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Preface to the Series Lévy Matters

Over the past 10–15 years, we have seen a revival of general Lévy processes theory
as well as a burst of new applications. In the past, Brownian motion or the Poisson
process had been considered as appropriate models for most applications. Nowa-
days, the need for more realistic modelling of irregular behaviour of phenomena in
nature and society such as jumps, bursts and extremes has led to a renaissance of the
theory of general Lévy processes. Theoretical and applied researchers in fields as
diverse as quantum theory, statistical physics, meteorology, seismology, statistics,
insurance, finance and telecommunication have realized the enormous flexibility
of Lévy models in modelling jumps, tails, dependence and sample path behaviour.
Lévy processes or Lévy-driven processes feature slow or rapid structural breaks,
extremal behaviour, clustering and clumping of points.

Tools and techniques from related but distinct mathematical fields, such as
point processes, stochastic integration, probability theory in abstract spaces and
differential geometry, have contributed to a better understanding of Lévy jump
processes.

As in many other fields, the enormous power of modern computers has also
changed the view of Lévy processes. Simulation methods for paths of Lévy
processes and realizations of their functionals have been developed. Monte Carlo
simulation makes it possible to determine the distribution of functionals of sample
paths of Lévy processes to a high level of accuracy.

This development of Lévy processes was accompanied and triggered by a series
of Conferences on Lévy Processes: Theory and Applications. The first and second
conferences were held in Aarhus (1999, 2002, respectively), the third in Paris
(2003), the fourth in Manchester (2005) and the fifth in Copenhagen (2007).
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vi Preface to the Series Lévy Matters

To show the broad spectrum of these conferences, the following topics are taken
from the announcement of the Copenhagen conference:

• Structural results for Lévy processes: distribution and path properties
• Lévy trees, superprocesses and branching theory
• Fractal processes and fractal phenomena
• Stable and infinitely divisible processes and distributions
• Applications in finance, physics, biosciences and telecommunications
• Lévy processes on abstract structures
• Statistical, numerical and simulation aspects of Lévy processes
• Lévy and stable random fields

At the Conference on Lévy Processes: Theory and Applications in Copenhagen,
the idea was born to start a series of Lecture Notes on Lévy processes to bear witness
of the exciting recent advances in the area of Lévy processes and their applications.
Its goal is the dissemination of important developments in theory and applications.
Each volume will describe state-of-the-art results of this rapidly evolving subject
with special emphasis on the non-Brownian world. Leading experts will present
new exciting fields, or surveys of recent developments, or focus on some of the
most promising applications. Despite its special character, each article is written
in an expository style, normally with an extensive bibliography at the end. In this
way, each article makes an invaluable comprehensive reference text. The intended
audience are PhD and postdoctoral students, or researchers, who want to learn about
recent advances in the theory of Lévy processes and to get an overview of new
applications in different fields.

Now, with the field in full flourish and with future interest definitely increasing,
it seemed reasonable to start a series of Lecture Notes in this area, whose individual
volumes will appear over time under the common name “Lévy Matters”, in tune
with the developments in the field. “Lévy Matters” appears as a subseries of the
Springer Lecture Notes in Mathematics, thus ensuring wide dissemination of the
scientific material. The mainly expository articles should reflect the broadness of
the area of Lévy processes.

We take the possibility to acknowledge the very positive collaboration with the
relevant Springer staff and the editors of the LN series and the (anonymous) referees
of the articles.

We hope that the readers of “Lévy Matters” enjoy learning about the high
potential of Lévy processes in theory and applications. Researchers with ideas for
contributions to further volumes in the Lévy Matters series are invited to contact any
of the editors with proposals or suggestions.

Aarhus, Denmark Ole E. Barndorff-Nielsen
Paris, France Jean Bertoin
Paris, France Jean Jacod
Munich, Germany Claudia Küppelberg
June 2010



A Short Biography of Paul Lévy

A volume of the series “Lévy Matters” would not be complete without a short sketch
about the life and mathematical achievements of the mathematician whose name has
been borrowed and used here. This is more a form of tribute to Paul Lévy, who not
only invented what we call now Lévy processes, but also is in a sense the founder
of the way we are now looking at stochastic processes, with emphasis on the path
properties.

Paul Lévy was born in 1886, and lived until 1971. He studied at the Ecole
Polytechnique in Paris, and was soon appointed as professor of mathematics in the
same institution, a position that he held from 1920 to 1959. He started his career as
an analyst, with 20 published papers between 1905 (he was then 19 years old) and
1914, and he became interested in probability by chance, so to speak, when asked
to give a series of lectures on this topic in 1919 in that same school: this was the
starting point of an astounding series of contributions in this field, in parallel with a
continuing activity in functional analysis.

Very briefly, one can mention that he is the mathematician who introduced
characteristic functions in full generality, proving in particular the characterisation
theorem and the first “Lévy’s theorem” about convergence. This naturally led him to
study more deeply the convergence in law with its metric, and also to consider sums
of independent variables, a hot topic at the time: Paul Lévy proved a form of the
0-1 law, as well as many other results, for series of independent variables. He also
introduced stable and quasi-stable distributions, and unravelled their weak and/or
strong domains of attractions, simultaneously with Feller.

Then we arrive at the book “Théorie de l’addition des variables aléatoires”,
published in 1937, and in which he summaries his findings about what he called
“additive processes” (the homogeneous additive processes are now called Lévy
processes, but he did not restrict his attention to the homogeneous case). This book
contains a host of new ideas and new concepts: the decomposition into the sum of
jumps at fixed times and the rest of the process; the Poissonian structure of the jumps
for an additive process without fixed times of discontinuities; the “compensation”
of those jumps so that one is able to sum up all of them; the fact that the remaining
continuous part is Gaussian. As a consequence, he implicitly gave the formula

vii



viii A Short Biography of Paul Lévy

providing the form of all additive processes without fixed discontinuities, now
called the Lévy-Itô Formula, and he proved the Lévy-Khintchine formula for the
characteristic functions of all infinitely divisible distributions. But, as fundamental
as all those results are, this book contains more: new methods, like martingales
which, although not given a name, are used in a fundamental way; and also a new
way of looking at processes, which is the “pathwise” way: he was certainly the first
to understand the importance of looking at and describing the paths of a stochastic
process, instead of considering that everything is encapsulated into the distribution
of the processes.

This is of course not the end of the story. Paul Lévy undertook a very deep
analysis of Brownian motion, culminating in his book “Processus stochastiques et
mouvement brownien” in 1948, completed by a second edition in 1965. This is a
remarkable achievement, in the spirit of path properties, and again it contains so
many deep results: the Lévy modulus of continuity, the Hausdorff dimension of
the path, the multiple points and the Lévy characterisation theorem. He introduced
local time and proved the arc-sine law. He was also the first to consider genuine
stochastic integrals, with the area formula. In this topic again, his ideas have been
the origin of a huge amount of subsequent work, which is still going on. It also
laid some of the basis for the fine study of Markov processes, like the local time
again, or the new concept of instantaneous state. He also initiated the topic of
multi-parameter stochastic processes, introducing in particular the multi-parameter
Brownian motion.

As should be quite clear, the account given here does not describe the whole
of Paul Lévy’s mathematical achievements, and one can consult for many more
details the first paper (by Michel Loève) published in the first issue of the Annals
of Probability (1973). It also does not account for the humanity and gentleness of
the person Paul Lévy. But I would like to end this short exposition of Paul Lévy’s
work by hoping that this series will contribute to fulfilling the program, which he
initiated.

Paris, France Jean Jacod



Preface

This fifth volume of the series Lévy Matters consists of three chapters, each devoted
to an important aspect of Lévy processes and their applications. They all concern
distributions of certain functionals of Lévy processes, which appear naturally in
different settings.

Historically, processes with independent increments have been considered by
Paul Lévy to reveal the fine structure of infinitely divisible distributions; the
paradigm being that a probability measure, say �, is infinitely divisible if and only if
there is a Lévy process fXtg such that X1 has the law �. In turn, the notion of infinite
divisibility for probability measures arises naturally in the context of limit theorems
for sums of triangular arrays. Well-known special cases of infinitely divisible laws
include stable distributions, which describe the weak limits of certain properly
rescaled random walks with heavy-tailed step distributions, and more generally self-
decomposable distributions, which in turn arise similarly for sums of independent
variables. The so-called Generalized Gamma Convolutions, or distributions in the
Thorin class, lie somewhat in between the two former. The first chapter of this
volume, by Makoto Maejima, surveys representations of the main sub-classes of
infinitely divisible distributions in terms of mappings of certain Lévy processes via
stochastic integration

fXtg 7!
Z

I
f .t/dXt;

where f is some specific deterministic function over some interval I. An important
motivation for studying such mappings stems from free probability, and more specif-
ically from the role of free cumulants in this area. The study of the compositions
and the iterations of such mappings, and of their limits, then sheds light on the
nested structure of those subclasses. A great variety of classical and not-yet classical
examples of infinitely divisible distributions are then analyzed from this perspective.
Overall, this chapter can be seen as a companion to the contribution by K. Sato
“Fractional integrals and extensions of self-decomposability,” which appeared in the

ix



x Preface

first volume of this Series, and in which relations between many nested subclasses
of infinitely divisible laws are discussed.

Reflecting a path at barriers is a fundamental concept for stochastic processes,
both in theory and in applications to modeling physical phenomena. In the setting
of one-dimensional Lévy processes, reflection at a single fixed barrier (usually 0)
lies at the core of fluctuation theory and its connections with the Wiener-Hopf
factorization. One-sided reflected Lévy processes can be used as basic models
for stochastic storage processes; they arise in a variety of applications including
queuing, dams, insurance, and data communication, to name just the main ones,
and there is already a vast mathematical literature on this classical area. The second
chapter of this volume, by Lars Nørvang Andersen, Søren Asmussen, Peter W.
Glynn and Mats Pihlsgård, concerns real Lévy processes reflected at two barriers.
Two-sided reflection can be used for modeling systems with a finite capacity, which
is of course a crucial hypothesis to fit many real-life situations. Roughly speaking, as
the two-sided reflected process V stays in a compact interval, it is positive recurrent.
Thus, V possesses a stationary distribution, � , and the ergodic theorem applies.
Theoretically, this should enable one to answer natural questions about the long-
run behavior of the system; unfortunately in practice and except in some special
situations that we shall discuss later on, the invariant measure� is hard to determine,
even numerically. A most important quantity for the applications is the overflow,
or the loss occurring at the upper barrier, which, for instance, in communication
models, represents the number of bits, which are lost when the buffer is full.
Explicit asymptotics of the average loss are obtained when the upper barrier goes
to infinity, both in the discrete time (i.e., for random walks) and continuous time
frameworks; different regimes occur depending on whether the tail distribution of
a typical increment is light or heavy. Whereas in discrete time, the construction
of a reflected chain raises no difficulty, the continuous time setting is somewhat
less intuitive and requires a formulation à la Skorokhod. Therefore, stochastic
calculus and martingale techniques, in particular using optional sampling for the
Wald martingale and the Kella-Whitt martingale, provide fundamental tools for
studying quantities related to two-sided reflected Lévy processes. As we mentioned
previously, there are also important situations where handy expressions for the
stationary distribution � can be obtained. Typically, this is the case whenever the
two-sided exit problem can be solved, that is the probability that the Lévy process
crosses the upper-barrier before the lower-barrier can be expressed explicitly as a
function of its starting point. A first important situation when this occurs is when
the jumps of X have a phase-type distribution, a situation that is amply discussed
in this chapter. Another well-known case is when the Lévy process X is spectrally
negative then a solution of the two-sided exit problem can be given in terms of the
so-called scale function. Readers wishing to learn more about scale functions are
invited to consult the contribution by Alexey Kuznetsov, Andreas Kyprianou, and
Victor Rivero in the second volume of this series.

If now processes are killed rather than reflected when they cross the boundary,
probably the most natural and important questions that one can ask concern the
lifetime. Typically, for a one-dimensional process, say fYtgt�0, and when the domain
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is a semi-infinite interval .x;1/, one is thus interested in the passage time Tx :D
infft � 0 W Yt > xg. The one-dimensional distributions of the process fTxgx>0 are
characterized by those of the running supremum process fsup0�s�t Ysgt�0 through
the basic identity

P.Tx � t/ D P

 
sup
0�s�t

Ys > x

!

that holds whenever x is not the location of a local maximum of Y. In general, these
quantities are hard to compute explicitly, and merely determining the tail behavior
of the survival probability P.Tx > t/ is already highly challenging. In particular,
one is interested in deciding whether the latter decays polynomially in t, i.e. if there
is an exponent � > 0 with P.Tx > t/ D t��Co.1/ as t ! 1. In that case, �
(which may depend on x) is called the persistence exponent. This is a fundamental
issue in applications, notably for a number of models in physics, and the third
chapter of this volume, by Frank Aurzada and Thomas Simon, is devoted to this
question. Whereas for general Markov processes, this question is usually addressed
by considering the eigenvalues and eigenfunctions of the infinitesimal generator of
the killed process, for random walks or for Lévy processes, the deep formulas of
fluctuation theory are the key to many classical results in this area. The problem
is of course much harder for non-Markovian processes, and the main part of this
chapter concerns the situation when the process Y is given by either the partial sum
of a random walk or the integral of a Lévy process. Many very recent advances and
developments are discussed in this setting.

We are confident that you will enjoy reading these new contributions to the
theory of Lévy type processes and their applications, as much as those which already
appeared in the preceding volumes of Lévy Matters.

Aarhus, Denmark Ole E. Barndorff-Nielsen
Zurich, Switzerland Jean Bertoin
Paris, France Jean Jacod
Munich, Germany Claudia Küppelberg
June 2015
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Classes of Infinitely Divisible Distributions
and Examples

Makoto Maejima

Abstract Bondesson (Generalized Gamma Convolutions and Related Classes of
Distributions and Densities, Lecture Notes in Statistics, vol. 76, Springer, Berlin,
1992) said “Since a lot of the standard distributions now are known to be infinitely
divisible, the class of infinitely divisible distributions has perhaps partly lost its
interest. Smaller classes should be more in focus.” This view was presented more
than two decades ago, yet has not been fully addressed. Over the last decade, many
classes of infinitely divisible distributions have been studied and characterized. In
this article, we summarize such “smaller classes” and try to find classes which
known infinitely divisible distributions belong to, as precisely as possible.
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1 Introduction

The theory of infinitely divisible distributions has been a core topic of probability
theory and the subject of extensive study over the years. One reason for that is
the fact that many important distributions are infinitely divisible, such as Gaussian,
stable, exponential, Poisson, compound Poisson and gamma distributions. Another
reason is that the set of infinitely divisible distributions on R

d coincides with
the set of distributions which are limits of distributions of sums

Pkn
jD1 �n;j of Rd-

valued triangle arrays f�n;j; 1 � j � kn; n � 1g; kn " 1 as n ! 1, where
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2 M. Maejima

for each n, �n;1; �n;2; : : : are independent, with the condition of infinite smallness
that is limn!1max1�j�kn P.j�n;jj � "/ D 0 for any " > 0. Suppose that �n;k D
a�1n .�j � bj/, for an > 0 with limn!1 an D 1, limn!1 anC1a�1n D 1, bj 2 R

d

and kn D n. If f�jg are independent, then the resulting class is the class of self-
decomposable distributions, and if furthermore f�jg are identically distributed, then
the resulting class is the class of stable distributions including Gaussians, These two
classes are important classes of infinitely divisible distributions. Selfdecomposable
distributions are known as marginal distributions of the stationary processes of
Ornstein-Uhlenbeck type, which are stationary solutions of the Langevin equations
with Lévy noise.

In 1977, Thorin [85, 86] introduced a class between the classes of stable
and selfdecomposable distributions, called now the Thorin class, whose elements
are called Generalized Gamma Convolutions (GGCs for short), when he wanted
to prove the infinite divisibility of the Pareto and the log-normal distributions.
Bondesson [16] published a monograph on this topic in 1992.

In 1983, Jurek and Vervaat [38] and Sato and Yamazato [79] showed that any
selfdecomposable distribution Q� can be characterized by stochastic integrals with
respect to some Lévy process fXtg with EŒlog jX1j� < 1 such as

Q� D L

�Z 1
0

e�tdXt

�
; (1)

where L .X/ is the law of a random variable of X. (The paper by Jurek [36] is a
short historical survey on stochastic integral representations of classes of infinitely
divisible distributions.) Since a Lévy process fXtg can be constructed one to one
in law by some infinitely divisible distribution � satisfying L .X1/ D �, (1) can
be regarded as a mapping ˚ , say, from the class of infinitely divisible distributions
with finite log-moments to the class of selfdecomposable distributions as

Q� D ˚.�/: (2)

If we denote by fX.�/t g a Lévy process such that L .X.�/1 / D �, (1) and (2) gives us

Q� D ˚.�/ D L

�Z 1
0

e�tdX.�/t

�
:

Barndorff-Nielsen and Thorbjørnsen [7–10] introduced a mapping

	 .�/ D L

�Z 1

0

log.t�1/dX.�/t

�

related to the Bercovici-Pata bijection between free probability and classical
probability. Then in Barndorff-Nielsen et al. [12], we investigated the range of the
mapping � and characterized several classes of infinitely divisible distributions in
terms of the mappings ˚ and 	 . Among others, we found that the composition of
these two mappings produces the Thorin class. Since then, many mappings have
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been studied as mappings constructing classes of infinitely divisible distributions
giving new probabilistic explanations of such classes and also as mappings them-
selves from a mathematical point of view.

Let us recall one sentence by Bondesson [16]. “Since a lot of the standard
distributions now are known to be infinitely divisible, the class of infinitely divisible
distributions has perhaps partly lost its interest. Smaller classes should be more
in focus.” In this article, we survey such “smaller classes” and try to find classes
which known infinitely divisible distributions belong to, as precisely as possible.
All infinitely divisible distributions we treat here are finite dimensional and most of
the examples are one-dimensional.

In Sect. 2, we give some preliminaries on infinitely divisible distributions on R
d,

Lévy processes and stochastic integrals with respect to Lévy processes.
In Sect. 3, we explain some known classes of infinitely divisible distributions and

their relationships, and the characterization in terms of stochastic integral mappings
is discussed in Sect. 4. Section 5 is devoted to some other mappings. These three
sections form the first main subject of this article. Also, compositions of mappings
are discussed in Sect. 6.

Since we have mappings to construct classes in hand, we can construct nested
subclasses by the iteration of those mappings. This is the topic in Sect. 7. For
the class of selfdecomposable distributions, these nested subclasses were already
studied by Urbanik [90] and later by Sato [70].

Once we have a general theory for infinitely divisible distributions, it is necessary
to provide specific examples. We know that many distributions are infinitely
divisible. Then, the next question related to the above may be which classes such
known infinitely distributions belong to. This is the second main subject of this
article and is discussed in Sects. 8–10. Section 8 treats known distributions. After
the monograph by Bondesson [16] and later a paper by James et al. [28], GGCs have
been highlighted, and thus examples of GGCs recently appearing in quite different
problems are explained separately in Sect. 9. Section 10 discusses new examples of
˛-selfdecomposable distributions.

We conclude the article with a short Sect. 11 on fixed points of the mapping for
˛-selfdecomposable distributions, offering a new perspective on the class of stable
distributions.

Since this is a survey article, only a few statements have explicit proofs. However,
even if the statements do not have proofs, readers may consult original proofs in the
papers cited.

2 Preliminaries

2.1 Infinitely Divisible Distributions on R
d

In the following, P.Rd/ is the set of all probability distributions on R
d and O�.z/ WDR

Rd eihz;xi�.dx/; z 2 R
d, is the characteristic function of � 2 P.Rd/.
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Definition 2.1 � 2 P.Rd/ is infinitely divisible if, for any n 2 N, there exists
�n 2 P.Rd/ such that O�.z/ D O�n.z/n. ID.Rd/ denotes the class of all infinitely
divisible distributions on R

d.

We also use

IDsym.R
d/ WD f� 2 ID.Rd/ W � is symmetric on R

dg;

IDlog.R
d/ WD f� 2 ID.Rd/ W

Z
Rd

logC jxj�.dx/ < 1g

and

IDlogm.Rd/ WD f� 2 ID.Rd/ W
Z
Rd
.logC jxj/m�.dx/ < 1g; m D 1; 2; : : : ;

where logC a D maxflog a; 0g.
The so-called Lévy-Khintchine representation of infinitely divisible distribution

is provided in the following proposition.

Proposition 2.2 (The Lévy-Khintchine Representation; See e.g. Sato [73, Theo-
rem 8.1])

(1) If � 2 ID.Rd/, then

O�.z/ D exp

�
�2�1hz;Azi C ih
; zi C

Z
Rd

�
eihz;xi � 1 � ihz; xi

1C jxj2
�
�.dx/

�
; z 2 R

d;

(3)

where A is a symmetric nonnegative-definite d � d matrix, � is a measure on R
d

satisfying

�.f0g/ D 0 and
Z
Rd
.jxj2 ^ 1/�.dx/ < 1; (4)

and 
 is a vector in R
d.

(2) The representation of O� in .1/ by A; � and 
 is unique.
(3) Conversely, if A is a symmetric nonnegative-definite d�d matrix, � is a measure

satisfying (4) and 
 2 R
d, then there exists a � 2 ID.Rd/ whose characteristic

function is given by (3).

A is called the Gaussian covariance matrix or the Gaussian part and � is called the
Lévy measure. The triplet .A; �; 
/ is called the Lévy-Khintchine triplet of �. When
we want to emphasize the Lévy-Khintchine triplet, we may write � D �.A;�;
/. If
the Lévy measure � of � satisfies

R
jxj>1 jxj�.dx/ < 1, then there exists the mean


1 2 R
d of � such that

O�.z/ D exp

�
�2�1hz;Azi C ih
1; zi C

Z
Rd

�
eihz;xi � 1 � ihz; xi

�
�.dx/

�
:
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In this case, we will write � D �.A;�;
1/1 . If � of � satisfies
R
jxj�1 jxj�.dx/ < 1,

then there exists 
0 2 R
d (called the drift of �) such that

O�.z/ D exp

�
�2�1hz;Azi C ih
0; zi C

Z
Rd

�
eihz;xi � 1

�
�.dx/

�
:

We write � D �.A;�;
0/0 in this case. We also write �� for � when � is the Lévy
measure of �.

In the following, the notation 1B denotes the indicator function of the set B 2
B.Rd/. Here and in what follows, B.C/ is the set of Borel sets in C.

Proposition 2.3 (Polar Decomposition of Lévy Measure; See e.g. Barndorff-
Nielsen et al. [12, Lemma 2.1]) Let �� be the Lévy measure of some � 2 I.Rd/

with 0 < ��.R
d/ � 1. Then there exist a �-finite measure 
 on S WD f� 2 R

d W
j�j D 1g with 0 � 
.S/ � 1 and a family f�� W � 2 Sg of measures on .0;1/ such
that

��.B/ is measurable in � for each B 2 B..0;1//; (5)

0 < ��..0;1// � 1 for each � 2 S; (6)

��.B/ D
Z

S

.d�/

Z 1
0

1B.r�/��.dr/ for B 2 B.Rd n f0g/: (7)

Here 
 and f��g are uniquely determined by �� in the following sense: if 
, f��g
and 
0, f�0�g both have properties (5)–(7), then there is a measurable function c.�/
on S such that

0 < c.�/ < 1; 
0.d�/ D c.�/
.d�/; c.�/�0� .dr/ D ��.dr/ for 
-a.e. � 2 S:

We call �� the radial component of �� and when �� is absolute continuous, we call
its density the Lévy density.

Definition 2.4 (The Cumulant of O�) For � 2 ID.Rd/, C�.z/ D log O�.z/ is called
the cumulant of �, where log is the distinguished logarithm. .For the definition of
the distinguished logarithm, see e.g. Sato [73], the sentence after Lemma 7.6./

2.2 Stochastic Integrals with Respect to Lévy Processes

Definition 2.5 A stochastic process fXt; t � 0g on R
d is called a Lévy process, if

the following conditions are satisfied.

(1) X0 D 0 a.s.
(2) For any 0 � t0 < t1 < � � � < tn; n � 1, Xt0 ;Xt1 � Xt0 ; : : : ;Xtn � Xtn�1 are

independent.
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(3) For h > 0, the distribution of XtCh � Xt does not depend on t.
(4) For any t � 0 and " > 0, limh!0 P.jXtCh � Xtj > "/ D 0.
(5) For almost all !, the sample paths Xt.!/ are right-continuous in t � 0 and have

left limits in t > 0.

Dropping the condition (5) in Definition 2.5, we call any process satisfying (1)�(4) a
Lévy process in law. In the following, “Lévy process” simply means “Lévy process
in law”. It is known (see e.g. Sato [73, Theorem 7.10(i)]) that if fXtg is a Lévy
process on R

d, then for any t � 0;L .Xt/ 2 ID.Rd/ and if we let L .X1/ D �,
then L .Xt/ D �t�, where �t� is the distribution with characteristic function O�.z/t.
Thus the distribution of a Lévy process fXtg is determined by that of X1. Further, a
stochastic process fXt; t � 0g on R

d is called an additive process (in law), if (1), (2)
and (4) are satisfied.

Proposition 2.6 (Stochastic Integral with Respect to Lévy Process; See Sato [77,
Sect. 3.4]) Let fXtg be a Lévy process on R

d with L .X1/ D �.A;�;
/.

(1) Let f .t/ be a real-valued locally square integrable measurable function on
Œ0;1/. Then the stochastic integral X WD R a

0
f .t/dXt exists and L .X/ 2

ID.Rd/. Its cumulant is represented as

CL .X/.z/ D
Z a

0

C�. f .t/z/dt:

The Lévy-Khintchine triplet .AX; �X; 
X/ of L .X/ is the following:

AX D
Z a

0

f .t/2Adt;

�X.B/ D
Z a

0

dt
Z
Rd
1B.f .t/x/�.dx/; B 2 B.Rd n f0g/;


X D
Z a

0

f .t/dt

�

 C

Z
Rd

x

�
1

1C j f .t/xj2 � 1

1C jxj2
�
�.dx/

�
:

(2) The improper stochastic integral over Œ0;1/ is defined as follows, whenever
the limit exists:

X WD
Z 1
0

f .t/dXt D lim
a!1

Z a

0

f .t/dXt in probability.

Suppose f .t/ is locally square integrable on Œ0;1/. Then
R1
0

f .t/dXt exists if and
only if lima!1

R a
0

C�.f .t/z/dt exists in C for all z 2 R
d. We have

CL .X/.z/ D lim
a!1

Z a

0

C�.f .t/z/dt;

AX D
Z 1
0

f .t/2Adt;
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�X.B/ D
Z 1
0

dt
Z
Rd
1B.f .t/x/�.dx/; B 2 B.Rd n f0g/;


X D lim
q!1

Z a

0

f .t/dt

�

 C

Z
Rd

x

�
1

1C jf .t/xj2 � 1

1C jxj2
�
�.dx/

�
:

Remark 2.7 We will treat many f .t/’s which have singularity at t D 0: (i) f .t/ D
G�̨;ˇ.t/; t > 0, the inverse function of t D G˛;ˇ.s/ D R1

s u�˛�1e�uˇdu; s � 0,
in Sect. 5.2, which is specialized to the kernels of 	 -, � -, G - and M -mappings
in Sect. 4.1. (ii) f .t/ D t�1=˛; t > 0, which is the kernel of the stable mapping in
Sect. 5.4.

3 Some Known Classes of Infinitely Divisible Distributions

As mentioned in Sect. 1, the main concern of this article is to discuss known and new
classes of infinitely divisible distributions and characterize them in several ways.
We start with some known classes in Sects. 3.2 and 3.3, and show the relationships
among themselves in Sect. 3.4.

3.1 Completely Monotone Functions

In the following, the concept of completely monotone function plays an important
role. So, we start with the definition of completely monotone function and some
properties of it.

Definition 3.1 (Completely Monotone Function) A function '.x/ on .0;1/ is
completely monotone if it has derivatives '.n/ of all orders and .�1/n'.n/.x/ �
0; n 2 ZC; x > 0.

Two typical examples of completely monotone functions are e�x and x�p; p > 0.

Proposition 3.2 (Bernstein’s Theorem. See e.g. Feller [21, Chap. XIII, 4]) A
function ' on .0;1/ is completely monotone if and only if it is the Laplace
transform of a measure � on .0;1/.

Proposition 3.3 (See e.g. Feller [21, Chap. XIII, 4])

(1) The product of two completely monotone functions on .0;1/ is also completely
monotone.

(2) If ' is completely monotone on .0;1/ and if  is a positive function with a
completely monotone derivative on .0;1/, then the composed function '. / is
also completely monotone on .0;1/.
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3.2 The Classes of Stable and Semi-stable Distributions

Definition 3.4 Let � 2 ID.Rd/.

(1) It is called stable if, for any a > 0, there exist b > 0 and c 2 R
d such that

O�.z/a D O�.bz/eihc;zi: (8)

S.Rd/ denotes the class of all stable distributions on R
d.

(2) It is called strictly stable if, for any a > 0, there is b > 0 such that O�.z/a D
O�.bz/:

(3) It is called semi-stable if, for some a > 0 with a ¤ 1, there exists b > 0 and
c 2 R

d satisfying (8). SS.Rd/ denotes the class of all semi-stable distributions
on R

d.
(4) It is called strictly semi-stable if , for some a > 0 with a ¤ 1, there exists b > 0

satisfying O�.z/a D O�.bz/.

� 2 P.Rd/ is called trivial if it is a distribution of a random variable
concentrated at one point, otherwise it is called non-trivial. When this one point
is c 2 R

d, we write � D ıc.

Theorem 3.5 (See e.g. Sato [73, Theorem 13.15] or Sato [72, Theorem 3.3]) If�
is non-trivial stable, then there exists a unique ˛ 2 .0; 2� such that b D a1=˛ in (8).

In this case, we say that such a � is ˛-stable. Gaussian distribution and Cauchy
distribution are 2-stable and 1-stable, respectively. Note that any trivial distribution
is stable in the sense that (8) is satisfied, and ˛ is not uniquely determined. In
the following, when we say ˛-stable distribution, we always include all trivial
distributions. Also note that trivial distributions which are not ı0 are not strictly
stable except 1-stable distribution.

3.3 Some Known Classes of Infinitely Divisible Distributions

We start with the following six classes which are well-studied in the literature. We
call Vx an elementary gamma random variable (resp. elementary mixed-exponential
random variable, elementary compound Poisson random variable) on R

d if x is
a nonrandom, nonzero element of R

d and V is a real random variable having
gamma distribution (resp. a mixture of a finite number of exponential distributions,
compound Poisson distribution whose jump size distribution is uniform on the
interval Œ0; a� for some a > 0).

(1) The class U.Rd/ (the Jurek class): � 2 U.Rd/ if and only if � 2 ID.Rd/ and
either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial component �� of �� is
expressed as

��.dr/ D `�.r/dr; (9)
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where `�.r/ is a nonnegative function measurable in � 2 S and nonincreasing
on .0;1/ as a function of r.

The class U.Rd/ was introduced by Jurek [31] and � 2 U.Rd/ is called
s-selfdecomposable. Jurek [31] proved that � 2 U.Rd/ if and only if for any
b > 1 there exists �b 2 ID.Rd/ such that O�.z/ D O�.b�1z/b�1 O�b.z/: Sato [77]
also formulated U.Rd/ as the smallest class of distributions on R

d closed under
convolution and weak convergence and containing all distributions of elementary
compound Poisson random variables on R

d.

(2) The class B.Rd/ (the Goldie–Steutel–Bondesson class): � 2 B.Rd/ if and only
if � 2 ID.Rd/ and either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial
component �� of �� is expressed as

��.dr/ D `�.r/dr; (10)

where `�.r/ is a nonnegative function measurable in � 2 S and completely
monotone on .0;1/ as a function of r.

Historically, Goldie [23] proved the infinite divisibility of mixtures of exponen-
tial distributions and Steutel [82] found the description of their Lévy measures.
Then Bondesson [16] studied generalized convolutions of mixtures of exponential
distributions on RC. It is the smallest class of distributions on RC that contains all
mixtures of exponential distributions and that is closed under convolution and weak
convergence on RC. B.Rd/ is its generalization by Barndorff-Nielsen et al. [12],
where all mixtures of exponential distributions are replaced by all distributions of
elementary mixed-exponential random variables on R

d.

(3) The class L.Rd/ (the class of selfdecomposable distributions) : � 2 L.Rd/ if
and only if � 2 ID.Rd/ and either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, �� is
expressed as

��.dr/ D r�1k�.r/dr; (11)

where k�.r/ is a nonnegative function measurable in � 2 S and nonincreasing
on .0;1/ as a function of r.

It is known (see e.g. Sato [73, Theorem 15.10]) that � 2 L.Rd/ if and only if for
any b > 1, there exists some �b 2 P.Rd/ such that

O�.z/ D O�.b�1z/ O�b.z/: (12)

This statement usually is used as the definition of the selfdecomposability. �b in (12)
can be shown to be infinitely divisible. Hence, we may replace �b 2 P.Rd/ by
�b 2 ID.Rd/ in the previous statement.

(4) The class T.Rd/ (the Thorin class) : � 2 T.Rd/ if and only if � 2 ID.Rd/ and
either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial component �� of �� is
expressed as

��.dr/ D r�1k�.r/dr; (13)
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where k�.r/ is a nonnegative function measurable in � 2 S and completely
monotone on .0;1/ as a function of r.

Originally this class was studied by Thorin [85, 86] when he wanted to prove the
infinite divisibility of the Pareto and the log-normal distributions, as mentioned in
Sect. 1. The class T.RC/ (resp. T.R/) is defined as the smallest class of distributions
on RC (resp. R) that contains all positive (resp. positive and negative) gamma
distributions and that is closed under convolution and weak convergence on RC
(resp. R). The distributions in T.RC/ are called generalized gamma convolutions
(GGCs) and those in T.R/ are called extended generalized gamma convolutions
(EGGCs). Thorin showed that the Pareto and the log-normal distributions are GGCs,
and thus are selfdecomposable and infinitely divisible. The infinite divisibility of the
log-normal distribution was not known before the theory on hyperbolic complete
monotonicity which was developed by Thorin.

T.Rd/ is a generalization of T.R/ by Barndorff-Nielsen et al. [12], where
all positive and negative gamma distributions are replaced by all distributions of
elementary gamma random variable on R

d.

(5) The class G.Rd/ (the class of type G distributions): � 2 G.Rd/ if and only if
� 2 ID.Rd/ and either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial
component �� of �� is expressed as

��.dr/ D g�.r
2/dr; (14)

where g�.r/ is a nonnegative function measurable in � 2 S and completely
monotone on .0;1/ as a function of r.

When d D 1, � 2 G.R/ \ Isym.R/ if and only if � D L .V1=2Z/, where
V > 0, L .V/ 2 I.R/, Z is the standard normal random variable, and V and Z
are independent. When d � 1, � D �.A;�;
/ 2 G.Rd/ \ IDsym.R

d/ if and only if
�.B/ D EŒ�0.Z�1B/� for some Lévy measure �0. (See Maejima and Rosiński [47].)
Previously only symmetric distributions in G.Rd/ were said to be of type G. In this
article, however, we say that any distribution from G.Rd/ is of type G.

(6) The class M.Rd/ (Aoyama et al. [4]) : � 2 M.Rd/ if and only if � 2 ID.Rd/

and either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial component �� of
�� is expressed as

��.dr/ D r�1g�.r2/dr; (15)

where g�.r/ is a nonnegative function measurable in � 2 S and completely
monotone on .0;1/ as a function of r. (Originally, in Aoyama et al. [4], we
defined the class M.Rd/ restricted in Isym.R

d/. However, in this article, we do
not assume the symmetry of � 2 M.Rd/. The requirement (15) is independent
of the symmetry of the distribution.)

This class was introduced, being motivated by how the class will be if we replace
g�.r2/ in (14) by r�1g�.r2/ by multiplying an extra r�1 in the Lévy density which
can been seen from (1) to (3) and from (2) to (4).
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3.4 Relationships Among the Classes

With respect to relationships among the classes mentioned in Sect. 3.3, we have the
following.

(1) L.Rd/ [ G.Rd/ ¤ U.Rd/ and T.Rd/ ¤ L.Rd/. (By definition.)
(2) Each class in Sect. 3.3 includes S.Rd/. This is because if � 2 S.Rd/, then either

A ¤ 0 and �� D 0 or A D 0 and ��.dr/ D r�1�˛dr for some ˛ 2 .0; 2/, (see
e.g. Sato [73, Theorem 14.3]).

(3) T.Rd/ ¤ B.Rd/ ¤ G.Rd/. These inclusions follow from the properties of com-
pletely monotone functions. It follows from Proposition 3.3(1) that T.Rd/ �
B.Rd/. If we put g�.x/ D l�.x1=2/, then it follows from Proposition 3.3(2)
that B.Rd/ � G.Rd/. The relation ¤ can be shown by choosing suitable Lévy
densities.

(4) T.Rd/ ¤ M.Rd/ ¤ L.Rd/\G.Rd/. The proof is as follows (Aoyama et al. [4]):

We first show that M.Rd/ ¤ L.Rd/\G.Rd/. Note that r�1=2 is completely monotone
and by Proposition 3.3(1) that the product of two completely monotone functions is
also completely monotone. Thus by the definition of M.Rd/, it is clear that M.Rd/ �
L.Rd/ \ G.Rd/. To show that M.Rd/ ¤ L.Rd/ \ G.Rd/, it is enough to construct
� 2 ID.Rd/ such that � 2 L.Rd/\ G.Rd/ but � … M.Rd/.

First consider the case d D 1. Let

�.dr/ D r�1g.r2/dr; r > 0:

For our purpose, it is enough to construct a function g W .0;1/ 7! .0;1/ such that
(a) r�1=2g.r/ is completely monotone on .0;1/, (meaning that the corresponding
� belongs to G.R/), (b) g.r2/ or, equivalently, g.r/ is nonincreasing on .0;1/,
(meaning that the corresponding� belongs to L.R/), and (c) g.r/ is not completely
monotone on .0;1/, (meaning that the corresponding� does not belong to M.R/).
We show that

g.r/ WD r�1=2h.r/ WD r�1=2
�
e�0:9r � e�r C 0:1e�1:1r

	
; r > 0;

satisfies the requirements (a)�(c) above.

(a) We have

r�1=2g.r/ D
Z 1

0:9

e�rudu C 0:1

Z 1
1:1

e�rudu;

which is a sum of two completely monotone functions, and thus r�1=2g.r/ is
completely monotone.
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(b) If h.r/ is nonincreasing, then so is g.r/ D r�1=2h.r/. To show it, we have

h0.r/ D �0:9e�0:9r C e�r � 0:11e�1:1r D �0:9e�1:1r

"�
e0:1r � 1

1:8

�2
� 0:604

3:24

#

� �0:9e�1:1r

"�
1 � 1

1:8

�2
� 0:604

3:24

#
D �0:01e�1:1r < 0; r > 0:

(c) To show (c), we see that

h.r/ D
Z 1
0

e�ruQ.du/;

where Q is a signed measure such that Q D Q1 C Q2 C Q3 and

Q1.f0:9g/ D 1; Q2.f1g/ D �1; Q3.f1:1g/ D 0:1:

On the other hand,

r�1=2 D ��1=2
Z 1
0

e�ruu�1=2du DW
Z 1
0

e�ruR.du/;

where

R.du/ D .�u/�1=2du:

Thus

g.r/ D
Z 1
0

e�ruR.du/
Z 1
0

e�rvQ.dv/ D
Z 1
0

e�rwU.dw/;

where

U.B/ D
Z 1
0

Q.B � y/R.dy/:

We are going to show that U is a signed measure, namely, for some interval
.a; b/;U ..a; b// < 0. If so, g is not completely monotone by Bernstein’s theorem
(Proposition 3.2). We have

U ..a; b// D ��1=2
Z 1
0

Q ..a � y; b � y// y�1=2dy

D ��1=2
3X

jD1

Z 1
0

Qj ..a � y; b � y// y�1=2dy
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D ��1=2

Z b�0:9

a�0:9
y�1=2dy �

Z b�1

a�1
y�1=2dy C 0:1

Z b�1:1

a�1:1
y�1=2dy

�

D 2��1=2
h�p

b � 0:9 � p
a � 0:9

�
�
�p

b � 1 � p
a � 1

�

C0:1
�p

b � 1:1 � p
a � 1:1

�i
:

Take .a; b/ D .1:15; 1:35/. Then

U ..1:15; 1:35//

D 2��1=2
h
.
p
0:45 � p

0:25/ � .p0:35 � p
0:15/C 0:1.

p
0:25 � p

0:05/
i

< �0:01��1=2 < 0:

This concludes that g is not completely monotone.
A d-dimensional example of � 2 ID.Rd/ such that � 2 L.Rd/ \ G.Rd/ but

� … M.Rd/ is given by taking the example of the Lévy measure on R constructed
above as the radial component of a Lévy measure on R

d. This completes the proof
of M.Rd/ ¤ L.Rd/\ G.Rd/.

We next show that T.Rd/ ¤ M.Rd/. If � 2 T.Rd/, then the radial component of
the Lévy measure of � has the form ��.dr/ D r�1k� .r/dr, where k� is completely
monotone. By Proposition 3.3 and the fact that  .r/ D r1=2 has a completely
monotone derivative, then g�.r/ WD k�.r1=2/ is completely monotone. Thus ��.dr/
can be read as r�1g�.r2/dr, where g� is completely monotone, concluding that
� 2 M.Rd/.

To show that T.Rd/ ¤ M.Rd/, it is enough to find a completely monotone
function g� such that k�.r/ D g�.r2/ is not completely monotone. However, the
function g�.r/ D e�r has such a property. Although e�r is completely monotone,

.�1/2 d2

dr2
e�r2 < 0 for small r > 0. This completes the proof of the inclusion

T.Rd/ ¤ M.Rd/.

Remark 3.6 It is important to remark that any distribution in L.R/ is unimodal,
(a result by Yamazato [97]), which implies the unimodality of any distribution in
T.R/, since T.R/ � L.R/.

The following are examples for non-inclusion among classes. (See Schilling
et al. [80, Chap. 9].)

(5) L.R/ �= B.R/. Let ��.dx/ D x�11.0;1/.x/dx; x > 0. Then k.x/ D 1.0;1/.x/ is
nonincreasing and thus � 2 L.R/, but `.x/ D x�11.0;1/.x/ is not completely
monotone and thus � … B.R/. Hence L.R/ �= B.R/.

(6) B.R/ �= L.R/. Let ��.dx/ D e�xdx; x > 0. Then it is easy to see that� 2 B.R/,
but � … L.R/. Therefore B.R/ �= L.R/.
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4 Stochastic Integral Mappings and Characterizations
of Classes (I)

This section is one of the main subjects of this article, as referred to in Sect. 1.
In Sect. 4.1 we explain well-studied six stochastic integral mappings, and then in
Sect. 4.2 we characterize them by stochastic integral mappings.

4.1 Six Stochastic Integral Mappings

For � 2 ID.Rd/, let fX.�/t ; t � 0g be the Lévy process with L .X.�/1 / D �. Let
f .t/ be a real-valued square integrable measurable function on Œa; b�, for any 0 <
a < b < 1 and suppose that the stochastic integral

R1
0

f .t/dX.�/t is definable in the
sense of Proposition 2.6. Then we can define a mapping � 7! ˚f .�/. We denote
the domain of ˚f by D.˚f / that is the class of � 2 ID.Rd/ for which ˚f .�/ is
definable. We also denote the range of ˚f by R.˚f / D ˚f .D.˚f //.

Now the following are well-studied mappings.

(1) U -mapping (Jurek [31]). For � 2 D.U / D ID.Rd/, U .�/ D L
�R 1

0
tdX.�/t

�
:

(2) 	 -mapping (Barndorff-Nielsen et al. [12]). For � 2 D.	 / D ID.Rd/, 	 .�/ D
L
�R 1

0
log.t�1/dX.�/t

�
:

(3) ˚-mapping (Jurek and Vervaat [38], Sato and Yamazato [79], Wolfe [96]). For

� 2 D.˚/ D IDlog.R
d/, ˚.�/ D L

�R1
0 e�tdX.�/t

�
:

(4) � -mapping (Barndorff-Nielsen et al. [12]). Let p.s/ D R1
s e�uu�1du; s > 0,

and denote its inverse function by p�.t/. For � 2 D.�/ D IDlog.R
d/,

�.�/ D L
�R1

0
p�.t/dX.�/t

�
:

(5) G -mapping (Maejima and Sato [48]). Let g.s/ D R1
s e�u2du; s > 0, and

denote its inverse function by g�.t/. For � 2 D.G / D ID.Rd/, G .�/ D
L
�Rp�=2

0 g�.t/dX.�/t

�
:

(6) M -mapping (Maejima and Nakahara [44]). Let m.s/ D R1
s e�u2u�1du; s >

0, and denote its inverse function by m�.t/. For � 2 D.M / D IDlog.R
d/,

M .�/ D L
�R1

0 m�.t/dX.�/t

�
:

In the above, it is easy to see that the domains of the mappings are ID.Rd/

when the intervals of the stochastic integrals are finite. However, in the cases where
stochastic integrals are improper at infinity, we need the proofs. As an example,
we show the case of the ˚-mapping below. (For (4), see Barndorff-Nielsen et
al. [12, Theorem C], and for (6), see Maejima and Nakahara [44, Theorem 2.3],
respectively.) Note that in the six examples above, the singularity of the kernel at
t D 0 does not give any influence for determining the domains of the mappings.
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For showing that D.˚/ D IDlog.R
d/, we use Proposition 2.6(2) with f .t/ D

e�t. Let .A; �; 
/ and . QA; Q�; Q
/ be the Lévy-Khintchine triplets of � and ˚.�/,
respectively. If we could show that QA and Q
 are finite, and Q� is a Lévy measure,
then Proposition 2.6(2) ensures that the existence of the stochastic integral defining
˚.�/.

(i) (Gaussian part) : QA D R1
0 e�2tAdt exists.

(ii) (Lévy measure) : We are going to show that

Q�.B/ D
Z
Rd
�.dx/

Z 1
0

1B.e
�tx/dt; B 2 B.Rd/;

satisfies that
R
Rd.jxj2 ^ 1/ Q�.dx/ < 1. We have

Z
Rd
.jxj2 ^ 1/ Q�.dx/ D

Z
jxj�1

jxj2 Q�.dx/C
Z
jxj>1

Q�.dx/;

where
Z
jxj�1

jxj2 Q�.dx/ D
Z
Rd
�.dx/

Z 1
0

je�txj21fje�txj�1gdt

D
Z
Rd

jxj2�.dx/
Z 1
0

e�2t1fjxj�etgdt D
Z
Rd

jxj2�.dx/
Z 1
0_log jxj

e�2tdt

D 1

2

Z
Rd

jxj2.1 ^ jxj�2/�.dx/ D 1

2

Z
Rd
.jxj2 ^ 1/�.dx/

and
Z
jxj>1

Q�.dx/ D
Z
Rd
�.dx/

Z 1
0

1fje�txj>1gdt D
Z
Rd
�.dx/

Z 1
0

1fjxj>etgdt

D
Z
jxj>1

�.dx/
Z 1
0

1ft<log jxjgdt D
Z
jxj>1

log jxj�.dx/:

Thus,

Z
Rd
.jxj2 ^ 1/ Q�.dx/ < 1

if and only if

Z
jxj>1

log jxj�.dx/ < 1:
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(iii) (
 -part) : To complete the proof, it is enough to show that

Q
 D
Z 1
0

e�tdt � 
 C
Z
Rd
�.dx/

Z 1
0

e�tx

�
1

1C je�txj2 � 1

1C jxj2
�

dt < 1;

whenever
R
jxj>1 log jxj�.dx/ < 1. The first integral is trivial. As to the second

integral, we have

Z
Rd
�.dx/

Z 1
0

e�tjxj3
.1C je�txj2/.1C jxj2/dt

D
�Z
jxj�1

C
Z
jxj>1

�
�.dx/

Z 1
0

e�tjxj3
.1C je�txj2/.1C jxj2/dt

DW I1 C I2:

Here

I1 �
Z
jxj�1

jxj3�.dx/
Z 1
0

e�tdt �
Z
jxj�1

jxj2�.dx/ < 1

and

I2 D
Z
jxj>1

�.dx/
Z 1
0

e�tjxj3
.1C je�txj2/.1C jxj2/dt

D
Z
jxj>1

�.dx/

 Z log jxj

0

C
Z 1

log jxj

!
e�tjxj3

.1C je�txj2/.1C jxj2/dt DW I3 C I4;

where

I3 D
Z
jxj>1

jxj2
1C jxj2 �.dx/

Z log jxj

0

e�tjxj
1C je�txj2 dt;

�
Z
jxj>1

jxj2
1C jxj2 �.dx/

Z log jxj

0

1

2
dt �

Z
jxj>1

log jxj�.dx/ < 1

and

I4 �
Z
jxj>1

�.dx/
Z 1

log jxj
e�tjxj3
1C jxj2 dt D

Z
jxj>1

jxj3
1C jxj2 e� log jxj�.dx/

�
Z
jxj>1

jxj2
1C jxj2 �.dx/ < 1:

The proof is completed.
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4.2 Characterization of Classes as the Ranges of the Mappings

The six classes of infinitely divisible distributions in Sect. 3.3 can be characterized
as the ranges of the mappings discussed in the previous section, as follows.

Proposition 4.1 We have the following.

(1) U.Rd/ D U .ID.Rd//. (Jurek [31].)
(2) B.Rd/ D 	 .ID.Rd//. (Barndorff-Nielsen et al. [12].)
(3) L.Rd/ D ˚.IDlog.R

d//. (Jurek and Vervaat [38], Sato and Yamazato [79],
Wolfe [96].)

(4) T.Rd/ D �.IDlog.R
d//. (Barndorff-Nielsen et al. [12].)

(5) G.Rd/ D G .ID.Rd//. (Aoyama and Maejima [3] for symmetric case and
Maejima and Sato [48] for general case.)

(6) M.Rd/ D M .IDlog.R
d//. (Aoyama et al. [4] for symmetric case and Maejima

and Nakahara [44] for general case.)

For the readers’ convenience, we give here the proof of (3) L.Rd/ D
˚.IDlog.R

d// as an example. We show that L.Rd/ � ˚.IDlog.R
d// and that

L.Rd/ � ˚.IDlog.R
d//, separately.

(a) (L.Rd/ � ˚.IDlog.R
d//): Suppose that � D L

�R1
0 e�tdXt

	
for some Lévy

process fXtg satisfying that L .X1/ 2 IDlog.R
d/. Let b > 1 and let f QXtg be an

independent copy of fXtg. In what follows, the notation
dD means the equality

in law. We have

b�1
Z 1
0

e�td QXt D
Z 1
0

e�.tClog b/d QXt
dD
Z 1

log b
e�tdXt;

and

Z 1
0

e�tdXt D
Z 1

log b
e�tdXt C

Z log b

0

e�tdXt

dD b�1
Z 1
0

e�td QXt C
Z log b

0

e�tdXt;

which shows the relation (12) and � 2 L.Rd/.

(b) (L.Rd/ � ˚.IDlog.R
d//): We need a lemma on selfsimilar additive process.

Definition 4.2 Let H > 0. A stochastic process fXt; t � 0g on R
d is H-selfsimilar

if for any c > 0, fXctg dD fcHXtg.

Lemma 4.3 (Sato [71]) � 2 L.Rd/ if and only if there exists a 1-selfsimilar
additive process fYtg such that L .Y1/ D �.
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The following proof is due to Jeanblanc et al. [29]. Let � 2 L.Rd/. By
Lemma 4.3, there exists 1-selfsimilar additive process fYtg such that L .Y1/ D �.
Define

Xt D
Z 1

e�t
s�1dYs: (16)

Since fYtg is additive, fXtg is also additive. Further, for h > 0,

XtCh � Xt D
Z e�t

e�.tCh/
s�1dYs

D
Z 1

e�h
.e�tu/�1dYe�tu

dD
Z 1

e�h
.e�tu/�1e�tdYu .by fYcug dD fcYug/

D Xh:

Thus fXtg is a Lévy process. By (16),

Xt D �
Z t

0

.e�v/�1dvYe�v

and thus
Z 1
0

e�vdXv D �
Z 1
0

dYe�v D Y1 � Y0 D Y1;

implying that L .X1/ 2 D.˚/ and � D L
�R1
0 e�vdXv

	
so that � 2 ˚.IDlog.R

d//.

5 Stochastic Integral Mappings and Characterizations
of Classes (II)

Some other mappings in addition to the six mappings in Sect. 4.1 above will be
explained in this section. Let

ID˛.R
d/ D

�
� 2 ID.Rd/W

Z
Rd

jxj˛�.dx/ < 1
�
; for ˛ > 0;

ID0
˛.R

d/ D
�
� 2 ID˛.R

d/W
Z
Rd

x�.dx/ D 0

�
; for ˛ � 1;

ID�1 .Rd/ D
�
� D �.A;�;
/ 2 ID0

1.R
d/W lim

T!1

Z T

1

t�1dt
Z
jxj>t

x�.dx/ exists in R
d

�
:
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5.1 ˚˛-Mapping

We define ˚˛-mapping as follows:

˚˛.�/ D

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

L

 Z �1=˛
0

.1C ˛t/�1=˛dX.�/t

!
; when ˛ < 0;

L

�Z 1
0

e�tdX.�/t

�
; when ˛ D 0;

L

�Z 1
0

.1C ˛t/�1=˛dX.�/t

�
; when 0 < ˛ < 2:

The domain of ˚˛ is given as

D.˚˛/ D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

ID.Rd/; when ˛ < 0;

IDlog.R
d/; when ˛ D 0;

ID˛.R
d/; when 0 < ˛ < 1;

ID�1 .Rd/; when ˛ D 1;

ID0
˛.R

d/; when 1 < ˛ < 2:

(For ˛ 2 .0; 1/ [ .1; 2/, see Sato [75, Theorem 2.4], and for ˛ D 1, Sato [77,
Theorem 4.4].)

Here we introduce a notion of “weak mean” for later use.

Definition 5.1 (The Weak Mean of � 2 ID.Rd/ [77, Definition 3.6]) Let � D
�.A;�;
/ 2 ID.Rd/. It is said that � has weak mean m� if

Z
1<jxj�a

x�.dx/ is convergent in R
d as a ! 1;

and

C�.z/ D �2�1hz;Azi C lim
a!1

Z
jxj�a

.eihz;xi � 1 � ihz; xi/�.dx/C ihm�; zi:

The range of ˚˛ is as follows.

Theorem 5.2 (Sato [77, Theorem 4.18]. R.K1;˛/ in the Notation There) Let 0 <
˛ < 2. Then � 2 R.˚˛/ if and only if � 2 ID.Rd/ and either �� D 0 or �� ¤ 0,
and in case �� ¤ 0, the radial component �� of �� is expressed as, for some k�.r/
which is a nonnegative function measurable in � and nonincreasing on .0;1/ as a
function of r,

(1) .˛ < 1/ ��.dr/ D r�˛�1k�.r/dr,
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(2) .˛ D 1/ ��.dr/ D r�2k�.r/dr, and the weak mean of � is 0,
(3) .1 < ˛ < 2/ ��.dr/ D r�˛�1k�.r/dr, and the mean of � is 0.

We introduce the class Lh˛i.Rd/ (the class of ˛-selfdecomposable distributions).
Let ˛ 2 R. We say that � 2 ID.Rd/ is ˛-selfdecomposable, if for any b > 1, there
exists �b 2 ID.Rd/ satisfying

O�.z/ D O�.b�1z/b˛ O�b.z/; z 2 R
d: (17)

Theorem 5.3 (Maejima and Ueda [52])

(1) For ˇ < ˛; Lhˇi.Rd/ � Lh˛i.Rd/.
(2) For ˛ > 2 Lh˛i.Rd/ D fı
 W 
 2 R

dg.
(3) Lh2i.Rd/ D fall Gaussian distributionsg.
(4) Lh˛i.Rd/ is left-continuous in ˛ 2 R, namely,

\
ˇ<˛

Lhˇi.Rd/ D Lh˛i.Rd/ for all ˛ 2 R:

(5) Let ˛ 2 .�1; 2/. Then, � 2 Lh˛i.Rd/ if and only if � 2 ID.Rd/ and either
�� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial component �� of �� is
expressed as

��.dr/ D r�˛�1`�.r/dr; (18)

where `�.r/ is a nonnegative function which is measurable in �, and nonincreasing
on .0;1/ as a function of r.

Remark 5.4

(1) We have L.�1/.Rd/ D U.Rd/ and L.0/.Rd/ D L.Rd/. Thus by Theorem 5.3(1),
if ˛ < �1, Lh˛i.Rd/ � U.Rd/ � L.Rd/.

(2) Another class bigger than U.Rd/ is

A.Rd/ WD
�
˚cos.�/ D L

�Z 1

0

cos.2�1�t/dX.�/t

�
W � 2 I.Rd/

�
:

(See Maejima et al. [58, Theorem 2.6].)
(3) It is an open problem to find the relationship between Lh˛i.Rd/; ˛ < �1; and

A.Rd/.

The relations between the mappings ˚˛ and the classes Lh˛i.Rd/ are as follows.
(The case ˛ D 0 is nothing but Proposition 4.1(3).)

Theorem 5.5 (Maejima et al. [57, Theorem 4.6]) Let ˛ < 0. Q� 2 Lh˛i.Rd/ if and
only if Q� D ˚˛.�/ for some � 2 ID.Rd/.

Theorem 5.6 (Maejima and Ueda [52, Theorem 5.1(ii) and (iv)]) Let ˛ 2
.0; 1/[ .1; 2/.
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(1) When 0 < ˛ < 1, Q� 2 Lh˛i.Rd/ if and only if

Q� D �˛ 	 ˚˛.�/; (19)

where � 2 ID˛.R
d/ and �˛ is a strictly ˛-stable distribution or a trivial

distribution, where 	 means convolution.
(2) When 1 < ˛ < 2, Q� 2 Lh˛i.Rd/ if and only if (19) holds for some � 2 ID0

˛.R
d/

and some ˛-stable distribution �˛ .

For the case ˛ D 1 we need slightly different mapping called the essential
improper stochastic integrals introduced by Sato [74, 76] defined as

˚f ;es.�/ WD
(
L

�
p-lim
t!1

�Z t

0

f .s/dX.�/s � q.t/

��
W q is an R

d-valued nonrandom

function such that
Z t

0

f .s/dX.�/s � q.t/ converges in probability

as t ! 1
)
:

(The term “essentially improper stochastic integral” is changed to “essentially
definable improper stochastic integral” in Sato [76].) When f .t/ D .1C t/�1, which
is the integrand of ˚1.�/, we write ˚f ;es.�/ as ˚1;es.�/.

Theorem 5.7 When ˛ D 1, Q� 2 Lh1i.Rd/ if and only if Q� D �1 	 Q�, where Q� 2
˚1;es.�/ for some � 2 I1.Rd/ and �1 is a 1-stable distribution.

Remark 5.8 The classes Lh˛i.Rd/; ˛ 2 R, were already studied by many authors
before Maejima and Ueda [52]. Alf and O’Connor [2] and O’Connor [62] studied
the class of all infinitely divisible distributions on R with unimodal Lévy measures
with mode 0, and showed that the class is equal to Lh�1i.R/, As to this class, Alf
and O’Connor [2] studied stochastic integral characterizations with respect to Lévy
processes. O’Conner [62] studied the decomposability (17) for d D 1 and ˛ D
�1, and characterized this class by some limit theorem. O’Connor [61, 63] also
studied the classes Lh˛i.R/; ˛ 2 .�1; 2/. He defined these classes by a condition of
radial components of Lévy measures, and characterized these classes by stochastic
integrals with respect to Lévy processes, by the decomposability (17) for d D 1, and
by similar limit theorems to that in the case Lh�1i.R/. Jurek [30, 31, 35] and Iksanov
et al. [26] defined and studied so-called s-selfdecomposable distributions on a real
separable Hilbert space H. The totality of s-selfdecomposable distributions, denoted
by U .H/ in their papers, is equal to Lh�1i.Rd/, when H D R

d. Jurek [32–34] and
Jurek and Schreiber [37] studied the classes Uˇ.Q/; ˇ 2 R, of distributions on a real
separable Banach space E, where Q is a linear operator on E with certain properties.
These classes are equal to Lh�ˇi.Rd/ if E D R

d and Q is the identity operator.
They defined the classes Uˇ.Q/ by some limit theorems. As to these classes, they
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studied the decomposability similar to (17) and stochastic integral characterizations,
although some results are only for the case that Q is the identity operator.

Remark 5.9 Maejima et al. [57] studied the classes K˛.Rd/; ˛ < 2: � 2 K˛.Rd/ if
� 2 ID.Rd/ and either �� D 0 or �� ¤ 0 and, in case �� ¤ 0, the radial component
�� of �� is expressed as

��.dr/ D r�˛�1`� .r/dr; (20)

where `�.r/ is a nonnegative function which is measurable in � and nonincreasing
on .0;1/ as a function of r, and `�.1/ D 0. The relation between K˛.Rd/ and
Lh˛i.Rd/ for ˛ < 2 is

K˛.R
d/ D Lh˛i.Rd/ \ C˛.R

d/;

where C˛.Rd/ is the totality of � 2 ID.Rd/ whose Lévy measure �� satisfies
limr!1 r˛

R
jxj>r ��.dx/ D 0. (Maejima and Ueda [52], Maejima et al. [57].)

Remark 5.10 Recall that the difference between U.Rd/ and B.Rd/ in terms of
Lévy measure is that `�.r/ in (9) is nonincreasing and `�.r/ in (10) is completely
monotone. Also, the difference between L.Rd/ and T.Rd/ in terms of Lévy measure
is that k� .r/ in (11) is nonincreasing and k�.r/ in (13) is completely monotone.
From this point of view, the nonincreasing function `�.r/ in (20) can be replaced
by a completely monotone function `�.r/ with `�.1/ D 0. Actually, if we do so,
we can get (31) in Sect. 5.4 later, which leads to the tempered stable distribution by
Rosiński [69].

5.2 �˛;ˇ-Mapping

We define a more general notation of mapping, which we call �˛;ˇ-mapping. Let

t D G˛;ˇ.s/ D
Z 1

s
u�˛�1e�uˇdu; s � 0;

and let s D G�̨;ˇ.t/ be its inverse function. Define �˛;ˇ-mapping by

�˛;ˇ.�/ D L

 Z G˛;ˇ.0/

0

G�̨;ˇ.t/dX.�/t

!
;

with

G˛;ˇ.0/ D
(
ˇ�1� .�˛ˇ�1/; when ˛ < 0;

1; when ˛ � 0;
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where � .�/ is the gamma function. These mappings were introduced first by
Sato [75] for ˇ D 1 and later by Maejima and Nakahara [44] for general ˇ > 0.
Due to Sato [75] and Maejima and Nakahara [44], we see the domains D.�˛;ˇ/ as
follows, which are independent of the value ˇ > 0.

D.�˛;ˇ/ D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

ID.Rd/; when ˛ < 0;

IDlog.R
d/; when ˛ D 0;

ID˛.R
d/; when 0 < ˛ < 1;

ID�1 .Rd/; when ˛ D 1;

ID0
˛.R

d/; when 1 < ˛ < 2:

The six mappings in Sect. 4.1 are the special cases of the˚˛- and �˛;ˇ-mappings
as follows.

Remark 5.11 U D ˚�1, 	 D ��1;1, ˚ D ˚0, � D �0;1, G D ��1;2, M D �0;2.

5.3 ˚.b/-Mapping

Let b > 1. Define ˚.b/-mapping by

˚.b/.�/ D L

�Z 1
0

b�Œt�dX.�/t

�
; D.˚.b// D IDlog.R

d/;

where Œt� denotes the largest integer not greater than t 2 R.
� 2 ID.Rd/ is called semi-selfdecomposable if there exist b > 1 and � 2 ID.Rd/

such that O�.z/ D O�.b�1z/ O�.z/. We call this b a span of �, and we denote the
class of all semi-selfdecomposable distributions with span b by L.b;Rd/. From the
definitions, L.b;Rd/ ¥ L.Rd/ and L.Rd/ D T

b>1 L.b;Rd/. � 2 L.b;Rd/ is also
realized as a limiting distribution of normalized partial sums of independent random
variables under the condition of infinite smallness when the limit is taken through a
geometric subsequence. A typical example is a semi-stable distribution.

Theorem 5.12 Fix any b > 1. Then, the range R.˚.b// is the class of all semi-
selfdecomposable distributions with span b on R

d, namely,

˚.b/
�
IDlog.R

d/
	 D L.b;Rd/:

(For the proof, see Maejima and Ueda [50].)
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5.4 Stable Mapping

This section is from Maejima et al. [59]. Let 0 < ˛ < 2. Define a mapping by

�˛.�/ D L

�Z 1
0

t�1=˛dX.�/t

�
: (21)

Note that the kernel above has a singularity at t D 0 and is not square integrable
around t D 0. This fact gives an influence when determining the domain of
mappings. The following characterization of D.�˛/ follows from Proposition 5.3
and Example 4.5 of Sato [76].

Theorem 5.13

(1) If 0 < ˛ < 1, then

D.�˛/ D
�
� D �.0;�;0/0 2 ID.Rd/ W

Z
Rd

jxj˛�.dx/ < 1
�
:

(2) If ˛ D 1, then

D.�1/D
�
� D �.0;�;0/0 D�.0;�;0/1 2 ID.Rd/ W

Z
Rd

jxj �.dx/ < 1;

Z
Rd

x �.dx/ D 0;

lim
"#0

Z
jxj�1

x log.jxj _ "/ �.dx/ and lim
T!1

Z
jxj>1

x log.jxj ^ T/ �.dx/ exist

�
:

(3) If 1 < ˛ < 2, then

D.�˛/ D
�
� D �.0;�;0/1 2 ID.Rd/ W

Z
Rd

jxj˛�.dx/ < 1
�
:

Remark 5.14 There is a simple sufficient condition for � in (2). Namely, � D
�.0;�;
/ 2 D.�1/ if

R
Rd jxj j log jxjj �.dx/ < 1,

R
Rd x �.dx/ D 0, and 
 DR

Rd
x

1Cjxj2 �.dx/.

The next theorem gives a full characterization of R.�˛/. S0˛.R
d/ denotes the

class of strictly ˛-stable distributions on R
d. Note that in the case ˛ D 1 O� can be

written as follows:

O�.z/ D exp

�
�
Z

S

�jhz; �ij C i2��1hz; �i log jhz; �ij	
1.d�/C ihz; �i
�
; (22)

where 
1 is a finite measure on S and � 2 R
d, and where

R
S �
1.d�/ D 0: (See e.g.

Sato [73, Theorem 14.10].)
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Theorem 5.15 (Maejima et al. [59]) Let 0 < ˛ < 2.

(1) When ˛ ¤ 1, we have

�˛.D.�˛// D S0˛.R
d/:

(2) When ˛ D 1, we have

�1.D.�1// D ˚
� 2 S01.R

d/ W � 2 span supp.
1/
�
;

where, respectively, 
1 and � are those in (22). Here supp.
1/ denotes the support
of 
1. If 
1 D 0, then we put span supp.
1/ D f0g by convention.

6 Compositions of Stochastic Integral Mappings

The motivation for the paper by Barndorff-Nielsen et al. [12] was to see if the
Thorin class can be realized as the composited mapping of ˚ and 	 , where ˚
produces the class of selfdecomposable distributions and 	 produces the Goldie-
Steutel-Bondesson class. So, we believed that compositions of stochastic integral
mappings would be important and useful in many aspects, which was verified by
several observations. This is why we will discuss compositions of stochastic integral
mappings.

Let ˚f and ˚g be two stochastic integral mappings. The composition of two
mappings is defined as

.˚f ı ˚g/.�/ D ˚f .˚g.�//;

with

D.˚f ı ˚g/ D f� 2 D.˚g/ W ˚g.�/ 2 D.˚f /g:

We have the following.

Theorem 6.1 We have

(1) � D ˚ ı 	 D 	 ı˚ ,
(2) 	 ı U D U ı 	 ,
(3) G ı U D U ı G ,
(4) ˚ ı U D U ı ˚ .

Proof of (1) of Theorem 6.1 (Barndorff-Nielsen et al. [12, Theorem C(ii)]) Note
that D.�/.z/ D IDlog.R

d/. If � 2 IDlog.R
d/, then

C˚.�/.z/ D
Z 1
0

C�.e
�tz/dt:
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On the other hand, if � 2 ID.Rd/, then

C	 .�/.z/ D
Z 1

0

C�.log.t�1/z/dt D
Z 1
0

e�sC�.sz/ds:

Also note that

	 .�/ 2 IDlog.R
d/ if and only if � 2 IDlog.R

d/; (23)

(see Barndorff-Nielsen et al. [12, Theorem C(i)]). Thus, if � 2 IDlog.R
d/, then

	 .�/ 2 IDlog.R
d/ by (23), and hence

C.˚ı	 /.�/.z/ D
Z 1
0

dt
Z 1
0

e�sC�.e
�tsz/ds

and

C.	 ı˚/.�/.z/ D
Z 1
0

e�sds
Z 1
0

C�.e
�tsz/dt:

If we could show
Z 1
0

e�sds
Z 1
0

jC�.e�tsz/jdt < 1; for each z 2 R; (24)

then we can apply Fubini’s theorem to get

C.˚ı	 /.�/.z/ D C.	 ı˚/.�/.z/;

meaning ˚ ı 	 D 	 ı ˚ , and

C.˚ı	 /.�/.z/ D
Z 1
0

dt
Z 1
0

e�sC�.uz/et�uet
du D

Z 1
0

C�.uz/e�uu�1du

D �
Z 1
0

C�.uz/dp.u/ D
Z 1
0

C�.p
�.t/z/dt D C�.�/.z/;

concluding ˚ ı 	 D � . It remains to prove (24). We need the following lemma.

Lemma 6.2 Let � D �.A;�;
/ 2 ID.Rd/ For each fixed z 2 R,

jC�.az/j � cz



a2 C jaj C

Z
Rd

jaxj2
1C jaxj2 �.dx/C

Z
Rd

.jaj C jaj3/jxj3
.1C jxj2/.1C jaxj2/�.dx/

�
;

where cz > 0 is a finite constant depending only on z.
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Proof of Lemma 6.2 Let g.z; x/ D eihz;xi � 1 � ihz;xi
1Cjxj2 . Since

jC�.z/j � 1

2
.trA/jzj2 C j
 jjzj C

Z
Rd

jg.z; x/j�.dx/;

we have

jC�.az/j � cz.a
2 C jaj/C

Z
Rd

jg.z; ax/j�.dx/C
Z
Rd

jg.az; x/� g.z; ax/j�.dx/:

The inequalities

g.z; x/ � cz
jxj2

1C jxj2
and

jg.az; x/� g.z; ax/j � cz
.jaj C jaj3/jxj3

.1C jxj2/.1C jaxj2/
conclude the proof of the lemma.

We then have, by Lemma 6.2 that

Z 1
0

e�sds
Z 1
0

jC�.e�tsz/jdt

�
Z 1
0

e�sds
Z 1
0

cz



e�2ts2 C e�ts C

Z
Rd

je�tsxj2
1C je�tsxj2 �.dx/

C
Z
Rd

.e�ts C e�3ts3/jxj3
.1C jxj2/.1C je�tsxj2/�.dx/

�
dt

DW I1 C I2 C I3 C I4:

I1 < 1 and I2 < 1 are trivial. As to I3,

I3 D cz

Z 1
0

e�sds
Z 1
0

dt
Z
Rd

je�tsxj2
1C je�tsxj2 �.dx/

D cz

Z 1
0

e�sds
Z 1
0

dt

�Z
jxj�1

C
Z
jxj>1

� je�tsxj2
1C je�tsxj2 �.dx/;

where

Z 1
0

e�sds
Z 1
0

dt
Z
jxj�1

je�tsxj2
1C je�tsxj2 �.dx/

�
Z 1
0

e�ss2ds
Z 1
0

e�2tdt
Z
jxj�1

jxj2�.dx/ < 1
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and

Z 1
0

e�sds
Z
jxj>1

�.dx/
Z 1
0

je�tsxj2
1C je�tsxj2 dt

D
Z 1
0

e�sds
Z
jxj>1

�.dx/

 Z log jxj

0

C
Z 1

log jxj

!
je�tsxj2

1C je�tsxj2 dt

�
Z 1
0

e�sds
Z
jxj>1

�
log jxj C s2jxj2 1

2
e�2 log jxj

�
�.dx/ < 1:

As to I4, we omit the proof, since the basic ideas are the same as for I3. Equation (24)
is thus proved.

Proof of (2) of Theorem 6.1 We have

C.	 ıU /.�/.z/ D
Z 1

0

CU .�/.log.t�1/z/dt D
Z 1

0

dt
Z 1

0

C�.log.t�1/sz/ds

(by Fubini’s theorem)

D
Z 1

0

ds
Z 1

0

C�.log.t�1/sz/dt D
Z 1

0

C	 .�/.sz/ds D C.U ı	 /.�/.z/:

Proof of (3) of Theorem 6.1 We have

C.G ıU /.�/.z/ D
Z p�=2
0

CU .�/.g
�.t/z/dt D

Z p�=2
0

dt
Z 1

0

C�.g
�.t/sz/ds

(by Fubini’s theorem)

D
Z 1

0

ds
Z p�=2
0

C�.g
�.t/sz/dt D

Z 1

0

CG .�/.sz/ds D C.U ıG /.�/.z/:

Proof of (4) of Theorem 6.1 We first show that U .�/ 2 IDlog.R
d/ if and only if

� 2 IDlog.R
d/. Let � 2 ID.Rd/ and Q� D U .�/. We have

Z
jxj>2

log jxj� Q�.dx/ D
Z 1

0

sds
Z
jxj>2=s

log.sjxj/��.dx/

D
Z
jxj>2

��.dx/
Z 1

2=jxj
.s log s C s log jxj/ ds

DW
Z
jxj>2

h.x/��.dx/;

where h.x/ 
 log jxj as jxj ! 1. Thus,
R
jxj>2 log jxj� Q�.dx/ < 1 if and only ifR

jxj>2 log jxj��.dx/ < 1. Then if � 2 IDlog.R
d/, then using U .�/ 2 IDlog.R

d/, we
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have

C.˚ıU /.�/.z/ D
Z 1
0

CU .�/.e
�tz/dt D

Z 1
0

dt
Z 1

0

C�.se�tz/ds

(by Fubini’s theorem)

D
Z 1

0

ds
Z 1
0

C�.se�tz/dt D
Z 1

0

C˚.�/.sz/ds D C.U ı˚/.�/.z/

For the applicability of Fubini’s theorem above, we have to check that

Z 1

0

ds
Z 1
0

jC�.se�tz/jdt < 1:

By Lemma 6.2, we have

Z 1

0

ds
Z 1
0

jC�.se�tz/jdt �
Z 1

0

ds
Z 1
0

cz

"
e�2ts2 C e�ts C

Z
Rd

je�tsxj2
1C je�tsxj2 �.dx/

C
Z
Rd

.e�ts C e�3ts3/jxj3
.1C jxj2/.1C je�tsxj2/�.dx/

#
dt

DW I1 C I2 C I3 C I4:

I1 < 1 and I2 < 1 are trivial. We have

I3 D
Z 1

0

ds
Z 1
0

dt

�Z
jxj�1

C
Z
jxj>1

� je�tsxj2
1C je�tsxj2 �.dx/;

where
Z 1

0

ds
Z 1
0

dt
Z
jxj�1

je�tsxj2
1C je�tsxj2 �.dx/

�
Z 1

0

s2
Z 1
0

e�2tdt
Z
jxj�1

jxj2�.dx/ < 1;

Z 1

0

ds
Z
jxj>1

�.dx/
Z 1
0

.e�ts C e�3ts3/jxj3
.1C jxj2/.1C je�tsxj2/dt

D
Z 1

0

ds
Z
jxj>1

�.dx/

 Z log jxj

0

C
Z 1

log jxj

!
.e�ts C e�3ts3/jxj3

.1C jxj2/.1C je�tsxj2/dt

�
Z 1

0

ds
Z
jxj>1

�
log jxj C s2jxj2 1

2
e�2 log jxj

�
�.dx/ < 1

I4 can be handled similarly. This completes the proof of (4) of Theorem 6.1.
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The following Proposition 6.3 is a special case of Theorem 3.1 of Sato [75] and
Proposition 6.4 can be proved similarly, but we give a proof of Proposition 6.4 here.

Proposition 6.3 Let

k.s/ D
Z 1

s
ue�udu; s � 0;

and let k�.t/ be its inverse function. Define a mapping K from D.K / into ID.Rd/

by

K .�/ D L

�Z 1

0

k�.t/dX.�/t

�
:

Then D.K / D ID.Rd/ and

	 D K ı U D U ı K :

Proposition 6.4 Let

a.s/ D 2

Z 1
s

u2e�u2du; s � 0;

and let a�.t/ be its inverse function. Define a mapping A from D.A / into ID.Rd/

by

A .�/ D L

 Z � .3=2/

0

a�.t/dX.�/t

!
: (25)

Then D.A / D ID.Rd/ and

G D A ı U D U ı A :

Proof With respect to the domain of the A -mapping, it is enough to show

Z � .3=2/

0

.a�.t//2dt < 1; (26)

but (26) follows from

Z � .3=2/

0

.a�.t//2dt D
Z 1
0

u4e�u2du < 1:
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Next applying Proposition 2.6(1), we have

CU .�/.z/ D
Z 1

0

C�.tz/dt;

CG .�/.z/ D
Z p�=2
0

C�.h
�.t/z/dt

and

CA .�/.z/ D
Z � .3=2/

0

C�.a
�.t/z/dt:

Thus,

C.A ıU /.�/.z/ D
Z � .3=2/

0

dt
Z 1

0

C�.a
�.t/uz/du

and

C.U ıA /.�/.z/ D
Z 1

0

dt
Z � .3=2/

0

C�.ta
�.u/z/du:

If we are allowed to exchange the order of the integrations by Fubini’s theorem, then
we have

C.A ıU /.�/.z/ D C.U ıA /.�/.z/;

implying A ı U D U ı A , and we have

C.A ıU /.�/.z/ D
Z 1

0

du
Z � .3=2/

0

C�.a
�.t/uz/dt D 2

Z 1

0

du
Z 1
0

C�.vuz/v2e�v2dv

D 2

Z 1

0

u�3du
Z 1
0

C�.yz/y2e�y2=u2dy

D 2

Z 1
0

C�.yz/y2dy
Z 1

0

u�3e�y2=u2du D 2

Z 1
0

C�.yz/dy
Z 1

y
te�t2dt

D
Z 1
0

C�.yz/e�y2dy D
Z p�=2
0

C�.h
�.t/z/dt D CG .�/.z/;
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concluding A ı U D G . In order to assure the exchange of the order of the
integrations by Fubini’s theorem, it is enough to show that

Z 1

0

du
Z 1
0

ˇ̌
C�.uvz/

ˇ̌
v2e�v2dv < 1: (27)

For � D �.A;�;
/ 2 ID.Rd/, we have

jC�.z/j � 2�1.trA/jzj2 C j
 jjzj C
Z
Rd

jg.z; x/j�.dx/;

where

g.z; x/ D eihz;xi � 1 � ihz; xi.1C jxj2/�1:

Hence

jC�.uvz/j � 2�1.trA/u2v2jzj2 C j
 jjujjvjjzj C
Z
Rd

jg.z; uvx/j�.dx/

C
Z
Rd

jg.uvz; x/� g.z; uvx/j�.dx/ DW I1 C I2 C I3 C I4:

The finiteness of
R 1
0

du
R1
0
.I1 C I2/v2e�v

2
dv is trivial. Noting that jg.z; x/j �

czjxj2.1C jxj2/�1 with a positive constant cz depending on z, we have

Z 1

0

du
Z 1
0

I3v
2e�v2dv

� cz

Z
Rd
�.dx/

Z 1

0

du
Z 1
0

.uvjxj/2
1C .uvjxj/2 v

2e�v2dv

D cz

�Z
jxj�1

�.dx/C
Z
jxj>1

�.dx/

�Z 1

0

du
Z 1
0

.uvjxj/2
1C .uvjxj/2 v

2e�v2dv

DW I31 C I32;

where

I31 � cz

Z
jxj�1

jxj2�.dx/
Z 1

0

u2du
Z 1
0

v4e�v2dv < 1;

I32 � cz

Z
jxj>1

�.dx/
Z 1

0

du
Z 1
0

v2e�v2dv < 1:
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As to I4, note that for a 2 R,

jg.az; x/� g.z; ax/j D jhaz; xijjxj2j1� a2j
.1C jxj2/.1C jaxj2/

� jzjjxj3.jaj C jaj3/
.1C jxj2/.1C jaxj2/ � jzjjxj2.1C jaj2/

2.1C jxj2/ ;

since jbj.1C b2/�1 � 2�1. Then

Z 1

0

du
Z
1

0

I4v
2e�v

2

dv � 2�1jzj
Z
Rd

jxj2
1C jxj2 �.dx/

Z 1

0

du
Z
1

0

.1C u2v2/ve�vdv < 1:

This completes the proof of (27).

We can give a more general result than Propositions 6.3 and 6.4.

Theorem 6.5 (Maejima and Ueda [53]) Let Xˇ.�/ D L
�

X.�/ˇ

�
; ˇ > 0. Then

for ˛ 2 .�1; 1/[ .1; 2/ and ˇ > 0,

�˛;ˇ D Xˇ ı ˚˛ ı �˛�ˇ;ˇ D Xˇ ı �˛�ˇ;ˇ ı ˚˛:

.Remark that Xˇ.�/ D �ˇ�:/

Proposition 6.3 is the case of Theorem 6.5 with ˛ D �1 and ˇ D 1, since
K D X1 ı ��2;1 D ��2;1, and Proposition 6.4 is the case of Theorem 6.5 with
˛ D �1 and ˇ D 2, since A D X2 ı ��3;2.

7 Nested Subclasses of Classes of Infinitely Divisible
Distributions

As mentioned in Sect. 1 already, once we have mappings in hand, it is natural
to consider the iteration of mappings. In our case, this procedure gives us nested
subclasses of the original class, which, without mapping, was already studied in the
case of selfdecomposable distributions by Urbanik [90] and Sato [70].

7.1 Iteration of Mappings

Let ˚f be a stochastic integral mapping. The iteration ˚m
f is defined by ˚1

f D ˚f

and

˚mC1
f .�/ D ˚f .˚

m
f .�//
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with

D.˚mC1
f / D f� 2 D.˚m

f / W ˚m
f .�/ 2 D.˚f /g:

We have

˚mC1
f .D.˚mC1

f // D ˚m
f .˚f .D.˚

mC1
f ///;

implying

˚f .D.˚
mC1
f // � D.˚m

f /;

and

˚mC1
f .D.˚mC1

f // � ˚m
f .D.˚

m
f //:

Therefore, if we write

Kf
m.R

d/ WD ˚m
f .D.˚

m
f //;

Kf
m.R

d/;m D 2; 3; : : : ; are nested subclasses of Kf
1.R

d/ D ˚f .D.˚f //.
With respect to the domain of mappings, if ˚f is a proper stochastic integral

mapping, then D.˚m
f / D ID.Rd/ as mentioned before. For ˚f D ˚ or � , (which is

an improper stochastic integral mapping), we have the following.

Lemma 7.1 We have

(1) D.˚m/ D IDlogm.Rd/,
(2) D.�m/ D IDlogm.Rd/.

Proof

(1) See e.g. Rocha-Arteaga and Sato [67, Theorem 49].
(2) We first show that

	 .�/ 2 IDlogm.Rd/ if and only if � 2 IDlogm.Rd/:

Let � 2 ID.Rd/ and Q� D 	 .�/. We have

Z
jxj>2

logm jxj� Q�.dx/ D
Z 1
0

e�sds
Z
jxj>2=s

logm.sjxj/��.dx/

D
Z
Rd
��.dx/

Z 1
2=jxj

e�s.log s C log jxj/mds

DW
Z
Rd

h.x/��.dx/:

Here h.x/ D o.jxj2/ as jxj # 0 and h.x/ 
 logm jxj as jxj ! 1. Thus,R
jxj>2 logm jxj� Q�.dx/ < 1 if and only if

R
jxj>2 logm jxj��.dx/ < 1. By
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Theorem 6.1(1), we know that �m D ˚m ı 	 m. Since D.	 m/ D ID.Rd/ and
D.˚m/ D IDlogm.Rd/, we have D.�m/ D IDlogm.Rd/.

7.2 Definitions and Some Properties of Nested Subclasses

Put

U0.R
d/ D U.Rd/; B0.R

d/ D B.Rd/; L0.R
d/ D L.Rd/;

T0.R
d/ D T.Rd/; G0.R

d/ D G.Rd/; M0.R
d/ D M.Rd/:

Definition 7.2 For m D 0; 1; 2; : : : , define
Um.R

d/ D U mC1.ID.Rd//,
Bm.R

d/ D 	 mC1.ID.Rd//,
Lm.R

d/ D ˚mC1.IDlogmC1 .Rd//,
Tm.R

d/ D �mC1.IDlogmC1 .Rd//,
Gm.R

d/ D G mC1.ID.Rd//,
Mm.R

d/ D M mC1.ID.Rd//

and further U1.Rd/ D T1
mD0 Um.R

d/;B1.Rd/ D T1
mD0 Bm.R

d/;L1.Rd/ DT1
mD0 Lm.R

d/, T1.Rd/ D T1
mD0 Tm.R

d/, G1.Rd/ D T1
mD0 Gm.R

d/, M1.Rd/ DT1
mD0 Mm.R

d/.

Distributions in L1.Rd/ are called completely selfdecomposable distributions.
We start with the following.

Definition 7.3 A class H � ID.Rd/ is said to be completely closed in the strong
sense (c.c.s.s.), if the following are satisfied.

(1) It is closed under convolution.
(2) It is closed under weak convergence.
(3) If X is an R

d-valued random variable with L .X/ 2 H, then L .aX C b/ 2 H
for any a > 0 and b 2 R

d.
(4) � 2 H implies �s� 2 H for any s > 0.

Proposition 7.4 (Maejima and Sato [48, Proposition 3.2]) Fix 0 < a < 1.
Suppose that f is square integrable on .0; a/ and

R a
0

f .t/dt ¤ 0. Define a mapping
˚f by

˚f .�/ D L

�Z a

0

f .t/dX.�/t

�
:

Then the following are true.

(1) D.˚f / D ID.Rd/.
(2) If H is c.c.s.s., then ˚f .H/ � H.
(3) If H is c.c.s.s., then ˚f .H/ is also c.c.s.s.
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Remark 7.5

(1) Note that Proposition 7.4 can be applied to 	 - and G -mappings, because in
those mappings the stochastic integral is proper, f is square integrable andR a
0

f .t/dt ¤ 0. Since ID.Rd/ is c.c.s.s., B.Rd/ and G.Rd/ are c.c.s.s.
(2) Proposition 7.4(3) is not necessarily true when a D 1. Namely, there is a

mapping ˚f defined by ˚f .�/ D L
�R1

0
f .t/dX.�/t

�
such that ˚f .H \ D.˚f //

is not closed under weak convergence for some H which is c.c.s.s. Indeed, the
mapping �˛ with 0 < ˛ < 1 in Theorem 4.2 of Sato [75] serves as an example.

(3) However, it is known that when ˚f D ˚ , Proposition 7.4(2) and (3) are true
with ˚f .H/ replaced by ˚.H \ D.˚//, even if a D 1. See Lemma 4.1 of
Barndorff-Nielsen et al. [12]. In particular, Lm.R

d/ is c.c.s.s. for m D 0; 1; : : :.
(4) We also have that T1.Rd/ is c.c.s.s. (Maejima and Sato [48, Lemma 3.8].)

Theorem 7.6 We have the following.

(1) Bm.R
d/ � Um.R

d/,
(2) Gm.R

d/ � Um.R
d/,

(3) Lm.R
d/ � Um.R

d/,
(4) Tm.R

d/ � Lm.R
d/.

Proof

(1) We know that B0.Rd/ � U0.R
d/. Suppose that Bm.R

d/ � Um.R
d/ for some

m � 0, as the induction hypothesis. Then

BmC1.Rd/ D 	 mC2.ID.Rd// D 	 .	 mC1.ID.Rd// D 	 .Bm.R
d//

� 	 .Um.R
d// D 	 .U mC1.ID.Rd// D U mC1.	 .ID.Rd//

(since 	 ı U D U ı 	 (Theorem 6.1(2)))

D U mC1.U .ID.Rd// D UmC1.Rd/:

(2) The same proof as above works if we apply the relation G ı U D U ı G
(Theorem 6.1(3)) instead of 	 ı U D U ı 	 .

(3) We know that L0.Rd/ � U0.R
d/. Suppose that Lm.R

d/ � Um.R
d/ for some

m � 0, as the induction hypothesis. Then

LmC1.Rd/ D ˚mC2.IDlogmC2 .Rd// D ˚.˚mC1.IDlogmC2 .Rd///

� ˚.˚mC1.IDlogmC1 .Rd/// D ˚.Lm.R
d/\ IDlog.R

d//

� ˚.Um.R
d/\ IDlog.R

d// D ˚.U mC1.ID.Rd//\ IDlog.R
d//

D ˚.U mC1.IDlog.R
d// D U mC1.˚.IDlog.R

d//

(by ˚ ı U D U ı ˚ (Theorem 6.1 (4)))

D U mC1.L0.Rd// � U mC1.U0.R
d// D UmC1.Rd/:
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(4) We show Tm.R
d/ � Lm.R

d/. We can show that, for any m � 0,

Tm.R
d/ D .˚	 /mC1.IDlogmC1 .Rd// D .	 mC1˚mC1/.IDlogmC1 .Rd//

D 	 mC1.Lm.R
d//:

Then by Proposition 7.4(2) and Remark 7.5(3),

	 mC1.Lm.R
d// � Lm.R

d/:

The proof is completed.

7.3 Limits of Nested Subclasses

The following is a main result on the limits of nested subclasses.

Theorem 7.7 (Maejima and Sato [48], Aoyama et al. [5]) Let S.Rd/ be the clo-
sure of S.Rd/, where the closure is taken under weak convergence and convolution.
We have

U1.Rd/ D B1.Rd/ D L1.Rd/ D T1.Rd/ D G1.Rd/ D M1.Rd/ D S.Rd/:

To prove this theorem, we start with the following two known results.

Theorem 7.8 (The Class of Completely Selfdecomposable Distributions.
Urbanik [90] and Sato [70]) L1.Rd/ D S.Rd/:

Theorem 7.9 (Jurek [35], See Also Maejima and Sato [48]) U1.Rd/ D
L1.Rd/:

We also have the following two propositions.

Proposition 7.10

T1.Rd/ � U1.Rd/; B1.Rd/ � U1.Rd/ and G1.Rd/ � U1.Rd/:

Proof Trivial from Theorem 7.6.

Proposition 7.11 We have

B1.Rd/ � S.Rd/; G1.Rd/ � S.Rd/ and T1.Rd/ � S.Rd/:

Proof It follows from Remark 7.5(1) that B1.Rd/ and G1.Rd/ are c.c.s.s., and
from Remark 7.5 (4) that T1.Rd/ is also c.c.s.s. Thus, we have

B1.Rd/ D B1.Rd/; G1.Rd/ D G1.Rd/ and T1.Rd/ D T1.Rd/:
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We know that each class includes S.Rd/. Thus,

B1.Rd/ � S.Rd/; G1.Rd/ � S.Rd/ and T1.Rd/ � S.Rd/:

The proof is completed.

Proof of Theorem 7.7 The statement follows from Theorems 7.8 and 7.9 and
Propositions 7.10 and 7.11.

7.4 Limits of the Iterations of Stochastic Integral Mappings

A natural question is whether L1.Rd/ is the only class which can appear as the limit
of iterations of stochastic integral mappings. In this section, we give an answer to
this question. We start with the following.

Theorem 7.12 (A Characterization of L1.Rd/ (Sato [70])) � 2 L1.Rd/ if and
only if � 2 ID.Rd/ and

��.B/ D
Z
.0;2/

� �.d˛/
Z

S

˛.d�/

Z 1
0

1B.r�/r
�˛�1dr; B 2 B.Rd/;

where � � is a measure on .0; 2/ satisfying

Z
.0;2/

�
1

˛
C 1

2 � ˛

�
� �.d˛/ < 1

and 
˛ is a probability measure on S for each ˛ and it is measurable in ˛. Here � �

is unique and so it can be considered a characteristic of �.

Definition 7.13 For A 2 B..0; 2//, define LA1.Rd/ WD f� 2 L1.Rd/W� �

..0; 2/ n A/ D 0g:
Theorem 7.14 (Sato [78], Maejima and Ueda [54]) We have

1\
mD1

R.˚m
˛ / D

1\
mD1

R.�m
˛;1/

D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

L1.Rd/; for ˛ 2 .�1; 0�;

L.˛;2/1 .Rd/; for ˛ 2 .0; 1/;n
� 2 L.1;2/1 .Rd/ W the weak mean of � is 0

o
; for ˛ D 1;n

� 2 L.˛;2/1 .Rd/ W R
Rd x�.dx/ D 0

o
; for ˛ 2 .1; 2/:
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7.5 Characterizations of Some Nested Subclasses

Here we treat three cases, Lm.R
d/, Bm.R

d/ and Gm.R
d/.

Sato [70] characterized the classes Lm.R
d/ in terms of �� as follows. Recall the

functions k� in (11). We call the function h�.u/ defined by h�.u/ D k�.e�u/ the
h-function of �.

Let f be a real-valued function on R. For " > 0; n D 1; 2; : : : ; denote

�n
"f .u/ D

nX
jD0
.�1/n�j

 
n

j

!
f .u C j"/:

Define �0
"f D f . We say that f .u/; u 2 R; is monotone of order n if �j

"f � 0 for
" > 0; j D 0; 1; 2; : : : ; n.

Theorem 7.15 (Sato [70, Theorem 3.2]) Let m D 1; 2; : : :. Then � 2 Lm.R
d/ if

and only if � 2 L.Rd/ and the h-function of � is monotone of order m C 1 for

-a.e. �, where 
 is the measure appearing in (2.3).

Another characterization of Lm.R
d/ in terms of the decomposability is the

following.

Theorem 7.16 (See Sato [70, Theorem 2.1] and Rocha-Arteaga and Sato [67,
Theorem 49]) For m D 1; 2; : : : ;1; � 2 Lm.R

d/ if and only if � 2 L0.Rd/ and
for any b > 1, there exists some �b 2 Lm�1.Rd/ such that (12) is satisfied.

For the characterization of Bm.R
d/, we introduce a sequence of functions

"m.x/;m D 0; 1; 2; : : : : For x � 0, let

"0.x/ D e�x;

"1.x/ D �
Z 1
0

e�x=ud"0.u/ > 0;

� � �

"m.x/ D �
Z 1
0

e�x=ud"m�1.u/ > 0:

We have

Theorem 7.17 (Maejima [43]) Let m D 1; 2; : : :. Then � 2 Bm.R
d/ if and only if

� 2 B0.Rd/ and �� is either 0 or it is expressed as

��.B/ D �
Z 1
0

�0.t
�1B/d"m.t/

for the Lévy measure �0 of some �0 2 ID.Rd/.
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For the characterization of Gm.R
d/, we restrict ourselves to the symmetric

distributions, which is easier. For m 2 N, let �m.x/ be the probability density
function of the product of .m C 1/ independent standard normal random variables.

Theorem 7.18 (Aoyama and Maejima [3]) Let � 2 IDsym.R
d/. Then for each

m 2 N, � 2 Gm.R
d/ if and only if � 2 G0.R

d/ and �� is either 0 or it is expressed
as

��.B/ D
Z 1
�1

�0.u
�1B/�m�1.u/du;

where �0 is the Lévy measure of some �0 2 G0.R
d/.

Another characterization is the following.

Theorem 7.19 (Aoyama and Maejima [3]) Let m 2 N. A � 2 IDsym.R
d/ belongs

to Gm.R
d/ if and only if � 2 G0.R

d/ and �� is either 0 or it is expressed as

��.B/ D
Z

S

.d�/

Z 1
0

1B.r�/gm;� .r
2/dr; B 2 B0.R

d/;

where 
 is a symmetric measure on the unit sphere S on R
d and gm;� .r/ is

represented as

gm;� .s/ D
Z 1
�1

�m�1.
p

sjrj�1/jrj�1g�.r2/dr;

where g�.r/ on .0;1/ is a jointly measurable function such that g� D g�� ; 
� a:e:
for any fixed � 2 S, g�.�/ is completely monotone on .0;1/ and satisfies

Z 1
0

.1 ^ r2/g�.r
2/dr D c 2 .0;1/

with c independent of �.

7.6 Some Nested Subclasses Appearing in Finance

In Carr et al. [19], they discussed the problem of pricing options with Lévy
processes and Sato processes (which are the selfsimilar additive processes) for asset
returns. Then they showed the importance of the distributions in L1.RC/ or L2.RC/,
and also L1.RC/. Actually, some tempered stable distributions belong to L1.Rd/

and L2.Rd/, which will be seen in Sect. 5.4 later, and Rosiński [69] mentioned
that tempered stable processes were introduced in mathematical finance to model
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stochastic volatility (see e.g. CGMY model in Carr et al. [18] discussed in Sect. 7.7
later), and that option pricing based on such processes were considered.

7.7 Nested Subclasses of L.Rd/ with Continuous Parameter

We have discussed nested subclasses Lm.R
d/;m D 1; 2; : : : ; of L.Rd/. Nguyen Van

Thu [91–93] extended Lm.R
d/ to Lp.R

d/ by replacing the integers m by positive real
numbers p > 0. It turns out that his classes Lp.R

d/ are special cases of Lp:˛.R
d/,

recently studied by Sato [77]. For p > 0 and ˛ 2 R, let

jp;˛.s/ D 1

� .p/

Z 1

s
.� log u/p�1u�˛�1du; 0 < s � 1;

and denote its inverse function by j�p;˛.t/. Define

�p;˛ WD ˚j�p;˛ and Lp;˛.R
d/ WD R.�p;˛/:

Then

Lm.R
d/ D LmC1;1.Rd/; m D 1; 2; : : : ;

and the classes Lp.R
d/ by Nguyen Van Thu [91–93] are

Lp.R
d/ D Lp;1.R

d/; p > 0:

For the details of Lp;˛.R
d/, see Sato [77].

Also note that "�̨;m.t/ in Maejima et al. [57] is the same as j�p;˛.t/ above with
p D m C 1. Hence, Lm;˛.R

d/;m D 1; 2; : : : ; ˛ < 2, in Maejima et al. [57] is the
special case of Lp;˛.R

d/ in Sato [77].

8 Examples (I)

All examples in this section are one-dimensional distributions except in Sect. 8.5,
and we show which classes such known distributions belong to.

8.1 Gamma, �2-, Student t- and F-Distributions

(a) Let �c;
 be a gamma random variable with parameters c > 0 and 
 > 0.
Namely, P.�c:
 2 B/ D 
c� .c/�1

R
B\.0;1/ xc�1e�
xdx. (When c D 1, it is
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exponential.) In its Lévy-Khintchine representation, the Gaussian part is 0 and
the Lévy measure is �.dr/ D ce�
rr�11.0;1/.r/dr, (see e.g. Steutel and van
Harn [83, Chap. III, Example 4.8]). Then L .�c;
/ 2 T.RC/, (from the form
of the Lévy measure of L .�c;
//, but L .�c;
/ … L1.RC/, (Maejima et al. [56,
Example 1(i)]).

(b) Let n 2 N and let Z1; : : : ;Zn be independent standard normal random variables.
The distribution of

�2.n/ WD Z21 C � � � C Z2n

is called the �2-distribution with n degrees of freedom. It is known that

L .�2.n// D L .�n=2;1=2/;

and hence L .�2.n// 2 T.RC/.
(c) Let Z be the standard normal random variable and �2.n/ a �2-random variable

with n degrees of freedom and suppose that they are independent. Then the
distribution of

t.n/ WD Zp
�2.n/=n

(28)

is called Student t-distribution of n degrees of freedom. Its density is

�.dx/ D 1

B.n=2; 1=2/
p

n

�
1C x2

n

��.nC1/=2
dx;

where B.�; �/ is the Beta function. It is known that L .t.n// 2 L.R/, (see Steutel
and van Harn [83, Chap. VI, Theorem 11.15]).

(d) Let �21.n/ and �22.m/ be two independent �2-random variables with n and m
degrees of freedom, respectively. Then the distribution of

F.n;m/ WD �21.n/=n

�22.m/=m
(29)

is called F-distribution, and its density is

�.dx/ D 1

B.n=2;m=2/x

�
nx

nx C m

�n=2 �
1 � nx

nx C m

�m=2

dx; x > 0:

It is known that L .F/ 2 I.RC/, (Ismail and Kelker [27]), and more that
L .F/ 2 T.RC/, (Bondesson [16, Example 4.3.1]).
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8.2 Logarithm of Gamma Random Variable

It is known that �� corresponding to log�c;
 is �1 D 0 and

��1.dr/ D e�cr

r.1 � e�r/
dr; r > 0; (30)

(see e.g. Linnik and Ostrovskii [41, Eq. (2.6.13)]). This does not depend on the
parameter 
 > 0.

(a) L .log�c;
/ 2 L.R/, (Shanbhag and Sreehari [81]). Shanbhag and Sreehari
proved the selfdecomposability by showing (12) without using (30). However,
once we know (30), we can show it by (11) and (30).

(b) L .log�c;
/ 2 L1.R/ if c � 1=2, (Akita and Maejima [1]). It is enough to
apply Theorem 7.15.

(c) L .log�c;
/ 2 L2.R/ if c � 1, (Akita and Maejima [1]). It is enough to apply
Theorem 7.15 again.

(d) L .log�c;1/ 2 T.R/. (See Bondesson [16, p. 112].)

8.3 Symmetrized Gamma Distribution

The symmetrized gamma distribution with parameter c > 0 and 
 > 0, is written
as sym-gamma .c; 
/. Its characteristic function is '.z/ D �


2=.
2 C z2/
	c

and in
its Lévy-Khintchine representation, the Gaussian part is 0 and the Lévy measure is
�.dr/ D cjrj�1e�
jrjdr; .r ¤ 0/. (See Steutel and van Harn [83, Chap. V, Example
6.17].) (When c D 1 it is the Laplace distribution.)

We have

(a) sym-gamma .c; 
/ 2 T.R/, (from the form of the Lévy measure above).

Thus

(b) sym-gamma .c; 
/ 2 G.R/, (see Rosiński [68]).

8.4 More Examples Related to Gamma Random Variables

(a) Product of independent gamma random variables. (Steutel and van Harn [83,
Chap. VI, Theorem 5.20].) Let �1; �2; : : : �n be independent gamma random
variables, and let q1; q2; : : : ; qn 2 R with jqjj � 1. Then

L .�
q1
1 �

q2
2 � � �� qn

n / 2 L.RC/:
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(b) When n D 1 above, we can say more. Namely,

L .�
q1
1 / 2 T.RC/:

(Thorin [87].)
(c) Power of gamma random variables. (Bosch and Simon [17].) Let � be a gamma

random variable and p 2 .�1; 0/. Then L .� p/ 2 L.RC/. The proof is as
follows: Let

g.u/ D u� .1 � p.u C 1//

� .1 � pu/
;

and let X D fXtg be the Lévy process such that

E


e�uXt

� D e�ug.u/; u; t � 0:

Then by an application of Proposition 2 of Bertoin and Yor [13] (see Bosch and
Simon [17] for the details), we have

� p dD
Z 1
0

e�Xt dt.DW I/:

Let Ty D infft > 0 W Xt D yg for every y > 0. The fact that Xt ! 1 a.s. as
t ! 1 and the absence of positive jumps assure that Ty < 1 a.s. We thus have

I D
Z Ty

0

e�Xt dt C
Z 1

Ty

e�Xt dt
dD
Z Ty

0

e�Xt dt C e�y
Z 1
0

e�X0t dt;

where X0 is an independent copy of X and the second equality follows from

the Markov property at Ty. This shows that I satisfies (12), and hence � p.
dD I/

is selfdecomposable by (12). We remark here that L .� p/; p 2 .0; 1/ is not
infinitely divisible. (See Bosch and Simon [17, p. 627].)

(d) Exponential function of gamma random variable. (Bondesson [16, p. 94].) Let
X is denumerable convolution of gamma random variables �cj;
j with cj � 1.
Then

L .eX/ 2 T.RC/:

(e) Let � be a gamma random variable and let a; b 2 R. Then

L .a� C b� 2/ 2 T.R/:

(Privault and Yang [65].)
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8.5 Tempered Stable Distribution

The tempered stable distributions were defined by Rosiński [69]. Let 0 < ˛ < 2. T˛
is called a tempered ˛-stable random variable on R

d, if L .T˛/ D �.A;�;
/ is such
that A D 0 and �� has polar decomposition

��.B/ D
Z

S

.d�/

Z 1
0

1B.r�/r
�˛�1q�.r/dr; (31)

where q�.r/ is completely monotone in r, measurable in �, and 
.S/ < 1; q�.1/ D
0. Because of the assumption that q�.1/ D 0, q�.r/ cannot be constant, and thus an
˛-stable distribution is not tempered ˛-stable but tempered ˇ.< ˛/-stable.

We have the following. It is easy to see by checking (13) for (a) and Theorem 7.15
for (b)–(d). (See Barndorff-Nielsen et al. [12].)

(a) If 0 < ˛ < 2, then L .T˛/ 2 T.Rd/.
(b) If 1=4 � ˛ < 2, then L .T˛/ 2 L1.Rd/.
(c) If 0 < ˛ < 1=4, and q�.r/ D c.�/e�b.�/r for all � in a set of positive 
-measure,

where c.�/ and b.�/ are positive measurable functions of �, then L .T˛/ …
L1.Rd/.

(d) If 2=3 � ˛ < 2, then L .T˛/ 2 L2.Rd/.

8.6 Limits of Generalized Ornstein-Uhlenbeck Processes
(Exponential Integrals of Lévy Processes)

(a) Let f.Xt;Yt/; t � 0g be a two-dimensional Lévy process. Suppose that fXtg does
not have positive jumps, 0 < EŒX1� < 1 and L .Y1/ 2 IDlog.R/. Then

L

�Z 1
0

e�Xt�dYt

�
2 L.R/:

(Bertoin et al. [15].)
(b) Let fNtg be a Poisson process, and let fYtg be a strictly stable Lévy process or a

Brownian motion with drift. Then

L

�Z 1
0

e�Nt�dYt

�
2 L.R/:

(Kondo et al. [39].)
(c) Let fNtgt�0 be a Poisson process such that EŒN1� < 1. Then

L

�Z 1
0

e�.t�Nt/dt

�
2 L.R/\ L1.R/

c: (32)
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(Lindner and Maejima [40].) The proof of (32) is as follows: Let Xt WD t � Nt and
V WD R1

0
e�Xt dt. For c > 0, let �c WD infft � 0 W Xt D cg. Since Xt ! 1 a.s. as

t ! 1 and fXtg does not have positive jumps, �c < 1 almost surely. Then

V D
Z �c

0

e�Xt dt C
Z 1
�c

e�Xt dt DW Yc C Vc;

where Vc and Yc are independent. We have

Vc D
Z 1
�c

e�.Xt�X�c /e�X�c dt D e�c
Z 1
�c

e�.Xt�X�c /dt:

Denote

V 0c WD
Z 1
�c

e�.Xt�X�c /dt:

By the strong Markov property, fXt � X�cgt>�c is independent of Yc and has the same
distribution as fXtgt>0. Thus we conclude that for all c > 0

V D Yc C e�cX0c;

where L .X0c/ D L .V/. Thus L .V/ 2 L.R/ by (12). But, in order that it is in
L1.R/, it is needed that L .Yc/ 2 L.R/ by Theorem 7.16. This, however, is not the
case. For instance, we have

P

�
Y1 D

Z 1

0

e�tdt

�
� P.Nt does not jump until time 1/ D e�EŒN1� > 0:

This means that Y1 has a point mass at
R 1
0

e�tdt D 1 � e�1, but is not a constant,
namely, L .Y1/ is a non-trivial distribution with a point mass. Recall that any non-
trivial selfdecomposable distribution on R must be absolutely continuous (see e.g.
Sato [73, Theorem 27.13]), and thus L .Y1/ … L.R/. We then conclude that L .V/ …
L1.R/.

8.7 Type S Random Variable

For 0 < ˛ < 2, define X WD V1=˛Z˛ , where V is a positive infinitely divisible
random variable and Z˛ is a symmetric ˛-stable random variable on R, and where
V and Z˛ are independent. We call X the type S random variable.

Here we explain subordination of Lévy processes.
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Theorem 8.1 (Sato [73, Theorem 30.1]) Let fVt; t � 0g be a subordinator (a
nondecreasing Lévy process on R) and let fZt; t � 0g be a Lévy process on R

d,
independent of fVtg. Then Xt WD ZVt is a Lévy process on R

d, and L .Xt/ 2 ID.Rd/.

The transformation of fZtg to fXtg is called subordination by the subordinator fVtg.

Theorem 8.2 Let fVt; t � 0g be a subordinator and let fZ˛.t/g be a symmetric
˛.2 .0; 2�/-stable Lévy process on R, independent of fVtg. Then if we write V D V1,

Z˛.V/
dD V1=˛Z˛: (33)

Thus, L .V1=˛Z˛/ 2 ID.R/, implying that type S random variables are infinitely
divisible.

Proof We compare the characteristic functions on both sides of (33). Note that
EŒeizZ˛ � D expf�cjzj˛g with some c > 0, and for the Lévy process fXtg, EŒeizXt � D�
EŒeizX1 �

	t
. We then have

E Œexp fizZ˛.V/g� D EV Œexp f�cVjzj˛g�

and

E


exp

˚
izV1=˛Z˛

�� D EV


exp

˚�cjV1=˛zj˛�� ;
implying that both sides of (33) are equal in law.

Notice that a symmetric stable random variable is of type G. For, we can check,
by the characteristic functions,

Z˛
dD .ZC˛=2/

1=2Z2; (34)

where ZC˛=2 is a positive ˛=2-stable random variable.

Theorem 8.3 Type S random variables are of type G.

Proof By (34), we have

V1=˛Z˛
dD V1=˛.ZC˛=2/

1=2Z2 D .V2=˛ZC˛=2/
1=2Z2:

It remains to show that L .V2=˛ZC˛=2/ 2 I.RC/, but this can be shown in the same
way as in the proof of (33), completing the proof.

(a) If V
dD �1;
, then L .Z˛.V// 2 G .T.R// � T.R/. (See Bondesson [16, p. 38].)

(b) Let 
 > 0 and fBtg a standard Brownian motion, and let fZtg be a symmetric
stable Lévy process. Then

R1
0

e�Bt�
tdZt is of type S. (See Maejima and
Niiyama [45], Aoyama et al. [4] and Kondo et al. [39].)
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8.8 Convolution of Symmetric Stable Distributions of Different
Indexes

The characteristic function of the convolution of symmetric stable distributions of

different indexes is '.z/ D exp
nR
.0;2/

�jzj˛m.d˛/
o
, where m is a measure on the

interval .0; 2/. It belongs to L1.R/. (See e.g. Sato [67].)

8.9 Product of Independent Standard Normal Random
Variables

Let Z1;Z2; : : : be independent standard normal random variables.

(a) L .Z1Z2/ 2 T.R/. This is because L .Z1Z2/ D L .sym-gamma.1=2; 1//, (see
Steutel and van Harn [83, p. 504]),

(b) (Maejima and Rosiński [46, Example 5.1].) L .Z1 � � � Zn/ 2 G.R/; n � 2. The
proof is as follows: Recall that if V > 0;L .V/ 2 I.R/;Z is the standard normal
random variable and V and Z are independent, then � D L .V1=2Z/ 2 G.R/.
Here we need a lemma.

Lemma 8.4 (Shanbhag and Sreehari [81, Corollary 4]) Let Z be the standard
normal random variable and Y a positive random variable independent of Z. Then
jZjpY is infinitely divisible for any p � 2.

We have Z1 � � � Zn
dD Z1jZ2 � � � Znj and jZ2 � � � Znj2 is infinitely divisible by

Lemma 8.4, which implies that L .Z1 � � � Zn/ 2 G.R/; n � 2.

(c) When n D 2, we can say more, namely, L .Z1Z2/ 2 G1.R/. (For the proof, see
Maejima and Rosiński [46, Example 5.2].)

9 Examples (II)

In this section, we list examples of distributions in the classes L.R/;B.R/;T.R/ and
G.R/, in addition to what we have explained in the previous section.

9.1 Examples in L.R/

There are many examples in L.R/. The following are some of them.

(a) Let Z be the standard normal random variable, t.n/ Student’s t-random variable
and let F.n;m/ be F-random variable. Then (i) L .log jZj/ 2 L.R/, (ii)
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L .log jtj/ 2 L.R/ and (iii) L .log F/ 2 L.R/. (Shanbhag and Sreehari [81].)
These follow from the following facts:

(i) Since jZj2 dD �2.1/, log jZj dD 1
2

log�2.1/.
(ii) By (28),

log jt.n/j dD log jZj � 1

2
log�n=2;1=2 C 1

2
log n;

where Z and �n=2;1=2 are independent.
(iii) By (29),

log F.n;m/
dD log�n=2;1=2 � log�m=2;1=2 � log n C log m;

where �n=2;1=2 and �m=2;1=2 are independent.

(b) Let E have a standard exponential random variable. Consider X
dD � log E.

Then the distribution function G1 of X is G1.x/ D e�e�x
; x 2 R, called Gumbel

distribution. (See Steutel and van Harn [83, Chap. IV, Example 11.1].) By
Sect. 5.2(a), L .X/ 2 L.R/. Also G2.x/ D 1�e�ex

; x 2 R, is selfdecomposable,
because G2.x/ D 1� G1.�x/ and so G2 D L .�X/.

(c) Let Y be a beta random variable. Then L
�
log Y.1 � Y/�1

	 2 L.R/. (Barndorff-
Nielsen et al. [11].)

9.2 Examples in L1.RC/

The following is Maejima et al. [56, Example 1(ii)]. Let � 2 ID.RC/ be such that
kC1.r/ in (11) is cx�˛e�ar; r > 0 with a; c > 0 and 0 < ˛ < 2. Then � 2 L1.RC/.
It is enough to apply Theorem 7.15.

9.3 Examples in B.R/

(a) (Bondesson [16, p. 143].) Let fYjg be i.i.d. exponential random variables and
N a Poisson random variable independent of fYjg. Put X D PN

jD1 Yj. Then
L .X/ 2 B.RC/.

(b) (Bondesson [16, pp. 143–144].) Let Y D Y.˛; ˇ/ be a beta random variable
with parameters ˛ and ˇ and let X D � log Y. Then

(b1) L .X/ 2 B.RC/.
(b2) L .X/ 2 L.RC/ if and only if 2˛ C ˇ � 1.
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9.4 Examples in G.R/

More examples of distributions in G.R/ are the following by Fukuyama and
Takahashi [22]. Let .Œ0; 1�;B; 
/ be the Lebesgue probability space with Lebesgue
measure 
. For any � 2 G.R/\ IDsym.R/, there exist fajg, An.! 1/ and fˇjg � R

such that

1

An

nX
jD1

aj cos
�
2�j.! C ˇj/

	
; ! 2 Œ0; 1�;

converges weakly to � on the Lebesgue probability space.

9.5 Examples in T.R/

There are many examples in T.R/. (See e.g. Bondesson [16].) The following are
some of them.

(a) (Log-normal distribution.) Let Z be the standard normal random variable and
put X D eZ . The distribution of X is called the log-normal distribution, and its
density is

�.dx/ D 1p
2�

1

x
exp

�
�1
2
.log x/2

�
1.0;1/.x/dx:

The log-normal distribution belongs to T.RC/. (See Steutel and van Harn [83,
Chap. VI, Theorems 5.18 and 5.21].)

(b) (Pareto distribution.) Let �1;1 and �c;1; c > 0 be two independent gamma
random variables and put X D �1;1=�c;1. Then its density is

�.dx/ D 1

B.1; c/

�
1

1C x

�1Cc

1.0;1/.x/dx;

and the corresponding distribution is called the Pareto distribution and belongs
to T.R/. (See Steutel and van Harn [83, Chap. VI, Example 12.9 and Theorems
5.18 and 5.19(ii)].)

(c) Generalized inverse Gaussian distributions belong to T.R/. (See e.g. Bondes-
son [16, Example 4.3.2].)

(d) Let X˛ be a positive ˛-stable random variable with 0 < ˛ < 1. Then
L .log X˛/ 2 T.R/. (See Bondesson [16, Example 7.2.5].)

(e) (Lévy ’s stochastic area X of the two-dimensional Brownian motion. See e.g.
Sato [73, Example 15.15].) The density of X is f .x/ D .� cosh x/�1 and k˙1.r/
in (11) is j2 sinh rj�1. Since j2 sinh rj�1 is completely monotone in r 2 .0;1/,
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we have L .X/ 2 T.RC/. This distribution �1 with a bit different scaling (the
density is f1.x/ D .2� cosh 1

2
x/�1) is called the hyperbolic cosine distribution,

(see e.g. Steutel and van Harn [83, p. 505], for this and below). It is also known
that �1 is L .log.Y=Z// with independent Y and Z both of which are �1=2;1. The
distribution �2 with density f2.x/ D .2�2 sinh 1

2
x/�1x is called hyperbolic sine

distribution. It is known that �2 is L .Y C Z/ with independent Y and Z both of
which are distributed as hyperbolic cosine distribution. k�.r/ is j sinh rj�1 up to
scaling, and thus also �2 2 T.RC/.

9.6 Examples in T.R/ \ L1.R/c (Revisited)

(a) L .�c;
/: (Section 8.1.)
(b) L .T˛/ if 0 < ˛ < 1=4 and q�.r/ D c.�/e�b.�/r for all � in a set of

positive 
-measure, where c.�/ and b.�/ are positive measurable functions of
�. (Section 8.5, (a) and (c).)

10 Examples (III)

The class of GGCs, which is the Thorin class, is generating renewed interest, since
many examples have recently appeared in quite different problems. We explain some
of them below.

10.1 The Rosenblatt Process and the Rosenblatt Distribution

Let 0 < D < 1=2. The Rosenblatt process is defined, for t � 0, as

ZD.t/ DC.D/
Z 0
R2

�Z t

0

.u � s1/
�.1CD/=2
C .u � s2/

�.1CD/=2
C du

�
dBs1dBs2 ;

where fBs; s 2 Rg is a standard Brownian motion,
R 0
R2

is the Wiener-Itô multiple
integral on R

2 and C.D/ is a normalizing constant. The distribution of ZD.1/ is
called the Rosenblatt distribution.

The Rosenblatt process is H-selfsimilar with H D 1 � D and has stationary
increments. The Rosenblatt process lives in the so-called second Wiener chaos.
Consequently, it is not a Gaussian process.

In the last few years, this stochastic process has been the object of several
papers. (See Pipiras and Taqqu [64], Tudor [88], Tudor and Viens [89], Veillette
and Taqqu [94] among others.)
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Let

HD D
n
h W h is a complex-valued function onR; h.x/ D h.�x/;
Z
R

jh.x/j2jxjD�1dx < 1
o

and for every t � 0 define an integral operator At by

Ath.x/ D C.D/
Z 1
�1

eit.x�y/�1

i.x � y/
h.y/jyjD�1dy; h 2 HD:

Since At is a self-adjoint Hilbert-Schmidt operator (see Dobrushin and Major [20]),
all eigenvalues 
n.t/; n D 1; 2; : : : ; are real and satisfy

P1
nD1 
2n.t/ < 1.

We start with the following.

Theorem 10.1 (Maejima and Tudor [49]) For every t1; : : : ; td � 0,

.ZD.t1/; : : : ;ZD.td//
dD
 1X

nD1

n.t1/."

2
n � 1/; : : : ;

1X
nD1


n.td/."
2
n � 1/

!
;

where f"ng are i.i.d. standard normal random variables.

The case d D 1 was shown by Taqqu (see Proposition 2 of Dobrushin and
Major [20]). The proof is enough to extend the idea of Taqqu from one dimension
to multi-dimensions.

Theorem 10.2 (Maejima and Tudor [49]) For every t1; : : : ; td � 0, the law of
.ZD.t1/; : : : ;ZD.td// belongs to T.Rd/.

Proof By Theorem 10.1,

.ZD.t1/; : : : ;ZD.td//
dD
 1X

nD1

n.t1/."

2
n � 1/; : : : ;

1X
nD1


n.td/."
2
n � 1/

!

D
1X

nD1
"2n.
n.t1/; : : : ; 
n.td// �

 1X
nD1


n.t1/; : : : ;
1X

nD1

n.td/

!
;

where "2n.
n.t1/; : : : ; 
n.td//; n D 1; 2; : : : ; are the elementary gamma random
variables in R

d. Since they are independent and since the class T.Rd/

is closed under convolution and weak convergence, we see that the law
of

P1
nD1 "2n.
n.t1/; : : : ; 
n.td// belongs to T.Rd/, and so does the law of

.ZD.t1/; : : : ;ZD.td//. This completes the proof.
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In general, let IB
2 .f / be a double Wiener-Itô integral with respect to standard

Brownian motion B, where f 2 L2sym.R
2C/. Then we have a more general result as

follows:

Proposition 10.3

IB
2 .f /

dD
1X

nD1

n.f /."

2
n � 1/;

where the series converges in L2.˝/ and almost surely. Also

O�IB
2 .f /
.z/ D exp

(
1

2

Z
R
C

.eizx � 1 � izx/
1

x

 1X
nD1

e�x=
n

!
dx

)
:

Thus L
�
IB
2 .f //

	 2 T.R/.

(For the proof, see e.g. Nourdin and Peccati [60].)
The Rosenblatt distribution is represented by double Wiener-Itô integrals. How-

ever, we have seen that it belongs to the Thorin class T.R/. The distributions in T.R/
have several stochastic integral representations with respect to Lévy processes. Here
we take one example. We regard them as members of the class of selfdecomposable
distributions, which is a larger class than the Thorin class. This allows us to obtain
a new result related to the Rosenblatt distribution.

The following is known. (Aoyama et al. [6, Corollary 2.1].) If f�t;
; t � 0g is a
gamma process with parameter 
 > 0, fN.t/; t � 0g is a Poisson process with unit
rate and they are independent, then for any c > 0; 
 > 0,

�c;

dD
Z 1
0

e�td�N.ct/;
:

Let

Yt D �N.t=2/;1=2 � t:

Note that fYt; t � 0g is a Lévy process. Then we have

"2n � 1
dD �

.n/
1=2;1=2 � 1

dD
Z 1
0

e�tdY.n/t ;

where � .n/
1=2;1=2 and fY.n/t g are independent copies of �1=2;1=2 and fYtg, respectively.

Thus

ZD
dD
Z 1
0

e�td

 1X
nD1


nY.n/t

!
DW
Z 1
0

e�tdZt:
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Remark 10.4
P1

nD1 
nY.n/t is convergent a.s. and in L2 because

1X
nD1

E


�

nY.n/t

�2� D E


Y2t
� 1X

nD1

2n < 1:

Remark 10.5 Since fY.n/t g; n D 1; 2; : : : ; are independent and identically dis-
tributed Lévy processes, their infinite weighted sum fZtg is a Lévy process.

We thus finally have the following theorem.

Theorem 10.6 (Maejima and Tudor [49])

ZD
dD
Z 1
0

e�tdZt;

where fZtg is a Lévy process in Remark 10.5.

10.2 The Duration of Bessel Excursions Straddling
Independent Exponential Times

This section is from Bertoin et al. [14].
Let fRt; t � 0g be a Bessel process with R0 D 0, with dimension d D 2.1 � ˛/,

(0 < ˛ < 1, equivalently 0 < d < 2). When ˛ D 1=2, fRtg is a Brownian motion.
Let

g.˛/t WD supfs � t W Rs D 0g;
d.˛/t WD inffs � t W Rs D 0g

and

�
.˛/
t WD d.˛/t � g.˛/t ;

which is the length of the excursion above 0, straddling t, for the process fRu; u � 0g,
and let " be a standard exponential random variable independent of fRu; u � 0g. Let
�˛ WD �

.˛/
" , which is the duration of Bessel excursions straddling independent

exponential times.

Theorem 10.7 L .�˛/ 2 T.RC/.

The idea of the proof is the following. They showed that

E


e�s�˛

� D exp

�
�.1 � ˛/

Z 1
0

.1 � e�sx/
EŒe�xG˛ �

x
dx

�
; s > 0;
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with a nonnegative random variable G˛ on Œ0; 1�. (The density function of G˛ is
explicitly given.) Since k.x/ WD EŒe�xG˛ � is completely monotone by Bernstein’s
theorem (Proposition 3.2), the statement of the theorem follows from (13).

10.3 Continuous State Branching Processes with Immigration

We start with some general theory on GGCs. Any GGC � 2 T.RC/ has the Laplace
transform:

�.s/ WD
Z 1
0

e�sx�.dx/ D exp

�
�
s �

Z 1
0

.1 � e�sx/
k.x/

x
dx

�
; s > 0;

where 
 � 0,
R1
0

.1^x/
x k.x/dx < 1 and k.x/ is completely monotone on .0;1/. By

Bernstein’s theorem (Proposition 3.2), there exists a positive measure � such that

k.x/ D
Z 1
0

e�xy�.dy/:

We call this � the Thorin measure, (see James et al. [28, Sect. 1.2.b]). Therefore,
� 2 T.RC/ can be parameterized by the pair .
; �/. Recall

�.s/ D exp

�
�
s �

Z 1
0

.1 � e�sx/
1

x

�Z 1
0

e�xy�.dy/

�
dx

�
; s > 0:

The integrability condition for the Lévy measure � of GGC is, in terms of � , turned
out to be

Z 1
0

log

�
1C s

y

�
�.dy/ < 1 for all s > 0;

(see James et al. [28, Eq. (3)]) which is equivalent to

Z
.0;1=2�

j log yj�.dy/C
Z
.1=2;1/

1

y
�.dy/ < 1:

The following is from Handa [24]. Consider continuous state branching pro-
cesses with immigration (CBCI-process, in short) with quadruplet .a; b; �; ı/ having
the generator

Lı f .x/ D axf 00.x/� bxf 0.x/C x
Z 1
0

Œf .x C y/� f .x/ � yf 0.x/��.dy/C ıf 0.x/;

where � is a measure on .0;1/ satisfying
R1
0
.y ^ y2/�.dy/ < 1.
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Theorem 10.8 Let 
 � 0 and suppose that � is a non-zero Thorin measure.

(1) There exist .a; b;M/ such that


 C
Z

1

s C u
�.du/ D 1

a
s C b C

Z
s

s C u
M.du/; s > 0:

(2) Any GGC with pair (
; �) is a unique stationary solution of the CBCI-process
with quadruplet .a; b; �; 1/, where � is a measure on .0;1/ defined by

�.dy/ D
�Z 1

0

u2e�yuM.du/

�
dy:

10.4 Lévy Density of Inverse Local Time of Some Diffusion
Processes

This section is from Takemura and Tomisaki [84].

Example 10.9 (Also, Shilling et al. [80, p. 201]) Let I D .0;1/ and �1 < p < 0.
Let G .p/ D 1

2
d2

dx2
C 2pC1

2x
d
dx . Assume 0 is reflecting. Let D.p/ be the diffusion process

on I with the generator G .p/ and `.p/ the Lévy density of the inverse local time at 0
for D.p/. Then we have `.p/.x/ D C 1

x x�jpj, which is the Lévy density of a GGC.

Example 10.10 Let I D .0;1/ and �1 < p < 0. Let D.p/ be the diffusion process
with the generator G .p/ D 2x d2

dx2
C .2p C 2/ d

dx and suppose that the end point 0
is reflecting. If `.p/ is the Lévy density of the inverse local time at 0 for D.p/, then
`.p/.x/ D C 1

x x�jpj, which is again the Lévy density of a GGC.

Example 10.11 Let �1 < p < 1 and ˇ > 0. Let

G .p;ˇ/ D 1

2

d2

dx2
C
(
1

2x
C
p
2ˇ

K0p.
p
2ˇx/

Kp.
p
2ˇx/

)
d

dx
;

where Kp.x/ is the modified Bessel function and, let D.p;ˇ/ be the diffusion process
on I with the generator G .p;ˇ/. Suppose that the end point 0 is reflecting. Then `.p;ˇ/,
the Lévy density of the inverse local time at 0 for D.p;ˇ/, satisfies

`.p;ˇ/.x/ D C
1

x
x�jpje�ˇx;

which is the Lévy density of a GGC. (When p D 0, Shilling et al. [80, p. 202].)
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Example 10.12 Let �1 < p < 1 and ˇ > 0. Let

G .p;ˇ/ D 2x
d2

dx2
C 2

(
1Cp

2ˇx
K0p.

p
2ˇx/

Kp.
p
2ˇx/

)
d

dx
:

If D.p;ˇ/ is the diffusion process with the generator G .p;ˇ/ and the end point 0 is
reflecting, then `.p;ˇ/, the Lévy density of the inverse local time at 0 for D.p;ˇ/, is
`.p;ˇ/.x/ D C 1

x x�jpje�ˇx, which is a GGC.

10.5 GGCs in Finance

Lévy processes play an important role in asset modeling, and among others a typical
pure jump Lévy process is a subordination of Brownian motion. One of them is the
variance-gamma process fYtg by Madan and Seneta [42], which is a time-changed
Brownian motion B D fBtg on R subordinated by the gamma process � D f� .t/g;
namely

Yt D B� .t/; (35)

where the gamma process f� .t/g is a Lévy process on R such that L .� .1// is the
distribution of a gamma random variable �1;
. This is a special case of Example 30.8
of Sato [73], where B is a general Lévy process on R

d, and when B is the standard
Brownian motion on R, for z 2 R,

E


eizYt

� D
�





C z2

�t

:

This is sym-gamma .t;
p

/ in Sect. 5.3.

The variance-gamma processes, which are studied in finance, are generalized
to the variance-GGC process. The variance-GGC process is fYtg in (35) with the
replacement of the gamma process � by the GGC process Q� D f Q�tg, which is a
Lévy process on R such that L . Q�1/ is a GGC. The following is known.

Proposition 10.13 (Privault and Yang [66]) Let B is a Brownian motion with drift
and Yt D B Q�t

. Then Yt is decomposed as Yt D Ut � Wt, where fUtg and fWtg are
two independent GGC process, and thus L .Yt/ 2 T.R/.

The next example is the so-called CGMY model (Carr et al. [18]). It is EGGC
with the Lévy density r�1k�.r/ and

k�.r/ D
(

Ce�Grr�1�Y ; for � D �1;
Ce�Mrr�1�Y ; for � D C1:
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where C > 0;G;M � 0;Y < 2. The case Y D 0 is the special case of the variance
gamma model. This model has been used as a new model for asset returns, which, in
contrast to standard models like Black-Scholes model, allows for jump components
displaying finite or infinite activity and variation.

11 Examples of ˛-Selfdecomposable Distributions

In this section, we give two examples of ˛-selfdecomposable distributions. The first
one is two-dimensional.

11.1 The First Example

Many examples in Lh0i.R/ D L.R/ are known as selfdecomposable distributions,
but we have less examples of distributions in Lh˛i.Rd/; ˛ ¤ 0: In this section, we
give an example in Lh�2i.R2/. This section is from Maejima and Ueda [51].

Let .Z1;Z2/ be a bivariate Gaussian random variable, where Z1 and Z2 are
standard Gaussian random variables with correlation coefficient � 2 .�1; 1/. Define
a bivariate gamma random variable by W D .Z21 ;Z

2
2/. Our concerns are whether W

is selfdecomposable or not and if not, which class its distribution belongs to.

Theorem 11.1 Suppose � ¤ 0. Then

L .W/

(
2 Lh˛i.R2/ for all ˛ � �2;
… Lh˛i.R2/ for all ˛ > �2:

Remark 11.2 This is an example showing that Lh˛i.R2/ is not right-continuous in ˛
at ˛ D �2, namely

Lh�2i.R2/ ©
[
ˇ>�2

Lhˇi.R2/:

Proof of Theorem 11.1 Let W WD 1
2
.W1 C W2/, where W1;W2 are indepen-

dent copies of W. Note that W is ˛-selfdecomposable if and only if W is
˛-selfdecomposable. Vere-Jones [95] gave the form of the moment generating
function of W. Then we can see that the Lévy measure � of W is

�.B/ D
Z

S

.d�/

Z 1
0

1B.r�/
1

r.�2/C1
`�.r/dr;
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where

`�.r/ D j� j
r.1 � �2/

p
cos � sin �

exp

�
�cos � C sin �

1� �2
r

�
I1

 
2j� jpcos � sin �

1 � �2 r

!
;

.� D .cos �; sin �/; � 2 .0; �=2//;

where I1.�/ is the modified Bessel function of the first kind. To show L .W/ 2
Lh�2i.R2/, it is enough to check that `�.r/; r > 0 is nonincreasing, which is proved
in Maejima and Ueda [51].

To see that L .W/ … Lh˛i.R2/; ˛ > �2, it is enough to check that for any ˇ >
0; rˇ`�.r/; r > 0 is “not” nonincreasing, which is easily shown.

11.2 The Second Example

This section is from Maejima and Ueda [55].

Remark 11.3

L .�c;
/

(
2 Lh0i.R/;
… Lh˛i.R/; ˛ > 0:

Thus, Lh˛i.R/ is not right-continuous at ˛ D 0.

Consider L .log�c;
/. It is known that L .log�c;
/ 2 L.R/ D Lh0i.R/ (Sect. 5.2
(a)). Let

h.˛I r/ WD ˛

r
� e�r

1 � er
; r > 0;

k.r/ WD r2e�r

.1 � e�r/2
; r > 0:

Write the solution of k.r/ D ˛ by r D r˛ . Let

A1 D f.c; ˛/ 2 .0;1/ � R W 0 < ˛ < 1; c � h.˛I r˛/g

and

A2 D f.c; ˛/ 2 .0;1/ � R W ˛ D 1; c � 1

2
g:
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Theorem 11.4

L .log�c;
/

(
2 Lh˛i.R/; if .c; ˛/ 2 ..0;1/ � .�1; 0�/ [ A1 [ A2;

… Lh˛i.R/; if .c; ˛/ … ..0;1/ � .�1; 0�/ [ A1 [ A2:

Proof As we have seen in (30) in Sect. 5.2, ��1 of log�c;
 is ��1.dr/ D
e�cr

r.1�e�r/
dr; r > 0. Thus

��1.dr/ D 1

r˛C1
� r˛e�cr

1 � e�r
dr DW 1

r˛C1
`c;˛.r/dr

and it is enough to check the monotonicity or non-monotonicity of `c;˛.r/; r > 0,
depending on .c; ˛/. (For the details of the proof, see Maejima and Ueda [55].)

Corollary 11.5 Lh˛i.R/ is not right-continuous at ˛ 2 .0; 1�.
Remark 11.6

(i) For any c > 0; L .log�c;
/ … Lh˛i.R/; ˛ > 1.
(ii) Let E be an exponential random variable. Then

L .log E/

(
2 Lh1i.R/;
… Lh˛i.R/; ˛ > 1:

(iii) Let Z be a standard normal random variable. Then

L .log jZj/
(

2 Lh1i.R/;
… Lh˛i.R/; ˛ > 1;

since Z2
dD �1=2;1=2.

12 Fixed Points of Stochastic Integral Mappings: A New
Sight of S.Rd/ and Related Topics

Following Jurek and Vervaat [38], Jurek [31] and Jurek [32], we define a fixed point
� under a mapping ˚f as follows.

Definition 12.1 � 2 D.˚f / is called a fixed point under the mapping ˚f , if there
exist a > 0 and c 2 R

d such that

˚f .�/ D �a� 	 ıc: (36)

Remark 12.2 Given a mapping ˚f , the natural definition of its fixed point may be
� satisfying ˚f .�/ D �. However, if we restrict ourselves to the mapping ˚˛
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for instance, only the Cauchy distribution satisfies ˚˛.�/ D �. Then what is the
meaning of (36)? We know that � 2 ID.Rd/ determines a Lévy process fXtg such
that � D L .X1/, and �a�	ıc D L .Xa Cc/. Therefore, (36) means that some Lévy
process is a “fixed point” in some sense.

We consider here only ˚˛. The set of all fixed points under the mapping ˚˛ is
denoted by FP.˚˛/. For 0 < p � 2, let Sp.R

d/ be the class of all p-stable
distributions on R

d and thus S.Rd/ D S
0<p�2 Sp.R

d/. Furthermore, for 1 < p � 2,
let S0p.R

d/ be the class of p-stable distributions on R
d with mean 0.

Theorem 12.3 We have

FP.˚˛/ D

8̂
<̂
ˆ̂:

S.Rd/; when ˛ � 0;S
p2.˛;2� Sp.R

d/; when 0 < ˛ < 1;S
p2.˛;2� S0p.Rd/; when 1 � ˛ < 2:

Remark 12.4 Theorem 12.3 for ˛ � 0 was already proved in Jurek and Ver-
vaat [38], Jurek [31] and Jurek [32] even in a general setting of a real separable
Banach space. The case for 0 < ˛ < 2 is by Ichifuji et al. [25]. One meaning of this
theorem is to give new characterizations of the classes S.Rd/,

S
p2.˛;2� Sp.R

d/ with
0 < ˛ < 1 and

S
p2.˛;2� S0p.Rd/ with 1 � ˛ < 2.
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1 Introduction

This article is concerned with a one-dimensional Lévy process X D ˚
X.t/

�
t�0

reflected at two barriers 0; b and is a mixture of a literature survey and new results
or proofs.

We denote the two-sided reflected process by V D ˚
V.t/

�
t�0 (or Vb, when the

dependence on b needs to be stressed). The discrete time counterpart of V is a two-
sided reflected random walk

�
Vn W n D 0; 1; 2; : : :

	
defined by

Vn D min
�
b;max.0;Vn�1 C Yn/

	
(1)

where Y1;Y2; : : : are i.i.d. (with common distribution say F) and initial condition
V0 D v for some v 2 Œ0; b�; the role of the Lévy process X is then taken by the
random walk Xn D Y1 C � � � C Yn.

The study of such processes in discrete or continuous time has a long history and
numerous applications. For a simple example, consider the case X.t/ D PN.t/

1 Zi �
ct of a compound Poisson process with drift, where N is Poisson.
/ and the Zi

independent of N, i.i.d. and non-negative. Here one can think of V as the amount of
work in a system with a server working at rate c, jobs arriving at Poisson rate 
 and
having sizes Z1;Z2; : : : ; and finite capacity b of storage. If a job of size y > b � x
arrives when the content is x, only b � x of the job is processed and x C y � b is
lost. One among many examples is a data buffer, where the unit is number of bits
(discrete in nature, but since both b and a typical job size z are huge, a continuous
approximation is motivated).

Studies of systems with such finite capacity are numerous, and we mention
here waiting time processes in queues with finite capacity [25, 48–50], and a finite
dam or fluid model [11, 113, 132]. They are used in models of network traffic or
telecommunications systems involving a finite buffer [79, 95, 144], and they also
occur in finance, e.g. [60, 63]. In the queueing context, it should be noted that even
if in the body of literature, there is no upper bound b on the state space, the reason is
mainly mathematical convenience: the analysis of infinite-buffer systems is in many
respects substantially simpler than that of finite-buffer systems. In real life, infinite
waiting rooms or infinite buffers do not occur, so that the infinite-buffer assumption
is really just an approximation.

In continuous time, there is no obvious analogue of the defining Eq. (1). We
follow here the tradition of representation as solution of a Skorokhod problem

V.t/ D V.0/C X.t/C L.t/ � U.t/ (2)
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0

0

b
V(0)

Fig. 1 The processes X (blue), V (blue), L (green), U (red)

where L;U are non-decreasing right-continuous processes such that

Z 1
0

V.t/ dL.t/ D 0 ;

Z 1
0

�
b � V.t/

	
dU.t/ D 0 : (3)

In other words, L can only increase when V is at the lower boundary 0, and U only
when V is at the upper boundary b. Thus, L represents the ‘pushing up from 0’ that
is needed to keep V.t/ � 0 for all t, and U represents the ‘pushing down from b’
that is needed to keep V.t/ � b for all t. An illustration is given in Fig. 1, with the
unreflected Lévy process in the upper panel, whereas the lower panel has the two-
sided reflected process V (blue) in the middle subpanel, L (red) in the lower and U
(green) in the upper. Questions of existence and uniqueness are discussed in Sects. 3
and 4.

As usual in applied probability, a first key question in the study of V is the long-
run behavior. A trivial case is monotone sample paths. For example if in continuous
time the underlying Lévy process X has non-decreasing and non-constant sample
paths, then V.t/ D b for all large t. Excluding such degenerate cases, V regenerates
at suitable visits to 0 (see Sect. 5.1 for more detail), and a geometric trial argument
easily gives that the mean regeneration time is finite. Thus by general theory [11], a
stationary distribution � D �b exists and

1

N C 1

NX
nD0

f .Vn/ ! �.f / ;
1

T

Z T

0

f .Vt/ dt ! �.f / (4)

a.s. in discrete, resp. continuous time whenever f is (say) bounded or non-negative.
A further fundamental quantity is the overflow or loss at b which is highly relevant
for applications; in the dam context, it represents the amount of lost water and in the
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data buffer context the number of lost bits. The loss at time n is .Yn CVn�1�b/C and
so by a suitable LLN (e.g. [11, VI.3]) the long-run behavior of the loss in discrete
time is given by

1

N

NX
nD1
.Yn C Vn�1 � b/C !

Z b

0

�.dx/
Z 1

b�x
.y C x � b/C F.dy/ ; (5)

as follows by conditioning on Yn D y and using (4).
We denote by ` D `b the limit on the r.h.s. of (5) and refer to it as the loss rate.

For example, in data transmission models the loss rate can be interpreted as the bit
loss rate in a finite data buffer.

The form of � in the general continuous-time Lévy case is discussed in Sect. 5.
In general, � is not explicitly available (sometimes the Laplace transform is). The
key result for us is a representation as a two-sided exit probability,

�Œx;1/ D �Œx; b� D P
�
V
�
�Œx � b; x/

	 � x
	

(6)

where �Œy; x/ D inf
˚
t � 0 W X.t/ 62 Œy; x/�, y � 0 � x.

In continuous time, the obvious definition of the loss rate is ` D E�U.1/ D
E�U.t/=t. However, representations like (5) are not a priori obvious, except for
special cases as X being compound Poisson where

` D
Z b

0

�.dx/
Z 1

b�x
.x C y � b/
G.dy/ ;

where 
 is the Poisson rate and G the jump size distribution. To state the main result,
we need to introduce the basic Lévy setup:

X.t/ D ct C �B.t/C J.t/ ;

where B is standard Brownian motion and J an independent jump process with Lévy
measure � and jumps of absolute size � 1 compensated. That is, the Lévy exponent

�.˛/ D logEe˛X.1/ D 1

t
logEe˛X.t/

(defined when Ee<.˛/X.1/ < 1) is given by

�.˛/ D c˛ C �2˛2=2C
Z 1
�1
�
e˛y � 1 � y�.jyj � 1/

	
�.dy/ ; (7)
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and one often refers to .c; �2; �/ as the characteristic triplet of X (see the end of the
section for further detail and references). We further write

m D EX.1/ D EX.t/=t D �0.0/ D c C
Z
jyj>1

y �.dy/

for the mean drift of X.

Theorem 1.1 Assume that m is well-defined and finite. Then

`b D 1

2b

(
2mE�V C �2 C

Z b

0

�.dx/
Z 1
�1

'.x; y/�.dy/

)
;

where

'.x; y/ D

8̂
<̂
ˆ̂:

�.x2 C 2xy/ if y � �x;

y2 if � x < y < b � x;

2y.b � x/� .b � x/2 if y � b � x:

Theorem 1.1 first appears in Asmussen and Pihlsgård [16], with a rather intricate
and lengthy proof. Section 6 contains a more direct and shorter proof originating
from Pihlsgård and Glynn [118]. In Sect. 8, we summarize the original approach
of [16], and in Sect. 15, some new representations of `b are presented using yet
another approach. Whereas the method in Sect. 8 uses asymptotic expansions of
identities obtained by martingale optional stopping, the ones in Sects. 6 and 15
contain stochastic calculus as a main ingredient.

Fig. 2 The function '.x; y/ plotted for b D 5, 0 � x � b, �5 � y � 5
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The form of the function '.x; y/ is illustrated in Fig. 2. Starting from Theo-
rem 1.1, it is fairly straightforward to derive an alternative formula for `b, which
can be convenient (note that the form (6) for the tail probability �Œx; b� has a nicer
form than the one for �.dx/ that follows by differentiation).

Corollary 1.2 The loss rate `b can be written

`b D 1

2b

(
2mEV C �2 C

Z b

0

y2�.dy/C
Z 1

b
.2yb � b2/�.dy/

� 2

Z b

0

(Z �x

�1
.x C y/�.dy/C

Z 1
b�x
.x C y � b/�.dy/

)
�Œx; b�dx

)
:

Similar discussion applies to the underflow of 0, but for obvious symmetry
reasons, it suffices to consider the situation at the upper barrier. One should note,
however, that with `0 D E�L.1/ one has

0 D m C `0 � `b : (8)

Thus, `0 is explicit in terms of `b. Relation (8) follows by a rate conservation
principle, since in order for X C L � U to preserve stationarity, the drift must be
zero. One may note that no moment conditions on X are needed for the existence of
a stationary version of V . However, if EjX.1/j D 1, then one of `b or `0 is infinite
(or both are).

In many applications, the upper buffer size b is large. This motivates that instead
of going into the intricacies of exact computation of quantities like the loss rate
`b, one may look for approximate expression for b ! 1. Early references in this
direction are Jelenković [79] who treated the random walk case with heavy tails, and
Kim and Shroff [95], who considered the light-tailed case but only gave logarithmic
asymptotics. Exact asymptotics for the light-tailed case is given in Asmussen and
Pihlsgård [16] and surveyed in Sect. 10, whereas asymptotics for the heavy-tailed
Lévy case first appears in Andersen [5] and is surveyed in Sect. 11. We assume
negative drift, i.e. m D EX.1/ < 0, but by (8), the results can immediately be
translated to positive drift. Note, however, that with negative drift one has `b ! 0

as b ! 1 (the results of Sects. 10 and 11 give the precise rates of decay), whereas
with positive drift `b ! m (thus, (8) combined with Sects. 10 and 11 gives the
convergence rate). The case of zero drift m D 0 has specific features as studied
in Andersen and Asmussen [4], see Sect. 12; the key tool is here a functional limit
theorem with either a Brownian or a stable process limit.

Going one step further in the study of the loss rate, one may ask for transient
properties. One question is properties of the overflow time infft > 0 W Vb.t/ D bg
where one possible approach is regenerative process theory, Sect. 13 and another
integro-differential equations, Sect. 14.2. Another question is properties of U.t/ for
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t < 1. From the above, U obeys the LLN EU.t/=t ! ` as t ! 1. Obvious
questions are an associated CLT,

p
t
�
U.t/� `

	 ! N.0; �2/

for some suitable �2, and large deviations properties like the asymptotics of

P
�
U.t/ > t.1C "/`

	
and P

�
U.t/ < t.1 � "/`

	
:

These topics are treated (for the first time) in Sects. 14.3 and 14.4.
Finally, the paper contains a number of explicit calculations for the special

case where the jump part is compound Poisson with phase-type jumps. There
is a considerable literature on this or closely related models. and we refer to
Asmussen [12] for a survey and references. We have also included some material
on one-sided reflection (Sect. 2) and two-sided reflection in discrete time (Sect. 3),
which should serve both as a background and to give an understanding of the special
problems that arise for the core topic of the paper, two-sided reflection in continuous
time.

We conclude this introduction with some supplementary comments on the set-up
on the Lévy model. Classical general references are Bertoin [28] and Sato [129], but
see also Kyprianou [104] and Applebaum [7].

A simple case is jumps of bounded variation, which occurs if and only ifR1
�1 jxj �.dx/ < 1. Then the expression (7) can be rewritten

�.˛/ D Qc˛ C �2˛=2 C
Z 1
�1
.e˛y � 1/ �.dy/ ; (9)

where

Qc D c �
Z 1

�1
y �.dy/ ; m D Qc C

Z 1
�1

y �.dy/ : (10)

With infinite variation, the integrals in (9) diverge, so that one needs the form (7).
To avoid trivialities, we assume throughout that the sample paths of X are non-

monotone; in terms of the parameters of X, this means that either

(a) �2 > 0,
(b) �2 D 0 and X is of unbounded variation (i.e.

R jyj �.dy/ D 1),
(c) �2 D 0, X is of bounded variation, and the Lévy measure � has support both in

.�1; 0/ and .0;1/,
(d) �2 D 0, X is of bounded variation, and either the Lévy measure � has support

in .�1; 0/ and Qc > 0 in (9), or � has support in .0;1/ and Qc < 0 in (9).
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2 One-Sided Reflection

Consider first the discrete time case and let Xn D Y1 C � � � C Yn where Y1;Y2; : : :
are i.i.d. (with common distribution say F) so that X is a random walk. The random
walk one-sided reflected at 0 (i.e., corresponding to b D 1) is then defined by the
recursion

V1n D .V1n�1 C Yn/
C D max

�
0;V1n�1 C Yn

	
(11)

starting from V10 � 0. The process V1 also goes under the name a Lindley process
(see [11, III.6] for a survey and many facts used in the following) and is a Markov
chain with state space Œ0;1/.

For the following, it is important to note that the recursion (11) is explicitly
solvable:

V1n D max
�
V10 C Xn;Xn � X1; : : : ;Xn � Xn�1; 0

	
(12)

(for a proof, one may just note that the r.h.s. of (12) satisfies the recursion (11)).
Reversing the order of Y1; : : : ;Yn yields

V1n
DD max

�
V10 C Xn;Xn�1; : : : ;X1

	
: (13)

This shows in particular that V1n is increasing in stochastic order so that a limit in
distribution V11 exists. By a standard random walk trichotomy [11, VIII.2], one of
the following possibilities arises:

(a) Xn ! 1 so that V11 D 1 a.s.;
(b) lim supn!1 Xn D 1, lim infn!1 Xn D �1 so that max

�
V0 C

Xn;Xn�1; : : : ;X1
	 ! 1 and V11 D 1 a.s.;

(c) Xn ! �1 so that V1 < 1 a.s.

For our purposes, it is sufficient to assume EjYj < 1, and letting m D EY, the three
cases then correspond to m > 0, m D 0, resp. m < 0, or, in Markov chain terms,
roughly to the transient, null recurrent, resp. positive recurrent (ergodic) cases.

Consider from now on the ergodic case m < 0 (and, to avoid trivialities, assume
that P.Y > 0/ > 0). Define M D maxn�0 Xn. Since Xn ! �1, V10 C Xn in (13)
vanishes eventually, and letting n ! 1 yields

V11
DD M : (14)

It is often convenient to rewrite this in the form

�1.x/ D P.V11 > x/ D P
�
�.x/ < 1	

; (15)

where �.x/ D inffn W Xn > xg and �1 is the distribution of V11 .
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Explicit or algorithmically tractable forms of �1 can only be found assuming
some special structure, mainly skip-free properties or phase-type (or, more gener-
ally, matrix-exponential) forms, see [11, VIII.5]. Therefore asymptotics is a main
part of the theory. The two main results are:

Theorem 2.1 (Light-Tailed Case) Assume m < 0, that F is non-lattice and that
there exists 
 > 0 with Ee
Y D 1, E



Ye
Y

�
< 1. Then there exists 0 < C < 1

such that

�1.x/ D P.V11 > x/ 
 Ce�
x ; x ! 1: (16)

Theorem 2.2 (Heavy-Tailed Case) Assume m < 0, that

FI.x/ D
Z 1

x
F.y/ dy

is a subexponential tail1 and that F is long-tailed in the sense that F.xCx0/=F.x/ !
1 for any x0. Then

�1.x/ D P.V11 > x/ 
 1

jmjFI.x/ ; x ! 1: (17)

Sketch of Proof of Theorem 2.1 We use a standard exponential change of measure
technique [11, Ch. XIII]. Let QP; QE refer to the case where X has c.d.f.

QF.x/ D E


e
XI X � x

�

rather than F.x/. Using (15) and standard likelihood ratio identities gives

�1.x/ D P
�
�.x/ < 1	 D QE
e�
X�.x/ I �.x/ < 1� D e�
x QEe�
�.x/ ; (18)

where �.x/ D X�.x/�x is the overshoot. Thus, the result follows with C D Ee�
�.1/
once it is shown that �.x/ has a proper limit �.1/ in distribution. This in turn follows
by renewal theory by noting that �.x/ has the same distribution as the time until the
first renewal after x in a renewal process with interarrivals distributed as �.0/ (the
first ladder height). That �.0/ is non-lattice follows from F being so, and QE�.0/ < 1
follows from EŒXe
X� < 1. We omit the easy details. �

The computation of C D Ee�
�.1/ is basically of the same level of difficulty as
the computation of �1 itself and feasible in essentially the same situations. Results

1By this we mean that there exists a subexponential distribution G such that FI.x/ D G.x/ for
all large x. For background on heavy-tailed distributions, see e.g.[13, X.1], [62] and the start of
Sect. 3.
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of type Theorem 2.1 commonly go under the name Cramér-Lundberg asymptotics,
and the equation Ee
Y D 1 is the Lundberg equation.

Discussion of Proofs of Theorem 2.2 The form of the result can be understood from
the ‘one big jump’ heuristics, stating that large values of sums and random walks
arise as consequence of one big Yi, while the remaining Yj are ‘typical’; in particular,
Xi�1 D Pi�1

jD1 Yj � im for large i. Splitting up after the value of i and noting that the
contribution from a finite segment 1; : : : ; i0 is insignificant, we therefore get

P.M > x/ D
1X

iD1
P
�
�.x/ D i

	 �
1X

iD1
E


Xi�1 � im;Yi > x � im

	

�
1X

iD1
P.Yi > x � im/ D

1X
iD1

F.x � im/

�
Z 1
0

F.x � tm/ dt D 1

jmj
Z 1

x
F.u/ du D 1

jmjFI.x/ :

The rigorous verification of (17) traditionally follows a somewhat different line
where the essential tool is ladder height representations. The first step is to show
that the first ladder height X�.0/ has a tail asymptotically proportional to FI , and
next one uses the representation of M as a geometric sum of ladder heights to get
the desired result. The details are not really difficult but too lengthy to be given
here. See, e.g., [11, X.9] or [13, X.3]. A more recent proof by Zachary [140] (see
also Foss et al. [62]) is, however, much more in line with the above heuristics. �

We next turn to continuous time where X is a Lévy process. There is no recursion
of equal simplicity as (11) here, so questions of existence and uniqueness have to be
treated by other means.

One approach simply adapts the representation (12) by rewriting the r.h.s. as

.V10 C Xn/ _ max
iD0;:::;n.Xn � Xi/ D Xn C max

�
V10 ;� min

iD0;:::;n Xi

�
:

One then defines the continuous-time one-sided reflected process in complete
analogue with the discrete case by

V1.t/ D X.t/C L.t/ (19)

where

L.t/ D max
�

V1.0/;� min
0�s�t

X.s/
�
: (20)

(this can be motivated for example by a discrete skeleton approximation). Here L is
often denoted the local time at 0, though this terminology is somewhat unfortunate
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because ‘local time’ in used in many different meanings in the probability literature.
Often also the term regulator is used.

The second approach uses the Skorokhod problem: in (20), take L as a non-
decreasing right-continuous process such that

Z 1
0

V1.t/ dL.t/ D 0 : (21)

In other words, L can only increase when V1 is at the boundary 0. Thus, L
represents the ‘pushing up from 0’ that is needed to keep V1.t/ � 0 for all t.

It is readily checked that the r.h.s. of (20) represents one possible choice of L.
Thus, existence is clear. Uniqueness also holds:

Proposition 2.3 Let
˚
L�.t/

�
be any nondecreasing right-continuous process such

that (a) the process
˚
V�.t/

�
given by V�.0/ D V.0/, V�.t/ D Xt C L�.t/ satisfies

V�.t/ � 0 for all t, (b) L� can increase only when V� D 0, i.e.
R T
0

V�.t/ dL�.t/ D 0

for all T. Then L�.t/ D L.t/, V�.t/ D V1.t/.

Proof Let D.t/ D L.t/ � L�.t/, �D.s/ D D.s/ � D.s�/. The integration-by-parts
formula for a right-continuous process of bounded variation gives

D2.t/ D 2

Z t

0

D.s/dD.s/�
X
s�t

�
�D.s/

	2

D 2

Z t

0

�
L.s/ � L�.s/

	
dL.s/� 2

Z t

0

�
L.s/ � L�.s//dL�.s/ �

X
s�t

�
�D.s/

	2

D 2

Z t

0

�
V1.s/� V�.s/

	
dL.s/ � 2

Z t

0

�
V1.s/� V�.s/

	
dL�.s/ �

X
s�t

�
�D.s/

	2

D �2
Z t

0

V�.s/ dL.s/ � 2

Z t

0

V1.s/dL�.s/ �
X
s�t

�
�D.s/

	2
:

Here the two first integrals are nonnegative since V�.s/ and V1.s/ are so, and also
the sum is clearly so. Thus D.t/2 � 0, which is only possible if L.t/ � L�.t/. �

Define M D max0�t<1 X.t/ and assume m D EX.1/ < 0. The argument
for (14) then immediately goes through to get the existence of a proper limit V1.1/

of V1.t/ and the representation

V1.1/
DD M : (22)

Equivalently,

�1.x/ D P.V1.1/ > x/ D P
�
�.x/ < 1	

; (23)
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where �.x/ D infft > 0 W X.t/ > xg and �1 is the distribution of V.1/.
The loss rate ` D `b is undefined in this setting since b D 1. A closely related

quantity is `0 D E�1L.1/ and one has

`0 D �m : (24)

This follows by a conservation law argument: in (19), take t D 1, consider the
stationary situation and take expectations to get2

E�1V.1/ D E�1V.0/C E�1X.1/C E�1L.1/ D E�1V.1/C m C `0 :

For an example of the relevance of `0, consider the M/G/1 workload process. Here
`0 can be interpreted as the average unused capacity of the server or as the average
idle time.

We next consider analogues of the asymptotic results in Theorems 2.1 and 2.2.
The main results are the following two theorems (for a more complete treatment,
see [13, XI.2]):

Theorem 2.4 (Light-Tailed Case) Assume m < 0, that X is not a compound
Poisson process with lattice support of the jumps, and that there exists 
 > 0 with
�.
/ D 0, �0.
/ < 1. Then there exists 0 < C < 1 such that

�1.x/ D P
�
V1.1/ > x

	 
 Ce�
x ; x ! 1: (25)

Theorem 2.5 (Heavy-Tailed Case) Assume m < 0, that

�.x/ D
Z 1

x
�.dy/

is a subexponential tail and that � is long-tailed in the sense that �.xCx0/=�.x/ ! 1

for any x0. Then

�1.x/ D P
�
V1.1/ > x

	 
 1

jmj�I.x/ ; x ! 1; (26)

where �I.x/ D
Z 1

x
�.y/ dy.

Sketch of Proof of Theorem 2.4 The most substantial (but small) difference from the
proof of Theorem 2.1 is the treatment of the overshoot process � which has no longer
the simple renewal process interpretation. However, the process � is regenerative
with regeneration points !.1/; !.2/; : : : where one can take

!.k/ D infft > !.k � 1/C Uk W �.t/ D 0g ;

2Strictly speaking, the argument requires E�1V.0/ < 1 which amounts to a second moment
assumption. For the general case, just use a truncation argument.
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where U1;U2; : : : are independent uniform.0; 1/ r.v.’s. One can then check that the
non-compound Poisson property suffices for �

�
!.1/

	
to be non-lattice and that

�0.x/ < 1 suffices for E�
�
!.1/

	
< 1. These two facts entail the convergence

in distribution of �.t/ to a proper limit. �

As in discrete time, C can only be evaluated in special cases; general expressions
are in Bertoin and Doney [29] but require the full (spatial) Wiener-Hopf factor-
ization, a problem of equal difficulty. However, if X is upward skipfree (i.e., � is
concentrated on .�1; 0/), then C D 1 as is clear from �.x/ � 0. See also [13,
XI.2] for the downward skipfree case as well as for related calculations, and [12]
for the compound Poisson phase-type case.

For the proof of Theorem 2.5, we need a lemma:

Lemma 2.6 P
�
X.1/ > x

	 
 �.x/ .

Proof Write X D X0 C X00 C X000 where the characteristic triplets of X0;X00;X000 are
.c; �2; �0/, .0; 0; �00/ and .0; 0; �000/, resp., with �0; �00; �000 being the restrictions of �
to Œ�1; 1�, .�1;�1/ and .1;1/, respectively.

With ˇ000 D �.1/, the r.v. X.1/000 is a compound Poisson sum of r.v.’s, with Poisson
parameter ˇ000 and distribution �000=ˇ000. Standard heavy-tailed estimates (e.g. [13,
X.2]) then give

P.X000.1/ > x/ 
 ˇ000
�000.x/
ˇ000

D �.x/ ; x > 1:

The independence of X00.1/ and X000.1/ > 0 therefore implies

P
�
X00.1/C X000.1/ > x

	 
 �.x/ ;

cf. the proof of [13, X.3.2]. It is further immediate that �0.r/ < 1 for all r. In
particular, X0.1/ is light-tailed, and the desired estimate for X.1/ D X0.1/CX00.1/C
X000.1/ then follows by [13, X.1.11]. �
Proof of Theorem 2.5 Define

Md D sup
nD0;1;2;:::

X.n/ :

Then

P.Md > u/ 
 1

jEX.1/j
Z 1

u
�.y/ dy (27)

by Theorem 2.4 and Lemma 2.6. Also clearly P.Md > u/ � P.M > u/ D  .u/.
Given " > 0, choose a > 0 with P

�
inf0�t�1 X.t/ > �a

	 � 1 � ". Then

P.Md > u � a/ � .1 � "/P.M > u/ :
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But by subexponentiality, P.Md > u � a/ 
 P.Md > u/. Putting these estimates
together completes the proof. �

The proof of Theorem 2.5 is basically a special case of what is called reduced
load equivalence. This principle states that if X has negative drift and X D X1 C X2,
where X1 has heavy-tailed increments and X2 has increments with lighter tails, then
M D supt X.t/ has the same tail behavior as supt

�
X1.t/ C EX2.t/

	
. For precise

versions of the principle, see e.g. Jelenković et al. [80].

3 Loss Rate Asymptotics for Two-Sided Reflected Random
Walks

We recall from Sect. 1 that a two-sided reflected random walk fVngnD0;1;2;::: is
defined by the recursion

Vn D min
�
b;max

�
0;Vn�1 C Yn

		
(28)

where Y1;Y2; : : : are i.i.d. (with common distribution say F) and initial condition
V0 D v for some v 2 Œ0; b�. Let Xn D Y1 C � � � C Yn so that X is a random walk.

Existence of V is not an issue in discrete time because of the recursive nature
of (28). Recall from (6) that the stationary distribution �b can be represented in
terms of two-sided exit probabilities as

P.V � x/ D �bŒx;1/ D �bŒx; b� D P
�
X�Œx�b;x/ � x

	
(29)

where V is a r.v. having the stationary distribution and �Œy; x/ D inf
˚
k � 0 W Xk 62

Œy; x/
�
, y � 0 � x (we defer the proof of this to Sect. 5).

The loss rate in discrete time as defined as the limit in (5) may be written as

`b D E.V C Y � b/C D Emax.V C Y � b; 0/ (30)

where V is the stationary r.v. For later use we note the alternative form

`b D E.Y � b/C C
Z b

0

P.Y > b � y/ �.y/ dy; (31)

which follows by partial integration in (30).
From now on we assume that �1 < m D EY < 0. The following two results on

the asymptotics of `b are close analogues of Theorems 2.1 and 2.2:

Theorem 3.1 Under the assumptions on Y and 
 in Theorem 2.1,

`b 
 De�
b; b ! 1;

where D is a constant given in (34) below.
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Theorem 3.2 Let Y1;Y2; � � � be an i.i.d. sequence with mean m < 0 and let `b be
the loss rate at b of the associated random walk Xn D Y1 C � � � C Yn, reflected in 0
and b. Assume F.x/ 
 B.x/ for some distribution B 2 S �. Then

`b 
 FI.b/; b ! 1; where FI.b / D
Z 1

b
F.y/ dy D E.Y � b/C:

We used here the standard notation for the classes L ;S and S � of heavy-tailed
distributions (see e.g. [97] or [13]): If B is a distribution on Œ0;1/ we have B 2 L
(B is long-tailed) iff

lim
x!1

B.x C y/

B.x/
D 1; for all y ;

where B.x/ D 1 � B.x/. The class S of subexponential distributions is defined by
the requirement

lim
x!1

B�n.x/

B.x/
D n n D 2; 3; � � �

where B�n denotes the nth convolution power of B. A subclass of S is S �, where
we require that the mean �B of B is finite and

lim
x!1

Z x

0

B.x � y/

B.x/
B.y/ dy D 2�B:

The classes are related by S � 
 S 
 L . More generally, we will say a measure �
belongs to, say, S if it is tail equivalent to a distribution in S , that is �.Œx;1// 

B.x/ for some B in S .

Theorem 3.1 is from Pihlsgård [117]. Theorem 3.2 was originally proved
in Jelenković [79], but we provide a shorter proof by taking advantage of the
representation of the stationary distribution provided by (6).

3.1 Proof of Theorem 3.1 (Light Tails)

We introduce the following notation (standard in random walk theory):

M D supk�0 Xk.
� sC.u/ D inffk � 1 W Xk > ug; �wC.u/ D inffk � 1 W Xk � ug; u � 0.
GC.x/ D P.X� s

C

.u/ � x/; GwC.x/ D P.X�w
C

.u/.u// � x/.
� s�.�u/ D inffk � 1 W Xk < �ug; u � 0.
The overshoot of level u, B.u/ D X� s

C

.u// � u; u � 0.
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The weak overshoot of level u, Bw.u/ D X�w
C

.u/ � u; u � 0.
B.1/, a r.v. having the limiting distribution (if it exists) of B.u/ as u ! 1.
Bw.1/, a r.v. having the limiting distribution (if it exists) of Bw.u/ as u ! 1.

Recall that �.˛/ D logEe˛Y1 and that 
 > 0 is the root of the Lundberg equation
�.˛/ D 0 with �0.
/ < 1. We let PL and EL correspond to a measure which is
exponentially tilted by 
 , i.e.,

P.G/ D ELŒe�
X� I G� (32)

when � is a stopping time w.r.t. fF.n/ D �.Y1;Y2; : : : ;Yn/g and G 2 F.�/, G 

f� < 1g where F.�/ is the stopping time �-field. Note that ELY D �0.
/ > 0 by
convexity.

Lemma 3.3 Assume that Y is non-lattice. Then, for each v � 0,

P
�
� s�.�v/ > �wC.u/

	 
 e�
u
ELe�
B.1/

PL
�
� s�.�v/ D 1/

	
; u ! 1:

Proof We first note that �wC.u/ is a stopping time w.r.t. F.n/ and that f� s�.�v/ >
�wC.u/g 2 F.�wC.u//. Then (32) gives

P
�
�s�.�v/ > �wC.u/

	 D EL


e�
Z.�w

C

.u//I �s�.�v/ > �wC.u/
�

D e�
u
EL


e�
B.u/I �s�.�v/ > �sC.u/

�
PL
�
�wC.u/ D �sC.u/

	

C e�
u
PL


�s�.�v/ > �wC.u/

ˇ̌
�wC.u/ ¤ �sC.u/

�
PL
�
�wC.u/ ¤ �sC.u/

	
:

Since Y is non-lattice, it follows that GwC is so (see [11, Lemma 1.3, p. 222]) and then
the renewal theorem (see [11, Theorem 4.6, p. 155]) applied to the renewal process
governed by GwC, in which the forward recurrence time process coincides with the

overshoot process Bw D Bw.u/, yields Bw.u/
D! Bw.1/ w.r.t. PL where Bw.1/ has

a density. Thus 0 is a point of continuity of Bw.1/ and we then get that PL.�
wC.u/ ¤

� sC.u// D PL.Bw.u/ D 0/ ! 0 and PL.�
wC.u/ D � sC.u// ! 1; u ! 1. We now

use that B.u/ ! B.1/, f� s�.�v/ > �wC.u/g " f� s�.�v/ D 1g in PL-distribution
and apply the argument used in the proof of Corollary 5.9, p. 368 in [11] saying that
B.u/ and f� s�.�v/ > �wC.u/g are asymptotically independent. ut

In the representation of `b in (31), It follows from the assumption �0.
/ < 1
that E.Y � b/C D o.e�
b/. In the second term we make the change of variables
v D b � y and get

Z b

0

P.Y > b � y/�.y/dy D
Z 1
0

�.v � b/P.Y > v/P
�
� s�.�v/ > �wC.b � v/	dv

D e�
b
Z 1
0

e
v�.v � b/P.Y > v/e
.b�v/P
�
� s�.�v/ > �wC.b � v/

	
dv: (33)



Lévy Processes with Two-Sided Reflection 83

Further, we have that P.� s�.�v/ > �wC.b � v// � P.M � b � v/ � e�
.b�v/ (the last
inequality is just a variant of Lundberg’s inequality), so

e
v�.v � b/P.Y > v/e
.b�v/P
�
� s�.�v/ > �wC.b � v/

	 � e
vP.Y > v/

and since
R1
0

e
vP.Y > v/dv < 1, the assertion follows with

D D ELe�
B.1/
Z 1
0

e
vP.Y > v/PL.�
s�.�v/ D 1/ dv (34)

by (33), Lemma 3.3 and dominated convergence. ut
Remark 3.4 The constants occurring in D and above are standard in Wiener-Hopf
theory for random walks. Note that alternative expressions for D are in [117].

3.2 Proof of Theorem 3.2 (Heavy Tails)

By (31), we need to prove that

lim sup
b!1

I.b/ D 0 where I.b/ D
Z b

0

P.Y > b � y/�b.y/

FI.b/
dy : (35)

For any A > 0

lim sup
b!1

Z A

0

P.Y > b � y/�b.y/

FI.b/
dy � lim sup

b!1
P.Y > b � A/

FI.b/

Z A

0

�b.y/ dy D 0

so therefore

lim sup
b!1

Z b

0

I.b/ D lim sup
b!1

Z b

A

P.Y > b � y/�b.y/

FI.b/
dy : (36)

Define mC D R1
0

P.Y > t/ dt and Fe.y/ D .1=mC/
R x
0
P.Y > t/ dt. According

to (17) we have �1.y/jmj 
 FI.y/ so that for large A and y > A

�1.y/ � 2FI.y/=jmj D 2mCFe.y/=jmj :

From Proposition 11.6 in Sect. 11 (proved there for Lévy processes but valid also
for random walks as it only relies on the representation (29) of � as a two-barrier
passage time probability),

0 � �1.x/ � �b.x/ � �1.b/ : (37)
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Using this, we have:

lim sup
b!1

Z b�A

A

P.Y > b � y/�b.y/

FI.b/
dy � 2 lim sup

b!1

Z b�A

A

mCP.Y > b � y/Fe.y/

jmjFI.b/
dy

D 2 lim sup
b!1

Z b�A

A

P.Y > b � y/Fe.y/

jmjFe.b/
dy

D 2 lim sup
b!1

F
�2

e .b/

Fe.b/

Z b�A

A

P.Y > b � y/Fe.y/

jmjF�2e .b/
dy

D 4 lim sup
b!1

Z b�A

A

P.Y > y/Fe.b � y/

jmjF�2e .b/
dy

D 4 lim sup
b!1

mC

jmj P.A < U � b � A j U C V > b/

D 2mC

jmj Fe.A/ :

where U and V are independent with U
DD V

DD Fe and we have used that for i.i.d.
random variables in S

P.A < Y1 < b � A j Y1 C Y2 > b/ ! 1

2
F.A/; b ! 1

(cf. [13, pp. 294, 296], slightly adapted). By combining the result above with (36)
we have

lim sup
b!1

I.b/ � 2mC

jmj Fe.A/C lim sup
b!1

Z b

b�A

P.Y > b � y/�b.y/

FI.b/
dy : (38)

Here the integral equals

lim sup
b!1

Z A

0

P.Y > y/�b.b � y/

FI.b/
dy � lim sup

b!1
�b.b � A/

FI.b/

Z A

0

P.X > y/ dy :

If we define �A D inffn � 0 j Xn < �Ag, Mn D maxk�n Xk and use the
representation (29) of the stationary distribution we have:

�b.b � A/ D P.M�A > b � A/ :

By Theorem 1 of [61] we have P.M�A > b � A/ 
 E�AF.b/ and therefore
�b.b � A/=FI.b/ ! 0 since the tail of F is lighter than that of the integrated tail.
Using (38) it thus follows that we can bound lim sup I.b/ by 2mCFe.A/=jmj. Letting
A ! 1 completes the proof.
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4 Construction and the Skorokhod Problem

In discrete time, the definition of the two-sided reflected process V D Vb is
straightforward via the recursion (1). In this section, we consider how to rigorously
proceed in continuous time.

First, we note that there is a simple pragmatic solution: Let y 2 Œ0; b� be the
initial value. For y < b, take the segment up to the first hitting time �.b/ of b as the
initial segment of V1 (the one-sided reflected process started from y) until .b;1/

is hit; we then let V
�
�.b/

	 D b. For y D b, we similarly take the segment up to the
first hitting time ��.0/ of 0 by using the one-sided reflection operator (with the sign
reversed and change of origin) as constructed in Sect. 2; at time ��.0/ where this
one-sided reflected (at b) process hits .�1; 0�, we let V

�
��.0// D 0. The whole

process V is then constructed by glueing segments together in an obvious way.
Glueing also local times together, we obtain the desired solution of the Skorokhod
problem. Uniqueness of this solution may be established using a proof nearly
identical to that of Proposition 2.3.

Before we proceed to a more formal definition of V we restate the Skorokhod
problem: Given a cadlag process fX.t/g we say a triplet .fV.t/g ; fL.t/g ; fU.t/g/ of
processes is the solution to the Skorokhod problem on Œ0; b� if V.t/ D X.t/C L.t/�
U.t/ 2 Œ0; b� for all t and

Z 1
0

V.t/ dL.t/ D 0 and
Z 1
0

.b � V.t// dU.t/ D 0 :

Note that the Skorokhod problem as introduced above is a purely deterministic
problem. We refer to the mapping which associates a triplet .fV.t/g ; fL.t/g ; fU.t/g/
to a cadlag process X.t/ as the Skorokhod map.

Remark 4.1 The Skorokhod problem on Œ0; b� is a particular case of reflection
of processes in convex regions of R

n, which is treated in Tanaka [136] where a
proof of existence and uniqueness is provided given that the involved processes are
continuous or step functions. This is extended in [6] to include cadlag processes,
which covers what is needed in this article. Apart from the generalizations to larger
classes of functions, other papers have focused on more general domains than
convex subsets of Rn, e.g. Lions and Snitzman [110] and Saisho [126]. The case of
Brownian motion in suitable regions has received much attention in recent decades,
see e.g. Harrison and Reiman [74] and Chen and Yao [43]. In [73, Chap. 2, Sect. 4],
the Skorokhod problem on Œ0; b� is introduced as the two-sided regulator and is
used to treat Brownian motion with two-sided reflection; another early reference
on two-sided reflection problems is Chen and Mandelbaum [42]. A comprehensive
treatment of the Skorokhod map and its continuity properties, as well as other
reflection mappings and their properties, is given in Whitt [138].

Various formulas for the Skorokhod map have appeared in the literature, among
them Cooper et al. [49]. See [101] for a survey of these formulas and the relation
between them. An alternative approach to estimation of stationary quantities is to
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take advantage of the integral representation of the one-dimensional Skorokhod
reflection, see Konstantopoulos and Last [99], Anantharam and Konstantopou-
los [2], and Buckingham et al. [40]. This is applicable when considering processes
of finite variation, so that we can write S.t/ D A.t/CB.t/ for non-decreasing cadlag
processes A and B. It is then possible to write V.t/ as an integral with respect to
A.dt/. This representation can for example be used to derive the Laplace transform
of V in terms of the Palm measure. �

As described in Sect. 2, specifically (19) and (20), an explicit expression for V.t/
is available when one is concerned with one-sided reflection. This is also the case
when dealing with Skorokhod problem on Œ0; b�. Indeed, from Kruk et al. [101] we
have:

Vb.t/ D X.t/�
�
.V.0/� b/C ^ inf

u2Œ0;t�X.u/
�

_ sup
s2Œ0;t�

�
.V.0/� b/ ^ inf

u2Œs;t�X.u/
�
:

(39)

We shall assume V.0/ D 0 a.s and in this case we have following simplification,
which was originally proved in [5].

Theorem 4.2 If V.0/ D 0, then

Vb.t/ D sup
s2Œ0;t�

��
X.t/� X.s/

	 ^ inf
u2Œs;t�

�
b C X.t/ � X.u/

	�
: (40)

Remark 4.3 Before we provide a rigorous proof, we note the following intuitive
explanation for the expression (40): For v > 0 consider the process fVv.t/gt>v
obtained by reflecting Xv.t/ D X.t/ � X.v/ at b from below (in terms of recursions
like (11)) this is Vv

n D b _ .Vv
n�1 C Yn/ applied to the increments with n > v and

with Vv
v D 0). Similarly to (19) and (20) we obtain Vv.t/ D Xv.t/ ^ infv<u<t.b C

Xv.t/ � Xv.u//. Then obviously Vv.t/ � V.t/ but since Vv.t�/ D V.t�/ for
t� D sup0<u<t V.u/ D 0, we have V.t/ D sup0<v<t Vv.t/. �

The proof of (40) proceeds as follows: First we prove Proposition 4.4 and 4.5 which
are the discrete time equivalents of (39) and (40). Then we prove Lemma 4.6, which
states that the implied mapping of X.t/ in (40) is Lipschitz-continuous in the J1
topology which is combined with an piecewise constant approximation to obtain
the equivalence of (40) and (39). To emphasize the deterministic nature of the
Skorokhod problem and for explicit treatment of the involved mappings, we switch
notation and let y D fyng1nD1 be a sequence in R

1 and consider the sequences
x and v obtained by respectively taking cumulative sums of y and applying two-
sided reflection, that is xn D y1 C � � � C yn and vn D min.b;max.0; vn�1 C yn/

with x0 D v0 D 0. We let �0;b denote the two-sided reflection mapping, that is
�0;b.x/ D v.
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Proposition 4.4 The solution of the two-sided reflection is given by

�0;b.x/.n/ D max
k2f0;��� ;ng

�
min

j2fk;��� ;ng
.xn � xk; b C xn � xj/

�
: (41)

Proof We prove the claim by induction. The case n D 1 is trivial, so we assume (41)
holds for some n, and consider the cases ynC1 � 0 and ynC1 > 0 separately. For the
former case we have

�0;b.x/.n C 1/ D vnC1 D 0 _ .vn C ynC1/ ^ b D 0 _ .vn C ynC1/

D 0 _
�

max
k2f0;��� ;ng

�
min

j2fk;��� ;ng
.xn � xk; b C xn � xj/

�
C ynC1

�

D 0 _
�

max
k2f0;��� ;ng

�
min

j2fk;��� ;ng
.xnC1 � xk; b C xnC1 � xj/

��
: (42)

Since ynC1 � 0, we have

min
j2fk;��� ;nC1g

xnC1 � xj D min
j2fk;��� ;ng

xnC1 � xj;

so that (42) equals

0 _
�

max
k2f0;��� ;ng

�
min

j2fk;��� ;nC1g
.xnC1 � xk; b C xnC1 � xj/

��

D max
k2f0;��� ;nC1g

�
min

j2fk;��� ;nC1g
.xnC1 � xk; b C xnC1 � xj/

�
; (43)

as desired. The case ynC1 > 0 is similar:

vnC1 D 0 _ .vn C ynC1/ ^ b D .vn C ynC1/ ^ b

D
�

max
k2f0;��� ;ng

�
min

j2fk;��� ;ng
.xn � xk; b C xn � xj/

�
C ynC1

�
^ b

D max
k2f0;��� ;ng

�
min

j2fk;��� ;ng
.xnC1 � xk; b C XnC1 � xj/ ^ b

�
;

which equals (43) as well. This completes the proof. �

Proposition 4.4 provides the discrete-time analogue of (40). Next, we provide the
discrete-time analogue for (39), in the case v0 D 0.

Proposition 4.5 The solution of the two-sided reflection is given by

�0;b.x/.n/ D min
k2f0;:::;ng


�
.xn � xk C b/ ^ max

i2f0;:::;ng
.xn � xi/

�
_ max

i2fk;:::;ng
.xn � xi/

�
:

(44)
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Proof The proof is again by induction and again the case n D 1 is straightforward,
so we assume the stated holds for some n. Then we have

�0;b.x/.n C 1/ D 0 _ .vn C ynC1/ ^ b

D 0 _
�

min
k2f0;:::;ng


�
.xn � xk C b/ ^ max

i2f0;:::;ng
.xn � xi/

�
_ max

i2fk;:::;ng
.xn � xi/

�
CynC1

�
^b

D 0 _min
k2f0;:::;ng


�
.xnC1 � xk C b/ ^ max

i2f0;:::;ng
.xnC1 � xi/

�
_ max

i2fk;:::;ng
.xnC1 � xi/

�
^ b

Dmin
k2f0;:::;ng


�
.xnC1�xk C b/ ^ max

i2f0;:::;ng
..xnC1 � xi/ _ 0/

�
_ max

i2fk;:::;ng
..xnC1�xi/ _ 0/

�
^b

Dmin
k2f0;:::;ng


�
.xnC1 � xkCb/ ^ max

i2f0;:::;nC1g
.xnC1 � xi/

�
_ max

i2fk;:::;nC1g
.xnC1 � xi/

�
^ b:

(45)

We notice that
�
.xnC1 � xk C b/ ^ max

i2f0;:::;nC1g
.xnC1 � xi/

�
_ max

i2fk;:::;nC1g
.xnC1 � xi/

D
�

maxi2f0;:::;nC1g.xnC1 � xi/ if k D 0

maxi2f0;:::;nC1g.xnC1 � xi/ ^ b if k D n C 1,

so that (45) equals

min
k2f0;:::;nC1g


�
.xnC1 � xk C b/ ^ max

i2f0;:::;nC1g
.xnC1 � xi/

�
_ max

i2fk;:::;nC1g
.xnC1 � xi/

�
:

This proves the claim. �

We now proceed to the proof of (40). Let  2 D Œ0;1/. From [101] we have:

�0;b. /.t/ D  .t/ � sup
s2Œ0;t�


�
. .s/ � b// _ inf

u2Œ0;t�  .u/
�

^ inf
u2Œs;t�  .u/

�
; (46)

when the process is started at 0. In view of the two previous propositions it seems
reasonable to conjecture that �0;b D � , where

�Œ �.t/ D sup
s2Œ0;t�



. .t/ �  .s// ^ inf

u2Œs;t� .b C  .t/ �  .u//

�
: (47)

We prove this by first showing that � is Lipschitz-continuous in the J1 topology.
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Lemma 4.6 The mapping � is Lipschitz-continuous in the uniform and J1 metrics
as a mapping from DŒ0;T� for T 2 Œ0;1�, with constant 2.

Proof We follow the proof of Corollary 1.5 in [100] closely. Fix T < 1. We start
by proving Lipschitz-continuity in the uniform metric. Define

RtŒ �.s/ D


.� .s// ^ inf

u2Œs;t�.b �  .u//

�
I SŒ �.t/ D sup

s2Œ0;t�
RtŒ �.s/: (48)

For  1; 2 2 DŒ0;T� we have

SŒ 1�.t/ � SŒ 2�.t/ � sup
s2Œ0;t�

.RtŒ 1�.s/ � RtŒ 2�.s//

� sup
s2Œ0;t�



j� 1.s/ � .� 2.s//j _

ˇ̌
ˇ̌ inf
u2Œs;t�.b �  1.u//� inf

u2Œs;t�.b �  2.u//

ˇ̌
ˇ̌
�

� k 1 �  2 kT :

The same inequality applies to SŒ 2�.t/ � SŒ 2�.t/, so that taking the supremum
leads to

k SŒ 1� � SŒ 2� kT�k  1 �  2 kT ;

and this proves Lipschitz-continuity, with constant 2:

k �Œ 1� ��Œ 2� kT � k  1 �  2 k C k SŒ 1� � SŒ t� kT � 2 k  1 �  2 kT :

We now turn to the J1-metric, and we let M denote the class of strictly increasing
continuous functions from Œ0;T� onto itself with continuous inverse. An elementary
verification yields that for  2 DŒ0;T� and � 2 M we have�Œ ı �� D �Œ � ı �.
With e being the identity, this leads to

dJ1 .�Œ 1�; �Œ 2�/ D inf
�2M fk �Œ 1� ı � ��Œ 2� kT _ k � � e kTg

D inf
�2M fk �Œ 1 ı �� ��Œ 2� kT _ k � � e kTg

� inf
�2M f2 k  1 ı � �  2 kT _ k � � e kTg � 2dJ1. 1;  2/;

where we used the Lipschitz-continuity in the uniform metric. This proves
Lipschitz-continuity in the J1 metric, again with constant 2; it is valid for every
T < 1 and hence also for T D 1. �
We are now ready to prove that �0;b D �:

Theorem 4.7 For  2 DŒ0;1/ we have � Œ �.t/ D �Œ �.t/.



90 L.N. Andersen et al.

Proof Let  2 DŒ0;1/ be given, and define �n and n by 
n.t/ D bntc=n, n.t/ D
 .
n.t//. Since �n ! e in the uniform topology, we have �n !dJ1

e and hence
. ;�n/ ! . ; e/ in the strong version of the J1 topology (see p. 83 in [138]). Since
e is strictly increasing we may apply Theorem 13.2.2 in [138] to obtain  n !dJ1

 .
Fix t < T, and consider  as element of DŒ0;T�. Since the image  n.Œ0;T�/ is
finite, we may apply Propositions 4.4 and 4.5, in conjunction with (46), to obtain
�0;bŒ n� D �Œ n�: Finally, we let n ! 1 and use the J1-continuity of the �0;b
mapping proved in [100], and the J1-continuity of � proved in Lemma 4.6 to finish
the proof. �

Remark 4.8 Letting b ! 1 yields sups2Œ0;t� Œ. .t/ �  .s//�, which is indeed the
standard one-sided reflection from (19) and (20). �

5 The Stationary Distribution

5.1 Ergodic Properties

The following observation is easy but basic:

Proposition 5.1 The two-sided reflected Lévy process V D Vb admits a unique
stationary distribution � D �b. Furthermore, for any initial distribution V
converges in distribution and total variation (t.v.) to � .

Proof We appeal to the theory of regenerative processes [11, Ch. VI]. The classical
definition of a stochastic process to be regenerative means in intuitive terms that
the process can be split into i.i.d. cycles (with the first cycle having a possibly
different distribution). There is usually a multitude of ways to define a cycle. The
naive approach in the case of Vb is to take the instants of visits to state 0 (say) as
regeneration points, but these will typically have accumulation points (cf. the theory
of Brownian zeros!) and so a bit more sophistication is needed. Instead we may, e.g.,
define the generic cycle length T as starting at level 0 at time 0, waiting until level b
is hit and taking the cycle termination time T as the next hitting time of 0 (‘up to b
from 0 and down again’). That is,

T D inf
˚
t > inffs > 0 W Vb.s/ D bg W Vb.t/ D 0

ˇ̌
Vb.0/ D 0

�
:

The regenerative structure together with the easily verified fact ET < 1 then
immediately gives the existence of �b.

T.v. convergence just follows from coupling Vb with the stationary version OVb

(cf. [11, VII.1]). Indeed, we may assume that Vb and OVb both have the same driving
process X. Then OVb.t/ � V.t/ for all t, and so � D infft > 0 W Vb.t/ D OVb.t/g is
bounded by T1, hence a.s. finite. �
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Remark 5.2 T.v. convergence in distribution is often alternatively established by
verifying that the distribution of T is spread-out [11, VI.1]. In the present context,
this is slightly more tedious but goes like this. T decomposes as the independent
sum T1 C T2 where T1 is passage time from 0 to b and T2 the passage from b to 0 so
that it suffices to verify that one of T1;T2 is spread-out. This is obvious for Brownian
motion since there T1;T2 are both absolutely continuous. In the case � ¤ 0 of a non-
vanishing jump component, suppose, e.g., that � does not vanish on .0;1/. Then b
may be hit by a jump, i.e. P0

�
�X.T1/ > 0

	
> 0. Then also P0

�
�X.T1/ > "

	
> 0

for some " > 0 and so P0.T1 2 �; �X.T1/ > "
	
> 0 serves as candidate for the

absolutely continuous part of T1.
Another approach is to take advantage of the fact that Vb is a Markov process on

a compact state space with a semi-group with easily verified smoothness properties,
cf. [94] for some general theory, and yet another to invoke Harris recurrence in
continuous time, cf. [23, 24]. We omit the details. �

Remark 5.3 The process Vb is in fact geometrically ergodic, i.e.

sup
A

ˇ̌
ˇPx.V

b.t/ 2 A/� �b.A/
ˇ̌
ˇ D O.e�"t/ (49)

for some " > 0 where the O term is uniform in x. This follows again from the
coupling argument by bounding the l.h.s. of (49) by P.� > t/ and checking that �
has exponential moments (geometric trials argument!).

It is easy to derive rough bounds on the tail of � and thereby lower bounds on ".
To get the exact rate of decay in (49) seems more difficult, as is typically the case in
Markov process theory (but see Linetsky [109] for the Brownian case). �

5.2 First Passage Probability Representation

The main result on the stationary distribution �b is as follows and states that �b can
be computed via two-sided exit probabilities for the Lévy process.

Theorem 5.4 The stationary distribution of the two-sided reflected Lévy process
V D Vb is given by

�bŒx; b� D P
�
V.1/ � x

	 D P
�
X
�
�Œx � b; x/

	 � x
	

(50)

where �Œu; v/ D inf
˚
t � 0 W X.t/ 62 Œu; v/�, u � 0 � v.

Note that in the definition of �Œu; v/ we write t � 0, not t > 0.
We remark that in the case of spectrally negative Lévy processes the evaluation

of P
�
X
�
�Œx � K; x/

	 � x
	

is a special case of scale function calculations. For such
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a process, the scale function Wq is usually defined as the function with Laplace
transform

Z 1
0

e�sxWq.x/ dx D 1

�.�s/ � q
:

However, it has a probabilistic interpretation related to (50) by means of

E


e�q�Œa;b/

�
�
X.�Œa; b// � b

	� D Wq.jaj/
Wq.jaj C b/

(51)

The present state of the area of scale functions is surveyed in Kuznetsov et al. [102].
Classically, there have been very few explicit examples, but a handful more,
most for quite special structures, have recently emerged (see, e.g., Hubalek and
Kyprianou [76] and Kyprianou and Rivero [106]).

We shall present two approaches to the proof of Theorem 5.4. One is direct
and specific for the model, the other uses general machinery for certain classes of
stochastic processes with certain monotonicity properties.

5.3 Direct Verification

Write V0.t/ for V started from V0.0/ D 0, let T be fixed and for 0 � t � T, let
fRx.t/g be defined as Rx.t/ D x � X.T/C X.T � t/ until .�1; 0� or .b;1/ is hit;
the value is then frozen at 0, resp. 1. We shall show that

V0.T/ � x ” Rx.T/ D 0I (52)

this yields

P
�
V0.T/ � x

	 D P
�
�Œx � b; x/ � T; X

�
�Œx � b; x/

	 � x
	

and the proposition then follows by letting T ! 1.
Let � D sup ft 2 Œ0;T� W V0.t/ D 0g (well-defined since V0.0/ D 0). Then

V0.T/ D X.T/� X.�/C U.�/� U.T/, so if V0.T/ � x then X.T/� X.�/ � x, and
similarly, for t � �

x � V0.T/ D V0.t/C X.T/� X.t/C U.t/ � L.T/ � b C X.T/ � X.t/;

implying Rx.T � t/ � b. Thus absorbtion of fRx.t/g at 1 is not possible before
T � � , and X.T/� X.�/ � x then yields Rx.T � �/ D 0 and Rx.T/ D 0.

Assume conversely Rx.T/ D 0 and write the time of absorbtion in 0 as T � � .
Then x�X.T/CX.�/ � 0, and Rx.t/ � b for all t � T�� implies x�X.T/CX.t/ � b
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for all t � � . If V0.t/ < b for all t 2 Œ�;T�, then U.T/ � U.t/ D 0 for all such t and
hence

V0.T/ D V0.�/C X.T/� X.�/C L.T/� L.�/ � V0.�/C X.T/� X.�/ � 0C x:

If V0.t/ D b for some t 2 Œ�;T�, denote by ! the last such t. Then U.T/ D U.!/
and hence

V0.T/ D V0.!/C X.T/� X.!/C L.T/ � L.!/ � b C X.T/ � X.!/C 0 � x:

�

5.4 Siegmund Duality

Now consider the general approach. Let T D N or T D Œ0;1/, let fV.t/gt2T be a
general Markov process with state space E D Œ0;1/ or E D N, and let Vx.t/ be
the version starting from Vx.0/ D x. We write interchangeably P.Vx.t/ 2 A/ and
Px.V.t/ 2 A/. Then fVx.t/g is stochastically monotone if x � y implies Vx.t/ �so

Vx.t/ (stochastical ordering) for all t 2 T, i.e. if Px.V.t/ � z/ � Py.V.t/ � z/ for all
t and z.

Proposition 5.5 The existence of a Markov process fR.t/gt2T on E [f1g such that

Px
�
V.t/ � y/ D Py

�
R.t/ � x

	
(53)

is equivalent to (i) fV.t/g is stochastically monotone and (ii) Px
�
V.t/ � y

	
is a

right-continuous function of x for all t and y.

Proof If fR.t/g exists, the l.h.s. of (53) is nondecreasing and right-continuous in x
and so necessity of (i), (ii) is clear. If conversely (i), (ii) hold, then the r.h.s. of (53)
defines a probability measure for each y that we can think of as the element Pt.y; �/
of a transition kernel Pt (thus Pt.y; f1g/ D 1 � limx!1 Px

�
V.t/ � y

	
), and we

shall show that the Chapman-Kolmogorov equations PtCs D PtPs hold. This follows
since

PtCs
�
y; Œ0; x�

	 D Px
�
V.t C s/ � y

	 D
Z

E
Px
�
V.t/ 2 dz/Pz

�
V.s/ � y

	

D
Z

E
Px
�
V.t/ 2 dz

	 Z z

0

Ps.y; du/ D
Z z

0

Ps.y; du/Px
�
V.t/ � u

	

D
Z z

0

Ps.y; du/Pt
�
u; Œ0; x�

	 D .PtPs/
�
y; Œ0; x�

	
:

�
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Theorem 5.6 The state 0 is absorbing for fR.t/g. Furthermore, letting

� D inf ft > 0 W Rx.t/ � 0g D inf ft > 0 W Rx.t/ D 0g ;

one has

P0

�
V.T/ � x

	 D Px.� � T/; (54)

and if V.t/ converges in total variation, say to V D V.1/, then

P0.V � x/ D Px.� < 1/; (55)

Proof Taking x D y D 0 in (53) yields P0
�
R.t/ � 0

	 D P0

�
V.t/ � 0

	 D 1 so that
indeed 0 is absorbing for fR.t/g. We then get

Px.� � T/ D Px
�
R.T/ � 0

	 D P0

�
V.T/ � x

	
:

Letting T ! 1 concludes the proof. �

5.5 Dual Recursions

We turn to a second extension of (53), (55) which does not require the Markov
property but, however, works more easily when T D N than when T D Œ0;1/. We
there assume that fVngn2N is generated by a recursion of the form

VnC1 D f .Vn;Un/; (56)

where fUng (the driving sequence) is a stationary sequence of random elements
taking values in some arbitrary space F and f W E � F ! E is a function. The
(time-homogeneous) Markov case arises when the Un are i.i.d. (w.l.o.g., uniform
on F D .0; 1/), but also much more general examples are incorporated. We shall
need the following lemma, which summarizes the standard properties of generalized
inverses as occurring in, e.g., quantile functions.

Lemma 5.7 Assume that f .x; u/ is continuous and nondecreasing in x for each
fixed u 2 F and define g.x; u/ D inf fy W f .y; u/ � xg. Then for fixed u, g.x; u/
is left-continuous in x, nondecreasing in x and strictly increasing on the interval
fx W 0 < g.x; u/ < 1g. Further, f .y; u/ D sup fx W g.x; u/ � yg and

g.x; u/ � y ” f .y; u/ � x: (57)
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W.l.o.g., we can take fUng with doubly infinite time, n 2 Z, and define the dual
process fRngn2N by

RnC1 D g.Rn;U�n/; n 2 NI (58)

when the initial value x D R0 is important, we write Rn.x/.

Theorem 5.8 Equations (53) and (55) also hold in the set-up of (56) and (58).

Proof For T 2 N, define V.T/
0 .y/ D y,

V.T/
1 .y/ D f

�
V.T/
0 .y/;U�.T�1/

	
; : : : ;V.T/

T .y/ D f
�
V.T/

T�1.y/;U0

	
:

We shall show by induction that

V.T/
T .y/ � x ” RT.x/ � y (59)

(from this (53) follows by taking expectations and using the stationarity; since
g.0; u/ D 0, (54) then follows as above). The case T D 0 of (59) is the tautology
y � x ” x � y. Assume (59) shown for T. Replacing y by f .y;U�T/ then yields

V.T/
T

�
f .y;U�T/

	 � x ” RT.x/ � f .y;U�T/:

But V.T/
T

�
f .y;U�T /

	 D V.TC1/
TC1 .y/ and by (57),

RT.x/ � f .y;U�T/ ” RTC1.x/ D g.RT.x/;U�T/ � y:

Hence (59) holds for T C 1. �

Example 5.9 Consider the a discrete time random walk reflected at 0, VnC1 D .VnC
�n/
C with increments �0; �1; : : : which are i.i.d. or, more generally, stationary.
In the set-up of Proposition 5.5 and Theorem 5.6, we need (for the Markov

property) to assume that �0; �1; : : : are i.i.d. We take E D Œ0;1/ and for y > 0,
we then get

Py.R1 � x/ D Px.V1 � y/ D P.x C �0 � y/ D P.y � �0 � x/:

For y D 0, we have P0.R1 D 0/ D 1. These two formulas show that fRng evolves
as a random walk MXn D ��0 � ��1 � � � � � ��nC1 with increments ��0;��1; : : : as
long as Rn > 0, i.e. Rn.x/ D x � MXn, n < � , Rn.x/ D 0, n � � ; when .�1; 0� is
hit, the value is instantaneously reset to 0 and fRng then stays in 0 forever. We see
further that we can identify � and �.x/, and thus (55) is the same as the maximum
representation (15) of the stationary distribution of V .

Consider instead the approach via Theorem 5.8 (which allows for increments that
are just stationary). We let again E D Œ0;1/, take Uk D �k and f .x; u/ D .x C u/C.
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It is easily seen that g.y; u/ D .y � u/C and so fRng evolves as MX as long as Rn > 0,

while 0 is absorbing. With, X�n D � MXn it follows that � D inf
n
n W x C MXn � 0

o
D

inf
˚
n W X�n � x

�
. This last expression shows that (54) is the same as a classical result

in queueing theory known as Loynes’ lemma, [11, IX.2c]. �

Example 5.10 Consider two-sided reflection in discrete time,

VnC1 D min


b; .Vn C �n/

C�: (60)

For Theorem 5.6, we take �0; �1; : : : i.i.d. and E D Œ0;1/ (not Œ0; b�!). For y > B,
we then get

Py.R1 � x/ D Px.V1 � y/ � Px.V1 > b/ D 0

for all x, i.e. Py.R1 D 1/ D 1. For 0 � y � b, Py.R1 � x/ D Px.V1 � y/ becomes

P
�
.x C �0/

C � y
	 D

�
1 y D 0;

P.y � X0 � x/ 0 < y � b:

Combining these facts show that fRng evolves as MX as long as Rn 2 .0; b�. States
0 and 1 are absorbing, and from y > b fRng is in the next step absorbed at 1.
Thus for R0 D x 2 .0; b�, absorbtion at 0 before N, i.e. � � N, cannot occur if
.b;1/ is entered and with Xn D �0C� � �C�n�1, �Œu; v/ D inf

˚
n � 0 W Xn 62 Œu; v/�,

u � 0 < v, we get

P0.VN � x/ D Px.� � N/

D P
�
�Œx � b; x/ � N; X�Œx�b;x/ � x

	
; (61)

P.V � x/ D P.X�Œx�b;x/ � x/ (62)

(note that �Œx � b; x/ is always finite). �
The Markov process approach of Theorem 5.6 is from Siegmund [130], and the

theory is often referred to as Siegmund duality, whereas the recursive approach
of Theorem 5.8 is from Asmussen and Sigman [18]. None of the approaches
generalizes readily to higher dimension, as illustrated by Blaszczyszyn and Sigman
[33] in their study of many–server queues. For stochastic recursions in general, see
Brandt et al. [38] and Borovkov and Foss [37].

The two-barrier formula (62) is implicit in Lindley [108] and explicit in
Siegmund [130], but has often been overlooked so that there are a number of
alternative treatments of stationarity in two-barrier models around.

When applying Siegmund duality when T D Œ0;1/, it is often more difficult to
rigorously identify fRtg than when T D N. Asmussen [9] gives a Markov-modulated
generalization for T D Œ0;1/, and there is some general theory for the recursive
setting in Ryan and Sigman [131].
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Example 5.11 An early closely related and historically important example is
Moran’s model for the dam [113], which is discrete-time with the analogue of Yk

having the form Yk D Ak � c. The inflow sequence fAng is assumed i.i.d. and the
release is constant, say c per time unit (if the content just before the release is x < c,
only the amount x is released), and we let b denote the capacity of the dam. We will
consider a slightly more general model where also the release at time n is random,
say Bn rather than c (the sequence fBng is assumed i.i.d. and independent of fAng).

We let QA
n denote the content just before the nth input (just after the .n � 1/th

release) and QB
n the content just after that (just before the .n C 1/th release). Then

QA
n D 


QB
n�1 � Bn�1

�C
; (63)

QB
n D �

QA
n C An

	 ^ K; (64)

QA
n D 


.QA
n�1 C An�1/ ^ K � Bn�1

�C
; (65)

QB
n D �

ŒQB
n�1 � Bn�1�C C An

	 ^ K: (66)

The recursions (65), (66) are obviously closely related to (28), but not a special case.
The stationary distributions of the recursions (65), (66) can be studied by much

the same methods as used for (28). Consider e.g. (66) which can be written as QB
n D

f .QB
n�1;Un�1/where u D .a; b/, f .x;u/ D .Œx�b�CCa/^K and Un�1 D .An;Bn�1/.

The inverse function g of f in the sense of Proposition 5.7 is then given by

g.x; a; b/ D
8<
:

0 x D 0 or x 2 .0; b�; a � b
x � .a � b/ x 2 .0; b�; a < b

1 x > b
:

It follows that the dual process fRng started from x evolves as the unrestricted
random walk

˚
.x � A0/C � Sn

�
, starting from .x � A0/C and having random walk

increments Zn D An � Bn�1, and that Pe.QB
n � x/ is the probability that this process

will exit .0;K� to the right. �

5.6 Further Properties of �b

We first ask when �b has an atom at b, i.e., when �bfbg > 0 so that there is positive
probability of finding the buffer full. The dual question is whether �bf0g > 0. For
the answers, we need the fact that in the finite variation case, the underlying Lévy
process X has the form

X.t/ D � t C S1.t/ � S2.t/ (67)

where S1; S2 are independent subordinators.
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Theorem 5.12

(i) In the infinite variation case, �bfbg D �bf0g D 0.
In the finite variation case (67):

(ii) �bfbg > 0 and �bf0g D 0 when � > 0;
(iii) �bfbg D 0 and �bf0g > 0 when � < 0;

Proof We have �bfbg D P
�
X
�
�Œ0; b/

	 � b
	
. In the unbounded variation case,

.�1; 0/ is regular for X, meaning that .�1; 0/ is immediately entered when
starting from X.0/ D 0 [104, p. x], so that in this case X

�
�Œ0; b/

	 D 0 and
�bfbg D 0. Thus �bfbg > 0 can only occur in the bounded variation case which is
precisely (67). Similarly for �bf0g.

One has

S1.t/=t
a:s:! 0 ; S2.t/=t

a:s:! 0; t ! 0 (68)

(cf. [11, p. 254]). Thus if � < 0, X takes negative values arbitrarily close to t D 0 so
that �Œ0; b/ D 0, X

�
�Œ0; b/

	 D 0 and �bfbg D 0.
If � > 0, we get X.t/ > 0 for 0 < t < " for some ". This implies that X has

a chance to escape to Œb;1/ before hitting .�1; 0/ which entails P
�
X
�
�Œ0; b/

	 �
b
	
> 0 and �bfbg > 0.
Combining these facts with a sign reversion argument yields (ii), (iii). �

Corollary 5.13 In the spectrally positive (downward skipfree) case, �bfbg D 0.

Proof The conclusion follows immediately from Theorem 5.12(i) in the infinite
variation case. In the finite variation case where S2 � 0, our basic assumption
that the paths of X are non-monotonic implies � < 0, and we can appeal to
Theorem 5.12(iii). �
Remark 5.14 Corollary 5.13 can alternatively be proved by identifying�bfbg as the
limiting average of the time spent in b before t and noting that the Lebesgue measure
of this time is 0 because X leaves b instantaneously, cf. the remark after (68). The
same argument also yields �1fbg D 0. �

The next result relates one- and two-sided reflection (see also [11, XIV.3] for
some related discussion).

Theorem 5.15 Assume m D EX.1/ < 0 so that �1 exists, and that X is
spectrally positive with �fbg D 0. Then �b is �1 conditioned to Œ0; b�, i.e.
�b.A/ D �1.A/=�1Œ0; b� for A 
 Œ0; b�. Equivalently, �b is the distribution of
M D supt�0 X.t/ conditioned on M � b.

Proof For x 2 .0; b/, define

p1.x/ D P
�
X
�
�Œx � b; x/

	 � x
	
; p2.x/ D P

�
X
�
�.�1; x/

	 � x
	
:
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Then spectral positivity implies that X is downward skipfree so that

p2.x/ D p1.x/C �
1 � p1.x/

	
p2.b/ ; p1.x/ D p2.x/� p2.b/

1 � p2.b/
:

In terms of stationary distributions, this means

�bŒx; b� D �1Œx; b/
�1Œ0; b/

D �1Œx; b�
�1Œ0; b�

;

where the last equality follows from Remark 5.14. �
Corollary 5.16 Assume m D EX.1/ > 0 and that X is spectrally negative with
�f�bg D 0. Then �b is the distribution of b � M conditioned on M � �b where
M D inft�0 X.t/.

6 The Loss Rate via Itô’s Formula

The identification of the loss rate `b of a Lévy process X first appeared in Asmussen
and Pihlsgård [16]. The derivation is based on optional stopping of the Kella-Whitt
martingale followed by lots of tedious algebra, see Sect. 8. In this section we will
follow an alternative more natural approach presented in Pihlsgård and Glynn [118].
One important point of that paper is that the dynamics of the two-sided reflection
are governed by stochastic integrals involving the feeding process. Thus, all that is
required is that stochastic integration makes sense. Hence, the natural framework is
to take the input X to be a semimartingale. What we will do in the current section
is to solve the more general problem of explicitly identifying the local times L and
U (in terms of X and V) when the feeding process X is a semimartingale. The main
result in [16] follows easily from what will be presented below.

We start with a brief discussion about semimartingales. A stochastic process X is
a semimartingale if it is adapted, cadlag and admits a decomposition

X.t/ D X.0/C N.t/C B.t/

where N is a local martingale, B a process of a.s. finite variation on compacts with
N.0/ D B.0/ D 0. Alternatively, a semimartingale is a stochastic process for which
the stochastic integral

Z
H.s/dX.s/ (69)

is well defined for H belonging to a satisfactory rich class of processes (more
precisely, the predictable processes). In (69), we will in this exposition take H to
be an adapted process with left continuous paths with right limits. The class of
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semimartingales forms a vector space and contains e.g. all adapted processes with
cadlag paths of finite variation on compacts and Lévy processes. For a thorough
introduction to semimartingales we refer to Protter [123].

Let X and Y be semimartingales. ŒX;X� denotes the quadratic variation process
of X and ŒX;X�c is the continuous part of ŒX;X�. ŒX;Y� is the quadratic covariation
process (by some authors referred to as the bracket process) of X and Y.

Section 4 contains a discussion concerning the existence and uniqueness of the
solution .V;L;U/ to the underlying Skorokhod problem in which no assumptions
about the structure of X are made, so it applies to the case where X is a general
semimartingale. We will start by presenting two preliminary results.

Lemma 6.1 V, L and U are semimartingales.

Proof Since L and U are cadlag, increasing and finite (thus of bounded variation)
it follows that they are semimartingales. Since V D X C L � U and X is a
semimartingale, the proof is concluded by noting that semimartingales form a vector
space. ut
Lemma 6.2 It holds that ŒV;V�c D ŒX;X�c.

Proof L � U is cadlag of bounded variation and it follows by Theorem 26, p. 71, in
[123] that ŒL � U;L � U�c D 0 which is well known to imply ŒX;L � U�c D 0, see,
e.g., Theorem 28, p. 75 in [123]. The claim now follows from

ŒV;V�c D ŒXCL�U;XCL�U�c D ŒX;X�cCŒL�U;L�U�cC2ŒX;L�U�c D ŒX;X�c:

ut
We now establish the link between .L;U/ and X. We choose to mainly focus on the
local time U, by partly eliminating L, but it should be obvious how to obtain the
corresponding results for L.

Theorem 6.3 Let X be a semimartingale which is reflected at 0 and b. Then the
following relationship holds.

2bU.t/ D V.0/2 � V.t/2 C 2

Z t

0C
V.s�/ dX.s/C ŒX;X�c.t/C JR.t/ (70)

where JR is pure jump, increasing and finite with

JR.t/ D
X
0<s�t

'
�
V.s�/;�X.s/

	
; (71)

where

'.x; y/ D

8̂
<̂
ˆ̂:

�.x2 C 2xy/ if y � �x;

y2 if � x < y < b � x;

2y.b � x/� .b � x/2 if y � b � x:
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Proof By the definition of the quadratic variation process ŒV;V� and Lemma 6.2,

V.t/2 � V.0/2 � 2

Z t

0C
V.s�/dV.s/ D ŒV;V�.t/ D ŒX;X�c.t/C

X
0<s�t

.�V.s//2:

(72)

Furthermore,

dV.t/ D dX.t/C dL.t/ � dU.t/ and V.s�/ D V.s/ ��V.s/;

so it follows by the formulation of the Skorokhod problem that

Z t

0C
V.s�/dV.s/

D
Z t

0C
V.s�/dX.s/C

Z t

0C
.V.s/ ��V.s//dL.s/ �

Z t

0C
.V.s/��V.s//dU.s/

D
Z t

0C
V.s�/dX.s/�

Z t

0C
�V.s/dL.s/ � bU.t/C

Z t

0C
�V.s/dU.s/

D
Z t

0C
V.s�/dX.s/�

X
0<s�t

�V.s/�L.s/� bU.t/C
X
0<s�t

�V.s/�U.s/:

(73)

Then (70) and (71) follow by combining (72) and (73) with the fact that

�V.s/ D max.min.�X.s/; b � V.s�//; 0/C min.max.�X.s/;�V.s�//; 0/;
�V.s/�L.s/ D �V.s�/.� min.�X.s/C V.s�/; 0//;
�V.s/�U.s/ D .b � V.s�//max.�X.s/C V.s�/� b; 0/:

Since 0 � '.x; y/ � y2 it follows that JR.t/ is increasing and that

JR.t/ �
X
0<s�t

.�X.s//2 � ŒX;X�.t/ < 1:

ut
We will need the next result in order to go from the path-by-path representation in
Theorem 6.3 to the loss rate `b.

Lemma 6.4 Suppose that X is a Lévy process with characteristic triplet .�; �; �/
and EjX.1/j < 1. Let

I.t/ D
Z t

0C
V.s�/ dX.s/:

Then in the stationary case it holds that E� I.t/ D tmE�V.0/.
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Proof Let QX.t/ D X.t/�P
0<s�t �X.s/�.j�X.s/j � 1/, so that

I.t/ D
Z t

0C
V.s�/d QX.s/C

X
0<s�t

V.s�/�X.s/�.j�X.s/j � 1/:

We let QY.t/ D QX.t/� tE� QX.1/. Then QY is a martingale (and thus a local martingale)
and it follows by Theorem 29, p. 128, in [123] that

J.t/ D
Z t

0C
V.s�/ d QY.s/

is also a local martingale. Theorem 29, p. 75, in [123] tells us that

ŒJ; J�.t/ D
Z t

0C
V.s�/2dŒ QY; QY�.s/ D

Z t

0C
V.s�/2dŒ QX; QX�.s/ � b2Œ QX; QX�.t/

D b2
�
�2t C

X
0<s�t

.�X.s//2�.j�X.s/j < 1/
�

and it follows thatE� ŒJ; J�.t/ < 1 for all t � 0, which implies that J is a martingale,
see Corollary 3, p. 73 in [123]. Then E�J.t/ D E�J.0/ D 0, and thus

E�

Z t

0C
V.s�/ d QX.s/ D E�

Z t

0C
V.s�/E� QX.1/ ds D tE�V.0/E QX.1/:

Furthermore, since
P

0<s�t �X.s/�.j�X.s/j � 1/ is a compound Poisson process
and V.s�/ is independent of �X.s/, we get that

E�

X
0<s�t

V.s�/�X.s/�
�j�X.s/j � 1

	 D tE�V.0/

 Z 1
1

x �.dx/C
Z �1
�1

x �.dx/

!

and it follows that

E� I.t/ D tE�V.0/E QX.1/CtE�V.0/

�Z 1
1

x �.dx/C
Z �1
�1

x �.dx/

�
D tmE�V.0/:

ut
Remark 6.5 In the proof of Lemma 6.4, we used the intuitively obvious fact
that V.s�/ and �X.s/ are independent. For a formal proof, one may appeal to
Campbell’s formula (e.g. [28, p. 7]). More precisely, write the sum

X
0�s�t

V.s�/�X.s/�
�j�X.s/j � 1
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as

X
0�s<1

Hs.�X.s/�
�
�X.s/ � 1

	
/ �

X
0�s<1

Hs.�X.s/�
�
�X.s/ � �1	/; (74)

where Hs.x/ D jxjV.s�/��s � t
	
. We see that Hs (viewed as a process indexed by s

taking values in the space of nonnegative measurable functions on R) is predictable.
This is the formal equivalent to the independence argument used above. By applying
Campbell’s formula separately to each part in (74), we get

E�

X
0�s�t

V.s�/�X.s/�
�j�X.s/j � 1

	

D E�

X
0�s<1

Hs.�X.s/�
�
�X.s/ � 1

	
/ � E�

X
0�s<1

Hs.�X.s/�
�
�X.s/ � �1	/

D E�

Z 1
0

ds
Z 1
1

�.dx/Hs.x/� E�

Z 1
0

ds
Z �1
�1

�.dx/Hs.x/

D tE�V.0/
Z 1
1

x�.dx/C tE�V.0/
Z �1
�1

x�.dx/:

Similar arguments are tacitly used in other parts of the paper, in particular in the
proofs of Corollary 6.6, Lemma 8.4, Eqs. (106)–(108), (142), Theorem 14.3, and
the calculations leading to (201). �

The next corollary is an easy consequence of Theorem 6.3 and Lemma 6.4 and
is precisely the main result in the paper [16]. Note that as we keep b fixed it is no
restriction to assume that the support of � is Œ�a;1/nf0g for some a � b. Otherwise
we just truncate � at �a (we then get a point mass of size �..�1;�a�/ at �a). The
truncation does not affect V and hence not `b.

Corollary 6.6 Let X be a Lévy process with characteristic triplet .�; �; �/. IfR1
1

y�.dy/ D 1, then `b D 1 and otherwise

`b D 1

2b

(
2mEV C �2 C

Z b

0

�.dx/
Z 1
�1

'.x; y/�.dy/

)
: (75)

Proof The first part is obvious. The second part follows immediately from (70)
and (71) and Lemma 6.4 if we note that for a Lévy process ŒX;X�c.t/ D �2t. ut
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7 Two Martingales

We will need nothing more sophisticated here than taking the property of fM.t/gt�0
to be a martingale as

E


M.t C s/

ˇ̌
F.t/

� D M.t/; t � 0; s > 0 ; (76)

where
˚
F.t/

�
t�0 is the natural filtration generated by the Lévy process, i.e. F.t/ D

�
�
X.v/ W 0 � v � t

	
.

The applications of martingales in the present context are typically optional
stopping, i.e. the identity EM.�/ D M.0/ for a stopping time � when M.0/ is
deterministic or EM.�/ D EM.0/ in the general case. This is not universally true,
but conditions need to be verified, for example

E sup
t��
ˇ̌
M.t/

ˇ̌
< 1 : (77)

7.1 The Wald Martingale

A classical example in the area of Lévy processes is the Wald martingale given by

M.t/ D e˛X.t/�t�.˛/ : (78)

The proof that this is a martingale is elementary using the property of independent
stationary increments and the definition of the Lévy exponent �.

Remark 7.1 For the Wald martingale e�X.t/�t�.�/, there is an usually easier approach
to justify stopping than (77): consider the exponentially tilted Lévy process with
�� .˛/ D �.˛ C �/ � �.�/. Then optional stopping is permissible if and only if
P� .� < 1/ D 1. See [11, p. 362]. �

Example 7.2 Consider Brownian motion with drift � and variance constant �2, and
the problem of computing the two-sided exit probability

P
�
X
�
�Œx � b; x/

	 � x
	 D �bŒx; b�

occurring in the calculation of the stationary distribution �b.
We have �.˛/ D ˛� C ˛2�2=2, and take ˛ D 
 D �2�=�2 as the root of the

Lundberg equation �.˛/ D 0. Then the martingale is e
X.t/. Condition (77) holds
for � D �Œx � b; x/ since x � b � X.t/ � x for t � �Œx � b; x/. Letting

pC.x/ D P
�
X
�
�Œx � b; x/

	 � x
	 D P

�
X
�
�Œx � b; x/

	 D x
	
;

p�.x/ D P
�
X
�
�Œx � b; x/

	
< x � b

	 D P
�
X
�
�Œx � b; x/

	 D x � b
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(note the path properties of Brownian motion for the second expression!), optional
stopping thus gives

1 D M.0/ D EM
�
�Œx � b; x/

	 D pC.x/e
x C p�.x/e
.x�b/ :

Together with 1 D pC.x/C p�.x/ this gives

pC.x/ D 1 � e
.x�b/

e
x � e
.x�b/
D e�
x � e�
b

1 � e�
b
: (79)

The last expression identifies �b as the distribution of an exponential r.v. W
conditioned to Œ0; b� when 
 > 0, (i.e. � < 0) and of b � W when 
 < 0 (i.e.
� > 0). �

Example 7.3 Consider again the Brownian setting, but now with the problem of
computing quantities like

rC D EŒe�q� I X.�/ D v� ; r� D EŒe�q� I X.�/ D u� ; r D rC C r� D Ee�q�

where � D infft W X.t/ 62 Œu; v�g with u < 0 < v and q > 0, as occurring in the
calculation of the scale function.

We take ˛ as root of

q D �.˛/ D ˛�C ˛2�2=2

(rather than the Lundberg equation �.˛/ D 0). Since q > 0, there are two roots, one
positive and one negative,

�C D �C.q/ D ��Cp
�2 C 2�2q

2
; �� D ��.q/ D ���p

�2 C 2�2q

2
:

We therefore have two Wald martingales at disposal, e�
CX.t/�qt and e�

�X.t/�qt.
Instead of verifying condition (77) (trivial for �C and by a symmetry argument

also for ��!), it is easier to note that in the present context, we have � < 1 for all
�, and this implies the conditions of Remark 7.1. Optional stopping thus gives

1 D rCe�
Cv C rCr�e�

Cv 1 D rCe�
�v C rCr�e�

�v :

These two linear equations can immediately be solved for rC; r�, and then also
r D rC C r� is available. �

Example 7.4 Consider again the two-sided exit problem, but now with
exponential.ı/ jumps at rate 
 in the positive directions added to the Brownian
motion.
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Inspired by Examples 7.2 and 7.3 we look for solutions of the Lundberg equation

0 D �.˛/ D ˛�C ˛2�2=2C 

ı

ı � ˛
:

This is a cubic, which looks promising since we have three unknowns, the
probability of exit below at u, the probability of continuous exit above at v, and the
probability of exit above by a jump. However, only two of the three roots � satisfy
Ee<.˛/X.1/ < 1 and so the third does not lead to a permissible Wald martingale.
Thus, additional ideas are needed to deal with this example. This is done next. �

7.2 The Kella-Whitt Martingale

Consider a modification Z.t/ D X.t/C B.t/ of the Lévy process, where fB.t/gt�0 is
adapted with D-paths, locally bounded variation, continuous part fBc.t/g, and jumps
�B.s/ D B.s/� B.s�/. The Kella-Whitt martingale is given by

�.˛/

Z t

0

e˛Z.s/ ds C e˛Z.0/ � e˛Z.t/

C ˛

Z t

0

e˛Z.s/ dBc.s/ C
X
0�s�t

e˛Z.s/.1 � e�˛�B.s// : (80)

Since the Kella-Whitt martingale (80) is less standard than the Wald martingale
(78), we add some discussion and references. The first occurrence is in Kella and
Whitt [91] where it was identified as a rewriting of the stochastic integral

Z t

0

exp
˚
˛
�
X.s�/C B.s�/	C s�.˛/

�
dW.s/

where W is the Wald martingale. The stochastic integral representation immediately
gives the local martingale property. To proceed from this, much subsequent work
next shows the global martingale property by direct calculations specific for the
particular application. However, recently Kella and Boxma [88] showed that this is
automatic under minor conditions.

A simple but still useful case is the Kella-Whitt martingale with B.t/ � 0,

�.˛/

Z t

0

e˛X.s/ ds C e˛x � e˛X.t/ (81)

A survey of applications of the Kella-Whitt martingale is in Asmussen [11, IX.3];
see also Kyprianou [104] and [105].
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8 The Loss Rate via the Kella-Whitt Martingale

In this section we summarize the original derivation of the loss rate ` D `b which
is presented in Asmussen and Pihlsgård [16]. It is essentially based on optional
stopping of the Kella-Whitt martingale for V . As stated in Sects. 1 and 6, this is
less straightforward than the direct Itô integration method used in Sect. 6. It is
not difficult to see why the latter approach leads more directly to the result: the
Kella-Whitt martingale, see Kella and Whitt [91], is itself obtained as a stochastic
integral with respect to the Wald martingale (indexed by, say, ˛) for V , so this
method implicitly relies on Itô’s formula and, more importantly, there is introduced
an arbitrariness via ˛ which is removed by letting ˛ ! 0. This requires a
delicate analysis, which is to a large extent based on Taylor expansions and tedious
algebra, and hence of limited probabilistic interest. This is perhaps the most serious
drawback of the original approach. However, the martingale technique also has
advantages. E.g., if the process X is such that the equation �.˛/ D 0 has a non-
zero root 
 , we obtain an alternative formula for `, see Theorem 8.6 below, which
turns out to be very useful when we derive asymptotics for `b as b ! 1 when
X is light tailed. We see no immediate way of deriving this result directly via Itô’s
formula.

To follow the exposition in [16], we need to introduce some further notation.
First, we split L and U into their continuous and jump parts, i.e.,

L.t/ D Lc.t/C Lj.t/ and U.t/ D Uc.t/C Uj.t/ (82)

where Lc.t/ is the continuous part of L, Lj.t/ the jump part etc., i.e., Lj.t/ DP
0�s�t�L.s/ and Lc.t/ D L.t/ � Lj.t/. Further, we treat the contributions to L

and U coming from small and large jumps of X separately: let

�L.s/ D �L.s/�
��k � �X.s/ � 0

	
; �L.s/ D �L.s/�

�
�X.s/ < �k

	
;

�U.s/ D �U.s/�
�
0 � �X.s/ � k

	
; �U.s/ D �U.s/�

�
�X.s/ > k

	

where k is a constant such that k > max.1; b/. Further, we let

`b
j D EUj.1/ ; `

b
c D EUc.1/ ; `

b
j D E

X
0�s�1

�U.s/ ; `
b
j D E

X
0�s�1

�U.s/ ;

and similarly at 0. Clearly `b
j D `b

j C `
b
j and `0j D `0j C `

0

j . The Lévy exponent �.˛/
can be rewritten as

ck˛ C �2˛2=2C
Z 1
�1



e˛x � 1 � ˛x�

�jxj � k
	�
�.dx/; (83)

where ck D c C R k
1

y �.dy/C R �1
�k y �.dy/.
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The paper [16] relies on the original reference on the Kella-Whitt local mar-
tingale associated with Lévy processes, [91], and on Asmussen and Kella [15] for
the generalisation to a multidimensional local martingale associated with Markov
additive processes with finite state space Markov modulation. However, it was
recently discovered in Kella and Boxma [88] that without any further assumptions,
these local martingales are in fact martingales. This very useful result makes it
possible to keep the treatment below slightly shorter than what was presented in
[16].

The first step in the analysis is to show that `0 and `b are well defined if the
process X is sufficiently well behaved.

Lemma 8.1 If EjX.1/j < 1 then EL.t/ < 1 and EU.t/ < 1 (for all t).

Proof Assume (without loss of generality) that V.0/ D 0. Let �.0/ D 0 and, for
j � 1, �.j/ D infft > �.j � 1/ W V.t/ D bg, �.j/ D infft > �.j/ W V.t/ D 0g. We
view V as regenerative with ith cycle equal to Œ�.i � 1/; �.i//. Let n.t/ denote the
number of cycles completed in Œ0; t�. Clearly, E.�.i/��.i�1// > 0 and this implies
that En.t/ < 1, see Proposition 1.4, p. 140 in [11]. We have

L.t/ D
n.t/X
iD1

Ci C R.t/ (84)

(we use the convention that
P0

iD1 Ci D 0) where Ci is the contribution to L.t/ from
the ith cycle and R.t/ is what comes from Œ�.n.t//; t�. Let m.t/ be the local time
corresponding to X one-sided reflected at 0 (m.t/ D � inf0�s�t X.s/). By the strong
Markov property of X and the fact that V and the process starting from 0 at time
�.i � 1/ resulting from one-sided reflection of X coincide on Œ�.i � 1/; �.i//, we

have Ci
DD m.�.1//C J1, where J1 comes from a jump of X ending the cycle. For

fixed t, the initial parts of the cycles (from 0 up to b) can influence L.t/ only through
what occurs during Œ�.i � 1/; .�.i � 1/C t/^ �.i/�, so in (84) we may replace Ci by

Ci.t/ where Ci.t/
DD m.�.1/ ^ t/C J1. Now,

J1 � 1 _ max
0�s�t

j�X.s/j��j�X.s/j � 1
	 � 1C

X
0�s�t

j�X.s/j��j�X.s/j � 1
	
;

so EJ1 � 1CE
P

0�s�t j�X.s/j��j�X.s/j � 1
	 D 1C t

R
jxj�1 jxj�.dx/ < 1 (recall

that we assume that EjX.1/j < 1). It is known, see Lemma 3.3, p. 256 in [11], or
Theorem 25.18, p. 166 in [129], that Em.t/ < 1, so Em.�.1/ ^ t/ � Em.t/ < 1,
which together with EJ1 < 1 yields ECi.t/ < 1. In a similar way, we see that
ER.t/ � Em.t/ < 1. It now follows from Wald’s identity that

EL.t/ D E

n.t/X
iD1

Ci.t/C ER.t/ � E

n.t/C1X
iD1

Ci.t/C ER.t/

D .En.t/C 1/EC1.t/C ER.t/ < 1:
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EU.t/ < 1 is now immediate from the formulation of the Skorokhod problem. ut
The next step is the construction of the Kella-Whitt martingale for the reflected
process V .

Proposition 8.2 Assume that EjX.1/j < 1. For each t, let M.t/ be the random
variable

�.˛/

Z t

0

e˛V.s/ds C e˛V.0/ � e˛V.t/ C ˛

Z t

0

e˛V.s/dLc.s/C
X
0�s�t

e˛V.s/.1 � e�˛�L.s//

� ˛

Z t

0

e˛V.s/dUc.s/C
X
0�s�t

e˛V.s/.1 � e˛�U.s//:

Then

M.t/ D �.˛/

Z t

0

e˛V.s/ds C e˛V.0/ � e˛V.t/ C ˛Lc.t/C
X
0�s�t

.1 � e�˛�L.s//

� ˛e˛bUc.t/C e˛b
X
0�s�t

.1 � e˛�U.s// (85)

and M is a zero mean martingale.

Proof L and U solve the Skorokhod problem stated in Sect. 1, so the first claim is
clearly true. L�U is of bounded variation and it follows by what was proved in [88]
that M is a martingale. ut
We proceed by stating two lemmas.

Lemma 8.3 `b satisfies the following equation:

˛.1� e˛b/`b D ��.˛/E�e˛V.0/ C ˛E�X.1/� ˛e˛b`
b
j C ˛`

0

j C ˛2

2
E�

X
0�s�1

.�U.s//2

C ˛2

2
E�

X
0�s�1

.�L.s//2 � e˛b
E�

X
0�s�1

.1� e˛�U.s//

� E�

X
0�s�1

.1� e�˛�L.s//C o.˛2/; (86)

where o.˛2/=˛2 ! 0 if ˛ ! 0.

Proof If we take t D 1 in Proposition 8.2 and use the stationarity of V , we get

0 D �.˛/E�e˛V.0/C˛`0cCE�

X
0�s�1

.1�e�˛�L.s//�˛e˛b`b
cCe˛b

E�

X
0�s�1

.1�e˛�U.s//:

(87)
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We write

X
0�s�1

.1 � e˛�U.s// D
X
0�s�1

.1 � e˛�U.s//C
X
0�s�1

.1 � e˛�U.s//; (88)

X
0�s�1

.1 � e�˛�L.s// D
X
0�s�1

.1 � e�˛�L.s//C
X
0�s�1

.1 � e�˛�L.s// (89)

and apply the expansion

e˛x D 1C ˛x C .˛x/2

2
C .˛x/3

6
e�˛x; � 2 .0; 1/ (90)

to the first parts of the r.h.s. of (88) and (89) and get for the part in (88):

e˛b
E�

X
0�s�1

.1 � e˛�U.s// D e˛b
E�

��˛ X
0�s�1

�U.s/� ˛2

2

X
0�s�1

.�U.s//2
	C o.˛2/

D �˛e˛b`b
j � e˛b ˛

2

2
E�

X
0�s�1

.�U.s//2 C o.˛2/

D �˛e˛b.`b
j � `b

j / � ˛2

2
E�

X
0�s�1

.�U.s//2 C o.˛2/;

(91)

because E�

P
0�s�1 ˛3.�U.s//3e�˛�U.s/=6 D o.˛2/, `b

j D `b
j C `

b
j and e˛b˛2=2 D

˛2=2C o.˛2/. We proceed similarly for the part in (89) and get

E�

X
0�s�1

.1 � e�˛�L.s// D ˛.`0j � `0j / � ˛2

2
E�

X
0�s�1

.�L.s//2 C o.˛2/: (92)

If we combine (87)–(89), (91) and (92) we get

0 D �.˛/E�e˛V.0/ C ˛`0 � ˛e˛b`b � ˛`0j C ˛e˛b`
b
j � ˛2

2
E�

X
0�s�1

.�U.s//2

� ˛2

2
E�

X
0�s�1

.�L.s//2 C e˛b
E�

X
0�s�1

.1 � e˛�U.s//

C E�

X
0�s�1

.1 � e�˛�L.s//C o.˛2/:

The claim now follows if we make the substitution `0 D `b �E�X.1/ and rearrange
terms. ut
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Lemma 8.4 Let, for x > 0, �.x/ D �.x;1/ and, for x < 0, �.x/ D �.�1; x/. In
stationarity it then holds that as ˛ ! 0,

�.˛/E�e˛V.t/ D o.˛2/C
Z b

0

e˛x�.dx/
Z 1
�1

e˛y
�.jyj � k/�.dy/

�
Z 1
�1

I.jyj � k/�.dy/C˛

 
ck�

Z b

0

x�.dx/
Z 1
�1

�.jyj � k/�.dy/

!

C ˛2

 
ck

Z b

0

x�.dx/C �2=2C
Z k

�k
y2=2�.dy/

�
Z b

0

x2=2�.dx/
Z 1
�1

�.jyj � k/�.dy/

!
; (93)

e˛b
E�

X
0�s�1

.1 � e˛�U.s// D e˛b
Z b

0

�.dx/
Z 1

k
.1� e˛.y�bCx//�.dy/

D .1C ˛b C ˛2b2=2/�.k/

�
Z b

0

e˛x�.dx/
Z 1

k
e˛y�.dy/C o.˛2/; (94)

E�

X
0�s�1

.1 � e�˛�L.s// D
Z b

0

�.dx/
Z �k

�1
.1 � e˛.xCy//�.dy/

D �.�k/ �
Z b

0

e˛x�.dx/
Z �k

�1
e˛y�.dy/C o.˛2/; (95)

˛e˛b`
b
j D ˛e˛b

Z b

0

�.dx/
Z 1

k
.y � b C x/�.dy/

D .˛ C ˛2b/
Z b

0

�.dx/
Z 1

k
.y � b C x/�.dy/C o.˛2/; (96)

˛`
0

j D �˛
Z b

0

�.dx/
Z �k

�1
.x C y/�.dy/; (97)

˛m D ˛ck C ˛

Z 1
�1

y�.jyj � k/�.dy/; (98)



112 L.N. Andersen et al.

˛2

2
E�

X
0�s�1

.�U.s//2 D ˛2

2

Z b

0

�.dx/
Z k

b�x
.y � b C x/2�.dy/; (99)

˛2

2
E�

X
0�s�1

.�L.s//2 D ˛2

2

Z b

0

�.dx/
Z �x

�k
.x C y/2�.dy/: (100)

Proof Clearly E�e˛V.s/ D R b
0 e˛x�.dx/. Equation (93) follows if we use the

representation for �.˛/ in (83) and expand the integrands corresponding to the
compact sets Œ�k; k� and Œ0; b� according to (90). The remaining statements all
follow by conditioning on V.s�/ and applying (90) where appropriate. ut

We are now ready to identify `b in terms of � and .c; �2; �/. We recall the remark
just before Corollary 6.6.

Theorem 8.5 If
R1
1

y�.dy/ D 1, then `b D 1 and otherwise

`b D 1

2b

(
2mE�V C �2 C

Z b

0

�.dx/
Z 1
�1

'.x; y/�.dy/

)
; (101)

where

'.x; y/ D

8̂
<̂
ˆ̂:

�.x2 C 2xy/ if y � �x;

y2 if � x < y < b � x;

2y.b � x/� .b � x/2 if y � b � x:

Proof The first claim is obvious. We use (86) and identify the terms in the right
hand side via Lemma 8.4 and get,

˛.1 � e˛b/`b D �ck˛
2

Z b

0

x�.dx/� �2˛2

2
� ˛2

2

Z b

0

�.dx/
Z b�x

0

y2�.dy/

� ˛2

2

Z b

0

�.dx/
Z 0

�x
y2�.dy/C .�.k/C �.�k//

˛2

2

Z b

0

x2�.dx/

C ˛2

2

Z b

0

�.dx/
Z k

b�x
..x � b/2 C 2y.x � b//�.dy/

� ˛2b
Z 1

k
y�.dy/C ˛2

2

Z b

0

�.dx/
Z �x

�k
.x2 C 2xy/�.dy/

C ˛2b
Z b

0

.b � x/�.dx/�.k/C o.˛2/: (102)

We divide both sides of (102) by ˛.1 � e˛b/ and let first ˛ ! 0 and then k ! 1
and get the limit (101) (note that ck ! EX.1/ as k ! 1). ut
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The next result, which follows almost directly from the proof of Lemma 8.3, gives
an alternative expression for `b whenever we can find a non-zero root 
 of �.˛/ D 0

(a genuine root in the sense that e
X.1/ has finite expectation, cf. Lemma 10.7 where
the meaning of �.˛/ D 0 is different). Note that in the original version (Theorem 3.2
in [16]) it is required that 
 is real but this is not necessary.

Theorem 8.6 Assume that there exists a non-zero root 
 of the equation �.˛/ D 0.
Then

`b D 1

e
b � 1

(
e
bI1 C I2 � EX.1/

)
(103)

where

I1 D
Z b

0

�.dx/
Z 1

b�x
..y � b C x/C 
�1.1 � e
.y�bCx///�.dy/

I2 D
Z b

0

�.dx/
Z �x

�1
..x C y/C 
�1.1 � e
.xCy///�.dy/

Proof Let " > 0. We truncate the Lévy measure at " and �". By arguing precisely
as when we derived (86) and taking ˛ D 
 , we get


.e
b � 1/`b D �
EX.1/C e
bI"1 C I"2 C O."/; (104)

where

I"1 D
Z b

0

�.dx/
Z 1
.b�x/_"

.
.y � b C x/C .1 � e
.y�bCx///�.dy/;

I"2 D
Z b

0

�.dx/
Z �.x_"/
�1

.
.x C y/C .1� e
.xCy///�.dy/;

and the claim follows if we divide both sides of (104) by 
.e
b � 1/, let " # 0 and
apply monotone convergence. ut

As we have seen in Sect. 3.1, the identification of `b is almost trivial in the
discrete time case. However, the continuous time case is much more involved and
less intuitive, no matter the choice of method for deriving the expression(s) for `b

(the direct Itô approach presented in Sect. 6 or the methods used in the current
section). In order to provide the presentation with some intuition, we present an
alternative heuristic derivation of the formula for `b as given in (103). Recall the
definitions of `b

c , `b
j etc. given above. We will derive four equations involving `b

c , `b
j ,

`0c and `0j and solve for the unknowns. The first equation follows directly from the
Skorokhod problem formulation and the stationarity of V:

`0c C `0j � `b
c � `b

j D �m: (105)
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The second equation is

`b
j D

Z b

0

�.dx/
Z 1

b�x
.y � b C x/�.dy/ (106)

and the third is

`0j D �
Z b

0

�.dx/
Z �x

�1
.x C y/�.dy/: (107)

In order to obtain the fourth equation, we take ˛ D 
 in (85), which yields


`0c � 
e
b`b
c D �e
b

Z b

0

�.dx/
Z 1

b�x
.1 � e
.y�bCx//�.dy/

�
Z b

0

�.dx/
Z �x

�1
.1 � e
.xCy//�.dy/: (108)

Equations (106)–(108) apply at least if the jump part of X is of bounded variation,
i.e., if

R 1
�1 jxj�.dx/ < 1. In this case they follow by straightforward conditioning

on the value of V immediately prior to a jump of X. By combining (105)–(108), we
may identify the unknowns and the expression for `b given in (103) follows from
`b D `b

c C`b
j . Note that if we take X to be a compound Poisson process with intensity

ˇ and jump distribution F, we get `b D `b
j D R b

0
�.dx/

R1
b�x.y �b Cx/ˇF.dy/. Thus

in this case the expression for `b is the same as in discrete time. If we compare this
expression to (101), we see that for a compound Poisson process it must hold that

Z b

0

�.dx/
Z 1
.b�x/

.y � b C x/F.dy/ D
Z b

0

�.dx/
Z 1
�1
.2b/�1.2xy C '.x; y//F.dy/:

Example 8.7 Assume that X is Brownian motion with drift � and variance �2,
i.e., �.˛/ D �˛ C �2˛2=2. Then 
 D �2�=�2 and Theorem 8.6 gives us
`b D ��=.e�2b�=�2 � 1/.

Example 8.8 Suppose that X is a strictly stable Lévy process with index ˛ 2 .0; 2/n
f1g (note that if ˛ D 1, then `b D 1 and if ˛ D 2, then `b D �2=2b), i.e.,

�.dx/ D
(

cCx�.˛C1/dx if x > 0;

c�jxj�.˛C1/dx if x < 0;

where cC; c� � 0 are such that cC C c� > 0; see, e.g., Bertoin [28, pp. 216–218].
Let ˇ D .cC � c�/=.cC C c�/ and � D 1=2C .�˛/�1 arctan.ˇ tan.�˛=2//.

If ˛ 2 .0; 1/ then `b is 0 if ˇ D �1 (then X is the negative of a subordinator)
and 1 otherwise. We now consider the case ˛ 2 .1; 2/, which implies that
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EX.1/ D � D 0. It follows from Theorem 1 in Kyprianou [103] and some rescaling
manipulations that if X is not spectrally one-sided, i.e., if � 2 .1 � 1=˛; 1=˛/, then

�.dx/ D .bB.˛�; ˛.1 � �///�1.1 � x=b/˛��1.x=b/˛.1��/�1dx;

where B.�; �/ is the beta function. Further, it turns out that in this example,

Z 1
�1

'.x; y/�.dy/ D 2.˛.˛ � 1/.2� ˛//�1.c�x2�˛ C cC.b � x/2�˛/;

and it follows from Theorem 8.5 (Theorem 3.1 in [16]) that

`b D c�B.2� ˛�; ˛�/C cCB.2 � ˛.1 � �/; ˛.1 � �//

B.˛�; ˛.1 � �//˛.˛ � 1/.2 � ˛/b˛�1 :

9 Phase-Type Jumps

A key step in the analysis of two-sided reflection is the computation of the stationary
distribution or equivalently two-sided exit probabilities. This is not possible in
general (at least there are no known methods), but requires additional structure. One
example is the spectrally negative case with the scale function available. Another
one, that we concentrate on here, is phase-type jumps in both directions and an
added Brownian component. This class of Lévy models has the major advantage
of being dense (in the sense of D-convergence) in the class of all Lévy processes.
Further, not only are explicit computations available for two-sided exit probabilities
but also in a number of other problems standard in fluctuation theory for Lévy
processes, see the survey in Asmussen [12] and the extensive list of references there.

9.1 Phase-Type Distributions

Phase-type distributions are absorption time distributions in finite continuous-
time Markov processes (equivalently, lifelength distributions in terminating finite
Markov processes). Let fJ.t/gt�0 be Markov with a finite state space E [ f�g such
that� is absorbing and the rest transient. That is, the process ends eventually up in�
so that the absorption time (lifetime) � D infft W J.t/ D �g is finite a.s. For i; j 2 E,
i ¤ j, write tij for the transition rate i ! j and ti for the transition rate i ! �.
Define tii D �ti �Pj¤i tij and let T be the E � E matrix with ijth element tij. If ˛ is
an E-row vector with elements ˛i summing to 1, we then define a phase-type (PH)
distribution F with representation .E;˛;T/ (or just .˛;T/) as the distribution of �
corresponding to the initial distribution P˛ of fJ.t/g given by P˛

�
J.0/ D i

	 D ˛i.
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The situation is illustrated in the following figure, where we have represented
the states by colored bullets, such that � corresponds to black. The process can
be illustrated by a traditional graph, as above the horizontal line, or, as below, as
a line of length � with segments colored according to the sample path. This last
representation is the one to be used in subsequent figures.

Analytic expressions for PH distributions, say for the p.d.f., c.d.f., etc., typically
have matrix form. All that will matter to us is the form of the m.g.f. of PH.˛;T/,

Ees� D ˛.�sI � T/�1t ; (109)

where t is the column vector with elements ti (the exit rate vector).
The exponential distribution corresponds to E having only one state, a mixture

of exponentials to tij D 0 for i ¤ j, and an Erlang.p; ı/ distribution (a gamma.p; ı/
distribution) to E D f1; : : : ; pg, ti.iC1/ D ı for i < p, all other off-diagonal elements
0, ˛ D .1 0 : : : 0/.

9.2 The PH Lévy Model

Any one-point distribution, say at z > 0, is the limit as p ! 1 of the Erlang.p; p=z/
distribution. The PH class is closed under mixtures, and so its closure contains all
distributions on .0;1/ with finite support. Hence the PH class is dense.

The class of compound Poisson processes is dense in D in the class of Lévy
processes. Hence the denseness properties of PH imply that the class of differences
of two compound Poisson processes with PH jumps are dense. In our key examples,
we will work in this class with an added Brownian component,

X.t/ D �t C �B.t/C
NC.t/X
iD1

YCi �
N�.t/X
jD1

Y�j (110)
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where N˙ is Poisson.
˙/ and the Y˙ PH.E˙;˛˙;T˙/, with n˙ states. Then
by (109), we have (in obvious notation) that

�.s/ D �s C �2s2=2

C 
C


˛C.�sIC � TC/�1tC � 1

� C 
�


˛�.sI� � T�/�1t� � 1�

where tC; t� are the vectors of rates of transitions to the absorbing state.
Expanding the inverses as ratios between minors and the determinant, it follows

that �.s/ D r1.s/=r2.s/ where r1; r2 are polynomials, with degree nC C n� of

r2.s/ D det
��sIC � TC

	
det
�
sI� � T�

	

and degree nC C n� C 2 of r1 if �2 > 0, nC C n� C 1 if �2 D 0, � ¤ 0, and
nC C n� if �2 D 0, � D 0. Obviously, �.s/ therefore has an analytic continuation
to the whole of the complex plane with the zeros of r2 removed. This representation
is fundamental for the paper. We further let

� D ˚
s 2 C W Ee<.s/X.1/ < 1� I

then � is a strip of the form � D ˚
s 2 C W � < <.s/ < �

�
for suitable � < 0 < �

(�� is the eigenvalue of largest real part of TC and � the eigenvalue of largest real
part of T�).

The situation is illustrated in Fig. 3. The green-shaded area is the strip � � C

where the m.g.f. converges. The red squares are the singularities, i.e. the roots of r2
or, equivalently, the union of the sets of roots of det

��sIC�TC
	

and det
�
sI��T�

	
.

Fig. 3 Features of �

θ1 θ20

0
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The blue circles are the roots of r1 or, equivalently, of � which will show up in
numerous computational schemes of the paper.

To avoid tedious distinctions between the various cases arising according to
whether �2; � are non-zero or not, we will assume that �2 > 0. This assumption has
a further motivation from a common procedure (e.g. Asmussen and Rosinski [17])
of replacing small jumps by a Brownian motion with the same mean and variance.

9.3 Two-Sided Exit

Recall that �Œa; b/ D infft � 0 W X.t/ 62 Œa; b/g with a � 0 < bI we want to compute
P
�
X
�
�Œa; b/

	 � b
	
.

Write

pCc D P
�
X
�
�Œa; b/

	 D b
	
; p�c D P

�
X
�
�Œa; b/

	 D a
	
;

pCi D P
�
X
�
�Œa; b/

	
> b; upcrossing occurs in phase i

	
; i D 1; 2; : : : ; nC;

p�j D P
�
X
�
�Œa; b/

	
< a; downcrossing occurs in phase j

	
; j D 1; 2; : : : ; n� :

In more detail, we can imagine each upward jump of the process to be governed by
a terminating Markov process J with generator TC, and if the first exit time from
Œa; b/ is t, ‘upcrossing in phase i’ then means J

�
b � X.�Œa; b/�/	 D i (similarly for

the downward jumps). See Fig. 4 where FC has two phases, red and green, and
F� just one, blue (we denote by F˙ the distributions of Y˙); thus on the figure,
there is upcrossing in the green phase.

Fig. 4 The two-sided exit
problem b

a

0
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We have P
�
X
�
�Œa; b/

	 � b
	 D pCc C pC1 C � � � C pC

nC
and need nC C n� C 2

equations to be able to solve for the unknowns. The first equation is the obvious

pCc C
nCX
iD1

pCi C p�c C
n�X
jD1

p�j D 1:

The following notation will be used. Let eCi ; e�i denote the ith unit row vectors
and let OFi̇ Œs� D ei̇ .�sI˙ � T˙/�1t˙ denote the m.g.f. of the phase-type
distributions Fi̇ with initial vector ei̇ and phase generator T˙. Let further 0 D
�1; �2; : : : ; �nCCnCC2 denote the roots of �.�/ D 0, i.e., of the polynomial equation
r1.�/ D 0.

9.3.1 Heuristics via the Wald Martingale

If the drift �0.0/ is non-zero, a 
 ¤ 0with Ee
X.1/ < 1, �.
/ D 0 exists and we can
take �1 D 0, �2 D 
 . Thus e�2X.t/ is an (integrable) martingale. Optional stopping
at �Œa; b/ then yields 1 D Ee�2X.�Œa;b//, which, taking over- and undershoots into
account, means

1 D e�kb
�

pCc C
nCX
iD1

pCi OFCi Œ�k�
�

C e�ka
�

p�c C
n�X
jD1

p�j OF�j Œ��k�
�

(111)

for k D 2. This is one equation more, but only one. If �k, k > 2, is one of the
remaining nC C n� roots and Eje�kX.1/j < 1, we can then proceed as for �k to
conclude that (111) holds also for this k, and get in this way potentially the needed
nC C n� remaining equations. But the problem is that typically E

ˇ̌
e�kX.1/

ˇ̌
< 1

fails. Now both sides of (111) are analytic functions. But the validity for two k is
not enough to apply analytic continuation.

9.3.2 Computation via the Kella-Whitt Martingale

We will use the simple form (81) of the Kella-Whitt martingale. This gives that K
defined according to

K.t/ D �.˛/

Z t^�Œa;b/

0

e˛X.s/ds C 1 � e˛X.t^�Œa;b//; ˛ 2 �;

is a local martingale. In fact, K is a martingale as follows from Kella and
Boxma [88]. Further, we have the bound

jK.t/j � j�.˛/jtej˛jmax.jaj;b/ C 1C ej˛j.xCVC/ C ej˛j.b�xCV�/
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where VC and V� (the overshoot and undershoot of b and a, respectively, at �Œa; b/)
are phase-type distributed and so have finite exponential means. FromE�Œa; b/ < 1
we then get E supt��Œa;b/ jK.t/j < 1, so optional stopping at �Œa; b/ is permissible.

Letting �.˛/ D E
R �Œa;b/
0 e˛X.s/ds, this gives

0 D �.˛/�.˛/C 1

� e˛b
�

pCc C
nCX
iD1

pCi OFCi Œ˛�
�

� e˛a
�

p�c C
n�X
jD1

p�j OF�j Œ�˛�
�
; (112)

It is easily seen that the function �.˛/ is well defined for all ˛ 2 C, not just
for ˛ 2 �, and analytic when the common singularities of � and the OFCi ; OF�i
are removed. Therefore by analytic continuation (112) is valid for all ˛ in this
domain. In particular we may take ˛ as any of the �k to obtain (111) for k D
1; : : : ; nC C n� C 2.

Example 9.1 Take as a simple example all jumps to be exponentially distributed
(with parameters �C, ��) and � D �1. Then

�.˛/ D 
C˛
�C � ˛

� 
�˛
�� C ˛

C �2˛2

2
� ˛:

The method described above allows us to explicitly compute the c.d.f. �bŒ0; x�
(in terms of the parameters of the model and b). Even for this simple case, the
resulting expressions are quite complicated and rather than presenting them, we
display numerical results in Fig. 5 in the form of plots of the c.d.f. of �b, taking

C D 
� D �C D �� D 1, b D 2, and letting �2 vary.

�

Fig. 5 C.d.f. of �b

=

=

=

=
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9.4 The Scale Function

Though the scale function does not appear in the rest of the paper, we give for the
sake of completeness a sketch of its computation in the PH model. In view of (51),
we need to evaluate

E


e�q�Œa;b/

�.X.�Œa; b// � b/
�
: (113)

To this end, we use the Kella-Whitt martingale with B.t/ D �qt=˛ which takes the
form

�.˛/

Z t

0

e˛X.s/�qs ds C 1 � e˛X.t/�qt � q
Z t

0

e˛X.s/�qs ds

Optional stopping at �Œa; b/ gives

1 D ���.˛/ � q
	
E

Z �Œa;b/

0

e˛X.s/�qs ds

C e˛b
�

pCc yCc C
nCX
iD1

pCi OFCi Œ˛�yCi
�

C e˛a
�

p�c y�c C
n�X
jD1

p�j OF�j Œ�˛�y�j
�

where yCc is the expectation of e�q�Œa;b/ given continuous exit above, yCi the
expectation of e�q�Œa;b/ given exit above in phase i, and similarly for the y�c ; y�j .
As in Sect. 9.3.2, we may now choose �q

1; : : : ; �
q
nCCn�C2 as the roots of �.s/ D q to

conclude that

1 D e�
q
k b
�

pCc yCc C
nCX
iD1

pCi OFCi Œ�q
k �y
C
i

�
C e�

q
k a
�

p�c y�c C
n�X
jD1

p�j OF�j Œ��q
k �y
�
j

�

for k D 1; : : : ; nC C n� C 2. These linear equations may be solved for the
pCc yCc ; pCi yCi , p�c y�c ; p�j y�j , and (113) can then be computed as pCc yCc CP

pCi yCi .

9.5 The Loss Rate

As before, we take N˙ to be Poisson.
˙/ and Y˙ to be PH.E˙;˛˙;T˙/ with
n˙ phases, respectively. If we let x ! b and x � b ! a in (111), we obtain, for
k D 1; : : : ; nC C n� C 2,

e��kx D pCc C
nCX
iD1

pCi OFCi Œ�k�C e��kb
�

p�c C
n�X
jD1

p�i OF�j Œ��k�
�

(114)
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(where, as above, we let �1 D 0). We let ak be the vector

ak D �
1 OFC1 .�k/ : : : OFC

nC
.�k/ e��kb e��kb OF�1 .��k/ : : : e��kb OF�n�.��k/

	

and construct the matrix A according to

A D

0
BBB@

a1
a2
:::

anCCn�C2

1
CCCA :

If we let

p D �
pCc pC1 : : : pC

nC
p�c p�1 : : : p�n�

	T

and take eC to be a row vector with the first nC C 1 elements equal to one and zero

otherwise, we may compute �.x/ D pCc CPnC

iD1 pCi as eCp where p solves the set
of linear equations Ap D h.x/, where

h.x/ D .e��1x : : : e��nCCn�C2x
/T;

i.e., formally

�.x/ D gh.x/ D g expfHxge; (115)

where g D eCA�1 and H D diag.��1;��2; : : : ;��nCCn�C2/ (the rightmost part
in (115) will prove itself useful below).

With this formula for �.x/ at hand we may proceed to the computation of `b.
We will take as a starting point the alternative formula for `b which is presented in
Sect. 1, i.e.,

`b D 1

2b

�
2mEV C �2 C J1 C J2 � 2J3 � 2J4

	
(116)

where

J1 D J1.b/ D
Z b

0

y2�.dy/ ;

J2 D J2.b/ D
Z 1

b
.2yb � b2/�.dy/ ;

J3 D J3.b/ D
Z b

0

Z �x

�1
.x C y/�.dy/ �.x/ dx ;

J4 D J4.b/ D
Z b

0

Z 1
b�x
.x C y � b/�.dy/ �.x/ dx :
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It thus remains to identify m;EV and J1; J2; J3; J4. If we note that

�.dx/ D
(

C˛C expfTCxgtCdx if x > 0;


�˛� expf�T�xgt�dx if x < 0;

we see that the computation of `b is more or less a matter of routine (though
tedious!). However, for the sake of completeness and clarity we will perform the
calculations in some detail anyway. Clearly,

m D � � 
C˛C.TC/�1e C 
�˛�.T�/�1e ;

EV D
Z b

0

�.x/dx D
Z b

0

gh.x/dx D gk ;

where

k D

0
BBB@

b
��12 .1� e��2b/

:::

��1
nCCn�C2.1 � e��nCCn�C2b

/

1
CCCA :

Let ˝ and ˚ denote Kronecker matrix multiplication and addition, respectively,
where ˚ is defined for square matrices by A1 ˚ A2 D A1 ˝ I C I ˝ A2. It is not
difficult to show that

Z
�.dy/ D

(

CaC.TC/�1 expfTCygtC if y > 0;

�
�a�.T�/�1 expf�T�ygt� if y < 0;
(117)

Z
y�.dy/ D

(

CaC.TC/�1.yI � .TC/�1/ expfTCygtC if y > 0;

�
�a�.T�/�1.yI � .T�/�1/ expf�T�ygt� if y < 0;
(118)

Z
y2�.dy/D 
CaC.TC/�1.y2I � 2y.TC/�1 C 2.TC/�2/ expfTCygtC; if y > 0:

(119)

[note that when we write
R

f .y/dy (without integration limits) for some function f
we mean the primitive (indefinite integral), i.e.

R
f .y/dy is a function such that its

derivative with respect to y equals f .y/]. It follows from (115), (117), (118) and the
fact that all eigenvalues of TC and T� have negative real part, see e.g. [11, p. 83],
that

J3 D
Z b

0


�a�.T�/�2 expfT�xgt� �.x/ dx

D
Z b

0


�a�.T�/�2 expfT�xgt� g expfHxge dx
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D 
�


.a�.T�/�2/˝ g

�hZ b

0

expf.T� ˚ H/xgdx
i
Œt� ˝ e�

D 
�


.a�.T�/�2/˝ g

�

.T� ˚ H/�1

�
expf.T� ˚ H/bg � I

	�
Œt� ˝ e�

where we used the standard identities

.A1B1C1/.A2B2C2/ D .A1 ˝ A2/.B1 ˝ B2/.C1 ˝ C2/

expfRxg ˝ expfSxg D expf.R ˚ S/xg:

Similarly, J4 becomes

�
C
.aC.TC/�2 expfTCbg/˝ g
�

.�TC˚ H/�1.expf.�TC˚ H/bg � I/

�
ŒtC˝ e�:

Finally, it follows easily from (117)–(119), that

J1 D 
CaC.TC/�1


.b2I � 2b.TC/�1 C 2.TC/�2/ expfTCbg � 2.TC/�2

�
tC

J2 D �
CaC.TC/�1


b2I � 2b.TC/�1

�
expfTCbgtC;

and thereby all terms in (116) have been evaluated.

10 Loss Rate Asymptotics: Light Tails

In this section we derive asymptotics of `b as b ! 1 when X is assumed to be
light-tailed with �1 < EX.1/ < 0. By light-tailed, we simply mean that the set
� D f˛ 2 R W Ee˛X.1/ < 1g has a non-empty intersection with .0;1/.

We start by introducing the following notation.

M.t/ D sup0�s�t X.s/, M.1/ D sup0�t<1 X.t/.
�C.u/ D infft > 0 W X.t/ > ug, �wC.u/ D infft > 0 W X.t/ � ug, u � 0.
��.�v/ D infft > 0 W X.t/ < �vg, v � 0.
The overshoot of level u, B.u/ D X.�C.u//� u, u � 0.
The weak overshoot of level u, Bw.u/ D X.�wC.u//� u, u � 0.
B.1/, a r.v. having the limiting distribution (if it exists) of B.u/ as u ! 1.

Furthermore, we will assume that the Lundberg equation �.˛/ D 0 has a solution

 > 0with �0.
/ < 1. We let PL and EL (P
 and E
 in earlier notation) correspond
to a measure which is exponentially tilted by 
 , i.e.,

P.G/ D EL.e�
X.�/I G/ (120)

when � is a stopping time and G 2 F.�/; G 
 f� < 1g. Note that ELX.1/ D
�0.
/ > 0 by convexity of �.
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We need the following two lemmas. The first is just a reformulation of Theo-
rem 8.6 and the second describes the asymptotic probability, as u ! 1, of the
event that X’s first exit of the set Œ�v; u/ occurs at the upper barrier.

Lemma 10.1 For the integrals I1 and I2 in Theorem 8.6 we have the following
alternative formulas.

I1D
Z 1

b
..y � b/C
�1.1 � e
.y�b///�.dy/C

Z b

0

�.x/dx
Z 1

b�x
.1 � e
.y�bCx//�.dy/;

I2 D
Z 0

�1
.y C 
�1.1 � e
y//�.dy/C

Z b

0

�.x/dx
Z �x

�1
.1 � e
.xCy//�.dy/:

Proof Just change order of integration and perform partial integration. Then switch
back to the original order of integration. ut
Lemma 10.2 Assume that X is not compound Poisson with lattice jump distribu-
tion. Then, for each v � 0,

P
�
��.�v/ > �wC.u/

	 
 e�
u
ELe�
B.1/

PL
�
��.�v/ D 1	

; u ! 1:

Proof It is easily seen that �wC.u/ is a stopping time and that
˚
��.�v/ > �wC.u/

� 2
F
�
�wC.u/

	
. By the Blumenthal zero-one law (e.g. [28, p. 19]), it follows that

P
�
�C.0/ D 0

	
is either 0 or 1. In the first case the sample paths of M are

step functions a.s. and it follows in the same way as in the proof of Lemma 3.3
(Lemma 2.3 in [117]) that P.�wC.u/ ¤ �C.u// ! 0; u ! 1. In the second case it
follows by the strong Markov property applied at �wC.u/ thatP.�wC.u/ ¤ �C.u// D 0.
From (120) we then get,

P
�
��.�v/ > �wC.u/

	 D EL


e�
X.�w

C

.u//I ��.�v/ > �wC.u/
�

D e�
u
EL


e�
B.u/I ��.�v/ > �C.u/

�
P
�
�wC.u/ D �C.u/

	

C e�
u
PL
�
��.�v/ > �wC.u/

ˇ̌
�wC.u/ ¤ �C.u/

	
PL
�
�wC.u/ ¤ �C.u/

	


 e�
u
ELe�
B.1/

PL
�
��.�v/ D 1	

:

In the last step we used B.u/ ! B.1/, see [29] and [117],
˚
��.�v/ > �C.u/

� "˚
��.�v/ D 1�

(both in PL-distribution) and asymptotic independence between
B.u/ and

˚
��.�v/ > �C.u/

�
, see the proof of Corollary 5.9, p. 368, in [11]. ut

Remark 10.3 In the proof of Lemma 10.2 above we had to treat the cases
P.�C.0/ D 0/ D 1 and P.�C.0/ D 0/ D 0 (corresponding to completely different
short time behaviors of X) in slightly different ways. In traditional terminology,
these cases correspond to whether the point 0 is regular, or irregular, for the set
.0;1/, see [28, p. 104] or [129, pp. 313, 353]. As a small digression, we shall
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briefly discuss this issue. It turns out that 0 is regular for .0;1/ if and only if

Z 1

0

t�1P.X.t/ > 0/ dt D 1;

see Theorem 47.2 and the remark at the bottom of p. 353 in [129]. Perhaps more
interestingly, we can characterize the short time behavior of X via its Lévy triplet.
We will not give a complete account for all types of Lévy processes (this is done
in Theorem 47.5 on p. 355 in [129]), but note that whenever the paths of X are of
infinite variation then 0 is regular for .0;1/ and if X is the sum of a compound
Poisson process and a non-positive drift then 0 is irregular for .0;1/. �

Next, we state the main result about the asymptotics for `b.

Theorem 10.4 Suppose that X fulfills the conditions in Lemma 10.2. Then, as b !
1, `b 
 Ce�
b where 
 is the solution to the Lundberg equation and

C D �m C ELe�
B.1/
Z 1
0

e
x
PL
�
��.�x/ D 1	 Z 1

x
.1 � e
.y�x// �.dy/ dx

C
Z 0

�1


y C 
�1.1 � e
y/

�
�.dy/

C
Z 1
0

P
�
�wC.x/ < 1	 Z �x

�1
.1 � e
.xCy// �.dy/ dx: (121)

Proof It follows from Lemma 10.1 and �0.
/ < 1 that

e
bI1 D o.1/C e
b
Z b

0

P
�
��.x � b/ > �wC.x/

	
dx
Z 1

b�x
.1� e
.y�bCx// �.dy/

D o.1/C
Z b

0

e
ze
.b�z/
P
�
��.�z/ > �wC.b � z/

	
dz
Z 1

z
.1 � e
.y�z// �.dy/

! ELe�
B.1/
Z 1
0

e
x
PL
�
��.�x/D1	 Z 1

x
.1 � e
.y�x// �.dy/ dx; b ! 1:

The convergence follows from the pointwise convergence in Lemma 10.2 and
dominated convergence, which is applicable because

e
b�.b � x/�.x � b/ � e
b
P
�
M.1/ > b � x

	
�.x � b/ � e
x

and
Z 1
0

e
x dx
Z 1

x
.1 � e
.y�x// �.dy/ D

Z 1
0

�

�1e
y � ye
y � 
�1

	
�.dy/ > �1:
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In I2 we bound �.x/�.x � b/ by 1, note that

Z 1
0

dx
Z �x

�1
.1 � e
.xCy//�.dy/ D

Z 0

�1
.�y � 
�1 C 
�1e
y/�.dy/ < 1

and apply dominated convergence which together with �.x/ ! P
�
�wC.x/ < 1	

gives

I2 !
Z 0

�1


yC
�1.1�e
y/

�
�.dy/C

Z 1
0

P
�
�wC.x/ < 1	 Z �x

�1
Œ1�e
.xCy/� �.dy/ dx:

The assertion now follows from Theorem 8.6. ut
If X is spectrally one-sided the constant in Theorem 10.4 simplifies significantly.

Corollary 10.5 Let X satisfy the conditions in Lemma 10.2. If �.�1; 0/ D 0, then

C D �m

(
1C 1

ELX.1/

Z 1
0

.e
x � 1/

Z 1
x
.1 � e
.y�x//�.dy/dx

)
:

If �.0;1/ D 0, then

C D �m C
Z 0

�1


y C 
�1.1 � e
y/

�
�.dy/C

Z 1
0

e�
x
Z �x

�1
Œ1 � e
.xCy/� �.dy/ dx:

Proof In the spectrally positive case we have that ELe�
B.1/ D �m=ELX.1/, see,
e.g., Bertoin and Doney [29], and that

PL
�
��.�x/ D 1	 D 1 � PL

�
��.�x/ < 1	 D 1 � Ee
X.�

�

.�x// D 1 � e�
x:

In the spectrally negative case,

P
�
�wC.x/ < 1	 D ELe�
X.�w

C

.x// D e�
x:

The claim now follows from Theorem 10.4. ut
We next turn our attention towards asymptotics for `b as b ! 1 in the PH

example. In principle, we should be able to describe the asymptotics by carefully
analyzing what comes out of (116), but we prefer to apply Theorem 10.4. Recall
that we assume negative drift of the feeding process X, i.e. EX.1/ < 0. This means

that X.t/
a:s:! �1; t ! 1; and that there exists a real positive root 
 of the equation

�.˛/ D 0 such that Ee
X.1/ D 1, i.e. 
 is a genuine root of the Lundberg equation
corresponding to X.
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Theorem 10.6 In the PH Lévy model,

C D eTB�1eT
1 


C

�
�

�˛C.
I C TC/�2e C ..eT QB�1/˝ .˛C.
I C TC/�1//
nQJ ˚ .
I C TC/

o�1
e
�

C
�˛�
n
.T�/�1 � .�
I C T�/�1

o
e C .�� � 
C˛C.TC/�1e C 
�˛�.T�/�1e/

C 

�..eTB�1/˝ .˛�.�
I C T�/�1//.J ˚ T�/�1e : (122)

For the proof, we need two lemmas. The first is classical and relates to the
locations in the complex plane of the roots of �.˛/ D q; q � 0 (see [12, 51]
and references there).

Lemma 10.7 Let X be defined according to (110).

(i) Consider the equation �.˛/ D 0. If m � 0 then 0 is the only root with zero real
part. There are n� roots with negative real part and nC C 1 roots with positive
real part.

(ii) Consider the equation �.˛/ D q with q > 0. Then (regardless of the value of
m) there are no roots with zero real part, n� C 1 with negative real part and
nC C 1 with positive real part.

Lemma 10.8 Assume m < 0. Then 
 > 0 is a simple root, i.e. of algebraic
multiplicity 1, and if � is any other root with <.�/ > 0, then Re.�/ > 
 .

Proof Part (i) in Lemma 10.7 tells us that there are nC C 1 roots of �.˛/ D 0 with
positive real part. Clearly, 
 is one of these. Let � D <.�/ C i=.�/ be one of the
remaining roots (with positive real part) and suppose that 0 < <.�/ � 
 . Now,

1 D Ee�X.1/ D Ee<.�/X.1/ .cos.=.�/X.1//C i sin.=.�/X.1///
D Ee<.�/X.1/ cos.=.�/X.1//C iEe<.�/X.1/ sin.=.�/X.1//: (123)

From (123), the elementary inequality j cos.=.�/X.1//j � 1 and the convexity of
�.�/ in .0; 
�, it follows that <.�/ < 
 is impossible (no matter the distribution
of X.1/). Note that in the case under consideration, �.˛/ is a rational function (i.e.
�.˛/ D p.˛/=q.˛/ where p and q are polynomials) and from the fact that 0 <
�0.
/ < 1, see Sect. 10, we may conclude that the algebraic multiplicity of the root

 equals one, i.e. p.˛/ D .˛�
/r.˛/ where r.˛/ does not contain the factor .˛�
/.
If <.�/ D 
 and =.�/ ¤ 0 then it is easily seen that 1 D Ee<.�/X.1/ cos.=.�/X.1//
is possible provided that X.1/ is lattice with span 2�=j=.�/j, a case which is clearly
ruled out by the structure of X. �

Proof of Theorem 10.6 We have to compute ELe�
B.1/, PL
�
��.�x/ D 1	

and
P
�
�wC.x/ < 1	

for x > 0, see Theorem 10.4. Because of (thanks to!) the
Brownian component in X we need not to distinguish between �wC.x/ and �C.x/,
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cf. Remark 10.3. Define

pCc .t/ D P.X.�C.x// D x; �C.x/ � t/;

pCi .t/ D P.X.�C.x// > x; �C.x/ � t; upcrossing occurs in state i/ ;

i D 1; 2; : : : ; nC. If we let �.˛; t/ D E
R �
C

.x/^t
0

e˛X.s/ds it follows by optional
stopping of the Kella-Whitt martingale at �C.x/ that

0 D �.˛/�.˛; t/C 1 � e˛x

0
@pCc .t/C

nCX
iD1

pCi .t/ OFCi .˛/
1
A

� E


e˛X.t/I t < �C.x/

�
; ˛ 2 �: (124)

Let �2; �3; : : : ; �nCC2 denote the roots with positive real part (we tacitly assume that
these are distinct and ordered so that �2 D 
 ). If we mimic the derivation of (111),
and take ˛ D �k, we get

0 D 1 � e�kx

0
@pCc .t/C

nCX
iD1

pCi .t/ OFCi .�k/

1
A � E



e�kX.t/I t < �C.x/

�
: (125)

If we let t ! 1 in (125), it follows by X.t/
a:s:! �1 and dominated convergence

that

e��kx D pCc C
nCX
iD1

pCi OFCi .�k/; k D 2; 3; : : : ; nC C 2: (126)

Let B be the matrix with kth row equal to .1 OFC1 .�k/ : : : OFC
nC
.�k//. Then it is easily

seen that

P.�C.x/ < 1/ D eTB�1 expfJxge; (127)

where J D diag.��2; : : : ;��nCC2/. Since P.�C.x/ < 1/ D P.M.1/ > x/ and we
know that P.M.1/ > x/ 
 ELe�
B.1/e�
x; x ! 1, we can use (127) and what
we know about the elements of J to identify ELe�
B.1/ as the sum of the elements
in the first column of B�1. Now, it is well known, see e.g. [21], that w.r.t. PL, X is
still the sum of a Brownian motion with drift and a compound Poisson process with
phase-type distributed jumps, with Lévy exponent �L.˛/ D �.˛C 
/. Furthermore,
if we define d D .
I � T�/�1t� and let D be the diagonal matrix with the di on
the diagonal then (w.r.t. PL) the intensity matrix corresponding to negative jumps
is T�
 D D�1T�D � 
I. It is clear that the equation �L.˛/ D 0 has n� C 1 roots
with negative real part Q�k; k D 1; 2; : : : ; n� C 1 (all of the form Q�k D � � 
 where
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�.�/ D 0 and <.�/ � 0). Define QOF�i in the same way as OF�i with T� replaced
by T�
 . In a fashion similar to the derivation of (111), we obtain (in the obvious
notation)

0 D 1 � e�Q�kx

 
Qp�c .t/C

n�X
iD1

Qp�i .t/ QOF�i .� Q�k/

!
� EL

h
e Q�kX.t/I t < ��.�x/

i
: (128)

From (128) it follows that

e Q�kx D Qp�c C
n�X
iD1

Qp�i QOF�i .� Q�k/; k D 1; 2; : : : ; n� C 1; (129)

and if we define QB as the matrix with kth row equal to
�
1

QOF�1 .� Q�k/ : : :
QOF�n�.� Q�k/

	
,

it is clear that

PL
�
��.�x/ D 1	 D 1 � eT QB�1 expfQJxge; (130)

where QJ D diag. Q�1; : : : ; Q�n�C1/. All that now remains in order to describe the
asymptotics of `b is to evaluate the integrals in (121); we omit the details. �

An important lesson to learn from this example is that the case where X is
spectrally one-sided is much easier than the general case. In fact, if we e.g. take
X to be spectrally positive then according to Corollary 10.5, `b 
 Ce�
b; b ! 1,
where

C D �m
˚
1 � 

C˛C.
I C TC/�1

˚
.
I C TC/�1 � .TC/�1

�
e=�0.
/

�
;

i.e. we need only to know 
 to compute C (the same thing holds when X is spectrally
negative, but C comes out in a slightly different way, again see Corollary 10.5),
whereas in the general case all roots of �.˛/ D 0 are required in order to completely
describe the asymptotic behavior of `b.

11 Loss Rate Asymptotics: Heavy Tails

The main result of this section states that under some heavy-tailed conditions,
`b 
 R1

b �.y/dy which in view of Lemma 2.6, can be interpreted as stating that
Theorem 3.2 still holds when the random walk is replaced by a Lévy process. More
precisely:
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Theorem 11.1 Let X be a Lévy process with Lévy measure � 2 S and finite
negative mean m D EX.1/ < 0. Consider the conditions

A EX.1/2 < 1 and
R1

b �I.y/ dy=�I.b/ D O.b/ .
B �.b/ 
 L.b/b�˛ where L is a locally bounded slowly varying function and 1 <
˛ < 2.

If either A or B holds, then

`b 

Z 1

b
�.y/dy: (131)

It is worth noting, that the requirement on the tail of � in A is very weak. Indeed,
suppose �I.x/ 
 B.x/ where B is either lognormal, Benktander or heavy-tailed
Weibull. Then we recognize a.x/ D R1

x B.y/ dy=B.x/ as the mean-excess function
and it is known (see [69]), that a.x/ D o.x/. Furthermore, it is easily checked
that the condition is satisfied when B is a Pareto or Burr distribution, provided
that the second moment is finite. Another remark is that we may use the results
of Embrechts et al. [56] to express sufficient conditions for Theorem 11.1 in terms
of the distribution of X.1/.

We will also derive Theorem 11.3 below, which gives an expression for the m.g.f.
of the stationary distribution in the case of one-sided reflection. This result is of
some independent interest and is useful in the proof of Theorem 11.1; see further
Remark 11.4 below. Recall the decomposition of the one-sided reflected process,
V1.t/ D V1.0/C X.t/C L.t/, let Lc.t/ and Lj.t/ denote the continuous and jump
parts of the local time, respectively, and recall that� D f˛ 2 C W Ee<.˛/X.1/ < 1g.

Lemma 11.2 Consider a Lévy process X, let V1 be the process one-sided reflected
at 0 and let Lc and Lj be the continuous and jump part of the corresponding local
time L, respectively. Then, for ˛ 2 � and V1.0/ D x � 0,

M.t/ D �.˛/

Z t

0

e˛V1.s/ ds C e˛x � e˛V1.t/ C ˛Lc.t/C
X
0�s�t

.1 � e�˛�L.s//

(132)

is a martingale.

Proof The proof is similar to (but slightly easier than) the proof of Proposition 8.2,
once we note that L can increase only when V is zero. �

Theorem 11.3 Suppose �1 < m D EX.1/ < 0, so that V1.1/ D
limt!1 V1.t/ exists in distribution. For ˛ 2 � we have

Ee˛V1.1/ D � 1

�.˛/

�
˛E�1Lc.1/C E�1

X
0�s�1

.1 � e�˛�L.s//
�
: (133)
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Proof Replacing x by a r.v. distributed as V1.1/ in (132) and taking expectations
at t D 1 gives

0 D �.˛/E�1

Z 1

0

e˛V1.s/ ds C ˛E�1Lc.1/C E�1

X
0�s�1

�
1 � e�˛�L.s/

	
:

Now just note that the expectation of the integral equals Ee˛V1.1/. �

Remark 11.4 If X has no negative jumps, the term E�1
P

0�s�1.1 � e�˛�L.s//

disappears, and E�1Lc.1/ D E�1L.1/ D �m, and we see that Theorem 11.3
indeed is a generalization of Corollary 3.4 in Chap. IX [11] which is itself a
generalization of the Pollaczeck-Khinchine formula.

The expression provided by Theorem 11.3 can be compared to related identities
from fluctuation theory (see Chap. VI in [28] or Chap. 6 in [104]). Indeed, in
view of (22), we may let q # 0 in equation (1), VI in [28] to conclude the
that l.h.s. of (133) is equal to �.0/=�.�˛/ where � is the Laplace exponent of
the upward ladder height processes. Furthermore, letting O�.˛/ denote the Laplace
exponent of the downward ladder height processes, we obtain from the Wiener-Hopf
factorization (Eq. (4) IV in [28]) that ��.˛/ D �.�˛/ O�.˛/, for ˛ 2 � in the case
where the process is not compound Poisson. Thus we arrive at

Ee˛V1.1/ D �.0/

�.�˛/ D ��.0/
O�.˛/

�.˛/
:

�

Next, we use the results above to obtain an expression for the mean of the
stationary distribution in the case of one-sided reflection.

Corollary 11.5 If X is square integrable then V1 is integrable and we have

EV1 D 1

2m

�
E�1

X
0�s�1

�L.s/2 � Var.X.1//
�

(134)

D 1

2m

�Z 1
�1

y2�.dy/C �2 �
Z 1
0

Z �x

�1
.x C y/2�.dy/�1.dx/

�
: (135)

Proof Since X.1/ is non-degenerate, we have by Lemma 4 Chap. XV.1 in [59] that
there exists " > 0 such that �.it/ ¤ 0 for t 2 .�"; "/ n f0g, and we may use (133) to
obtain the characteristic function  of V . We wish to show that  is differentiable
at 0. Define

g.t/ D E�1

X
0�s�1

.1� e�it�L.s// ; `1 D E�1Lc.1/ :
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By Doob’s inequality, we have that EX.1/2 < 1 implies EL2.1/ < 1 and therefore
E�1L2.1/ < 1, which in turn implies that g is twice differentiable at 0. We see
that

g0.0/ D iE�1
X
0�s�1

�L.s/ D iE�1Lj.1/ ; g00.0/ D E�1

X
0�s�1

�L.s/2 ;

i`1 C g0.0/ D iE�1L.1/ D �im. Since X is square integrable, we may use
formula (2.4.1) p. 27 in [111] to get �.it/ D �0.0/it C o.t/. By combining this
with equation (133), we conclude that

lim
t!0

EeitV � 1

t
D lim

t!0
�ti`1 � g.t/� �.it/

t�.it/
D lim

t!0
�ti`1 � g.t/� �.it/

�0.0/it2
;

provided that the limit exists. We may confirm that this is true, by applying
l’Hospital’s rule twice to the real and imaginary part separately

lim
t!0

�ti`1 � g.t/� �.it/

�0.0/it2
D lim

t!0
�i`1 � g0.t/ � i�0.it/

2i�0.0/t

D lim
t!0

�g00.t/C �00.it/
2i�0.0/

D �g00.0/C �00.0/
2i�0.0/

:

We see that  is differentiable. In itself, this does not entail integrability of V , but a
short argument using the Law of Large Numbers and the fact that V is non-negative,
yields that V is integrable. The first moment is

EV D �g00.0/C �00.0/
2.�1/�0.0/

which is (134). We obtain (135) by conditioning on the value of the process prior to
a jump. �

We proceed to the proof of Theorem 11.1. In order to establish (131), we need
to prove that 1 is a lower bound for lim infb `

b=�I.b/ and an upper bound for
lim supb `

b=�I.b/. The former is established in Proposition 11.7 and is seen to hold
without the conditions assumed in Theorem 11.1. In the proof of the latter, we use
Proposition 11.6 to establish the inequality

m

b

Z b

0

�b.x/ dx � m

b

Z b

0

�1.x/ dx � m�1.b/ (136)

and the proof then follows two distinct routes depending on which of the conditions
A or B is assumed. Under assumption A, we are allowed to rewrite the integral on the
right-hand side of (136) as

R1
0
�1.x/ dx�R1b �1.x/ dx. The first of these integrals

is the mean of the stationary distribution in the case of one-sided reflection. This



134 L.N. Andersen et al.

observation and Corollary 11.5 are important keys to the proof in this case. Under
assumption B the proof essentially consists of combining the inequality (136) with
repeated applications of Karamata’s theorem.

Proposition 11.6 Let X be a Lévy process, and let �1.y/; �b.y/ be the tails of the
reflected (one/two-sided) distributions. Then we have the following inequalities for
x > 0; b > 0

0 � �1.x/ � �b.x/ � �1.b/ : (137)

Proof The inequalities in (137) are trivial for x > b. Let 0 � x � b. The
inequality �b.x/ � �1.x/ follows from the representations (6) and (23). The
inequality �1.x/ � �b.x/ � �1.b/, follows by dividing the sample paths of X
which cross above x into those which do so by first passing below x � b, and those
which stay above x � b. To be precise, define �.y/ D infft > 0 W X.t/ � yg and
�.y/ D infft > 0 W X.t/ < yg to be the first passage times above and below y
respectively. Then we can consider the event that a path crosses below x � b before
eventually passing above x, and since such a path must pass an interval of length at
least b, we find that

P
�
�.x � b/ < �.x/ < 1	 � P

�
sup
t>0

X
�
�.x � b/C t

	 � X
�
�.x � b/

	
> b

�

D P
�
�.b/ < 1	

:

where we used the strong Markov property in the last equality. Next, we apply (23)
to find

�1.x/ D P
�
�.x/ < 1	 D P

�
�.x/ < �.x � b/

	C P
�
�.x � b/ < �.x/ < 1	

� �b.x/C P
�
�.b/ < 1	 D �b.x/C �1.b/ ;

where we have used the equality P
�
�.x/ < �.x � b/ � 1	 D �b.x/, which is a

restatement of (6). �

Proposition 11.7 For any Lévy process we have 1 � lim inf
b!1

`b

�I.b/
:

Proof We have

Z b

0

�b.dx/
Z 1

b
.y � b C x/ �.dy/ � `b
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since the left-hand side is the contribution to `b by the jumps larger than b. Now just
note that

�I.b/ �
Z 1

b
.y � b/�.dy/C

Z b

0

x�b.dx/�.b/ D
Z b

0

�b.dx/
Z 1

b
.y � b C x/�.dy/ :

�

We are now ready for the proof of Theorem 11.1.

Proof Thanks to Proposition 11.7, we only need to prove

lim sup
b

`b=�I.b/ � 1 : (138)

Define

I1 D m

b

Z b

0

x�b.dx/ ; I2 D �2

2b
; I3 D 1

2b

Z b

0

�b.dx/
Z 1
�1

'b.x; y/�.dy/ :

where the function 'b.�; �/ is that of Theorem 1.1, with the dependence on b made
explicit. From Proposition 11.6 we have �1.x/ � �1.b/ � �b.x/ and since m is
assumed to be negative, we have m�b.x/ � m.�1.x/ � �1.b//. Applying this
inequality to expression for the loss rate in Theorem 1.1 we obtain the following
inequality:

`b � m

b

Z b

0

�1.x/ dx � m�1.b/C I2 C I3 : (139)

First, we assume A holds. By (26) we have

lim
b

�m�1.b/
�I.b/

D 1 ; (140)

so we will be done if we can show

lim sup
b

1

�I.b/



m

b

Z b

0

�1.y/ dy C I2 C I3

�
D 0 : (141)

We start by rewriting the term in the brackets above. Using Corollary 11.5 and the
assumption that EX.1/2 < 1 we have that

R1
0 �1.y/dy < 1 and using (134)

m

b

Z b

0

�1.y/ dy D m

b

Z 1
0

�1.y/ dy � m

b

Z 1
b

�1.y/ dy

D E�1 Œ
P

0�s�1 �L.s/2� � Var.X.1//

2b
C jmj

b

Z 1
b

�1.y/ dy :
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Furthermore,

I2 C I3 D �2

2b
C 1

2b

Z b

0

�b.dx/
� Z �x

�1

�.x2 C 2xy/�.dy/C
Z b�x

�x
y2�.dy/

C
Z
1

b�x



2y.b � x/ � .b � x/2

�
�.dy/

�

D �2

2b
C 1

2b

Z
1

�1

y2�.dy/C 1

2b

Z b

0

�b.dx/
Z
�x

�1


 � .x2 C 2xy/ � y2
�
�.dy/

C 1

2b

Z b

0

�b.dx/
Z
1

b�x



2y.b � x/ � .b � x/2 � y2

�
�.dy/

D �2

2b
C 1

2b

Z
1

�1

y2�.dy/ � 1

2b

Z b

0

�b.dx/
Z
�x

�1

.x C y/2�.dy/

� 1

2b

Z b

0

�b.dx/
Z
1

b�x
.y � .b � x//2�.dy/

D Var.X.1//� E�b
P

0�s�1 �L.s/2

2b
� 1

2b

Z b

0

�b.dx/
Z
1

b�x
.y � .b � x//2�.dy/:

The last equation follows from Example 25.12, p. 163 in [129], as does the
following:

E�b

X
0�s�1

�L.s/2 D E�b

X
0�s�1

.V.s�/C�X.s//2�.V.s�/C�X.s/ < 0/

D
Z b

0

 
E

X
0�s�1

.x C�X.s//2�.x C�X.s/ < 0/

!
�b.dx/

D
Z b

0

�b.dx/
Z �x

�1
.x C y/2�.dy/ ; (142)

where we use Theorem 2.7, p. 41 in [104] in the last equation. Next, we note the
fact that

E�1

X
0�s�1

�L.s/2 � E�b

X
0�s�1

�L.s/2;

which can be verified using partial integration and (37). Using this in the last
equation above, we may continue our calculation and obtain

I2 C I3 � Var.X.1//� E�1
P

0�s�1 �L.s/2

2b

� 1

2b

Z b

0

�b.dx/
Z 1

b�x
.y � .b � x//2�.dy/ :
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Comparing the expressions above we see that fractions cancel, and the expression
in the brackets in (141) is less than

jmj
b

Z 1
b

�1.y/ dy � 1

2b

Z b

0

Z 1
b�x
.y � .b � x//2�.dy/�b.dx/ :

Applying partial integration

jmj
b

Z 1
b

�1.y/ dy � 1

2b

Z b

0

Z 1
b�x
.y � .b � x//2�.dy/�b.dx/

D jEX.1/j
b

Z 1
b

�1.y/ dy � 1

2b

Z 1
b
.y � b/2�.dy/� 1

b

Z b

0

�b.x/�I.b � x/dx

� jmj
b

Z 1
b

�1.y/ dy � 1

2b

Z 1
b
.y � b/2�.dy/

D jmj
b

Z 1
b

�1.y/ dy � 1

b

Z 1
b

�I.y/ dy:

Returning to (141) and applying the results above we get

lim sup
b

1

�I.b/



m

b

Z b

0

�1.y/ dy C I2 C I3

�

� lim sup
b

1

�I.b/


 jmj
b

Z 1
b

�1.y/ dy � 1

b

Z 1
b

�I.y/ dy

�

D lim sup
b

R1
b �I.y/ dy

b�I.b/

"R1
b jmj�1.y/ dyR1

b �I.y/ dy
� 1

#
D 0;

where the last equality follows since the term in the brackets tends to 0, and the
fraction outside it is bounded by assumption. This proves that (131) holds under
condition A.

We now assume condition B and start by noticing the following consequences of
the assumptions

Z 1
b

�.y/ dy 

Z 1

b

L.y/

y˛
dy 
 b�˛C1L.b/

˛ � 1
; b ! 1 ; (143)

where the last equivalence follows by Proposition 1.5.10 of [32] and the fact that
˛ > 1. Since by Proposition 1.3.6 of [32], we have b�˛C2L.b/ ! 1, (143) implies
b�I.b/ ! 1.

The inequality (139) still holds, as does the limit in (140), so we proceed to
analyze m

R b
0
�1.y/dy=.�I.b/b/. Since b�I.b/ ! 1 as b ! 1 we see that for
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any A

lim
b!1

m

b�I.b/

Z A

0

�1.y/ dy D 0 : (144)

Because of the result above we have for any A

lim
b!1

m

b�I.b/

Z b

0

�1.y/ dy D lim
b!1

m

b�I.b/

Z b

A
�1.y/ dy

and using jmj�1.b/ 
 �I.b/ 
 b�˛C1L.b/=.˛ � 1/ we have

lim
b!1

m

b�I.b/

Z b

A
�1.y/ dy D lim

b!1� 1

b�I.b/

Z b

A
�I.y/ dy

D � lim
b!1

1

b�I.b/

Z b

A

y�˛C1L.y/
.˛ � 1/ dy

in the sense that if either limit exits so does the other and they are equal.
Furthermore, since �˛ C 1 > �1 and L is locally bounded, we may apply
Proposition 1.5.8 in [32] to obtain

� lim
b!1

1

b�I.b/

Z b

A

y�˛C1L.y/
.˛ � 1/ dy D � lim

b!1
1

b�I.b/

b�˛C2L.b/
.�˛ C 2/.˛ � 1/ D � 1

�˛ C 2
:

That is, we obtain

lim
b!1

m

b�I.b/

Z b

0

�1.y/ dy D � 1

�˛ C 2
: (145)

Returning to (139) we have

lim sup
b

`b

�I.b/
D lim sup

b



m

b�I.b/

Z b

0

�1.y/ dy � m�1.b/
�I.b/

C I2

�I.b/
C I3

�I.b/

�

D � 1

�˛ C 2
C 1C lim sup

b



I2

�I.b/
C I3

�I.b/

�
: (146)

Since b�I.b/ ! 1 we have

lim sup
b

I2=�I.b/ D lim sup
b

�2

2b�I.b/
D 0 ;
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and we may continue our calculation from (146)

� 1

�˛ C 2
C 1C lim sup

b

h I2

�I.b/
C I3

�I.b/

i
D� 1

�˛ C 2
C1Clim sup

b

h I3

�I.b/

i

(147)

So we turn our attention to I3. First we divide the integral into two:

2bI3 D
Z b

0

�b.dx/
� Z �x

�1
�.x2 C 2xy/�.dy/C

Z 0

�x
y2�.dy/

�
„ ƒ‚ …

A.b/

(148)

C
Z b

0

�b.dx/
� Z b�x

0

y2�.dy/C
Z 1

b�x
2.b � x/y � .b � x/2�.dy/

�
„ ƒ‚ …

B.b/

:

(149)

We may assume � is bounded from below; otherwise truncate � at �L for some
L > 0 chosen large enough to ensure that the mean of X.1/ remains negative. This
truncation may increase the loss rate, which is not a problem, since we are proving
an upper bound. Thus, we may assume that A.b/ is bounded:

A.b/ �
Z b

0

�b.dx/
Z 0

�1
y2�.dy/ �

Z 0

�1
y2�.dy/ < 1 :

And therefore, since b�I.b/ ! 1, we have

A.b/

2b�I.b/
! 0 : (150)

Turning to B.b/, we first perform partial integration

B.b/ D
Z b

0

y2�.dy/C
Z 1

b
2by � b2�.dy/�

Z b

0

�I.b � x/�b.x/ dx

�
Z b

0

y2�.dy/C
Z 1

b
2by � b2�.dy/

D
Z b

0

2y�.y/ dy � b2�.b/C
Z 1

b
2by � b2�.dy/

D
Z b

0

2y�.y/ dy C 2b
Z 1

b
�.y/ dy :
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Since y�.y/ 
 y�˛C1L.y/ way may apply Proposition 1.5.8 from [32] to get

Z b

0

2y�.y/ dy 
 2
L.b/b�˛C2

2 � ˛ ;

and therefore

lim
b

1

2b�I.b/

Z b

0

2y�.y/ dy D ˛ � 1

2 � ˛ :

Combining this with our inequality for B.b/ above, we have

lim sup
b!1

B.b/

2b�I.b/
� ˛ � 1

2 � ˛
C 1 D 1

2 � ˛
:

Finally, by combining this with (146), (150) and (147), we obtain (138). �

12 Loss Rate Symptotics: No Drift

In both Sects. 10 and 11 it was assumed that the underlying stochastic process had
negative mean, and as discussed in Sect. 1 this also gives the asymptotic behavior
in the case of positive drift. Thus, it remains to give an asymptotic expression as
b ! 1 for the loss rate in the zero-mean case. The result is as follows:

Theorem 12.1

a) Let fX.t/g be a Lévy process with m D EX.1/ D 0 and

 2 D Var
�
X.1/

	 D �00.0/ D �2 C
Z 1
�1

y2 �.dy/ < 1 :

Then

`b 
 1

2b
Var.X.1// ; b ! 1 : (151)

b) Let fX.t/g be a Lévy process with Lévy measure �. Assume EX.1/ D 0 and that
for some 1 < ˛ < 2, there exist slowly varying functions L1.x/ and L2.x/ such
that for L.x/ D L1.x/C L2.x/, we have

�.x/ D x�˛L1.x/ �.�x/ D x�˛L2.x/ lim
x!1

L1.x/

L.x/
D ˇ C 1

2
(152)

where �.x/ D �.�1; x�/ and �.x/ D �Œx;1/. Then, setting

� D 1=2C .�˛/�1 arctan.ˇ tan.�˛=2// ; cC D .ˇ C 1/=2 ; c� D .1� ˇ/=2 ;
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we have `b 
 
L.b/=b˛�1 where


 D c�B.2 � ˛�; ˛�/C cCB.2� ˛.1 � �/; ˛.1 � �//
B.˛�; ˛.1 � �//.˛ � 1/.2� ˛/

and B.x; y/ D � .x/� .y/=� .x C y/ is the Beta function.

By comparing to Example 8.8, we see that the loss rate behaves asymptotically
like that of a stable Lévy process.

To prove Theorem 12.1, we will use the fact that by properly scaling our Lévy
process we may construct a sequence of Lévy processes which converges weakly
to either a Brownian Motion or a stable process. Since `b has been calculated for
both Brownian Motion and stable processes in Examples 8.7 and 8.8, we may
use this convergence to obtain loss rate asymptotics in the case of zero drift,
provided that the loss rate is continuous in the sense, that weak convergence (in
the sense of Proposition 12.4 below) of the involved processes implies convergence
of the associated loss rates. The required continuity results are established in
Theorems 12.2 and 12.3.

Theorem 12.2 Let
˚
Xn
�

nD0;1;::: be a sequence of Lévy processes with associated

loss rates `b;n. Suppose Xn D! X0 in DŒ0;1/ and that the family
�
X.1/n

	1
nD1 is

uniformly integrable. Then `b;n ! `b;0 as n ! 1.

We shall also need:

Theorem 12.3 Let fXngnD1;2;::: be a sequence of weakly convergent infinitely
divisible random variables, with characteristic triplets .cn; �n; �n/. Then for ˛ > 0:

lim
a!1 sup

n

Z
Œ�a;a�c

jyj˛�n.dy/ D 0 ” .
�ˇ̌

Xnj˛
	
jn�1 is uniformly integrable.

The result is certainly not unexpected and appears in Andersen and Asmussen [4]
in this form. It is, however, a special case of more general results on uniform
integrability and infinitely divisible measures on Banach Spaces given by Theorem 2
in Jurek and Rosinski [81]. Cf. also Theorem 25.3 in [129].

12.1 Weak Convergence of Lévy Processes

We prove here Theorems 12.2 and 12.3. We will need the following weak conver-
gence properties, where DŒ0;1/ is the metric space of cadlag functions on Œ0;1/

endowed with the Skorokhod topology (see Chap. 3, Sect. 16 in [31] or Chap. 3 in
[138]).
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Proposition 12.4 Let X0;X1;X2; : : : be Lévy processes with characteristic triplet
.cn; �n; �n/ for Xn. Then the following properties are equivalent:

(i) X.t/n
D! X.t/0 for some t > 0;

(ii) X.t/n
D! X.t/0 for all t;

(iii)
˚
X.t/n

� D! ˚
X.t/0

�
in DŒ0;1/;

(iv) Q�n ! Q�0 weakly, where Q�n is the bounded measure

Q�n.dy/ D �2n ı0.dy/C y2

1C y2
�n.dy/ (153)

and Qcn ! Qc0 where

Qcn D cn C
Z �

y

1C y2
� y�jyj � 1

�
�n.dy/

See e.g. [82, pp. 244–248], in particular Lemmas 13.15 and 13.17. If one of (i)–(iv)

hold, we write simply Xn D! X0.
The following proposition is standard:

Proposition 12.5 Let p > 0 and let Xn 2 Lp, n D 0; 1; : : : , such that Xn
D! X0.

Then EjXnjp ! EjX0jp if and only if the family
�jXnjp

	
n�1 is uniformly integrable.

First, we prove Theorem 12.3. This is achieved through several preliminary
results, of which the first is Lemma 12.6 which essentially states we may disregard
the behavior of the Lévy measures on the interval Œ�1; 1� in questions regarding
uniform integrability. It is therefore sufficient to prove Theorem 12.3 for compound
Poisson distributions, which is done in Proposition 12.8.

We start by examining the case where the Lévy measures have uniformly
bounded support, i.e., there exists A > 0 such that �n.Œ�A;A�c/ D 0 for all n.
We know from Lemmas 25.6 and 25.7 in [129] that this implies the existence of
finite exponential moments of Xn and therefore the mth moment of Xn exists and is
finite for all n;m 2 N.

Lemma 12.6 Suppose Xn
D! X0 and the Lévy measures have uniformly bounded

support. Then EŒ.Xn/
m� ! EŒ.X0/m� for m D 1; 2; � � � . In particular (cf.

Proposition 12.5) the family
�jXnj˛	

n�1 is uniformly integrable for all ˛ > 0.

Proof Since the Lévy measures are uniformly bounded, the characteristic exponent
from (7) is

�n.t/ D cnt C �2n t2=2C
Z A

�A

�
ety � 1 � ty�jyj � 1

	
�n.dy/ : (154)



Lévy Processes with Two-Sided Reflection 143

With the aim of applying Proposition 12.4 we rewrite (154) as

�n.t/ D Qcnt C
Z A

�A

�
ety � 1 � ty

1C y2

�
1C y2

y2
Q�n.dy/ : (155)

(the integrand is defined to be 0 at y D 0/ where Q�n is given by (153) and

Qcn D cn C
Z A

�A

�
y

1C y2
� y�jyj � 1

�
�n.dy/ :

According to Proposition 12.4 the weak convergence of fXngn�1 implies Qcn ! Qc0
and Q�n

D! Q�0. Since the integrand in (155) is bounded and continuous, this implies
that �n.t/ ! �0.t/, which in turn implies that all exponential moments converge.
In particular, the family

�
eXn C e�Xn

	
n�1 is uniformly integrable, which implies that�jXnj˛	

n�1 is so.

Next, we express the condition of uniform integrability using the tail of the
involved distributions. We will need the following lemma on weakly convergent
compound Poisson distributions.

Lemma 12.7 Let U0;U1; : : : be a sequence of positive independent random vari-
ables such that Un > 1, and let N0;N1; : : : be independent Poisson random
variables with rates 
0; 
1 : : : Set Xn D PNn

1 Ui;n (empty sum = 0) with the Ui;n

being i:i:d for fixed n with Ui;n
DD Un. Then Xn

D! X0 if and only if Un
D! U0 and


n ! 
0.

Proof The ‘if’ part follows from the continuity theorem for characteristic functions.
For the converse, we observe that e�
n ! e�
0 D P.X0 � 1=2/ since 1=2 is a
continuity point of X0 (note that P.X0 � x/ D P.X0 D 0/ for all x < 1). Taking logs

yields 
n ! 
0 and the necessity of Un
D! U0 then is obvious from the continuity

theorem for characteristic functions. �

Using the previous result, we are ready to prove part of Theorem 12.3 for a class of
compound Poisson distributions:

Proposition 12.8 Let U0;U1; : : : , N0;N1; : : : , and X0;X1; : : : be as in Lemma 12.7.

Assume Xn
D! X0. Then for ˛ > 0.

lim
a!1 sup

n
E


X˛n�Xn > a

� D 0 ” lim
a!1 sup

n
E


U˛

n�Un > a
� D 0 :

Proof To prove that the l.h.s. implies the r.h.s., we let Gn.x/ D P.Xn � x/, Fn.x/ D
P.Un � x/, Fn.x/ D 1 � Fn.x/, Gn.x/ D 1 � Gn.x/, and let F�m

n .x/;G�m
n .x/ denote

the m-fold convolutions. Then

Gn.x/ D
1X

mD1


m
n

mŠ
e�
n F�m

n .x/ ; x > 0
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which implies Gn.x/ � 
ne�
n Fn.x/. Letting ˇ D supn e
n=
n, which is finite by
Lemma 12.7, we get Fn.x/ � ˇGn.x/. Therefore:

EŒU˛
n�Un > a� D

Z 1
0

˛t˛�1P.Un > a _ t/dt D a˛Fn.a/C ˛

Z 1
a

t˛�1Fn.t/dt

� ˇa˛Gn.a/C ˇ˛

Z 1
a

t˛�1Gn.t/dt D ˇEŒX˛n�Xn > a� :

Taking supremum and limits completes the first part of the proof.

For the converse we note that by Lemma 12.7 we have F�1n
D! F�10 and it

follows from the continuity theorem for characteristic functions that F�m
n

D! F�m
0 .

Fix m 2 N. Since
�Pm

iD1 Ui;n
	˛ � m˛

Pm
iD1 U˛

i;n and the family
�
m˛
Pm

iD1 U˛
i;n

	
n�1

is uniformly integrable, we have that also the family
�Pm

iD1 Ui;n
	˛

n�1 is uniformly

integrable. As noted above we have
Pm

iD1 Ui;n
D! Pm

iD1 Ui;0, so Proposition 12.5
implies E

�Pm
iD1 Ui;n

	˛ ! E
�Pm

iD1 Ui;0
	˛

.
We next show EX˛n ! EX˛0 and thereby the assertion of the proposition. We

have:

lim
n
EX˛n D lim

n

1X
mD0

E

� mX
iD1

Ui;n

�˛ 
m
n

mŠ
e�
n D

1X
mD0

lim
n

E

� mX
iD1

Ui;n

�˛ 
m
n

mŠ
e�
n

D
1X

mD0
E

� mX
iD1

Ui;0

�˛ 
m
0

mŠ
e�
0 D EX˛0 ;

where we used dominated convergence with the bound

E

� mX
iD1

Ui;n

�˛ 
m
n

mŠ
e�
n � 
m˛C1ˇm=mŠ ;

where 
 D supn EU˛
n and ˇ D supn 
n, and we used


Pm
1 ui

�˛ � m˛u˛i . �
Proof of Theorem 12.3 Using the Lévy-Khinchine representation, we may write

Xn D X.1/n C X.2/n C X.3/n ; (156)

where the
�
X.i/n

	
n�1 are sequences of infinitely divisible distributions having char-

acteristic triplets .0; 0; Œ�n�fy<�1g/ , .cn; �n; Œ�n�fjyj�1g/ and .0; 0; Œ�n�fy>1g/, respec-
tively, which are independent for each n. Assume the family

�jXnj˛
	

n�1 is uniformly

integrable. We wish to apply Proposition 12.8 to the family
�
.X.3/n /˛

	
n�1, and



Lévy Processes with Two-Sided Reflection 145

therefore we need to show that this family is uniformly integrable. First, we
rewrite (156) as Xn � X.2/n D X.1/n C X.3/n and use Lemma 12.6 together with the
inequality jx � yj˛ � 2˛.jxj˛ C jyj˛/ to conclude that the family

�jXn � X.2/n j˛	
n�1

is uniformly integrable, which in turn implies that the family
�jX.1/n C X.3/n j˛	

n�1 is
uniformly integrable.

Assuming w.l.o.g. that 1 is a continuity point of �0, we have that X.1/n is weakly
convergent and therefore tight. This implies that there exists r > 0 such that
P
�jX.1/n j � r

	 � 1=2 for all n, which implies that for all n and for all t so large
that .t1=˛ � r/˛ > t=2, we have:

.1=2/P
�
.X.3/n /˛ > t

	 � P
�jX.1/n j � r

	
P
�
X.3/n > t1=˛

	

D P
�jX.1/n j � r;X.3/n > t1=˛

	 � P
�
X.1/n C X.3/n > t1=˛ � r

	

� P
�jX.1/n C X.3/n j˛ > .t1=˛ � r/˛

	 � P
�jX.1/n C X.3/n j˛ > t=2

	
:

This implies that
�
.X.3/n /˛

	
is uniformly integrable, since

�jX.1/n C X.3/n j˛	 is so.
Applying Proposition 12.8 yields

lim
a

sup
n

Z 1
a

y˛�n.dy/ D 0 : (157)

Together with a similar relation for
R �a
�1 this gives

lim
a!1 sup

n

Z
Œ�a;a�c

jyj˛�n.dy/ D 0 :

For the converse, we assume lima supn

R
Œ�a;a�c jyj˛�n.dy/ D 0, and return to our

decomposition (156). As before, we apply Lemma 12.6 to obtain that the family�
X.2/n

	
is uniformly integrable. Furthermore, applying Proposition 12.8, we obtain

that the families
�jX.1/n j˛	 and

�jX.3/n j˛	 are uniformly integrable, and since jXnj˛ �
3˛
�jX.1/n j˛ C jX.2/n j˛ C jX.3/n j˛	, the proof is complete. �

Next, we prove Theorem 12.2.

We consider a sequence of Lévy processes
˚
Xn
�

such that Xn D! X0 and use
obvious notation like `b;n; �b;n etc. Furthermore, we let �n.A/ denote the first exit
time of Xn from A. Here A will always be an interval.

We first show that weak convergence of Xn implies weak convergence of the
stationary distributions.

Proposition 12.9 Xn D! X0 ) �b;n D! �b;0.
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Proof According to Theorem 13.17 in [82] we may assume�n;t D supv�t jXn.v/�
X0.v/j P! 0. Then

P
�
X0
�0ŒyC"�b;yC"/ � y C "; �0Œy C " � b; y C "/ � t

	

� P
�
Xn
�nŒy�b;y/ � y; �nŒy � b; y/ � t

	 C P.�n;t > "/

� P
�
Xn
�nŒy�b;y/ � y

	 C P.�n;t > "/ :

Letting first n ! 1 gives

lim inf
n!1 �b;n.y/ � P

�
X0
�0ŒyC"�b;yC"/ � y C "; �0Œy C " � b; y C "/ � t

	
;

and letting next t ! 1, we obtain

lim inf
n!1 �b;n.y/ � �b;0.y C "/ : (158)

Similarly,

P
�
Xn
�nŒy�b;y/ � y; �nŒy � b; y/ � t

	 � P
�
X0
�0Œy�"�b;y�"/ � y � "

	 C P.�n;t > "/ ;

lim sup
n!1

P
�
Xn
�nŒy�b;y/ � y; �nŒy � b; y/ � t

	 � �b;0.y � "/ : (159)

However,

P
�
�nŒy � b; y/ > t

	 � P
�
�0Œy � " � b; y C "/ > t

	 C P.�n;t > "/ ;

so that

lim sup
n!1

P
�
�nŒy � b; y/ > t

	 � P
�
�0Œy � " � b; y C "/ > t

	
:

Since the r.h.s. can be chosen arbitrarily small, it follows by combining with (159)
that

lim sup
n!1

�b;n.y/ D lim sup
n!1

P
�
Xn
�nŒy�b;y/ � y

	 � �b;0.y � "/ :

Combining with (158) shows that �b;n.y/ ! �b;0.y/ at each continuity point y of
�b;0, which implies convergence in distribution. �

The following elementary lemma gives two properties of the function ' D 'b

from Theorem 1.1. The proof is omitted.
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Lemma 12.10 The function 'b.x; y/ is continuous in the region .x; y/ 2 Œ0; b� � R

and satisfies 0 � 'b.x; y/ � 2y2 ^ 2bjyj.
We are now ready to prove Theorem 12.2.

Proof Recall the definition (153) of the bounded measure Q� and let Q'b.x; y/ D
'.x; y/.1 C y2/=y2 for y ¤ 0, Q'b.x; 0/ D 1. Note that Q'b.x; y/ is continuous on
.0; b/� R, but discontinuous at y D 0 if x D 0 or x D b. We also get

Z 1
�1

Q'b.x; y/ Q�n.dy/ D �2n C
Z 1
�1

'b.x; y/�n.dy/ ;

so that

an D �2n C
Z b

0

�b;n.dx/
Z 1
�1

'b.x; y/�n.dy/ D
Z b

0

�b;n.dx/
Z 1
�1

Q'b.x; y/ Q�n.dy/ :

Let Q�1n ; Q�2n denote the restrictions of Q�n to the sets jyj � a, resp. jyj > a. Using
0 � 'b.x; y/ � 2bjyj, and uniform integrability (Theorem 12.3) we can choose a
such that

0 �
Z
Œ�a;a�c

Q'b.x; y/ Q�2n.dy/ < "

for all x and n (note that Q�n � �n on Rn f0g). We may also further assume that a and
�a are continuity points of �0 which implies Q�1n ! Q�10 weakly. In particular,

sup
n

Q�1n.Œ�a; a�/ < 1: (160)

Define

fn.x/ D
Z a

�a
'b.x; y/�n.dy/C �2n D

Z a

�a
Q'b.x; y/ Q�1ndy

we wish to prove that
R

fn d�b;n ! R
f0 d�b;0 which, by using the generalized

continuous-mapping theorem (e.g. [138]), will follow if

�b;0.F/ D 0 (161)

where

F D ˚
x j 9.xn/n�1 W xn ! x; fn.xn/ ¹ f0.x/

�
: (162)
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The proof of this follows different routes depending on whether or not �20 is zero.
First, we assume �20 D 0 and consider the functions

f�n .x/ D �2n C
Z
.�1;0�

'b.x; y/�
1
n.dy/ D

Z
.�1;0�

Q'b.x; y/ Q�1n.dy/ ;

fCn .x/ D
Z
.0;1/

'b.x; y/�
1
n.dy/ D

Z
.0;1/

Q'b.x; y/ Q�1n.dy/ :

It follows from the definition of Q�1n , that the assumption �20 D 0 implies that Q�1n has
no mass at 0, and since this is the only possible discontinuity point of the integrands,
we have f�n .x/ ! f�0 .x/ and fCn .x/ ! fC0 .x/ for x 2 Œ0; b�. Furthermore, it can be
checked that x 7! f�n .x/ is increasing, x 7! fCn .x/ is decreasing, and, using the bound
'b.x; y/ � 2y2, that both functions are uniformly bounded. That is, the functions f�n
and fCn form two uniformly bounded sequences of continuous, monotone functions
which converge to a continuous limit and as such, they converge uniformly. From
this we get

sup
0�y�b

jfn.y/ � f0.y/j D sup
0�y�b

jf�n .y/� f�0 .y/C fCn .y/ � fC0 .y/j

� sup
0�y�b

jf�n .y/� f�0 .y/j C sup
0�y�b

jfCn .y/� fC0 .y/j ! 0 :

Using the calculation above, we see that if we consider any x 2 Œ0; b� and any
sequence .xn/n�1 converging to x, we have

jfn.xn/ � f0.x/j � jfn.xn/ � f0.xn/j C jf0.xn/� f0.x/j (163)

� sup
0�y�b

jfn.y/� f0.y/j C jf0.xn/� f0.x/j ! 0 ;

where we use continuity of f0 in the last part of the statement. This gives us that F
in (162) is the empty set, and hence we obtain (161) in the case �20 D 0.

Next, we consider the case where �20 > 0. We note that �20 > 0 implies that
˚
X0
�

is a process of unbounded variation and using Theorem 6.5 in [104], this implies that
0 is regular for .0;1/. By comparing this to the representation (6) of the stationary
distribution, we see that this implies �b;0.f0; bg/ D 0. Consider x 2 .0; b/ and a
sequence .xn/n�1 converging to x. Assume w.l.o.g. that xn 2 Œ"; b � "� for some
" > 0. Since Q'b.x; y/ is continuous on the compact set Œ"; b � "� � Œ�a; a�, we can
use (161) to see that given "1, there exists "2 such that jfn.x0/� fn.x00/j < "1 for all n
whenever jx0 � x00j < "2 and x0; x00 2 Œ"; b � "�. Since xn ! x this means, that given
any "1 > 0, we may use an inequality similar to (163) to conclude that for n large
enough

jfn.xn/� f0.x/j � "1 C jfn.x/� f0.x/j
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and by taking lim supn we see that the convergence fn.xn/ ! f0.x/ holds when
x 2 .0; b/, and can only fail x D 0 or x D b. Using that f0; bg has �b;0-measure 0, we
have

R
fn d�b;n ! R

f0 d�b;0 in this case as well. By combining this with the uniform
integrability estimate above, we get that for any " > 0: jan�a0j � jfn�f0jC2", (note
that fi depends on ") and hence lim supn jan � a0j � 2", which implies an ! a0.

By uniform integrability EXn.1/ ! EX0.1/, and further �b;n D! �b;0 impliesR b
0
�b;n.y/dy ! R b

0
�b;0.y/dy. Remembering an ! a0 and inspecting the expres-

sion (75) for the loss rate shows that indeed `b;n ! `b;0. �

12.2 Proof of Theorem 12.1

First we note the effect that scaling and time-changing a Lévy process has on the
loss rate:

Proposition 12.11 Let ˇ; ı > 0 and define Xˇ;ı.t/ D X.ıt/=ˇ. Then the loss rate
`b=ˇ.Xˇ;ı/ for Xˇ;ı equals ı=ˇ times the loss rate `b.X/ D `b for X.

Proof It is clear that scaling by ˇ results in the same scaling of the loss rate. For the
effect of ı, note that the loss rate is the expected local time in stationarity per unit
time and that one unit of time for Xˇ;ı corresponds to ı units of time for X. �

Proof of Theorem 12.1 a) Define Xb.t/ D X.tb2/=b. Then by Proposition 12.11 we
have

b`b.X/ D `1.Xb/

By the central limit theorem we have Xb.1/
D! N.0;  2/ as b ! 1. By

Proposition 12.4, this is equivalent to Xb D!  B where B is standard Brownian
motion. We may apply Theorem 12.2, since

E


.Xb.1//2

� D Var.X1.1// ;

that is,
˚
Xb.1/

�1
bD1 is bounded in L2 and therefore uniformly integrable. Thus

lim
b

b`b.X/ D lim
b
`1
�
Xb
	 D `1. B/ D  2=2 ;

where the last equality follows directly from the expression for the loss rate in
Theorem 1.1. �

Proof of Theorem 12.1 b) First we note that the stated conditions implies that the
tails of � are regularly varying, and therefore they are subexponential. Then by
Embrechts et al. [56] we have that the tails of P.X.1/ < x/ are equivalent to those
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of � and hence we may write

P.X.1/ > x/ D x�˛L1.x/g1.x/ ; P.X.1/ < �x/ D x�˛L2.x/g2.x/

where limx!1 gi.x/ D 1, i D 1; 2. The next step is to show that the fact that the
tails of the distribution function are regularly varying allows us to apply the stable
central limit theorem. Specifically, we show that the assumptions of Theorem 1.8.1
in [128] are fulfilled.

We notice that if we define M.x/ D L1.x/g1.x/C L2.x/g2.x/ then M.x/ is slowly
varying and

x˛


P.X.1/ < �x/C P.X.1/ > x/

� D M.x/ : (164)

Furthermore:

P.X.1/ > x/

P.X.1/ < �x/C P.X.1/ > x/
D L1.x/g1.x/=M.x/ 
 L1.x/=L.x/ ! ˇ C 1

2
;

(165)

as x ! 1 since L.x/ 
 M.x/. Define L0.x/ D L.x/.�1=˛/ and let L#
0.x/ denote the

de Bruin conjugate of L0 (cf. [32, p. 29]) and set f .n/ D n.1=˛/L#
0.n

.1=˛//. Let f be
the generalized inverse of f . By asymptotic inversion of regularly varying functions
[32, pp. 28–29] we have f .n/ 
 .nL0.n//˛ which implies

f .n/L.n/
n˛


 .nL0.n//˛L.n/

n˛
D 1

and since f .f .n// 
 n we have

nM.f .n//

f .n/˛

 nL.f .n//

f .n/˛

 f .f .n//L.f .n//

f .n/˛
! 1 (166)

and therefore, if we define � D .� .1 � ˛/ cos.˛�=2//1=˛ we have

nM.��1f .n//
.��1f .n//˛


 nM.f .n//

.��1f .n//˛
! �˛ (167)

using slow variation of M. By combining (164), (165) and (167) we may apply the

stable CLT Theorem 1.8.1 [128]3 to obtain Xb=f .b/
D! Z where Z is a r.v. with

characteristic function  , where

 .u/ D exp.�j�uj˛.1 � iˇ sgn.u/ tan.˛�=2// : u 2 R

3Note that the constants there should be replaced by their inverses.



Lévy Processes with Two-Sided Reflection 151

Recalling that � is the characteristic exponent of X, this is equivalent to

eb�.iu=f .b// !  .u/

and therefore

e.bL0.b//˛�.iu=f .f .b/// 
 ef .b/�.iu=f .f .b/// !  .u/

that is, for QXb.t/ D X.t.bL0.b//˛/=f .f .b// we have QXb.1/
D! Z, and using

f .f .b// 
 b as well as the definition of L0.b/, we see that the same applies to
Xb.t/ D X.t.b˛=L.b///=b. Setting d D .ˇ C 1/=2 and c D .1 � ˇ/=2 we calculate
(cf. [128])

� j� tj˛.1� iˇ sgn.t/ tan.˛�=2/ D �j� tj˛.1C i.d � c/ sgn.t/ tan.˛�=2/

d˛
Z 0

�1
.eivt � 1 � ivt/.�t/�˛�1 dt C c˛

Z 1
0

.eivt � 1 � ivt/t�˛�1 dt :

That is, the characteristic triplet of Z is .�; 0; �/, where

�.du/ D

8̂
<
:̂

˛c

.�u/˛C1
du u < 0

˛d

u˛C1
du u > 0

(168)

and � is a centering constant. We wish to use Theorem 12.2 and have to prove
uniform integrability. Note that by combining Proposition 11.10 and Corollary 8.3
in [129], we have that the Lévy measure of Xb is �b, where

�b.B/ D b˛L.b/�1�.fx W b�1x 2 Bg/ :

Using the assumptions in (152), this implies

�b.a/ D b˛L.b/�1�.ab/ D L.b/�1a�˛L1.ab/ ; �b.�a/ D L.b/�1a�˛L2.ab/ :

Using partial integration and the remarks above, we find:

Z
Œ�a;a�c

jyj�b.dy/ D a�b.a/C
Z 1

a
�b.t/dt C a�b.�a/C

Z �a

�1
�b.t/dt

D a�˛C1L.b/�1˛L.ab/C
Z 1

a
t�˛L.b/�1L.tb/dt :

Furthermore, using Potter’s Theorem (Theorem 1.5.6 in [32]) we have that for ı > 0
such that 1C ı < ˛ there exists � > 0 such that
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L.ab/

L.b/
� 2max.aı; a�ı/ ab > �; b > � :

Using this, we get that

lim
a

sup
b>�

a�˛C1
L.ab/

L.b/
� 2 lim

a
a�˛C1 max.aı; a�ı/ D 0 (169)

and similarly for the integral:

sup
b>�

lim
a

Z 1
a

t�˛
L.tb/

L.b/
dt � 2 lim

a

Z 1
a

t�˛ max.tı ; t�ı/dt D 0 : (170)

By combining (169) and (170) we get

lim
a!1 sup

b>�

Z
Œ�a;a�c

jyj�b.dy/ D 0 :

By Proposition 12.11 we have b˛�1L.b/�1`b.X/ D `1
�
Xb
	
, and since we have

proved uniform integrability, we may apply Theorem 12.2. Letting b ! 1 and
using Example 8.8 which states that the loss rate for our stable distribution is 
 (see
also [103]), yields the desired result. �

13 The Overflow Time

We define the overflow time as

!.b; x/ D inf
˚
t > 0 W Vb.t/ D b

ˇ̌
Vb.0/ D x

�
; 0 � x < b:

It can also be interpreted in terms of the one-sided reflected process as

!.b; x/ D inf
˚
t > 0 W V1.t/ � b

ˇ̌
V1.0/ D x

�
; 0 � x � b :

It has received considerable attention in the applied literature; among many
references, see e.g. [47, 75, 93, 98]. We consider here evaluation of characteristics
of !.b; x/, in particular expected values and distributions, both exact and asymptot-
ically as b ! 1. When no ambiguity exists, we write ! instead of !.b; x/.

As may be guessed, the Brownian case is by far the easiest:

Example 13.1 Let X be BM.�; �2/ with � ¤ 0 [the case � D 0 requires a separate
treatment which we omit]. Consider the Kella-Whitt martingale with B.t/ D x C
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L.t/ � qt=˛ where L is the local time at 0 for the one-sided reflected process,

�.˛/

Z t

0

e˛V1.s/�qs ds C e˛x � e˛V1.t/�qt C ˛

Z t

0

e�qs dL.s/ � q
Z t

0

e˛V1.s/�qs ds

where we used that L can only increase when V1 is at 0 and so

Z t

0

e˛V1.s/�qs dL.s/ D
Z t

0

e�qs dL.s/ :

Take first 
 D �2�=� as the root of 0 D �.s/ D s� C s2�2=2 and q D 0.
Optional stopping at ! then gives 0 D e
x � e
b C
EL.!/. Using V1 D x C B C L
and EB.!/ D �E! then gives

E!.b; x/ D b � x � .e
b � e
x/=


�
(171)

Take next q > 0 and �˙ as the two roots of �.˛/ D q, cf. Example 7.3. We then
get

0 D e�
Cx � e�

Cx
Ee�q! � qE

Z !

0

e˛V1.s/�qs ds :

Together with the similar equation with �� this can then be solved to obtain Ee�q!

(the other unknown is E
R !
0 e˛V1.s/�qs ds).

Early calculations of these and some related quantities are in Glynn and
Iglehart [66] who also discuss the probabilistically obvious fact that !.b; 0/ is
exponentially distributed in the Brownian case (as in the spectrally positive Lévy
case), cf. Athreya and Werasinghee [22]. �

13.1 Exact Results in the PH Model

Recall from Sect. 3 that the process V1 with one-sided reflection at 0 can be
constructed as V.t/ D V.0/C X.t/C L.t/, where

L.t/ D � min
0�s�t

.V.0/C X.s//

is the local time. For our phase-type model with a Brownian component, L.t/
decomposes as Lc.t/C Ld.t/, where Lc is the continuous part (the contribution to L
from the segments between jumps where V behaves as a reflected Brownian motion)
and Ld.t/ the compensation of jumps of X that would have taken V below 0.



154 L.N. Andersen et al.

0

b

V

L

τV

Fig. 6 One-sided reflected process V D V1 and local time L

The situation is illustrated on Fig. 6. We have again phases red, green for
FC and blue for F�. The cyan Brownian segments are how Brownian motion
would have evolved without reflection. In the lower panel, the cyan segments of
L correspond to compensation when the Brownian motion would otherwise have
taken V1 below 0, and the blue jumps are the compensation from jumps of X that
would otherwise have taken V1 below 0.

To compute the Laplace transform of !, we use the Kella-Whitt martingale with
B.t/ D V.0/C L.t/ � qt=˛. Thus ˛Z.t/ D ˛V.t/ � qt, and the martingale takes the
form

�.˛/

Z t

0

e˛V.s/�qs ds C e˛V.0/ � e˛V.t/�qt

C ˛

Z t

0

e˛V.s/�qs
�
dLc.s/� q ds=˛

	C
X
0�s�t

e˛V.s/�qs.1 � e�˛�Ld.s//

D �
�.˛/ � q/

Z t

0

e˛V.s/�qs ds C e˛V.0/ � e˛V.t/�qt

C ˛

Z t

0

e�qs dLc.s/ C
X
0�s�t

e�qs.1 � e�˛�Ld.s// ;

where in the last step we used that L can only increase when V is at 0. Now introduce
the following unknowns: zCc , the expectation of e�q! evaluated on the event of
continuous upcrossing of level b only; zCi , the expectation of e�q! evaluated on
the event of upcrossing in phase i D 1; : : : ; nC only; `c D E

R !
0

e�qs dLc.s/; and mj,
the expected value of the sum of the e�qs with s � ! such that at time s there is a
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downcrossing of level 0 in phase j D 1; : : : ; n�. Optional stopping then gives

0 D �
�.˛/ � q/E

Z !

0

e˛V.s/�qs ds C e˛V.0/

� e˛b
�

zCc C
nCX
iD1

OFCi Œ˛�zCi
�

C ˛`c C
n�X
jD1

mj.1 � OF�j Œ�˛�/ :

Taking ˛ as one of the same roots as in Sect. 9.4, we get

0 D e�
q
k V.0/ � e�

q
k b
�

zCc C
nCX
iD1

OFCi Œ�q
k �z
C
i

�
C �

q
k`c C

n�X
jD1

mj.1 � OF�j Œ��q
k �/ ;

a set of linear equations from which the unknowns and hence Ee�q! D zCc C zC1 C
� � � C zC

nC
can be computed.

13.2 Asymptotics via Regeneration

The asymptotic study of !.b; x/ is basically a problem in extreme value theory since

P
�
!.b; x/ � t

	 D Px

�
max
0�s�t

V1.s/ � b
�
: (172)

This is fairly easy if m D EX.1/ > 0 since then the max in (172) is of the same
order as X.t/ which is in turn of order mt. Hence we assume m < 0 in the following.

For processes with dependent increments such as V1, the asymptotic study of the
quantities in (172) is most often (with Gaussian processes as one of the exceptions)
done via regeneration, cf. [11, VI.4]

For V1, we define (inspired by the discussion in Sect. 5.1) a cycle by starting at
level 0, waiting until level 1 (say) has been passed and taking the cycle termination
time T as the next hitting time of 0 (‘up to 1 from 0 and down again’). That is,

T D inf
˚
t > inffs > 0 W V1.s/ � 1g W V1.t/ D 0

ˇ̌
V1.0/ D 0

�
:

The key feature of the regenerative setting is that the asymptotic discussion can
be reduced to the study of the behavior within a regenerative cycle. The quantities
needed are

mT D E0T ; a.z/ D P0

�
max
0�s�T

V1.s/ � z
�
:

Indeed one has by [11, VI.4] that:

Theorem 13.2 As b ! 1, it holds for any fixed x that a.b/E!.b; x/ ! mT and
that a.b/!.b; x/=mT has a limiting standard exponential distribution.
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For the more detailed implementation, we note:

Proposition 13.3

(a) Assume that the Lévy measure � is heavy-tailed, more precisely that �.z/ DR1
z �.dy/ is a subexponential tail. Then a.z/ 
 mT�.x/ as z ! 1;

(b) Assume that the Lévy measure � is light-tailed, more precisely that the Lundberg
equation �.
/ D 0 has a solution 
 > 0 with �0.
/ < 1. Then a.z/ 
 CT e�
z

for some constant CT as z ! 1
Sketch of Proof For (a), involve ‘the principle of one big jump’ saying that
exceedance of z occurs as a single jump of order z (which occurs at rate �.z/).
The rigorous proof, using the regenerative representation �1.x/ D a.x/=mT of the
stationary distribution of V1 and known results on �1, can be found in [10, 20].

For (b), let P
 , E
 refer to the exponentially tilted case �
.˛/ D �.˛C
/��.˛/
with V1.0/ D 0. By standard likelihood ratio identities,

a.z/ D P0

�
!.z; 0/ < T

	 D E




exp

˚�
X
�
!.z; 0/

	�I !.z; 0/ < T
i

(173)

Now m
 D �0.
/ > 0 so that P

�
V1.t/ ! 1	 D 1. Hence

˚
!.z; 0/ < T

� " fT D
1g where P
 .T D 1/ > 0, and

X
�
!.z; 0/

	C L
�
!.z; 0/

	 D V1
�
!.z; 0/

	 D z C �.z/

where �.z/, the overshoot, converges in P
 -distribution to a limit �.1/ (in fact, the
same as when overshoot distribution are taken w.r.t. X, not V1), and L

�
!.z; 0/

	
converges in P
 -distribution to the finite r.v. L.1/. Combining with (173) and
suitable independence estimates along the lines of Stam’s lemma [11, pp. 368–369],
the result follows with

CT D E
e�
�.1/ � E



e
L.1/I T D 1�

:

That CT < 1 is seen by a comparison with Theorem 2.1 since clearly

a.z/ � P0

�
max
0�s�T

V1.s/ � z
�

D �1.z/ :

�

In the heavy-tailed case, Theorem 13.2 and Proposition 13.3 determine the order
of !.b; x/ as �.b/. In the light-tailed case, we are left with the computation of the
constant CT . In general, one can hardly hope for an explicit expression beyond
special cases. Note, however, that for the spectrally negative case one can find the
Laplace transform Exe�q!.z;x/ as Z.q/.x/=Z.q/.b/, where

Z.q/.x/ D 1C q
Z x

0

W.q/.y/ dy
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is the ‘second scale function’. See Pistorius [119] and Kyprianou [104, p. 228], with
extensions in Ivanovs and Palmowski [78]. We return to E! in Sect. 14.2.

14 Studying V as a Markov Process

14.1 Preliminaries

An alternative approach to computing probabilities and expectations associated with
V and its loss process U is to take advantage of the fact that V is a Markov jump-
diffusion process. As a consequence, a great number of probabilities/expectations
can be computed by solving linear integro-differential equations, subject to suitable
boundary conditions related to the boundary behaviour of V and the specific
functional under consideration.

Our exposition is somewhat simpler if we require that the jump component of X
be of bounded variation (BV). So, we will henceforth assume that

Z
jyj�1

jyj �.dy/ < 1 : (174)

In this setting,

X.t/ � X.0/ D �t C � B.t/C
X
0<s�t

�X.s/ ;

where �X.s/ D X.s/ � X.s�/ and the sum converges absolutely for each t <
1 because of (174). Cf. the discussion at the end of Sect. 1. Without (174), the
jump part would a.s. have unbounded variation. In order to deal with Lévy processes
having non-BV jumps, one needs to modify the equations and arguments of this
section slightly. We discuss this non-BV extension briefly at the end in Sect. 14.6.

The key to establishing suitable integro-differential equations in this context is
the systematic use of Itô’s formula in the form

f
�
V.s/

	 � f
�
V.s/

	 �
X
0<s�t



f
�
V.s/

	 � f
�
V.s�/	�

D
Z t

0

h
�f 0
�
V.s/

	C �2

2
f 00
�
V.s/

	i
ds C

Z t

0

f 0
�
V.s/

	
dB.s/

C
Z t

0

f 0
�
V.s/

	
dLc.s/ �

Z t

0

f 0
�
V.s/

	
dUc.s/ (175)

[note that in our context, V.s/ could be replaced by b in the last integral and by 0 i
the next-to-last]. This follows for compound Poisson jumps by using Itô’s formula
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in a form involving boundary modifications (see [46]) on intervals between jumps
of X (where V is continuous), and in the general case by approximation by such a
process. Equation (174) is the basic form of Itô’s formula that we will systematically
apply in what follows.

With the aid of Itô’s formula, we will illustrate the use of Markov process
arguments in deriving various integro-differential equations associated with V and
its loss process U. In fact, we will generalize from consideration of U to additive
functionals of the form

�.t/ D
Z t

0

f
�
V.s/

	
ds C

X
0<s�t

Qf �V.s�/;�X.s/
	 C r1Lc.t/ C r2Uc.t/ : (176)

We recall that � D �
�.t/ W t � 0

	
is an additive functional of X if it can be

represented as �.t/ D gt
�
X.u/ W 0 � u � t

	
where

gtCs
�
X.u/ W 0 � u � t C s

	 D gs
�
X.u/ W 0 � u � s

	 C gt
�
X.s C u/ W 0 � u � t

	 I

see also [34]. Note that we recover U in (176) if we set f � 0, Qf .x; y/ D ŒxCy�b�C,
r1 D 0 and r2 D 1. We assume throughout that f is bounded, that Qf .x; 0/ D 0, and
that

sup
0�x�b

Z ˇ̌Qf .x; y/ˇ̌ �.dy/ < 1 :

An additional notational simplification will be useful: we set

r.x; y/ D

8̂
<̂
ˆ̂:
0 x C y � 0

x C y 0 � x C y � b

b x C y � b

and observe that V.s/ D r
�
V.s�/;�X.s/

	
whenever�X.s/ ¤ 0.

The integro-differential equations to follow are typically expressed in terms of
the operator L defined on twice differentiable functions ' W Œ0; b� ! R and given
by

.L '/.x/ D �' 0.x/C �2

2
' 00.x/C

Z
R



'
�
r.x; y/

	 � '.x/
�
�.dy/ ;

The expression on the r.h.s. is familiar from the theory of generators of Markov
processes, but given the multitude of formulations of this theory, we will not
pursue this aspect. The interested reader can find a good discussion of generators
in the diffusion setting in Karlin and Taylor [85, pp. 246–309], and in the jump-
diffusion setting in Øksendahl and Sulem [115, pp. 10–11]. The generator view
may sometimes be helpful to heuristically understand the form of the results. For
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example, we will study the expectation s.x/ D ExTz where Tz D infft > 0 W V.t/ �
zg is a level crossing time of V (and as usual Px;Ex refer to the case V.0/ D x).
Intuitively, one should have

s.x/ � h C Exs
�
x C V.h/

	 � h C s.x/ C h .L s/.x/

for small h, so that the equation to solve for computing s should be .L s/.x/ D �1
(subject to suitable boundary conditions). Our detailed analysis aims at making this
rigorous.

We will encounter functions h.�; x/ depending on two arguments and write then
as usual h� .�; x/; hx.�; x/ for the partial derivatives. When working with h as a
function of x for a fixed � , we write h.�/ rather than h.�; �/.

14.2 Level Crossing Times

Consider the level crossing time

Tz D inf
˚
t > 0 W V.t/ � zg

defined for V (with 0 < z � b) and

�.w/ D inf
˚
t > 0 W �.t/ � wg

defined (with w > 0) for the additive functional � in (176). In this section,
we formulate the integro-differential equations appropriate for computing charac-
teristics of these quantities. Our approach closely follows that used by Karatzas
and Shreve [84] and Harrison [73] as a means of calculating various expectations
associated with Markov processes.

Theorem 14.1 Fix � � 0. Suppose that there exists a function h.�/ D h.�; �/ W
Œ0; b� ! R that is twice continuously differentiable in Œ0; z� satisfying the integro-
differential equation

�
L h.�/

	
.x/C �h.�; x/ D 0 (177)

for 0 � x � z, subject to the boundary conditions

h.�; x/ D 1 for x � z; hx.�; 0/ D 0 :

Then h.�; x/ D Exe�Tz .
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Proof Observe that Uc.Tz/ D 0. Hence, Itô’s formula yields

Ee�.Tz^t/h
�
�;V.Tz ^ t/

	 � h
�
�;V.0/

	 D
4X

jD1
Tj;

where

T1 D
Z Tz^t

0

ebs

�
L h.�/

	�
V.s/

	C �h
�
�;V.s/

	�
ds ;

T2 D
Z Tz^t

0

ebshx
�
�;V.s/

	
ds ;

T3 D
Z Tz^t

0

ebshx
�
�;V.s/

	
� dB.s/ ds ;

T4 D
X

0<s�Tz^t

ebs


h
�
�;V.s/

	 � h
�
�;V.s�/	� ;

�
Z Tz^t

0

ebs
Z
R



h
�
�; r.V.s/; y/

	 � h
�
�;V.s/

	�
�.dy/ ds

Here T1 C T2 D 0 because of the integro-differential equation (177) and the
boundary condition at x D 0, whereas T3 C T4 form a martingale. Hence

Ee�.Tz^t/h
�
�;V.Tz ^ t/

	 D h.�; x/

for t � 0. By monotone convergence and the boundary condition for x � z,

E


e�Tz h

�
�;V.Tz/

	I Tz � t
� " E



e�Tz I Tz < 1�

as t ! 1. On the other hand, the boundedness of h.�/ and the fact that � � 0

ensure that

E


e� th

�
�;V.t/

	I Tz > t
� ! 0 :

The conclusion follows by noting that Tz < 1 a.s. because of the reflection at 0. �

We can now formally obtain our integro-differential equation for ExTz by
differentiating (177) and the boundary conditions. In particular note that ExTz D
h� .0; x/. Formally differentiating (177) w.r.t. � yields

.L h� /.x/C h.�; x/C �h� .�; x/ D 0

for 0 � x � z, subject to

h� .�; x/ D 0 for x � z; hx� .�; 0/ D 0 :
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Letting Qh.x/ D ETz, we conclude from h.0; x/ D 1 for 0 � x � z that Qh should
satisfy

.L Qh/.x/ D �1

for 0 � x � z, subject to

Qh.x/ D 0 for x � z; Qh0.0/ D 0 :

By working with the martingale

Qh�V.Tz ^ t/
	C Tz ^ t ;

this can be rigorously verified by sending t ! 1, using the boundedness of Qh, and
exploiting the fact that Qh�V.Tz/

	 D 0.
Bounds on ExTz can be obtained similarly, in the presence of a non-negative

twice continuously differentiable function 
 for which

.L 
/.x/ � �1

for 0 � x � z. In this case,



�
V.Tz ^ t/

	C Tz ^ t

is a non-negative supermartingale. Because 
 is non-negative, ExTz ^ t � 
.x/ for
t � 0, yielding the bound

ExTz � 
.z/

for 0 � x � z upon application of the monotone convergence theorem.
We next turn to the computation of Exe��.w/ with �.t/ as in (176) (note for the

following result the quantities f ; Qf ; r1; r2 occurring in the definition).

Theorem 14.2 Fix � � 0. Suppose that there exists a function k.�/ W Œ0; b��R ! R

of x; 
 that is twice continuously differentiable in x and continuously differentiable
in 
 on Œ0; b� � .�1;w�, and satisfies

0 D �kx.�; x; 
/C �2

2
kxx.�; x; 
/C k
.�; x; 
/f .x/C �k.�; x; 
/

C
Z
R



k
�
�; r.x; y/; 
C Qf .x; y/	 � k.�; x; 
/

�
�.dy/ (178)
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for 0 � x � b, 
 � w, subject to the boundary conditions

r1k
.�; x; 
/C kx.�; x; 
/ D 0 and r2k
.�; x; 
/� kx.�; x; 
/ D 0

for 
 � w. If E��.1/ � 0, then k.�; x; 
/ D Exe��.w/.

Proof An application of Itô’s formula guarantees that

e�.�.w/^t/k
�
�;V.�.w/ ^ t//;�.�.w/ ^ t/

	 � k
�
�;V.0/; 0

	 D
6X

jD1
Tj

where

T1 D
Z �.w/^t

0

ebs
Z
R



k
�
�; r.V.s/; y/;�.s/CQf .V.s/; y/	�k

�
�;V.s/;�.s/

	�
�.dy/ ds ;

T2 D
Z �.w/^t

0

ebs
h
�kx

�
�;V.s/;�.s/

	�2
2

kxx
�
�;V.s/;�.s/

	

C k

�
�;V.s/;�.s/

	
f
�
V.s/

	C �k

�
�;V.s/;�.s/

	i
ds ;

T3 D
Z �.w/^t

0

ebs


kx
�
�;V.s/;�.s/

	C r1k

�
�;V.s/;�.s/

	�
dLc.s/ ;

T4 D
Z �.w/^t

0

ebs

�kx

�
�;V.s/;�.s/

	C r2k

�
�;V.s/;�.s/

	�
dUc.s/ ;

T5 D
Z �.w/^t

0

ebskx
�
�;V.s/;�.s/

	
� dB.s/ ;

T6 D
X
0<s�t

ebs


k
�
�; r.V.s�/;�X.s//;�.s�/C Qf .V.s�/;�X.s//

	

� k
�
�;V.s/;�.s�/	� ;

�
Z �.w/^t

0

ebs
Z
R



k
�
�; r.V.s�/; y/;�.s�/C Qf .V.s�/; y/	

� k
�
�;V.s�/;�.s�/	� ds :

Here T1 C T2 D 0 because of the integro-differential equation (178), T3 D T4 D 0

because of the boundary conditions, and T5;T6 are martingales. Consequently,

k
�
�;V.0/; 0

	 D Ex


e��.w/k

�
�;V.�.w/ ^ t//;�.�.w/ ^ t/

	�
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Now �.w/ < 1 a.s. because E��.1/ < 1. Because � � 0 and k is bounded, the
r.h.s. converges to

Ex


e��.w/k

�
�;V.�.w///;�.�.w//

	
:

The proof is completed upon recognizing that k.�; x; 
/ D 1 for 
 � w. �

14.3 Poisson’s Equation and the CLT

A natural complement to the computation of the loss rate `b is the development of a
central limit theorem (CLT) for the cumulative loss. In particular, we wish to obtain
a CLT of the form

U.t/� `btp
t

D! �N.0; 1/ (179)

as t ! 1. This CLT lends itself to the approximation

U.t/
D� `bt C �

p
t N.0; 1/ (180)

when t is large, where
D� means ‘has approximately the same distribution as’ [and

carries no rigorous meaning, other than through (179)]. The key new parameter
to be computed in the approximation (180) is the time-average variance constant
�2. Computing �2, in turn, involves representing U.t/ in terms of the solution to
Poisson’s equation which is well-known to play a fundamental role for Markov
process CLTs (cf. e.g. Bhattacharyya [30], Glynn [65], Glynn and Meyn [67], [11,
I.7, II.4d]). See also Williams [139] for the CLT for U in the Brownian case.

We develop the theory in terms of a general additive functional V of the
form (176) and its associated boundary processes L and U. Given a function
g W Œ0; b� ! R and a scalar c, we say that the pair .g; c/ is a solution to Poisson’s
equation for the additive functional� if

g
�
V.t/

	C�.t/ � ct

is a martingale. The martingale is a generalization of the Dynkin martingale that
arises if r1 D r2 D 0 � Qf below; see [85, p. 299]. When � D U, c must clearly
equal `b.

Theorem 14.3 Assume that f is bounded and that

sup
0�x�b

Z
R

�jQf .x; y/j C Qf .x; y/2	 �.dy/ < 1 : (181)
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If there exists a twice continuously differentiable function g W Œ0; b� ! R satisfying

sup
0�x�b

Z
R

ˇ̌
g
�
r.x; y/

	ˇ̌
�.dy/ < 1 : (182)

and a scalar c such that the pair .g; c/ satisfies the integro-differential equation

.L g/.x/ D �
�

f .x/C
Z
R

Qf .x; y/ �.dy/� c
�

(183)

for 0 � x � b, subject to the boundary conditions

g0.0/ D �r1; g0.b/ D r2 ; (184)

then

g
�
V.t/

	C�.t/ � ct

is a martingale. Furthermore,

�.t/ � `btp
t

D! �N.0; 1/

as t ! 1, where

�2 D
Z b

0

h
�2g0.x/2 C

Z
R

�Qf .x; y/C g
�
r.x; y/

	 � g.x/
	2
� �.dy/

i
�.dx/ :

Proof We note that Itô’s formula guarantees that

g
�
V.t/

	 � g
�
V.0/

	C�.t/ � ct

D
Z t

0

.L g/
�
V.s/

	
ds C

Z t

0

g0
�
V.s/

	
� dB.s/

C
X
0<s�t



g
�
V.s/

	 � g
�
V.s�/	�

�
Z t

0

Z
R



g
�
r.V.s�/; y/	 � g

�
V.s�/	� �.dy/ ds

C
Z t

0

f
�
X.s/

	
ds C

Z t

0

Z
R

Qf �V.s�/; y	 �.dy/ ds

C
X
0<s�t

f
�
V.s�/;�X.s/

	 �
Z t

0

Z
R

Qf �V.s�/; y	 �.dy/ ds
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C r1Lc.t/ C r2Uc.t/ � ct C g0.0/Lc.t/ � g0.b/Uc.t/

D
Z t

0

g0
�
V.s/

	
� dB.s/

C
X
0<s�t



g
�
V.s/

	 � g
�
V.s�/	 C Qf .V.s�/;�X.s/

	�

�
Z t

0

Z
R



g
�
r.V.s�/; y/	 � g

�
V.s/

	C Qf �V.s�/; y	� �.dy/ ds

D M.t/ (say) ;

where (181) and (182) were used to obtain the second equality. In the presence
of (181), (182), and the boundedness of g and g0, it follows that M.t/ is a martingale.
Furthermore, the quadratic variation has the form

ŒM;M�.t/ D
Z t

0

g0
�
V.s/

	2
�2 ds

C
X
0<s�t



g
�
V.s/

	 � g
�
V.s�/	�C Qf .V.s�/;�X.s/

	�2

D
Z t

0

h
�2g

�
r.V.s�/; y/	2

C
Z
R



g
�
V.s/

	 � g
�
V.s�/	 C Qf .V.s�/;�X.s/

	�2�
�.dy/ ds

C M1.t/

where M1.t/ is a martingale. It is easily seen that ŒM;M�.t/=t ! �2 a.s. as t ! 1.
Finally, to verify condition a) of the martingale CLT in [58, p. 340], we need to show
that

1p
t
E� sup

0�s�t

ˇ̌
M.s/ � M.s�/ˇ̌ ! 0 (185)

as t ! 1 (this needs only to be verified for V.0/ distributed as � because we
can couple V to the stationary version from any initial distribution). Of course, a
sufficient condition for (185) is to establish that

1

t
E� sup

0�s�t

ˇ̌
M.s/ � M.s�/ˇ̌2 ! 0 : (186)

It is well known that (186) is immediate if

E� sup
0�s�1

�
M.s/ � M.s�/	2 < 1 : (187)



166 L.N. Andersen et al.

But (187) is bounded by

E�

X
0�s�1



M.s/ � M.s�/�2

D E�

X
0�s�1



g
�
V.s/

	 � g
�
V.s�/	C Qf .V.s�/;�X.s/

	�2

D E�

Z
R



g
�
r.V.s�/; y/	 � g

�
V.s�/	C Qf .V.s�/; y	�2�.dy/ ds

D
Z b

0

Z
R



g
�
r.x; y/

	 � g
�
x;
	C Qf .x; y	�2�.dy/ �.dx/

due to the boundedness of g and condition (181). The martingale CLT then yields
the desired conclusion. �

Theorem 14.3 therefore provides the CLT for general additive functionals
associated with V , provided that one can solve the integro-differential equation (183)
subject to the boundary condition (184). Finally, we note that the fact that g

�
V.t/

	C
�.t/ � ct is, in great generality, a martingale, implies that

Ex�.t/ D ct C g.x/� Exg
�
V.t/

	
;

where, as usual, Ex refers to the case V.0/ D x. Since

Exg
�
V.t/

	 ! E�g
�
V.t/

	

as t ! 1 (since V is regenerative with absolutely continuous cycles), we conclude
that

Ex�.t/ D ct C g.x/� E�g
�
V.t/

	 C o.1/ ;

as t ! 1. Hence, the solution g to Poisson’s equation also provides a ‘correction’ to
the value of Ex�.t/ that reflects the influence of the initial condition on the expected
value of an additive functional.

14.4 Large Deviations for the Loss Process

We turn next to obtaining a family of integro-differential equations from which the
large deviations behaviour of the additive functional�.�/ can be derived (for earlier
work in this direction in the Brownian case, see Zhang and Glynn [141] and Forde
et al. [60]). The key to the analysis is the following result:
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Theorem 14.4 Fix � 2 R. Suppose that

sup
0�x�b

Z
R

e�Qf .x;y/ �.dy/ < 1 : (188)

If there exists a positive twice differentiable function u.�/ W Œ0; b� ! R and a scalar
 .�/ such that the pair

�
u.�/;  .�/

	
satisfies the integro-differential equation

0 D �ux.�; x/C �2

2
uxx.�; x/C �

� f .x/ �  .�/
	
u.�; x/

C
Z
R



e�Qf .x;y/u

�
�; r.x; y/

	 � u.�; x/
�
�.dy/ (189)

for 0 � x � b, subject to the boundary conditions

ux.�; 0/ D �r1� ; ux.�; b/ D r2� ; (190)

then M.�; t/ D e��.t/u
�
�;V.t/

	
is a martingale.

Proof Define A.s/ D exp
˚
��.s/ �  .�/s

�
and

S.t/ D
X
0<s�t

A.s/


exp

˚
� Qf .V.s�/;�X.s/

	�
u
�
�;V.s/

	 � u
�
�;V.s�/	� :

Itô’s formula shows that M.�; t/ � M.�; 0/ equals

S.t/ C
Z t

0



� f
�
V.s/

	 �  .�/�A.s/u��;V.s�/	 ds

C
Z t

0

r1�A.s/ dLc.s/ C
Z t

0

r2�A.s/ dUc.s/

C
Z t

0



�ux

�
�;V.s/

	C �2

2
uxx
�
�;V.s/

	�
A.s/ds

D
Z t

0

A.s/ux
�
�;V.s/

	
� dB.s/ C S.t/

�
Z t

0

A.s/
Z
R



exp

˚
� Qf �V.s/; y	�u��; r�V.s/; y		 � u

�
�;V.s/

	�
�.dy/ ds ;

where the second equality uses the fact that
�
u.�/;  .�/

	
satisfy (189) and (190).

Given the boundedness of u.�/ and (188), the fact that M.�; t/ is integrable and is a
martingale is clear. �
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As a consequence of the martingale property and the fact that u.�/ is bounded
above and below by finite positive constants, it is straightforward to establish that

1

t
logExe��.t/ !  .�/

as t ! 1. Suppose that there exists �� > 0 for which  .�/ exists in a
neighbourhood of �� and is continuously differentiable there. If we let a D  0.��/,
then

1

t
logPx

�
�.t/ � at

	 !  .��/ � ��a I

see, for example, the proof of the Gärtner-Ellis theorem in [53, 45–51]. Hence,
the integro-differential equation (189) is intimately connected to the study of large
deviations for�.

14.5 Discounted Expectations for Additive Functionals

As our final illustration of how integro-differential equations naturally arise when
computing expectations of additive functionals of reflected Lévy processes, we
consider the calculation of an infinite horizon discounted expectation. Specifically,
we let the discounting factor at t be

� .t/ D
Z t

0

g
�
V.s/

	
ds C

X
0<s�t

Qg�V.s�/;�X.s/
	 C u1Lc.s/C u2Uc.t/

for given functions g; Qg (where Qg is such that Qg.x; 0/ D 0 for 0 � x � b), and set

D D
Z 1
0

e�� .s/ d�.s/ :

As for f ; Qf , we assume that g is bounded and that

sup
0�x�b

Z
R

ˇ̌Qg.x; y/ˇ̌ �.dy/ < 1:

Theorem 14.5 Assume that f ; Qf , g; Qg, u1; u2 are non-negative with g strictly posi-
tive. If there exists a twice continuously differentiable function k W Œ0; b� ! Œ0;1/
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satisfying the integro-differential equation

0 D �k0.x/C �2

2
k00.x/� g.x/k.x/

C
Z
R



e�Qg.x;y/k

�
r.x; y/

	 � k.x/
�
�.dy/

C f .x/ C
Z
R

Qf .x; y/ �.dy/

for 0 � x � b, subject to the boundary conditions

k0.0/� u1k.0/ D �r1 ; k0.b/C u2k.b/ D �r2 ;

then ExD D k.x/ for 0 � x � b.

Proof Itô’s formula ensures that

D.t/C e�� .t/k
�
V.t/

	 � k
�
V.0/

	 D
8X

jD1
Tj

where

T1 D
Z t

0

e�� .s/


�k0

�
V.s/

	C �2

2
k0
�
V.s/

	 � g.x/k
�
V.s/

	�
;

T2 D
Z t

0

e�� .s/
Z
R



e�Qg
�

V.s/;y
	
k
�
r
�
V.s/; y

		 � k
�
V.s/

	�
�.dy/ ;

T3 D
Z t

0

e�� .s/f
�
V.s/

	
ds C

Z t

0

e�� .s/
Z
R

Qf �V.s/; y	 �.dy/ ds ;

T4 D
Z t

0

e�� .s/


r1 � u1k

�
V.s/

	C k0
�
V.s/

	�
dLc.s/ ;

T5 D
Z t

0

e�� .s/


r2 � u2k

�
V.s/

	 � k0
�
V.s/

	�
dUc.s/ ;

T6 D
Z t

0

k0
�
V.s/

	
� dB.s/ ;

T7 D
X
0<s�t

e�� .s/Qf �V.s/;�X.s/
	 �

Z t

0

e�� .s/Qf �V.s/; y	 �.dy/ ds ;

T8 D
X
0<s�t

e�� .s/


e�Qg.V.s�/;�X.s//k

�
r
�
V.s/;�X.s/

		 � k
�
V.s�/	� ;

�
Z t

0

e�� .s/
Z
R



e�Qg.V.s�/;y/k

�
r
�
V.s/; y

		 � k
�
V.s�/	� �.dy/ ds :
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Here T1 C T2 C T3 D 0 because of the integro-differential equation, T4 D T5 D 0

because of the boundary conditions satisfied by k, and T6;T7;T8 are all martingales.
Consequently,

k.x/ D Ex

Z t

0

e�� .s/ d�.s/ C Exe�� .t/k
�
V.t/

	
:

Sending t ! 1, the non-negativity assumption ensures that

Ex

Z t

0

e�� .s/ d�.s/ " ExD ;

while the non-negativity of g; Qg, u1; u2, positivity of g and boundedness of k ensure
that

Exe�� .t/k
�
V.t/

	 ! 0 ;

proving the theorem. �

14.6 Jumps of Infinite Variation

Lévy processes are permitted to have a jump part of infinite variation as long as the
FV condition (174) is weakened to

Z
jyj<1

y2 �.dy/ < 1 : (191)

In this setting, one must compensate the small jumps, by considering the random
measure

Z
jyj<1

y


�.dy; ds/� �.dy/ ds

�
< 1 (192)

where � is the Poisson random measure having intensity measure � ˝ m (where
m is Lebesgue measure). The centered random measure is well-defined, and forms
a square-integrable martingale when integrated over s [due to (191)]. Thus, in the
non-BV jump setting we can write the Lévy process X as

X.t/� X.0/ D at C �B.t/

C
X
0<s�t

�X.s/�
�ˇ̌
�X.s/

ˇ̌ � 1
	C

Z t

0

Z
jyj<1

y


�.dy; ds/� �.dy/ ds

�
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for some suitably defined constant a; observe that when the stronger FV condi-
tion (174) holds,

a D � C
Z
jyj<1

y �.dy/ :

In order to develop an Itô-type formula in this setting, we note than when
�Œ�"; "� D 0 for some " > 0, we can write (for f twice differentiable)

f
�
V.t/

	 � f
�
V.0/

	

D
Z t

0

Z
R



f
�
V.s�/C y

	�f
�
V.s�/	��.dy; ds/ C �2

2

Z t

0

f 00
�
V.s/

	
ds

C
Z t

0

f 0
�
V.s/

	h
a ds C � dB.s/�

Z
jyj<1

y �.dy/ ds C dLc.s/ � dUc.s/
i

D
Z t

0

Z
R



f
�
V.s�/C y

	�f
�
V.s�/	���.dy; ds/� �.dy/ ds

	

C
Z t

0

Z
jyj�1



f
�
V.s�/C y

	�f
�
V.s�/	��.dy/ ds

C
Z t

0

Z
jyj<1



f
�
V.s�/C y

	�f
�
V.s�/	 � yf 0

�
V.s�/	��.dy/ ds (193)

C
Z t

0

f 0
�
V.s/

	
� dB.s/C f 0.0/

�
Lc.t/ � Lc.0/

	 � f 0.b/
�
Uc.t/ � Uc.0/

	
:

By sending " # 0 and utilising (191), we find that this formula extends to the general
case in the general Lévy setting. We note that the smoothness of f guarantees that

f
�
V.s�/C y

	�f
�
V.s�/	 � yf 0

�
V.s�/	

is of order y2 when y is small, thereby guaranteeing that the term (193) on the r.h.s. is
well-defined. As a consequence of the martingale property of the centered stochastic
integral,

Exf
�
V.t/

	 � Exf
�
V.0/

	 D
Z t

0

. QL f /
�
V.s/

	
ds ;

where for some suitable Q�

. QL '/.x/ D Q�' 0.x/C �2

2
' 00.x/C

Z
jyj>1



'
�
r.x; y/

	 � '.x/
�
�.dy/

C
Z
jyj�1



'
�
r.x; y/

	 � '.x/ � y' 0.x/
�
�.dy/ ;
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provided that ' 0.0 D ' 0.b/ D 0. The integro-differential operator QL replaces
the operator L that appeared earlier in the BV case (it can be easily verified that

QL D L in the BV case). For example, to compute ExTz, the Itô argument above
establishes that if h satisfies . QL h/.x/ D �1 subject to h0.0/ D 0 and h.x/ D 0

for x � z, then h.x/ D ExTz. In a similar fashion all the other integro-differential
equations derived earlier in this section can be generalised to Lévy processes having
non-BV jumps.

15 Additional Representations for the Loss Rate

In Sects. 6 and 8, two representations for `b were provided, in which `b was
represented in terms of an integral against the stationary distribution � for the
‘interior process’ V . In this section, we return to the computation of `b and provide
a simple argument establishing that there are infinitely many such representations
of `b in terms of � .

The notation is the same as in Sect. 14; recall in particular the function r.x; y/
associated with two-sided reflection and the integro-differential operator L .

We first write the local time U.t/ at b in terms of the jump component and its
continuous component, so that

U.t/� U.0/ D
X
0<s�t

�U.s/ C Uc.t/ ;

where, as usual, �U.s/ D U.s/� U.s�/ for s > 0. Clearly,

`b D `b
j C `b

c ;

where

`b
j D lim

t!1
1

t

X
0<s�t

�U.s/ ; `b
c D lim

t!1
1

t
Uc.t/ a.s.

We now show how `b
j and `b

c can be individually calculated in terms of � . Dealing
with `b

j is easy. Note that

QM.t/ D
X
0<s�t

�U.s/�
Z t

0

Z
R



V.s/C y � b�C �.dy/ ds

is a martingale (see p. 6 of [115]), and hence

E
1

t

X
0�s�t

�U.s/ D E
1

t

Z t

0

Z
R



V.s/C y � b�C �.dy/ ds :
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Consequently,

`b
j D

Z b

0

Z
R



x C y � b�C �.dy/ �.dx/ :

It remains only to compute `b
c . For a given twice differentiable function h W

Œ0; b� ! R, Itô’s formula (see p. 7 of [115]) ensures that

h
�
V.t/

	 � h
�
V.0/

	 D
X
0<s�t



h
�
V.s/

	 � h
�
V.s�/	�

C
Z t

0

h
�h0

�
V.s/

	C �2

2
h00
�
V.s/

	i
ds (194)

C �

Z t

0

h0
�
V.s//

	
dB.s/C h0.0/Lc.t/ � h0.b/Uc.t/ ;

where Lc.�/ is the continuous component of L.�/. Letting

M.t/ D
X
0<s�t



h
�
V.s/

	 � h
�
V.s�/	�C �

Z t

0

h0
�
V.s/

	
dB.s/

�
Z t

0

Z
R



h
�
r
�
V.s�/; y		 � h

�
V.s�/	� �.dy/ ds ;

and rewriting (194) in terms of L , we get

h
�
V.t/

	 � h
�
V.0/

	 D M.t/C
Z t

0

.L h/
�
V.s/

	
ds C h0.0/Lc.t/ � h0.b/Uc.t/

Further, M.�/ is a square integrable martingale, and since h and its derivatives are
bounded, it follows by taking stationary expectations at t D 1 that

0 D
Z b

0

.L h/.x/ �.dx/C h0.0/`0c � h0.b/`b
c ; (195)

where `0c D lim
t!1

1

t
Lc.t/ a.s.

As a consequence, we can now compute `0c and `b
c by choosing two (twice

differentiable) functions h1 and h2. According to (195),

�
h01.b/ �h01.0/
h02.b/ �h02.0/

��
`b

c

`0c

�
D

0
BB@

Z b

0

.L h1/.x/ �.dx/
Z b

0

.L h2/.x/ �.dx/

1
CCA (196)
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Thus, if h1 and h2 are chosen so that the coefficient matrix on the l.h.s. of (196) is
non-singular, this yields formulae for `0c and `b

c in terms of � . Consequently, there
are infinitely many representations of `b in terms of � (two of which have been
introduced in Sects. 6 and 8).

Even in situations where � is not easily computable, the above approach provides
a mechanism for easily computing bounds on `b. For example, by choosing h1 so
that h01.0/ D 0 and h01.b/ D 1 (and h2.�/ arbitrarily), we can compute bounds on `b

c
in terms of the supremum of .L h1/.x/.

16 Markov-Modulation

Models with the parameters varying according to the state of a finite Markov chain
or -process have a long history and are popular in many areas: in statistics, they
go under the name of hidden Markov models (e.g. Cappé et al. [41]), in finance
the term Markov regime switching is used (e.g. Elliott et al. [55]), and in queueing
the first occurrence was with the Markov-modulated Poisson process. We consider
here Lévy processes with the characteristic triplet .ci; �

2
i ; �i/ depending on the state

J.t/ D i of an underlying finite ergodic Markov process J, with the extension that
additional jumps may occur at state changes of J. This is important since then the
model class becomes dense in the whole of DŒ0;1/, cf. [11, Chap. XI] where also
the connection to Markov additive processes is explained.

In this section we generalize the results from Sects. 6 and 8 to hold for a Markov-
modulated Lévy process X. We will use the same technique as in Sect. 6 (a direct
application of Ito’s formula for general semimartingales) to derive a formula for `b.
In [16] an approach based on optional stopping of a multi-dimensional version of
the Kella-Whitt martingale is used to obtain `b, but this will not be presented here,
since it is very complicated and does not really shed any probabilistic light upon the
underlying Skorokhod problem. Further, the direct Ito approach leads directly to an
easier expression for `b.

We start by constructing X. We assume that we are given an underlying
probability space with filtration F, which satisfies the usual conditions, i.e., it
is augmented and right-continuous. Let J (the modulating process) be a right-
continuous irreducible Markov process with state space f1; : : : ; pg, intensity matrix
Q D .qij/ and stationary row vector ˛ D .˛i/. Let X1; : : : ;Xp be Lévy processes
(with respect to F) with characteristic triplets .ci; �

2
i ; �i/; i D 1; : : : ; p, which are

independent of J and each other and satisfy EjXi.1/j < 1; i D 1; : : : ; p. Further,
let fUij W 1 � i; j � pg and fUij

n W n � 1; 1 � i; j � pg be independent random
variables which are also independent of X1; : : : ;Xp and J, such that for each i; j; n,
Uij and Uij

n are identically distributed with distribution Hij and EjUijj < 1. Let
T0;T1; : : : be the jump epochs of J (with T0 D 0). It is assumed that for every i; j; n,
Uij

n is measurable with respect to F.Tn/ and that Uij 2 F.0/. We then define the
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process X according to

X.t/ D
X
n�1

X
1�i;j�p

i¤j

.Xi.Tn/� Xi.Tn�1/C Uij
n /�.J.Tn�1/ D i; J.Tn/ D j;Tn � t/

C
X
n�1

pX
iD1
.Xi.t/ � Xi.Tn�1//�.J.Tn�1/ D i;Tn�1 � t < Tn/; (197)

or, equivalently, X.0/ D 0 and

dX.s/ D
pX

iD1
�.J.s/ D i/dXi.s/C

X
n�1

X
1�i;j�p

i¤j

Uij
n�.s D Tn; J.Tn�/ D i; J.Tn/ D j/:

(198)

We denote the stationary measure of .V; J/ by �.�; �/ (.V; J/ is assumed to be
stationary throughout this section). Let QHij D Hji and QJ be time-reversed version of
J (note that QJ has intensity matrix QQ D A�1QTA where A is the diagonal matrix
with ˛ on the diagonal, and that ˛ is also stationary for QJ). QX is constructed by
using (197) with Hij replaced by QHij and J replaced by QJ. In the same way as in
Proposition 2.11 in [11, p. 314], we obtain the following representation of � in the
Markov-modulated case.

�.Œy; b�; i/ D ˛iPi. QX.�Œy � b; y// � y/; (199)

where �Œu; v/ D infft � 0 W QX.t/ … Œu; v/g; u � 0 � v, and Pi.�/ D P.� j QJ.0/ D i/.
Now, we turn our attention towards the identification of `b. The only differences

between the Markov-modulated case and the standard Lévy process case are that
we now have to treat time segments corresponding to different states of J separately
and that state changes in J generate jumps in X. In particular, we get the following
equivalent to (72) [where dX.s/ is given by (198)]

V.t/2 � V.0/2 �
Z t

0C
2V.s�/dX.s/

D �2bU.t/C
Z t

0C
dŒX;X�c.s/C

X
0<s�t

f�2�V.s/�L.s/C 2�V.s/�U.s/

C .�V.s//2g:

where (cf. Corollaries 2.5 and 2.9 on p. 313 in [11])

m D E�X.1/ D
pX

iD1
˛i

�
mi C

X
j¤i

qijEUij
�

(200)
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with mi D EXi.1/. Thus, we have

�2mEV D �2b`b C E�

Z 1

0C
dŒX;X�c.s/

C E�

X
0<s�1

f�2�V.s/�L.s/C 2�V.s/�U.s/C .�V.s//2g:

What remains is to identify terms which is fairly straightforward. It is easily seen
that

E

Z 1

0C
dŒX;X�c.s/ D

pX
iD1

˛i�
2
i ; EV D

pX
iD1

Z b

0

x�.dx; i/:

For the sum of jumps we get (condition on
�
V.s�/; J.s�/	),

E

X
0<s�1

.�V.s//2

D
pX

iD1

Z b

0

�.dx; i/
Z 1
�1

y2�.�x < y < b � x/
�
�i.dy/C

X
j¤i

qijH
ij.dy/

�

C
pX

iD1

Z b

0

�.dx; i/
Z 1
�1
.b � x/2�.y � b � x/

�
�i.dy/C

X
j¤i

qijH
ij.dy/

�

C
pX

iD1

Z b

0

�.dx; i/
Z 1
�1

x2�.y � �x/
�
�i.dy/C

X
j¤i

qijH
ij.dy/

�
:

E

X
0<s�1

�V.s/�L.s/

D
pX

iD1

Z b

0

�.dx; i/
Z 1
�1

x.x C y/�.y � �x/
�
�i.dy/C

X
j¤i

qijH
ij.dy/

�
;

E

X
0<s�1

�V.s/�U.s/

D
pX

iD1

Z b

0

�.dx; i/
Z 1
�1
.b�x/.y � b C x/�.y � b � x/

�
�i.dy/C

X
j¤i

qijH
ij.dy/

�
;
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Putting the pieces together, we get the final expression for `b in the Markov-
modulated case,

`b D 1

2b

(
2

 
pX

iD1

Z b

0

x�.dx; i/

! 
pX

iD1
˛i

�
mi C

X
j¤i

qijEUij
�!

C
pX

iD1
˛i�

2
i C

pX
iD1

Z b

0

�.dx; i/
Z 1
�1

'.x; y/
�
�i.dy/C

X
j¤i

qijH
ij.dy/

�)
:

(201)
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80. P. Jelenković, P. Momcilović, B. Zwart, Reduced load equivalence under subexponentiality.

Queueing Syst. 46, 97–112 (2004)
81. Z.J. Jurek, J. Rosinski, Continuity of certain random integral mappings and the uniform

integrability of infinitely divisible measures. Theory Probab. Appl. 33, 523–535 (1988)
82. O. Kallenberg, Foundations of Modern Probability (Springer, New York, 2002)
83. W. Kang, K. Ramanan, Characterization of stationary distributions of reflected diffusions.

Ann. Appl. Probab. 24, 1329–1374 (2014)
84. I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, 2nd edn. (Springer,

New York, 1991)
85. S. Karlin, H.M. Taylor, A Second Course in Stochastic Processes (Academic, New York,

1981)
86. J. Keilson, A limit theorem for passage times in ergodic regenerative processes. Ann. Math.

Stat. 37, 866–870 (1966)
87. O. Kella, Concavity and reflected Lévy processes. J. Appl. Probab. 29, 209–215 (1992)
88. O. Kella, O. Boxma, Useful martingales for stochastic storage processes with Lévy input. J.

Appl. Probab. 50, 439–450 (2013)
89. O. Kella, W. Stadje, A Brownian motion with two reflecting barriers and Markov-modulated

speed. J. Appl. Probab. 41, 1237–1242 (2004)
90. O. Kella, M. Sverchkov, On concavity of the mean function and stochastic ordering for

reflected processes with stationary increments. J. Appl. Probab. 31, 1140–1142 (1994)
91. O. Kella, W. Whitt, Useful martingales for stochastic storage processes with Lévy input. J.

Appl. Probab. 29, 396–403 (1992)
92. O. Kella, O. Boxma, M. Mandjes, A Lévy process reflected at a Poisson age process. J. Appl.

Probab. 43, 221–230 (2006)
93. W.M. Kempa, On the distribution of the time to buffer overflow in a queueing system

with a general-type input stream, in 2012 35th International Conference Proceedings on
Telecommunications and Signal Processing (TSP) (2012), pp. 207–211

94. R.Z. Khasminski, Stochastic Stability of Differential Equations (Sijthoff & Noordhoff, Alphen
aan den Rijn, 1980)

95. H.S. Kim, N.B. Shroff, On the asymptotic relationship between the overflow probability and
the loss ratio. Adv. Appl. Probab. 33, 836–863 (2001)

96. B. Kim, J. Kim, J. Lee, Asymptotic behavior of the stationary distribution in a finite QDB
process with zero mean drift. Oper. Res. Lett. 36, 127–132 (2008)

97. C. Klüppelberg, Subexponential distributions and integrated tails. J. Appl. Probab. 25, 132–
141 (1988)



Lévy Processes with Two-Sided Reflection 181

98. K. Kobayashi, Y. Takahashi, Overflow probability for a discrete-time queue with non-
stationary multiplexed input. Telecommun. Syst. 15, 157–166 (2000)

99. T. Konstantopoulos, G. Last, On the dynamics and performance of stochastic fluid systems.
J. Appl. Probab. 37, 652–667 (2000)

100. L. Kruk, J. Lehocky, K. Ramanan, S. Shreve, An explicit formula for the Skorokhod map on
Œ0; a�. Ann. Probab. 35, 1740–1768 (2007)

101. L. Kruk, J. Lehocky, K. Ramanan, S. Shreve, Double Skorokhod map and reneging real-time
queues, in Markov Processes and Related Topics: A Festschrift for Thomas G. Kurtz. Inst.
Math. Stat. Collect, vol. 4, ed. by S.N. Ethier, J. Feng, R.H. Stockbridge (Beachwood, Ohio,
2008), pp. 169–193

102. A. Kuznetsov, A.E. Kyprianou, V. Rivero, The theory of scale functions for spectrally negative
Lévy processes, in Lévy Matters II. Lecture Notes in Mathematics, vol. 2061 (Springer,
Heidelberg, 2012), pp. 97–186

103. A. Kyprianou, First passage of reflected strictly stable processes. Lat. Am. J. Probab. Math.
Stat. 2, 119–123 (2006)

104. A. Kyprianou, Introductory Lectures on Fluctuations of Lévy Processes with Applications
(Springer, New York, 2006)

105. A. Kyprianou, Gerber-Shiu Risk Theory (Springer, New York, 2013)
106. A. Kyprianou, V. Rivero, Special, conjugate and complete scale functions for spectrally

negative Lévy processes. Electr. J. Probab. 57, 1672–1701 (2008)
107. D. Lindley, The theory of queues with a single server. Proc. Camb. Philos. Soc. 48, 277–289

(1952)
108. D. Lindley, Discussion of a paper of C.B. Winsten. J. R. Stat. Soc. Ser. B 21, 22–23 (1959)
109. V. Linetsky, On the transition densities of reflected diffusions. Adv. Appl. Probab. 37, 435–

460 (2005)
110. P.L. Lions, A.S. Sznitman, Stochastic differential equations with reflecting boundary condi-

tion. Commun. Pure Appl. Math. 37, 511–537 (1984)
111. E. Lukacs, Characteristic Functions (Hafner, New York, 1970)
112. K. Maulik, B. Zwart, Tail asymptotics for exponential functionals of Lévy processes. Stoch.

Proc. Appl. 116, 156–177 (2006)
113. P.A. Moran, The Theory of Storage (Methuen, London, 1959)
114. L. Nguyen-Ngoc, M. Yor, Some martingales associated to reflected Lévy processes, in

Séminaire de Probabilités XXXVIII. Lecture Notes in Mathematics, vol. 1857 (Springer,
New York, 2005), pp. 42–69

115. B. Øksendahl, A. Sulem, Applied Stochastic Control of Jump Diffusions, 2nd edn. (Springer,
New York, 2007)

116. R.M. Phatarfod, T.P. Speed, A.M. Walker, A note on random walks. J. Appl. Probab. 8, 198–
201 (1971)

117. M. Pihlsgård, Loss rate asymptotics in a GI=G=1 queue with finite buffer. Stoch. Models 4,
913–931 (2005)

118. M. Pihlsgård, P.W. Glynn, On the dynamics of semimartingales with two reflecting barrier. J.
Appl. Probab. 50, 671–685 (2013)

119. M. Pistorius, On exit and ergodicity of the spectrally one-sided Levy process reflected at its
infimum. J. Theor. Probab. 17, 183–220 (2003)

120. M. Pistorius, On doubly reflected completely asymmetric Lévy processes. Stoch. Proc. Appl.
107, 131–143 (2003)

121. M. Pistorius, On maxima and ladder processes for a dense class of Lévy process. J. Appl.
Probab. 43, 208–220 (2006)

122. D. Pollard, Convergence of Stochastic Processes (Springer, New York, 1984)
123. P. Protter, Stochastic Integration and Differential Equations, 2nd edn. (Springer, New York,

2004)
124. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 3rd edn. (Springer,

New York, 1999)



182 L.N. Andersen et al.

125. L.C.G. Rogers, The two-sided exit problem for spectrally positive Lévy processes. Adv. Appl.
Probab. 22, 486–487 (1990)

126. Y. Saisho, Stochastic differential equations for multidimensional domain with reflecting
boundary. Probab. Theory Relat. Fields 74, 455–477 (1987)

127. Y. Sakuma, M. Miyazawa, Asymptotic behavior of the loss rate for Markov-modulated fluid
queues with a finite buffer. Queueing Syst. 65, 19–42 (2010)

128. G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Random Processes (Chapman & Hall,
New York, 1994)

129. K. Sato, Lévy Processes and Infinite Divisibility (Cambridge University Press, Cambridge,
1999)

130. D. Siegmund, The equivalence of absorbing and reflecting barrier problems for stochastically
monotone Markov processes. Ann. Probab. 4, 914–924 (1976)

131. K. Sigman, R. Ryan, Continuous-time monotone stochastic recursions and duality. Adv. Appl.
Probab. 32, 426–445 (2000)

132. W. Stadje, A new look at the Moran dam. J. Appl. Probab. 30, 489–495 (1993)
133. A. Stuart, J.K. Ord, Kendall’s Advanced Theory of Statistics, vol. 1 (Edward Arnold, London,

1994)
134. L. Takács, Introduction to the Theory of Queues (Oxford University Press, Oxford, 1962)
135. L. Takács, Combinatorial Methods in the Theory of Stochastic Processes (Wiley, New York,

1967)
136. H. Tanaka, Stochastic differential equations with reflecting boundary condition in convex

regions. Hiroshima Math. J. 9, 163–177 (1979)
137. J.C.W. van Ommeren, A.G. de Kok, Asymptotic results for buffer systems under heavy loads.

Probab. Eng. Inf. Sci. 1, 327–348 (1987)
138. W. Whitt, Stochastic-Process Limits (Springer, New York, 2002)
139. R.J. Williams, Asymptotic variance parameters for the boundary local times of reflected

Brownian motion on a compact interval. J. Appl. Probab. 29, 996–1002 (1992)
140. S. Zachary, A note on Veraverbeke’s theorem. Queueing Syst. Theory Appl. 46, 9–14 (2004)
141. X. Zhang, P.W. Glynn, On the dynamics of a finite buffer queue conditioned on the amount

of loss. Queueing Syst. Theory Appl. 67, 91–110 (2011)
142. X. Zhou, Exit problems for spectrally negative Lévy processes reflected at either the

supremum or infimum. J. Appl. Probab. 44, 1012–1030 (2007)
143. V.M. Zolotarev, One-Dimensional Stable Distributions (American Mathematical Society,

Providence, 1986)
144. B. Zwart, A fluid queue with a finite buffer and subexponential inputs. Adv. Appl. Probab. 32,

221–243 (2002)



Persistence Probabilities and Exponents

Frank Aurzada and Thomas Simon

Abstract This article deals with the asymptotic behavior as t ! C1 of the
survival function PŒT > t�, where T is the first passage time above a non negative
level of a random process starting from zero. In many cases of physical significance,
the behavior is of the type PŒT > t� D t��Co.1/ for a known or unknown
positive parameter � which is called the persistence exponent. The problem is well
understood for random walks or Lévy processes but becomes more difficult for
integrals of such processes, which are more related to physics. We survey recent
results and open problems in this field.
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1 Introduction

Let fXt; t � 0g be a real stochastic process in discrete or continuous time, starting
from zero. The analysis of the first passage time Tx D infft > 0; Xt > xg above
a non-negative level x is a classical issue in probability. In this paper we will
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be concerned with the asymptotic behavior as t ! C1 of the survival function
PŒTx > t� for a class of processes related to random walks and Lévy processes. This
problem has attracted some interest in the recent literature under the denomination
persistence probability. In a self-similar framework, that is if fXct; t � 0g and
fcHXt; t � 0g have the same distribution for some H > 0, the question is equivalent
to the lower tail probability problem, which is the study of the quantity

PŒ sup
0�s�1

Xs < x�; as x D t�H ! 0:

In many situations of interest it turns out that the behavior is polynomial: one has

PŒTx > t� D t��Co.1/ (1)

for a non-negative parameter � called the persistence exponent, which usually does
not depend on x � 0 and often belongs to Œ0; 1�. The study of asymptotic behaviors
like (1) has gained some attraction over the last years in the physics literature as
well, where the parameter � is often called survival exponent. Estimates of the
type (1) also appear in reliability theory, a subject that we shall not discuss here—
see [43] and the references therein for an account. In the following we will mostly
be concerned with positive persistence exponents, that is the process ends up in
crossing the level x. This contrasts sharply with classical risk theory, where the
survival analysis deals with the probability for a given process never to cross a fixed
level—see [1].

If X is a random walk or a Lévy process, studying the law of Tx is a special part
of fluctuation theory and the persistence probabilities are then well understood. For
example if X1 is attracted to a stable law, classical fluctuation identities entail that
the persistence exponent is the positivity parameter of the latter. There are many
accounts on fluctuation theory and we refer in particular to [18] for random walks
and to [38] for Lévy processes. In the first part of this article we focus on the results
of this theory dealing with the asymptotic behavior of PŒTx > t�, and we try to
be as exhaustive as possible. In general, the behavior is the same in discrete and
continuous time, except of course for x D 0 where the problem becomes different
for Lévy processes. We notice that even though a posteriori the resulting exponents
turn out to be the same for a Lévy process and the respective random walk, there
is no simple approximation argument that would yield this a priori, and for this
reason we have to consider the discrete and continuous time situations separately—
a feature that we encounter also for more complicated processes. The results for
random walks and Lévy processes, all classical, are presented here in order to give
some insight into more complex situations where X, though constructed upon a Lévy
process or a random walk, is not a Markov process anymore.

Some of these more complex situations, which are called non-trivial in the
physical literature, are the matter of the second part of this article. We first consider
integrated random walks and integrated Lévy processes. It turns out that for such
simple constructions, the computation of the persistence exponent is not quite
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easy in general. We display recent and less recent results where the persistence
probabilities are estimated with various degrees of precision. When this paper
was accepted for publication, we believed in a reasonable universal rule that the
persistence exponent of the underlying process should be twice the persistence
exponent of its integral, and stated several conjectures in this direction. However,
during the publication process, it turned out that this intuition was false, at least
for integrated stable Lévy processes where the persistence exponent also depends
on the self-similarity parameter, in a non-obvious way. An interesting problem is
now to understand whether this exponent is the same for integrated random walks
in the corresponding stable domain of attraction. This is true in the situation with no
negative jumps, but the other cases are still open. In particular, the situation with no
positive jumps, where classical fluctuation theory usually becomes much simpler,
is still open for integrated random walks. As in the non-integrated case, it does
not seem to us that persistence exponents in discrete and continuous time could be
simply deduced from one another in the same stable framework.

We then consider fractionally integrated processes, where the situation is yet
more difficult. The case when the underlying Lévy process is Brownian motion
yields self-similar Gaussian processes which can be changed into the respective sta-
tionary ones by the Lamperti transformation. The sought after persistence exponent
is then directly related to an estimate on the probability of non-zero crossings for
these Lamperti transforms, a problem known to be hard in spite of the Itô-Rice
formula which gives some information at the expectation level in the smooth case.
We present some universality and monotonicity results, and also some partially
heuristic comparisons with the fractional Brownian motion case, whose persistence
exponent can be computed explicitly. We also display other explicit computations of
persistence exponents for related processes such as weighted random walks, iterated
processes, and autoregressive processes.

The third and last part of this article deals with some applications of the
persistence probabilities in mathematical physics. We first deal with Lagrangian
regular points of the inviscid Burgers equation with random self-similar initial
data. The link between the Hausdorff dimension of such points and the persistence
exponent of integrated processes dates back to the original paper [83]. We recall
here that the problem is still open in the fractional Brownian motion case and state
a plausible conjecture when the initial data is a two-sided stable Lévy process.
Second, we consider the zero-crossings of a peculiar Gaussian stationary process
which is related to the positivity of Kac polynomials with large even degree.
This connection, which was discovered in [30], has further ramifications with the
persistence exponents of integrals of Brownian motion with higher order and of
a certain diffusion equation with white noise initial conditions in the plane, and
we make a brief account on the subject. We last consider three different inter-
acting statistical systems whose analysis hinges significantly upon the persistence
probabilities of integrated processes: wetting models with Laplacian interaction,
fluctuating interfaces with Langevin dynamics, and sticky particles on the line with
Poissonian initial conditions.
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Some open problems stated in the present paper are believed to be challenging
and we think that they could catch the attention of some colleagues. We finally
point out that we have not exhausted here all implications of persistence in physics
and that the persistence exponent of many other models remains unknown—see
[21, 27, 63, 66] and the references therein.

2 Classical Results

2.1 Random Walks

Let fXn; n � 1g be a sequence of i.i.d. real random variables with common
distribution �, and Sn D X1 C : : :C Xn be the associated random walk. Consider

Tx D inf fn � 1; Sn > xg

the first-passage time above x � 0. Recall the following basic rule, to be found in
e.g. Chap. XII.1–2 of [42]:

Tx is a.s. finite for every x � 0 , T0 is a.s. finite; (2)

and that the latter is also equivalent to the fact that Sn does not drift to �1. In this
case one has PŒTx > n� ! 0 as n ! C1 for every x � 0, and the difficulty to
estimate the speed of convergence comes from the fact that the event fTx > ng D
fS1 � x; : : : ; Sn � xg depends on n correlated random variables.

If � is concentrated on R
C, then PŒTx > n� D PŒSn < x� and the problem

becomes one-dimensional. The straightforward inequality

PŒSn < x� � exCn log.EŒe�X1 �/

shows that PŒTx > n� tends to zero at least exponentially fast (unless � is degenerate
at zero). Notice that the rate might also be superexponential and depend on x at the
logarithmic scale: if X1 has a positive strictly ˛-stable law (0 < ˛ < 1) for instance,
de Bruijn’s Tauberian theorem—see Theorem 4.12.9 in [19]—leads to

� logPŒTx > n� D � logPŒSn < x�

D � logPŒS1 < xn�1=˛� 
 �˛x�˛=.1�˛/n1=.1�˛/ (3)

for every x > 0, with some explicit �˛ > 0—see also [89]. Here and below an 
 bn

is defined by limn!1 an=bn D 1 and analogously for other limits. Of course, one
has T0 D 1 a.s. whenever� does not charge 0. If �f0g > 0, Jain and Pruitt’s general
uniform results on renewal sequences express the asymptotic behavior of PŒSn < x�
in terms of quantities related to �, at the logarithmic scale—see Theorem 2.1 in
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[52]—and also at the exact scale, under some conservativeness assumption—see
Theorem 4.1 in [52].

If � is not concentrated on R
C, it is easy to see that the asymptotics of PŒTx > n�

will not drastically depend on x: choosing " > 0 such that �" D �.�1;�"/ > 0,
the Markov property entails PŒTx > n� � PŒT0 > n� � PŒT" > n � 1�PŒX1 < �"� �
�"PŒT" > n� � �k

"PŒTx > n� as soon as k" � x, so that

PŒTx > n� � PŒT0 > n�

for every x � 0. Here and below an � bn is defined by 0 < lim infn!1 an=bn and
lim supn!1 an=bn < 1 and analogously for other limits.

The following formula computes the generating function of fPŒT0 > n�; n � 0g
in terms of that of the sequence fn�1PŒSn � 0�; n � 1g, and is true for any random
walk. It is a cornerstone for further investigations.

Sparre Andersen’s Formula For every z 2� � 1; 1Œ one has

X
n�0

zn
PŒT0 > n� D exp

2
4X

n�1

zn

n
PŒSn � 0�

3
5 : (4)

This result is obtained after simple rearrangements from Theorem XII.7.1 in [42],
whose proof has a combinatorial character and depends heavily on the independence
and stationarity of the increments of the random walk. A simpler method relying on
elementary Fourier analysis—see Chap. 3.7 in [39]—yields the more general

Spitzer’s Formula For every z 2� � 1; 1Œ and 
 � 0, one has

X
n�0

zn
EŒe�
Mn � D exp

2
4X

n�1

zn

n
EŒe�
SCn �

3
5 (5)

with the notation Mn D max.0; S1; : : : ; Sn/ and SCn D max.0; Sn/.
Indeed, one obtains (4) as a consequence of (5) in letting 
 ! C1. It is beyond

the peculiar scope of the present paper to discuss the full strength and the various
generalisations of Spitzer’s formula such as Baxter-Spitzer’s formula or the Wiener-
Hopf factorization, and we refer e.g. to [18, 38, 42] for more on this subject. Let
us simply remark that Sparre Andersen’s formula entails easily—see e.g. Theorem
XII.7.2 in [42]—the following characterization of (2):

Sn drifts to �1 ,
X
n�1

1

n
PŒSn > 0� < C1:
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From now on, we will suppose that Sn does not drift to �1 and that � is not
concentrated on R

C. This entails that PŒSn > 0� > 0 and PŒSn < 0� > 0 for
every n � 1.

A remarkable consequence of (4) is that when PŒSn � 0� D � 2 .0; 1/ for every
n � 1, one obtains an explicit formula for PŒT0 > n� depending only on � and n W
one has

X
n�0

zn
PŒT0 > n� D 1

.1 � z/�
D

X
n�0

� .n C �/

nŠ� .�/
zn;

so that

PŒT0 > n� D � .n C �/

nŠ� .�/

 n��1

� .�/
� (6)

For example, symmetric random walks such that PŒSn D 0� D 0 for every n � 1

(this latter property is true when � is non atomic, for instance) all enjoy the property
that

PŒT0 > n� D � .n C 1=2/p
�nŠ


 1p
�n

�

Recall in passing that the estimate is slightly different for the simple random
walk where �f1g D �f�1g D 1=2, since then PŒS2n D 0� ¤ 0. The classical
computation, to be found e.g. at the beginning of the monograph [75]

X
n�0

zn
PŒT0 > n� D exp

2
4X

n�1

zn

n

1

2
�
X
n�1

z2n

2n22n

 
2n

n

!3
5

D
 

1

1 � z
� 1 � p

1 � z2

z.1 � z/

!


r

2

1 � z
as z " 1,

and the Tauberian theorem for monotonic sequences entail PŒT0 > n� 
 p
2=.�n/.

Another remarkable consequence of (5) is the exact computation of the persis-
tence exponent whenever fSn; n � 1g fulfils the so-called Spitzer’s condition

lim
n!1

1

n

nX
kD1

PŒSk < 0� D � 2 Œ0; 1�:

The latter turns out to be equivalent—see [15, 37], or Chap. 7 in [38]—to

lim
n!1PŒSn < 0� D �; (7)
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and a theorem of Rogozin shows that (7) entails

PŒTx > n� 
 cxn��1l.n/
� .�/

D n��1Co.1/ (8)

for every x � 0 with l.n/ some slowly varying sequence and cx some explicit
positive constant. Besides, as explained in Theorem 8.9.12 of [19], this asymptotic
behavior is actually equivalent to (7) for � 2 .0; 1/. When PŒSn < 0� ! 0 various
behaviors are possible, contrary to the above. For example if n�PŒSn < 0� is slowly
varying for some � 2 .0; 1/, Theorem 8.9.14 in [19] and Theorem XVII.5.1 in [42]
yield

PŒT0 > n� 
 l.n/n�.1C�/ (9)

with l.n/ some slowly varying sequence. Various other behaviors also appear when
� has positive expectation and we refer to [36] for precise results. When PŒSn <

0� ! 1 and Sn does not drift to �1 (that is, when
P

n.1� PŒSn � 0�/=n D 1), the
behavior of PŒT0 > n� does not seem to be known, although one might expect that
the persistence exponent is always zero.

We conclude this paragraph with the so-called upward skip-free or right-con-
tinuous random walks on Z viz. such that Supp � 
 f1; 0;�1;�2;�3; : : :g, for
which our survival analysis does not require the use of (4). Indeed, the distribution
of Tk is then given by Kemperman’s formula [54] which reads:

PŒTk D n� D k C 1

n
PŒSn D k C 1� for every n > k. (10)

In this particular case, we are reduced to the asymptotical behavior of the one-
dimensional probability PŒSn D 1�. Notice—see [55]—that there is a universal
upper bound PŒSn D 1� � cn�1=2 leading to PŒTk > n� � 2c.k C 1/n�1=2, but
the exact behavior of PŒSn D 1� depends on �. For example, if � is in the respective
domain of normal attraction of some strictly ˛-stable law—with ˛ 2 .1; 2� since
otherwise Sn would drift to �1 by the law of large numbers, Gnedenko’s local
limit theorem—see e.g. Theorem 8.4.1 in [19]—yields PŒSn D 1� 
 c˛n�1=˛l.n/ for
some explicit c˛ , so that by (10)

PŒTk > n� 
 ˛c˛.k C 1/l.n/n�1=˛: (11)

Recall—see Proposition 8.9.16 in [19] and recall that we deal with right-continuous
walks—that � is in the domain of attraction of some strictly ˛-stable law with ˛ 2
.1; 2� if and only if (7) holds with � D 1 � 1=˛, so that (11) is also actually a
consequence of (8). On the other hand, the slowly varying term l.n/ can be removed
if Sn is in the respective domain of normal attraction (viz. when Sn=n1=˛ converges in
law to some non degenerate limit—see e.g. the concluding remark of Chap. XVII.5
in [42]), and this degree of precision is not given by Rogozin’s theorem.



190 F. Aurzada and T. Simon

2.2 Lévy Processes

Let fZt; t � 0g be a non-degenerate real Lévy process starting from 0 and

Tx D inf ft > 0; Zt > xg

be its first passage time above x � 0. Consider fZn; n � 1g the associated random
walk. The inequality

PŒTx > t� � PŒ QTx > Œt�� (12)

with the notation QTx D inf fn � 1; Zn > xg, yields a rough upper bound for
PŒTx > t� which can be made more precise as a function of t and x in applying
the results of the previous paragraph. This upper bound however does not yield
enough information in general if x D 0. For example Rogozin’s criterion—see
Proposition VI.11 in [13] and the remark thereafter—shows that T0 D 0 a.s. when
Z has unbounded variation, whereas the function t 7! PŒZ1 � 0; : : : ;ZŒt� � 0� has a
positive limit at C1 if Z drifts to �1. Recall also that in the bounded variation
case, the regularity of the half-line for Z is characterized in terms of the Lévy
measure and the drift—see Theorem 22 in [38], and again PŒZ1 � 0; : : : ;ZŒt� � 0�

might have a positive limit when t ! C1 even though T0 D 0 a.s.
If x > 0 however, it turns out that the two quantities in (12) are often comparable.

First of all, for every x > 0 one has

PŒTx D C1� > 0 , Zt ! �1 a.s. ,
Z 1
1

1

t
PŒZt > 0� dt < C1 (13)

(see e.g. Corollary 4.4(iii) in [38]), and a simple analysis shows that Zt ! �1 a.s.
is equivalent to Zn ! �1 a.s. which is itself equivalent to

X
n�1

1

n
PŒZn > 0� < C1;

so that with the above notation PŒTx > t� ! 0 if and only if PŒ QTx > t� ! 0 as
t ! C1. In the following, we will see that in many examples one has

PŒTx > t� � PŒ QTx > Œt��:

However, it does not seem easy to prove this estimate a priori, which probably does
not hold in full generality.

We will suppose henceforth that (13) does not hold. Set � for the law of Z1,
Mt D sup fZs; s � tg for the running maximum of Z, and recall that

PŒTx > t� D PŒMt � x�:
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If� is concentrated on R
C then Z is a.s. increasing and one is reduced to the random

walk case because

PŒZŒt�C1 � x� � PŒTx > t� D PŒZt � x� D PŒMt � x� � PŒZŒt� � x�:

If � is not concentrated on R
C then an argument analogous to that of the previous

paragraph shows that

PŒTx > t� � PŒTy > t�

as t ! C1 for every x; y > 0, as in the discrete time framework. The classical
approach to obtain more information on PŒTx > t� relies on a particular case of the
first fluctuation identity—see e.g. Theorem VI.5 in [13], which is an analogue of
Spitzer’s formula in continuous time:

Baxter-Donsker’s Formula For every 
 � 0 and q > 0, one has

EŒe�
Meq � D exp �

Z 1

0

e�qt

t
EŒ.1 � e�
ZCt /� dt

�
(14)

with the notation ZCt D max.0;Zt/ and eq 
 Exp.q/ an independent random time.
An important consequence of this formula is a theorem of Rogozin—see e.g.

Theorem VI.18 in [13]—which shows that if the following Spitzer’s condition

1

t

Z t

1

PŒZs � 0�ds ! � 2 .0; 1/; t ! C1 (15)

holds, then for any x > 0

PŒTx > t� 
 cxl.t/t�� (16)

with cx > 0 and l.t/ some slowly varying function not depending on x. Besides, one
can show that (15) and (16) are actually equivalent—see again Theorem VI.18 in
[13]. Recall—see Chap. 7 in [38]—that (15) is also equivalent to (7) for the random
walk f�Zn; n � 1g. The estimate (16) can be refined for strictly ˛-stable processes,
which all enjoy the property that

PŒZt � 0� D � 2 .0; 1/ for every t > 0. (17)

An asymptotic analysis of the so-called Darling integral—see Theorem 3b in [16]—
entails then

PŒTx > t� 
 cx˛�t�� (18)
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for such processes, where c is an explicit constant. Notice that there are other Lévy
processes enjoying the property (17), like subordinate stable processes, for which
no refinement of (16) seems available in the literature. In [12], the precise estimate

PŒTx > t� 
 cxt�1=2

was obtained for every centered Lévy processes with finite variance and every x > 0.
We finally remark that Sect. 3 in [57] provides uniform estimates for PŒTx > t� in
terms of the renewal function of Z, the latter being non-explicit in general.

We conclude this paragraph with spectrally negative Lévy processes, where our
survival analysis amounts to the study of a one-dimensional probability as in the
discrete framework, and one does not really require (14). Indeed, the passage-time
process fTx; x � 0g is then a subordinator with infinite lifetime if Z does not drift to
�1, whose Laplace exponent ˚.
/ D � logEŒe�
T1 � is characterized by the law
of Z1—see Chap. VII in [13] or Chap. 9 in [38] for these basic facts. In particular,
if ˚.
/ 
 
�l.
/ as 
 ! 0 for some � 2 .0; 1/ and l.
/ some slowly varying
function, then Theorem XIII.5.4. in [42] yields

PŒTx > t� 
 x

� .�/
l.t�1/t��:

Actually, the above condition on ˚ is equivalent to (15)—see Proposition VII.6 in
[13] and notice that then necessarily � � 1=2. Hence, the above estimate is just a
consequence of Rogozin’s theorem with an explicit constant cx. Spectrally negative
Lévy processes also enjoy the following peculiar property, which follows easily
from the strong Markov property and the absence of positive jumps:

Meq

dD Zeq j Zeq > 0: (19)

In particular, one has Mt
dD Zt j Zt > 0 for every t > 0 if PŒXt > 0� D � � 1=2 does

not depend on t (which is true only for strictly .1=�/-stable process). This latter
identity which can be shown in many different ways—see Sect. 8 in [17] and the
references therein—recovers the estimate (18) in this particular case: one has

PŒTx > t� 
 cx

� .�/
t��

for some explicit constant c > 0 which is
p
2 for the standard Brownian motion.

We finally stress that (19) can be useful for spectrally negative processes such that
PŒXt > 0� ! 1. For example, if X is an ˛-stable process with positive drift then (19)
shows after a simple analysis that

PŒTx > t� 
 cxt�˛
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for some explicit c > 0, an estimate which cannot be obtained directly neither from
Rogozin’s theorem nor from the behavior of ˚ at zero, and which is also coherent
with (9) since PŒXt < 0� 
 ct1�˛ .

3 Recent Advances

3.1 Integrated Random Walks

An integrated random walk is the sequence of partial sums An D S1 C � � � C Sn,
where fSn; n � 1g is a random walk. As above we write Sn D X1 C � � � C Xn and we
denote by � the law of the increment X1 D S1. Let

Tx D inf fn � 1; An > xg

be the first-passage time above x � 0. Since we have

fS1 � 0; : : : ; Sn � 0g 
 fA1 � 0; : : : ;An � 0g ;

the discussion made in Sect. 2.1 shows that PŒTx D C1� � PŒT0 D C1� > 0

as soon as Sn drifts to �1. If � is concentrated on R
C, then An has non-negative

increments and since An D nX1 C .n � 1/X2 � � � C Xn � .n=2/SŒn=2�, one has

PŒTx > n� D PŒAn < x� � PŒnSŒn=2� < 2x� � e2xCn log.EŒe�Œn=2�X1 �/;

which shows that PŒTx > n� tends to zero superexponentially fast, unless � is
degenerate. If � is not concentrated on R

C, then choosing " such that�.�1;�"/ >
0 and using the same argument as in Sect. 2.1 entail PŒTx > n� � PŒT0 > n� �
.�.�1;�"//kPŒTx > n� for every x � 0 as soon as k" � x, so that

PŒTx > n� � PŒT0 > n�

for every x � 0.
Henceforth we will suppose that Sn does not drift to �1 and that � is not

concentrated on R
C. This entails that PŒSn > 0� > 0 and PŒSn < 0� > 0 for

every n � 1. We are interested in the rate of decay of PŒT0 > n� to zero, and we will
see that far much less is known than for random walks.

The case of integrated simple random walks was first considered by Sinai [82],
who showed the following

Theorem 3.1 (Sinai) Suppose that �fC1g D �f�1g D 1=2. Then

PŒT0 > n� � n�1=4: (20)
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The main idea lying behind this theorem is very simple. Let f�k; k � 0g be the
a.s. infinite sequence of return times of Sn to zero viz. �0 D 0 and �k D inffn >
�k�1; Sn D 0g. On the one hand, the simplicity assumption entails that fA�n ; n � 1g
is an integer-valued symmetric random walk, and that the a.s. identification

fA�1 � 0; : : : ;A�n � 0g D fAi � 0; 8 i D 1 : : : �ng

holds. By Gnedenko’s local limit theorem, one has PŒA�n D 0� 
 kn�1=2 for some
k > 0; so that the series

P
n�1 n�1PŒA�n D 0� is convergent. Sparre-Andersen’s

formula combined with the Tauberian theorem for monotonic sequences shows then
that

PŒT0 > �n� 
 cp
n

�

On the other hand, the sequence �n grows like n2 at infinity (more precisely, n�2�n

converges in law to some positive .1=2/-stable law), so that after some residual
analysis on the bivariate random walk fA�n ; �ng, one obtains the desired result. Let
us stress that the difficulty of the analysis stems from the fact that .�n/ and .A�n/ are
not independent.

Since then several authors [5, 24, 31, 34, 85, 87] have tried to extend the validity
of the estimate (20) to more general random walks. The following general result
was proved very recently in [31], solving conjectures made in [24, 84]:

Theorem 3.2 (Dembo-Ding-Gao) Suppose that � has finite second moment and
zero mean. Then for any x 2 R

PŒTx > n� � n�1=4:

The method used by [31] is completely different from Sinai’s and relies on
a decomposition of the integrated walk at its supremum, which is somehow
reminiscent of Sparre Andersen’s argument, and too involved to be discussed here
in detail. This method also allows for an elementary proof of the formula (6) in the
symmetric and absolutely continuous case—see Proposition 1.4 therein.

The result in Theorem 3.2 was further refined in [34].

Theorem 3.3 (Denisov-Wachtel) Suppose that � has finite (2+ı) moment for
some ı > 0 and zero mean. Then there is a constant c D c.�/ > 0 such that
for x 2 R

PŒTx > n� 
 cn�1=4:
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Denisov and Wachtel use a new approach, based on their earlier results for other
problems in [32]. They show that a typical scenario for T0 > n is that A becomes
quite far negative over a short time period of order n1�". From there, the pair .Sn;An/

essentially looks like a rescaled pair of Brownian motion and integrated Brownian
motion .Bt;

R t
0

Bsds/, which is formally obtained by coupling techniques similar to
the idea applied in [5]. For the remaining time, n�n1�" 
 n, one requires the second
component of the rescaled pair .Bt;

R t
0

Bsds/ to be negative, which can be precisely
analyzed using [47]. The paper [34] is also the first to apply potential-theoretic tools
for persistence probabilities outside the classical random walk and Lévy process
setting.

Sinai’s method of decomposing the integrated path along the excursions away
from zero of the underlying random walk can be extended under some extra
assumptions on the law of �X1 conditioned to be positive, which we denote by
��. This idea had been used in [85] to show the same result as [31] in several
situations like double-sided exponential, double-sided geometric, left-continuous,
or lazy simple random walks. Recently in [87], this technique is combined with
local limit theorems to obtain the following more precise result.

Theorem 3.4 (Vysotsky) Suppose that either �� is exponential or that � is left-
continuous. If � has finite variance and zero mean then there exists c D c.�/ > 0

such that

PŒT0 > n� 
 c n�1=4: (21)

Notice that there is still a small gap in that the existence of the constant in (21)
is only shown under the conditions in Theorems 3.3 and 3.4, while in view of these
results one would certainly expect it to hold under the sole assumption of finite
variance. Even more, as can be seen from the central limit theorem, random walks
with zero mean and finite variance are such that PŒSn > 0� ! 1=2. In view of the
discussion made in Sect. 2.1, it is hence natural to raise the more general

Conjecture 1 Suppose that PŒSn > 0� ! 1=2. Then

PŒT0 > n� D n�1=4Co.1/:

In this formulation, no assumption is made on the moments of � and this
enhances sharply the difficulty of the problem, which probably requires more
combinatorial tools than the one used in the above references.

We now turn to some situations where the persistence exponent of integrated
random walks is not 1/4. We denote by D.˛/ the set of probability measures
attracted to some strictly ˛-stable law with ˛ ¤ 2 and we refer e.g. to Chap. XVII.5
in [42] for more on the subject. Recall that if � 2 D.˛/, then EŒjX1js� < 1 for
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every s 2 Œ0; ˛/ and that EŒX1� D 0 if ˛ > 1. The following is a consequence of the
main result in [31]:

Theorem 3.5 (Dembo-Ding-Gao) Suppose that � 2 D.˛/ for some ˛ 2 .1; 2/.
Then there exists an explicit constant K such that

PŒT0 > n� � Kn�.1�1=˛/=2; n � 1:

If in addition � is attracted to a spectrally positive ˛-stable law, then

PŒT0 > n� � n�.1�1=˛/=2:

The result in [31] is formulated in a different manner and is actually more general.
In the case when � 2 D.˛/ however, the additional assumption made therein for
the lower bound is equivalent to the spectral positivity of the attracting law—see
e.g. Theorem XVII.5.1 in [42]. With the help of an extension of Sinai’s method, the
estimate was recently refined in [87]:

Theorem 3.6 (Vysotsky) Suppose that �� is exponential or that � is left-
continuous. If � is centered, attracted to some spectrally positive ˛-stable law
with ˛ 2 .1; 2/; and if

X
n�1

1

n

�
PŒSn < 0� � 1

˛

�
< C1;

then there exists c D c.�/ > 0 such that

PŒT0 > n� 
 c n�.1�1=˛/=2:

In view of our final discussion made in Sect. 2.1, it is very surprising that the
case where � is right-continuous and normally attracted to some spectrally negative
˛-stable law seems to be more difficult to handle than the dual situation where � is
left-continuous and normally attracted to some spectrally positive ˛-stable law.

It is natural to ask what the persistence exponent should be when the limit stable
law does have negative jumps. Let us hence denote by D.˛; �/ the set of probability
measures attracted to a strictly ˛-stable law with positivity parameter �. Notice—
see e.g. [89] for details and recall that we excluded the one-sided case—that � 2
.0; 1/ for ˛ 2 .0; 1�, that � 2 Œ1 � 1=˛; 1=˛� for ˛ 2 .1; 2/, and that spectrally
positive ˛-stable laws with ˛ 2 .1; 2/ are such that � D 1 � 1=˛. Besides, one has
PŒSn > 0� ! � whenever � 2 D.˛; �/—see e.g. Theorem XVII.5.1 in [42]. In
view of the discussion made in Sect. 2.1 and Theorem 3.9 stated below, it is natural
to raise the general.
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Conjecture 2 Suppose that � 2 D.˛; �/. Then

PŒT0 > n� D n��=.1C˛.1��//Co.1/:

Under the stronger assumption that � is normally attracted, one may also wonder if
a more precise behavior could not be obtained, as in [87].

3.2 Integrated Lévy Processes

In this section we consider the process

At D
Z t

0

Zs ds; t � 0;

where fZt; t � 0g is a real Lévy process starting from zero. We set

Tx D inf ft > 0; At > xg D inf ft > 0; At D xg

for its first passage time above x � 0. Contrary to (12), there is no straightforward
bound between PŒTx � t� and an analogous quantity involving some iterated random
walk, so that the results of the previous paragraph cannot be used, except in the
Brownian case, see [31, Remark 1.5].

The process .Z;A/ is Fellerian and we set P.z;a/ for its law starting from .z; a/,
with the simplified notation P D P.0;0/. It is clear by the right-continuity of Z that

P.z;0/ŒT0 D 0� D 1 or 0 according as z > 0 or z < 0.

Since T0 is the first passage time into the positive half-space for the Fellerian process
.Z;A/, one has also PŒT0 D 0� D 0 or 1 by the 0–1 law, but to obtain a criterion
for the regularity of the upper half-plane for .Z;A/ is an open problem which
does not seem obvious. Since integrated Lévy process all have finite variation, one
might wonder whether this criterion would not be different from the aforementioned
Theorem 22 in [38].

If Z drifts to C1, then it is clear that Tx < C1 a.s. for every x > 0. On the
other hand, if Z drifts to �1 then its last passage time above zero can be made
arbitrarily small so that one will have PŒTx D C1� > 0 for every x > 0. When
Z oscillates then probably one has PŒTx D C1� D 0 for every x > 0, but there is
no direct answer to this question. In general there is no result of basic fluctuation
theory available for integrated Lévy processes.
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In this paragraph we will consider two examples where the persistence exponent
can be computed. The first one is the integrated Brownian motion and originates
from Kolmogoroff [56], in relation with the two-dimensional generator

1

2

@2

@x2
C x

@

@y

and the associated Fokker-Planck equation. Notice that [56] actually deals with
the more general n-times integrated Brownian motion. The process .B;A/ is a
Gaussian Markov process whose transition density can be computed explicitly via
the covariance matrix. By the (3/2)-self-similarity of A, one has

Tx
dD x2=3T1

under P, so that our persistence problem amounts to finding the asymptotic of
PŒT1 > t�, a question which dates back to Uhlenbeck and Wang in 1945. Notice that
the above identity also yields PŒT0 D 0� D 1. Among other formulæ, the following
was obtained by McKean in an analytical way—see (3.1) in [65]:

P.0;�1/ ŒT0 2 dt;BT0 2 dx�

D 3x

�
p
2�t2

e�.2=t/.1�xCx2/

 Z 4x=t

0

e�3y=2y�1=2 dy

!
1fx�0g dt dx:

This formula is the key argument to the following result which is proved separately
in [45, 51]:

Theorem 3.7 (Goldman, Isozaki-Watanabe) With the above notations there
exists a c > 0 such that

PŒT1 > t� 
 c t�1=4: (22)

Notice that by self-similarity this result has the more general formulation

PŒAs � x; 8 s 2 Œ0; t�� D PŒTx > t� 
 c x1=6t�1=4 as t=x2=3 ! C1.

In particular, one has

PŒAs � x; 8 s 2 Œ0; 1�� 
 c x1=6 as x ! 0,

which is a lower tail probability statement as mentioned in the introduction. By
approximation and his result on integrated simple random walks, Sinai had obtained
in [82] the rougher estimate

PŒT1 > t� � t�1=4:
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The argument in [45] is analytical and relies on integral equations. It also yields a
complicated explicit expression for the law of T1:

P ŒT1 2 dt� D P.0;�1/ ŒT0 2 dt�

D
 

3
p
3

2
p
2�t5=2

e�3=.2t3/ C 2
p
3

�

Z 1
0

Z 1
0

Z t

0

P.�z;0/ Œt � T0 2 ds;BT0 2 dx�

�e�6=s3�2z2=s2 sinh.6z=s2/zdzds
�

dt;

where the quantity P.�z;0/ Œt � T0 2 ds;BT0 2 dx� can be expressed via McKean’s
above formula and self-similarity. Notice that both McKean and Goldman’s formulæ
have been generalized by Lachal [59], who obtained an explicit formula for
P.b;a/ ŒT0 2 dt;BT0 2 dx� for any .b; a/. The asymptotic analysis which is carried
out in Proposition 2 of [45] gives the right speed of convergence for PŒT 2 dt�,
but the resulting value of the constant c in (22) is erroneous because of some
inaccuracies in the change of variable. The right value is

c D 34=3� .2=3/

�213=12� .3=4/

 0:718

and follows also from the simpler probabilistic method of [51], which relies on the
Markov property and a Tauberian argument. This method yields the more general
estimate

P.b;0/ŒTx > t� 
 cb;xt�1=4

with some explicit cb;x > 0—see (1.12) in [51]. It also allows to handle first-passage
time asymptotics for fluctuating homogeneous additive functionals of Brownian
motion, with the persistence exponent depending smoothly on the skewness of the
functional—see Corollary 1 in [50]. We finally notice that the estimate (22) was also
obtained (with an erroneous constant c) in [23] after solving some Krein-Kramers
differential equation in the context of semiflexible polymers in the half-plane. This
latter method was generalised in [20] to give another computation of the persistence
exponent for fluctuating homogeneous additive functionals of Brownian motion, in
the context of survival of a diffusing particle in a transverse shear flow. Let us also
mention the paper [47], which obtains precise information on the law of integrated
Brownian motion conditioned to stay positive.

We now turn to integrated strictly ˛-stable Lévy processes, which form the
natural generalisation of integrated Brownian motion. The bivariate process .Z;A/ is
then a stable Markov process, where the stability property has the general meaning
which is given in the monograph [76]. In particular, one can check from the Lévy-
Khintchine formula—see e.g. Proposition 3.4.1 in [76]—that

A1
dD .1C ˛/�1=˛Z1
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for every t � 0, so that A1 is a ˛-stable variable with the same positivity parameter
as Z1. On the other hand there does not exist an explicit formula for the density of the
bivariate random variable .Z1;A1/ except in the Gaussian case ˛ D 2. The univariate
process A is .1C 1=˛/-self-similar, so that with the above notations one has

Tx
dD x˛=.˛C1/T1

under P and we need only to study the asymptotic behavior of PŒT1 > t�. Notice that
again this identity yields PŒT0 D 0� D 1. As a consequence of the main result of
[80], the persistence exponent of A can be computed within a specific sub-class:

Theorem 3.8 (Simon) Let fZt; t � 0g be a strictly ˛-stable Lévy process with ˛ 2
.1; 2/. With the above notations, there exists a positive constant K such that

PŒT1 > t� � K t�.1�1=˛/=2; t > 0:

If in addition Z is spectrally positive, then

PŒT1 > t� D t�.1�1=˛/=2Co.1/:

The main result in [80] deals with more general homogeneous functionals of
stable Lévy processes, extending the results of Isozaki [49]. It also provides some
explicit lower bound with a logarithmic term, which entails the following criterion
for the finiteness of fractional moments of T1 in the spectrally positive case:

EŒTs
1� < 1 , �.˛ C 1/ < s < .˛ � 1/=2˛:

The method of Simon [80] is an adaptation of Sinai’s in continuous time, relying on
the bivariate Lévy process f.�t;A�t/; t � 0g with f�t; t � 0g the inverse local time
at zero (which exists because ˛ > 1). The upper bound relies on the Wiener-Hopf
factorization method as in [49], and the fact that A�1 is a symmetric .˛ � 1/=.˛ C
1/-stable variable whatever A1’s positivity parameter is. For the lower bound, the
crucial fact is that a.s.

fA�s � 1; 8s 2 Œ0; t�g D fAs � 1; 8s 2 Œ0; �t�g ;

which allows to study the probability of the right event with the help of (18). This
latter identity is true only in the spectrally positive case.

It is a natural question to find the persistence exponent for all integrated stable
Lévy processes. If Z is an ˛-stable subordinator, then A is an increasing process and
one gets the same superexponential behavior as in (3). This superexponential speed
is coherent with the previous discussion for integrated one-sided random walks. If
�Z is an ˛-stable subordinator, then Tx D C1 a.s. for every x � 0. The general
problem was only solved very recently, and after this paper had been accepted. We
will only give a brief account.
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Theorem 3.9 (Profeta-Simon) Let Z be a strictly ˛-stable Lévy process such that
PŒZ1 > 0� D � 2 .0; 1/. Then

PŒT1 > t� D t��=.1C˛.1��//Co.1/:

The proof of this theorem relies on the exact computation of the harmonic
measure

Pz;aŒZT0 2 dx�

where .z; a/ belongs to one of the two coordinate axes, which leads to the
unexpected behaviour

Pz;aŒjZT0 j > x� 
 c x�˛�=.1C˛.1��//

when .z; a/ belongs to the lower open half-plane, with an explicit constant c: This
computation is a generalization of previous results by McKean [65] and Gor’kov
[46] for integrated Brownian motion, made possible by a combined use of Fresnel
integrals, Mellin transform and the Markov property, which is too involved to be
reproduced here in detail. The last part of the proof consists in showing that the
intuitive identity in law

jZT0 j dD jZ1j � T1=˛0

with an independent product on the right-hand side, though obviously false rigor-
ously, becomes true in approximation for large values of the random variables and
hence leads to the non-trivial persistence exponent

�

1C ˛.1 � �/ �

See [73] for all details and also [74] for related results on the windings of the
stable Kolmogorov process. In view of Theorem 3.9, Conjecture 2 and (16), we
are naturally led to the following general question on integrated Lévy processes.

Conjecture 3 Let Z be a Lévy process such that Z1 2 D.˛; �/ with � 2 .0; 1/: Then
for every x > 0

PŒTx > t� D t��=.1C˛.1��//Co.1/:

3.3 Fractionally Integrated Lévy Processes

In this section we consider processes of the type

Aˇt D 1

� .ˇ C 1/

Z t

0

.t � s/ˇ dZs; t � 0; (23)
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where fZt; t � 0g is a real Lévy process starting from zero and ˇ > �1. The above
convolution product makes sense for every ˇ � 0, and can also be defined for some
negative ˇ depending on the law of Z. If Z is strictly ˛-stable for instance, then Aˇ

is well-defined for every ˇ > �.1 ^ 1=˛/ and is then a stable process in the sense
of [76], with continuous paths iff ˛ D 2 or ˇ > 0 and with a.s. locally unbounded
paths iff ˛ < 2 and ˇ < 0—see Chap. 10 in [76]. When Z is strictly ˛-stable, it is
customary to write ˇ D H � 1=˛ with H > 0 the so-called Hurst parameter, and
Aˇ is then an H-self-similar process. One can view ˇ-fractionally integrated Lévy
processes as the natural generalization of n times integrated Lévy processes, since an
integration by parts shows that the latter form the subclass ˇ D n. In this particular
case the .n C 1/-dimensional process .Z;A1; : : : ;An/ is a strong Markov process,
but there is no multidimensional Markov property when ˇ is not an integer because
then the fractional integration takes the whole memory of the driving process into
account. In the literature, fractionally integrated Lévy processes are often called
Riemann-Liouville processes, a denomination which is originally due to Lévy.

In the Brownian case Z D B, the process Aˇ is closely connected to the fractional
Brownian motion

˚
BH

t ; t � 0
�
, which we recall to be the centered Gaussian process

with covariance function

E


BH

t BH
s

� D 1

2

�
t2H C s2H � jt � sj2H

	
; t; s � 0:

Fractional Brownian motion can be written as the independent sum

BH
t D cH

�
AH�1=2

t C
Z 1
0

..t C s/H�1=2 � sH�1=2/ d QBs

�
; t � 0; (24)

with cH D .H22H�=.� .H C 1=2/� .1 � H///1=2 the normalization constant and QB
a Brownian motion independent of B, which shows that its paths are continuous a.s.
Notice that BH gives insight on the process of the long-range increments of AH�1=2
in view of the immediate representation of the latter as an independent sum

AH�1=2
tCu � AH�1=2

u
dD AH�1=2

t C
Z u

0

..t C s/H�1=2 � sH�1=2/ d QBs; t � 0;

which entails

fAH�1=2
tCu � AH�1=2

u ; t � 0g d! ˚
c�1H BH

t ; t � 0
�
; u ! C1 (25)

(with, of course, an equality in law for every u when H D 1=2). Recall that BH is
defined for H 2 .0; 1� only and that B1 is simply the linear function t 7! tN with
N a standard normal variable. Fractional Brownian motion can be shown [76] to be
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the unique H-self-similar Gaussian process with stationary increments, whence its
greater importance in modeling than fractionally integrated Lévy processes. Setting

TH
x D inf

˚
t > 0; BH

t > x
� D inf

˚
t > 0; BH

t D x
�

for every x � 0, one has TH
x

dD x1=HTH
1 by self-similarity, which shows that TH

0 D 0

a.s. and that the survival analysis of BH is reduced to the behavior of PŒTH
1 > t� only.

Among other results, the following was obtained in [67]:

Theorem 3.10 (Molchan) For every H 2 .0; 1� one has

PŒTH
1 > t� D tH�1Co.1/:

The main argument of Molchan [67], partly inspired by Brownian fluctuation theory,
is to quantify the correlation between TH

1 , the last zero of BH on Œ0; 1�, the positive
sojourn time of BH on Œ0; 1�, and the inverse exponential functional

t 7! JH
t D

�Z t

0

eBH
s ds

��1
;

whose asymptotic behavior in expectation can be precisely analysed. The general
link between JH

t and TH
1 is explained by the heuristical fact that if TH

1 > t then
BH has drifted towards �1 rather rapidly, so that JH

t is big. Conversely if TH
1 < t

then BH has been close zero for a positive fraction of time, so that JH
t is small.

However, the analysis of fEŒJH
t �; t � 0g which is performed in [67] is very specific

to the stationary increments of fractional Brownian motion, and does not seem to
be suitable for fractionally integrated Lévy processes. However, it can indeed be
used for other self-similar, stationarity increment processes with sufficiently high
integrability properties, as for example done in [25], where the following process is
considered:

�t D
Z
R

Lt.x/dW.x/; t � 0;

with W being a two-sided Brownian motion and Lt the local time of an ˛-stable
Lévy process (˛ 2 .1; 2�) independent of W. This process is H D .1�1=.2˛//-self-
similar, has stationary increments, and can be analyzed with the techniques from
[2, 67] to show that the persistence exponent is 1=.2˛/ D 1 � H. Similarly, Castell
et al. [26] consider more general types of processes yielding the local time process L.
We further mention [4, 72], where the persistence problem with moving boundary is
studied, as well as moments of JT and probabilities of scenarios that are very similar
to persistence.
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Continuing our discussion on FBM, note that it is clear that PŒT11 > t� ! 1=2 by
the above remark on the case H D 1, and it is natural to raise the

Conjecture 4 For every H 2 .0; 1/ one has

PŒTH
1 > t� � tH�1:

In view of the previously stated precise results, one may also ask if PŒTH
1 > t� 


c tH�1.
The above conjecture was recently addressed in [2], where the following partial

result is obtained by a refinement of Molchan’s method:

Theorem 3.11 (Aurzada) There exists c > 0 such that

.log t/�ctH�1 � PŒTH
1 > t� � .log t/ctH�1; t ! C1:

We now turn to first passage asymptotics for a class of Gaussian stationary
processes (GSP) which are related to the persistence of fractionally integrated
Brownian motion. In [62] the Lamperti transformation

LH
t D e�tHBH

et ; t 2 R; (26)

a centered GSP, is studied in connection with the persistence exponent of BH and it
is shown that

logP


LH

s � 0; 8 s 2 Œ0; t�� D logP


BH

s � 0; 8 s 2 Œ1; et�
� 
 t.H � 1/:

Since Molchan’s theorem means that logP


BH

s � 1; 8 s 2 Œ0; et�
� 
 t.H � 1/, one

simply needs to switch the 0 and the 1 in the latter probability to obtain this result,
which is justified in [62] through a refined use of Slepian’s lemma. The Lamperti
transformation is also a fruitful method in the reverse direction, and this was
observed in [5] to investigate the persistence exponents of fractionally integrated
Lévy processes. Assume that Z in (23) is a Brownian motion and introduce the
notation

Tˇx D inf
n
t > 0; Aˇt > x

o
D inf

n
t > 0; Aˇt D x

o

for every ˇ; x � 0. Notice that Tˇx
dD x2=.1C2ˇ/Tˇ1 by self-similarity, which shows

that Tˇ0 D 0 a.s. and that the survival analysis of Aˇ is reduced to the behavior of

PŒTˇ1 > t� only. The process

YH
t D e�tHAH�1=2

et ; t 2 R; (27)
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a centered GSP for every H > 0which reduces to the stationary Ornstein-Uhlenbeck
process when H D 1=2, plays a key rôle in the following theorem [5].

Theorem 3.12 (Aurzada-Dereich) There exists a non-increasing function ˇ 7!
�.ˇ/ such that

PŒTˇ1 > t� D t��.ˇ/Co.1/

for every ˇ � 0. Besides one has �.1/ D � limt!1 t�1 logP ŒYs < 0; 8 s 2 Œ0; t��,
where Y is the centered GSP with correlation EŒY0Yt� D 1= cosh.t=2/.

The important process Y is mentioned in [63] in the context of the diffusion equation
with white noise initial condition, and in [30] in relation with the positivity of
random polynomials with large even degree. More details will be given in the next
section. In [62], the process Y is also viewed as the Lamperti transformation of the
curious smooth (1/2)-self-similar Gaussian process

Xt D p
2t2
Z 1
0

Bue�utdu; t � 0;

which shares the same time inversion property fXt; t > 0g dD ft�1Xt�1 ; t > 0g as
Brownian motion. In [5] only the upper bound

� lim
t!1 t�1 logP ŒYs < 0; 8 s 2 Œ0; t�� � �.1/ (28)

is proved via Slepian’s lemma, but one can easily show that YH d! Y as H ! 1
in analysing the covariance function, so that the inequality in (28) is actually an
equality, the limit on the left-hand side being a supremum. This also follows from
the more general Theorem 1.6 in [29].

Theorem 3.12 has several interesting consequences. First, it shows that the
persistence exponent is a non-increasing function of the order of integration for
Brownian fractionally integrated processes. The fact that smoother processes have
more probability to survive is believed to be a kind of universal feature. Second, it
entails that �.ˇ/ � �.1/ D 1=4 for every ˇ � 1, so that by Molchan’s result the
persistence exponents of BH and AH�1=2 do not coincide whenever H > 3=4. We
actually believe that �.H � 1=2/ > 1� H for every H 2 .1=2; 1/ and some reasons
for that will be given soon afterwards. Last, it entails that �.1/ � �.1/ D 0:25,
which improves the bound �.1/ < 0:325 obtained in [62] via another Slepian’s
inequality. In [63] the numerical value �.1/ 
 0:1875 is suggested, whereas in
[30] the value �.1/ D 0:19 ˙ 0:01 is obtained by simulations. It is a tantalizing
question to compute the function �.ˇ/ for every positive ˇ 62 f0; 1g, as well as its
limit �.1/. The lower bound �.1/ > 0:125 is obtained in [61] with the help of a
certain Gaussian comparison inequality, and in [69] this lower bound is improved
into �.1/ > 1=.4

p
3/ > 0:144, in comparing Y with a linear time-change of the
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so-called Wong process [88], which is the GSP associated with integrated Brownian
motion.

Let us give some more details on the correlation function CH.t/ D EŒYH
0 YH

t � of
the Lamperti transform introduced in (27). It is given by

CH.t/ D 2e�Ht
Z 1

0

.u.u C et � 1//H�1=2 du

for every t � 0, and a simple analysis shows that for every H 2 .0; 1� and t � 0

one has

CH.t/ � cosh.Ht/ � 22H�1.sinh.t=2//2H D EŒLH
0 LH

t �;

where LH is the Lamperti transform defined in (26). By Slepian’s lemma and
Molchan’s theorem, this entails

�.H � 1=2/ � 1 � H (29)

for every H 2 Œ1=2; 1�, with an equality if H D 1=2. From the above we know
that (29) is strict if H > 3=4. It is very likely that �.H � 1=2/ exists for every H 2
.0; 1=2/ and that (29) is strict for every H ¤ 1=2. In view of the above discussion,
it is natural to raise the

Conjecture 5 The function ˇ 7! �.ˇ/ is convex decreasing.

We now go back to general fractionally integrated Lévy processes and state
the following result of Aurzada and Dereich [5], which is obtained by strong
approximation and drift transformations of Gaussian processes:

Theorem 3.13 (Aurzada-Dereich) For every ˇ � 0, the persistence exponent
�.ˇ/ is the same among all ˇ-fractionally integrated centered Lévy processes such
that t 7! EŒetZ1 � is finite in an open neighborhood of zero.

The main result of Aurzada and Dereich [5], to which we refer for details, is more
general and handles fractionally integrated random walks as well as more general
Volterra kernels. The finiteness of exponential moments plays an important rôle
therein due to the use of strong approximation, but in view of the aforementioned
results and conjectures on integrated random walks and Lévy processes, it is natural
to raise the

Conjecture 6 For every ˇ � 0, the exponent �.ˇ/ is the same among all ˇ-frac-
tionally integrated centered Lévy processes with finite variance.

We remark that there are many other types of fractional Lévy processes than
fractionally integrated ones—see e.g. [40] for a recent account, but up to the
knowledge of the authors no results for their persistence probabilities are known.



Persistence Probabilities and Exponents 207

Let us conclude this paragraph with the integrated fractional Brownian motion

IH
t D

Z t

0

BH
s ds; t � 0:

This is a centered Gaussian process with positive correlation function, and with the
help of its Lamperti transformation it is shown easily using Slepian’s inequality,
subadditivity, and e.g. Proposition 1.6 in [5] that for every H 2 .0; 1/ there exists
�.H/ > 0 such that

P


IH
s � 1; 8 s 2 Œ0; t�� D t��.H/Co.1/:

Numerical simulations [70] suggest the following:

Conjecture 7 (Khokhlov-Molchan) One has �.H/ D H.1 � H/.

This expected value, which is symmetric with respect to H D 1=2, is very
surprising because it is known that fractional Brownian motions with Hurst index
smaller or greater than 1/2 are very different processes from several viewpoints.
This does not match either the above heuristic discussion on smooth GSP’s since the
correlation function FH of the Lamperti transform of IH has a first-order expansion
at zero

FH.t/ D 1 � .1 � H2/t2

2
C o.t2/:

In particular, the number NH
t of zero-crossings of this Lamperti process has an

expectation EŒNH
t � D t

p
1 � H2=� which decreases with H, and one might think

that �.H/ also decreases. However integrated fractional Brownian motion may well
be more the exception than the rule for this kind of questions, because of its
complicated correlation structure. In [70] it is argued that the difference between
H < 1=2 and H > 1=2 should be observed at the logarithmic level and it is shown in
[68], with a detailed analysis, that cH.1� H/ � �.H/ � 1� H for some c 2 .0; 1/.
Other bounds such as �.H/ � �.1 � H/ for every H � 1=2 were also recently
presented in [69] (with numerical explanations), neither proving nor disproving the
above conjecture.

3.4 Other Processes

Integrated random walks which were considered previously can be written as the
weighted sum

An D
nX

iD1
.n C 1 � i/Xi;
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where fXi; i � 1g is an i.i.d. sequence. The above weights depend on i and n so that
the increments of An are neither stationary nor independent. It is natural to consider
persistence problem for other weighted sums like weighted random walks:

˙n D
nX

iD1
�iXi;

where f�i; i � 1g is a deterministic sequence and fXi; i � 1g an i.i.d. family. The
situation is a bit simpler than for integrated random walks because the non-
stationary increments of ˙ are independent, nevertheless the sequence f�i; i � 1g
has also more generality. Setting � for the law of X1 and introducing

T� D inf fn � 1; ˙n > 0g ;

the following has been obtained in [3] via strong approximation techniques:

Theorem 3.14 (Aurzada-Baumgarten) Suppose that � is centered and that
its Laplace transform is finite in an open neighborhood of zero. Suppose that
f�i; i � 1g is increasing with �n � np for some p > 0. Then

PŒT� > n� D n�. pC1=2/Co.1/:

The results of Aurzada and Baumgarten [3] are more precise and allow other
weight functions not necessarily increasing when � is Gaussian. The general case
reduces to the Gaussian one via strong approximation and drift transformations,
as in [5]. A universal speed not depending on � can also be obtained for weight
functions growing faster than polynomials, like en
 for some 
 < 1=4, and the
persistence probability then has stretched exponential decay. However, it is also
shown in [3] that the speed does depend on � for weight functions growing too fast,
like en
 for some 
 � 1. It would be interesting to find �’s critical growth rate for
the universality of the speed. The following is also a natural question.

Conjecture 8 Suppose that � is centered and has finite variance. Suppose that
f�i; i � 1g is increasing with �n � np for some p > 0. Then

PŒT� > n� D n�.pC1=2/Co.1/:

Let us now consider iterated Lévy processes, which are processes of the type
fX ı jYtj; t � 0g with X;Y two independent real Lévy processes starting from zero.
If jYj is a subordinator, then X ı jYj is another Lévy process which is called
a subordinate Lévy process, a notion introduced by Bochner in the context of
harmonic analysis. Iterated Lévy processes were introduced by Burdzy in the
Brownian framework and can be viewed as a generalisation of subordinate Lévy
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processes. They are known to have strong connections with PDE’s of higher order,
especially through their first passage times. Let us introduce

Tx D inf ft > 0; X ı jYtj > 1g

for all x � 0, and notice that as for integrated Lévy processes the law of Tx is difficult
to study in general since X ı jYj is non-Markov. Among other results, the following
was obtained in [12] and subsequently improved by Vysotsky [86]:

Theorem 3.15 (Baumgarten, Vysotsky) Suppose that the random variables X1
and Y1 have finite variance and EŒX1� D 0. Then

PŒT1 > t� � t�1=4 for EŒY1� D 0;

PŒT1 > t� D t�1=2Co.1/ for EŒY1� ¤ 0;

where for the second statement one has to assume that X1 and Y1 have some finite
stretched exponential moment.

In particular, the persistence exponent of iterated Brownian motion is 1=4. The
strong dichotomy between the situations where Y1 is centered and non-centered is
not surprising since in the former case jYtj grows roughly like

p
t whereas in the

latter case jYtj grows like t. The persistence exponent of X ı jYj is given by the
product of the persistence exponent of X and typical growth rate of Y. This can be
seen in different situations, too, for example if X is an FBM. As in many above
statements, the question of replacing the exponential moment condition by the sole
assumption of finite variance remains open.

We conclude this paragraph in mentioning some results for AR(p) processes,
that is

Xn D a1Xn�1 C : : :C apXn�p C Yn;

where fYn; n � 1g is a sequence of i.i.d. random variables and Xn D 0 for n � 0.
The first and already non-trivial question here is to determine for what values of
the parameters a1; : : : ; ap the persistence probability (a) converges to some positive
constant, (b) decays polynomially, or (c) decays faster than any polynomial (in
which case it is usually exponentially small). To do so, one first has to notice,
that X can be represented as Xn D Pn

kD1 cn�kYk with some .cn/ which depend on
the parameters a1; : : : ; ap via the solutions of some characteristic polynomial. The
reason for the behavior (a) is that the .cn/ tend to infinity exponentially fast and
thus the first few Yn decide the sign of all Xn. For (c) basically two different main
reasons appear: the .cn/ may tend to zero exponentially fast, which means that X
is essentially a stationary AR and one obtains exponential decay of the persistence
probability; or the modulus of .cn/ may tend to infinity while the sign is alternating,
in which case the sign of Xn is determined essentially by the sign of Yn for all n and
one basically obtains an independent sequence again leading to exponential decay.
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The polynomial behaviour is possible only on the critical line between behavior (a)
and (c) and corresponds to .cn/ tending to a positive constant. For p D 1, this is
particularly easy: part (a) corresponding to a1 > 1, part (b) to a1 D 1, and part (c)
to a1 < 1 (since cn D an

1, the above-mentioned distinction happens for a1 2 .�1; 1/
and a1 < �1). For p D 2 one obtains the critical curve

fa1 D 0; a2 > 1g [ fa1 2 Œ0; 2�; a1 C a2 D 1g [ fa1 > 2; a
2
1 C 4a2 D 0g

for the parameter values .a1; a2/ that separates (a) and (c). This question was studied
in [71] for p D 1 and in [11] for general p with a focus on p D 2. Determining the
explicit rate of exponential decay on the region (c) is open in all interesting cases
(even for p D 1) and seems to be challenging. Also see [28, 60].

4 Some Connections with Physics

4.1 Regular Points of Inviscid Burgers Equation
with Self-similar Initial Data

The statistical study of the one-dimensional Burgers equation

@tu C u@xu D �@xxu (30)

with viscosity � > 0 and an initial condition u0.x/ WD u.0; x/ D Xx given by a
self-similar stochastic process fXx; x 2 Rg has been initiated in the papers [79, 83].
Though this equation is accorded to be an unrealistic physical model for turbulence,
the competition between the irregularities of X and the irregularities generated
by (30) remains an interesting mathematical study. In the inviscid limit � D 0,
the Hopf-Cole solution to (30) is given by

u.t; x/ D x � a.t; x/

t

for every t > 0; x 2 R, where a.t; x/ D maxfy 2 R; PCt.y/ � xt�1g and PC is the
right-derivative of the convex minorant of the function

Ft W y 7!
Z y

0

.Xx C xt�1/ dx:

This variational formula is obtained in considering the explicit solution to (30)
which can be obtained for � > 0 and letting � ! 0—see [14, 53, 79, 83] for
details. Notice that a.t; x/ is well-defined only if

jxj�1Xx ! 0 a.s. when x ! ˙1. (31)
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The function x 7! a.t; x/ is right-continuous but not continuous in general, and the
so-called Lagrangian regular points at time t > 0 are defined as the set

Lt D fa.t; x/; x 2 R and a.t; x�/ D a.t; x/g

which consists of the points where Ft equals its convex minorant. In physical terms,
the set Lt describes the initial locations of the particles which have not been shocked
up to time t. It is easy to see that when X is a self-similar process, the map t 7!
Lt has also some self-similarity which makes the a.s. Hausdorff dimension of Lt

independent of t > 0. Setting L D L1 and “Dim” for “Hausdorff dimension”, the
following is stated in [79]:

Conjecture 9 (Aurell-Frisch-She) Suppose that X is the fractional Brownian motion
with Hurst parameter H 2 .0; 1/. Then Dim L D H a.s.

Notice that in the above, the fractional Brownian motion is defined over the
whole R, and coincides with the two-sided Brownian motion when H D 1=2. This
conjecture remains open in general, but the following has been shown:

Theorem 4.1 (Handa-Sinai, Bertoin) Suppose that X is the two-sided Brownian
motion. Then Dim L D 1=2 a.s.

This result was first stated in [83], although no strict proof is given therein for the
lower bound Dim L � 1=2 a.s. A simple argument based on integration by parts
and Frostman’s lemma is presented in [48], which yields the general lower bound
Dim L � H a.s. when X is the fractional Brownian motion with Hurst parameter
H. In [14], the exact computation of the Hausdorff dimension follows as a simple
corollary to the more general result that x 7! a.1; x/ has stationary and independent
increments with explicit Laplace transform. This result extends to Lévy processes
with no positive jumps satisfying the growth condition (31). In particular one has the

Theorem 4.2 (Bertoin) Suppose that X is a two-sided ˛-stable spectrally negative
Lévy process with index ˛ 2 .1; 2/. Then Dim L D 1=˛ a.s.

We now briefly describe the link between an upper bound for Dim L and the
computation of certain persistence exponents, in the self-similar framework. This is
the original argument of Sinai [83] for Brownian motion and it extends to fractional
Brownian motion [70] or ˛-stable Lévy processes [81]. Specifically, setting

OL D
�

a 2 R;

Z y

0

.Xx C x/dx

�
Z a

0

.Xx C x/ dx C .y � a/.Xa C a/; 8y 2 R

�
;

Sinai’s remarkable and simple observation is that up to some countable set, one has

L 
 OL a:s:
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On the other hand, the Borel-Cantelli lemma and some elementary inequalities—see
Lemma 1 in [70] and [81, pp. 742–745] for all details—show that if

P


Z y

0

.Xx C x/ dx � �ı1CH ; 8y 2 Œ�1; 1�
�

� ı1�KCo.1/ (32)

as ı ! 0, where H is X’s self-similarity index and K 2 Œ0; 1�, then Dim NL � K
a.s. Hence, the “two-sided” persistence probability evaluation (32) entails the upper
bound Dim L � H a.s. The upper asymptotic inequality (32) is shown in [82] for
Brownian motion and the above method is used in [83] to obtain the upper bound in
Theorem 4.1.

If X D BH is the fractional Brownian motion, then the drift appearing in (32) can
be removed by quasi-invariance and some analysis, and one sees by symmetry and
self-similarity that the required estimate to get the upper bound in Conjecture 9 is

P


Z y

0

BH
x dx � 1; 8y 2 Œ�t; t�

�
� t1�HCo.1/; t ! C1:

The above estimate is formulated as a conjecture in [68, 70], with an equality instead
of the inequality. Notice that this latter problem is independent of Conjecture 7
since the increments of BH are correlated. Actually, even the sole existence of the
persistence exponent for integrated double-sided fractional Brownian motion has
not yet been established.

If X is a two-sided ˛-stable Lévy process with ˛ 2 .1; 2/, there is no quasi-
invariance argument. But the fact that ˛ > 1 and the bare-hand analysis performed
in [81] make believe that the drift appearing in (32) can also be removed. By
self-similarity and independence of the positive and negative increments of Z the
inequality (32) would then amount to

PŒ OT1 > t� � t.1�K/=2Co.1/

at infinity, where OT1 is the first-passage time at 1 of the integral of OZ D �Z. In
particular, Theorem 3.9 would lead to

DimL � ..�.˛ C 2/� 1/=.1C ˛�//C a:s:

where � D PŒZ1 > 0� is the positivity parameter of Z—recall that � 2 Œ1�1=˛; 1=˛�
for ˛ 2 .1; 2/. It is also natural to believe that the above inequality is actually an
equality.

Conjecture 10 Suppose that X is a two-sided ˛-stable Lévy process with ˛ 2 .1; 2/
and positivity parameter � D PŒZ1 > 0�. Then, with the above notation,

DimL D ..�.˛ C 2/� 1/=.1C ˛�//C a:s:
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If this were true, then one should have Dim L D 0 a.s. for all � �
1=.2 C ˛/ (which can appear only if ˛ � p

2). In any case, we believe that this
Hausdorff dimension should depend on the positivity parameter and not only on
the self-similarity parameter. The value 1=˛ had been conjectured in [53] through
multifractal analysis, and the invalidity of this conjecture when ˛ is close to 1 had
been proved in [81] with the help of Sinai’s approach.

Theorem 4.3 (Simon) For every c < 1 there exists ˛0 > 1 such that for every
˛ 2 .1; ˛0/ and every � 2 Œ1 � 1=˛; c ^ 1=˛�, if X is a two-sided ˛-stable Lévy
process with positivity parameter �, then Dim L < 1=˛ a.s.

4.2 Positivity of Random Polynomials and Diffusion Equation

A classical question dating back to the beginning of probability theory is to
understand the distribution of the roots of random polynomials. Consider

Pn.X/ D
n�1X
iD0

�iX
i

with large even degree where f�i; i � 0g is some i.i.d. sequence and X the
deterministic variable, and set Nn for the number of its real roots. Among other
results, the following was recently obtained in [30]:

Theorem 4.4 (Dembo-Poonen-Shao-Zeitouni) Suppose that �1 is centered and
has polynomial moments of all order. Then

P ŒN2nC1 D 0� D n�4bCo.1/ (33)

where b D � limt!1 t�1 logP ŒYs < 0; 8 s 2 Œ0; t��, with Y the centered GSP with
correlation EŒY0Yt� D 1= cosh.t=2/.

In the above, the exact value of b is unknown and numerical simulations suggest
4b D 0:79˙ 0:03—see [30]. It is remarkable that this constant b relates to n times
integrated Brownian motion. We saw indeed in Sect. 3.3 that b D limn!C1 �.n/
where �.n/ is the persistence exponent of the process

t 7! 1

nŠ

Z t

0

.t � s/n dBs; t � 0:

The problem of computing �.n/ for n > 1 is believed to be very challenging.
Numerical simulations [64] suggest �.2/ D 0:231˙ 0:01.

Let us give some insight on the proof of the above result. The hard part is to
show (33) when �1 
 N .0; 1/. The general case follows by strong approximation,
whence the assumption made on the moments, but notice that it is also conjectured
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in [30] that (33) should hold under the sole condition that �1 is centered and has finite
variance. When �1 
 N .0; 1/, the process x ! Pn.x/, which is the so-called Kac’s
polynomial, is centered Gaussian with covarianceEŒPn.x/Pn.y/� D 1C� � �C.xy/n�1.
Its correlation function is given by

ˇ̌
ˇ̌ .xy/n � 1

xy � 1

ˇ̌
ˇ̌
sˇ̌
ˇ̌ .x2 � 1/.y2 � 1/

.x2n � 1/.y2n � 1/

ˇ̌
ˇ̌

for every x; y ¤ ˙1. This function is invariant under the transformations .x; y/ 7!
.�x;�y/ and .x; y/ 7! .1=x; 1=y/, and an involved argument based on Slepian’s
lemma shows that

P ŒN2nC1 D 0� D .PŒNŒ0;1�
2nC1 D 0�/4Co.1/

where NŒ0;1�
n is the number of roots of Pn on Œ0; 1�. The link between NŒ0;1�

2nC1 for large
n and the zero-crossings of Y is established after changing the variable x D e�t and
isolating the contributions for small t. The latter is the crucial step, since it follows
from the singularities of the correlation function that the density of the real roots of
Pn around ˙1 is very big for large n. Notice that the link between Y and Nn is rather
easily understood at the expectation level: a classical formula due to Kac—see [30]
for details—yields

EŒNŒ0;1�
2nC1� 
 1

2�
log n;

whereas the Itô-Rice’s formula shows that if Nt is the number of zero-crossings of Y
on Œ0; t�, then EŒNt� 
 t=.2�/. The problem of evaluating PŒNŒ0;1�

2nC1 D 0� is however

much more intricate than the sole estimation of EŒNŒ0;1�
2nC1�, in analogy with what

happens for the zero-crossings of Gaussian stationary processes.
It is also a remarkable fact that the above constant b appears as the persistence

exponent of another, seemingly disconnected random evolution phenomenon, which
is studied in [63, 77, 78]. Consider the heat equation on R

d

@ud

@t
D �ud (34)

with random initial condition ud.x; 0/ D PW.x/ a d-dimensional white noise.
Integrating along the heat kernel, it is easy to see by linearity that for every x 2 R

d

the solution t 7! ud.x; t/ to (34) is a .�d=4/-self-similar centered Gaussian process
with covariance function

EŒud.t; x/ud.s; x/� D 1

.�.t C s//d=2
� (35)
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In particular the law of fud.t; x/; t > 0g does not depend on x, which is also
clear from the white noise initial condition. The Lamperti transformation t 7!
.2�/1=4et=4ud.x; et/ is a centered GSP with correlation function 1=.cosh.t=2//d=2,
and this GSP coincides with Y for d D 2. For every d � 1, the standard subadditivity
argument and Slepian’s lemma yield the existence of 
d > 0 such that

PŒud.s; x/ < 0; 8s 2 Œ1; t�� D t�
dCo.1/

and one has b D 
2. In [63], an empirical approach using independent interval
approximation is described, proposing 
d as the first zero on the negative axis of the
function

x 7! 1 C
r
2

d

�
�x � 2x2

Z 1
0

e�xt sin�1Œ1=.cosh.t=2//d=2� dt

�
;

which yields the numerical values 
1 D 0:1207; 
2 D 0:1862 and 
3 D 0:2358. In
the above formula, the function d 7! 
d is increasing, which is somehow in heuristic
accordance with the fact that in the first-order expansion

1=.cosh.t=2//d=2 D 1 � dt2

16
C o.t2/;

the coefficient d 7! d=16 also increases. In [78] it is argued that 
d 
 c
p

d at
infinity, for some constant c > 0. The paper [78] also establishes for every d � 1 a
general connection between the survival analysis of Eq. (34) and the positivity of a
family of random polynomials defined as

Pd
n.X/ D �0 C

n�1X
iD1

i.d�2/=4�iX
i (36)

where f�i; i � 0g is a i.i.d. sequence of N .0; 1/ random variables and X is the
deterministic variable. Setting Nd

n for the number of its real roots, it is argued in [78]
that

P


Nd
2nC1 D 0

� D n�2.
2C
d/Co.1/: (37)

The results are justified in the recent paper [29], where the connection between
the persistence of the Gaussian process ud defined in (35) and the random polyno-
mials (36) for Gaussian �i is proved rigorously. Further, the notion of a solution to
the heat equation (34) is made rigorous. It would be interesting to obtain again a
universality result similar to Theorem 4.4 in the sense that (37) holds independent
of the law of the �i. Further, Dembo and Mukherjee [29] establishes connections of
other types of random polynomials and the corresponding Gaussian processes (also
considered in [78]). Also here it would be interesting to obtain a universality result.
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4.3 Wetting Models with Laplacian Interactions

Let f be a bounded and everywhere positive probability density over R, centered
and having finite variance. Introduce the HamiltonianHŒa;b�.'/, defined for a; b 2 Z

with b � a � 2 and for ' W fa; : : : ; bg ! R by

HŒa;b�.'/ D
b�1X

nDaC1
V.�'n/

where V D � log. f / is the potential and

�'n D .'nC1 � 'n/� .'n � 'n�1/ D 'nC1 � 2'n C 'n�1

is the discrete Laplacian on Z. The free pinning model with Laplacian interaction is
the probability measure on R

N�1 defined by

P
p
0;N. d'1; : : : ; d'N�1/ D exp.�HŒ�1;NC1�.'//

Z p
0;N

d'1 : : : d'N�1

where Z p
0;N is the normalization constant which is called the partition function,

and where the boundary conditions are given by '�1 D '0 D 'N D 'NC1 D 0.
This probability measure models a certain .1 C 1/-dimensional field (viz. a linear
chain f.n; 'n/; n D 0 : : :Ng) with zero boundary conditions and whose interacting
structure is described by the discrete Laplacian and the potential V . This chain can
be viewed as an example of a discrete random polymer in .1C 1/-dimension.

The free pinning model with gradient interaction, where � is replaced by the
discrete gradient r'n D 'nC1 � 'n and where the boundary conditions are '0 D
'N D 0, has been well studied in the literature and has a natural interpretation
in terms of random bridges with increment density given by f . The model with
Laplacian interaction has exactly the same interpretation in terms of integrated
random bridges. Specifically, one can easily show—see Sect. 2 in [24] for details—
that Pp

0;N is, with the notations of Sect. 3.1, the law of an integrated random walk
fAn D S1 C � � � C Sn; n D 1 : : :N � 1g conditioned on AN D ANC1 D 0, with
increment density given by f . The partition function Z p

0;N is then the value at .0; 0/
of the density of .SNC1;ANC1/. Notice that both above free pinning models have
natural counterparts in continuous time in the context of semiflexible polymers. The
gradient interacting case corresponds to directed polymers, whereas the Laplacian
interacting case corresponds to polymers with non-zero bending energy—see [23]
for details.

The connection with persistence of integrated random bridges is made in
considering the corresponding wetting model with Laplacian interactions, which
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is the probability measure on R
N�1 defined by

P
w
0;N. d'1; : : : ; d'N�1/ D P

p
0;N. d'1; : : : ; d'N�1 j '1 � 0; : : : ; 'N�1 � 0/

D exp.�HŒ�1;NC1�.'//
Z w
0;N

1f'1�0;:::;'N�1�0g d'1 : : : d'N�1

where Z w
0;N is the normalization constant, and with the same boundary conditions

'�1 D '0 D 'N D 'NC1 D 0. In this model, the discrete random polymer is in the
presence of a one-dimensional hard wall at zero which forces it to stay non negative.
From the very definition, one sees that PW

0;N is the law of the above integrated random
walk fAn; n D 1 : : :N � 1g whose increment has the density f , and conditioned on
˝CN�1 \ fAN D ANC1 D 0g with the notation ˝CN�1 D fA1 � 0; : : : ;AN�1 � 0g. It
is then easily shown that the partition function is given by

Z w
0;N D PŒ˝CN�1 j AN D ANC1 D 0� fN.0; 0/

where fN.0; 0/ is the value at .0; 0/ of the density of .SNC1;ANC1/. As a consequence
of a local limit theorem—see Sect. 2 in [24] for details—it can be shown that
fN.0; 0/ 
 cN�2 at infinity for some explicit constant c > 0. Hence the behavior
of Z w

0;N for N large, which has some importance in physics, is specified by the
persistence probability

PŒ˝CN�1 j AN D ANC1 D 0�:

The latter quantity has also some independent interest as a question about entropic
repulsion—see all the references listed in [24] for more on this subject, and the
following is stated in [24]:

Conjecture 11 (Caravenna-Deuschel) With the above notations, one has

PŒ˝CN�1 j AN D ANC1 D 0� � N�1=2

for every centered increment law � having finite variance.

This conjecture is related to integrated random walks considered in Sect. 3.1
since the event f˝CN�1 j AN D ANC1 D 0g can be decomposed into fA1 �
0; : : : ;AN=2 � 0 j AN D ANC1 D 0g \ fAN=2C1 � 0; : : : ;AN�1 � 0 j AN D
ANC1 D 0g, the intersection of two roughly independent events with roughly the
same probability PŒA1 � 0; : : : ;AN=2 � 0�, a quantity which should behave like
N�1=4. Notice that in the context of semiflexible polymers, a continuous counterpart
of ˝CN�1 in the case when � is Gaussian was investigated (without conditioning)
in [23], where the estimate (22) is proved. In [24], the following weak bounds are
obtained

c

Nc
�

� PŒ˝CN�1 j AN D ANC1 D 0� � C

.log N/cC
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for some constants c;C; c� > 0 and cC > 1. The lower bound entails that the free
energy vanishes:

lim
N!C1

1

N
logZ w

0;N D 0;

whereas the fact that cC > 1 in the upper bound is crucial to show that the phase
transition of the wetting model with reward, which is simply the value of the positive
parameter " after which the free energy of the probability measure

exp.�HŒ�1;NC1�.'//
Z w
";N

N�1Y
nD1
."ı0. d'n/C 1f'n�0g d'n/

becomes positive, is of first order. In [24], to which we again refer for more details,
it is mentioned that Conjecture 11 would yield some further path results for the
wetting model with reward at criticality.

Recently, there have been two advances in this direction. First, [9] show
Conjecture 11 in the case of the simple random walk and integrated simple random
walk:

Theorem 4.5 (Aurzada-Dereich-Lifshits) Let fXi; i � 0g be an i.i.d. sequence of
Bernoulli random variables, and consider the simple random walk Sn WD Pn

iD1 Xi

and the integrated random walk An WD Pn
iD1 Si. Then

PŒA1 � 0; : : : ;A4n � 0jS4n D 0;A4n D 0� � n�1=2:

Further, it is mentioned in [34] that the techniques can be used to show the full
Conjecture 11 under the condition of finite .2 C ı/ moment for some ı > 0.
Presumably, the techniques will be different to [9] and it would be very interesting
to study this question and its implications for the wetting models at criticality.
Similarly to the above theorem, the case of Gaussian .Xi/ was studied very recently
by Gao et al. [44] and the corresponding result is shown (up to a log factor in the
lower bound).

4.4 Other Physical Applications

4.4.1 Spatial Persistence for Fluctuating Interfaces

A fluctuating interface is a function h W R
C � R

d ! R evolving in time,
with dynamics governed by a certain random equation. The problem of spatial
persistence concerns the probability p.l/ that such a fluctuating interface stays above
its initial value over a large distance l from a given point in space. One expects a
behavior like p.l/ D l��Co.1/ for a positive number � independent of the direction,
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which is called the spatial persistence of the interface. In [64], this question is
addressed for the Gaussian interface h.t; x/ solution to the equation

@h

@t
D �.��/z=2h C � (38)

where� is the d-dimensional Laplacian, � a space-time white noise with zero mean,
and z > d some fractional parameter, and it is shown with heuristic arguments based
on Fourier inversion that if � D .z � d C 1/=2, then the fractional derivative in any
direction x1

@�h

@x�1
D @

@xŒ��C11

�
1

� .2 � ˛/

Z x1

0

h.t; y; x2; : : : ; xd/.x1 � y/1�˛ dy

�
;

where we have decomposed � D Œ��C ˛ into integer and fractional parts, is a one-
dimensional white noise. This relates the spatial persistence probability p.l/ to the
persistence probability of the fractionally integrated Lévy process

A�t D 1

� .�/

Z t

0

.t � s/��1 dBs:

In [64] two different regimes are considered. The coarsening one, where the
reference point is fixed, yields a spatial persistence exponent � D �.�/ with the
notations of Sect. 3.3. The stationary one, where the reference point is sampled
uniformly from the ensemble of steady state configurations, yields from (25) a
spatial persistence exponent � D .1��/C. In the coarsening regime, this entails that
the zero crossings of Gaussian interfaces governed by (38) undergo a morphological
transition at z D d C 2, because then � D 3=2.

4.4.2 Clustering of Sticky Particles at Critical Time

In this last paragraph we consider a random walk fSn; n � 1g with positive
increments having expectation EŒS1� D 1. If n particles are fixed at the respective
positions i�1Si; i D 1 : : : n with zero initial speed and then move according to
the laws of gravitational attraction, these particles end up in sticking together with
conservation of mass and momentum, forming new particles called clusters. One is
then interested in the number of clusters Kn.t/ 2 Œ1; : : : ; n� viz. the total number of
particles present at time t � 0. This is a so-called sticky particle model, which is for
n large connected to the inviscid Burgers equation with random initial data (coupled
with some scalar transport equation, see [22] for details). This is also an aggregation
model having connections with astrophysics, and we refer to the introduction of
[84] for a clarification of these relations and the complete dissipation of all possible
misunderstanding.
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The normalization EŒS1� D 1 entails that Tn ! 1 in probability, where Tn stands
for the random terminal time where all particles have aggregated in a single cluster.
A more precise result is obtained in [84] in the case when S1 has uniform or standard
Poissonian distribution, namely that the random function

Kn.t/ � n.1� t2/p
n

converges in law to some Gaussian process on the Skorokhod space D Œ0; 1 � "� for
any " > 0. In particular, the above quantity converges to some Gaussian law at each
fixed time t < 1. The situation is however different at the critical time t D 1, at least
when S1 has a standard Poissonian distribution. In this case it can be proved that
Kn.1/=

p
n does not converge to zero (the only non-negative Gaussian distribution)

as could be expected, and this fact is actually a consequence—see [84] for details—
of the estimate

P

2
4 min

iD1;:::;n

iX
jD1
.�j � j/ � 0

3
5 � n�1=4

where f�n; n � 1g is a random walk with exponential increments—this latter
estimate follows from the main result of Dembo et al. [31].

5 Remarks in Press

After this paper was accepted and in addition to those already mentioned in the text,
other works falling into the scope of this survey have appeared. We mention them
here only briefly, referring to the papers themselves for more detail.

In Sect. 2, the classical framework for first passage times over a constant
boundary of random walks and Lévy processes is displayed. A novel approach to
this framework has been given in [57, 58], together with new and rather general
results. The recent papers [7, 8, 10, 33] deal with the less classical framework of first
passage time problems over a moving boundary, and provide some tight estimates
on the distribution functions.

The relation between inverse exponential functionals and the persistence prob-
ability studied in Sect. 3.3 is based on Molchan’s result [67] for continuous-time
processes. In [6], this relation between inverse exponential functionals and the
persistence probability is studied for discrete-time processes for the first time. The
technique is applied to random walks in random sceneries (in any dimension) and
to sums of stationary sequences with long-range dependence. We also mention that
[35] studies persistence of additive functionals of Sinai’s random walk in random
environment obtaining the persistence exponent � D .3 � p

5/=2; where the value
comes from a large deviation rate for the number of sign changes.
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Finally, a general question connected to Sect. 3.3 has been studied in [41]: When
does a stationary Gaussian process have an exponentially decreasing persistence
probability? In the mentioned paper, rather general sufficient conditions are given.
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