoretical models to boundary value problems
with parametric studies of respective geotechnical installation processes and
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recommendations for further use of the numerical models in practice as well as
for the practical optimization of these processes.

Furthermore the research group provides high-quality benchmarks using phys-
ical modeling and measurements on real construction sites where the installation
processes of vibro-injected piles took place and produced unexpected large
deformations on the shoring wall (diaphragm wall). The provision of real data from
construction sites and those from experimental results on physical model tests
related to the pure pile installation process in combination with the developed
numerical tools offer to the interested readers a rich source of valuable information.
The provided information can serve as a basis to test newly developed constitutive
models or simulation tools developed elsewhere or as benchmark to check the
validity or accuracy of further experimental investigations in future.

The young researches, who joined this group, obtained an incredible knowledge
in testing and simulation techniques enabling them to achieve a higher level of
education and to widen their view with the exchange of experience between the
different disciplines. Therefore in this volume, the first authors in all contributions
from the research group are not the principal investigators but the young
well-educated researchers, who just obtained or are in a process to obtain their
Ph.D. degree.

The editor likes to thank all his colleagues (Prof. Ehlers, Prof. Wriggers,
Prof. Savidis, Prof. Rackwitz, Prof. Hettler) and coworkers (Dr. Niemunis,
Dr. Osinov, Dr. Huber) for their engagement within the research group and their
valuable contributions as well as their extreme efforts to make things possible
within the different disciplines in order to achieve the high scientific targets within
the different projects.

The contributions of our invited speakers (Prof. A. Wittle and Prof. T. Schanz) in
the final GEOTECH Workshop (7 and 8 December 2015 in Karlsruhe) are very
much appreciated and are also included in this volume due to their relevance to the
scientific targets of the group.

Furthermore I would like to express my thanks to Mrs. Meininger for the
organization of all the workshops of the research group GEOTECH and her
engagement to make those events pleasant, as well as Mr. Vogelsang for the col-
lection of the manuscripts and the help given to the editor prior to publication of
this textbook.

Finally, all of us like to express our deep gratitude to German Research Council
(DFG) for the generous financial support of this very interesting and challenging
research topic in geotechnical engineering.

Karlsruhe Theodoros Triantafyllidis
August 2015
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Requirements, Concepts, and Selected
Results for Model Tests on Pile Penetration

J. Vogelsang, G. Huber and T. Triantafyllidis

Abstract Designing and performing adapted model tests related to pile penetration
is a major target of the central project of the research group GEOTECH. These tests
shall allow to capture major aspects of pile penetration quantitatively and to obtain
input data for numerical simulations. The tests are focused on the interaction of
the pile and the soil in dry or saturated conditions. Guidelines are to keep the tests
as simple as possible, realize boundary conditions that are convenient for numerical
simulations, and toprovide reliable informationon the state of the soil at the beginning
of and during the tests. Furthermore, implications induced by the measurements,
e.g., lower stiffness of an instrumented pile or the use of glass walls enabling the
application of digital image correlation have to be evaluated and considered in the
numerical simulations as well. Examples demonstrate how the concepts have been
implemented for the measurement of tip and friction force on model piles under
monotonic, cyclic, and dynamic loading as well as for the evolution of pore water
pressure. Based on selected results, size effects of the test devices and the role of the
model material resp. its state are pointed out. The contribution includes a discussion
on disturbing influences such as friction in the linear guiding system or between pile
and glass wall.

Keywords Model test · Physical modeling · Benchmark · Pile driving

1 Introduction

Since the beginnings of geotechnical research, model tests (resp. physical modeling)
have always played a major role for the investigation of geotechnical problems, see
e.g. [5, 11] and many others. Compared to in situ experiments, model tests can be an
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2 J. Vogelsang et al.

Table 1 Terminology

Term Explanation Synonyms

Model test Non-element-like experiment Model experiment

Benchmark experiment Experiment intending the validation of
numerical models via prediction or back
analysis

Test material Soil used for the model test (here sand) Tested soil

Test device Test facility to perform a model test (incl.
instrumentation, equipment, etc.)

Test facility, apparatus

Test setup General concept/configuration of a test

Test box Repository and external boundary for the
test material

Strong box, container

Region of interest (ROI) Usually area around the pile tip

Type A prediction A priori prediction of experimental results

Type C1 prediction Back analysis of experimental results with
knowledge of the results

efficient and moderate cost alternative to perform series of tests under well-defined
conditions without the usually considerable uncertainty about the in situ ground
conditions. For this reason, they have often served as a basis for the formulation or
justification of design approaches. During the last twenty years their role as bench-
mark problems for numerical simulations has becomemore andmore important. The
term “benchmark experiments” is used in this context for high quality experiments
that can be interpreted as boundary value problems, see details on the terminology in
Table1. The results obtained from these tests are then used for numerical back analy-
sis (so-called type C1 prediction) or even better to validate numerical predictions of
the experimental results (type A prediction) [12].

Dealing with the penetration of pile-like structural elements, model tests are not
only necessary for the validation of numerical models but still also for an ameliorated
understanding of the process. A great progress in the evaluation of experiments is
the development and application of digital image correlation (DIC) techniques, e.g.,
particle image velocimetry (PIV), to penetration problems allowing to visualize the
soil displacements during the process. Nevertheless, there are still significant aspects
of pile driving that have to be considered as poorly understood and often various
conflicting interpretations of the same effect exist. To give only a few examples,
we would like to mention the occurrence of different pile driving types (or modes),
possible liquefaction effects around vibro-driven piles or the strong dependance of
post-installation pile behavior on the installation method used. It is suitable to study
these complex problems not only by usage of numerical tools but also on the basis
of adequate experiments. Not without a good reason, researchers working on the
numerical simulation of pile penetration often have an experimental mainstay and
vice versa.
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The approach in the experimental research of the research group GEOTECH is
to combine measurements on the pile with image analysis in a visible soil region in
vicinity to the pile.While inmany literature examples, the measurements are focused
on the pile, we strongly concentrate on the mechanisms governing the behavior of
the soil around the pile. Using 1g-model tests it was tried to cover the most relevant
effects occurring in penetration problems and to provide a multitude of benchmark
problems all using the same test material. The intention was to gain an improved
level of knowledge about the performance of up-to-date numerical methods for the
simulation of pile penetration processes using numerical back analyses of the exper-
iments (type C/C1 prediction). Once this higher level of confidence is achieved, the
model validation will be pursued by switching to real predictions (type A) and by
comparison with field measurements. The aim of this paper is to formulate require-
ments for suitable experiments, to show problems and difficulties encountered as
well as some technical solutions for those arising from our own research work and
from other researchers.

An alternative approach for the study of penetration problems is to use centrifuge
tests. The ability of these tests to provide precious experimental data has been shown
in many instances [13, 38]. However, we concentrate on general issues of model pile
testing. Specific features of centrifuge model testing are not discussed here. Also,
the usage of scaling laws in order to transfer the test results to a larger scale is not
within our topics, see next chapter. For more details in this direction, we refer to the
related literature, e.g., [10, 24, 38].

2 Requirements for Benchmark Experiments

The main requirements for benchmark experiments have already been discussed in
[29] and are summarized here. A laboratory experiment will always be “synthetic”
compared to the real process that is tried to be simulated.However, themost important
requirement for benchmark experiments is to reproduce similar effects like in the
real process. The geometry can be very simplified or even truly abstracted, but the
major effects have to be modeled realistically. The great advantage of laboratory
experiments is to provide clearly defined boundary conditions that are implementable
in numerical simulations and a sound knowledge of the test material (parameters) and
its state (stratification, density, etc.). To be qualified as a benchmark experiment, the
measurements shall allow a profound interpretation and a quantitative comparison
with numerical results. Information about forces/stresses on structures should be
incorporated as well as about the displacements/deformations in the soil. The test
material has to be characterized properly and reliable data on its state before and
during the test has to be provided. If the influence of the test setup on the test results
is not clear, it may be expedient to perform comparative tests using similar geometries
but to modify the general test setup. Reproducibility of the test results is an absolute
necessity. In order to achieve this, a homogenous soil deposition is considered to
be indispensable. In the region of interest, the test setup has to provide a minimum



4 J. Vogelsang et al.

stress level of about a few kPa. This is important in order to minimize the influence
of parasitic effects such as attraction between the particles and to ensure a sufficient
stress level for a numerical simulation using barotropic constitutive models.

3 Concepts

A guideline in the central project of GEOTECH has always been to investigate dif-
ferent aspects of pile penetration separately. For the investigation of shaft friction
or tip resistance as well as for the role of grouting adapted tests have been designed
and performed. The experiments have always been designed to suit well for numer-
ical back calculation. This includes an adapted choice of boundary conditions and
geometries.

Four basic test configurations can be distinguished for model tests on pile pene-
tration. They are schematically illustrated in Fig. 1. Generally, the pile shape should
correspond to the shape of the test box. Of course, various adaptions of these ideal-
ized setups exist. For example, often rectangular base plans are used even if the pile

observation window

soil

test 
container

model pile(a)

(c) (d)

(b)

observation window

quarter-pile

observation window

2D-pile

half-pile

Fig. 1 Basic concepts for model tests on pile penetration: a full model, b half model, c quarter
model, and d 2D-pile (sheet pile)
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geometry intends axisymmetric conditions. Tests using the configurations (a), (b),
and (d) have been performed in the central project.

By far the simplest test setup for pile penetration is a cylindrical full model,
Fig. 1a. A circular model pile is penetrated into a test box filled with soil. Usually,
the instrumentation is restricted to measurements on the pile such as pile head force
or tip resistance, pile displacement and acceleration. Reliable measurements in the
soil body are difficult to realize, but possible [20, 26, 39]. Advantages are the robust
and simple test setup and the symmetric geometry. Some results using this test setup
are given in Sect. 10.1, literature examples are, e.g., [20, 26].

The test setup shown in Fig. 1b tries to imitate axial symmetry but also to allow the
investigation of soil deformation. The test device has an observation window which
represents the symmetry plane. Thus, only half of the problem is modeled. The pile
slides along the window and is kept visible throughout the test. Results obtained
using similar setups can be found in [21, 23, 31, 33]. The soil deformation around
the pile can be evaluated with digital image correlation. Strictly spoken the axial
symmetry is not maintained because the deformations and stresses in the symmetry
plane are not necessarily representative for the whole soil body. Friction between
soil and window as well as a deflection of the window can strongly influence the test
results. A discussion on these effects follows in Sect. 6.

The setup shown in Fig. 1c is quite exotic butwould possibly enable the investigate
pile penetration using a quarter model. The pile has a quarter circle shape and is
placed in a rectangular edge of the test device. Both cut planes can be installed with
observation windows to evaluate the soil deformation.

A common approach is to try to realize 2D (plane strain) conditions, Fig. 1d. The
test device can now have a rectangular plan and the pile reaches over the whole
width of the device (sheet pile). The pile has a relatively large base area which is
beneficial for the reproducibility of the test results because the penetration resistance
is an integral value over a larger soil zone. For a correct modeling of a sheet pile,
the test device would need an infinite width but if the side walls are very smooth
and rigid, one can obtain a realistic simulation of sheet pile penetration even with
small model dimensions. If the side walls are equipped with observation windows,
these setups also allow the evaluation of soil deformation with DIC. A similar test
setup was used for the tests presented in [29, 33]. Literature examples are [25, 37]
and others.

4 Instrumentation Techniques

4.1 Data Acquisition

The measurements are recorded using a multichannel data acquisition system with
simultaneous sampling and digital filtering. The sampling rate and low-pass Bessel
filtering are chosen depending on the test type (quasi-static or dynamic). Bessel
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filtering is used to achieve a low distortion of the signals (constant group delay). The
time delays by sensors with digital signal processing have to be considered as well
as the different frequency ranges of the individual sensors.

4.2 Pressure Measurements

4.2.1 Earth Pressure Measurements

Earth pressure measurements are known to be challenging in granular soils but in
the current context they can provide important data concerning, for example, the
correct interpretation of boundary conditions. An overview of possible approaches
is given, e.g., in [30]. It is briefly summarized here and illustrated in Fig. 2a.Adetailed
description of the principal techniques applied in themodel tests of the central project
is provided in [29].

By embedding of pressure transducers in the soil body, it is often tried to measure
the stress evolution at interesting locations [26]. In reality, such measurements are
not likely to produce quantitatively representative data about the soil state due to
different stiffnesses of transducer and the surrounding soil. This inevitably produces
arching effects around the transducer and the original stress state to be measured is
modified. If cabled transducers are used, the cables can also disturb the experiments,
see discussion for pore pressure measurements below. In the presented tests, the
embedding technique was not used.

In contrast to this, the integration of stress transducers at soil structure interfaces
is considered to give proper results if the transducers membrane is stiff enough
and ends flush (in-plane) with the structures surface. Transducers of this type are
implemented in the test device described in [29] to measure the evolution of vertical
stress at the lower boundary of the test device. Results are also given in Fig. 13b of
this contribution.

soil

side wall

bottom plate

instrumented 
side wall

Pressure transducers 
in the soil body

Pressure transducer
at the interface

Load cell for 
bearing forces

soil

side wall

bottom plate

pressure transducers
in the soil body

instrumented pile tip

pressure transducer/load cell
included in the pile shaft

model pile
(a) (b)

Fig. 2 a Instrumentation techniques for the measurement of earth pressures and b instrumentation
techniques on and around the pile
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Away to obtain quantitative information about the resulting force exerted by earth
pressure is to measure the bearing forces of earth pressure-loaded sections of the test
device. These sections have to be decoupled from the rest of the test device (at least
in the measurement direction). Appropriate transducers have to be very stiff in order
to maintain the earth pressure to be measured. An example is described in [29] in
the context of the concurrent measurement of normal and tangential earth pressure
on instrumented wall sections. A similar solution is described in [1].

4.2.2 Pore Pressure Measurements

For model tests in saturated soil, pore pressure measurements can provide important
information about the penetration process. However, without the simultaneous mea-
surement of total stress, the quantitative interpretation of pore pressures is limited.
Thus, pore pressure measurements are suited for qualitative interpretation and local
comparison with numerical simulations. They are mainly valuable for the full model
test configuration, Fig. 1, because in the other configurations, the interface between
pile and observation window works like a drainage. The measurement of pore pres-
sures can either be performed by embedding of transducers at the wished location
in the soil or hydraulic connection of an external transducer with this location (tube
with filter at the end, see Fig. 3). Both methods influence the evolution of stress in

pressure 
transducer

stainless  
steel tube

3-Way ball valve

filter

container
wall

flange

flushing, de-aeration

pile

sand

(a) (b)

Fig. 3 Pore pressure measurement with external transducers at the bottom of the test device:
a schematic detail of the connection transducer measurement location and b exemplary schematic
overview with measurement at three locations around a pile
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vicinity due to a differing stiffness of transducer or tube compared to the surrounding
soil. Particular attention is required for the deaeration around the transducers and in
the tube/filter in order to quantitatively measure even small pressures. The advantage
of an external transducer connected to the measurement location by a tube is the
more reliable information about the position of the transducer and the possibility to
flush and deaerate transducer, tube, and filter. In all cases, it is preferred to route
the cables (if wired transducers are used) or tubes from below in order to avoid an
additional hydraulic connectivity to the free surface.

4.3 Measurements on and around the Pile

Possible instrumentation techniques on and in vicinity of a penetrating pile are illus-
trated in Fig. 2b. Important measurements on the pile are its motion (displacement,
acceleration), the pile head force and the tip force. More advanced instrumentation
allow the measurement of shaft friction as an integral over the whole shaft or for
multiple smaller sections. The measurement of radial (horizontal) stress in the pile
shaft is complex and therefore rarely implemented. Successful examples of such
measurements are given in [13, 20, 29]. In granular soil, pore pressure measure-
ments directly at the pile are only valuable in dynamic (vibratory) tests. If external
transducers connected by a tube to the pile–soil interface are used, the fluid column
in the tube is subjected to accelerations which influence the measurements and are
not easy to quantify. The embedding technique described above can also be used to
obtain qualitative information about the stress state in vicinity of the pile.

4.4 Evaluation of Soil Motion

Digital image correlation (DIC) and related methods (PIV) have become the most
important techniques for the evaluation of displacement and deformation fields in the
soil. Requirement for the application of these techniques to pile penetration tests is
an appropriate configuration of the test device, see Sect. 3. Principles are concisely
discussed in [36], examples using planar DIC (PIV) dealing with pile driving are
given in [23, 31, 37] and many others. For the reconstruction of the off-plane motion
a symmetry assumption (plane strain or axial symmetry) is necessary.Ameasurement
of this component requires 3D-DIC which is only rarely applied (in the context of
pile penetration, e.g., in [18]) and the use of transparent soil, see [8] and Sect. 7.2.

4.4.1 Slow Image Acquisition

For the image acquisition during slow processes, e.g., quasi-static pile penetration,
one can achieve satisfying results with standard digital cameras. For our current
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research we use NIKONCoolpix P7700 in interval mode. Their resolution of 3000×
4000 pixel is sufficient to cover an area of about 150 × 200 mm for DIC purposes.
If the region of interest is larger, multiple cameras are used (up to four). As standard,
they provide an interval shooting with intervals larger than 30 s. For smaller intervals
(down to 2 s) an external control system is used that synchronously triggers an image
capturing for up to six cameras and passes an output signal to the data acquisition for
every taken image. Video modes of the cameras offer frame rates of 30–60 images/s
depending on the resolution and can be used if the interval of 2 s is not sufficient. The
captured videos are subsequently split into individual images for the DIC analysis.

4.4.2 Fast Image Acquisition

The frequencies of vibratory pile driving usually range between 20 and 40 Hz. In
order to capture the dynamic cyclic motion of the pile and the surrounding soil, at
least 5 images have to be taken during a vibration period (better 10). Nowadays digital
video cameras with full image rates of about 350 images/s and 2000 × 1000 pixels
and high resolution lenses are available at comparably low costs. This resolution is
sufficient for capturing the region of the pile and surrounding soil for DIC purposes.
The image rate can be handled by high-speed interfaces and an adapted video grabber.
The continuous data rate is about 750 MB/s for non color images with 8-bit depth.
A workstation or server with 70–120 GB of memory or a high performance Raid
controller with 4 or more Solid-State-Drives in Raid 0 configuration can handle
this data rate continuously during the tests (>100 s). A scheme of the image data
acquisition for vibratory tests is shown in Fig. 4. The maximum exposure time for
each image is about 1/400 s for a frame rate of 350 images/s. Additional illumination
is necessary therefore and for a sufficient depth of focus a higher aperture value is

Fig. 4 Schemeof the fast imagedata acquisitionused in vibratory pile driving tests for the evaluation
of displacements with DIC
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needed also. LED lamps with constant intensity and with very low IR content give
good illumination uniformity and prevent heating up of the test box.

4.4.3 Evaluation of Displacements and Deformations

For present studies we use the freeware JPIV [27], that calculates occurring dis-
placements between two images based on the PIV method. Various other softwares
exist and have been shown to provide good results if the relevant guidelines, e.g.
formulated in [36], are followed. In this context, it is important to mention that
for quantitatively satisfactory results, an extensive experience with the software is
essential. Generally, as a result of the PIV evaluation, incremental displacements
between two subsequent images of a series of images are obtained. These have to
be interpreted in terms of strains, usually, with respect to a reference configuration
defined by the first image. The strain calculation is mostly performed analogously
to the finite element method or finite difference method. Our approach is similar to
the procedure in [37] and is described in detail in [34]. In [34], we also give some
indications toward the summation of incremental to total displacements.

5 Construction Aspects

5.1 Structural Design of Test Devices

The construction of a test device can be kept simple in the case of a circular test setup
similar to Fig. 1a. Earth pressures and pore pressures can only introduce circumfer-
ential tensile stress which is easily supported, e.g., by relatively thin metal tubes,
even with very small deformation. When the geometry of the test box is rectangu-
lar or involves planar structures (e.g., for the application of planar DIC), it cannot
be avoided that these parts are subjected to bending. Even with relatively small
bending lengths, the deflection under bending load can be significant and require
strong reinforcements. Not without a good reason, geotechnical test devices are usu-
ally equipped with reinforcing steel beams, etc., to obtain a very stiff construction
[29, 37].

5.2 Pile Shape

The pile shape should correspond to the symmetry conditions intended by the general
test setup. This ensures that a similar deformation mechanism in the plane of the
observation window and in the inner soil body. For the test setup allowing DIC and
intending axial symmetry this requires a pile cross section of half or quarter circle
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Fig. 5 Back view on different piles used in half model tests: a rectangular pile with pyramidal
tip and b half-circular pile with conical tip (both used in the central project), c rectangular pile
equipped for grout injection (collar and outlet of the inner injection tube) with wedge-shaped tip
used in [23]

and conical or flat-ended pile tips. Pyramidal- or wedge-shaped pile tips (Fig. 5a,
[31]; Fig. 5c, [23]) violate this requirement and the symmetry assumptions usually
made in numerical simulations. The pile tip should either be tapered or flat-ended, see
Figs. 5b and 6. If the test involves large penetration, it is helpful for most numerical
simulations to give priority to tapered pile tips instead of flat-ended pile tips or at
least to round the edges of the pile shoulder, see Fig. 8a, b.

5.3 Guiding the Pile

Independent of the test configuration, the model pile has to be guided properly with
very low systematic friction. The guidings should ensure a smooth pile motion (usu-
ally in vertical direction) and avoid lateral movement.

5.3.1 Guidings Above the Soil Surface

In most cases, the pile can only be guided above the soil surface. For this purpose,
roller guides or sleeve bearings with low friction (e.g., PTFE) are practicable solu-
tions. Especially when the pile has to be guided along the observation window, two
guidings in different vertical positions can be used to create a couple of forces that
presses the pile tip against the window, see Fig. 6c. This effect is supported by the
high contact pressure on an inclined pile tip. Simple pile guiding systems are shown
in Fig. 6.
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(a) (b) (c)

Fig. 6 Guiding techniques above the soil surface: a two pairs of roller guides for a cylindrical pile
used in the central project and b model test device involving a pair of sleeve guidings (red) used in
[23] and c schematic illustration of the mechanism of two guidings in different heights creating a
couple of forces to press the pile tip against the observation window

5.3.2 Guidings Below the Soil Surface

Some test configurations (e.g., [29], see Fig. 12) allow a guiding of the pile even
below the soil surface. Therefore, the pile has to contain a smaller pilot-pile that
separates the guidings from the soil. For test configurations with half-piles, Fig. 1b,
this concept can be adapted as illustrated in Fig. 7. Themajor advantages of this setup
is the close link to numerical models of pile penetration that often use a sort of pilot-
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linear guiding 

connection pile/guiding
(with instrumentation)

pile shaft

observation window
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linear guiding 

pilot-pile shaft

observation window
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casing for immersion
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A A'

B B'

guiding rail

sealings

sealings

(a) (b)

(c)

Fig. 7 Guiding technique below the soil surface: a concept with half-pile and pilot-pile and b cross
section of the half-pile and c cross section of the pilot-pile
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pile and the higher stiffness of the observation window when it is supported in the
middle of the field. An important drawback arises under water-saturated conditions
because the interior volume of the pile has to be filled with water. Even if the sealings
prevent sand ingress, they cannot prevent a dissipation of pore pressure. The drainage
conditions may therefore be completely different than in the axisymmetric case and
the evolution of pore pressures around the pile may be strongly influenced.

5.4 Sealings Against Sand Ingress

For the application of DIC, the pile usually slides alongside the observation window.
Therefore sealings are necessary to prevent the soil from entering between the pile
and the window. Typical and effective solutions are surface seals in the form of
layers of felt or carpet between the pile and the window [23, 33]. In [34], a slightly
modified solution is presented using a combination of a layer of felt and PTFE stripes
that ensures a stiffer contact behavior, Fig. 8a, b.

A very sophisticated sealing concept is provided in [29] using line seals fabricated
with PTFE stripes that are pressed against the observation window by means of
springs, (Fig. 9).

5.5 Actuator System

Practical methods for pile driving are quasi-static penetration (jacking), vibratory
methods and impact driving. All these methods require different equipment. For
quasi-static penetration, hydraulic actuators with position control, variable speed
and sufficiently large stroke can be used. These actuators require a loading frame
to carry the resulting force. The loading frame can be connected to the test device
(internal driving force) or designed as separate system. This involves a sufficient

(c)(b)(a)

aluminium profile

PTFE-stripes

observation window

PU-Foam

sand

feltxy
z

19
 m

m

33 mm

Fig. 8 Surface sealing concept against sand ingress between pile and observation window: a side
view, b front view, and c schematic horizontal cross section of the model pile
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Fig. 9 Line sealings concept realized for the interface test device (from [29]): a photo without
front steel sheet and b schematic cross section A–A’

weight or fixation of the loading frame. In any case, the loading frame has to be a
stiff construction. For small driving forces, the pile load can also be applied by using
a dead load. A similar setup was, e.g., described in [32] for cone penetration tests:
a sufficiently large dead weight hanging on a crane and connected to the pile head
is lowered with constant speed and penetrates the cone in a displacement controlled
mode.

Vibratory or impact driving tests do not necessarily require a loading frame. For
vibratory tests, a guidewaymaybe desired to apply a constant static force. In this case,
it has to be isolated from the vibration. Guided dead weights or hydraulic/pneumatic
actuators connected to a loading frame can be used to generate the required static
force. Impact driving can be performed by using adapted pile hammers mounted on
the pile head (and guided if necessary) or drop weights.

5.6 Boundary Conditions for the Test Material

In general, the testmaterial can be subjected to twobasic types of boundary conditions
(BC):

• Pressure BCs ensuring constant normal stress and no tangential stress at the bound-
ary

• DisplacementBCswith negligible or at least very small normal displacement of the
boundary and tangential movement governed by the friction coefficient between
test material and boundary
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Legend: : constant normal stress : no displacement

(a) (b) (c) (d)

Fig. 10 Illustration of idealized BC: a BC1, b BC2, c BC3 and d BC4

Following the terminology of calibration chamber testing for penetration resis-
tance, four idealized combinations of boundary conditions at the lateral and vertical
boundaries can be distinguished [22]. They are schematically illustrated in Fig. 10.

In practice, often used BCs are combinations of the above mentioned idealized
ones. These combinations and their practical implementation are illustrated inFig. 11.

Pressure BCs can be realized using pressurized membranes. If multiple mem-
branes are installed along the vertical sides, a pressure gradient can be modeled.
Displacement BCs are usually introduced by frictional contact to a stiff outer con-
struction (test box). In most cases, the BC at the bottom of the soil body is of
displacement type because otherwise, the position of the soil body is not easy to
determine, especially during vibratory tests. The BC at the upper boundary of the
soil body is usually either a free surface or a constant surcharge. Both types, pressure
and displacement BC, are easily implemented in a numerical model of the test as
long as they are clearly defined. Problems concerning pressure BCs can arise from
a not precisely defined volume of the sample. The mechanical implications induced
by the BCs are discussed in Sect. 6.1.

soil

test box

model pile

pressurized lateral
membranes

σh

soil

model pile

frictional
contact

frictional
contact

frictional
contact

σv

(a) (b)

Fig. 11 Illustration of idealized often used combinations of BC: a pressure BC and b displacement
BC with frictional contact
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5.7 Structural Prerequisites for Water-Saturated Conditions

Tests performed with moist soil or even under water-saturated conditions involve
important modifications of the test device. The inner construction has to be imper-
vious to water and noncorrosive. Welded stainless or epoxy-coated/galvanized steel
sheets are typically used for this purpose. All connections (e.g., for the application
of pressure transducers or bolted connections) have to be constructed watertight.

6 Influences of the Test Device on the Results

A model test device will always interact with the test material and influence the test
results. The main focus of interest of the experimentalist is to keep these influences
as low as possible, to describe the occurring interactions and, when the influences
are not negligible, to take them into account. Relevant aspects are influences related
to silo effects, the deformation behavior of the test device during the tests, systematic
friction and—if DIC is used—the role of the observation window.

6.1 Size Effects

It is nearly impossible to achieve free field conditions and penetration behavior in a
test device restricted in size for various reasons (space limitation, investment costs,
etc.). The test results are influenced by the type of the boundary condition and the size
of the test box. In the case of lateral displacement BCs, especially the initial stress
state may be influenced by silo effects which have an impact on the test results. The
evolution of stresses during the test, for example due to the penetration process, can
also be strongly influenced by size effects. The strategy in the central project has
always been to give qualitative indications toward the influence of BCs, to quantify
their mechanical behavior and in case of necessity to quantify their influence based
on numerical simulations.

6.1.1 Silo Effects

Silo effects are well-known to occur in containers filled with granular material that
have large heights compared to their widths (or diameters). The underlying mecha-
nism is the mobilization of friction on the side walls and arching between the sides
[5, 11]. Silo effects are likely to occur in many types of geotechnical experiments
and can potentially strongly influence the initial stress distribution in the test box
and thereby, the subsequent test, see e.g. [3, 19, 32] and Sect. 9. The major conse-
quence of silo effects is an underlinear increase of geostatic stress with depth. In a
given depth, the influence is mainly governed by the ratio of depth to effective radius
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(distance to the boundary) and the contact friction angle between test material and
boundary. A discussion on the evaluation of silo effects and their investigation using
the FEM can be found in [32]. Dynamic effects that can occur during the emptying
of a silo are usually not of primordial importance for model tests since they occur
after the actual test.

6.1.2 Other Size Effects

Themodel dimensions can also have a direct effect on the evolution of stresses during
the penetration process. Probably the greatest efforts have been made to quantify the
influences of the BC on the evolution of penetration resistance with regard to the
interpretation of cone penetration tests (CPT), a similar process to pile penetration
[3, 15, 19, 22]. The magnitude of the influence is related to the ratio of diameter of
the test box dbox and pile diameter dpile: η = dbox/dpile. Beyond a certain threshold
of η = η0, the influence of the BC can be neglected and the response is similar to
what would be expected under free field conditions. The threshold value is mainly a
function of the BC type and the soil type and state (stress and density). A pressure BC
with η < η0 reduces the penetration resistance. In contrast to that, a displacement
BC that is located too close to the penetrating pile induces a jamming effect and
increases the penetration resistance.

6.1.3 Dynamic Boundary Effects

In dynamic experiments like vibratory tests, theBCcan significantly influence the test
results compared to free field behavior, e.g., by reflections at the boundaries. Options
to estimate or even quantify these influences are to variate the BC type or to perform
comparative quasi-static tests. Redundant measurements at different locations are
helpful for a better understanding of the process. However, such dynamic effects
are incorporated in a simulation of the model test as well so the comparison of
experimental and numerical results is still possible.

6.2 Deformation of the Test Device

Stiffness requirements for transducers have already been the subject in Sect. 4. This
section discusses the influences on the test results related to deformations of the test
device and the pile structure.

Generally, it is aimed to minimize the deformation of the test device. For pressure
BCs this is not of primordial importance as long as the BC on the exterior boundaries
of the soil body is correctly applied. For a correct application of displacement BCs,
a deformation of the test device is absolutely to be avoided. Otherwise, a deflection
can lead to significant changes in the stress state (relaxation) that are difficult to
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quantify. Therefore, they cannot be easily taken into account in a numerical simula-
tion of the test. In order to achieve a sufficient structural stiffness of the test device,
usually, solid reinforcements are used. Often, an inner construction containing the
soil body is supported by an exterior strong box or steel framework, [29, 37]. If
there are doubts whether a test device provides a sufficient stiffness, measurements
of the deformations occurring during the tests may bring some clarity. For the test
device described in [29], such measurements have been performed showing that the
deflection of the observation window is about 0.4 mm.

A too low pile stiffness is not desirable for several reasons. If the pile deforms
considerably, it can no longer be treated like a rigid body. As a consequence, a pile
displacement measured at the pile’s head cannot be considered as representative for
the whole pile and force measurements can be significantly influenced. In vibratory
tests, a axial flexibility of the pile or parts of the pile (e.g., pile tip) can lead to
wave phenomena that disturb the measurements. A simple “rule of thumb” for the
validation of the axial rigidity assumption is provided in [28].

6.3 System Friction

System friction can be a relevant problem that needs to be tackled when the mea-
sured forces contain both, earth pressure or soil resistance forces and friction forces
resulting from the apparatus. Principal sources of system friction in this context are
linear guidings and sealings. Systematic friction forces should not exceed about ten
percent of the typical force measured during the tests in order to be neglected. A first
impression of occurring system friction is gained by performing empty runs before
and after the test (translating the pile structure in the empty test device). However,
things can considerably change when the soil comes into play. Even single grains
jammed, e.g., between pile and window can significantly influence the magnitude of
friction. In order to avoid this, it has to be ensured that seals work properly throughout
the whole test.

6.4 Observation Window

It is evident that themodification of the test setup necessary to implement an observa-
tion window has an impact on the test results. Possible influences of the observation
window are:

• a relaxation of effective stress (primarily in normal direction) in the soil directly
adjacent to the window due to a deflection of the window

• friction between soil andwindow inhibiting the soil motion in tangential directions
• a higher hydraulic conductivity in the interface soil-window leading to preferred
flow paths
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All these influences violate the symmetry that is actually intended for the tests
and assumed in numerical back analysis of these. The windows are therefore tried
to be kept as small as possible but should still provide a sufficiently large region
of interest. Material providing low friction in combination with the soil should be
applied, smooth glass surface are the best choice. Like for the surfaces of internal
boundaries, it is always a good idea to evaluate the coefficient of friction between
the two materials, e.g., by means of modified direct shear tests.

7 Test Materials

7.1 Suitable Test Materials and Their Characterization

The focus of our present studies is on pile driving in granular soil. Uniformmedium to
coarse sands are appropriate materials for such tests because they provide a sufficient
particle size tominimize the influences of particle attraction, their size is large enough
compared to the roughness of the sidewalls and they are easy to handle in combination
with sealings, see Sect. 5.4. Their grains sizes are not to large even compared to small
diameter piles (typically 15–50 mm) so that continuum approaches are justified for
the numerical modeling and with regard to the DIC analysis, typical search patches
of about 2–3 mm contain a sufficient number of particles. It is also beneficial that
uniform sands eliminate effects related to erosion. A negative aspect to mention is
the high permeability which complicates the realistic observation of effects related
to partially drained conditions (pore pressure changes in dynamic tests, liquefaction,
etc.).

Without a detailed description of the testmaterial, the best experiment isworthless.
The characterization of the test material has to include the granulometric properties
but also the limit void ratios, the permeability and the mechanical behavior in oedo-
metric and triaxial tests. As the experimentalist has the best knowledge about the
test material it is beneficial to give also indications toward the parameter choice for
often-used constitutive models.

7.2 Transparent Granular Soils

The requirements for a soil to be transparent are transparent particles in a transparent
pore fluid. Both should have the same light refractive index. The displacement fields
in the soil can be captured all over the soil with digital image correlation (DIC). Laser
sheets select individual plains of soil model through the transparent boundaries.

The mechanical properties of the material should be similar to real soil. A promis-
ing approach for a soil and pore fluid is found in [8] with fused quartz particle. The
size of the setup is limited due to transparency degradation of soil and fluid to about
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Table 2 Some properties of
Karlsruhe sand

Mean grain size d50 [mm] 0.55

Coefficient of uniformity CU [–] 1.5

Critical friction angle ϕc [◦] 32.8

Min. void ratio emin [–] 0.549

Max. void ratio emax [–] 0.851

Grain shape Sub-rounded

150mm in depth and also affected by the light refractive index of the transparent
container walls.

7.3 Karlsruhe Sand

In all tests performed in the central project, the same test sand was used, the so-called
Karlsruhe Sand. The sand is received in big bags à 800 kg as a composition of two
grain fractions delivered from the same manufacturer. Since important quantities are
needed for the tests, it has to be ensured that the sand remains the same throughout
the test series. Therefore, a sieve analysis is performed for each big bag. If the grain
size distribution differs to much from the average, the sand of this charge is only
used for pretests.

Table2 shows some important properties of Karlsruhe sand, detailed information
can be found in [29, 34]. Additional test results, e.g., from triaxial tests, have been
distributed to our project partners on request.

8 Deposition Methods

A thorough soil deposition method is an indispensable prerequisite for a homoge-
neous soil sample and is therefore of utmost importance for benchmark experiments.
Sample preparation, particularly for large samples, is a science of its own. Here, we
only mention the most important aspects and refer to the related literature, [4, 6, 9,
14, 35].

8.1 Dry Samples

In most cases, pluviation techniques are used to prepare dry samples. Depending on
the size and shape of the test devices, different setups exist. Most of them pluviate
the soil by means of diffusers that create soil rains for example on a band-shaped
or circular base area. By variation of the deposition intensity and the drop height,
different relative densities can be achieved (from medium dense to dense). Usually,
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it is tried to build up the soil body in horizontal layers similar to a real sedimentation
process. A technique to prepare dry samples in loose state is to build up a cone of soil
like it is done in standard laboratory tests to evaluate the minimum density [2, 7]. A
comparable procedure is used in the Interface test device, for details see [29].

8.2 Saturated Samples

Samples with high degrees of saturation can be obtained by pluviation of dry mate-
rial into deaerated water. This approach is followed in the central project, see [34].
The drop height should be kept constant and the sedimentation distance under water
should be sufficient for the particles to reach their ultimate descent rate. This proce-
dure results in relative densities from loose to medium dense. Higher densities can
be achieved by subsequent cyclic excitation of the test device (e.g., by placing it on
a shaking table). The preparation of large dry samples and subsequent flushing with
water from bottom to top is considered to provide lower degrees of saturation [16,
17]. An advantage of this method is that dense samples can be prepared using the
methods of dry pluviation without the need for further densification (and possibly a
disturbance of the sample).

8.3 Uniformity Control

For each preparation method that is applied for the tests, the ability to achieve a
homogeneous density distribution has to be demonstrated. Cone penetration tests
(CPT) are considered to be an appropriate tool for this purpose since the cone resis-
tance is very sensitive to density changes. A discussion on the interpretation of CPT
in dry soil is provided in [32], other results can be found in [6, 14]. Results of CPTs
under water-saturated conditions are given, e.g., in [34]. At best, after selected tests,
the uniformity of the relative density should be checked via CPTs. Of course, the
soundings can not be performed in the direct region of interest (pile) but only in a cer-
tain distance beside and are likely to be influenced by the preceding tests. However,
significant nonuniformities (e.g., in terms of a stratification) are still detectable.

9 Evaluation and Modeling of the Initial Soil State

A realistic implementation of the initial soil state is indispensable for a successful
numerical simulation of a model test. Only for some experiments, a simple but
nevertheless realistic description of the initial state is possible, e.g. using a K0-state
with homogeneous density distribution. However, in general, the initial state is more
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Fig. 12 Schematic
illustration of the setup and
the instrumentation installed
in the interface test device
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complex and its influence on the test results has to be evaluated. A discussion on
reasons therefore is provided in Sect. 6.

9.1 Observation of the Deposition Procedure

The so-called interface test device is used for different test series in the central
project of GEOTECH, see Fig. 12. It provides a sophisticated instrumentation but
involves significant boundary effects on the test results, see [32]. Notably, during
sand deposition, strong influences of the silo effect are observed. These effects cannot
be avoided but they can be quantified by recording the deposition procedure with the
available instrumentation schematically displayed in Fig. 12.

Results gained during the sand deposition are given in Fig. 13. Figure13a summa-
rizes some important information regarding the test configuration and the averaged
soil state after sand deposition. The vertical position of the bottom of the lowest seg-
ment y0,seg1 determines the starting position of the wall segments. Stress and force
measurements are shown as functions of the current filling height in Fig. 13b–d. A
sand deposition in horizontal layers is indispensable for this presentation. For more



Requirements, Concepts, and Selected Results for Model Tests on Pile Penetration 23

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.25  0.5  0.75  1  1.25  1.5  1.75

F
x,

ij 
[k

N
]

hSand [m]

Fx,1,1/2
Fx,1,3/4
Fx,2,1/2
Fx,2,3/4
Fx,3,1/2
Fx,3,3/4

 0

 0.1

 0.2

 0.3

 0.4

 0  0.25  0.5  0.75  1  1.25  1.5  1.75

F
y,

i [
kN

]

hSand [m]

Fy,1
Fy,2
Fy,3

-20

-17.5

-15

-12.5

-10

-7.5

-5

-2.5

 0
 0  0.25  0.5  0.75  1  1.25  1.5  1.75

σ y
 [k

N
/m

2 ]

hSand [m]

Test Nr. [-] 18-2
Config. [-] III
ID [-] 0.7
Sr [-] 0.0
hsand [m] 1.64
y0,seg1 [m] 0.17

PT1
PT2

(a) (b)

(c) (d)

Fig. 13 Measurements during sand deposition for a test in the interface test device: a general
information, b vertical stress σy at two locations on the bottom plate (PT1 and PT2 in Fig. 12),
c normal bearing forces Fx,i j on the wall segments and d tangential bearing forces Fy,i on the wall
segments (all plotted over filling height hsand, explanation of symbols in Fig. 12)

information about the instrumentation, see Fig. 12 and [29]. The sand was filled in
up to a sand height of 1.64 m. Therefore, only measurements on the lower three wall
segments are shown, the highest wall segment is not in contact with the sand.

Figure13 describes quantitatively the evolution of stresses during the sand depo-
sition and the situation before the test start. Similar results are provided for all tests
of the central project that are simulated by the other subprojects. They can be used
to check an assumed initial state and to estimate discrepancies between test and
simulation results.

9.2 Soil Deposition as a Boundary Value Problem

A better way for obtaining a realistic initial soil state for the simulation of a model
test is to consider the sand deposition procedure as a boundary value problem
and to simulate it previously to the simulation of the actual test. Guidelines for
such simulations are given in [32]. The described simulation technique bases on
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a layer-by-layer increase of soil weight from the bottom to the top of the soil body
starting from a very low stress level. In [32], its applicability for almost all types of
test devices is shown. In many cases, this approach can lead to a more realistic initial
stress state and to better accordance between test and simulation results.

10 Selected Results

In this section, we want to emphasize some of the aspects discussed above with some
experimental results. The results illustrate the role of pile and test box geometry and
the state of the test material in monotonic penetration tests. For detailed results of
vibratory tests, we refer to [34] in this book.

10.1 Size Effects on the Penetration Resistance

In order to demonstrate how size effects can influence the test results depending on
the soil state and the geometry, Fig. 14 compares some results of simple penetration
tests using a full model test setup as illustrated in Fig. 1a. The cylindrical test box has
a diameter of 0.94m and the sand body has a height of 0.85m in all tests. Figure14a
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Fig. 14 Measurements of penetration resistance (pile head force F divided by the cross section of
the tip) in a full model test device: a variation of relative density and saturation (dpile = 33 mm)
and b comparison of two pile diameters, red line dpile,1 = 14 mm and ID = 88%; black line
dpile,2 = 33 mm and ID = 87%
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shows results from tests with a pile diameter of 0.033 m (dbox/dpile = 28.5) and
different relative densities for dry and saturated conditions. The tip shape is tapered
with 60◦ angle of aperture. The evolution of measured pile head force with the pen-
etration depth is plotted. The measured force is interpreted as an averaged vertical
stress below the pile tip (penetration resistance similar to qc in CPT). Figure14b com-
pares for a similar relative density (ID = 87 % resp. 88 %, dry sand) the penetration
resistance for two different pile diameters.

Figure14a clearly indicates the strong influence of relative density on boundary
effects. In loose to medium dense and saturated sand, no significant boundary effects
are observed. The penetration resistance increases with depth which can be probably
attributed to the higher stress level. In dense sand however, a parabolic increase of
the penetration resistance is observed which can only be explained by a jamming
effect due to the fixed boundaries. This jamming leads to smaller penetration depths
in dense sand.

Figure14b illustrates how thegeometry can influence themagnitude of penetration
resistance on the one hand but also how the diameter ratio influences the evolution of
penetration resistance on the other hand. The smaller pile leads to higher localized
stresses below the pile tip (about twice as large as for the larger pile). This geometric
effect may be of great importance when the test results shall be transferred to a larger
(prototype) scale, like it is often done based of centrifuge test results. The other
interesting observation is that obviously boundary effects lead to a qualitatively
different penetration behavior. While the larger pile shows a parabolic increase of
penetration resistance with depth as discussed above, for the small diameter pile
this behavior is observed only on the first 20cm of penetration. In about this depth,
the penetration resistance reaches an inflection point and increases only sub-linearly
afterward. The BC plays only a minor role compared to the larger pile.

10.2 Influence of the Tip Shape

In the majority of numerical models for the simulation of pile penetration, the pile
tip is modeled with a conical shape or even streamlined with curved edges to ensure
a smooth penetration behavior. In practice, many pile types have flat-ended pile
tips which are generally not suitable for most numerical methods. Although some
pile types are installed with a conical pile tip, from a practical point of view this
is not indispensable. Experience shows that anyhow, kinds of wedges form under
flat-ended piles and work as pile tips (bearing capacity mechanism of flat surface).
This observation is used as a justification of the geometrical modeling of pile tips.
The fact that a tip formed in the soil shows a completely different contact behavior
to the surrounding soil than a tapered steel or concrete tip is often omitted in the
discussion.

Figure15 compares results of the penetration resistance in a halfmodel test device.
One of the tested piles is flat-ended, Fig. 8a, b, and the other has a tapered pile tip,
Fig. 5b. Both have the same horizontal cross section, Fig. 8c. With the flat-ended pile
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Fig. 15 Comparison of
measured penetration
resistance in a half model
test device for a flat-ended
and a tapered pile (both tests
dpile = 33 mm, ID = 56%
and Sr ≈1)
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only a penetration depth of 0.25m was reached due to sand ingress between sealing
and observation window, see discussion above. Both tests are performed in saturated
sand with ID = 56%.

The global evolution of penetration resistance is similar in both cases. The ten-
dency is a linear increase of resistance with depth. Some small variations can be
observed indicating slight inhomogeneities of relative density. While the qualitative
penetration behavior is similar for both tests, the magnitude of stress below the pile
tip differs significantly. In a given depth, the stress below the flat-ended pile tip is
about twice as large as for the tapered pile tip. This indicates that when it comes to
the evaluation of pile forces from numerical simulations, special considerations have
to be taken into account for the modeling of the pile.

In order to compare both tests in more detail, the displacements are evaluated
with DIC for a representative section of 10 mm penetration occurring from a depth
of 0.17–0.18 m. This section is highlighted in Fig. 15. Figure16 shows the evalu-
ated incremental horizontal and vertical displacement fields around the pile tip. The
position of the pile tip is plotted in solid line.

In the observed plane, all displacement fields show satisfactory symmetry condi-
tions with respect to the pile center line. Some problems with the DIC evaluation of
the tapered pile can be seen in Fig. 16b where the pattern painted on the pile does not
provide sufficient contrast. In both cases, the soil below the pile tip is pushed laterally
downward. Horizontal displacements concentrate on two ear-shaped zones vertically
below the pile shoulders. The zone of large vertical displacements is located centrally
below the pile tip and has a bubble shape. For the flat-ended pile a soil zone with large
displacements downwards can be seen. This zone works as a tip for the flat-ended
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Fig. 16 DIC results of monotonic penetration tests: a horizontal and b vertical displacements for
a test with tapered pile tip and c, d with flat-ended pile tip (both tests dpile = 33 mm, ID = 56%
and Sr ≈1)

pile. It can be seen that significant differences are observed only directly below the
pile tip. Outside of this zone, the displacement fields are similar which indicates
a qualitatively similar penetration behavior. This experimental observation justifies
the geometrical simplification often used in geometrical models for the simulation
of penetration processes.

11 Final Remarks

In this contribution we have tried to give an overview of the experimental approach
pursued in the central project aiming to provide valuable experimental data for the
validation of numerical simulation techniques. On the basis of long-term experi-
ence in this field, we formulate requirements for the design and performance of the
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experiments and show exemplary solutions to the problems encountered. It was
pointed out that the suitability for comparison with numerical simulations should
always be kept in mind when performing benchmark tests and that the feedback
obtained from this comparison can also lead to an improved interpretation of the
experiments. Last but not least, it is also worth mentioning that redundant measure-
ments, repeated tests and comparative tests, e.g., using another test setup, are crucial
in order to obtain quantitatively reliable test data.

Important issues of future work will be the investigation of vibratory pile driving
in water-saturated sand. Of particular interest is the explanation of the occurrence of
different types of pile driving and modes of vibration. The study will be performed
using half-scale models and an equivalent axisymmetric full-scale model including
an instrumented model pile in order to evaluate the effects of the test setup on the
results.
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Interpretation of Vibratory Pile Penetration
Based on Digital Image Correlation

J. Vogelsang, G. Huber, T. Triantafyllidis and T. Bender

Abstract A combined interpretation of force measurements together with the
evaluation of dynamic motion around the pile based on digital image correlation
(DIC) is performed to identify soil deformation during vibratory pile driving in
model tests. The tests are executed under water-saturated 1g-conditions. We prove
the occurrence of the so-called cavitational pile driving but without the experimental
evidence of the forming of a cavity under the pile tip. Using the DIC results, first
attempts are made to evaluate the volumetric cyclic deformation of soil around the
pile tip during the vibro-penetration. The results show an alternation of contractancy
and dilatancy in proximity of the pile tip with volumetric peak-to-peak strain ampli-
tudes up to 2%. They indicate drained or at least partially drained conditions. Based
on the test results, existing phenomenological interpretations of soil deformation due
to pile penetration are reviewed.

Keywords Model pile · Tip resistance · Vibratory pile driving · Slow and fast
vibratory pile driving · Cavitational and non-cavitational pile driving

1 Introduction

The penetrating pile tip is generally considered to be the principal excitation source of
ground vibrations during vibratory pile driving. This is particularly true when vibro-
injection piles are used. In this case, the grout material around the pile shaft acts as
a lubrication layer and reduces the shear wave propagation from the pile shaft into
the surrounding soil. The pile tip, however, undergoes strong impacts and transmits
pressure and shear waves into the ground. These can provoke densification around
the pile or in water-saturated conditions the tendency of a pore pressure build-up
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if the soil is not too dense. In both cases, neighbouring structures can be affected
by the pile installation process [13]. With regard to the prognosis of settlements of
adjacent structures, the mechanisms of pile driving and especially the interaction
with the surrounding soil around the pile tip have to be understood and analysed.
This pertains also to numerical simulations, where only very few valuable methods
exist to quantitatively investigate pile penetration processes. Notably, for pile driving
in water-saturated conditions, no numerical method is available that which could be
considered as validated and recommendable for practical applications [9].

Usually, for both, theoretical and practical description two basic types of pile
penetration can be distinguished: cavitational (slow) and non-cavitational (fast) pile
driving [2–5, 10]. The distinction relies directly on the evolution of the tip force.
Slow or cavitational vibro-penetration is a term for vibratory pile driving with large
displacement amplitudes. Measurements show that during phases with pile displace-
ment upwards the contact tip force vanishes and at least for pile driving above the
phreatic level, it was concluded that a cavity forms below the pile tip [2, 3, 12, 16].
The soil mechanical interpretation of this type of pile driving is that the soil below
the pile tip undergoes large cyclic deformation and eventually reaches swept-out-
of-memory states (SOM) [3]. As a consequence, the following penetration phase
resembles a virgin loading for the soil below the pile tip and the response is very
soft. Figure1a shows the evolution of tip force during cavitational pile driving mea-
sured in high-quality in-situ tests. During non-cavitational (fast) vibro-driving the tip
force does not vanish in the phase of upward motion, see Fig. 1b. In every repeated
penetration phase, the soil response is very stiff and after small penetration a limit
value of tip resistance is reached. The maximum tip resistance is higher than during
cavitational pile driving.

Another interesting observation, especially during laboratory tests on vibratory
pile driving, is the occurrence of different pile driving modes, e.g. shown in [15].
The distinction is made on the basis of the comparison of the period of characteristic
motion compared to the excitation frequency. Higher modes show more complex
motions and generally lower penetration rates. This topic will not be discussed in
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Fig. 1 Field data of the evolution of tip force during a cavitational and b non-cavitational pile
driving (from [5])
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this contribution because for practical applications the simple modes are of principal
interest.

Although various measurements show the described phenomena, there is still
a lack of information about soil behaviour related to these. Their interpretation,
e.g. provided in [3], is based on coherent and comprehensive reflections about soil
behaviour in triaxial tests, but it is not validated bymeasurements of soil deformation
duringpile driving.One approach for obtaining suchdata are digital image correlation
methods (DIC).1 However, to the authors best knowledge, an application of DIC for
the evaluation of cyclic soil deformation in the vicinity of a vibrating pile is not
available (e.g. [11] or [19] suffer a lack of time resolution), while a great number of
examples can be found for slow, monotonic pile penetration ([7, 19, 20] and many
others). This can be probably attributed to the far greater effort required for the DIC
investigation of cyclic, dynamic processes compared to slow processes. The camera
used has to provide a frame rate of at least 10 images per vibration cycle. For typical
vibration frequencies of about 30Hz, this results in a required frame rate of 300 or
more images per second, which involves substantial investment costs compared to
usual digital cameras that can be used for the observation of slow processes.

2 Test Set-Up

The basic test set-up for the experiments presented here has already been presented in
[17, 19] and is schematically illustrated in Fig. 2. The test device has a half-circular
base area and an acrylic glass panel. It has been used as observation window in the
symmetry plane of the pile. During the test the panel is reinforced with a steel beam
attached in front to minimize deflection. Information concerning the test material
and the deposition method can be found in Appendix 2.

2.1 Model Piles

In previous test series, as well as in many other model pile tests that can be found
in the literature, piles with a rectangular cross section were used. A pile tip of this
type (called pile type I) is shown in Fig. 3a, b. However, with regard to a numerical
back analysis of the tests that often assume axial symmetry this pile geometry causes
problems with the transferability of the results. One could argue that for comparison
of forces the same base area should used while the deformation in the observation
window probably depends more on the pile geometry in this plane.

1The termparticle imagevelocimetry (PIV) is considered to bemore appropriate to hydromechanical
applications. In the geotechnical context where groups of grains of the grain skeleton are used as
markers and not individual particles the authors prefer the general termDIC.However, the evaluation
procedures are usually based on the PIV-method.
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Fig. 2 a Schematic test set-up and b detail photo of the vibrator system with connection to the
pile, elastic suspension from the crane and displacement measurement

Fig. 3 Geometry of the pile tip: a side view, b front view of pile type I and c side view, d front
view of pile type II

In order to overcome these drawbacks, model piles with almost half-circular hori-
zontal cross section (pile type II) were used in the recent tests. They aremanufactured
using the aluminium profiles of a cable channel system. They consist of two parts
that are clipped and bonded together, installed with a head and pile tip and filled
with 2-K-PU-foam. In the “symmetry plane” (contact to the observation window),
two PTFE-stripes ensure a stiff normal contact with the observation window and low
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Fig. 4 Schematic cross
section of pile type II
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friction. Around the two stripes, a layer of felt acts as a sealing against the penetra-
tion of sand grains between PTFE and window. Figure4 shows a schematic sketch
of this feature. A random pattern is painted on the felt in order to provide sufficient
contrast for the evaluation of pile displacement using theDICmethod (so-called seed-
ing). The pile visible width in the “symmetry plane” (x–y-plane, Fig. 2a) is 33mm.
Together with the PTFE, the width into the sand body (y–z-plane) is 19mm. Thus
the cross section of pile type II is 937.5mm2, compared to 855mm2 of a half-circle
with 16.5mm radius. The pile tip of type II is shown in Fig. 3c, d. A schematic cross
section of this pile is given in Fig. 4.

2.2 Vibrator System

Asmall vibratormounted on top of themodel piles is used in the experiments, Fig. 2b.
The vibrator has amass ofmvib = 6734.5g and four pairwise counter-rotating eccen-
tric masses with 37g each. The static moment is 0.005476kgm. The vibrator is servo
controlled and the excitation frequency can be adjusted continuously in the range of
0–50Hz. It is also possible to record the eccenter position. Using a photoelectric light
barrier, the digital output signal varies between two extremes depending on whether
the vertical centrifugal force is oriented downwards or upwards.

2.3 Instrumentation and Data Acquisition

The following instrumention is used in recent tests:

• The force acting between vibrator and pile is measured using a load cell with 10kN
measuring range and linearity errors smaller than 0.5% (HBMType U2A). It has a
stiffness of approximately 200kN/mm, its natural frequency in combination with
the pile is about 10 times higher than the highest vibration frequency. The load
cell is connected between the bottom plate of the vibrator and the pile head.

• The global penetration is measured with a potentiometric displacement sensor
connected to an impeller. A thin steel cable is fastened with a spring to the vibrator
and runs over the rim of the impeller. On the other side, a counterweight of 0.4kg
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tauts the cable, see Fig. 2. The sensor is isolated from the vibrations by a spring
connected in series (low-pass filtering). Using this set-up, the sensor records only
the trend of displacement. Themeasurement range is about 1.5mwith approximate
resolution of 0.25mm.

• The eccenter position is recorded using a light barrier as described in Sect. 2.2.
• An acceleration sensor is attached to the vibrator. It is assumed that the connections
and the pile are stiff enough to consider thismeasurement at the base of the vibrator
as representative for the pile. A PCB 321 A02 acceleration sensor with a range of
±50g is used.

• Image data of the tests are obtained using a high-speed camerawith high-resolution
lens (Basler ACE acA2000-340km). It captures up to 352 images per second with
2040× 1088 pixel resolution. The region of interest is chosen in such a way that
one pixel corresponds to approx. 0.1mmand 5 pixel to a d50 grain. The incremental
displacements (displacements between one image and the following) are evaluated
using the PIV software JPIV [14]. The utilized settings aswell as information about
the summation of incremental displacements and strain calculation are given in
Appendix 1.

The measurements are recorded with a multichannel data acquisition system
(HBMMGCplus) with simultaneous sampling and digital filtering. A sampling rate
of 1200Hz and 200Hz low-pass Bessel filtering was used in the tests.

3 Test Results

We concentrate on a detailed description of cyclic soil behaviour around the vibrating
pile tip on the basis of a selected section of a test with pile type II. In additional tests,
similar results were obtained. The soil is considered to be nearly fully saturated
and has an initial void ratio of e0 = 0.691 which corresponds to a medium density
(ID = 0.53). The sand body has a height of 0.85m and the pile tip is initially located
0.35m below the sand surface. A vibration frequency of 24Hz is used. The vibration
is applied only for a few seconds. In doing so, the global penetration is kept small
because the test results serve as a basis for the validation of FE simulations similar
to those presented in [8] where the simulation technique is restricted to very small
pile penetrations.

3.1 Penetration Mode—Identification of “Cavitational” Pile
Driving?

Figure5 shows the evolution of measured pile head force plotted over the pile dis-
placement evaluated with DIC for a selected time period. Only three characteristic
cycles of pile motion are plotted. The second period of motion is highlighted with
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Fig. 5 a Typical pile head force-displacement-curve for three selected cycles—the pile displace-
ments are obtained from DIC analysis for a representative observation point illustrated in (b)

a solid line. The pile displacement is set to zero an the beginning of the highlighted
cycle (highest pile position in this cycle). Important curve points are marked with
numbers and referred to in the subsequent figures.

All cycles in Fig. 5 are comparable and the period of motion corresponds to the
excitation period. The pile head force changes between tension and compression
during each cycle and the compression force increases significantly towards the
end of the downward motion between the points nr. 2 and 3. The pile penetrates
with approximately 0.4mm per cycle. The evolution of pile head force indicates
cavitational pile driving. In contrast to the tip force, the head force does not vanish
in the phases of upward motion because it also contains the shaft friction and inertia
forces.

In Fig. 5, between the moments 1 and 2 resp. 4 and 5, distinct phases with constant
force can be observed. These phases indicate that the pile tip loses contact to the soil
and a small gap (cavity) forms below the tip. Therefrom the term cavitational pile
driving [3, 4, 16] has been deducted. The tip force vanishes and themeasured force at
the pile head contains only inertial and shaft friction forces (and, possibly, a resulting
pore pressure force for saturated soil). Considering the image data, the forming of
a cavity is not evident. In order to investigate a possible opening and closure of
such kind of cavity, Fig. 6 compares the pile displacements to the displacements of
a material point in the soil 7.5mm below the pile tip for the same time periods like
in Fig. 5.

The zero value of the pile displacements is also used for the soil displacement to
visualize the initial offset. Points closer to the pile tip cannot be evaluated reliably
by DIC. Reasons therefore are the large deformations in this zone and mainly the
material transition involving problems with overlapping DIC search patches.

From Fig. 6a, it can be seen that pile and soil move almost in phase in both
modes. The displacement amplitudes of the pile are larger, but the evolution is very
similar. The different amplitudes are at least partly contributed to a deformation of
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Fig. 6 a Chronological evolution of displacements of the pile and a point below the pile tip for
three selected cycles from DIC and b location of the observation points

the soil between the considered point and the pile tip. Even without this deformation
the amplitude difference of about 0.35mm cannot justify the displacement of about
1mm necessary to mobilize tip resistance (between the moments 1 and 2 in Fig. 5).
In the case of a formation of a cavity below the pile tip, one could also expect to
detect the subsequent impact as a sharp bend in the displacement curve of the soil.
In Fig. 6a nothing like this can be observed, the soil displacements follow the pile
displacements without visible delay. The results indicate that the occurrence of a
cavity is not a prerequisite of the cavitational type of pile driving in saturated soil.

3.2 Deformation Mechanism During Vibro-Penetration

3.2.1 Incremental Displacement Fields

Figure7 shows the isolines of the incremental horizontal and vertical displacement
fields obtained from the DIC analysis. The incremental displacements are separately
calculated for the time periods between the characteristic curve points alreadymarked
in the preceding figures. The current pile position is indicated with thick solid line.

During the first downward phase of pilemotion (from1 to 2), the soil under the pile
is pushed horizontally out- and vertically downwards, Fig. 7a. Vertical displacements
dominate below the pile tip, whereas horizontal displacements occur also beside
and above. The maximum horizontal displacements occur directly below the pile
shoulders. The contours of vertical displacement downwards have a bubble shape
of roughly one pile diameter, located centrally below the pile tip. Also laterally,
above the pile shoulders, some displacements occur. The displacements are directed
upwards, apart from the pile shaft and are more pronounced on the left-hand side
of the pile. From 2 to 3, in the phase where tip resistance is mobilized, only under



Interpretation of Vibratory Pile Penetration Based on Digital Image Correlation 39

 1 to 2: Δux

0.02

0.02

0.02

0.02

0.05

0.05

0.05

0.1

0.1

0.15
0.2

-0.02

-0.02

-0.02

-0.02

-0.05

-0.05

-0.05

-0.1
-0.1

-0.1

-0.15

-0.15

-0.2

-40 -20  0  20  40

x [mm]

-60

-40

-20

 0

 20

y 
[m

m
]

 1 to 2: Δuy

0.05

0.050.125

-0.05

-0.05

-0.05

-0.05

-0.05

-0.125

-0.125

-0.125

-0.125

-0.125

-0.25

-0.25

-0.25

-0.375

-0.375

-0.375

-0.5

-0.5

-0.5

-40 -20  0  20  40

x [mm]

-60

-40

-20

 0

 20

y 
[m

m
]

(a)

 2 to 3: Δux

0.02

0.02

0.02

0.02

0.05
0.05

0.05

0.05
0.05 0.1

0.1

0.1

0.15

-0.02

-0.02

-0.02

-0.02

-0.02
-0.05

-0.05

-0.05

-0.05-0.05

-0.1

-0.1

-0.1

-0.15

-40 -20  0  20  40

x [mm]

-60

-40

-20

 0

 20

y 
[m

m
]

 2 to 3: Δuy

-0.05

-0.05

-0.05

-0.05

-0.05

-0.05

-0.125

-0.125

-0.125-0.125

-0.125

-0.125

-0.25

-0.25

-0.25

-0.25

-0.25

-0.375

-0.375
-0.375

-0.375

-0.5 -0.5

-0.5

-0.5

-40 -20  0  20  40

x [mm]

-60

-40

-20

 0

 20
y 

[m
m

]

(b)

Fig. 7 Isolines of incremental in-plane horizontal and vertical displacements�ux ,�uy (top down)
in vicinity to the pile tip obtained from DIC analysis: column a phase 1 to 2, b 2 to 3 (all values in
mm)

the pile tip significant displacements are observed, Fig. 7b. Compared to Fig. 7a, a
larger soil zone is affected. The zone with significant displacement gradients extends
approximately over twice the pile diameter into the depth. The maximum horizontal
displacements are now located at about half the pile diameter under the pile shoulders.
During upward pile motion, the displacements reverse, Fig. 8c, d. Both qualitatively
and quantitatively, the horizontal and vertical displacements in the phase 4 to 5,
Fig. 8d, resemble to the displacements in the very first phase, from 1 to 2, but with
reversed sign. Compared to the phase 2 to 3, Fig. 7b, the displacements during upward
pile motion concentrate on the direct vicinity of the pile tip.

Considering Figs. 7 and 8, an important result is the symmetry of the displacement
field with respect to the y-axis (pile centre line) in the plane of the observation
window. This symmetry is indispensable for the calculation of volumetric strain
under assumption of axial symmetry (results are given below, Sect. 3.4).
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Fig. 8 Isolines of incremental in-plane horizontal and vertical displacements�ux ,�uy (top down)
in vicinity to the pile tip obtained from DIC analysis: column c phase 3 to 4 and d 4 to 5 (all values
in mm)

In Figs. 7 and 8, some problems related to the DIC evaluation of pile displace-
ments can be observed. Generally, the pile shouldmove like a rigid body but for some
phases displacement gradients can be seen along the pile contours. These problems
are mainly attributed to the displacement jump at the interface pile–soil. Such dis-
continuity disturbs the DIC evaluation in this zone. Also overlapping search patches
containing information of pile and soil can occur where usually the sand provides
more contrast and determines the evaluation of a mixed patch. The evaluation in the
sand should not be affected by these problems. In the literature, the pile region is
often omitted. This indicates that the difficulty related to the observation of such
zones is quite common.
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3.2.2 Incremental Deformation Fields

Figures9 and 10 show the incremental in-plane strain fields obtained fromDIC analy-
sis. Each columns corresponds to one phase with horizontal, vertical and maximum
shear strains�εxx ,�εyy ,�γmax (top down). Themechanical sign convention is used
(compression negative). Figure9 contains the two phases of downward pile motion
and Fig. 10 the upward pile motion.

The calculation of strain is performed basing on the incremental displacement
fields (slightly smoothed using a splinemethod) according to the procedure described
in Appendix 1.

The incremental strains occurring during the first downward phase of motion
from 1 to 2 are plotted in Fig. 9a. In this phase, a bubble-shaped region is subjected
to large shear deformations (greater than 4%). Vertical compression and horizontal
extension are observed directly below the pile tip. On the sides below, the soil is
mainly compressed in horizontal direction. Above the pile tip, horizontal and vertical
compression occurs. The centre of the almost circular region around the pile tip that
undergoes large shear deformation is located a fewmmbelow the pile tip and spreads
also into the zone above the pile shoulder. The consequences of this observation
will be discussed later on. In the phase from 2 to 3, Fig. 9b, only below the pile
tip significant deformation is observed. The extension of the deformed region is
larger compared to phase 1 to 2. The deformation pattern is in accordance to other
results, e.g. [19, 20]. In the short phase of upward motion from 3 to 4, only small
deformations occur, Fig. 10a. In the main observation zone, vertical extension and
horizontal compression below the pile tip have beenmeasured. The shear deformation
concentrates on this bubble-shaped zone. The deformations occurring in the phase 4
to 5, Fig. 10b, are similar to those in phase 1 to 2 but with reversed sign.

The problems with the evaluation of the pile, already detected in Figs. 7 and 8,
are even more evident after strain calculation. However, the focus of this study lies
on the soil region that provides an excellent speckle and is much better evaluated.
Only a small zone of a few mm vertically below the pile tip is disturbed and cannot
be interpreted. If an improved evaluation of the pile itself is desired, this could be
achieved by two separate evaluations: one for the pile and one for the soil region.

3.3 Displacements Trajectories During Vibro-Penetration

In Fig. 11, the displacement trajectories of selected material points around the pile
tip are presented. Figure11e shows a schematic overview of the initial position of the
four points with regard to the pile tip. The initial position of the pile and its current
position at the beginning of the highlighted cycle (point 1) are illustrated aswell. Point
A is located below the pile tip while the points B, C and D are chosen slightly beside
the pile at different vertical positions. Figure11a plots the displacement trajectories
together for all four points for a time period of one second after the start of the
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Fig. 9 Isolines of logarithmic incremental in-plane horizontal, vertical and maximum shear strains
�εxx , �εyy , �γmax (top down) in vicinity to the pile tip during the downwards motion of the pile
calculated on the basis of DIC results: column a phase 1 to 2, b 2 to 3 (all values in %)
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Fig. 11 Displacement trajectories of selected points in vicinity to the pile tip: a overview,
b–d individual graphs for each point during three selected cycles and e location of the selected
points

vibration. Figure11b–d plot the trajectories of B, C and D separately for the same
time period as in Figs. 5 and 6. Although different axis ranges are used the trajectories
are equally scaled in size. Point A is omitted because the point moves mainly in
vertical direction and a displacement trajectory is not an appropriate visualization
for such kind of displacement.

From Fig. 11a, it can be seen that the point Amoves primarily in vertical direction
and is pushed downwards by the pile. The other points undergo significantly smaller
displacements with stronger horizontal component and larger horizontal amplitudes.
They have a very similar displacement trend. Considering the evolution of cyclic
displacements in Fig. 11b–d, a clear relation to the phases identified in the evolution
of pile head force during each cycle can be observed. In the first downward motion
phase, points nr. 1–2, the soil moves outwards, apart from the pile tip. This means a
displacement upwards for point B, sidewards for C and diagonally downwards for D.
In the tip resistance phase, nr. 2 to 3, all points are pushed almost linearly down- and
sidewards. During the short-time increment from 3 to 4, the displacements reverse
and the soil moves along a short section of the path followed before. Subsequently,
the displacement kinks and the soil moves towards the pile tip: B and C side- and
downwards and D only sidewards.
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Fig. 12 Logarithmic volumetric strain εvol calculated on the basis of DIC results assuming axial
symmetry plotted versus the pile displacement upile for four points during three selected vibration
cycles

3.4 Cyclic Volumetric Soil Behaviour During
Vibro-Penetration

Figure12 illustrates the volumetric soil deformation εvol around the pile tip exemplary
for the points A–D defined in Fig. 11. Assuming axial symmetry, εvol is calculated
according to the procedure given in Appendix 1. The volumetric strain is plotted over
the pile displacement to visualize the connection to the force-displacement curve and
to keep the points comparable. Pile displacement and volumetric strain are set to zero
at the beginning of the highlighted cycle.

In all four cases, the volumetric strain oscillates considerably during every cycle,
which proves at least partially drained conditions. This is an important result because
it shows that a numeric code suitable for a simulation of the experiment has to
deal with dynamic consolidation. The largest peak-to-peak amplitude of volumetric
strain is observed for points A (1.7%). The others points show smaller amplitudes
of 0.3–0.9%. Almost always a reversal of the pile motion is accompanied by a
strain reversal and contractant soil behaviour. Towards the end of each downward
and upward motion, the tendency to dilatancy is observed. During downward pile
motion, the mobilization of dilatancy corresponds to the phases with strong increase
of tip resistance (between the points 2 and 3 in Fig. 12).
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4 Interpretation and Postulated Mechanism

During cavitational pile driving, the increase of tip resistance is slow compared
to non-cavitational pile driving. The explanation given in [3] is that in the upward
motion of the pile, the soil is subjected to large deformationwith change of sign of the
shear stress compared to the preceding penetration phase. The ratio of principal stress
reverses and the horizontal stress is greater than the vertical stress. As a consequence
of this, the soil response in the new penetration phase is very soft. The assumption
for the phases without tip force is the opening and closure of a cavity. The time when
the tip force is restarting to increase is interpreted as the moment of establishing new
contact.

This explanation seems reasonable and comprehensive for pile driving in dry
soil but it is found that the qualitative evolution of pile head force measured in our
experiments under water-saturated conditions is very similar. As described above
the opening and closure of a cavity below the pile tip is unlikely to occur in the
experiments and cannot explain the long phases without tip resistance (phases 1 to
2 resp. 4 to 5). Such cavity would also stand in contrast to the fact that significant
soil deformation is observed in these phases (especially in the region laterally above
the pile tip). When tip resistance is mobilized (phase 2 to 3), the soil deformation
concentrates on the region below the pile tip.

A possible explanation for this deformation mechanism is a type of pumping
effect. When the pile performs large displacements upwards, it frees some space
under the pile tip which provokes suction. The pore fluid has the tendency to fill
this space and flows towards the pile tip. This creates drag forces in the soil and
the grains have to follow the fluid motion. When the pile motion reverses, also the
drag forces reverse and the soil is pushed radially apart by the pore fluid. During
these phases, the effective stress in the soil in direct vicinity to the pile tip is very
low and the soil-water mixture behaves more like a viscous fluid. The pile tip does
not necessarily have effective contact with the grain skeleton. The process is very
similar to the closure and expansion of a spherical cavity. Then suddenly, the grain
skeleton is reformed, load transfer between pile and soil is enabled and tip resistance
is mobilized. A large zone below the pile tip is sheared and can mobilize dilatancy.
Necessary conditions for this mechanism are large displacement amplitudes and
partially drained conditions.

5 Conclusions and Outlook

Vibratory pile driving was investigated using model tests in a half-cylinder-shaped
test device with an observationwindow in the symmetry plane. The pilemotion along
this window was recorded using a high-speed digital camera. The pile displacements
and deformation of saturated soil were evaluated by means of DIC.
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Important conclusions from the experimental results are:

• The evolution of tip resistance observed in the test results presented above indicates
cavitational pile driving. The characteristic points on the piles’ force-displacement
curve correlate with sudden changes in the directions of displacement/deformation
in the soil.

• Under water, the forming of a gap or cavity is not a necessary condition for the
occurrence of slow or cavitational pile driving. A sufficient pile displacement
upwards and the vanishing of the tip force as a result of this seems to be a more
appropriate condition. However, it is of course possible that a cavity forms below
the pile under different conditions (drainage, displacement amplitude, etc.).

• On the basis of the displacement and deformation fields around the pile tip eval-
uated by DIC in the observation plane, the symmetry of the process with respect
to a plane perpendicular to the observation plane through the centre line of the
pile was confirmed. Assuming axial symmetry with respect to the centre line of
the pile, the calculation of volumetric strains was performed and the occurrence
of the alternation of contractant and dilatant behaviour was demonstrated.

• In the phaseswith negligible tip resistance—usually contributed to the opening and
closure of a cavity—the pile can be in contact with the soil, but without significant
effective load transfer. The deformation mechanism in these phases is similar to a
spherical cavity expansion. A possible explanation is the occurrence of a pumping
effect induced by the cyclic pile motion. This provokes cyclic pore fluid flow that
drags and pushes the soil simultaneously to the pile motion. The increase of tip
resistance coincides with a dilatant soil behaviour below the pile tip.

Important topics of future work are the direct measurements of tip resistance
together with pore pressure in vicinity to the vibrating pile tip. Related to these
measurements, the actual degree of saturation obtained from the sample preparation
method has to be reviewed. The work presented here concentrates on the so-called
cavitational pile driving. Further studieswill be carried out on other types of vibratory
pile driving such as non-cavitational pile driving. Using the current test set-up, a
surcharge load has to be applied therefore in order to reduce the upward pile motion.
Another interesting field of research is the investigation of higher vibration modes. It
is of practical interest to avoid thesemodes, therefore the reasons for their occurrence
will be studied using the approach described in this contribution.

Appendix 1: Summation of Incremental Displacements
and Strain Calculation Procedure

The DIC procedure evaluates a series of images and calculates the incremental dis-
placements �u(i)

DI C (displacements occurring between image i-1 and i) for a fixed
grid in eulerian coordinate system. Search patches of 32× 32 pixel that are detected
in zones four times as large are used for this evaluation. In order to obtain the total
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displacements u(i) = u(X, ti )with respect to a reference configuration defined in the
first image, the incremental displacements have to be summed. Therefore, material
points X defined in the reference configuration are followed throughout the image
series. Since a material point of the reference configuration lies generally not on a
mesh point of the current configuration, its incremental displacement �u(i) has to
be interpolated using the information of the four surrounding points, �u(i)

DI C,I−I V .

Linear interpolation functions are used. The incremental displacements �u(i) are
then added to the total displacement of the preceding step to obtain the current total
displacement u(i). This procedure is illustrated in Fig. 13a.

Similar to [20], for strain calculation a triangular 3-node element with linear
interpolation functions is used, Fig. 13b.

For this element the deformation gradient F is calculated as the derivative of the
current position x(i) = [x (i), y(i)]T with regard to the reference configuration X =
x(0) = [X, Y ]T . Linear interpolation functions N j are used for the approximation of
the current configuration.

F = ∂x(i)

∂X
=

3∑

j=1

∂ N j

∂X
x(i)

j (1)

The derivatives of the interpolation functions can be calculated from the nodal coor-
dinates in the reference configuration:

∂ N1

∂ X
= 1

2Ae
(Y2 − Y3); ∂ N1

∂Y
= 1

2Ae
(X3 − X2) (2)

∂ N2

∂ X
= 1

2Ae
(Y3 − Y1); ∂ N2

∂Y
= 1

2Ae
(X1 − X3) (3)

∂ N3

∂ X
= 1

2Ae
(Y1 − Y2); ∂ N3

∂Y
= 1

2Ae
(X2 − X1) (4)
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With the element area Ae:

Ae = 1/2[X1(Y2 − Y3) + X2(Y3 − Y1) + X3(Y1 − Y2)] (5)

The Right Cauchy-Green-deformation tensor U is obtained as follows:

U = (FT · F)1/2 (6)

The principal in-plane (Hencky-)strains and the maximum in-plane shear strain
are obtained from the eigenvalues UI/I I of U. Therefrom, the volumetric strain εvol
is calculated assuming axial symmetry (ux =̂ur ).

εI = lnUI ; εI I = lnUI I ; (7)

γmax = εI − εI I ; εvol = εI + εI I + ln(1+ ux/X) (8)

Appendix 2: Test Sand, Deposition Method and Uniformity
Control

A poorly graded medium quartz sand with sub-rounded grains is used in the tests. A
typical grain size distribution and somegranulometric properties are given inFig. 14a.
The minimum and maximum void ratios at negligible stress level are emin = 0.549
and emax = 0.851. From permeability tests with constant head, the dependence of
the coefficient of permeability k on the porosity n was evaluated. Results are given in
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Fig. 14b. For a rough estimation of the permeability k as a function of the porosity n,
the well-known Kozeny/Carman-equation [1, 6] was fitted to the test results, Eq. 9:

k(n) = 1

308
· γw

ηw

· n3

(1− n)2
· d2

w (9)

with the specific weight of water γw = 10kN/m3, the dynamic viscosity of water
ηw = 1.137 × 10−3 kNs/m2 and the effective grain size dw = 0.5mm.

For the preparation of the vibratory pile driving tests, the model pile is fixed in the
starting position and approximately half of the test device is filled with deaired water.
The dry sand is pluviated onto the water surface using a travelling diffusor which is
manually operated in such a way that the sand sediments in horizontal layers. This
procedure results in relative densities of about 40%. Higher densities are achieved
by dynamic excitation of the test device, e.g. by applying multiple hammer blows
against the base.

For numerical simulationof the tests it is essential to obtain a homogeneous density
distribution. In order to control the uniformity of the sample after the described
deposition and densification method a series of cone penetration tests (CPT) was
conducted. The same set-up like in [18] was used. The results are shown in Fig. 15a
and the position of the CPTs in Fig. 15. The same sample was used for all six CPTs.
The sample was densified step-wise and after each densification two opposited CPTs
with respect to the symmetry plane y–z were performed. As expected, the cone
resistance qc increases for higher relative densities. The three CPT-pairs show very
similar results although one could expect that the second CPT for each density is
influenced by the preceding. The results indicate that the preparationmethod provides
homogeneous samples and can be used for benchmark experiments.
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Dynamic Problem for the Deformation
of Saturated Soil in the Vicinity
of a Vibrating Pile Toe

S. Chrisopoulos, V.A. Osinov and T. Triantafyllidis

Abstract A numerical study conducted recently by the authors showed that the
vibration of a pile in saturated granular soil leads to the formation of a zone with nearly
zero effective stresses (liquefaction zone) around the pile toe. The dynamic problem
was solved with the finite-element program Abaqus/Standard using a hypoplasticity
model for soil with the assumption of zero soil permeability and without a mass force.
A question which still remained open was the influence of the soil permeability and
the gravity force on the solutions. In the present study, the problem is solved with
nonzero permeability and gravity, and the solutions are compared with those obtained
earlier. For this purpose, a user-defined element has been constructed in Abaqus to
enable the dynamic analysis of a two-phase medium with nonzero permeability. The
solutions show that high permeability and gravity do not prevent the formation of a
liquefaction zone around the pile toe in spite of the fact that a build-up of the pore
pressure is inhibited by the pore pressure dissipation.

Keywords Saturated soil · Vibratory pile driving · Liquefaction

1 Introduction

Vibratory pile driving produces cyclic deformations in the surrounding soil and may
bring about unexpectedly large displacements of neighbouring structures. An exam-
ple can be found in [8], where a significant displacement of a retaining wall in an
excavation pit was observed after—and presumably as a consequence of—the instal-
lation of vibratory driven piles in saturated soil at the base of the pit.

To model the deformation of saturated soil in the vicinity of a vibrating pile,
numerical studies were recently carried out with the use of two types of constitutive
models [2–4, 6]. A numerical analysis of the first 20–30 cycles of vibration was
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performed with a hypoplasticity model (low-cycle problem) and showed that the
vertical vibration of a pile in saturated soil leads to the formation of a zone with nearly
zero effective stresses (referred to as liquefaction zone) in the immediate vicinity of
the pile toe [2]. The further evolution of the incipient liquefaction zone for a large
number of cycles (high-cycle problem) was simulated numerically with the use of a
so-called explicit cyclic constitutive model. It was shown how the liquefaction zone
grows in size with the increasing number of cycles [3, 4] and how the stress state
near a concrete wall may be changed by a vibrating pile [6].

In the method presented in [3, 4, 6], input data for the high-cycle problem (an
initial stress state and stress amplitudes around the pile) are estimated from the
solutions to the low-cycle problem. The latter was solved in [2] with the finite-element
program Abaqus/Standard with the assumption of locally undrained conditions (zero
soil permeability) and without a mass force. The question still remained open as to
how nonzero soil permeability and the gravity force would influence the solutions.
Abaqus does not provide a built-in procedure for the dynamic analysis of fluid-
saturated solids with nonzero permeability. These limitations can be overcome by
the construction of a user-defined element [7] or by other means as proposed, for
instance, in [5, 9].

The objective of the present study is to construct a user-defined finite element
in Abaqus for the solution of the dynamic problem for a fluid-saturated solid with
nonzero permeability, to solve the low-cycle problem with nonzero permeability and
gravity and to compare the solutions with those obtained in [2]. The problem will be
solved, as in [2], in the two-dimensional axisymmetric formulation.

2 Governing Equations

Saturated soil is considered here as a two-phase continuum consisting of a solid
skeleton and a pore fluid. The skeleton material is assumed to be incompressible. The
dynamic problem is formulated within the framework of the so-called u-p approxi-
mation [10, 11]. In this approximation, the difference in the accelerations of the solid
and fluid phases is neglected, while the difference in the displacements and velocities
is not. Furthermore, the material time derivative of the pore pressure with respect to
the fluid phase is replaced with the material time derivative with respect to the solid
phase. The equations of motion for the whole continuum and for the fluid phase are
written as:

div σ − grad p + � g = �ü, (1)

−grad p + � f g − 1

k
� f gw = � f ü, (2)

where σ is the effective stress tensor (the normal components are negative for com-
pression), p is the pore pressure (positive for compression), u is the displacement
vector of the skeleton, � is the bulk density of the medium, � f is the density of the
fluid phase, g is the mass force vector, g is the acceleration due to gravity, k is the soil
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permeability (m/s), w is the seepage velocity (the fluid velocity relative to the solid
phase multiplied by the porosity) and the dot stands for the material time derivative
with respect to the solid phase. The fluid density, � f , and the bulk density of the
medium,

� = (1 − n)�s + n� f , (3)

are treated as constants. Here �s is the density of the solid phase and n is the porosity.
In the numerical calculations in this paper, �s = 2650 kg/m3 and � f = 1000 kg/m3.

The constitutive equation for the pore pressure reads

ṗ = − K f

n
div (w + u̇) , (4)

where K f is the bulk modulus of the pore fluid.
The system (1), (2), (4) should be complemented by a constitutive equation for

the effective stresses. In this study, we use a hypoplasticity model with intergran-
ular strain [1] with the constitutive parameters of Karlsruhe sand. The constitutive
parameters can be found in [2, 4].

The numerical solution of the problem with the hypoplasticity model requires
two supplements to the calculation of stresses: a small-stress correction and viscous
stresses. The tensile deformation of a hypoplastic material results in zero mean stress
at a finite strain. The numerical integration of the hypoplasticity equation in this case
will yield a positive (tensile) stress, which will stop the computation. For this reason,
the following small-stress correction is introduced in the numerical algorithm: if
the current effective stress tensor σ is such that tr σ/3 > σ∗, where σ∗ < 0 is a
prescribed small stress (e.g. −0.01 kPa), a hydrostatic stress �σ is added to σ, where
�σ is such that tr(σ + �σ)/3 = σ∗.

Although the small-stress correction prevents the mean stress from being positive,
the computation may still stop because of the loss of convergence during the implicit
time integration. Convergence is maintained by introducing an additional viscous
stress

σvis = λ I tr ε̇ + 2μ ε̇, (5)

where ε̇ is the strain rate, I is the unit tensor, and λ,μ are viscosity coefficients. The
values of λ,μ in the calculations were in the range between 0.002 and 0.02 kPa · s.
These values provide convergence and, at the same time, do not strongly influence
the solution.

3 Weak Form of the Equations

The unknown nodal variables in the finite-element formulation of the problem are
the displacement components and the pore pressure. To obtain a weak form of the
equations, we write the scalar product of (1) and a test function δu and integrate over



56 S. Chrisopoulos et al.

a domain �. After integrating by parts, we obtain

∫

�

[
σ : grad δu − p div δu + � (−g + ü) · δu

]
d� −

∫

�t

ttot · δu d� = 0, (6)

where �t is the part of the boundary where the total traction ttot acting on the body is
prescribed. On the rest of the boundary, the displacements are prescribed and δu = 0.

Similarly, multiplying (4) by a test function δ p and integrating over the domain
�, then integrating by parts and using (2) to eliminate w in the volume integral, we
arrive at

∫

�

[(
n

K f
ṗ + div u̇

)
δ p + k

g

(
1

� f
grad p − g + ü

)
· grad δ p

]
d�

−
∫

�q

q δ p d� = 0, (7)

where �q is the part of the boundary where the fluid flux q = −w·n is prescribed (n is
the outer normal vector). On the rest of the boundary, the pore pressure is prescribed
and δ p = 0.

Equations (6), (7) were used to construct a user-defined finite element. The discrete
form of the equations and the time integration scheme are described in Appendix.

4 Numerical Verification of the User Element

In order to verify the user-defined finite element, a spherically symmetric problem has
been solved with two different numerical methods: with the finite-element method
as a two-dimensional axisymmetric problem using the present user element and with
the finite-difference method as a one-dimensional problem. The boundary of the
computational domain consists of an inner and an outer spheres with radii of 15 cm
and 5 m, respectively. The initial stress state is homogeneous and hydrostatic with
a mean effective stress of −50 kPa and a pore pressure of 50 kPa. The problem
is solved with an initial void ratio of 0.6 and a soil permeability of 10−3 m/s. The
bulk modulus of the pore fluid, K f , is taken to be 100 MPa. The inner boundary is
impermeable with the prescribed radial displacement

ur (t) = uamp [1 − cos (2π f t)] , (8)

with uamp = 0.1 mm and f = 34 Hz. The outer boundary is impermeable with zero
displacement. The size of the finite elements in the two-dimensional finite-element
mesh varies from 1.2 cm near the inner boundary to 20 cm near the outer boundary.
The time increment is equal to 10−4 s. Figure 1 shows the stress components obtained
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Fig. 1 Verification of the user element. The radial (σrr ) and circumferential (σφφ) effective stress
components and the pore pressure (p) are shown as functions of time at a point with a radius of
20 cm. FEM the finite-element method with the user element, FDM the finite-difference method

with the two methods at a point located at a distance of 20 cm from the centre of the
spheres. The two solutions coincide with good accuracy.

5 Boundary Value Problem

Consider a cylindrical closed-ended pile with a diameter of 0.3 m embedded in
saturated soil as shown in Fig. 2. The initial stress state and the shape of the com-
putational domain depend on whether the problem is solved with or without a mass
force (gravity). In the problem without gravity, the initial effective stress is hydro-
static and homogeneous with a mean stress of −50 kPa. The pore pressure is also
homogeneous and equal to 50 kPa. The outer boundary of the computational domain
is a half-circle with a radius of 10 m and a centre near the pile toe. In the problem with
gravity, both the initial effective stresses and the pore pressure satisfy static equilib-
rium and change linearly with depth, with the effective stresses being hydrostatic.
The computational domain is rectangular with a depth of 15 m and a width of 10 m.
The upper boundary corresponds to a free ground surface. The pile length (from the
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Fig. 2 Boundary conditions and finite-element mesh near the pile toe

toe to the free surface) is 5 m. This gives approximately the same value of the initial
mean effective stress near the pile toe (−50 kPa) as in the case without gravity. The
size of the finite elements in the mesh varies from 1.5 cm near the pile toe to about
35 cm near the outer boundary. The initial void ratio is in all cases homogeneous and
equal to 0.6. The bulk modulus of the pore fluid is taken to be equal to that of pure
water: Kf = 2.2 GPa.

The pile is assumed to vibrate in the vertical direction about a fixed position
without penetration. The pile vibration is simulated by prescribing a time-harmonic
vertical displacement with a given amplitude ua and a frequency of 34 Hz as a
boundary condition for the soil at the pile-soil interface, see Fig. 2. Furthermore,
this boundary is taken to be impermeable. The outer boundary, except for the free
surface in the case with gravity, is also impermeable and equipped with the dynamic
infinite elements of Abaqus in order to minimize wave reflection from the boundary.
The elastic parameters required for the infinite elements are calculated from the
small-strain stiffness of a saturated hypoplastic solid with zero intergranular strain
for given stresses and void ratio at the corresponding points of the boundary. The
time increment is equal to 10−4 s and corresponds to 300 increments per cycle.



Dynamic Problem for the Deformation of Saturated … 59

6 Numerical Results

As mentioned in Introduction, the objective of the present study is to investigate the
influence of the soil permeability and the gravity force on the solutions as compared to
those obtained in [2] with locally undrained conditions and without a mass force. We
begin with the gravity-free case and solve the problem for a pile vibration amplitude
of 2 mm with three values of permeability: k = 0, 10−4 and 10−3 m/s. Figures 3,
4 and 5 show the distributions of the mean effective stress near the pile toe after 5
and 20 cycles. The darkest area in figures is a low-stress zone (liquefaction zone)
in which the mean effective stress lies between 0 and −1 kPa, i.e. does not exceed
2 % of the initial value (−50 kPa). Similar to the solutions with locally undrained
conditions (k = 0) obtained in [2], the effective stress around the pile toe is reduced
to a nearly zero level also in the case of nonzero permeability. Even a high value
of permeability (10−3 m/s) does not prevent the formation of a liquefaction zone
around the pile toe.

Although the distributions of the effective stress for different values of permeabil-
ity are similar, it is reasonable to expect differences in the pore pressure evolution,
namely that the increase in the pore pressure around the pile in the case of high soil
permeability will be inhibited by the pore pressure dissipation. This conjecture is
confirmed by the calculations. Consider a point in the low-stress zone beneath the
pile toe (point P in Fig. 6 with θ = 5◦). Figure 7 shows the pore pressure and the mean
total stress at this point as functions of time for the same problem as in Figs. 3, 4 and
5. In the locally undrained case, the pore pressure increases from 50 to 100 kPa within
a short transient phase of 0.1 s and then oscillates about this level. Since the effective

Fig. 3 Mean effective stress near the pile toe after 5 and 20 cycles. k = 0, ua = 2 mm
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Fig. 4 The same as in Fig. 3 for k = 10−4 m/s

Fig. 5 The same as in Fig. 3 for k = 10−3 m/s

stress is reduced to zero, the total stress oscillated about −100 kPa. The average total
stress in the liquefaction zone thus remains at the same level as before the vibration.
The situation changes in the case of high permeability. For k = 10−3 m/s, the pore
pressure does not increase as much as before and eventually oscillates about 55 kPa.
The excess pore pressure amounts to only 5 kPa. Accordingly, the average total stress
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Fig. 6 Control points P(θ), P1, P2 in the liquefaction zone

 0

 20

 40

 60

 80

 100

 120

 140

 0  0.1  0.2  0.3  0.4  0.5  0.6

p 
[k
Pa

]

time [s]

k = 0

10-4 m/s

10-3 m/s

-180

-160

-140

-120

-100

-80

-60

-40

 0  0.1  0.2  0.3  0.4  0.5  0.6

σ -
p 

 [
kP

a]

time [s]

k = 0

10-4 m/s

10-3 m/s

Fig. 7 Pore pressure (p) and mean total stress (σ − p) in the liquefaction zone beneath the pile toe
as functions of time for different values of the soil permeability. ua = 2 mm

is reduced to −55 kPa. Thus, the influence of the soil permeability on the solution is
that it reduces the total stress level around the pile.

To estimate the stress amplitude around the pile, a number of control points
in the liquefaction zone were introduced in [2] as shown in Fig. 6. Each point is
characterized by an angle θ and a distance from the pile tip. Note that the distances
are different for different pile displacement amplitudes ua , see [2] for detail. Here
we consider the same control points as in [2] and plot the amplitude of the mean
total stress, σa , at these points as a function of θ for various values of permeability.
Figure 8 shows the result. Generally, the stress amplitude decreases with increasing
permeability. The influence of permeability is weak for a small pile displacement
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amplitude ua and becomes stronger for larger values of ua . The estimation of the
stress amplitude in the liquefaction zone is needed for the solution of the high-cycle
problem with the use of an explicit cyclic model, see [3, 4, 6].

The problem with gravity has been solved for a pile displacement amplitude of
2 mm and two values of permeability: 10−4 and 10−3 m/s. Figures 9 and 10 show
the distributions of the mean effective stress after 5 and 20 cycles. A comparison of
Figs. 9 and 10 with Figs. 3, 4 and 5 reveals that there is no significant difference in
stress distribution between the solutions with and without gravity. Soil liquefaction
near the pile toe occurs in the presence of the mass force as well. A difference is only
observed in the stress amplitudes beneath the pile toe. A comparison of Fig. 11 with
the corresponding plot in Fig. 8 shows that the total stress amplitude beneath the pile
toe increases from about 3 to 5 kPa if gravity is taken into account.

Numerical solutions obtained in [2] with locally undrained conditions revealed
the accumulation of permanent displacements in the form of rotation about a station-
ary centre located in the liquefaction zone (rotational drift). The condition for the

Fig. 10 The same as in Fig. 9 for k = 10−3 m/s

Fig. 11 Amplitude of the
mean total stress, σa , at the
control points in the problem
with the gravity force.
ua = 2 mm
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rotational drift to occur was found to be a sufficiently high frequency. Calculations
made in the present study have shown that the rotational drift becomes weaker with
increasing soil permeability and practically disappears at k = 10−3 m/s. Therefore,
a sufficiently low value of the soil permeability is also a condition for the rotational
drift.

7 Conclusion

The problem of deformation of saturated soil in the vicinity of a vibrating pile toe
investigated numerically in [2] with locally undrained conditions has been extended
in the present study to the case of nonzero soil permeability. For this purpose, a user-
defined element has been constructed within the finite-element program Abaqus to
enable the dynamic analysis of a two-phase medium in the u-p approximation. In
addition, the gravity force has been included in the analysis. The main result obtained
in [2] is that the effective stress near the pile toe is reduced to zero after several cycles
of vibration and the soil thus becomes liquefied. The present study has shown that
this holds true for the problem with gravity and nonzero soil permeability (up to
10−3 m/s) as well. The difference is that, in the case of high permeability, a build-up
of the pore pressure that accompanies the effective stress reduction is small because
of the pore pressure dissipation, so that the total stresses are reduced as well as the
effective stresses. Nonzero soil permeability also reduces the amplitude of the total
stress oscillation near the pile toe to an extent that depends on the pile displacement
amplitude.
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the Research Unit FOR 1136 ‘Simulation of geotechnical construction processes with holistic
consideration of the stress strain soil behaviour’, Subproject 6 ‘Soil deformations close to retaining
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Appendix: Finite-Element Discretization and Time
Integration

The unknown functions u and p are approximated with the help of shape functions
N u

I , N p
J :

u = N u
I uI , p = N p

J pJ , (9)

where uI is the nodal displacement vector at node I , and pJ is the nodal value of the
pore pressure at node J . The same shape functions are used for the test functions:

δu = N u
I δuI , δ p = N p

J δ pJ . (10)
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Substituting (9), (10) into (6), (7) yields a system which contains the nodal vari-
ables uI , pJ and their time derivatives:

∫

�

(
σ · grad N u

I − �N u
I g

)
d� − pJ

∫

�

N p
J grad N u

I d�

+ üK

∫

�

�N u
I N u

K d� −
∫

�t

ttot N u
I d� = 0, (11)

ṗL

∫

�

n

K f
N p

L N p
J d� + u̇K ·

∫

�

N p
J grad N u

K d�

+ pL

∫

�

k

g� f
grad N p

L · grad N p
J d� −

∫

�

k

g
g · grad N p

J d�

+ üI ·
∫

�

k

g
N u

I grad N p
J d� −

∫

�q

q N p
J d� = 0. (12)

Let Ut be a column vector of the nodal variables uI i , pJ at time t , and U̇t , Üt be
its time derivatives. With these vectors being known, Abaqus solves a system

F (Ut+�t ) = 0 (13)

for Ut+�t , where a column vector F is a (generally nonlinear) function of Ut+�t

to be specified by the user. The function F also involves U̇t and Üt . The solution
proceeds iteratively. If Ui

t+�t is an i th approximation, the next approximation is

Ui+1
t+�t = Ui

t+�t + Ci+1, (14)

where the correction term Ci+1 is found from the linear system

A
(

Ui
t+�t

)
Ci+1 = −F

(
Ui

t+�t

)
(15)

with a matrix A = ∂F/∂Ut+�t . Equation (15) is obtained by expanding (13) in a
Taylor series about Ui

t+�t .
Now we show how the time integration of (11), (12) leads to (13). Equations (11),

(12) can be written as
MÜ − G = 0, (16)

with a constant mass matrix M and a vector G which depends on U̇ , U and the stress
field σ. Note that the elements of M which are multiplied by p̈J are equal to zero
because Eqs. (11), (12) do not contain p̈J . According to the Hilber–Hughes–Taylor
integration scheme employed in Abaqus/Standard, (16) is written as
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MÜt+�t − (1 + α)Gt+�t + αGt = 0, (17)

where α is a parameter (−1/3 ≤ α ≤ 0). The implicit time integration scheme for
U is

Ut+�t = Ut + �t U̇t + �t2
[(

1

2
− β

)
Üt + βÜt+�t

]
, (18)

U̇t+�t = U̇t + �t
[
(1 − γ) Üt + γÜt+�t

]
, (19)

with parameters β = (1 − α)2/4, γ = 1/2 − α. With known Ut , U̇t , Üt , relations
(18), (19) give U̇t+�t and Üt+�t as functions of Ut+�t . These allows us to write
Üt+�t and Gt+�t in (17) as functions of Ut+�t . It remains to express σt+�t in
Gt+�t also as a function of Ut+�t . We write

σt+�t = σt + �σ, (20)

where σt is known. The increment �σ is obtained from the strain increment �ε
by the use of the constitutive model, whereas �ε can be expressed through the
derivatives of the shape functions and the difference Ut+�t − Ut . This finally makes
the left-hand side of (17) a function of Ut+�t and the known quantities Ut , U̇t , Üt ,σt .
The differentiation of this function with respect to Ut+�t yields the matrix A.

The user-defined element is constructed with the help of the user subroutine
UEL. The subroutine is called for each element and receives the nodal values
Ui

t+�t , U̇ i
t+�t , Ü i

t+�t of the element as input. The subroutine uses the displace-
ment increments contained in Ui

t+�t − Ut to compute the strain increment �ε and
calls the user subroutine UMAT to obtain the stress increment �σ and the material
Jacobian ∂�σ/∂�ε. The latter is needed for the matrix A. The UEL calculates con-
tributions of the element to the matrix A and the vector F and saves them in the arrays
AMATRX and RHS as output. Abaqus collects contributions from all elements, forms
global matrix A and vector F and finds a correction vector Ci+1 by solving (15).
The next approximation Ui+1

t+�t is given by (14), and U̇ i+1
t+�t , Ü i+1

t+�t are calculated
from (18), (19).

Fig. 12 User element

u8p4 displacement
degree of freedom

pore pressure 
degree of freedom
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The user element shown in Fig. 12 is constructed as a two-dimensional quadrilat-
eral u8p4 element for axisymmetric problems with a biquadratic interpolation of the
displacements and a bilinear interpolation of the pore pressure.
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Vibration-Induced Stress Changes
in Saturated Soil: A High-Cycle Problem

V.A. Osinov, S. Chrisopoulos and C. Grandas-Tavera

Abstract Numerical modelling of the cyclic deformation of soil can be performed
with the use of two types of constitutive models: incremental plasticity models and
so-called explicit cyclic models. The present study deals with the application of
a model of the second type—the high-cycle accumulation model for sand—to the
analysis of vibration-induced stress changes in saturated soil. The application of the
model requires the concurrent solution of two coupled boundary value problems: a
dynamic problem for the determination of strain amplitude and a quasi-static prob-
lem for the calculation of stress evolution. The coupling of the two problems has
been implemented in a two-dimensional axisymmetric formulation with the finite-
element program Abaqus. The model is applied to the analysis of stress changes
near a concrete wall caused by a vibrating pile. The numerical results show that a
large-amplitude vibration, e.g. during the installation of vibratory driven piles, may
substantially reduce both the effective and the total stresses in front of the wall. The
effective stress may be reduced to zero resulting in soil liquefaction.

Keywords Cyclic deformation · Saturated soil · Vibratory pile driving

1 Introduction

Soil is a plastic material which does not generally return to the same stress state when
subjected to a closed deformation cycle. Similarly, a closed stress cycle results in a
residual deformation. Permanent changes in stress or deformation may play a role
even for small strain amplitudes of the order of 10−5 if they accumulate over a large
number of cycles.

The numerical study of the cyclic deformation of soil can be based on two types
of constitutive models: incremental plasticity models and so-called explicit cyclic
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models. The choice of the model type is dictated by the strain amplitude and the
number of cycles. Although the incremental models can, in principle, describe the
soil behaviour for any amplitude, the use of such models for small strain amplitudes
(below 10−3) and large numbers of cycles may be problematic. First of all, it may
be difficult or impossible to calibrate an incremental model with respect to the weak
accumulation effects (the accumulation of residual stresses or deformations) for
small strain amplitudes and, at the same time, to preserve the correct behaviour for
large amplitudes. This concerns the complicated dependence of the accumulation
on the strain amplitude, the relative soil density, the current stress state and the
cyclic deformation history. Besides the calibration problems, there may be purely
numerical difficulties in using an incremental model for very small amplitudes when
the residual change in stress or deformation in one cycle becomes comparable with
the numerical error resulting from the incremental integration of the cycle. In this
case, the computation of permanent changes will lead to erroneous results even
if the model itself is correct. It is also important to mention that the incremental
models entail high computational costs because of the necessity to integrate each
cycle incrementally.

The present paper deals with the application of a model of the other type—the high-
cycle accumulation model for granular soils developed in [2, 7]. The model belongs
to the class of explicit cyclic models and considers the stresses and deformations as
explicit functions of the number of cycles (this explains the name ‘explicit models’).
The number of cycles is treated as a real number. The stresses and density, understood
as quantities averaged over a cycle, undergo gradual changes due to small-amplitude
cyclic deformation. The model is constructed in such a way that the constitutive
parameters control directly the dependence of the accumulation effects on the strain
amplitude, the void ratio, the stress state and the cyclic deformation history. Owing
to this structure, the model is able to describe correctly the accumulation effects,
and because of its explicit type, it allows us to calculate a large number of cycles
within a relatively short computing time. The model has been thoroughly verified
and calibrated by a large number of cyclic element tests on various sands [10–12,
14, 15] and used for the finite-element simulation of the permanent displacements
of foundations subjected to quasi-static high-cycle loading [8, 9, 13].

Recently, the cyclic model [2, 7] was applied to saturated soil under dynamic load-
ing to analyse effective-stress changes produced by a vibrating pile during vibratory
pile driving [4, 5]. To gain a first insight into the stress evolution, the boundary value
problem for the vicinity of a pile toe was solved in a simplified spherically symmet-
ric formulation. The approach proposed in [4, 5] is extended in the present study
to two-dimensional axisymmetric problems and implemented numerically with the
finite-element program Abaqus. The objective of the study is to estimate the influ-
ence of a vertically vibrating pile on the stress state in the soil near a retaining wall.
The consideration of the pile-wall problem is motivated by the results of measure-
ments made in an instrumented excavation pit during successive construction stages
reported in [6]. The measurements showed that the installation of vibratory driven
piles in the saturated soil at the base of the pit produced significant displacements of
the retaining wall. These displacements may be brought about by vibration-induced



Vibration-Induced Stress Changes in Saturated Soil: A High-Cycle Problem 71

changes in the stress state of the soil and, specifically, by a reduction in the effective
pressure. This explanation is suggested by the results of numerical simulations of
the stress evolution around a vibrating pile. The simulations reveal a reduction in the
effective pressure to a nearly zero value around a vibrating pile in a large-amplitude
low-cycle problem [1, 3] and the subsequent growth of the low-stress zone in a
high-cycle problem [4, 5].

2 High-Cycle Accumulation Model

The high-cycle accumulation model developed in [2, 7] is aimed at describing the
rate-independent behaviour of granular soils subjected to small-amplitude cyclic
deformation with a large number of cycles (up to hundreds of thousands). The stresses
and strains in a soil element within one cycle of deformation are considered as the
sum of an average value and a varying part. A quantity averaged over a cycle can thus
be viewed as a function of the number of cycles. Treating the number of cycles N
as a real number allows us to introduce the rates d( )/dN and to write a constitutive
equation for the average stress tensor in rate form in which the number of cycles
plays the role of time. If the soil is deformed with a constant frequency, the rate
d( )/dN and the time derivative d( )/dt are connected by the relation

d( )

dt
= ω

2π

d( )

dN
, (1)

where ω is angular frequency.
The use of the cyclic model requires the knowledge of a scalar strain amplitude

εamp(x, t) in the soil as a function of space and time. For time-harmonic deformation,
the scalar strain amplitude is defined as

εamp =
√

ε
amp
i j ε

amp
i j , (2)

where ε
amp
i j are the amplitudes of the strain components in a rectangular coordinate

system [2, 7]. Note that the amplitudes ε
amp
i j are not components of a tensor, except for

the case where there are no phase shifts between the components εi j (t). Nevertheless,
it can be shown that definition (2) is objective in the sense that εamp is invariant to
the change of the coordinate system. If the cyclic model is used for the solution of a
boundary value problem, the strain amplitude in the soil as a function of space and
time is not known in advance. Finding εamp(x, t) in this case constitutes a separate
boundary value problem which is independent of the cyclic model and has to be
solved each time when the strain amplitude is expected to change. This boundary
value problem may be solved with any appropriate constitutive model in dynamic or
quasi-static formulation depending of the loading rate in the problem under study.
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Table 1 Constitutive parameters of the cyclic model

Camp ε
amp
ref CN1 CN2 CN3 Ce eref C p pref

(kPa)
ϕc(

◦)

1.6 10−4 3.6×10−3 0.016 1.05 × 10−4 0.48 0.829 0.44 100 32

Sand L12 from [12]

The cyclic model establishes a relation between the strain amplitude εamp and the
rate dεacc/dN , where the tensor εacc is the accumulated strain of dry soil deformed
in such a way that the average stress tensor is kept constant. The relation is written
as

dεacc

dN
= famp f ′

N fe f p fY fπ m, (3)

where the tensor m and the scalar factors famp, f ′
N , fe, f p, fY , fπ describe the

dependence of the strain accumulation rate on the strain amplitude εamp, the average
void ratio e and the average stress tensor σ (the factor fπ is not used in this study).
The cyclic deformation history is taken into account through a state variable g A

which enters (3) and is to be found from the solution of a differential equation as a
function of the number of cycles. For detailed discussion of (3) and calibration, see
[2, 7, 10, 15]. Parameters of (3) used in the present study are given in Table 1.

Taking (1) into account and writing a dot for the time derivative, (3) can be
represented as

ε̇acc = ε̇acc(εamp, e, σ , g A). (4)

A constitutive equation for the average stress tensor σ is written in the form

σ̇ = E(σ ) : (ε̇ − ε̇acc) (5)

with an elastic stiffness tensor E, where ε is the average strain tensor [2, 7]. In
the case of saturated soil, σ denotes the effective stress tensor. In order to better
reproduce the stiffness of granular soil, the tensor E is made a function of the mean
stress σ = tr σ/3. Equation (5) has been calibrated by the comparison of the results
of drained and undrained cyclic tests [11, 14]. The tensor E is taken as in an isotropic
elastic solid with a Poisson ratio of 0.2 and a pressure-dependent bulk modulus

K (σ ) = A p1−n
atm (−σ)n, (6)

where A, patm and n are parameters.
The use of elasticity equation (5) can lead to unlimited principal-stress ratios

and is justified only if the stress states do not deviate far from the hydrostatic axis.
Otherwise, it may be necessary to correct the stress rate given by (5). In this study,
the correction is made by projecting the stress state on a given bounding surface in
the stress space if the stress state falls outside the surface. The bounding surface is
defined by the Matsuoka–Nakai yield condition with a given friction angle. For the
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numerical calculations, this angle is taken to be equal to the angle ϕc of the cyclic
model, see Table 1. The projection is made in the direction to the hydrostatic axis in
such a way that the mean stress does not change. Equation (5) then takes the form

σ̇ = E(σ ) : (ε̇ − ε̇acc) + σ̇ cor (7)

with a correction term σ̇ cor. This modification can also be viewed as an additional
plastic strain rate introduced into (5) as proposed in [2, 7].

The use of Eqs. (5), (6) for the solution of boundary value problems requires a
further correction to these equations if the mean stress σ approaches zero. This may
happen in saturated soil under cyclic deformation if volumetric changes are inhibited
by the low soil permeability. Apart from cyclic deformation, the mean effective stress
in saturated soil may vanish because of the expansion of the skeleton caused by the
pore water flow. In both cases, Eqs. (5), (6) written for the mean effective stress
reduce to the equation

σ̇ = K (σ )ε̇v (8)

with a volumetric strain rate ε̇v = tr(ε̇ − ε̇acc) > 0. Integration of (8) shows that the
evolution of σ as a function of εv depends on the parameter n in (6). If 0 < n < 1,
which is the case for granular soils, σ reaches zero at a finite εv . If n ≥ 1, σ

approaches zero asymptotically as εv → +∞. Zero σ and, as a consequence, zero
skeleton stiffness E make a boundary value problem ill-posed in both quasi-static and
dynamic cases (except for certain one-dimensional problems for saturated soils). This
fact does not allow us to use Eqs. (5), (6) directly for problems where the effective
stress vanishes. In order to avoid zero effective stress, we modify (6) and write it as

K (σ ) = A p1−n
atm (−σ)n

[
1 − exp

(
− σ

σζ

)]ζ−n

(9)

with a parameter ζ > 1 and a reference stress σζ < 0. For σ/σζ � 1, (9) turns
into (6). For σ → 0, K (σ ) ∼ (−σ)ζ and, because ζ > 1, σapproaches zero
asymptotically as εv increases. The parameters of Eq. (9) used in the numerical
calculations are given in Table 2. The function σ(εv) with σ(0) = −10 kPa obtained
with (6) and (9) is shown in Fig. 1.

Table 2 Parameters of Eq. (9)

A n patm(kPa) ζ σζ (kPa)

467 0.46 100 2 −1
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Fig. 1 Mean stress as a
function of the volumetric
deformation calculated with
(6) (no correction) and with
the modified Eq. (9)
(correction). ζ = 2,
σζ = −1 kPa
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3 Boundary Value Problem

Cyclic models of the explicit type are based on the concept of gradually changing
average stress and deformation. Since this concept is inapplicable to large-amplitude
loading, the high-cycle model is valid only for small strain amplitudes (below 10−3)
and cannot be used for the immediate vicinity of a vibrating pile where cyclic defor-
mations are large. This inevitable drawback does not allow us to formulate directly
a boundary value problem for the modelling of vibratory pile driving. To overcome
these limitations, it is proposed in [4, 5] to introduce an auxiliary surface (boundary)
in the soil around the pile in such a way that the strain amplitudes outside the enclosed
region are small enough for the cyclic model to be applicable. The computational
domain of the boundary value problem is then bounded by the auxiliary surface and
a remote boundary.

The main difficulty in the formulation of the problem is the specification of bound-
ary conditions at the auxiliary boundary. These conditions are not known from the
physical problem under study, e.g. from the pile vibration amplitude, and their deter-
mination constitutes a separate problem. In the numerical study in [4, 5], the location
of the auxiliary boundary and the corresponding boundary conditions are inferred
from the solution of a low-cycle problem, i.e. a dynamic boundary value problem
for a vibrating pile solved with an incremental plasticity model for a small number
(a few tens) of cycles. This solution also provides an initial stress state for the high-
cycle problem. The auxiliary boundary may be introduced in a zone of small (nearly
zero) effective stress that is formed in the soil around the pile toe after several cycles
of vibration. As the low-cycle solutions show, the varying part of the total stress in
this zone is nearly hydrostatic. This suggests a simple boundary condition for the
high-cycle problem as a given pressure amplitude.

To illustrate this idea, consider the low-cycle problem for a cylindrical closed-
ended pile situated in saturated soil with a homogeneous initial stress state. Assume
the pile starts to vibrate in the vertical direction with a constant displacement ampli-
tude. Numerical simulations reveal that the effective stresses near the pile are rapidly
reduced within the first several cycles of vibration resulting in the formation of a zone
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Fig. 2 Mean effective stress
in saturated dense sand
around a cylindrical pile
after 20 cycles of vibration
calculated with a
hypoplasticity model with a
pile diameter of 0.3 m, a pile
displacement amplitude of
2 mm, a vibration frequency
of 34 Hz, a hydrostatic initial
effective stress of −50 kPa, a
soil permeability of
10−4 m/s and a pore water
bulk modulus of 2.2 GPa

with nearly zero effective stresses. Figure 2 shows the mean effective stress around
the pile toe after 20 cycles of vibration calculated with a hypoplasticity model as
described in [1]. The mean effective stress in the darkest area in Fig. 2 is between
0 and −10 kPa, with the initial value being equal to −50 kPa. Note that increasing
the soil permeability does not prevent the effective-stress reduction, see examples
in [1]. The dashed line in Fig. 2 shows the possible location of an auxiliary boundary
for the high-cycle problem in the general three-dimensional case when considering
a vibrating pile near a retaining wall.

For the two-dimensional axisymmetric formulation adopted in the present paper,
the auxiliary boundary is taken as a spherical surface with a radius which corresponds
to the lower part of the surface shown in Fig. 2. For a pile diameter of 0.3 m, the
radius of the sphere is taken to be 0.7 m. The spherical auxiliary boundary allows
the pile-wall problem to be considered in an approximate manner as shown in Fig. 3,
with a concrete wall being placed at a distance L from the centre of the sphere. The
computational domain is bounded by a remote boundary.

Given initial distributions of the effective stresses, pore pressure and void ratio,
assume that a cyclic pressure with a constant amplitude acts on the auxiliary boundary.
This cyclic load together with the pore pressure dissipation due to local drainage
produce the gradual change in the effective stress σ (x, t), pore pressure p f (x, t) and
void ratio e(x, t) considered as average values in the sense of the cyclic model. The
numerical simulation of this process with the cyclic model consists in the concurrent
solution of two coupled boundary value problems.

The calculation for a time step between t and t +�t begins with the determination
of the strain amplitude field εamp(x, t) required for the cyclic model. The strain
amplitude field is found from the first boundary value problem formulated as a
steady-state dynamic problem for an elastic medium with spatially inhomogeneous
stiffness for time-harmonic displacements and stresses with complex amplitudes u0
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Fig. 3 Computational domain for the high-cycle boundary value problem

and σ 0, respectively. The amplitudes must satisfy the equation of motion

div σ 0 = −ω2	u0 (10)

and the constitutive equation

σ 0 = C(σ ) : ε0, (11)

where ε0 is the complex strain amplitude, ω is the angular frequency, and 	 is the
soil density. The strain amplitude εamp for the cyclic model is given by (2) with
ε

amp
i j = |ε0

i j |.
The stiffness tensor C in (11) is assumed to be a function of the current mean

effective stress σ(x, t) = tr σ (x, t)/3 and correspond to an isotropic elastic medium
with the Lamé constants

λ = λ0

(
σ + σ ∗

σ0

)m

+ K f

n
, μ = μ0

(
σ + σ ∗

σ0

)m

, (12)

where K f is the bulk modulus of the pore water, n is the porosity of the skeleton, and
σ ∗, λ0, μ0, σ0, m are parameters. A small stress σ ∗ is added to σ in (12) in order to
avoid zero shear stiffness at zero effective stress and thus to avoid ill-posedness of
the boundary value problem. Although the mean effective stress does not reach zero
due to the correction term in (9) and the problem is therefore always well-posed,
too small shear stiffness, as compared with the compression modulus (μ 
 K f ),
can cause numerical instability. Besides a constant-amplitude pressure acting on
the auxiliary boundary, non-reflecting boundary conditions available in Abaqus are
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Table 3 Parameters of the steady-state problem

σ ∗ λ0 μ0 σ0 m K f ω/2π 	 E ν 	c

(kPa) (MPa) (MPa) (kPa) (GPa) (Hz) (kg/m3) (GPa) (kg/m3)

−2 120 80 −100 0.6 2.2 34 2021 40 0.2 2400

prescribed at the remote boundary. Parameters of the steady-state problem are given
in Table 3 including the Young modulus E , the Poisson ratio ν and the density 	c of
the concrete wall.

The strain amplitude field obtained from the first boundary value problem deter-
mines the tensorial strain accumulation rate ε̇acc(x, t) according to (3), (4). With this
rate assumed to be constant within the time increment �t , changes in the effective
stress σ (x, t), pore pressure p f (x, t) and void ratio e(x, t) are found from the sec-
ond boundary value problem formulated as a quasi-static deformation problem for a
fluid-saturated porous solid with the additional external term ε̇acc in the constitutive
equation (5). The system of equations for this problem consists of the constitutive
equation (5), the total-stress equilibrium

div σ − grad p f = 0 (13)

(p f > 0 for compression), the pore pressure equilibrium (Darcy’s law)

grad p f + 1

k
	 f gn(v f − vs) = 0 (14)

and the mass conservation with incompressible solid and fluid phases

div
[
(1 − n) vs + nv f

] = 0, (15)

where vs, v f are the velocities of the solid and fluid phases, respectively, k is the
soil permeability (m/s), and g is the acceleration due to gravity. Boundary conditions
at the auxiliary boundary are impermeability and zero displacements. The remote
boundary is equipped with the infinite elements of Abaqus in combination with a
constant pore pressure. The time step is completed by the calculation of changes in
the state variable g A, see (4).

4 Numerical Implementation with Abaqus

The boundary value problem described above is solved with the finite-element pro-
gram Abaqus/Standard. The solution procedure is implemented as two Abaqus jobs
running concurrently. The first job consists of a number of steady-state problems
(the first boundary value problem in Sect. 3). The solution of each steady-state prob-
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Fig. 4 Two parallel Abaqus
jobs for the solution of the
two coupled boundary value
problems (BVP)

lem is initiated by the second job—a porous-medium deformation analysis with a
user-defined material (the second boundary value problem in Sect. 3). Both boundary
value problems have the same mesh but different element types: the first problem has
ordinary solid elements, while the second one has elements for the porous-medium
analysis with pore pressure as an additional degree of freedom. The two jobs have
separate input files and user subroutines.

The key requirement of the solution algorithm is the possibility of interrupting the
calculation, waiting, reading results of the other job and continuing the calculation.
This possibility is provided in Abaqus through the user subroutine UEXTERNALDB,
which allows the user to introduce waiting and reading phases. The solution scheme
is shown in Fig. 4. During a reading phase, results of the other job are read from
the Abaqus result file (*.fil) and saved in a global Fortran module accessible
to the user subroutines. In particular, the first job reads the current effective stress
field σ (x, t) calculated in the second job, solves the steady-state problem, saves the
strain amplitude field ε0(x, t) and waits for the next initiation. The second job reads
ε0(x, t) calculated in the first job, computes ε̇acc(x, t), solves the second boundary
value problem for a time increment �t , saves the new field σ (x, t +�t) and initiates
the solution of the steady-state problem for time t + �t . The constitutive equations
of the two boundary value problems are implemented in the user subroutines UMAT.

The time increment �t varies during the calculation. Abaqus controls force equi-
librium and, if necessary, reduces or increases the current time increment. At the
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same time, the user sets maximum allowable values for the time increment and for
the change in the mean effective stress in one increment. If the change exceeds the
allowable value, the time increment is reduced. This is achieved through the Abaqus
variable pnewdt in the UMAT subroutine of the second job.

5 Numerical Results

The objective of the numerical analysis presented below is to evaluate changes in the
stress state in the soil near a concrete wall caused by the vibration of a pile located
at a short distance L from the wall. Two cases with L = 2 and 3 m are considered,
see Fig. 3. The thickness of the wall is 1.2 m. The pile vibrates with a frequency of
34 Hz. A spherical auxiliary boundary with a radius of 0.7 m is introduced around
the pile toe. As mentioned in Sect. 3, boundary conditions at the auxiliary boundary
cannot be obtained immediately from given pile vibration parameters such as the
displacement or force amplitude. They can only be estimated numerically from the
solution of a boundary value problem with an incremental plasticity model. Solutions
obtained with a hypoplasticity model can be found in [1, 3]. In the present study,
a constant pressure amplitude σa (for the total stress) in the range from 3 to 6 kPa
is prescribed at the auxiliary boundary. In the numerical simulations in [1, 3], this
range approximately corresponds to pile vibration amplitudes from 2 to 4 mm.

The initial state of the soil prior to the pile vibration is assumed to be homogeneous
with a hydrostatic effective stress of −50 kPa and a pore pressure of 50 kPa. As
discussed above, a homogeneous initial stress state changes significantly at the very
beginning of the vibration. It is therefore reasonable to take an initial state for the
high-cycle problem similar to that shown in Fig. 2, i.e. with reduced effective stresses
near the auxiliary boundary. The initial effective stress for the high-cycle problem is
taken to be hydrostatic with the spatial distribution shown in Fig. 5. To satisfy static
equilibrium for the total stress, the initial pore pressure distribution is prescribed in
such a way that the total stress is homogeneous and equal to −100 kPa.

The initial void ratio is taken to be homogeneous and equal to 0.616. For the
sand considered (Table 1), this void ratio corresponds to a relative soil density of 0.6.
The calculations are made for two values of the soil permeability: k = 10−4 and
10−3 m/s.

The size of the finite elements in the mesh varies from 2 cm near the inner boundary
to 40 cm near the remote boundary. Quadrilateral bilinear elements with full and
reduced integration and biquadratic elements with full integration were used for the
calculations. Biquadratic elements perform better in most cases but produce a larger
data file (*.fil) that has to be saved on a hard disc for exchange purposes during
calculations as described in Sect. 4. The maximum allowable values for the time
increment and for the change in the mean effective stress in one time increment
were, respectively, 0.05 s and 0.05 kPa.

Figure 6 shows the effective stress distribution after 22 s of vibration for σa =
5 kPa, k = 10−4 m/s and L = 2 m. As seen in the figure, the cyclic loading of the
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Fig. 5 Initial mean effective stress in the high-cycle problem

Fig. 6 Mean effective stress at time t = 22 s. σa = 5 kPa, k = 10−4 m/s, L = 2 m

soil leads to the growth of the initial low-stress zone. In particular, the effective stress
near the wall is reduced in absolute value from 50 to 10 kPa.

In what follows we will be interested in the evolution of the stress state in front
of the wall (Point A in Fig. 3) in comparison with the stress state behind the wall.
Figure 7 shows the evolution of the mean effective stress at Point A during 300 s of
vibration for different loading amplitudes σa , two values of the permeability and two
distances between the wall and the pile. A rapid change of a few kilopascals during the
first few seconds, which all curves have in common, is of no importance but should
be explained. Any change in the effective stress is governed by two processes: the
cyclic deformation and the pore water flow due to pore pressure gradients. Cyclic
deformation under locally undrained conditions leads to the reduction of the effective
stress. Nonzero permeability allows local drainage and thus reduces the gradients of
both pore pressure and effective stress. This can reduce the effective stress in one
place and increase in another. Since the initial pore pressure distribution has in our
case sufficiently high gradients, the second process—effective-stress changes due
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Fig. 7 Mean effective stress at Point A (see Fig. 3) as a function of time for different pressure
amplitudes σa , different values of the soil permeability, k, and the distances between the wall and
the pile, L

to pore water flow—dominates during the first few seconds. As a result, the mean
effective stress slightly increases in absolute value near the auxiliary boundary and
decreases near the wall. This rapid change may be considered as a correction to the
initial stress state.

The solutions presented in Fig. 7 reveal that the effective stress near the wall is
reduced. A reduction in the effective stress means a reduction in the soil stiffness and,
in the case of zero stress, soil liquefaction. If the loading amplitude σa is large enough,
the effective stress is reduced to zero within a short time. For smaller amplitudes, a
gradual decrease at the beginning is followed by an abrupt fall to zero (L = 2 m)
or to an intermediate nonzero stress with a further slower reduction (L = 3 m). For
example, in the case with L = 2 m, k = 10−4 m/s and σa = 4 kPa, the effective stress
gradually changes to −35 kPa within 120 s and then falls to zero in a few seconds.
The abrupt reduction of the effective stress is a consequence of a resonance-like
increase in the strain amplitude in the soil for a certain spatial distribution of the
effective stress with a constant pressure amplitude at the boundary. This property of
the solutions was observed earlier in a spherically symmetric problem [4] and, as we
have seen in the present study, manifests itself in the two-dimensional case as well.
Another feature of the solutions is their high sensitivity to the loading amplitude
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Fig. 8 The same as in Fig. 7 for the mean total stress

σa : the curve for L = 2 m, k = 10−4 m/s and σa = 3 kPa, in contrast to that for
σa = 4 kPa, shows only a slight reduction from −45 to −42 kPa after 300 s.

Leaving aside the strong dependence of the solution on the soil density, constitutive
parameters and other factors, the features inferred from Fig. 7 suggest that it may be
impossible to make a more or less definite prediction about the stress evolution in
a real situation. Suppose we have estimated the loading amplitude σa to be in the
range between 3 and 4 kPa, and the vibration time is about 180 s. Then, according to
the solutions for L = 2 m and k = 10−4 m/s, the effective stress may either remain
practically unchanged or be reduced to zero.

Figure 8 shows the mean total stress at Point A for the same parameters as in Fig. 7.
The changes in the pore pressure in front of the wall turn out to be insignificant, so
that the changes in the total stress correspond approximately to the changes in the
effective stress. Note that a higher value of soil permeability (10−3 vs. 10−4 m/s)
does not prevent the stress reduction.

A question important for applications is that of the difference in the stress states
in front of and behind the wall. In all numerical solutions presented here, the mean
effective stress behind the wall during 300 s lies in the range between −50 and
−46 kPa for L = 2 m and between −50 and −47 kPa for L = 3 m. The pore pressure
remains practically at the same level of 50 kPa. In other words, both the mean effective
stress and the mean total stress behind the wall are reduced in absolute value by no
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more than 3–4 kPa. At the same time, as we have seen, the total stress in front of the
wall is reduced in the worst case by 40 kPa. The difference is carried by the wall. In
the present two-dimensional problem with an infinite wall, the deformation (bending)
and the corresponding displacement of the wall caused by the stress difference are
negligibly small because of the high stiffness of the concrete. However, in a real
three-dimensional situation with a finite wall, the stress difference together with the
reduced soil stiffness in front of the wall may produce a large wall displacement.

6 Conclusion

The problem of vibration-induced deformation of saturated granular soil is for-
mulated and solved numerically with the high-cycle accumulation model of the
explicit type. The numerical implementation realized with the finite-element pro-
gram Abaqus/Standard consists in the concurrent solution of two coupled boundary
value problems. The first problem is a dynamic steady-state problem solved at each
time step in order to find the strain amplitude field required for the high-cycle model.
The second problem, which gives the stress evolution, is a quasi-static deforma-
tion problem for a fluid-saturated solid with an additional accumulation term in the
constitutive equation.

The high-cycle model is applied to the analysis of stress changes near a concrete
wall caused by the large-amplitude vibration of a pile. The numerical results have
shown that the vibration of a pile in saturated soil near a wall may reduce the effective
stress in front of the wall to zero and thus lead to soil liquefaction. The total stress
is substantially reduced as well because of the absence of a pore pressure build-up.
The total-stress reduction in the case of liquefaction approximately equals the initial
effective stress and should therefore increase with increasing depth. The stress state
behind the wall remains practically unchanged. The reduction of both the effective
and the total stresses in front of the wall may cause a large wall displacement during
the installation of vibratory driven piles near the wall.
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Peak Stress Obliquity in Drained
and Undrained Sands. Simulations
with Neohypoplasticity

Andrzej Niemunis, Carlos E. Grandas Tavera and Torsten Wichtmann

Abstract The difference between undrained and drained peak friction angle is con-
siderable (up tp 10◦), despite identical densities and pressures (at peak). This cannot
be explained using the elastoplastic formalism. An attempt is made to describe this
effect with neohypoplasticity. For this purpose two types of nonlinearity are used, the
well-known term Y mi j‖ε̇‖ and the novel skew-symmetric correction tensor which is
added to the elastic stiffness.

Keywords Constitutive modelling · Sand · Dilatancy · Peak friction angle · Cyclic
mobility

1 Introduction

Dense sand samples reach much lower stress obliquities, say ϕU ≈ 34◦, in the
undrained triaxial compression than in the conventional drained compression with
ϕpeak ≈ 42◦ or more at similar pressure and density, Fig. 1 left: black and blue stress
paths. This has been confirmed by numerous tests like the ones in Fig. 3. For a fair
comparison of ϕU and ϕpeak the densities and pressures at the peak should be equal
(not just the ones from the initial isotropic state). Similarly, for loose samples, the
undrained strength, say ϕU ≈ 25◦, is smaller than the drained strength, ϕc ≈ 32◦,
Fig. 1 middle: black and blue stress paths.

The aim of this paper is to examine experimentally, whether the low undrained
stress ratio is caused by inhomogeneities (shear bands) or whether it is a constitutive
issue. Having demonstrated the latter case, we implement the effect to neohypoplas-
ticity.
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Fig. 1 At the same void ratio different maximal friction angles can be measured: ϕU in undrained
tests (blue stress paths) and ϕpeak in drained tests (black paths). The undrained strength is signifi-
cantly smaller

1.1 Notation

A fixed orthogonal Cartesian coordinate system x1, x2, x3 is used. A repeated
(dummy) index implies summation. According to Gibbs notation �� denotes a
dyadic product, � · � is a product with a single dummy index and � : � with
two dummy indices of two tensorial quantities �. The Kronecker’s symbol is δi j .
The fourth-order identity tensor is (J)i jkl = δikδ jl and its symmetrizing part is
Ii jkl = 1

2 (δikδ jl + δilδ jk). Proportionality of tensors is denoted by tilde, ∼. The
components of diagonal matrices (with zero off-diagonal components) are written as
diag( , , ), e.g. 1 = diag(1, 1, 1). The operator (�)→ or �� denotes normalization of
�, e.g. �εi j = εi j/

√
εklεkl . The superposed dot �̇ denotes the material time derivative

of �. The superscript �∗ denotes the deviatoric part of �. The superscripts �acc,�av

and �ampl denote the cumulative part of �, its average value and its amplitude. Several
frequently used variables are listed below.

Ei jkl or E = ∂σi j/∂εkl elastic stiffness
ε̇i j or ε̇ strain rate (tension positive)
σi j or σ̇ ; R = √

σi jσi j stress (tension positive) and its norm
ψ(ε), ψ̄(σ) elastic and complementary energy density
P = −σi i/

√
3; Q = σ∗

i jσ
∗
i j isomorphic pressure and deviatoric stress

H = σi i σ−1
j j − 9 a stress invariant for Matsuoka and Nakai criterion

h = Q/P stress obliquity similar to η = q/p
εP = −εi i/

√
3; εQ = ε∗

i j ε
∗
i j isomorphic volumetric strain and deviatoric strain

m, n, K flow rule and loading direction, hardening module
m, mi homogeneity order, direction of sedimentation
�1 = 1√

3
diag(1, 1, 1) basis tensor P = −�1 : σ on the P Q plane

�1∗ = − 1√
6

diag(−2, 1, 1) basis tensor Q = �1∗ : σ on the P Q plane
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The invariants P, Q, εP , εQ are not only work conjugate σ : ε̇ = P ε̇P + Qε̇Q

but also, unlike the Roscoe invariants, they are isomorph, i.e. σ : σ = P2 + Q2 and
ε : ε = ε2

P + ε2
Q . For axial symmetric tensors σ and ε we introduce signed invariants

Q = �1∗ : σ and εQ = �1∗ : εQ so that the initial tensors can be recovered, e.g.
σ = − �1P + �1∗Q.

2 Elastoplastic Approach

One may expect difficulties with contemporary elastoplastic models for soils like
Severn Trent [7] or Sanisand [3, 21] in simulating the difference between ϕU and
ϕpeak. These models introduce a conical yield surface with the sharp apex at the origin
of the coordinate system, Fig. 1 right. Hardening corresponds to the rotation of such
cone about the origin towards larger stress obliquity h = Q/P . Starting from the
mobilized friction angle ϕU , we want to enable hardening for drained compression
(with strong dilatancy and increase of h) but to preclude hardening for undrained
compression.

In elastoplastic models, the hardening is driven by the plastic multiplier.1 This
multiplier must be positive for hardening and hence n : E : ε̇ > 0 must hold. The
loading direction n is perpendicular to the yield surface. Moreover, n : σ = 0 holds
in the above-mentioned models [3, 7, 21]. Using a reasonable elastic stiffness,2 the
neutrality of elastic undrained shearing E : ε̇∗ seems to be impossible.

The problem with elastoplastic models is illustrated in Fig. 2, where the so-called
response envelopes are used. A response envelope (RE) is a polar representation of
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Q
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Fig. 2 The undrained stress rate corresponds to the point UC on the response envelope. The response
envelope of the sanisand model corresponds to the flattened ellipse with the loading direction n ⊥ σ.
If there is hardening for drained direction (blue arrow) there should be also hardening for undrained
direction UC. A differently inclined yield surface (dashed lines) with n : σ > 0 for dense and with
n : σ > 0 for loose sand is required. The rotation of the points UC, UE is necessary

1For strain controlled tests, the plastic multiplier is λ̇ = n : E : ε̇/(K + n : E : m) with the
hardening modulus K , flow rule m and the loading direction n.
2We will use the hyperelastic stiffness E obtained from numerous high-quality small-strain tests
[6, 13], see Sect. 4.1.
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stiffness [10], also known as the stiffness locus [2]. We consider the RE on the P Q
plane only. Mathematically the RE can be written as a parametric expression

P(θ) = Pav + �P(�εP (θ),�εQ(θ))

Q(θ) = Qav + �Q(�εP (θ),�εQ(θ)),

for �εP (θ) = 0.001 cos θ and �εQ = 0.001 sin θ (1)

with parameter −π < θ < π. The stress increments �P(�εP (θ),�εQ(θ)) and
�Q(�εP (θ),�εQ(θ)) are constitutive functions obtained from σ̇(ε̇) with Ṗ = − �1 :
σ̇ and Q̇ = − �1∗ : σ̇. Isotropic compression (IC) and extension (IE) correspond to
θ = 0 and θ = π, whereas undrained (=isochoric) compression (UC) and extension
(UE) correspond to θ = π/2 and θ = −π/2.

In the elastoplastic framework the dilemma with ϕU < ϕpeak may be solved with
a different shape of the elastic range, so that n : σ > 0, see the RE denoted as
‘ep dense’ in Fig. 2. For loose sand we need n : σ < 0. For a usual yield surface,
however, the opposite inequalities hold, namely n : σ < 0 for dense and n : σ > 0
for loose sand, see Fig. 2 right.

3 Shear Band Hypothesis

The difference between ϕU and ϕpeak might be attributed to the formation of shear
bands with much lower density (and hence lower strength) inside the shear band
(SB). They could explain the phenomenon, provided that SBs indeed appear during
undrained but not during drained tests. Here, this hypothesis will be refuted experi-
mentally. In the consequence, the difference between ϕU and ϕpeak will be treated
as a constitutive matter.

Suppose that the low stress obliquity of an undrained dense sand sample was
caused by the formation of a system of SBs with locally very loose arrangement of
grains within the thickness 10d50 ≈ 3mm of the SBs. Let us assume that for some
reasons such system is developed during undrained but not during drained tests.
Spectacular SB patterns inside the superficially homogeneous looking samples have
been first experimentally shown by Desrues et al. [5] on computer tomography pic-
tures. Under global undrained conditions, we may have strong local dilatancy inside
the narrow SBs. They may dilate at the cost of slight densification of large blocks
between them so that the total volume remains unchanged. Eventually, extremely
loose and weak shear zones form a system that dictates the overall strength ϕU of
the sample.

The question arises, whether the shear bands indeed appear earlier (at lower stress
obliquities) during the undrained compression than during the drained one and why.
To give a definitive answer, triaxial tests with expensive computer tomography evalu-
ation would be necessary. Additionally, bifurcation conditions should be theoretically
examined using good constitutive models.
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Here we will refute the hypothesis of shear bands with the following experimentum
crucis. A usual undrained triaxial compression of a dense sample will be stopped after
a monotonic deformation which is believed to be sufficiently long for the formation
of the SB.3 Without any disturbance of the effective stress, the valve of the drainage
system will be opened and the triaxial compression will be continued in the drained
manner, Fig. 1 left: red arrow. If SBs were indeed responsible for the low ϕU value,
then similarly low strength would be held for the drained continuation of undrained
loading. The usual peak ϕpeak ≈ 42◦ could not be attained.

It turns out, however, that the drained strength of ϕpeak ≈ 42◦ or more can
be reached, irrespectively of the long undrained pre-shearing, see Sect. 3.1. Hence,
the difference between ϕpeak and ϕU cannot be attributed to the existence of SBs.
We conclude that this difference should be described by a constitutive model for
homogeneous stress and strain fields.

3.1 Triaxial Tests Showing ϕU < ϕpeak

The tests on achievable stress ratios under drained or undrained conditions were
performed on Karlsruhe fine sand (d50 = 0.14 mm, Cu = d60/d10 = 1.5, emin =
0.677, emax = 1.054, �s = 2.65 g/cm3). The samples (diameter d = 100 mm, height h
= 100 mm) were prepared by air pluviation. Tests on both loose and dense samples
were performed. All tests begin with an undrained loading commenced from the
isotropic stress4 p = 100 kPa.

Figure 3a, b compares the effective stress paths and the η(ε1)(= q/p) relation-
ships of two dense samples (ID0 = 0.89 or 0.92). The first one (green curve) was
sheared undrained throughout the whole test reaching ϕU = 35◦. The resulting path
serves as the reference. In the second test (red curve) the drainage was opened dur-
ing the dilatant phase, when the excess pore pressure had become zero again, i.e. the
effective lateral stress had regained its initial value 100 kPa. During the subsequent
drained phase the stress path follows the dashed line (inclination 1:3 on pq-plane)
that would have been measured in a drained test started at p = 100 kPa. During that
drained phase the mobilized friction angle climbed from 35.2◦ to 44.3◦.

In a third test on a dense sample (ID0 = 0.91, Fig. 3c, d, blue curve), two undrained
phases encompass a drained one. In the drained phase, the mobilized friction angle
increased considerably from ϕmob = 35.6◦ to ϕmob = 42.9◦. During the third,
undrained phase, the effective stress path ran almost parallel to the referential
undrained path with similar initial density (green curve). The mobilized friction
angle slightly decreased back to ϕmob = 38.9◦ at the end of the test at q ≈ 2000 kPa.

3Note that the pictures in [5] were taken after several percent of axial deformation.
4In the description of experimental results, we use the conventional Roscoe invariants p = 1

3 (σ1 +
2σ2)/3 and q = σ1 − σ2 with geotechnical sign convention for principal stresses σi and strains εi .
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Fig. 3 Effective stress paths in the p–q plane and η(ε1) relationships in tests with combination of
undrained and drained loading stages. a, b dense sand sheared under undrained conditions followed
by drained triaxial compression test. c, d dense sand sheared under undrained, drained and again
undrained triaxial conditions. e, f loose sand sheared under undrained conditions followed by drained
triaxial compression. Fully undrained test is depicted as a reference.

Also loose samples (ID0 = 0.18 or 0.19, see red and blue curves in Fig. 3e, f)
showed a strong increase in the mobilized friction angle during the drained phase,
even if the drainage was opened after the onset of softening. The maximum value of
the mobilized friction angle reached during the drained phase was similar to the value
ϕmob ≈ 34◦ observed during the dilatant phase in a purely undrained test performed
on a loose sample (ID0 = 0.21, green curve in Fig. 3e).
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4 Hypoplastic Modelling of ϕU

The hypoplastic constitutive equation describes the stress rate σ̇i j as a nonlinear
function of the strain rate ε̇kl in the following form:

σ̇i j = Ei jkl(ε̇kl − mklY‖ε̇‖), (2)

wherein Ei jkl , mkl , Y are carefully designed functions of stress and void ratio. The
elastic stiffness Ei jkl will be obtained from a complementary energy function ψ̄(σ)

formulated to fit the resilient portion of the material stress response. The nonlinear
part mklY‖ε̇‖ is responsible for irreversible effects. The yield condition σ̇i j = 0 at
ε̇kl �= 0 corresponds to Y = 1 and (ε̇kl)

→ = mkl , wherein mkl is the flow rule (a
unit tensor). Equation (2) leads to elliptic response envelopes, similarly like the ones
from elasticity but shifted by Y Ei jklmkl in the stress space. If Y < 1 holds, the origin
(Pav, Qav) of the RE described by (1) lies inside the ellipse. For Y = 1, the origin
lies on the surface of the ellipse. Since the undrained stress path cannot surpass the
obliquity

Q/P = MU with MU =
√

2

3

6 sin ϕU

3 − sin ϕU
(3)

we have to enforce the proportionality

σ̇i j ∼ σi j for ε̇kl ∼ σ∗
kl or σi j ∼ Ei jkl( �σ∗

kl − mklY ) (4)

Besides (4), also Y < 1 should be satisfied. This enables an increase in Q/P upon
the usual drained compression with Q̇/Ṗ = √

2. On the P Q-space (4) takes the
form

{
1

MU

}
∼

[
EP P EP Q

EQ P EQ Q

] ({
0
1

}
− Y

{
m P

m Q

})
(5)

and can be depicted with the help of the REs, Fig. 4 (left).
If the elastic response envelopes are overly stretched or overly rotated with respect

to the P-axis in the P Q space, then the desired proportionality (4) cannot be satisfied.
The difference between ϕU and ϕpeak depends on the shape and orientation of the

response envelope and therefore on the elastic part Ei jkl of the hypoplastic model and
not only on the flow rule mkl . If the elastic ellipse obtained from Ei jkl is too slender
or if its major diameter excessively deviates from the isotropic position (along the
P axis), then the difference ϕpeak − ϕU may be too small. The experiments [6, 13]
show that the ellipses of the elastic response are moderately slender with the major
diameter twice larger than the minor one which is the P Q-space,5 which corresponds
to isotropic elasticity with the ratio of bulk and shear modulus 3K/(2G) ≈ 2 or the

5This ratio is not constant and about 1.8 for triaxial compression and 2.4 for triaxial extension.
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Fig. 4 The undrained stress rate corresponds to the point UC on the response envelope. Although
the yield surface has not been reached yet, i.e. Y < 1 and the current stress (red point) lies inside the
ellipse, the inclination of stress cannot increase anymore (left). However, for the same void ratio,
the drained stress rate (inclined under Q̇/Ṗ = √

2) can increase until Y = 1, i.e. until the origin
stress lies on the ellipse. If the major diameter of the ellipse is too strongly rotated off the isotropic
position (right), both undrained and drained stress rates increase the stress obliquity

Poisson number ν ≈ 0.2 on the P-axis.6 The same experiments show that the
inclination of the major diameter to the P-axis is roughly Q/P for both triaxial
compression and extension.

As illustrated in Fig. 5, the proportionality condition (4) should be satisfied for
dense sand at ϕU ≈ 34◦ with the stress rate going to the right and for loose sand at
ϕU ≈ 25◦ with the stress rate going to the left. This proportionality poses a difficult
problem for constitutive modelling, when a reasonable elastic stiffness like the one
measured in Sect. 4.3 is used. It turns out that one cannot meet the requirement (4)
for both loose and dense sand by adjusting the shift Y Ei jklmkl only. Therefore an
additional modification is proposed. It consists in rotation of the undrained response
UC,UE as shown in Fig. 5. This, what we call, “U-rotation” is evident comparing the
positions of the undrained response UC,UE on the blue and on the green ellipse. As
we can see, the considerable difference between ϕpeak and ϕU has a subtle origin
and requires a non-symmetric stiffness. However, this difference may be of prac-
tical importance and hence it is worth some additional effort in modelling. The
“U-rotation” is presented in detail in Sect. 4.5.

4.1 Hyperelastic Part of the Model

We propose an expression ψ̄(σ) for the complementary energy from which the strain
function εi j (σ) and the compliance Ci jkl(σ) are obtained as partial derivatives,

6The hyperelastic stiffness Ei jkl is comparable to the isotropic elastic stiffness (using the Poisson
number ν) on the P-axis only.
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Fig. 5 The elastic stress envelope should be strongly modified between the friction angle ϕU = 25◦
for loose sand (green ellipse) andϕU = 34◦ for dense sand (blue) because the desired proportionality
(4) cannot be obtained by modifying just the shift Y Ei jkl mkl of the response envelope. The stiffness
E corresponding to the green ellipse is not symmetric, as discussed in Sect. 4.5

εel
i j = ∂ψ̄

∂σi j
and ε̇el

i j = ∂2ψ̄

∂σi j∂σkl
σ̇kl = Ci jkl σ̇kl (6)

In geotechnical materials, the tangential compliance Ci jkl(σ) should decrease with
pressure. For this purpose we postulate that the tangential stiffness Ei jkl = C−1

i jkl is
a homogeneous stress function of order n ≈ 0.6, i.e. ∀λ > 0 : E(λσ) = λnE(σ),
and hence Ci jkl(σ) is homogeneous of order −n.

Analogously to Euler’s theorem about the first derivative of an mth order homo-
geneous function,

mψ̄ = ∂ψ̄

∂σ
: σ, (7)

we formulate7 a similar relation with the second derivative,

m(m − 1)ψ̄ = σ : ∂2ψ̄

∂σ∂σ
: σ = σ : C : σ (8)

Judging by the product on the right-hand side of (8) our potential ψ̄ should be
homogeneous of order 2 − n. This condition is sufficient (but not necessary) for the
nth order homogeneous stiffness. The related degrees of homogeneity are given in
the following table:

Function E(σ) C(σ) E(ε) C(ε) ε(σ) σ(ε) ψ̄(σ) ψ̄(σ) ψ(ε) ψ(ε)

Degree of homogeneity n −n n
1−n

−n
1−n 1 − n 1

1−n 2 − n 2 − n 2−n
1−n

2−n
1−n

7We substitute τ = σλ into ψ̄ and then differentiate the equation ψ̄(τ ) = λm ψ̄(σ) twice with

respect to λ using the chain rule on the left-hand side. The resulting equation σ : ∂2ψ̄(τ )
∂τ∂τ : σ =

m(m−1)λm−2ψ̄(σ) holds for any λ. In particular, it holds for λ = 1 and hence (8) can be concluded.
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We propose the complementary energy of the general form

ψ̄(σ) =
∑

α

cα Pα R2−n−α with α ∈ R (9)

The degree of homogeneity of each summand is 2 − n, as desired. Note that the
hyperelastic model [22] can be obtained as a special case with just one summand
and with α = 0. For the neohypoplasticity we decided to take just one summand in
(9) and just three material constants, namely

ψ̄ = cPα R2−n−α with
n c α

0.6 1.517 × 10−4 0.100
(10)

The calibration of material constants n, c,α requires high-quality tests [6, 13], see
Sects. 4.3 and 4.4. The total elastic strain εel

i j is

εel
i j = ∂ψ̄

∂σi j
= αPα−1 R2−n−α(−�δi j ) + (2 − n − α)Pα R1−n−α�σi j (11)

and the compliance results from C = (∂2ψ̄/∂σ∂σ), viz.

C = Aα �1 �1 + Bα( �1 �σ + �σ �1) + Cα �σ �σ + DαI or (12)

Ci jklα = Aα
�δi j �δkl + Bα(�δi j �σkl + �σi j �δkl) + Cα�σi j �σkl + Dα Ii jkl , (13)

wherein

Aα = c(α − 1)αPα−2R2−n−α (14)

Bα = −cα(2 − n − α)Pα−1R1−n−α (15)

Cα = c(2 − n − α)(−n − α)PαR−n−α (16)

Dα = c(2 − n − α)PαR−n−α (17)

Using the basis tensors �1 = 1√
3

diag(1, 1, 1) and �1∗ = − 1√
6

diag(−2, 1, 1) of

the P Q plane for triaxial (axialsymmetric) rates σ̇ and ε̇ we obtain ε̇P = −�1 : ε̇,
ε̇Q = �1∗ : ε̇, Ṗ = −�1 : σ̇ and Q̇ = �1∗ : σ̇ or vice versa σ̇ = −�1Ṗ + �1∗ Q̇ and
ε̇ = −�1ε̇P + �1∗ε̇Q . Hence, the isomorphic components of Ci jkl are

{
ε̇P

ε̇Q

}
=

[ �1 : C : �1 �1 : C : �1∗
�1∗ : C : �1 �1∗ : C : �1∗

]
·
{

Ṗ
Q̇

}
(18)

The expressions for components of the compliance matrix are
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CP P = �1 : Cα : �1 = Aα + 2Bα(−P)R−1 + Cα P2 R−2 + Dα (19)

CP Q = �1 : Cα : �1∗ = Bα(−Q)R−1 + Cα P Q R−2 (20)

CQ P = �1∗ : Cα : �1 = Bα(−Q)R−1 + CαQ P R−2 (21)

CQ Q = �1∗ : Cα : �1∗ = CαQ2 R−2 + Dα (22)

Additionally, one may take into account the void ratio introducing the empirical
factor [19]

F(e) = (2.97 − e)2

1 + e
(23)

The constant 2.97 may need modifications, however.

4.2 Scaling of Stiffness for Transversel Isotropy

The elastic properties of soils are often different in the direction of sedimentation mi

than in the cross directions. This can be described by the transverse isotropic (TI)
stiffness. In Voigt notation such TI stiffness has the form E =

⎡

⎢⎢⎢⎢⎢⎢⎣

γEh(1 − νhvνvh) γEh(νh + νhvνvh) γEh(νvh + νhνvh)

γEh(νh + νhvνvh) γEh(1 − νhvνvh) γEh(νvh + νhνvh)

γEv(νhv + νhνhv) γEv(νhv + νhνhv) γEv(1 − ν2
h )

Gh

Gv

Gv

⎤

⎥⎥⎥⎥⎥⎥⎦
(24)

with γ = 1/
[
1 − ν2

h − 2νhvνvh − 2νhνhvνvh
]

and with the symmetry axis along
x3, i.e. m = {0, 0, 1}. The number of material constants is reduced to five by the
additional relations Gh = Eh/(2 + 2νh) and νvh/Ev = νhv/Eh . The indices �h and
�v denote the horizontal and the vertical direction (the latter along mi , i.e. along x3).

For practical purposes Graham and Houlsby [9] introduced a simplified version
of the TI stiffness with three material constants instead of five. They proposed a TI
stiffness Hi jkl for the special case

a = Gh/Gv = (Eh/Ev)
1/2 = (νh/νvh) (25)

with just three material constants a, Ev, νh , because Gh = Eh/(2 + 2νh). After
some manipulations one may notice that the simplified TI stiffness Hi jkl proposed
in [9] can be obtained from a special scaling transformation of the isotropic elastic
stiffness Eabcd , namely
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Hi jkl = Qi jab Eabcd Qcdkl , (26)

where Qi jkl = μikμ jl with μi j = √
aδi j + (1 − √

a)mi m j (27)

and where mi is the unit vector along the sedimentation axis. The scaling (26) has
one major advantage over (25): it can be applied to any hyperelastic stiffness. From
the existence of the function, ψ̄(σ), and from the 1–1 elastic relation σ(ε) we may
conclude the existence of the elastic energy ψ(ε) = σi j (ε) εi j − ψ̄(σ(ε)) with the
help of Legendre transformation. The scaling (26) can be interpreted in the following
way: we define a scaled strain with

ε̄i j = Qi jklεkl = μikεklμl j (28)

and we write the elastic energy with the new argument ψ(ε̄). Using twice the chain
rule (∂�/∂εi j ) = (∂�/∂ε̄ab)(∂ε̄ab/∂εi j ) we obtain (26). The function ψ(ε̄) is a new
potential taking into account a and mi . The advantage of the above method is that we
can “add” some a-type anisotropy to an arbitrary hyperelastic stiffness a posteriori,
without spoiling the conservation of energy, etc.

4.3 Measurement of Elastic Stiffness

The small-strain triaxial tests on Karlsruhe fine sand have been performed with local
strain measurements by means of LDTs (strips of phosphore bronze equipped with
strain gauges, [8, 12]) mounted on prismatic specimens (dimensions a × b × h =
90 × 90 × 180 mm). Two lateral faces of the sample were equipped with eight LDTs
for horizontal strain measurements (Fig. 6). The other two faces faces were equipped
with four LDTs for axial strain measurements. Samples of different densities were
prepared. Various average stresses were tested in succession. At each average stress,
stress cycles in six different directions were applied. All tests were stress controlled.
The cycles of lateral effective stress were applied via pore air pressure, while the
cell pressure was kept constant in order to prevent thermal disturbances of extremely
sensitive LDT measurements. All samples were dry. The pore pressure and the cell
pressure were applied pneumatically.

In order to investigate purely elastic material response at each average stress, 100
preconditioning cycles with larger stress amplitudes were applied in all six directions.
They were intended to induce a shakedown. The essential test cycles of smaller
amplitudes consisted of 30 cycles per stress point and 5 cycles per polarization.
The usual accumulation of plastic strains was almost absent after the preconditioning.
The material response was therefore nearly elastic during the essential test cycles. The
data from the smaller cycles have been used for the analysis of the response envelopes
following the procedure described in Sect. 4.4. Typical stain paths obtained for the
smaller cycles are provided in Fig. 6.
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Figure 7 presents the response envelopes derived from the experimental data for
three different densities, three average mean pressures and seven average stress ratios.
Due to the larger stiffness, the response envelopes grow with increasing values of
pressure and density. Furthermore, their principal axes rotate with the average stress
ratio ηav. The green points in Fig. 7 denote the average stresses of the tests. The points
on the response envelopes corresponding to purely deviatoric or purely volumetric
strain cycles are marked by the red or blue points, respectively.

4.4 Calibration of Hyperelasticity

The stiffness matrix E is found after inversion of the compliance matrix

E =
[

EP P EP Q

EQ P EQ Q

]
=

[
CP P CP Q

CQ P CQ Q

]−1

(29)

Initially, the hyperelastic constants α, c and n have been calibrated by minimizing
the difference between the components EP P , EP Q, EQ Q of the theoretical stiffness
matrix E from (29) and the respective components ĔP P , ĔP Q, ĔQ Q from labo-
ratory tests. As described in Sect. 4.3, a set of such values has been obtained in
the vicinity of a fixed average stress Pav

K , Qav
K optimizing the coefficients of linear

relation between strain and stress increments applied in different directions there.
This requires a refined smoothing filter of the strain and stress paths. Moreover,
a sophisticated algorithm for automatic detection of reversals [14] was necessary.
The cumulative effects as well as some small-strain nonlinearity have to be sorted
out [14]. Having such “purified” stiffnesses at K = 1, . . . N (here N = 23) differ-
ent average states (Pav, Qav) we can find α, c and n which minimize the following
function:

εP [10-4]

ε Q
 [1

0
-4

]

-2
-2

-1

-1

0

0

1

1

2

2

Fig. 6 Left Prismatic sample with LDTs [6, 13]. Right Strain paths measured for the cycles applied
in six different directions [13]
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Fig. 7 Response envelopes
obtained experimentally for
the strain span ‖�ε‖ = 10−4

at different densities and
average stresses [13]
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F =
N∑

K=1

(
Ĕ K

P P − E K
P P

)2 + 2
(

Ĕ K
P Q − E K

P Q

)2 +
(

Ĕ K
Q Q − E K

Q Q

)2
(30)

All increments of stresses and strains have been measured at a fixed distance
‖�ε‖ ≈ 1 × 10−4 from the recent strain path reversal to obtain comparable val-
ues, not spoiled by small-strain variability of stiffness. We cannot claim, however,
that the measured values correspond to the maximum small-strain stiffness (dynamic
stiffness). Unfortunately, function (30) turns out to be a poor indicator for the cali-
bration. As an alternative, we rewrite (8) in the form

(1 − n)(2 − n)ψ̄(σ) = σ : C : σ, (31)

and define from it another error function

FB = 1

N

N∑

K=1

√(
L K − HK

L K

)2

(32)

with L K = σav
K : C̆K : σav

K and HK = (1 − n)(2 − n)ψ̄(σav
K ) (33)

This time, the discrepancies in stiffness are weighted by the underlying average stress.
The symmetry of the resulting compliance is enforced, similarly as in (30). Using the
results from the set of N = 23 experiments on medium dense sand loaded in different
directions amplitude of we obtain the constants α = −0.3516 and c = 1.517×10−4

(the homogeneity order n = 0.6 was set) by minimizing (32). The error of the
calibration was small, FB = 0.02567, however the resulting response envelopes
were significantly slenderer than the experimental ones.
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In a further refinement of the calibration, we kept c = 1.517 × 10−4 and n = 0.6
but adjusted α manually, until the RE from (10) coincided with the experimental
ones. After this manual refinement, the resulting parameters were α = 0.1, c =
1.54 × 10−4 and n = 0.6. The average error of calibration slightly increased to
FB = 0.0306. A comparison of the hyperelasticity and the laboratory results is
shown in Fig. 8.

100 200 300 400 500 600

-100
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Q
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kP
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Experiment
Hyperelasticity
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IC
UEIE

Fig. 8 Comparison between the response envelopes of the 23 experiments (blue) on medium dense
sand evaluated for ‖�ε‖ = 10−1 and the theoretical response envelopes from (10) with adjusted
constants α = 0.1, c = 1.54 × 10−4, and n = 0.6

Fig. 9 Dependence of
small-strain stiffness on
amplitude [25]
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For simulations of monotonic tests the overall compliance constant c = 1.54 ×
10−4 has been temporarily increased to c = 0.001. This was necessary due to the fact
that the paraelastic (PE) part of neohypoplasticity was not used in the simulations.
The reduced stiffness for long monotonic deformations corresponds to the shear strain
γ > 0.1 %, i.e. it lies beyond the range shown in Fig. 9, whereas the measurements
correspond to the small strains of εampl ≈ 0.01 %. For the PE part, on the other hand,
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we need to decrease the measured value of c to obtain G = Gmax corresponding to
γ ≈ 10−6 in Fig. 9.

4.5 Skew-Symmetric Modification of the Elastic Stiffness

It is not possible to rotate the undrained points UC,UE of the response envelope in
Fig. 10 from the elastic stiffness E keeping the shape of the ellipse and the position
of isotropic points IC and IE unchanged. The original hyperelastic stiffness must
be symmetric EP Q = EQ P , Fig. 10 (left). Applying the modification with L from
Fig. 10 (right), we break this symmetry. The position of undrained points must be
rotated clockwise for dense and counterclockwise for loose sand. To this end, we
propose to add to Ei jkl a skew-symmetric part of a dyad of isotropic direction and
deviatoric direction (both unit tensors). For the P Q-plane, the new matrix has the
form

UE

UC

IE

ICP

Q

E
E 

E

E

QP

PQ

QQ

PP

UE

UC

IE

IC

E
E   - L

E

E      + L

QP

PQ

QQ
PP

L

L

Fig. 10 Interpretation of elastic off-diagonal components of stiffness E with the response envelope.
Left hyperelasticity with EP Q = EQ P . Right modification with a skew-symmetric matrix with
L > 0. This modification is further called U-rotation. Such clockwise U-rotation is used at Q > 0
for dense sand

[
EP P EP Q

EQ P EQ Q

]
+

[
0 L

−L 0

]
with |L| ≤ EQ Q (34)

with

L = sign(Q)
[|Q|/(Mpeak P)

]nL ·
{

cL L (e − ec)/(ei − ec) for e > ec

cL D (ec − e)/(ec − ed) for e < ec
(35)

and with material constants
cL D cL L nL

0.2 −0.5 1
. The characteristic void ratios ei , ec, ed

for loose, critical and dense sand, respectively, are well known from the older ver-
sions of hypoplasticity [1, 23], see also Eq. (42).
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Fig. 11 With the help of the
rotation L the difference
between ϕU and ϕpeak could
be simulated. Four
simulations with
neohypoplasticity are
presented in which undrained
loading is followed by
drained loading. The
undrained dense samples
follow the mobilized friction
angle of 34.9◦ in shearing.
They can significantly
increase this angle in drained
continuation of loading, as
desired. Similar results show
simulations with loose sand

The following remarks can be made to the function L(σ, e):

• For triaxial compression, Q > 0, we obtain L < 0 for loose, and L > 0 for dense
sand as desired. For e = ec we have L = 0.

• The nonsymmetry is small for small Q/(P Mpeak)

• The nonsymmetry should not be used in paraelastic (PE) modelling [17] of small
cycles8

• The modified stiffness matrix

[
1 c + Lb

c − Lb b

]
is invertible for 1 > b > c2 > 0

for any L (Fig. 11).

The general (tensorial) form of the skew-symmetric portion is proposed in the
form

Si jkl = L ( �T ∗
i j

�δkl − �δi j �T ∗
kl) (36)

and the modified stiffness is denoted as

Ēi jkl = Ei jkl + Si jkl (37)

4.6 Nonlinear Part Y of Neohypoplasticity

Let us introduce the following stress invariant:

8This prevents a violation of the Second Law of thermodynamics.
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H(σ) = σi i σ−1
j j − 9 ∈ (0,∞), (38)

valid in the one octant of the principal stress space where all principal stresses are
negative, σi < 0. In σ−1

j j we should first inverse the tensor and then calculate the
trace, of course. The yield criterion by Matsuoka and Nakai [15] takes with H(σ) a
simple form

FM − N (σ) = H(σ) − φ ≤ 0 with φ = 8 tan2 ϕ (39)

If any principal stress vanishes, σi = 0, then H(σ) = ∞. Working on the P Q plane,9

we may express H(σ) in the form H = 9
√

2(h + √
2)/[(√2 − h)(2h + √

2)] − 9,

where h = Q/P is the stress obliquity from the range h ∈ (−
√

2
2 ,

√
2).

It is not a good idea to define the degree of nonlinearity Y equal to H/φ. At first
glance, such definition may seem quite promissing: Y = 0 on the hydrostatic axis and
Y = 1 corresponds to (39) as desired. Moreover, one can easily propose a function
φ = φ(e, P) that matches the peak friction angle ϕpeak depending on void ratio and
pressure. The problem with such Y is subtle: we need a longer range of h = Q/P
for which the degree of nonlinearity is close to unity, say Y ∈ (0.9, 1). If the degree
of nonlinearity were simply H/φ, then the triaxial compression curves would arrive
at peak after an unrealistically small shear deformation. Moreover, serious problems
with the simulation of ϕpeak − ϕU could be expected, cf. Sect. 4.

A better degree of nonlinearity is given by the following function:

Y (x) = AY exp(−1/(BY xnY + CY )) (40)

with x = H/φ(e, P) and Y (1) = 1

From four material constants AY , BY , CY , nY only three BY , CY , nY are available
for fitting whereas AY is determined from the constraint Y (1) = 1, i.e. from AY =
exp(1/(BY + CY )). A reasonable estimation could be

BY CY nY

20 0.3 2
, where:

• larger BY elongates the range of h with Y ≈ 1
• larger CY increases the minimal value Ymin = Y (0)

• larger nY increases the range of h with Y ≈ Ymin

Expression (40) returns the values Y (x) close to unity over a long range of x , as
demonstrated in Fig. 14 (middle). This helps to simulate the difference between ϕU

and ϕPeak. A rough10 estimation of the material constants can be conveniently per-

9For Roscoe invariants p, q we have the obliquity η = q/p ∈ (− 3
2 , 3) and H = 27(η + 3)/

[(3 − η)(2η + 3)] − 9. The value H = ∞ corresponds to η = −3/2 or η = 3 or the mobilized
friction angle is arcsin(3η/(6 + η)) = ±90◦.
10The parameters nY and BY are independent of the void ratio, for simplicity.
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Fig. 12 Peak friction angles reached in drained tests at different void ratios

formed with the following Mathematica manipulator:

The degree of nonlinearity Y depends on stress via H(σ) and on the void ratio
via φ(e, P). In order to facilitate the calibration of the model, we introduce the peak
friction angle described by the function ϕ(e), Fig. 12. It will be substituted to φ(ϕ).
The peak friction angle can be simply interpolated between three characteristic values
given in the table

Loose Critical Dense
Max. friction angle void ratio ϕi = 32◦ ϕc = 33◦ ϕd = 50◦

ei0 = 1.1 ec0 = 1.0 ed0 = 0.6

using the void ratio e corrected by the barotropy function (pressure-dependent char-
acteristic void ratios), viz.
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Fig. 13 Neohypoplastic simulations of isobaric (P = 100 kPa) shearing for different initial void
ratios: e = {0.542, 0.621, 0.701, 0.781, 0.861, 0.992} (upwards). The peak friction angle (left) and
the dilatancy (right) increase with density according to (40)

ϕ(e, P) = ϕc +
{

(ϕd − ϕc)
ec−e
ec−ed

(ϕc − ϕi )
e−ec
ei −ec

(41)

taking the positive fraction. The characteristic void ratios ei (P), ec(P), ed(P) are
found after [1] from

e�(P) = e�0 exp
[
−(

√
3P/hs)

nB
]

with � = d, i, c (42)

with the material constants
ei0 ec0 ed0 hs nB

1.1 1.0 0.6 5.8 × 105 0.28
calibrated11 in [11]. Using

ϕ(e, P) from interpolation (41) we obtain finally

φ = 8 tan2[ϕ(e, P)] (43)

The simulations with the neohypoplastic model, Fig. 13, reproduce the required
dependence of the peak friction angle on the void ratio. Moreover, contrarily to
the old versions of the hypoplastic model, the peak friction angle is reached after a
few percent deformation (and not after a few permille). This deformation at peak can
be easily increased choosing a larger value of BY .

11For the old hypoplastic model [23, 24].
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4.7 Flow Rule mi j

The flow rule is an element of the hypoplastic model which is always active. Contrar-
ily to elastoplasticity, mi j is used inside the yield surface and also upon unloading.
The flow rule is described by the unit tensor mi j so it dictates just the direction of
plastic flow. The intensity of plastic flow is proportional to Y‖ε̇‖.

Apart from usual notation φ� = 8 tan2 ϕ� for � = i, c, d, we introduce a mobi-
lized friction angle ϕa , above which the associated flow rule (AFR) holds. We also
denote φa = 8 tan2 ϕa for this new angle. The flow rule is formulated for three
special cases

mi j =

⎧
⎪⎪⎨

⎪⎪⎩

ma
i j = (∂H/∂σi j )

→ =
[
δi j σ−1

kk − σkk σ−2
i j

]→
if H ≥ φa

mc
i j =

[
δi j σ−1

kk − σkk σ−2
i j

]∗→
if H = φc

mi
i j = (δi j )

→ if H = 0

(44)

corresponding to AFR, isochoric flow and purely volumetric flow, respectively. The
following interpolations (with respect to H ) between them give reasonable dilatancy
and contractancy

m = xmc + (1 − x)mi with x = (H/φc)
n1 (45)

m = xma + (1 − x)mc with x = [(H − Hc)/(φa − φc)]
n2 , (46)

wherein the following material constants
ϕa n1 n2

36◦ 0.1 1.0
have been used.

For simplicity, the presented dilatancy and contractancy are functions of stress
only, i.e. mi j (σ). In the literature, e.g. [20], also the void ratio and the length of the
shear strain path are taken into account. Such enhanced contractancy is discussed
in Sect. 4.8. The differences in the dilatancy diagram, Fig. 13 (right), obtained from
simulations with the neohypoplastic model do not result from the direct dependence
mi j (e). Such dependence has not been implemented. The reason for larger dilatancy
at smaller void ratio e is the higher obliquity Q/P enabled by small e. For higher

[°]

[kPa]

ei(P)
ec(P)

ed(P)

loose 

dense

Ymin

Fig. 14 Left the compression diagrams ei (P), ec(P) and ed (P) from [1], Eq. (42). Middle the
degree nonlinearity (40) for loose and for dense sand as a function of h = Q/P . Right the dilatancy
angle from the flow rule (45) and (46) used in the simulations
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Q/P the function mi j (σ) is more dilatant. This aspect was similarly modelled in the
old hypoplasticity. It should be noticed, however, that the dilatancy was significantly
smaller, especially for triaxial extension. Such underestimated dilatancy caused poor
FE predictions of strip foundations. The predicted failure mechanism at maximum
loading was always punching, independently of the density of the sand. Besides, the
bearing capacity was strongly overestimated. For dense sand, the dilatancy should
activate the well-known log-spiral mechanism with bulging on both sides of the foun-
dation. Therefore, the present dilatancy curve increases rapidly beyond the critical
value of Q/P for both compression and extension, Fig. 13 (right).
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Fig. 15 Neohypoplastic simulations of undrained shearing for different void ratios

Fig. 16 Neohypoplastic
simulation of an undrained
shearing interrupted by a
small undrained unloading
and then continued. The
green dashed line
corresponds qualitatively to
the material response
observed during reloading in
the laboratory
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Fig. 17 Micromechanical interpretation of drained triaxial shear deformation for different states
on the conventional stress–strain–dilatancy diagram

The flow rule mi j and the skew-symmetric portion of the stiffness, see Sect. 4.5,
influence collectively the undrained paths. The simulations of undrained shearing are
shown for different void ratios in Fig. 15. Under undrained conditions, the maximum
stress obliquities should not strongly differ despite different void ratios, see Sect. 4.
The simulations from Fig. 15 show the desired behaviour. Each path (at different void
ratio) ends with a small unloading. An interesting defect of the new model reveals
the simulation of an undrained reloading shown in Fig. 16.

4.8 Butterfly Trajectory from Undrained Stress Cycles

A significant improvement of the undrained simulations can be obtained introducing
an additional contractancy. Some authors, e.g. [4], attribute this contractancy to the
rolling of grains during shearing at large stress obliquity, Fig. 17. After a 180◦ reversal
of shearing the direction of rolling changes. Such backwards rolling is associated
with strong contractancy. On the microscopic level one can think of grains which
roll into the holes from which they have been rolled out. During undrained shearing,
this contractancy manifests itself as a strong relaxation of P after stress reversals.
Under undrained symmetric stress cycles, such relaxation accumulates. Finally, the
stress is passing through the origin of the stress space and a characteristic shape of
the stress path can be observed. This shape is sometimes called a “butterfly” and the
phenomenon is known as the “cyclic mobility”.

In order to describe this additional contractancy, we need information, how much
dilatancy has been accumulated due to rolling. Moreover, we must know, what direc-
tion of shearing caused this accumulation. A further continuation of such shearing
leads to further accumulation. Shearing in the opposite direction corresponds to
rolling back and causes contractancy. For mathematical description of these phe-
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nomena we introduce, similarly as in [21], a structural variable (a deviator) z. Its
norm ‖z‖ should grow during dilatant rolling and decline with contractant rolling
back. Direction of the strain rate should be used as an indicator:

• rolling out with dilatancy for z : ε̇ > 0
• rolling back with contractancy for z : ε̇ < 0

The proposed evolution equations for z and for the rate of contractancy due to rolling
ε̇r

P are

ż =
(

1 + ‖z‖
zmax

) (
ε̇∗ − z

zmax
‖ε̇∗‖

)
with zii = 0 (47)

σ̇ = Ē :
(
ε̇ − m Y‖ε̇‖ − ω �1 〈−z : ε̇〉

)
, where Ē = E + S (48)

and where S is given in (36). The Macauley brackets 〈�〉 = 1
2 (� + | � |) neglect

the third term on the r.h.s. of (48), if z : ε̇ > 0 is satisfied (rolling out). The factor
ω, initially intended as a material constant, has been rendered a barotropic function
ω(P). It grows at small pressures P in accordance to the observation that the cyclic
accumulation at a constant strain amplitude accelerates with decreasing P , cf. [18].
Hence we propose

ω(P) = Pref

zmax(Pmin + P)
with Pref = 100

√
3 and Pmin = 3 kPa (49)

The material constants are
zmax Pmin Pref

0.05 3 173
Given σ̇ we may ask, under what conditions the constitutive equation can be

uniquely solved for ε̇. A suitable condition of invertibility

[
1 − 2ω ( �1 : m)(z : m) + ω2 (z : m)2

]
Y 2 < 1 (50)

has been derived in Appendix A. The jeopardy of non-unique solutions appears at
Y ≈ 1, i.e. at high Q/P . A rough estimation (1 + ω2‖z‖2)Y 2 < 1 lies on the safe
side.

The stress paths from undrained stress cycles have been simulated with the neo-
hypoplastic model at different average deviator Qav, Figs. 18, 19 and 20. The cyclic
mobility with the characteristic butterfly-shaped stress path is reached in nearly
symmetric cycles, Fig. 20, when the stress path is passing (almost) through zero.
The strain–stress plots from these tests are shown in Fig. 21. Simulations on loose
sand end with a direct liquefaction. After reaching P = 0 the stress deviator Q is
locked and no further stress cycles are possible, see Fig. 22. Strain cycles at P = 0
and Q = 0 are possible but the resulting phenomena like latent contractancy are
outside the scope of the neohypoplastic model. The proposed form of description
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of additional contractancy due to rolling is still provisional and may be modified in
future. The following features of the novel state variable z are of importance:

• The evolution equation ż(ε̇) is independent of stress.
• The state variable z is “shaken down” by symmetric strain cycles.
• No jumps in σ̇ may be caused by small changes in ε̇ independently of z.
• Unlike Y , the nonlinearity due to z should not vanish on the P-axis.

The paraelastic part of the model is not included in the present study. In particu-
lar, simulation of small cycles may predict excessive accumulation or, generally, the
response of the model after strain path reversals may be a bit awkward. In the simu-
lations of strain cycles (stress amplitude declines with the relaxation of P) shown in
Fig. 23, the cumulative relaxation is overestimated. Nevertheless, the relaxation of
P and Q is qualitatively well reproduced.

5 On Numerical Implementation of Neohypoplasticity

The neohypoplastic model has been implemented in the form of several Mathe-
matica scripts for the P Q plane. The increments can be stress-, strain- or mixed-
controlled, i.e. from four increments �εP ,�εQ,�P,�Q two must be prescribed

Fig. 18 Strongly asymmetric stress cycles lead eventually to “lense”-shaped closed cycles

Fig. 19 Moderately asymmetric stress cycles end at “half-butterfly” with increasing strain ampli-
tude
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Fig. 20 Symmetric stress cycles end at “butterfly” with increasing strain amplitude
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Fig. 21 Strain–stress plot for symmetric (left) moderately asymmetric (middle) and strongly asym-
metric (right) undrained stress cycles

Fig. 22 No butterfly occurs in simulations with loose sand

and the other two are calculated by the constitutive model. Moreover, a special control
with the prescribed value of �Q/�P can be used. For example, in oder to simulate
the drained compression with vertical strain control we can define �Q/�P = √

2
and �εQ = 0.001, which enables softening.

Since the explicit time integration is used, we need sub-stepping, in particular in
the vicinity of small pressures. Usually, the maximum strain increment is defined
as �εmax = 0.2 %, so an explicit isotropic step commenced at P < 5.6 kPa with
�P = −P can crash, viz.
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Fig. 23 Neohypoplastic simulation of undrained shearing followed by strain cycles. Left dense
sand, right loose sand. In both cases, the predicted relaxation of P and Q in cycles is too fast due
to the missing paraelastic part of the model

EP P · �εmax > P with EP P ≈ 103 P0.6 (51)

The model cannot work with negative P and the response is unpredictable. There-
fore, an artificial plasticity condition P > 6 kPa has been introduced. For implicit
time integration, this condition is redundant, of course. Generally, one should be
careful with explicit integration. As far as possible, the strain control should be used.
All equations are written for prescribed strain increments. For stress increments
the line search method is used. In some cases, however, in particular for states near
P = 0 this method does not converge even for increments as small as ‖�σ‖ = 1 kPa.

The following material constants have been used in all simulations:

Elasticity:
n = 0.6, c = 0.001,α = 0.1,
Compression:
hs = 5.8 × 105, nB = 0.28, ei0 = 1.1, ec0 = 1.0, ed0 = 0.6
Flow rule:
ϕi = 32◦,ϕc = 33◦,ϕa = 36◦,ϕd = 50◦, n1 = 0.1, n2 = 1
U-rotation:
cL L = −0.5, cL D = 0.2, nL = 1.0
Nonlinearity:
BY = 20.0, CY = 0.3, nY = 2
Additional contractancy due to rolling:
zmax = 0.05, Pmin = 3, Pref = 173

Acknowledgments The authors are grateful to the DFG (DFG-Forschergruppe FOR 1136) for
financial support.
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Appendix 1: Invertibility Condition for Neohypoplasticity

If z : ε̇ > 0, then the invertibility condition is Y < 1, identically as in the older
versions of hypoplasticity, cf. [16]. In the following we examine the case z : ε̇ < 0
only. First, we find two scalar variables x = ‖ε̇‖ and y = z′ : ε̇, where z′ = ωz.
Let us denote ε̇el = E−1 : σ̇ which is a known tensor. The first scalar equation is
obtained multiplying the constitutive equation

σ̇ = Ē
(
ε̇ − mY‖ε̇‖ + �1z′ : ε̇

)
(52)

by z′ : ()

z : ε̇el = y − z′ : mY x because z′ ⊥ �1 (53)

y = z′ : ε̇el + z′ : mY x (54)

The second scalar equation is obtained resolving the constitutive equation with sub-
stituted x, y for ε̇ and finding x2 = ε̇ : ε̇

ε̇ = C : σ̇ + mY x − �1y (55)

x2 = (ε̇el + mY x − �1y) : (ε̇el + mY x − �1y) (56)

0 = ε̇el : ε̇el − 2ε̇el : �1y + y2 + 2ε̇el : mY x − 2 �1 : mY xy + (Y 2 − 1)x2, (57)

where m : m = �1 : �1 = 1 has been used. We take y from (54) and substitute it
into (57). The result is a quadratic equation Ax2 + Bx + C = 0 to be solved for x .
For uniqueness of the inverse solution this quadratic equation should have two roots,
one positive and one negative, i.e. x1x2 < 0 and we take the positive one because
x = ‖ε̇‖. The condition x1x2 < 0 corresponds to C/A < 0. Using abbreviated forms
of (54) and (57), viz.

{
y = α + βx

0 = ax2 + bxy + cx + dy2 + ey + f,
(58)

we obtain the quadratic equation Ax2 + Bx + C = 0 with

{
A = a + bβ + dβ2

C = f + eα + dα2 (59)

or
{

A = (Y 2 − 1) − 2( �1 : m)(z′ : m)Y 2 + (z′ : m)2Y 2

C = ε̇el : ε̇el − 2(ε̇el : �1)(z : ε̇el) + (z : ε̇el)2 (60)
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The value C must be positive by the following argument: let us replace ε̇el : ε̇el by
(ε̇el : �1)(ε̇el : �1), which cannot increase C and hence

C ≥ (ε̇el : �1 − z′ : ε̇el) : (ε̇el : �1 − z′ : ε̇el) > 0 (61)

for any ε̇el �= 0. The condition of invertibility can be therefore reduced to A < 0 or

[
1 − (2 �1 : m)(z′ : m) + (z′ : m)2

]
Y 2 < 1 (62)
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Constitutive Model for Clays Under
the ISA Framework

W. Fuentes, M. Hadzibeti and Theodoros Triantafyllidis

Abstract The Intergranular Strain Anisotropy ISA framework is a novel approach
to develop elastoplastic models wherein a yield surface is defined in terms of strain
increments. For this purpose, the loading-unloading conditions are satisfied within
the space of the intergranular strain, this latter being a state variable “following” the
strain rate. With this, the model aims to improve the simulations under cyclic loading
while keeping their good capabilities at monotonic loading. Within this article, a
constitutive model for clays is developed under the ISA plasticity framework. The
model adopts some parameters from the modified Cam-Clay model and others to
describe the evolution of the integranular strain and its effect on the model response.
Some illustrative simulations are provided to analyze the model performance under
cyclic loading. The simulations show a qualitative behavior in agreement with some
experiments. Possible improvements are discussed at the end of the article.

Keywords Clay model · ISA plasticity · Intergranular strain

1 Introduction

The intergranular strain anisotropy (ISA) plasticity, recently proposed by Fuentes
and Triantafyllidis [4], is a mathematical framework useful for the development of
constitutive models simulating the cyclic behavior of the material. It is based on the
concept of the intergranular strain [11], being a state variable which provides infor-
mation about the recent strain history. Specifically, the intergranular strain variable
has information related with the change of strain rate direction

−→̇
ε within a strain

amplitude of approximately || �ε || ≈ 10−3. Having this, the constitutive model
increases the stiffness and reduces the plastic accumulation upon every change of
strain rate direction

−→̇
ε . All these effects have shown to provide a better performance

of the simulations under cyclic loading.
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The idea of the intergranular strain was originally proposed by Niemunis and
Herle [11] in order to mitigate the excessive plastic accumulation exhibited by some
Karlsruhe hypoplastic models, e.g., the model by [13]. The physical explanation
attributed to this variable, even this is debatable, consists in the idea that it repre-
sents the deformations of the interface layers between the soil particles (intergranular
space) and accordingly, very small deformations of these interfaces are responsible
of the small strain effects, namely the stiffness increase, the reduction of the plastic
strain rate, and the appearance of an elastic locus upon cyclic loading. The formu-
lation by Niemunis and Herle [11] did simulate well some of aforementioned small
strain effects except for the appearance of an elastic locus, fact which motivated the
development of the recently proposed ISA formulation [3], in which an elastic locus
of the material within the space of the intergranular strain and other small strain
effects are truly considered.

So far with the new ISA framework, the formulation has shown to simulate well
tests performing cyclic loading on sands [3, 4], but still not been tested on the
simulations of fine-grained soils. Therefore, this article is committed to show the
performance of the model with a direct focus on the simulation of the clay mechani-
cal behavior. The relations presented herein are mostly based on the previous model
for sands by Fuentes and Triantafyllidis [4] but modified to account for additional
required effects of clays. While the evolution equation of the intergranular strain
remains identical as in the previous formulation [4], some other relations have been
modified for the sake of convenience, namely the compression law at isotropic con-
ditions, the dilatancy surface which now coincides with the critical state surface and
an overconsolidation factor considered to improve the simulations under these states.
The details of the new relations will be provided in the next sections.

The notation of this article is as follows. Scalar quantities are denoted with italic
fonts (e.g., a, b), second rank tensors with bold fonts (e.g., A, σ), and fourth rank
tensors with Sans Serif type (e.g., E, L). Multiplication with two dummy indices, also
known as double contraction, is denoted with a colon “:” (e.g., A : B = Ai j Bi j ).
When the symbol is omitted, it is then interpreted as a dyadic product (e.g., AB =
Ai j Bkl ). The deviatoric component of a tensor is symbolized with an asterisk as
superscript A∗. The effective stress tensor is denoted with σ and the strain tensor
with ε. The Roscoe invariants are defined as p = −trσ/3, q = √

3/2 ‖ σ∗ ‖,
εv = −trε and εs = √

2/3 ‖ ε∗ ‖.

2 Intergranular Strain Model

Conventionally, constitutive models for soils propose yield functions describing a
surface within the stress space. In Contrast to this, the ISA plasticity focuses on
the incorporation of the elastic locus in terms of strain amplitudes (within the strain
space) and not within the stress space. A yield function with such characteristics is
expected to depend on a variable having information of the strain amplitude. One
of the simplest idea to compute the current strain amplitude would be to subtract
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from the current strain the one at the last reversal point, as by the paraelastic models
[12]. Nevertheless, this operation may be numerically unstable when dealing with
very small strain amplitudes || ε || < 10−4. On the contrary, the intergranular strain
does not need the introduction of reversal points, but gives information about the
strain amplitude. In the following lines, the formulation of the intergranular strain
according to the ISA model is recalled [4].

Consider an elastic locus of the material within the intergranular strain space
h, described with a yield function FH = FH (h, c) = 0 whereby c is a hardening
variable to be defined in the sequel. It is now established that if FH < 0, the response
of the material is elastic, and the intergranular strain h evolves identically as the strain
ε does:

ḣ = ε̇ for FH < 0 (1)

This is a very convenient evolution equation, since any hardening variable (as the
yet unknown tensor c) remains constant under elastic conditions FH < 0, and the
increments of intergranular strain are equal to the increments of strain, i.e., �h = �ε.
This latter condition is very useful to define a yield function describing an elastic
locus in terms of strain amplitude. If the strain amplitude of the elastic locus is
constant, this surface looks like a sphere within the principal intergranular strain
space whose center is represented with c. Following this, the yield function can be
defined as:

IS yield surface: FH ≡‖ h − c ‖ −R/2 = 0 (2)

whereby the tensor c has been termed the “back-intergranular strain” being actually
a hardening variable, and the parameter R is a constant representing the maximum
amplitude of the elastic strains. In the space of the volumetric invariant hv/

√
3 =

−tr(h)/
√

3 and the deviator invariant
√

3/2hs =‖ h∗ ‖, where h∗ is the deviator
intergranular strain, the IS yield surface from Eq. 2 takes exactly the form of a circle,
as illustrated in Fig. 1.

Now consider the plastic case in which the intergranular strain “touches” the yield
surface FH = FH (h, c) = 0. In that case, it is desired that after a reversal loading, the
material exhibits smoothly the appearance of a plastic strain rate. Brittle materials
would present a very rapid change of the stiffness when changing from elastic to
plastic behavior, but most soils and some other materials show actually a smooth
stiffness transition when it turns from the elastic into plastic regime. This effect can
be well simulated through a hardening mechanism of the yield surface described
with tensor c. For the ISA framework, some simple relations of the bounding surface
plasticity have been adopted to simulate this behavior. Hence, the model considers
besides the yield surface a bounding surface within the intergranular strain space.

To formulate the behavior under plastic conditions FH = 0, a plastic term is
added to the intergranular strain evolution equation:

ḣ = ε̇ − λ̇H N for FH = 0 (3)
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Fig. 1 Yield surface and
bounding surface within the
space of the intergranular
strain

whereby λ̇H is a consistency parameter and N is the intergranular strain flow rule
being normal to the IS yield surface (see Fig. 1):

N = (h − c)→ (4)

In the last equation, the operator �→ extracts the direction of the tensor �→ = �/ ‖
� ‖. The consistency parameter λ̇H ≥ 0 in Eq. 3 is related with the yield surface
function FH and deduced considering the consistency condition ḞH = 0.

The bounding surface within the intergranular strain space is depicted in Fig. 1.
This surface has the same shape as the yield surface but with twice its size and a
center at the origin. Its function takes the following form:

IS bounding surface: FHb ≡‖ h ‖ −R = 0 (5)

The evolution equation for the back-intergranular strain c can be expressed as a
function of the consistency parameter λ̇H :

ċ = λ̇H c̄ (6)

whereby c̄ is its hardening function. The hardening function c̄ presents the following
relation:

c̄ = β(cb − c)/R with cb = R/2(ε̇)→ (7)

whereby β is a material parameter and cb is the image of c at the bounding surface.
The consistency condition ḞH = 0 followed by substitution with Eqs. 2, 6, 7 and 3
yields to the consistency parameter definition λ̇H :

λ̇H = 〈N : ε̇〉
1 + HH

(8)
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where the operator 〈〉 are the Macaulay brackets and HH = −(∂FH /∂c) : c̄ is the
hardening modulus.

In the following lines, a scalar function is introduced to quantify how close is
the intergranular strain h to the bounding surface FHb = 0. Similar to the image
tensor cb, one can propose an image tensor of the intergranular strain at the bounding
surface denoted by hb and defined as:

hb = RN (9)

The distance ‖ hb −h ‖ provides information of how close is the intergranular strain
h to the bounding surface FHb = 0. According to the proposed model, the bounding
condition h = hb should be asymptotically reached after applying large strains in a
constant direction

−→̇
ε . At these states, N should reach the value of

−→̇
ε . This particular

state in which N = −→̇
ε and h = R

−→̇
ε has been called the “fully mobilized” state.

The scalar function ρ is introduced to consider how close is the current state to this
“fully mobilized” state:

ρ = 1 − ‖ hb − h ‖
2R

(10)

This scalar function provides two important and illustrative cases. It renders ρ = 0
when ‖ hb − h ‖= 2R, which means strain reversal after fully mobilized state. On
the other side, ρ = 1 when h = hb for fully mobilized state. The last case is very
useful when formulating relations of the mechanical model under medium and large
strain amplitudes.

3 Mechanical Model Formulation

Having defined the evolution equation of the intergranular strain h, it is now pro-
ceeded with the description of the mechanical model which relates the rate of (effec-
tive) stress σ̇ with the rate of the strain ε̇. The constitutive relation is based on the
ISA plasticity framework [3] which can be written with the following general form:

σ̇ = mĒ : (ε̇ − yh ¯̇εp) (11)

where Ē is the residual stiffness, or with other words, the stiffness at mobilized states
ρ = 1, the tensor ¯̇εp corresponds to the plastic strain rate at mobilized states ρ = 1
and the scalar functions m and yh have been introduced to increase the stiffness
and reduce the plastic strain rate, respectively, upon cyclic loading (yh < 1). The
factor yh is proposed, such that it reduces the plastic strain rate upon unloading and
guarantees the stress rate continuity between the elastic and plastic response. The
simulation of these two effects are achieved through the multiplication of two factos
as follows:
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yh = ρχh 〈N : −→̇
ε 〉 (12)

whereby the factor ρχh reduces the plastic strain rate upon cyclic loading and the
factor 〈N : ε̇〉 is the one responsible of the stress rate continuity. Notice that this
factor also appears in the numerator of the consistency parameter Eq. 8, fact which
is not a coincidence. Notice also that when yh = 0, the response is (hypo-)elastic
whereas yh = 1 implies fully mobilized states.

The factor m responsible for the stiffness increase is a simple function interpolating
between 1 ≤ m ≤ m R , whereby m R > 1 is a material constant. The function from
Fuentes and Triantafyllidis [4] is here adopted:

m = m R + (1 − m R)yh (13)

One of the main features of the ISA plasticity is that at fully mobilized states, the
effect of the scalar functions m and yh vanishes, i.e., m = 1 and yh = 1, and the
general constitutive equation yields to:

σ̇ = Ē : (ε̇ − ¯̇εp)

= Ē : (ε̇ − Y m ‖ ε̇ ‖) (14)

whereby Y =‖ ¯̇εp ‖ / ‖ ε̇ ‖ is the degree of nonlinearity [10] and m = −→̇̄
εp is

a flow rule (‖ m ‖= 1). This particular form can be adjusted to the mechanical
behavior exhibited by the material at medium and large strain amplitudes at which
the condition yh = 1 is expected. Furthermore, it recalls some constitutive equations
proposed in the literature, whereby a plastic strain component is always active, such
as the Karlsruhe hypoplastic models [6, 10, 13], which according to some authors,
simulate well the behavior at these strain amplitudes. Hence, even this is not a must,
one may adopt some existing formulations of the Karlsurhe hypoplastic model for
the tensors Ē and ¯̇εp. To give an example, if the interest focuses on the simulation
of the behavior of clays, it is possible to adopt directly the existing relations for
Ē and ¯̇εp from the hypoplastic model by Masin [9]. Anyway, within this work a
similar formulation as the previous ISA-type model for sands by [4] is adopted as
reference, and some of its functions are modified to simulate the clay behavior. These
modifications are based on some conventional concepts, such as the distinction of
normal consolidated and overconsolidated states which are explained within the next
sections. Further steps toward the model development are still missing, such as the
consideration of viscous effects and partial saturation.

3.1 Normal Consolidation and Critical State Line

As typically done with clays, this model distinguishes between normal consolidated
sates and overconsolidated states. The first is identified at isotropic stress states
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q = 0 when the void ratio is equal to e = ei , whereby ei is the maximum void ratio
defined as:

ei = ei0 − λ log(p/pref) (15)

where ei0 is a parameter describing the value of the maximum void ratio ei at p =
pref = 1 kPa, the scalar λ is the compression index and pref = 1 kPa is a reference
(fixed) value. Notice that Eq. 15 is the relation originally proposed by the modified
Cam-clay model. The Hvorlesv pressure p = pi is the maximum pressure at constant
void ratio, which is obtained from Eq. 15:

pi = exp ((ei0 − e)/λ) (16)

The critical void ratio ec follows also from the relations of the modified Cam-clay:

ec = (ei0 − λ log(2)) − λ log(p/pref) (17)

where ec0 = ei0 − λ log(2) is the critical void ratio at p = 1 kPa. The term λ log(2)

in Eq. 17 comes from the fact, that once the critical state is reached, the mean pressure
yields accordingly to a value of p = pi/2.
Within the stress space, the model incorporates a bounding surface to describe some
observations like the peak stress ratio of the material, and a critical state surface
governing the behavior at large deformations (|| ε || > 25 %). Similar to the ISA
model for sands by Fuentes [4] and some bounding surface models [1, 8], a “loading
direction” tensor is introduced to project at these surfaces the current stress ratio
r = σ∗/p, whereby σ∗ is the deviator stress. The loading direction tensor is denoted
by n and defined according to Fuentes [4]:

n =
[−→r + 〈−−→r : N∗〉(−→N∗ − −→r )

]→
(18)

The critical state surface is described with the condition Fc ≡ Fc(σ, n) = 0,
whereby:

Critical state surface: Fc ≡ r : n − rc = 0, rc = √
2/3Mcg(θn) (19)

where Mc is the critical state slope for triaxial compression in the p − q space
and the scalar function g = g(θn) is evaluated with the Lode’s angle θn of the
loading direction tensor n. This function is responsible of the shape of the critical
state surface seen from a deviator plane, as schematically shown in Fig. 2. It ranges
between c ≤ g ≤ 1 whereby c = Me/Mc = 3/(3 + Mc) represents the ratio
between the critical state slope for triaxial extension Me and triaxial compression
Mc according to Mohr-Coulomb. The function defining g follows the simple relation:

g(θ) = 2c

(1 + c) − (1 − c) cos(3θ)
(20)
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Fig. 2 Stress ratio images at
the maximum surface,
bounding surface, and
critical state surface

n

Max. surface
Bounding surface
CS. surface

rb rc

r0

r

The bounding surface represents the condition ‖ ¯̇εp ‖ / ‖ ε̇ ‖= Y = 1 within the
stress space. According to Eq. 14, if the strain rate is in the same direction as the flow
rule

−→̇
ε = m, the stresses would not change σ̇ = 0 at the bounding surface. This is

advantageous, because one may associate the shape of this surface as the maximum
stress ratios ‖ r ‖ reached by the experiments. Within this model, the clay anisotropy
due to the loading history is considered though the effect of the intergranular strain
and not by the bounding surface. This means that, even this bounding surface does
not present an additional rotational mechanism to simulate the clay anisotropy, such
as in [2, 7], this latter effect is simulated through the small strain effects provided
the intergranular strain formulation. The shape of the bounding surface is similar to
[4], with a wedge-capped form (see Fig. 3):

(a) (b)

Fig. 3 a bounding surface within the q − p space. b Bounding surface and critical state surface
within the principal stress space
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Bounding surface: Fb ≡ r : n−rc fb = 0 with fb = fb0

(
1 −

(
e

ei

)nF
)1/2

(21)
where fb0 > 1 is a material parameter defining the maximum norm of the stress ratio
‖ r ‖ at overconsolidated states and nF is an exponent controlling the intersection
of this surface with the critical state surface and defined as [4]:

nF = log
(
( f 2

b0 − 1)/ f 2
b0

)

log(ec/ei )
(22)

Notice that the fact that fb0 controls the norm of the maximum stress ratio allows to
use this model for overconsolidated states. Hence, the surface described with:

Maximum surface: Fb0 ≡ r : n − rc fb0 = 0, (23)

is the one controlling the maximum stress ratio for all states independently of the
void ratio. Figure 2 gives a schematic illustration of this surface.

3.2 Stiffness Tensor

The residual stiffness Ē is defined as in [4]:

Ē = 3K̄
−→
1

−→
1 + 2Ḡ

(
I − −→

1
−→
1

)
− K̄√

3Mc
(1r + r1) (24)

The bulk modulus K = mK̄ and shear modulus G = mḠ are now adjusted to the
behavior of clays with the following relations:

K̄ = K L

(1 − Yim)
= p

λi

(1 + e)

(1 − Yim)
(25)

Ḡ = Kr with r = 1 − 2ν

2(1 + ν)
(26)

where ν is a material parameter (Poisson ratio) and the factor Yim = (rK −1)/(rK +1)

depends on the function rK = λ/κ, whereby κ is the swelling index considered as a
material parameter. The details of the formulation of tensor Ē can be found in [5, 10].

3.3 Residual Plastic Strain Rate ¯̇εP

The residual plastic strain rate tensor ¯̇εP is proposed similar to some Karlsruhe
hypoplastic models [10]:
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¯̇εP = Y m ‖ ε̇ ‖ (27)

whereby Y =‖ ¯̇εP ‖ / ‖ ε̇ ‖ is called the degree of nonlinearity [10] and m is
the flow rule. This latter is defined identically as in Fuentes [4] but with a dilatancy
surface equal to the critical state surface:

m = (−1/2(rc − r : n)1 + ‖ N∗ ‖ n
)→ (28)

whereby rc = √
2/3Mcg is the norm of the image stress ratio tensor at the critical

state surface and the factor g = g(n) has been previously defined in Eq. 20. The
degree of nonlinearity Y is dictated by the relation according to [5]:

Y =
( ‖ r − r0 ‖

‖ rb − r0 ‖
)nY

(29)

with the image stress ratio rb = √
2/3Mcg fbn and the image stress ratio at the

maximum surface r0 = √
2/3Mc fb0n, as depicted schematically in Fig. 2. As in

Fuentes [4], the exponent nY controls the value of Y = Yi at isotropic states q = 0
through the relation:

nY = log(Yi )

log( fb0/( fb0 + fb/c))
(30)

Whereby Yi can be defined independently to simulate the behavior at isotropic states
q = 0. Probably, the definition of Yi is one of the key features of this model compared
to the one for sands [4] because it now considers the effect of the overconsolidation.
To do this, a factor (p/pi )

2 is introduced to its definition as follows:

(a) (b)

Fig. 4 Simulation of loading-unloading cycles at isotropic states q = 0 for different definitions of
Yi . a with Y = Y0, b with Y = Y0(p/pi )

2
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Yi = Yim(p/pi )
2 =

(
rK − 1

rK + 1

)
(p/pi )

2 (31)

In order to show the influence of the factor (p/pi )
2, some simulations at isotropic

conditions q = 0 are provided in the Fig. 4. If this factor is not considered, the simula-
tions shows ratcheting as in Fig. 4a. Simulations of the Fig. 4b shows an improvement
avoiding this shortcoming.

4 Parameters and Numerical Implementation

The model requires 10 parameters listed within the Table 1. The Table presents also
the description, units, approximated range, and some useful experiments for their
calibration. These parameters include the basic parameters of the modified Cam-
clay model namely λ, κ, e0, ν, and Mc plus one parameter describing the maximum
stress ratio fb0 at overconsolidated states and four additional parameters from the
intergranular strain model m R , R, β, χh . For their calibration, some routine tests are
required, such as isotropic compression test, undrained triaxial test, drained triaxial
test, and some cyclic tests.

The implementation has been performed by using a substepping explicit scheme
with small strain subincrements to avoid numerical problems. The programming

Table 1 Material constants of the proposed model

Description Units Approx.
range

Value Useful
experiments

Modified Cam-Clay

λ Compression index (−) 10−6−1 0.0057 IC(i)

κ Swelling index (−) 10−6−1 0.0057 IC(i)

ei0 Maximum void ratio (−) 0.5−2 1.21 IC

ν Poisson ratio (−) 0−0.5 0.18 UTC(i i)

Mc CS slope (−) 10−40 1.33 UTC, DTC

Hvorslev surface

fb0 Bounding surface factor (−) 1−2 1.35 UTC, DTC

Intergranular strain

m R Stiffness factor (−) 1−7 5 CUTC(iv)

R IS yield surface radius (−) 10−5−10−4 1.4 × 10−4 −
β IS hardening parameter (−) 0−1 1.0 CUTC

χh IS exponent (−) 1−10 7 CUTC

(i) IC Isotropic test (loading-unloading)
(ii) UTC Undrained triaxial test
(iii) DTC Drained triaxial test
(iv) CUTC Cyclic undrained triaxial test
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language corresponds to Fortran and follows the syntax of the subroutine UMAT
from the software Abaqus Standard. The numerical integration of this subroutine
has been performed with the software Incremental Driver which is fully compatible
with the syntax of the UMAT subroutine.

5 Simulation Examples

This section presents some qualitative simulations with the proposed model. The
parameters are typical for clay-like soils but has not been calibrated to any particu-
lar material. Hence, these simulations are qualitative to analyze the model response
under some particular type of loading paths. For comparison purposes, some simu-
lations with the modified Cam-clay model having the same counterpart parameters
are presented. In all these simulations, the intergranular strain and back-intergranular
strain where initialized with h = −R1 and c = −R/21 to consider the effect of the
initial isotropic compression before proceeding with the triaxial shearing.

Samples sheared under monotonic undrained loading were simulated and are
shown in Fig. 5. Before the undrained shearing, all samples were isotropically com-
pressed till p = 200 kPa reaching a void ratio of e = 0.67 and some of them were
unloaded to different pressures. In this way, four different overconsolidated ratios
OCR have been considered and correspond to OCR = {1, 2, 3, 4}. Simulations with
the Modified Cam Clay model MCC have been included for comparison purposes,
see Fig. 5a, c. The simulations with the MCC model show the well-known problems
of this model when simulating heavy overconsolidated states (OCR > 2), namely
the overestimation of the peak stress ratio and the brittle transition from the elastic
to plastic state. The ISA model does not present these disadvantages because the
maximum stress ratio is controlled through the parameter fb0 and the transition from
elastic to plastic states is very smoothed by the hardening of the IS yield surface.

The Fig. 6 presents the simulations of a cyclic undrained triaxial test with constant
deviatoric stress amplitude and with 20 cycles. The cycles start at p = 200 kPa
with a void ratio of e = 0.67. This illustrative example shows that under this cyclic
loading path, the ISA model shows always plastic accumulation and finds an attractor
(superimposed stress path cycles) when it reaches the critical state line, see Fig. 6b.
Most of the experiments show that this attractor presents an “eight”-shape, but is
attributed to the viscous effects in some plastic clays which has not been considered
in the present formulation.

Figure 7 presents some simulations of cyclic undrained triaxial tests but now
with constant strain amplitudes. Two simulations were included, the first with
|| �ε || = 0.02 and the second with || �ε || = 0.005. The cycles were performed
after simulating a “large” cycle as shown in the figure. The simulations highlight
the fact, that the “point attractor” (liquefaction) shape is achieved with the current
model.
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Fig. 5 Simulations of monotonic undrained triaxial test for different OCR. ISA model for clays
(ISA-clay) is compared with the modified cam clay model (MCC)
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Fig. 6 Simulation with the ISA model for clays of a cyclic undrained triaxial test with constant
deviator stress amplitude
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Fig. 7 Simulations with the ISA model for clays of a cyclic undrained triaxial test with constant
strain amplitude (blue || �ε || = 0.005; red || �ε || = 0.02 and after a large cycle)

6 Closure and Outlook

In this article an ISA-type constitutive model for clays has been proposed. The
model is based on the intergranular strain plasticity, which provides an alternative
way to propose constitutive formulations describing the cyclic behavior of some soils.
Similar relations as the ISA model for sands [4] were herein adopted and modified
to simulate the clay behavior. The qualitative simulations showed that under some
cyclic undrained loading paths, the attractors shown by the model are similar to those
observed in many experiments. The next step, is to perform more validations through
the simulation of experimental results and the incorporation of some effects as the
material viscosity, partial saturation and cementation as well as the anisotropy.
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On the Use of Isotropic Hardening
Plasticity to Model Cyclic Consolidation
of Fine Grained Soils

Nina Müthing, Thomas Barciaga and Tom Schanz

Abstract Cyclic soil behavior plays an important role in geotechnical engineering,
both in the installation phase as over the life span of constructions. Relevant applica-
tion examples which find increasing attention nowadays are the dimensioning of on-
and offshore foundation systems, the analysis of soil behavior due to mechanized
tunneling processes as well as analyses of loading histories related to deep exca-
vation walls. Thus, in the present paper fundamentals of cyclic soil behavior under
partially drained, oedometric conditions are analyzed. Excess pore water pressure
evolution and accumulated deformations are studied by both numerical and exper-
imental approach. For this purpose, a new oedometer device is introduced which
allows to measure complete stress state under transient loading. Additionally, by
numerical experiments using FEM the influence of soil stiffness and permeability on
the evolution of excess pore water pressures and accumulated deformations is stud-
ied. By comparison of numerical and laboratory experiments the ability of classical
isotropic hardening plasticity to model cyclic consolidation phenomena is validated.

1 Introduction

Cyclically loaded structures are most common in different applications of geotechni-
cal engineering. Typical structures as foundations of wind turbines or pipelines must
be designed considering these nonmonotonic impacts. As structures are in contact
with the surrounding soil understanding the soil-structure interaction as well as the
underlying mechanisms is a major need. Thereby, an important role falls upon the
constitutive behavior of cyclically loaded soils. This paper deals in particular with
the cyclic behavior of fine grained soils as in fine grained soils excess pore water
pressure build up and dissipation occurs and influencing the effective stresses and
kinematics as well as the stability of the entire structure accordingly. Related to the
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excess pore water pressures, the accumulation of settlements is of major interest.
FEM simulations are a well-established tool to analyze this type of complex soil-
structure interaction boundary value problems involving consolidation process and
transient states accordingly.

Existing analytical solutions, see, e.g., [6, 7], consider cyclic loading conditions.
However, in most cases these solutions are based on Terzaghi’s classical theory
assuming geometrical as well as constitutive linearity and therefore only rather ide-
alized boundary value problems can be analyzed. Though, in reality with changing
effective stresses and void ratio under cyclic loading conditions soil stiffness and
permeability will also change.

In the present paper, partially drained consolidation of fine grained soils under
cyclic loading condition is analyzed. Therefore, a newly developed one-dimensional
compression cell is introduced and typical, experimental results for fine grained soils
are discussed. This type of experiment involves several challenges as, for example,
measuring only small amount of water inflow or outflow of the sample, measuring
radial total stress and sealing the cell in order to measure and/or control pore water
pressures in the samples. Furthermore, numerical experiments using FEM are carried
out to study the influence of soil stiffness and permeability on the evolution of excess
pore water pressures and accumulated deformations. The FEM simulations comprise
one-dimensional tests involving isotropic hardening plasticity which is commonly
used in engineering practice [9]. In the coupled hydraulic-mechanical analysis the
soil stiffness is adapted according to the change in effective stress. Additionally soil
stiffness is modeled as loading direction dependent. Plastic strains are determined
based on a double hardening rule. Cap hardening is calibrated to result in realistic K0
values under one-dimensional loading paths. Experimental results are qualitatively
compared to the FEM simulations.

Summarizing, the main objective of this paper is to analyze whether classical
hardening plasticity is an appropriate tool to model cyclic soil-structure interaction
mechanisms involving underlying partially drained consolidation processes.

2 Experimental Study

In the experimental study partially drained, oedometric tests on soft Kaolin clay were
carried out to study the cyclic consolidation behavior of fine grained soils. A new
oedometer device was designed and constructed at Ruhr-Universität Bochum, intro-
duced already in [4, 5]. In the following section the oedometer device is described
regarding its technical features and testing procedure. Hydraulic boundary and load-
ing conditions, which were used to perform cyclic tests, are given. Furthermore, the
tested Spergau Kaolin clay samples are characterized and the sample preparation is
described.
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2.1 Oedometer Device

To experimentally analyze the consolidation behavior of fine grained soils under
cyclic loading conditions a new oedometer device was implemented at Ruhr-
Universität Bochum and introduced in [4]. In the new oedometer device cylindric
samples of 20mm height and 70mm diameter are tested (see Fig. 1). The oedoemeter
ring is sealed against the top and bottom plate by rubber rings. Therefore, it allows
the measurement of pore water pressure and pore water volume, which is in the focus
of this study. As top and bottom of the device can be set drained or undrained inde-
pendently, tests under different hydraulic boundary conditions as well as undrained
compression tests can be performed.

Supplementary to the functionality of a classical oedometer the following mea-
surements are conducted: measurement of positive and negative pore water pressures
up to 1000/−100 kPa at the bottom of the sample, lateral stress measurement up to
400 kPa allowed by strain gauges attached to the oedometer ring, determination of
wall friction between sample and oedometer ring by measurement of vertical stress
above and below the sample as well as volume measurement of the outflowing pore
water.

Fig. 1 a Sketch and b photograph of the new oedometer device [4]
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Table 1 Plasticity of
Spergau Kaolin

Liquid limit, wL (%) 53.4

Plastic limit, wP (%) 32.3

Shrinkage limit, wS (%) 31.3

Plasticity index, IP (%) 21.1

2.2 Testing Material and Sample Preparation

In the present study experiments were conducted on Spergau Kaolin clay. Spergau
Kaolin is an inorganic clay of high plasticity [1]. Table1 gives the Atterberg limit
values for this clay.

The sampleswere preparedmixingKaolin powderwithwater to a samplematerial
with a water content slightly above liquid limit (w = 1.1 · wL = 0.588). The paste-
like soil material with a density of ρ = 1.63 g/cm3 was placed in the oedometer
ring using a spattle between two deaired filter plates. Figure2b shows an exemplary
Kaolin sample.

The clay sample was saturated by streaming it from bottom to top. This procedure
guarantees better saturation and allows the determination of the sample permeability,
as a permeability test with variable pressure head is performed. Thereby, the mean
values of the initial permeability of the samples were determined, for details see [4].

2.3 Hydraulic Boundary Conditions

The hydraulic boundary conditions in the experiment had to be chosen such that
pore water pressures could be measured during the cyclic consolidation process. In a
standard oedometer configuration, where usually both top and bottom of the sample
are drained (abbreviated PTPB), the measurement of pore water pressure however

Fig. 2 a ESEM photograph of Spergau Kaolin [1] and b Spergau Kaolin sample
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(a) (b)

Fig. 3 Possible hydraulic boundary conditions and location of pore water pressure measurement:
a PTPB, b PTIB

is rather difficult as pore water pressures have to be measured in the middle of the
sample (see Fig. 3). Due to the minor height of the sample the implementation of a
pore pressure transducer in this place would cause a strong disturbance of the sample
and flow paths. Therefore, experiments were conducted with the following testing
configuration: permeable top and impermeable bottom (abbreviated PTIB). This
configuration is equivalent to a standard PTPB oedometer configuration considering
that the height of the sample is halved. The hydraulic boundary conditions can be
described by

u(z = H, t) = 0 (1)

where z is the vertical coordinate starting from the bottom of the sample and H is
the sample height.

2.4 Applied Loading

For the present study a cyclic loading function of sinusoidal typewas selected accord-
ing to [4, 7]:

L(t) = q sin2
π t

d
(2)

where L(t) = applied loading as a function of time, q = load amplitude, t = time,
and d = load period.

This haversine loading functionwas chosen considering that in geotechnical appli-
cations mostly compression loading is considered, while tensile loading is neglected.

In the present study the load amplitude q was set to 400 kPa accounting for the
soft soil behavior and the short time range of load application. The load period d was
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Fig. 4 Applied haversine loading function

chosen to be 15% of the reference time t ref(T0 = 1), an equivalent sample (identical
initial state) under static loading would need to completely consolidate:

d = T0 × H2

cv
= 0.15 × (0.02m)2

5 × 10−7 m2/s
= 120 s (3)

where T0 is the chosen dimensionless period, cV is thematerial-dependent coefficient
of consolidation assumed to be a constant value determined from static consolidation
tests on the same sample material. For details see [4].

Figure 4 shows the haversine loading function over time as applied in the experi-
mental testing.

2.5 Experimental Results

In the following section selected results from the experimental study on Kaolin
clay under haversine cyclic loading are presented. Thereby, the focus is set on the
qualitative pore water dissipation behavior and evolution of settlements during the
cyclic consolidation process.

2.5.1 Pore Water Dissipation Behavior

Figure5 shows the evolution of excess pore water pressure unorm, normalized with
the applied load amplitude q = 400 kPa, during the consolidation process. It can be
observed that in the first cycles of the test the excess pore water pressure reaches
values equal to 0.9. Considering the friction between soil sample and oedometer ring,
which is among 5–10% of the applied load, at the beginning almost the entire load
is carried by the pore water pressure. With ongoing consolidation time the excess
pore water pressure dissipates, reaching a quasi-stationary state after approximately
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Fig. 5 Evolution of pore
pressures and settlements
from the experimental study
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40 cycles. It is important to notice that the amplitude of excess pore water pressures
u is strongly damped during the consolidation process. Moreover, the pore water
pressures in the quasi-stationary state reach slight negative values at the beginning
and end of a loading cycle, while the average value stays clearly above zero.

2.5.2 Evolution of Settlements

As displayed in Fig. 5, the settlements snorm, normalized with the maximum consol-
idation settlement, during the cyclic consolidation process accumulate and just as
the excess pore water pressures reach a quasi-stationary state after approximately 40
cycles. The increment of settlement accumulation is significantly decreasing from
larger values in the first cycles to smaller ones in quasi-stationary state.

3 Numerical Modeling

The cyclic consolidation of normally consolidated Kaolin clay is numerically mod-
eled using the finite element method (FEM). The FEM is an appropriate tool to solve
geotechnical boundary value problems under defined complex initial and boundary
conditions. Simulating the cyclic consolidation under partially drained conditions
in a numerical model allows the investigation of the influence of constitutive soil
parameter variation on model responses (e.g., pore water pressures and settlements).

3.1 Initial and Boundary Conditions

The geometry of the simulation model is chosen in accordance with the experimental
setup using same diameter and height as the samples in the oedometer test device
described above. For reasons of computational simplicity the cylindrical sample is



138 N. Müthing et al.

Fig. 6 Discretization for axis-symmetric FE simulation of oedometer tests (H = 2 cm, D/2 =
3.5 cm)

modeled using principles of axis symmetry with respect to the vertical centerline of
the sample.

In the conducted research 15-node triangular finite elements are used for the
discretization of the simulation model (see Fig. 6). Within coupled hydromechanical
analyses of consolidation problems both settlements and pore water pressures are
degrees-of-freedom for the nodes of a finite element.

Themechanical boundary conditions are appliedwith respect to the oedometer test
conditions. Therefore, the prescribed boundary conditions allow for settlements of
the soil sample in general, while the bottom is fixed in its vertical position. The lateral
displacements are constraint at the side wall and in the symmetry axis. The numerical
simulations are performed under stress controlled loading conditions. Whereat the
cyclic load is applied at the top of the soil sample as a mechanical stress boundary
condition referred to the haversine loading function from the laboratory experiments
(same amplitude, load period, number of cycles, and equivalent consolidation coef-
ficient).

In all conducted numerical tests, homogeneous material properties and isotropic
permeabilities of the soil sample are assumed.The soil sample is fullywater saturated.
The chosen hydraulic boundary conditions are chosen according to the PTIB case
in the experiment and therefore allow for drainage at the top of the soil sample and
restrict the side wall, the bottom and the symmetry axis of the soil sample to be
impermeable.

In general the numerical simulations start with a K0 phase to initialize the total
and effective stress conditions of the soil sample considering at-rest earth pressure
and hydrostatic water pressure distributions. The initial density of the soil sample is
initialized by introducing the initial void ratio e0. In the subsequent coupled hydro-
mechanical calculation phase, the cyclic load is applied in terms of the haversine
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loading function described above while the consolidation process is numerically
analyzed according to Biot’s theory simultaneously, see [2, 3].

3.2 Constitutive Soil Model

For adequate modeling of the mechanical behavior of frictional soil, a sophisticated
constitutive model, namely the hardening soil model is used. The hardening soil
model has been developed in the framework of classical elastoplasticity, see [8, 9].

The highly nonlinear, hyberbolic stress–strain behavior of the soil is accurately
modeled by introducing three loading path dependent stiffnesses. The tangent stiff-
ness for primary oedometer loading E ref

oed, the secant stiffness for primary triaxial
loading E ref

50 and the un-/reloading stiffness E ref
ur correspond to a stress-dependent

reference stiffness pref . Whereat the exponential correlation is controlled by a mate-
rial parameter m.

The shear failure surface in the hardening soilmodel obeysMohr–Coulomb failure
criterion including constitutive strength parameters, namely friction angle ϕ and
cohesion c.

The plasticity of the soil is modeled by introducing a double hardening yield
surface shown in Fig. 7 which encloses the elastic region. The yield surface is not
fixed in principle stress space and is allowed to isotropically expand due to deviatoric
and volumetric plastic straining.

The plastic shear behavior of the soil is modeled by a deviatoric yield surface
which is a function of the current stress state, the triaxial loading stiffness E ref

50 , the
un-/reloading stiffness E ref

ur , and the deviatoric plastic strains γ p which are used as
internal hardening parameters. The hardening expansion of the deviatoric yield sur-
face is controlled by the evolution of γ p as shown in Fig. 8. The deviatoric yield
surface is allowed to expand up to the Mohr–Coulomb failure surface. For the cal-

Fig. 7 Yield surface of the
Hardening Soil Model in
principle stress space [9]
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Fig. 8 Deviatoric hardening
of the yield surface of the
hardening soil model and
Mohr–Coulomb failure
surface [9]

culation of γ p a nonassociated flow rule is assumed where the plastic potential is a
function of the dilatancy angle ψ .

The volumetric soil behavior is controlled by a cap-yield surface which separates
the elastic and plastic region in the direction of the effective mean stress p′. Whereat
the size of the cap is defined by the effective preconsolidation pressure p′

c which
accounts for the stress history of the soil. The p′

c is used as an internal state variable
and is updated with respect to the evolution of volumetric plastic strains which are
calculated using an associated flow rule. The initial elliptical shape of the cap is
determined internally based on initial K0-conditions where K0 is the coefficient of
earth pressure at rest.

3.3 Constitutive Material Parameters

The constitutive parameters for the hardening soil model are derived based on the
mechanical and hydraulical parameters determined in standard laboratory tests (tri-
axial tests and static oedometer tests) onKaolin claywith initial conditions equivalent
to those in the experimental setup (w = 1.1 · wL = 0.588). An overview of the main
constitutive parameters of the hardening soil model used in the numerical simulation
of cyclic oedometer tests is given in Table2.

3.4 Numerical Testing Concept and Program

Within the present research the focus is set on the analysis of the influence of con-
solidation coefficient cv, permeability k, and oedometric stiffness Eoed on the model
responses. For comparison of the numerical model responses with the experimen-
tal data of Kaolin clay the development of pore water pressures u at the bottom
and settlements s at the top of the soil sample are evaluated. The numerical testing
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Table 2 Main constitutive
parameters for the hardening
soil model

Parameter Value Unit

ϕ 22 (◦)
ψ 0 (◦)
c 5 (kN/m2)

E ref
50 1,750 (kN/m2)

E ref
oed 1,750 (kN/m2)

E ref
ur 5,250 (kN/m2)

pref 100 (kN/m2)

m 0.95 (−)

K0 0.625 (−)

e0 1.543 (−)

k 4 × 10−8 (m/s)

program for analyzing the influence of varying the constitutive parameters on the
model responses u and s is given in Table3.

Case 1 is chosen as the reference case. The variation of the consolidation coeffi-
cient cv is linearly controlled by the variation of the permeability k and the oedometric
stiffness Eoed according to Eq. (4) where γw is the weight of water.

cv = k Eoed

γw
(4)

The permeability k and the oedometric stiffness at reference stress E ref
oed are varied

by multiplication of the values from the reference test (case 1) with the factors i = 2
and i = 1/2. The cases 2 and 3 are conducted to investigate the influence of constant

Table 3 Numerical testing program—variation of constitutive parameters

Case cv (m2/s) k (m/s) E ref
oed (kPa)

Reference test

1 7 × 10−7 4 × 10−8 1,750

Constant cv by variation of k and E ref
oed

2 7 × 10−7 2 × 10−8 3,500

3 7 × 10−7 8 × 10−8 875

Variation of cv by variation of k and constant E ref
oed

4 3.5 × 10−7 2 × 10−8 1,750

5 1.4 × 10−6 8 × 10−8 1,750

Variation of cv by variation of E ref
oed and constant k

6 3.5 × 10−7 4 × 10−8 875

7 1.4 × 10−6 4 × 10−8 3,500
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cv on the model responses u and s while k and E ref
oed are varying contrarily. The

cases 4 and 5 are used to analyze the influence of cv controlled by variation of k
and constant E ref

oed. In the cases 6 and 7 the cv is influenced by variation of E ref
oed and

constant k.
Besides the variation of cv, k, and E ref

oed, the other parameters are kept constant
in compliance with Table2. It is assumed that during the variation of oedometric
stiffness E ref

oed the correlations E ref
50 = E ref

oed and E ref
ur = 3 E ref

oed are always valid.
To generalize the comparison of the different cases, all pore pressures are normal-

ized to unorm with the maximum total stress applied during the cyclic oedometer test.
Furthermore, all settlements are normalized to snorm with the maximum settlements
from the reference case (case 1).

4 Numerical Test Results

In the following section the results of the numerical experiments simulating cyclically
loaded oedometer tests with partially drained boundary conditions are analyzed.
Thereby, the main focus is set on the influence of soil stiffness E ref

oed and permeability
k on the normalized excess pore pressure dissipation behavior unorm(t) at the bottom
(undrained side) and the normalized accumulated settlements snorm(t) at the top of the
samples (drained side). To do so case 1 is used as the reference configuration, using
typical constitutive parameters of the soft Kaolin soil samples in the experimental
study. As explained above cases 2–7 are derived from the reference case by changing
one or two parameters (soil stiffness and/or permeability) while keeping all the other
parameters the same for all cases as shown in Table 3.

Figure 9 gives the results for three cases with the same cv but increasing and
decreasing stiffness and permeability. First of all, it can be seen that for a constant
value of cv the excess pore water pressure dissipation is independent of soil stiffness
E ref
oed and permeability k. This observation holds for both the amplitude and the

average value. Moreover, it can be observed that the final average settlement clearly
depends on the reference oedometer stiffness E ref

oed and that the stiffer the soil is the
smaller is the deformation amplitude.

In Fig. 10 results showing the influence of the soil permeability k are displayed.
As soil stiffness E ref

oed remains constant final average settlements are the same for all
three cases. However, the less permeable the soil is the smaller is also the amplitude of
vertical deformation. Amplitude and average value of the excess pore water pressure
are independent of the permeability. However, the more permeable the soil is the
earlier the quasi-stationary state is reached.

In Fig. 11 results showing the influence of soil stiffness E ref
oed are displayed. It

can be seen that the final settlements snorm linearly depend on the stiffness, while
the amplitude of cyclic deformation increases with decreasing stiffness E ref

oed. The
dissipation of excess pore water pressure accelerates with increasing soil stiffness
and increasing cv, respectively.
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Fig. 9 Evolution of pore pressures and settlements during numerical cyclic loading test—variation
of permeability and oedometric stiffness
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Fig. 10 Evolution of pore pressures and settlements during numerical cyclic loading test—variation
of permeability
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Fig. 11 Evolution of pore pressures and settlements during numerical cyclic loading test—variation
of oedometric stiffness
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In general it can be concluded that both—normalized excess pore water dissipa-
tion and normalized accumulation of settlements—depend on soil permeability and
stiffness. The soil deformation is more significantly influenced by a change of the
stiffness than the permeability, as a change in permeability with constant stiffness
only effects the amplitude of the deformations but not the average value. The excess
pore water dissipation is most significantly influenced by a change of cv as for higher
cv the quasi-stationary state is reached earlier.

5 Validation of Numerical Results by Experiments

In the following section a validation of the constitutive model used is performed
by a qualitative comparison of excess pore water dissipation and accumulation of
settlements from the laboratory experiments. As typical numerical results for soft
soils we use the reference case one, as displayed in Fig. 9a. From such a comparison it
becomes obvious that accumulation of vertical settlements is captured rather well by
the constitutive approach employed. For about 20 cycles amplitude of deformation
decreases and quasi-stationary state seems to be reached for number of cycles larger
than 40.On the other hand, a clear discrepancymust be statedwhen comparing results
from excess pore water pressure dissipation. First of all, a significant damping of the
amplitude can be observed for the experimental results. This results from a strong
decrease of the maximum pore pressures reached during one cycle. Moreover, the
excess pore water pressure minima only slightly reach the negative range with an
average value for quasi-stationary state clearly different from zero. On the opposite,
the numerical results show a remaining constant amplitude and an average of about
zero for quasi-stationary state. Consequently, it can be concluded that constitutive
models based on isotropic hardening plasticity are not adequate to simulate excess
pore water pressure dissipation behavior during cyclic consolidation processes in a
qualitatively realistic manner.

6 Conclusion and Outlook

In the present research the capability of isotropic hardening plasticity to model cor-
rectly the cyclic consolidation behavior under partially drained hydraulic boundary
conditions was studied. In order to perform the experimental study a new oedometer
cell was used allowing measurement of the complete stress state. Numerical exper-
iments were conducted using FEM to model the coupled hydromechanical consol-
idation process. A well-established isotropic double hardening model was used to
describe constitutive behavior of fine grained soil.

From the comparison of experimental and numerical results it can be concluded
that the applied models based on isotropic hardening plasticity are not completely
able to qualitatively simulate the excess pore water pressure dissipation behavior
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during cyclic consolidation processes. This holds for the amplitude as well as for the
average value in the quasi-stationary state. Final settlements in the quasi-stationary
state are too large, as the accumulation of deformation is not modeled adequately. A
decrease of deformation increment as observed from the experiments is not observed
from the numerical simulations.

An alternative concept to simulate this type of cyclic consolidation processes is the
use of constitutive models based on bounding surface plasticity. In further research,
it will be studied whether this model class is able to represent accumulation of
deformations and degradation of excess pore water pressure amplitude in a more
realistic way.
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Abstract It is known that some common constitutive models show deficits when
predicting elastic and plastic deformations due to high- and low-cycle loading result-
ing for example from geotechnical installation processes. The object of part I of
subproject 8 within the DFG research group FOR 1136 (GeoTech) is to show the
performance of different constitutive models and to compare them to experimental
laboratory test results and among each other. To look onto the incremental stress–
strain behaviour of sand, series of drained, stress-controlled triaxial tests have been
carried out to obtain strain response envelopes for monotonous loading. Here, a soil
element is subjected to a constant stress increment in different directions and its strain
responses are evaluated graphically. The presented laboratory tests were performed
at different initial stress states. The accumulation of strains due to low cyclic load-
ing (N ≤ 50) has also been examined for different loading directions and different
sizes of stress amplitudes. All experiments have been recalculated numerically with
different constitutive models, amongst them some common as well as advanced con-
stitutive models, which have been developed recently and partly within the research
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1 Introduction

In practical applications, soil elements can be subject to monotonous as well as to
stress or strain cycleswith differentmagnitudes of amplitudes. Constitutive equations
used to solve boundary value problems should generally be able to model all these
loading situations and predict resulting stresses and deformations realistically.

Especially,when it comes to cyclic loading, occurring for example during geotech-
nical installation processes, it is well known that some common constitutive models
show deficits when predicting elastic and plastic deformations with regard to mag-
nitude as well as to accumulation.

In general, cyclic loading processes can be divided into high-cycle and low-cycle
loading, depending on the number of cycles N . To avoid numerical errors and high
computing time, it is often useful to calculate deformations due to high-cycle loading
by means of explicit models, where irreversible strains are treated similar to creep
deformations under constant loads [14]. In Wichtmann’s High Cycle Accumulation
model, the strain amplitudes are limited to �ε ≤ 10−3. So it is appropriate to use
other constitutive equations for low number of cycles, where the magnitude of strains
is often ≥10−3. Low-cycle loading processes can be defined for a lower number of
cycles with N ≤ 50, [4]. In these cases, an implicit calculation of deformations is
often appropriate.

After describing some fundamentals in Sect. 2 of this paper, numerical and exper-
imental analyses of monotonous and low-cycle loading in triaxial testing are pre-
sented. The results of different monotonous loading paths are evaluated by means
of response envelopes in Sect. 3. In Sect. 4, the stress–strain behaviour during low-
cycle loading is examined, where the focus is set on the accumulation of plastic
strains. A comprehensive study of quasi-elastic strains during low-cycle loading can
be found in [5].

By comparing the experimental and numerical results, an attempt is made to show
the performance of some common and advanced constitutive models.

2 Fundamentals

2.1 Response Envelopes

In axial symmetric conditions considered in this paper, index 1 denotes the axial
component and index 3 the lateral component of stress or strain, respectively. The
stress ratio η is defined by the quotient of the deviatoric stress q = σ1 − σ3 and the
mean pressure p = (σ1 + 2σ3)/3 describing the stress state’s position in the p–q
plane.

To avoid distortion of two vectors in the p–q plane, which are orthogonal to each
other in the three-dimensional principal stress space σ1−σ2−σ3, stresses and strains
in this paper are presented in the Rendulic plane, which is isomorphic. Its horizontal
axis is

√
2σ3 and

√
2ε3, respectively, and the vertical axis σ1 and ε1 (Fig. 1).
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So-called response envelopes are a useful tool for calibrating, validating and
comparing constitutive equations [11]. The soil’s incremental stress–strain behaviour
can hereby be investigated during first loading as well as during un- and reloading
processes. First basics of response envelopes were presented in the 1970s by [12]. A
few years later, [9] used this concept in context with the development of constitutive
equations.

To obtain a response envelope, a soil element is subjected to a certain stress or
strain increment. Considering the concept of strain-response envelopes dealt with in
this paper—subsequently referred to as “SREs”—a constant stress increment

�σ =
√

�σ 2
1 + 2�σ 2

3 (1)

is applied in different directions ασ , Fig. 1a.
The corresponding “response” of the soil in terms of either strain or stress is

determined and presented graphically. The direction of the implied stress or strain
increment with a constant absolute value is varied and leads to different stress or
strain responses, endpoints of which are connected to a response envelope.

The strains are also plotted in the isomorphic rendulic diagram, in which the
resulting total strain increment is

�ε =
√

ε21 + 2�ε23 (2)

The angles ασ and αε shown in Fig. 1 are used herein to quantify the direction of
incremental quantities. ασ is the angle between stress probe vector and the positive√
2σ3-axis and αε is the angle between the strain increment vector and the positive√
2ε3-axis.

(a) (b)

Fig. 1 Applied stress increments �σ (a) and corresponding strain responses (b) for different
directions ασ
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Table 1 Initial stress states

Stress state p (kPa) q (kPa) Stress-ratio
η = q/p [−]

Region

A 200 150 0.75 Compression

I 200 0 – Isotropic

J 200 −100 −0.5 Extension

2.2 Triaxial Device and Testing Procedure

The triaxial device used for experiments presented in this paper is equipped with
high-resolution measurement and control technology. The confining pressure as well
as the axial force can be controlled independently, so that stress paths in different
directions from any initial stress state can be performed.

The tested soil is a fine-grained sand with a low uniformity-index (CU = 1.25,
d50 = 0.15 mm), having a positive impact when it comes to avoid effects from
membrane penetration. Height and diameter of the soil specimen are 10 cm.

The soil sample was fabricated by pluviating dry sand thereby maintaining a con-
stant height. This specimen-preparation method was kept constant for all tests. The
achieved relative densities ID were well reproducible with small deviation (±0.1).
Starting with an isotropic stress, the predefined initial stress state was reached, either
by increasing the vertical stress (for stress states in compression) or the horizontal
stress (for stress states in extension). Then the soil sample was consolidated.

The experiments described in this paper are carried out with medium to dense soil
samples (ID ≈ 0.75), consolidated at initial stress states shown in Table 1.

For all experiments and stress probe directions, one equally prepared and con-
solidated sample is used. The stress-controlled experiments are carried out under
drained conditions. The rate and the frequency during low-cycle loading, respec-
tively, are kept low to avoid pore water pressure. All stresses referred to in this paper
are effective stresses (σ = σ ′).

2.3 Considered Constitutive Equations

There are quite some constitutive models for granular soils, which are used to calcu-
late boundary value problems for practical purposes. It is known, however, that some
of them show deficits when predicting deformations due to high- and/or low-cycle
loading processes.

In this paper, some of them are chosen exemplarily to compare them with each
other and to the experiments, which have been carried out by the authors. The con-
stitutive equations are
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• Hypoplasticity with intergranular strain (IS);
• Hardening Soil model (HS);
• Intergranular Strain Anisotropy-model (ISA);
• Simple Anisotropic Sand Plasticity model (Sanisand).

The hypoplastic constitutive model describes the stress–strain behaviour of non-
cohesive soils in rate form. Its present version was formulated by von Wolffersdorff
[20]. Small strain stiffness formulation (so-called intergranular strain concept) was
added by [13].

The Hardening Soil model developed by [16] is formulated in the framework
of classical theory of plasticity. Total strains are calculated using a stress-dependent
stiffness, different for first loading and un-/reloading. Plastic strains are calculated
by introducing a multi-surface yield criterion. Hardening is assumed to be isotropic
depending on both the plastic shear and the volumetric strain. For the frictional
hardening, a non-associated and for the cap hardening an associated flow rule is
assumed.

The elastoplastic ISA model recently introduced by [8] is based on the inter-
granular strain concept, but contrary to the existing formulations it proposes a yield
function describing a surface within the intergranular strain space. It includes an
elastic locus in the intergranular strain space.

The Sanisand model was developed within the framework of critical state soil
mechanics and bounding surface plasticity [17]. As analytical description of a narrow
but closed cone-type yield surface, which obeys rotational and isotropic hardening,
an 8-curve equation is used.

The numerous material parameters needed for the different constitutive models
for the used fine sand have either been determined experimentally by the authors or
have been kindly provided by colleagues of the Karlsruhe Institute of Technology
(KIT).

3 Experimental and Numerical Results from Monotonous
Loading

To obtain a SRE from monotonous loading, once a chosen initial stress state is
reached and consolidation is finished, and a stress path in one direction is applied
until failure, Fig. 2.

Total strains �ε are evaluated for different stress increments �σ = 20, 30, 40,
50 and 100 kPa (circles in Fig. 2a). The same procedure is repeated with an equally
prepared new sample.
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Fig. 2 Applying monotonous stress probes (here from stress state A) in the Rendulic plane (a) and
in the p–q plane (b)

3.1 Experimental Results

There are few papers which report of experimental SREs for momentous loading,
e.g. [1, 3, 6]. An overview can be found in [5].

Figure3 shows SREs determined experimentally for three different initial stress
states, Table 1.

For all stress states, it turns out that the size of the SREs non-linearly increases
with increasing stress increment. It can also be seen that the SREs derived from
stress states in extension (Fig. 3a) and compression (Fig. 3c) get longer and slimmer,
the closer the stress increment approaches the failure lines shown in Fig. 2. Largest
deformations occur for pure deviatoric loading (ασ ≈ 125◦) for the initial stress
state located in compression and for deviatoric unloading (ασ ≈ 305◦) for the initial
stress state located in extension.

For the stress state located on the isotropic axis (I ), the shapes of the strain
response envelopes for �σ ≤ 50 kPa are almost similar to symmetrical ellipses. For
larger stress increments, the envelope becomes elongated towards extension region.

3.2 Numerical Results

The experiments described in Sect. 3.1 have been recalculated numerically with the
aforementioned constitutive equations.

Figure4 shows the numerically determined SREs for initial stress state A (com-
pression). Except for the Sanisand model, the SREs’ elongation and inclination are
in good agreement with the experimental results shown in Fig. 3c. Regarding the size
of the SREs, only the hypoplastic model seems to depict the adequate stiffness.

Figure5 shows the numerically determined SREs for the isotropic initial stress
state I . Approximate symmetrical envelopes for�σ ≤ 50 kPa can be found at theHS
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(a)

(b)

(c)

Fig. 3 Strain response envelopes for initial stress states A (a), I (b) and J (c)

and the Sanisand model, which is in good agreement with the experimental results
shown in Fig. 3b.

For the SREs calculated from stress state J shown in Fig. 6, a significant differ-
ence between un- and reloading stress probes can be observed for the hypoplastic
model (Fig. 6a). For isotropic unloading (ασ ≈ 215◦), the resulting strains are very
small and lead to an asymmetrical shape of the envelopes. The elastoplastic SREs in
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(a) (b)

(c) (d)

Fig. 4 Numerically determined SREs at initial stress state A: a Hypoplasticity (with IS), b Hard-
ening Soil, c ISA, d Sanisand

Fig. 6b, d are quite similar but here again smaller, i.e. stiffer than the SREs obtained
experimentally.

Numerical investigations of (other) different constitutive equations and their eval-
uation and comparison by means of SREs can be found in [2, 7, 15, 19].

4 Experimental and Numerical Results from Low-Cycle
Loading

The strain accumulation during low-cycle loading has also been examined in this
paper. Exemplarily, the results for different stress cycles with two different increment
sizes each are presented in this paper:

• pure deviatoric loading (ασ ≈ 125◦): �q = 50 kPa and �q = 200 kPa with
�p = 0 and
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(a) (b)

(c) (d)

Fig. 5 Numerically determined SREs at initial stress state I : a Hypoplasticity (with IS), b Hard-
ening Soil, c ISA, d Sanisand

• pure volumetric loading (ασ ≈ 35◦): �p = 50 kPa and �p = 200 kPa with
�q = 0

The cycles are applied on a soil specimen/element, starting from the isotropic stress
state I (Table 1). The results are presented by plotting the total strains �ε over the
number of cycles N .

In each case both increment sizes for the same direction are plotted in one figure.
The solid lines show the total strains�ε during 20 cyclic stress increments of 200 kPa
(magnitudes shown on the left axis of ordinates), and the dashed lines show the
development of total strains during smaller stress cycles of 50 kPa (magnitudes
shown on the right axis of ordinates).
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(a) (b)

(c) (d)

Fig. 6 Numerically determined SREs at initial stress state J : a Hypoplasticity (with IS), b Hard-
ening Soil, c ISA, d Sanisand

4.1 Experimental Results

The experimental results are shown in Fig. 7. Both loading directions show that the
largest strain increase occurs during first loading. Another similarity which attracts
attention is the fact that after a few cycles, already the quasi-elastic strain, i.e. the
difference between �εloading − �εunloading, seems to be constant and independent
from the number of cycles N . Generally, the total and the quasi-elastic strains due
to pure deviatoric loading (Fig. 7a) are larger than for an isotropically loaded soil
element (Fig. 7b). A logarithmic increase of total strains can be observed here, which
still slightly continues after 20 stress cycles.

In contrast to deviatoric loading, there is quasi-elastic behaviour for isotropically
loaded samples after a low number of cycles already. In this case, no further increase
of strains can be observed. For high-cycle loading, an increase may be noticeable for
a large number of cycles (N � 50), see e.g. [18].
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Fig. 7 Strain accumulation
during 20 pure deviatoric
stress cycles (a) and pure
isotropic stress cycles (b)

(a)

(b)

4.2 Numerical Results

Figures 8 and 9 show the strain accumulation of the corresponding numerical calcu-
lations.

It can be observed that there is no strain accumulation at all after the second un- and
reloading for the calculations carried out with the elastoplastic HS model, Figs. 8b
and 9b. The largest strains are obtained for the calculations with the hypoplastic
model for both deviatoric and volumetric loading conditions.While the strains due to
�q = 50 kPa seem to be almost elastic after the second un- and reloading, ratcheting
occurs during larger stress cycles with �q = 200 kPa, Fig. 8a. For large volumetric
stress cycles in Fig. 9a this ratcheting-effect becomes significantly smaler, so that
the calculated total strains for this loading direction are in good agreement to the
experimental results shown in Fig. 7b. Fuente’s ISA model provides an increasing
tendency of strains for both amplitudes, and their magnitudes, however, seem to
be either too large (�q = 200 kPa) or too small (�q = 50 kPa), Fig. 8c. The
Sanisand model shows a constant strain increase with each�q = 200 kPa-cycle, for
�q = 50 kPa there even seems to be a decrease of total and elastic strains.
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(a) (b)

(c) (d)

Fig. 8 Strain accumulation during 20 pure deviatoric stress cycles: a Hypoplasticity (with IS),
b Hardening Soil, c ISA, d Sanisand

(a) (b)

(c) (d)

Fig. 9 Strain accumulation during 20 pure volumetric stress cycles: a Hypoplasticity (with IS),
b Hardening Soil, c ISA, d Sanisand
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Figure9 shows the strain accumulation of the corresponding numerical calcula-
tions for pure volumetric stress cycles.

The results in this case are qualitatively in agreement with the ones from pure
deviatoric un- and reloading.

5 Summary and Further Hints

When comparing the numerical and experimental results presented in this paper,
fairly good agreements could be found considering monotonous loading.

Considerable differences, however, have been foundwhen investigating the devel-
opment of total and quasi-elastic strains during low-cycle loading. None of the four
investigated constitutive models were able to simulate the strains for the investigated
loading directions close to the experimental results. Thismeans further researchwork
is needed to improve existing incremental stress–strain relations. Especially, for low-
cycle loading it is recommended to check thoroughly the stress paths dominating the
actual boundary value problem and to choose a suitable constitutive model.
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Towards the Holistic Simulation
of Geotechnical Foundation Processes
Using Vibro-Injection Piles

Wolfgang Ehlers, Maik Schenke and Bernd Markert

Abstract In civil engineering, the installation of a reliable foundation is essential for
the stability of the emerging structure. Thus, already during the foundation process, a
comprehensive survey of themutual interactions between the preliminary established
construction pit and the surrounding soil is indispensable, especiallywhen building in
the existing context. Addressing the simulation of geotechnical foundation processes
using vibro-injection piles, complex initial-boundary-value problems are necessary.
In particular, the numerical model is composed of several mutual interacting parts,
such as retaining walls, anchors and vibro-injection piles, all interacting with the
surrounding soil. Additionally, a fine mesh is required in order to adequately resolve
local effects such as shear bands. However, when such complex simulations are
inevitable, explicit time-integration schemes are advantageous over implicit schemes.
In this regard, the present contribution addresses the development and application
of a numerical soil model based on the Theory of Porous Media, which is suitable
for simulations exploiting the explicit time-integration schemes of Abaqus/Explicit.
The underlying numerical soil model is investigated in terms of accuracy and parallel
efficiency.

Keywords Explicit scheme · Implicit scheme ·Parallel computing ·Soil dynamics ·
Theory of Porous Media

1 Introduction

During geotechnical foundation processes, the reliability of the often necessary con-
struction pits are vital for the safety of people and the stability of the existing buildings
in the immediate vicinity, especially when building in an existing context. In general,
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a construction pit is composed of retaining walls, which withstand the earth pressure
acting from the outside of the pit, and of tiebacks, which act as additional retaining-
wall anchor points. As both are embedded into the surrounding soil, the stability
and reliability of the entire system strongly relies on the strength of the circum-
ambient soil. In this regard, drawing the attention to a particular construction site,
measurements at the construction pit at the Potsdamer Platz in Berlin have revealed
significant displacements of the retaining walls during the foundation process, in
particular, during the vibratory installation of foundation piles via so-called vibro-
injection processes.

In order to ensure the stability of the constructionpit during the foundationprocess,
numerical simulations, in general based on the finite-element method, can be carried
out to predict the response of the system. The reliability of these simulations strongly
depends on the complexity of the numerical model. However, with increasing com-
plexity, more robust algorithms are necessary. In this regard, numerical simulations
based upon explicit time-integration schemes, such as the explicit (forward) Euler
or the central-difference method, e.g. [17], are considered to be advantageous in
comparison to implicit schemes, especially, for systems with strong nonlinearities.
In particular, although implicit schemes are unconditionally stable, they require a
converging iterative procedure, such as the Newton-Raphson method [25], to solve
the in general nonlinear system of equations, which, however, may fail to converge
for strong nonlinear systems. In this connection, explicit schemes are considered to
be more robust for complex systems and are more efficient for large-scale problems
but suffer from their only conditional stability. In particular, the maximum allowable
time increment depends, on the one hand, on the physical properties of the system
and, on the other hand, on the spatial discretisation, i.e. on the element size [5, 8].
Nevertheless, addressing complex and large-scale models, the advantages of explicit
schemes predominate the drawbacks.

In this regard, the present contribution addresses the simulation of fully satu-
rated soils under dynamic loading conditions exploiting explicit time-integration
schemes. Therein, the governing soil model, which proceeds from the Theory of
Porous Media (TPM) as a suitable modelling framework, incorporates a materially
incompressible solid skeleton representing the soil grains and amaterially compress-
ible pore fluid describing the pore water. In particular, in contrast to other authors,
e.g. [13], which proceeded from a materially incompressible pore water, the present
contribution describes the pore fluid as an inseparablemixture of a trappedmaterially
compressible gas and of a materially incompressible liquid, thereby, on the one hand,
accounting for amore realistic pore-fluid description and, on the other hand, allowing
for explicit time-integration schemes. The governing pore-fluidmodel proceeds from
[19], where a relation for the pressure-dependent pore-fluid density has been derived.
In contrast to the case of a materially incompressible pore fluid, which requires
more complex solution strategies, such as decoupled solution procedures, e.g.
[20, 27, 30], the solution procedure is more straightforward and, thus, allows for
an embedding into the commercial FE package Abaqus. In particular, the governing
equations are spatially and temporally discretised, where the latter, on the one hand,
exploits the implicit Hilber–Hughes–Taylor (HHT) procedure [15] and, on the other
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hand, the explicit central-difference together with the forward Euler method, e.g.
[17]. Following this, the numerical model is implemented into the coupled finite-
element solver PANDAS, which, however, is linked via a general interface to the
commercial finite-element (FE) package Abaqus. This coupling allows for the defin-
ition of complex initial-boundary-value problems through Abaqus, thereby exploit-
ing the material models of PANDAS. In order to evaluate the presented modelling
approach in terms of accuracy and parallel efficiency (parallel scalability), several
simulations are carried out.

2 Theory of Porous Media

In order to lay down a theoretical foundation, the basic concepts of the Theory
of Porous Media (TPM) are briefly reviewed in the following chapter. For a more
detailed insight into the governing theory, the interested reader is referred to the
related literature, e.g. [2, 10], and references therein.

Within the macroscopic TPM approach, the overall system soil is treated as an
immiscible mixture of various interacting components ϕα, which are assumed to be
homogeneously distributed within a representative elementary volume (REV) dv.
In particular, within the scope of the present contribution, the fluid-saturated soil is
composed of the solid skeleton (α = S), assembled by the soil grains, and of the
pore fluid (α = F), which can be again a mixture of various interacting components
ϕβ , i.e. ϕF = ⋃

β ϕβ . The composition of the bulk volume element is defined
through the respective volume fractions nα = dvα/dv, where dvα is the partial
volume of the component ϕα within the REV. Note that the saturation condition∑

α nα = nS + nF = 1 must hold.
Following this, two density functions are defined. The material (realistic or effec-

tive) density ραR = dmα/dvα relates the components local mass dmα to its volume
dvα, while the partial (global or bulk) density ρα = dmα/dv is associated with the
bulk volume. Moreover, both density definitions are related to each other through
ρα = nαραR . As we assume materially incompressible and uncrushable grains, the
realistic density of the solid remains constant under the prescribed isothermal con-
ditions, but the bulk density can still change through a changing volume fraction nα.

2.1 Kinematics

In the framework of the TPM, the individual components ϕα are treated as superim-
posed continua where each spatial point is simultaneously occupied by particles of
both components. Each component is moving according to its own motion function
and, thus, has its own velocity and acceleration fields. In this regard, it is convenient
to express the solid motion in the Lagrangean or material setting through the solid
displacement uS and the motion of the pore-fluid component ϕF in the Eulerian or
spatial setting their respective seepage velocities wF relative to the solid motion:
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• solid: uS = x − XS, vS = (uS)′S = ′
xS, (vS)′S = ′′

xS,

• pore fluid: wF = vF − vS, (vF )′F ≈ (vF )′S .
(1)

Therein, XS denotes the position of a solid material point in the reference con-
figuration (t = t0), while x is the position of a point in the current configuration
(t > t0). Moreover, (·)′S and (·)′F denote the material time derivatives follow-
ing the motion of the solid skeleton and the pore fluid, respectively. Note that in
the geometric linear case, which is the case within the scope of the present con-
tribution, the nonlinear convective term grad vF wF can be neglected [29]. Thus,
(vF )′F = (vF )′S + grad vF wF ≈ (vF )′S .

2.2 Balance Relations

Within the TPM framework, the underlying balance equations proceed from the bal-
ance equations of classical continuummechanics. They can bewritten for the individ-
ual components, yielding the so-called partial balance equations, or be summed up
to obtain the balance equations of the overall aggregate. With respect to the scope of
the present contribution, assuming isothermal conditions, the governing balance laws
are the mass and momentum balance. Note that, in order to obtain a thermodynam-
ically consistent model, the entropy inequality is additionally exploited. However,
its evaluation is not carried out here, instead, only the final results are given and the
interested reader is referred to [7, 9] and references therein. Based on the work of
[10], the governing partial mass andmomentum balances, neglectingmass-exchange
processes between the individual components, are given by

• partial mass balance: (ρα)′α + ραdiv
′
xα = 0,

• partial momentum balance: ρα(vα)′α = divTα + ραbα + p̂α.
(2)

Therein, Tα is the partial Cauchy stress tensor, bα the body-force vector and p̂α

the direct momentum production, which accounts for the local momentum exchange
between the individual components.

3 Soil Model

3.1 Governing Balance Laws

The governing balance laws are the momentum balance of the overall aggregate and
the convective-less momentum balance of the pore fluid [20], and the mass balance
of the compressible pore fluid [10]. Thus,

ρS(vS)′S + ρF (vF )′S = div (TS
E − p I) + (ρS + ρF )b, (3)
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ρF (vF )′S = div(−nF p I) + ρF b − (nF )2γFR

k F
wF + p grad nF , (4)

(nFρFR)′S + nFρFRdiv vS + div (nFρFR wF ) = 0. (5)

Therein, b is the constant gravitation substituting bα, k F is the hydraulic conductivity
(Darcy permeability), and γFR = gρFR is the effective fluid weight with g = |b| =
constant. Moreover, TS

E is the effective solid extras stress, p is the overall pore-fluid
pressure, and I is the second-order identity tensor. Note that the sum of the individual
direct production terms vanishes, i.e. p̂S + p̂F = 0, as the overall aggregate is
momentum conserving. Additionally, it can be shown that fluid extra stresses can be
neglected based on a dimensional analysis [12], i.e. TF

E ≈ 0.

3.2 Solid Skeleton

Confined to the small strain regime, the linear solid strain reads as

εS ≈ 1
2 (grad uS + gradT uS),

where grad(·) = ∂(·)/∂x .
(6)

Futhermore, the linearised solid volume fraction [7] is given as

nS = nS
0S(1 − div uS), (7)

where nS
0S denotes the initial solid volume fraction. The solid extra stress can be

described by the linear Hooke an elasticity law

TS
E = 2μS εS + λS (εS · I) I. (8)

Therein,μS andλS denote themacroscopic Lamé constants of the porous solid skele-
ton.

3.3 Pore Fluid

Aswasmentionedbefore, the porefluid is treated as an inseparablemixture composed
of a compressible gas and a incompressible liquid. Proceeding from the TPM, a
relation for the pore-pressure-dependent density of the pore-fluid mixture can be
derived (see [19] for details).



168 W. Ehlers et al.

Proceeding from (2)1 with the substitution β ∈ {L , G}, the partial mass balances
of the pore liquid and the pore gas can be obtained. Moreover, assuming that both
are following the same motion, in particular, with the barycentric velocity of the
pore-fluid mixture, i.e. vL = vG ≡ vF and (·)′L = (·)′G ≡ (·)′F , the mass balances
can be recast to yield

(ρL)′F + ρLdiv vF = 0

(ρG)′F + ρGdiv vF = 0

}
→ (ρL)′F

ρL
= (ρG)′F

ρG
. (9)

Analytical integration results in a constant ratio between ρL and ρG are given by

ρL = C ρG where C = nLρLR

nGρGR

∣∣∣∣
t=t0

= nL
0FρLR

nG
0FρGR

0F

. (10)

Therein, the integration constant C is not a material but a structural parameter con-
ducting the composition of the pore-fluid mixture.

Finally, the addressed relation for the pressure-dependent pore-fluid density is
obtained by recasting (10), with the help of the mixture density, nFρFR = nLρLR +
nGρGR, and the saturation condition of the pore-fluid mixture, nF = nG + nL . It
reads as

ρFR(p) = ρLR 1 + C

C + ρLR

ρGR(p)

with ρGR(p) = p + p0
R �

. (11)

Therein, p0 is the initial pressure of the gaseous phase, R is the specific gas constant
of air and � is the temperature. Note that (11)1 also comprises the case of a fully
gas-saturated pore space by setting nL

0F = 0 yielding C = 0 and, thus, ρFR = ρGR.
In contrast, the case of a fully liquid-saturated pore space is obtained by setting
nG
0F = 0 resulting in C → ∞ and, herewith, by exploiting the rule of de l’Hôspital

[18], ρFR = ρLR.

4 Numerical Treatment

The following section addresses the numerical treatment of the governing soil model,
in particular, the spatial and temporal discretisation of the unknown fields uS , vF

and p. Having a comparison of different time-integration schemes in mind, the latter
is carried out, on the one hand, using an implicit procedure and, on the other hand,
using an explicit scheme. Finally, some remarks related to the solution procedure of
the coupled problem are given.
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4.1 Spatial Discretisation

The spatial discretisation of the semi-infinite domain is based on the finite-element
method (FEM). Following the Bubnov-Galerkin approach, the governing strong
forms are multiplied with the test function δuS , δvF and δ p corresponding to the
unknown fields and are integrated over the spatial domain �, thereby, exploiting the
Gauss theorem. In particular, the governing weak forms are given as

0 =
∫

�

{
ρS(vS)′S + ρF (vF )′S − (ρS + ρF )b

}
· δuS dv

+
∫

�

(TS
E − p I) · grad δuS dv −

∫

�t

t̄ · δuS da,
(12)

0 =
∫

�

[
ρF (vF )′S − b

]
· δvF dv +

∫

�

[
(nF )2γFR

k F
wF − p grad nF

]
· δvF dv

+
∫

�

(−nF p) div δvF dv +
∫

�tF

t̄F · δvF da,

(13)

0 = −
∫

�

(nFρFRwF ) · grad δ p dv +
∫

�

[
(ρFRnF )′S + ρFRnFdiv vS

]
δ p dv

+
∫

�v

m δ p da. (14)

Therein, t = (TS
E − p I)n and tF = −nF p n denote the external loading vectors

acting on the Neumann boundaries �t and �tF of the overall aggregate and the pore
fluid, respectively, and m = ρFRnF wF · n is the mass efflux draining through the
Neumann boundary �v with n as the outward oriented unit surface normal.

In a second step, the unknown fields and the corresponding test functions of
the weak forms are approximated by suitable test and ansatz functions, which,
for the sake of a stable solution procedure, need to fulfil the inf-sup condition
(Ladyshenskaya-Babuška-Brezzi (LBB) condition) [3]. In this connection, having
an exploit of Abaqus/Explicit in mind, the solid displacements need to be approxi-
mated by linear ansatz functions, which, however, leads to pore-pressure oscillations
in case of low Darcy permeabilities [20].

Following this, the resulting semi-discrete initial-boundary-value problem (IBVP)
can be summarised as

G(t, y, y′, y′′, q) = M y′′ + r( y, y′, q) − f
!= 0. (15)
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Therein, M is themassmatrix, r the quasi-static residual vector and f the generalised
force vector acting on the Neumann boundaries. Moreover, in order to keep the
following remarksmore general, a vector q, which gathers the internal variables of an
inelastic solid, such as inelastic strains, is introduced. Furthermore, y = [ûS ûF p̂]T

denotes a vector containing the nodal values of the unknown field variables, where,
for the sake of convenience, the abbreviation (·)′ = (·)′S is used. Note that, having an
implementation in Abaqus/Explicit in mind, where due to its limitations regarding
the additional degrees of freedom, the relation vF = (uF )′S has been used. Therein,
uF denotes the fictitious fluid displacements. Consequently, the fluid momentum
balance, which was initially of first order in time, now becomes second order in
time.

In order to illustrate the coupling nature of (15), the overall coupled system is
expressed in matrix form as

⎡
⎣
M11 M12 0
0 M22 0
0 0 0

⎤
⎦

M

y +

⎡
⎢⎣

C11 C12 0
C21 C22 0
C31 C32 C33

⎤
⎥⎦

C

y +

⎡
⎢⎣

K11 0 K13

K21 0 K23

K31 0 K33

⎤
⎥⎦

K

y − f = 0.
(16)

Therein, the matrices can be distinguished into coupling (highlighted) and non-
coupling terms. From this representation, it can be concluded that monolithic explicit
time-integration schemes are not applicable. This is seen from the singular submatrix
M33 resulting in a non-invertible mass matrix M. To cope with that, the problem
will be decomposed into the smaller subsystems I (filled box) and II (framed box)
according to the following scheme:

⎡
⎢⎣

M11 M12 0
0 M22 0
0 0 0

⎤
⎥⎦y +

⎡
⎢⎣

C11 C12 0
C21 C22 0
C31 C32 C33

⎤
⎥⎦y +

⎡
⎢⎣

K11 0 K13

K21 0 K23

K31 0 K33

⎤
⎥⎦y − f = 0.

(17)

Therein, the submatrices C31 and C32 are important for the decoupling procedure,
as they govern the coupling strength (strong or weak) between subsystems I and II.
The submatrices read as

C31 =
∫

�

∇ PT nFρFR US dv +
∫

�

PT ρFR(nF + nS
0S) US dv,

C32 = −
∫

�

∇ PT nFρFR UF dv.

(18)

Therein, US , UF and P are matrices of the interpolation functions of the associated
unknown fields, uS , uF and p, and their corresponding test functions. Moreover,
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∇(·) := grad (·) denotes the gradient operator. It can be seen that the coupling
strength depends on the density of the fluid mixture and, thus, on the structural
parameter C .

Assuming that the coupling is sufficientlyweak, i.e. C31 and C32 are small in com-
parison to C33, the general nonlinear system (15) can be decoupled into subsystems
I and II by setting C31 = C32 ≡ 0. The decoupled system can be summarised as

G I = MI y′′
I + r I( y, y′, q) − f I

!= 0,

GII = CII y′
II + r II( y, q) − f II

!= 0.

(19)

Therein, MI is the mass matrix of subsystem I, CII = C33 is the capacitance matrix
of subsystem II, and r I and r II are the quasi-static and static residual vector of
subsystems I and II. Moreover, yI and yII denote the vectors of nodal unknowns and
f I and f II the Neumann force vectors of the corresponding subsystems.

4.2 Temporal Discretisation

In the next step, the temporal discretisations of the semi-discrete coupled (15) and of
the semi-discrete decoupled system (19) are carried out. In particular, having dynamic
loading conditions in mind, the system can either be discretised by an implicit or
explicit procedure.

4.2.1 Implicit Scheme

Exploiting the implicit Hilber–Hughes-Taylor (HHT) method [15], which is a gen-
eralisation of Newmarks method [21] but with a direct control of the numerical
damping, the time-discrete form of (15) reads as

Rn+1 = M y′′
n+1 + (1 + α)( rn+1 − f n+1) − α( rn − f n)

!= 0

with yn+1 = yn + �t y′
n + �t2

((
1

2
− β

)
y′′

n + β y′′
n+1

)
,

y′
n+1 = y′

n + �t
(
(1 − γ) y′′

n + γ y′′
n+1

)
.

(20)

Therein, rn+1 = r( yn+1, y′
n+1, qn+1) and rn = r( yn, y′

n, qn) denote the quasi-
static response of the system at the new (unknown) state tn+1 and at the previous
(known) state tn , respectively. The parameter α controls the numerical damping by
governing the parameters β and γ via

β = 1

4
(1 − α)2, γ = 1

2
(1 − α), (21)
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which are inherit from Newmarks method. A suitable choice of the parameter α
ranges from α = −1/3 (significant damping) to α = 0 (no damping), where, in
the latter, the trapezoidal rule (β = 1/4, γ = 1/2) is obtained. Note that a value of
α = −0.05 is in general considered a good choice as the inevitably time-stepping-
induced high-frequency noise is quickly removed without a significant effect on the
low-frequency response of the system.

4.2.2 Explicit Scheme

In contrast to the implicit scheme, the explicit procedure proceeds from the decom-
posed system (19), where, accounting for the temporal order of the governing sub-
system, different explicit time-integration schemes are exploited. In particular, the
subproblem I uses the central-difference method. In this regard, (19)1 can be recast
into

M y′′
n + r( yn, y′

n, qn) − f n
!= 0

with y′
n ≈ y′

n− 1
2

= 1

�t
( yn − yn−1), y′

n+ 1
2

= 1

�t
( yn+1 − yn)

y′′
n = 1

�t

(
y′

n+ 1
2

− y′
n− 1

2

)
= 1

�t2
(

yn+1 − 2 yn + yn−1
)
.

(22)

Note that for the sake of a clear representation, the previously introduced subsys-
tem index I has been dropped. Moreover, it is important to point out that in the
central difference method the velocities are computed at the intermediate steps, i.e.
y′(tn− 1

2
) = y′

n− 1
2
and y′(tn+ 1

2
) = y′

n+ 1
2
, where the former is used to approximate

the velocity vector y′
n .

Subsystem II can be adequately discretised by the explicit (forward)Euler method.
In this regard, the discrete form of (19)2 reads as

C y′
n + r( yn, qn) − f n

!= 0 with y′
n = 1

�t
( yn+1 − yn). (23)

As before, for the sake of a clear representation, the subsystem index II has been
dropped.

4.3 Solution Procedure

Depending on the underlying time-integration scheme, the solution procedure is dif-
ferent. In particular, an implicit time integration yields a system of coupled algebraic
equations, which needs to be solved, for instance, by the iterative Newton-Raphson
method. In contrast, in order to exploit the advantage of explicit schemes, a matrix
lumping technique is required, which diagonalises thematrix and, thus, decouples the
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individual algebraic equations. The decoupled system of algebraic equations allows
for a straightforward and, thus, a more efficient computation of the nodal unknowns.

4.3.1 Implicit Scheme

Thenonlinear discrete system (20) is solvedby the iterativeNewton-Raphsonmethod,
where, at each temporal increment n + 1 the system is linearised around the known
state via

J i
n+1 = dGi

n+1

d yn+1
= ∂Gi

n+1

∂ y′′
n+1

∂ y′′
n+1

∂ yn+1
= 1

�t2 β
Mi

n+1 + (1 + α)
(

Ki
n+1 + γ

�t β
Ci

n+1

)
,

where Ki
n+1 = ∂Ri

n+1

∂ yi
n+1

, Ci
n+1 = ∂Ri

n+1

∂( y′)i
n+1

, Mi
n+1 = ∂Ri

n+1

∂( y′′)i
n+1

.

(24)

Therein, J i
n+1 denotes the so-called Jacobian matrix at the i th Newton increment,

which will be used to compute the update to the solution via

J i
n yi

n+1 = Ri
n+1, (25)

until (25) satisfies a certain convergence criteria, e.g. ‖|Ri
n+1‖| < ε, with ε being

the admissible numerical error. In a subsequent step, the velocity and acceleration
can be computed from (20)2 and (20)3.

4.3.2 Explicit Scheme

The efficiency of explicit schemes originates from the matrix lumping technique,
which, however, introduces a small numerical error (e.g. see [17]). A very com-
mon and efficient procedure is the method of row-sum lumping (RSL), where all
components Ai j of a matrix A are concentrated to the diagonal element of row i via

Ã = diag( Ãi ) with Ãi =
m∑

j=1

Ai j i = 1, 2, ..., m. (26)

Therein, m denotes the number of columns (equal to the number of rows), which
corresponds to the degrees of freedom of the FE mesh. In this connection, it is
important to point out that the RSL method cannot be applied to elements with
quadratic ansatz functions, as the row sum yields negative diagonal terms [1, 4]. To
cope with that, alternative lumping techniques, such as the HRZ method [16] or the
nodal-quadrature method [11], can be applied.

With respect to the given problem, the RSL method is applied to the mass matrix
MI of subproblem I and to the capacitance matrix CII of subproblem II, yielding the
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corresponding diagonalised forms M̃I and C̃II, respectively. With the diagonalised
matrices at hand, subsystems I and II can be solved independently for the unknowns
( yI)

′′
n and ( yII)

′
n , from which, in a subsequent step, the unknown velocities and

displacements of the individual subsystem can be computed with the help of (22)2,
(22)3 and (23)2.

4.4 Numerical Implementation

The discretised coupled system is implemented into the FE package PANDAS1 and
linked through a general interface to the commercial FE package Abaqus [26]. This
software coupling allows for the definition of complex initial-boundary-value prob-
lems in terms of features, such as kinematic coupling and tie constraints, and in terms
of large-scale analyses through parallelisation.

Basically, the coupling exploits the coupled-temperature-displacement proce-
dures in Abaqus/Standard (implicit time-integration) as well as Abaqus/Explicit
(explicit time-integration),where the temperature degrees of freedomare exploited as
placeholders for the additional degrees of freedom, fictitious fluid displacement and
pore pressure. Note that, in contrast to Abaqus/Standard, where up to 20 additional
slots can be used, Abaqus/Explicit solely allows for one additional vector-valued and
two additional scalar-valued degrees of freedom.

4.4.1 Coupling Workflow

The Abaqus-PANDAS linkage is based on the FORTRAN-coded user-defined ele-
ment subroutine UEL of Abaqus/Standard, which serves to evaluate the element-
wise contributions to the ride-hand-side vector and the Jacobian matrix, and VUEL
of Abaqus/Explicit, which needs to define the quasi-static residual vector, and the
mass and capacitance matrices. However, within the current setting, the functional-
ity of the UEL subroutine or the VUEL subroutine, respectively, is handed over to
PANDAS (cf. Fig. 1). In particular, within the C-coded CUEL subroutine, PANDAS
is initialised (only once per analysis), the input data is copied to a matching data
format, the element-wise contributions are computed and, finally, converted back
again. In subsequent steps, Abaqus gradually assembles the overall system of equa-
tions considering the boundary conditions and solves the system of equations at each
time increment.

1Porous media Adaptive Nonlinear finite-element solver based on Differential Algebraic Systems,
http://www.get-pandas.com.

http://www.get-pandas.com
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Fig. 1 Schematic sketch of the coupling workflow exploiting the overlay-element-based post-
processing method

4.4.2 Post-processing Methods

A crucial point when performing Abaqus simulations incorporating user-defined
elements is the post-processing of the analysis results, which originates from the
fact that the ansatz functions and the method used to integrate the governing weak
forms (e.g. via Gauss point quadrature) are solely defined within the user subroutine.
However, in order to fill the lack of data, several methods are possible.

A naive approach is to store the integration-point data in a temporary database
(e.g. text file, .fil file of Abaqus) [23, 26] and to merge its content, at the end of an
increment or at the endof the analysis, into either the results database ofAbaqus (.odb)
or an external database suitable for third-party tools, such as Tecplot or Paraview.

Another very prominentmethod introduces so-called overlay (or dummyor ghost)
elements, which solely serve as data container as they exhibit, in relation to the simu-
lated process, negligible material properties. Therein, an Abaqus element with a sim-
ilar element topology is connected in parallel to the user-defined element, thereby
introducing ansatz functions for the nodal interpolation and integrations points to
hold the dependent variables (e.g. stresses). In order to transfer the integration-point
data between the overlay and the corresponding user-defined element, a process-local
memory is exploited as a temporary data container, from which the CUVARM sub-
routine retrieves the integration-point data and writes them to the results data base of
Abaqus. In this connection, it is important to note that, in a process-based parallelisa-
tion, which incorporates a decomposition of the simulated domain and a distribution
of the partial domains onto the individual processes, it may be necessary to trans-
fer the integration-point data between the processes (e.g. via MPI programming
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Fig. 2 Benchmark problem
decomposed into four MPI
domains
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Fig. 3 Contour plot of σ22
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communication (right) of
integration point data

low

max

sig

standard), as the domain-decomposition algorithm of Abaqus does not guarantee
that the overlay element and its related user-defined element are attached to the same
process.

In order to verify the overlay-element-based post-processing method in a paral-
lel analysis, a benchmark problem has been investigated. Therein, a simple initial-
boundary-value problem (IBVP) has been created, where the displacements at the
right and bottom edges are constrained in normal direction and the upper edge is
loaded by the surface load t̄ = 1 kN/m (Fig. 2). The material behaviour is gov-
erned by single-phasic (non-porous) linear-elastic material law. The analysis has
been carried out in parallel comprising a thread- and process-based parallelisation.
In particular, the problem has been decomposed into four MPI domains, where each
subdomain is split into two threads, i.e. the benchmark problem runs in parallel on
eight computing cores.

The resulting stress distribution is depicted in Fig. 3. Therein, the previously
mentioned non-matching processes assignment between the user-defined and the
corresponding overlay element is clearly illustrated, as the stress distribution is not
homogeneous (Fig. 3, left). In contrast, when incorporating an inter-process commu-
nication of the integration-point variables, a homogeneous stress field is obtained
(Fig. 3, right). It is important to point out that the overlay-element method has two
major drawbacks. On the one hand, it is not applicable to Abaqus/Explicit, as the
necessary UVARM subroutine is only available in Abaqus/Standard and, thus, only
nodal values can be visualised. On the other hand, it suffers from a significant com-
putational overhead of approx. 90% in case of the direct solver and of approx. 45%



Towards the Holistic Simulation of Geotechnical Foundation Processes … 177

when using the iterative solver. Nevertheless, in comparison to the alternative meth-
ods, it is a convenient procedure, suitable for thread- and process-based parallel
Abaqus simulations and, thus, the method of choice within the present contribution.

5 Simulations

The present section addresses the numerical simulation of the previously discussed
soil model. In particular, in order to verify the presented decoupling procedure, which
is essential for the explicit time-integration scheme, the influence of the coupling
submatrices, which are governed by the initial gas and liquid fractions, is analysed.
In a second step, the efficiency in parallel simulations of the implicit and the explicit
time-integration scheme is investigated. Both sets of simulations are carried out
with the governing material parameters summarised in Table1. Note that the volume
fractions of the liquid and gaseous phases, nL

0F and nG
0F , depend on the investigated

problem. Please refer to the corresponding section for their respective values.

5.1 Explicit Versus Implicit Schemes

To start with, the first set of simulations addresses the investigation of the coupling
strength between subsystems I and II (see Sect. 4.1). In this regard, the initial volume
fraction nG

0F of the gaseous phase and, in order to satisfy the saturation condition,
the volume fraction nL

0F of the liquid phase are varied. In particular, nG
0F is set to

nG
0F = 10−5 ≡ nG

min, which corresponds to the maximum gas solubility in water
at atmospheric conditions (p0 = 105 N/m2, � = 293K) [14], and to nG

0F = 2 ×
10−2 ≡ nG

max, which is associated with the residual gas saturation of mudstones [24].
The governing initial-boundary-value problem is depicted in Fig. 4. Therein, a soil
column (height 10m, width 1m, depth 1m) is loaded by a prescribed displacement
(Fig. 5) given by

u(t) = u0

[
t

τ
H(t) − H(t − τ )

]
+ u0 H(t − τ ),

with u0 = 0.1m, τ = 0.01 s, 0 ≤ t ≤ 0.2 s,
(27)

which triggers a compressional wave (p-wave) propagating through the column. The
simulations are carried out in Abaqus/Standard and Abaqus/Explicit. In this regard,
in Abaqus/Standard the unknown fields, in particular, the solid displacement uS , the
fictitious fluid displacement uF and the pore pressure of the pore-fluid mixture p,
are, on the one hand, approximated by linear ansatz functions (impl./LL), and, on
the other hand, by so-called mixed finite elements, where quadric ansatz functions
for uS and linear ansatz functions for uF and p (impl./QL) are used. In contrast, in
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Fig. 4 IBVP for
time-integration-scheme
comparison
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Fig. 5 Evolution of the
prescribed displacement u(t)
applied on top of the domain

Abaqus/Explicit, constrained by the overlay-element post-processing method, linear
approximations for all field variables (expl./LL) are used.

In order to illustrate the differences between the different schemes, the evolution
of the pore-pressure for the cases nG

min and nG
max at point A, located at the spatial

coordinates (0m, 5m, 0m), is recorded (Figs. 6 and 7). As can be seen in both cases,
the initiated p-wave propagates through the domain and is reflected at the top and
bottom of the column. Moreover, the influence of the amount of gas in the pore-fluid
mixture is clearly illustrated. In particular, in the case of a low gas content (nG

min),
the compression of the porous solid skeleton causes significant higher pore pressures
compared to the case of a higher gas content (nG

max), as the incompressibility of the
pore liquid exhibits stronger interaction with the motion of the solid skeleton.
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Fig. 6 Evolution of the
pore-pressure p for the case
of nG

min

Fig. 7 Evolution of the
pore-pressure p for the case
of nG

max

Comparing the results for the different time-integration schemes and different
spatial discretisations, although all methods show similar results, it is obvious that
the explicit scheme exploiting linear ansatz functions (expl./LL) exhibits strong pore-
pressure oscillations, which are owed to the unsatisfied LBB condition. Nevertheless,
also the stable mixed finite elements (impl./QL) show small, but observable, oscilla-
tions, which suggest that the pressure oscillations are of physical nature. In order to
avoid numerical oscillations when using linear–linear approximations, stabilisation
techniques, e.g. [6], are necessary.

5.2 Parallel Benchmark

This section addresses a performance investigation between the previously
introduced explicit and implicit time-integration schemes when carrying out par-
allel simulations. In this regard, preparing the numerical simulation of geotechnical
installation processes using vibro-injections piles, the governing benchmark problem
is inspired by a practically relevant scenario (cf. Fig. 8).

Therein, an ellipsoidal halfspace (first and second minor axes: 20m, third minor
axis: 10m) with a drained top surface (p = 0) is simplified to a one-fourth model
by exploiting the symmetry of the problem and by introducing suitable boundary
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Fig. 8 Initial-boundary-value problem of the benchmark problem

conditions at the symmetry planes. Moreover, the load imposed by the vibrating pile
is replaced by a single displacement impulse given

u(t) = u0 sin (2π f t)[H(t) − H(t − τ )],
with u0 = 0.05m, f = 10Hz, τ = 0.05 s, 0 ≤ t ≤ 0.5 s.

(28)

The governing material parameters are taken from Table1, where the initial volume
fraction of the liquid and the gaseous component are nL

0F = 0.399 and nG
0F = 0.001.

The resultingnumericalmodel consists of approximately 38 295elements (exclud-
ing overlay elements) with linear ansatz functions for the nodal unknowns and the
corresponding test functions, which result in 294 056 degrees of freedom. For the
investigation of the parallel performance of the implicit and the explicit schemes, the
simulations have been carried out on a compute node2 of a high-performance comput-
ing (HPC) cluster exploiting different numbers of processes, viz.p ∈ {2, 4, 8, 16, 32}.
The simulations proceed from a thread-based parallelisation incorporating a LU-
decomposition-based direct solver in Abaqus/Standard and from an MPI-based par-
allelisation in Abaqus/Explicit. For a comprehensive insight into the technical differ-
ences between the diverse parallelisation methods, the interested reader is referred
to [22]. Note that the for large-scale problems more suitable Krylov-subspace-based
iterative solvers are not available for the imposed HHT time-integration scheme in
Abaqus/Standard. Moreover, the time increments are fixed to �timpl. = 5 · 10−4 s
and �texpl. = 5 · 10−5 s in Abaqus/Standard and Abaqus/Explicit, respectively.

The simulation results are depicted in Fig. 9. Therein, a sequence of contour plots
of the solid displacement in direction of e2, i. e. uS2 = uS ·e2, at different time steps is
given. The loading impulse triggers twobulk-wave types, in particular, compressional

2A compute node consists of two AMD OpteronTM Processors (model 6328), each composed of
16 cores running at 3.2GHz, and is equipped with 256 GB memory.
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Fig. 9 Contour plots of the solid displacement in vertical direction uS2 on the deformed mesh
(scale factor 1000) at different times

Table 2 Run-time comparison between the Abaqus/Standard and Abaqus/Explicit

Number of threads/processes

p = 2 p = 4 p = 8 p = 16 p = 32

Run time Abaqus/Explicit (s) 16627 8801 4972 2612 1877

Run time Abaqus/Standard (s) 446056 247604 137444 79393 44114

Fig. 10 Run-time
comparison in
Abaqus/Explicit for a
different number p of
parallel processes

waves (p-waves) and transverse shear waves (s-waves), which propagate through the
domain and are reflected on the domain boundaries.

The run-time measurements are summarised in Table2. Therein, the advantage of
explicit scheme in comparison to the implicit scheme is clearly illustrated, as the sim-
ulation times in Abaqus/Explicit are significantly lower than for Abaqus/Standard.
Moreover, it can be concluded from Figs. 10 and 11 that, at least within the test
regime, both schemes exhibit a linear speed up with a speed-up factor of approx-
imately 1.8. However, it is expected that with increasing model complexity, i.e.
increasing number of degrees of freedom, the explicit scheme will show a better
speed up, as the necessary number of floating-point operations to solve a system of
equations of size n × n using on LU-decomposition-based method is approximately
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Fig. 11 Run-time
comparison in
Abaqus/Standard for a
different number p of
parallel processes

2/3 n3 [28], which is a nonlinear relation in n. Moreover, this effect will become
even more pronounced if the system of equations needs to be distributed to different
machines which, in order to account for the coupling of the nodal degrees of freedom,
requires a machine-to-machine communication via the network interconnect.

6 Summary

This chapter investigated the possibility of exploiting the explicit time-integration
scheme of Abaqus/Explicit to simulate complex and large-scale IBVP. In particular,
the underlying fully-saturated soil model proceeds from the TPM incorporating a
compressible pore fluid, treated as an inseparable mixture of a compressible trapped
pore gas and an incompressible pore liquid leading to an compressible pore-fluid
mixture. In a first step, the governing equations were spatially discretised through
the finite-element method. In a second step, the temporal discretisation was carried
out, on the one hand, by the implicit Hilber–Hughes–Taylor method and, on the
other hand, via the explicit central-difference scheme together with the explicit Euler
method, which required a decoupling of the coupled problem at hand.

The discretised equations have been implemented into PANDAS and linked to
Abaqus via a general interface. The software coupling has been designed to account
for a parallel-capable post-processing method, which is however only available for
Abaqus/Standard. Finally, the presented approach has been tested with implicit and
explicit time-integrations schemes in terms of accuracy and parallel performance.
In particular, the first set of simulations reveals that all simulations show similar
results.However, the linear–linear spatial approximations,which are a requirement of
Abaqus/Explicit when exploiting the overlay-element-based post-processingmethod
is used, suffer from significant numerical oscillations. Therefore, suitable stabilisa-
tion methods, available from the related literature, are necessary. The second set of
simulations demonstrated the efficiency of the explicit schemes in comparision to
the implicit schemes, especially in parallel simulations.
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Theory and Numerical Modeling
of Geomechanical Multi-material Flow

Daniel Aubram, Stavros A. Savidis and Frank Rackwitz

Abstract Multi-material flow describes a situation where several distinct materi-
als separated by sharp material interfaces undergo large deformations. The research
presented in this paper addresses a particular class of multi-material flow situations
encountered in geomechanics and geotechnical engineering which is characterized
by a complex coupled behavior of saturated granular material as well as by a hierar-
chy of distinct spatial scales. Examples include geotechnical installation processes,
liquefaction-induced soil failure, and debris flow. The most attractive numerical
approaches to solve such problems use variants of arbitrary Lagrangian–Eulerian
descriptions allowing interfaces and free surfaces to flow through the computational
mesh. Mesh elements cut by interfaces (multi-material elements) necessarily arise
which contain a heterogeneous mixture of two or more materials. The heterogeneous
mixture is represented as an effective single-phasematerial usingmixture theory. The
paper outlines the specific three-scale mixture theory developed by the authors and
theMMALEnumerical method tomodel and simulate geomechanical multi-material
flow. In contrast to traditional flow models which consider the motion of multiple
single-phase materials or single multi-phase mixture, the present research succeeds
in incorporating both the coupled behavior of saturated granular material and its
interaction with other (pure) materials.
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1 Introduction

Geotechnical installation processes, which may include digging, mixing, displace-
ment, or penetration, are characterized by largematerial deformations, movingmate-
rial interfaces and free surfaces, changing contact conditions, and complex nonlinear
soil mechanical behavior [112]. Soil generally is a mixture of solid grains and one
or more pore fluids (liquid and/or gas). Its mechanical behavior results from the
behavior of each constituent, the internal structure, and from the interfacial cou-
pling due to mass and momentum transfer. The realistic simulation of such complex
processes, either numerically or by experiments, is very challenging but at the same
time of high practical relevance because geotechnical installation processes may
significantly impact on the soil and the load bearing of nearby structures. This is
particularly the case for the installation of vibro-injection piles [84, 92], which has
recently been investigated by the authors [14, 98]; see also Fig. 1a.

There are several more situations encountered in geomechanics and geotechni-
cal engineering that share the characteristics of geotechnical installation processes.
Examples are liquefaction-induced soil failure [104, 105], natural hazards like land-
slides interacting with water [73, 78], and debris flow [63, 64]. Schematic views are
shown in Fig. 1. To make their similarities clear, consider the liquefaction-induced
failure of an earth-fill dam under seismic excitation (Fig. 1b). Usually, the details
of the exact flow fields (e.g., motion of particular grains) are of secondary interest.
However, the consideration of the liquefaction-prone, water-saturated fill material
as a mixture of granular material and pore fluid is indispensable [120]. At the same
time, the instantaneous water level and geometry of the dam (free surfaces and large-
scale interfaces) must be taken into account because they govern the progress of
failure. The initiation and evolution of the liquefied zone is generally unknown and
could only be resolved in a direct numerical simulation of the problem. In this regard,
major achievements have beenmadeusingLagrangian or almost-Lagrangian descrip-
tions in which mesh elements contain only one material throughout the calculation
[81, 120, 121]. However, a simulation of the entire process from flow initiation to
deposit consolidationwill fail due to severemesh distortion unlessmore sophisticated
approaches will be employed.

We refer to each of the situations mentioned above as geomechanical multi-
material flow.Multi-material flow generally contains several pure, physically distinct
materials which are separated by sharp material interfaces and one or more of these
materials undergo large deformations—void (empty space or atmosphere) is consid-
ered as material. In contrast to traditional multi-phase or multi-fluid flow, material
strength and compressibility should be included in the description of multi-material
flow, whereas mass transfer between the materials is usually of secondary interest.
Moreover, in many situations momentum relaxation can be assumed infinitely fast,
resulting in a velocity field common to all materials in the flow.

The notion of multi-material flow has emerged along with the development of
efficient numerical simulation techniques [24, 75]. Problems that have tradition-
ally been modeled include hypervelocity impact, detonation with structure–media
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Fig. 1 Schematic of complex geomechanical multi-material flow situations. a Installation of vibro-
injection piles to tie back the base slab of a deep excavation. b Liquefaction-induced failure of
an earth-fill dam under seismic excitation; in accordance with [104]. c Submarine landslide; in
accordance with [73]
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interaction, dynamics of bubbles and droplets, material processing and manufactur-
ing, as well as astrophysical events. The most attractive approaches use variants of
the multi-material arbitrary Lagrangian–Eulerian (MMALE) description allowing
interfaces and free surfaces to flow through the computational mesh [25, 26, 39, 46,
47, 74, 79, 88, 94, 98, 118]. MMALE methods generalize the classical approaches
in which the mesh either follows the material motion (Lagrangian approach) or is
fixed in space (Eulerian approach). Mesh elements cut by interfaces necessarily arise
which contain a heterogeneousmixture of twoormorematerials. Because themixture
must be represented as an effective single-phase material (homogenized mixture),
the underlying mixture theory is an essential ingredient.

Besides the characteristics common to all multi-material flows, geomechanical
multi-material flows are characterized by a complex coupled behavior of the sat-
urated granular material representing the soil or debris material as well as by a
hierarchy of distinct spatial scales (grain diameter, scale of mixture continuum rep-
resentation, characteristic size of bulkmaterial interfaces, etc.).While certain aspects
of geomechanical multi-material flow can be considered as well understood, a fully
fledged flow model that is able to predict a time history of the material states for
arbitrary compositions and configurations of the mixture is yet missing.

In two previous papers [14, 98], we have developed an MMALE finite element
method accounting for the two-phase coupled response of saturated sand. The present
paper goes into more detail about the three main features of the MMALE method
for geomechanical problems, which are (i) the mixture theory for multi-material
elements, (ii) the determination of the stress field, and (iii) the technique to resolve
material interfaces. Accordingly, the paper has the following structure. Section2
provides an overview of the MMALEmethod. The mathematical modeling of three-
scale mixtures is addressed in Sect. 3, where we summarize the special mixture the-
ory and the homogeneous equilibrium model derived in [14]. In Sect. 4, we focus on
stress decompositions in saturated granularmaterial resp. dense granular suspensions
which enable the description of those arbitrary compositions and mixture configura-
tions present in geomechanical multi-material flow. Section5 is concerned with the
treatment of material interfaces and their evolution (motion) from a non-Lagrangian
point of view, i.e., in multi-material elements. After deriving the governing equa-
tions and introducing the basic discretization techniques, we outline the volume of
fluid (VOF) interface reconstruction and propagation methods implemented into our
MMALE code and present some preliminary results. The paper closes with conclud-
ing remarks and outlook in Sect. 6.

2 Overview of the MMALE Method

Our multi-material method is an extension of the single-material or simplified arbi-
traryLagrangian–Eulerian (ALE) approach [9, 10, 12, 13, 97].Adetailed description
is given in [98], so only the basic equations will be presented in this section. The
continuum mechanical background can be found in [9, 19, 76, 113, 114].
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The MMALE method addresses isothermal mechanical initial boundary value
problems which are governed by conservation of mass

ρ̇ + ρ div v = 0, (1)

and balance of momentum

ρv̇ = ρb + divσ. (2)

The equations are written in updated Lagrangian form referring to the spatial domain
D ⊂ R

3 instantaneously occupied by the materials at time t ∈ [0, T ]. They are
assumed to hold at all points x ∈ D and for all t ∈ [0, T ]. The field v = u̇ is the spatial
image of the material velocity, u is the material displacement, ρ is the spatial mass
density, b is a prescribed body force per unit mass (e.g., gravitational acceleration),
and σ = σT is the symmetric Cauchy stress. The superscribed T refers to the
transpose. Moreover, the superposed dot is shorthand for the material time derivative
q̇ = ∂

∂t q + v · ∇q of a time-dependent spatial field q, div is the spatial divergence
operator, ⊗ is the tensor product, and · denotes the single contraction of tensors.

The stress tensor is decomposed into a pressure stress and an extra stress according
to

σ = −p I + s, (3)

where p is the pressure and I is the second-order unit tensor. We assume that
the extra stress is always deviatoric such that p = − 1

3 trσ and s = σdev, where
σdev = σ − 1

3 (trσ)I is the deviatoric stress, tr a = I : a returns the trace of a
second-order tensor a, and : indicates double contraction.

The rate of pressure is related to the rate of mass density through a compression
model

− 1

V

∂V

∂ p

∣∣∣∣
M

= 1

ρ

dρ

dp
= 1

K
resp. ṗ = K

ρ
ρ̇. (4)

K is the bulkmodulus, V and M = ρV are the volume andmass of a bounded region,
respectively, and |M means that mass is kept constant along with differentiation.

The balance equations (1) and (2) are rewritten using (3) and (4), treating v and
p as the independent variables:

ρv̇ − ρb − div(s − p I) = 0, (5)

ṗ + K div v = 0. (6)

The ALE formulation [8–10, 13, 24, 57] introduces a reference domain which
may move in space at an arbitrary velocityw. This velocity is referred to as the mesh
velocity because the reference domain is represented by the computational mesh
in numerical implementation. The difference c = v − w is called the convective
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velocity. The relative volume change between the referential coordinate system and
the spatial coordinate system is the Jacobian, J , and its rate of change is given by

∂ J

∂t
= J divw. (7)

Moreover, if q̂ is the description of a spatial field q in the referential coordinates,
then the rate of q̂ is related to the material time derivative through

q̇ = ∂q̂

∂t
+ c ·∇q. (8)

Substitution of (8) into the Eqs. (5) and (6), respectively, and using the product rule
yields

∂ρ̂v̂

∂t
+ div(ρv ⊗ c) + ρv divw − ρb − div(s − p I) = 0, (9)

∂ p̂

∂t
+ div(pc) − p div c + K div v = 0. (10)

Multiplication with J , substitution of (7), and arranging terms then results in the
ALE conservation form of (5) and (6),

∂ρ̂v̂ J

∂t
+ J div(ρv ⊗ c) = J (ρb + div(s − p I)), (11)

∂ p̂ J

∂t
+ J div(pc) = J (p − K ) div v. (12)

We write this set of equations in the compact form

∂q̂ J

∂t
+ J divF = S J, (13)

where q ∈ {ρv, p}, F is the convective flux of q, and S is the source term.
The MMALE method is based on the common Lagrange–remap strategy which

divides the incremental solution of the nonlinear problem into a Lagrangian step and
remap step (Fig. 2). Conceptually, (13) is split into two sets of equations which are
solved sequentially:

∂q̂ J

∂t
= S J, (14)

∂q̂ J

∂t
+ J divF = 0. (15)

The first set of equations, (14), is associated with c = 0 resp. v = w. Hence, it
is equivalent to the set of Eqs. (5) and (6), and formalizes a Lagrangian description
of motion. During the Lagrangian step, the set (14) is solved with standard finite
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element methods for the two-field mixed element formulation by accounting for
large deformations [71, 117, 121]. Accordingly, (5) and (6) are written in a weak
form which is discretized in space using finite elements. The solution of the semi-
discreteweak formof the governing equations is advanced implicitly in time using the
Newmark-beta and generalized trapezoidal methods in conjunction with a damped
Newton–Raphson method.

The solution of the second set of equations, (15), is associated with the remap
step. The remap step first relocates the nodes to reduce mesh distortion and then
transfers the solution variables onto themodifiedmesh using a conservative advection
algorithm [9, 13]. Time is advanced only during the Lagrangian step, whereas the
spatial distributions of the solution variables are fixed during the remap step. That is,

v ≡ 0 and
∂q

∂t
≡ 0, but c �= 0, (16)

so that q̇ = 0 holds but ∇q �= 0 in general. The overall Lagrange–remap solution
procedure of the MMALE method is summarized in Algorithm 1.

Because the reference domain (finite element mesh) is moved relative to the
“frozen” material during the remap step, elements may arise in MMALE meth-
ods which intersect with material interfaces and thus contain a mixture of two or
more materials (Fig. 2). However, the spatial distribution of the elements’ degrees of
freedom is homogeneous, so that a lack of information arises within these multi-
material elements. The main difficulties are to accurately determine the states of the
individual material portions and the reaction of the element they will generate [103].
This is particularly true for geomechanicalmulti-material flowswhich exhibit several
spatial scales. For that reason, we have developed a three-scale mixture theory and
derived a homogeneous equilibrium model which provides reasonable, physically
based mixing rules. These are summarized in the following section; the details are
presented elsewhere [11, 14].

Fig. 2 Schematic diagram of the Lagrange–remap strategy in a calculational cycle of the MMALE
method [98]. The blue area indicates a material zone whose initial configuration is assigned to
an element patch highlighted in red. In the Lagrangian step, the governing equations are solved
with respect to the mesh deforming with the material. During the remap step, the mesh distortion
is reduced and the solution variables are transferred to the modified mesh. After the remap step,
several elements intersect with the material interface. These elements contain a mixture of two
materials (blue and white) and are called multi-material elements
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3 Mathematical Modeling of Three-Scale Mixtures

3.1 Averaging Procedure

The three-scale (micro, meso, and macro) system of interest is illustrated in Fig. 3.
A still image of the flow recorded through a spatially fixed and reasonably small
observation window is shown above in the figure. The flow consists of a bulk solid
(S), a bulk fluid (F), and a composite material representing a fluid-saturated granular
material (G). The granular material by itself is an immiscible mixture consisting of
a solid phase (s) and fluid phase (f). Void is considered as a particular fluid.

Algorithm 1: Overall solution procedure of the MMALE method.
Input: initial mesh, geometry, initial conditions, and boundary conditions
Output: velocity, pressure, mass density, stress, and material state

1 initialize time steps;
2 collect topological data required for remap;
3 while number of time steps n ≤ nmax do

4 begin Lagrangian Step
5 re-initialize finite element matrices and compute loads;
6 while number of Newton iteration steps i ≤ imax do
7 determine number of materials per element;
8 update volume fractions and porosity;
9 integrate constitutive equations and compute material stiffness;

10 update element averages of stress, stiffness, mass density etc.;
11 compute internal loads and form vector of residuals;
12 compute effective stiffness matrix;
13 solve system of linearized equations;
14 if convergence criterion met then exit;
15 i ← i + 1;

16 store solution variables;
17 update and store geometry;
18 reconstruct material interfaces using VOF method;

19 begin Remap Step
20 loop mesh elements and evaluate element quality Q;
21 if Q < Qmin then flag nodes of the element;
22 relocate flagged nodes to reduce mesh distortion;
23 gather elements affected by mesh motion step;
24 compute total transport volumes for affected elements;
25 compute material transport volumes using reconstructed interface;
26 advect and store volume fractions;
27 advect and store remaining solution variables;

28 n ← n + 1;
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Fig. 3 Three spatial scales in a particular geomechanical multi-material flow

The granular material is constituted by an assembly of solid grains, whose typical
diameter defines the microscale of the problem, lmicro (Fig. 3 below). The character-
istic length at which the grain assembly can be represented by a continuum is intro-
duced as the mesoscale lmeso. At the mesoscale, the bulk solid, the bulk fluid, and
granularmaterial can be regarded as homogeneousmaterials separated by sharp inter-
faces. Finally, at the macroscale the immiscible mixture of mesoscale continua (bulk
solid, bulk fluid, and granular material) can be equivalently modeled as an effective
single-phasematerial (homogenized immisciblemixture). Hence, we assume that the
multi-material flow has a representative volume element (RVE) with characteristic
length lmacro (Fig. 3 above). The real-world problem is modeled on an even larger
scale.
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To keep our theory as general as possible, each material k ∈ {S,F,G} def=
{1, . . . , M} is initially viewed as containing the same phases α ∈ {s, f} def=
{1, . . . , N }, even though the fractional volume of one phase in a particular mate-
rial might be zero. This means, for example, that the bulk solid is initially viewed as
being composed of a solid phase and a fluid phase, even though the volume fraction
of the fluid is zero. A particular phase α in a particular material k represents an
individual, chemically independent constituent of the flow and will be denoted by
αk. For the particular flow under consideration, we write sS ≡ S and fF ≡ F such
that αk ∈ {S,F, sG, fG}.

The flow takes place in a time interval [0, T ] ⊂ R and in a three-dimensional
modeling domain D ⊂ R

3 of the ambient Euclidian space. The subregions in D
instantaneously occupied by the k-material and the α-phase at time t ∈ [0, T ] are
denoted by Mk and Pα, respectively, with

D = ⋃
αPα = ⋃

kMk . (17)

The (possibly empty) domain of the α-phase in the k-material is given by the inter-
section Pα ∩ Mk . Based on the assumptions above, each two phases and each two
materials do only intersect at their interface (if any).

Let χk be the material indicator function onMk ⊂ D and χα the phase indicator
function on Pα ⊂ D, with χk,χα : D × [0, T ] → {0, 1}. The product of χk and
χα defines another indicator function which picks out the generally time-dependent
α-phase domain of the k-material domain in the modeling domain:

χαk(x, t)
def= (χαχk)(x, t) =

{
1 if x ∈ (Pα ∩ Mk) at time t ,

0 if x ∈ D\(Pα ∩ Mk) at time t .
(18)

This indicator function is unique to our mixture theory. It covers arbitrary flow
compositions bounded between the classical cases of mixtures composed of single-
phase materials (χα = 1) and mixtures represented by a single multi-phase material
(χk = 1).

Indicator functions represent distributions, and hence possess a weak derivative.
Therefore, in accordance with Eqs. (17)–(22) of [41], it can be shown that the sub-
stantial time derivative of χαk defined by (18) is given by the topological equation

∂χαk

∂t
+ vαk

I · ∇χαk = 0, with ∇χαk = δαk
I nαk

I . (19)

Here, vαk
I is the velocity of the α-phase-k-material interface ∂(Pα ∩Mk), nαk

I is the
field of outward normals on that interface, and δαk

I is a Dirac delta function which
picks out the α-phase-k-material interface in D. Accordingly, ∇χαk is everywhere
zero except for ∂(Pα ∩ Mk).

Upscaling information from lower to higher scales can be achieved by different
types of approaches, and each has its advantages and disadvantages [18, 37, 55].
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The approach followed here is known as hybrid mixture theory [1, 21, 22, 54, 55].
The basic idea is to apply local volume averaging [32, 41, 42] to the small-scale
balance equations and to make the constitutive assumptions needed for closure at the
large scale, that is, for the averaged balance equations. The closure relations can be
obtained either by direct postulation of desirable equations, as done in [71] and in
this paper, or based on thermodynamical considerations as in the continuum theory
of mixtures and the theory of porous media [34, 40, 113].

Local volume averaging is carried out with respect to a macroscopic RVE of
the flow at all points x ∈ D, which is defined through a spatially fixed and time-
independent subset H(x) ⊂ R

3. At each instant t , the RVE intersects with the
current configuration of materials and phases as well as with their boundaries. The

subregion of the RVE occupied by the k-material is Mk ∩ H def= Hk , and (Pα ∩
Mk) ∩ H def= Hαk is the subregion occupied by the α-phase of the k-material, with
H = ⋃

k Hk = ⋃
k
⋃

α Hαk by (17). TheH-average of an arbitrary time-dependent
spatial microscopic field q(x, t) is then defined through

〈q〉(x, t)
def= 1

H

∫

H
q(x + a, t) dv for all x ∈ D and t ∈ [0, T ], (20)

in which a is a vector on H, dv is the volume density on R
3, and H

def= ∫
H 1 dv =

const is the volume measure ofH.
Particular examples of the local volume average defined by (20) are the volume

fractions

f k def= 〈χk〉 = Hk

H
and παk def= 1

f k
〈χαk〉 = Hαk

Hk
∈ [0, 1] , (21)

where Hk def= ∫
Hk 1 dv = ∫

H χk dv and Hαk def= ∫
Hαk 1 dv = ∫

H χαk dv. While f k

is the volume fraction of the k-material with respect to the RVE, παk represents the
macroscale volume fraction of the α-phase intrinsic to the k-material. The topology
present inH entails the fundamental properties

∑

k

f k = 1 and
∑

α

παk = 1 for all k ∈ {1, . . . , M} (22)

since phase or material overlaps are precluded. If the physical field q(x, t) is defined
per unit volume, then

〈q〉 =
∑

k

f kqk =
∑

k

∑

α

f kπαkqαk, with qαk def= 〈χαkq〉
f kπαk

, (23)

follows immediately from (22) and the averaging operator (20). For example, ifq = ρ
is the microscopic spatial mass density, then the intrinsic or true mass density ραk
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represents the mass of the constituent αk per unit volume of that constituent, παkραk

is the mass of the constituent αk per unit volume of the k-material, and f kπαkραk

denotes its mass per unit volume of the mixture. Therefore, the latter two are bulk
mass densities.

3.2 Macroscopic Balance Equations

On the microscale, all constituents of the mixture are regarded as compressible
continua, governed by the equations of continuum mechanics [76, 113, 114]. The
balance principles of the problems under consideration are conservation of mass, (1),
and balance of momentum, (2), in conjunction with the interface jump conditions.
We currently do not take care of any thermodynamical issue.Mass is neither supplied
in the interior of any constituent nor at the interfaces.Moreover, there is no interfacial
momentum supply due to surface tension.

Each termof themicroscopic balance equations is averaged by using the procedure
outlined in the previous section; see [11, 14, 41, 42] for details. This results in the
α-phase-k-material macroscopic conservation of mass

∂ f kπαkραk

∂t
+ div( f kπαkραkvαk) = �αk (24)

and macroscopic balance of momentum

∂ f kπαkραkvαk

∂t
+ div( f kπαkραkvαk ⊗ vαk)

= f kπαkραk bαk + div( f kπαkσαk) + �αkvmI + �αk,

(25)

where

�αk def=
〈
(ρ(v − vI))

[αk] · nαk
I

〉
, (26)

�αkvmI
def=

〈
(ρv ⊗ (v − vI))

[αk] · nαk
I

〉
, and (27)

�αk def= −〈σ[αk] · nαk
I 〉. (28)

The superscribed αk denotes macroscopic (i.e., H-averaged) fields related to
the α-phase in the k-material. The mass transfer term �αk denotes the rate of mass
supply per unit volume via theα-phase-k-material interface. Themomentum transfer
term �αk includes drag forces per unit volume generated by the relative motion of
the constituents. Note that �αk accounts for surface forces, but not for momentum
exchange owing to transfer of inertial mass which is described by the term �αkvmI .
Totalmass andmomentum of themixture is conserved. Hence, the sumof the transfer
terms over all constituents must vanish:
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∑

k

∑

α

�αk = 0 and
∑

k

∑

α

(
�αkvmI + �αk

)
= 0. (29)

From this and the conditions (23), summation of (24) and (25) over all phases
α ∈ {1, . . . , N } and all materials k ∈ {1, . . . , M} finally yield the macroscopic
conservation of mass and macroscopic balance of momentum of the mixture:

∂〈ρ〉
∂t

+ div〈ρv〉 = 0 and
∂〈ρv〉

∂t
+ div〈ρv ⊗ v〉 = 〈ρb〉 + div〈σ〉. (30)

The macroscopic balance equations (30) in conjunction with the jump conditions
(29) and the balance equations (24) and (25) provide unified description of non-
reactive isothermal flow of an immiscible mixture of M materials consisting of N
phases. They hold at each spatial point and at all interfaces and refer to a spatial
reference volume instantaneously occupied by the mixture on the macroscale. A
single spatial point is viewed as being simultaneously occupied by all materials
and all phases, that is, the mixture after averaging is viewed as being composed of
overlapping continua.

The equations explicitly account for volume fractions of each bulk material and
for volume fractions of each phase in the bulk materials. Moreover, the equations
include separate physical quantities for each constituent and separate terms repre-
senting the interaction between the constituents. The mechanical behavior of the
mixture is a consequence of the mechanical behavior of its individual constituents,
their volume fractions as well as of their interactions. Therefore, the macroscopic
equations can explicitly represent diverse compositions or evolving configurations
of multi-material flow.

3.3 Homogeneous Equilibrium Model

The particular geomechanical multi-material flow of interest can be locally described
as a mixture consisting of a bulk solid (S), a bulk fluid (F), and a fluid-saturated gran-
ular material (G) composed of a solid phase (sG) and a fluid phase (fG); cf. Fig. 3.
Hence, the materials generally represent binary immiscible mixtures, solely com-
posed of a solid phase and a fluid phase such that α ∈ {s, f}. We denote the fluid
fraction or porosity of the k-material, k ∈ {S,F,G}, by

nk def= πfk, (31)

so the solid fraction within the k-material becomes πsk = 1 − nk by using (22)2.
We remark that in cases where the k-material consists of a solid without significant
porosity (k = S) one has nS = 0. If on the other hand the k-material is a fluid
(k = F), then nF = 1 applies. The mixture represented by a single fluid-saturated
granular material is characterized by f k ≡ f G = 1 and 0 < nG < 1.
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Modeling of a particular multi-material flow requires closure of the set of balance
equations, which is otherwise underdetermined. Generally, the following closure
relations have to be specified [32, 33]:

1. Transfer relations expressing the physics at the material interfaces.
2. Topological relations accounting for the evolution of the interfacial structure.
3. Constitutive relations characterizing the physical behavior of each material.

Concerning the first group of closure relations, we take the simplest approach
by assuming zero mass and momentum exchange, so that �αk = 0 and �αk = 0
for all α ∈ {s, f} and k ∈ {S,F,G}. The former complies with the assumption of
no phase change and no chemical reaction at interfaces. The assumption of zero
momentum transfer, on the other hand, may contradict flow situations in reality in
which interactions, e.g., based on viscous drag, play an important role. Moreover, a
granular material in the mixture, by this assumption, must be either dry (ρfG = 0) or
locally undrained (no consolidation effects).

The topological closure relations restore the information of the flow structure
lost by the application of volume averaging [32, 33]. For the flow situation under
consideration, the only relations required are those that account for the evolution
of the material volume fractions f k . A proper closure relation for volume fraction
has to specify how the volumetric distribution of the bulk solid, the bulk fluid, and
the saturated granular medium evolves during the particular geomechanical multi-
material flow under consideration. Because further research is needed to establish
such a physics-based topological closure law,we have simply assumed homogeneous
distributions of pressure and velocity between the materials:

pk = 〈p〉 and vk = 〈v〉 for all k ∈ {S,F,G} and t ∈ [0, T ]. (32)

From a physical viewpoint, this means that everything is in homogeneous thermo-
dynamic equilibrium [35, 80], and its limitations are discussed in [14].

The description of material behavior and the development of constitutive relations
are major concerns in continuum mechanics. Restrictions on the form of the closure
relations result from the principles of constitutive theory [42, 76, 114]. In order to
treat all materials and material compositions that might be present in geomechanical
multi-material flow in a unified fashion, the stress tensor of any material is decom-
posed into a pressure stress −pαk I and an extra stress sαk [76, 114], in accordance
with (3):

σαk = −pαk I + sαk . (33)

We assume that the extra stress is always deviatoric such that pαk = − 1
3 trσ

αk , and
that all constituents of the flow are compressible, including both the grains and the
fluid phase of the granular material.

A rather long but almost straightforward derivation using all the ingredients yields
the following homogeneous equilibrium model for geomechanical multi-material
flow which is consistent with the set of Eqs. (5) and (6) for a single-material problem
[11, 14]:
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〈ρ〉〈v̇〉 − 〈ρb〉 − div〈s − p I〉 = 0 (34)

〈 ṗ〉 + 〈K 〉div〈v〉 = 0, (35)

where

〈s〉 =
∑

k

f k sk = f SsS + f FsF + f G
(

sG
′ + nGsfG

)
, (36)

〈p〉 =
∑

k

f k pk = f S pS + f F pF + f G
(

pG
′ + pfG

)
, (37)

〈ρ〉 =
∑

k

f kρk = f SρS + f FρF + f G
(
(1 − nG)ρsG + nGρfG

)
, (38)

1

〈K 〉 =
∑

k

f k

K k
= f S

K S + f F

K F + f G

KG , ζG = 1 − KG
dr

K sG, (39)

and KG = KG
dr

(
1 + (ζG)2

ζGKG
dr/K sG + nG

(
KG
dr/K fG − KG

dr/K sG
)
)

. (40)

The model is closed by the constitutive equations for the bulk solid (αk ≡ k = S),
the bulk fluid (αk ≡ k = F), the granular material (k = G) including the solid phase
(αk = sG) and fluid phase (αk = fG), by the evolution equations for the porosity,

ṅG = (1 − nG)

(
ṗsG

K sG + div〈v〉
)

, with ṗsG = ṗG
′ K sG

KG
dr

+ ṗfG, (41)

and volume fractions,

ḟ k = f k
( 〈K 〉

K k
− 1

)
div〈v〉, (42)

and by the compression models for each constituent,

ρ̇S = ρS

K S 〈 ṗ〉, ρ̇F = ρF

K F 〈 ṗ〉 , ρ̇sG = ρsG

K sG ṗsG , ρ̇fG = ρfG

K fG ṗfG . (43)

Besides the quantities already defined, pG
′
and sG

′
are the effective pressure

and effective deviatoric stress, respectively, in the granular material which will be
defined in the subsequent section, 〈K 〉 is the bulk modulus of the mixture, K k is the
bulk modulus of the k-material, with k ∈ {S,F,G}, K sG and K sG are intrinsic bulk
moduli of the granular material solid phase and fluid phase, respectively, KG

dr is the
bulk modulus of the drained granular material, KG

uj ≈ K sG is the unjacketed bulk

modulus [20], and ζG is the Biot-Willis coefficient [29, 30].



202 D. Aubram et al.

For the stress tensors in thebulk solid and in thebulkfluid, the commonconstitutive
equations can be substituted [19, 42, 76, 114]; effects of turbulence in the bulk fluid
are currently neglected. However, the stress tensor in the granular material (k = G)
needs to be analyzed in more detail. In particular, we have to justify our motivation
to express the extra stress of the granular material in (36) by sG = sG

′ + nGsfG.

4 Stress in Granular Materials and Suspensions

The specificgranularmaterial of interest is a cohesionless granularmaterial inwhich a
single fluid fills the intersticial space. From a formal rheological viewpoint, the mate-
rial can be addressed as a dense (high concentration) grain–fluidmixture or “granular
suspension” [3]. Our current research is particularly concernedwith cohesionless soil
(sand). The smallest diameter of the solid grains is generally larger than 0.075mm
and the solid volume fraction resp. volume concentration is basically higher than
50 % (porosity nG < 0.5) [38]. We assume for simplicity that the grains are perma-
nent, i.e., they are non-abrasive and cannot crush. The fluid can be gas, liquid, or a
suspension (slurry) of liquid and dispersed fines (grain diameter < 0.075mm).

According to [7, 59, 96], two limiting regimes of dry granular flow have to be
considered. Under static or quasi-static loads, the grains are in close contact and form
a network. The contact forces acting between the grains are dominated by the mean
stress and dry friction (granular solid). Grain inertia effects are negligible, and the
material response is rate-independent plastic. This is called the frictional or quasi-
static regime, and it is the granular flow regime extensively studied in soil mechan-
ics [102]. At the other extreme characterized by high rates of shear deformation
and smaller solid volume fractions, the material behaves rate-dependent “viscous”
(granular liquid). Grain inertia and instantaneous grain contacts through collision
dominate [15], and hence this flow regime is called the collisional or dynamic regime.
In many practical flow situations, frictional and collisional interactions are roughly
of the same order, and the contributions of each to the bulk stress of the mixture
cannot be clearly distinguished. However, relatively little is known about this inter-
mediate flow regime, called the frictional–collisional regime, from both theoretical
and experimental viewpoints [4–6, 65].

Furthermore, complexity is introduced by the interstitial fluid in granular mate-
rials. Fluid–solid coupling by Stokes’ drag resulting from the relative velocity has
been recognized for a long time in soil mechanics because it is responsible for con-
solidation [29, 110]. Besides this, indirect grain interactions generally occur through
lubricated contacts [3, 4, 6, 36]. Lubricated contact is characterized by repulsive vis-
cous forces due to squeezing and shearing of the interstitial fluid; the shear-thickening
effect is an exemplary consequence of this phenomenon [36]. The rate of shear at
which lubricational (or macros-viscous [15]) flow may take place at otherwise equal
conditions ranges between those present in the frictional and collisional regimes.
In general, all three flow regimes have to be considered in the analysis of debris
flows [60, 63] and liquefaction-induced flow of soils [69]. However, the description
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of the mechanical behavior of a dense grain–fluid mixture for a wide range of flow
conditions and material properties is still an open problem [6].

Based on (23), the bulk stress in a saturated granular material can be generally
expressed as

σG = (1 − nG)σsG + nGσfG def= σ̃sG + σ̃fG, (44)

with a fluid fraction resp. porosity 0 < nG < 1, and taking f G ≡ 1. The tensors
σ̃sG, σ̃fG on the right are referred to as the partial stresses. These amalgamated stress
tensors are used in many models for saturated porous media [34, 40, 43] and debris
flows [6, 60, 63, 64, 90, 91], particularly those derived from the continuum theory
of mixtures.

In order to model the full frictional–collisional regime, the stress tensors of the
solid andfluid phases are represented as the linear sumof a rate-independent frictional
contribution and a rate-dependent viscous contribution [7, 59, 60, 116]:

σαG def= σαG
fr + σαG

vi , with α ∈ {s, f}, (45)

so that σG = σG
fr + σG

vi likewise. We then assume

trσsG
fr = −3psG , σfG

fr = −pfG I , and trσfG
vi = 0 . (46)

The first assumption formalizes that the solid-phase constituent is not subject to
internal constraints [114]. The second is the interpretation of a saturated intersticial
space [60], and the third assumption is because volume viscosity is usually neglected
in porous media and debris flow theories. The latter two assumptions result inσfG

vi =
sfG.

In accordance with [23], we introduce Terzaghi’s effective stress σG′
fr as the fric-

tional partial stress of the solid phase in which the pressure has been replaced with
the excess pressure psG − pfG. Clearly,

σG′
fr

1 − nG
def= −(psG − pfG)I + ssGfr and

pG
′

1 − nG = psG − pfG, (47)

where pG
′ def= − 1

3 trσ
G′
fr is called the mean effective stress and ssGfr = (σsG

fr )dev
by (46)1. Note that in a suspension without grain contacts each grain would be
completely surrounded by water, resulting in psG = pfG and pG

′ = 0. In the light
of (46) and (47), the total frictional (quasi-static) stress part of the saturated granular
medium can be calculated from

σG
fr = σG′

fr − pfG I, (48)

which is known as Terzaghi’s principle of effective stress [38, 110, 121].



204 D. Aubram et al.

In contrast to the frictional part, we postulate that the effective stress for the
collisional (dynamic) regime remains unaffected by fluid stresses, i.e., σG′

vi =
(1 − nG)σsG

vi . Therefore, by taking into account (45), the assumptions (46), and
the principle (48), the representation (44) of the total Cauchy stress can be recast
into

σG = σG′
fr + σG′

vi + σfG
fr + nGσfG

vi

= σG′ − pfG I + nGsfG,
(49)

with σG′ = σG′
fr + σG′

vi . We refer to (49) as the principle of effective stress for a
general saturated grain–fluidmixture. The same relation is used in [64] in a continuum
mixture theory to describe the flow of variably fluidized granular masses (debris flow,
rock avalanches, etc.).

Based on the general principle of effective stress (49), and the discussion at the
beginning of this section concerned with the different flow regimes of dense grain–
fluid mixtures, constitutive equations have to be specified for the fluid-phase stress
and for the frictional and viscous parts of the effective stress.

For simplicity, the interstitial fluid (pore fluid) is represented by a Newtonian fluid
with deviatoric viscous stress. Hence, the constitutive behavior can be described by
the standard Navier–Poisson relation together with the Stokes condition [76], leading
to

σfG = σfG
fr + σfG

vi
def= −pfG I + 2μfGdfG

dev, (50)

where d
def= 1

2 (∇v + (∇v)T) is the spatial rate of deformation tensor and μfG is the
dynamic shear viscosity. Effects of turbulence are again neglected. In cases where
the fluid phase does not represent pure liquid but a suspension withmoderate concen-
trations of dispersed fines, estimates for μfG can be found in [82]. Moreover, in order
to account for the fact that the fluid phase fills the interstitial space of the distributed

granular material, we define μfG(nG)
def= (nG)2μfG

0 in accordance with [86], where
μfG
0 is the shear viscosity of the fluid for nG = 1 (pure fluid).
Compared to the fluid phase, the mechanical behavior of cohesionless granular

material is very complex and has several distinctive features [48, 59, 60, 68, 99,
102, 111, 121]. Different approaches can be employed to model this behavior on
the mesoscale. Here, we are interested in exploring fundamental behavior of com-
plex phenomena in geomechanics and geotechnical engineering. In this regard, phe-
nomenological two-phase models relying on a continuum representation of granular
material and not on micromechanics are eminently suited [6, 45, 48, 60, 121]. The
application to general geomechanical multi-material flows calls for constitutive rela-
tions which need only a single set of material constants and then are able to simulate
the mechanical behavior of granular material under complex loading paths over a
wide range of densities and stress states. However, a constitutive relation accounting
for all features and over the entire frictional–collisional regime is still out of reach.
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Constitutive equations should be prescribed for the effective stress σG′ =
σG′
fr + σG′

vi . Concerning the quasi-static frictional stress contribution σG′
fr , attrac-

tive models have been proposed for applications in soil mechanics and fall into the
categories of elasto-plastic [72, 77, 87, 109] or hypoplastic [17, 51, 83, 115] rate
constitutive equations. All of them determine an objective rate of the effective stress
as a function of the rate of deformation, the effective stress, the porosity nG or void

ratio eG
def= nG/(1 − nG), and a (possibly empty) set of additional state variables

hG def= {hG
1 , . . . , hG

m}. As an example, we consider the generic rate constitutive equa-
tion

�
σ
G′
fr

def= cG′
fr (σ

G′
fr , nG, hG) : (dsG − ε̇sG I)

def= �
σ
G′′
fr − ε̇sGcG′

fr : I,

(51)

in which
�
σ

def= σ̇ + σ · ω − ω · σ denotes the Zaremba–Jaumann rate of Cauchy

stress and ω
def= 1

2 (∇v − (∇v)T) is the vorticity tensor. In (51), we subtracted from
the solid-phase rate of deformation dsG the average volumetric strain rate ε̇sG I of
the compressible solid phase due to fluid phase pressure rate ṗfG. The stress tensor
σG′′
fr is responsible for all deformation of the solid phase, including the compression

of grains. We should remark that the spatial gradient of solid-phase volume fraction
has been detected as fundamental in describing the quasi-static mechanical behavior
of granular materials [49, 59, 86, 96], and hence should be included in the list of
arguments of cG′

fr . However, for simplicity we assume here that this gradient is zero
(homogeneous granular material).

It remains to specify a constitutive relation for the dynamic contribution σG′
vi =

(1−nG)σsG
vi = σ̃sG

vi of the effective bulk stress in the dense grain–fluidmixture repre-
senting the saturated granular material. Different approaches are available, but most
of them are restricted to particular flow conditions or to narrow ranges of material
properties. In the present research, we adopt a simple model formulation suggested
by Passman et al. [86] and further investigated in [61, 116]. Its representation in rate
form has been adopted in [31] to model silo discharge:

�
σ
G′
vi

def= 2μG′ �
dsG = μG′

vol(tr
�

dsG)I + 2μG′ �
dsG

dev. (52)

Such a form was also used in [56]. The first term on the right expresses the rate
of stress change due to volume viscosity μG′

vol. The dynamic shear viscosity μG′
is

generally a function of the void ratio (porosity) and shear rate. Relations have been
proposed for different flow situations resp. flow geometries [6, 15, 31, 45, 49, 59,
60, 65, 66, 86]. However, decision on which one is the most appropriate for the
present class of problems requires further investigation.
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5 Interface Reconstruction and Propagation

5.1 Governing Equations

One of the main features of the MMALE method is that material interfaces are
not necessarily aligned with boundaries of the computational cells but may flow
through the mesh (Fig. 2). The interface position needs to be known at each time
step in order to achieve a reasonable accuracy of the overall method (Algorithm 1).
Different approaches are available in this context, as reviewed in [27, 62, 100].
The widely used volume of fluid (VOF) methods [39, 52, 58, 89, 93, 95, 118,
119] do not track the interface directly, but instead track the fractional material
volume in a mesh element using an approximation to the interface. The interfaces
are reconstructed ab initio element by element from the solution data. Once the
interface locations in eachmulti-material element have been determined, thematerial
transport volumes across the element boundaries can be computed as truncation
volumes. Finally, the fractional material volumes are integrated to a new time level
to propagate the interface (Algorithm2). The actual calculation is largely geometrical
in nature, as will be shown in the remainder of this paper.

Algorithm 2: VOF interface reconstruction and propagation.
Input: mesh, velocity field, discrete material volume fraction data
Output: reconstructed material interface, advected volume fraction data

1 reconstruct material interface for each element using volume fraction data;
2 compute material transport volumes as truncation volumes;
3 update fractional material volume by summing material transport volumes;

VOF methods are typically discussed with regard to a fixed, structured computa-
tional mesh of finite difference type. The descriptions use volume coordinates and,
in two dimensions, reduce the element to a unit square [24]. Concerning the present
research, two points have to be considered. First, we seek to apply VOF methods to
unstructured finite element meshes. This requires special data structures and coordi-
nate systems which allow to resemble the classical descriptions. For example, in an
unstructured quadrilateral mesh the parametric coordinates of the parent square ele-
ment are equivalent to volume coordinates. Second, the mesh in MMALE methods
is not fixed.

When using a Lagrangian–remap strategy, Algorithm 2 is implemented by recon-
structing the material interfaces in the Lagrangian elements prior to the remap; see
alsoAlgorithm1. The amount of transportedmaterial is usually defined as the regions
swept out by the element facets during mesh relocation truncated by the interfaces.
The interfaces that should be reconstructed in ourMMALEmethod are not themicro-
scopic interfaces between the grains and the pore fluid in the granular material, but
the interfaces between the bulk materials on the macroscale (Fig. 3). For this rea-
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son, the material volume fraction f k has been introduced as a basic variable of our
three-scale mixture theory. It naturally carries information based on which material
interfaces can be reconstructed using VOF methods.

Recall the situation and the basic notation introduced in Sect. 3.1. For reasons
of simplification, the present study is restricted to two-dimensional problems in
Cartesian coordinates. Moreover, we consider the flow of only two materials k ∈
{1, 2}, say, a light material and a dark material, which are separated by a sharp
material interface. The flow takes place in a time interval [0, T ] ⊂ R and in a
modeling domainD ⊂ R

2 of the ambient Euclidian space. A point inD is identified
with its coordinate vector x = [x, y]T ∈ R

2. Velocities are assumed continuous at
the interface, that is,

v1 = v2 ≡ v̄. (53)

No slip is currently taken into account. Hence, the interface velocity is the velocity
normal to the interface [100]:

vI = vI nI = (v̄ · nI) nI, (54)

where nI is the field of unit normals on the interface, pointing outward the dark
material.

Let χ be the material indicator function on the dark material in accordance with
(18), then (19) and the application of (54) yield

∂χ

∂t
+ v̄ ·∇χ = 0. (55)

Taking the volume1 average resp. H-average of this equation as defined in Sect. 3.1
and respecting the averaging rules [41, 42] results in

∂ f

∂t
+ v ·∇ f = 0, or equivalently ḟ = 0, (56)

where f is the material volume fraction and v is an averaged velocity field, referred
to as the (common) material velocity in what follows. Comparison with Eq. (42) of
the homogeneous equilibrium model derived in Sect. 3.3 indeed shows that the right
sides of (56) are not zero in case of compressible materials. Therefore,

ḟ = f

( 〈K 〉
K

− 1

)
div v (57)

is taken as the basic equation.

1We use the term “volume” and “surface area” even though the present section is restricted to two-
dimensional problems. In fact, area and length in two dimensions can be regarded as volume and
surface area per unit depth in three dimensions.
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The material volume fraction is considered as the primary variable of VOF meth-
ods as it naturally carries information based on which material interfaces can be
reconstructed. In fact, if f = 1 then the zone is filled with dark material, and if
f = 0 the zone is filled with light material. A value 0 < f < 1 indicates that the
interface lies within that zone.

Following the derivations of Sect. 2, the ALE formulation of (57) is

∂ f̂ J

∂t
+ J div( f c) = 〈K 〉

K
f J div v (58)

and the operator split associated with the Lagrange–remap strategy gives the two
equations

∂ f̂ J

∂t
= 〈K 〉

K
f J div v, (59)

∂ f̂ J

∂t
+ J div( f c) = 0. (60)

Again, (59) is equivalent to (57), but its integration in time is left unconsidered
here. We just keep in mind that volume fraction might change during the Lagrangian
step of the MMALE method. The second equation, (60), constitutes a conservation
law and has to be solved during the remap step with respect to a given finite element
mesh. This is outlined in the next sections.

5.2 Basic Topological and Geometrical Functions

The topological and geometrical information required for VOF interface reconstruc-
tion and propagation must be gathered from a given finite element mesh, consisting
of nel two-dimensional elements �e. The unique element number, e, is occasion-
ally dropped. Each element is a simple polygon and represents a discrete portion
of the reference domain moving and deforming in space. It is defined by nodes
I ∈ {1, . . . , nen} and edges �e,I connecting the nodes I and I + 1. Nodes are num-
bered in counter-clockwise order of their occurrence along the element’s perimeter,
and the node I = nen + 1 coincides with I = 1. The global node number is denoted
by X , and for each element e and local node I , there is a unique number X (I, e). The
total number of nodal points in the mesh is nnp. We assume for simplicity that global
node numbering and element numbering is contiguous, so that nnp and nel are equal
to the largest node number and largest element number in the mesh, respectively. In
other words, X ∈ {1, . . . , nnp} and e ∈ {1, . . . , nel}.

The numerical implementation of Algorithm 2 requires topological information
of the adjacent elements to an element, fundamental boolean set-theoretic operations
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applied to lines and polygons, also called clipping, as well as geometrical functions.
In summary, the following functions are required:

1. Adjacent elements
2. Segment–segment intersection
3. Point-in-polygon test
4. Clipped polygon collection
5. Polygon volume

5.2.1 Adjacent Elements

The transport resp. advection of material between elements requires the list of ele-
ments adjacent to each element. Data structures and the implementation of functions
to determine these lists in unstructured quadrilateral meshes have been suggested
in [28]. The basic information required in that reference is the two-dimensional
connectivity array associated with the mesh. A modified approach is taken here.

In unstructured meshes, working with dynamic structures like linked lists and
pointer variables (available in Fortran 90 and above) is more practical than using
fixed dimensional arrays. Beyond that, the current Fortran implementation adopts
a somewhat object-oriented programming. Elements and nodes, for example, are
derived data types which are comparable to those C++ objects defined in [88]. Point-
ers to other data types resp. objects are stored within these data types, enabling the
creation of a linked list with an arbitrary number of entries. By taking advantage of
this option, the list of elements connected to a node is easily generated (Algorithm 3).

Algorithm 3: List of elements connected to all nodes.
Input: mesh elements, nodes connected to each element
Output: list of elements connected to all X ∈ {1, . . . , nnp}

1 while node X ≤ nnp do disassociate pointer to list of elements;
2 while element e ≤ nel do
3 while element node I ≤ nen do
4 add element e to list of X (I, e);

5 while node X ≤ nnp do associate pointer with first list entry;

The element data type has an identifier e ∈ {1, . . . , nel}, the element number,
and points to an array of the local nodes I ∈ {1, . . . , nen} defining the element,
and to an array of adjacent elements. Nodes are defined by a global node number
X ∈ {1, . . . , nnp} and a coordinate array. The global node number X (I, e) assigned
to the local node I of an element e has been traditionally defined as an entry of
a mesh connectivity matrix. Because of their frequent use, the next node and the
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previous node of a particular node are also stored. The best way to do this is to
store arrays containing the corresponding permutations of the local node numbers,
next(I ) = I + 1 and prev(I ) = I − 1, respectively, in the definition of the element
data type.

Once the list of elements connected to all nodes has been generated, the elements
adjacent to an element can be determined according to the following procedure [28].
Edge �I of element e is defined by node I and the node counter-clockwise from it,
next(I ) = I +1. The edge is shared by only two elements, the current element e, and
the adjacent element, adj(e, I ), sharing the edge with index I . A search on the lists of
elements connected to the two nodes of the edge is carried out in order to determine
the two elements in common. The element which is not the current element is the
adjacent element (Algorithm 4).

For the interface normal calculation outlined below, all the adjacent elements con-
nected to all nodes of an element need to be known. Since the elements adjacent to
an edge are known through Algorithm 4, only the corner elements have to be deter-
mined. An easy way to generate this list is to copy the list resulting fromAlgorithm 3
to the local nodes of all elements and to delete the current element and the elements
adjacent to an edge.

5.2.2 Segment–Segment Intersection

One basic function frequently used in VOF methods is the determination of the
intersection point of line segments, i.e., between the interface and the element edges.
A line segment, in contrast to infinite lines, has a finite length. Hence, there might
be no intersection even if the segments are not parallel (invalid intersection). Several
other cases generally have to be considered. We refer to [85, Sect. 7.2] and [107] for
further details and implementation.

Algorithm 4: Elements adjacent to edges for all elements.
Input: elements, nodes connected to each element, elements connected to each node
Output: elements adjacent to edges for all elements

1 while element e ≤ nel do
2 while element node I ≤ nen do
3 forall the elements a connected to X (I, e) do
4 if a �= e then
5 forall the elements b connected to X (next(I ), e) do
6 if b = a then store adj(e, I ) = a;
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5.2.3 Point-in-Polygon Test

The point-in-polygon test is needed to determine whether a particular point or node
lies inside a material zone. It is a basic operation frequently applied in computer
graphics and other areas dealing with processing of geometrical data. One of the
fastest solution strategies that requires only negligible amount of polygon data pre-
processing is the crossing test [53]. A ray is shot from the test point commonly along
an axis. Then, either the even/odd crossing number or winding number is computed
to classify the point for arbitrary closed polygons [2, 44, 53, 85, 101].

5.2.4 Clipped Polygon Collection

VOF methods must frequently determine the partial material volumes (subzones) in
the mesh elements or in the polygonal transport volumes across the element edges.
Mathematically spoken, the subzone is the set-theoretic intersection of the domains
enclosed by two polygons, or by one polygon and a half-plane. In computer graphics,
this is called polygon clipping [44, 108]. The mesh represents a collection of clip
polygons and the total material domain is represented by the subject polygon or
half-plane.

In fact, not the polygon itself but only the vertices of its polygonal boundary line
are stored. Polygon clipping has to determine the line segments belonging to the
boundary of the subzone through intersection and has to merge these segments to
close the boundary line; this decisive latter step is sometimes called “capping” in
the literature. Hence, polygon clipping requires elaborate data structures and has to
implement different boolean operations on polygons.

The data structures and clipping algorithm used in the present research have
been developed in [50] and extended in [67] to handle degenerate cases. In both
neither the clip nor the subject polygon needs to be convex, and they may have
self-intersections. The each input and output polygon is efficiently represented as a
doubly linked edge list, referred to as the half-edge data structure. First, the segment–
segment intersection points between the two input polygons are determined, then
these are assigned specific flags to indicate relative orientation of the polygon edges,
and finally the intersection points are merged into the data structure of the clipped
subject polygons.

5.2.5 Polygon Volume

The signedvolumeof a two-dimensional polygondefinedbyvertices I ∈ {1, . . . , M},
with M + 1 = 1, can be calculated from [44, 85, 101, 106]

V = 1

2

M∑

I=1

(xI yI+1 − xI+1yI ) = 1

2

M∑

I=1

xI (yI+1 − yI−1). (61)
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The first summation requires 2M multiplications and (2M − 1) additions, while the
second summation requires only M multiplications and (2M − 1) additions [106].
Note that the signed volume is positive, i.e., |V | = V , if the vertices are placed in
counter-clockwise order along the perimeter, otherwise it is negative.

It should be emphasized that the formula (61) can also be used to calculate the
signedvolumeof a self-intersecting polygon. In this case, the partial volumes adjacent
to an intersection have opposite signs. For example, twisting a rectangle so that it
looks like a Fig. 8 results in two triangular regions. Their volumes sum up to zero,
which is the total signed volume of the twisted rectangle according to (61).

5.3 Interface Reconstruction

Common state-of-the-art VOF methods approximate the interface in each multi-
material element by a straight line; see reviews in [27, 89, 93]. One of the earliest
two-dimensional methods is due to Youngs [118], which forms a basis for the devel-
opments of the present research. Our implementation relies on that described in
[95] because the original paper provides little detail of the interface reconstruction
procedure. An alternative implementation is presented in [27].

A linear interface can be generally described by the Hesse normal form

n · x − d = 0, (62)

in which x is an arbitrary point on the interface, n = [nx , ny]T ∈ R
2 is the unit

normal on that interface (the index I has been dropped for notational brevity), and
d is the line constant representing the shortest distance between the interface and
the origin. Most volume of fluid methods determine a linear reconstruction of the
interface for each element in two steps: (i) estimate n and (ii) determine d such that
the volume fraction of the material lying behind the interface matches the known
value.

Sincewe choose the normal to point outward of thematerial, (62) returns a positive
number if x lies outside of the material. From the viewpoint of implementation, it
proves convenient to introduce the gradient of the volume fraction, m = [mx , my]T,
for which n = −m/‖m‖. The slope of the interface, s, is related to the normal by
s = −mx/my = −nx/ny .

Youngs’ method [118] has been developed for finite difference type uniform
meshes of square elements with edge lengths �x = �y; the original paper uses
a mesh of unit squares. The interface slope is estimated based on the volume fraction
data in the current element and its eight neighbors. Figure4 shows the notation for
the element-centered volume fractions using the principal points of the compass.
According to [95], the components of the volume fraction gradient in the current
element of a uniform mesh can be approximated by the stencil
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mx = 1

�x
( fNE + 2 fE + fSE − fNW − 2 fW − fSW) ,

my = 1

�y
( fNE + 2 fN + fNW − fSE − 2 fS − fSW) .

(63)

The slope angle β = tan−1 s = tan−1(−mx/my) lies in the range −π /2 <

β < π /2. The stencil assumes that the elements are all unit volume. It would be not
optimal, though practical to use the same stencil in structured quadrilateral meshes
where the elements have different sizes.When using an gradient estimation according
to (63), the interface reconstruction is only first-order accurate and linear interfaces
are reproduced exactly only in certain isolated cases [27, 89, 93, 95].

Elements located at mesh boundaries require special treatment because one or
more of the neighbors indicated in Fig. 4 might not exist. In this case, the missing
neighbors are substituted by the so-called ghost elements, and the volume fraction of
the current element is just copied to the ghost elements. The use of ghost elements
also allows boundary conditions (e.g., inflow, outflow) to be handled efficiently in
MMALE methods.

Once the slope or normal direction of the material interface is known, its location
has to be determined by some procedure. The interface truncates the element domain,
and the truncated volume behind the interface represents the partial material volume.
Volume is conserved, i.e., the right location of the interface has been determined, if
the partial volume divided by the element volume matches the given volume fraction
data of that element. The matching can either be achieved through iteration of the
distance parameter d, as done in [93], or by deriving an explicit expression that relates
the truncated element volume to d or to other parameters that locate the interface.
The second approach has been pursued in [27, 52, 119]. We particularly follow the
derivation of [95] again, implementing the original method [118].

Fig. 4 Notation of adjacent
element volume fractions
and side fractions used for
interface slope calculation

Δx

Δy fSW fS fSE

fW f fE

fNW fN fNE

x

y

fr

ft

fl

fb
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Case I Case II

Case III Case IV

Fig. 5 Four principal configurations of reconstructed interface for Youngs’ method; after [95]

If the element is a square, four principal cases of how the interface is located gen-
erally have to be considered (Fig. 5). In each case, the interface intersects a particular
pair of element edges under an angle

α = tan−1
(

�x

�y

− mx

my

)
, with 0 ≤ α ≤ π /2. (64)

The 3×3block of elements eventually has to be rotated in such away thatα lieswithin
the indicated range. The factor �x/�y in the expression is only necessary if mx , my

have been evaluated based on �x �= �y. After the case has been determined using
α and the volume fraction f of the element under consideration, the side fractions
fb, fr, ft , and fl at the bottom, right, top, and left edges, respectively, of the current
element can be calculated (Fig. 4). The side fractions fσ ∈ [0, 1], σ ∈ {b, r, t, l},
are the fractions of the edges that lie within the material and uniquely determine the
intersections of the interface with the element boundary. The logic to determine the
case according to Fig. 5 and the calculation of the side fractions have been presented
in [95]2 and are summarized in Algorithm 5.

As a simple example providing an analytical solution, we consider a linear inter-
face on a fixed mesh of unit squares. The problem statement and mesh, including
the element and global node numbers, is shown in Fig. 6. Application of the inter-
face reconstruction algorithm described above to elements along the mesh boundary
(element numbers 1, 2, 6, etc.) requires a layer of ghost elements to complete the

2TableV in the original paper [95] has typos in the formulas for the side fractions for case IV, in
which C should be in fact 1 − C , where C is the volume fraction. The correct formulas are in
Algorithm 5.
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set of element neighbors for a real element. However, these ghost elements are
not shown in Fig. 6 and in the following figures. The unit normal to the interface
pointing outward the dark material is readily available through

n =
∥∥∥∥
5.0
4.0

∥∥∥∥
−1 [

5.0
4.0

]
=

[
0.780871
0.624697

]
. (65)

The exact coordinates of the intersection points between the interface and the
mesh in the initial configuration as well as the resulting volume fractions for all
elements are plotted in Fig. 7. Since the volume of the elements is one, the volume
fraction of an element is equal to the volume of the intersection between the dark
material half-plane (triangular domain) and the element domain.

Algorithm 5: Case-by-case volume fraction matching using side fractions;
after [95].

Input: f and α for current element
Output: side fractions fb, fr , ft , and fl

1 if α < π /4 then
2 if f ≤ 1

2 tanα then
3 Case I: fb = (2 f cot α)1/2, fr = (2 f tanα)1/2, ft = 0, fl = 0;
4 else if f ≤ 1 − 1

2 tanα then
5 Case II: fb = 1, fr = f + 1

2 tanα, ft = 0, fl = f − 1
2 tanα;

6 else
7 Case IV: fb = 1, fr = 1, ft = 1 − (2(1− f ) cot α)1/2,
8 fl = 1 − (2(1− f ) tanα)1/2;

9 else
10 if f ≤ 1

2 cot α then
11 Case I: fb = (2 f cot α)1/2, fr = (2 f tanα)1/2, ft = 0, fl = 0;
12 else if f ≤ 1 − 1

2 cot α then
13 Case III: fb = f + 1

2 cot α, fr = 1, ft = f − 1
2 cot α, fl = 0;

14 else
15 Case IV: fb = 1, fr = 1, ft = 1 − (2(1− f ) cot α)1/2,
16 fl = 1 − (2(1− f ) tanα)1/2;

The interface is reconstructed by looping all real elements in the mesh and apply-
ing (63) and Algorithm 5. The exact and reconstructed material interface using this
method are compared in Fig. 8. Note that the reconstructed interface is not contin-
uous across element boundaries because VOF methods work on a local level for
reasons of efficiency. The element volume fractions are exactly matched by the
reconstruction, but the interface slopes differ. The relative error of the slope angle,
Eβ = 2

π
||βrecon| − |βexact||, are listed in Table1. It can be seen that the error is larger

for elements located at mesh boundaries. This is because the volume fraction states in
the ghost element neighbors are assigned the values of that element, which is only a
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Fig. 6 Problem statement and mesh for linear interface reconstruction. The ghost elements along
the mesh boundary are not shown

Table 1 Relative error of slope angle for elements with 0 < f < 1

Element
no.

4 8 9 12 13 16 17 21

Eβ (%) 20.72 1.21 0.29 0.65 0.65 16.46 1.21 7.05

rough approximation to the “true” state expected for an interface continuing beyond
the mesh boundary.

5.4 Interface Propagation

For a Lagrange–remap MMALE strategy, the interface is propagated through the
mesh by transporting the fractional material volume across the element boundaries
during the remap step. The time associated with the end of the Lagrangian step is
denoted by t−, while time associated with the end of remap step is t+. The con-
stant time increment is �t = t+ − t−; however, there is actually no physical time
associated with it. On occasion, quantities related to the Lagrangian step and to the
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Fig. 7 Interface-mesh
intersections (numbers in
parentheses) and initial
volume fractions (slanted
numbers in the elements)

Fig. 8 Comparison of exact
(dashed line) and
reconstructed material
interface (solid line) using
Youngs’ method [95, 118].
Numbers in the elements
denote the material volume
fractions, which are exactly
matched by the
reconstruction
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remap step are superscribed with − and +, respectively. Given the distorted geome-
try x− after the Lagrangian step and relocated geometry x+, the convective velocity
is simply approximated by the finite difference formula c = (x− − x+)/�t . Data
assumed to be given in the remap step includes both x− and x+ as well as thematerial



218 D. Aubram et al.

volume fraction distribution f − constant in each element. If x+ ≡ x0 is the original
geometry at time t = 0, then a Eulerian method is obtained [24].

Owing to (60), the remap takes the form of an advection problem subject to the
initial condition f |t=t− = f −. Its numerical solution is done by a kind of finite
volume method [16, 70]. These methods are conservative by definition because they
solve the integral form of (60). They work on a control volume tessellation which, in
this paper, is assumed to coincidewith the underlying finite elementmesh. Therefore,
the terms “control volume” and “element” can be used interchangeably.

The element boundary∂�e is piecewise oriented andC1-continuous by definition.
It is throughout assumed that the orientation of the boundary ∂�e is compatible with
the orientation of�e such that the unit normals to ∂�e, denoted by n, point outward.
In the context of finite volume methods, the control volume resp. element boundary
is approximated by the set of edges �e,I of element �e, i.e.,

∂�e ≈
nen⋃

I=1

�e,I ≡
⋃

I

�e,I . (66)

Since overlaps and gaps of themesh are precluded, there is a unique element�adj(e,I )

adjacent to the edge �e,I . If a vertex or edge of �e is aligned with the boundary of
the computational domain, a ghost element � j is added such that the intersection
�e ∩ � j is non-zero.

Based on the previous definitions, we seek an approximate solution to the integral
form of the ALE conservation law (60) with respect to each control volume:

d

dt

∫

�e

f dv +
∑

I

∫

�e,I

f c · n da = 0, subject to f |t=t− = f −. (67)

The product f c in the second term on the left side is the convective flux of the field
f , and da is the surface area density on R2 (representing the differential arc length).
In solving the problem defined through (67), the method approximates the evolution
of the element average

fe = 1

Ve

∫

�e

f dv , with Ve =
∫

�e

1 dv > 0 and e ∈ {1, . . . , nel} , (68)

over the pseudo-time interval [t−, t+]. The averaged convective volume flux across
a moving and deforming element edge �e,I is defined by

F V
e,I = 1

Se,I

∫

�e,I

c · n da, where Se,I =
∫

�e,I

1 da > 0. (69)
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Note that volume flux is positive if material leaves the moving element through the
boundary. The measure Se,I is the surface area of the edge �e,I .

For every pair of adjacent elements (�e,�adj(e,I )), the true averaged convective
flux of the field f across the edge �e,I = �e ∩ �adj(e,I ) is replaced by a numerical
averaged convective flux

F f
e,I ≈ 1

Se,I

∫

�e,I

f c · n da. (70)

We require F f =1
e,I = F V

e,I for reasons of consistency. This is most easily achieved by
defining

F f
e,I = η�

e,I F V
e,I , (71)

where η�
e,I represents a particular volume fraction at the element edge �e,I deter-

mined by an appropriate volume of fluid algorithm.
Now, substitution of (68)–(71) into (67) yields the space-discrete problem

d

dt
( feVe) +

∑

I

η�
e,I Se,I F V

e,I = 0 (72)

for all e ∈ {1, . . . , nel} and subject to f |t=t− = f −. Discretization in time for solid
mechanical applications is commonly done byfirst-order accurate explicit integration
methods. In particular, application of the forward Euler method to (72) results in the
advection algorithm

f +
e = f −

e V −
e − ∑

I �V f
e,I

V +
e

, with V +
e = V −

e −
∑

I

�Ve,I , (73)

�Ve,I = Se,I F V
e,I �t , and �V f

e,I = η�
e,I �Ve,I . Here, V −

e is the volume of the
deformed element in the Lagrangianmesh, V +

e is the element volume in the relocated
mesh, �Ve,I is the total transported volume across the edge �e,I between �e and
the element �adj(e,I ) adjacent to �e,I , and �V f

e,I represents the material transport
volume across that edge. �Ve,I is defined positive if the nodes defining the edge are
moved further into the element’s region, that is, if the transport volume is leaving the
element.

Explicit advection algorithms, like (73), give rise to stability issues. Stability of a
numerical algorithm ensures that the local errors introduced by the approximate solu-
tion are not amplified and that the global error produced by the algorithm after several
time steps is bounded. A necessary stability condition for any transport algorithm is
the CFL condition [46]
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0 ≤ Co = ‖c �t‖
h

≤ 1. (74)

Here, h > 0 is a characteristic element length and Co is called the CFL number. The
CFL condition phrases that a material particle must not pass an element within one
step.Concerning the remap stepof theMMALEmethod, the condition (74) constrains
the difference of nodal positions before and after the remap through ‖x− − x+‖ ≤ h.

The amount of material transported across an element edge is represented by
the flux term �V f

e,I in the generic advection algorithm (73). This flux term can
be calculated without interface reconstruction once a particular advection scheme
has been assigned [95]. However, it is more common, and yet more accurate, to
incorporate the geometry of the interface and to compute the material transport
volumes as truncation volumes [27, 39, 46, 52, 88, 93, 118]. In this second approach,
the total transport volume across an element edge is the signed volume swept out
by that edge between its two configurations after the Lagrangian step and after the
remap. The material transport volume is simply the set-theoretic intersection of the
total transport volume and the material domain on the left of the interface (for a
normal pointing outward resp. to the right). However, the actual implementation is
more complicated.

The pseudocode of a suitable implementation of the volume fraction update in
the remap step using (73) is provided in Algorithm 6, and it is based on a procedure
outlined in [28]. Note that a negative total transport volume is set to zero, and a
volume subtracted from element e is added to element adj(e, I ) adjacent to edge I
to avoid double counts. Moreover, the value of the total and material volume update
is calculated only once if the total transport volume is positive. This eliminates half
of the remap operations.

6 Conclusions and Outlook

An innovative theoretical and numerical framework has been presented which
accounts for the large deformations and evolving material interfaces as well as for
the complex coupled material behavior of saturated granular material present in
geomechanical multi-material flow. In order to model the large-scale motions and
interactions of materials in such flow situations, an arbitrary Lagrangian–Eulerian
method has been developed in which multi-material elements carry the information
of the material interfaces and free surfaces (MMALE method).

The states of the individual materials in multi-material elements are derived from
a practical three-scale mixture theory and a homogeneous equilibrium model devel-
oped during this research. In contrast to common two-scale theories, the proposed
three-scale approach is able to incorporate both the evolution of bulk material inter-
faces as well as the two-phase phenomena associated with saturated granular mate-
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rial. The essential closure relations are specified with respect to the macroscale. We
have considered an example flow consisting of a bulk solid, a bulk fluid, and a fluid-
saturated granular material with compressible constituents. The mixture approach
allows for the use of phenomenological constitutivemodels describing granularmate-
rial response for the full frictional–collisional flow regime. Accordingly, the apparent
stress tensors in the dense grain–fluid mixture have been split into rate-independent
and rate-dependent parts.

Algorithm 6: Volume fraction transport algorithm for interface propagation;
based on [28].

Input: V −
e , f −

e , and adjacent elements for all elements, mesh at times t−, t+
Output: V +

e , f +
e for all elements

1 set Ve = V −
e and fe = f −

e ;
2 while element e ≤ nel do
3 compute �e = feVe;
4 while element edge I ≤ nen do
5 calculate total transport volume �Ve,I ;
6 set �V ∗

e,I = max(0,�Ve,I );
7 if �V ∗

e,I > 0 then
8 Ve ← Ve − �V ∗

e,I ;
9 Vadj(e,I ) ← Vadj(e,I ) + �V ∗

e,I ;

10 calculate material transport volume �V f
e,I ;

11 �e ← �e − �V f
e,I ;

12 �adj(e,I ) ← �adj(e,I ) + �V f
e,I ;

13 V +
e = Ve and f +

e = �e/V +
e ;

In the MMALE method, material interfaces are reconstructed ab initio and prop-
agated through the computational mesh using a volume of fluid (VOF) approach.
It has been shown that the governing equations are consistent with the developed
three-scale mixture theory and with the Lagrange–remap MMALE strategy. The
geometrical and topological functions required for the VOF method have been out-
lined and efficient algorithms have been presented. The basic features were tested
using a simple example for which an analytical solution is available. Future work
will focus on the extension to unstructured triangle meshes, the implementation into
the MMALE method, and on the solution of full-scale large deformation problems
in geomechanics and geotechnical engineering, including geotechnical installation
processes.
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Nomenclature

Operators and Special Notations

·, :,⊗ Single contraction, double contraction, tensor product
∪,∩, \ Union, intersection, and difference of sets
| · |, ‖ · ‖ Absolute value, Euclidean length
〈·〉 Spatial average
˙(·), ˙(·)αk

Material time derivative, of an αk-related field
ˆ(·) Referential, ALE description

(·)αk αk-intrinsic average
(·)[αk] Limit value at αk-boundary
�
(·) Zaremba–Jaumann rate
∇(·) Covariant derivative, gradient
∂(·) Boundary
div(·) Divergence
tr(·) Trace of a second-order tensor

Superscripts and Subscripts

−,+ Associated with Lagrangian step, remap step
adj Adjacent
dev Deviator of a second-order tensor
dr Drained
f, fG, fk Fluid phase, in granular material, in k-material
fr Frictional (rate-independent) contribution
F Bulk fluid; F ≡ fF
G Fluid-saturated granular material
G′ Related to effective stress in granular material
k k-material; k ∈ {S,F,G} = {1, . . . , M}
s, sG, sk Solid phase, in granular material, in k-material
S Bulk solid; S ≡ sS
T Transpose of a tensor
uj Unjacketed
vi Viscous (rate-dependent) contribution
vol Volume
α α-phase; α ∈ {s, f} = {1, . . . , N }
αk α-phase in k-material; αk ∈ {S,F, sG, fG}
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Latin Symbols

b, bαk, 〈b〉 Body force per unit mass
c Convective velocity
cG′
fr Fourth-order material tangent tensor

Co CFL number
d, dαk Spatial rate of deformation
da, dv Surface area density, volume density
d Line constant
D Modeling domain in the ambient space
e Element
eG Void ratio
f, f k, f αk, fe Volume fractions, of k, αk, in element
fb, fr, ft, fl Side fractions
F, F V

e,I , F f
e,I Convective flux, of Ve, fe across �e,I

hG′
Set of material state variables

H, Hk, Hαk Volume measures of H,Hk ,Hαk

H Representative volume element (RVE)
Hk,Hαk Portions of k, αk inH
I Local node, vertex, edge
I Second-order unit tensor
J Jacobian
K , K k, K αk, 〈K 〉 Bulk modulus
lmicro, lmeso, lmacro Microscale, mesoscale, macroscale
m Volume fraction gradient
M Number of materials in the mixture
Mk k-material domain in D
n, nk, nG Fluid fraction, porosity
nel, nen, nnp Number of elements, element nodes, nodal points
n, nαk Outward normals on interface
N Number of phases in the mixture
pαk, pk, 〈p〉 Pressure
pG

′
Mean effective stress

Pα α-phase domain in D
q, qk, qαk Generic spatial field
R,R2,R3 Real numbers, ambient Euclidian space
s Slope
sk, sαk, 〈s〉 Extra stress
Se,I Surface area of �e,I

t, t−, t+ Time
v, vk, vαk, 〈v〉 Spatial velocity
vI, v

m
I Interface velocity

Ve Element volume
w Mesh velocity
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x, x Point in the ambient space
x, y Spatial coordinate directions; x = [x, y]T
X Global node number

Greek Symbols

α,β Slope angle
�I , �e,I Edge, element edge
�αk Rate of momentum supply due to drag via ∂Hαk

δαk
I Dirac delta picking out the αk-interface

�Ve,I ,�V f
e,I Total transport volume, material transport volume

�t Time increment
�x,�y Element dimensions
ε̇sG Solid phase volumetric strain rate due to ṗfG

ζG Biot-Willis coefficient
η�

e,I Volume fraction at �e,I

�αk Rate of mass supply via ∂Hαk

μfF,μG′
Dynamic shear viscosity

μG′
vol Volume viscosity

παk Volume fraction of α with respect toHk

ρ, ρk, ραk, 〈ρ〉 Spatial mass density
σ,σk,σαk, 〈σ〉 (Cauchy) stress
σG′

Effective stress
χk,χα,χαk Indicator function
ω Vorticity tensor
�e Element domain, control volume
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Prediction of Construction-Induced
Deformations of Deep Excavation Walls
by the Use of a Holistic 3D-Finite-Element
Model

Andrea Thom and Achim Hettler

Abstract In the course of research group FOR 1136 GEOTECH the task of subpro-
ject 8 (TP 8, part II) is to generate a holistic three-dimensional finite-element model to
give improved predictions of construction-induced deformations of deep excavation
walls. For this purpose, the results of the other subprojects dealing with contact ele-
ments, describing material behaviour and the modelling of soil liquefaction around
a vibrating pile should be implemented. This contribution presents the framework
of the 3D-model, in which the results of the other subprojects can be adopted at a
later stage. The deep excavation at Potsdamer Platz in Berlin in the 1990s serves
as reference for the model, since unexpected deformations of the diaphragm walls
arised after pile driving. First numerical studies are presented to demonstrate the
possibilities of the model.

Keywords Finite-element modelling · Construction-induced deformations

1 Introduction

In October 1993, a broad construction process was started in the inner city of Berlin.
After the destruction in World War 2, the Potsdamer Platz became again a centre for
economy, culture and tourism. The required logistics like parking lots, delivery chan-
nels and technical facilities were realized with several floors underground. Large and
deep excavation pits with a span up to 200 m and depth up to 25 m were needed. Since
the groundwater level is only 3–4 m below surface in the inner city of Berlin, the exca-
vations were constructed as trough-type excavations with an anchored underwater
concrete bottom slab and tied-back diaphragm walls. As there was limited experience
for such oversized excavations, comprehensive measurement devices were installed
for monitoring and quality management in one of them. Figure 1 shows the ground
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Fig. 1 Ground plan of instrumented Debis excavation section (Los 4) with control points and
marked model section, cf. [11]

plan of the instrumented Debis excavation with the installation of the control points.
For more detailed information see [11].

The construction process of the pits can be divided into different phases as illus-
trated in Fig. 2. As it turned out, the installation of the so-called vibrated RI-piles
(H-section steel profiles vibrated into the ground) caused horizontal displacements
of the diaphragm wall, which were up to 4 times higher than predicted by a clas-
sical analysis carried out in advance, cf. [11]. Figure 3 shows the development of
the horizontal displacements at the control points MV1 and MV2 compared with
the cross-section of the excavation and diaphragm wall. The significant difference

Fig. 2 Staged construction process
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Fig. 3 Debis excavation at Potsdamer Platz. a Cross-section of excavation, b displacements in
cross-section MV1, c displacements in cross-section MV2, cf. [4]

between the displacements at MV1 and MV2 can not be explained by different geolo-
gies, but with the installation direction of the piles: at MV1, the piles were installed
parallel to the wall; on the contrary they were installed orthogonal to the wall at MV2.
An explanation for the unexpected horizontal displacements is soil liquefaction. The
installation of bored or vibrated piles close to retaining walls can lead to a temporary
softening of the soil caused by a temporary increase of the pore pressure, cf. [11].

This contribution reports about the development of a holistic 3D-finite-element
model for an improved prediction of construction-induced deformations. For that,
the different construction stages

• Installation of diaphragm wall
• Initial excavation
• Prestressing of anchors
• Final excavation
• Installation of vibrated RI-piles

are taken into consideration with some simplifications. The diaphragm wall is mod-
elled as ‘wished-in-place’ loaded with its own weight, since the modelling of the
detailed installation is not crucial for this investigation, see also [2, 8]. The pre-
stressing of anchors is replaced in that way that displacements are impeded in normal
direction at the relevant nodes at the diaphragm wall. The simplified modelling of
the installation of the RI-piles is described in Sect. 3.1.
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Fig. 4 Cross-section of excavation and soil profile, cf. [12]

2 Geological Situation and Structure of Excavation

Figure 4 shows the soil profile of typical Berlin sands. The soil consists of two sand
layers (Sg1 and Sg2), which are separated by a layer of boulder clay (Mg1) with a
thickness of 4.2 m.

The groundwater level in the greater area of Berlin is at approximately 3–4 m
below ground level, so that the basement has to be protected against surrounding
ground water in a long-term manner, and the excavation pits were constructed in a
trough design. Therefore, diaphragm walls with a thickness of 1.2 m were installed
with an embedment depth of 6.3 m at the foot of the wall, see Fig. 4. The walls were
tied back with a single-anchor row 1.0 m below top edge at an interval of 0.6–0.9 m
with an initial prestressing of 1 MN. The underwater concrete slab was made of
steel fibre concrete with a thickness of 1.2 m; for buoyancy protection, the slab was
anchored by vibrated RI-piles based on a 3× 3 m grid. The excavation depth at the
investigated cross-section is 18.2 m.

3 Numerical Model and Simulation

The 3D-model is created with the finite-element-programm ABAQUS. Figure 1
shows the relevant section of the diaphragm wall including the monitoring posi-
tions. In order to keep the model in a manageable scope, only a part of the section
is modelled. This is reasonable, since the modelling of the total length of 194 m
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Fig. 5 Cross-section of static system of 3D-FE model in the x–z-plane

would not reveal further influences in the longitudinal direction. Figure 5 displays
the cross-section of the chosen model section. In accordance to the recommenda-
tions of the DGGT (Deutsche Gesellschaft für Geotechnik), cf. [9], the dimension
of the model was chosen with 100× 75× 47 m (width× depth× length) in order to
minimize the influences of the boundary conditions on the field quantities. Except
for the positive x–y-plane, the whole model is fixed in perpendicular direction at the
exterior surfaces.

After generating the undeformed geostatic state (geostatic step) and activating the
diaphragm wall with its weight, the soil elements are deactivated stepwise. The first
step comprises the elements to the anchor row 3 m below ground level; after that, all
elements until the bottom slab are deactivated. Between these two steps, the anchor
row is activated and modelled with fixed degrees of freedom in normal direction of
the diaphragm wall. Since the soil is unilaterally relieved through the excavation,
different vertical movements in the range of the diaphragm wall are expected. For
that, a contact surface is defined, which allows independent displacements to both
sides of the soil, see Fig. 6. The normal and tangential forces are transmitted using the
friction law by Mohr-Coulomb. The horizontal x–y-plane between soil and excavation
is fixed via the multiple-constraint condition, so that no relative movement can occur.

In order to check the model performance, we start with a hypoplastic material
law for the description of the soil behaviour according to von Wolffersdorff [13],
whereby the extension of intergranular strain according to Niemunis and Herle [7]
is used. Thereafter the new developed material routines like Neo-Hypoplasticity or
ISA will be adopted. The material parameters for Berlin sand are taken from Mayer
[6]. The diaphragm wall is modelled using a linear-elastic material law. The soil
layers are modelled with 3D continuum elements (C3D8R), whereas the diaphragm
wall is modelled with shell elements (S4R). Figure 7 shows the calculated horizontal
displacements after the final excavation step (Fig. 3, stage 2). One can see, that the
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Fig. 6 Overview of the 3D-FE model and chosen contact surfaces
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Fig. 7 Horizontal displacements u1 (positive x-direction) after final excavation step

diaphragm wall already deflected with horizontal displacements of approximately
2.4 cm, which is about 1.0 cm more than the measured ones, but the course of deflec-
tion is in good agreement. The overestimation of the displacements can be explained
by the fact that the prestressing of anchors is replaced by the simplified modelling
with fixed nodal displacements (activated after the initial excavation step), whereby
the nodes at the geometric location of the anchors already shifted with about 1.0 cm
during the initial excavation step. This configuration serves as the initial state for the
next step, the installation of the RI-piles, for which also some simplifying assump-
tions have to be made as described in the following.
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3.1 RI-Piles ‘Wished-in-Place’ with Dynamic Loading

Approaching the realistic procedure of vibrating RI-piles by performing a dynamic
simulation is one variant for the holistic 3D-Model. Grabe et al. performed two-
and three-dimensional simulations of vibrating a single RI-pile, also dealing with
conditions as at Potsdamer Platz, see [1, 3]. For the requirements of TP 8 in FOR
1136 this methodical approach is not expedient, since the detailed meshing and
detailed pile driving is not manageable with the large 3D-model. Dimensions of
1 mm to 30 cm of the pile-mesh would not match with element dimensions of the
overall model with edge lengths up to 1–5 m.

Hence, the RI-piles are modelled ‘wished-in-place’ with a dynamic loading rep-
resenting the vibration frequency in undrained conditions. For that, a vertical row of
nodes at the geometric location of the pile (Fig. 9) is loaded with a speed-controlled
amplitude, which is equivalent to a path-controlled amplitude of 2 mm in vertical z-
direction, see Fig. 8, left. Applying a speed-controlled amplitude was necessary, since
an amplitude of 2 mm should be applied on the pre-deformed soil of about 4 mm.
The sinusoidal vibration frequency is equal to the realistic vibration frequency of
f = 34 Hz. The pile driving was simulated for 0.25 s with a fixed increment size of
0.0005 s. This led to a calculation time on a i7-2600 processor (3.4 GHz, 16 GB RAM)
of 15 h. Figure 8 (right) also displays the additional horizontal displacements of the
diaphragm wall calculated during the dynamic step evaluated at node P1, marked in
Fig. 9. It can be said that the model shows a good tendency to approach the addi-
tional displacements caused by the dynamic loading of the RI-piles, even though the
simulation time of 0.25 s is not even approaching the realistic pile driving time of
20–30 min.

Considering the calculation time, the dynamic simulation of the RI-piles is not
expedient, since a whole group of piles should be simulated for studies of the pile
driving parallel or orthogonal to the wall and its effects on the pore pressure. Hence,
an alternative for the simulation of the piles is considered, see Sect. 4.
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Fig. 8 Left Dynamic loading versus simulation time (amplitude = 2 mm, f = 34 Hz). Right Relative
horizontal displacements �ux at node P1 of diaphragm wall caused by pile driving versus simulation
time
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Fig. 9 Overview of model
with evaluation point P1 and
location of nodes for
dynamic loading

4 Discussion and Outlook

Since the vibrating of the RI-piles caused the largest part of the horizontal displace-
ments at the diaphragm walls at Berlin, Potsdamer Platz, a focus is laid on modelling
this construction step. Applying a path-controlled amplitude as a dynamic loading
on a nodal row is a promising approach which led to suitable first results. But in con-
sideration of the fact, that comprehensive numerical studies of pile groups should be
performed, the calculation time is a problem, so that an alternative is required.

As described in Sect. 1 a temporary softening of the soil caused by a temporary
increase of the pore pressure is expected to be the reason for the additional horizontal
displacements during the pile driving. Thus, as a possible approach, the modelling
of the piles can be simplified by taking the soil liquefaction around the vibrating
pile as a boundary condition for the pore pressure in a quasi-static analysis. The pile
itself is not modelled anymore. With this, the long calculation time of the dynamic
step can be avoided, but still the assumed reason for the additional displacements is
investigated. This approach is currently being pursued and first investigations look
promising.

Once the final step of simulating the pile driving in an appropriate manner is
accomplished, the model should be enhanced by using contact elements provided by
the research group as well as an improved hypoplastic material law. The model then
should be investigated and evaluated under drained and undrained conditions.



Prediction of Construction-Induced Deformations of Deep … 239

References

1. Grabe, J., Henke, S., Schürmann, B.: Numerische Simulation von Rammarbeiten im Erdwider-
standsbereich von Baugrubenwänden. Bautechnik 84(8), 519–524 (2007)

2. Grandas Tavera, C.-E.: A study on failure modes of corner slurry trenches using anisotropic
visco-hypoplasticity. Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik
der Universität Karlsruhe, Heft 178 (2013)

3. Henke, S., Grabe, J.: Simulation der Pfahleinbringung mittels dreidimensionaler Finite-
Elemente-Analysen. Vorträge zum 14. Darmstädter Geotechnik-Kolloquium. Mitteilungen des
Instituts und der Versuchsanstalt für Geotechnik der Technischen Universität Darmstadt, H.
76, 155–166 (2007)

4. Hettler, A., Triantafyllidis, Th.: Deformations of deep excavation walls induced by construction
processes. In: Proceedings of 17th International Conference on Soil Mechanics and Geotechni-
cal Engineering (ICSMGE), pp. 2457–2460. Millpress, IOS Press, Amsterdam, vol. III (2009)

5. Hettler, A., Borchert, K.-M.: Herstellbedingte Verformungen bei tiefen Baugruben. In: Bau-
grundtagung München, pp. 35–42. Deutsche Gesellschaft für Geotechnik (Hrsg.) (2010)

6. Mayer, P.-M.: Verformungen und Spannungsänderungen im Boden durch Schlitzwandher-
stellung und Baugrubenaushub. Veröffentlichungen des Instituts für Bodenmechanik und
Felsmechanik der Universität Karlsruhe, Heft 151 (2001)

7. Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range.
Mech. Cohesive-Frictional Mater. 2, 279–299 (1997)

8. Schäfer, R.: Einfluss der Herstellungsmethode auf das Verformungsverhalten von Schlitzwän-
den in weichen bindigen Böden. Schriftenreihe des Instituts für Grundbau und Bodenmechanik
der Ruhr-Universität Bochum, Heft 36 (2004)

9. Schanz, T.: Standsicherheitsberechnungen von Baugruben - Berechnungsbeispiele. Geotechnik
29(4), 359–369 (2006)

10. Schran, U.: Untersuchung zu Verschiebungen von Schlitzwänden beim Unterwasseraushub in
Berliner Sanden. Veröffentlichungen des Grundbauinstituts der TU Berlin, Heft 23 (2003)

11. Triantafyllidis, Th.: Neue Erkenntnisse aus Messungen an tiefen Baugruben am Potsdamer
Platz in Berlin. Bautechnik 75(3), 133–154 (1998)

12. Triantafyllidis, Th.: Ein einfaches Modell zur Abschätzung von Setzungen bei der Herstellung
von Rüttelinjektionspfählen. Bautechnik 77(3), 161–168 (2000)

13. von Wolffersdorff, P.-A.: A hypoplastic relation for granular materials with a predefined limit
state surface. Mech. Cohesive-Frictional Mater. 1, 251–271 (1996)



Mesoscale Modeling and Properties
of Clay Aggregates

Andrew J. Whittle, Davoud Ebrahimi and Roland J.-M. Pellenq

Abstract The clay phase of many natural soils comprises a micro-structure of clay
aggregates. These can be formed during sedimentation, due to van der Waals attrac-
tion between negatively charged particle surfaces in saltwater environments, or can
occur in partially saturated soils where colloidal iron acts as a cementing agent.
In order to understand the formation of clay aggregates and their role in affecting
properties at the macroscale/continuum level, we have carried out multiscale analy-
ses, initially considering the formation and properties of the aggregates. Nanoscale
numerical simulations consider interactions between two clay platelets. The analyses
focus on Wyoming montmorillonite (Na-smectite) and use the CLAYFF force field
to describe pairwise interactions between ions within the clay and surrounding bulk
water (i.e., Coulombic and van der Waals forces). The analyses establish the potential
of mean force at different spacings between the layers for edge-to-edge and face-to-
face interactions. The results are then used to calibrate the Gay-Berne (GB) potential
that represents each platelet as a single-site ellipsoidal body. It is then possible to
simulate the process of aggregation for an assembly of clay platelets in mesoscale
simulations. These simulations find that aggregates of Na-smectite typically form in
face-to-face stacks with 3–8 platelets. The particle assemblies become more ordered
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and exhibit more pronounced elastic anisotropy at higher confining pressures. The
computed elastic stiffness properties are in good agreement with previously measured
nanoindentation moduli over a wide range of clay-packing densities.

Keywords Multiscale analysis · Mesoscale modeling · Potential of mean force ·
Clay aggregates · Elastic stiffness

1 Introduction

It is well established that clays and sands both behave as particulate materials, and
that their macroscopic (continuum) engineering properties derive from the ‘micro-
scale’ particle interactions. For coarse-grained granular soils (i.e., sand and gravel
size fractions with particle length scales O(mm)), major advances in understanding
mechanical behavior have been achieved through grain-scale discrete analysis meth-
ods (notably the Discrete Element Method; DEM [5]). These methods are able to
represent the evolution of particle contacts for complex particle shapes and distri-
butions and assume relatively simple constitutive laws at particle contacts (elastic
Hertzian contact and Coulomb friction), while more complex models of comminu-
tion have also been introduced to represent particle crushing [17]). While particle
analyses provide direct insights into the behavior of granular systems, they become
prohibitively expensive (computationally) when representing the massive numbers of
particles often needed for practical engineering problems (length scales O(m-km)).
This has led to extensive recent research on a variety of multiscale methods for bridg-
ing between the micro- and macroscale systems including hierarchical methods that
use information from small scale within larger scale (FEM) models (e.g., coupling
between DEM and finite element methods (FEM) (e.g., [19]) to concurrent methods
where models at different scales are run concurrently (e.g., [2]).

In comparison to the work on granular soils, there has been much less progress in
understanding the behavior of clays as particulate materials. This is due in large part,
to the complex surface properties of clay minerals and resulting surface/interfacial
forces (e.g., surface charges, interactions with water and dissolved ions to form elec-
trical double layers). It is well known that the fine-grained cohesive soils exhibit
multimodal particle size distributions when formed through sedimentation in marine
or coastal environments. For example, [15] report that volume fractions of particles in
a coastal sediment (measured by in situ laser scattering), Fig. 1a, can be characterized
by four levels of PSDs (described by log-normal distribution functions) ranging from
primary particles (0.2–2.5 μm) to microflocs or ‘floccules’ (10–20 μm), macrofloc
(20–200 μm), and megaflocs (>200 μm). Lee et al. [15] note that the primary parti-
cles include clays, organic matter, plankton, and bacteria, while the flocculi consist of
strongly bound clay minerals. Figure 1b shows the representative microstructure of
weathered Old Alluvium (tropical residual soil) reported by [26, 27] using a combina-
tion of environmental scanning electron microscopy, selective chemical dissolution
and particle size analyses, and Cation Exchange Capacity. Although the geological
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Fig. 1 Multimodal characteristics of fine-grained cohesive soils. a Multimodel PSD of coastal
sediment (reproduced with permission from [15]. Copyright 2012 by the American Geophysical
Union). b ESEM observations of weathered Old Alluvium. c Representative microstructure of
weathered Old Alluvium (b and c reproduced with permission from [27]. Copyright 2004 by Thomas
Telford Ltd.)

origins of the Old Alluvium differ markedly from the coastal zone, the basic building
block consists of aggregates of clay platelets (10–20 μm) that are cemented by iron
oxides and clustered to form a higher level of macroaggregates (50–100 μm). Both
sets of observations suggest that the essential building blocks or essential primary
structural units are the flocculi or aggregates of clay platelets that are strongly bound
together.

Bottom-up modeling of clay behavior usually proceeds by considering the interac-
tion between individual clay layers. All clay minerals are phyllo-silicates comprising
two-dimensional sheets of silicon tetrahedra and aluminum octahedra as basic molec-
ular units. The current work focuses on Na montmorillonite, a member of the smectite
group that comprises two tetrahedral silicate sheets each with unshared oxygen, O,
atoms around a central octahedral hydroxide sheet which has two planes of unshared
O atoms and additional hydroxyl groups, OH, to form the base lamellae. Due to
isomorphous substitutions of metal ions within the clay sheets, each lamella has a
net negative charge that is compensated by positive exchangeable interlayer cations.
Adsorption of water molecules by this system is accompanied by a large increase in
the basal layer spacing.

Interactions between individual clay lamellae have often been considered using
classical DLVO theory [8, 25] based on electrostatic mean field approximations for
charged flat-plate geometries and van der Waals forces. This approach fails to explain
the short-range repulsion associated with structured layers of water attracted to the
surface of the clay [13, 20] and hence, is not able to simulate the process of clay
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aggregation. In contrast, molecular dynamics (MD) is a highly versatile computa-
tional method that can be used to understand the interactions between clay particles
without any of these limitations. Here, we use MD simulations with CLAYFF force
fields [6] to represent the interactions between two layers of Wyoming montmoril-
lonite (Na-smectite) in bulk water. The analyses are used to establish the potential
of mean force (i.e., free energy) as a function of the distance between the centers of
two particles for edge-to-edge and face-to-face interactions.

In order to represent clay aggregates with mesopores and grain boundaries, the
model must be scaled to micron length scale. This exceeds the computational pos-
sibilities of full atomistic models and motivates a multiscale approach. Previous
attempts to study clay aggregates were based on using quadrupoles [9] or pseudo-
charge sites to represent individual clay platelets (e.g., [14]). The current research
uses the interactions between nanoscale clay platelets to calibrate the Gay-Berne
potential function [12] that represents each platelet as a single-site ellipsoidal body.
A coarse-graining upscaling approach then uses the GB potentials and molecular
dynamics to represent the mesoscale aggregation of clay platelets. This paper illus-
trates geometric properties of the resulting aggregates and evaluates their elastic
stiffness properties.

2 Nanoscale Modeling of Interactions Between
Two Clay Platelets

The current research focuses on Wyoming Na montmorillonite, a 2:1 smectite with
isomorphous substitutions in both tetrahedral and octahedral sheets resulting in a
chemical composition: Na0.75nH2O[Si7.75Al0.25][Al3.5Mg0.5]O20(OH)4. The crys-
tallography of the mineral has been reported from ab initio calculations by [22]. The
mineral has a cation exchange capacity, CEC = 102 meq/100 g. Our analyses assume
random locations of the isomorphous substituted ions within each clay sheet (con-
strained by Lowenstein’s rule for the distribution of defects), while the net negative
charge of the clay is balanced by Na+ ions in liquid water. The CLAYFF force field
[6] is used to represent bonded interactions within the clay (stretching and angle
bending) and non-bonded interactions including long-range electrostatic (Coulom-
bic) and short-range (van der Waals—represented by the Lennard-Jones potential)
forces through pairwise interactions, while water molecules are represented by the
Simple Point Charge model [23]. Full atomistic MD simulations were carried out
using the GROMACS program [24] with 1 fs time steps and using in-built thermo-
stat (Nose–Hoover) and barostats (Parrinello–Rahman) to control temperature and
pressure, respectively. Our methodology considers the free energy along a reaction
coordinate, ri , corresponding to the spacing between two clay platelets in either a
face–face or an edge–edge configuration, Fig. 2.
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Fig. 2 Part of the typical simulation setup for studying interactions between two clay platelets in a
edge-to-edge and b face-to-face configurations (reproduced with permission from [10]. Copyright
2014, AIP Publishing LLC.)

In order to calculate the change in free energy of the system from state A, when
clay platelets are far from each other, to state B, when they are in close proximity, we
define several intermediate states covering the change from A to B in small increments
to enhance sampling of the phase space. Using distance-splitting strategy, successive
states are separated by low-energy barriers such that the phase space is fully explored
enabling statistical averaging of the states. We construct series of MD trajectories,
each one representing one value of center to center distance. The trajectory of the MD
simulation at one state is perturbed along the reaction coordinate to the target state,
while all other degrees of freedom are frozen. Free energy differences between two
successive reference and target thermodynamic states are then calculated and added
along the transformation path from state A to state B. Following [28], the Gibbs free
energy difference between a reference state, ri and the updated target state, ri−1, can
be calculated using free energy perturbation theory:

�G (ri → ri±1) = G (ri±1) − G (ri ) = −1

β
ln 〈exp (−β�U)〉i (1)

where �U is the change of potential energy of the system, β = 1/(kB T ), T is the
temperature, and kB is Boltzmann’s constant; the 〈·〉 brackets indicate a canonical
ensemble average over the trajectory and subscript i indicates that the average is taken
in the reference state. We calculated 172 free energy differences between successive
states. In order to eliminate systematic sampling bias due to exponential averaging,
we used simple overlap sampling of the forward and reverse perturbation [16].

Figure 3a summarizes the free energy for face–face interactions between two
identical clay platelets computed at intervals, �ri = 0.25 Å. The same total number
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Fig. 3 Potential of mean force for interactions between two identical clay platelets. a Face–face
configuration. b Edge–edge configuration (reproduced with permission from [10]. Copyright 2014,
AIP Publishing LLC.)

of water molecules (3914 and Na+ ions) are included in each of the 38 simulations
in the canonical (NVT) ensemble (at T = 300 K). The total potential of mean force
at each separation distance was calculated by sequentially summing up all the free
energy changes from the largest separation to the state of interest (r = ri ) assuming
zero value for the free energy of the system at the largest separation (r = 18.47 Å).
The results show convergence of the free energy after 3 ns. The results show two
local energy minima in free energy at r ≈ 11 and 14 Å (i.e., the periodicity between
minima is comparable to the diameter of a water molecule). Repulsion dominates for
separations less than 11 Å indicating that it is not favorable to remove further water
molecules from between the two clay platelets (at this state, there are 18 molecules
between the two platelets).

Figure 3b shows similar results obtained from the analyses of edge–edge inter-
actions between two clay platelets. In this case, there is one distinct minimum free
energy at r = 45.5 Å (the average length of the clay platelet is 40 Å, Fig. 2a).

3 Calibration of GB Potential

The generalized interactions between two clay platelets in water (Fig. 4a) can be
approximated as an equivalent single-site potential function, the Gay-Berne (GB)
potential [12] that approximates the geometry of each platelet by an ellipsoidal
(oblate) body, Fig. 4b. The GB potential is an anisotropic form of the Lennard-Jones
potential with potential energy defined by

U = 4ε

{(
σ

h12 + σ

)12

−
(

σ

h12 + σ

)6
}

η12χ12 (2)
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Fig. 4 Approximation of
generalized interactions
between two clay platelets
by single-site potential
functions for an ellipsoidal
body

(a) (b)

where ε = 1 determines the energy scale, σ is the atomic interaction radius, and h12 is a
function that approximates the anisotropic interparticle distance (i.e., h12 = r −σ12).
The GB potential can be defined from four characteristic input parameters (Fig. 5a):

1. Energy well depth, P1 = −εη12χ12;
2. Separation distance, P2 = σ12 + 0.1225σ ;
3. Soft contact distance, P3 = σ12;
4. Characteristic well depth, P4 = 0.3508σ .

Optimized values of these parameters were obtained through fitting to the face–
face (FF) and edge–edge (EE) free energy profiles presented previously. This was
accomplished by first normalizing the free energy (per surface area for FF and per
unit length of EE) and then minimizing a cost function as described by [10]. Figure 5b
illustrates the resulting match between the calibrated GB potential and the free energy
from the FF and EE atomistic models for the case of clay particles with length,
l = 500 Å. In this example, the FF interactions are matched to the first energy well (r

Fig. 5 Free energy for interaction of two ellipsoidal clay particles using GB potential. a Input
parameters for GB potential. b Calibration of parameters for particles with length, l = 500 Å



248 A.J. Whittle et al.

= 11 Å, Fig. 3a). Ebrahimi et al. [10] have shown that this choice of calibration has
only a small effect on subsequent simulation of clay aggregate geometry and elastic
properties.

4 Mesoscale Modeling

Using the calibrated GB potential, it is now possible to simulate interactions between
large numbers of clay platelets (this corresponds to upscaling using a coarse-graining
approach). To date, we have focused on monodisperse assemblies of 1000 platelets (of
varying sizes, l = 100–1000 Å) that are initially randomly distributed and are allowed
to equilibrate (i.e., reach a ‘jammed configuration’) under isothermal–isobaric con-
ditions (NPT ensemble) at selected pressures (p = 1–800 atm) at T = 300 K. The
analyses were conducted using the MD program LAMMPS [21] and typically require
up to 1000 ns to reach the jammed state. Figure 6 shows three snapshots for one typ-
ical simulation (l = 1000 Å, p = 1 atm) obtained using QMGA molecular graphics
software [11]. These results are color coded according to particle orientation, φ (rela-
tive to the z-axis), and clearly show a progression toward a smaller range of preferred
orientations and aggregation of platelets.

Following [4] two criteria are used to determine if two clay platelets can be
considered part of the same aggregate (i.e., are stacked upon each other). The first
requires that the interlayer distance is less than a threshold value, ru = 13.75 Å
(i.e., 1.25P2, where P2 is the soft contact distance defined in Fig. 5a), while the
second requires the dot product of the normal vectors n1 × n2 > 0.95. Using these
definitions, we then derive distributions of aggregate stacks sizes for sets of 10
mesoscale simulations. Figure 7b shows typical results for monodisperse assemblies
with l = 500 Å (at p = 1 atm) in which the stack size can be characterized by a
log-normal distribution function with average stack size, N = 3.33.

Ebrahimi et al. [10] introduce a scalar order parameter, S, to characterize the
orientation of the clay platelets:

S =
〈

3 cos2 θ − 1

2

〉
(3)

where θ is angle between the normal vector of a platelet and the director of the
system (i.e., a measure of the average orientation of all particles in the system). For a
completely isotropic and randomly oriented system S = 0, while perfectly aligned
systems have S = 1.

Figure 8 summarizes the order parameter and mean aggregate stack size, N, from
mesoscale simulations of monodisperse systems with a range of particle sizes and
pressures. These results show that aggregates of Na montmorillonite typically form
stacks with 3–8 clay platelets in face–face configurations. This result is in good agree-
ment with X-ray diffraction experiments for Na-smectites (e.g., [18]) who report
N = 3–10. Increasing the confining pressure has a significant effect on ordering of
the system. For l = 1000 Å, S increases from 0.23 at 1 atm to a maximum value of
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Fig. 6 Mesoscale simulation of clay aggregation for monodisperse assembly of 1000 clay platelets
with l = 1000 Å at p = 1 atm. The results show snapshots of the assembly at selected times a 40 ns,
b 200 ns, and c 1200 ns (reproduced with permission from [10]. Copyright 2014, AIP Publishing
LLC.)

(a) (b)

Fig. 7 Aggregation of clay particles from mesoscale simulations. a Definition of aggregate stack. b
Histogram of stack sizes for l = 500 Å, p = 1 atm (reproduced with permission from [10]. Copyright
2014, AIP Publishing LLC.)

0.64 at 50 atm and remains approximately constant at higher pressures. The maxi-
mum stack size also occurs at around p = 50 atm.



250 A.J. Whittle et al.

Fig. 8 Summary of geometric parameters from mesoscale simulations on monodisperse clay aggre-
gates

5 Elastic Stiffness Properties

The stress–strain properties of the particle assemblies have been studied using a
quasi-static method (after [1]) involving (1) application of a small homogeneous
strain to the system; and (2) relaxing the strain step over a time period using an NVT
ensemble (at T = 0.01 K). Components of the internal stress tensor are determined
by averaging over the last 10 % of the relaxation time period for each of the six
independent strain modes as follows:

σi j = 1

V

∑

α

⎛

⎝mαvα
i vα

j +
∑

β

f αβ
i r αβ

j

⎞

⎠ (4)

where mα and vα are the mass and velocity of platelet α, f αβ
i is the force acting on

platelet α by platelet β acting in the i-direction, and r αβ
j is the Cartesian component

of the vector from platelet β on platelet α in the j-direction.
Elastic constants were obtained from a linear fit over the initial part of the stress–

strain curve representing values from ε = 0–0.01 % for 500 Å platelets and ε =
0–0.03 % for 1000 Å platelets. Ebrahimi et al. [10] show that the full elasticity tensor
can be well approximated for all particle assemblies by considering cubic symmetry
with three independent coefficients, C11, C12, and C44 (using standard Voigt nota-
tion). Table 1 summarizes the resulting cubic averaged properties from the mesoscale
particle assemblies. By increasing size of the platelets, the normal stiffness, C11,
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Table 1 Cubic averaged elastic stiffness properties (GPa) for mesoscale particle assemblies with
different platelet sizes and confining pressures

D (Å) 500 1000 1000 1000 1000 1000

P (atm) 1 1 10 50 300 800

C11 0.51 0.98 4.07 6.42 14.17 29.16

C12 0.13 0.14 0.53 1.24 4.12 8.80

C44 0.10 0.08 0.44 0.66 1.94 4.68

increases (from 0.51 to 0.98 GPa) but the shear stiffness (C44) and the stiffness
component related to the Poisson’s effect (C12) show negligible change. All elastic
constants increase with increasing confining pressure as expected.

In order to validate mechanical properties, we calculated indentation modulus
from the elastic constants (Cij) using the derivation by [7] for an orthotropic solid and
compared the mesoscale model predictions with experimental indentation moduli on
shale and clay samples reported by [3]. The mean indentation modulus shows good
agreement with measured values and follows the same trend with packing density as
shown in Fig. 9.

Fig. 9 Comparison of computed indentation modulus from mesoscale particle assemblies with
experimental nanoindentation data for clays and shales (from [3]). Subscripts 1 and 3 indicate
indentation parallel and normal to the bedding plane (reproduced with permission from [10]. Copy-
right 2014, AIP Publishing LLC.)



252 A.J. Whittle et al.

6 Conclusions

This paper has described a new methodology to study aggregation of clay parti-
cles at the mesoscale based on the atomistic interaction between two clay platelets
in an aqueous environment. Full atomistic simulation of the clay (Na-Wyoming
montmorillonite)—water system for edge-to-edge and face-to-face interaction of
clay platelets was used to calculate changes in free energy as a function of the sep-
aration distance using perturbation theory. At the mesoscale, clay platelets were
approximated by ellipsoidal particles and their interactions for different orientations
were defined using the Gay-Berne potential calibrated to results of atomistic simu-
lations for edge-to-edge and face-to-face configurations.

Results of the simulations show an increase in the average aggregate size by
increasing platelet diameter. An increase in the confining pressure creates a more
ordered system and average aggregate size increases until reaching to a maximum
ordered state. Further increase of pressure results in decrease in average aggregate
size since orientation of platelets remains constant and they start to slide against each
other. The computed mean stack size (3–8) for Na-smectite is in good agreement with
published experimental data. The mesoscale model is also able to match quite closely
the measured elastic indentation modulus for shale and clay specimens over a wide
range of packing density.

The current analyses are limited to a single species of smectite (Na-Wyoming
montmorillonite) with cation exchange capacity, CEC = 102 meq/100 g and monodis-
perse assemblies of platelets. The method can be used to study the effect of amount
and type of isomorphous substitution on the microstructure and mechanical proper-
ties of clay aggregates. The heterogeneity of the platelet sizes at the mesoscale can
change the distribution of aggregate sizes. The research can be extended to study
effects of polydisperse assemblies of clay platelets.
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