SeeCOnt: A New Seeding-Based Clustering
Approach for Ontology Matching

Alsayed Algergawy! 2™ Samira Babalou?,
Mohammad J. Kargar3, and S. Hashem Davarpanah?

! Institute of Computer Science, Friedrich Schiller University of Jena, Jena, Germany
alsayed.algergawyQuni-jena.de
2 Department of Computer Engineering, Tanta University, Tanta, Egypt
3 Department of Computer Engineering,
University of Science and Culture, Tehran, Iran

Abstract. Ontology matching plays a crucial role to resolve seman-
tic heterogeneities within knowledge-based systems. However, ontologies
contain a massive number of concepts, resulting in performance impedi-
ments during the ontology matching process. With the increasing number
of ontology concepts, there is a growing need to focus more on large-
scale matching problems. To this end, in this paper, we come up with
a new partitioning-based matching approach, where a new clustering
method for partitioning concepts of ontologies is introduced. The pro-
posed method, called SeeCOnt, is a seeding-based clustering technique
aiming to reduce the complexity of comparison by only using clusters’
seed. In particular, SeeCOnt first identifies and determines the seeds of
clusters based on the highest ranked concepts using a distribution con-
dition, then the remaining concepts are placed into the proper cluster
by defining and utilizing a membership function. The SeeCOnt method
can improve the memory consuming problem in the large-scale matching
problem, as well as it increases the matching quality. The experimental
evaluation shows that SeeCOnt, compared with the top ten participant
systems in OAEI, demonstrates acceptable results.

Keywords: Ontology matching - Clustering techniques - Large-scale
matching

1 Introduction

Ontology is the main backbone of the Semantic Web, which provides facilities for
integration, searching, and sharing of information on the web through making
those information understandable for machines [14]. Despite this crucial role and
due to the engineering of ontologies by different people or methods even if they
are created for the same domain, there exist different sorts of heterogeneities.
Semantic heterogeneity is a common and key problem in different knowledge-
based systems [5,6]. To obtain meaningful interoperation, one needs a semantic
mapping among ontologies. To cope with the semantic heterogeneity problem, a

© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 245-258, 2015.
DOI: 10.1007/978-3-319-23135-8_17

246 A. Algergawy et al.

set of correspondences that identify similar concepts across different ontologies
have to be achieved through ontology matching. The construction of manual
match is an error-prone and labor intensive task that requires complete knowl-
edge of the semantics of the data in ontologies being matched. Solutions that try
to provide some automatic support for ontology matching have received steady
attention over the years [3,8,19,21].

Nowadays, there is a natural evolution of data, and consequently, there exist
many complex and large-scale ontologies in the real domains. For example, the
Foundational Model of Anatomy (FMA), SNOMED CT, and the National Can-
cer Institute Thesaurus (NCI) ontologies are semantically rich and contain tens
of thousands of concepts'. However, to process these large-scale ontologies, the
existing ontology matching tools have some problems, such as shortage of con-
sumed memory and/or long time consumption [21]. For example, the OAEI
campaign started in 2006 including the anatomy matching task as an evalua-
tion criterion for large-scale matching. The anatomy matching task is to match
the Adult Mouse Anatomy (2744 concepts) and the NCI Thesaurus (3304 con-
cepts). However, in 2011, only 6 of 16 systems could process those ontologies.
With the increasing number of concepts typical ontologies have, the OAEI cam-
paign included a new match track, called Large Biomedical Ontologies. In 2014,
only three matching systems could complete the total matching tasks in this
track [22].

In order to enable matching of large-scale ontologies, dividing the ontologies
into a set of partitions is a way which has been proposed so far via the methods
such as divide and conquer [15], clustering [1], and modularization [23]. We
argue that partitioning input ontologies plays a central role towards building an
effective and efficient matching system. To this end, in this paper, we introduce a
seeding-based clustering approach for partitioning ontologies, called SeeCOnt. In
particular, input ontologies are parsed and represented as concept graphs. We
then develop a Ranker function to rank ontology concepts exploiting concept
graph features. The highest ranked concepts are then selected to constitute the
cluster seeds. To assign remaining concepts to their proper clusters, we introduce
a membership function. We demonstrate that SeeCOnt reduces the complexity
of the comparisons by comparing concepts with only seeds instead of all the other
concepts. Finally, we adapt the Falcon-AO matching system to apply our new
approach. To validate the proposed approach, we conducted a set of experiments
utilizing different data sets from OAEIL The experimental results display that
SeeCOnt achieved acceptable performance compared with the top-ten matching
systems participating recently in OAEL

The rest of the paper is structured as follows. Related work is presented
in Sect.2. We describe the proposed approach Sect.3. We report experiments
conducted and analysis results in Sect. 4. Section 5 concludes the paper.

! http://www.cs.ox.ac.uk/isg/projects/SEALS /oaei/2014/.

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2014/

SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching 247

2 Related Work

Because its importance, several approaches have been proposed to deal with
the problem of matching two large ontologies [1,4,13,15,18,20,23]. Promising
areas for large-scale matching lie in four main directions: reduction of search
space for matching, parallel matching, self-tuning match workflows and reuse of
previous match results [18]. In this section, we pay attention to the approaches
that perform reduction of the search space. The standard approach of cross join
evaluation for ontology matching reduces the matching quality and matching
efficiency. In order to reduce the search space for matching, two methods can be
used; early pruning of dissimilar element pairs and partition-based matching.

In general, partitioning-based matching has three main stages: (i) partition-
ing each input ontology into a set of sub-ontologies and determining similar
partitions between two sets to form a matching task, (ii) applying a matching
method to each matching task to produce a set of partial match results, and
(iii) combining partial results to get the final match result. In the following we
present a set of matching systems that follow this architecture.

Quick ontology matching (QOM) was one of the first approaches to imple-
ment the idea of early pruning of dissimilar element pairs [7]. It iteratively applies
a sequence of matchers and can restrict the search space for every matcher.
COMA ++ was one of the first systems to support partition-based schema match-
ing [4]. It depends on fragment matching which determines fragments of the two
schemas and identifies the most similar ones.

Another matching system that supports partition-based matching is Falcon-
AO [15]. It initially partitions the ontologies into relatively small disjoint blocks
by using structural clustering. Then, matching is applied to the most similar
blocks from the two ontologies. Dynamic partition-based matching is supported
by AnchorFlood [20]. It avoids the a-priori partitioning of the ontologies by
utilizing anchors (similar concept pairs). It takes them as a starting point to
incrementally match elements in their structural neighborhood until no further
matches are found or all elements are processed. Thus the partitions (segments)
are located around the anchors.

Zhong et al. propose an unbalanced ontology matching approach, which con-
cerns with matching a lightweight ontology with a more heavyweight one [25].
Algergawy et al. uses a clustering-based matching approach that is based on
an agglomerative bottom-up hierarchical fashion [1]. The clustering scheme is
performed based on the context-based structural node similarities. Then, a light
weight linguistic technique is used to find similar partitions to match.

3 SeeCOnt

To cope with matching large ontologies, we present a new seed-based cluster-
ing approach, called SeeCOnt. As shown in Fig.1, SeeCOnt consists of three
components: preprocessing, ranking, and clustering. First, input ontologies are
parsed and represented internally as labelled directed graphs, called concept

248 A. Algergawy et al.

graphs. During the preprocessing step, the number of cluster heads (CH) is to be
determined. To quantify the importance of a concept in the concept graph, we
introduce a new function called Ranker exploiting the concept graph features.
Finally, remaining concepts are placed into their corresponding clusters accord-
ing to a proposed membership function. The outline of the SeeCOnt approach
is shown in Algorithm 1. In the following sections, we portray the description of
each phase of the algorithm.

Clustering Component

(Preprocessing’) / Ranker Component {

Component T
| 7
B m X
>
- Centrality Calculator Conr&’xmn Calculatop - - I

N ./) ‘\7-' -I Y,

Fig. 1. Architecture of the SeeCOnt method.

3.1 Preprocessing

First input ontologies are parsed and inferred by Apache Jena? and then the
concept graph is drawn by mapping the inferred result. We define concept graph
G = (C,R,L) as a labeled directed graph. C = {c;,¢2,...,c,} is a finite set of
nodes presenting the concepts of the ontology. R = {ri,rs,...,rn} stands for
a finite set of directed edges showing various relationships between concepts in
an ontology O, such that r, € R represents a directed relation between two
adjacent concepts c¢;,c; € C. L is a finite set of labels of graph nodes defining
the properties of each concept, such as the names of concepts. n(= |C|) and m
are the number of nodes (concept) and edges (relationship) in G, respectively.
Given the number of concepts in an ontology, the number of cluster heads (i.e.
K) can be computed according to the following equation.

[cl

€

K= (1)
where € is the maximum size of each cluster (e < |C|) and should be set by an
expert depending on the number of concepts.

Once each ontology is represented as a concept graph, the next step is to
partition concepts, C, of each graph into a set of separate (disjoint) clusters
71,75, ..., T such that the cohesion of nodes in one cluster should be high, while
the coupling of two clusters is low.

2 https://jena.apache.org/.

https://jena.apache.org/

SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching 249

Algorithm 1. Seeding-based clustering algorithm

Require: An ontology O, a parameter € limiting the maximum number of concepts
in a cluster

Ensure: A set of clusters, 7 = {71, 72, ..., Tt }
{// Phase 1: Preprocessing}

1: 7 < 0

2: CG < parse(O);

3 K< @;

{// Phase 2: Concept Ranking}

for ¢; € C do

scorec; <= compute_Ranker_score(c;);

end for

CH <« select_top_rank(C);

{//Phase 3: Clustering}

8: initialize each cluster with each CH node;

9: add each direct concept of CH to each cluster;

10: for non — clustered c; € C do

11: max_sim < 0;

12: for ¢; € CHy do

13: simg; <= MemFun(c;, c;);
14: if sim;; > mazx_sim then
15: MAT_SIM <= SiM;j;

16: concept_place < j;

17: end if

18: end for

19: Clust.put(C;,CH;)

20: end for

3.2 Concepts Ranking

The seeding-based clustering algorithm starts by selecting a set of nodes distin-
guishing as important nodes. These nodes are then selected to be cluster heads,
CH. In order to identify a node as an important one, we should first quan-
tify its role in the concept graph. To this end, we introduce a new function,
called Ranker. This function should be as simple as possible but effective. Le.
the Ranker function should not consume much time, however, correctly rank
concepts inside an ontology, given that we deal with the large-scale matching
problem.

Ranker Function. The importance of a node in a concept graph is understand-
able through the node itself and its surroundings [11]. This matter leads us to
use graph-theoretic measures based on graph connections in the Ranker func-
tion. In the following, we present two different implementation of the Ranker
function. The first is based on the centrality measure of a concept, while the
second depends on the context of the concept.

250 A. Algergawy et al.

First Rank Function. The definition of “centrality” measure of a concept in
a concept graph is derived from the social network analysis [9]. Each person is
given a score based on his or her position at the network showing the importance
of each individual. To consider the effect of the concept itself through its edges,
we use a set of centrality measures, as given below.

Degree Centrality (C'1): This measure is the simplest measure that calculates
the number of connections of a node. In a directed graph, there is an in-degree
and out-degree centrality that calculates the number of input and output
links, respectively. The relationships between nodes can be considered as a
power source during concept ranking; nodes with high degree of centrality are
certainly more prominent than the others, since they receive a great deal of
power [16].

Closeness Centrality (C2): This measure shows the importance of the close
nodes to the others in the graph. In this measure, reaching cost of a node to
the others is measured [16].

Betweenness Centrality (C3): This measure is considered the most relevant in
that context. It consists in computing on each node the fraction of shortest
paths that pass through it [10].

EcCentrality (C4): This measure calculates the maximum distance between
pairs of nodes. The intuition is that one node is the central if no node is far
from it [12].

Stress Centrality (C5): This measure calculates the absolute number of the
shortest paths through a node [17].

A summary of these centrality measures and their descriptions are shown in

Table 1.
Table 1. Different Centrality Measures.

No.| Name Formula Description

1 |Degree Centrality C1(c;) = degreeCentrality(c;) |-

2 |Closeness Centrality |C2(c;) = S oo distlance(ci,c]') distance (c¢;,c;) function is the

J shortest path between i and

j nodes in the graph

3 |Betweeness Centrality| C3(c;) = 3, e, %(f’) 0s,¢(ci) is the number of
shortest paths from s to ¢
through ¢;, and os,¢ is the
total number of shortest
paths from s to t

. 0\ 1

4 |EcCentrality Ca(c;) = e e0 Tiotanceleney) |

5 |Stress Centrality C5(ci) = X5 tec; Ts.t(ci) 0s,t(ci) represents the number
of the shortest paths from s
to t via ¢;

The arising question now is which centrality measure(s) should be used to

implement our Ranker function. During the selection process we need to optimize

SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching 251

between two criteria: an accurate and fast measure. To this end, and based on
our experimental results shown later, we select the combination of the Degree,
C1 and closeness, C2 centrality measures. As a result we can formulate the
score of the first Ranker function for a given concept, ¢;, as below:

Ranker_score(¢;) = C1(¢;) + C2(¢;) (2)

Second Rank Function. During the employment of the first Ranker function,
we observed that it is an effective measure but it requires a lot of time to rank
concepts. This makes it unsuitable for matching large ontologies. Therefore, we
propose another rank function that should be more applicable to large-scale
matching. First, we introduce the definition of the concept connexion set, then
show how to use this set to determine the importance of the concept.

Definition 1. Given a concept graph G = (C,R,L), the connexion set of a
concept ¢; € C is defined as: U(c;,d) = {SubClass(c;,d) U SuperClass(c;,d)}

where ¥(c¢;,d) is a set in which all the concepts with d levels that effect on
¢; node. SubClass(c;,d) is the children of ¢; with d hierarchical levels, and
SuperClass(c;, d) is the parents of ¢; with d hierarchical levels. It is evident that
the importance of a concept increases as it has a larger number of surroundings.
Based on this we propose the following score function that can be used to rank
concepts of an ontology.

Ranker_scores(c;) = |¥(c;, d)] (3)

Determining Cluster Heads. Once computing the importance of concepts
of a concept graph, the next step is to select which concepts represent cluster
heads, CH. If simply the nodes with the highest score are selected as the cluster
heads, distribution would be disregarded. To avoid this problem, the distance
between two cluster heads is measured, and among the highest score nodes, those
with a minimum distance of d from each other are selected as the cluster heads.
For this purpose, we adopt the Connezion set with d levels defined before.

3.3 Finalizing Clustering

At first, the SeeCOnt algorithm creates one cluster for each cluster head. Then,
it places direct children in the corresponding cluster and finally, for remaining
nodes, a membership function is used to determine the cluster of each node. In
general, clustering is done through the following three steps:

— Seeding: Creating a cluster for each cluster head, Algorithm 1, line 8.

— Direct Spread: Assigning direct children of each cluster head to the corre-
sponding cluster, Algorithm 1, line 9.

— In-Direct Spread: Calling a membership function for the remaining nodes,
Algorithm 1, lines 10—18.

252 A. Algergawy et al.

The direct Spread step reduces the time complexity, since the number of compar-
isons will be reduced as well as applying the membership function for all nodes
is time consuming. While by placing the nodes via the call of the membership
function, the same results would still be achieved.

Membership Function. Once determining cluster heads, (CH), and assigning
direct children to their proper heads, the next step is to place remaining con-
cepts into their fitting cluster. To this end, we develop a membership function,
MemPFun. First, each concept is associated with a flag, F, such that if the F of ¢
concept is false, it means c is not assigned to any cluster and thus, the member-
ship function is called for the concept c. In addition, the F flag can only have
one value, i.e. each node can be placed in only one cluster so that no overlap
is observed in clusters. The membership function determines that each concept
¢; € C should be placed in which 7;,i < K cluster. For this, the similarity of ¢;
with all CH; is calculated and then ¢; is placed in a cluster with the maximum
similarity value. Using the proposed membership function, each concept is com-
pared with Cluster Heads, instead of comparing with all concepts like whatever
was done in [1,15], which reduces the complexity of comparison.

In order to measure the membership of a concept to a cluster head, a lin-
ear weighted combination of the following structural and semantic similarity
measures is calculated as in the following equation:

MemFun(c;,CHy) = oo x SNSim(c;,CHy,)
+ (1 — a) x SemSim(c;,CHy,) (4)

where « is constant between 0 and 1 to reflect the importance of each similarity
measure, ShareNeighbors(SNSim) and semantic similarity SemSim are two
similarity measures that quantify the structural properties of the concept c¢;,
respectively.

Shared Neighbors. This measure considers the number of shared neighbors
between ¢; and CHj. The shared neighbour measure plays an important role
in structural similarity, because similar concepts have similar neighbors [2,24].
The neighbors of a concept are the concept’s children, concept’s parents, con-
cept’s siblings and the concept itself. In our implementation, we determine the
neighbors of the concept ¢; and the neighbors of the cluster head CHy, then
determine how many concepts are common between these two sets.

_ |SN¢, N SNe, | (5)
a |SNCL U SNCH;J

where SN., and SNy, are the neighbor sets of the concept ¢; and the cluster
head CHy, respectively.

SNSim(c;,CHy)

Hierarchical Semantic Similarity. It is evident that a higher semantic simi-
larity implies a stronger semantic connection, so we first calculate the semantic

SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching 253

similarities between the concept ¢; and the cluster head CHy. The most classic
semantic similarity calculation is based on the concept hierarchy. The hierarchy
semantic similarity between ¢; and CHy can be defined as below:

2><N3

SemSim(c;,CHy) = Ny + Ny 4+ 2 x Ny)

where Ny and N» are the numbers of sub-concept relations from ¢; and ,CHy
to their most specific common superconcept C, and N3 is the number of sub-
concept relations from C' to the root of the concept hierarchy.

Matching. Once settling on the similar clusters of the two ontologies, the next
step is to fully match similar clusters to obtain the correspondences between
their elements. Each pair of the similar clusters represents an individual match
task that is independently solved. Match results of these individual tasks are
then combined in‘to a single mapping, which represents the final match result.
We adopt the Falcon matching system [15] to perform this task.

4 Experimental Evaluation

To develop SeeCOnt, the open source Falcon-AO system® was used. It was imple-
mented in Java with Apache 2.0 license. Falcon-AQO has some components includ-
ing PBM (Partition Block Match) [24]. PBM is used for large-scale ontology
matching which was replaced by the SeeCOnt. All the experiments were carried
out on Intel core i5 with 4 GB internal memory on Windows 7 with Java com-
piler 1.7. Ontologies were parsed using Jena Apache, and the mapping functions
were implemented by Alignment API#.

4.1 Data Set

We tested with two common data sets from the OAEI: Conference and Anatomy.
The conference data set containing 16 ontologies is much used in ontology match-
ing evaluation. The Anatomy data set contains two ontologies of human and
mouse anatomy with 3306 and 2746 concepts, respectively.

4.2 Evaluation Criteria
In our implementation, we attempt to get answers to the following questions:

— Which centrality measure should be used to implement the first Ranker
function?

— Which ranker function should be used to implement the ranker component?

3 http://ws.nju.edu.cn/falcon-ao.
* http://alignapi.gforge.inria.fr.
5 http://oaei.ontologymatching.org.

http://ws.nju.edu.cn/falcon-ao
http://alignapi.gforge.inria.fr
http://oaei.ontologymatching.org

254 A. Algergawy et al.

— What is the relative performance of the SeeCOnt approach w.r.t. recent
matching approaches?

In order to answer these questions, we carried out sets of experimental evalua-
tions. In the following, we report on the answers of these questions.

4.3 Experimental Results

Centrality Measure Evaluation. We conducted the first set of experiments
to decide which centrality measure(s) should be used to implement the first
Ranker function. To this end, we performed an evaluation using three different
ontologies: Linkling, MICRO, and ¢mt from the Conference dataset. In this set,
all 32 combinations of the five centrality measures were assessed. We asked a
number of experts to select the top ten important concepts while we did not
say anything about our criteria to them. Due to differences between important
concepts by experts, we selected the most common shared important concepts.
The results of 32 combinations of these criteria on Linkling ontology are shown
in Fig.2, where each bar is dedicated to one combination of different criteria,
C1 refers to Degree Centrality, C2 is Clossness Centrality, C3 is Betweenness
Centrality, C4 is EcCentrality, and C5 is Stress Centrality. In each test we use
one combination of C1-C5 criteria and select top ten important concepts, we
also examine how many of these criteria are similar to expert judge. The test
examines which combination was more similar to the experts view. Based on our
criteria, different sets of combinations could achieve these criteria, such as the
combinations C1+C2, C14-C4, C1+C2+C5, C1+C2+C3+4C4 are more similar
to whatever experts think. From these combinations, we selected C14+C2 because
it outperforms the other combinations.

M Accuracy

TGO TO OO OO OO TO OO TOOO OO OO
T T I FFTI PP IS T FXS S X F NN

xxxxxxxxxxxxxxxx

xxxxxx

Fig. 2. Accuracy of combining centrality measures on “Linkling” ontology.

Selection of Ranker Function. In the previous experiments, we observed
that the centrality measures effectively quantify the importance of ontology con-
cepts. However, they consume much time, which makes using them for large-
scale matching impractical. Therefore, we conducted another set of experiments

SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching 255

to recognize which ranker function is suitable to the large matching problem.
To this end, we compare the two ranker functions, implemented in Eqs.2 and
3, respectively. We used the conference and anatomy ontologies for this test.
Results are reported in Table 2. The table shows that the second ranker function
outperforms the first one w.r.t. both matching quality and the time needed to
complete the ranking process. This can be explained as the second ranker func-
tion exploits the concept connections which mostly reflects the importance of
the concept without going into much details through computing the importance
score as in the first ranker function. Therefore, we settle on the selection of the
second ranker function to implement the ranker component.

Table 2. Comparing two ranker functions.

ontology First ranker|Second ranker
matching quality conference 0.609 0.624
time (sec.) anatomy/mouse|269.6 0.302
anatomy/nci |355.8 0.57

SeeCOnt Quality. This set of experiments has been conducted to validate the
effectiveness and quality of the SeeCOnt approach. To this end, we use ontologies
from the Conference and Anatomy data sets comparing SeeCOnt with Falcon-
AO [15] and work done in [1]. Results are presented in Figs.3 and 4. Figure 3
demonstrates that SeeCOnt produces higher precision, recall, and F-measure
than the original Falcon-AQO system. It could improves the quality of matching on
the conference track by 7% compared to the original Falcon system. However, as
shown in Fig. 4, even if the SeeCOnt approach produces lower precision than the
precision in both Algergawy’ approach [1] and the original Falcon approach [15],
however it achieves higher recall than the other two systems. This results in
the F-measure produced by SeeCOnt is higher than the Algergawy’ approach
by 11 % and Falcon-AO by 14 %. These results demonstrate that our proposed

1 = Falcon-AO System m Algergawy proposed System = SeeCOnt
1 0.9640-9750 951

09
08

W Falcon-AO System W SeeCONnt 05

0.789
0707 08

00 0 . Z:; 05910613
05
04
03
02
01

0

F-measure Recall Precision

Fig. 3. Results for conference track. Fig. 4. Results for anatomy track.

256 A. Algergawy et al.

seed-based clustering is capable of grouping similar concepts in one partition to
be fully matched with another partition containing also similar concepts.

Figures5 and 6 compare SeeCOnt with the top-ten matching systems, par-
ticipating in OAEI competition held in 2011-2014, in the Conference test and
in the Anatomy test, respectively. For simplicity of the chart, only F-Measure
of each system is shown in Figs.5 and 6. The horizontal axis shows the partic-
ipating systems and the vertical axis shows F-measure. We see that SeeCOnt
approach has comparable results with the others.

071 071

067
65054063062 06308355, UB0830830 62, 063062
06 0565 0.560.560.56.550; " 0.580.580.57) 5 0.57,,
053 05 0:540:54054
0.51 05105

04104

XD RS N & RO @RS x & > YR L RS & & & &
FEFESTOFI T FFENEET STESEE8E, e s VG OCN
A\ S & ¥ & A R x\;&; S W <>° @%‘g ~z~° ‘0&" %@ V}@" o«
K
| 2011 | 2012 | So13 | 2014

B F1-meausre

Fig. 5. Comparing SeeCOnt with top-ten systems Participating in OAEI Competitions
in 2011-2014 in the Conference Test.

- o 08igs o
0854 850885 47,87 03%9.890.881057 09 089088087 09 089048 08634

0.801 & 708 08
0.772
08 75
0.679

0576 056

05 0445

o
—

RIS LFE F¢ S HFFE R T IV RF L ES P &\ S S F P

LFEFE L T F V}és«,,;ay‘} S NS 9 F &t 5

& O@ S S W e &0@‘\ N &00‘}@* &y@@o" § P @fo@?@@
K

&

| 2011 | 2012 | 2013 | 2014 |

B Fl-meausre

Fig. 6. Comparing SeeCOnt with top-ten Systems Participating in OAEI Competitions
in 2011-2014 in the Anatomy Test.

5 Conclusions

In this paper, we introduced a new clustering approach, SeeCOnt, to be used
within the context of matching large ontologies. SeeCOnt partitions a large-
scale ontology to several disjoint sub-ontologies and the problem of large-scale

SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching 257

ontology matching is converted into a set of small ontology matching tasks.
Firstly, we represented input ontologies as concept graphs. We then introduced
two different Ranker functions that can be used to quantify the importance of a
concept in the graph. The highly important concepts are selected to be cluster
heads. We further developed a new membership function that assign remaining
concepts to their proper clusters. This membership function reduces the num-
ber of comparisons since it only compares each concepts to each cluster head.
To validate SeeCOnt, we conducted an intensive set of experiments using the
Conference and Anatomy data sets. We compared our proposed approach with
recent matching systems participating in OAEIL. Experimental results show that
SeeCOnt presents acceptable performance. In the future, we plan to extend our
work by looking for new strategies that determine and identify similar clusters
and that match those similar partitions in parallel.

Acknowledgments. A. Algergawy’work is partly funded by DFG in the INFRA1
project of CRC AquaDiva.

References

1. Algergawy, A., Massmann, S., Rahm, E.: A clustering-based approach for large-
scale ontology matching. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011.
LNCS, vol. 6909, pp. 415-428. Springer, Heidelberg (2011)

2. Algergawy, A., Nayak, R., Saake, G.: Element similarity measures in XML schema
matching. Inf. Sci. 180(24), 4975-4998 (2010)

3. Bellahsene, Z., Bonifati, A., Rahm, E.: Schema Matching and Mapping. Springer,
Heidelberg (2011)

4. Do, H.H., Rahm, E.: Matching large schemas: approaches and evaluation. Inf. Syst.
32(6), 857-885 (2007)

5. Doan, A., Halevy, A.: Semantic integration research in the database community:
A brief survey. AAAT AT Mag. 25(1), 83-94 (2005)

6. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kauf-
mann, USA (2012)

7. Ehrig, M., Staab, S.: QOM — quick ontology mapping. In: Mcllraith, S.A., Plex-

ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 683-697.

Springer, Heidelberg (2004)

Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013)

9. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw.
1(3), 215-239 (1979)

10. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
40(1), 35-41 (1997)

11. Graves, A., Adali, S., Hendler, J.: A method to rank nodes in an RDF graph. In:
7th International Semantic Web Conference (Posters and Demos) (2008)

12. Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17, 57-63
(1995)

13. Hamdi, F., Safar, B., Reynaud, C., Zargayouna, H.: Alignment-based partitioning
of large-scale ontologies. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H.
(eds.) Advances in Knowledge Discovery and Management. SCI, vol. 292, pp. 251—
269. Springer, Heidelberg (2010)

®

258

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Algergawy et al.

Hendler, J.: Agents and the semantic web. IEEE Intell. Syst. J. 16, 30-37 (2001)
Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer app-
roach. DKE 67, 140-160 (2008)

Kermarrec, A.-M., Merrer, E.L., Sericola, B., Trdan, G.: Second order centrality:
Distributed assessment of nodes criticity in complex networks. Comput. Commun.
34, 619-628 (2011)

Koschiitzki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlo-
towski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analy-
sis. LNCS, vol. 3418, pp. 16-61. Springer, Heidelberg (2005)

Rahm, E.: Towards large-scale schema and ontology matching. In: Bellahsene, Z.,
Bonifati, A., Rahm, E. (eds.) Data-Centric Systems and Applications, vol. 5258,
pp. 3—27. Springer, Heidelberg (2011)

Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334-350 (2001)

Seddiquia, M.H., Aono, M.: An efficient and scalable algorithm for segmented
alignment of ontologies of arbitrary size. Web Semant. 7(4), 344-356 (2009)
Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158-176 (2013)

Shvaiko, P., Euzenat, J., Mao, M., Jimnez-Ruiz, E., Li, J., Ngonga, A.: editors. 9th
International Workshop on Ontology Matching collocated with the 13th Interna-
tional Semantic Web Conference (ISWC 2014) (2014)

Wang, Z., Wang, Y., Zhang, S.-S., Shen, G., Du, T.: Matching large scale ontology
effectively. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS,
vol. 4185, pp. 99-105. Springer, Heidelberg (2006)

Hu, W., Zhao, Y., Qu, Y.: Partition-based block matching of large class hierarchies.
In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185,
pp. 72-83. Springer, Heidelberg (2006)

Zhong, Q., Li, H., Li, J., Xie, G.T., Tang, J., Zhou, L., Pan, Y.: A Gauss func-
tion based approach for unbalanced ontology matching. In: the ACM SIGMOD
International Conference on Management of Data, (SIGMOD 2009), pp. 669-680
(2009)

	SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching
	1 Introduction
	2 Related Work
	3 SeeCOnt
	3.1 Preprocessing
	3.2 Concepts Ranking
	3.3 Finalizing Clustering

	4 Experimental Evaluation
	4.1 Data Set
	4.2 Evaluation Criteria
	4.3 Experimental Results

	5 Conclusions
	References

