
CoDEL – A Relationally Complete Language
for Database Evolution

Kai Herrmann1(B), Hannes Voigt1, Andreas Behrend2, and Wolfgang Lehner1

1 Database Technology Group, Technische Universität Dresden, Dresden, Germany
{kai.herrmann,hannes.voigt,wolfgang.lehner}@tu-dresden.de

2 Computer Science III, University of Bonn, Bonn, Germany
behrend@cs.uni-bonn.de

Abstract. Software developers adapt to the fast-moving nature of soft-
ware systems with agile development techniques. However, database
developers lack the tools and concepts to keep pace. Data, already
existing in a running product, needs to be evolved accordingly, usually
by manually written SQL scripts. A promising approach in database
research is to use a declarative database evolution language, which cou-
ples both schema and data evolution into intuitive operations. Existing
database evolution languages focus on usability but did not aim for com-
pleteness. However, this is an inevitable prerequisite for reasonable data-
base evolution to avoid complex and error-prone workarounds. We argue
that relational completeness is the feasible expressiveness for a database
evolution language. Building upon an existing language, we introduce
CoDEL. We define its semantic using relational algebra, propose a syn-
tax, and show its relational completeness.

Keywords: Descriptive database evolution · Evolution language · Rela-
tional completeness

1 Introduction

Changes in modern software systems are no longer an exception but have become
daily business. Following the mantra “Evolution instead of Revolution”, agile
software development centers the creativity and excellence of people to handle
the unpredictably dynamic world of software development [3]. Agile methods
are characterized by short development cycles, each with the goal of a shippable
product. This provides constant feedback, which helps to establish a customer-
oriented development process resulting in products that fit customer’s true needs
and yield high customer acceptance. It is in the very nature of agile development,
that requirement specifications are in perpetual flux. Adjusting the software’s
design to updated requirements is as daily business as developing new features.

However, a major obstacle in this process are the database systems [2].
Whereas software development tools support developers in the process of design-
ing changes with a comprehensive set of automatized refactoring features, the

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 63–76, 2015.
DOI: 10.1007/978-3-319-23135-8 5

64 K. Herrmann et al.

Fig. 1. Database evolution.

evolution of databases is usually realized by manually writing scripts of SQL-
DDL and -DML operations. This manual database evolution is expensive and
error-prone. Furthermore, many software projects show poor integration of the
database developers. According to a survey [1], two third of the pooled software
developers perform database-related changes without consulting the responsible
database developers, which certainly increases the software developer’s produc-
tivity but is not necessarily helping the quality of the resulting database.

To keep pace with agile software development, the database systems have
to supply software-refactoring-like features. Such database evolution features
need to evolve the database schema (schema evolution) and payload data (data
evolution) in a single consistent step [15]. Such a database evolution processes
as illustrated in Fig. 1. While evolving an application, the application developer
specifies the corresponding database evolution with the help of schema modifica-
tion operations (SMOs). In contrast to SQL-DDL and -DML statements, SMOs
specify the evolution of the schema and the data in a descriptive, integrated
way and ensure that the data is consistently evolved with the schema. SMOs
are typically more compact than a script of DDL and DML operations resulting
in the same evolution. On the user side, SMOs increase the developer’s produc-
tivity while dealing with database evolution and reducing the chances of faulty
evolution scripts and unintended data loss. On the database system side, SMOs
open the opportunity to optimize and reduce the actual data movement involved
in an evolution step or even invert evolution steps for database versioning. These
benefits are enabled by the use of SMOs instead of DDL/DML.

A set of SMOs forms a database evolution language (DEL). Naturally, the
design of a particular DEL determines its expressiveness. A powerful DEL lets
the user easily specify all necessary evolution steps. In contrast, a weak DEL
forces the user into more complicated evolution scripts or even to fall back on
DDL/DML statements, which renders the DEL useless. In principal, a DEL
should at least cover the power of DDL and DML of an ordinary database sys-
tem. We argue, that a DEL for relational databases should at least be relation-
ally complete: For any relational DDL/DML script, there exists a semantically
equivalent sequence of SMOs. Relational DDL/DML scripts create, alter, and
drop database objects, while conditions and the actual data are specified using

CoDEL – A Relationally Complete Language for Database Evolution 65

expressions from a given DQL. The latter motivates the relational algebra [5] as
the natural reference for determining the power of relational DDL and DML.

Given a relational database D = {R1, . . . , Rn} with tables Ri, a DEL is
relationally complete if it can transform D into any other relational database
D′ = {R′

1, . . . , R
′
m} with each R′

i being computable from D with operators from
the relational algebra. A minimal language providing relational completeness is
Lmin = {Add (·, ·) ,Del (·)} with

Add (R′, ε) → D ∪ {R′ = ε (R1, . . . , Rn)}
Del (R) → D \ {R}

The add operation adds a new table R′ to the database D based on the given
relational algebra expression ε. The delete operation removes the specified table
R from D. Let inst (Lmin) be the set of all operation instances of Lmin with valid
parameters. Then obviously, a database D can be transformed into any other
database D′ with a sequence s ∈ inst (Lmin)

+. Hence, Lmin is relationally com-
plete. From a practical standpoint however, Lmin is not very appealing, because
it is rather unintuitive and not oriented on actual evolution steps. However, any
other DEL which is as expressive as Lmin is relationally complete as well.

To the best of our knowledge, the most advanced DEL design is
PRISM++ [6,8]. PRISM++ provides SMOs to create, rename, and drop both
tables and columns, to divide and combine tables both horizontally and verti-
cally, and to copy tables. The PRISM++ authors claim practical completeness
for their powerful DEL, by validating it against evolution histories of several
open source projects. Although this evaluation suggests that PRISM++ is suffi-
cient also for other software projects, it does not provide any reliable complete-
ness guarantee. For instance, we do not see an intuitive way to remove all rows
from a table A, which also occur in a table B using the PRISM++ DEL, since
it does not offer any direct or indirect outer join functionality. Thus, we con-
sider PRISM++ not to be relationally complete. Nevertheless, PRISM++ has
an intuitive and field-proven design.

In this paper, we present a relationally Complete DEL (CoDEL), building on
the set of PRISM++ SMOs to inherit its practical feasibility. However, CoDEL
is relationally complete and equally expressive as Lmin. Our contributions are:

1. We provide a formal definition of the semantics of all CoDEL operations
and propose an SQL-like syntax. With that, CoDEL can serve as a reference
language for the formal evaluation of other DELs.

2. We show the relational completeness of CoDEL. We show that all operations
of the relational algebra – as presented in [5] plus selected extensions – can
be expressed in CoDEL and whereby any Lmin expression, as well.

3. We lay the foundation for further research. CoDEL is a DEL, whose SMOs
are compact with precisely defined semantics. Hence researchers can tackle
their challenges on a per-SMO-level (“Divide and Conquer”). For instance,
database versioning requires full invertibility of a database evolution. CoDEL
allows to define invertibility locally for each operation, which greatly simplifies
such research.

66 K. Herrmann et al.

Fig. 2. Structuring of CoDEL.

We define CoDEL in Sect. 2, prove its relational completeness in Sect. 3,
discuss related work in Sect. 4, and conclude the paper in Sect. 5.

2 CoDEL

Database evolution changes the schema of a database and/or the already exist-
ing data. A DEL contains operations to descriptively specify such changes as
units, which clearly distinguishes it from SQL-DDL and -DML. PRISM++ lim-
its itself to operations that modify individual tables – no PRISM++ operation
accepts more than two tables. This keeps the PRISM++ DEL intuitive and
easy to learn. CoDEL adopts this principle. However, CoDEL operations sys-
tematically cover all possible changes that can be applied to tables. Tables are
the fundamental structuring element and the container for primary data in a
relational database. Secondary database objects such as views, constraints, func-
tions, stored procedures, indexes, etc. should be considered in database evolution
as well. However, in this paper we focus on the evolution of primary data.

CoDEL defines SMOs of the pattern 〈smo〉〈scope〉(Θ), where 〈smo〉 is the
type of operation, 〈scope〉 is the general database object the operation works on,
and Θ is the set of parameters the SMO requires. Figure 2 gives a systematic
overview of all SMOs in CoDEL. A relational database table is a two-dimensional
structure consisting of columns and rows, hence, SMOs can operate on the level
of columns, of rows, or of whole tables. On all three levels there are five basic
operations: Add, Del, Split, Unite, and Ren. We will now introduce the
meaningful operations, as shown in Fig. 2. First, CoDEL has two basic opera-
tions to create (Addtable) and drop (Deltable) tables as a whole, similar to their
counterparts in a standard DDL. Second, CoDEL has a set of operations to mod-
ify a table. Hence, CoDEL offers eight table modification SMOs 〈smo〉〈scope〉 with
〈scope〉 ∈ {column, row} and 〈smo〉 ∈ {Add,Del,Split,Unite}. For instance,
Delcolumn removes a column from a given table and Splitrow partitions a table

CoDEL – A Relationally Complete Language for Database Evolution 67

horizontally, while Splitcolumn partitions it vertically. CoDEL defines no Split
or Unite of whole tables, since these operations are restricted to either column
or row scope. Third, CoDEL includes two SMOs to rename a table (Rentable)
and a column (Rencolumn). The renaming of rows is undefined.

Regarding relational completeness, Rencolumn, Rentable, Delcolumn, and
Delrow are not necessary. However, they are very common [9] and included
in CoDEL for usability’s sake. To summarize, CoDEL is the DEL LC with:

LC =

⎧
⎪⎪⎨

⎪⎪⎩

Addtable, Deltable,
Addcolumn, Delcolumn, Splitcolumn, Unitecolumn,
Addrow, Delrow, Splitrow, Uniterow,
Rentable, Rencolumn

⎫
⎪⎪⎬

⎪⎪⎭

All CoDEL SMOs require a set Θ of parameters. Let inst (o,D) be the set of
instances of the SMO o with a valid parameterization regarding the database D.
For instance, the only parameter to remove a table with Deltable(Θ) is the name
of an existing table, so that inst (Deltable (Θ) ,D) = {Deltable(R)|R ∈ D}. Fur-
ther, let inst (L,D) =

⋃
o∈L inst (o,D) be the set of all validly parameterized

SMO instances of the DEL L. Then, a CoDEL evolution script s for a database
D is a sequence of instantiated SMOs with s ∈ inst (LC ,Di)

+, where Di is the
database after the application of the i-th SMO.

In the following, we specify the semantics of all CoDEL SMOs. Table 1 sum-
marizes the definition of the semantics based on Lmin. The table also shows the
SQL-like syntax we propose for the implementation of CoDEL. In the remainder,
R.C = {c1, . . . , cn} denotes the set of columns of table R and Ri specifies the
version i of the table R. Whenever an SMO does not change the table’s name
but its columns or rows, we increment this version counter i. CoDEL SMOs take
tables as input and return tables. According to the SQL standard, tables are
multisets. Our semantics definition with Lmin is based on the relational algebra,
though, where tables are sets. However, relational database systems internally
manage row identifiers, which are at least unique per table. At the level of
SMO implementation, we consider the row identifiers as part of the tables and
hence, tables as sets. The corresponding multiset semantics of the SMOs can be
achieved, by adding a multiset projection of the resulting tables that removes
the row identifiers without eliminating duplicates.

. The SMOs Addtable and Deltable are the simplified
version of their Lmin counterparts. Addtable(R, {c1, . . . , cn}) requires two para-
meters, a table name R and a set of column definitions ci. It creates an empty
table with the specified name and schema. Deltable(R) takes only a single para-
meter, the name of the table to be dropped.

. Addcolumn adds a new column to an existing
table. As parameter Addcolumn(Ri, c, f(c1, . . . , cn)) takes the name Ri of the
table, the column definition c of the new column, and a function f . The resulting
table is Ri+1. Addcolumn applies the function f to each row in Ri to calculate the
row’s value for the new column c. The function f receives all other column values

68 K. Herrmann et al.

Fig. 3. Example for the operations on columns.

of the row as parameters. Figure 3 shows an example: Addcolumn(Person0, zip,
getZip(name, age, address)) adds a column zip to Person0 by determining the
zip code based on the currently available information.

Delcolumn removes a column from a table. Specifically, Delcolumn(Ri, c)
takes the name Ri of an existing table and the name c ∈ Ri.C of the column
that should be removed from Ri. The resulting table is Ri+1. Figure 3 shows an
example, where we remove the column zip from table Person1.

. Splitcolumn partitions a table vertically
and removes the original table. Splitcolumn has a generalized semantics,
where the resulting partitioning is allowed to be incomplete and overlapping.
Splitcolumn(R, (S, {s1, . . . , sn}) , (T, {t1, . . . , tm})) takes the name R of the orig-
inal table, a pair of table name S and a set of column names si as specification of
the first partition and optionally a second pair (T, {t1, . . . , tm}) as specification
of the second partition. The two sets of column definitions are independent. In
case S.C ∩T.C �= ∅, the columns S.C ∩T.C are copied. In case S.C ∪T.C ⊂ R.C,
the partitioning is incomplete. If the second partition is not specified, T is not
created. Note that CoDEL prohibits empty sets of column definitions for S and
T , since tables must have at least one column. Figure 3 shows an example with
the Splitcolumn SMO. Table Person0 is vertically partitioned to general infor-
mation (Base0) and address information (Address0). The partitions overlap on
the column name to maintain the connection between addresses and person.

Unitecolumn is the inverse operation of Splitcolumn. It joins two tables
based on a given condition and removes the original tables. As parameters,
Unitecolumn(R,S, T, cond, o) takes the names R and S of the original tables,
the name T of the resulting table, a join condition cond using SQL predicates
without further nesting, and the optional request o for an outer join. In case

CoDEL – A Relationally Complete Language for Database Evolution 69

Table 1. Syntax and semantic of CoDEL operations.

o = �, Unitecolumn performs an outer join, so that no rows from the original
tables are lost. In case o = ⊥ (or not specified) Unitecolumn performs an inner
join. With the inner join, Unitecolumn loses all rows from R and S that do not
find a join partner, since R and S are dropped after the join. Note that restrict-
ing the join to foreign key relations as other DELs do, does not prevent this

70 K. Herrmann et al.

information loss. A foreign key does not guarantee that every row in the refer-
enced table is actually referenced by at least one row in the referencing table.
Figure 3 also shows an example of Unitecolumn. The tables Base0 and Address0
are inner joined to the table Person2 based on equal names. Since all persons
have an address in this example, no rows are lost.

. Addrow adds new rows to an existing table by
aggregating the data in the current rows. As parameter
Addrow(Ri, G, {(aj , fj(G,V)) |1 ≤ j ≤ m} , S) requires the name Ri of the orig-
inal table, the set of grouping columns G = {g1, . . . , gn} ⊆ Ri.C, a set of pairs of
column name aj and aggregations function fj , and optionally a new table name
S. Addrow produces new rows by grouping table Ri by all columns gk ∈ G and
calculating the values for the columns aj with the functions fj . The functions
fj may contain constants, the values of the grouping columns G, and aggregate
functions upon the remaining columns V = Ri.C \ G. If the new table name S
is specified, Addrow creates S with the newly produced rows and Ri remains
available, which is particularly necessary, when the newly created rows have a dif-
ferent set of columns than Ri.C. Otherwise, Addrow appends the new rows to Ri

to form its new version Ri+1. In this case, we require the column definitions of the
new rows to match the original table Ri, hence {g1, . . . , gn}∪{a1, . . . , am} = R.C.
In general, the set of grouping columns is also allowed to be empty resulting in
one group and hence, one new row.

Delrow removes rows from a given table. Delrow(Ri, cond) takes the name
of an existing table Ri and a condition cond. It removes all rows, which satisfy
the condition and evolves the table to Ri+1.

. Splitrow partitions a table horizontally. However,
its semantics is more general than standard horizontal partitioning [4]. The SMO
creates at most two partitions out of a given table – with the partitioning allowed
to be incomplete and overlapping – and removes the original table. More pre-
cisely, Splitrow(R, (S, condS) , (T, condT)) takes the name of the original table,
a pair of table name S and condition condS as specification of the first partition
and optionally a second pair (T, condT) as specification of the second partition.
Both conditions condS and condT are independent. If the original tables contain
rows that fulfill neither of the conditions, the resulting partitioning is incomplete.
Rows that fulfill both conditions are copied resulting in overlapping partitions.
In case both conditions hold for all rows, i.e., condS = � and condT = �, T
is a complete copy of S. Hence, Splitrow subsumes the functionality of a copy
operations that can be found in other DELs. If condT is not specified, Splitrow

does not create table T .
Uniterow is the inverse operation of Splitrow; it merges two given tables

along the row dimension and removes the original tables. As parameters
Uniterow(R,S, T) requires, the names R and S of the original tables and the
name T of the resulting table. The schema of R and S are not required to by
equivalent. In case both schemas differ, T contains null values (ω) in the corre-
sponding cells. Uniterow eliminates duplicates in T . In case R and S contain
equivalent rows, these rows will show up only once in T .

CoDEL – A Relationally Complete Language for Database Evolution 71

. The last two SMOs rename schema elements.
Rentable(R,R′) renames the table with the name R into R′. Rencolumn(Ri, c, c

′)
renames the column c in table Ri into c′, which results in table Ri+1.

We use the semantics definition, as summarized in Table 1, to show the rela-
tional completeness of CoDEL in the following section.

3 Relational Completeness

To show the relational completeness of CoDEL, we argue that it is at least as
powerful as Lmin (Sect. 1), which is relationally complete by definition. There is
always a semantically equivalent expression in CoDEL for any expression in Lmin.
The Del (R) operation from Lmin is trivial, since it is equivalent to CoDEL’s
Deltable(R). On the contrary, Add (R, ε) from Lmin is more complex, as ε covers
the power of the relational algebra. Since both the relational algebra and CoDEL
are closed languages, it is reasonable to address each operation of the relational
algebra separately. We show that, for each operation from the relational algebra,
there is a semantically equivalent sequence of SMOs in CoDEL.

We assume the basic relational algebra [5] and add common extensions like
the extended projection, aggregation, and outer joins. However, we intentionally
exclude other extensions like the transitive closure and sorting. CoDEL does not
cover these extensions, since CoDEL is non-recursive and set-based. We maintain
these characteristics, since they proved to be a reasonable trade-off between
expressiveness and usability, however, they are open for further research. With
respect to implementations based on current database management systems,
the distinction between different types of null values [19] is not considered. For
instance Uniterow adds null values in columns, which existed in only one input
table, losing the information, whether a value was null before or did not exist at
all. The following sections will consider all constructs from the relational algebra
including the chosen extensions and show that CoDEL is capable to obtain the
semantically equivalent results.

Relation: R The basic elements of the relational algebra are relations. They
contain the data and are directly accessible by CoDEL as tables. Whenever one
table is required multiple times within a relational algebra expression, CoDEL
allows to copy them using Splitrow(R, (S,�) , (T,�)).

Selection: σcond(R) The selection returns the subset of rows from R, which sat-
isfy the condition cond. CoDEL’s Splitrow(R, (S, cond)) is semantically equiv-
alent, which directly follows from the semantics definition in Table 1.

Rename: ρc’/c(Ri) Renaming a column is subsumed by the extended projec-
tions, however, we include it here for completeness. CoDEL’s obvious semantic
equivalent according to Table 1 is Rencolumn(Ri, c, c

′).

72 K. Herrmann et al.

Extended Projection: πP(R) We will immediately consider the extended
projection, as it subsumes the traditional projection. The extended projection
defines a new set of columns, whose values are computed by functions depending
on the existing columns. Assume the projection P = {fk (R.C) → ak|1 ≤ k ≤ m}
with n = |R.C|. The CoDEL sequence below, realizes such an extended
projection. Without loss of generality, we use for-loops to iterate over the
attribute sets. Since this is only schema depending and data independent, it
does not extend the expressiveness of the DEL but is simply a short notation.

1: for k = [1..m] do
2: Addcolumn(Ri+k−1, a

′
k, fk (r1, . . . , rn));

3: for rj ∈ R.C do
4: Delcolumn(Ri+m+j−1, rj);
5: for k = [1..m] do
6: Rencolumn(Ri+m+n+k−1, a

′
k, ak);

7: for k = [i.. (i + 2m + n − 1)] do
8: Deltable(Rk);

Ri+1
2=πr1,...,rn,f1(r1,...,rn)→a′

1
(Ri) (1)

Ri+m
1,2
=πr1,...,rn,f1(r1,...,rn)→a′

1,...,fm(r1,...,rn)→a′
m

(Ri) (2)

Ri+m+1
4=πr2,...,rn,a′

1,...,a′
m

(Ri+m) (3)

Ri+m+n
3,4
=πa′

1,...,a′
m

(Ri+m) = πf1(r1,...,rn)→a′
1,...,fm(r1,...,rn)→a′

m
(Ri) (4)

Ri+m+n+1
6=πa′

1→a1,a′
2,...,a′

m
(Ri+m+n) (5)

Ri+m+n+m
5,6
=πa′

1→a1,...,a′
m→am

(Ri+m+n)

=πf1(Ri.C)→a1,...,fm(Ri.C)→am
(Ri) (6)

The first SMO adds a new column, with a masked name, for each column of
the output table. This allows to compute the new values based on all existing
ones. Afterwards, we drop the old columns, rename the new columns to their
unmasked name, and remove all intermediate tables. Applying the semantics
definitions of the CoDEL SMOs results in the desired extended projection, as
shown above. The concrete line of the CoDEL sequence, which is applied in the
semantics computation, is indicated by the numbers above the equal signs.

Outer Join: R � pS The outer join is another common extension to the
traditional relational algebra. Beyond the rows according to an inner join, it also
includes those rows in the result, which did not find a join partner. The missing
values for columns of the other table are filled with null values ω respectively.
Obviously, CoDEL’s Unitecolumn(R,S, T, p,�) is semantically equivalent, since
we explicitly introduced the option to perform outer joins.

CoDEL – A Relationally Complete Language for Database Evolution 73

Cross Product: R × S The cross product produces a row in the output table
for each pair of rows from the input tables. The following sequence of CoDEL
SMOs is semantically equivalent as shown below.

1: Addcolumn(Ri, j, 1);
2: Addcolumn(Sk, j, 1);
3: Unitecolumn(Ri+1, Sk+1, T0, Ri+1.j = Sk+1.j,⊥);
4: Delcolumn(T0, j);

Ri+1
1=πr1,...,rn,1→j (Ri) = {(r1, . . . , rn, 1) | (r1, . . . , rn) ∈ Ri} (7)

Sk+1
2= {(s1, . . . , sm, 1) | (s1, . . . , sm) ∈ Sk} (8)

T0
3=Ri+1 ��Ri+1.j=Sk+1.j Sk+1

= {(r1, . . . , rn, s1, . . . , sm, 1) | (r1, . . . , rn) ∈ Ri, (s1, . . . , sm) ∈ Sk} (9)

T1
4= {(r1, . . . , rn, s1, . . . , sm) | (r1, . . . , rn) ∈ Ri, (s1, . . . , sm) ∈ Sk}
=R × S (10)

We add a new column j to both tables with j �∈ Ri.C and j �∈ Sk.C and
the default value 1 to perform an inner join on j. Since its value is always 1,
there will be one row in the output table for each pair of rows from the two
input tables. We remove the additional column j and finally show the semantic
equivalence between the relational cross product and the presented sequence of
CoDEL SMOs.

Aggregate: γG,F (R) The aggregation is another typical extension to the rela-
tional algebra. The rows are grouped by one set of columns G = {g1, . . . , gn} ⊆
R.C. Additional columns A = {ai|1 ≤ i ≤ p} are computed by functions F =
{fi (G,V) → ai|ai ∈ A} with V = {v1, . . . , vm} = R.C \ G. These functions may
contain values from grouping columns G, aggregate functions on the remaining
columns in V , constants, and arithmetic functions. CoDEL contains a dedicated
operation Addrow(R,G,F, S). It writes the result of the aggregation to the new
table S. According to the semantics definition in Table 1, the semantics of Addrow

equals the discussed aggregation semantics from the relational algebra.

Union: R ∪ S The relational union, merges the rows from both input tables
to the one output table including an elimination of duplicates. Using the
SMO Uniterow, CoDEL provides a semantic equivalent to the relational union
operation.

1: Uniterow(R,S, T);

T
1=πR.C (R) ∪ πS.C (S) = R ∪ S (11)

Please note, that the union in the relational algebra requires R and S to have
identical sets of attributes (R.C = S.C), which justifies the simplification step.

74 K. Herrmann et al.

Difference: R \ S The relational difference returns all rows, which occur in the
first, but not in the second table. Analogous to the union, it requires R and S to
have identical sets of columns (R.C = S.C). The following CoDEL sequence is
semantically equivalent to the relational difference.

1: Addcolumn(Sk, j, 1);
2: Unitecolumn(Ri, Sk+1, T0, (Ri.c1 = Sk+1.c1 ∧ . . . ∧ Ri.cn = Sk+1.cn) ,�);
3: Delrow(T0, j �= ω);
4: Delcolumn(T1, j);

Sk+1
1=πs1,...,sm,1→j (Sk) (12)

T0
2=Ri � Sk+1

= {(r1, . . . , rn, 1) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn, 1) ∈ Sk+1}
∪ {(r1, . . . , rn, 1) | (r1, . . . , rn) �∈ Ri, (r1, . . . , rn, 1) ∈ Sk+1}
∪ {(r1, . . . , rn, ω) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn, 1) �∈ Sk+1} (13)

T1
3=σ¬(j �=ω) (T0) = σ(j=ω) (T0)
= {(r1, . . . , rn, ω) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn, 1) �∈ Sk+1} (14)

T2
4=πR.C (T1)
= {(r1, . . . , rn) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn) �∈ Sk} = Ri \ Sk (15)

We add a new column j to Sk with j �∈ Sk.C and the default value 1. The outer
join on all columns ci ∈ Ri.C = Sk.C is applicable, since the initial column sets
are equal. Due to the nature of the outer join, the resulting table contains all
rows which were in at least one of the two input tables. However, all rows, which
occurred in Sk have the value 1 in the column j and are removed by the third
SMO. All rows which occurred exclusively in R have a null value ω in the column
j and remain as result. Applying the semantics definition of the SMOs finally
leads to the relational difference operation. Please note, that (r1, . . . , rn) �∈ Sk

is equal to (r1, . . . , rn, 1) �∈ Sk+1 due to the first step.
Finally, we successfully showed that CoDEL provides a semantic equivalent

for each relational algebra expression, which makes it equally expressive as Lmin.
Hence, it is relationally complete and a sound foundation for further research.

4 Related Work

Database evolution is a well recognized topic in the database research commu-
nity [13,18]. There are a number of approaches to increase comfort and efficiency
in database evolution, for instance by defining a schema evolution aware query
language [14]. Another approach is to define database evolution languages graph-
based [12]. This allows modeling dependencies between different artifacts in the
information system and applying changes globally. Furthermore, MeDEA [10]

CoDEL – A Relationally Complete Language for Database Evolution 75

provides a general framework to describe database evolution in the context of
evolving applications. MoDEF [17] basically introduces an IDE extension to
automate the co-evolution of the evolving client schemas and the store.

Currently, PRISM [7] appears to provide the most advanced database evo-
lution tool including an SMO-based DEL. PRISM was first introduced in 2008
and focused on the plain database evolution [8]. Later, the authors extended
it to PRISM++, which includes the modification of constraints and update
rewriting [6]. To benchmark database evolution languages and tools, researchers
also analyzed the evolution histories of Wikimedia and other open source
projects [9,16]. Finally, database versioning extends the ideas of database evo-
lution to allow both forward and backward compatibility between the different
versions of evolving schemas [15]. Another extension of PRISM takes a first
step into this direction by answering queries on former schema versions accord-
ing to the current data [11]. The presented DEL CoDEL inherits the principle
style of SMOs from PRISM. However, PRISM is not relationally complete, while
CoDEL is. This additional characteristic provided by CoDEL is highly valuable
with respect to further research, particularly in the field of automated data-
base versioning based on SMOs, where falling back on common DDL and DML
evolution scripts is not an option.

5 Conclusion

Agile software development methods embrace the change. While software devel-
opers find support in refactoring methods to evolve their software, database
developers still have to fiddle with DDL/DML scripts to evolve schema and
data of a productive database consistently. Adding evolution support to a DBMS
involves the design of a database evolution language (DEL). In this paper we
considered the relational completeness of DELs for relational databases. Rela-
tional completeness is an important property of DELs. DELs that are incom-
plete in this respect, can force the user back to the manual evolution process
based on DDL and DML limiting the utility of the evolution functionality. We
presented the relationally complete DEL CoDEL. We detailed its formal defini-
tion and showed its relational completeness. CoDEL is to our best knowledge the
first well-defined, relationally complete DEL. CoDEL can serve as a reference
language for productive implementations of database evolution in DBMSs.

The solid formal base of CoDEL is also important for research and develop-
ment beyond database evolution. For instance in database versioning, multiple
clients access the same data in different schema versions. Database versioning
requires invertible SMOs, so that the database system can translate data back
and forth between schema versions. For the investigation of the invertibility of
SMOs a solid formal definition of the SMOs is a prerequisite. Hence, CoDEL
offers a good starting point towards database versioning. For the near future,
however, we hope CoDEL helps to jump start more implementations of proper
database evolution features in the DBMSs on the market, so that agile develop-
ment methods final arrive at the database layer.

76 K. Herrmann et al.

References

1. Ambler, S.W.: Whence data management? Dr. Dobb’s J. 390, 79 (2006)
2. Ambler, S.W., Sadalage, P.J.: Refactoring Databases: Evolutionary Database

Design. Addison-Wesley Signature. Addison-Wesley, New York (2006). ISBN: 978-
0321774514

3. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Sutherland, J., Thomas, D., Schwaber, K.: Manifesto for Agile
Software Development (2001)

4. Ceri, S., Negri, M., Pelagatti, G.: Horizontal data partitioning in database design.
In: SIGMOD Conference, pp. 128–136 (1982)

5. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 15(3), 162–166 (1970)

6. Curino, C.A., Moon, H.J., Deutsch, A., Zaniolo, C.: Update rewriting and Integrity
constraint maintenance in a schema evolution support system: PRISM++. VLDB
Endow. 4(2), 117–128 (2010)

7. Curino, C.A., Moon, H.J., Deutsch, A., Zaniolo, C.: Automating the database
schema evolution process. VLDB J. 22(1), 73–98 (2012)

8. Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the
PRISM workbench. VLDB Endow. 1(1), 761–772 (2008)

9. Curino, C.A., Tanca, L., Moon, H.J., Zaniolo, C.: Schema evolution in wikipedia:
toward a web information system benchmark. In: ICEIS, pp. 323–332 (2008)

10. Domı́nguez, E., Lloret, J., Rubio, Á.L., Zapata, M.A.: MeDEA: a database evolu-
tion architecture with traceability. Data Knowl. Eng. 65(3), 419–441 (2008)

11. Moon, H.J., Curino, C.A., Ham, M., Zaniolo, C.: PRIMA - archiving and querying
historical data with evolving schemas. In: SIGMOD Conference, pp. 1019–1022
(2009)

12. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Aggistalis, K., Pechlivani, F., Vas-
siliou, Y.: Language extensions for the automation of database schema evolution.
In: ICEIS, pp. 74–81 (2008)

13. Rahm, E., Bernstein, P.A.: An online bibliography on schema evolution. SIGMOD
Rec. 35(4), 30–31 (2006)

14. Roddick, J.F.: SQL/SE - a query language extension for databases supporting
schema evolution. SIGMOD Rec. 21(3), 10–16 (1992)

15. Roddick, J.F.: A survey of schema versioning issues for database systems. Inf.
Softw. Technol. 37(7), 383–393 (1995)

16. Skoulis, I., Vassiliadis, P., Zarras, A.: Open-source databases: within, outside, or
beyond Lehman’s laws of software evolution? In: Jarke, M., Mylopoulos, J., Quix,
C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014.
LNCS, vol. 8484, pp. 379–393. Springer, Heidelberg (2014)

17. Terwilliger, J.F., Bernstein, P.A., Unnithan, A.: Worry-free database upgrades. In:
SIGMOD Conference, p. 1191 (2010)

18. Terwilliger, J.F., Cleve, A., Curino, C.A.: How clean is your sandbox? In: Hu, Z.,
de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 1–23. Springer, Heidelberg
(2012)

19. Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28(1), 142–
166 (1984)

	CoDEL -- A Relationally Complete Language for Database Evolution
	1 Introduction
	2 CoDEL
	3 Relational Completeness
	4 Related Work
	5 Conclusion
	References

