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1 Introduction

The theory of infinitely divisible distributions has been a core topic of probability
theory and the subject of extensive study over the years. One reason for that is
the fact that many important distributions are infinitely divisible, such as Gaussian,
stable, exponential, Poisson, compound Poisson and gamma distributions. Another
reason is that the set of infinitely divisible distributions on R

d coincides with
the set of distributions which are limits of distributions of sums

Pkn
jD1 �n;j of Rd-

valued triangle arrays f�n;j; 1 � j � kn; n � 1g; kn " 1 as n ! 1, where
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for each n, �n;1; �n;2; : : : are independent, with the condition of infinite smallness
that is limn!1 max1�j�kn P.j�n;jj � "/ D 0 for any " > 0. Suppose that �n;k D
a�1

n .�j � bj/, for an > 0 with limn!1 an D 1, limn!1 anC1a�1
n D 1, bj 2 R

d

and kn D n. If f�jg are independent, then the resulting class is the class of self-
decomposable distributions, and if furthermore f�jg are identically distributed, then
the resulting class is the class of stable distributions including Gaussians, These two
classes are important classes of infinitely divisible distributions. Selfdecomposable
distributions are known as marginal distributions of the stationary processes of
Ornstein-Uhlenbeck type, which are stationary solutions of the Langevin equations
with Lévy noise.

In 1977, Thorin [85, 86] introduced a class between the classes of stable
and selfdecomposable distributions, called now the Thorin class, whose elements
are called Generalized Gamma Convolutions (GGCs for short), when he wanted
to prove the infinite divisibility of the Pareto and the log-normal distributions.
Bondesson [16] published a monograph on this topic in 1992.

In 1983, Jurek and Vervaat [38] and Sato and Yamazato [79] showed that any
selfdecomposable distribution Q� can be characterized by stochastic integrals with
respect to some Lévy process fXtg with EŒlog jX1j� < 1 such as

Q� D L

�Z 1

0

e�tdXt

�

; (1)

where L .X/ is the law of a random variable of X. (The paper by Jurek [36] is a
short historical survey on stochastic integral representations of classes of infinitely
divisible distributions.) Since a Lévy process fXtg can be constructed one to one
in law by some infinitely divisible distribution � satisfying L .X1/ D �, (1) can
be regarded as a mapping ˚ , say, from the class of infinitely divisible distributions
with finite log-moments to the class of selfdecomposable distributions as

Q� D ˚.�/: (2)

If we denote by fX.�/t g a Lévy process such that L .X.�/1 / D �, (1) and (2) gives us

Q� D ˚.�/ D L

�Z 1

0

e�tdX.�/t

�

:

Barndorff-Nielsen and Thorbjørnsen [7–10] introduced a mapping

� .�/ D L

�Z 1

0

log.t�1/dX.�/t

�

related to the Bercovici-Pata bijection between free probability and classical
probability. Then in Barndorff-Nielsen et al. [12], we investigated the range of the
mapping � and characterized several classes of infinitely divisible distributions in
terms of the mappings ˚ and � . Among others, we found that the composition of
these two mappings produces the Thorin class. Since then, many mappings have
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been studied as mappings constructing classes of infinitely divisible distributions
giving new probabilistic explanations of such classes and also as mappings them-
selves from a mathematical point of view.

Let us recall one sentence by Bondesson [16]. “Since a lot of the standard
distributions now are known to be infinitely divisible, the class of infinitely divisible
distributions has perhaps partly lost its interest. Smaller classes should be more
in focus.” In this article, we survey such “smaller classes” and try to find classes
which known infinitely divisible distributions belong to, as precisely as possible.
All infinitely divisible distributions we treat here are finite dimensional and most of
the examples are one-dimensional.

In Sect. 2, we give some preliminaries on infinitely divisible distributions on R
d,

Lévy processes and stochastic integrals with respect to Lévy processes.
In Sect. 3, we explain some known classes of infinitely divisible distributions and

their relationships, and the characterization in terms of stochastic integral mappings
is discussed in Sect. 4. Section 5 is devoted to some other mappings. These three
sections form the first main subject of this article. Also, compositions of mappings
are discussed in Sect. 6.

Since we have mappings to construct classes in hand, we can construct nested
subclasses by the iteration of those mappings. This is the topic in Sect. 7. For
the class of selfdecomposable distributions, these nested subclasses were already
studied by Urbanik [90] and later by Sato [70].

Once we have a general theory for infinitely divisible distributions, it is necessary
to provide specific examples. We know that many distributions are infinitely
divisible. Then, the next question related to the above may be which classes such
known infinitely distributions belong to. This is the second main subject of this
article and is discussed in Sects. 8–10. Section 8 treats known distributions. After
the monograph by Bondesson [16] and later a paper by James et al. [28], GGCs have
been highlighted, and thus examples of GGCs recently appearing in quite different
problems are explained separately in Sect. 9. Section 10 discusses new examples of
˛-selfdecomposable distributions.

We conclude the article with a short Sect. 11 on fixed points of the mapping for
˛-selfdecomposable distributions, offering a new perspective on the class of stable
distributions.

Since this is a survey article, only a few statements have explicit proofs. However,
even if the statements do not have proofs, readers may consult original proofs in the
papers cited.

2 Preliminaries

2.1 Infinitely Divisible Distributions on R
d

In the following, P.Rd/ is the set of all probability distributions on R
d and O�.z/ WDR

Rd eihz;xi�.dx/; z 2 R
d, is the characteristic function of � 2 P.Rd/.
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Definition 2.1 � 2 P.Rd/ is infinitely divisible if, for any n 2 N, there exists
�n 2 P.Rd/ such that O�.z/ D O�n.z/n. ID.Rd/ denotes the class of all infinitely
divisible distributions on R

d.

We also use

IDsym.R
d/ WD f� 2 ID.Rd/ W � is symmetric on R

dg;

IDlog.R
d/ WD f� 2 ID.Rd/ W

Z

Rd
logC jxj�.dx/ < 1g

and

IDlogm.Rd/ WD f� 2 ID.Rd/ W
Z

Rd
.logC jxj/m�.dx/ < 1g; m D 1; 2; : : : ;

where logC a D maxflog a; 0g.
The so-called Lévy-Khintchine representation of infinitely divisible distribution

is provided in the following proposition.

Proposition 2.2 (The Lévy-Khintchine Representation; See e.g. Sato [73, Theo-
rem 8.1])

(1) If � 2 ID.Rd/, then

O�.z/ D exp

�

�2�1hz;Azi C ih�; zi C
Z

Rd

�

eihz;xi � 1 � ihz; xi
1C jxj2

�

�.dx/

�

; z 2 R
d;

(3)

where A is a symmetric nonnegative-definite d � d matrix, � is a measure on R
d

satisfying

�.f0g/ D 0 and
Z

Rd
.jxj2 ^ 1/�.dx/ < 1; (4)

and � is a vector in R
d.

(2) The representation of O� in .1/ by A; � and � is unique.
(3) Conversely, if A is a symmetric nonnegative-definite d�d matrix, � is a measure

satisfying (4) and � 2 R
d, then there exists a � 2 ID.Rd/ whose characteristic

function is given by (3).

A is called the Gaussian covariance matrix or the Gaussian part and � is called the
Lévy measure. The triplet .A; �; �/ is called the Lévy-Khintchine triplet of �. When
we want to emphasize the Lévy-Khintchine triplet, we may write � D �.A;�;�/. If
the Lévy measure � of � satisfies

R
jxj>1 jxj�.dx/ < 1, then there exists the mean

�1 2 R
d of � such that

O�.z/ D exp

�

�2�1hz;Azi C ih�1; zi C
Z

Rd

�
eihz;xi � 1 � ihz; xi

�
�.dx/

�

:
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In this case, we will write � D �.A;�;�1/1 . If � of � satisfies
R

jxj�1 jxj�.dx/ < 1,

then there exists �0 2 R
d (called the drift of �) such that

O�.z/ D exp

�

�2�1hz;Azi C ih�0; zi C
Z

Rd

�
eihz;xi � 1

�
�.dx/

�

:

We write � D �.A;�;�0/0 in this case. We also write �� for � when � is the Lévy
measure of �.

In the following, the notation 1B denotes the indicator function of the set B 2
B.Rd/. Here and in what follows, B.C/ is the set of Borel sets in C.

Proposition 2.3 (Polar Decomposition of Lévy Measure; See e.g. Barndorff-
Nielsen et al. [12, Lemma 2.1]) Let �� be the Lévy measure of some � 2 I.Rd/

with 0 < ��.R
d/ � 1. Then there exist a 	-finite measure 
 on S WD f� 2 R

d W
j�j D 1g with 0 � 
.S/ � 1 and a family f�� W � 2 Sg of measures on .0;1/ such
that

��.B/ is measurable in � for each B 2 B..0;1//; (5)

0 < ��..0;1// � 1 for each � 2 S; (6)

��.B/ D
Z

S

.d�/

Z 1

0

1B.r�/��.dr/ for B 2 B.Rd n f0g/: (7)

Here 
 and f��g are uniquely determined by �� in the following sense: if 
, f��g
and 
0, f�0

�g both have properties (5)–(7), then there is a measurable function c.�/
on S such that

0 < c.�/ < 1; 
0.d�/ D c.�/
.d�/; c.�/�0
� .dr/ D ��.dr/ for 
-a.e. � 2 S:

We call �� the radial component of �� and when �� is absolute continuous, we call
its density the Lévy density.

Definition 2.4 (The Cumulant of O�) For � 2 ID.Rd/, C�.z/ D log O�.z/ is called
the cumulant of �, where log is the distinguished logarithm. .For the definition of
the distinguished logarithm, see e.g. Sato [73], the sentence after Lemma 7.6./

2.2 Stochastic Integrals with Respect to Lévy Processes

Definition 2.5 A stochastic process fXt; t � 0g on R
d is called a Lévy process, if

the following conditions are satisfied.

(1) X0 D 0 a.s.
(2) For any 0 � t0 < t1 < � � � < tn; n � 1, Xt0 ;Xt1 � Xt0 ; : : : ;Xtn � Xtn�1 are

independent.
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(3) For h > 0, the distribution of XtCh � Xt does not depend on t.
(4) For any t � 0 and " > 0, limh!0 P.jXtCh � Xtj > "/ D 0.
(5) For almost all !, the sample paths Xt.!/ are right-continuous in t � 0 and have

left limits in t > 0.

Dropping the condition (5) in Definition 2.5, we call any process satisfying (1)�(4) a
Lévy process in law. In the following, “Lévy process” simply means “Lévy process
in law”. It is known (see e.g. Sato [73, Theorem 7.10(i)]) that if fXtg is a Lévy
process on R

d, then for any t � 0;L .Xt/ 2 ID.Rd/ and if we let L .X1/ D �,
then L .Xt/ D �t�, where �t� is the distribution with characteristic function O�.z/t.
Thus the distribution of a Lévy process fXtg is determined by that of X1. Further, a
stochastic process fXt; t � 0g on R

d is called an additive process (in law), if (1), (2)
and (4) are satisfied.

Proposition 2.6 (Stochastic Integral with Respect to Lévy Process; See Sato [77,
Sect. 3.4]) Let fXtg be a Lévy process on R

d with L .X1/ D �.A;�;�/.

(1) Let f .t/ be a real-valued locally square integrable measurable function on
Œ0;1/. Then the stochastic integral X WD R a

0
f .t/dXt exists and L .X/ 2

ID.Rd/. Its cumulant is represented as

CL .X/.z/ D
Z a

0

C�. f .t/z/dt:

The Lévy-Khintchine triplet .AX; �X; �X/ of L .X/ is the following:

AX D
Z a

0

f .t/2Adt;

�X.B/ D
Z a

0

dt
Z

Rd
1B.f .t/x/�.dx/; B 2 B.Rd n f0g/;

�X D
Z a

0

f .t/dt

�

� C
Z

Rd
x

�
1

1C j f .t/xj2 � 1

1C jxj2
�

�.dx/

�

:

(2) The improper stochastic integral over Œ0;1/ is defined as follows, whenever
the limit exists:

X WD
Z 1

0

f .t/dXt D lim
a!1

Z a

0

f .t/dXt in probability.

Suppose f .t/ is locally square integrable on Œ0;1/. Then
R1
0

f .t/dXt exists if and
only if lima!1

R a
0

C�.f .t/z/dt exists in C for all z 2 R
d. We have

CL .X/.z/ D lim
a!1

Z a

0

C�.f .t/z/dt;

AX D
Z 1

0

f .t/2Adt;
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�X.B/ D
Z 1

0

dt
Z

Rd
1B.f .t/x/�.dx/; B 2 B.Rd n f0g/;

�X D lim
q!1

Z a

0

f .t/dt

�

� C
Z

Rd
x

�
1

1C jf .t/xj2 � 1

1C jxj2
�

�.dx/

�

:

Remark 2.7 We will treat many f .t/’s which have singularity at t D 0: (i) f .t/ D
G�̨

;ˇ.t/; t > 0, the inverse function of t D G˛;ˇ.s/ D R1
s u�˛�1e�uˇdu; s � 0,

in Sect. 5.2, which is specialized to the kernels of � -, � -, G - and M -mappings
in Sect. 4.1. (ii) f .t/ D t�1=˛; t > 0, which is the kernel of the stable mapping in
Sect. 5.4.

3 Some Known Classes of Infinitely Divisible Distributions

As mentioned in Sect. 1, the main concern of this article is to discuss known and new
classes of infinitely divisible distributions and characterize them in several ways.
We start with some known classes in Sects. 3.2 and 3.3, and show the relationships
among themselves in Sect. 3.4.

3.1 Completely Monotone Functions

In the following, the concept of completely monotone function plays an important
role. So, we start with the definition of completely monotone function and some
properties of it.

Definition 3.1 (Completely Monotone Function) A function '.x/ on .0;1/ is
completely monotone if it has derivatives '.n/ of all orders and .�1/n'.n/.x/ �
0; n 2 ZC; x > 0.

Two typical examples of completely monotone functions are e�x and x�p; p > 0.

Proposition 3.2 (Bernstein’s Theorem. See e.g. Feller [21, Chap. XIII, 4]) A
function ' on .0;1/ is completely monotone if and only if it is the Laplace
transform of a measure � on .0;1/.

Proposition 3.3 (See e.g. Feller [21, Chap. XIII, 4])

(1) The product of two completely monotone functions on .0;1/ is also completely
monotone.

(2) If ' is completely monotone on .0;1/ and if  is a positive function with a
completely monotone derivative on .0;1/, then the composed function '. / is
also completely monotone on .0;1/.
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3.2 The Classes of Stable and Semi-stable Distributions

Definition 3.4 Let � 2 ID.Rd/.

(1) It is called stable if, for any a > 0, there exist b > 0 and c 2 R
d such that

O�.z/a D O�.bz/eihc;zi: (8)

S.Rd/ denotes the class of all stable distributions on R
d.

(2) It is called strictly stable if, for any a > 0, there is b > 0 such that O�.z/a D
O�.bz/:

(3) It is called semi-stable if, for some a > 0 with a ¤ 1, there exists b > 0 and
c 2 R

d satisfying (8). SS.Rd/ denotes the class of all semi-stable distributions
on R

d.
(4) It is called strictly semi-stable if , for some a > 0 with a ¤ 1, there exists b > 0

satisfying O�.z/a D O�.bz/.

� 2 P.Rd/ is called trivial if it is a distribution of a random variable
concentrated at one point, otherwise it is called non-trivial. When this one point
is c 2 R

d, we write � D ıc.

Theorem 3.5 (See e.g. Sato [73, Theorem 13.15] or Sato [72, Theorem 3.3]) If�
is non-trivial stable, then there exists a unique ˛ 2 .0; 2� such that b D a1=˛ in (8).

In this case, we say that such a � is ˛-stable. Gaussian distribution and Cauchy
distribution are 2-stable and 1-stable, respectively. Note that any trivial distribution
is stable in the sense that (8) is satisfied, and ˛ is not uniquely determined. In
the following, when we say ˛-stable distribution, we always include all trivial
distributions. Also note that trivial distributions which are not ı0 are not strictly
stable except 1-stable distribution.

3.3 Some Known Classes of Infinitely Divisible Distributions

We start with the following six classes which are well-studied in the literature. We
call Vx an elementary gamma random variable (resp. elementary mixed-exponential
random variable, elementary compound Poisson random variable) on R

d if x is
a nonrandom, nonzero element of R

d and V is a real random variable having
gamma distribution (resp. a mixture of a finite number of exponential distributions,
compound Poisson distribution whose jump size distribution is uniform on the
interval Œ0; a� for some a > 0).

(1) The class U.Rd/ (the Jurek class): � 2 U.Rd/ if and only if � 2 ID.Rd/ and
either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial component �� of �� is
expressed as

��.dr/ D `�.r/dr; (9)
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where `�.r/ is a nonnegative function measurable in � 2 S and nonincreasing
on .0;1/ as a function of r.

The class U.Rd/ was introduced by Jurek [31] and � 2 U.Rd/ is called
s-selfdecomposable. Jurek [31] proved that � 2 U.Rd/ if and only if for any
b > 1 there exists �b 2 ID.Rd/ such that O�.z/ D O�.b�1z/b�1 O�b.z/: Sato [77]
also formulated U.Rd/ as the smallest class of distributions on R

d closed under
convolution and weak convergence and containing all distributions of elementary
compound Poisson random variables on R

d.

(2) The class B.Rd/ (the Goldie–Steutel–Bondesson class): � 2 B.Rd/ if and only
if � 2 ID.Rd/ and either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial
component �� of �� is expressed as

��.dr/ D `�.r/dr; (10)

where `�.r/ is a nonnegative function measurable in � 2 S and completely
monotone on .0;1/ as a function of r.

Historically, Goldie [23] proved the infinite divisibility of mixtures of exponen-
tial distributions and Steutel [82] found the description of their Lévy measures.
Then Bondesson [16] studied generalized convolutions of mixtures of exponential
distributions on RC. It is the smallest class of distributions on RC that contains all
mixtures of exponential distributions and that is closed under convolution and weak
convergence on RC. B.Rd/ is its generalization by Barndorff-Nielsen et al. [12],
where all mixtures of exponential distributions are replaced by all distributions of
elementary mixed-exponential random variables on R

d.

(3) The class L.Rd/ (the class of selfdecomposable distributions) : � 2 L.Rd/ if
and only if � 2 ID.Rd/ and either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, �� is
expressed as

��.dr/ D r�1k�.r/dr; (11)

where k�.r/ is a nonnegative function measurable in � 2 S and nonincreasing
on .0;1/ as a function of r.

It is known (see e.g. Sato [73, Theorem 15.10]) that � 2 L.Rd/ if and only if for
any b > 1, there exists some �b 2 P.Rd/ such that

O�.z/ D O�.b�1z/ O�b.z/: (12)

This statement usually is used as the definition of the selfdecomposability. �b in (12)
can be shown to be infinitely divisible. Hence, we may replace �b 2 P.Rd/ by
�b 2 ID.Rd/ in the previous statement.

(4) The class T.Rd/ (the Thorin class) : � 2 T.Rd/ if and only if � 2 ID.Rd/ and
either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial component �� of �� is
expressed as

��.dr/ D r�1k�.r/dr; (13)
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where k�.r/ is a nonnegative function measurable in � 2 S and completely
monotone on .0;1/ as a function of r.

Originally this class was studied by Thorin [85, 86] when he wanted to prove the
infinite divisibility of the Pareto and the log-normal distributions, as mentioned in
Sect. 1. The class T.RC/ (resp. T.R/) is defined as the smallest class of distributions
on RC (resp. R) that contains all positive (resp. positive and negative) gamma
distributions and that is closed under convolution and weak convergence on RC
(resp. R). The distributions in T.RC/ are called generalized gamma convolutions
(GGCs) and those in T.R/ are called extended generalized gamma convolutions
(EGGCs). Thorin showed that the Pareto and the log-normal distributions are GGCs,
and thus are selfdecomposable and infinitely divisible. The infinite divisibility of the
log-normal distribution was not known before the theory on hyperbolic complete
monotonicity which was developed by Thorin.

T.Rd/ is a generalization of T.R/ by Barndorff-Nielsen et al. [12], where
all positive and negative gamma distributions are replaced by all distributions of
elementary gamma random variable on R

d.

(5) The class G.Rd/ (the class of type G distributions): � 2 G.Rd/ if and only if
� 2 ID.Rd/ and either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial
component �� of �� is expressed as

��.dr/ D g�.r
2/dr; (14)

where g�.r/ is a nonnegative function measurable in � 2 S and completely
monotone on .0;1/ as a function of r.

When d D 1, � 2 G.R/ \ Isym.R/ if and only if � D L .V1=2Z/, where
V > 0, L .V/ 2 I.R/, Z is the standard normal random variable, and V and Z
are independent. When d � 1, � D �.A;�;�/ 2 G.Rd/ \ IDsym.R

d/ if and only if
�.B/ D EŒ�0.Z�1B/� for some Lévy measure �0. (See Maejima and Rosiński [47].)
Previously only symmetric distributions in G.Rd/ were said to be of type G. In this
article, however, we say that any distribution from G.Rd/ is of type G.

(6) The class M.Rd/ (Aoyama et al. [4]) : � 2 M.Rd/ if and only if � 2 ID.Rd/

and either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial component �� of
�� is expressed as

��.dr/ D r�1g�.r2/dr; (15)

where g�.r/ is a nonnegative function measurable in � 2 S and completely
monotone on .0;1/ as a function of r. (Originally, in Aoyama et al. [4], we
defined the class M.Rd/ restricted in Isym.R

d/. However, in this article, we do
not assume the symmetry of � 2 M.Rd/. The requirement (15) is independent
of the symmetry of the distribution.)

This class was introduced, being motivated by how the class will be if we replace
g�.r2/ in (14) by r�1g�.r2/ by multiplying an extra r�1 in the Lévy density which
can been seen from (1) to (3) and from (2) to (4).
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3.4 Relationships Among the Classes

With respect to relationships among the classes mentioned in Sect. 3.3, we have the
following.

(1) L.Rd/ [ G.Rd/ ¤ U.Rd/ and T.Rd/ ¤ L.Rd/. (By definition.)
(2) Each class in Sect. 3.3 includes S.Rd/. This is because if � 2 S.Rd/, then either

A ¤ 0 and �� D 0 or A D 0 and ��.dr/ D r�1�˛dr for some ˛ 2 .0; 2/, (see
e.g. Sato [73, Theorem 14.3]).

(3) T.Rd/ ¤ B.Rd/ ¤ G.Rd/. These inclusions follow from the properties of com-
pletely monotone functions. It follows from Proposition 3.3(1) that T.Rd/ �
B.Rd/. If we put g�.x/ D l�.x1=2/, then it follows from Proposition 3.3(2)
that B.Rd/ � G.Rd/. The relation ¤ can be shown by choosing suitable Lévy
densities.

(4) T.Rd/ ¤ M.Rd/ ¤ L.Rd/\G.Rd/. The proof is as follows (Aoyama et al. [4]):

We first show that M.Rd/ ¤ L.Rd/\G.Rd/. Note that r�1=2 is completely monotone
and by Proposition 3.3(1) that the product of two completely monotone functions is
also completely monotone. Thus by the definition of M.Rd/, it is clear that M.Rd/ �
L.Rd/ \ G.Rd/. To show that M.Rd/ ¤ L.Rd/ \ G.Rd/, it is enough to construct
� 2 ID.Rd/ such that � 2 L.Rd/\ G.Rd/ but � … M.Rd/.

First consider the case d D 1. Let

�.dr/ D r�1g.r2/dr; r > 0:

For our purpose, it is enough to construct a function g W .0;1/ 7! .0;1/ such that
(a) r�1=2g.r/ is completely monotone on .0;1/, (meaning that the corresponding
� belongs to G.R/), (b) g.r2/ or, equivalently, g.r/ is nonincreasing on .0;1/,
(meaning that the corresponding� belongs to L.R/), and (c) g.r/ is not completely
monotone on .0;1/, (meaning that the corresponding� does not belong to M.R/).
We show that

g.r/ WD r�1=2h.r/ WD r�1=2 �e�0:9r � e�r C 0:1e�1:1r
	
; r > 0;

satisfies the requirements (a)�(c) above.

(a) We have

r�1=2g.r/ D
Z 1

0:9

e�rudu C 0:1

Z 1

1:1

e�rudu;

which is a sum of two completely monotone functions, and thus r�1=2g.r/ is
completely monotone.
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(b) If h.r/ is nonincreasing, then so is g.r/ D r�1=2h.r/. To show it, we have

h0.r/ D �0:9e�0:9r C e�r � 0:11e�1:1r D �0:9e�1:1r

"�

e0:1r � 1

1:8

�2
� 0:604

3:24

#

� �0:9e�1:1r

"�

1 � 1

1:8

�2
� 0:604

3:24

#

D �0:01e�1:1r < 0; r > 0:

(c) To show (c), we see that

h.r/ D
Z 1

0

e�ruQ.du/;

where Q is a signed measure such that Q D Q1 C Q2 C Q3 and

Q1.f0:9g/ D 1; Q2.f1g/ D �1; Q3.f1:1g/ D 0:1:

On the other hand,

r�1=2 D ��1=2
Z 1

0

e�ruu�1=2du DW
Z 1

0

e�ruR.du/;

where

R.du/ D .�u/�1=2du:

Thus

g.r/ D
Z 1

0

e�ruR.du/
Z 1

0

e�rvQ.dv/ D
Z 1

0

e�rwU.dw/;

where

U.B/ D
Z 1

0

Q.B � y/R.dy/:

We are going to show that U is a signed measure, namely, for some interval
.a; b/;U ..a; b// < 0. If so, g is not completely monotone by Bernstein’s theorem
(Proposition 3.2). We have

U ..a; b// D ��1=2
Z 1

0

Q ..a � y; b � y// y�1=2dy

D ��1=2
3X

jD1

Z 1

0

Qj ..a � y; b � y// y�1=2dy
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D ��1=2

Z b�0:9

a�0:9
y�1=2dy �

Z b�1

a�1
y�1=2dy C 0:1

Z b�1:1

a�1:1
y�1=2dy

�

D 2��1=2 h�p
b � 0:9 � p

a � 0:9
�

�
�p

b � 1 � p
a � 1

�

C0:1
�p

b � 1:1 � p
a � 1:1

�i
:

Take .a; b/ D .1:15; 1:35/. Then

U ..1:15; 1:35//

D 2��1=2
h
.
p
0:45 � p

0:25/ � .p0:35 � p
0:15/C 0:1.

p
0:25 � p

0:05/
i

< �0:01��1=2 < 0:

This concludes that g is not completely monotone.
A d-dimensional example of � 2 ID.Rd/ such that � 2 L.Rd/ \ G.Rd/ but

� … M.Rd/ is given by taking the example of the Lévy measure on R constructed
above as the radial component of a Lévy measure on R

d. This completes the proof
of M.Rd/ ¤ L.Rd/\ G.Rd/.

We next show that T.Rd/ ¤ M.Rd/. If � 2 T.Rd/, then the radial component of
the Lévy measure of � has the form ��.dr/ D r�1k� .r/dr, where k� is completely
monotone. By Proposition 3.3 and the fact that  .r/ D r1=2 has a completely
monotone derivative, then g�.r/ WD k�.r1=2/ is completely monotone. Thus ��.dr/
can be read as r�1g�.r2/dr, where g� is completely monotone, concluding that
� 2 M.Rd/.

To show that T.Rd/ ¤ M.Rd/, it is enough to find a completely monotone
function g� such that k�.r/ D g�.r2/ is not completely monotone. However, the
function g�.r/ D e�r has such a property. Although e�r is completely monotone,

.�1/2 d2

dr2
e�r2 < 0 for small r > 0. This completes the proof of the inclusion

T.Rd/ ¤ M.Rd/.

Remark 3.6 It is important to remark that any distribution in L.R/ is unimodal,
(a result by Yamazato [97]), which implies the unimodality of any distribution in
T.R/, since T.R/ � L.R/.

The following are examples for non-inclusion among classes. (See Schilling
et al. [80, Chap. 9].)

(5) L.R/ �= B.R/. Let ��.dx/ D x�11.0;1/.x/dx; x > 0. Then k.x/ D 1.0;1/.x/ is
nonincreasing and thus � 2 L.R/, but `.x/ D x�11.0;1/.x/ is not completely
monotone and thus � … B.R/. Hence L.R/ �= B.R/.

(6) B.R/ �= L.R/. Let ��.dx/ D e�xdx; x > 0. Then it is easy to see that� 2 B.R/,
but � … L.R/. Therefore B.R/ �= L.R/.
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4 Stochastic Integral Mappings and Characterizations
of Classes (I)

This section is one of the main subjects of this article, as referred to in Sect. 1.
In Sect. 4.1 we explain well-studied six stochastic integral mappings, and then in
Sect. 4.2 we characterize them by stochastic integral mappings.

4.1 Six Stochastic Integral Mappings

For � 2 ID.Rd/, let fX.�/t ; t � 0g be the Lévy process with L .X.�/1 / D �. Let
f .t/ be a real-valued square integrable measurable function on Œa; b�, for any 0 <
a < b < 1 and suppose that the stochastic integral

R1
0

f .t/dX.�/t is definable in the
sense of Proposition 2.6. Then we can define a mapping � 7! ˚f .�/. We denote
the domain of ˚f by D.˚f / that is the class of � 2 ID.Rd/ for which ˚f .�/ is
definable. We also denote the range of ˚f by R.˚f / D ˚f .D.˚f //.

Now the following are well-studied mappings.

(1) U -mapping (Jurek [31]). For � 2 D.U / D ID.Rd/, U .�/ D L
�R 1

0
tdX.�/t

�
:

(2) � -mapping (Barndorff-Nielsen et al. [12]). For � 2 D.� / D ID.Rd/, � .�/ D
L
�R 1

0
log.t�1/dX.�/t

�
:

(3) ˚-mapping (Jurek and Vervaat [38], Sato and Yamazato [79], Wolfe [96]). For

� 2 D.˚/ D IDlog.R
d/, ˚.�/ D L

�R1
0 e�tdX.�/t

�
:

(4) � -mapping (Barndorff-Nielsen et al. [12]). Let p.s/ D R1
s e�uu�1du; s > 0,

and denote its inverse function by p�.t/. For � 2 D.�/ D IDlog.R
d/,

�.�/ D L
�R1

0
p�.t/dX.�/t

�
:

(5) G -mapping (Maejima and Sato [48]). Let g.s/ D R1
s e�u2du; s > 0, and

denote its inverse function by g�.t/. For � 2 D.G / D ID.Rd/, G .�/ D
L
�Rp

�=2

0 g�.t/dX.�/t

�
:

(6) M -mapping (Maejima and Nakahara [44]). Let m.s/ D R1
s e�u2u�1du; s >

0, and denote its inverse function by m�.t/. For � 2 D.M / D IDlog.R
d/,

M .�/ D L
�R1

0 m�.t/dX.�/t

�
:

In the above, it is easy to see that the domains of the mappings are ID.Rd/

when the intervals of the stochastic integrals are finite. However, in the cases where
stochastic integrals are improper at infinity, we need the proofs. As an example,
we show the case of the ˚-mapping below. (For (4), see Barndorff-Nielsen et
al. [12, Theorem C], and for (6), see Maejima and Nakahara [44, Theorem 2.3],
respectively.) Note that in the six examples above, the singularity of the kernel at
t D 0 does not give any influence for determining the domains of the mappings.
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For showing that D.˚/ D IDlog.R
d/, we use Proposition 2.6(2) with f .t/ D

e�t. Let .A; �; �/ and . QA; Q�; Q�/ be the Lévy-Khintchine triplets of � and ˚.�/,
respectively. If we could show that QA and Q� are finite, and Q� is a Lévy measure,
then Proposition 2.6(2) ensures that the existence of the stochastic integral defining
˚.�/.

(i) (Gaussian part) : QA D R1
0 e�2tAdt exists.

(ii) (Lévy measure) : We are going to show that

Q�.B/ D
Z

Rd
�.dx/

Z 1

0

1B.e
�tx/dt; B 2 B.Rd/;

satisfies that
R
Rd.jxj2 ^ 1/ Q�.dx/ < 1. We have

Z

Rd
.jxj2 ^ 1/ Q�.dx/ D

Z

jxj�1
jxj2 Q�.dx/C

Z

jxj>1
Q�.dx/;

where
Z

jxj�1
jxj2 Q�.dx/ D

Z

Rd
�.dx/

Z 1

0

je�txj21fje�txj�1gdt

D
Z

Rd
jxj2�.dx/

Z 1

0

e�2t1fjxj�etgdt D
Z

Rd
jxj2�.dx/

Z 1

0_log jxj
e�2tdt

D 1

2

Z

Rd
jxj2.1 ^ jxj�2/�.dx/ D 1

2

Z

Rd
.jxj2 ^ 1/�.dx/

and
Z

jxj>1
Q�.dx/ D

Z

Rd
�.dx/

Z 1

0

1fje�txj>1gdt D
Z

Rd
�.dx/

Z 1

0

1fjxj>etgdt

D
Z

jxj>1
�.dx/

Z 1

0

1ft<log jxjgdt D
Z

jxj>1
log jxj�.dx/:

Thus,

Z

Rd
.jxj2 ^ 1/ Q�.dx/ < 1

if and only if

Z

jxj>1
log jxj�.dx/ < 1:
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(iii) (� -part) : To complete the proof, it is enough to show that

Q� D
Z 1

0

e�tdt � � C
Z

Rd
�.dx/

Z 1

0

e�tx

�
1

1C je�txj2 � 1

1C jxj2
�

dt < 1;

whenever
R

jxj>1 log jxj�.dx/ < 1. The first integral is trivial. As to the second
integral, we have

Z

Rd
�.dx/

Z 1

0

e�tjxj3
.1C je�txj2/.1C jxj2/dt

D
�Z

jxj�1
C
Z

jxj>1

�

�.dx/
Z 1

0

e�tjxj3
.1C je�txj2/.1C jxj2/dt

DW I1 C I2:

Here

I1 �
Z

jxj�1
jxj3�.dx/

Z 1

0

e�tdt �
Z

jxj�1
jxj2�.dx/ < 1

and

I2 D
Z

jxj>1
�.dx/

Z 1

0

e�tjxj3
.1C je�txj2/.1C jxj2/dt

D
Z

jxj>1
�.dx/

 Z log jxj

0

C
Z 1

log jxj

!
e�tjxj3

.1C je�txj2/.1C jxj2/dt DW I3 C I4;

where

I3 D
Z

jxj>1
jxj2

1C jxj2 �.dx/
Z log jxj

0

e�tjxj
1C je�txj2 dt;

�
Z

jxj>1
jxj2

1C jxj2 �.dx/
Z log jxj

0

1

2
dt �

Z

jxj>1
log jxj�.dx/ < 1

and

I4 �
Z

jxj>1
�.dx/

Z 1

log jxj
e�tjxj3
1C jxj2 dt D

Z

jxj>1
jxj3

1C jxj2 e� log jxj�.dx/

�
Z

jxj>1
jxj2

1C jxj2 �.dx/ < 1:

The proof is completed.
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4.2 Characterization of Classes as the Ranges of the Mappings

The six classes of infinitely divisible distributions in Sect. 3.3 can be characterized
as the ranges of the mappings discussed in the previous section, as follows.

Proposition 4.1 We have the following.

(1) U.Rd/ D U .ID.Rd//. (Jurek [31].)
(2) B.Rd/ D � .ID.Rd//. (Barndorff-Nielsen et al. [12].)
(3) L.Rd/ D ˚.IDlog.R

d//. (Jurek and Vervaat [38], Sato and Yamazato [79],
Wolfe [96].)

(4) T.Rd/ D �.IDlog.R
d//. (Barndorff-Nielsen et al. [12].)

(5) G.Rd/ D G .ID.Rd//. (Aoyama and Maejima [3] for symmetric case and
Maejima and Sato [48] for general case.)

(6) M.Rd/ D M .IDlog.R
d//. (Aoyama et al. [4] for symmetric case and Maejima

and Nakahara [44] for general case.)

For the readers’ convenience, we give here the proof of (3) L.Rd/ D
˚.IDlog.R

d// as an example. We show that L.Rd/ � ˚.IDlog.R
d// and that

L.Rd/ � ˚.IDlog.R
d//, separately.

(a) (L.Rd/ � ˚.IDlog.R
d//): Suppose that � D L

�R1
0 e�tdXt

	
for some Lévy

process fXtg satisfying that L .X1/ 2 IDlog.R
d/. Let b > 1 and let f QXtg be an

independent copy of fXtg. In what follows, the notation
dD means the equality

in law. We have

b�1
Z 1

0

e�td QXt D
Z 1

0

e�.tClog b/d QXt
dD
Z 1

log b
e�tdXt;

and

Z 1

0

e�tdXt D
Z 1

log b
e�tdXt C

Z log b

0

e�tdXt

dD b�1
Z 1

0

e�td QXt C
Z log b

0

e�tdXt;

which shows the relation (12) and � 2 L.Rd/.

(b) (L.Rd/ � ˚.IDlog.R
d//): We need a lemma on selfsimilar additive process.

Definition 4.2 Let H > 0. A stochastic process fXt; t � 0g on R
d is H-selfsimilar

if for any c > 0, fXctg dD fcHXtg.

Lemma 4.3 (Sato [71]) � 2 L.Rd/ if and only if there exists a 1-selfsimilar
additive process fYtg such that L .Y1/ D �.
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The following proof is due to Jeanblanc et al. [29]. Let � 2 L.Rd/. By
Lemma 4.3, there exists 1-selfsimilar additive process fYtg such that L .Y1/ D �.
Define

Xt D
Z 1

e�t
s�1dYs: (16)

Since fYtg is additive, fXtg is also additive. Further, for h > 0,

XtCh � Xt D
Z e�t

e�.tCh/
s�1dYs

D
Z 1

e�h
.e�tu/�1dYe�tu

dD
Z 1

e�h
.e�tu/�1e�tdYu .by fYcug dD fcYug/

D Xh:

Thus fXtg is a Lévy process. By (16),

Xt D �
Z t

0

.e�v/�1dvYe�v

and thus
Z 1

0

e�vdXv D �
Z 1

0

dYe�v D Y1 � Y0 D Y1;

implying that L .X1/ 2 D.˚/ and � D L
�R1
0 e�vdXv

	
so that � 2 ˚.IDlog.R

d//.

5 Stochastic Integral Mappings and Characterizations
of Classes (II)

Some other mappings in addition to the six mappings in Sect. 4.1 above will be
explained in this section. Let

ID˛.R
d/ D

�

� 2 ID.Rd/W
Z

Rd
jxj˛�.dx/ < 1

�

; for ˛ > 0;

ID0
˛.R

d/ D
�

� 2 ID˛.R
d/W
Z

Rd
x�.dx/ D 0

�

; for ˛ � 1;

ID�
1 .R

d/ D
�

� D �.A;�;�/ 2 ID0
1.R

d/W lim
T!1

Z T

1

t�1dt
Z

jxj>t
x�.dx/ exists in R

d

�

:
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5.1 ˚˛-Mapping

We define ˚˛-mapping as follows:

˚˛.�/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

L

 Z �1=˛

0

.1C ˛t/�1=˛dX.�/t

!

; when ˛ < 0;

L

�Z 1

0

e�tdX.�/t

�

; when ˛ D 0;

L

�Z 1

0

.1C ˛t/�1=˛dX.�/t

�

; when 0 < ˛ < 2:

The domain of ˚˛ is given as

D.˚˛/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

ID.Rd/; when ˛ < 0;

IDlog.R
d/; when ˛ D 0;

ID˛.R
d/; when 0 < ˛ < 1;

ID�
1 .R

d/; when ˛ D 1;

ID0
˛.R

d/; when 1 < ˛ < 2:

(For ˛ 2 .0; 1/ [ .1; 2/, see Sato [75, Theorem 2.4], and for ˛ D 1, Sato [77,
Theorem 4.4].)

Here we introduce a notion of “weak mean” for later use.

Definition 5.1 (The Weak Mean of � 2 ID.Rd/ [77, Definition 3.6]) Let � D
�.A;�;�/ 2 ID.Rd/. It is said that � has weak mean m� if

Z

1<jxj�a
x�.dx/ is convergent in R

d as a ! 1;

and

C�.z/ D �2�1hz;Azi C lim
a!1

Z

jxj�a
.eihz;xi � 1 � ihz; xi/�.dx/C ihm�; zi:

The range of ˚˛ is as follows.

Theorem 5.2 (Sato [77, Theorem 4.18]. R.K1;˛/ in the Notation There) Let 0 <
˛ < 2. Then � 2 R.˚˛/ if and only if � 2 ID.Rd/ and either �� D 0 or �� ¤ 0,
and in case �� ¤ 0, the radial component �� of �� is expressed as, for some k�.r/
which is a nonnegative function measurable in � and nonincreasing on .0;1/ as a
function of r,

(1) .˛ < 1/ ��.dr/ D r�˛�1k�.r/dr,
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(2) .˛ D 1/ ��.dr/ D r�2k�.r/dr, and the weak mean of � is 0,
(3) .1 < ˛ < 2/ ��.dr/ D r�˛�1k�.r/dr, and the mean of � is 0.

We introduce the class Lh˛i.Rd/ (the class of ˛-selfdecomposable distributions).
Let ˛ 2 R. We say that � 2 ID.Rd/ is ˛-selfdecomposable, if for any b > 1, there
exists �b 2 ID.Rd/ satisfying

O�.z/ D O�.b�1z/b˛ O�b.z/; z 2 R
d: (17)

Theorem 5.3 (Maejima and Ueda [52])

(1) For ˇ < ˛; Lhˇi.Rd/ � Lh˛i.Rd/.
(2) For ˛ > 2 Lh˛i.Rd/ D fı� W � 2 R

dg.
(3) Lh2i.Rd/ D fall Gaussian distributionsg.
(4) Lh˛i.Rd/ is left-continuous in ˛ 2 R, namely,

\

ˇ<˛

Lhˇi.Rd/ D Lh˛i.Rd/ for all ˛ 2 R:

(5) Let ˛ 2 .�1; 2/. Then, � 2 Lh˛i.Rd/ if and only if � 2 ID.Rd/ and either
�� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial component �� of �� is
expressed as

��.dr/ D r�˛�1`�.r/dr; (18)

where `�.r/ is a nonnegative function which is measurable in �, and nonincreasing
on .0;1/ as a function of r.

Remark 5.4

(1) We have L.�1/.Rd/ D U.Rd/ and L.0/.Rd/ D L.Rd/. Thus by Theorem 5.3(1),
if ˛ < �1, Lh˛i.Rd/ � U.Rd/ � L.Rd/.

(2) Another class bigger than U.Rd/ is

A.Rd/ WD
�

˚cos.�/ D L

�Z 1

0

cos.2�1�t/dX.�/t

�

W � 2 I.Rd/

�

:

(See Maejima et al. [58, Theorem 2.6].)
(3) It is an open problem to find the relationship between Lh˛i.Rd/; ˛ < �1; and

A.Rd/.

The relations between the mappings ˚˛ and the classes Lh˛i.Rd/ are as follows.
(The case ˛ D 0 is nothing but Proposition 4.1(3).)

Theorem 5.5 (Maejima et al. [57, Theorem 4.6]) Let ˛ < 0. Q� 2 Lh˛i.Rd/ if and
only if Q� D ˚˛.�/ for some � 2 ID.Rd/.

Theorem 5.6 (Maejima and Ueda [52, Theorem 5.1(ii) and (iv)]) Let ˛ 2
.0; 1/[ .1; 2/.
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(1) When 0 < ˛ < 1, Q� 2 Lh˛i.Rd/ if and only if

Q� D 	˛ 	 ˚˛.�/; (19)

where � 2 ID˛.R
d/ and 	˛ is a strictly ˛-stable distribution or a trivial

distribution, where 	 means convolution.
(2) When 1 < ˛ < 2, Q� 2 Lh˛i.Rd/ if and only if (19) holds for some � 2 ID0

˛.R
d/

and some ˛-stable distribution 	˛ .

For the case ˛ D 1 we need slightly different mapping called the essential
improper stochastic integrals introduced by Sato [74, 76] defined as

˚f ;es.�/ WD
(

L

�

p-lim
t!1

�Z t

0

f .s/dX.�/s � q.t/

��

W q is an R
d-valued nonrandom

function such that
Z t

0

f .s/dX.�/s � q.t/ converges in probability

as t ! 1
)

:

(The term “essentially improper stochastic integral” is changed to “essentially
definable improper stochastic integral” in Sato [76].) When f .t/ D .1C t/�1, which
is the integrand of ˚1.�/, we write ˚f ;es.�/ as ˚1;es.�/.

Theorem 5.7 When ˛ D 1, Q� 2 Lh1i.Rd/ if and only if Q� D 	1 	 Q�, where Q� 2
˚1;es.�/ for some � 2 I1.Rd/ and 	1 is a 1-stable distribution.

Remark 5.8 The classes Lh˛i.Rd/; ˛ 2 R, were already studied by many authors
before Maejima and Ueda [52]. Alf and O’Connor [2] and O’Connor [62] studied
the class of all infinitely divisible distributions on R with unimodal Lévy measures
with mode 0, and showed that the class is equal to Lh�1i.R/, As to this class, Alf
and O’Connor [2] studied stochastic integral characterizations with respect to Lévy
processes. O’Conner [62] studied the decomposability (17) for d D 1 and ˛ D
�1, and characterized this class by some limit theorem. O’Connor [61, 63] also
studied the classes Lh˛i.R/; ˛ 2 .�1; 2/. He defined these classes by a condition of
radial components of Lévy measures, and characterized these classes by stochastic
integrals with respect to Lévy processes, by the decomposability (17) for d D 1, and
by similar limit theorems to that in the case Lh�1i.R/. Jurek [30, 31, 35] and Iksanov
et al. [26] defined and studied so-called s-selfdecomposable distributions on a real
separable Hilbert space H. The totality of s-selfdecomposable distributions, denoted
by U .H/ in their papers, is equal to Lh�1i.Rd/, when H D R

d. Jurek [32–34] and
Jurek and Schreiber [37] studied the classes Uˇ.Q/; ˇ 2 R, of distributions on a real
separable Banach space E, where Q is a linear operator on E with certain properties.
These classes are equal to Lh�ˇi.Rd/ if E D R

d and Q is the identity operator.
They defined the classes Uˇ.Q/ by some limit theorems. As to these classes, they
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studied the decomposability similar to (17) and stochastic integral characterizations,
although some results are only for the case that Q is the identity operator.

Remark 5.9 Maejima et al. [57] studied the classes K˛.Rd/; ˛ < 2: � 2 K˛.Rd/ if
� 2 ID.Rd/ and either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial component
�� of �� is expressed as

��.dr/ D r�˛�1`� .r/dr; (20)

where `�.r/ is a nonnegative function which is measurable in � and nonincreasing
on .0;1/ as a function of r, and `�.1/ D 0. The relation between K˛.Rd/ and
Lh˛i.Rd/ for ˛ < 2 is

K˛.R
d/ D Lh˛i.Rd/ \ C˛.R

d/;

where C˛.Rd/ is the totality of � 2 ID.Rd/ whose Lévy measure �� satisfies
limr!1 r˛

R
jxj>r ��.dx/ D 0. (Maejima and Ueda [52], Maejima et al. [57].)

Remark 5.10 Recall that the difference between U.Rd/ and B.Rd/ in terms of
Lévy measure is that `�.r/ in (9) is nonincreasing and `�.r/ in (10) is completely
monotone. Also, the difference between L.Rd/ and T.Rd/ in terms of Lévy measure
is that k� .r/ in (11) is nonincreasing and k�.r/ in (13) is completely monotone.
From this point of view, the nonincreasing function `�.r/ in (20) can be replaced
by a completely monotone function `�.r/ with `�.1/ D 0. Actually, if we do so,
we can get (31) in Sect. 5.4 later, which leads to the tempered stable distribution by
Rosiński [69].

5.2 �˛;ˇ-Mapping

We define a more general notation of mapping, which we call �˛;ˇ-mapping. Let

t D G˛;ˇ.s/ D
Z 1

s
u�˛�1e�uˇdu; s � 0;

and let s D G�̨
;ˇ.t/ be its inverse function. Define �˛;ˇ-mapping by

�˛;ˇ.�/ D L

 Z G˛;ˇ.0/

0

G�̨
;ˇ.t/dX.�/t

!

;

with

G˛;ˇ.0/ D
(
ˇ�1
 .�˛ˇ�1/; when ˛ < 0;

1; when ˛ � 0;
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where 
 .�/ is the gamma function. These mappings were introduced first by
Sato [75] for ˇ D 1 and later by Maejima and Nakahara [44] for general ˇ > 0.
Due to Sato [75] and Maejima and Nakahara [44], we see the domains D.�˛;ˇ/ as
follows, which are independent of the value ˇ > 0.

D.�˛;ˇ/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

ID.Rd/; when ˛ < 0;

IDlog.R
d/; when ˛ D 0;

ID˛.R
d/; when 0 < ˛ < 1;

ID�
1 .R

d/; when ˛ D 1;

ID0
˛.R

d/; when 1 < ˛ < 2:

The six mappings in Sect. 4.1 are the special cases of the˚˛- and �˛;ˇ-mappings
as follows.

Remark 5.11 U D ˚�1, � D ��1;1, ˚ D ˚0, � D �0;1, G D ��1;2, M D �0;2.

5.3 ˚.b/-Mapping

Let b > 1. Define ˚.b/-mapping by

˚.b/.�/ D L

�Z 1

0

b�Œt�dX.�/t

�

; D.˚.b// D IDlog.R
d/;

where Œt� denotes the largest integer not greater than t 2 R.
� 2 ID.Rd/ is called semi-selfdecomposable if there exist b > 1 and � 2 ID.Rd/

such that O�.z/ D O�.b�1z/ O�.z/. We call this b a span of �, and we denote the
class of all semi-selfdecomposable distributions with span b by L.b;Rd/. From the
definitions, L.b;Rd/ ¥ L.Rd/ and L.Rd/ D T

b>1 L.b;Rd/. � 2 L.b;Rd/ is also
realized as a limiting distribution of normalized partial sums of independent random
variables under the condition of infinite smallness when the limit is taken through a
geometric subsequence. A typical example is a semi-stable distribution.

Theorem 5.12 Fix any b > 1. Then, the range R.˚.b// is the class of all semi-
selfdecomposable distributions with span b on R

d, namely,

˚.b/
�
IDlog.R

d/
	 D L.b;Rd/:

(For the proof, see Maejima and Ueda [50].)
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5.4 Stable Mapping

This section is from Maejima et al. [59]. Let 0 < ˛ < 2. Define a mapping by

�˛.�/ D L

�Z 1

0

t�1=˛dX.�/t

�

: (21)

Note that the kernel above has a singularity at t D 0 and is not square integrable
around t D 0. This fact gives an influence when determining the domain of
mappings. The following characterization of D.�˛/ follows from Proposition 5.3
and Example 4.5 of Sato [76].

Theorem 5.13

(1) If 0 < ˛ < 1, then

D.�˛/ D
�

� D �.0;�;0/0 2 ID.Rd/ W
Z

Rd
jxj˛�.dx/ < 1

�

:

(2) If ˛ D 1, then

D.�1/D
�

� D �.0;�;0/0 D�.0;�;0/1 2 ID.Rd/ W
Z

Rd
jxj �.dx/ < 1;

Z

Rd
x �.dx/ D 0;

lim
"#0

Z

jxj�1
x log.jxj _ "/ �.dx/ and lim

T!1

Z

jxj>1
x log.jxj ^ T/ �.dx/ exist

�

:

(3) If 1 < ˛ < 2, then

D.�˛/ D
�

� D �.0;�;0/1 2 ID.Rd/ W
Z

Rd
jxj˛�.dx/ < 1

�

:

Remark 5.14 There is a simple sufficient condition for � in (2). Namely, � D
�.0;�;�/ 2 D.�1/ if

R
Rd jxj j log jxjj �.dx/ < 1,

R
Rd x �.dx/ D 0, and � DR

Rd
x

1Cjxj2 �.dx/.

The next theorem gives a full characterization of R.�˛/. S0˛.R
d/ denotes the

class of strictly ˛-stable distributions on R
d. Note that in the case ˛ D 1 O� can be

written as follows:

O�.z/ D exp

�

�
Z

S

�jhz; �ij C i2��1hz; �i log jhz; �ij	
1.d�/C ihz; �i
�

; (22)

where 
1 is a finite measure on S and � 2 R
d, and where

R
S �
1.d�/ D 0: (See e.g.

Sato [73, Theorem 14.10].)
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Theorem 5.15 (Maejima et al. [59]) Let 0 < ˛ < 2.

(1) When ˛ ¤ 1, we have

�˛.D.�˛// D S0˛.R
d/:

(2) When ˛ D 1, we have

�1.D.�1// D ˚
� 2 S01.R

d/ W � 2 span supp.
1/
�
;

where, respectively, 
1 and � are those in (22). Here supp.
1/ denotes the support
of 
1. If 
1 D 0, then we put span supp.
1/ D f0g by convention.

6 Compositions of Stochastic Integral Mappings

The motivation for the paper by Barndorff-Nielsen et al. [12] was to see if the
Thorin class can be realized as the composited mapping of ˚ and � , where ˚
produces the class of selfdecomposable distributions and � produces the Goldie-
Steutel-Bondesson class. So, we believed that compositions of stochastic integral
mappings would be important and useful in many aspects, which was verified by
several observations. This is why we will discuss compositions of stochastic integral
mappings.

Let ˚f and ˚g be two stochastic integral mappings. The composition of two
mappings is defined as

.˚f ı ˚g/.�/ D ˚f .˚g.�//;

with

D.˚f ı ˚g/ D f� 2 D.˚g/ W ˚g.�/ 2 D.˚f /g:

We have the following.

Theorem 6.1 We have

(1) � D ˚ ı � D � ı˚ ,
(2) � ı U D U ı � ,
(3) G ı U D U ı G ,
(4) ˚ ı U D U ı ˚ .

Proof of (1) of Theorem 6.1 (Barndorff-Nielsen et al. [12, Theorem C(ii)]) Note
that D.�/.z/ D IDlog.R

d/. If � 2 IDlog.R
d/, then

C˚.�/.z/ D
Z 1

0

C�.e
�tz/dt:
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On the other hand, if � 2 ID.Rd/, then

C� .�/.z/ D
Z 1

0

C�.log.t�1/z/dt D
Z 1

0

e�sC�.sz/ds:

Also note that

� .�/ 2 IDlog.R
d/ if and only if � 2 IDlog.R

d/; (23)

(see Barndorff-Nielsen et al. [12, Theorem C(i)]). Thus, if � 2 IDlog.R
d/, then

� .�/ 2 IDlog.R
d/ by (23), and hence

C.˚ı� /.�/.z/ D
Z 1

0

dt
Z 1

0

e�sC�.e
�tsz/ds

and

C.� ı˚/.�/.z/ D
Z 1

0

e�sds
Z 1

0

C�.e
�tsz/dt:

If we could show
Z 1

0

e�sds
Z 1

0

jC�.e�tsz/jdt < 1; for each z 2 R; (24)

then we can apply Fubini’s theorem to get

C.˚ı� /.�/.z/ D C.� ı˚/.�/.z/;

meaning ˚ ı � D � ı ˚ , and

C.˚ı� /.�/.z/ D
Z 1

0

dt
Z 1

0

e�sC�.uz/et�uet
du D

Z 1

0

C�.uz/e�uu�1du

D �
Z 1

0

C�.uz/dp.u/ D
Z 1

0

C�.p
�.t/z/dt D C�.�/.z/;

concluding ˚ ı � D � . It remains to prove (24). We need the following lemma.

Lemma 6.2 Let � D �.A;�;�/ 2 ID.Rd/ For each fixed z 2 R,

jC�.az/j � cz




a2 C jaj C
Z

Rd

jaxj2
1C jaxj2 �.dx/C

Z

Rd

.jaj C jaj3/jxj3
.1C jxj2/.1C jaxj2/�.dx/

�

;

where cz > 0 is a finite constant depending only on z.
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Proof of Lemma 6.2 Let g.z; x/ D eihz;xi � 1 � ihz;xi
1Cjxj2 . Since

jC�.z/j � 1

2
.trA/jzj2 C j� jjzj C

Z

Rd
jg.z; x/j�.dx/;

we have

jC�.az/j � cz.a
2 C jaj/C

Z

Rd
jg.z; ax/j�.dx/C

Z

Rd
jg.az; x/� g.z; ax/j�.dx/:

The inequalities

g.z; x/ � cz
jxj2

1C jxj2
and

jg.az; x/� g.z; ax/j � cz
.jaj C jaj3/jxj3

.1C jxj2/.1C jaxj2/
conclude the proof of the lemma.

We then have, by Lemma 6.2 that

Z 1

0

e�sds
Z 1

0

jC�.e�tsz/jdt

�
Z 1

0

e�sds
Z 1

0

cz




e�2ts2 C e�ts C
Z

Rd

je�tsxj2
1C je�tsxj2 �.dx/

C
Z

Rd

.e�ts C e�3ts3/jxj3
.1C jxj2/.1C je�tsxj2/�.dx/

�

dt

DW I1 C I2 C I3 C I4:

I1 < 1 and I2 < 1 are trivial. As to I3,

I3 D cz

Z 1

0

e�sds
Z 1

0

dt
Z

Rd

je�tsxj2
1C je�tsxj2 �.dx/

D cz

Z 1

0

e�sds
Z 1

0

dt

�Z

jxj�1
C
Z

jxj>1

� je�tsxj2
1C je�tsxj2 �.dx/;

where

Z 1

0

e�sds
Z 1

0

dt
Z

jxj�1
je�tsxj2

1C je�tsxj2 �.dx/

�
Z 1

0

e�ss2ds
Z 1

0

e�2tdt
Z

jxj�1
jxj2�.dx/ < 1
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and

Z 1

0

e�sds
Z

jxj>1
�.dx/

Z 1

0

je�tsxj2
1C je�tsxj2 dt

D
Z 1

0

e�sds
Z

jxj>1
�.dx/

 Z log jxj

0

C
Z 1

log jxj

!
je�tsxj2

1C je�tsxj2 dt

�
Z 1

0

e�sds
Z

jxj>1

�

log jxj C s2jxj2 1
2

e�2 log jxj
�

�.dx/ < 1:

As to I4, we omit the proof, since the basic ideas are the same as for I3. Equation (24)
is thus proved.

Proof of (2) of Theorem 6.1 We have

C.� ıU /.�/.z/ D
Z 1

0

CU .�/.log.t�1/z/dt D
Z 1

0

dt
Z 1

0

C�.log.t�1/sz/ds

(by Fubini’s theorem)

D
Z 1

0

ds
Z 1

0

C�.log.t�1/sz/dt D
Z 1

0

C� .�/.sz/ds D C.U ı� /.�/.z/:

Proof of (3) of Theorem 6.1 We have

C.G ıU /.�/.z/ D
Z p

�=2

0

CU .�/.g
�.t/z/dt D

Z p
�=2

0

dt
Z 1

0

C�.g
�.t/sz/ds

(by Fubini’s theorem)

D
Z 1

0

ds
Z p

�=2

0

C�.g
�.t/sz/dt D

Z 1

0

CG .�/.sz/ds D C.U ıG /.�/.z/:

Proof of (4) of Theorem 6.1 We first show that U .�/ 2 IDlog.R
d/ if and only if

� 2 IDlog.R
d/. Let � 2 ID.Rd/ and Q� D U .�/. We have

Z

jxj>2
log jxj� Q�.dx/ D

Z 1

0

sds
Z

jxj>2=s
log.sjxj/��.dx/

D
Z

jxj>2
��.dx/

Z 1

2=jxj
.s log s C s log jxj/ ds

DW
Z

jxj>2
h.x/��.dx/;

where h.x/ 
 log jxj as jxj ! 1. Thus,
R

jxj>2 log jxj� Q�.dx/ < 1 if and only if
R

jxj>2 log jxj��.dx/ < 1. Then if � 2 IDlog.R
d/, then using U .�/ 2 IDlog.R

d/, we
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have

C.˚ıU /.�/.z/ D
Z 1

0

CU .�/.e
�tz/dt D

Z 1

0

dt
Z 1

0

C�.se�tz/ds

(by Fubini’s theorem)

D
Z 1

0

ds
Z 1

0

C�.se�tz/dt D
Z 1

0

C˚.�/.sz/ds D C.U ı˚/.�/.z/

For the applicability of Fubini’s theorem above, we have to check that

Z 1

0

ds
Z 1

0

jC�.se�tz/jdt < 1:

By Lemma 6.2, we have

Z 1

0

ds
Z 1

0

jC�.se�tz/jdt �
Z 1

0

ds
Z 1

0

cz

"

e�2ts2 C e�ts C
Z

Rd

je�tsxj2
1C je�tsxj2 �.dx/

C
Z

Rd

.e�ts C e�3ts3/jxj3
.1C jxj2/.1C je�tsxj2/�.dx/

#

dt

DW I1 C I2 C I3 C I4:

I1 < 1 and I2 < 1 are trivial. We have

I3 D
Z 1

0

ds
Z 1

0

dt

�Z

jxj�1
C
Z

jxj>1

� je�tsxj2
1C je�tsxj2 �.dx/;

where
Z 1

0

ds
Z 1

0

dt
Z

jxj�1
je�tsxj2

1C je�tsxj2 �.dx/

�
Z 1

0

s2
Z 1

0

e�2tdt
Z

jxj�1
jxj2�.dx/ < 1;

Z 1

0

ds
Z

jxj>1
�.dx/

Z 1

0

.e�ts C e�3ts3/jxj3
.1C jxj2/.1C je�tsxj2/dt

D
Z 1

0

ds
Z

jxj>1
�.dx/

 Z log jxj

0

C
Z 1

log jxj

!
.e�ts C e�3ts3/jxj3

.1C jxj2/.1C je�tsxj2/dt

�
Z 1

0

ds
Z

jxj>1

�

log jxj C s2jxj2 1
2

e�2 log jxj
�

�.dx/ < 1

I4 can be handled similarly. This completes the proof of (4) of Theorem 6.1.
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The following Proposition 6.3 is a special case of Theorem 3.1 of Sato [75] and
Proposition 6.4 can be proved similarly, but we give a proof of Proposition 6.4 here.

Proposition 6.3 Let

k.s/ D
Z 1

s
ue�udu; s � 0;

and let k�.t/ be its inverse function. Define a mapping K from D.K / into ID.Rd/

by

K .�/ D L

�Z 1

0

k�.t/dX.�/t

�

:

Then D.K / D ID.Rd/ and

� D K ı U D U ı K :

Proposition 6.4 Let

a.s/ D 2

Z 1

s
u2e�u2du; s � 0;

and let a�.t/ be its inverse function. Define a mapping A from D.A / into ID.Rd/

by

A .�/ D L

 Z 
 .3=2/

0

a�.t/dX.�/t

!

: (25)

Then D.A / D ID.Rd/ and

G D A ı U D U ı A :

Proof With respect to the domain of the A -mapping, it is enough to show

Z 
 .3=2/

0

.a�.t//2dt < 1; (26)

but (26) follows from

Z 
 .3=2/

0

.a�.t//2dt D
Z 1

0

u4e�u2du < 1:
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Next applying Proposition 2.6(1), we have

CU .�/.z/ D
Z 1

0

C�.tz/dt;

CG .�/.z/ D
Z p

�=2

0

C�.h
�.t/z/dt

and

CA .�/.z/ D
Z 
 .3=2/

0

C�.a
�.t/z/dt:

Thus,

C.A ıU /.�/.z/ D
Z 
 .3=2/

0

dt
Z 1

0

C�.a
�.t/uz/du

and

C.U ıA /.�/.z/ D
Z 1

0

dt
Z 
 .3=2/

0

C�.ta
�.u/z/du:

If we are allowed to exchange the order of the integrations by Fubini’s theorem, then
we have

C.A ıU /.�/.z/ D C.U ıA /.�/.z/;

implying A ı U D U ı A , and we have

C.A ıU /.�/.z/ D
Z 1

0

du
Z 
 .3=2/

0

C�.a
�.t/uz/dt D 2

Z 1

0

du
Z 1

0

C�.vuz/v2e�v2dv

D 2

Z 1

0

u�3du
Z 1

0

C�.yz/y2e�y2=u2dy

D 2

Z 1

0

C�.yz/y2dy
Z 1

0

u�3e�y2=u2du D 2

Z 1

0

C�.yz/dy
Z 1

y
te�t2dt

D
Z 1

0

C�.yz/e�y2dy D
Z p

�=2

0

C�.h
�.t/z/dt D CG .�/.z/;
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concluding A ı U D G . In order to assure the exchange of the order of the
integrations by Fubini’s theorem, it is enough to show that

Z 1

0

du
Z 1

0

ˇ
ˇC�.uvz/

ˇ
ˇ v2e�v2dv < 1: (27)

For � D �.A;�;�/ 2 ID.Rd/, we have

jC�.z/j � 2�1.trA/jzj2 C j� jjzj C
Z

Rd
jg.z; x/j�.dx/;

where

g.z; x/ D eihz;xi � 1 � ihz; xi.1C jxj2/�1:

Hence

jC�.uvz/j � 2�1.trA/u2v2jzj2 C j� jjujjvjjzj C
Z

Rd
jg.z; uvx/j�.dx/

C
Z

Rd
jg.uvz; x/� g.z; uvx/j�.dx/ DW I1 C I2 C I3 C I4:

The finiteness of
R 1
0

du
R1
0
.I1 C I2/v2e�v2dv is trivial. Noting that jg.z; x/j �

czjxj2.1C jxj2/�1 with a positive constant cz depending on z, we have

Z 1

0

du
Z 1

0

I3v
2e�v2dv

� cz

Z

Rd
�.dx/

Z 1

0

du
Z 1

0

.uvjxj/2
1C .uvjxj/2 v

2e�v2dv

D cz

�Z

jxj�1
�.dx/C

Z

jxj>1
�.dx/

�Z 1

0

du
Z 1

0

.uvjxj/2
1C .uvjxj/2 v

2e�v2dv

DW I31 C I32;

where

I31 � cz

Z

jxj�1
jxj2�.dx/

Z 1

0

u2du
Z 1

0

v4e�v2dv < 1;

I32 � cz

Z

jxj>1
�.dx/

Z 1

0

du
Z 1

0

v2e�v2dv < 1:
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As to I4, note that for a 2 R,

jg.az; x/� g.z; ax/j D jhaz; xijjxj2j1� a2j
.1C jxj2/.1C jaxj2/

� jzjjxj3.jaj C jaj3/
.1C jxj2/.1C jaxj2/ � jzjjxj2.1C jaj2/

2.1C jxj2/ ;

since jbj.1C b2/�1 � 2�1. Then

Z 1

0

du
Z

1

0

I4v
2e�v2dv � 2�1jzj

Z

Rd

jxj2
1C jxj2 �.dx/

Z 1

0

du
Z

1

0

.1C u2v2/ve�vdv < 1:

This completes the proof of (27).

We can give a more general result than Propositions 6.3 and 6.4.

Theorem 6.5 (Maejima and Ueda [53]) Let Xˇ.�/ D L
�

X.�/ˇ

�
; ˇ > 0. Then

for ˛ 2 .�1; 1/[ .1; 2/ and ˇ > 0,

�˛;ˇ D Xˇ ı ˚˛ ı �˛�ˇ;ˇ D Xˇ ı �˛�ˇ;ˇ ı ˚˛:

.Remark that Xˇ.�/ D �ˇ�:/

Proposition 6.3 is the case of Theorem 6.5 with ˛ D �1 and ˇ D 1, since
K D X1 ı ��2;1 D ��2;1, and Proposition 6.4 is the case of Theorem 6.5 with
˛ D �1 and ˇ D 2, since A D X2 ı ��3;2.

7 Nested Subclasses of Classes of Infinitely Divisible
Distributions

As mentioned in Sect. 1 already, once we have mappings in hand, it is natural
to consider the iteration of mappings. In our case, this procedure gives us nested
subclasses of the original class, which, without mapping, was already studied in the
case of selfdecomposable distributions by Urbanik [90] and Sato [70].

7.1 Iteration of Mappings

Let ˚f be a stochastic integral mapping. The iteration ˚m
f is defined by ˚1

f D ˚f

and

˚mC1
f .�/ D ˚f .˚

m
f .�//



34 M. Maejima

with

D.˚mC1
f / D f� 2 D.˚m

f / W ˚m
f .�/ 2 D.˚f /g:

We have

˚mC1
f .D.˚mC1

f // D ˚m
f .˚f .D.˚

mC1
f ///;

implying

˚f .D.˚
mC1
f // � D.˚m

f /;

and

˚mC1
f .D.˚mC1

f // � ˚m
f .D.˚

m
f //:

Therefore, if we write

Kf
m.R

d/ WD ˚m
f .D.˚

m
f //;

Kf
m.R

d/;m D 2; 3; : : : ; are nested subclasses of Kf
1.R

d/ D ˚f .D.˚f //.
With respect to the domain of mappings, if ˚f is a proper stochastic integral

mapping, then D.˚m
f / D ID.Rd/ as mentioned before. For ˚f D ˚ or � , (which is

an improper stochastic integral mapping), we have the following.

Lemma 7.1 We have

(1) D.˚m/ D IDlogm.Rd/,
(2) D.�m/ D IDlogm.Rd/.

Proof

(1) See e.g. Rocha-Arteaga and Sato [67, Theorem 49].
(2) We first show that

� .�/ 2 IDlogm.Rd/ if and only if � 2 IDlogm.Rd/:

Let � 2 ID.Rd/ and Q� D � .�/. We have

Z

jxj>2
logm jxj� Q�.dx/ D

Z 1

0

e�sds
Z

jxj>2=s
logm.sjxj/��.dx/

D
Z

Rd
��.dx/

Z 1

2=jxj
e�s.log s C log jxj/mds

DW
Z

Rd
h.x/��.dx/:

Here h.x/ D o.jxj2/ as jxj # 0 and h.x/ 
 logm jxj as jxj ! 1. Thus,R
jxj>2 logm jxj� Q�.dx/ < 1 if and only if

R
jxj>2 logm jxj��.dx/ < 1. By
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Theorem 6.1(1), we know that �m D ˚m ı � m. Since D.� m/ D ID.Rd/ and
D.˚m/ D IDlogm.Rd/, we have D.�m/ D IDlogm.Rd/.

7.2 Definitions and Some Properties of Nested Subclasses

Put

U0.R
d/ D U.Rd/; B0.R

d/ D B.Rd/; L0.R
d/ D L.Rd/;

T0.R
d/ D T.Rd/; G0.R

d/ D G.Rd/; M0.R
d/ D M.Rd/:

Definition 7.2 For m D 0; 1; 2; : : : , define
Um.R

d/ D U mC1.ID.Rd//,
Bm.R

d/ D � mC1.ID.Rd//,
Lm.R

d/ D ˚mC1.IDlogmC1 .Rd//,
Tm.R

d/ D �mC1.IDlogmC1 .Rd//,
Gm.R

d/ D G mC1.ID.Rd//,
Mm.R

d/ D M mC1.ID.Rd//

and further U1.Rd/ D T1
mD0 Um.R

d/;B1.Rd/ D T1
mD0 Bm.R

d/;L1.Rd/ DT1
mD0 Lm.R

d/, T1.Rd/ D T1
mD0 Tm.R

d/, G1.Rd/ D T1
mD0 Gm.R

d/, M1.Rd/ DT1
mD0 Mm.R

d/.

Distributions in L1.Rd/ are called completely selfdecomposable distributions.
We start with the following.

Definition 7.3 A class H � ID.Rd/ is said to be completely closed in the strong
sense (c.c.s.s.), if the following are satisfied.

(1) It is closed under convolution.
(2) It is closed under weak convergence.
(3) If X is an R

d-valued random variable with L .X/ 2 H, then L .aX C b/ 2 H
for any a > 0 and b 2 R

d.
(4) � 2 H implies �s� 2 H for any s > 0.

Proposition 7.4 (Maejima and Sato [48, Proposition 3.2]) Fix 0 < a < 1.
Suppose that f is square integrable on .0; a/ and

R a
0

f .t/dt ¤ 0. Define a mapping
˚f by

˚f .�/ D L

�Z a

0

f .t/dX.�/t

�

:

Then the following are true.

(1) D.˚f / D ID.Rd/.
(2) If H is c.c.s.s., then ˚f .H/ � H.
(3) If H is c.c.s.s., then ˚f .H/ is also c.c.s.s.
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Remark 7.5

(1) Note that Proposition 7.4 can be applied to � - and G -mappings, because in
those mappings the stochastic integral is proper, f is square integrable andR a
0

f .t/dt ¤ 0. Since ID.Rd/ is c.c.s.s., B.Rd/ and G.Rd/ are c.c.s.s.
(2) Proposition 7.4(3) is not necessarily true when a D 1. Namely, there is a

mapping ˚f defined by ˚f .�/ D L
�R1

0
f .t/dX.�/t

�
such that ˚f .H \ D.˚f //

is not closed under weak convergence for some H which is c.c.s.s. Indeed, the
mapping �˛ with 0 < ˛ < 1 in Theorem 4.2 of Sato [75] serves as an example.

(3) However, it is known that when ˚f D ˚ , Proposition 7.4(2) and (3) are true
with ˚f .H/ replaced by ˚.H \ D.˚//, even if a D 1. See Lemma 4.1 of
Barndorff-Nielsen et al. [12]. In particular, Lm.R

d/ is c.c.s.s. for m D 0; 1; : : :.
(4) We also have that T1.Rd/ is c.c.s.s. (Maejima and Sato [48, Lemma 3.8].)

Theorem 7.6 We have the following.

(1) Bm.R
d/ � Um.R

d/,
(2) Gm.R

d/ � Um.R
d/,

(3) Lm.R
d/ � Um.R

d/,
(4) Tm.R

d/ � Lm.R
d/.

Proof

(1) We know that B0.Rd/ � U0.R
d/. Suppose that Bm.R

d/ � Um.R
d/ for some

m � 0, as the induction hypothesis. Then

BmC1.Rd/ D � mC2.ID.Rd// D � .� mC1.ID.Rd// D � .Bm.R
d//

� � .Um.R
d// D � .U mC1.ID.Rd// D U mC1.� .ID.Rd//

(since � ı U D U ı � (Theorem 6.1(2)))

D U mC1.U .ID.Rd// D UmC1.Rd/:

(2) The same proof as above works if we apply the relation G ı U D U ı G
(Theorem 6.1(3)) instead of � ı U D U ı � .

(3) We know that L0.Rd/ � U0.R
d/. Suppose that Lm.R

d/ � Um.R
d/ for some

m � 0, as the induction hypothesis. Then

LmC1.Rd/ D ˚mC2.IDlogmC2 .Rd// D ˚.˚mC1.IDlogmC2 .Rd///

� ˚.˚mC1.IDlogmC1 .Rd/// D ˚.Lm.R
d/\ IDlog.R

d//

� ˚.Um.R
d/\ IDlog.R

d// D ˚.U mC1.ID.Rd//\ IDlog.R
d//

D ˚.U mC1.IDlog.R
d// D U mC1.˚.IDlog.R

d//

(by ˚ ı U D U ı ˚ (Theorem 6.1 (4)))

D U mC1.L0.Rd// � U mC1.U0.R
d// D UmC1.Rd/:
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(4) We show Tm.R
d/ � Lm.R

d/. We can show that, for any m � 0,

Tm.R
d/ D .˚� /mC1.IDlogmC1 .Rd// D .� mC1˚mC1/.IDlogmC1 .Rd//

D � mC1.Lm.R
d//:

Then by Proposition 7.4(2) and Remark 7.5(3),

� mC1.Lm.R
d// � Lm.R

d/:

The proof is completed.

7.3 Limits of Nested Subclasses

The following is a main result on the limits of nested subclasses.

Theorem 7.7 (Maejima and Sato [48], Aoyama et al. [5]) Let S.Rd/ be the clo-
sure of S.Rd/, where the closure is taken under weak convergence and convolution.
We have

U1.Rd/ D B1.Rd/ D L1.Rd/ D T1.Rd/ D G1.Rd/ D M1.Rd/ D S.Rd/:

To prove this theorem, we start with the following two known results.

Theorem 7.8 (The Class of Completely Selfdecomposable Distributions.
Urbanik [90] and Sato [70]) L1.Rd/ D S.Rd/:

Theorem 7.9 (Jurek [35], See Also Maejima and Sato [48]) U1.Rd/ D
L1.Rd/:

We also have the following two propositions.

Proposition 7.10

T1.Rd/ � U1.Rd/; B1.Rd/ � U1.Rd/ and G1.Rd/ � U1.Rd/:

Proof Trivial from Theorem 7.6.

Proposition 7.11 We have

B1.Rd/ � S.Rd/; G1.Rd/ � S.Rd/ and T1.Rd/ � S.Rd/:

Proof It follows from Remark 7.5(1) that B1.Rd/ and G1.Rd/ are c.c.s.s., and
from Remark 7.5 (4) that T1.Rd/ is also c.c.s.s. Thus, we have

B1.Rd/ D B1.Rd/; G1.Rd/ D G1.Rd/ and T1.Rd/ D T1.Rd/:
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We know that each class includes S.Rd/. Thus,

B1.Rd/ � S.Rd/; G1.Rd/ � S.Rd/ and T1.Rd/ � S.Rd/:

The proof is completed.

Proof of Theorem 7.7 The statement follows from Theorems 7.8 and 7.9 and
Propositions 7.10 and 7.11.

7.4 Limits of the Iterations of Stochastic Integral Mappings

A natural question is whether L1.Rd/ is the only class which can appear as the limit
of iterations of stochastic integral mappings. In this section, we give an answer to
this question. We start with the following.

Theorem 7.12 (A Characterization of L1.Rd/ (Sato [70])) � 2 L1.Rd/ if and
only if � 2 ID.Rd/ and

��.B/ D
Z

.0;2/


 �.d˛/
Z

S

˛.d�/

Z 1

0

1B.r�/r
�˛�1dr; B 2 B.Rd/;

where 
 � is a measure on .0; 2/ satisfying

Z

.0;2/

�
1

˛
C 1

2 � ˛

�


 �.d˛/ < 1

and 
˛ is a probability measure on S for each ˛ and it is measurable in ˛. Here 
 �

is unique and so it can be considered a characteristic of �.

Definition 7.13 For A 2 B..0; 2//, define LA1.Rd/ WD f� 2 L1.Rd/W
 �

..0; 2/ n A/ D 0g:
Theorem 7.14 (Sato [78], Maejima and Ueda [54]) We have

1\

mD1
R.˚m

˛ / D
1\

mD1
R.�m

˛;1/

D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

L1.Rd/; for ˛ 2 .�1; 0�;

L.˛;2/1 .Rd/; for ˛ 2 .0; 1/;n
� 2 L.1;2/1 .Rd/ W the weak mean of � is 0

o
; for ˛ D 1;

n
� 2 L.˛;2/1 .Rd/ W R

Rd x�.dx/ D 0
o
; for ˛ 2 .1; 2/:
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7.5 Characterizations of Some Nested Subclasses

Here we treat three cases, Lm.R
d/, Bm.R

d/ and Gm.R
d/.

Sato [70] characterized the classes Lm.R
d/ in terms of �� as follows. Recall the

functions k� in (11). We call the function h�.u/ defined by h�.u/ D k�.e�u/ the
h-function of �.

Let f be a real-valued function on R. For " > 0; n D 1; 2; : : : ; denote

�n
"f .u/ D

nX

jD0
.�1/n�j

 
n

j

!

f .u C j"/:

Define �0
"f D f . We say that f .u/; u 2 R; is monotone of order n if �j

"f � 0 for
" > 0; j D 0; 1; 2; : : : ; n.

Theorem 7.15 (Sato [70, Theorem 3.2]) Let m D 1; 2; : : :. Then � 2 Lm.R
d/ if

and only if � 2 L.Rd/ and the h-function of � is monotone of order m C 1 for

-a.e. �, where 
 is the measure appearing in (2.3).

Another characterization of Lm.R
d/ in terms of the decomposability is the

following.

Theorem 7.16 (See Sato [70, Theorem 2.1] and Rocha-Arteaga and Sato [67,
Theorem 49]) For m D 1; 2; : : : ;1; � 2 Lm.R

d/ if and only if � 2 L0.Rd/ and
for any b > 1, there exists some �b 2 Lm�1.Rd/ such that (12) is satisfied.

For the characterization of Bm.R
d/, we introduce a sequence of functions

"m.x/;m D 0; 1; 2; : : : : For x � 0, let

"0.x/ D e�x;

"1.x/ D �
Z 1

0

e�x=ud"0.u/ > 0;

� � �

"m.x/ D �
Z 1

0

e�x=ud"m�1.u/ > 0:

We have

Theorem 7.17 (Maejima [43]) Let m D 1; 2; : : :. Then � 2 Bm.R
d/ if and only if

� 2 B0.Rd/ and �� is either 0 or it is expressed as

��.B/ D �
Z 1

0

�0.t
�1B/d"m.t/

for the Lévy measure �0 of some �0 2 ID.Rd/.
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For the characterization of Gm.R
d/, we restrict ourselves to the symmetric

distributions, which is easier. For m 2 N, let �m.x/ be the probability density
function of the product of .m C 1/ independent standard normal random variables.

Theorem 7.18 (Aoyama and Maejima [3]) Let � 2 IDsym.R
d/. Then for each

m 2 N, � 2 Gm.R
d/ if and only if � 2 G0.R

d/ and �� is either 0 or it is expressed
as

��.B/ D
Z 1

�1
�0.u

�1B/�m�1.u/du;

where �0 is the Lévy measure of some �0 2 G0.R
d/.

Another characterization is the following.

Theorem 7.19 (Aoyama and Maejima [3]) Let m 2 N. A � 2 IDsym.R
d/ belongs

to Gm.R
d/ if and only if � 2 G0.R

d/ and �� is either 0 or it is expressed as

��.B/ D
Z

S

.d�/

Z 1

0

1B.r�/gm;� .r
2/dr; B 2 B0.R

d/;

where 
 is a symmetric measure on the unit sphere S on R
d and gm;� .r/ is

represented as

gm;� .s/ D
Z 1

�1
�m�1.

p
sjrj�1/jrj�1g�.r2/dr;

where g�.r/ on .0;1/ is a jointly measurable function such that g� D g�� ; 
� a:e:
for any fixed � 2 S, g�.�/ is completely monotone on .0;1/ and satisfies

Z 1

0

.1 ^ r2/g�.r
2/dr D c 2 .0;1/

with c independent of �.

7.6 Some Nested Subclasses Appearing in Finance

In Carr et al. [19], they discussed the problem of pricing options with Lévy
processes and Sato processes (which are the selfsimilar additive processes) for asset
returns. Then they showed the importance of the distributions in L1.RC/ or L2.RC/,
and also L1.RC/. Actually, some tempered stable distributions belong to L1.Rd/

and L2.Rd/, which will be seen in Sect. 5.4 later, and Rosiński [69] mentioned
that tempered stable processes were introduced in mathematical finance to model
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stochastic volatility (see e.g. CGMY model in Carr et al. [18] discussed in Sect. 7.7
later), and that option pricing based on such processes were considered.

7.7 Nested Subclasses of L.Rd/ with Continuous Parameter

We have discussed nested subclasses Lm.R
d/;m D 1; 2; : : : ; of L.Rd/. Nguyen Van

Thu [91–93] extended Lm.R
d/ to Lp.R

d/ by replacing the integers m by positive real
numbers p > 0. It turns out that his classes Lp.R

d/ are special cases of Lp:˛.R
d/,

recently studied by Sato [77]. For p > 0 and ˛ 2 R, let

jp;˛.s/ D 1


 .p/

Z 1

s
.� log u/p�1u�˛�1du; 0 < s � 1;

and denote its inverse function by j�p;˛.t/. Define

�p;˛ WD ˚j�p;˛ and Lp;˛.R
d/ WD R.�p;˛/:

Then

Lm.R
d/ D LmC1;1.Rd/; m D 1; 2; : : : ;

and the classes Lp.R
d/ by Nguyen Van Thu [91–93] are

Lp.R
d/ D Lp;1.R

d/; p > 0:

For the details of Lp;˛.R
d/, see Sato [77].

Also note that "�̨
;m.t/ in Maejima et al. [57] is the same as j�p;˛.t/ above with

p D m C 1. Hence, Lm;˛.R
d/;m D 1; 2; : : : ; ˛ < 2, in Maejima et al. [57] is the

special case of Lp;˛.R
d/ in Sato [77].

8 Examples (I)

All examples in this section are one-dimensional distributions except in Sect. 8.5,
and we show which classes such known distributions belong to.

8.1 Gamma, �2-, Student t- and F-Distributions

(a) Let 
c;
 be a gamma random variable with parameters c > 0 and 
 > 0.
Namely, P.
c:
 2 B/ D 
c
 .c/�1

R
B\.0;1/

xc�1e�
xdx. (When c D 1, it is
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exponential.) In its Lévy-Khintchine representation, the Gaussian part is 0 and
the Lévy measure is �.dr/ D ce�
rr�11.0;1/.r/dr, (see e.g. Steutel and van
Harn [83, Chap. III, Example 4.8]). Then L .
c;
/ 2 T.RC/, (from the form
of the Lévy measure of L .
c;
//, but L .
c;
/ … L1.RC/, (Maejima et al. [56,
Example 1(i)]).

(b) Let n 2 N and let Z1; : : : ;Zn be independent standard normal random variables.
The distribution of

�2.n/ WD Z21 C � � � C Z2n

is called the �2-distribution with n degrees of freedom. It is known that

L .�2.n// D L .
n=2;1=2/;

and hence L .�2.n// 2 T.RC/.
(c) Let Z be the standard normal random variable and �2.n/ a �2-random variable

with n degrees of freedom and suppose that they are independent. Then the
distribution of

t.n/ WD Z
p
�2.n/=n

(28)

is called Student t-distribution of n degrees of freedom. Its density is

�.dx/ D 1

B.n=2; 1=2/
p

n

�

1C x2

n

��.nC1/=2
dx;

where B.�; �/ is the Beta function. It is known that L .t.n// 2 L.R/, (see Steutel
and van Harn [83, Chap. VI, Theorem 11.15]).

(d) Let �21.n/ and �22.m/ be two independent �2-random variables with n and m
degrees of freedom, respectively. Then the distribution of

F.n;m/ WD �21.n/=n

�22.m/=m
(29)

is called F-distribution, and its density is

�.dx/ D 1

B.n=2;m=2/x

�
nx

nx C m

�n=2 �

1 � nx

nx C m

�m=2

dx; x > 0:

It is known that L .F/ 2 I.RC/, (Ismail and Kelker [27]), and more that
L .F/ 2 T.RC/, (Bondesson [16, Example 4.3.1]).
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8.2 Logarithm of Gamma Random Variable

It is known that �� corresponding to log
c;
 is �1 D 0 and

��1.dr/ D e�cr

r.1 � e�r/
dr; r > 0; (30)

(see e.g. Linnik and Ostrovskii [41, Eq. (2.6.13)]). This does not depend on the
parameter 
 > 0.

(a) L .log
c;
/ 2 L.R/, (Shanbhag and Sreehari [81]). Shanbhag and Sreehari
proved the selfdecomposability by showing (12) without using (30). However,
once we know (30), we can show it by (11) and (30).

(b) L .log
c;
/ 2 L1.R/ if c � 1=2, (Akita and Maejima [1]). It is enough to
apply Theorem 7.15.

(c) L .log
c;
/ 2 L2.R/ if c � 1, (Akita and Maejima [1]). It is enough to apply
Theorem 7.15 again.

(d) L .log
c;1/ 2 T.R/. (See Bondesson [16, p. 112].)

8.3 Symmetrized Gamma Distribution

The symmetrized gamma distribution with parameter c > 0 and 
 > 0, is written
as sym-gamma .c; 
/. Its characteristic function is '.z/ D �


2=.
2 C z2/
	c

and in
its Lévy-Khintchine representation, the Gaussian part is 0 and the Lévy measure is
�.dr/ D cjrj�1e�
jrjdr; .r ¤ 0/. (See Steutel and van Harn [83, Chap. V, Example
6.17].) (When c D 1 it is the Laplace distribution.)

We have

(a) sym-gamma .c; 
/ 2 T.R/, (from the form of the Lévy measure above).

Thus

(b) sym-gamma .c; 
/ 2 G.R/, (see Rosiński [68]).

8.4 More Examples Related to Gamma Random Variables

(a) Product of independent gamma random variables. (Steutel and van Harn [83,
Chap. VI, Theorem 5.20].) Let 
1; 
2; : : : 
n be independent gamma random
variables, and let q1; q2; : : : ; qn 2 R with jqjj � 1. Then

L .

q1
1 


q2
2 � � �
 qn

n / 2 L.RC/:
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(b) When n D 1 above, we can say more. Namely,

L .

q1
1 / 2 T.RC/:

(Thorin [87].)
(c) Power of gamma random variables. (Bosch and Simon [17].) Let 
 be a gamma

random variable and p 2 .�1; 0/. Then L .
 p/ 2 L.RC/. The proof is as
follows: Let

g.u/ D u
 .1 � p.u C 1//


 .1 � pu/
;

and let X D fXtg be the Lévy process such that

E


e�uXt

� D e�ug.u/; u; t � 0:

Then by an application of Proposition 2 of Bertoin and Yor [13] (see Bosch and
Simon [17] for the details), we have


 p dD
Z 1

0

e�Xt dt.DW I/:

Let Ty D infft > 0 W Xt D yg for every y > 0. The fact that Xt ! 1 a.s. as
t ! 1 and the absence of positive jumps assure that Ty < 1 a.s. We thus have

I D
Z Ty

0

e�Xt dt C
Z 1

Ty

e�Xt dt
dD
Z Ty

0

e�Xt dt C e�y
Z 1

0

e�X0

t dt;

where X0 is an independent copy of X and the second equality follows from

the Markov property at Ty. This shows that I satisfies (12), and hence 
 p.
dD I/

is selfdecomposable by (12). We remark here that L .
 p/; p 2 .0; 1/ is not
infinitely divisible. (See Bosch and Simon [17, p. 627].)

(d) Exponential function of gamma random variable. (Bondesson [16, p. 94].) Let
X is denumerable convolution of gamma random variables 
cj;
j with cj � 1.
Then

L .eX/ 2 T.RC/:

(e) Let 
 be a gamma random variable and let a; b 2 R. Then

L .a
 C b
 2/ 2 T.R/:

(Privault and Yang [65].)
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8.5 Tempered Stable Distribution

The tempered stable distributions were defined by Rosiński [69]. Let 0 < ˛ < 2. T˛
is called a tempered ˛-stable random variable on R

d, if L .T˛/ D �.A;�;�/ is such
that A D 0 and �� has polar decomposition

��.B/ D
Z

S

.d�/

Z 1

0

1B.r�/r
�˛�1q�.r/dr; (31)

where q�.r/ is completely monotone in r, measurable in �, and 
.S/ < 1; q�.1/ D
0. Because of the assumption that q�.1/ D 0, q�.r/ cannot be constant, and thus an
˛-stable distribution is not tempered ˛-stable but tempered ˇ.< ˛/-stable.

We have the following. It is easy to see by checking (13) for (a) and Theorem 7.15
for (b)–(d). (See Barndorff-Nielsen et al. [12].)

(a) If 0 < ˛ < 2, then L .T˛/ 2 T.Rd/.
(b) If 1=4 � ˛ < 2, then L .T˛/ 2 L1.Rd/.
(c) If 0 < ˛ < 1=4, and q�.r/ D c.�/e�b.�/r for all � in a set of positive 
-measure,

where c.�/ and b.�/ are positive measurable functions of �, then L .T˛/ …
L1.Rd/.

(d) If 2=3 � ˛ < 2, then L .T˛/ 2 L2.Rd/.

8.6 Limits of Generalized Ornstein-Uhlenbeck Processes
(Exponential Integrals of Lévy Processes)

(a) Let f.Xt;Yt/; t � 0g be a two-dimensional Lévy process. Suppose that fXtg does
not have positive jumps, 0 < EŒX1� < 1 and L .Y1/ 2 IDlog.R/. Then

L

�Z 1

0

e�Xt�dYt

�

2 L.R/:

(Bertoin et al. [15].)
(b) Let fNtg be a Poisson process, and let fYtg be a strictly stable Lévy process or a

Brownian motion with drift. Then

L

�Z 1

0

e�Nt�dYt

�

2 L.R/:

(Kondo et al. [39].)
(c) Let fNtgt�0 be a Poisson process such that EŒN1� < 1. Then

L

�Z 1

0

e�.t�Nt/dt

�

2 L.R/\ L1.R/
c: (32)
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(Lindner and Maejima [40].) The proof of (32) is as follows: Let Xt WD t � Nt and
V WD R1

0
e�Xt dt. For c > 0, let �c WD infft � 0 W Xt D cg. Since Xt ! 1 a.s. as

t ! 1 and fXtg does not have positive jumps, �c < 1 almost surely. Then

V D
Z �c

0

e�Xt dt C
Z 1

�c

e�Xt dt DW Yc C Vc;

where Vc and Yc are independent. We have

Vc D
Z 1

�c

e�.Xt�X�c /e�X�c dt D e�c
Z 1

�c

e�.Xt�X�c /dt:

Denote

V 0
c WD

Z 1

�c

e�.Xt�X�c /dt:

By the strong Markov property, fXt � X�cgt>�c is independent of Yc and has the same
distribution as fXtgt>0. Thus we conclude that for all c > 0

V D Yc C e�cX0
c;

where L .X0
c/ D L .V/. Thus L .V/ 2 L.R/ by (12). But, in order that it is in

L1.R/, it is needed that L .Yc/ 2 L.R/ by Theorem 7.16. This, however, is not the
case. For instance, we have

P

�

Y1 D
Z 1

0

e�tdt

�

� P.Nt does not jump until time 1/ D e�EŒN1� > 0:

This means that Y1 has a point mass at
R 1
0

e�tdt D 1 � e�1, but is not a constant,
namely, L .Y1/ is a non-trivial distribution with a point mass. Recall that any non-
trivial selfdecomposable distribution on R must be absolutely continuous (see e.g.
Sato [73, Theorem 27.13]), and thus L .Y1/ … L.R/. We then conclude that L .V/ …
L1.R/.

8.7 Type S Random Variable

For 0 < ˛ < 2, define X WD V1=˛Z˛ , where V is a positive infinitely divisible
random variable and Z˛ is a symmetric ˛-stable random variable on R, and where
V and Z˛ are independent. We call X the type S random variable.

Here we explain subordination of Lévy processes.
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Theorem 8.1 (Sato [73, Theorem 30.1]) Let fVt; t � 0g be a subordinator (a
nondecreasing Lévy process on R) and let fZt; t � 0g be a Lévy process on R

d,
independent of fVtg. Then Xt WD ZVt is a Lévy process on R

d, and L .Xt/ 2 ID.Rd/.

The transformation of fZtg to fXtg is called subordination by the subordinator fVtg.

Theorem 8.2 Let fVt; t � 0g be a subordinator and let fZ˛.t/g be a symmetric
˛.2 .0; 2�/-stable Lévy process on R, independent of fVtg. Then if we write V D V1,

Z˛.V/
dD V1=˛Z˛: (33)

Thus, L .V1=˛Z˛/ 2 ID.R/, implying that type S random variables are infinitely
divisible.

Proof We compare the characteristic functions on both sides of (33). Note that
EŒeizZ˛ � D expf�cjzj˛g with some c > 0, and for the Lévy process fXtg, EŒeizXt � D�
EŒeizX1 �

	t
. We then have

E Œexp fizZ˛.V/g� D EV Œexp f�cVjzj˛g�

and

E


exp

˚
izV1=˛Z˛

�� D EV


exp

˚�cjV1=˛zj˛�� ;

implying that both sides of (33) are equal in law.

Notice that a symmetric stable random variable is of type G. For, we can check,
by the characteristic functions,

Z˛
dD .ZC

˛=2/
1=2Z2; (34)

where ZC
˛=2 is a positive ˛=2-stable random variable.

Theorem 8.3 Type S random variables are of type G.

Proof By (34), we have

V1=˛Z˛
dD V1=˛.ZC

˛=2/
1=2Z2 D .V2=˛ZC

˛=2/
1=2Z2:

It remains to show that L .V2=˛ZC
˛=2/ 2 I.RC/, but this can be shown in the same

way as in the proof of (33), completing the proof.

(a) If V
dD 
1;
, then L .Z˛.V// 2 G .T.R// � T.R/. (See Bondesson [16, p. 38].)

(b) Let 
 > 0 and fBtg a standard Brownian motion, and let fZtg be a symmetric
stable Lévy process. Then

R1
0

e�Bt�
tdZt is of type S. (See Maejima and
Niiyama [45], Aoyama et al. [4] and Kondo et al. [39].)
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8.8 Convolution of Symmetric Stable Distributions of Different
Indexes

The characteristic function of the convolution of symmetric stable distributions of

different indexes is '.z/ D exp
nR
.0;2/

�jzj˛m.d˛/
o
, where m is a measure on the

interval .0; 2/. It belongs to L1.R/. (See e.g. Sato [67].)

8.9 Product of Independent Standard Normal Random
Variables

Let Z1;Z2; : : : be independent standard normal random variables.

(a) L .Z1Z2/ 2 T.R/. This is because L .Z1Z2/ D L .sym-gamma.1=2; 1//, (see
Steutel and van Harn [83, p. 504]),

(b) (Maejima and Rosiński [46, Example 5.1].) L .Z1 � � � Zn/ 2 G.R/; n � 2. The
proof is as follows: Recall that if V > 0;L .V/ 2 I.R/;Z is the standard normal
random variable and V and Z are independent, then � D L .V1=2Z/ 2 G.R/.
Here we need a lemma.

Lemma 8.4 (Shanbhag and Sreehari [81, Corollary 4]) Let Z be the standard
normal random variable and Y a positive random variable independent of Z. Then
jZjpY is infinitely divisible for any p � 2.

We have Z1 � � � Zn
dD Z1jZ2 � � � Znj and jZ2 � � � Znj2 is infinitely divisible by

Lemma 8.4, which implies that L .Z1 � � � Zn/ 2 G.R/; n � 2.

(c) When n D 2, we can say more, namely, L .Z1Z2/ 2 G1.R/. (For the proof, see
Maejima and Rosiński [46, Example 5.2].)

9 Examples (II)

In this section, we list examples of distributions in the classes L.R/;B.R/;T.R/ and
G.R/, in addition to what we have explained in the previous section.

9.1 Examples in L.R/

There are many examples in L.R/. The following are some of them.

(a) Let Z be the standard normal random variable, t.n/ Student’s t-random variable
and let F.n;m/ be F-random variable. Then (i) L .log jZj/ 2 L.R/, (ii)
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L .log jtj/ 2 L.R/ and (iii) L .log F/ 2 L.R/. (Shanbhag and Sreehari [81].)
These follow from the following facts:

(i) Since jZj2 dD �2.1/, log jZj dD 1
2

log�2.1/.
(ii) By (28),

log jt.n/j dD log jZj � 1

2
log
n=2;1=2 C 1

2
log n;

where Z and 
n=2;1=2 are independent.
(iii) By (29),

log F.n;m/
dD log
n=2;1=2 � log
m=2;1=2 � log n C log m;

where 
n=2;1=2 and 
m=2;1=2 are independent.

(b) Let E have a standard exponential random variable. Consider X
dD � log E.

Then the distribution function G1 of X is G1.x/ D e�e�x
; x 2 R, called Gumbel

distribution. (See Steutel and van Harn [83, Chap. IV, Example 11.1].) By
Sect. 5.2(a), L .X/ 2 L.R/. Also G2.x/ D 1�e�ex

; x 2 R, is selfdecomposable,
because G2.x/ D 1� G1.�x/ and so G2 D L .�X/.

(c) Let Y be a beta random variable. Then L
�
log Y.1 � Y/�1

	 2 L.R/. (Barndorff-
Nielsen et al. [11].)

9.2 Examples in L1.RC/

The following is Maejima et al. [56, Example 1(ii)]. Let � 2 ID.RC/ be such that
kC1.r/ in (11) is cx�˛e�ar; r > 0 with a; c > 0 and 0 < ˛ < 2. Then � 2 L1.RC/.
It is enough to apply Theorem 7.15.

9.3 Examples in B.R/

(a) (Bondesson [16, p. 143].) Let fYjg be i.i.d. exponential random variables and
N a Poisson random variable independent of fYjg. Put X D PN

jD1 Yj. Then
L .X/ 2 B.RC/.

(b) (Bondesson [16, pp. 143–144].) Let Y D Y.˛; ˇ/ be a beta random variable
with parameters ˛ and ˇ and let X D � log Y. Then

(b1) L .X/ 2 B.RC/.
(b2) L .X/ 2 L.RC/ if and only if 2˛ C ˇ � 1.
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9.4 Examples in G.R/

More examples of distributions in G.R/ are the following by Fukuyama and
Takahashi [22]. Let .Œ0; 1�;B; 
/ be the Lebesgue probability space with Lebesgue
measure 
. For any � 2 G.R/\ IDsym.R/, there exist fajg, An.! 1/ and fˇjg � R

such that

1

An

nX

jD1
aj cos

�
2�j.! C ˇj/

	
; ! 2 Œ0; 1�;

converges weakly to � on the Lebesgue probability space.

9.5 Examples in T.R/

There are many examples in T.R/. (See e.g. Bondesson [16].) The following are
some of them.

(a) (Log-normal distribution.) Let Z be the standard normal random variable and
put X D eZ . The distribution of X is called the log-normal distribution, and its
density is

�.dx/ D 1p
2�

1

x
exp

�

�1
2
.log x/2

�

1.0;1/.x/dx:

The log-normal distribution belongs to T.RC/. (See Steutel and van Harn [83,
Chap. VI, Theorems 5.18 and 5.21].)

(b) (Pareto distribution.) Let 
1;1 and 
c;1; c > 0 be two independent gamma
random variables and put X D 
1;1=
c;1. Then its density is

�.dx/ D 1

B.1; c/

�
1

1C x

�1Cc

1.0;1/.x/dx;

and the corresponding distribution is called the Pareto distribution and belongs
to T.R/. (See Steutel and van Harn [83, Chap. VI, Example 12.9 and Theorems
5.18 and 5.19(ii)].)

(c) Generalized inverse Gaussian distributions belong to T.R/. (See e.g. Bondes-
son [16, Example 4.3.2].)

(d) Let X˛ be a positive ˛-stable random variable with 0 < ˛ < 1. Then
L .log X˛/ 2 T.R/. (See Bondesson [16, Example 7.2.5].)

(e) (Lévy ’s stochastic area X of the two-dimensional Brownian motion. See e.g.
Sato [73, Example 15.15].) The density of X is f .x/ D .� cosh x/�1 and k˙1.r/
in (11) is j2 sinh rj�1. Since j2 sinh rj�1 is completely monotone in r 2 .0;1/,
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we have L .X/ 2 T.RC/. This distribution �1 with a bit different scaling (the
density is f1.x/ D .2� cosh 1

2
x/�1) is called the hyperbolic cosine distribution,

(see e.g. Steutel and van Harn [83, p. 505], for this and below). It is also known
that �1 is L .log.Y=Z// with independent Y and Z both of which are 
1=2;1. The
distribution �2 with density f2.x/ D .2�2 sinh 1

2
x/�1x is called hyperbolic sine

distribution. It is known that �2 is L .Y C Z/ with independent Y and Z both of
which are distributed as hyperbolic cosine distribution. k�.r/ is j sinh rj�1 up to
scaling, and thus also �2 2 T.RC/.

9.6 Examples in T.R/ \ L1.R/c (Revisited)

(a) L .
c;
/: (Section 8.1.)
(b) L .T˛/ if 0 < ˛ < 1=4 and q�.r/ D c.�/e�b.�/r for all � in a set of

positive 
-measure, where c.�/ and b.�/ are positive measurable functions of
�. (Section 8.5, (a) and (c).)

10 Examples (III)

The class of GGCs, which is the Thorin class, is generating renewed interest, since
many examples have recently appeared in quite different problems. We explain some
of them below.

10.1 The Rosenblatt Process and the Rosenblatt Distribution

Let 0 < D < 1=2. The Rosenblatt process is defined, for t � 0, as

ZD.t/ DC.D/
Z 0

R2

�Z t

0

.u � s1/
�.1CD/=2
C .u � s2/

�.1CD/=2
C du

�

dBs1dBs2 ;

where fBs; s 2 Rg is a standard Brownian motion,
R 0
R2

is the Wiener-Itô multiple
integral on R

2 and C.D/ is a normalizing constant. The distribution of ZD.1/ is
called the Rosenblatt distribution.

The Rosenblatt process is H-selfsimilar with H D 1 � D and has stationary
increments. The Rosenblatt process lives in the so-called second Wiener chaos.
Consequently, it is not a Gaussian process.

In the last few years, this stochastic process has been the object of several
papers. (See Pipiras and Taqqu [64], Tudor [88], Tudor and Viens [89], Veillette
and Taqqu [94] among others.)
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Let

HD D
n
h W h is a complex-valued function onR; h.x/ D h.�x/;
Z

R

jh.x/j2jxjD�1dx < 1
o

and for every t � 0 define an integral operator At by

Ath.x/ D C.D/
Z 1

�1
eit.x�y/�1

i.x � y/
h.y/jyjD�1dy; h 2 HD:

Since At is a self-adjoint Hilbert-Schmidt operator (see Dobrushin and Major [20]),
all eigenvalues 
n.t/; n D 1; 2; : : : ; are real and satisfy

P1
nD1 
2n.t/ < 1.

We start with the following.

Theorem 10.1 (Maejima and Tudor [49]) For every t1; : : : ; td � 0,

.ZD.t1/; : : : ;ZD.td//
dD
 1X

nD1

n.t1/."

2
n � 1/; : : : ;

1X

nD1

n.td/."

2
n � 1/

!

;

where f"ng are i.i.d. standard normal random variables.

The case d D 1 was shown by Taqqu (see Proposition 2 of Dobrushin and
Major [20]). The proof is enough to extend the idea of Taqqu from one dimension
to multi-dimensions.

Theorem 10.2 (Maejima and Tudor [49]) For every t1; : : : ; td � 0, the law of
.ZD.t1/; : : : ;ZD.td// belongs to T.Rd/.

Proof By Theorem 10.1,

.ZD.t1/; : : : ;ZD.td//
dD
 1X

nD1

n.t1/."

2
n � 1/; : : : ;

1X

nD1

n.td/."

2
n � 1/

!

D
1X

nD1
"2n.
n.t1/; : : : ; 
n.td// �

 1X

nD1

n.t1/; : : : ;

1X

nD1

n.td/

!

;

where "2n.
n.t1/; : : : ; 
n.td//; n D 1; 2; : : : ; are the elementary gamma random
variables in R

d. Since they are independent and since the class T.Rd/

is closed under convolution and weak convergence, we see that the law
of

P1
nD1 "2n.
n.t1/; : : : ; 
n.td// belongs to T.Rd/, and so does the law of

.ZD.t1/; : : : ;ZD.td//. This completes the proof.
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In general, let IB
2 .f / be a double Wiener-Itô integral with respect to standard

Brownian motion B, where f 2 L2sym.R
2C/. Then we have a more general result as

follows:

Proposition 10.3

IB
2 .f /

dD
1X

nD1

n.f /."

2
n � 1/;

where the series converges in L2.˝/ and almost surely. Also

O�IB
2 .f /
.z/ D exp

(
1

2

Z

R
C

.eizx � 1 � izx/
1

x

 1X

nD1
e�x=
n

!

dx

)

:

Thus L
�
IB
2 .f //

	 2 T.R/.

(For the proof, see e.g. Nourdin and Peccati [60].)
The Rosenblatt distribution is represented by double Wiener-Itô integrals. How-

ever, we have seen that it belongs to the Thorin class T.R/. The distributions in T.R/
have several stochastic integral representations with respect to Lévy processes. Here
we take one example. We regard them as members of the class of selfdecomposable
distributions, which is a larger class than the Thorin class. This allows us to obtain
a new result related to the Rosenblatt distribution.

The following is known. (Aoyama et al. [6, Corollary 2.1].) If f
t;
; t � 0g is a
gamma process with parameter 
 > 0, fN.t/; t � 0g is a Poisson process with unit
rate and they are independent, then for any c > 0; 
 > 0,


c;

dD
Z 1

0

e�td
N.ct/;
:

Let

Yt D 
N.t=2/;1=2 � t:

Note that fYt; t � 0g is a Lévy process. Then we have

"2n � 1
dD 


.n/
1=2;1=2 � 1

dD
Z 1

0

e�tdY.n/t ;

where 
 .n/
1=2;1=2 and fY.n/t g are independent copies of 
1=2;1=2 and fYtg, respectively.

Thus

ZD
dD
Z 1

0

e�td

 1X

nD1

nY.n/t

!

DW
Z 1

0

e�tdZt:
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Remark 10.4
P1

nD1 
nY.n/t is convergent a.s. and in L2 because

1X

nD1
E


�

nY.n/t

�2
�

D E


Y2t
� 1X

nD1

2n < 1:

Remark 10.5 Since fY.n/t g; n D 1; 2; : : : ; are independent and identically dis-
tributed Lévy processes, their infinite weighted sum fZtg is a Lévy process.

We thus finally have the following theorem.

Theorem 10.6 (Maejima and Tudor [49])

ZD
dD
Z 1

0

e�tdZt;

where fZtg is a Lévy process in Remark 10.5.

10.2 The Duration of Bessel Excursions Straddling
Independent Exponential Times

This section is from Bertoin et al. [14].
Let fRt; t � 0g be a Bessel process with R0 D 0, with dimension d D 2.1 � ˛/,

(0 < ˛ < 1, equivalently 0 < d < 2). When ˛ D 1=2, fRtg is a Brownian motion.
Let

g.˛/t WD supfs � t W Rs D 0g;
d.˛/t WD inffs � t W Rs D 0g

and

�
.˛/
t WD d.˛/t � g.˛/t ;

which is the length of the excursion above 0, straddling t, for the process fRu; u � 0g,
and let " be a standard exponential random variable independent of fRu; u � 0g. Let
�˛ WD �

.˛/
" , which is the duration of Bessel excursions straddling independent

exponential times.

Theorem 10.7 L .�˛/ 2 T.RC/.

The idea of the proof is the following. They showed that

E


e�s�˛

� D exp

�

�.1 � ˛/
Z 1

0

.1 � e�sx/
EŒe�xG˛ �

x
dx

�

; s > 0;



Classes of Infinitely Divisible Distributions and Examples 55

with a nonnegative random variable G˛ on Œ0; 1�. (The density function of G˛ is
explicitly given.) Since k.x/ WD EŒe�xG˛ � is completely monotone by Bernstein’s
theorem (Proposition 3.2), the statement of the theorem follows from (13).

10.3 Continuous State Branching Processes with Immigration

We start with some general theory on GGCs. Any GGC � 2 T.RC/ has the Laplace
transform:

�.s/ WD
Z 1

0

e�sx�.dx/ D exp

�

��s �
Z 1

0

.1 � e�sx/
k.x/

x
dx

�

; s > 0;

where � � 0,
R1
0

.1^x/
x k.x/dx < 1 and k.x/ is completely monotone on .0;1/. By

Bernstein’s theorem (Proposition 3.2), there exists a positive measure 	 such that

k.x/ D
Z 1

0

e�xy	.dy/:

We call this 	 the Thorin measure, (see James et al. [28, Sect. 1.2.b]). Therefore,
� 2 T.RC/ can be parameterized by the pair .�; 	/. Recall

�.s/ D exp

�

��s �
Z 1

0

.1 � e�sx/
1

x

�Z 1

0

e�xy	.dy/

�

dx

�

; s > 0:

The integrability condition for the Lévy measure � of GGC is, in terms of 	 , turned
out to be

Z 1

0

log

�

1C s

y

�

	.dy/ < 1 for all s > 0;

(see James et al. [28, Eq. (3)]) which is equivalent to

Z

.0;1=2�

j log yj	.dy/C
Z

.1=2;1/

1

y
	.dy/ < 1:

The following is from Handa [24]. Consider continuous state branching pro-
cesses with immigration (CBCI-process, in short) with quadruplet .a; b; �; ı/ having
the generator

Lı f .x/ D axf 00.x/� bxf 0.x/C x
Z 1

0

Œf .x C y/� f .x/ � yf 0.x/��.dy/C ıf 0.x/;

where � is a measure on .0;1/ satisfying
R1
0
.y ^ y2/�.dy/ < 1.
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Theorem 10.8 Let � � 0 and suppose that 	 is a non-zero Thorin measure.

(1) There exist .a; b;M/ such that

� C
Z

1

s C u
	.du/ D 1

a
s C b C

Z
s

s C u
M.du/; s > 0:

(2) Any GGC with pair (�; 	) is a unique stationary solution of the CBCI-process
with quadruplet .a; b; �; 1/, where � is a measure on .0;1/ defined by

�.dy/ D
�Z 1

0

u2e�yuM.du/

�

dy:

10.4 Lévy Density of Inverse Local Time of Some Diffusion
Processes

This section is from Takemura and Tomisaki [84].

Example 10.9 (Also, Shilling et al. [80, p. 201]) Let I D .0;1/ and �1 < p < 0.
Let G .p/ D 1

2
d2

dx2
C 2pC1

2x
d
dx . Assume 0 is reflecting. Let D.p/ be the diffusion process

on I with the generator G .p/ and `.p/ the Lévy density of the inverse local time at 0
for D.p/. Then we have `.p/.x/ D C 1

x x�jpj, which is the Lévy density of a GGC.

Example 10.10 Let I D .0;1/ and �1 < p < 0. Let D.p/ be the diffusion process
with the generator G .p/ D 2x d2

dx2
C .2p C 2/ d

dx and suppose that the end point 0
is reflecting. If `.p/ is the Lévy density of the inverse local time at 0 for D.p/, then
`.p/.x/ D C 1

x x�jpj, which is again the Lévy density of a GGC.

Example 10.11 Let �1 < p < 1 and ˇ > 0. Let

G .p;ˇ/ D 1

2

d2

dx2
C
(
1

2x
C
p
2ˇ

K0
p.
p
2ˇx/

Kp.
p
2ˇx/

)
d

dx
;

where Kp.x/ is the modified Bessel function and, let D.p;ˇ/ be the diffusion process
on I with the generator G .p;ˇ/. Suppose that the end point 0 is reflecting. Then `.p;ˇ/,
the Lévy density of the inverse local time at 0 for D.p;ˇ/, satisfies

`.p;ˇ/.x/ D C
1

x
x�jpje�ˇx;

which is the Lévy density of a GGC. (When p D 0, Shilling et al. [80, p. 202].)
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Example 10.12 Let �1 < p < 1 and ˇ > 0. Let

G .p;ˇ/ D 2x
d2

dx2
C 2

(

1Cp
2ˇx

K0
p.
p
2ˇx/

Kp.
p
2ˇx/

)
d

dx
:

If D.p;ˇ/ is the diffusion process with the generator G .p;ˇ/ and the end point 0 is
reflecting, then `.p;ˇ/, the Lévy density of the inverse local time at 0 for D.p;ˇ/, is
`.p;ˇ/.x/ D C 1

x x�jpje�ˇx, which is a GGC.

10.5 GGCs in Finance

Lévy processes play an important role in asset modeling, and among others a typical
pure jump Lévy process is a subordination of Brownian motion. One of them is the
variance-gamma process fYtg by Madan and Seneta [42], which is a time-changed
Brownian motion B D fBtg on R subordinated by the gamma process 
 D f
 .t/g;
namely

Yt D B
 .t/; (35)

where the gamma process f
 .t/g is a Lévy process on R such that L .
 .1// is the
distribution of a gamma random variable 
1;
. This is a special case of Example 30.8
of Sato [73], where B is a general Lévy process on R

d, and when B is the standard
Brownian motion on R, for z 2 R,

E


eizYt

� D
�





C z2

�t

:

This is sym-gamma .t;
p

/ in Sect. 5.3.

The variance-gamma processes, which are studied in finance, are generalized
to the variance-GGC process. The variance-GGC process is fYtg in (35) with the
replacement of the gamma process 
 by the GGC process Q
 D f Q
tg, which is a
Lévy process on R such that L . Q
1/ is a GGC. The following is known.

Proposition 10.13 (Privault and Yang [66]) Let B is a Brownian motion with drift
and Yt D B Q
t

. Then Yt is decomposed as Yt D Ut � Wt, where fUtg and fWtg are
two independent GGC process, and thus L .Yt/ 2 T.R/.

The next example is the so-called CGMY model (Carr et al. [18]). It is EGGC
with the Lévy density r�1k�.r/ and

k�.r/ D
(

Ce�Grr�1�Y ; for � D �1;
Ce�Mrr�1�Y ; for � D C1:
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where C > 0;G;M � 0;Y < 2. The case Y D 0 is the special case of the variance
gamma model. This model has been used as a new model for asset returns, which, in
contrast to standard models like Black-Scholes model, allows for jump components
displaying finite or infinite activity and variation.

11 Examples of ˛-Selfdecomposable Distributions

In this section, we give two examples of ˛-selfdecomposable distributions. The first
one is two-dimensional.

11.1 The First Example

Many examples in Lh0i.R/ D L.R/ are known as selfdecomposable distributions,
but we have less examples of distributions in Lh˛i.Rd/; ˛ ¤ 0: In this section, we
give an example in Lh�2i.R2/. This section is from Maejima and Ueda [51].

Let .Z1;Z2/ be a bivariate Gaussian random variable, where Z1 and Z2 are
standard Gaussian random variables with correlation coefficient 	 2 .�1; 1/. Define
a bivariate gamma random variable by W D .Z21 ;Z

2
2/. Our concerns are whether W

is selfdecomposable or not and if not, which class its distribution belongs to.

Theorem 11.1 Suppose 	 ¤ 0. Then

L .W/

(
2 Lh˛i.R2/ for all ˛ � �2;
… Lh˛i.R2/ for all ˛ > �2:

Remark 11.2 This is an example showing that Lh˛i.R2/ is not right-continuous in ˛
at ˛ D �2, namely

Lh�2i.R2/ ©
[

ˇ>�2
Lhˇi.R2/:

Proof of Theorem 11.1 Let W WD 1
2
.W1 C W2/, where W1;W2 are indepen-

dent copies of W. Note that W is ˛-selfdecomposable if and only if W is
˛-selfdecomposable. Vere-Jones [95] gave the form of the moment generating
function of W. Then we can see that the Lévy measure � of W is

�.B/ D
Z

S

.d�/

Z 1

0

1B.r�/
1

r.�2/C1
`�.r/dr;
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where

`�.r/ D j	 j
r.1 � 	2/

p
cos � sin �

exp

�

�cos � C sin �

1� 	2
r

�

I1

 
2j	 jpcos � sin �

1 � 	2 r

!

;

.� D .cos �; sin �/; � 2 .0; �=2//;

where I1.�/ is the modified Bessel function of the first kind. To show L .W/ 2
Lh�2i.R2/, it is enough to check that `�.r/; r > 0 is nonincreasing, which is proved
in Maejima and Ueda [51].

To see that L .W/ … Lh˛i.R2/; ˛ > �2, it is enough to check that for any ˇ >
0; rˇ`�.r/; r > 0 is “not” nonincreasing, which is easily shown.

11.2 The Second Example

This section is from Maejima and Ueda [55].

Remark 11.3

L .
c;
/

(
2 Lh0i.R/;
… Lh˛i.R/; ˛ > 0:

Thus, Lh˛i.R/ is not right-continuous at ˛ D 0.

Consider L .log
c;
/. It is known that L .log
c;
/ 2 L.R/ D Lh0i.R/ (Sect. 5.2
(a)). Let

h.˛I r/ WD ˛

r
� e�r

1 � er
; r > 0;

k.r/ WD r2e�r

.1 � e�r/2
; r > 0:

Write the solution of k.r/ D ˛ by r D r˛ . Let

A1 D f.c; ˛/ 2 .0;1/ � R W 0 < ˛ < 1; c � h.˛I r˛/g

and

A2 D f.c; ˛/ 2 .0;1/ � R W ˛ D 1; c � 1

2
g:
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Theorem 11.4

L .log
c;
/

(
2 Lh˛i.R/; if .c; ˛/ 2 ..0;1/ � .�1; 0�/ [ A1 [ A2;

… Lh˛i.R/; if .c; ˛/ … ..0;1/ � .�1; 0�/ [ A1 [ A2:

Proof As we have seen in (30) in Sect. 5.2, ��1 of log
c;
 is ��1.dr/ D
e�cr

r.1�e�r/
dr; r > 0. Thus

��1.dr/ D 1

r˛C1 � r˛e�cr

1 � e�r
dr DW 1

r˛C1 `c;˛.r/dr

and it is enough to check the monotonicity or non-monotonicity of `c;˛.r/; r > 0,
depending on .c; ˛/. (For the details of the proof, see Maejima and Ueda [55].)

Corollary 11.5 Lh˛i.R/ is not right-continuous at ˛ 2 .0; 1�.
Remark 11.6

(i) For any c > 0; L .log
c;
/ … Lh˛i.R/; ˛ > 1.
(ii) Let E be an exponential random variable. Then

L .log E/

(
2 Lh1i.R/;
… Lh˛i.R/; ˛ > 1:

(iii) Let Z be a standard normal random variable. Then

L .log jZj/
(

2 Lh1i.R/;
… Lh˛i.R/; ˛ > 1;

since Z2
dD 
1=2;1=2.

12 Fixed Points of Stochastic Integral Mappings: A New
Sight of S.Rd/ and Related Topics

Following Jurek and Vervaat [38], Jurek [31] and Jurek [32], we define a fixed point
� under a mapping ˚f as follows.

Definition 12.1 � 2 D.˚f / is called a fixed point under the mapping ˚f , if there
exist a > 0 and c 2 R

d such that

˚f .�/ D �a� 	 ıc: (36)

Remark 12.2 Given a mapping ˚f , the natural definition of its fixed point may be
� satisfying ˚f .�/ D �. However, if we restrict ourselves to the mapping ˚˛
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for instance, only the Cauchy distribution satisfies ˚˛.�/ D �. Then what is the
meaning of (36)? We know that � 2 ID.Rd/ determines a Lévy process fXtg such
that � D L .X1/, and �a� 	ıc D L .Xa Cc/. Therefore, (36) means that some Lévy
process is a “fixed point” in some sense.

We consider here only ˚˛. The set of all fixed points under the mapping ˚˛ is
denoted by FP.˚˛/. For 0 < p � 2, let Sp.R

d/ be the class of all p-stable
distributions on R

d and thus S.Rd/ D S
0<p�2 Sp.R

d/. Furthermore, for 1 < p � 2,
let S0p.R

d/ be the class of p-stable distributions on R
d with mean 0.

Theorem 12.3 We have

FP.˚˛/ D

8
ˆ̂
<

ˆ̂
:

S.Rd/; when ˛ � 0;
S

p2.˛;2� Sp.R
d/; when 0 < ˛ < 1;

S
p2.˛;2� S0p.Rd/; when 1 � ˛ < 2:

Remark 12.4 Theorem 12.3 for ˛ � 0 was already proved in Jurek and Ver-
vaat [38], Jurek [31] and Jurek [32] even in a general setting of a real separable
Banach space. The case for 0 < ˛ < 2 is by Ichifuji et al. [25]. One meaning of this
theorem is to give new characterizations of the classes S.Rd/,

S
p2.˛;2� Sp.R

d/ with
0 < ˛ < 1 and

S
p2.˛;2� S0p.Rd/ with 1 � ˛ < 2.

Acknowledgements I would like to express my sincere gratitude to people who collaborated on
the papers cited in this article, Ole E. Barndorff-Nielsen, Alexander Lindner, Muneya Matsui,
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