
Improving the Pruning Ability of Dynamic
Metric Access Methods with Local Additional

Pivots and Anticipation of Information

Paulo H. Oliveira1(B), Caetano Traina Jr.2, and Daniel S. Kaster1

1 Department of Computer Science, University of Londrina (UEL), Londrina, Brazil
oliveiraph17@gmail.com, dskaster@uel.br

2 Institute of Mathematics and Computer Science, University of São Paulo (USP),
São Paulo, Brazil

caetano@icmc.usp.br

Abstract. Metric Access Methods (MAMs) have been proved to allow
performing similarity queries over complex data more efficiently than
other access methods. They can be considered dynamic or static depend-
ing on the pivot type used in their construction. Global pivots tend to
compromise the dynamicity of MAMs, as eventual pivot-related updates
must be propagated through the entire structure, while local pivots allow
this maintenance to occur locally. Several applications handle online com-
plex data and, consequently, demand efficient dynamic indexes to be suc-
cessful. In this context, this work presents two techniques for improving
the pruning ability of dynamic MAMs: (i) using cutting local additional
pivots to reduce distance calculations and (ii) anticipating information
from child nodes to reduce unnecessary disk accesses. The experiments
reveal significant improvements in a dynamic MAM, reducing execution
time in more than 50 % for similarity queries posed on datasets ranging
from moderate to high dimensionality and cardinality.

Keywords: Similarity queries · Metric access methods · Cutting local
additional pivots · Anticipation of child information

1 Introduction

In recent years, it has been noticed a fast-growing volume of complex data. Mul-
timedia data, georeferenced data and time series are examples of such data. Some
reasons for the growth are: lower prices of digital cameras and other video cap-
ture devices, high-definition cameras embedded in mobile phones, user-friendly
tools for processing and editing images and videos, acquisition of data from
medical equipment, data capture through sensor networks and high-speed inter-
net connections. The success of multimedia sharing services such as YouTube,
Flickr and social media is another evidence of this growth.

This research has been supported by scholarship grants from the Brazilian Coordi-
nation for the Improvement of Higher Education Personnel (CAPES).

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 18–31, 2015.
DOI: 10.1007/978-3-319-23135-8 2



Improving the Pruning Ability of Dynamic Metric Access Methods 19

In this work, complex data are considered as information that are not repre-
sented by traditional types, such as numbers, characters, dates and short texts.
A key observation is that the order relation does not apply to most complex
domains [8]. The order relation is a property that allows identifying which ele-
ment precedes the other, according to some criterion, in each pair of elements of
the domain. Since traditional index structures are based on this property, they
are not suitable for complex data. Nevertheless, there are structures well-suited
for complex domains, such as the Metric Access Methods (MAMs).

There are several MAMs related in the literature, categorized in different ways
dependingonwhich factors are taken intoaccount to structure thedata.The factors
pivot type and structure dynamicity are directly related to each other. Pivots are
elements that act as representatives of certain regions of the search space and are
used to prune irrelevant elements during the query execution. It is said that a pivot
is global when all elements of the dataset are referenced to it, whereas a pivot is
local when only a portion of the dataset is referenced to it. Because global pivots
are referenced by the whole dataset, they have a high impact in the pruning process
of irrelevant elements, once that a single global pivot can be used to discard a large
amount of irrelevant elements. However, MAMs based on global pivots may have
their dynamicity compromisedby the fact that eventual pivot-relatedupdates need
to be propagated through the entire structure. Local pivots, on the other hand,
allow the maintenance to occur locally at the price of a lower pruning ability. In
this context, the challenge addressed in this work is to improve the pruning ability
of dynamic MAMs without harming their dynamicity.

This paper presents two new techniques that significantly improve the perfor-
mance in similarity queries of dynamic MAMs based on local pivots. The first tech-
nique is to employ local additional pivots to reduce the uncertainty area in the
search space, i.e. the area that may contain elements that are not part of the answer
but cannot be pruned without being analyzed. The second technique is to antic-
ipate information from child nodes to their parents to enable pruning irrelevant
elements before visiting the disk pages that actually store them. Differently from
other approaches regarding multiple pivots to define a space region, our proposal
allows reducing both the number of distance calculations and the number of disk
accesses as well as it does not impose any constraint in the index dynamicity.

The new techniques presented in the paper have been applied to the dynamic
MAM Slim-tree [15] and evaluated through an extensive set of experiments over
real datasets, varying the number of elements, the dimensionality and employing
distance functions with different computational costs. In the paper, we present
results that confirm their efficiency, as they enabled gains of more than 50 %
in execution time, number of distance calculations and number of disk accesses
when compared to the original structure, regarding every evaluated dataset.

The paper is organized as follows: Sect. 2 covers essential concepts regarding
similarity queries over complex data and MAMs, as well as it presents the related
work; Sects. 3 and 4 describe the two new proposed techniques; Sect. 5 presents
how the techniques were applied to Slim-tree; Sect. 6 describes the experiments
and discusses the results; and Sect. 7 presents the conclusions and future work.



20 P.H. Oliveira et al.

2 Background and Related Work

2.1 Similarity Queries

In order to allow performing queries over complex domains, the elements of a
given complex dataset usually have features extracted from their content. The
extracted features are used in place of the original data to execute the queries.
The retrieval of complex data based on this process is known as content-based
retrieval and the set of extracted features of an element is called its feature
vector or signature. Feature vectors can be, using images for example, shape and
texture attributes, color histograms and results from transformations applied to
data [8]. Usually, complex data are compared by dissimilarity relations between
pairs of feature vectors. This is performed by employing a distance function that
calculates how dissimilar are the two feature vectors from each other. Those are
known as similarity queries, as they retrieve the elements from the dataset that
satisfy a given similarity-based criterion.

There are several types of similarity queries [18], which range from similarity
selections and joins to aggregate similarity queries. The two most common types
are the Range and the k-Nearest Neighbors queries. Given a maximum threshold
ξ, the Range query (Rq) retrieves every tuple ti from relation R that has a value
si for attribute Sj , which represents the feature vector of the element, satisfying
the condition δ(si, sq) ≤ ξ, where sq is the value of the query element for attribute
Sj and δ is the distance function that returns the dissimilarity between si and
sq. Considering R as a relation of images, an example of Range query is: “Select
the images which are similar to the image Q by up to 5 units”. Given an integer
value k ≥ 1, the k-Nearest Neighbor query (k-NNq) retrieves k tuples ti from
relation R with values si for attribute Sj that have the lowest distance from sq
according to δ. An example of k-Nearest Neighbors query is: “Select the 4 most
similar images to the image Q”.

2.2 Metric Access Methods

There are two main categories of access methods for indexing complex data. The
first category is a class of access methods that support data domains represented
in dimensional spaces, especially spatial data, known as Spatial Access Methods
(SAMs) [9]. However, many complex data types are high-dimensional and SAMs
degrade quickly as the number of dimensions grows. Furthermore, some complex
data types are dimensionless, that is, they cannot be represented by coordinates
in orthogonal axes. The second category is given by the Metric Access Methods
(MAMs). MAMs rely on the premise that data are immersed in a metric space.
A metric space is defined by a pair 〈S, δ〉, where S is a complex data domain
(i.e. feature vectors) and δ is a distance function δ : S×S �→ R

+, known as metric.
A metric has properties called metric postulates [18] ∀x, y, z ∈ S: (i) δ(x, y) ≥ 0
(non-negativity), (ii) δ(x, y) = δ(y, x) (symmetry), (iii) x = y ⇐⇒ δ(x, y) = 0
(identity) and (iv) δ(x, z) ≤ δ(x, y) + δ(y, z) (triangular inequality). An impor-
tant characteristic of metric spaces is that, in addition to comprehending vec-
tor spaces, they include dimensionless spaces. Therefore, almost any data type



Improving the Pruning Ability of Dynamic Metric Access Methods 21

can be immersed into a metric space, including geographic coordinates, images,
sounds, words and DNA sequences.

The general idea of most MAMs is to choose some elements as representatives
of certain subsets of data. Such elements are also known as pivots. Whenever an
element si ∈ S is inserted, the distance from its representative is calculated and
stored in the structure. Afterwards, these distance values are used in similarity
queries for pruning elements by using the triangular inequality property. More
formally, an element can be pruned, i.e. discarded without calculating its distance
from the query element, when one of the following conditions [3] is true, where
srep is the representative of the subset, sq is the query element, si is any of the
remaining elements in the subset and ri is the covering radius of si:

δ(srep, si) + ri < δ(srep, sq) − ξ (1)

δ(srep, si) − ri > δ(srep, sq) + ξ (2)

2.3 Related Work

The problem addressed in this work is about improving the pruning ability of
dynamic MAMs without compromising their dynamicity. MAMs which rely on
global pivots, such as the OMNI-family [14] and the permutation-based approx-
imate index PP-Index [7], allow updates in the structure and thus are classified
as dynamic. However, if it is necessary to perform a pivot-related update, the
cost can be close to rebuilding the whole structure. Therefore, we consider truly
dynamic the MAMs in which updates are managed locally, being at most prop-
agated through the path between a descendant and its highest ancestor.

In this sense, the pioneer dynamic MAM is M-tree [5], a balanced hierarchic
MAM based on local pivots, with ball partitioning and bottom-up construction.
Due to the success of M-tree, several access methods sharing similar principles
have been proposed with the goal of achieving a better performance, but keep-
ing their structure dynamic. One of them is the Slim-tree [15], an evolution of
M-tree with improvements such as the evaluation and minimization of the over-
lap level between nodes and a new split algorithm. Another example is the DBM-
tree [17], which allows a controlled unbalance to better fit the dataset density
variations. These structures have a single local pivot per node. There are MAMs
that employ multiple pivots per node, such as MM-tree [11] and Onion-tree [4].
However, the primary goal of these structures is to index data in main memory
avoiding overlaps among nodes, being subject to end up highly unbalanced after
updates. Other example is the M∗-tree [12], a variation of M-tree that stores, for
every node, a nearest-neighbors graph containing the nearest neighbor of each
element in the node and the distance between them. This turns every element
of a node into a kind of local pivot, allowing saving distance calculations.

Another strategy employed in some works is to include additional global piv-
ots in a local pivot-based MAM. An example of a method using this strategy is
the DF-tree [16]. Its structure is similar to the Slim-tree, but it uses global pivots
in the pruning process, embodying the idea of global pivots of the OMNI-family.



22 P.H. Oliveira et al.

Other examples are PM-tree (Pivoting M-tree) [13] and PM∗-tree [12]. The
PM-tree is a ball-partitioned structure which restricts the uncertainty region
by the intersection of hyper-rings defined by global pivots. The PM∗-tree adds
multiple local pivots to the PM-tree in the way M∗-tree does. The main advan-
tage of these MAMs is that the number of distance calculations is significantly
reduced due to the improved pruning ability provided by global pivots. However,
pivot-related changes require rebuilding the whole index.

Our proposal differs from the existing ones as we include local additional
pivots in local pivot-based MAMs and anticipate information from child nodes
in such a way that it improves the pruning ability of the structure while main-
taining every update locally contained. The first technique consists of adding
local pivots to each node and having the distances of their elements from each
additional pivot calculated and stored. The target for this technique is to reduce
the uncertainty region and, consequently, the number of distance calculations by
using the triangular inequality property in each node accessed by a query. The
second technique consists of anticipating information from child nodes, such as
distance and radius values, and use them to avoid unnecessary disk accesses.
Although M∗-tree employs local additional pivots in each node too, the bene-
fits obtained are only in terms of distance calculations. Our techniques, on the
other hand, allow reducing both distance calculations and disk accesses. They
are presented in the next sections.

3 The CLAP Technique

This section describes our new technique to improve the pruning ability of
dynamic MAMs, named Cutting Local Additional Pivots (CLAP). It aims at
reducing the uncertainty region of each node accessed in a similarity query.
However, distinctly from other strategies that employ multiple local pivots, in
which the pivots define the covering region of a node, as in the MM-tree and
the Onion-tree, the CLAP technique is used to cut the region defined by a node
representative applying the triangular inequality pruning mechanism using local
additional pivots. In spite of changing the node structure, this technique does
not change its partitioning, i.e. the covering radius of each node is still defined
from srep and therefore it does not compromise the dynamicity of the structure.

As described in Sect. 2.2, pruning by the triangular inequality regarding the
representative, known as the main pivot, consists of discarding every element
which satisfies one of the Eqs. 1 and 2. Figure 1a illustrates this property, where
the child node whose representative is also srep (the black dashed circumference,
centered in srep) is pruned, as it does not touch the uncertainty region (the
orange dashed ring). What the CLAP technique allows is to extend the use of
this property for all local additional pivots. Thus, for every element si which
has not been pruned by the triangular inequality involving the main pivot, each
additional pivot pj , 1 ≤ j ≤ n, where n is the number of additional pivots, is
used to prune the elements that satisfy the following additional conditions:



Improving the Pruning Ability of Dynamic Metric Access Methods 23

Fig. 1. Pruning by triangular inequality with 1 additional pivot. Dashed circumferences
centered in srep, s2, s3 and p1 represent pruned elements

δ(pj , si) + ri < δ(pj , sq) − ξ (3)

δ(pj , si) − ri > δ(pj , sq) + ξ (4)

Similarly to In Eqs. 1 and 2, these conditions involve two distance calcula-
tions. One of them, the value δ(pj , si), was calculated and stored into the node
when the MAM was built. The value δ(pj , sq), even though it must be calculated
for each pivot pj when the node is visited, allows reducing even more the num-
ber of distance calculations. Figure 1b shows the new uncertainty region as the
intersection of two rings: the orange dashed one, centered in the representative
srep, and the blue dashed one, centered in the cutting local additional pivot p1
(this figure considers one cutting local additional pivot). It can be verified that
the uncertainty region is much smaller than that shown in Fig. 1a, pruning the
child nodes which have srep, s2, s3 and p1 as their representatives.

4 Anticipation of Child Information

This section presents a new approach which aims at avoiding unnecessary disk
accesses by modifying the structure of nodes in MAMs in order to get, in advance,
information from child nodes that would only be accessed when these nodes were
read from disk. Taking the Slim-tree for example, when a node is visited during
a query, the first step is to use the triangular inequality pruning mechanism. For
every element si not pruned in an index node, the corresponding node must be
accessed from disk even if none of its elements touches the search region.



24 P.H. Oliveira et al.

Our second proposed technique is ACIR (Anticipation of Child Information
regarding Representatives), which consists of anticipating, for each child node of
the current node, the array of distances from the representative si plus the array
of covering radii (only the distances when the child nodes are leaf nodes, since
their entries do not have radii). Consequently, the triangular inequality pruning
mechanism regarding the representative is anticipated for each child node which
intercepts the search region. With the ACIR technique, the sequence of steps
for each node accessed during a similarity query is: (i) to use the triangular
inequality pruning mechanism by the main pivot and by the additional pivots;
(ii) to calculate the distances between sq and all elements not pruned in the
previous step; (iii) before reading from disk the elements which intercept the
search region defined by sq, execute additional steps involving the information
anticipated from child nodes. In doing so, it is possible to avoid unnecessary disk
accesses by identifying nodes that intercept the search region and, nevertheless,
are irrelevant for the result.

This allows avoiding unnecessary disk accesses in situations like the one
depicted in Fig. 2, where the child node centered in s1 intercepts the search
region defined by sq, but none of its children — s11, s12, s13 and s14, which
are grandchild nodes of the current node (the biggest one, centered in srep) —
intercepts the uncertainty region represented by the dashed ring within the child
node centered in s1. The evaluation of whether the grandchild nodes intercept
or not this uncertainty region can happen in the current level only because their
distances and radii have been anticipated. If they had not, the child node cen-
tered in s1 would have to be read from disk (unnecessarily) for this evaluation
to be done. Still in Fig. 2, the small circumferences centered in s11, s12, s13 and
s14 are the covering radii of the grandchild nodes. Those regions appear in the
figure just to illustrate the anticipated use of the triangular inequality prun-
ing mechanism allowed by the strategy. They are not known when the current
node (centered in srep) is in fact processed, once that the representatives of the
grandchild nodes are not stored in the current node.

5 Application of CLAP and ACIR to Slim-Tree

Slim-tree has two types of node: index nodes and leaf nodes. A leaf node presents
the following structure (the characters 〈 and 〉 delimit an array):

leaf node[〈OIDi, si, δ(si, srep)〉]
where OIDi is the identifier of the element; si is the element itself, stored as a
feature vector; δ(si, srep) is the distance of si from the representative. An index
node presents the following structure:

index node[〈si, ri, δ(si, srep), P tr(Tsi),#Ent(Tsi)〉]
where si is the feature vector of the representative of the subtree Tsi , pointed by
Ptr(Tsi); ri is the covering radius of this subtree, determined by the distance of



Improving the Pruning Ability of Dynamic Metric Access Methods 25

Fig. 2. Avoiding a disk access by anticipation of information. None of the grandchild
nodes (s11, s12, s13, s14 and the representative s1 itself, which are children of the child
node centered in s1) touches the uncertainty region, represented by the dashed ring

si from the farthest element in the node of this subtree; δ(si, srep) is the distance
of si from the representative of the current node; #Ent(Tsi) is the number of
entries in Tsi .

After including the CLAP and ACIR techniques, both index and leaf nodes
present new structures. In the following definitions, bold symbols represent the
information added by CLAP technique and blue symbols represent the changes
promoted by ACIR. A leaf node presents the following new structure:

leaf node[〈Posj〉, 〈OIDi, si, 〈δ(si, pj)〉〉]

where Posj is the position of additional pivot pj (e.g. Posj equals 2 if pj is the
second element stored in the node); δ(si, pj) is the distance of si from pivot pj ;
the remaining information are the same as the original structure. The criterion
for choosing the local additional pivots used in this implementation is the greater
sum of distances from the previous pivots. Nevertheless, other criteria can be
analyzed. In the case of the first additional pivot, it is the element which has the
greater distance from srep; in the case of the second additional pivot, it is the
element which has the greater sum of the distance from srep plus the distance
from p1 and so on. In the ACIR technique strategy, once that the distance values
from the representative are anticipated one level above in the MAM, these are
removed from the structure of the leaf node.

The index nodes, on the other hand, are divided into two types: index nodes
which are parents of leaf nodes, called l-index node, and index nodes which are
parents of index nodes, called i-index node. Their structures are the following:



26 P.H. Oliveira et al.

l-index node
[〈Posj〉, 〈si, ri, δ(si, srep), 〈δ(sil, si)〉, P tr(Tsi),#Ent(Tsi), 〈δ(si, pj)〉〉]

i-index node
[〈Posj〉, 〈si, ri, δ(si, srep), 〈δ(sil, si)〉, 〈ril〉, P tr(Tsi),#Ent(Tsi), 〈δ(si, pj)〉〉]

The difference between those nodes is that, in an l-index node, only the array
of distances 〈δ(sil, si)〉 are added, where sil is the l-th entry of the i-th child node
and si is its representative. In an i-index node, the covering radius ril of each sil
is also added.

6 Experimental Results

We performed extensive evaluations on both proposed techniques. The first tech-
nique has been implemented for only one local additional pivot in order to ana-
lyze its impact. We carried out experiments over datasets with different dimen-
sionalities and cardinalities and employed metrics with different computational
costs, so that we could evaluate our techniques in varied scenarios. In this section,
we present the results achieved through combinations of three datasets and two
metrics. For running the experiments, we used a machine with an Intel Core i5
2400@3.1 GHz processor, 4 GB of RAM@1333 MHz and HDD SATA III 6 Gb/s.

The datasets ALOI-T and ALOI-H belong to the Amsterdam Library of Object
Images1 (ALOI) [10]. These datasets are based on feature vectors extracted from
108,000 images of objects photographed several times, varying the position, the
illumination and the combination of colors. ALOI-T consists of texture feature
vectors with 140 dimensions, whereas ALOI-H consists of color histograms with
256 dimensions.

The test-collection CoPhIR2 [2] contains 106 million images processed from
Flickr. For all the images, the standard MPEG-73 features have been extracted:
Scalable Color, Color Structure, Color Layout, Edge Histogram, Homogeneous
Texture. In the experiments, the full feature vector of 282 dimensions was used in
datasets of cardinality ranging from 10k to 10M elements, generating the datasets
CoPhIR-10k-WL2, CoPhIR-100k-WL2, CoPhIR-1M-WL2, CoPhIR-10M-WL2,
in order to evaluate the scalability of the techniques using a weighted euclidean
distance. We also built the dataset CoPhIR-1M-M with 1M elements consisting
of the Color Structure feature, with 64 dimensions, employing the Mahalanobis
metric, also known as histogram quadratic distance [6]. This metric is expensive
because it considers the correlation between bins of color histograms, which leads
to more desirable results.

Since ALOI-H and CoPhIR-1M-M consist of color histograms, they were the
chosen datasets for employing the Mahalanobis metric. The L2 metric, which is
the euclidean distance, was employed on the rest of the datasets. On the CoPhIR
datasets, the weights suggested in [1] were used for the Weighted L2 metric.
1 Available at: http://aloi.science.uva.nl.
2 Available at: http://cophir.isti.cnr.it.
3 http://mpeg.chiariglione.org/standards/mpeg-7.

http://aloi.science.uva.nl
http://cophir.isti.cnr.it
http://mpeg.chiariglione.org/standards/mpeg-7


Improving the Pruning Ability of Dynamic Metric Access Methods 27

6.1 Performance in Similarity Queries

This subsection presents the results comparing the performance of Slim-tree +
CLAP and ACIR with the original Slim-tree to execute similarity queries. In
these experiments, k-NN queries and Range queries were performed varying the
k value (1, 10, 25, 50, 100, 150, 200, 250 and 300) and using the corresponding
radius values to retrieve k elements in Range queries. For each k, the results were
obtained by performing queries multiple times (500 when using the L2 metric
and 100 when using the Mahalanobis metric), each time with a random query
element, and taking the average value.

Figure 3 shows the obtained results. The graphs show that our techniques lead
to notable gains when compared to the original Slim-tree. For low selectivities
(e.g. k = 1 for k-NN queries and Range queries returning 1 element) the improve-
ment was very high, being up to 62.51 % regarding execution time, 62.58 % in
distance calculations and 96.93 % in disk accesses. When the selectivity was 50
or more, the gains were less expressive. Nevertheless, our techniques consistently
outperformed the original structure, regarding every dataset, in execution time,
number of distance calculations and number of disk accesses.

The first row of graphs in Fig. 3 corresponds to results over ALOI-T. In k-NN
queries, the gain ranged from 21.59 % to 46.61 % in execution time, from 33.12 %
to 62.58 % in distance calculations and from 9.57 % to 51.83 % in disk accesses.
In Range queries, the gain ranged from 37.02 % to 62.51 %, from 40.48 % to
58.24 % and from 10.55 % to 82 %, respectively for the same variables.

The second row of graphs in Fig. 3 refers to ALOI-H, which employs the costly
Mahalanobis metric. Our proposal presented a noticeable speedup, although the
gains, especially in disk accesses, were lower if compared to the previous dataset. In
k-NN queries, the gain ranged from 18 % to 53.2 % in execution time, from 17.96 %
to 53.2 % in distance calculations and from 5.8 % to 56.5 % in disk accesses. In
Range queries, the gain ranged from 19.77 % to 32.14 %, from 19.68 % to 32.12 %
and from 6.85 % to 89.43 %, respectively for the same variables.

Regarding the CoPhIR datasets, the third row in Fig. 3 shows the results of
experiments carried out over 1M elements with 282 dimensions by varying k
(datasetCoPhIR-1M-WL2).This is the dataset forwhich our techniques presented
the lowest gains for high values of k. Nonetheless, its use allowed improving the
performance of every evaluated aspect. Regarding execution time, distance calcu-
lations and disk accesses, respectively, the gain in k-NN queries ranged from 5.12 %
to 53.05 %, from 7.29 % to 55.09 % and from 3.73 % to 66.82 %, while the gain in
Range queries ranged from 6.92 % to 60.36 %, from 5.17 % to 13.05 % and from
3.80 % to 96.93 %. In the set of experiments using CoPhIR-1M-M, the proposed
techniques achieved even better results, as the main improvement of the techniques
regards distance calculations and the cost of theMahalanobismetric ismuchhigher
than the cost of the L2 metric. In this dataset, the gain in k-NN queries ranged from
11.25 % to 48.51 % in execution time, from 11.53 % to 49.09 % in distance calcula-
tions and from 6.59 % to 56.65 % in disk accesses. Finally, the gain in Range queries
ranged from 12.72 % to 20.37 %, from 9.65 % to 20.39 % and from 6.49 % to 87.6 %,
respectively for the same variables.



28 P.H. Oliveira et al.

Fig. 3. Results of the experiments varying k



Improving the Pruning Ability of Dynamic Metric Access Methods 29

6.2 Evaluation of Construction Issues and Scalability of Gain

This section evaluates the impact of the proposed techniques when compared to
the original structure in terms of building time, page size and resulting data file
size, as well as how the gain promoted by the techniques behaves with the size of
the dataset. The information of both structures regarding their construction are
presented in Table 1. Note that the Slim-tree with CLAP and ACIR required two
page sizes, one for index nodes and one for leaf nodes. This is because we wanted to
minimize the overhead of information in index nodes by increasing their page size.
The page size of index nodes will be usually a multiple of the page size of leaf nodes,
to allow using the same buffer pool for both node types. Although the index nodes
in Slim-trees+CLAPandACIRare the double of the size of the original Slim-trees,
taking a longer time to read them from disk, the higher pruning ability of CLAP
and ACIR allowed a better performance in our experiments. Also, note that both
structures have similar file sizes. Slim-tree + CLAP and ACIR presented files from
2.4 % to 6.91 % smaller than Slim-tree did. It can be explained by the fact that,
with the anticipation of information, leaf nodes store less information than before.
Since there are many more leaf nodes than index nodes, storing less information
within leaf nodes leads to a little smaller file sizes.

The building time for Slim-trees with CLAP and ACIR was from 12.32 % to
34.32 % higher, as expected, because it involves additional computations such as
distance calculations regarding the cutting local additional pivots. However, the
worst case was on the smallest dataset, CoPhIR-10k-WL2, which resulted in a
difference of only 1.528s. Thus, considering the performance gain in queries, the
proposed techniques are worth the higher building time.

Table 1. Construction information of both structures for all datasets

Dataset Slim-tree Time (s) Page size (KB) File size

ALOI-T Original 37.296 32 103MB

CLAP and ACIR 43.650 64 (index) — 32 (leaf) 101.2MB

ALOI-H Original 29637.4 64 162MB

CLAP and ACIR 33289.4 128 (index) — 64 (leaf) 155.9MB

CoPhIR-10k-WL2 Original 4.452 64 15MB

CLAP and ACIR 5.98 128 (index) — 64 (leaf) 14.640MB

CoPhIR-100k-WL2 Original 58.967 64 139MB

CLAP and ACIR 71.684 128 (index) — 64 (leaf) 129.4MB

CoPhIR-1M-WL2 Original 740.946 64 1.4GB

CLAP and ACIR 871.27 128 (index) — 64 (leaf) 1.334GB

CoPhIR-10M-WL2 Original 9481.47 64 14GB

CLAP and ACIR 10954.6 128 (index) — 64 (leaf) 13.329GB

CoPhIR-1M-M Original 11763.2 8 449MB

CLAP and ACIR 13385.5 16 (index) — 8 (leaf) 434MB



30 P.H. Oliveira et al.

Fig. 4. Results of the scalability experiments over CoPhIR

Finally, we evaluated how the gain promoted by CLAP and ACIR techniques
behaves according to the dataset size. In this experiment, we fixed k to 10 and
varied the dataset size from 10k to 10M elements with 282 dimensions, using the
Weighted L2 metric and random query elements. Figure 4 presents the obtained
results. It can be seen that the improvement raises with the dataset size regard-
ing distance calculations and execution time. The gain in disk accesses drops
until 1M elements and afterwards presents a sensible increase, being always pos-
itive. These results show that the proposed techniques scale well with increasing
dataset size.

7 Conclusions

We have proposed new techniques based on local additional pivots and anticipa-
tion of information for improving the pruning ability of dynamic MAMs: CLAP
and ACIR. Our techniques were extensively tested and achieved better results in
all evaluated scenarios, for both k-NN and Range queries. We also showed that
the gain promoted by the techniques scales well with the dataset size. Moreover,
the CLAP and ACIR techniques do not affect the dynamicity of the underly-
ing MAM and, just like they were implemented over Slim-tree, other dynamic
hierarchic MAMs could be improved by using them as well.

Both contributions of this work opens possibilities for future work. Regarding
the CLAP technique, the use of more than one additional pivot per node could
be explored, as well as strategies for selecting cutting local additional pivots.
In ACIR, the information considered in this work to be anticipated from child
nodes are the distances of each element from their representative and the radius
values. However, other information could be anticipated due to the CLAP tech-
nique, such as the feature vectors of each additional pivot and the distances of
each element from the additional pivots. Our insight is that, by having more
information anticipated, the improvements can be even better. We are working
on these extensions to present them in a next work.



Improving the Pruning Ability of Dynamic Metric Access Methods 31

References

1. Batko, M., Kohoutkova, P., Novak, D.: CoPhIR image collection under the micro-
scope. In: 2nd International Workshop on Similarity Search and Applications, pp.
47–54. IEEE Computer Society, Washington, DC (2009)

2. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti,
F.: CoPhIR: A Test Collection for Content-Based Image Retrieval. Computing
Research Repository abs/0905.4627v2 (2009)

3. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching. Com-
mun. ACM 16(4), 230–236 (1973)

4. Carélo, C.C.M., Pola, I.R.V., Ciferri, R.R., Traina, A.J.M., Traina Jr., C., Ciferri,
C.D.A.: Slicing the metric space to provide quick indexing of complex data in the
main memory. Inf. Syst. 36(1), 79–98 (2011)

5. Ciaccia, P., Patella, M., Zezula, P.: M-Tree: An efficient access method for similarity
search in metric spaces. In: 23rd International Conference on Very Large Data
Bases, pp. 426–435. Morgan Kaufmann, San Francisco (1997)

6. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2009)
7. Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-

larity search. Inf. Process. Manage. 48(5), 889–902 (2012)
8. Faloutsos, C.: Searching Multimedia Databases by Content. Advances in Database

Systems, vol. 3. Springer, New York (1996)
9. Gaede, V., Gunther, O.: Multidimensional access methods. ACM Comput. Surv.

30(2), 170–231 (1998)
10. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The amsterdam library

of object images. Int. J. Comput. Vis. 61(1), 103–112 (2005)
11. Pola, I.R.V., Traina Jr., C., Traina, A.J.M.: The MM-tree: a memory-based metric

tree without overlap between nodes. In: Ioannidis, Y., Novikov, B., Rachev, B.
(eds.) ADBIS 2007. LNCS, vol. 4690, pp. 157–171. Springer, Heidelberg (2007)

12. Skopal, T., Hoksza, D.: Improving the performance of M-Tree family by nearest-
neighbor graphs. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007.
LNCS, vol. 4690, pp. 172–188. Springer, Heidelberg (2007)

13. Skopal, T., Pokorný, J., Snášel, V.: Nearest neighbours search using the PM-tree.
In: Zhou, L., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp.
803–815. Springer, Heidelberg (2005)

14. Traina Jr., C., Filho, R.F.S., Traina, A.J.M., Vieira, M.R., Faloutsos, C.: The
omni-family of all-purpose access methods: a simple and effective way to make
similarity search more efficient. VLDB J. 16(4), 483–505 (2007)

15. Traina Jr., C., Traina, A.J.M., Faloutsos, C., Seeger, B.: Fast indexing and visual-
ization of metric data sets using slim-trees. IEEE Trans. Knowl. Data Eng. 14(2),
244–260 (2002)

16. Traina Jr., C., Traina, A.J.M., Filho, R.F.S., Faloutsos, C.: How to improve the
pruning ability of dynamic metric access methods. In: 11th International Confer-
ence on Information and Knowledge Management, pp. 219–226. ACM, New York
(2002)

17. Vieira, M.R., Traina Jr., C., Chino, F.J.T., Traina, A.J.M.: DBM-Tree: trading
height-balancing for performance in metric access methods. J. Braz. Comput. Soc.
11(3), 37–51 (2005)

18. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer, New York (2006)


	Improving the Pruning Ability of Dynamic Metric Access Methods with Local Additional Pivots and Anticipation of Information
	1 Introduction
	2 Background and Related Work
	2.1 Similarity Queries
	2.2 Metric Access Methods
	2.3 Related Work

	3 The CLAP Technique
	4 Anticipation of Child Information
	5 Application of CLAP and ACIR to Slim-Tree
	6 Experimental Results
	6.1 Performance in Similarity Queries
	6.2 Evaluation of Construction Issues and Scalability of Gain

	7 Conclusions
	References


