
A Benchmark for Relation Extraction Kernels

João L.M. Pereira(B), Helena Galhardas, and Bruno Martins

INESC-ID and Instituto Superior Técnico, Universidade de Lisboa,
Lisbon, Portugal

{joaoplmpereira,helena.galhardas,bruno.g.martins}@tecnico.ulisboa.pt

Abstract. Relation extraction from textual documents is an important
task in the context of information extraction. This task aims at iden-
tifying relations between pairs of named entities and assigning them a
type. Relation extraction is often approached as a supervised classifica-
tion problem, involving pre-processing steps such as text segmentation,
entity recognition, and morphological and syntactic annotations. In pre-
vious studies, the way data is pre-processed differs among them, thus
making the comparison of classification techniques for relation extrac-
tion unfair and inconclusive. Some of these classification techniques for
relation extraction involve the use of kernels, which enable the compari-
son of complex structures. We propose a benchmark for the comparison
of different kernels for relation extraction. Specifically, we propose the
application of a common pre-processing stage, together with the use of
an online learning algorithm to train Support Vector Machines with ker-
nels designed for the classification of candidate pairs of related entities.
We also report the results of the systematic experimental validation we
have performed, using well known datasets in the area.

Keywords: Relation extraction · Benchmark · SVMs · Kernels · Online
learning

1 Introduction

Textual corpora available in digital format are growing fast. These documents
contain valuable information that, if properly identified and structured, can be
used by several applications (e.g., in news aggregators). Information Extraction
consists in automatically obtaining structured data from textual documents.
This activity is typically composed of several tasks, namely segmentation, entity
extraction, normalization, co-reference resolution and relation extraction [11].

This paper focuses on the Relation Extraction (RE) task. For example, given
the text: “The Taliban group Tehreek-e-Taliban Pakistan claimed the attack on
the Karachi airport in southern Pakistan”, a RE system should be able to iden-
tify the relation between the terrorist entity “Tehreek-e-Taliban Pakistan” and
the location entity “Karachi”, and to classify this relation as being of the type
outrage. The result will be the tuple 〈“Tehreek-e-Taliban Pakistan”,“Karachi”〉
of a relation with schema outrage(terrorist, location).
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 184–197, 2015.
DOI: 10.1007/978-3-319-23135-8 13

A Benchmark for Relation Extraction Kernels 185

There are different types of techniques for RE. These techniques are usu-
ally divided in two main groups: (i) rule-based, that specify logical inferences
manually designed by specialists; and (ii) Machine Learning (ML)-based, that
extract relations through the automatic analysis of patterns and/or correlations
in data [11]. Several techniques, specially the ML-based, depend on linguistic
and/or lexico-syntactic data annotations (e.g., part-of-speech tags for words).
The tasks for obtaining these annotations constitute a pre-processing step.

Currently, many of the techniques for RE are based on supervised ML which
identifies patterns in the previously annotated data that constitute a training
dataset. A RE task can be seen as a supervised ML problem by considering the
representation of a pair of entities as a data instance, and the relation type (or
a non-relation) as the class that a data instance can belong to. To provide the
dataset in the format usually accepted by a supervised ML technique, we have
to transform each data instance representing a pair of entities into a vector that
contains the relevant features (e.g., words or grammatical dependencies) of the
pair of entities. Representing such information in a vector is a very demanding
task in terms of execution time and memory. Moreover, it results in large vectors
because the space of all possible relevant features may be huge. Thus, supervised
ML techniques, and the models that they generate, can be inefficient since their
execution time highly depends on the length of the vectors. One way to circum-
vent this situation is to use complex data structures, which organize relevant
features in a more efficient way, and give them directly as input to the super-
vised ML techniques and the generated models. Then, we use kernel functions
that enable specific ML techniques to compare complex data structures. The
use of kernel functions is a common practice in the ML community, in particu-
lar in RE systems. For example, Support Vector Machines (SVMs) constitute a
supervised ML technique that can be based on kernels.

Over the years, some competitions (e.g., MUC [5], ACE [6] and SemEval [8]),
aiming at comparing RE systems, took place. Several RE systems based on
kernels were evaluated with datasets from these competitions. However, these
competitions did not enable a fair comparison of RE kernels. In fact, these com-
petitions used different pre-processing stages, distinct SVM training approaches,
and datasets that belong to the same domain, thus making the comparison of
kernels unfair. Inspired by the work of Marrero et al. [10], who proposed a
benchmark for entity extraction systems, we propose, in this paper, a bench-
mark for kernels for the RE task. This benchmark was developed using a RE
framework named REEL [1]1. The benchmark is composed of: (i) two sets of
documents from distinct domains: AImed2 and SemEval3; (ii) a common pre-
processing step, composed of segmentation, tokenization, normalization, capi-
talization, part-of-speech tagging and dependency analysis; (iii) a set of SVMs
based on state-of-the-art RE kernels; (iv) an online learning algorithm that trains

1 http://reel.cs.columbia.edu/
2 ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/interactions.tar.gz
3 http://semeval2.fbk.eu/semeval2.php?location=data

http://reel.cs.columbia.edu/
ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/interactions.tar.gz
http://semeval2.fbk.eu/semeval2.php?location=data

186 J.L.M. Pereira et al.

the SVMs involving various kernels; and (v) a validation process that measures
convergence, quality and execution time.

The rest of this paper is organized as follows. Section 2 presents the funda-
mental concepts. Section 3 describes the proposed benchmark. Section 4 describes
the experiments we performed and discusses the obtained results. Finally, in
Sect. 5, we conclude with final remarks and directions for future work.

2 Fundamental Concepts

In this section, we present the fundamental concepts required to understand
the rest of the paper. In Sect. 2.1, we introduce SVMs and online learning. In
Sect. 2.2, we describe the main RE kernels described in the literature.

2.1 SVMs and Online Learning

SVMs [9] constitute one of the most popular supervised ML techniques. A SVM
is a binary classification model that uses an hyperplane to separate the data that
belongs to two distinct classes. The biggest challenge when generating SVMs is
to find an optimal hyperplane that properly separates the data in two classes.
An hyperplane is represented by its normal vector w and the goal is to find
the optimal vector, w∗. For that, we define an objective function f(S;w) that
represents the proximity between two vectors w and w∗ for a given training
dataset S. Then, we apply optimization techniques [12] (e.g., gradient descent)
to this objective function, to obtain a vector w close to the optimal vector w∗.

The training dataset is composed of data instances. These data instances are
pairs of entities. A data instance (x, y) from the training dataset S is constituted
by an input vector x and a scalar y that represents the binary class the input
vector belongs to. A position of the vector x corresponds to a relevant feature of
the data instance. A SVM uses the vector w to predict the class of a data instance
x by computing the inner product 〈w,x〉. The objective function is then given by
f(S;w) = λ

2 ||w||2+
∑

(x,y)∈S loss(x, y;w) where ||w|| is a regularization method
applied to w that penalizes the model complexity degree (i.e., rewards fewer
patterns in a model) to prevent overfitting, and loss(x, y;w) is a loss function
given by max(0, 1 − y〈w,x〉) that returns a penalty value if the model predicts
the wrong class of a data training instance x. In order to evaluate the model’s
predictive performance against the training dataset S, the objective function
applies the loss function to each training data instance (x, y) ∈ S and sums the
returned penalty values. The λ parameter is introduced by the user in order
to adjust the two model components: the regularization and the loss function
computed for the training dataset. In practice, it balances the model complexity
degree with the model predictive performance for the training dataset.

In the context of RE, representing a data instance (i.e., a pair of entities and
its features) through a vector is not a straightforward task. In order to obtain a
vector, we need to transform a complex data structure that represents the data
instance into a vector. In this process, we have to generalize and omit several

A Benchmark for Relation Extraction Kernels 187

features that, comparatively to the original structure, result in weak representa-
tions of the data. A more satisfactory alternative than to relay on a single vector
is to represent the data instances by more complex and informative data struc-
tures (i.e., graphs or sequences). A kernel [11] can then be used to compare two
data instances represented by complex data structures. Kernels return a simi-
larity value between two complex structures and they behave as inner products
in non-linear feature spaces. Moreover, optimization techniques can compute a
vector w close to the optimal vector w∗ by calculating inner products between
vectors without accessing directly to the vector positions. Since the optimiza-
tion techniques do not directly access vector positions, we can replace the inner
products by kernels and generate a kernel based model.

Online learning techniques are ML techniques that use online optimization
algorithms to train a ML model. These algorithms find the best set of parameters
for an objective function by processing the data instances in an online fashion
(i.e., process a data instance at a time), thus enabling us to analyze the ML
model at a specific point of the training process. Online optimization techniques
are generally faster than other types of optimization techniques [12].

So far, we have presented binary SVM classifiers. However, most classification
problems involve more than two classes. These problems are called multi-class
classification problems and they are not solved directly using one SVM classi-
fier. We can use heuristics that combine several SVM classifiers, for example
One-VS-One or One-VS-All [9]. In Sect. 3.3, we provide more details about the
One-VS-One heuristic that we used in this work.

2.2 Relation Extraction Kernels

This section describes three state-of-the-art kernels. Each data instance (i.e.,
pair of entities) is initially described by a sentence composed of words and the
location of the words that compose each entity. This is an initial representation
given as input to a pre-processing stage that outputs complex structures to be
used by each kernel. In this paper, we considered the following kernels:

Subsequences Kernel (SSK): Bunescu and Mooney [4] developed a kernel
based on subsequences. SSK is composed by the sum of three sub-kernels that
compare sparse word subsequences (i.e., word sequences not necessarily contigu-
ous) in different locations of a sentence: before, after and between the pair of
entities. This kernel is defined by a function that computes the similarity between
words based on the number of features that the words have in common (e.g.,
word stem or word grammatical category).

Shortest Path Kernel (SPK): Bunescu and Mooney [3] also proposed a ker-
nel based on the comparison of dependency graphs. A dependency graph is a
directed graph that represents the grammatical dependencies between words in
a sentence. Each node represents a word and each edge represents a dependency
between the two nodes. SPK has the particularity of using, for comparison, only
the sub-graph that contains the shortest path between the entities. Only graphs

188 J.L.M. Pereira et al.

with the same number of nodes and similar edges in the shortest path are com-
pared (i.e., for the others, the kernel returns zero). The final value returned by
the kernel is calculated by multiplying the values returned by the comparison of
the nodes. The nodes that are in the same position of the sub-graphs are com-
pared using the same SSK function that computes the similarity between words.
This function counts the number of features that the words have in common.

Bag-Of-N-Grams Kernel (BNK): Giuliano et al. [7] proposed a kernel that
combines two simpler kernels, namely: (i) a global context kernel that considers
textual information related to the whole sentence and (ii) a local context kernel
that considers only the words around the entities. Similarly to SSK, the global
context kernel is separated in three sub-kernels that evaluate the similarity of
three independent sequences of words located before, between and after the pair
of entities. This kernel is based on n-grams instead of subsequences. N-grams
are small sets of contiguous words of size n (usually n = 3). Each sub-kernel
compares the number of common n-grams between two sequences of words. The
local context kernel compares the sequence of words centered at each entity and
constituted by 6 words (i.e., 3 words before the entity and 3 words after the
entity). The similarity between two words is obtained by the number of common
features, analogously to SSK and SPK.

Table 1. Statistical characterization of the datasets.

Sentences Candidate entities pairs Entities Relations Relation types

AImed 1159 5471 3754 996 1

SemEval 10717 10717 21434 8853 9

3 Benchmark

This section presents the development process of a benchmark for RE kernels.
This benchmark enables an impartial evaluation process to assess the suitabil-
ity of each kernel for the RE task. This evaluation process is composed of the
following tasks: (i) pre-processing of datasets described in Sect. 3.1 using the
techniques from the tools presented in Sect. 3.2; (ii) training and execution of
SVMs based on kernels using the learning techniques described in Sect. 3.3; and
(iii) evaluation of the kernels using the measures described in Sect. 3.4.

3.1 Datasets

This section describes the two datasets considered in the benchmark: AImed and
SemEval. We chose these datasets because they belong to two distinct domains
and they enclose different classification problems. Both datasets are composed
of English documents. Table 1 presents a statistical summary for these datasets.

A Benchmark for Relation Extraction Kernels 189

AImed: is composed of 255 Medline article abstracts, 200 of which referring
to interactions between proteins, and with a remaining 25 which do not refer
to any interaction. In total, AImed contains 5471 proteins pairs, of which 996
correspond to interactions and 4475 correspond to pairs without interaction.

SemEval (Semantic Evaluation) [8]: is an ongoing series of evaluations for com-
putational semantic analysis systems. It proposed, in 2010, a classification chal-
lenge for relations between entity pairs. The dataset associated to this challenge
is composed of 8000 training sentences and 2717 test sentences. Each sentence
is clearly identified and contains a single annotated candidate pair. This chal-
lenge includes the following nine asymmetric relation types: Member-Collection,
Cause-Effect, Component-Whole, Instrument-Agency, Entity-Destination, Prod-
uct-Producer, Message-Topic, Entity-Origin, and Content-Container.

3.2 Linguistic Pre-processing Techniques

RE techniques generally use various types of linguistic and/or lexico-syntactic
annotations. Therefore, it is necessary to pre-process the text in order to obtain
these annotations. For pre-processing the datasets, we use the following tech-
niques and tools:

1. Sentence Segmentation: Separates the text into sentences. We processed
the text with the Apache OpenNLP4 library, which is a tool for natural lan-
guage processing based on ML.

2. Tokenization: Identifies the words of every sentence, keeping their order in
the text. We processed the sentences with the Apache OpenNLP library.

3. Token Normalization: Labels the words with their stem, in such a way
that words of the same family have the same label (e.g., claimed and claims
have the same stem, claim). We used the Porter Stemming algorithm from
the Snowball5 framework, which finds the stem for each word.

4. Capitalization: Labels every word with two different representations, trans-
forming them according to two patterns. The first pattern replaces each char-
acter by one of four specific symbols, depending on whether it is a capital
letter, a lowercase character, a number or another character. In the second
pattern, a sequence of characters of the same type is replaced by the symbol
associated with the character type followed by the character +. For example,
the normalization of the word “Karachi” results in Ccccccc and Cc+. We used
our own implementation of the two patterns6.

5. Part-of-Speech Tagging: Produces Part-of-Speech (POS) tags and Generic
Part-of-Speech (GPOS) tags for each word. A POS tag represents the gram-
matical class (e.g., claimed labeled with verb past tense) that this word has in
the text, while a GPOS tag (e.g., verb) represents a high-level grammatical
class. We directly map the POS tags into GPOS tag and we used the Apache
OpenNLP library to obtain the POS tags.

4 http://opennlp.apache.org/
5 http://snowball.tartarus.org/
6 http://web.tecnico.ulisboa.pt/joaoplmpereira/Capitalization.html

http://opennlp.apache.org/
http://snowball.tartarus.org/
http://web.tecnico.ulisboa.pt/joaoplmpereira/Capitalization.html

190 J.L.M. Pereira et al.

6. Dependency Analysis: Produces a dependency tree or graph for each sen-
tence. We used the Stanford CoreNLP7 library, which contains a dependency
parser for identifying syntactical dependencies between words.

The Apache OpenNLP library uses a Maximum Entropy Model (MEM) [2]
previously trained with data in English for each pre-processing task: a MEM
for sentence segmentation8, a MEM for tokenization9, and a MEM for POS tag-
ging10. We use sentence segmentation, tokenization, and dependency analysis to
produce data structures that can be compared by kernels. Token normalization,
capitalization and POS tagging are optional pre-processing steps introduced in
the form of word features that improve the accuracy of the kernels.

3.3 Learning Techniques

We used an efficient online learning technique called Pegasos [12] to train the
SVMs. This involves an iterative process that performs multiple passes over the
training data.

In RE problems where the goal is to search for a single relation type (e.g.,
protein interaction extraction from AImed), it is sufficient to use a binary clas-
sifier. However, if the problem involves searching for various types of relations
(e.g., the RE task in SemEval), it is necessary to use multi-class classifiers. To
produce a multi-class classifier using binary classifiers, we used an One-VS-One
heuristic. This technique makes use of as many binary classifiers as pairs of
classes. We train each binary classifier with the subset of the training data that
is annotated with the corresponding pair of classes. In the test phase, a data
instance is evaluated by all the classifiers. Each classifier votes in the class asso-
ciated to the binary class that it assigns to the data instance. Then, we choose
the most voted class as the label.

3.4 Metrics

In this section, we present the metrics we use to evaluate the different kernels:

Convergence: Measures the proximity of a SVM to the optimal SVM. This
proximity is given by applying the objective function for SVMs with a training
dataset and the w of a SVM as arguments, as described in Sect. 2.1. This metric
enables us to understand the impact of changing the parameters of the learning
phase (i.e., λ and the number of iterations that indicate the number of passes
over the data) on the generated SVMs.

Quality of Binary Classification: The measures commonly used to evaluate
classification techniques are: precision, recall, and the F1-measure. Defining r as
7 http://nlp.stanford.edu/software/corenlp.shtml
8 http://opennlp.sourceforge.net/models-1.5/en-sent.bin
9 http://opennlp.sourceforge.net/models-1.5/en-token.bin

10 http://opennlp.sourceforge.net/models-1.5/en-pos-maxent.bin

http://nlp.stanford.edu/software/corenlp.shtml
http://opennlp.sourceforge.net/models-1.5/en-sent.bin
http://opennlp.sourceforge.net/models-1.5/en-token.bin
http://opennlp.sourceforge.net/models-1.5/en-pos-maxent.bin

A Benchmark for Relation Extraction Kernels 191

a relation type, precision is the fraction of correctly extracted relations of type
r over the total number of extracted relations of type r. Recall is the fraction
of correctly extracted relations of type r over the total number of relations of
type r present in the dataset. These measures are usually contradictory: by
increasing the recall value, we reduce the precision value and vice versa. To
globally evaluate a classification technique, it is necessary to combine these two
measures. A solution to combine these two scores is to use the F1-measure that
corresponds to the harmonic mean of precision and recall.

Quality of Multi-class Classification: In multi-class classification, we use
new measures obtained by averaging the values of precision and recall over
the multiple classes, namely macro-averages and micro-averages. Macro-averages
calculate directly the system precision or recall averages for the various classes.
To calculate the Micro-averages, first, we count, for all relations of type r, the
values used in the formulas of precision and recall: the number of correctly
extracted relations, the total number of extracted relations, and the total num-
ber of relations present in the dataset. We then compute the Micro-averages by
using these summed values into the precision or the recall formulas.

Execution Times: We measure two execution times: the time to train a SVM
and the time required to predict the class type for a pair of entities. Execution
times are extracted in nano seconds of the CPU time. Then, we convert them
into other units for easier comparison (i.e., seconds, minutes or hours).

4 Benchmark Results

In this section, we present the configurations and the results of the experiments
we performed using the benchmark presented in Sect. 3. In Sect. 4.1, we describe
the settings used in the experiments. In Sect. 4.2, we present the analysis of the
convergence values. In Sect. 4.3, we analyze the quality of the results obtained
for the various models. In Sect. 4.4, we analyze the execution times for training
a SVM and for classifying a data instance.

4.1 Setup

The experimental setup that we have used is as follows:

Datasets: We used the datasets described in Sect. 3.1, namely AImed and
SemEval. Both are pre-processed through the techniques and tools described
in Sect. 3.2. The AImed dataset was split into 10 folds over which we applied a
cross-validation process. The AImed dataset contains a single type of relation,
which means that extracting relations in this dataset is a binary classification
problem. The SemEval competition provided distinct training and testing splits.
Thus, for SemEval, it was not necessary to use cross-validation. Extracting rela-
tions from SemEval is a multi-class problem. The data is annotated with 9 types
of asymmetric relations, which gives a total of 19 distinct classes (two for each
type plus another for a non-relation).

192 J.L.M. Pereira et al.

Learning Techniques: We used the learning techniques described in Sect. 3.3.
In particular, we implemented the Pegasos technique extended to work directly
with kernels11. We used the extended version of Pegasos to train the SVMs: one
for the AImed dataset; and one for each of the 172 binary classifiers used by the
One-VS-One heuristic for the SemEval dataset.

Kernels: We used the SSK, SPK and BNK kernels described in Sect. 2.2, since
they use different data structures to represent the data instances.

Parameters: The parameter λ, which controls the importance of the regulariza-
tion versus the loss function in the SVM training, took values in {10−4, 10−5, 10−6,
10−7, 10−8}. The number of iterations T , which is introduced in the online learn-
ing technique to indicate how many passages should be made over the training
instances, took values in {50, 100, 150, 200}.

Software and Hardware: We developed the benchmark using the framework
for RE named REEL [1], which provides an implementation of SSK, SPK and
BNK. We performed the experiments on a machine with an Intel Core i5 CPU
M 460, 2.53 GHz and 4 GB of memory RAM.

4.2 Convergence

In this section, we evaluate the impact of the λ and T parameters over the
training of SVMs with RE kernels. To do this, we analyze the variation of the
objective function values with these parameters (see Fig. 1). The experiments
show that there is no substantial difference in the results obtained for different
kernels. Therefore, we only present the results obtained for BNK.

In general, the number of iterations required to stabilize the objective func-
tion values increases when we decrease the λ parameter values. In fact, for small
values of λ, we do not reach stable values for the objective function. Regarding
the number of iterations T , the objective function values start to slowly decrease
after iteration number 100, and stabilize after iteration 150. For the AImed
dataset (see Fig. 1(a)), the models that obtain the lowest objective function val-
ues are the models trained with a λ value of 10−6. For the SemEval dataset, the
models that obtain the lowest objective function values are the models trained
with a λ value of 10−5. This situation occurs because, for datasets in technical
language domains such as the AImed dataset, models tend to be more complex
(i.e., enclose more patterns), since it is difficult to find a suitable generalization
(i.e., few patterns that can explain the data).

From the results reported in this section, we conclude that: (i) models trained
with very low values for the λ parameter obtain worse results in terms of conver-
gence when compared to higher values, and (ii) after 150 iterations, there was
no significant variation in the objective function values.
11 http://web.tecnico.ulisboa.pt/joaoplmpereira/OnlineLearning.html

http://web.tecnico.ulisboa.pt/joaoplmpereira/OnlineLearning.html

A Benchmark for Relation Extraction Kernels 193

Fig. 1. Variation of the objective function values for BNK models with parameters λ
and T . (a) AImed; (b) Binary classifier for the pair of entities Content-Container(e2,e1)
vs Message-Topic(e1,e2) in the SemEval dataset

4.3 Quality of the Obtained Extractions

In this section, we evaluate the quality of the results obtained by the SVMs
using the kernels BNK, SPK and SSK. We begin by evaluating the impact of
the variation of the λ and T parameters in the quality of SVMs using the AImed
dataset (see Fig. 2), and then using the SemEval dataset (see Fig. 3).

Fig. 2. Variation of the quality of the results obtained through SVMs with kernels
BNK, SPK and SSK, for the AImed dataset.

194 J.L.M. Pereira et al.

Fig. 3. Variation of the quality of the results obtained through SVMs over the SemEval
test dataset for kernels BNK, SPK and SSK in T = 150.

For both datasets, BNK and SSK produce similar values for the F1-measure
(less than 5 % difference), as shown in Figs. 2(c) and (d), 3(e) and (f). The
precision values of SSK are slightly better than the ones of BNK (from 1 % to
5 %) as observed in Figs. 2(a), 3(a) and (b), but the opposite occurs for the recall
values (see Figs. 2(b), 3(c) and (d)). Generally, BNK presents more balanced
precision and recall values than SSK. In order to explain the differences observed
we need to consider the data structures that were used. Both kernels analyze
the sentences, splitting them in a similar way. However, in SSK, the features
are structured into subsequences which assign a fixed order to the words. BNK

A Benchmark for Relation Extraction Kernels 195

is more flexible because it uses data structures with sets of n-grams, which are
composed of n-grams independently of their position in the sentence.

In general, in both datasets, SPK gets worse results than the remaining ker-
nels (e.g., between 5 % and 20 % less). For the AImed dataset, this difference is
more significant than in the SemEval dataset. Since the precision values obtained
by SPK are comparable to those of the other two kernels (see Figs. 2(a), 3(a) and
(b)), the differences in terms of quality derive from its low recall. SPK obtains
the best macro-average of precision for SemEval. SPK obtains good results in
terms of precision because it compares shortest paths and it assigns zero to paths
with different size. So, this kernel becomes more inflexible to compare data sam-
ples. For AImed, SPK obtains low quality results than SSK and BNK (less than
30 %), because this dataset is composed of technical medical documents, and the
dependency parser used by SPK was trained with news articles. Therefore, the
dependencies found are inappropriate for this dataset and consequently lead to
the low quality performance of SPK. Due to the inadequate use of the depen-
dency parser, we consider unfair to compare SPK with the other kernels in the
AImed dataset.

In this section, we conclude that: (i) BNK and SSK have similar behaviors;
(ii) BNK is better in recall and returns more balanced precision and recall values;
(iii) SPK is the kernel that obtains, in general, worse results, but nevertheless,
stands out for the SemEval dataset in terms of precision.

4.4 Execution Time

In this section, we compare the kernels in terms of training and testing execution
times. The pre-processing execution times were not considered because they
heavily depend on the pre-processing techniques and tools used. For calculating
the training execution times, we consider an estimate of the CPU time. We
calculate this estimate by multiplying the number of calls to the kernel with
the average execution time of comparing two data instances. We did not take
the CPU time of the online optimization technique into consideration, because
it is significantly lower than the time needed to calculate the kernels (i.e., less
than 1 % of the total execution time). For the AImed dataset the execution
times correspond to the classifier training time. For the SemEval dataset, the
execution time is the sum of the training execution times of all classifiers used
in the multi-class problem.

Figures 4 and 5 report the training execution times for AImed and SemEval,
respectively. For both datasets, SPK is the fastest kernel. However, the pre-
processing step of SPK is usually much more expensive than the pre-processing
step of the other kernels, because it needs a dependency analysis process. SPK
only takes into account the shortest path between the entities in the dependency
graph therefore: (i) it compares less sentence features than the other two kernels;
(ii) it ignores a large quantity of comparisons since it only compares sentences
whose number of nodes in the shortest path between the two entities is equal.

For the AImed dataset, SSK is faster than BNK. However, for SemEval, the
inverse situation occurs. This difference is due to the size of the sentences in each

196 J.L.M. Pereira et al.

Fig. 4. Average execution times for training over the 10 folds of AImed dataset.

Fig. 5. Execution times for training over the SemEval dataset.

of the datasets i.e., the average size of a sentence in AImed is significantly higher
than in SemEval. SSK compares more subsets of tokens than BNK, but it uses a
dynamic programming algorithm that performs faster comparisons, even when
the sentence size increases. BNK is very penalized when the sentence length and
the diversity of words increase, especially in the AImed dataset.

Regarding the variation of the λ parameter, we conclude that there is a rela-
tionship between the λ values and the training execution times. Models trained
with lower λ values have lower execution times (see Figs. 4(a) and 5(a)). In
Sect. 4.2, the λ parameter was associated with the stability of the objective
function and convergence of the model. In fact, we observed that the objective
function values stabilize for low values of λ. When we make the λ parameter
constant and vary the number of iterations, we observe that the execution times
grow linearly with the number of iterations (see Figs. 4(b) and 5(b)).

The testing execution times are generally constant for both datasets. With
the AImed dataset, the testing execution time is 168 ms for BNK, 8 ms for SPK,
and 290 ms for SSK. For the SemEval dataset, it takes 11 ms for BNK, 0.68 ms
for SPK, and 6 ms for SSK to classify each data instance. Not surprisingly, the
results obtained are similar to the training phase results.

In this section, we conclude that: (i) SPK is the fastest in training and testing,
(ii) BNK and SSK have execution times with the same orders of magnitude.
However, (iii) SSK is faster than BNK in datasets of technical domains, such as

A Benchmark for Relation Extraction Kernels 197

AImed, and (iv) BNK is faster than SSK for datasets in the news domains such
as the SemEval dataset.

5 Discussion and Future Work

In this paper, we proposed a benchmark to compare kernels for RE tasks, in
which we train and analyze SVMs leveraging the kernels to be compared. We
conducted an extensive experimental analysis using our benchmark over three
state-of-the-art kernels, which enabled us to take the following main conclusions:
(i) SVMs stabilize after T = 100 iterations for models trained with lower values
of λ; (ii) BNK and SSK have a similar performance (i.e., quality and execution
time) for the AImed and SemEval datasets; (iii) SPK obtains high quality results
only when the dependency parser is trained with data of the same domain as
the dataset; (iv) SPK is the kernel that has lowest execution times.

As future work, we plan to develop techniques that are able to effectively
combine the various kernels for RE. This method should be domain independent
and should be used with different sets of kernels.

Acknowledgements. We would like to thank Gonçalo Simões for the fruitful discus-
sions, and for advice on preliminary versions of this paper.

This work was supported by Fundação para a Ciência e a Tecnologia, under Project
UID/CEC/50021/2013, andunderProjectDataStorm (ref. EXCL/EEI-ESS/0257/2012).

References

1. Barrio, P., Simões, G., Galhardas, H., Gravano, L.: REEL: a relation extraction
learning framework. In: JCDL (2014)

2. Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to
natural language processing. Comput. Linguist. 22, 39–71 (1996)

3. Bunescu, R., Mooney, R.J.: A shortest path dependency kernel for relation extrac-
tion. In: HLT-EMNLP (2005)

4. Bunescu, R., Mooney, R.J.: Subsequence kernels for relation extraction. In: CoNLL
(2006)

5. Chinchor, N.A.: Named entity task definition. In: MUC-7 (1998)
6. Doddington, G.R., et al.: The automatic content extraction (ACE) program - tasks,

data, and evaluation. In: LREC (2004)
7. Giuliano, C., Lavelli, A., Romano, L.: Exploiting shallow linguistic information for

relation extraction from biomedical literature. In: EACL (2006)
8. Hendrickx, I., et al.: SemEval-2010 task 8: multi-way classification of semantic

relations between pairs of nominals. In: SemEval (2010)
9. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector

machines. IEEE Trans. Neural Netw. 13, 415–425 (2002)
10. Marrero, M., Sanchez-Cuadrado, S., Lara, J.M., Andreadakis, G.: Evaluation of

named entity extraction systems. Res. Comput. Sci. 41, 47–58 (2009)
11. Sarawagi, S.: Information extraction. Found. Trends Databases 1, 261–377 (2008)
12. Shalev-Shwartz, S., Singer, Y., Srebro, N.: PEGASOS: primal estimated sub-

GrAdient SOlver for SVM. In: ICML (2007)

	A Benchmark for Relation Extraction Kernels
	1 Introduction
	2 Fundamental Concepts
	2.1 SVMs and Online Learning
	2.2 Relation Extraction Kernels

	3 Benchmark
	3.1 Datasets
	3.2 Linguistic Pre-processing Techniques
	3.3 Learning Techniques
	3.4 Metrics

	4 Benchmark Results
	4.1 Setup
	4.2 Convergence
	4.3 Quality of the Obtained Extractions
	4.4 Execution Time

	5 Discussion and Future Work
	References

