
Tadeusz Morzy
Patrick Valduriez
Ladjel Bellatreche (Eds.)

 123

LN
CS

 9
28

2

19th East European Conference, ADBIS 2015
Poitiers, France, September 8–11, 2015
Proceedings

Advances in Databases
and Information Systems

Lecture Notes in Computer Science 9282

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Tadeusz Morzy • Patrick Valduriez
Ladjel Bellatreche (Eds.)

Advances in Databases
and Information Systems
19th East European Conference, ADBIS 2015
Poitiers, France, September 8–11, 2015
Proceedings

123

Editors
Tadeusz Morzy
Poznan University of Technology
Poznán
Poland

Patrick Valduriez
INRIA
Montpellier
France

Ladjel Bellatreche
LIAS/ISAE-ENSMA
Poitiers
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-23134-1 ISBN 978-3-319-23135-8 (eBook)
DOI 10.1007/978-3-319-23135-8

Library of Congress Control Number: 2015946766

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains a selection of the papers presented at the 19th East-European
Conference on Advances in Databases and Information Systems (ADBIS 2015), held
during September 8–11, 2015, at Futuroscope, Poitiers, France.

The ADBIS series of conferences aims at providing a forum for the presentation and
dissemination of research on database theory, development of advanced DBMS tech-
nologies, and their advanced applications. ADBIS 2015 in Poitiers continued the series
after St. Petersburg (1997), Poznań (1998), Maribor (1999), Prague (2000), Vilnius
(2001), Bratislava (2002), Dresden (2003), Budapest (2004), Tallinn (2005), Thessaloniki
(2006), Varna (20007), Pori (2008), Riga (2009), Novi Sad (2010), Vienna (2011), Po-
znań (2012), Genoa (2013), and Ohrid (2014). This edition was special, as it was the first
time that ADBIS took place in France. The conferences are initiated and supervised by an
International Steering Committee consisting of representatives from Armenia, Austria,
Bulgaria, Czech Republic, Estonia, Finland, Germany, Greece, Hungary, Israel, Italy,
Latvia, Lithuania, Poland, Russia, Serbia, Slovakia, Slovenia, and the Ukraine.

The program of ADBIS 2015 included keynotes, research papers, two tutorials, and
thematic workshops. The conference attracted 135 paper submissions from 39 countries
from all continents with 330 authors. After rigorous reviewing by the Program Com-
mittee (77 reviewers from 22 countries), the 31 papers included in this LNCS pro-
ceedings volume were accepted as full contributions, making an acceptance rate of 23 %.

Furthermore, the Program Committee selected 18 more papers as short contributions
and 30 papers from seven workshops that are published in a companion volume entitled
New Trends in Databases and Information Systems in the Springer series Communi-
cations in Computer and Information Science. All papers were evaluated by at least
three reviewers and most of them by four to five reviewers. The selected papers span a
wide spectrum of topics in databases and related technologies, tackling challenging
problems and presenting inventive and efficient solutions. In this volume, these papers
are organized according to the 15 sessions: (1) Database Theory and Access Methods,
(2) User Requirements and Database Evolution, (3) Multidimensional Modeling and
OLAP, (4) ETL, (5) Transformation, Extraction and Archiving, (6) Modeling and
Ontologies, (7) Time Series Processing, (8) Performance and Tuning, (9) Advanced
Query Processing, (10) Approximation and Skyline, (11) Confidentiality and Trust.

For this edition of ADBIS 2015, we had two keynote talks: the first one from Serge
Abiteboul from Inria and ENS Cachan, France, on “The Story of Webdamlog” and the
second one by Jens Dittrich, from Saarland University, Germany, on “The Case for
Small Data Management.” In addition, we had two tutorials: the first by Nicolas
Anciaux, Benjamin Nguyen, and Iulian Sandu Popa from Inria Paris-Rocquencourt and
INSA Centre-Val de Loire, France, on “Towards an Era of Trust in Personal Data
Management” and the second one by Boris Novikov, from St. Petersburg University,
Russia, on “Query Processing: Beyond SQL and Relations.”

ADBIS 2015 strived to create conditions for more experienced researchers to share
their knowledge and expertises with the young researchers. In addition, the following
seven workshops associated with the ADBIS were co-allocated with the main
conference:

– Second International Workshop on Big Data Applications and Principles (BigDap
2015), organized by Elena Baralis (Politecnico di Torino, Italy), Tania Cerquitelli
(Politecnico di Torino, Italy) and Pietro Michiardi (EURECOM, France).

– Workshop on Data Centered Smart Applications (DCSA 2015), organized by
Ajantha Dahanayake (Prince Sultan University, Saudi Arabia) and Bernhard
Thalheim (Christian Albrechts University, Germany).

– 4th International Workshop on GPUs in Databases (GID 2015), organized by
Witold Andrzejewski (Poznan University of Technology, Poland), Krzysztof Ka-
czmarski (Warsaw University of Technology, Poland), and Tobias Lauer (Offen-
burg University of Applied Sciences, Germany).

– Workshop on Managing Evolving Business Intelligence Systems (MEBIS 2015),
organized by Selma Khouri (National Engineering School for Mechanics and Ae-
rotechnics (ISAE-ENSMA), France and National High School of Computer Science
(ESI, Algeria), and Robert Wrembel (Poznan University of Technology, Poland).

– 4th International Workshop on Ontologies Meet Advanced Information Systems
(OAIS 2015), organized by Ladjel Bellatreche (LIAS/ISAE-ENSMA, France), and
Yamine Ait Ameur (IRIT-ENSEIHT, France).

– First International Workshop on Semantic Web for Cultural Heritage (SW4CH
2015), organizd by Béatrice Bouchou Markhoff (LI, University François Rabelais
de Tours, France) and Stéphane Jean (LIAS/ISAE-ENSMA and University of
Poitiers, France).

– Workshop on Information Systems for AlaRm Diffusion (WISARD 2015), orga-
nized by Rémi Delmas (ONERA, Toulouse, France), Thomas Polacsek (ONERA,
Toulouse, France), Florence Sèdes (IRIT, Toulouse, France).

Each workshop has its own international Program Committee. The accepted papers
were published by Springer in the series Communications in Computer and Informa-
tion Science (CCIS).

The best papers of the main conference and workshop were invited to be submitted
to special issues of the following journals: Information Systems - Elsevier, Information
Systems Frontiers - Springer, and International Journal on Semantic Web and Infor-
mation Systems - IGI.

We would like to express our gratitude to every individual who contributed to the
success of ADBIS 2015. First, we thank all authors for submitting their research papers
to the conference. We are also indebted to the members of the community who offered
their precious time and expertise in performing various roles ranging from organiza-
tional to reviewing - their efforts, energy, and degree of professionalisms deserve the
highest commendations. Special thanks to the Program Committee members and the
external reviewers for evaluating papers submitted to ADBIS 2015, thereby ensuring
the quality of the scientific program. Thanks also to all the colleagues, secretaries, and
engineers involved in the conference organization, as well as the workshop organizers.
We would like to thank Dr. Mickaël Baron, from LIAS/ISAE-ENSMA, for his endless

VI Preface

help and support. Special thanks are due to the members of the Steering Committee, in
particular, its chair Leonid Kalinichenko and his vice-chair Yannis Manolopoulos for
all their help and guidance.

Finally, we thank Springer for publishing the proceedings containing invited and
research papers in the LNCS series. The Program Committee work relied on Easy-
Chair, and we thank its development team for creating and maintaining it; it offered a
great support throughout the different phases of the reviewing process. The conference
would not have been possible without our supporters and sponsors:

– Région Poitou Charentes
– ISAE-ENSMA
– Poitiers University
– INFORSID Association
– CRITT Informatique, Futuroscope
– LIAS laboratory

Last, but not least, we thank the participants of ADBIS 2015 for sharing their works
and presenting their achievements, thus providing a lively, fruitful, and constructive
forum, and giving us the pleasure of knowing that our work was purposeful.

September 2015 Ladjel Bellatreche
Tadeusz Morzy

Patrick Valduriez

Preface VII

Organization

General Chair

Ladjel Bellatreche LIAS/ISAE-ENSMA, Poitiers, France

Program Committee Co-chairs

Patrick Valduriez Inria of Montpellier, France
Tadeusz Morzy Poznan University, Poland

Workshop Co-chairs

Athena Vakali Aristotle University of Thessaloniki, Greece
Bernhard Thalheim Kiel University, Germany

Doctoral Consortium Co-chairs

Sofian Maabout Labri/Bordeaux, France
Boris Novikov St. Petersburg University, Russia

Publicity Chair

Selma Khouri LIAS/ISAE-ENSMA, France

Website Chair

Mickaël Baron LIAS/ISAE-ENSMA, Poitiers, France

Proceedings Technical Editor

Stéphane Jean LIAS/ISAE-ENSMA, Poitiers, France

Local Organizing Committee Chair

Patrick Girard LIAS/ISAE-ENSMA, France

Local Organizing Committee

Mickaël Baron LIAS/ISAE-ENSMA, Poitiers, France
Frédéric Carreau LIAS/ISAE-ENSMA, Poitiers, France
Brice Chardin LIAS/ISAE-ENSMA, Poitiers, France

Zoé Faget LIAS/ISAE-ENSMA, Poitiers, France
Patrick Girard LIAS/ISAE-ENSMA, Poitiers, France
Laurent Guittet LIAS/ISAE-ENSMA, Poitiers, France
Stéphane Jean LIAS/ISAE-ENSMA, Poitiers, France
Yassine Ouhammou LIAS/ISAE-ENSMA, Poitiers, France
Claudine Rault LIAS/ISAE-ENSMA, Poitiers, France
Okba Barkat LIAS/ISAE-ENSMA, Poitiers, France
Selma Bouarar LIAS/ISAE-ENSMA, Poitiers, France
Ahcène Boukorca LIAS/ISAE-ENSMA, Poitiers, France
Lahcène Brahimi LIAS/ISAE-ENSMA, Poitiers, France
Zouhir Djilani LIAS/ISAE-ENSMA, Poitiers, France
Géraud Fokou LIAS/ISAE-ENSMA, Poitiers, France
Nadir Guetmi LIAS/ISAE-ENSMA, Poitiers, France
Yves Mouafo LIAS/ISAE-ENSMA, Poitiers, France
Guillaume Phavorin LIAS/ISAE-ENSMA, Poitiers, France

Supporters

Région Poitou Charentes
ISAE-ENSMA
Poitiers University
INFORSID Association
CRITT Informatique, Futuroscope
LIAS laboratory

Steering Committee

Paolo Atzeni Italy
Andras Benczur Hungary
Albertas Caplinskas Lithuania
Barbara Catania Italy
Johann Eder Austria
Theo Haerder Germany
Marite Kirikova Latvia
Hele-Mai Haav Estonia
Mirjana Ivanovic Serbia
Hannu Jaakkola Finland
Mikhail Kogalovsky Russia
Yannis Manolopoulos Greece
Rainer Manthey Germany
Manuk Manukyan Armenia
Joris Mihaeli Israel
Tadeusz Morzy Poland
Pavol Navrat Slovakia
Boris Novikov Russia

X Organization

Mykola Nikitchenko Ukraine
Jaroslav Pokornyv Czech Republic
Boris Rachev Bulgaria
Bernhard Thalheim Germany
Gottfried Vossen Germany
Tatjana Welzer Slovenia
Viacheslav Wolfengagen Russia
Robert Wrembel Poland
Ester Zumpano Italy

Program Committee

Reza Akbarinia Inria, France
Paolo Atzeni Università Roma Tre, Italy
Andreas Behrend University of Bonn, Germany
Ladjel Bellatreche ISAE-ENSMA, France
Omar Boucelma Aix-Marseille University, France
Mahdi Bohlouli University of Siegen, Germany
Albertas Caplinskas Institute of Mathematics and Informatics, Italy
Barbara Catania DISI-University of Genoa, Italy
Wojciech Cellary Poznan School of Economy, Poland
Ricardo Rodrigues Ciferri Federal University of São Carlos, Brazil
Alfredo Cuzzocrea University of Trieste, Italy
Todd Eavis Concordia University, Canada
Johann Eder Alpen-Adria-Universität Klagenfurt, Austria
Markus Endres University of Augsburg, Germany
Pedro Furtado University of Coimbra/CISUC, Portugal
Johann Gamper Free University of Bozen-Bolzano, Italy
Jérôme Gensel Grenoble University, France
Shahram Ghandeharizadeh University of Southern California, USA
Matteo Golfarelli DISI - University of Bologna, Italy
Goetz Graefe Hewlett-Packard Laboratories, USA
Dawid Gross-amblard IRISA, Rennes University, France
Jarek Gryz York University, Canada
Mohand-Said Hacid University of Claude Bernard Lyon 1 - UCBL, France
Theo Härder TU Kaiserslautern, Germany
Mirjana Ivanovic University of Novi Sad, Serbia
Hannu Jaakkola Tampere University of Technology, Finland
Leonid Kalinichenko Russian Academy of Science, Russia
Ahto Kalja Küberneetika Instituut, Estonia
Kalinka Kaloyanova University of Sofia - FMI, Bulgaria
Mehmed Kantardzic University of Louisville, USA
Marite Kirikova Riga Technical University, Latvia
Mikhail Kogalovsky Market Economy Institute of the Russian Academy of

Sciences, Russia
Christian Koncilia Alpen-Adria University of Klagenfurt, Austria

Organization XI

Margita Kon-popovska Ss Cyril and Methodius University, Macedonia
Harald Kosch University of Passau, Germany
Georgia Koutrika HP Labs, USA
Regine Laleau Paris Est Creteil University, France
Wolfgang Lehner TU Dresden, Germany
Pericles Loucopoulos University of Manchester, UK
Ivan Lukovic University of Novi Sad, Serbia
Yannis Manolopoulos Aristotle University of Thessaloniki, Greece
Rainer Manthey University of Bonn, Germany
Pascal Molli Nantes University, France
Tadeusz Morzy Poznan University of Technology, Poland
Pavol Navrat Slovak University of Technology, Slovakia
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Gultekin Ozsoyoglu Case Western Reserve University, USA
M. Tamer Ozsu University of Waterloo, Canada
Oscar Pastor Valencia University of Technology, Spain
Dana Petcu Institute e-Austria Timisoara, Romania
Jean-Marc Petit Université de Lyon, INSA Lyon, France
Olivier Pivert IRISA, Rennes University, France
Neoklis Polyzotis University of California Santa Cruz, USA
Boris Rachev Technical University of Varna, Bulgaria
Peter Revesz University of Nebraska, USA
Stefano Rizzi DEIS - University of Bologna, Italy
Viera Rozinajova Slovak University of Technology in Bratislava,

Slovakia
Henryk Rybinski Warsaw University of Technology, Poland
Gunter Saake University of Magdeburg, Germany
Klaus-Dieter Schewe Software Competence Center Hagenberg, Germany
Timos Sellis RMIT University, Australia
Bela Stantic Griffith University, Australia
Manolis Terrovitis Institute for the Management of Information Systems,

RC Athena, Greece
Martin Theobald University of Antwerp, Belgium
Farouk Toumani LIMOS, Blaise Pascal University, Clermont-Ferrand,

France
Patrick Valduriez Inria, France
Panos Vassiliadis University of Ioannina, Greece
Jari Veijalainen University of Jyvaskyla, Finland
Goran Velinov UKIM, Skopje, Macedonia
Krishnamurthy Vidyasankar Memorial University, Canada
Stratis Viglas University of Edinburgh, UK
Peter Vojtas Charles University of Prague, Czech Republic
Gerhard Weikum Max Planck Institute for Informatics, Germany
Tatjana Welzer University of Maribor, Slovenia

XII Organization

Robert Wrembel Poznan Unviersity of Technology, Institute of
Computing Science, Poland

Vladimir Zadorozhny University of Pittsburgh, USA

Additional Reviewers

Fabian Benduhn Magdeburg University, Germany
Jevgeni Marenkov Tallinn University of Technology, Estonia
Sonja Ristic University of Novi Sad, Serbia
Giorgos Giannopoulos National Technical University of Athens, Greece
Karoly Bosa Johannes Kepler University Linz, Austria
Grégory Smits IRISA, France
Fatma Slaimi LSIS, Marseille, France
Olga Gkountouna National Technical University of Athens (NTUA),

Athens, Greece
John Liagouris University of Hong Kong SAR China
Panagiotis Symeonidis Aristotle University, Thessaloniki, Greece
Konstantinos Theocharidis IMIS, Research Center Athena, Greece
Mustafa Al-Hajjaji University of Magdeburg, Germany
Sebastian Dorok University of Magdeburg, Germany
Loredana Tec AIT Austrian Institute of Technology GmbH, Vienna,

Austria
Anton Dignos University of Zürich, Switzerland
Felix Kossak Software Competence Center Hagenberg GmbH,

Hagenberg, Austria
Amel Mammar Telecom/Telecom SudParis, France
Sahar Vahdati University of Bonn, Germany
Nabil Hameurlain University of Pau, France
Tarmo Robal Tallinn University of Technology, Estonia
Hala Skaf-Molli LINA, Nantes University, France
Zoltan Miklos Inria, Rennes, France
Farida Semmak Université Paris-Est, France
Christophe Gnaho Université Paris Est, France
Lorena Paoletti Universidad de Santiago de Chile, Chile
Gilles Nachouki LINA, Nantes University, France
Irina Astrova Tallinn University of Technology, Estonia
Shuaiqiang Wang University of Jyvaskyla, Finland
Zoé Faget LIAS/ISAE-ENSMA, France
Vladimir Ivančević University of Novi Sad, Serbia
Saulius Gudas Vilnius University, Lithuania
Dirk Habich Technische Universität Dresden, Germany
Slavica Kordić University of Novi Sad, Serbia
Eike Schallehn Otto von Guericke University of Magdeburg, Germany
Vladimir Dimitrieski University of Novi Sad, Serbia
Christian Koncilia Alpen-Adria-Universität Klagenfurt, Austria
Ioannis N. Athanasiadis Hellenic Open University, Kozani, Greece

Organization XIII

Keynotes

The Story of Webdamlog

Serge Abiteboul

INRIA Saclay and ENS Cachan

Abstarct. We summarize in this paper works about the management of data in a
distributed manner based on Webdamlog, a datalog-extension. We point to rel-
evant articles on these works. More references may be found there.

1 The Webdamlog Approach

Information of interest may be found on the Web in a variety of forms, in many
systems, and with different access protocols. Today, the control and management of the
diversity of data and tasks in this setting are beyond the skills of casual users [1].
Facing similar issues, companies see the cost of managing and integrating information
skyrocketing. We are concerned with the management of Web data in place in a
distributed manner, with a possibly large number of autonomous, heterogeneous sys-
tems collaborating to support certain tasks. We summarize in this paper works in this
setting around Webdamlog and point to the relevant articles on it.

The thesis is that managing the richness and diversity of data residing on the Web
can be tamed using a holistic approach based on a distributed knowledge base. Our
approach is to represent all Web information as logical facts, and Web data manage-
ment tasks as logical rules. A variety of complex data management tasks that currently
require intense work and deep expertise may then greatly benefit from the automatic
reasoning provided by inference engines, operating over the distributed Web knowl-
edge base: for instance, information access, access control, knowledge acquisition and
dissemination.

We propose to express the peers logic in Webdamlog, a datalog-style rule-based
language. In Webdamlog, peers exchange facts (for information) and rules (in place of
code). The use of declarative rules provides the following advantages. Peers may
perform automatic reasoning using the available knowledge. Because the model is
formally defined, it becomes possible to prove (or disprove) desirable properties.
Because the model is based on a datalog-style language, query processing can benefit
from optimization techniques. Because the model represents provenance and time, the
quality of data can be better controlled. Because the model is general, a wide variety of
scenarios and protocoles may be captured, which is a requirement for todays Web.

This work was realized in the context of the European Research Council grant
Webdam [6, 13]. The system is available in opensource at [8]. The work on Web-
damlog was inspired by previous works on ActiveXML [3] at INRIA, as well as Bud
[7, 12] at Berkeley University. The system has been demonstrated in [2]. An extensive

experimental evaluation of the implementation (showing notably that the computa-
tional cost of access control is modest) is presented in [11].

In the remaining of this paper, we briefly mention three main contributions: (i) The
Webdamlog language that facilitates the exchange of data and rules between distributed
peers; (ii) A collaborative access control mechanism for Webdamlog that enables
controlling the dissemination of data in a network; and (iii) A probabilistic semantics
for datalog with functional dependencies that can serve as the basis for managing
uncertain, noisy, possibly contradicting data.

2 Three Main Contributions

Webdamlog. There is a new trend to use datalog-style rule-based languages to specify
modern distributed applications, notably on the Web [9, 10]. The Webdamlog language
was first formally described in [4]. It is a version of distributed datalog that allows
specifying distributed applications where peers exchange messages (i.e. logical facts)
as well as rules (i.e., the analog of code). An example of rule is as follows:

[at alice] album@alice($photoId,$photo,$f) :- friend@alice($f),
album@$f($photoId,$photo,$source), tags@f($photoId,"Alice")

Ignore the details of the syntax. With this rule, Alice deploys, at each peer corre-
sponding to one of her friends, a rule that sends her all photos this friend owns that is
tagged by her name. The main originality of the language is the use of delegation that
allows delegating rules to other peers. Distributed computating is realized by delegating
some rules to perform some tasks to other peers. Knowledge acquisition, i.e., the
Webdamlog analog to “downloading apps”, is also performed using rule delagations.
The main contribution of [4] is the presentation of the language. A study of the impact
on expressiveness of “delegations” is also provided.

Access control. Users wish to share data using these systems, but avoiding the risks of
unintended disclosures or unauthorized access by applications has become a major
challenge. An important issue for users in a distributed setting is thus the control of the
access to their data by others. In [11], we introduce a collaborative access control
mechanism for Webdamlog. Using this model, users can specify access control policies
providing flexible tuple-level control derived using provenance information.

Inconsistency and imprecision. In [5], we study deduction in the presence of
inconsistencies and probabilites for datalog programs. (The results can be extended to
Webdamlog in a straightward manner). Inconsistencies are captured through violations
of functional dependencies (FDs). We propose nondeterministic semantics for datalog
with FDs. We introduce a PTIME (in the size of the extensional data) algorithm, that
given a datalog program, a set of FDs and an input instance, produces a c-table
representation of the set of possible resulting worlds.

XVIII S. Abiteboul

We then propose to quantify nondeterminism with probabilities, by means of a
probabilistic semantics. We consider the problem of capturing possible worlds along
with their probabilities via probabilistic c-tables. We then study classical computational
problems in this novel context. We consider the problems of computing the proba-
bilities of answers, of identifying most likely supports for answers, and of determining
the extensional facts that are most influential for deriving a particular fact. We show
that the interplay of recursion and FDs leads to novel technical challenges in the
context of these problems.

Acknowlegements. We thank all the researchers who participated in the Webdamlog
project and in particular, Meghyn Bienvenu, Pierre Bourhis, Daniel Deutch, Alban
Galland, Gerome Miklau, Vera Zaychik Moffitt, Marie-Christine Rousset, Julia Stoy-
anovich, Jules Testard, and Victor Vianu.

References

1. Abiteboul, S., André, B., Kaplan, D.: Managing your digital life. Commun. ACM 58(5),
32–35 (2015)

2. Abiteboul, S., Antoine, E., Miklau, G., Stoyanovich, J., Testard J.: [Demo] rule-based
application development using WebdamLog. In: SIGMOD (2013)

3. Abiteboul, S., Benjelloun, O., Milo, T.: The active XML project: an overview. VLDB J. 17
(5), 1019–1040 (2008)

4. Abiteboul, S., Bienvenu, M., Galland, A., Antoine, E.: A rule-based language for Web data
management. In: PODS (2011)

5. Abiteboul, S., Deutch, D., Vianu, V.: Deduction with contradictions in datalog. In: Inter-
national Conference on Database Theory (2014)

6. Abiteboul, S., Senellart, P., Vianu, V.: The ERC webdam on foundations of web data
management. In: Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon,
France, 16–20 April 2012 (Companion Volume), pp. 211–214 (2012)

7. Alvaro, P., Conway, N., Hellerstein, J., Marczak W.R.: Consistency analysis in bloom: a
calm and collected approach. In: CIDR, pp. 249–260 (2011)

8. Antoine, E.: The webdamlog system on github (2013). https://github.com/Emilien-Antoine/
webdamlog-engine

9. Hellerstein, J.M.: Datalog redux: experience and conjecture. In: Proceedings of the
Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pp. 1–2. ACM (2010)

10. Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications: an interactive
tutorial. In: Proceedings of the 2011 ACM SIGMOD International Conference on Man-
agement of Data, pp. 1213–1216. ACM (2011)

11. Moffitt, V.Z., Stoyanovich, J., Abiteboul, S., Miklau G.: Collaborative access control in
webdamlog. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia, 31 May – 4 June 2015, pp. 197–211
(2015)

12. B. O. O. M. project. Bloom programming language. http://www.bloom-lang.net/
13. The Webdam ERC Project. http://webdam.inria.fr/

The Story of Webdamlog XIX

https://github.com/Emilien-Antoine/webdamlog-engine
https://github.com/Emilien-Antoine/webdamlog-engine
http://www.bloom-lang.net/
http://webdam.inria.fr/

The Case for Small Data Management

Jens Dittrich

Saarland University
http://infosys.uni-saarland.de

Abstract. Exabytes of data; several hundred thousand TPC-C transactions per
second on a single computing core; scale-up to hundreds of cores and a dozen
Terabytes of main memory; scale-out to thousands of nodes with close to
Petabyte-sized main memories; and massively parallel query processing are a
reality in data management. But, hold on a second: for how many users exactly?
How many users do you know that really have to handle these kinds of massive
datasets and extreme query workloads? On the other hand: how many users do
you know that are fighting to handle relatively small datasets, say in the range of
a few thousand to a few million rows per table? How come some of the most
popular open source DBMS have hopelessly outdated optimizers producing
inefficient query plans? How come people don’t care and love it anyway? Could
it be that most of the worlds data management problems are actually quite
small? How can we increase the impact of database research in areas when
datasets are small? What are the typical problems? What does this mean for
database research? We discuss research challenges, directions, and a concrete
technical solution coined PDbF: Portable Database Files (open source at https://
github.com/uds-datalab/PDBF). See also our VLDB 2015 demo (https://infosys.
uni-saarland.de/publications/p2199-dittrich.pdf).

CV. Jens Dittrich is a Full Professor of Computer Science in the area of Databases,
Data Management, and Big Data at Saarland University, Germany. Previous affiliations
include U Marburg, SAP AG, and ETH Zurich. He is also associated to CISPA (Center
for IT-Security, Privacy and Accountability). He received an Outrageous Ideas and
Vision Paper Award at CIDR 2011, a BMBF VIP Grant, a best paper award at VLDB
2014, two CS teaching awards in 2011 and 2013, as well as several presentation awards
including a qualification for the interdisciplinary German science slam finals in 2012
and three presentation awards at CIDR (2011, 2013, and 2015). His research focuses on
fast access to big data including in particular: data analytics on large datasets, Hadoop
MapReduce, main-memory databases, and database indexing. He has been a PC
member and/or area chair of prestigious international database conferences such as
PVLDB, SIGMOD, and ICDE. Since 2013 he has been teaching his classes on data
management as flipped classrooms. See http://datenbankenlernen.de or http://youtube.
com/jensdit for a list of freely available videos on database technology in German and
English (about 80 videos in German and 80 in English so far).

https://github.com/uds-datalab/PDBF
https://github.com/uds-datalab/PDBF
https://infosys.uni-saarland.de/publications/p2199-dittrich.pdf
https://infosys.uni-saarland.de/publications/p2199-dittrich.pdf
http://datenbankenlernen.de
http://youtube.com/jensdit
http://youtube.com/jensdit

Tutorials

Towards an Era of Trust in Personal
Data Management

Nicolas Anciaux1, Benjamin Nguyen2, and Iulian Sandu Popa1

1 INRIA Paris-Rocquencourt, Domaine du Voluceau, 78153 Le Chesnay, France
{Nicolas.Anciaux, Iulian.Sandu_Popa}@inria.fr

2 INSA Centre-Val de Loire, 88 boulevard Lahitolle, 18022 BOURGES, France
Benjamin.Nguyen@insa-cvl.fr

Managing personal data with strong privacy guarantees has become an important topic
in an age where your glasses record and share everything you see, your wallet records
and shares your financial transactions, and your set-top box records and shares your
energy consumption, while several recent affairs have unveiled the severe conse-
quences of the loss of privacy. In this context, more and more alternatives are proposed
based on user centric and decentralized solutions, capitalizing on the use of trusted
personal devices controlling the data at the edges of the Internet. Decentralized solu-
tions are promising because they do not exhibit the intrinsic limitations of classical
centralized solutions, e.g., sudden changes in privacy policies of companies holding the
data, data exposures by negligence or because it is regulated by too weak policies,
exposure to sophisticated attacks whose benefit/cost ratio is high for centralized dat-
abases. Hence, such solutions appear as a sea change for personal data management,
where the control over personal data is pushed to the edges of the Internet, within
sensors acquiring the data and in a variety of user devices endowed with a form of trust,
e.g., tamper-resistant secure hardware-based devices.

This tutorial reviews several existing solutions going in this direction, presents a
functional architecture encompassing these alternatives, and exposes the underlying
techniques and open issues dealing with user centric and decentralized data management
platforms. In a first part, we review the recent initiatives pursuing the objective of rees-
tablishing user control over their data by decentralizing this control in personal secure or
trusted devices. We discuss an abstract distributed architecture focusing on secure storing,
managing and sharing of personal data, i.e., the asymmetric architecture, and indicate the
main challenges inherent to decentralized data management. In a second part, we explore
data management techniques exercised within a trusted device at the client side. We
review the main attempts proposed in the literature and concentrate on those addressing
the specific context of microcontrollers equipping sensors and mobile phones (SIM cards).
In a third part, we investigate the problem of performing global processing without any
compromise on data privacy. We present the difficulties to overcome to execute privacy
preserving computations on populations of personal devices, and illustrate it by focusing
on Group By SQL queries and Privacy Preserving Data Publishing. In a fourth part, we
conclude the tutorial by presenting existing and future instances of decentralized privacy
preserving data management architectures. We mainly focus on attempts and proposals
targeting social-medical, smart houses, and rural areas contexts.

Query Processing: Beyond SQL and Relations

Boris Novikov

Saint-Petersburg University
b.novikov@spbu.ru

Query processing and optimization are essential for any data processing system since
introduction of high-level declarative query languages in early 80-ies. During the last
decade several new techniques were introduced in order to address requirements of new
classes of applications, data models, storage and indexing, and querying paradigms.

Modern query processing and optimization extends far beyond relational queries.
Several techniques were revised and a number of new techniques have been introduced
to make the query processing efficient. Several systems that were originally designed as
low-level storage facilities implementing persistence layer, were augmented with high
level declarative features. The declarative scripting languages provide a technique for
easy-to-understand specification of complex analytical scenarios that look like
sequential but are executed on massively parallel systems.

The main focus of this tutorial is on the query optimization and processing in new
environments and for new classes of applications.

Although many of declarative languages are designed as extensions to SQL, the
internals of the implementations usually have significant differences with well-known
optimization and processing techniques developed for relational systems using
row-based storage structures.

Column stores are considered to be the most efficient for analytical processing on
modern hardware. The physical algebraic operations for column stores differ from
those used in row-based ones, and optimization strategies and heuristics are different.

Distributed data processing systems such as Hadoop weren’t originally intended for
declarative query processing. However, several query languages are implemented on
top, bringing back the need for optimization. Examples of these languages and systems
include ASTERIX, SCOPE, and Apache Hive.

Processing of semi-structured and unstructured data ultimately requires fuzzy (e.g.
similarity) queries resulting in several obstacles for relational optimizers that are mostly
oriented on re-ordering of join operations. Although some of recently introduced
techniques, such as efficient top-down enumeration algorithms might be helpful, many
issues are still open.

Parametric and dynamic optimization techniques seem to be especially useful for
distributed heterogeneous environments where availability of data statistics is often
severely limited and cost estimations are unreliable.

Finally, holistic optimization is an emerging technology that optimizes the database
queries and application together with the goal to improve the overall application
performance.

Contents

Database Theory and Access Methods

Conditional Differential Dependencies (CDDs) . 3
Selasi Kwashie, Jixue Liu, Jiuyong Li, and Feiyue Ye

Improving the Pruning Ability of Dynamic Metric Access Methods
with Local Additional Pivots and Anticipation of Information. 18

Paulo H. Oliveira, Caetano Traina Jr., and Daniel S. Kaster

The Structure of Preference Orders . 32
Markus Endres

User Requirements and Database Evolution

Two Phase User Driven Schema Matching . 49
Nick Bozovic and Vasilis Vassalos

CoDEL – A Relationally Complete Language for Database Evolution 63
Kai Herrmann, Hannes Voigt, Andreas Behrend, and Wolfgang Lehner

Multidimensional Modeling and OLAP

Implementation of Multidimensional Databases in Column-Oriented
NoSQL Systems . 79

Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste,
and Ronan Tournier

A Framework for Building OLAP Cubes on Graphs 92
Amine Ghrab, Oscar Romero, Sabri Skhiri, Alejandro Vaisman,
and Esteban Zimányi

A Generic Data Warehouse Architecture for Analyzing Workflow Logs. 106
Christian Koncilia, Horst Pichler, and Robert Wrembel

ETL

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store
for Real-Time Analytics. 123

Weiping Qu, Sahana Shankar, Sandy Ganza, and Stefan Dessloch

http://dx.doi.org/10.1007/978-3-319-23135-8_1
http://dx.doi.org/10.1007/978-3-319-23135-8_2
http://dx.doi.org/10.1007/978-3-319-23135-8_2
http://dx.doi.org/10.1007/978-3-319-23135-8_3
http://dx.doi.org/10.1007/978-3-319-23135-8_4
http://dx.doi.org/10.1007/978-3-319-23135-8_5
http://dx.doi.org/10.1007/978-3-319-23135-8_6
http://dx.doi.org/10.1007/978-3-319-23135-8_6
http://dx.doi.org/10.1007/978-3-319-23135-8_7
http://dx.doi.org/10.1007/978-3-319-23135-8_8
http://dx.doi.org/10.1007/978-3-319-23135-8_9
http://dx.doi.org/10.1007/978-3-319-23135-8_9

Two-ETL Phases for Data Warehouse Creation: Design
and Implementation . 138

Ahlem Nabli, Senda Bouaziz, Rania Yangui, and Faiez Gargouri

Direct Transformation Techniques for Compressed Data: General Approach
and Application Scenarios . 151

Patrick Damme, Dirk Habich, and Wolfgang Lehner

Transformation, Extraction and Archiving

Analysis of the Blocking Behaviour of Schema Transformations
in Relational Database Systems. 169

Lesley Wevers, Matthijs Hofstra, Menno Tammens, Marieke Huisman,
and Maurice van Keulen

A Benchmark for Relation Extraction Kernels. 184
João L.M. Pereira, Helena Galhardas, and Bruno Martins

Web Content Management Systems Archivability . 198
Vangelis Banos and Yannis Manolopoulos

Modeling and Ontologies

Evidence-Based Languages for Conceptual Data Modelling Profiles 215
Pablo Rubén Fillottrani and C. Maria Keet

Ontological Commitments, DL-Lite Logics and Reasoning Tractability 230
Mauricio Minuto Espil, Maria Gabriela Ojea,
and Maria Alejandra Ojea

SeeCOnt: A New Seeding-Based Clustering Approach
for Ontology Matching . 245

Alsayed Algergawy, Samira Babalou, Mohammad J. Kargar,
and S. Hashem Davarpanah

Time Series Processing

ForCE: Is Estimation of Data Completeness Through Time Series
Forecasts Feasible? . 261

Gregor Endler, Philipp Baumgärtel, Andreas M. Wahl,
and Richard Lenz

Best-Match Time Series Subsequence Search on the Intel Many
Integrated Core Architecture . 275

Mikhail Zymbler

XXVI Contents

http://dx.doi.org/10.1007/978-3-319-23135-8_10
http://dx.doi.org/10.1007/978-3-319-23135-8_10
http://dx.doi.org/10.1007/978-3-319-23135-8_11
http://dx.doi.org/10.1007/978-3-319-23135-8_11
http://dx.doi.org/10.1007/978-3-319-23135-8_12
http://dx.doi.org/10.1007/978-3-319-23135-8_12
http://dx.doi.org/10.1007/978-3-319-23135-8_13
http://dx.doi.org/10.1007/978-3-319-23135-8_14
http://dx.doi.org/10.1007/978-3-319-23135-8_15
http://dx.doi.org/10.1007/978-3-319-23135-8_16
http://dx.doi.org/10.1007/978-3-319-23135-8_17
http://dx.doi.org/10.1007/978-3-319-23135-8_17
http://dx.doi.org/10.1007/978-3-319-23135-8_18
http://dx.doi.org/10.1007/978-3-319-23135-8_18
http://dx.doi.org/10.1007/978-3-319-23135-8_19
http://dx.doi.org/10.1007/978-3-319-23135-8_19

Feedback Based Continuous Skyline Queries
Over a Distributed Framework . 287

Ahmed Khan Leghari, Jianneng Cao, and Yongluan Zhou

Performance and Tuning

Partitioning Templates for RDF . 305
Rebeca Schroeder and Carmem S. Hara

Efficient Computation of Parsimonious Temporal Aggregation 320
Giovanni Mahlknecht, Anton Dignös, and Johann Gamper

TDQMed: Managing Collections of Complex Test Data. 334
Johannes Held and Richard Lenz

Advanced Query Processing

A Self-tuning Framework for Cloud Storage Clusters 351
Siba Mohammad, Eike Schallehn, and Gunter Saake

Optimizing Sort in Hadoop Using Replacement Selection. 365
Pedro Martins Dusso, Caetano Sauer, and Theo Härder

Distributed Sequence Pattern Detection Over Multiple Data Streams 380
Ahmed Khan Leghari, Jianneng Cao, and Yongluan Zhou

Approximation and Skyline

Space-Bounded Query Approximation . 397
Boris Cule, Floris Geerts, and Reuben Ndindi

Hybrid Web Service Discovery Based on Fuzzy Condorcet Aggregation 415
Hadjila Fethallah, Belabed Amine, and Halfaoui Amel

Confidentiality and Trust

Confidentiality Preserving Evaluation of Open Relational Queries 431
Joachim Biskup, Martin Bring, and Michael Bulinski

A General Trust Management Framework for Provider Selection
in Cloud Environment . 446

Fatima Zohra Filali and Belabbas Yagoubi

Sybil Tolerance and Probabilistic Databases to Compute
Web Services Trust . 458

Zohra Saoud, Noura Faci, Zakaria Maamar, and Djamal Benslimane

Contents XXVII

http://dx.doi.org/10.1007/978-3-319-23135-8_20
http://dx.doi.org/10.1007/978-3-319-23135-8_20
http://dx.doi.org/10.1007/978-3-319-23135-8_21
http://dx.doi.org/10.1007/978-3-319-23135-8_22
http://dx.doi.org/10.1007/978-3-319-23135-8_23
http://dx.doi.org/10.1007/978-3-319-23135-8_24
http://dx.doi.org/10.1007/978-3-319-23135-8_25
http://dx.doi.org/10.1007/978-3-319-23135-8_26
http://dx.doi.org/10.1007/978-3-319-23135-8_27
http://dx.doi.org/10.1007/978-3-319-23135-8_28
http://dx.doi.org/10.1007/978-3-319-23135-8_29
http://dx.doi.org/10.1007/978-3-319-23135-8_30
http://dx.doi.org/10.1007/978-3-319-23135-8_30
http://dx.doi.org/10.1007/978-3-319-23135-8_31
http://dx.doi.org/10.1007/978-3-319-23135-8_31

Erratum to: ForCE: Is Estimation of Data Completeness Through Time
Series Forecasts Feasible? . E1

Gregor Endler, Philipp Baumgärtel, Andreas M. Wahl,
and Richard Lenz

Author Index . 473

XXVIII Contents

http://dx.doi.org/10.1007/978-3-319-23135-8_32
http://dx.doi.org/10.1007/978-3-319-23135-8_32

Database Theory and Access Methods

Conditional Differential Dependencies (CDDs)

Selasi Kwashie1(B), Jixue Liu1, Jiuyong Li1, and Feiyue Ye2

1 ITMS, University of South Australia, Adelaide, Australia
Selasi.Kwashie@mymail.unisa.edu.au

2 CSE, Jiangsu University of Technology, Changzhou, China

Abstract. Differential dependency (DD) is a newly proposed data
dependency theory that captures the relationships amongst data values.
Like the classical functional dependency (FD) theory, DDs are defined to
hold over entire instances of relations. This paper proposes a novel exten-
sion of the DD theory to hold over subsets of relations, called conditional
DD (CDD), similar to the relaxations of FD to conditional FD (CFD)
[4] and conditional FD with predicates (CFDPs) [6]. In this work, we
present: the formal definitions; the consistency and implication analysis;
and a set of axioms to infer CDDs. Furthermore, we study the discov-
ery problem of CDDs and present an algorithm for mining a minimal
cover set Σc of constant CDDs from a given instance of a relation. And,
we propose an interestingness measure for ranking discovered CDDs and
reducing the size |Σc| of Σc. We demonstrate the efficiency, effectiveness
and scalability of the discovery algorithm through experiments on both
real and synthetic datasets.

1 Introduction

Functional dependencies (FDs) have recently been extended to capture the
semantics of distance in data, namely, differential dependencies (DDs) in [13].
DDs relax the strict equality constraint in FDs to distance constraints. A DD
B[c, d] → A[e, f] holds on an instance r of a relation R if for any two distinct
tuples t1, t2 ∈ r, if the distance between t1[B] and t2[B] is within c and d, then
the distance between t1[A] and t2[A] is within e and f . This definition allows
the declaration of dependencies based on similarities of attribute values, unlike
an FD which uses exact match of attribute values. DDs are useful in data man-
agement applications involving the semantics of distance.

From a different perspective, new dependencies of conditional FDs (CFDs)
[4], conditional FDs with predicates (CFDPs) [6], and conditional inclusion
dependencies (CINDs) [5] have been proposed to represent dependencies that
hold on subsets of a dataset (hold locally), unlike FDs which hold on the whole
dataset (hold globally). These new dependencies have been shown useful in data
quality management and cleaning practices in these proposals.

In this study, we propose a novel type of dependencies, namely, Conditional
Differential Dependencies, (CDDs) which extends DDs by specifying constraints
enabling DDs to apply to subsets of data. Examples of uses of the new depen-
dencies in knowledge discovery and data quality management are as follows.
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 3–17, 2015.
DOI: 10.1007/978-3-319-23135-8 1

4 S. Kwashie et al.

In knowledge discovery. Different types of dependencies represent knowledge in
different ways and have different expressive power. The CDDs of our extension
enables locally satisfied dependencies defined on value similarity to be repre-
sented. For example, from the Iris1 dataset [3], the global DD φ : PW [0] →
SL[0, 2.3] can be discovered which indicates that for any two iris plants, if they
have the same petal width (PW [0]), the distance in their sepal length is within
2.3 cm (SL[0, 2.3]). However, from the same dataset, three local DDs (our CDDs)
can be found:

(i) if CL = setosa, PW [0] → SL[0, 1.4];
(ii) if CL = versicolor, PW [0] → SL[0, 1.8]; and
(iii) if CL = virginica, PW [0] → SL[0, 2.3].

Although the global DD φ covers all the local ones (i) - (iii), the knowledge rep-
resented in (i) and (ii) differs significantly from φ. Thus, (i) - (iii) can be used
to classify iris plants much more accurately than φ. This result confirms Simp-
son’s paradox [12] that local rules (dependencies) can be completely different
from global rules. Our extension addresses the representation problem of local
dependencies based on the semantics of distance.

Table 1. A snippet of employees’
data

tid Gen Qua Cat Yrs Pos Sal
1 1 4 1 12 24 136
2 0 4 1 12 24 124
3 0 3 0 4 13 62
4 1 4 1 15 25 159
5 1 1 0 11 12 69
6 0 2 1 5 21 42
7 0 3 0 6 12 59
8 1 2 0 2 11 15
9 1 3 1 3 22 20
10 0 1 1 2 21 19

Gen: 1=Male; 0=Female
Qua: 1=Dip.; 2=BSC.; 3=MSc.;
4=PhD. Cat: 0=Adm.; 1=Aca.

In Data Quality Management. Given a
dataset shown in Table 1 where the attributes
mean employee Gender, Educational Quali-
fication, Professional Category (academic or
administrative), Years of Service, Staff Posi-
tion and Salary in order, the application has
the requirement that for administrative staff,
when their position is similar (difference ≤ 1),
their number of years in service is similar
(difference ≤ 5), then their salary should be
similar (difference ≤ 5). The representation
of the requirement in our CDD is:

if Cat = 0, Pos[0, 1]Y rs[0, 5] → Sal[0, 5].
This requirement cannot be represented by a global DD as DDs do not

allow the specification of the ‘if’ condition. We note that the global DD
Cat[0]Pos[0, 1]Y rs[0, 5] → Sal[0, 5] will also apply to the academic category,
which is against the requirement. The requirement cannot be represented by a
CFD either as CFD uses exact value match, and not defined with value similarity.

Contributions. The foregoing discussions highlight the need for extending DDs
to conditionally hold on subsets of data to enable the capturing of some latent
knowledge and inconsistencies. To achieve this, we: (a) propose a new class of
data dependencies, CDDs, an extension of DDs, that are capable of capturing
1 PW is petal width; SL is sepal length; CL is Iris class.

Conditional Differential Dependencies (CDDs) 5

the distance relationships amongst subsets of tuples in a relation; (b) investi-
gate the static analyses of CDDs – study two reasoning problems for CDDs and
present their complexity bounds, and design a set of axioms to infer CDDs;
(c) investigate the discovery problem of CDDs and design an efficient algorithm
to mine constant CDDs in data; and (d) define an interestingness measure for
CDDs to allow the return of a smaller set of CDDs that captures interesting pat-
terns in data. We empirically evaluate the feasibility, efficiency and effectiveness
of our discovery algorithm on both real-world and synthetic data sets.

2 Conditional Differential Dependencies (CDDs)

Here, we first recall the notions and definition of DDs. Then, we present the
formal definition of CDDs; and show the relationship between CDDs and DDs,
as well as CDDs and other conditional dependencies.

Let R(A1, · · · , An) be a relation schema with instance r; Ai ∈ R is an
attribute with domain dom(Ai); and X,Y,Z ⊂ R are subsets of attributes in R.

A distance metric, dA(a1, a2), is a function defined over attribute A that
returns the distance between any two values a1, a2 of A in r. dA(a1, a2) is assumed
to exhibit: (a) non-negativity: dA(a1, a2) ≥ 0; (b) identity of indiscernible:
dA(a1, a2) = 0 iff. a1 = a2; and (c) symmetry: dA(a1, a2) = dA(a2, a1); where
a1, a2 ∈ dom(A). Examples of distance metrics are: edit distance, cosine similar-
ity (for textual values); and absolute value of difference (for numeric values).

A differential function (DF) of A w.r.t. the distance interval w = [x, y]
is denoted by A[w], and returns a boolean value indicating whether or not for
any two values a1, a2 of A in r, x ≤ dA(a1, a2) ≤ y. A[w] is written as A[x] if
x = y. A DF of X = {A1, · · · , Am} on WX = w1 × · · · × wm is denoted by
X[WX]. A tuple pair t1, t2 ∈ r is said to agree on (satisfy) a DF X[WX] if for
all Ai[wi] ∈ X[WX], dAi

(t1[Ai], t2[Ai]) is within/on wi. T (X[W]) represents the
set of all tuple pairs in r of R that agree on X[W].

Given two differential functions (DFs) X[WX] and Y [WY]: X[WX] is said
to subsume Y [WY], denoted by X[WX] � Y [WY], if and only if any tuple pair
t1, t2 satisfying Y [WY] also satisfies X[WX], i.e., for all Ai[wi] ∈ X[WX], there
exists Ai[w′

i] ∈ Y [WY] such that w′
i ⊆ wi.

A differential dependency (DD) [13], φ, is a statement φ : X[WL] →
Y [WR] between two DFs X[WL], Y [WR]. φ holds over r of R iff. for any two
distinct tuples t1, t2 ∈ r, if X[WL] returns true, Y [WR] returns true.

For example, assume dA(a1, a2) = |a1 − a2| for all A ∈ R in Table 1. Then
the following are true: (a) Pos[0, 3] � Pos[0, 2]Cat[0] since any pair of tuple
that agrees on Pos[0, 2]Cat[0] also agrees on Pos[0, 3]; (b) Cat[0]Y rs[0, 3] →
Sal[1, 47] since T (Cat[0]Y rs[0, 3]) ⊆ T (Sal[1, 47]).

We now extend DDs with conditions to hold over subsets of (instead of the
entire) r as follows.

Let ψ(A) = A op a denote a predicate on A ∈ R, where ‘op’ is one of the
relation symbols in the set S = {=, <,>,≤,≥,∈} and ‘a’ is either:

6 S. Kwashie et al.

· A set of values in dom(A) when op is ∈ and dom(A) is categorical; or
· An interval in dom(A) when op is ∈ and dom(A) is continuous; or
· A value in dom(A) when op is =, <,>,≤ or ≥.

To represent any value in dom(A), we use the wild-card character ‘ ’ (i.e. a is
‘ ’). Examples of predicates on some attributes in the relation in Table 1 are:
ψ1(Qua) = Qua ∈ {2, 3}; ψ2(Y rs) = Y rs ∈ [5 − 10]; ψ3(Pos) = Pos ≥ 24.

A conditional statement (CS), ζ(Z), on a set Z = {A1, · · · , Am} of
attributes is a conjunction of predicates on the attributes in Z. That is, ζ(Z) =
ψ1(A1) · · · ψm(Am). For any tuple t ∈ r, ζ(Z) returns true on t, denoted by
t 	 ζ(Z) iff: for each ψi(Ai) ∈ ζ(Z), t[Ai] agrees on the constraint specified by
ψi(Ai). The set of all tuples t ∈ r that agree on ζ(Z) is denoted by supp(ζ(Z), r).
A CS ζ(Z) is constant if for all ψ(A) ∈ ζ(Z), ψ(A) = Aop a is such that a is a
single value in dom(A) and op is ‘=’ and we simply denote ψ(A) as A〈a〉2 for
brevity; ζ(Z) is otherwise termed variable.

Given two CSs ζ1(Z), ζ2(Y) on the sets Z, Y respectively, ζ1(Z) is said to
dominate ζ2(Y), denoted by ζ1(Z) ≥d ζ2(Y), if ζ1(Z) is more general than ζ2(Y).
That is, (a) Z ⊆ Y and (b) for all ψi(A) ∈ ζ1(Z) there exits ψj(A) ∈ ζ2(Y) such
that for any tuple t ∈ r, if t agrees on ψj(A), then it agrees on ψi(A). In other
words, ζ1(Z) dominates ζ2(Y) if Z ⊆ Y and the predicates in ζ2(Y) are the same
as or more restrictive than those in ζ1(Z). Examples of some CSs in Table 1 are:
Qua ≥ 2; Gen〈0〉Cat〈1〉; Sal ∈ [100 − 160] ∧ Y rs ∈ [10 − 15] ∧ Qua〈4〉. Let
ζ1(Cat) = Cat〈1〉, and ζ2(Sal, Y rs, Cat) = Sal ≤ 50 ∧ Y rs ∈ [2 − 6] ∧ Cat〈1〉:
the relation ζ1(Cat) ≥d ζ2(Sal, Y rs, Cat) is true.

A conditional differential function (cDF), η, on the sets Z ⊇ X of
attributes is a pair η = (ζ(Z),X[WX]): where ζ(Z) is a CS on Z and X[WX] is
a DF on X. A cDF, η = (ζ(Z),X[WX]) returns true if the DF X[WX] returns
true on a tuple pair drawn from the set of all tuples that agree on the CS ζ(Z).
That is, η = (ζ(Z),X[WX]) returns true on a pair of tuples t1, t2 ∈ r if and only
if: (a) t1, t2 ∈ supp(ζ(Z), r); and (b) t1, t2 agrees on X[WX]. We use agrT(η) to
denote the set of all tuple pairs in supp(ζ(Z), r) that agree on X[WX].

Given two cDFs η1 = (ζ(Z),X[WX]) and η2 = (ζ(U),M [WM]), we say
η1 subdues η2, denoted by η1 � η2 if and only if: (a) ζ(Z) ≥d ζ(U) and (b)
X[WX] � M [WM]. That is, the CS ζ(Z) and DF X[WX] of η1 are respec-
tively less restrictive and more general than the CS ζ(U) and DF M [WM] of
η2. For example, if η1 = (Y rs ≤ 10 ∧ Qua ∈ {1, 2, 3}, Y rs[0, 3]Qua[0]) and
η2 = (Y rs ∈ [5 − 10] ∧ Qua ∈ {2, 3}, Y rs[0, 2]Qua[0]), then η1 � η2.

cDFs serve as the constraints in CDDs, formally defined as follows.
A conditional differential dependency (CDD), σ, defined on a relation

R is a constraint between two cDFs, η = (ζ(ZL),X[WX]), γ = (ζ(ZR), Y [WY]),
in the form σ : η → γ. η is termed the LHS, lhs(σ); and γ is the RHS, rhs(σ).

A CDD σ is satisfied by an instance r of R if for the set supp(ζ(ZL), r) of all
tuples satisfying constraint ζ(ZL) individually, if the distance of any two distinct
tuples t1, t2 ∈ supp(ζ(ZL), r) on attribute set X is within WX , then the distance
of t1, t2 on attribute set Y must be within WY , and t1 and t2 must also satisfy
the constraint ζ(ZR) individually. Formally, r satisfies the CDD σ, denoted by

2 we note that we use A〈a〉 for a constant CS of A; and A[w] for a DF of A.

Conditional Differential Dependencies (CDDs) 7

r |= σ, if for any pair of tuples t1, t2 ∈ r: if η = (ζ(ZL),X[WX]) on (t1, t2)
returns true, then γ = (ζ(ZR), Y [WY]) on (t1, t2) returns true.

A CDD σ : (ζ(ZL),X[WX]) → (ζ(ZR), Y [WY]) is said to be constant if for
all ψ(A) ∈ ζ(ZL) ∪ ζ(ZR), ψ(A) = A〈a〉 or ψ(A) =‘ ’; and variable otherwise.
We refer to the function φ : X[WX] → Y [WY] as the embedded DD in σ. We
say a CDD σ is in the normal form if its RHS has only one attribute, i.e.
σ : (ζ(ZL),X[WX]) → (ζ(A), A[wa]). Unless otherwise specified, in the rest of
the paper, we consider CDDs in the normal form.

CDDs and Other Dependencies. CDDs are different from DDs. DDs spec-
ify distance constraints on sets of attributes which hold on an entire instance
of a relation whereas CDDs define distance constraints on attribute sets valid
over only the subsets of instances that agree on CSs. Furthermore, CFDs and
CFDPs can be considered as special cases of CDDs where the distance con-
straints on attributes are zero (0), like how FDs are seen as a special case of
DDs with a distance of zero (0) on all attributes. Examples of some CDDs
on the relation in Table 1 are as follows. σ1 : (Qua〈4〉Cat〈1〉Pos=‘ ’, Pos[0])
→ (Sal ≥ 80, Sal[0, 12]); and σ2 : (Qua〈4〉Cat〈1〉Y rs=‘ ’, Y rs[0]) → (Pos=‘ ’,
Pos[0]). σ1 states that for any two academic staffs (Cat〈1〉) with PhD. degrees
(Qua〈4〉), irrespective of their position (Pos=‘ ’), if there exists no difference
in their position (Pos[0]), then their salary difference must be within $12K
(Sal[0, 12]) and their individual salaries should be at least $80K (Sal ≥ 80).
The CDD σ2 is equivalent to a CFD: the years of service (Y rs) of academics
with PhD (Qua〈4〉Cat〈1〉) uniquely determine their position (Pos).

Static Analysis of CDDs. For two of the fundamental reasoning problems
(i.e. consistency and implication analysis) that come with dependencies, we give
here results with brief sketches of proof due to space limit; and present inference
rules for CDDs.

1. Consistency Analysis of CDDs: A set Σ of CDDs is said to be consistent if
there exists an instance r of R that has at least two tuples (ALTT) and that
satisfies Σ. The consistency problem C is to determine the existence of an ALTT
instance for a given set Σ of CDDs.

C is NP-complete for DDs [13]; and CDDs maintain the same complexity.

Theorem 1. The consistency problem for CDDs is NP-complete.
Proof. The NP-hard bound follows the NP-hardness of C for DDs, a special case
of CDDs. NP bound is verified by an NP algorithm that can decide if r |= Σ. ��

2. Implication Analysis of CDDs: Given two sets Σ1, Σ2 of CDDs, Σ1 is said to
be a logical implication of (or to imply) Σ2, denoted by Σ1 |= Σ2, if for any
instance r of R, if r |= Σ1, then r |= Σ2. The implication problem, I, for CDDs
is to determine, given a set Σ of CDDs and a single CDD σ over a relation
R, whether Σ implies σ, denoted by Σ |= σ. An implication analysis ensures
discovered rules are free from redundancy.

8 S. Kwashie et al.

I is coNP-complete for DDs [13]; and CDDs maintain the same complexity.

Theorem 2. The implication problem of CDDs is coNP-complete.

Proof. The coNP-hard bound is verified by the coNP-hardness of DDs. The
coNP bound is verified by an NP algorithm that can verify if Σ � |= σ. ��

3. Inference System for CDDs: An inference system allows pruning of implied
rules during discovery. For example, the well-known Armstrong’s Axioms [2]
form the bases of the finite axiomatizability of FDs and similar axioms have
been derived f or CFDs and DDs. We present a few (because of space limit) of
all the inference rules used in pruning in Sect. 4 below for CDDs.

Some inference rules for CDDs

I1. Reflexivity: If (ζ(ZR), Y [WY]) � (ζ(ZL), X[WX]), then Σ �I (ζ(ZL), X[WX]) →
(ζ(ZR), Y [WY]).

I2. Transitivity: If Σ �I (ζ(ZL), X[WX]) → (ζ(UR), N [WN]) and Σ �I (ζ(UL),
M [WM]) → (ζ(ZR), Y [WY]), where (ζ(UL), M [WM]) � (ζ(UR), N [WN]), then Σ �I
(ζ(ZL), X[WX]) → (ζ(ZR), Y [WY]).

I3. Augmentation: If Σ �I (ζ(ZL), X[WX]) → (ζ(ZR), Y [WY]), then Σ �I
(ζ(ZL), X[WX]) ∧ (ζ(U), M [WM]) → (ζ(ZR), Y [WY]) ∧ (ζ(U), M [WM]) for any

(ζ(U), M [WM]).

I4. Finite domains: If (1) Σ �I (ζ(ZL), X[WX]) ∧ (ζi(U), B[wb]) → (ζ(ZR), Y [WY])

for b ∈ [1, k]; i ∈ [1, p] and B ⊆ U , (2) dom(B), dom(U) are finite w.r.t.

Σ and (ζ1(U), B[w1]) ∨ · · · ∨ (ζp(U), B[wk]) is consistent w.r.t. Σ, then Σ �I
(ζ(ZL), X[WX]) → (ζ(ZR), Y [WY]).

3 Discovery of CDDs

Given an instance r of a relation R, the discovery problem of CDDs is to find
the set of all valid CDDs in r. The set of all valid CDDs in any given instance
of relation can be very large. From discussions in Sect. 2, such a set may contain
several implications, hence, redundant. It is, therefore, interesting to find a set
of valid CDDs with no redundancy from which all other valid CDDs can be
inferred. We want a cover of all valid CDDs in a given r of R with the least
possible number of CDDs, namely, a minimal cover, formally defined as follows.

Definition 1 (Minimal CDD, Cover and Minimal Cover). Let Σ be a set
of valid CDDs in r of R. A CDD σ : (ζ(ZL),X[WX]) → (ζ(A), A[wa]) ∈ Σ is
said to be minimal iff. it is: (a) left-reduced – there does not exist another σ1 :
(ζ1(U), Y [WY]) → (ζ(A), A[wa]) ∈ Σ s.t. (ζ1(U), Y [WY]) � (ζ(ZL),X[WX]);
(b) right-subdued – there does not exist any σ2 : (ζ(ZL),X[WX]) →
(ζ2(A), A[w2]) ∈ Σ s.t. (ζ(A), A[wa]) � (ζ2(A), A[w2]).

The set Σ1 is a cover of the set Σ if every CDD in Σ is in or implied by DDs
in Σ1. Let Σ be a set of minimal CDDs. We say a cover Σc of Σ is minimal
cover iff. there does not exist a cover Σ′ of Σ s.t. Σ′ ⊂ Σc.

Conditional Differential Dependencies (CDDs) 9

Finding a minimal cover Σc of CDDs in a given instance of a relation is non-
trivial and important. This is because, it presents a concise set of valid CDDs,
making its utilization less costly. For instance, in data management applications
that may require the validation of CDDs in data, a smaller Σc reduces the cost
of validation, resulting in more efficient and useful applications.

Given an instance r of a relation schema R, the discovery problem of CDDs
is to find a minimal cover of all CDDs that hold in r.

Problem Statement. The search space of possible CDDs is large. To reduce the
search space while discovering highly relevant CDDs, we restrict the maximum
distance of DFs in the LHS cDFs of CDDs. Indeed, we incorporate the notion of
ε-DFs [8] into CDD discovery and accordingly define ε-minimal CDDs. Let the
function up(w) on the distance interval (w = [x, y]) of a DF A[w] return y.

A DF X[WX] = A1[w1] ∧ · · · ∧ Am[wm] on the set X of attributes is said to
be an ε-DF if for all Ai[wi] ∈ X[W], up(wi) ≤ ε × range(Ai), where ε ∈ [0, 1] is
user-specified; range(Ai) is the range of distance values of Ai.

Definition 2 (ε-minimal CDD). Given a set Σε of valid CDDs in r, a CDD
σ : (ζ(Z),X[WX]) → (ζ(A), A[wa]) ∈ Σε is ε-minimal iff. X[WX] is an ε-
DF and: (a) left-reduced – there does not exist another σ1 : (ζ1(U), Y [WY]) →
(ζ(A), A[wa]) ∈ Σε s.t. (ζ1(U), Y [WY]) � (ζ(ZL),X[WX]) where Y [WY] is an
ε-DF; (b) right-subdued – there does not exist any σ2 : (ζ(ZL),X[WX]) →
(ζ2(A), A[w2]) ∈ Σε s.t. (ζ(A), A[wa]) � (ζ2(A), A[w2]).

In this paper, we study the following discovery problem: given an instance r of
a relation R, we find a minimal cover Σε

c of ε-minimal CDDs that hold in r.

4 The Discovery Algorithm

This section introduces our algorithm, MineCDD, for constant CDD discovery.
A sketch of the pseudo-code for MineCDD is presented in Algorithm 1. It consists
of four major procedures viz: generating constant CSs; forming candidate LHS
cDFs; finding valid RHS cDFs to form CDDs; and pruning the set of valid CDDs.
We elaborate on each step in the following.

Algorithm 1 MineCDD
Data: An instance r of a relation R
Input parameters: k, ε, mi.
Result: minimal cover Σε

c of constant
ε-minimal CDDs.

1: mine all k-frequent CSs in r
2: for each k-frequent CS in r do
3: form candidate LHS cDFs
4: for each candidate LHS do
5: find set of valid RHS cDFs;
6: generate valid CDDs

7: prune the set Σ of valid CDDs
8: return Σε

c (Pruned Σ)

Generating Constant CSs. The first step
in our discovery process is generating all con-
stant CSs using the closed patterns (CPs) of
equivalence classes (ECs). This approach is
based on a connection between constant CSs
and ECs in a relation. We recall the notions
of ECs and CPs; and present a link between
CSs and ECs below.

Let R(A1, · · · , An) be a relation schema,
and r be an instance of R. An item is a pred-
icate ψ(A) : A op a on an attribute A ∈ R where op is ‘=’ and a is a constant in

10 S. Kwashie et al.

the domain dom(A). For brevity, we denote an item by A〈a〉. An itemset ζ(Z) on
the set Z of attributes is a set of items with distinct attributes. Let supp(ζ(Z), r)
be the set of tuples in r that contain (support) ζ(Z). Two itemsets ζ1(Z) and
ζ2(Y) are said to be equivalent if they co-occur in r.

An equivalence class (EC), Er[ζ(Z)], of an itemset ζ(Z) in r of R is the set
Er[ζ(Z)] = {ζ(Y) | supp(ζ(Z), r) = supp(ζ(Y), r)}. That is, an EC consists of
a set of itemsets with a common agree (supporting) tuples set. Hence, to avoid
redundancy, we represent each EC with the most maximal itemset within the
class. And, as show in [9], an EC can be uniquely and concisely represented by
a closed pattern (CP) and a set of generators (free patterns): and CPs are the
maximal itemsets in ECs. We, therefore, mine CPs as representatives of ECs.

An itemset ζ(Z) is said to be closed iff. there does not exist another item-
set ζ(Y) such that: (a) ζ(Z) ⊂ ζ(Y); and (b) supp(ζ(Z), r) = supp(ζ(Y), r).
A CP ζ(Z) is k-frequent if |supp(ζ(Z), r)| ≥ k, where k is a user-specified nat-
ural number. We adopt and adapt the CPs mining algorithm in [15] to discover
all k-frequent CPs and their agree tuples set in r (line 1 of Algorithm 1), and
transform them to constant CSs by Lemma 1 below.

Lemma 1 (ECs, CPs and Constant CSs). Given an instance r of a relation
R, a CP ζ(Z) = A1〈a1〉 · · · Am〈am〉 is the maximal itemset in the EC Er[ζ(Z)] =
{ζ(Y) | supp(ζ(Z), r) = supp(ζ(Y), r)}; and ζ(Z) corresponds to a constant CS
with an agree tuples set supp(ζ(Z), r).

Forming Candidate LHS cDFs. Let C be the set of all constant CSs generated
in the previous step. Here, for each constant CS ζ(U) ∈ C, we form a set of
candidate LHS cDFs. That is, we form all valid LHS cDFs for the tuples set
supp(ζ(U), r) in r that agrees on ζ(U).

The search space of possible LHS cDFs for even a single CS can be very
large due the combinatorial distance intervals of DFs. Hence, the need for a
user-specified constraint on the DFs in LHS cDFs and the definition of ε-minimal
CDDs in Sect. 3. To ensure the discovery of ε-minimal CDDs, we mine CDDs with
ε-DFs in their LHS cDFs. Naturally, we adapt and incorporate the technique in
[8] for mining ε-DFs for this task (line 3 of Algorithm 1).

A LHS cDF η is a pair η = (ζ(ZL),X[WX]). We form candidate LHSs with
each constant CS ζ(U) ∈ C as follows. First, we find all left-reduced ε-DFs
X[WX] valid over supp(ζ(U), r); then form their respective CS ζ(ZL).

The generation of candidate LHS ε-DFs uses the building of an attribute
lattice [1]. Given a constant CS ζ(U), an attribute lattice L is built using
attributes in the set R′ = {R \ U}. Each node N in the lattice is a triplet
N = (X,WX , T) where X ⊂ R′; WX is the set of distance intervals of the
ε-DF X[WX]; and T represents the set, agrT(η), of all tuple pairs that agree on
X[WX] in supp(ζ(U), r). The discovery of all candidate ε-DFs in the lattice is
based on the established relationship between δ-nClusters [10] and ε-DFs in [8].
We extend this relationship for subsets of relations below.

Conditional Differential Dependencies (CDDs) 11

Lemma 2 (δ-nClusters and ε-DFs). Given are the subset, supp(ζ(U), r),
of r and the subspace (set of attributes) X ⊂ R. If there exists a free set ΨX =
{I1, I2, · · · , Il} of all maximal δ-nClusters valid in X over supp(ζ(U), r), then,
an ε-DF X[WX] = B1[w1]∧· · ·∧Bm[wm] holds in supp(ζ(U), r) s.t.: T (X[W]) =
pr(T1) ∪ pr(T2) ∪ · · · ∪ pr(Tl), where pr(Tα) is the set of all tuple pairs in the
tuple set Tα of a maximal δ-nCluster Iα = (Tα,X).

Lemma 2 allows us to adopt and adapt techniques for mining δ-nClusters to
efficiently find valid ε-DFs. More precisely, given the free sets of all maximal
δ-nClusters, we generate the set of candidate LHS ε-DFs by transforming each
free set of maximal δ-nClusters into a corresponding valid ε-DF.

The lattice is built using the breadth-first approach, starting with single
attributes. At the first level L1 of the lattice L, for every A ∈ R′, if there
exists a free set ΨA of maximal δ-nClusters in the subspace A then T (A[wa])
and A[wa]3 are generated according to Lemma 2 to form the node NA(A,wa, T).
A node is included in the lattice if the support of its ε-DF is greater than the
minimum. The nodes at L1 form the first level of L.

Nodes at other levels of L are formed as follows. For any level i such that
(2 ≤ i < m) and m = |R′|, Li, are formed from Li−1 nodes. Any two nodes
Nl, Nk ∈ Li−1 are parent to a node Nc of Li if and only if: Nl, Nk have up to (i−2)
preceding single-attributes in common on their first-triplet X (set of attribute,
sorted in lexicographical order) and their remaining attributes in X are different.
If this condition is satisfied, then (Nc).X = Xc = {(Nl).Xl}∪{(Nk).Xk}. If there
exists ΨXc

∈ C, then node Nc(Xc,WXc
, T) of Li is formed (by Lemma 2) with

Nl, Nk ∈ Li−1 as parents.
For every ε-DF X[WX], we form ζ(ZL) = ζ(U) ∧ ζ(X), where for every

ψ(A) ∈ ζ(X), ψ(A) =‘ ’. The pair (ζ(ZL),X[WX]) then forms a LHS cDF η.
That is, the LHS cDF, η(N), of a node N is thus η(N) = (ζ(ZL),X[WX]).

Finding Valid RHS cDFs. Next, we find valid RHS cDFs, γ = (ζ(A), A[wa])
for each LHS cDF η = (ζ(ZL),X[WL]) (line 4, 5 of Algorithm 1). In this
discovery, we set all ζ(A) = ‘ ’, to avoid missing any similarity among
the values of A. This, thus allows the mining of all valid RHS DFs on
A. A RHS cDF γ = (ζ(A), A[wa]) is valid iff: (1) ZL ∩ {A} = ∅; (2)
agrT(ζ(ZL),X[WL]) ⊆ agrT(ζ(A), A[wa]); (3) there does not exist γ′ such that
γ � γ′ and agrT(ζ(ZL),X[WL]) ⊆ agrT(γ′). The first requirement ensures that
the RHS has only one attribute A, and A /∈ ZL to avoid the generation of redun-
dant and implied CDDs. Conditions 2 and 3 require that γ forms a valid CDD
with η and A[wa] ∈ γ has the smallest valid distance interval respectively.

The lattice L is traversed level by level to find a set of valid RHS cDFs for
each candidate LHS cDF, η(N) ∈ L. For each level i (1 ≤ i ≤ m) in L, for
every node N ∈ Li, if there exists no DD amongst the ε-DF, N.W , of N , then
we find the set R of valid RHS cDFs for η(N). Let Y be the set of candidate
attributes to form a valid RHS cDF with η(N) (i.e. Y = {R′ \ N.ZL}). For each

3 wa = [x, y] where x, y are the min. and max. distance of values in ΨA respectively.

12 S. Kwashie et al.

A ∈ Y , the projection of values of A with respect to the set of agree tuples N.T
of the node N is generated. The minimum and maximum distance values in the
projection forms the distance interval wa of A. If wa does not cover the entire
distance space of A, then pair (ζ(A), A[wa) is added to the set R. Next, valid
CDDs are formed with the LHS cDF (line 6 of Algorithm 1).

Pruning and Generating a Minimal Cover. To ensure that the set of CDDs
discovered for a given CS is (ε)-minimal and devoid of all implications, we adopt
and extend the DD-Tree structure proposed in [11] for pruning implied CDDs.

A DD-Tree, tr(A[wa]), stores all DDs with the same RHS DF A[wa]. Thus,
the root of each DD-Tree is the common RHS A[wa]. Other nodes in the tree are
single-attribute DF of the LHS DFs of the DDs in the tree. Hence, a tree-path
p(φ) = A[wa]/B1[w1]/ · · · /B[wm] represents a DD φ : B[w1] · · · B[wm] → A[wa].
Child nodes in the tree are sorted by their attribute and the distance intervals.
The implication of DDs is detected via the notion of path-prefix [11]. A path
p(φ1) = A[wa]/B1[w1]/B2[w2]/ · · · /Am[wm] is a prefix of another path p(φ2) =
A[wa]/B1[w̄1]/B2[w̄2]/ · · · /Bk[w̄k] if m < k and for each i ∈ [1 · · · m], we have
Bi[wi] � Bi[w̄i]. Given two DDs φ1, φ2: φ1 implies φ2 if p(φ1) is a prefix of p(φ2).

To eliminate implications in the set Φ of embedded DDs of a given constant
CS, ζ(U), we build a hash-table HΦ = 〈A[wa], tr(A[wa])〉 of all DD-Trees for
each RHS cDF γ = (ζ(A), A[wa]). The implication of a CDD σ can be checked
with HΦ as follows. If there exists tr(A[wa]) for σ with embedded DD φ, and
∃ p(φi) ∈ tr(A[wa]) such that p(φi) is a prefix of p(φ), then φ is implied, hence
not added to tr(A[wa]) (i.e. σ is eliminated). Otherwise, φ is added in tr(A[wa]).

Fig 1. An example of a d-tree

Up to this point, for every valid
constant CS ζ(U) ∈ C, we find a set
of valid CDDs. These sets of CDDs
are non-redundant w.r.t their CSs.
However, there may exist implications
among the CDDs mined for differ-
ent CSs. Therefore, further pruning is
required on the set of all CDDs discov-
ered to produce a minimal cover Σε

c

(line 7 of Algorithm 1). To eliminate
these implied CDDs, we utilize the dominance relation among CSs.

We introduce here, the concept of d-tree (dominance tree) for CSs: to cap-
ture the dominance relation among valid LHS CSs. An example of a d-tree is
shown in Fig. 1: the directions of dominance among the CSs are shown by the
arrows. Let ni be a node in the d-tree D, Ni be the set Ni = {nj ∈ D | nj ≥d ni}.
Let Φi be the set of embedded DDs of CDDs of ni. Pruning of implied CDDs is
done top-down the d-tree as follows. Given ni with Φi, for every φu ∈ Φi and all
nj ∈ Ni, if ∃ φv ∈ Φj s.t. φu = φv and both φu, φv have the same set of agreeing
tuple pairs, where Φj is the set of embedded DDs of nj: then prune φv (rsptly.
the corresponding CDD of φv). For example, let Φ be the set of embedded DDs
of CDDs that hold over the root CS in the d-tree in Fig. 1. Then for any φ ∈ Φ,

Conditional Differential Dependencies (CDDs) 13

if there exist an embedded DD φi at any other node such that the above con-
ditions are satisfied, then we eliminate the CDDs containing φi at those nodes
except at the root, since the root node is dominated by all other nodes.

5 Ranking CDDs

Although a minimal cover of CDDs is concise and non-redundant, its size can
still be large. In this section, we propose an interestingness measure for CDDs
to score minimal (or ε-minimal) CDDs in r. This enables us to prune a minimal
cover of CDDs further to a smaller set of interesting CDDs.

Our definition of interestingness is based on the semantics of CDDs. A CDD
is a simply a DD that holds on a pattern in data. In other words, a CDD is a
DD that hold over a subset of (tuples that agree on a CS in) a relation instance.
Hence, two intuitive, yet significant factors that determine the importance of
a minimal CDD is: the coverage of the pattern of data (CSs); and the rele-
vance of its embedded DD. We define the interestingness intr(σ) of a CDD
σ : (ζ(Z),X[WX]) → (ζ(A), A[wa]) as a linear combination of these two factors
as follows:

intr(σ) = α · cov(ζ(Z) ∪ ζ(A)) + (1 − α) · rel(φ), (1)

where (a) cov(ζ(Z)) = |supp(ζ(Z)∪ζ(A),r)|
|r| = |supp(ζ(Z),r)|

|r| ;

(b) rel(φ) = 1
3 (s(φ) +

∑m
i=1 λ(Bi[wi])

m + μ(A[wa])) – for the embedded DD φ =
X[WX] → A[wa] s.t. X[WX] = B1[w1] · · · Bm[wm]:

– s(φ) = |T (X[WX])∩T (A[wa])|
|T (supp(ζ(Z),r)| = |T (X[WX])|

|T (supp(ζ(Z),r)| is the probability of occurrence
of the embedded DD in supp(ζ(Z), r);

– λ(Bi[wi]) = |wd
i |

|wi|+|wd
i | reflects of the closeness of the LHS DF Bi[wi] of φ;

– μ(A[wa])4 = |wd
a|−|wa|
|wd

a| reflects the similarity amongst the values of the RHS
attribute A in φ. wd

i , wd
a are the maximum distance intervals of Bi and A

rsptly.; |T (supp(ζ(Z), r)| is the total number of tuple pairs in supp(ζ(Z), r).

cov(ζ(Z) ∪ ζ(A)) gives a score (in the range [0,1]) that indicates the statis-
tical significance of patterns of data. Its definition is straight-forward and self
explanatory. rel(φ), other the other hand, scores (between 0 and 1) the ‘informa-
tiveness’ of an embedded DD φ in a CDD. The definition of rel(φ) is a variant
of the interestingness measure of DDs presented in [8]. It is influenced by the
support of φ; the closeness conveyed by the LHS DF of φ; and the degree of
similarity revealed by the RHS DF of φ. And, α ∈ [0, 1] is a scaling factor.

Rank-Aware Pruning of CDDs. The minimal cover of CDDs Σc can be
pruned based on the above definition of interestingness. Indeed, given a minimum
interestingness mi ∈ [0, 1] value, we reduce Σc as follows. First, in every DD-Tree

4 similar to the dependent quality measure in [14].

14 S. Kwashie et al.

of a valid CS, we lower bound the rel(φ) value of every embedded DD in the
tree to mi−c

1−α where c = α · cov(ζ(Z) ∪ ζ(A)) – a constant value for all embedded
DDs in the tree since they share a common constant CS ζ(U). In this case, any
embedded DD φ in the DD-tree with rel(φ) < mi−c

1−α is removed during stage
3 of finding CDDs in Sect. 4. Furthermore, when pruning CDDs of implications
across different CSs using the dominance relation, we eliminate all those that
have a lower interestingness value than mi.

6 Empirical Evaluation

In this section, we present our experimental set-up, datasets and a discussion of
results obtained from mining constant CDDs.

Experimental Set-Up. The proposed algorithm is implemented in Java. The
experiments were conducted on an Intel Core i5-2520M CPU @ 2.5 GHz proces-
sor computer with 4.0 GB of memory running Windows 8 OS.

Table 2. Description of data sets

Data sets Size No. of Attributes
Chess (KRK) 28,056 7 (6 N; 1 C)

Mammographic Mass* 830 6 (1 N; 5 C)
Iris 150 5 (4 N; 1 C)

N = numeric, C = categorical
* – this version has no missing value.

We used both real-world and syn-
thetic data sets to evaluate the pro-
posed discovery algorithm. Table 2
briefly describes the real-world data
set from the UCI Machine Learning
data repository [3]. We generate a set
of synthetic data sets with varying:
arity (|R|); size (|r|); and correlation
(CF) amongst attributes and tuples to further evaluate the scalability of our
algorithm. For any dataset, various distance functions can be defined for each
attribute based on domain-knowledge. For our experiments, we use: absolute
value of difference as distance metric for numeric attributes and equality func-
tion for categoric attributes.

Results and Analysis. The results of the experiments are discussed below.

1. Time performance: We evaluate the time performance of our algorithm
(MineCDD) on the generated synthetic datasets for varying |r|, |R| and CF.
In these experiments, we set: the minimum support for CSs to k = 0.1; ε = 0
for DFs of the LHS cDFs; and the minimum interestingness value for all CDDs
to mi > 0.

(a). Scalability w.r.t. |r|:– Part (a) of Fig. 2 show how MineCDD performs
for vary |r| sizes for different CF values. In this experiment, |R| is fixed to 7
attributes. The graph shows that the runtime (in sec. on the y-axis) of MineCDD
for increasing |r| sizes (on the x-axis) for different CF values. The plots show
that the runtime of MineCDD is dependent on both |r| and CF. However, the
runtime is, clearly, affected more by higher CF values as compared to larger |r|
sizes. The runtime increases, generally, for increasing |r|. For highly correlated

Conditional Differential Dependencies (CDDs) 15

Fig 2. Runtime

datasets (high CF values), the chances of finding more persistent patterns (CSs)
and valid relationships (embedded DDs) is higher. In other words, the search
space of possible CDDs is larger for datasets with high CF values. Hence, a
much longer discovery time.

(b). Scalability w.r.t. |R|:– Fig. 2 (b) shows the runtime (in sec. on the y-
axis) of MineCDD for increasing |R| sizes (on the x-axis), for different sizes of
r with a constant CF of 0.5. In general, for any instance size, more time is
required to mine CDDs in datasets with higher arity. This is because, relations
with more attributes have more combinatorial possibilities, hence, larger search
spaces. This is confirmed by the characteristics of the three plots in Fig. 2 (b).

(c). Scalability w.r.t. CF:– For a fixed |R| = 7, we investigate how MineCDD
performs for increasing CF values for differently sized instance |r| sizes of data.
The results are presented in Part (c) of Fig. 2. On the y-axis is the runtime (in
sec. – log scale) for varying CF values (on the x-axis). This plot shows that for
all |r| sizes, the runtime of MineCDD increases with increasing CF. Giving a
clearer depiction of the influence of CF (high correlation in data) on runtime as
discussed in (a) above.

2. Effect of the parameters: In this set of experiments, we show how the input
parameters, k, ε,mi, affect the time performance of our algorithm. We demon-
strate this on both the synthetic and real-world data sets.

Fig 3. Effect of parameters on runtime

16 S. Kwashie et al.

(a). Influence of k:– First, we show how increasing k value affects the runtime
of MineCDD. Parts (a) and (b) of Fig. 3 show the effect of k on runtime for real-
world and synthetic data sets respectively. In this experiment, we used all the
instance sizes of the real-world data sets and set |R| of the synthetic datasets
to 7. In general, as expected, efficiency of MineCDD improves for high k vales.

(b). Influence of ε:– Next, we show how ε affects the efficiency of MineCDD.
Figure 3 (c) presents a plot of runtime vs. k for different ε values. For lack of
space, we present only the results on the Mammographic data set. The runtime
of MineCDD increases for high ε values – more DFs are considered for the LHS
cDFs, increasing the search space of CDDs. This is shown in the graph.

Fig 4. Effect of mi on size of Σε
c

3. CDDs mined: Here, we present
the effect of the interesting-
ness measure (α=0.3 is best for
intr(σ)) on pruning the minimal
cover of CDDs. In Fig. 4 is a
plot of the number of discovered
CDDs (y-axis) versus the varying
minimum interestingness values
(x-axis). Our experiments on both
categories of data sets show that
with an mi ≥ 0.3 a significant
amounts of CDDs are pruned.

7 Conclusion and Future Works

This paper propose CDDs, a novel extension of DDs which allows DDs to be
specified on patterns of data instead of the entire instance of a relation. CDDs
present the opportunity to discover latent knowledge and inconsistencies in data.
We show that, although CDDs have more expressivity than CFDs and DDs, their
static analysis have the same complexity. Furthermore, we study the discovery
problem of CDDs, and develop an efficient algorithm for mining constant CDDs
in data. Also, an interestingness measure is designed to reduce the set of dis-
covered CDDs. In our next studies, we shall extend the discover algorithm to
mine variable CDDs. Furthermore, we shall investigate the use of CDDs in the
detection of inconsistencies and repair of data along the lines of work in [7].

Acknowledgement. This work is partially supported by NSFC 61472166.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: 20th International Conference on VLDB, pp. 487–499 (1994)

2. Armstrong, W.W.: Dependency structures of data base relationships. In: World
Computer Congress - IFIP, pp. 580–583 (1974)

Conditional Differential Dependencies (CDDs) 17

3. Bache, K., Lichman, M.: UCI Machine Learning repository (2013). http://archive.
ics.uci.edu/ml

4. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional func-
tional dependencies for data cleaning. In: 23rd ICDE, pp. 746–755 (2007)

5. Bravo, L., Fan, W., Ma, S.: Extending dependencies with conditions. In: 33rd
International Conference on VLDB, pp. 243–254 (2007)

6. Chen, W., Fan, W., Ma, S.: Analyses and validation of conditional dependencies
with built-in predicates. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA
2009. LNCS, vol. 5690, pp. 576–591. Springer, Heidelberg (2009)

7. Fan, W., Geerts, F.: Foundations of Data Quality Management. Synth. Lect. Data
Manage. 4(5), 1–127 (2012). doi:10.2200/S00439ED1V01Y201207DTM030

8. Kwashie, S., Liu, J., Li, J., Ye, F.: Mining differential dependencies: a subspace
clustering approach. In: Wang, H., Sharaf, M.A. (eds.) ADC 2014. LNCS, vol. 8506,
pp. 50–61. Springer, Heidelberg (2014)

9. Li, J., Liu, G., Wong, L.: Mining statistically important equivalence classes and
delta-discriminative emerging patterns. In: 13th ACM SIGKDD, pp. 430–439
(2007)

10. Liu, G., Li, J., Sim, K., Wong, L.: Distance based subspace clustering with flexible
dimension partitioning. In: 23rd ICDE, pp. 1250–1254 (2007)

11. Liu, J., Kwashie, S., Li, J., Ye, F., Vincent, M.W.: Discovery of approximate dif-
ferential dependencies. CoRR, abs/1309.3733 (2013)

12. Simpson, E.H.: The interpretation of interaction in contingency tables. J. Roy.
Stat. Soc. Ser. B (Stat. Meth.) 13(2), 238–241 (1951)

13. Song, S., Chen, L.: Differential dependencies: reasoning and discovery. ACM Trans.
Database Syst. 36(3), 16:1–16:41 (2011)

14. Song, S., Chen, L., Cheng, H.: Parameter-free determination of distance thresholds
for metric distance constraints. In: 28th ICDE, pp. 846–857 (2012)

15. Uno, T., Kiyomi, M., Arimura, H.: LCM ver.3: collaboration of array, bitmap and
prefix tree for frequent itemset mining. In: 1st International Workshop on Open
Source Data Mining, pp. 77–86 (2005)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.2200/S00439ED1V01Y201207DTM030

Improving the Pruning Ability of Dynamic
Metric Access Methods with Local Additional

Pivots and Anticipation of Information

Paulo H. Oliveira1(B), Caetano Traina Jr.2, and Daniel S. Kaster1

1 Department of Computer Science, University of Londrina (UEL), Londrina, Brazil
oliveiraph17@gmail.com, dskaster@uel.br

2 Institute of Mathematics and Computer Science, University of São Paulo (USP),
São Paulo, Brazil

caetano@icmc.usp.br

Abstract. Metric Access Methods (MAMs) have been proved to allow
performing similarity queries over complex data more efficiently than
other access methods. They can be considered dynamic or static depend-
ing on the pivot type used in their construction. Global pivots tend to
compromise the dynamicity of MAMs, as eventual pivot-related updates
must be propagated through the entire structure, while local pivots allow
this maintenance to occur locally. Several applications handle online com-
plex data and, consequently, demand efficient dynamic indexes to be suc-
cessful. In this context, this work presents two techniques for improving
the pruning ability of dynamic MAMs: (i) using cutting local additional
pivots to reduce distance calculations and (ii) anticipating information
from child nodes to reduce unnecessary disk accesses. The experiments
reveal significant improvements in a dynamic MAM, reducing execution
time in more than 50 % for similarity queries posed on datasets ranging
from moderate to high dimensionality and cardinality.

Keywords: Similarity queries · Metric access methods · Cutting local
additional pivots · Anticipation of child information

1 Introduction

In recent years, it has been noticed a fast-growing volume of complex data. Mul-
timedia data, georeferenced data and time series are examples of such data. Some
reasons for the growth are: lower prices of digital cameras and other video cap-
ture devices, high-definition cameras embedded in mobile phones, user-friendly
tools for processing and editing images and videos, acquisition of data from
medical equipment, data capture through sensor networks and high-speed inter-
net connections. The success of multimedia sharing services such as YouTube,
Flickr and social media is another evidence of this growth.

This research has been supported by scholarship grants from the Brazilian Coordi-
nation for the Improvement of Higher Education Personnel (CAPES).

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 18–31, 2015.
DOI: 10.1007/978-3-319-23135-8 2

Improving the Pruning Ability of Dynamic Metric Access Methods 19

In this work, complex data are considered as information that are not repre-
sented by traditional types, such as numbers, characters, dates and short texts.
A key observation is that the order relation does not apply to most complex
domains [8]. The order relation is a property that allows identifying which ele-
ment precedes the other, according to some criterion, in each pair of elements of
the domain. Since traditional index structures are based on this property, they
are not suitable for complex data. Nevertheless, there are structures well-suited
for complex domains, such as the Metric Access Methods (MAMs).

There are several MAMs related in the literature, categorized in different ways
dependingonwhich factors are taken intoaccount to structure thedata.The factors
pivot type and structure dynamicity are directly related to each other. Pivots are
elements that act as representatives of certain regions of the search space and are
used to prune irrelevant elements during the query execution. It is said that a pivot
is global when all elements of the dataset are referenced to it, whereas a pivot is
local when only a portion of the dataset is referenced to it. Because global pivots
are referenced by the whole dataset, they have a high impact in the pruning process
of irrelevant elements, once that a single global pivot can be used to discard a large
amount of irrelevant elements. However, MAMs based on global pivots may have
their dynamicity compromisedby the fact that eventual pivot-relatedupdates need
to be propagated through the entire structure. Local pivots, on the other hand,
allow the maintenance to occur locally at the price of a lower pruning ability. In
this context, the challenge addressed in this work is to improve the pruning ability
of dynamic MAMs without harming their dynamicity.

This paper presents two new techniques that significantly improve the perfor-
mance in similarity queries of dynamic MAMs based on local pivots. The first tech-
nique is to employ local additional pivots to reduce the uncertainty area in the
search space, i.e. the area that may contain elements that are not part of the answer
but cannot be pruned without being analyzed. The second technique is to antic-
ipate information from child nodes to their parents to enable pruning irrelevant
elements before visiting the disk pages that actually store them. Differently from
other approaches regarding multiple pivots to define a space region, our proposal
allows reducing both the number of distance calculations and the number of disk
accesses as well as it does not impose any constraint in the index dynamicity.

The new techniques presented in the paper have been applied to the dynamic
MAM Slim-tree [15] and evaluated through an extensive set of experiments over
real datasets, varying the number of elements, the dimensionality and employing
distance functions with different computational costs. In the paper, we present
results that confirm their efficiency, as they enabled gains of more than 50 %
in execution time, number of distance calculations and number of disk accesses
when compared to the original structure, regarding every evaluated dataset.

The paper is organized as follows: Sect. 2 covers essential concepts regarding
similarity queries over complex data and MAMs, as well as it presents the related
work; Sects. 3 and 4 describe the two new proposed techniques; Sect. 5 presents
how the techniques were applied to Slim-tree; Sect. 6 describes the experiments
and discusses the results; and Sect. 7 presents the conclusions and future work.

20 P.H. Oliveira et al.

2 Background and Related Work

2.1 Similarity Queries

In order to allow performing queries over complex domains, the elements of a
given complex dataset usually have features extracted from their content. The
extracted features are used in place of the original data to execute the queries.
The retrieval of complex data based on this process is known as content-based
retrieval and the set of extracted features of an element is called its feature
vector or signature. Feature vectors can be, using images for example, shape and
texture attributes, color histograms and results from transformations applied to
data [8]. Usually, complex data are compared by dissimilarity relations between
pairs of feature vectors. This is performed by employing a distance function that
calculates how dissimilar are the two feature vectors from each other. Those are
known as similarity queries, as they retrieve the elements from the dataset that
satisfy a given similarity-based criterion.

There are several types of similarity queries [18], which range from similarity
selections and joins to aggregate similarity queries. The two most common types
are the Range and the k-Nearest Neighbors queries. Given a maximum threshold
ξ, the Range query (Rq) retrieves every tuple ti from relation R that has a value
si for attribute Sj , which represents the feature vector of the element, satisfying
the condition δ(si, sq) ≤ ξ, where sq is the value of the query element for attribute
Sj and δ is the distance function that returns the dissimilarity between si and
sq. Considering R as a relation of images, an example of Range query is: “Select
the images which are similar to the image Q by up to 5 units”. Given an integer
value k ≥ 1, the k-Nearest Neighbor query (k-NNq) retrieves k tuples ti from
relation R with values si for attribute Sj that have the lowest distance from sq
according to δ. An example of k-Nearest Neighbors query is: “Select the 4 most
similar images to the image Q”.

2.2 Metric Access Methods

There are two main categories of access methods for indexing complex data. The
first category is a class of access methods that support data domains represented
in dimensional spaces, especially spatial data, known as Spatial Access Methods
(SAMs) [9]. However, many complex data types are high-dimensional and SAMs
degrade quickly as the number of dimensions grows. Furthermore, some complex
data types are dimensionless, that is, they cannot be represented by coordinates
in orthogonal axes. The second category is given by the Metric Access Methods
(MAMs). MAMs rely on the premise that data are immersed in a metric space.
A metric space is defined by a pair 〈S, δ〉, where S is a complex data domain
(i.e. feature vectors) and δ is a distance function δ : S×S �→ R

+, known as metric.
A metric has properties called metric postulates [18] ∀x, y, z ∈ S: (i) δ(x, y) ≥ 0
(non-negativity), (ii) δ(x, y) = δ(y, x) (symmetry), (iii) x = y ⇐⇒ δ(x, y) = 0
(identity) and (iv) δ(x, z) ≤ δ(x, y) + δ(y, z) (triangular inequality). An impor-
tant characteristic of metric spaces is that, in addition to comprehending vec-
tor spaces, they include dimensionless spaces. Therefore, almost any data type

Improving the Pruning Ability of Dynamic Metric Access Methods 21

can be immersed into a metric space, including geographic coordinates, images,
sounds, words and DNA sequences.

The general idea of most MAMs is to choose some elements as representatives
of certain subsets of data. Such elements are also known as pivots. Whenever an
element si ∈ S is inserted, the distance from its representative is calculated and
stored in the structure. Afterwards, these distance values are used in similarity
queries for pruning elements by using the triangular inequality property. More
formally, an element can be pruned, i.e. discarded without calculating its distance
from the query element, when one of the following conditions [3] is true, where
srep is the representative of the subset, sq is the query element, si is any of the
remaining elements in the subset and ri is the covering radius of si:

δ(srep, si) + ri < δ(srep, sq) − ξ (1)

δ(srep, si) − ri > δ(srep, sq) + ξ (2)

2.3 Related Work

The problem addressed in this work is about improving the pruning ability of
dynamic MAMs without compromising their dynamicity. MAMs which rely on
global pivots, such as the OMNI-family [14] and the permutation-based approx-
imate index PP-Index [7], allow updates in the structure and thus are classified
as dynamic. However, if it is necessary to perform a pivot-related update, the
cost can be close to rebuilding the whole structure. Therefore, we consider truly
dynamic the MAMs in which updates are managed locally, being at most prop-
agated through the path between a descendant and its highest ancestor.

In this sense, the pioneer dynamic MAM is M-tree [5], a balanced hierarchic
MAM based on local pivots, with ball partitioning and bottom-up construction.
Due to the success of M-tree, several access methods sharing similar principles
have been proposed with the goal of achieving a better performance, but keep-
ing their structure dynamic. One of them is the Slim-tree [15], an evolution of
M-tree with improvements such as the evaluation and minimization of the over-
lap level between nodes and a new split algorithm. Another example is the DBM-
tree [17], which allows a controlled unbalance to better fit the dataset density
variations. These structures have a single local pivot per node. There are MAMs
that employ multiple pivots per node, such as MM-tree [11] and Onion-tree [4].
However, the primary goal of these structures is to index data in main memory
avoiding overlaps among nodes, being subject to end up highly unbalanced after
updates. Other example is the M∗-tree [12], a variation of M-tree that stores, for
every node, a nearest-neighbors graph containing the nearest neighbor of each
element in the node and the distance between them. This turns every element
of a node into a kind of local pivot, allowing saving distance calculations.

Another strategy employed in some works is to include additional global piv-
ots in a local pivot-based MAM. An example of a method using this strategy is
the DF-tree [16]. Its structure is similar to the Slim-tree, but it uses global pivots
in the pruning process, embodying the idea of global pivots of the OMNI-family.

22 P.H. Oliveira et al.

Other examples are PM-tree (Pivoting M-tree) [13] and PM∗-tree [12]. The
PM-tree is a ball-partitioned structure which restricts the uncertainty region
by the intersection of hyper-rings defined by global pivots. The PM∗-tree adds
multiple local pivots to the PM-tree in the way M∗-tree does. The main advan-
tage of these MAMs is that the number of distance calculations is significantly
reduced due to the improved pruning ability provided by global pivots. However,
pivot-related changes require rebuilding the whole index.

Our proposal differs from the existing ones as we include local additional
pivots in local pivot-based MAMs and anticipate information from child nodes
in such a way that it improves the pruning ability of the structure while main-
taining every update locally contained. The first technique consists of adding
local pivots to each node and having the distances of their elements from each
additional pivot calculated and stored. The target for this technique is to reduce
the uncertainty region and, consequently, the number of distance calculations by
using the triangular inequality property in each node accessed by a query. The
second technique consists of anticipating information from child nodes, such as
distance and radius values, and use them to avoid unnecessary disk accesses.
Although M∗-tree employs local additional pivots in each node too, the bene-
fits obtained are only in terms of distance calculations. Our techniques, on the
other hand, allow reducing both distance calculations and disk accesses. They
are presented in the next sections.

3 The CLAP Technique

This section describes our new technique to improve the pruning ability of
dynamic MAMs, named Cutting Local Additional Pivots (CLAP). It aims at
reducing the uncertainty region of each node accessed in a similarity query.
However, distinctly from other strategies that employ multiple local pivots, in
which the pivots define the covering region of a node, as in the MM-tree and
the Onion-tree, the CLAP technique is used to cut the region defined by a node
representative applying the triangular inequality pruning mechanism using local
additional pivots. In spite of changing the node structure, this technique does
not change its partitioning, i.e. the covering radius of each node is still defined
from srep and therefore it does not compromise the dynamicity of the structure.

As described in Sect. 2.2, pruning by the triangular inequality regarding the
representative, known as the main pivot, consists of discarding every element
which satisfies one of the Eqs. 1 and 2. Figure 1a illustrates this property, where
the child node whose representative is also srep (the black dashed circumference,
centered in srep) is pruned, as it does not touch the uncertainty region (the
orange dashed ring). What the CLAP technique allows is to extend the use of
this property for all local additional pivots. Thus, for every element si which
has not been pruned by the triangular inequality involving the main pivot, each
additional pivot pj , 1 ≤ j ≤ n, where n is the number of additional pivots, is
used to prune the elements that satisfy the following additional conditions:

Improving the Pruning Ability of Dynamic Metric Access Methods 23

Fig. 1. Pruning by triangular inequality with 1 additional pivot. Dashed circumferences
centered in srep, s2, s3 and p1 represent pruned elements

δ(pj , si) + ri < δ(pj , sq) − ξ (3)

δ(pj , si) − ri > δ(pj , sq) + ξ (4)

Similarly to In Eqs. 1 and 2, these conditions involve two distance calcula-
tions. One of them, the value δ(pj , si), was calculated and stored into the node
when the MAM was built. The value δ(pj , sq), even though it must be calculated
for each pivot pj when the node is visited, allows reducing even more the num-
ber of distance calculations. Figure 1b shows the new uncertainty region as the
intersection of two rings: the orange dashed one, centered in the representative
srep, and the blue dashed one, centered in the cutting local additional pivot p1
(this figure considers one cutting local additional pivot). It can be verified that
the uncertainty region is much smaller than that shown in Fig. 1a, pruning the
child nodes which have srep, s2, s3 and p1 as their representatives.

4 Anticipation of Child Information

This section presents a new approach which aims at avoiding unnecessary disk
accesses by modifying the structure of nodes in MAMs in order to get, in advance,
information from child nodes that would only be accessed when these nodes were
read from disk. Taking the Slim-tree for example, when a node is visited during
a query, the first step is to use the triangular inequality pruning mechanism. For
every element si not pruned in an index node, the corresponding node must be
accessed from disk even if none of its elements touches the search region.

24 P.H. Oliveira et al.

Our second proposed technique is ACIR (Anticipation of Child Information
regarding Representatives), which consists of anticipating, for each child node of
the current node, the array of distances from the representative si plus the array
of covering radii (only the distances when the child nodes are leaf nodes, since
their entries do not have radii). Consequently, the triangular inequality pruning
mechanism regarding the representative is anticipated for each child node which
intercepts the search region. With the ACIR technique, the sequence of steps
for each node accessed during a similarity query is: (i) to use the triangular
inequality pruning mechanism by the main pivot and by the additional pivots;
(ii) to calculate the distances between sq and all elements not pruned in the
previous step; (iii) before reading from disk the elements which intercept the
search region defined by sq, execute additional steps involving the information
anticipated from child nodes. In doing so, it is possible to avoid unnecessary disk
accesses by identifying nodes that intercept the search region and, nevertheless,
are irrelevant for the result.

This allows avoiding unnecessary disk accesses in situations like the one
depicted in Fig. 2, where the child node centered in s1 intercepts the search
region defined by sq, but none of its children — s11, s12, s13 and s14, which
are grandchild nodes of the current node (the biggest one, centered in srep) —
intercepts the uncertainty region represented by the dashed ring within the child
node centered in s1. The evaluation of whether the grandchild nodes intercept
or not this uncertainty region can happen in the current level only because their
distances and radii have been anticipated. If they had not, the child node cen-
tered in s1 would have to be read from disk (unnecessarily) for this evaluation
to be done. Still in Fig. 2, the small circumferences centered in s11, s12, s13 and
s14 are the covering radii of the grandchild nodes. Those regions appear in the
figure just to illustrate the anticipated use of the triangular inequality prun-
ing mechanism allowed by the strategy. They are not known when the current
node (centered in srep) is in fact processed, once that the representatives of the
grandchild nodes are not stored in the current node.

5 Application of CLAP and ACIR to Slim-Tree

Slim-tree has two types of node: index nodes and leaf nodes. A leaf node presents
the following structure (the characters 〈 and 〉 delimit an array):

leaf node[〈OIDi, si, δ(si, srep)〉]
where OIDi is the identifier of the element; si is the element itself, stored as a
feature vector; δ(si, srep) is the distance of si from the representative. An index
node presents the following structure:

index node[〈si, ri, δ(si, srep), P tr(Tsi),#Ent(Tsi)〉]
where si is the feature vector of the representative of the subtree Tsi , pointed by
Ptr(Tsi); ri is the covering radius of this subtree, determined by the distance of

Improving the Pruning Ability of Dynamic Metric Access Methods 25

Fig. 2. Avoiding a disk access by anticipation of information. None of the grandchild
nodes (s11, s12, s13, s14 and the representative s1 itself, which are children of the child
node centered in s1) touches the uncertainty region, represented by the dashed ring

si from the farthest element in the node of this subtree; δ(si, srep) is the distance
of si from the representative of the current node; #Ent(Tsi) is the number of
entries in Tsi .

After including the CLAP and ACIR techniques, both index and leaf nodes
present new structures. In the following definitions, bold symbols represent the
information added by CLAP technique and blue symbols represent the changes
promoted by ACIR. A leaf node presents the following new structure:

leaf node[〈Posj〉, 〈OIDi, si, 〈δ(si, pj)〉〉]

where Posj is the position of additional pivot pj (e.g. Posj equals 2 if pj is the
second element stored in the node); δ(si, pj) is the distance of si from pivot pj ;
the remaining information are the same as the original structure. The criterion
for choosing the local additional pivots used in this implementation is the greater
sum of distances from the previous pivots. Nevertheless, other criteria can be
analyzed. In the case of the first additional pivot, it is the element which has the
greater distance from srep; in the case of the second additional pivot, it is the
element which has the greater sum of the distance from srep plus the distance
from p1 and so on. In the ACIR technique strategy, once that the distance values
from the representative are anticipated one level above in the MAM, these are
removed from the structure of the leaf node.

The index nodes, on the other hand, are divided into two types: index nodes
which are parents of leaf nodes, called l-index node, and index nodes which are
parents of index nodes, called i-index node. Their structures are the following:

26 P.H. Oliveira et al.

l-index node
[〈Posj〉, 〈si, ri, δ(si, srep), 〈δ(sil, si)〉, P tr(Tsi),#Ent(Tsi), 〈δ(si, pj)〉〉]

i-index node
[〈Posj〉, 〈si, ri, δ(si, srep), 〈δ(sil, si)〉, 〈ril〉, P tr(Tsi),#Ent(Tsi), 〈δ(si, pj)〉〉]

The difference between those nodes is that, in an l-index node, only the array
of distances 〈δ(sil, si)〉 are added, where sil is the l-th entry of the i-th child node
and si is its representative. In an i-index node, the covering radius ril of each sil
is also added.

6 Experimental Results

We performed extensive evaluations on both proposed techniques. The first tech-
nique has been implemented for only one local additional pivot in order to ana-
lyze its impact. We carried out experiments over datasets with different dimen-
sionalities and cardinalities and employed metrics with different computational
costs, so that we could evaluate our techniques in varied scenarios. In this section,
we present the results achieved through combinations of three datasets and two
metrics. For running the experiments, we used a machine with an Intel Core i5
2400@3.1 GHz processor, 4 GB of RAM@1333 MHz and HDD SATA III 6 Gb/s.

The datasets ALOI-T and ALOI-H belong to the Amsterdam Library of Object
Images1 (ALOI) [10]. These datasets are based on feature vectors extracted from
108,000 images of objects photographed several times, varying the position, the
illumination and the combination of colors. ALOI-T consists of texture feature
vectors with 140 dimensions, whereas ALOI-H consists of color histograms with
256 dimensions.

The test-collection CoPhIR2 [2] contains 106 million images processed from
Flickr. For all the images, the standard MPEG-73 features have been extracted:
Scalable Color, Color Structure, Color Layout, Edge Histogram, Homogeneous
Texture. In the experiments, the full feature vector of 282 dimensions was used in
datasets of cardinality ranging from 10k to 10M elements, generating the datasets
CoPhIR-10k-WL2, CoPhIR-100k-WL2, CoPhIR-1M-WL2, CoPhIR-10M-WL2,
in order to evaluate the scalability of the techniques using a weighted euclidean
distance. We also built the dataset CoPhIR-1M-M with 1M elements consisting
of the Color Structure feature, with 64 dimensions, employing the Mahalanobis
metric, also known as histogram quadratic distance [6]. This metric is expensive
because it considers the correlation between bins of color histograms, which leads
to more desirable results.

Since ALOI-H and CoPhIR-1M-M consist of color histograms, they were the
chosen datasets for employing the Mahalanobis metric. The L2 metric, which is
the euclidean distance, was employed on the rest of the datasets. On the CoPhIR
datasets, the weights suggested in [1] were used for the Weighted L2 metric.
1 Available at: http://aloi.science.uva.nl.
2 Available at: http://cophir.isti.cnr.it.
3 http://mpeg.chiariglione.org/standards/mpeg-7.

http://aloi.science.uva.nl
http://cophir.isti.cnr.it
http://mpeg.chiariglione.org/standards/mpeg-7

Improving the Pruning Ability of Dynamic Metric Access Methods 27

6.1 Performance in Similarity Queries

This subsection presents the results comparing the performance of Slim-tree +
CLAP and ACIR with the original Slim-tree to execute similarity queries. In
these experiments, k-NN queries and Range queries were performed varying the
k value (1, 10, 25, 50, 100, 150, 200, 250 and 300) and using the corresponding
radius values to retrieve k elements in Range queries. For each k, the results were
obtained by performing queries multiple times (500 when using the L2 metric
and 100 when using the Mahalanobis metric), each time with a random query
element, and taking the average value.

Figure 3 shows the obtained results. The graphs show that our techniques lead
to notable gains when compared to the original Slim-tree. For low selectivities
(e.g. k = 1 for k-NN queries and Range queries returning 1 element) the improve-
ment was very high, being up to 62.51 % regarding execution time, 62.58 % in
distance calculations and 96.93 % in disk accesses. When the selectivity was 50
or more, the gains were less expressive. Nevertheless, our techniques consistently
outperformed the original structure, regarding every dataset, in execution time,
number of distance calculations and number of disk accesses.

The first row of graphs in Fig. 3 corresponds to results over ALOI-T. In k-NN
queries, the gain ranged from 21.59 % to 46.61 % in execution time, from 33.12 %
to 62.58 % in distance calculations and from 9.57 % to 51.83 % in disk accesses.
In Range queries, the gain ranged from 37.02 % to 62.51 %, from 40.48 % to
58.24 % and from 10.55 % to 82 %, respectively for the same variables.

The second row of graphs in Fig. 3 refers to ALOI-H, which employs the costly
Mahalanobis metric. Our proposal presented a noticeable speedup, although the
gains, especially in disk accesses, were lower if compared to the previous dataset. In
k-NN queries, the gain ranged from 18 % to 53.2 % in execution time, from 17.96 %
to 53.2 % in distance calculations and from 5.8 % to 56.5 % in disk accesses. In
Range queries, the gain ranged from 19.77 % to 32.14 %, from 19.68 % to 32.12 %
and from 6.85 % to 89.43 %, respectively for the same variables.

Regarding the CoPhIR datasets, the third row in Fig. 3 shows the results of
experiments carried out over 1M elements with 282 dimensions by varying k
(datasetCoPhIR-1M-WL2).This is the dataset forwhich our techniques presented
the lowest gains for high values of k. Nonetheless, its use allowed improving the
performance of every evaluated aspect. Regarding execution time, distance calcu-
lations and disk accesses, respectively, the gain in k-NN queries ranged from 5.12 %
to 53.05 %, from 7.29 % to 55.09 % and from 3.73 % to 66.82 %, while the gain in
Range queries ranged from 6.92 % to 60.36 %, from 5.17 % to 13.05 % and from
3.80 % to 96.93 %. In the set of experiments using CoPhIR-1M-M, the proposed
techniques achieved even better results, as the main improvement of the techniques
regards distance calculations and the cost of theMahalanobismetric ismuchhigher
than the cost of the L2 metric. In this dataset, the gain in k-NN queries ranged from
11.25 % to 48.51 % in execution time, from 11.53 % to 49.09 % in distance calcula-
tions and from 6.59 % to 56.65 % in disk accesses. Finally, the gain in Range queries
ranged from 12.72 % to 20.37 %, from 9.65 % to 20.39 % and from 6.49 % to 87.6 %,
respectively for the same variables.

28 P.H. Oliveira et al.

Fig. 3. Results of the experiments varying k

Improving the Pruning Ability of Dynamic Metric Access Methods 29

6.2 Evaluation of Construction Issues and Scalability of Gain

This section evaluates the impact of the proposed techniques when compared to
the original structure in terms of building time, page size and resulting data file
size, as well as how the gain promoted by the techniques behaves with the size of
the dataset. The information of both structures regarding their construction are
presented in Table 1. Note that the Slim-tree with CLAP and ACIR required two
page sizes, one for index nodes and one for leaf nodes. This is because we wanted to
minimize the overhead of information in index nodes by increasing their page size.
The page size of index nodes will be usually a multiple of the page size of leaf nodes,
to allow using the same buffer pool for both node types. Although the index nodes
in Slim-trees+CLAPandACIRare the double of the size of the original Slim-trees,
taking a longer time to read them from disk, the higher pruning ability of CLAP
and ACIR allowed a better performance in our experiments. Also, note that both
structures have similar file sizes. Slim-tree + CLAP and ACIR presented files from
2.4 % to 6.91 % smaller than Slim-tree did. It can be explained by the fact that,
with the anticipation of information, leaf nodes store less information than before.
Since there are many more leaf nodes than index nodes, storing less information
within leaf nodes leads to a little smaller file sizes.

The building time for Slim-trees with CLAP and ACIR was from 12.32 % to
34.32 % higher, as expected, because it involves additional computations such as
distance calculations regarding the cutting local additional pivots. However, the
worst case was on the smallest dataset, CoPhIR-10k-WL2, which resulted in a
difference of only 1.528s. Thus, considering the performance gain in queries, the
proposed techniques are worth the higher building time.

Table 1. Construction information of both structures for all datasets

Dataset Slim-tree Time (s) Page size (KB) File size

ALOI-T Original 37.296 32 103MB

CLAP and ACIR 43.650 64 (index) — 32 (leaf) 101.2MB

ALOI-H Original 29637.4 64 162MB

CLAP and ACIR 33289.4 128 (index) — 64 (leaf) 155.9MB

CoPhIR-10k-WL2 Original 4.452 64 15MB

CLAP and ACIR 5.98 128 (index) — 64 (leaf) 14.640MB

CoPhIR-100k-WL2 Original 58.967 64 139MB

CLAP and ACIR 71.684 128 (index) — 64 (leaf) 129.4MB

CoPhIR-1M-WL2 Original 740.946 64 1.4GB

CLAP and ACIR 871.27 128 (index) — 64 (leaf) 1.334GB

CoPhIR-10M-WL2 Original 9481.47 64 14GB

CLAP and ACIR 10954.6 128 (index) — 64 (leaf) 13.329GB

CoPhIR-1M-M Original 11763.2 8 449MB

CLAP and ACIR 13385.5 16 (index) — 8 (leaf) 434MB

30 P.H. Oliveira et al.

Fig. 4. Results of the scalability experiments over CoPhIR

Finally, we evaluated how the gain promoted by CLAP and ACIR techniques
behaves according to the dataset size. In this experiment, we fixed k to 10 and
varied the dataset size from 10k to 10M elements with 282 dimensions, using the
Weighted L2 metric and random query elements. Figure 4 presents the obtained
results. It can be seen that the improvement raises with the dataset size regard-
ing distance calculations and execution time. The gain in disk accesses drops
until 1M elements and afterwards presents a sensible increase, being always pos-
itive. These results show that the proposed techniques scale well with increasing
dataset size.

7 Conclusions

We have proposed new techniques based on local additional pivots and anticipa-
tion of information for improving the pruning ability of dynamic MAMs: CLAP
and ACIR. Our techniques were extensively tested and achieved better results in
all evaluated scenarios, for both k-NN and Range queries. We also showed that
the gain promoted by the techniques scales well with the dataset size. Moreover,
the CLAP and ACIR techniques do not affect the dynamicity of the underly-
ing MAM and, just like they were implemented over Slim-tree, other dynamic
hierarchic MAMs could be improved by using them as well.

Both contributions of this work opens possibilities for future work. Regarding
the CLAP technique, the use of more than one additional pivot per node could
be explored, as well as strategies for selecting cutting local additional pivots.
In ACIR, the information considered in this work to be anticipated from child
nodes are the distances of each element from their representative and the radius
values. However, other information could be anticipated due to the CLAP tech-
nique, such as the feature vectors of each additional pivot and the distances of
each element from the additional pivots. Our insight is that, by having more
information anticipated, the improvements can be even better. We are working
on these extensions to present them in a next work.

Improving the Pruning Ability of Dynamic Metric Access Methods 31

References

1. Batko, M., Kohoutkova, P., Novak, D.: CoPhIR image collection under the micro-
scope. In: 2nd International Workshop on Similarity Search and Applications, pp.
47–54. IEEE Computer Society, Washington, DC (2009)

2. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti,
F.: CoPhIR: A Test Collection for Content-Based Image Retrieval. Computing
Research Repository abs/0905.4627v2 (2009)

3. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching. Com-
mun. ACM 16(4), 230–236 (1973)

4. Carélo, C.C.M., Pola, I.R.V., Ciferri, R.R., Traina, A.J.M., Traina Jr., C., Ciferri,
C.D.A.: Slicing the metric space to provide quick indexing of complex data in the
main memory. Inf. Syst. 36(1), 79–98 (2011)

5. Ciaccia, P., Patella, M., Zezula, P.: M-Tree: An efficient access method for similarity
search in metric spaces. In: 23rd International Conference on Very Large Data
Bases, pp. 426–435. Morgan Kaufmann, San Francisco (1997)

6. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2009)
7. Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-

larity search. Inf. Process. Manage. 48(5), 889–902 (2012)
8. Faloutsos, C.: Searching Multimedia Databases by Content. Advances in Database

Systems, vol. 3. Springer, New York (1996)
9. Gaede, V., Gunther, O.: Multidimensional access methods. ACM Comput. Surv.

30(2), 170–231 (1998)
10. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The amsterdam library

of object images. Int. J. Comput. Vis. 61(1), 103–112 (2005)
11. Pola, I.R.V., Traina Jr., C., Traina, A.J.M.: The MM-tree: a memory-based metric

tree without overlap between nodes. In: Ioannidis, Y., Novikov, B., Rachev, B.
(eds.) ADBIS 2007. LNCS, vol. 4690, pp. 157–171. Springer, Heidelberg (2007)

12. Skopal, T., Hoksza, D.: Improving the performance of M-Tree family by nearest-
neighbor graphs. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007.
LNCS, vol. 4690, pp. 172–188. Springer, Heidelberg (2007)

13. Skopal, T., Pokorný, J., Snášel, V.: Nearest neighbours search using the PM-tree.
In: Zhou, L., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp.
803–815. Springer, Heidelberg (2005)

14. Traina Jr., C., Filho, R.F.S., Traina, A.J.M., Vieira, M.R., Faloutsos, C.: The
omni-family of all-purpose access methods: a simple and effective way to make
similarity search more efficient. VLDB J. 16(4), 483–505 (2007)

15. Traina Jr., C., Traina, A.J.M., Faloutsos, C., Seeger, B.: Fast indexing and visual-
ization of metric data sets using slim-trees. IEEE Trans. Knowl. Data Eng. 14(2),
244–260 (2002)

16. Traina Jr., C., Traina, A.J.M., Filho, R.F.S., Faloutsos, C.: How to improve the
pruning ability of dynamic metric access methods. In: 11th International Confer-
ence on Information and Knowledge Management, pp. 219–226. ACM, New York
(2002)

17. Vieira, M.R., Traina Jr., C., Chino, F.J.T., Traina, A.J.M.: DBM-Tree: trading
height-balancing for performance in metric access methods. J. Braz. Comput. Soc.
11(3), 37–51 (2005)

18. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer, New York (2006)

The Structure of Preference Orders

Markus Endres (B)

Department of Computer Science, University of Augsburg,
86135 Augsburg, Germany

endres@informatik.uni-augsburg.de
http://www.informatik.uni-augsburg.de/dbis

Abstract. Preferences are an important natural concept in real life and
are well-known in the database and artificial intelligence community.
Modeling preferences as strict partial orders closely matches people’s
intuition. There are many algorithms for the evaluation of these strict
partial orders. In particular some algorithms rely on the total order or the
lattice structure constructed by a preference query. This paper provides
an overview of the structure of preference orders. We present several
measures of the different “better-than graphs” and give a deep insight
into the structure of preferences. In fact, a careful analysis of the under-
lying “better-than graph” enables one to develop efficient algorithms for
preference computation.

Keywords: Preference · Better-than graph · Lattice

1 Introduction

Preferences have always been an important natural concept in real life. Prefer-
ences in computer science form popular research topics not only in databases,
but also in fields as AI, constraint logic programming, or decision making [1].

A preference is often modeled as strict partial order and therefore transitiv-
ity holds [2–4]. Figure 1 expresses a simple user preference on the domain of colors
dom(color), where {red, blue} is preferred over all other colors, except {purple},
which is the least preferred value. A Better-Than graph (BTG) is a visualization of
the domination of domain elements for a preference, cp. Figure 1. The nodes in the
BTG represent equivalence classes. Each equivalence class contains objects which
are mapped to the same level by a scoring function. All values in the same equiva-
lence class are considered substitutable. The edges in the BTG state dominance.

For the complex Pareto preference, the BTG constitutes a lattice [5], cp.
Figure 3. A Pareto preference (also known as Skyline query [6]) selects those
objects from a dataset R that are not dominated by any others. An object p
having m attributes (dimensions) dominates an object q, if p is better than q
in at least one dimension and not worse than q in all other dimensions, for
a defined comparison function. There are many algorithms which exploit the
lattice structure of Pareto for efficient preference evaluation, cp. [7–13].

In this paper we provide a deep insight into the structure of preference orders.
We will discuss the visualization of simple preferences as well as complex pref-
erences like Pareto or Prioritization. For this we present several measures of the
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 32–45, 2015.
DOI: 10.1007/978-3-319-23135-8 3

The Structure of Preference Orders 33

Fig. 1. Sample preference on colors. Fig. 2. BTG for a WOP.

different better-than graphs, e.g., height, width, number of nodes, or number of
edges. In addition we show how to integrate general strict partial orders into
lattices, even if the values in the same equivalence class are not considered as
substitutable. Understanding the measures of a BTG for a preference is essen-
tial in understanding the BTG itself. These measures can then be used to design
new algorithms for preference computation or just to apply existing lattice based
algorithms like [7–12].

The rest of this paper is organized as follows: Sect. 2 contains the formal back-
ground. Section 3 presents the visualization of preference orders, Sect. 4 provides
a method for the integration of preferences with trivial SV-semantics. Section 5
contains our concluding remarks.

2 Background

Following [2,3] a database preference P = (A,<P) is a strict partial order on
the domain of the attribute set A. The term x <P y is interpreted as “I like y
more than x”. As strict partial orders are transitive, better-than relations in this
preference model are, too. Given <P , the indifference relation ∼P is defined as:
x ∼P y ⇐⇒ ¬(x <P y) ∧ ¬(y <P x).

An important subclass of strict partial orders are weak order preferences
(WOP). Following [14], a weak order preference is a strict partial order, in which
indifference is transitive. For each WOP P = (A,<P) we can define an utility
function levelP that can be used to determine dominance between two values.

levelP : dom(A) → R
+
0 x <P y ⇐⇒ levelP (x) > levelP (y) (1)

Note that for WOPs the domain values x and y with the same level are
either equal or indifferent. Two values with the same level belong to the same
equivalence class.

Definition 1 (max(P)). max(P) ∈ N0 is the maximum level for a preference P .

To specify a database preference, a variety of intuitive preference constructors
have been defined, cp. [15].

34 M. Endres

2.1 Base Preference Constructors

Preferences on single attributes like discrete (categorical) or continuous (numer-
ical) domains are called base preferences. Usually they can be defined as WOPs.
Most of the base preferences can be specified by a score function f : dom(A) → R

+
0 ,

such that

levelP (v) :=

{
f(v) if d = 0⌈
f(v)
d

⌉
if d > 0

(2)

In the case of d = 0 the function f(v) models the distance to the best
value. A d-parameter d > 0 represents a discretization, which is used to group
ranges of scores together. The d-parameter maps different function values to a
single integer number. Choosing d > 0 effects that attribute values with identical
levelP (v) value become indifferent and stay in the same equivalence class.

Note that the definition of the function f depends on the type of preference.
The BETWEENd(A, [low, up]) preference for example expresses the wish for a
value between a lower and an upper bound. The scoring function is f(v) =
max{low − v, 0, v − up}. The AROUNDd(A, v) is a special case of the former,
where low = up =: v. In a categorical domain the LAYEREDm(A, {L1, . . . , Lm})
preference expresses that a user has a set of preferred values given by the disjoint
sets Li, which form a partition of dom(A). Thereby the values in L1 are the most
preferred values. The scoring function equals f(v) = i − 1 ⇐⇒ x ∈ Li.

2.2 Complex Preference Constructors

A Pareto preference models “equal importance of preferences” whereas a
Prioritization expresses that “a preference is more important than the other”.
Such complex preferences are built of constructs like “Better w.r.t. P1, equal w.r.t.
P2”, where P1 and P2 are preferences. A simple approach for the notion of equal-
ity w.r.t. a preference is to use strict equality of the domain values. But often
we have base preferences where values x, x′ are equally good in the sense that
x <P y ⇔ x′ <P y for all y. For example, this is the case if levelP (x) = levelP (x′),
i.e., the tuples have the same level value; they belong to the same equivalence class
(later denoted as node). This behavior is called regular substitutable values seman-
tics (SV semantics) [16], denoted by ∼P . Requiring strict equality leads to the
trivial SV-semantics, denoted by =P . Note that a general SV-relation (∼=P , A) on
an attribute set A is an equivalence relation on dom(A) [17].

Definition 2 (Pareto). Let Pi = (Ai, <Pi
) be m weak order preferences and

x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ dom(A1 × · · · × Am). A Pareto preference
P := P1 ⊗ . . . ⊗ Pm is defined as:

x <P y ⇔ ∃i : xi <Pi
yi ∧

(
∀i, j ∈ {1, . . . ,m}, j �= i : (xj <Pj

yj ∨ xj
∼=Pj

yj)
)

Definition 3 (Prioritization). In a Prioritization P := P1 & . . . & Pm the
preference P1 = (A1, <P1) is more important than P2 = (A2, <P2), and so on.

The Structure of Preference Orders 35

x <P y ⇐⇒ ∃k ∈ {1, . . . ,m} : ∀i ∈ {1, . . . , k − 1} : xi
∼=Pi

yi ∧ xk <Pk
yk

The Semi-Pareto preference has no intuitive interpretation, but is useful for
algebraic query optimization, cp. [10]. Comparing the definition of Semi-Pareto
to Pareto, it is evident that Semi-Pareto is half of a Pareto preference.

Definition 4 (Semi-Pareto). Given preferences P1 = (A1, <P1) and P2 =
(A2, <P2). Then we define Left-Semi-Pareto (LSP) P := P1 <⊗P2 and Right-
Semi-Pareto (RSP) P := P1 ⊗>P2 as

(a) P := P1 <⊗P2 iff x <P y ⇐⇒ x <P1 y ∧ (x <P2 y ∨ x ∼=P2 y)
(b) P := P1 ⊗>P2 iff x <P y ⇐⇒ (x <P1 y ∨ x ∼=P1 y) ∧ x <P2 y

Another form of preference combination is by associating numerical scores
to each individual preference and then applying a combining function to decide
the “better-than” relation.

Definition 5 (Rank). Given some preference Pi with scoring functions fi.
The numerical ranking preference rankF,d (d > 0) with an m-ary combining
function F : Rm → N0 is defined as:

x <P y ⇐⇒
⌈
F (f1(x1), . . . , fm(xm))

d

⌉
>

⌈
F (f1(y1), . . . , fm(ym))

d

⌉

2.3 Better-Than Graph

Visualization of strict partial orders is often done using Hasse diagrams, graphs
(directed and acyclic) in which edges state dominance [5], also known as better-
than graphs.

Definition 6 (Better-Than Graph (BTG)). The better-than graph (BTG)
for a preference P = (A,<P) is the Hasse diagram of <P where

(a) each equivalence class in dom(A) is represented by one node in the BTG.
(b) a directed edge (a1, a2) is drawn from a1 to a2 for each pair of nodes a1, a2

for which holds: a2 <P a1 ∧ (¬∃a3 ∈dom(A) : a2 <P a3 <P a1).
Note that edges following from transitivity of domination are omitted.

(c) the level value levelP of a node is the length of a longest-path leading to it.

For simplicity, we use the terms node and equivalence class synonymosuly,
as an equivalence class for a preference P is represented by exactly one node in
the BTG and vice versa.

3 Analysis of BTGs with Regular SV-Semantics

In this section we consider BTGs for preferences with regular SV-semantics.

36 M. Endres

3.1 BTGs for WOPs

For base preferences being WOPs, each level value represents exactly one equiv-
alence class (node) in the input domain, i.e., in the interval [0,max(P)]. Since
domination can be directly seen from the level value, this leads to BTGs as
shown in Fig. 2. Best values have a level value of zero and therefore belong to
the top node. The worst node of the BTG has the largest possible level, max(P).

The very simple chain structure of BTGs for WOPs makes their analysis very
simple. The proofs can be found in [18].

Theorem 1 (Properties of BTGs for WOPs). Let P = (A,<P) be a weak
order preference, then:

(a) width(BTGP) = 1
(b) height(BTGP) = max(P) + 1
(c) nodes(BTGP) = height(BTGP)

Example 1. For the LAYEREDm preference in Fig. 1 we have 3 level values, 0
for {red, blue}, 2 for {purple}, and 1 for all other colors in dom(color). The
width of the BTG is 1, the height = 2+1 = 3, which is also the number of nodes.

3.2 BTGs for Pareto Preferences

The key point when drawing Pareto preferences P := P1 ⊗ . . .⊗Pm is that they do
not create weak orders, even if they are build up by WOPs Pi, cp. [3]. Therefore,
dominance can not be decided by the value of the level function levelP . The partial
order induced by a Pareto preference with only WOPs as input preferences consti-
tutes a complete distributive lattice [5]. This means if a, b ∈ dom(A), the set {a, b}
has a least upper bound and a greatest lower bound in dom(A).

Example 2. In Fig. 3, we see a BTG for a Pareto preference consisting of two
WOPs with maximum level value of 2 and 4. As each value in the domain of
each Pi can be represented by its level value, a node is a combination of level
values for the Pi.

Theorem 2 (Properties of BTGs for Pareto Preferences). Let P :=
P1 ⊗ . . . ⊗ Pm be a Pareto preference on dom(A) := dom(A1) × · · · × dom(Am)
and Pi, i = 1, . . . ,m be WOPs. Then:

(a) max(P) =
∑m

i=1 max(Pi)
(b) nodes(BTGP) =

∏m
i=1 (max(Pi) + 1)

(c) levelP (a) =
∑m

i=1 levelPi
(ai) for a = (a1, . . . , am) ∈ dom(A)

(d) height(BTGP) = 1 +
∑m

i=1 max(Pi)
(e) edges(BTGP) =

∏m
i=1 (max(Pi) + 1) ·

The Structure of Preference Orders 37

Fig. 3. BTG for Pareto. Fig. 4. BTG for a 2d LSP preference.

Proof. We prove e); a)–d) can be found in [18].

Consider those edges in BTGP which result from the domination with respect
to Pi. All nodes with a level value smaller than max(Pi) have such an outgoing
edge. The number of such nodes is given by ·max(Pi). These are all
nodes with any possible level values for all Pj ∈ P with i �= j and a level value
in the interval [0,max(P
for all preferences in P :

i
Pi)

)
�

The graph of a Pareto preference is symmetric with respect to its middle axis
(duality principle in lattices [5]). The top level contains only one node: (0, . . . , 0),
level 1 contains m nodes. The levels grow wider until a maximum width is reached
before or at level 1

2 ·max(P). It starts to get “thinner” while increasing the overall
level value and finally reaches the bottom node. This leads to the characteristic
hexagon shape depicted in Fig. 3. The method to find the width of a BTG is
based on products of lattices as described in [5,18].

Theorem 3 (Width of the BTG of a Pareto Preference). Consider PK :=
PK1 ⊗ . . . ⊗ PKm

and PL := PL1 ⊗ . . . ⊗ PLn
, all Pij WOPs. We construct a

preference P := PK ⊗ PL. Then, the width for P in level v is

width(P, v) =
v∑

i=0

(width(PK , i) · width(PL, v − i))

In some cases, there are shortcuts for this calculation.

Lemma 1. For m = 2, i.e., P = P1 ⊗ P2 the width can be computed as:

(a) v ≤ min(max(P1),max(P2)) : width(BTGP , v) = v + 1
(b) min(max(P1),max(P2)) < v ≤ 1

2 (max(P1) + max(P2)) :

38 M. Endres

width(BTGP , v) = min(max(P1),max(P2)) + 1

(c) 1
2 (max(P1) + max(P2)) < v :

width(BTGP , v) = width(BTGP , height(BTGP − v)

Proof. (a)Consider aBTGnodex = (x1, x2) in level v ≤ min(max(P1),max(P2)).
So we get v + 1 possible level combinations for x: (0, v), (1, v − 1), . . . , (v, 0).
(b) Consider max(P1) < max(P2) and a node x = (x1, x2) in the BTG so that
max(P1) < x1 + x2 ≤ max(P2). Then, we have max(P1) possible combinations in
a given level v ≥ max(P1): (0, v), (1, v − 1), . . . , (max(P1), v − max(P1)). (c) This
follows from the symmetry of BTGs. �

For each node in the BTG of a weak order preference, the level function value
can also be used as a unique node identifier (ID), because the BTG forms a
total order. For the nodes in the BTG of a Pareto preference this is not possible,
because in each level there is more than one node representing an equivalence
class (except the top and the bottom level). Nevertheless, it is possible to define
unique node IDs. For this, we need the definition of edge weights.

Definition 7 (Edge weights). Let P := P1 ⊗ . . .⊗Pm be a Pareto preference
and Pi be WOPs. The weight of an edge in the BTG expressing dominance
between two direct connected nodes with respect to any Pi is characterized by

weight(Pi) =
m∏

j=i+1

(max(Pj) + 1)

For j > m we set weight(Pi) = 1.

These edge weights can be used to define unique identifiers, cp. [8].

Theorem 4 (Unique node IDs). Let a = (a1, . . . , am) ∈ dom(A) be a node
in BTGP . Let ID: (N0)m → {0, 1, 2, . . . |BTG| − 1} be a mapping such that

ID(a) =
m∑
i=1

(weight(Pi) · ai)

Then the following properties hold:

(a) ID is unique for every node in the BTG.
(b) Every value in the set {0, 1, 2, . . . , |BTG − 1} is a valid ID for one node in

the BTG.
(c) ID is a bijective mapping. ID−1(n) = (a1, . . . , am) maps a unique integer ID

n to the corresponding level value combination (a1, . . . , am), where the ai are
found the following way

ai =

⌊
ID(n) −

∑i−1
j=1 aj · weight(Pj)

weight(Pi)

⌋

The Structure of Preference Orders 39

The unique path leading to every node in the lattice can be found by the
following simple rule: in each node you visit, follow the edge with the highest
weight leading to the target node. This path clearly is unambiguous.

Example 3. Consider Fig. 3. The BTG has (2+1) · (4+1) = 15 nodes. The height
is 1 + (2 + 4) = 7 and the node (0, 4) resides in level 4. The number of edges is
(3 · 5) · (2/3 + 4/5) = 22. The maximum level value is max(P) = 2 + 4 = 6. The
widthof levelk = 2for example canbe computedasw(P, k) = w(P2, 2)+w(P2, 1)+
w(P2, 0) = 3. The edge weight for P1 is weight(P1) = max(P2) + 1 = 5 and for P2

wehaveweight(P2) = 1.For the noden = (1, 1)we compute ID(n) = 5·1+1·1 = 6.

3.3 BTGs for Prioritization

Similar to Pareto, Prioritization is generally not restricted to contain weak order
preferences. If Prioritization contains only WOPs, it forms a weak order prefer-
ence, too [3]. Therefore, dominance can be decided by a levelP function and the
graphical representation corresponds to the BTG of WOPs, cp. Section 3.1.

Theorem 5 (Level Function for Prioritization). Let P := P1& . . .&Pm be
a Prioritization where all Pi are WOPs and x = (x1, . . . , xm) ∈ dom(A). Then

(a) levelP (x) =
∑m

i=1

(
levelPi

(xi) ·
∏m

j=i+1(max(Pj) + 1)
)

(b) max(P) =
∏m

i=1(max(Pi) + 1) − 1

Proof. Consider s, t ∈ dom(A). We assume s <P t. Since s <P t, there is
a k for which sk <Pk

tk. Then, for all i < k si and ki are substitutable,
i.e. levelPi

(si) = levelPi
(ti). Consider levelP (t) − levelP (s), which is negative:∑m

i=k

(
(levelPi

(t) − levelPi
(s)) ∗

∏m
j=i+1 (max(Pj) + 1)

)
< 0.

We know that levelPk
(sk) > levelPk

(tk). So the above inequation is true,
iff the amount the level value of s has to be higher than t’s level value due to
sk <Pk

tk is bigger than the sum of products with the biggest possible level
values for t for Pk+1, . . . , Pm.

As levelPk
(sk) has to be at least bigger than levelPk

(tk) by 1, hence it is to
be proved:

∏m
i=k+1(max(Pi) + 1) >

∑m
i=k+1

(
max(Pi) ·

∏m
j=i+1(max(Pj) + 1)

)
.

For k = m this leads to 1 > 0 as base step for induction. Assuming the statement
holds for some value of k, induction will prove it for k − 1. �

3.4 BTGs for Semi-Pareto

The graphical representation of a Semi-Pareto preference can be used to develop
efficient algorithms for Semi-Skyline computation, cp. [10]. However, the struc-
ture of these BTGs was never considered in detail.

Example 4. Consider P = P1 <⊗P2 with maximum level values 2 and 4. Figure 4
shows the BTG of P and its typical shape of a rectangle for 2dim Semi-Pareto.
As in Pareto, a node is a combination of level values for the Pi. To distinguish
the BTG for LSP and RSP, we “annotate” each node with the corresponding
operator sign, e.g., (x<⊗ y) for a LSP preference.

40 M. Endres

In general, Semi-Pareto does not form a weak order preference, except for
a two-dimensional Semi-Pareto containing an ANTICHAIN A↔ preference. For
A↔ it holds that <P= ∅, i.e., it returns all values without any ordering.

Lemma 2. Let P1, P2, and A↔ be preferences. If P1 is a WOP =⇒ P1 <⊗A↔

and A↔ ⊗>P1 are WOPs.

Proof. In A↔ each element in dom(A) is mapped to level 0, hence all x ∈ dom(A)
are substitutable. Therefore, the domination of x is based on P1. Since P1 is a
WOP, Left-Semi-Pareto and the Right-Semi-Pareto are WOPs, too. �

Theorem 6 (Properties of BTGs for Semi-Pareto). Let P1 and P2 be
(complex) preferences containing WOPs and a ∈ dom(A) of P := P1 <⊗P2 or
P := P1 ⊗>P2. Then

P := P1 <⊗P2 P := P1 ⊗>P2

(a) levelP (a) = levelP1(a) levelP (a) = levelP2(a)
(b) max(P) = max(P1) max(P) = max(P2)
(c) nodes(BTGP) = nodes(BTGP1) · nodes(BTGP2)
(d) height(BTGP) = height(BTGP1) height(BTGP2) = height(BTGP2)

Proof. W.l.o.g. we prove the theorem only for LSP. (a) Consider a ∈ dom(A)
having the node v = (0, . . . , 0<⊗ 0, . . . , 0). A node v′ is worse than v only if
it is worse concerning P1, i.e., if on of the 0’s left of “<⊗” is a higher value,
say 1. Then v′ is a direct successor of v in the BTGP . If v′ <P v we know
that v′ must be worse or as good as v concerning P2, leading to levelP (v′) =
levelP (v) + 1. Induction over the height of the BTG proves the theorem. (b)
The level value of max(P) is computed by maximizing the level values of P1 and
P2, respectively. Following a) we get max(P) = max(P1). (c) For P1 and P2 we
have nodes(BTGP1) and nodes(BTGP2) nodes. Thus, the number of all possible
combinations is nodes(BTGP1) · nods(BTGP2). (d) The height of the BTG is
defined by the number of different levels. All integer numbers in [0,max(P1)] are
valid level values, hence height(BTGP) = height(BTGP1). �

Theorem 7 (Width of the BTG of Semi-Pareto). Let P1 = Q1⊗ . . .⊗Qi,
P2 = Qi+1 ⊗ . . . ⊗ Qm be Pareto preferences containing only WOPs. The width
of Semi-Pareto for a given level v is as follows:

(a) P := P1 <⊗P2: width(P, v) = width(P1, v) · nodes(BTGP2)
(b) P := P1 ⊗>P2: width(P, v) = nodes(BTGP1) · width(P2, v)

Proof. W.l.o.g. we prove it for LSP.
Consider a node a = (a1, . . . , ai <⊗ ai+1, . . . , am) in level v of the BTGP .
Since levelP (a) = levelP1(a) there are width(P1, v) possible combinations for
(a1, . . . , ai). Since all nodes in level v are indifferent due to P1, each combina-
tion for (ai+1, . . . , am) is allowed, hence we have nodes(BTGP2) possibilities for a.
Together, we have width(P1, v) · nodes(BTGP2) nodes in level v. �

The Structure of Preference Orders 41

A further notable property of Semi-Pareto is the fact that the BTG is always
symmetric to its middle axis.

Lemma 3 (Duality Principle of Semi-Pareto). The BTG of a Semi-Pareto
preference is symmetric with respect to its middle axis. That means, in a level
v of the BTG, there are exactly as many nodes as in level max(P) − v.

Proof. W.l.o.g. consider P := P1 <⊗P2, Pi WOPs. For each node a = (a1, a2) in
level v we can find a node ā = (ā1, ā2) with āk := max(Pk) − ak. The level of ā
is levelP1(ā1) = max(P) − levelP (a). Since for each node a in level v a node ā
exists, the lemma is proven. �

3.5 BTG for Rank

A Rank preference uses a number of score functions as input and merges their
(weighted) function values to an overall score. Similar to Prioritization, Rank
forms a weak oder if it only consists of weak order score preferences, i.e., the
BTG follows the structure of a chain.

Theorem 8 (Level Function for Rank). A Rank preference is a weak order
preference with the following level function:

levelrankF,d
:=

⌈
F (f1(x1), . . . , fm(xm))

d

⌉

Proof. Using the mentioned level function in Definition 5 yields Eq. 2. �

4 Analysis of BTGs with Trivial SV-Semantics

Originally, in [2] all preferences were defined with trivial instead of regular SV-
semantics, as described in Sect. 2. That means, the relation x ∼=P y is substituted
by x = y. Hence, one value may be better than, equal to, worse than, or incom-
parable to another value, but not substitutable.

For example, for categorical base preferences like LAYEREDm using trivial
SV-semantics, all different values in the same layer are incomparable to each
other. Hence, the level value of this layer alone is not sufficient to determine
domination. Considering only base preferences, this makes no semantical dif-
ference. The difference occurs when such preferences are combined to complex
preferences, e.g., a Pareto preference.

In this section we will embed base preferences with trivial SV-semantics into
lattice structures. For this we replace the single integer level values to determine
domination by two integers which model the same order. This allows us to use
efficient lattice based algorithms, especially when combining base preferences to
Pareto preferences.

42 M. Endres

4.1 Numerical Base Preferences with Trivial SV-Semantics

In the case of numerical base preferences, we only consider BETWEENd with
trivial SV-semantics, because all other numerical base preferences can be derived
from it.

Theorem 9. Consider P := BETWEENd(A, [low, up]) and P ′ derived from P
by replacing regular by trivial SV-semantics. We map x ∈ dom(A) to the integer
combination (l1, l2) in P ′ as follows:

x → (l1, l2) =
{

(levelP (x), levelP (x) − 1) ⇔ up < x
(levelP (x) − 1, levelP (x)) ⇔ x < low

Then, P ′ models the same order w.r.t. dom(A) as P , but distinguishes
between values lower and values higher than the interval borders.

Proof. Consider a value v mapped to (v1, v2), and a value w mapped to (w1, w2).
The following cases may occur:

– levelP (v) = levelP (w) + 1:
• v < low ∧ w < low ⇒ (w1 = v1 + 1) ∧ (w2 = v2 + 1)

• v < low ∧ up < w ⇒ (w1 = v1 + 2) ∧ (w2 = v2)
– levelP (v) = levelP (w):

• v < low ∧ w < low ⇒ (v1, v2) = (w1, w2) ⇒ v ∼=P ′ w

• v < low ∧ up < w ⇒ (v1, v2) = (levelP (v), levelP (v) + 1)
(w1, w2) = (levelP (v) + 1, levelP (v)) ⇒ v ∼P ′ w

All other possible cases can be derived from those above. So the level com-
bination assigned to domain values fulfills the specification of the preference.

�

From a technical point of view, two WOPs are connected and used to model a
strict partial order. A “virtual” Pareto preference is constructed by the numerical
base preference.

Lemma 4. The number of nodes in the BTG P ′ defined by a BETWEENd

preference P by replacing regular by trivial SV-semantics is given by:

(max(levelP (min(dom(A))), levelP (max(dom(A)))) + 1)2 = (max(P) + 1)2

Proof. Looking at the computation of level combinations for values to be rated,
the BTG that is constructed is identical to one for a Pareto preference containing
two WOPs with maximum level values of max(P) + 1.

Lemma 5. Consider a preference P ′ which is defined as a BETWEENd prefer-
ence P with trivial instead of regular SV-semantics. The number of used nodes
(i.e. the number of nodes that can be matched by values evaluated by P ′) in the
BTGP ′ is given by 2 ∗ max(P) + 1.

The Structure of Preference Orders 43

Fig. 5. BTG for AROUNDd

with trivial SV-semantics.
Fig. 6. BTG for LAYEREDm

with trivial SV-semantics.

Proof. The node (0, 0) is used for perfect matches. Other nodes used have level
combinations of (x, x + 1) or (x + 1, x). The minimum value for x is 1, the
maximum is max(P), leading to 2 ∗ max(P) + 1 values in use. �

Example 5. LetP := AROUND5(A, 50)with dom(A) = {45, 50, 55, 70, 75}. Then
max(P) = 5. We derive P ′ with trivial SV-semantics and create level pair map-
pings: A perfect value of 50 is mapped to (0, 0), 45 and 55 (with level 1) are mapped
to incomparable value combinations (0, 1) and (1, 0), respectively.

Figure 5 showsBTGP ′ . Theblacknodes have tuples belonging to them, the gray
nodes representvalid integers for l1 and l2,while thewhitenodes areunuseddummy
nodes givenby the graph structure.The height/width ofBTGP ′ ismax(P)+1 = 6.
The number of nodes is (5 + 1)2 = 36 from which 2 · 5 + 1 = 11 might be used.

4.2 Categorical Base Preferences with Trivial SV-Semantics

Using trivial SV-semantics in LAYEREDm(A, {L1, . . . , Lm}), all values in one
of the Li are incomparable.

Theorem 10. Consider P := LAYEREDm(A, {L1, . . . , Lm}) and P ′ derived
from P by replacing regular with trivial SV-semantics. Each value in dom(A) is
mapped to a pair of integer level values.

The elements of the Li are labeled with indexes: Li := {li,1, li,2, . . . , li,|Li|}.
Every element of Li has to get a unique index value. Then, the level combination
for each li,j can be found with the following formula:

li,j →
(∣∣∣∣∣

i−1⋃
x=1

Lx

∣∣∣∣∣− i+j,

∣∣∣∣∣
i⋃

x=1

Lx

∣∣∣∣∣+ 1 − (i + j) + |{x : x ≤ i ∧ |Lx| = 1 ∧ |Lx−1| = 1}|
)

Proof. Consider three categorical values li,j , li,k, li+1,q ∈ dom(A) with j < k.
A value lx,y is mapped to (lx,y[0], lx,y[1]). We have to prove that P ′ constructs
the same order as P on elements of different layers and renders elements of the
same layer indifferent. For readability, we will abbreviate

∣∣∣⋃i−1
x=1 Lx

∣∣∣ with s and
|{x : x ≤ i ∧ |Lx| = 1 ∧ |Lx−1| = 1}| with t(i).

44 M. Endres

– li,j ∼P ′ li,k:
• li,j [0] − li,k[0] = (s − i + j) − (s − i + k) = j − k ⇒ li,j [0] < li,k[0]
• li,j [1]− li,k[1] = (s+ |Li|+1−(i+j)+ t(i))−(s+ |Li|+1−(i+k)+ t(i)) =

−j + k ⇒ li,j [0] > li,k[0]
With li,j [0] < li,k[0] ∧ li,j [0] > li,k[0] it follows that li,j ∼P ′ li,k.

– li+1,q <P ′ li,j :
• li,j [0] ≤ li+1,q[0] ⇔ j ≤ |Li| − 1 + q

This always holds as j ≤ |Li| ∧ (−1 + q) ≥ 0
⇒ j = |Li|−1−q ⇔ j = |Li|∧q = 1 and j < |Li|−1−q ⇔ j < |Li|∨q > 1

– li,j [1] ≤ li+1,q[1] ⇔ −j + t(i) ≤ |Li+1| − 1 − q + t(i + 1)
• case 1: |Li| = 1 ∧ |Li+1| = 1 ⇔ t(i + 1) = t(i) + 1 ⇒ j = 1 ∧ q = 1

⇒ −j + t(i) ≤ |Li+1| − 1 − q + t(i) + 1
• case 2: |Li| > 1 ∨ |Li+1| > 1 ⇔ t(i + 1) = t(i)

⇒ −j + t(i) ≤ |Li+1| − 1 − q + t(i)
For j = 1 ∧ q = |Li+1|, both sides are equal. As (j ≥ 1) ∧ (q− |Li+1| ≤ 0),
the inequation holds in all other cases, too.

To sum up the preceding points, we showed that li+1,q <P ′ li,j always holds:

j = 1 ∧ q = |Li+1| ⇒ li,j [0] < li+1,q[0]∧ li,j [1] = li+1,q[1]
1 < j < |Li|∧ 1 < q < |Li+1| ⇒ li,j [0] < li+1,q[0]∧ li,j [1] < li+1,q[1]
j = |Li| ∧ q = 1 ⇒ li,j [0] = li+1,q[0]∧ li,j [1] < li+1,q[1]

As we can see, all elements of the same layer are indifferent and better than
all elements of (w.r.t. their indexes) higher layers. �

Example 6. Consider the color preference in Fig. 1. We derive a preference P ′

with the same sets but trivial instead of regular SV-semantics. Let dom(color) =
{yellow, red, purple, blue, brown, black}. Figure 6 shows the BTG for P ′. Nodes
with invalid level combinations are white, nodes with other colors are labeled
with the level combination the color is assigned to.

5 Summary and Outlook

In this paper we discussed the graphical representation of preference orders.
In particular we considered WOPs, where the BTG forms a chain, and com-
plex preferences like Pareto with its typical lattice structure. In addition we
presented a method to embed base preferences with trivial substitutable values
semantics into a lattice. For each kind of BTG we provided a set of measures
for a detailed description of the graphical structure. The careful analysis of the
underlying “better-than graph” allows the usage of typical lattice based algo-
rithms. Furthermore, these measures can then be used to design new algorithms
for preference evaluation. Nevertheless, embedding general strict partial orders
and a combination of WOPs and general preferences is still an open problem.
This is a challenging task and therefore remains for future work.

The Structure of Preference Orders 45

References

1. Stefanidis, K., Koutrika, G., Pitoura, E.: A survey on representation, composition
and application of preferences in database systems. ACM Trans. Database Syst.
36(4), 19:1–19:45 (2011)

2. Kießling, W.: Foundations of preferences in database systems. In: VLDB 2002:
Proceedings of the 28th International Conference on Very Large Data Bases, pp.
311–322. VLDB Endowment, Hong Kong, China (2002)

3. Chomicki, J.: Preference formulas in relational queries. TODS 2003: ACM Trans.
Database Syst. 28, 427–466 (2003)

4. Arvanitis, A., Koutrika, G.: Towards preference-aware relational databases. In:
ICDE 2012: Proceedings of the 28th International Conference on Data Engineering,
Washington, DC, USA, April 2012

5. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, Cambridge (2002)

6. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of
ICDE 2001, pp. 421–430. IEEE, Washington, DC, USA (2001)

7. Morse, M., Patel, J.M., Jagadish, H.V.: Efficient skyline computation over low-
cardinality domains. In: Proceedings of VLDB 2007, pp. 267–278. VLDB (2007)

8. Preisinger, T., Kießling, W.: The hexagon algorithm for evaluating pareto prefer-
ence queries. In: Proceedings of the 3rd Multidisciplinary Workshop on Advances
in Preference Handling (2007)

9. Endres, M., Kießling, W.: High parallel skyline computation over low-cardinality
domains. In: Manolopoulos, Y., Trajcevski, G., Kon-Popovska, M. (eds.) ADBIS
2014. LNCS, vol. 8716, pp. 97–111. Springer, Heidelberg (2014)

10. Endres, M., Kießling, W.: Semi-skyline optimization of constrained skyline queries.
In: ADC 2011: Proceedings of the 22nd Australasian Database Conference, vol. 115,
pp. 7–16. ACS (2011)

11. Lee, J., Hwang, S w.: BSkyTree: scalable skyline computation using a balanced
pivot selection. In: Proceedings of the 13th International Conference on Extending
Database Technology, EDBT 2010, pp. 195–206. ACM, New York, NY, USA (2010)

12. Han, H., Jung, H., Eom, H., Yeom, H.Y.: An efficient skyline framework for match-
making applications. J. Netw. Comput. Appl. 34(1), 102–115 (2011)

13. Endres, M., Roocks, P., Kießling, W.: Scalagon: an efficient skyline algorithm for
all seasons. In: Renz, M., Shahabi, C., Zhou, X., Chemma, M.A. (eds.) DASFAA
2015. LNCS, vol. 9050, pp. 292–308. Springer, Heidelberg (2015)

14. Fishburn, P.C.: Intransitive indifference in preference theory: a survey. Oper. Res.
18(2), 207–228 (1970)

15. Kießling, W., Endres, M., Wenzel, F.: The preference SQL system - an overview.
Bull. Tech. Commitee Data Eng. IEEE Comput. Soc. 34(2), 11–18 (2011)

16. Kießling, W.: Preference queries with SV-semantics. In: Proceedings of COMAD
2005, pp. 15–26. Computer Society of India, Goa, India (2005)

17. Endres, M., Roocks, P., Kießling, W.: Algebraic optimization of grouped preference
queries. In: Proceedings of IDEAS 2014, pp. 247–256. ACM, New York, NY, USA
(2014)

18. Preisinger, T., Kießling, W., Endres, M.: The BNL++ algorithm for evaluating
pareto preference queries. In: Proceedings of the 2nd Multidisciplinary Workshop
on Advances in Preference Handling, pp. 114–121 (2006)

User Requirements
and Database Evolution

Two Phase User Driven Schema Matching

Nick Bozovic(&) and Vasilis Vassalos

Department of Informatics, Athens University of Economics and Business,
Athens, Greece

{nbozovic,vassalos}@aueb.gr

Abstract. In recent years it has become apparent that schema matching is a
labor intensive process that is very costly in resources; this has led to the
development of various automated tools to substitute the human experts
involved in it. To this end we propose two new ideas. The first is the separation
of matching techniques into strong and weak ones, in what we call two phase
schema matching. The second is using information a human expert can provide
to the system during the process of schema matching, that is used to determine
how to combine the various matching techniques. A system encompassing both
our ideas is easily tunable and allows the human expert to become part of the
matching process and help the system choose the best techniques to use. In
extensive experiments we demonstrate that this approach is better than con-
temporary state of the art systems in relational databases. We also demonstrate
that single purpose (or niche) matchers can be helpful in such a system where
the system can opt to use them if appropriate.

Keywords: Data integration � Schema matching � Human interaction � Data
mining � Artificial intelligence

1 Introduction

The problem of schema matching is a very complex and difficult one. Over the years
many methodologies have been proposed by various teams. Surveys [1, 3, 13] show the
focus is to use a computer to automate the process using composite systems; that is, more
than one method is used to produce possible matches, and the results are then combined
to produce the final matches. While these systems boost matching accuracy, an important
question remains: Can matchers that are less reliable than others “unbalance” a system?

In this paper we propose two ways to address that. The first is what we dub “two
phase schema matching”, that aims to allow the simultaneous use of a wide array of
matchers regardless of their performance in the specific schemas to be matched. We
achieve this by separating the available matching techniques into “strong” and “weak”
ones, and one using user feedback. The intuition is to use the right technique at the
right time to maximize its usefulness while minimize the destabilizing effects it may
have on the system.

What we call “strong” techniques are those that have consistently produced good
matches and are less likely to be affected by differences in domains, implementation
details and/or the size and quality of instance data. All other techniques are classified as
“weak”: they can be helpful if used, but their credibility is less certain.

© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 49–62, 2015.
DOI: 10.1007/978-3-319-23135-8_4

The second is using a limited and easy-to-get amount of information from the
human expert what will evaluate the results. This user interaction strategy is based on
the fact that according to recent research [4] and our own experience, there is no safe
way to perform schema matching tasks in a fully automated way, as there can be no
guarantee of 100 % confidence and accuracy. While most recent work does recognize
that machine based methods cannot solve the problem with 100 % precision there is
little work published in the benefits of user-computer interaction and the impact it can
have on solving the problem. Even if there was such a system, it would, in the end,
need a human expert to evaluate the matches and authorize the mapping process. We
therefore put forth the idea that since every outcome of an automated schema matching
process must and will be evaluated by a human expert, it’s to our advantage to bring
some of that evaluation earlier in time. We use this evaluation to discover and use the
knowledge hiding in that mid-step, to help determine the best way to match the
remaining attributes.

Both approaches are aimed at large schema matching projects, for example the
matching of two database schemata during a company merging or a company-wide
system integration. The system is schema structure agnostic and thus able to find
matches between structurally different schemata (for example between a relational
database and a collection of flat files or an XML schema). In that sense where the term
“schema” is used it should be understood not only as a relational schema but as data
schema in general.

An overview of the two methods follows in Sects. 2 and 3, in Sect. 4 we perform
experiments in both our systems and to currently available systems and comment on
the outcome. Related work is presented in Sect. 5, and in Sect. 6 we present our
conclusion and we ask some interesting questions for future consideration.

2 The Strong Vs. Weak Approach

In this approach, which we called ASID (Another Schema Integration Dashboard),
matching is performed in two phases: one where only strong techniques are used and
one where all matchers are used. An overview of this is presented in [Fig. 1]. The
first-phase combiner uses their results to produce plausible matches. If there are
unmatched attributes left or the score of a match is too low, these attributes are passed
to the second-phase matching, where the “weak” techniques are also used. In the
second phase, the results from all techniques are combined. This arrangement ensures
that matches are not “unbalanced” by weak matching techniques, while the system can
benefit from the extra matching ability they provide.

2.1 Matching Methods

In our system we use a mix both established and new matchers, that leverage infor-
mation both on semantic and on data instance level. Multiple matchers, especially
“niche” matchers that need specific information to provide good results, can be of great
help but can also unbalance a system. In our setup with both the self-mute switch and

50 N. Bozovic and V. Vassalos

the variable weights (described in the next section) we demonstrate that these methods
do not hurt the results and can under some conditions improve them.

Name Matching. Name matching is a string matching technique between the names
of the attributes, used extensively in schema matching. We use the Jaro metric for this
task as recent research [14] has shown that it is one of the best algorithms for name
matching. The Jaro metric is based on the number and order of the common characters
between two strings.

Given strings s ¼ a1. . .ak and t ¼ b1. . .bL, define a character ai in s to be common

with t if there is a bj = ai in t such that i� H� j� iþ H where H = minð sj j tj jÞ
2 .

Let s0 ¼ a01. . .a
0
k0 be the characters in s which are common with t (in the same order

they appear in s) and t0 ¼ b01. . .b
0
L0 be defined the same way for t, Now define a

transposition for s’, t’ to be a position i such that a’i ≠ b’i. Let Ts0;t0 be half the number
of transpositions for s’ and t’. The Jaro similarity metric for s and t is

Jaroðs; tÞ ¼ 1
3

s0j j
sj j þ

t0j j
tj j þ

s0j j � Ts0;t0

sj j
� �

It is out of scope to further analyse the algorithm used. For more information, the
reader could consult [14]. In our system, scores range in [0, 1].

Attribute Description Matching. This method tries to exploit simple forms of
documentation that often exist in relational systems used in organizations. In most
RDBMS deployments, each attribute has a description written in natural language that
describes its contents, usually in a sentence or two.

Our matching method is a simple one: for each attribute of the source schema, we
create a text corpus made of its description string and the description strings of all the
attributes of the target schema that are possible matches (Fig. 2). Then we use TF/IDF
weighting to compute vector similarity between the first member of the corpus and the
remaining ones: the more similar the description, the higher the score. This method
ensures that words appearing many times in the corpus, like “table”, are not overly
important to the computation of similarity, ensuring that the truly important words
dominate the result.

Fig. 1. Overview of the ASID system

Two Phase User Driven Schema Matching 51

Naïve Bayes Classifier. All available data from one schema are fed into a simple
Naïve Bayes classifier; after the learning phase is complete, the sample data of the
target attribute are classified. The total score for all attributes is normalized in [0,1] to
be compliant in range to the previously computed score. The formula by which the
normalization is achieved is a compromise between robustness and ease of
implementation.

The transformation formula used is s0i ¼ si�smin
smax�smin

where si is the individual score of
an attribute match and smin and smax respectively are the global minimum and maxi-
mum scores of said attribute. The intuition behind this is that the best score for an
attribute will be transformed to 1 while the lowest will be 0. It is important to note that
this procedure gives a boost to the best score that may lead to the production of false
positives. When faced with the dilemma of producing some extra false positives or risk
losing some good matches, we opted for the first choice, the rationale being that, in
large-scale schema matching, a false positive is easier for a human to dismiss than it is
for her to discover a missed true match.

TF-IDF Matching. This matcher is inspired by the WHIRL system, which “extends
relational databases to reason about the similarity of text-valued fields using
information-retrieval technology” [6]. We use only the similarity function used in
WHIRL to create a matcher for ASID.

Specifically, data is inserted in the matcher and a collection of documents is created
where each document consists of all the instances of any available target attribute.
A “source” document is created from the data available for the source attribute. We use
TF/IDF weighting to compute vector similarity scores between the source document in
the collection and the target ones. The more similar the source document is to the
corpus of the data, the higher the score. The last step is to normalize the results using
the formula described above.

Datatype Matching. This matcher uses similarity between datatypes to determine
similarity between attributes. The matcher deduces the datatypes from the data
instances and not from the data definition. This is done because in most systems that
are used for long periods of time the datatypes used differ from the datatypes defined in
the documentation. The actual datatype of an attribute as determined by the system is
the datatype that can hold every and all instances of the attribute in question. These

Fig. 2. Creating the corpus

52 N. Bozovic and V. Vassalos

datatypes are then used to compute similarity between attributes as described in the
data similarity matrix presented in Table 1.

Instance Pattern Matching. This matcher extracts patterns from the data instances. It
aims to find patterns that can be hiding in the data of large schemas, patterns like
passport numbers, license plates, VAT numbers etc. Similarity between these patterns
is calculated with the edit distance method to penalize changes in stronger way than the
more lenient Jaro metric. The patterns found are comprised of the characters found in
all data instances and the places of the changing letters (“‡”) and/or numbers (“№”).
For example the IBAN Number of UK account would create a pattern of [GB№
№‡‡‡‡№№№№№№№№№№№№№№].

An alternate implementation of this would be to express the patterns of the source
attributes in the form of a regular expression and award a score on those matches were
the target attributes validate the regular expressions. For example from a source
attribute containing IBAN numbers we can create the following regular expression:

a� zA� Z½ � 2f g 0� 9½ � 2f g a� zA� Z0� 9½ � 4f g 0� 9½ � 7f g a� zA� Z0� 9½ �?ð Þ 0; 16f g

with any target attribute containing IBAN numbers must adhere to. This method is
more rigid than the first, since, contrary to the above regex that validates all known
IBANs, a regex derived from UK IBANs will not validate German IBANS. In light of
that for the implementation of our system we opted for the first approach.

3 The Human-in-the-Loop Approach

We can extend our two phase matcher system, which we will henceforth refer to it as
ASID + , with a module that implements our proposed solution on how to increase the
quality of the matching by using small pieces of information in the form of user
feedback. We then proceeded and evaluated our approach and established that it can
make a big difference in the performance of an automated schema matching tool. The
design of the system is presented in Fig. 3.

Table 1. Datatype similarity matrix

Datatype String Number Integer Currency Date

String 1.0 0.6 0.6 0.6 0.4
Number 0.6 1.0 0.4 0.6 0
Integer 0.6 0.4 1.0 0.4 0
Currency 0.6 0.6 0.4 1.0 0
Date 0.4 0 0 0 1.0

Two Phase User Driven Schema Matching 53

3.1 The Human in the Loop Match Combiner

The human in the loop approach uses a simple voting match combiner to compute an
overall score for each possible match. The sum of all matchers’ scores is divided by the
sum of their weights. If after the total evaluation a match is deemed probable (with a
score greater than 0.5) the evaluator produces a “good match,” presenting it to the user
and removing the matched couple from the source and target schemata.

User Interaction and Weight Redistribution. As already suggested, combining the
individual matchers’ scores cannot involve training of the system since schema
matching is more often than not a one-time task. Proposed solutions like a decision tree
combiner fail to leverage the knowledge of the human expert, when apart from the
schemata to be matched, this may be the only other available source information. In
most systems interaction between the user and the system happens before (providing
the data) or after (evaluating the results) the matching process. We propose an inter-
active matching method, based on our two phase idea, which aims to get the best out of
both human and computer worlds.

After the system produces matches the user is asked to confirm or not the cor-
rectness of limited number of results. This feedback is then used to evaluate the
performance of each technique and adjust the weights of each in our prediction
combiner. The weights are initially set to values that are found to be good starting
points but can be set to any number without affecting the final outcome of the system as
they given enough iterations, will gradually shift to optimal values. That can even be as
extreme as being zero to all but one technique, making the system work as a single
matcher (Fig. 4).

The matches presented to the user are (pseudo)randomly selected from a pool of
matches hovering just above or below a cutoff confidence point (in our experiments
0,5). The user is asked if a match is correct or not, as requiring them to manually
search, construct and submit a correct match is tedious. When the system produces a
true match the individual techniques that are correct increase their weight. If the match

Fig. 3. 2-Phase matching with user feedback

Fig. 4. User Interaction and weight redistribution

54 N. Bozovic and V. Vassalos

was wrong those that were wrong have their weight reduced. Both adjustment are
proportional to their respective confidence score. The algorithm of the operation and an
example of running it once is shown below (Fig. 5).

After the all random matches are evaluated by the user, the matching is repeated
with the new values. It is of note that the weight of each technique has no meaning
other than distinguishing the proportional strength of that one over the others.

3.2 Over-Fitting as a (Rare) Problem

During our experiments it became apparent that random sampling can in edge cases
lead to over fitting. For example a source that was incrementally developed, had parts
of it documented in English and parts of it in transliterated Greek. The documentation
matcher did exceptionally well in the parts that were documented in English (which
had corresponding documentation in the target schema) but underperform in the
transliterated parts. When the matches presented to the user were all from the same
type of documentation, the matcher was penalized or rewarded far beyond the desired
point. For this every matcher has a self-mute switch that activates when it is no longer
reliable (i.e. multiple documentation languages), and explicitly excludes itself from the
process.

Fig. 5. Weight redistribution example

Two Phase User Driven Schema Matching 55

3.3 Confidence in the Human Expert

For the system to work the human expert must provide correct answers before the
second matching step. We made certain choices and assumptions when we designed
the system to interact with a single expert user. We designed and implemented the
feedback phase aiming to minimize input errors by asking questions that can only be
answered with a simple Yes/No/Ignore. We opted out of the more elaborate “Select and
score the correct match for attribute x” as this is much more prone to errors as sug-
gested in [25]. A central point of our design is that the user is just validating the results
at a time earlier they usually have to, as a human expert would ultimately need to
evaluate the results and make final decisions. With this in mind and the simple nature of
the questions, his feedback is considered correct.

4 Experiments and Evaluation of the System

In this section we evaluate our two approaches against each other and against state of
the art systems. We conduct experiments with various datasets and demonstrate the
robustness of the two phase schema matching and the added value of human user
interaction to the matching process. We also display that our novel niche matchers can
be used to boost the systems performance.

4.1 Overview

Three distinct and very different schema collections were used in the experiments. The
aim was to see the system perform matches for both small (* 30 attributes), medium
(* 120 attributes) schemas and large schemas derived from open source projects.

For the small schema test we used part of the data used in [2] to evaluate the
system.

For the medium schema experiments, we used real schemas from the Greek
cadastre where different schemas, developed independently but address the same needs.
With up to 120 attributes, they are representative of schemas used in medium appli-
cations. The large schemata were procured by two open source shopping cart solutions
[15, 16] that are both large and complicated.

The systems we compare ASID + to are the Harmony matcher [20] as implemented
in OpenII [21], and COMA ++ v3 community edition [22] (a derivative of [8–10, 17]).
As ASID + outputs only the best match available we constrained Harmony to do the
same and hence only evaluated the best, i.e. the one with the highest score, match
produced by it. If we were to evaluate every match proposed by harmony above a
reasonable threshold the number of false positives (and hence the number of pairs a
human experts should have to evaluate and discard) would greatly increase. We also set
Harmony’s threshold to 0.5 to eliminate matches that would probably be false positives.

As our system is a self-tuning one we run all experiments using the default settings
(For COMA ++ that meant using the $AllContextInstW dataflow with no other tuning).

56 N. Bozovic and V. Vassalos

In all experiments we ignored matches of attributes that exist only as non-real world
unique identifiers as these depend on the design principles used and are not transferred
between schemata.

For the rest of the paper we named our system using a priori knowledge the
performance of each matcher ASID and it comes in two flavors, one with 4 matchers
that excludes instance pattern matching and datatype matching and one that has all 6
matchers. ASID + is the name of our human in the loop implementation that also has
the complete set of matchers. Also of note is that in these experiments ASID + was
configured to only use a single feedback phase.

4.2 Small Schema Tests

The “small schema” dataset was kindly provided by AnHai Doan and is the relational
dataset used in [2]. Table 2 has information on the schemas used).

The correspondences between the attributes were sometimes, but not often, complex
(rather than one-on-one). For creating the schemata in OpenII we used its own
SQL DDL importer on the source schemata DDL scripts. Figure 6 summarizes the
results of our evaluation and shows how our approach performs better in small schemas.

Table 2. Small Schema information

Schema No. Total Attributes Data Instances

1 22 8,45 KB
2 20 4,03 KB
3 27 4,48 KB
4 28 6,02 KB

Fig. 6. Small schemas Accuracy (%)

Two Phase User Driven Schema Matching 57

Additionally to improving the overall number of correct matches there was a
dramatic drop in false positives with almost all proposed matches being true positives.
The experiments display the robustness of two phase method and that using feedback
from a human expert can improve the system’s performance.

4.3 Medium Schema Tests

The experiments were conducted using schemas created for the Greek cadastre. The
system was supplied with the distinct values of more than 30.000 tuples in each case.
All schemas and data were real (Table 3).

The results (Figs. 7 and 8) illustrate that, despite the increased complexity of real
world schemas, accuracy remains high at * 85 % The reduction in accuracy in this
experiment for ASID + and ASID compared to their performance in the small schema
experiments shows that user interaction can make the system more robust with regard
to increased schema size.

For this comparison we decided against the use of the medium schemas because of
them having documentation and attribute/table names in both the Greek (transliterated
or not) and English language. Therefore the matching is heavily dependent on instance
based matchers which the chosen open source schema matching systems lack, some-
thing that would skew these experiments would in favor of our system.

Table 3. Medium schema information

Schema No. Total Attributes Data Instances

1 108 2,39 MB
2 113 2,41 MB
3 92 1,29 MB

Fig. 7. Number of true positives on
medium schemas (left)

Fig. 8. Medium schemas ASID accuracy (%)
(right)

58 N. Bozovic and V. Vassalos

4.4 Large Schema Comparison

For the large schemas we used the 6-matcher, human in the loop ASID + while for
Harmony we used the DDL importer to import the schemas but both DDL scripts of the
e-shops had some non-standard datatypes substituted by their more common analogues.

The results in Fig. 9 suggest that ASID + is able to outperform Harmony by a
margin of 20 per cent point. It is notable that it manages that by utilizing all of its
matchers despite the fact that data instances available are of very low quality, con-
firming our assumption that a small user input can go a long way in increasing the
robustness of our system. The same observation holds to a lesser extent for COMA +
+ where the difference is 7 per cent point.

4.5 Conclusions on Experiments

The experiments presented strongly suggest our approach can offer better results to
automated schema matching. The experiments demonstrate both the robustness of two
phase schema matching and the positive effect a user assisted prediction combining
method can have to the schema matching process.

Moreover, the evaluation of the results of ASID + , irrespective of the status of the
niche matchers, demonstrates that our method, by taking into account the user input to
assign weights to the various matching methods, helps improve the results while at the
same time allowing “niche” matching techniques to be used without results
degradation.

5 Related Work

The systems proposed and/or build through the years can be divided for the purposes of
this work in two major categories those that somehow enable a human in the matching
process and those who do not. Of the later there are many works worth mentioning.
Like iMap [11] that while able to identify complex matches (i.e. address = concat(city,
state)), a feature rarely seen in schema matching tools, achieves 43-92 % success in

Fig. 9. Large schemas systems comparison (Precision %)

Two Phase User Driven Schema Matching 59

matching attributes a range showing it may not be as stable as for industrial schema
matching. Similarity Flooding [12] is based on the eponymous graph matching algo-
rithm. The strength of the algorithm (and also its weakness) is the lack of knowledge it
has for the attributes being matched. This had a side effect of producing out of context
matches that need to be filtered out. The basic idea behind COMA ++ [9, 10] is to
create a true composite system. This is a generic system, designed to be adaptable to
many matching problems, achieving notable results not only in data integration and for
that reason is one of the systems we tested ASID + against. The LSD system [5] is a
demonstrator of a multi-strategy learning approach in schema matching. Results show
it achieves 71–92 % accuracy but it demands training on target schemata, something
that often is not possible. MKB [2] displays high accuracy, either autonomously or as
an additional matcher but only when the existence of past mappings is available, as it
requires a large amount of previously matched schemata, something not likely to be
available in industrial RDBMS deployments. U-MAP [7] is again a technology dem-
onstrator system for a novel idea: using information extracted from query logs to
generate correspondences between the attributes of two different schemas and the
mappings between them. YAM [23] is actually a schema matcher generator designed to
produce a tailor-made matcher based on a knowledge base, not on human expert
knowledge that is by definition more relevant to the domain at hand. Harmony [20]
aims to speed up the task of finding correspondences across two data schemas. As
implemented on the OpenII project [21] is uses a variety of rather simple matchers and
incorporates but its one-to-many visualization solution tends to produce far too many
correspondences, in real world schemas, making it counter intuitive.

Then there are the systems that enable human users to aid in the schema matching
process. In [26] the authors focus on pay-as-you-go reconciliation in schema matching
networks using a probabilistic matching network. In contrast to ours, the system in [26]
is focused not on the costly and error prone task of one off schema matching but on
improving the outcome of a lengthy, incremental process involving many schemata. As
mentioned in [28] the authors build a system that aims to use user interaction to resolve
matches; this happens at the start/end of the matching process and involves a large
number of ordinary users. In [27] the authors propose the use of crowdsourcing
techniques to reduce ambiguity in schema matching. In relation to the previous two
works our system involves one human expert during the matching process. ASID does
not use the knowledge gained to resolve matches or to retrain its matching techniques,
but it uses it to decide which are (or are not) the best matchers in its disposal for a given
problem - although we do plan to experiment with using the user feedback to also
resolve matches in future work. There are also a number of other schema matching
systems and techniques of note e.g., [7, 8, 19] designed to address different aspects of
the schema matching problem.

6 Conclusions and Future Work

Our approach is based on the assumption that schema matching in business environ-
ments is under most scenarios a one-off task and hence learning-based approaches are
of limited use. Based on this we proposed a two-phase method for building composite

60 N. Bozovic and V. Vassalos

systems. We examined both the use of a priori knowledge in deciding what individual
methods are most important and use of limited user input. To demonstrate the effec-
tiveness of our approach we created a prototype system and used it in to match real
small, medium and large schemata.

Conducting extensive experiments in a variety of schemata of variable size and
domain, we demonstrate a significant improvement over existing open source systems,
ranging from a 13 % to 19 % increase in accuracy in small schema matching a sig-
nificant increase of precision in large schemas from 27 % to 47 %. The evaluation of the
results also shows that taking user input into account to assign weights to the various
matching methods helps improve the results accuracy by 5 %, while at the same time
allowing “niche” matching techniques to be used without the risk of results degradation.

We plan on exploring additional strategies to initiate and use the human computer
interaction that is the basis of our method. In particular, we plan to expand ASID + to
not only use the feedback as a way to adjust the matcher’s weights but also to treat the
true positives attribute matches as match constraints that can possibly exclude some
matches from even being generated. There is also the interesting path of extracting
more information from the human user, instead of simply asking a random set of simple
yes/no questions about matches hovering above or below our threshold.

References

1. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

2. Madhavan, J., Bernstein, P., Doan, A., Halevy, A.: Corpus-based schema matching. In:
Proceedings of the 21st International Conference on Data Engineering, ICDE 2005,
pp. 57–68. IEEE (2005)

3. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spaccapietra,
S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg
(2005)

4. Peukert, E., Eberius, J., Rahm, E.: A self-configuring schema matching system. In: 2012
IEEE 28th International Conference on Data Engineering (ICDE), pp. 306–317. IEEE
(2012)

5. Doan, A., Domingos, P., Halevy, A.: Learning to match the schemas of data sources:
A multistrategy approach. Mach. Learn. 50(3), 279–301 (2003)

6. Cohen, W.W., Hirsh, H.: Joins that generalize: text classification using WHIRL. In:
Proceedings of the Fourth International Conference on Knowledge Discovery and Data
Mining (KDD), pp. 169–173 (1998)

7. Elmeleegy, H., Lee, J., Rezig, E.K., Ouzzani, M., Elmagarmid, A.: U-MAP: a system for
usage-based schema matching and mapping. In: Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, pp. 1287–1290. ACM (2011)

8. Do, H.-H., Rahm, E.: COMA: a system for flexible combination of schema matching
approaches. In: Proceedings of the 28th International Conference on Very Large Data Bases,
pp. 610–621. VLDB Endowment (2002)

9. Aumueller, D., Do, H.-H., Massmann, S., Rahm, E.: Schema and ontology matching with
COMA ++. In: Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, pp. 906–908. ACM (2005)

Two Phase User Driven Schema Matching 61

10. Massmann, S., Engmann, D., Rahm, E.: COMA ++: Results for the ontology alignment
contest OAEI 2006. In: International Workshop on Ontology Matching, Collocated with the
5th ISWC-2006, p. 107. Athens, Georgia, USA (2006)

11. Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: discovering complex
semantic matches between database schemas. In: Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, pp. 383–394. ACM (2004)

12. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching
algorithm and its application to schema matching. In: Proceedings of the 18th International
Conference on Data Engineering, 2002, pp. 117–128. IEEE (2002)

13. Bernstein, P.A., Madhavan, J., Rahm, E.: Generic schema matching, ten years later. Proc.
VLDB Endowment 4(11), 695–701 (2011)

14. Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive name matching
in information integration. IEEE Intell. Syst. 5, 16–23 (2003)

15. osCommerce Online Merchant v2.3.3.4. http://www.oscommerce.com/Products
16. CubeCart free, v.5.2.8. http://www.cubecart.com/downloads/
17. Do, H.-H., Rahm, E.: Matching large schemas: approaches and evaluation. Inf. Syst. 32(6),

857–885 (2007)
18. Mork, P., Rosenthal, A., Seligman, L., Korb, J., Samuel, K.: Integration Workbench:

Integrating Schema Integration Tools, The MITRE Corporation, Case #06-0055, May 2006
19. Mork, P., Seligman, L., Rosenthal, A., Korb, J., Wolf, C.: The harmony integration

workbench. In: Spaccapietra, S., Pan, J.Z., Thiran, P., Halpin, T., Staab, S., Svatek, V.,
Shvaiko, P., Roddick, J. (eds.) Journal on Data Semantics XI. LNCS, vol. 5383, pp. 65–93.
Springer, Heidelberg (2008)

20. Seligman, L., Mork, P., Halevy, A., Smith, K., Carey, M.J., Chen, K., Wolf, C., Madhavan,
J., Kannan, A., Burdick, D.: OpenII: an open source information integration toolkit. In:
Proceedings of the 2010 ACM SIGMOD International Conference on Management of data,
pp. 1057–1060. ACM (2010)

21. COMA Community Edition, Schema Matching Solution for Data Integration. http://
sourceforge.net/projects/coma-ce/

22. Duchateau, F., Coletta, R., Bellahsene, Z., Miller, R.J.: (Not) yet another matcher. In:
Proceedings of the 18th ACM Conference on Information and knowledge management,
pp. 1537–1540. ACM (2009)

23. Sagi, T., Gal, A.: In schema matching, even experts are human: towards expert sourcing in
schema matching. In: 2014 IEEE 30th International Conference on Data Engineering
Workshops (ICDEW), pp. 45–49. IEEE (2014)

24. Nguyen, Q.V.H., Nguyen, T.T., Miklós, Z., Aberer, K., Gal, A., Weidlich, M.:
Pay-as-you-go reconciliation in schema matching networks. In: 2014 IEEE 30th
International Conference on Data Engineering (ICDE), pp. 220–231. IEEE (2014)

25. Zhang, C.J., Chen, L., Jagadish, H.V., Cao, C.C.: Reducing uncertainty of schema matching
via crowdsourcing. Proc. VLDB Endowment 6(9), 757–768 (2013)

26. McCann, R., Shen, W., Doan, A.: Matching schemas in online communities: a web 2.0
approach. In: IEEE 24th International Conference on Data Engineering, 2008 ICDE 2008,
pp. 110–119. IEEE (2008)

62 N. Bozovic and V. Vassalos

http://www.oscommerce.com/Products
http://www.cubecart.com/downloads/
http://sourceforge.net/projects/coma-ce/
http://sourceforge.net/projects/coma-ce/

CoDEL – A Relationally Complete Language
for Database Evolution

Kai Herrmann1(B), Hannes Voigt1, Andreas Behrend2, and Wolfgang Lehner1

1 Database Technology Group, Technische Universität Dresden, Dresden, Germany
{kai.herrmann,hannes.voigt,wolfgang.lehner}@tu-dresden.de

2 Computer Science III, University of Bonn, Bonn, Germany
behrend@cs.uni-bonn.de

Abstract. Software developers adapt to the fast-moving nature of soft-
ware systems with agile development techniques. However, database
developers lack the tools and concepts to keep pace. Data, already
existing in a running product, needs to be evolved accordingly, usually
by manually written SQL scripts. A promising approach in database
research is to use a declarative database evolution language, which cou-
ples both schema and data evolution into intuitive operations. Existing
database evolution languages focus on usability but did not aim for com-
pleteness. However, this is an inevitable prerequisite for reasonable data-
base evolution to avoid complex and error-prone workarounds. We argue
that relational completeness is the feasible expressiveness for a database
evolution language. Building upon an existing language, we introduce
CoDEL. We define its semantic using relational algebra, propose a syn-
tax, and show its relational completeness.

Keywords: Descriptive database evolution · Evolution language · Rela-
tional completeness

1 Introduction

Changes in modern software systems are no longer an exception but have become
daily business. Following the mantra “Evolution instead of Revolution”, agile
software development centers the creativity and excellence of people to handle
the unpredictably dynamic world of software development [3]. Agile methods
are characterized by short development cycles, each with the goal of a shippable
product. This provides constant feedback, which helps to establish a customer-
oriented development process resulting in products that fit customer’s true needs
and yield high customer acceptance. It is in the very nature of agile development,
that requirement specifications are in perpetual flux. Adjusting the software’s
design to updated requirements is as daily business as developing new features.

However, a major obstacle in this process are the database systems [2].
Whereas software development tools support developers in the process of design-
ing changes with a comprehensive set of automatized refactoring features, the

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 63–76, 2015.
DOI: 10.1007/978-3-319-23135-8 5

64 K. Herrmann et al.

Fig. 1. Database evolution.

evolution of databases is usually realized by manually writing scripts of SQL-
DDL and -DML operations. This manual database evolution is expensive and
error-prone. Furthermore, many software projects show poor integration of the
database developers. According to a survey [1], two third of the pooled software
developers perform database-related changes without consulting the responsible
database developers, which certainly increases the software developer’s produc-
tivity but is not necessarily helping the quality of the resulting database.

To keep pace with agile software development, the database systems have
to supply software-refactoring-like features. Such database evolution features
need to evolve the database schema (schema evolution) and payload data (data
evolution) in a single consistent step [15]. Such a database evolution processes
as illustrated in Fig. 1. While evolving an application, the application developer
specifies the corresponding database evolution with the help of schema modifica-
tion operations (SMOs). In contrast to SQL-DDL and -DML statements, SMOs
specify the evolution of the schema and the data in a descriptive, integrated
way and ensure that the data is consistently evolved with the schema. SMOs
are typically more compact than a script of DDL and DML operations resulting
in the same evolution. On the user side, SMOs increase the developer’s produc-
tivity while dealing with database evolution and reducing the chances of faulty
evolution scripts and unintended data loss. On the database system side, SMOs
open the opportunity to optimize and reduce the actual data movement involved
in an evolution step or even invert evolution steps for database versioning. These
benefits are enabled by the use of SMOs instead of DDL/DML.

A set of SMOs forms a database evolution language (DEL). Naturally, the
design of a particular DEL determines its expressiveness. A powerful DEL lets
the user easily specify all necessary evolution steps. In contrast, a weak DEL
forces the user into more complicated evolution scripts or even to fall back on
DDL/DML statements, which renders the DEL useless. In principal, a DEL
should at least cover the power of DDL and DML of an ordinary database sys-
tem. We argue, that a DEL for relational databases should at least be relation-
ally complete: For any relational DDL/DML script, there exists a semantically
equivalent sequence of SMOs. Relational DDL/DML scripts create, alter, and
drop database objects, while conditions and the actual data are specified using

CoDEL – A Relationally Complete Language for Database Evolution 65

expressions from a given DQL. The latter motivates the relational algebra [5] as
the natural reference for determining the power of relational DDL and DML.

Given a relational database D = {R1, . . . , Rn} with tables Ri, a DEL is
relationally complete if it can transform D into any other relational database
D′ = {R′

1, . . . , R
′
m} with each R′

i being computable from D with operators from
the relational algebra. A minimal language providing relational completeness is

= {Add (·, ·) ,Del (·)} with

Add (R′, ε) → D ∪ {R′ = ε (R1, . . . , Rn)}
Del (R) → D \ {R}

The add operation adds a new table R′ to the database D based on the given
relational algebra expression ε
R from D. Let inst with valid

can be transformed into any other
database D′ with a sequence s ∈ inst)+. Hence, is relationally com-
plete. From a practical standpoint however, is not very appealing, because
it is rather unintuitive and not oriented on actual evolution steps. However, any
other DEL which is as expressive as is relationally complete as well.

To the best of our knowledge, the most advanced DEL design is
PRISM++ [6,8]. PRISM++ provides SMOs to create, rename, and drop both
tables and columns, to divide and combine tables both horizontally and verti-
cally, and to copy tables. The PRISM++ authors claim practical completeness
for their powerful DEL, by validating it against evolution histories of several
open source projects. Although this evaluation suggests that PRISM++ is suffi-
cient also for other software projects, it does not provide any reliable complete-
ness guarantee. For instance, we do not see an intuitive way to remove all rows
from a table A, which also occur in a table B using the PRISM++ DEL, since
it does not offer any direct or indirect outer join functionality. Thus, we con-
sider PRISM++ not to be relationally complete. Nevertheless, PRISM++ has
an intuitive and field-proven design.

In this paper, we present a relationally Complete DEL (CoDEL), building on
the set of PRISM++ SMOs to inherit its practical feasibility. However, CoDEL

. Our contributions are:

1. We provide a formal definition of the semantics of all CoDEL operations
and propose an SQL-like syntax. With that, CoDEL can serve as a reference
language for the formal evaluation of other DELs.

2. We show the relational completeness of CoDEL. We show that all operations
of the relational algebra – as presented in [5] plus selected extensions – can
be expressed in CoDEL and whereby any expression, as well.

3. We lay the foundation for further research. CoDEL is a DEL, whose SMOs
are compact with precisely defined semantics. Hence researchers can tackle
their challenges on a per-SMO-level (“Divide and Conquer”). For instance,
database versioning requires full invertibility of a database evolution. CoDEL
allows to define invertibility locally for each operation, which greatly simplifies
such research.

66 K. Herrmann et al.

Fig. 2. Structuring of CoDEL.

We define CoDEL in Sect. 2, prove its relational completeness in Sect. 3,
discuss related work in Sect. 4, and conclude the paper in Sect. 5.

2 CoDEL

Database evolution changes the schema of a database and/or the already exist-
ing data. A DEL contains operations to descriptively specify such changes as
units, which clearly distinguishes it from SQL-DDL and -DML. PRISM++ lim-
its itself to operations that modify individual tables – no PRISM++ operation
accepts more than two tables. This keeps the PRISM++ DEL intuitive and
easy to learn. CoDEL adopts this principle. However, CoDEL operations sys-
tematically cover all possible changes that can be applied to tables. Tables are
the fundamental structuring element and the container for primary data in a
relational database. Secondary database objects such as views, constraints, func-
tions, stored procedures, indexes, etc. should be considered in database evolution
as well. However, in this paper we focus on the evolution of primary data.

CoDEL defines SMOs of the pattern 〈smo〉〈scope〉(Θ), where 〈smo〉 is the
type of operation, 〈scope〉 is the general database object the operation works on,
and Θ is the set of parameters the SMO requires. Figure 2 gives a systematic
overview of all SMOs in CoDEL. A relational database table is a two-dimensional
structure consisting of columns and rows, hence, SMOs can operate on the level
of columns, of rows, or of whole tables. On all three levels there are five basic
operations: Add, Del, Split, Unite, and Ren. We will now introduce the
meaningful operations, as shown in Fig. 2. First, CoDEL has two basic opera-
tions to create (Addtable) and drop (Deltable) tables as a whole, similar to their
counterparts in a standard DDL. Second, CoDEL has a set of operations to mod-
ify a table. Hence, CoDEL offers eight table modification SMOs 〈smo〉〈scope〉 with
〈scope〉 ∈ {column, row} and 〈smo〉 ∈ {Add,Del,Split,Unite}. For instance,
Delcolumn removes a column from a given table and Splitrow partitions a table

CoDEL – A Relationally Complete Language for Database Evolution 67

horizontally, while Splitcolumn partitions it vertically. CoDEL defines no Split
or Unite of whole tables, since these operations are restricted to either column
or row scope. Third, CoDEL includes two SMOs to rename a table (Rentable)
and a column (Rencolumn). The renaming of rows is undefined.

Regarding relational completeness, Rencolumn, Rentable, Delcolumn, and
Delrow are not necessary. However, they are very common [9] and included
in CoDEL for usability’s sake. To summarize, CoDEL is the DEL LC with:

LC =

⎧⎪⎪⎨
⎪⎪⎩
Addtable, Deltable,
Addcolumn, Delcolumn, Splitcolumn, Unitecolumn,
Addrow, Delrow, Splitrow, Uniterow,
Rentable, Rencolumn

⎫⎪⎪⎬
⎪⎪⎭

All CoDEL SMOs require a set Θ of parameters. Let inst (o,D) be the set of
instances of the SMO o with a valid parameterization regarding the database D.
For instance, the only parameter to remove a table with Deltable(Θ) is the name
of an existing table, so that inst (Deltable (Θ) ,D) = {Deltable(R)|R ∈ D}. Fur-
ther, let inst (L,D) =

⋃
o∈L inst (o,D) be the set of all validly parameterized

SMO instances of the DEL L. Then, a CoDEL evolution script s for a database
D is a sequence of instantiated SMOs with s ∈ inst (LC ,Di)

+, where Di is the
database after the application of the i-th SMO.

In the following, we specify the semantics of all CoDEL SMOs. Table 1 sum-
marizes the definition of the semantics based on . The table also shows the
SQL-like syntax we propose for the implementation of CoDEL. In the remainder,
R.C = {c1, . . . , cn} denotes the set of columns of table R and Ri specifies the
version i of the table R. Whenever an SMO does not change the table’s name
but its columns or rows, we increment this version counter i. CoDEL SMOs take
tables as input and return tables. According to the SQL standard, tables are
multisets. Our semantics definition with is based on the relational algebra,
though, where tables are sets. However, relational database systems internally
manage row identifiers, which are at least unique per table. At the level of
SMO implementation, we consider the row identifiers as part of the tables and
hence, tables as sets. The corresponding multiset semantics of the SMOs can be
achieved, by adding a multiset projection of the resulting tables that removes
the row identifiers without eliminating duplicates.

. The SMOs Addtable and Deltable are the simplified
version of their counterparts. Addtable(R, {c1, . . . , cn}) requires two para-
meters, a table name R and a set of column definitions ci. It creates an empty
table with the specified name and schema. Deltable(R) takes only a single para-
meter, the name of the table to be dropped.

. Addcolumn adds a new column to an existing
table. As parameter Addcolumn(Ri, c, f(c1, . . . , cn)) takes the name Ri of the
table, the column definition c of the new column, and a function f . The resulting
table is Ri+1. Addcolumn applies the function f to each row in Ri to calculate the
row’s value for the new column c. The function f receives all other column values

68 K. Herrmann et al.

Fig. 3. Example for the operations on columns.

of the row as parameters. Figure 3 shows an example: Addcolumn(Person0, zip,
getZip(name, age, address)) adds a column zip to Person0 by determining the
zip code based on the currently available information.

Delcolumn removes a column from a table. Specifically, Delcolumn(Ri, c)
takes the name Ri of an existing table and the name c ∈ Ri.C of the column
that should be removed from Ri. The resulting table is Ri+1. Figure 3 shows an
example, where we remove the column zip from table Person1.

. Splitcolumn partitions a table vertically
and removes the original table. Splitcolumn has a generalized semantics,
where the resulting partitioning is allowed to be incomplete and overlapping.
Splitcolumn(R, (S, {s1, . . . , sn}) , (T, {t1, . . . , tm})) takes the name R of the orig-
inal table, a pair of table name S and a set of column names si as specification of
the first partition and optionally a second pair (T, {t1, . . . , tm}) as specification
of the second partition. The two sets of column definitions are independent. In
case S.C ∩T.C �= ∅, the columns S.C ∩T.C are copied. In case S.C ∪T.C ⊂ R.C,
the partitioning is incomplete. If the second partition is not specified, T is not
created. Note that CoDEL prohibits empty sets of column definitions for S and
T , since tables must have at least one column. Figure 3 shows an example with
the Splitcolumn SMO. Table Person0 is vertically partitioned to general infor-
mation (Base0) and address information (Address0). The partitions overlap on
the column name to maintain the connection between addresses and person.

Unitecolumn is the inverse operation of Splitcolumn. It joins two tables
based on a given condition and removes the original tables. As parameters,
Unitecolumn(R,S, T, cond, o) takes the names R and S of the original tables,
the name T of the resulting table, a join condition cond using SQL predicates
without further nesting, and the optional request o for an outer join. In case

CoDEL – A Relationally Complete Language for Database Evolution 69

Table 1. Syntax and semantic of CoDEL operations.

o = �, Unitecolumn performs an outer join, so that no rows from the original
tables are lost. In case o = ⊥ (or not specified) Unitecolumn performs an inner
join. With the inner join, Unitecolumn loses all rows from R and S that do not
find a join partner, since R and S are dropped after the join. Note that restrict-
ing the join to foreign key relations as other DELs do, does not prevent this

70 K. Herrmann et al.

information loss. A foreign key does not guarantee that every row in the refer-
enced table is actually referenced by at least one row in the referencing table.
Figure 3 also shows an example of Unitecolumn. The tables Base0 and Address0
are inner joined to the table Person2 based on equal names. Since all persons
have an address in this example, no rows are lost.

. Addrow adds new rows to an existing table by
aggregating the data in the current rows. As parameter
Addrow(Ri, G, {(aj , fj(G,V)) |1 ≤ j ≤ m} , S) requires the name Ri of the orig-
inal table, the set of grouping columns G = {g1, . . . , gn} ⊆ Ri.C, a set of pairs of
column name aj and aggregations function fj , and optionally a new table name
S. Addrow produces new rows by grouping table Ri by all columns gk ∈ G and
calculating the values for the columns aj with the functions fj . The functions
fj may contain constants, the values of the grouping columns G, and aggregate
functions upon the remaining columns V = Ri.C \ G. If the new table name S
is specified, Addrow creates S with the newly produced rows and Ri remains
available, which is particularly necessary, when the newly created rows have a dif-
ferent set of columns than Ri.C. Otherwise, Addrow appends the new rows to Ri

to form its new version Ri+1. In this case, we require the column definitions of the
new rows to match the original table Ri, hence {g1, . . . , gn}∪{a1, . . . , am} = R.C.
In general, the set of grouping columns is also allowed to be empty resulting in
one group and hence, one new row.

Delrow removes rows from a given table. Delrow(Ri, cond) takes the name
of an existing table Ri and a condition cond. It removes all rows, which satisfy
the condition and evolves the table to Ri+1.

. Splitrow partitions a table horizontally. However,
its semantics is more general than standard horizontal partitioning [4]. The SMO
creates at most two partitions out of a given table – with the partitioning allowed
to be incomplete and overlapping – and removes the original table. More pre-
cisely, Splitrow(R, (S, condS) , (T, condT)) takes the name of the original table,
a pair of table name S and condition condS as specification of the first partition
and optionally a second pair (T, condT) as specification of the second partition.
Both conditions condS and condT are independent. If the original tables contain
rows that fulfill neither of the conditions, the resulting partitioning is incomplete.
Rows that fulfill both conditions are copied resulting in overlapping partitions.
In case both conditions hold for all rows, i.e., condS = � and condT = �, T
is a complete copy of S. Hence, Splitrow subsumes the functionality of a copy
operations that can be found in other DELs. If condT is not specified, Splitrow

does not create table T .
Uniterow is the inverse operation of Splitrow; it merges two given tables

along the row dimension and removes the original tables. As parameters
Uniterow(R,S, T) requires, the names R and S of the original tables and the
name T of the resulting table. The schema of R and S are not required to by
equivalent. In case both schemas differ, T contains null values (ω) in the corre-
sponding cells. Uniterow eliminates duplicates in T . In case R and S contain
equivalent rows, these rows will show up only once in T .

CoDEL – A Relationally Complete Language for Database Evolution 71

. The last two SMOs rename schema elements.
Rentable(R,R′) renames the table with the name R into R′. Rencolumn(Ri, c, c

′)
renames the column c in table Ri into c′, which results in table Ri+1.

We use the semantics definition, as summarized in Table 1, to show the rela-
tional completeness of CoDEL in the following section.

3 Relational Completeness

To show the relational completeness of CoDEL, we argue that it is at least as
powerful as (Sect. 1), which is relationally complete by definition. There is

.
The Del (R) operation from is trivial, since it is equivalent to CoDEL’s
Deltable(R). On the contrary, Add (R, ε) from is more complex, as ε covers
the power of the relational algebra. Since both the relational algebra and CoDEL
are closed languages, it is reasonable to address each operation of the relational
algebra separately. We show that, for each operation from the relational algebra,
there is a semantically equivalent sequence of SMOs in CoDEL.

We assume the basic relational algebra [5] and add common extensions like
the extended projection, aggregation, and outer joins. However, we intentionally
exclude other extensions like the transitive closure and sorting. CoDEL does not
cover these extensions, since CoDEL is non-recursive and set-based. We maintain
these characteristics, since they proved to be a reasonable trade-off between
expressiveness and usability, however, they are open for further research. With
respect to implementations based on current database management systems,
the distinction between different types of null values [19] is not considered. For
instance Uniterow adds null values in columns, which existed in only one input
table, losing the information, whether a value was null before or did not exist at
all. The following sections will consider all constructs from the relational algebra
including the chosen extensions and show that CoDEL is capable to obtain the
semantically equivalent results.

Relation: R The basic elements of the relational algebra are relations. They
contain the data and are directly accessible by CoDEL as tables. Whenever one
table is required multiple times within a relational algebra expression, CoDEL
allows to copy them using Splitrow(R, (S,�) , (T, �)).

Selection: σcond(R) The selection returns the subset of rows from R, which sat-
isfy the condition cond. CoDEL’s Splitrow(R, (S, cond)) is semantically equiv-
alent, which directly follows from the semantics definition in Table 1.

Rename: ρc’/c(Ri) Renaming a column is subsumed by the extended projec-
tions, however, we include it here for completeness. CoDEL’s obvious semantic
equivalent according to Table 1 is Rencolumn(Ri, c, c

′).

72 K. Herrmann et al.

Extended Projection: πP(R) We will immediately consider the extended
projection, as it subsumes the traditional projection. The extended projection
defines a new set of columns, whose values are computed by functions depending
on the existing columns. Assume the projection P = {fk (R.C) → ak|1 ≤ k ≤ m}
with n = |R.C|. The CoDEL sequence below, realizes such an extended
projection. Without loss of generality, we use for-loops to iterate over the
attribute sets. Since this is only schema depending and data independent, it
does not extend the expressiveness of the DEL but is simply a short notation.

1: for k = [1..m] do
2: Addcolumn(Ri+k−1, a

′
k, fk (r1, . . . , rn));

3: for rj ∈ R.C do
4: Delcolumn(Ri+m+j−1, rj);
5: for k = [1..m] do
6: Rencolumn(Ri+m+n+k−1, a

′
k, ak);

7: for k = [i.. (i + 2m + n − 1)] do
8: Deltable(Rk);

Ri+1
2=πr1,...,rn,f1(r1,...,rn)→a′

1
(Ri) (1)

Ri+m
1,2
=πr1,...,rn,f1(r1,...,rn)→a′

1,...,fm(r1,...,rn)→a′
m

(Ri) (2)

Ri+m+1
4=πr2,...,rn,a′

1,...,a′
m

(Ri+m) (3)

Ri+m+n
3,4
=πa′

1,...,a′
m

(Ri+m) = πf1(r1,...,rn)→a′
1,...,fm(r1,...,rn)→a′

m
(Ri) (4)

Ri+m+n+1
6=πa′

1→a1,a′
2,...,a′

m
(Ri+m+n) (5)

Ri+m+n+m
5,6
=πa′

1→a1,...,a′
m→am

(Ri+m+n)

=πf1(Ri.C)→a1,...,fm(Ri.C)→am
(Ri) (6)

The first SMO adds a new column, with a masked name, for each column of
the output table. This allows to compute the new values based on all existing
ones. Afterwards, we drop the old columns, rename the new columns to their
unmasked name, and remove all intermediate tables. Applying the semantics
definitions of the CoDEL SMOs results in the desired extended projection, as
shown above. The concrete line of the CoDEL sequence, which is applied in the
semantics computation, is indicated by the numbers above the equal signs.

Outer Join: R � pS The outer join is another common extension to the
traditional relational algebra. Beyond the rows according to an inner join, it also
includes those rows in the result, which did not find a join partner. The missing
values for columns of the other table are filled with null values ω respectively.
Obviously, CoDEL’s Unitecolumn(R,S, T, p, �) is semantically equivalent, since
we explicitly introduced the option to perform outer joins.

CoDEL – A Relationally Complete Language for Database Evolution 73

Cross Product: R × S The cross product produces a row in the output table
for each pair of rows from the input tables. The following sequence of CoDEL
SMOs is semantically equivalent as shown below.

1: Addcolumn(Ri, j, 1);
2: Addcolumn(Sk, j, 1);
3: Unitecolumn(Ri+1, Sk+1, T0, Ri+1.j = Sk+1.j,⊥);
4: Delcolumn(T0, j);

Ri+1
1=πr1,...,rn,1→j (Ri) = {(r1, . . . , rn, 1) | (r1, . . . , rn) ∈ Ri} (7)

Sk+1
2= {(s1, . . . , sm, 1) | (s1, . . . , sm) ∈ Sk} (8)

T0
3=Ri+1 ��Ri+1.j=Sk+1.j Sk+1

= {(r1, . . . , rn, s1, . . . , sm, 1) | (r1, . . . , rn) ∈ Ri, (s1, . . . , sm) ∈ Sk} (9)

T1
4= {(r1, . . . , rn, s1, . . . , sm) | (r1, . . . , rn) ∈ Ri, (s1, . . . , sm) ∈ Sk}
=R × S (10)

We add a new column j to both tables with j �∈ Ri.C and j �∈ Sk.C and
the default value 1 to perform an inner join on j. Since its value is always 1,
there will be one row in the output table for each pair of rows from the two
input tables. We remove the additional column j and finally show the semantic
equivalence between the relational cross product and the presented sequence of
CoDEL SMOs.

Aggregate: γG,F (R) The aggregation is another typical extension to the rela-
tional algebra. The rows are grouped by one set of columns G = {g1, . . . , gn} ⊆
R.C. Additional columns A = {ai|1 ≤ i ≤ p} are computed by functions F =
{fi (G,V) → ai|ai ∈ A} with V = {v1, . . . , vm} = R.C \ G. These functions may
contain values from grouping columns G, aggregate functions on the remaining
columns in V , constants, and arithmetic functions. CoDEL contains a dedicated
operation Addrow(R,G,F, S). It writes the result of the aggregation to the new
table S. According to the semantics definition in Table 1, the semantics of Addrow

equals the discussed aggregation semantics from the relational algebra.

Union: R ∪ S The relational union, merges the rows from both input tables
to the one output table including an elimination of duplicates. Using the
SMO Uniterow, CoDEL provides a semantic equivalent to the relational union
operation.

1: Uniterow(R,S, T);

T
1=πR.C (R) ∪ πS.C (S) = R ∪ S (11)

Please note, that the union in the relational algebra requires R and S to have
identical sets of attributes (R.C = S.C), which justifies the simplification step.

74 K. Herrmann et al.

Difference: R \ S The relational difference returns all rows, which occur in the
first, but not in the second table. Analogous to the union, it requires R and S to
have identical sets of columns (R.C = S.C). The following CoDEL sequence is
semantically equivalent to the relational difference.

1: Addcolumn(Sk, j, 1);
2: Unitecolumn(Ri, Sk+1, T0, (Ri.c1 = Sk+1.c1 ∧ . . . ∧ Ri.cn = Sk+1.cn) ,�);
3: Delrow(T0, j �= ω);
4: Delcolumn(T1, j);

Sk+1
1=πs1,...,sm,1→j (Sk) (12)

T0
2=Ri � Sk+1

= {(r1, . . . , rn, 1) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn, 1) ∈ Sk+1}
∪ {(r1, . . . , rn, 1) | (r1, . . . , rn) �∈ Ri, (r1, . . . , rn, 1) ∈ Sk+1}
∪ {(r1, . . . , rn, ω) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn, 1) �∈ Sk+1} (13)

T1
3=σ¬(j �=ω) (T0) = σ(j=ω) (T0)
= {(r1, . . . , rn, ω) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn, 1) �∈ Sk+1} (14)

T2
4=πR.C (T1)
= {(r1, . . . , rn) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn) �∈ Sk} = Ri \ Sk (15)

We add a new column j to Sk with j �∈ Sk.C and the default value 1. The outer
join on all columns ci ∈ Ri.C = Sk.C is applicable, since the initial column sets
are equal. Due to the nature of the outer join, the resulting table contains all
rows which were in at least one of the two input tables. However, all rows, which
occurred in Sk have the value 1 in the column j and are removed by the third
SMO. All rows which occurred exclusively in R have a null value ω in the column
j and remain as result. Applying the semantics definition of the SMOs finally
leads to the relational difference operation. Please note, that (r1, . . . , rn) �∈ Sk

is equal to (r1, . . . , rn, 1) �∈ Sk+1 due to the first step.
Finally, we successfully showed that CoDEL provides a semantic equivalent

for each relational algebra expression, which makes it equally expressive as .
Hence, it is relationally complete and a sound foundation for further research.

4 Related Work

Database evolution is a well recognized topic in the database research commu-
nity [13,18]. There are a number of approaches to increase comfort and efficiency
in database evolution, for instance by defining a schema evolution aware query
language [14]. Another approach is to define database evolution languages graph-
based [12]. This allows modeling dependencies between different artifacts in the
information system and applying changes globally. Furthermore, MeDEA [10]

CoDEL – A Relationally Complete Language for Database Evolution 75

provides a general framework to describe database evolution in the context of
evolving applications. MoDEF [17] basically introduces an IDE extension to
automate the co-evolution of the evolving client schemas and the store.

Currently, PRISM [7] appears to provide the most advanced database evo-
lution tool including an SMO-based DEL. PRISM was first introduced in 2008
and focused on the plain database evolution [8]. Later, the authors extended
it to PRISM++, which includes the modification of constraints and update
rewriting [6]. To benchmark database evolution languages and tools, researchers
also analyzed the evolution histories of Wikimedia and other open source
projects [9,16]. Finally, database versioning extends the ideas of database evo-
lution to allow both forward and backward compatibility between the different
versions of evolving schemas [15]. Another extension of PRISM takes a first
step into this direction by answering queries on former schema versions accord-
ing to the current data [11]. The presented DEL CoDEL inherits the principle
style of SMOs from PRISM. However, PRISM is not relationally complete, while
CoDEL is. This additional characteristic provided by CoDEL is highly valuable
with respect to further research, particularly in the field of automated data-
base versioning based on SMOs, where falling back on common DDL and DML
evolution scripts is not an option.

5 Conclusion

Agile software development methods embrace the change. While software devel-
opers find support in refactoring methods to evolve their software, database
developers still have to fiddle with DDL/DML scripts to evolve schema and
data of a productive database consistently. Adding evolution support to a DBMS
involves the design of a database evolution language (DEL). In this paper we
considered the relational completeness of DELs for relational databases. Rela-
tional completeness is an important property of DELs. DELs that are incom-
plete in this respect, can force the user back to the manual evolution process
based on DDL and DML limiting the utility of the evolution functionality. We
presented the relationally complete DEL CoDEL. We detailed its formal defini-
tion and showed its relational completeness. CoDEL is to our best knowledge the
first well-defined, relationally complete DEL. CoDEL can serve as a reference
language for productive implementations of database evolution in DBMSs.

The solid formal base of CoDEL is also important for research and develop-
ment beyond database evolution. For instance in database versioning, multiple
clients access the same data in different schema versions. Database versioning
requires invertible SMOs, so that the database system can translate data back
and forth between schema versions. For the investigation of the invertibility of
SMOs a solid formal definition of the SMOs is a prerequisite. Hence, CoDEL
offers a good starting point towards database versioning. For the near future,
however, we hope CoDEL helps to jump start more implementations of proper
database evolution features in the DBMSs on the market, so that agile develop-
ment methods final arrive at the database layer.

76 K. Herrmann et al.

References

1. Ambler, S.W.: Whence data management? Dr. Dobb’s J. 390, 79 (2006)
2. Ambler, S.W., Sadalage, P.J.: Refactoring Databases: Evolutionary Database

Design. Addison-Wesley Signature. Addison-Wesley, New York (2006). ISBN: 978-
0321774514

3. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Sutherland, J., Thomas, D., Schwaber, K.: Manifesto for Agile
Software Development (2001)

4. Ceri, S., Negri, M., Pelagatti, G.: Horizontal data partitioning in database design.
In: SIGMOD Conference, pp. 128–136 (1982)

5. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 15(3), 162–166 (1970)

6. Curino, C.A., Moon, H.J., Deutsch, A., Zaniolo, C.: Update rewriting and Integrity
constraint maintenance in a schema evolution support system: PRISM++. VLDB
Endow. 4(2), 117–128 (2010)

7. Curino, C.A., Moon, H.J., Deutsch, A., Zaniolo, C.: Automating the database
schema evolution process. VLDB J. 22(1), 73–98 (2012)

8. Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the
PRISM workbench. VLDB Endow. 1(1), 761–772 (2008)

9. Curino, C.A., Tanca, L., Moon, H.J., Zaniolo, C.: Schema evolution in wikipedia:
toward a web information system benchmark. In: ICEIS, pp. 323–332 (2008)

10. Domı́nguez, E., Lloret, J., Rubio, Á.L., Zapata, M.A.: MeDEA: a database evolu-
tion architecture with traceability. Data Knowl. Eng. 65(3), 419–441 (2008)

11. Moon, H.J., Curino, C.A., Ham, M., Zaniolo, C.: PRIMA - archiving and querying
historical data with evolving schemas. In: SIGMOD Conference, pp. 1019–1022
(2009)

12. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Aggistalis, K., Pechlivani, F., Vas-
siliou, Y.: Language extensions for the automation of database schema evolution.
In: ICEIS, pp. 74–81 (2008)

13. Rahm, E., Bernstein, P.A.: An online bibliography on schema evolution. SIGMOD
Rec. 35(4), 30–31 (2006)

14. Roddick, J.F.: SQL/SE - a query language extension for databases supporting
schema evolution. SIGMOD Rec. 21(3), 10–16 (1992)

15. Roddick, J.F.: A survey of schema versioning issues for database systems. Inf.
Softw. Technol. 37(7), 383–393 (1995)

16. Skoulis, I., Vassiliadis, P., Zarras, A.: Open-source databases: within, outside, or
beyond Lehman’s laws of software evolution? In: Jarke, M., Mylopoulos, J., Quix,
C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014.
LNCS, vol. 8484, pp. 379–393. Springer, Heidelberg (2014)

17. Terwilliger, J.F., Bernstein, P.A., Unnithan, A.: Worry-free database upgrades. In:
SIGMOD Conference, p. 1191 (2010)

18. Terwilliger, J.F., Cleve, A., Curino, C.A.: How clean is your sandbox? In: Hu, Z.,
de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 1–23. Springer, Heidelberg
(2012)

19. Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28(1), 142–
166 (1984)

Multidimensional Modeling and OLAP

Implementation of Multidimensional
Databases in Column-Oriented

NoSQL Systems

Max Chevalier, Mohammed El Malki(&), Arlind Kopliku,
Olivier Teste, and Ronan Tournier

Université de Toulouse, IRIT UMR 5505, 118 Route de Narbonne,
31062 Toulouse, France

{Max.Chevalier,Mohammed.Malki,Arlind.Kopliku,

Olivier.Teste,Ronan.Tournier}@irit.fr

Abstract. NoSQL (Not Only SQL) systems are becoming popular due to known
advantages such as horizontal scalability and elasticity. In this paper, we study the
implementation of multidimensional data warehouses based on column-oriented
NoSQL systems. To do this, we define a set of mapping rules that transform a
conceptual multidimensional data model into a logical column-oriented model.
We consider three ways (three sub-models) to structure conceptual multidimen-
sional data model into a column-oriented model. Then, we show an implemen-
tation of the proposed rules. Finally, we focus, through experiment, on data
loading, model-to-model conversion and OLAP cuboid computation.

Keywords: Data warehouse design � Multidimensional modelling � NoSQL
databases � Model transformation rules � Column-Oriented NoSQL model

1 Introduction

NoSQL solutions have proven some clear advantages with respect to relational data-
base management systems (RDBMS) [17]. Nowadays, research attention has turned
towards using these systems for storing “big” data and analyzing it. This work joins
substantial ongoing work on the area on the use of NoSQL solutions for data ware-
housing [4, 6, 18, 19].

In this paper, we study one category of NoSQL stores: column-oriented systems
such as HBase [11] or Cassandra [13] and inspired by Bigtable [2]. Indeed,
column-oriented systems are one of the most famous families of NoSQL systems. They
allow more flexibility in schema design using a vertical data organization with column
families and with no static non-mutable schema defined in advance, i.e. the data
schema can evolve. However, although, column-oriented databases are declared
schemaless (no schema needed), most use cases require some sort of data model.

When it comes to data warehouses, previous research has shown that it can be
instantiated with different logical models [12]. Data warehousing relies mostly on

© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 79–91, 2015.
DOI: 10.1007/978-3-319-23135-8_6

multidimensional data modelling which is a conceptual1 model that uses facts to model
an analysis subject and dimensions for analysis axes. Until now there is no work (only
an initial attempt in [4]) that considers the direct mapping from the multidimensional
conceptual model to NoSQL logical models. A possible way to do this is to map the
multidimensional model to relational databases and then export the latter into a column
oriented system. In this paper we study the direct transformation of the data warehouse
conceptual model into a column-oriented system (see Fig. 1).

NoSQL models are more expressive than relational models i.e. we do not only have
to describe data and relations; we also have a flexible data structure (e.g. nested
elements). In this context, more than one approach is candidate as a mapping of the
multidimensional model. Moreover, evolving requirements in terms of analyses or data
query performance might demand switching from one logical model to another.
Finally, analysis queries can be very time consuming and speeding their execution
consists generally in precomputing these queries (called aggregates) and this
pre-computation requires also a logical model.

In this paper, we focus on data models for data warehousing. We study three logical
column-oriented models. We provide a formalism for expressing each of these
sub-models which enables us to generate mapping from the conceptual model. We
show how we can instantiate data warehouses in column-oriented stores. Our study
includes evaluation for these models on data loading, model-to-model conversions and
the computation of pre-computed aggregates (also called OLAP cuboids grouped in an
OLAP cube).

Our motivation is multiple. The implementation of OLAP systems with NoSQL
systems is a new alternative [7, 8, 16]. These systems have several advantages such as
increased flexibility and scalability. The increasing scientific research in this direction
demands for formalization, common-agreement models and evaluations of different
NoSQL systems.

Fig. 1. From multidimensional conceptual model to logical models.

1 Conceptual level data models describe data in a generic way regardless the information technologies
used, while logical level models use a specific technique for implementing the conceptual level.

80 M. Chevalier et al.

We can summarize our contribution as follows:

– logical notations for NoSQL systems where structures and values are clearly
separated;

– three column-oriented approaches to map conceptual multidimensional data ware-
house schemas to a logical model;

– the conversions from one approach to another at the logical level through the
definition of a set of transformation rules;

– the computation of the OLAP cube using NoSQL technologies.

2 State of the Art

Several research works have focused on translating data warehousing concepts into a
relational (R-OLAP) logical level [3, 6] as multidimensional databases are mostly
implemented using the relational technologies. Mapping rules are used to convert
structures of the conceptual level (facts, dimensions and hierarchies) into a logical
model based on relations. Moreover, many works have focused on implementing
logical optimization methods based on pre-computed aggregates (also called materi-
alized views) [1]. However, R-OLAP implementations suffer from scaling-up to large
data volumes (i.e. “Big Data”) and research is currently underway for new solutions
such as using NoSQL systems [17]. Our approach aims at revisiting these processes for
automatically implementing multidimensional conceptual models directly into NoSQL
models.

Other studies investigate the process of transforming relational databases into a
NoSQL logical model (see Fig. 1). In [14], the author proposed an approach for
transforming a relational database into a column-oriented NoSQL database. In [18], the
author studies “denormalizing” data into schema-free databases. However, these
approaches never consider the conceptual model of data warehouses. They are limited
to the logical level, i.e. transforming a relational model into a column-oriented model.
More specifically, the duality fact/dimension requires guaranteeing a number of con-
straints usually handled by the relational integrity constraints and these constraints
cannot be considered when using the logical level as starting point.

This study highlights that there are currently no approaches for automatically and
directly transforming a data warehouse multidimensional conceptual model into a
NoSQL logical model. It is possible to transform multidimensional conceptual models
into a logical relational model, and then to transform this relational model into a logical
NoSQL model. However, this transformation using the relational model as a pivot
model has not been formalized as both transformations were studied independently of
each other. Also, this indirect approach can be tedious.

We can also cite several recent works that are aimed at developing data warehouses
in NoSQL systems whether columns-oriented [9], document-oriented [5], or key-value
oriented [19]. However, the main goal of these papers is to propose benchmarks. These
studies have not focused on the model transformation process and they only focus one
NoSQL model. These models [5, 9, 19] require the relational model to be generated
first before the abstraction step.

Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems 81

In our approach we consider the instatiation of datawarehouses on column-oriented
stores. The conceptual model is mapped directly on three different logical models.

3 Multidimensional Conceptual Model and Cube

3.1 Conceptual Multidimensional Model

To ensure robust translation rules we present the multidimensional model used at the
conceptual level [10, 16].

A multidimensional schema, namely E, is defined by (FE, DE, StarE) where:

– FE={F1,…, Fn} is a finite set of facts,
– DE={D1,…, Dm} is a finite set of dimensions,
– StarE: FE →2D

E
is a function that associates facts of FE to sets of dimensions along

which it can be analyzed (2D
E
is the power set of DE).

A dimension, denoted Di2DE (abusively noted as D), is defined by (ND, AD, HD)
where:

– ND is the name of the dimension,
– AD ¼ aD1 ; . . .; a

D
u

� � [{idD, AllD} is a set of dimension attributes,
– HD ¼ HD

1 ; . . .;H
D
v

� �
is a set hierarchies.

A hierarchy of the dimension D, denoted Hi2HD, is defined by (NHi, ParamHi,
WeakHi) where:

– NHi is the name of the hierarchy,
– ParamHi ¼ \idD; pHi

1 ; . . .; pHi
vi ;All

D [is an ordered set of vi+2 attributes which are
called parameters of the relevant graduation scale of the hierarchy, 8k2[1..vi],
pHi
k 2AD.

– WeakHi: ParamHi → 2A
D�ParamHi is a function associating with each parameter

possibly one or more weak attributes.

A fact, F2FE, is defined by (NF, MF) where:

– NF is the name of the fact,
– MF={f1(m1),…, fv(mv)} is a set of measures, each associated with an aggregation

function fi.

3.2 OLAP Cube

The pre-computed aggregate lattice or OLAP cube (also called sometimes the OLAP
cuboid lattice) corresponds to a set of views or cuboids each being a subset of
dimensions associated to a subset of measures of one fact. Technically, each view or
cuboid corresponds to an analysis query. OLAP cuboids are pre-computed to speed up
analysis query execution and thus facilitate analyzing data according to dimension

82 M. Chevalier et al.

combinations. Measure data is grouped according to the dimensions and aggregation
functions are used to summarize the measure data according to these groups. Formally,
an OLAP cuboid O is derived from E, O = (FO,DO) such that:

– FO is a fact derived from F (F2FE) with a subset of measures, MO�MF.
– DO�2Star

EðFÞ�DE is a subset of dimensions of DE. More precisely, DO is one of the
combinations of the dimensions associated to the fact F (StarE(F)).

If we generate OLAP cuboids using all dimension combinations of one fact, we have
an OLAP cuboid lattice [1, 3] (also called a pre-computed aggregate lattice or cube).

3.3 Case Study

We use an excerpt of the star schema benchmark [5]. It consists in a monitoring of a
sales system. Orders are placed by customers and the lines of the orders are analyzed.
A line consists in a part (a product) bought from a supplier and sold to a customer at a
specific date. The conceptual schema of this case study is presented in Fig. 2.

The fact FLineOrder is defined by (LineOrder, {SUM(Quantity), SUM(Discount),
SUM(Revenue), SUM(Tax)}) and it is analyzed according to four dimensions, each
consisting of several hierarchical levels (called detail levels or parameters):

– The Customer dimension (DCustomer) with parameters Customer (along with the
weak attribute Name), City, Region and Nation,

Fig. 2. Graphical notations [10, 16] of the multidimensional conceptual model.

Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems 83

– The Part dimension (DPart) with parameters Partkey (with weak attributes Size and
Prod_Name), Category, Brand and Type; organized using two hierarchies HBrand
and HCateg,

– The Date dimension (DDate) with parameters Date, Month (with a weak attribute,
MonthName) and Year,

– The Supplier dimension (DSupplier) with parameters Supplier (with weak attributes
Name), City, Region and Nation.

From this schema, called ESSB, we can define cuboids, for instance:

– (FLineOrder, {DCustomer, DDate, DSupplier }),
– (FLineOrder, {DCustomer, DDate }).

4 Modeling a Data Warehouse Using Column-Oriented
Stores

4.1 Column-Oriented Data Model Formalism

Column-Oriented NoSQL models provide tables with a flexible schema (untyped
columns) where the number of columns may vary between each record (called rows).
Each row has a row key and a set of column families. Physical storage is organized
according to these column families, hence a “vertical partitioning” of the data. A col-
umn family consists of a set of columns, each associated with a qualifier (name) and an
atomic value. Every value can be “versioned” using a timestamp. The flexibility of a
column-oriented NoSQL database enables managing the absence of some columns
between the different table rows. However, in the context of multidimensional data
storage, this rarely happens as data is usually highly structured. This implies that the
structure of a column family (i.e. the set of columns of the column family) will be the
same for all table rows.

The following notations are used for describing a NoSQL model with respect to the
definition of conceptual models. In addition to attribute names and values that are also
present in the conceptual model, we focus here on the structure of rows.

We define a row RT as a combination of:

– T: the table where the row belongs
– F: the column families of the table
– K: all column names
– V: all atomic values of the column
– key: the row identifier
– P: all attributes mapped as a combination of row, column-family and column name.

A attribute path p2P p 2 P. is described as p=RT.f:q:v where f2F, q2K and v2V.
The example displayed in Fig. 3 uses a tree-like representation and describes a row (ri)
identified by the key named Key (with a value v0) in a table called SSB.

84 M. Chevalier et al.

4.2 Column-Oriented Models for Data Warehousing

In column-oriented stores, the data model is determined not only by its attributes and
values, but also by the column families that group attributes (i.e. columns). In relational
database models, mapping from conceptual to logical structures is more straightfor-
ward. In column-oriented stores, there are several candidate approaches, which can
differ on the tables and structures used. So far, no logical model has been proven better
than another one and no mapping rules are widely accepted.

In this section, we present three logical column-oriented models. The first two
models do not split data. Data contains redundancy as all the data about one fact and its
related dimensions is stored in one table. The first model (MLC0) stores data grouped in
a unique column family. In the second model (MLC1), we use one column family for
each dimension and one dedicated for the fact. The third model (MLC2) splits data into
multiple tables therefore reducing redundancy.

– MLC0: For each fact, all related dimensions attributes and all measures are com-
bined in one table and one column family. We call this approach the “simple flat
model”.

– MLC1 (inspired from [4]): For each fact, all attributes of one dimension are stored
in one column family dedicated to the dimension. All fact attributes (measures) are
stored in one column family dedicated to the fact attributes. Note that there are
different ways to organize data in column families and this one of them.

Fig. 3. Tree-like partial representation of a column-oriented table.

Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems 85

– MLC2: For each fact and its dimensions, we store data in dedicated tables one per
dimension and one for the fact table. We keep these tables simple: one column
family only. The fact table will have references to the dimension tables. We call this
model the “shattered model”. This model has known advantages such as less
storage space usage, but it can slow down querying as joins in NoSQL can be
problematic.

4.3 Mappings with the Conceptual Model

The formalism that we have defined earlier enables us to define a mapping from the
conceptual multidimensional model to each of our three logical models. Let O = (FO,
DO) be a cuboid for a multidimensional model E built from the fact F with dimensions
in DE.

Table 1 shows how we can map any measure m of FO and any dimension D of DO

into all 3 models MLC0, MLC1 and MLC2. Let T be a generic table, TD a table for the
dimension D, TF a table for a fact F and cf a generic column family.

The above mappings are detailed in the following paragraphs.

Conceptual to MLC0. To instantiate this model from the conceptual model, three
rules are applied:

– Each cuboid O (FO and its dimensions DO) is translated into a table T with only one
column family cf.

– Each measure m2FO is translated into an attribute of cf, i.e. RT.cf:m.
– For all dimensions D2DO, each attribute d2AD of the dimension D is converted into

an attribute (a column) of cf, i.e. RT.cf:d.

Conceptual to MLC1. To instantiate this model from the conceptual model, five
rules are applied:

– Each cuboid O (FO and their dimensions DO) is translated into a table T.
– The table contains one column family (denoted cfF) for the fact F.
– The table contains one column family (denoted cfD) for every dimension D2DO.
– Each measure m2FO is translated into an attribute (a column) in cfF, i.e. R

T.cfF:m.
– For all dimensions D2DO, each attribute d2AD of the dimension D is converted into

an attribute (a column) of cfD, i.e.R
T.cfD:d.

Table 1. Transformation rules from the conceptual model to the logical models.

Conceptual:
multidimensional model

Logical: Column-Oriented models
MLC0 MLC1 MLC2

8D2DO, 8d2AD

(d is an attribute of D)
d→ RT.
cf:d

d→ RT.
cfD:d

d ! RTD
:cf :d ^ if d ¼ idDthend !

FTF
:cf :d

8m2FO m→ RT.
cf.m

m→ RT.
cfF:m

m→ RTF
:cf :m

86 M. Chevalier et al.

Conceptual to MLC2. To instantiate this model from the conceptual model, three
rules are applied:

– Given a cuboid O, the fact FO is translated into a table TF with one column family cf
and each dimension D2DO is translated into a table TD with one column family cfD
per table.

– Each measure m2FO is translated into an attribute of the column family cf in the
table TF, i.e. RTF

.cf:m.
– For all dimensions D2DO, each attribute d2AD of the dimension D is converted into

an attribute (a column) in the column family cf of the table TD, i.e. RTD
.cf:d. And if

d is the root parameter (idD), the attribute is also translated as an attribute in the
column family cf of the table TF, i.e. RTF

.cf:d.

5 Experiments

Our goal is firstly to validate the instantiation of data warehouses with our three logical
approaches. Secondly we consider model conversion from one model MLCi to another
MLCj, with j≠i. Thirdly we generate OLAP cuboids and we compare the computation
effort required by each models. We use the Star Schema Benchmark, SSB [5, 15], that
is popular for generating data for decision support systems. We use HBase, one of the
most popular column-oriented system, as NosQL storage system.

5.1 Protocol

Data. Data is generated using an extended version of SSB to generate raw data
specific to our models in normalized and denormalized formats. This is very convenient
for our experimental purposes.

The benchmark models a simple product retail example and corresponds to a typical
decision support star-schema. It contains one fact table “LineOrder” and 4 dimensions
“Customer”, “Supplier”, “Part” and “Date” (see Fig. 2 for an excerpt). The dimensions
are composed of hierarchies; e.g. Date is organized according to one hierarchy of
attributes (d_date, d_month, d_year).

We use different scale factors (sf), namely sf=1, sf=10, sf=100 in our experiments.
The scale factor sf=1 generates approximately 107 lines for the “LineOrder” fact, for
sf=10 we have approximately 108 lines and so on. For example, using the split model
we will have (sf x 107) lines for “LineOrder” and a lot less for the dimensions which is
typical as facts contain a lot more information than dimensions.

Data Loading. Data is loaded into HBase using native instructions. These are sup-
posed to load data faster when loading from files. The current version of HBase loads
data with our logical model from CSV2

files.

2 CSV, Comma separated values files.

Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems 87

Lattice Computation. To compute the aggregate lattice, we use Hive on top of
HBase to ease query writing as Hive queries are SQL-like. Four levels of aggregates
are computed on top of the detailed facts (see Fig. 5). These aggregates are: all
combinations of 3 dimensions, all combinations of 2 dimensions, all combinations of 1
dimension, and all data (detailed fact data). At each aggregation level, we apply
aggregation functions: max, min, sum and count on all measures.

Hardware. The experiments are done on a cluster composed of 3 PCs (4 core-i5,
8 GB RAM, 2 × 2 TB disks, 1 Gb/s network), each being a worker node and one of
them also acting as dispatcher (name node).

5.2 Experimental Results

In Table 2 we summarize data loading times by model and scale factor. We can observe at
scale factor SF1, we have 107 lines on each line order table for a 997 MB disk memory
usage for MLC2 (3.9 GB for both MLC0 and MLC1). At scale factor SF10 and SF100 we
have respectively 108 lines and 109 lines and 9.97 GB (39 GB MLC0 and MLC1) and
97.7 GB (390 GBMLC0 and MLC1) for of disk memory usage. We observe that memory
usage is lower in the MLC2 model. This is explained by the absence of redundancy in the
dimensions. For all scale factors, the “dimension” tables “Customers”, “Supplier”, “Part”
and “Date” have respectively 50000, 3333, 3333333 and 2556 records.

In Fig. 4, we show the time needed to convert one model to another model using
SF1 data. When we convert data from MLC0 to MLC1 and vice-versa conversion
times are comparable. To transform data from MLC0 to MLC1 we records are just split
on the several columns families and during the reverse (MLC1 to MLC0), we fuse
records. The conversion is more complicated when we consider MLC0 and MLC2. To
convert MLC0 data into MLC2 we need to split data in multiple tables: we have to
apply 5 projections on original data and select only distinct keys for dimensions.
Although, we produce less data (in memory usage), more processing time is needed
than when converting data to MLC1. Converting from MLC2 to MLC0 is the slowest
process by far. This is due to the fact that most NoSQL systems (including HBase) do
not natively support joins efficiently.

Table 2. Data loading time and storage space required for each model in HBase.

MLC0 MLC1 MLC2

SF1 (sf=1, 107 lines) 380 s / 3.9 GB 402 s / 3.9 GB 264 s / 0.997 GB
SF10 (sf=10 108 lines) 3458 s / 39 GB 3562 s / 39 GB 2765 s / 9.97 GB
SF100 (sf=100, 109 lines) 39075 s / 390 GB 39716 s / 390 GB 33097 s / 99.7 GB

Fig. 4. Inter-model conversion times using SF1.

88 M. Chevalier et al.

In Fig. 5, we sumarize experimental results concerning the computation of the
OLAP cuboids at different levels of the OLAP lattice for SF1 using data from the
model MLC0. We report the time needed to compute the cuboid and the number of
records it contains.

We observe as expected that the number of records decreases from one level to the
lower level. The same is true for computation time. We need between 550 and 642 s to
compute the cuboids at the first level (using 3 dimensions). We need between 78 s and
480 s at the second layer (using 2 dimensions). And we only need between 2 and 23 s
to compute the cuboids at the third and fourth level (using 1 and 0 dimensions).

OLAP cube computation using the model MLC1 provides similar results. The
performance is significantly lower with the MLC2 model due to joins. These differ-
ences involve only the first layer of the OLAP lattice (the layer composed of cuboids
constructed using 3 dimensions), as the other layers can be computed from the latter
(aggregation functions used are all commutative [1]). Table 3 summarizes these dif-
ferences in computation time. We also report the full results for computing all lattice
aggregates using MLC0 in Fig. 5 where arrows show computation paths (e.g. the view

Fig. 5. Computation time and record count for each OLAP cuboid (letters are dimension names:
C=Customer, S=Supplier, D=Date, P=Part/Product).

Table 3. Computation time of the first layer of OLAP lattice (3 dimension combinations).

MLC1 MLC M2 MLC M0

CSD 556 s 4892 s 564 s
CSP 642 s 5487 s 664 s
CPD 573 s 4992 s 576 s
SPD 540 s 4471 s 561 s
Dimensions used: C = Customer,
S = Supplier, D = Date, P = Part
(i.e. Product)

Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems 89

or cuboid CD can be computed from all cuboids that combine the C and D dimensions
(Customer and Date): CSD and CPD).

Discussion. We observe that comparable times are required to load data in one model
with the conversion times (except of MLC2 to MLC0). We also observe “reasonable3”
times for computing OLAP cuboids. These observations are important. At one hand,
we show that we can instantiate data warehouses in document-oriented data systems.
On the other, we can think of cuboids of OLAP cube lattice that can be computed in
parallel with a chosen data model.

6 Conclusion

In this paper, we studied instantiating multidimensional data warehouses using NoSQL
column-oriented systems. We proposed three approaches to implement column-oriented
logical model. Using a simple formalism that separate structures from values, we described
mappings from the conceptual level (described using a multidimensional conceptual
schema) to the logical level (described using NoSQL column-oriented logical schemas).

Our experimental work illustrates the instantiation of a data warehouse with each of
our three approaches. Each model has its own weaknesses and strengths. The shattered
model (MLC2) uses less disk space, but it is quite inefficient when it comes to
answering queries (most requiring joins in this case). The simple models MLC0 and
MLC1 do not show significant performance differences. Converting from one model to
another is shown to be easy and comparable in time to “data loading from scratch”.
One conversion is significantly very time consuming and corresponds to merging data
from multiple tables (MLC2) into one unique table. Interesting results were also
obtained when computing the OLAP cuboid lattice using the column-oriented models
and they are reasonable enough for a big data framework.

For future work, we will consider logical models in alternative NoSQL architec-
tures, i.e. document-oriented models as well as graph-oriented models. Moreover, after
exploring data warehouse instantiation across different NoSQL systems, we need to
generalize across all these logical models. We need a simple formalism to express
model differences and we need to compare models within each paradigm and across
paradigms (e.g. document versus column). Finally we intend to study others query
languages frameworks such as PIG or PHOENIX and compare them with Hive.

Acknowledgements. These studies are supported by the ANRT funding under CIFRE-
Capgemini partnership.

References

1. Bosworth, A., Gray, J., Layman, A., Pirahesh, H.: Data cube: a relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Technical Report MSR-TR-95-22,
Microsoft Research February 1995

3 “Reasonable time” for a Big Data environment running on commodity hardware (without an optical
fiber network between nodes, i.e. the recommended 10,000 GB/s).

90 M. Chevalier et al.

2. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM
Trans. Comput. Syst. 26(2), 4:1–4:26 (2008)

3. Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology. SIGMOD
Rec. 26, 65–74 (1997)

4. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Implementing
multidimensional data warehouses into NoSQL. In: 17th International Conference on
Enterprise Information Systems, vol. DISI

5. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Benchmark for OLAP on
NoSQL technologies, comparing NoSQL multidimensional data warehousing solutions. In:
9th International Conference on Research Challenges in Information Science (RCIS), IEEE

6. Colliat, G.: Olap, relational and multidimensional database systems. SIGMOD Rec. 25(3),
64–69 (1996). http://doi.acm.org/10.1145/234889.234901

7. Cuzzocrea, A., Bellatreche, L., Song, I.Y.: Data warehousing and olap over bigdata: current
challenges and future research directions. In: Proceedings of the Sixteenth International Workshop
on Data Warehousing and OLAP, pp. 67–70. DOLAP 2013, ACM, New York, NY, USA (2013)

8. Cuzzocrea, A., Song, I.Y., Davis, K.C.: Analytics over large-scale multidimensionaldata: the
big data revolution! In: Proceedings of the ACM 14th International Workshop on Data
Warehousing and OLAP, pp. 101–104. DOLAP 2011, ACM, New York, NY, USA (2011)

9. Dehdouh, K., Boussaid, O., Bentayeb, F.: Columnar NoSQL star schema benchmark. In: Ait
Ameur, Y., Bellatreche, L., Papadopoulos, G.A. (eds.) MEDI 2014. LNCS, vol. 8748,
pp. 281–288. Springer, Heidelberg (2014)

10. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual modelfor data
warehouses. Int. J. Coop. Inf. Syst. 7, 215–247 (1998)

11. Harter, T., Borthakur, D., Dong, S., Aiyer, A.S., Tang, L., Arpaci-Dusseau, A.C.,
Arpaci-Dusseau, R.H.: Analysis of hdfs under hbase: a facebook messages casestudy. In:
FAST, pp. 199–212 (2014)

12. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional
Modeling. John Wiley & Sons, Inc. (2013)

13. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS
Oper. Syst. Rev. 44(2), 35–40 (2010)

14. Li, C.: Transforming relational database into hbase: a case study. In: International Conference
on Software Engineering and Service Sciences (ICSESS), IEEE, pp. 683–687 (2010)

15. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark and augmented
fact table indexing. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895,
pp. 237–252. Springer, Heidelberg (2009)

16. Ravat, F., Teste, O., Tournier, R., Zuruh, G.: Algebraic and graphic languages for OLAP
manipulations. IJDWM 4(1), 17–46 (2008)

17. Stonebraker, M.: New opportunities for new sql. Commun. ACM 55(11), 10–11 (2012)
18. Vajk, T., Feher, P., Fekete, K., Charaf, H.: Denormalizing data into schema-free databases.

In: 4th International Conference on Cognitive Infocommunications (CogInfoCom), IEEE,
pp. 747–752 (2013)

19. Zhao, H., Ye, X.: A Practice of TPC-DS multidimensional implementation on NoSQL
database systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2013. LNCS, vol. 8391,
pp. 93–108. Springer, Heidelberg (2014)

Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems 91

http://doi.acm.org/10.1145/234889.234901

A Framework for Building OLAP
Cubes on Graphs

Amine Ghrab1,2,3(B), Oscar Romero3, Sabri Skhiri1,
Alejandro Vaisman4, and Esteban Zimányi2

1 EURA NOVA R&D, Mont-Saint-Guibert, Belgium
{amine.ghrab,sabri.skhiri}@euranova.eu

2 Université Libre de Bruxelles, Brussels, Belgium
ezimanyi@ulb.ac.be

3 Universitat Politècnica de Catalunya, Barcelona, Spain
oromero@essi.upc.edu

4 Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
avaisman@itba.edu.ar

Abstract. Graphs are widespread structures providing a powerful
abstraction for modeling networked data. Large and complex graphs
have emerged in various domains such as social networks, bioinformat-
ics, and chemical data. However, current warehousing frameworks are not
equipped to handle efficiently the multidimensional modeling and analy-
sis of complex graph data. In this paper, we propose a novel framework
for building OLAP cubes from graph data and analyzing the graph topo-
logical properties. The framework supports the extraction and design
of the candidate multidimensional spaces in property graphs. Besides
property graphs, a new database model tailored for multidimensional
modeling and enabling the exploration of additional candidate multidi-
mensional spaces is introduced. We present novel techniques for OLAP
aggregation of the graph, and discuss the case of dimension hierarchies
in graphs. Furthermore, the architecture and the implementation of our
graph warehousing framework are presented and show the effectiveness
of our approach.

1 Introduction

As the business and social environments become more interconnected and
dynamic, graph-structured data become more prominent. Graphs have the ben-
efit of revealing valuable insights from their topological properties. A new class
of business facts and measures could be explored within the multidimensional
space built from graphs. In addition, a multitude of emerging decision mak-
ing problems can be represented using graph models and solved using graph
algorithms. Common problems are fraud detection, trends prediction, real-time
recommendation and Master Data Management just to name a few [1,2]. For
example, by examining the eigenvector centrality in a social network, an analyst
can detect influential people or communities. This information could then be

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 92–105, 2015.
DOI: 10.1007/978-3-319-23135-8 7

A Framework for Building OLAP Cubes on Graphs 93

reused for recommendation and targeted advertising. In financial services, com-
plex graph patterns could also be used to represent and detect complex rings
which might lead to discover fraudulent transactions. Such scenarios rely mostly
on the analysis of complex relationships between data entities, which is difficult
to formulate and expensive to process using traditional relational systems [1].
We experience thus a growing need to integrate graph data within decision sup-
port systems. Such integration will help decision makers get an extended view
and thus better understanding of their business environments and make more
informed decisions.

Current decision support systems often rely on data stored in the organi-
zation’s data warehouse. Data in the data warehouse is modeled following the
multidimensional model, represented using the cube metaphor and interactively
queried using the OLAP paradigm. However, traditional decision making sys-
tems, and particularly data warehousing solutions were initially developed to
support relational data, and are not equipped for the efficient analysis and
aggregation of graph properties. To extend current decision support systems
with graph data and gain new insights over graphs, we need to design a novel
OLAP technique aware of the specific properties of graphs.

Many approaches were proposed in the literature to extend current decision
support systems with graphs [3–5]. They suggested the first foundations for
building OLAP cubes on graphs. However, their techniques focused mostly on
homogeneous graphs (i.e., graphs where all nodes are of the same type, and all
edges are the same), and the OLAP analysis focus mainly on the graph topology
as the measure of interest [3–5]. In such cases, all the attributes of the graph
elements are considered as the dimensions and are used for aggregating the graph
and performing its multi-perspective analysis. However, real-world graphs are
complex and often heterogeneous. In this paper, we extend the state of-the-art
to heterogeneous graphs (i.e., graphs where nodes and edges could be of different
types to represent different real-world entities, and the different relationships
between them). Therefore, not all attributes could be considered as dimensions
through which the graph could be examined. We also examine a new class of
measures to get additional insights from the graph topology. We extend the
analysis capabilities on graphs by integrating GRAD, an analysis-oriented graph
database model [6,7]. GRAD natively supports the representation of hierarchies
and the analysis of the content of nodes. We use these characteristics to support
dimension hierarchies and build additional OLAP cubes on graphs. We propose
our novel technique for building OLAP cubes on graphs. Thereby equipping
decision makers with the capability of performing effective multi-level/multi-
perspectives analysis of their graph data and examining new business facts.
Our main contributions in this paper are summarized as follows:

– We define the multidimensional concepts for graph data, and propose novel
techniques for extracting the candidate multidimensional concepts and build-
ing graph cubes from property graphs.

– We present an extension of the property graph model, tailored for multidimen-
sional analysis, and examine the additional candidate graph cubes brought by

94 A. Ghrab et al.

this extension. We further extend our work to support dimension hierarchies
within graphs.

– We suggest a graph data warehousing architecture, and provide an effective
prototypical implementation of our techniques for building OLAP cubes.

The remaining of this paper is structured as follows: Sect. 2 presents our
running example. In Sect. 3, we formally define the multidimensional structures
on graphs. Section 4 presents our technique for extracting potential multidimen-
sional spaces and building graph cubes on property graphs. In Sect. 5 we propose
a technique for building OLAP cubes on novel graph database model, and extend
our approach to support dimension hierarchies in graphs. Section 6 presents
the architecture and implementation of our proof-of-concept graph warehous-
ing framework. Section 7 discusses related work. Finally, Sect. 8 sketches future
work and concludes the paper.

2 Running Example

We illustrate the analysis opportunities brought by graphs using a movie graph.
The original dataset was published by the GroupLens research group.1 The
resulting graph contains movies with attributes, such as the year of release,
titles, ratings and scores from different communities etc. Each movie is linked
to its actors with an edge that contains the rank of the actor on the movie.
We further enrich the dataset with information about actors’ birth date and
nationality, and movies country from the Movie Database website.2 Figure 1(a)
shows a subgraph of the movie graph. We start with a simple and flat multidi-
mensional schema shown in Fig. 1(b). We introduce in Sect. 5 a more complete
schema supporting hierarchies and enabling more advanced analysis.

ACTS
Website: RT

ranking:1
rating:4.3

(a) (b)

Label: MOVIE
ID: 5684

Title: Interstellar
Rdate: 11/2014
Country:USA

Label: ACTOR
ID: Michael_Caine

Nat: UK
BDate: 1933
Gender: Male

Label: ACTOR
ID: Anne_Hathaway

Nat: USA
BDate: 1982

Gender: Female

ACTS
Website: RT

ranking:1
rating:4.5

ACTS
Website: MC

ranking:1
rating: 3.9

Label: MOVIE
ID: 4981

Title: Now You See Me
Rdate: 05/2013
Country:USA

Label: ACTOR
ID: Mark_Ruffalo

Nat: USA
BDate: 1967
Gender: Male

ACTS
Website: RT

ranking:1
rating: 4.1

Label: MOVIE
ID: 4354

Title: The Avengers
Rdate: 05/2012
Country:USA

ACTS
Website: MC

ranking:1
rating: 3.9

Label: ACTOR
ID: Chris_Hemsworth

Nat: AUS
BDate: 1983
Gender: Male

ACTS
Website: MC

ranking:1
rating: 4.2

Ranking
Rating

PerformanceMovieID
Title
ReleaseDate
Country

Movie

ActorID
Nationality
DateOfBirth
Gender

Actor

WebsiteID
PageURL

Website

Fig. 1. A sample movie graph

1 http://grouplens.org/datasets/movielens.
2 https://www.themoviedb.org/.

http://grouplens.org/datasets/movielens
https://www.themoviedb.org/

A Framework for Building OLAP Cubes on Graphs 95

3 Multidimensional Concepts on Graphs

In this section we formally define the multidimensional structures in the context
of heterogeneous attributed graphs. We start with dimension levels.

Definition 1 [Dimension Level]. A level is a pair Li = 〈name,Pi〉, where
name is the name of the level, and P is the aggregation pattern. P = (T,C) is
a pair, where T is the pattern’s topology and C are the constraints applied on
its content (i.e. attributes). P is used to identify all graph elements that belong
to the dimension’s level and that should be merged after roll-up. �

Dimensions provide the possible perspectives for the analysis of the graph topol-
ogy and content. In graphs, we distinguish two types of dimensions: (1) Node-
based dimensions, which are represented by the attributes of the nodes, and (2)
Edge-based dimensions, which are represented by the attribute of the edges. We
define a dimension as follows:

Definition 2 [Dimension]. A dimension is defined as D = 〈name,L,R〉, where
L = {L1, ..., Ln, All} is the set of the dimension levels. R is a partial order on the
elements of L and describes a directed acyclic graph defining the hierarchy and
the aggregation direction between the dimension’s levels Li. The base level L1

and highest level All are located at the ends of the partial order. �

In the multidimensional model, a measure is the basic unit of data that is placed
in the multidimensional space and examined through the dimensions.

Definition 3 [Measures]. A measure m is identified by the triple 〈name,F ,A〉.
It is computed over a graph G ∈ G using a function F as follows: F : G −→
Dom(m). In graphs, F could be a graph-specific function such the PageRank algo-
rithm. A is the aggregation function (e.g., SUM, AVG etc.) used to compute an
aggregated value of the measure. �

Multiple classification for graph measures were proposed in the literature, such
as the classification by the aggregation type (i.e., distributive, algebraic and
holistic) [3]. Here we propose a new classification of graph measures, based on
the type and the computation algorithm.

– Content-Based Measures: They are extracted from the attributes of graph
elements. These measures are similar to the traditional measures and do not
capture the graph topology. For example, the average rating of a movie and
the average rank of an actor are content-based measures.

– Graph-Specific Measures: They capture the topological properties of
graphs and are obtained by applying graph algorithms. They could be clas-
sified according to the type of the output as either (1) numerical, where the
output is a numerical value such as the value of the page-rank, or (2) topo-
logical, where the measure is represented using graph structures such as the
path between a pair of nodes. The second possible classification makes the dis-
tinction between (1) local measures, which are computed separately for graph

96 A. Ghrab et al.

nodes or edges (e.g., the centrality of an actor), and (2) global measures which
are computed for the whole graph (e.g., the diameter or number of cycles of
the graph).

– The Graph as a Measure: As discussed by Chen et al. in [3], the graph
itself could be considered as a measure examined from different perspectives
and at different aggregation levels.

The cube metaphor is widely accepted as the underlying logical construct for
conventional multidimensional models. Here we define the concept of cube using
the notion of aggregate graphs defined as follows.

Definition 4 [Aggregate Graph]. An aggregate graph G′ of an initial graph G
is a graph obtained by condensing a subset of the nodes and edges of G. Hence,
each node corresponds to a set of nodes in G, and each edge is the result of fusion
of edges between pairs of aggregated nodes. �

Definition 5 [Graph Cube]. A graph cube corresponds to a set of aggregate
graphs obtained by restructuring the initial graph G in all possible aggregations.
Each cuboid is therefore represented as an aggregate graph of G. If an aggrega-
tion is performed from Li to Li+1, all graph elements that satisfy the aggregation
pattern Pi are aggregated in the same node. The edges are constructed after-
wards to link the pairs of nodes. Measures are then recomputed and placed on
the aggregate graph. �

In the next sections, we show how these formal definitions map to the specific
graph structures of each model and illustrate them with examples applied on
the movie graph. We discuss how to select a valid subset of attributes as the
candidate dimensions or measures, and build the different graph cubes.

4 Building OLAP Cubes on Property Graphs

Many current graph databases represent graphs using the property graphs model
[8]. We show in this section how we can use property graphs as a first foundation
for building OLAP cubes. However, since property graphs describe basic graph
structures (which are simple and oriented for storage and operational workloads),
their analysis capabilities are limited. For advanced multidimensional modeling
and analysis, richer graph structures are needed as we show later in Sect. 5.

Property graphs describe a directed, labeled and attributed multi-graph. For-
mally, we define a property graph as follows:

Definition 6 [Property Graph]. A property graph is represented as G =
(V, E ,Lv,Le, Λv, Λe), where:

– V is the set of nodes.
– E ⊆ V × V is the set of edges.
– Lv is the set of node labels and Le is the set of edge labels.
– Λv = {a1, a2, ..., am} is the set of node attributes represented as key/value

pairs. Each node vi ∈ V is associated with an attribute vector λvi
=

[a1, a2, ..., aj].

A Framework for Building OLAP Cubes on Graphs 97

– Λe = {b1, b2, ..., bn} is the set of edge attributes represented as key/value pairs.
Each edge ei ∈ E is associated with an attribute vector λei = [b1, b2, ..., bk]. �

A node vi ∈ V is represented as vi = (li, λvi
), where li ∈ Lv is the label and

λvi
is the set of attributes. Similarly, an edge ej ∈ E is represented as ej =

(vs, ve, lj , λej), where vs and ve are the start and end nodes respectively, lj ∈ Le

is its label and λei is its set of attributes. Each node (resp. edge) on the graph has
exactly one label. We introduce the concept of class (denoted Σi) to describe a
set of graph nodes that share the same label. For example, in the movie graph
of Fig. 1(a), we have two classes which are MOVIE and ACTOR.

Given a property graph G and a pair of nodes from two connected but distinct
classes of nodes, we explore the candidate dimensions, measures and cubes that
could be built by exploring the graph of these two classes. We denote dimensions
that span across two linked classes as inter-class dimensions, defined as follows.

Definition 7 [Inter-Class Dimensions]. Let G be a property graph, and
let vs ∈ Σs and ve ∈ Σe be a pair of nodes from two distinct classes. Let
ei = (vs, ve, li, λei) be an edge that relates vs and ve. The node-based dimensions
are the attributes of the two nodes vs and ve (i.e., λvs

= [a1, ..., ak] and λve
=

[a1, ..., al]). The candidate edge-based dimensions are a subset of the attributes
of the edge ei (i.e., λei = [b1, ..., bk]). �

Example 1 (Analysis of Rating and Ranking of Actors per Website and Movie).
Using the movie running example, the node-based dimensions are the attributes
λvMovie

= [ReleaseDate, Country] and λvActor
= [Nationality,DateOfBirth,

Gender]. For example, following the notation of Sect. 3, DGender = 〈Gender,L,
R〉, with the levels being the base level Gender and ALL. Therefore, all actor
nodes could be at the base level where they all have the attribute Gender, and
then could be grouped into two groups (i.e., a node for male actors, and a node
for female actors), and finally grouped in one node regardless the gender. The
edge-based dimension is represented by the λeACTS

= [Website] attribute of the
ACTS edge relating actors and movies.

The graph lattice enumerates all possible OLAP aggregations of the graph,
and is obtained by aggregating over all the inter-class dimensions. Figure 2 shows
the graph lattice applied to the graph of Fig. 4, considering the dimensions of
the previous example. Each node of the graph lattice represents an aggregate
graph, that is, a cuboid of the graph cube. We distinguish three special kinds of
aggregation on this graph (highlighted in Fig. 2), which are Movie-only aggre-
gations (i.e., only movie nodes are kept not fully aggregated to the All level),
ACTS-only aggregation and Actor-only aggregations.

Definition 8 [Inter-Class Measures]. Given a property graph G and a set of
edges E ⊂ E relating nodes of the classes Σs and Σe, a content-based measure mc

is computed by applying an aggregation function on the attributes ([b1, ..., bk])
of the edges ei ∈ E. The graph considered as a measure is obtained following
the graph lattice, and the graph-specific measures are obtained by applying a
graph algorithms on G, or one of its aggregate graphs. �

98 A. Ghrab et al.

Movie Aggregation

ACTS Edge Aggregation

Movie [Rdate: R, Country: C] Actor [DateOfBirth: D, Nationality: N, Gender:G]ACTS[Website: W] X X
([R, C], [W], [D,N,G])

([*, *], [*], [*,*])

([R, C], [W], [D, N,*]) ([R, C], [W], [D, *, G]) ([R, *], [W], [D, N, G]) ([*, C], [W], [D, N, G])

([R, *], [*], [*, *, *]) ([*, C], [*], [*, *, *]) ([*, *], [W], [*, *, *]) ([*, *], [*], [D, *, *]) ([*, *], [*], [*, N, *]) ([*, *], [*], [*, *, G])

([R, C], [W], [D,*,*]) ([R, C], [W], [*, N,*])

([R, C], [W], [*,*,*]) ([R, C], [*], [D,*,*])

([R, C], [*], [*,*,*]) ([R, *], [W], [*,*,*])

([R, *], [*], [D, N, G]) ([*, *], [W], [D, N, G])

([R, *], [*], [D, *, G]) ([*, *], [*], [D, N, G])

([*, *], [*], [D, *, G]) ([*, *], [*], [*, N, G])

Actor Aggregation

... ...([R, *], [W], [D, *, *])

...

...

...

Fig. 2. The graph lattice of the movie graph

In order to analyze the properties of the relationships between the graph enti-
ties, we focus here on the potential measures existing within the edges. Clearly,
we cannot assume that all attributes of the edges are dimensions. As shown
by the multidimensional schema of Fig. 1(b), the attribute Website of the edge
labeled ACTS could indeed be a dimension. However, the attributes ranking
and rating are rather considered as measures in the current analysis scenario.
We should note that the distinction between attributes that are dimensions and
attributes that are measures is not straightforward, and thus requires a modeling
effort from the designer to distinguish them.

Now we apply these dimensions and measures on the property graph of
Fig. 1(a), and follow the graph lattice of Fig. 2 in order to study the graph
cube reflecting the ranking and rating of actors in the movie graph. Figure 3(a)
shows the aggregate graph (i.e., graph cuboid) where movies are grouped by

ReleaseDate

Gender

DateOfBirth

F20002010

M
Avg

Ranking

1980 19901970

Movie
R:2000

Actor
D: 1980

G: M
ACTS

AvgRating: 4.1
AvgRanking: 2.8

Weight: 5

Actor
D:1970

G:F

ACTS
AvgRating: 3.5

AvgRanking: 2.6
Weight: 65

Actor
D: 1970

G: M

(Movie [R, *], ACTS [*], Actor [D, *, G])

Movie
R:2010

ACTS
AvgRating: 3.6

AvgRanking: 2.2
Weight: 72

(a) (b)

Movie

Actor
D:1980

G:M

ACTS
AvgRating: 3.8

AvgRanking: 2.9
Weight: 253

Actor
D:1980

G:F
ACTS

AvgRating: 3.2
AvgRanking: 3.2

Weight: 205

Actor
D:1970

G:M

ACTS
AvgRating: 4.0

AvgRanking: 3.5
Weight: 156

(Movie [*, *], ACTS[*], Actor [D, *, G])

(c)

Graph Aggregation
(Group Movies to ALL)

DateOfBirth

F

M

1980 19901970

Gender

Avg
Rating
Avg

Ranking

A

M
2010

A M
1990

A
M

2000

A

MA
1980

M

A
1990

F

A
1940

M

(d)

(e)
Avg

Rating

Fig. 3. OLAP aggregation of the movie graph and computation of the OLAP cubes

A Framework for Building OLAP Cubes on Graphs 99

release date and actors are grouped by birth date and gender. A correspond-
ing OLAP cube is shown in Fig. 3(b). The measures are AverageRanking and
AverageRating of actors, which can be examined through the three dimen-
sions left (i.e., ReleaseDate, DateOfBirth and Gender). We follow the graph
aggregation as depicted by Fig. 3(e) to get the graph (Fig. 3(c)) and the cuboid
(Fig. 3(d)) at the next aggregation level. On the lattice of Fig. 2, this aggregation
corresponds to the two nodes underlined and put in rectangle. Note here that for
graph-specific measures (e.g., closeness centrality of actors), the measures for the
upper-level could not be computed directly from the cube at a lower level, as the
computation function needs to traverse the aggregated graph itself to compute
the new value of the graph-specific measure.

5 Building OLAP Cubes on GRAD

Many graph models were proposed in the literature to abstract different types
of graphs and fit their particular analysis workloads [9]. In [6,7], we proposed
GRAD, an analysis-oriented graph database model that extends property graphs
with advanced graph structures, integrity constraints and a graph algebra. We
use GRAD as the foundation for the OLAP cubes extraction techniques we
present in this section.

As we discussed in the previous section, property graphs support OLAP
analysis of inter-classes facts. However, they fall short from supporting OLAP
analysis of the internal information stored within each node, or class of nodes.
Therefore, we focus in this section on the additional cubes and analysis capa-
bilities brought by GRAD. Note however that since GRAD extends property
graphs, the candidate multidimensional spaces and cubes discussed in the pre-
vious section could similarly be built using GRAD.

5.1 OLAP Cubes on GRAD

Due to space limitations, we briefly introduce here the main components of the
database model. In GRAD, we consider heterogeneous, attributed and labeled
graphs. Complex attributes are supported on the nodes and rich semantics is
explicitly expressed on the edges. The analysis process is centered around special
analytical structures, namely hypernodes and classes. Hypernodes represent real
world entities and are grouped within classes. Each analytics hypernode is an
induced subgraph grouping an entity node, all its attribute and literal nodes,
and all the edges between them. The core of a hypernode is the entity node
which contains the label and the identifier attributes of the real world entity.
Attribute nodes are attached to the entity node and denote the non-identifier,
and potentially multi-valued attributes of each entity (e.g., budget, revenue).
Literal nodes record the effective value of its corresponding attribute node. Rich
semantics are embedded on the graph edges such as multiplicities, hierarchical
and composition relationships.

100 A. Ghrab et al.

Definition 9 [GRAD Graph]. A GRAD graph is denoted as G = (V, E ,Lv,
Le, Λv, Λe), is formally defined as follows:

– V = (Ve ∪ Va ∪ Vl) is the set of nodes, with Ve being the set of entity nodes,
Va the set of attribute nodes, and Vl the set of literal nodes.

– Lv = {Ci, La} is the set of labels on entity and attribute nodes respectively.
– Λv = {b1, b2, ..., bn} is the set of entity node attributes represented as

key/value pairs. Each node is associated with a vector of j attributes
[b1, b2, ..., bj].

– E = (Ee ∪ Ea ∪ El) is the set of edges, with Ee being the set of entity edges,
Ea the set of attribute edges, and El the set of literal edges. All entity edges
on the graph share the same label.

– Λe = {b1, b2, ..., bm} is the set of edge attributes represented as key/value
pairs. Each edge is associated with a vector of k attributes [b1, b2, ..., bk]. �

Figure 4(a) illustrates a part of the movie graph modeled with GRAD. In this
example, Movie is an entity node, while Revenue is an attribute node attached to
Movie. The revenue has different values depending on a set of factors (location,
time, language etc.), and each value is stored separately in a literal node.

In the previous section, we used property graphs to study the candidate
multidimensional cubes between classes of nodes. Given a GRAD graph G and
a class of entity nodes Σi, we explore in this section the candidate dimensions,
measures and cubes that could be extracted from a single class Σi.

Definition 10 [Intra-Class Dimension]. Given a GRAD graph G, a class of
entity nodes Σi, and an entity node u ∈ Σi with IDu being the set of identifiers
attributes of u. Then we can extract distinct sets of candidate dimensions. Each
set of dimensions is the union between the attributes of the entity node and the
attributes of literal edge of a given attribute node. For a given attribute node
vi ∈ Va linked to the entity node u, where λi ⊂ Λe is the attributes of the literal
edge e ∈ El connected to vi, Dvi

= {IDu ∪ λi}. �

Amount

RevenueMovieID
Title
ReleaseDate

Movie

CityName
CityCode
Population

City

LanguageCode
LanguageName

Language

PeriodID
StartDate
EndDate

Period
60k

Location: BXL
Period: 12/14
Language: FR

Label: MOVIE
ID:{5684; Interstellar, 2014}

Revenue

80k

Location: ANT
Period: 12/14
Language: FL

250K

Location: NYC
Period: 11/14
Language: EN

SeriesID
Title
Revenue

Series
CountryName
Capital
Population

Country

(a) (b)

Fig. 4. Movies and actors’ graph

A Framework for Building OLAP Cubes on Graphs 101

Definition 11 [Intra-Class Measures]. They are defined by the triple 〈name,
F ,A〉 and are explored within each hypernode. The label of the attribute node is
the name of the measure (name ∈ La). The actual values of these measures are
embedded on the attributes of the literal nodes (F(v) ∈ [b1, b2, ..., bk]). �

Example 2 (Analysis of the Revenue of a Movie). Given the example of Fig. 4,
suppose an analyst need to analyze the revenue of movies following the multi-
dimensional schema of Fig. 4(b). Revenue is therefore considered as the name of
the measure, which is the same as the label of the attribute node Revenue. The
aggregation function is SUM . The values of the measures are stored within the
literal nodes linked to the Revenue attribute node and the function computing
the measure is the same as the one used to retrieve the value from the literal node.
The dimensions for the revenue measure are named Movie, Location, Period,
and Language. Given these dimensions, we can aggregate the graph to exam-
ine the value of revenue by navigating through the dimension hierarchy of the
Location dimension from City to Country as shown in Fig. 5(a), or by rolling
up to the level ALL of the language dimension as in Fig. 5(b). Concretely, at the
graph level, this operation will incur merging the corresponding literal storing
the measure values.

We distinguish here two types of graph aggregations: (1) Intra-hypernode
aggregation, where literal nodes and edges of the same attribute node are merged,
thus the dimensions is an attribute of the literal edges (e.g., revenue of a given
movie by language), (2) Inter-hypernode aggregation, where entity nodes could
be merged (e.g., revenue of all movies per given a city, period and language).

120k

Location: BE
Period: 12/14
Language: FR

Label: MOVIE
ID:5684; Interstellar

Revenue

160k

Location: BE
Period: 12/14
Language: FL

10M

Location: US
Period: 11/14
Language: EN

280k

Location: BE
Period: 12/14

Language: ALL

Label: MOVIE
ID:5684; Interstellar

Revenue10M

Location: US
Period: 12/14
Language: EN

(Movie, Language, Location = CN) (Movie, *, Location = CN)

(a) (b)

Fig. 5. Aggregation of revenue by language

5.2 Dimension Hierarchies on GRAD

In this subsection, we consider extending the OLAP analysis to support hierar-
chies within inter-class and intra-class dimensions.

– Dimension hierarchy for intra-class dimensions: Within each dimension (i.e.,
attribute location of revenue), we might have an inner hierarchy (e.g., City,
Region, and Country). Therefore, we can extend the lattice with these new
possible aggregations as shown in Fig. 5(a).

102 A. Ghrab et al.

Label: SERIES
ID: {1684; Mission: Impossible}

PartOf
Composition

Label:MOVIE
ID: {3623; Ghost Protocol}

Label:MOVIE
ID: {1186 ; Mission: Impossible III}

PartOf
Composition

L2: Series

L1: Movie

(Movie, Language, Location)

(*, *, *)

(Series, Language, *)

(Series, Language, Location)(Movies, *, Location) (Movie, Language, *)

(Series, *, Location)(Movie, *, *)

(*, *, Location) (*, Language, *)(Series, *, *)

(*, Language, Location)

(a) (b)

40M

Location: JP
Period: 10/12
Language: JP

Revenue

4.5M

Location: RU
Period: 10/12
Language: RU

1.2M

Location: ARG
Period: 05/06
Language: SP

Revenue

5.3M

Location: SP
Period: 05/06
Language: SP

Fig. 6. Dimension hierarchy between classes

– Dimension hierarchy for inter-class dimensions: Explored between distinct
classes of nodes. Within GRAD, specific types of edges such as composition
and aggregation could be explicitly defined. Therefore, classes of nodes related
by these specific relationships belong to the same dimension with the hierarchy
following the child-parent direction of these relationships. Figure 6(a) shows
the hierarchy of the movie dimension that is now composed by Movie and
Series levels. The updated lattice is shown in Fig. 6(b).

6 Framework Architecture and Implementation

In this section, we present our prototypical implementation of the OLAP cubes
extraction approach using Neo4j. The framework architecture is depicted in
Fig. 7. The major components of our implementation are described as follows:

1. Graph ETL: The graph is extracted from external data sources that might
have various formats (e.g., XML as for DBLP, or text files for MovieLens,
etc.). For the running example, we have developed two modules for extract-
ing and matching data from CSV files of MovieLens with data about actors
from The Movie Database. The data is then formatted following GRAD and
property graph structures before being loaded as the base graph on Neo4j.

2. Graph storage and materialization: The graph data is stored using multiple
Neo4j graph database instances. We use two particular databases, one to
store the graph at the base level and the other to keep the lattice. The other
instances store the aggregate graphs. However, we needed a database-per-
aggregate graph because Neo4j do not support materialized views on graph,
and could not separate between subgraphs of the same database.

3. Graph lookup and update: This component acts as a middleware between the
storage and processing layers. It loads the graph, at a given aggregation level,
from a Neo4j database into HDFS to prepare it for distributed processing
or aggregation. Once the processing is done, this layer stores the graph back
into a new Neo4j instance if the graph was aggregated, or updates the original
database if only some attributes were updated.

A Framework for Building OLAP Cubes on Graphs 103

Data Node

HDFS
(Temporary Graph Storage)

Graph Parsers

(MovieLens2GRAD)
(MovieLens2PGraphs)

Raw Data
(MovieLens) Graph ETL

Graph Visualization
(Web Interface)

Neo4j

Graph Lookup / Graph Update

Data Node

Neo4j

Data Node

Neo4j

GraphX
(Pagerank, Centrality...) Measures

Computation
Graph

Aggregation

Graph Storage

&

Materialization

GraphCube
(Graph Cubes Builder)

TheMovieDB

Fig. 7. Distributed OLAP cubes computation

4. Graph Aggregation and Measures Computation: Given a graph lattice, the
GraphCube module performs the graph aggregation to generate potential
graph cuboids as discussed through the paper. In order to efficiently com-
pute of the graph-specific measures (e.g., PageRank or closeness centrality),
we use the GraphX library. GraphX performs the iterative graph algorithms
in-memory and thus outperforms the other distributed graph libraries on large
scale graphs. Once the required graph measures are computed, the result is
persisted in the corresponding Neo4j instance using the previous layer.

7 Related Work

Graph Data Warehousing: The challenge of designing graph data warehousing
frameworks is part of the challenge of designing novel models and techniques for
enabling multidimensional analysis of Big Data [10]. Big Data extracted from
business and social environments is complex, scattered, dynamic, heterogeneous
and unstructured. Most of it falls outside the decision maker’s control. However,
as motivated by Abelló et al. [11], incorporating such data into the decision
process enables non-expert users to make well-informed decisions when required.
Our work provides a foundation for extending decision support to graph data.

Graph Database Modeling: Graph database modeling and querying is the founda-
tion for graph data warehousing. A survey of graph database models is provided
by Angles et al. [9]. Multiple native graph models and query languages (e.g.
GraphQL [12]) were developed to efficiently answer graph-oriented queries. In
this paper, we leveraged and extended the database model we defined on [7] for
graph data warehousing.

OLAP on Graphs : GraphOLAP is a conceptual framework for OLAP analy-
sis of a collection of homogeneous graphs [3]. Attributes of the snapshots are

104 A. Ghrab et al.

considered as the dimensions. Aggregations of the graph are performed by over-
laying a collection of graph snapshots. Dimensions are classified as topologi-
cal and informational. Informational OLAP aggregations consist in edge-centric
snapshot overlaying, thus only edges changes and no changes to the nodes are
made. Topological OLAP aggregations consist of merging nodes and edges by
navigating through the nodes hierarchy. Qu et al. introduced a more detailed
framework for topological OLAP analysis of graphs [13]. GraphCube [4] is a
framework for OLAP cubes computation and analysis through the different lev-
els of aggregations of a graph. It targets single, homogeneous, node-attributed
graphs. The framework introduced the cuboid and crossboid queries for build-
ing and analyzing the different graph cubes. Distributed Graph Cube is a dis-
tributed framework for graph cubes computation and aggregation implemented
using Spark and Hadoop [14]. Pagrol is a Map-Reduce framework for distributed
OLAP analysis of homogeneous attributed graphs [5]. Pagrol extended the model
of GraphCube by considering the attributes of the edges as dimensions. These
frameworks were designed to handle homogeneous graphs [3–5]. The attributes
of the graph elements are considered as the dimensions, and the graph cubes are
obtained by restructuring the initial graph in all possible aggregation. Yin et al.
[15] introduced a data warehousing model for heterogeneous graphs focusing
on edge-based dimensions. In this paper, we extended these frameworks to the
general case of heterogeneous graphs, and we discussed various techniques for
building graph cubes in different settings. In [16], authors introduced a frame-
work for OLAP on RDF data. They proposed GOLAP, a graph model for OLAP
on graphs, and FSPARQL an extension to SPARQL for OLAP querying of RDF
data. GOLAP introduced a rule-based approach for defining new dimensions on
the graph. The same technique could be integrated, as a pre-processing phase,
within our work to provide more candidate dimensions and measures.

8 Conclusion

In this paper, we proposed our contribution to graph warehousing by designing
novel techniques for building OLAP cubes on graphs. We applied our approach
on both property graphs and a more advanced graph database model tailored
for multidimensional modeling. We discussed techniques for OLAP aggregation
of the graph and tackled the case of dimension hierarchies in graphs. In addition,
we provided an overview of the architecture and implementation of our graph
warehousing framework.

Graph data warehousing is an emerging research field that brings various
challenges similar to traditional data warehousing (e.g. high dimensionality and
cubes materialization). However, the structural properties and unstructured
nature of graphs calls for the development of novel modeling and processing
paradigms. Our immediate future work is to enable multidimensional concepts
discovery on graphs within our framework. Yet, many remaining research direc-
tions are worth investigating to build industry-grade graph warehousing systems.
Among these directions we cite OLAP analysis of dynamic graphs and the defi-
nition of a proper OLAP algebra and query language for graphs.

A Framework for Building OLAP Cubes on Graphs 105

References

1. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media Inc,
Sebastopol (2013)

2. Petermann, A., Junghanns, M., Müller, R., Rahm, E.: Graph-based data integra-
tion and business intelligence with biiig. Proc. VLDB Endow. 7(13), 1577–1580
(2014)

3. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: a multi-dimensional
framework for graph data analysis. Knowl. Inf. Syst. 21(1), 41–63 (2009)

4. Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and OLAP mul-
tidimensional networks. In: Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pp. 853–864. ACM (2011)

5. Wang, Z., Fan, Q., Wang, H., Tan, K.L., Agrawal, D., El Abbadi, A.: Pagrol: paral-
lel graph olap over large-scale attributed graphs. In: 2014 IEEE 30th International
Conference on Data Engineering (ICDE), pp. 496–507, March 2014

6. Ghrab, A., Skhiri, S., Jouili, S., Zimányi, E.: An analytics-aware conceptual model
for evolving graphs. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS,
vol. 8057, pp. 1–12. Springer, Heidelberg (2013)

7. Ghrab, A., Romero, O., Skhiri, S., Zimányi, E.: Analytics-Aware Graph
Database Modeling, Technical report (2014) . http://research.euranova.eu/
scientific-publications

8. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bull. Am. Soc.
Inf. Sci. Technol. 36(6), 35–41 (2010)

9. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1:1–1:39 (2008)

10. Cuzzocrea, A., Bellatreche, L., Song, I.Y.: Data warehousing and OLAP over big
data: current challenges and future research directions. In: DOLAP 2013 Proceed-
ings of the Sixteenth International Workshop on Data Warehousing and OLAP,
pp. 67–70. ACM, New York (2013)

11. Abelló, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazón, J.N., Naumann,
F., Pedersen, T.B., Rizzi, S., Trujillo, J., Vassiliadis, P., Vossen, G.: Fusion cubes:
towards self-service business intelligence. IJDWM 9(2), 66–88 (2013)

12. He, H., Singh, A.: Query language and access methods for graph databases. In:
Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data. ADS, vol. 40,
pp. 125–160. Springer, Heidelberg (2010)

13. Qu, Q., Zhu, F., Yan, X., Han, J., Yu, P.S., Li, H.: Efficient topological OLAP on
information networks. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011,
Part I. LNCS, vol. 6587, pp. 389–403. Springer, Heidelberg (2011)

14. Denis, B., Ghrab, A., Skhiri, S.: A distributed approach for graph-oriented mul-
tidimensional analysis. In: IEEE International Conference on Big Data, pp. 9–16
(2013)

15. Yin, M., Wu, B., Zeng, Z.: HMGraph OLAP: a novel framework for multi-
dimensional heterogeneous network analysis. In: Proceedings of the 15th Inter-
national Workshop on Data Warehousing and OLAP, pp. 137–144. ACM (2012)

16. Beheshti, S.-M.-R., Benatallah, B., Motahari-Nezhad, H.R., Allahbakhsh, M.: A
framework and a language for on-line analytical processing on graphs. In: Wang,
X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp.
213–227. Springer, Heidelberg (2012)

http://research.euranova.eu/scientific-publications
http://research.euranova.eu/scientific-publications

A Generic Data Warehouse Architecture
for Analyzing Workflow Logs

Christian Koncilia1(B), Horst Pichler1, and Robert Wrembel2

1 Klagenfurt University, Institute of Informatics Systems, Klagenfurt, Austria
{christian.koncilia,horst.pichler}@aau.at

2 Poznan University of Technology, Institute of Computing Science, Poznań, Poland
Robert.Wrembel@cs.put.poznan.pl

Abstract. This paper proposes an approach to represent and analyze
the content of workflow logs in a data warehouse. When analyzing work-
flow logs one big problem arises: typically, an underlying workflow model
consists of loops (frequently interleaving), often implemented by using
goto-statements. These structures increase the number of possible exe-
cution paths significantly - in theory even indefinitely. In a naive Data
Warehouse (DWH) implementation one would represent all possible exe-
cution paths by means of a dimension. However, this would lead to a
huge or even infinite number of elements in the dimension. In this paper,
we present a novel approach for analyzing workflow logs including loops
and goto-statements.

1 Introduction

For over 20 years, data analysis has been performed by means of business intel-
ligence (BI) architectures [10] that include a data warehouse (DW) and various
on-line analytical processing (OLAP) applications (e.g., for trend analysis, trend
prediction, data mining, and social network analysis). In a DW, data are usually
organized as cubes, whose cells include values [38]. The cells are referenced by
values of dimensions that set up the context of an analysis. Typically, cell values
are computed by multiple aggregate and statistical functions.

Nowadays, information systems like workflow management systems, website
clickstreams repositories, or public transportation infrastructures generate huge
sets of data that are naturally ordered. This order implies the existence of various
patterns that are formed by values of some attributes, which both frequently bear
important information. For example, by discovering patterns in a workflow log
one could check whether a given real workflow conforms to a defined model, or
could enhance/improve/optimize an existing workflow [3]. By computing various
statistical measures of a node in a workflow, one could discover bottlenecks in a
system.

Data for which an order is important are commonly called sequential data.
There are two main research directions of sequential data analytics. The first
one focuses on developing data mining algorithms for discovering frequent or
interesting patterns in sequential data, e.g., [14,16,25,29–31]. The second one
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 106–119, 2015.
DOI: 10.1007/978-3-319-23135-8 8

A Generic Data Warehouse Architecture for Analyzing Workflow Logs 107

focuses on analyzing sequential data in traditional SQL-like way and on searching
for given (known) patterns, e.g., [1,4,23,24,32,33,36].

In this paper, we focus on the analysis of workflow logs by means of OLAP
techniques. Workflow Management Systems (WfMS) are being widely used by
many enterprises to improve business process definitions and automation. In
WfMS, objects arrive to a given task at certain time, they are processed there
for a certain period, and they may trigger follow-up tasks. A WfMS records
in a log all steps of a business process execution. Thus, the workflow log con-
tains processing information for all instances of activities of deployed workflow
instances. For example, a workflow log records which task in which business
process has been performed by which actor, and what was its processing time.
This information is most valuable for business performance measurement. There-
fore, being able to analyze workflow log data and explore orders between tasks
processing is an important requirement. Unfortunately, most of the existing ana-
lytical tools either focus on process mining (process discovery), e.g., [39,40] or
offer only basic log analysis functionality based on some aggregate and statistical
values [15]. For an OLAP-like analysis such functionalities are insufficient.

1.1 Motivation and Contribution

Standard data warehouses and OLAP techniques do not consider the sequential
nature of data stemming from a workflow log. For example, they neglect the fact
that a workflow execution consists of instances A, B, ..., and X and that there
is a given order A → B → ...X. The only way to overcome this obstacle while
computing some statistics about the workflow is to put all possible execution
paths into a dimension in a DW cube. This however, is not feasible if an under-
lying workflow model consists of branches and/or loops, because this results in
a significantly increased number of possible execution paths [15].

In order to have a sequential view on a process execution, execution paths
need to be captured. Figure 1 shows a simple illustration of some process
instances with variants. We can notice that some process instances are subjects
to similar execution patterns/behavior. Through these variants, we can find out

Fig. 1. Example of an event log

108 C. Koncilia et al.

the most frequent patterns (i.e., the abstraction from a concrete form which
keeps recurring in specific non-arbitrary contexts) as well as which of them per-
form well or badly. We can then define the best performing variants for a better
and more consistent process performance.

Workflow users and process managers are interested in business process-
oriented analysis. To produce the information of interest, huge amount of data
needs to be: (1) transformed from a workflow log format into a format suitable
for analysis, (2) loaded into a data warehouse, and (3) analyzed. In this paper
we contribute a Sequence Warehouse (SeWA) architecture and OLAP tools
to analyze data stemming from workflow logs, including process variants. We
focus on analyzing workflow logs (sequences of activities) of known patterns,
rather than discovering patterns in sequences. The Sequence Warehouse and the
tools we provide allow to overcome the obstacles caused by branches and loops
in a process. In details, our contribution includes:

1. a Data Manipulation Language (DML) and a Data Definition Language
(DDL) for Sequential SQL (S-SQL);

2. an interface to the DDL based on the XES workflow standard [2,41];
3. a XES importer to import workflow logs into our Process Warehouse;
4. a data structure called Sequence Cube (SQ) that enables users, in combina-

tion with S-SQL, to analyze a log of any workflow (composed of loops and
interleaving loops).

1.2 Related Work

As mentioned before, research on sequential data analytics has been focus-
ing on: (1) discovering patterns and (2) OLAP-like analysis. Some represen-
tative research contributions on mining sequential patterns in a data warehouse
include [20,25,27,31], whereas on mining data streams include [16,26,29,43].
An overview of these techniques can be found in [14,30]. The aforementioned
techniques are able to discover patterns in sequences but they do not support
typical OLAP-like analysis of sequential data, e.g., by means of SQL-like com-
mands. Thus, they are complementary to the contribution of this paper.

The first SQL-like query language for sequential data analysis, called
SEQUIN [35,36], allowed to aggregate sequences by means of the AGGREGATE
operator. Another language, called Sorted Relational Query Language (SRQL),
was proposed in [32]. This language supports the SEQUENCE BY operator
applied to ordering events in a sequence and creating a Sequence Cuboid (a
storage for sequences to be analyzed). The extension of SRQL is yet another
language - Simple Query Language for Time Series (SQL-TS) [33,34]. SQL-TS
extended SQL with new operators: CLUSTER BY - for clustering sequences and
AS - for expressing a searched sequence pattern.

Sequential data analysis has been researched also with respect to data models
and storage, e.g., [32,33,35,37]. [37] applies an object-relational model where
sequences are modeled by an enhanced abstract data type. In [32] sequences
are modeled as sorted relations. The query languages proposed in [33,35] allow

A Generic Data Warehouse Architecture for Analyzing Workflow Logs 109

typical OLTP selects on sequences and do not support OLAP analyzes. Further
extension towards sequence storage and analysis has been made in [11] that
proposed a general concept of a RFID warehouse. Unfortunately, no in-dept
discussion on RFID data storage and analysis was provided.

[17,18] also focused on data generated by RFID devices. [17] addressed the
problem of reducing the size of such data. They proposed techniques for con-
structing RFID cuboids and for computing higher level cuboids from lower level
ones. Based on this foundation, [18] proposed a language for analyzing paths
with aggregated measures. They focused on a relational implementation and
applied three tables to storing RFID data and their sequential orders. The pro-
posed approach lacks a formal data model and a query language for analyzing
sequences.

In [24], the S-OLAP model was proposed. It is based on the set of operators
for the purpose of analyzing patterns. The model was further extended in [12,
13] to analyze subway passenger flows. [12,13] contributed also an algorithm
for supporting ranking pattern-based aggregate queries. Data in the S-OLAP
model are organized in sequence cuboids, which represent answers to the so-
called Pattern-Based Aggregate queries.

[7,8] proposed a formal model for time point-based sequential data with the
definitions of a fact, measure, dimension, and a dimension hierarchy. Thus,
the model allows to analyze sequential data in an OLAP-like manner. In [6]
the Authors proposed an index supporting sub-sequence pattern queries. The
functionality of pattern matching is still under development in [7,8].

In [39] the authors propose to store process instances in cells of a process
cube. The process cube is constructed based on: (1) a process cube structure
that defines the “schema” of the cube, (2) a process cube view that is analogous
to a relational view, and (3) a materialized process cube view that is the process
cube view filled in with data coming from an event base. The process cube is
organized by 3 dimensions that are typical to a workflow, i.e., class type, event
class, and time window. They redefined typical OLAP operators to work on the
process cube, i.e., slice, dice, roll-up, and drill-down. The cells of the cube store
process instances. Process discovery algorithms run on the cells. In order to
analyze workflow logs coming from multiple WfMSs vendors, these logs have to
be transformed into a common, standardized structure. To this end, [41] proposes
an XML-based standard, called XES [2].

In the area of Complex Event Processing [9,42], stream cube [19] was devel-
oped to provide tools for OLAP analysis of stream data within a given time
window. [22,23] presented a more advanced concept, called E-Cube. It allows
to execute OLAP queries on data streams, also within a given time window.
E-Cube includes: a query language (called SEQ) allowing to query events of a
given pattern, a concept hierarchy allowing to compute coarser aggregates based
on finer ones, a hierarchical storage with data sharing, and a query optimizer.
SEQ enables grouping events by means of attributes and computing aggregate
functions like COUNT. Nonetheless, this approach has been developed for the
analysis of current data and is unable to perform OLAP-like analysis.

110 C. Koncilia et al.

Among commercial systems, only Oracle [4] and Teradata Aster [1] support
SQL-like pattern analysis in their OLAP engines. Teradata Aster was devel-
oped for the purpose of storing, processing, and analyzing big data based on
MapReduce. The query language, called SQL-MapReduce (SQL-MR), includes
the nPath clause that is applied to analyze sequences. Oracle together with IBM
defined an ANSI SQL standard for finding patterns within sequences stored
in tables [28]. To this end, the MATCH RECOGNIZE clause was proposed. It
allows to search for patterns, define patterns and pattern variables. Microsoft
StreamInsight [5] is another system that allows to discover patterns in a data
stream. However, the discovery has to be implemented in a procedural language.

To sum up, a unique feature that distinguishes our approach to analyzing
sequential data from the discussed ones is that our approach allows to construct
a sequence cube with a dimension representing patterns. The dimension is con-
structed dynamically on demand for a particular analysis being executed. The
dimension represents patterns with loops, joins, and branches. Moreover, our
approach, unlike most of the related ones, accepts workflow sequential data in
the industry XES standard.

2 Running Example

2.1 Support Process

Let us assume that a software company implemented a support process man-
agement system for keeping track of support requests, claims, and bug reports
for their product-lines. To keep track of support requests they implemented
a process-based ticket system which is fed by customers or selected key users
respectively. The process is depicted in Fig. 2. It contains interleaving loop-
structures and consists of the following steps:

Fig. 2. The support process

A Generic Data Warehouse Architecture for Analyzing Workflow Logs 111

– A - New Ticket (by role: Customers) - a new ticket has been reported, which
opens a new case.

– B - First Response (by role: Support) - the ticket’s content is quickly ana-
lyzed, corrected and remarked. Customers may be contacted by telephone for
additional questions. Finally, the support user selects the next step.

– C - Customer Clarification (by role: Customers) - it is executed when the case
is unclear or to fuzzy for support; additional information from the customer
is required.

– D - Help Required (by role: Support) - a simple help-request that can be
resolved by the first-level support.

– E - Product Analysis Required (by role: Products) - additional information
about the product is required to resolve this case. A product manager adds
information for a possible solution and returns the ticket to the support.

– F - Technical Evaluation Required (by role: Development) - deeper technical
knowledge is required to assess the ticket (which is usually a bug or prob-
lem). An expert developer or component lead adds information for a possible
solution and returns the ticket to the support.

– G - Review (by role: Support) - the supporter decides if the ticket can be
resolved or whether further information is required.

– H - Resolved (by role: Customer) - the customer gets the information. If she/he
is satisfied, then the case can be closed, otherwise another loop is entered.

– I - Resolved (by role: Customer) - the case is closed.

2.2 Event Log

Our event log is essentially an extraction and transformation of proprietary log
data (cmp. [41]). This results in an XES event log of maturity level 4, which
means that events have been recorded automatically, systematically, credibly,
and completely. Furthermore, it is guaranteed that process instances (cases) and
activity instances (steps, tasks) are supported in an explicit manner.

To save space, we do not show the XES-definition here, but only the concepts.
On a case level (= XES-trace) we extract the following case relevant information
entered by the reporter: ticket type, customer, priority, product affected, product
version, and component affected. On a task level (= XES-event) we store the
information presented in Fig. 1, which shows an example sequence of events
belonging to different cases. Each record represents a life cycle event (here only
either start or finish) of one of the steps in our process. Additionally, each event
type may hold additional data, entered by users throughout the process.

2.3 Example Queries

We aim at providing a tool for answering specific strategic questions which
encompass knowledge, or at least a strong suspicion, about the influence of
(common) executions patterns on critical performance factors (like customer sat-
isfaction or the qualification of support employees). To this end, the tool that we

112 C. Koncilia et al.

provide enables users to answer different OLAP-Query scenarios. For instance,
regarding the running example described in Sect. 2 our approach would be able
to answer the queries like:

– What are the cases where more than two loops over step ‘Review’ where
required?

– What are the cases where a deeper inquiry (second or third level) and pos-
sibly several loops where necessary before they could be resolved as a simple
‘Support Case’ in the step ‘Help Required’?

– What are the delayed cases with a long run time, with several ping-pongs in
between and a customer-declination at the end?

– What are the cases with a customer-declination with a prior ‘Customer Clar-
ification’?

Naturally, our approach allows a vice-versa view, which means that high-level
instance types can also be a result of any query, which can then be further
investigated by applying common OLAP-operations (e.g., drilling down into an
instance type to get more specific data).

3 Architecture

The SeWA architecture consists of three building blocks as depicted in Fig. 3:
(a) the user interface, (b) the three parts of the SeWA Engine, and (c) the SeWA
Warehouse. In this section, we will discuss these parts.

3.1 User Interface

The user interface enables the user to query the SeWA Warehouse. In our pro-
totypical implementation, the user interface is a web application that allows the
user to submit Sequential SQL (S-SQL) queries and depicts the result of a given
query. The S-SQL query language will be discussed later in Sect. 3.3.

3.2 DWH Model

The main part of our data warehouse model is the Sequence Cube (SQ). A SQ
consists of three parts: (a) a set of facts, (b) a set of dimensions, and (c) a
set of sequences. Facts and dimensions are defined as in any traditional data
warehouse. Facts are numerical measures that define what a user may analyze.
Dimensions define how facts may be analyzed. Each dimension has a hierarchical
structure composed of levels. For example, dimension Time may consist of levels
Day, Month, and Y ear, such that Day rolls up to Month that rolls up to Y ear.
Dimension Members (DM) are instances of a dimension hierarchy.

Each cube may consist of several sequences. These sequences are represented
in a set of sequences. The notion of a set of sequences requires more details about
sequences and patterns and will be discussed later.

A Generic Data Warehouse Architecture for Analyzing Workflow Logs 113

Fig. 3. The SeWA architecture

Example: for our running example this would lead to a sequence cube with
Time, and Employees modeled as traditional data warehouse dimensions. Fur-
thermore, we add a set of sequences called Instances to our sequence cube rep-
resenting the instances of the workflow.

3.3 SeWA Engine

The SeWA Engine is the core of our architecture. It consists of three building
blocks applied to: (a) importing workflow logs into the data warehouse, (b)
parsing and executing queries stated against the warehouse, and (c) caching
queries in order to improve performance. The next three sections will describe
the SeWA Engine in details.

XES Importer Each meaningful implementation of a workflow system provides
detailed information about all workflow instances by means of a log file. Such a
log may be stored in various formats, e.g., as a traditional .log file, in a database,
or in any other format. One widely known and implemented log format is MXML
[40]. However, the MXML format has several limitations, as discussed in [41].
Therefore, [41] proposes to use XES (eXtensible Event Stream) as standard
format for workflow logs.

[2] defines XES as “an XML-based standard for event logs”. The primary
purpose of XES was to serve as a standard format for process mining. However,
XES may be used to store different kinds of event based logs. XES consists of
four different building blocks:

1. Logs: the log object contains information associated with a process. Such a
process may be browsing a web site or a defined workflow.

2. Traces: a trace object describes one specific instance, e.g., it may contain
data about executing a workflow instance.

114 C. Koncilia et al.

3. Events: an event represents a single activity which has been executed during
the process. At least one event is part of a trace.

4. Attributes: store data assigned to a give element (log, trace, or event).

The implementation of our approach consists of a XES importer enabling the
user to easily import an XES formatted log file into our data warehouse system.
This importer iterates over all traces defined in the log file and creates a unique
instanceid for each trace. Next, all events stored in the log will be imported into
an event repository. Finally, all attributes will be read from the log and assigned
to the corresponding entities, i.e. a trace or an event.

After one or several XES log files have been imported into the data warehouse,
the user may define different sequences of events. A sequence basically consists of
three different elements: a unique name SCname, a set of grouping attrributes
AG = {A1, A2, . . . , An}, and a set of ordering attributes AO = {A1, A2, . . . , An}.
Grouping attributes are used to cluster events and ordering attributes are used
to order the events in a cluster. Each element of AG and AO is an element of
the attributes defined the XES file. In order to create a sequence we provide the
following DDL statement:

Create Sequence(SNname,AG,AO,XESname);

where SNname, AG, and AO correspond to the elements described in the
last paragraph. XESname represents the name of an imported XES log file.

Example: For our running example, we would create a sequence named sequ1,
using the grouping attribute CaseId and the ordering attribute TimeStamp.
Thus, if the XES log file has been named ticketing, we would create a sequence
with the following statement:

createsequence(′sequ1′, {CaseId}, {TimeStamp},′ ticketing′);

S-SQL to SQL. We developed a query language, called Sequential Structured
Query Language (S-SQL), as an extension of standard SQL. S-SQL enables the
user to easily query a data warehouse that stores data about traces and events,
as described in Sect. 3.3. S-SQL includes both, DDL and DML commands.

The DDL part has been extended with the Create Sequence() statement
(cf. Sect. 3.3). The DML part has been extended with several keywords enabling
users to formulate queries in order to analyze sequences using different functions,
like for instance HEAD(), TAIL(), or PATTERN().

We defined the S-SQL syntax using a parsing expression grammar (PEG).
Without giving details on how PEG for standard SQL looks like, S-SQL extends
SQL by means of SSQLClause that is defined as follows:

SSQLClause : : = (PBSClause ("AND" | "OR"))*

PBSClause

PBSClause : : = Patternclause Bindclauses

Sequenceclause

Patternclause : : = "PATTERN" Patternstring

Bindclauses : : = (Bindclause ‘,’ Bindclauses) |

Bindclause

A Generic Data Warehouse Architecture for Analyzing Workflow Logs 115

Sequenceclause : : = "ON SEQUENCE" String

Bindclause : : = "BIND" "(" CommaSepStrings ")"

"TO" DimensionLevel

Patternstring : : = "’" WildcardCSString "’"

DimensionLevel : : = String "." String

WildcardCSString : : "= ((String | Wildcard)‘,’)*

(String | Wildcard)

String : : = [a-z A-Z 0-9 _]+

CommaSepStrings : : "= (String ‘,’)* String

Wildcard : : = "*" | "?" | "+"

In the context of analyzing workflow data, the PATTERN() keyword is
of special interest. A pattern is a powerful way of querying sequential data in
general and workflow logs in particular. It is a string which describes a pattern
that traces have to fulfill in order to show up in the query result. A pattern
is defined as a comma separated string of placeholders. Each placeholder may
be either a string composed of alphanumerical characters or a wildcard. Valid
wildcards are ?, ∗, and +, where ? means any single event matches, ∗ means
any number of events matches, and + means any number of events greater
zero matches. Furthermore, each placeholder has to be bound to a dimension.
Multiple patterns may be defined and combined using boolean operators AND
and OR.

As S-SQL is an extension of SQL, standard SQL clauses may be used to
aggregate, filter, group, and sort data.

Example: let us consider an example S-SQL statement that select all traces
from our log file that fulfill the pattern ’a,∗,b’, as shown in Listing 1.1. All
elements of the pattern, i.e., a and b, represent a single event - the execution
of a single activity. Therefore, this S-SQL statement would select all traces that
are of any length and where the duration of the first event took no longer than
10 time units and where the duration of the last event took longer than 20 time
units.

Listing 1.1. Sample S-SQL query

SELECT ∗ FROM t1
WITH PATTERN ‘a ,∗ , b ’

BIND (a , b) TO in s t an c e s ON SEQUENCE sequ1
WHERE a . durat ion < 10 AND b . durat ion > 20 ;

Example: for our running example, we could also answer query “find cases
where more than two loops over step ‘Review’ where required”, as discussed in
Sect. 2. It simplementation in S-SQL is given in Listing 1.2.

Listing 1.2. S-SQL Query1

SELECT ∗ FROM t1
WITH PATTERN ‘a , b , ? , g , h , gh ,∗ ’

BIND (a , b , g , h) TO in s t an c e s ON SEQUENCE sequ1 ;

116 C. Koncilia et al.

Of course we could use a GROUPBY statement and aggregation functions
like AV G or SUM to add dimensions and aggregate the resulting facts along
different hierarchies.

Set of Sequences. As described before, each cube may consist of several
sequences which are stored in a set of sequences. The basic idea behind the
set of sequences is, that - when analyzing workflow logs - workflow instances will
not be spanned along a traditional dimension but will be considered as sequence
dimension.

Hierarchies of this sequence dimension could be built automatically on the
fly for each query stated. Currently, the prototype implemented does this in a
naive way, e.g. for a query stated that uses a pattern (as discussed in Sect. 3.3)
it will simply iterate through all elements (except the first and last) of the
pattern and group them pairwise. Each group will be replaced with a wildcard
‘∗’. Thus, a query that uses a pattern A,B,C,D,E will create the dimension
members A,B, ∗, E and A, ∗, E. The generated dimension members will then
form a dimension “A, ∗, E” → “A,B, ∗, E” → “A,B,C,D,E” where X → Y
means that Y rolls-up to X.

Caching Layer. We implemented a simple caching layer that is triggered each
time a query that consists of a pattern clause is stated. Due to space limitations,
this layer can only be briefly described here.

Basically it works as follows. First, a S-SQL query is decomposed into a
pattern clause and other elements. Second, the caching layer checks if the pattern
or its super-pattern is already in the cache. If one of the two conditions is true, we
consider this as a cache hit. For instance, the pattern S, ∗, E is a super-pattern
of the patterns S,A, ∗, E or S,A,B, ∗, E or S,A,B,C,E.

In case of a cache hit, we can simply use the result of this query as an interme-
diate query result. This intermediate result will then be used as an input for the
query stated in order to apply all other clauses, i.e. WHERE, GROUPBY , etc.

In case of a cache miss, the query will be stated against the data warehouse
without any filtering clauses, e.g. without applying the WHERE clause. The
intermediate result of this query will than be stored in the cache with an assigned
timestamp. Furthermore, this intermediate result serves as input for the query
stated in order to apply all other clauses. The currently implemented cache
management strategy is the Least Recently Used (LRU).

3.4 Implementation

All parts of the SeWA architecture (XES Importer, User Interface, as well as the
S-SQL DDL and DML extensions) have been implemented using PHP, the PHP
PEG package1 (a package used for defining PEGs - parsing expression grammar -
and parsing strings into PHP objects), and PostgreSQL.

1 PHP PEG has been developed by Hamish Friedlander. Available at: https://github.
com/hafriedlander/php-peg.

https://github.com/hafriedlander/php-peg
https://github.com/hafriedlander/php-peg

A Generic Data Warehouse Architecture for Analyzing Workflow Logs 117

The S-SQL DDL extensions consist of two PHP scripts: (a) a script that
parses and imports a XES file into several tables in the PostgreSQL database
and (b) a script that generates sequences of events. The latter one is triggered
with each call to the Create Sequence() DDL extension.

The S-SQL DML extensions work in such a way, that each S-SQL statement is
parsed and translated into PHP objects. After successfully parsing the statement,
it is translated into an SQL query. For instance, the example query from Sect. 3.3
is translated into a SQL query with over 40 lines of code. Other S-SQL queries
that we tested resulted in SQL queries with up to 160 lines of code.

We would like to emphasize that although we implemented a simple caching
layer (cf. Sect. 3.3), this implementation does not focus on query performance.
Instead, it serves as implementation proof of concept only.

4 Summary

In this paper, we presented a novel approach that uses a query language called
S-SQL (Sequential SQL) to analyze workflow logs. S-SQL supports patterns with
wildcards, thus enabling the user to analyze workflow logs that consists of loops
and/or arbitrary goto-transitions, without the need to predefine relevant queries.

Our approach works with any blocked or non-blocked workflow model. In fact,
the approach presented in this paper does not require any information about the
underlying workflow model. As we do not store or rely on any workflow model,
our approach is immune to concept shifts and model evolution. In this paper,
we discussed the analysis of finished executions only. However, our approach is
able to analyze both, finished and non-finished executions.

Future work comprises of several tasks: support for reqular expressions in
pattern queries, the application of interval OLAP [21] to extend the power of
analyzing workflow logs or performance issues when it comes to analyze huge
workflow logs. The last task mentioned will consist of the integration of index-
ing strategies for sequential data and the integration of indexing strategies for
information stemming from workflow logs especially.

References

1. http://www.teradata.com/Teradata-Aster/overview/. Accessed 04 December 2014
2. http://www.xes-standard.org/. Accessed 04 December 2014
3. Process mining manifesto. IEEE CIS Task Force on Process Mining. http://www.

win.tue.nl/ieeetfpm/doku.php?id=shared:process mining manifesto. Accessed 04
December 2014

4. Sql for pattern matching. https://docs.oracle.com/database/121/DWHSG/
pattern.htm#DWHSG8956. Accessed 04 December 2014

5. Streaminsight. http://msdn.microsoft.com/en-us/library/ee391416. Accessed 04
December 2014

6. Andrzejewski, W., Bȩbel, B.: FOCUS: An Index FOr ContinuoUS subsequence
pattern queries. In: Morzy, T., Härder, T., Wrembel, R. (eds.) ADBIS 2012. LNCS,
vol. 7503, pp. 29–42. Springer, Heidelberg (2012)

http://www.teradata.com/Teradata-Aster/overview/
http://www.xes-standard.org/
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_manifesto
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_manifesto
https://docs.oracle.com/database/121/DWHSG/pattern.htm
https://docs.oracle.com/database/121/DWHSG/pattern.htm
http://msdn.microsoft.com/en-us/library/ee391416

118 C. Koncilia et al.

7. Bȩbel, B., Morzy, M., Morzy, T., Królikowski, Z., Wrembel, R.: OLAP-like analysis
of time point-based sequential data. In: Castano, S., Vassiliadis, P., Lakshmanan,
L.V.S., Lee, M.L. (eds.) ER 2012 Workshops 2012. LNCS, vol. 7518, pp. 153–161.
Springer, Heidelberg (2012)

8. Bebel, B., Morzy, T., Królikowski, Z., Wrembel, R.: Formal model of time point-
based sequential data for OLAP-like analysis. Bull. Pol. Acad. Sci. Tech. Sci. 62(2),
331–340 (2014)

9. Buchmann, A.P., Koldehofe, B.: Complex event processing. Inf.Technol. 51(5),
241–242 (2009)

10. Chaudhuri, S., Dayal, U., Narasayya, V.: An overview of business intelligence tech-
nology. Commun. ACM 54(8), 88–98 (2011)

11. Chawathe, S.S., Krishnamurthy, V., Ramachandran, S., Sarma,S.: Managing RFID
data. In: Proceedings of the International Conference on Very Large Data Bases
(VLDB) (2004)

12. Chui, C.K., Kao, B. Lo, E.Cheung, D.: S-OLAP: an olap system for analyzing
sequence data. In: Proceedings of ACM SIGMOD International Conference on
Management of Data (2010)

13. Chui, C.K. Lo, E., Kao, B., Ho, W.-S.: Supporting ranking pattern-based aggregate
queries in sequence data cubes. In: Proceedings of ACM Conference on Information
and Knowledge Management (CIKM) (2009)

14. Dong, G., Pei, J.: Sequence Data Mining, vol. 33. Springer, New York (2007)
15. Eder, J., Olivotto, G.E., Gruber, W.: A data warehouse for workflow logs. In: Han,

Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 1–15. Springer,
Heidelberg (2002)

16. Ezeife, C., Monwar, M.: Ssm : A frequent sequential data stream patterns miner. In:
Proceedings of IEEE Symposium on Computational Intelligence and Data Mining
(2007)

17. Gonzalez, H., Han, J., Li, X.: FlowCube: constructing RFID flowcubes for multi-
dimensional analysis of commodity flows. In: Proceedings of the International Con-
ference on Very Large Data Bases (VLDB) (2006)

18. Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing and analyzing massive
RFID data sets. In: Proceedings of the International Conference on Data Engi-
neering (ICDE), pp. 83-93 (2006)

19. Han, J., Chen, Y., Dong, G., Pei, J., Wah, B.W., Wang, J., Cai, Y.D.: Stream
cube: an architecture for multi-dimensional analysis of data streams. Distributed
and Parallel Databases 18(2), 173–197 (2005)

20. Han, J.-W., Pei, J., Yan, X.-F.: From sequential pattern mining to structured
pattern mining: a pattern-growth approach. J. Comput. Sci. Technol. 19(3), 257–
279 (2004)

21. Koncilia, C., Morzy, T., Wrembel, R., Eder, J.: Interval OLAP: analyzing interval
data. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp.
233–244. Springer, Heidelberg (2014)

22. Liu, M. Rundensteiner, E., Greenfield, K., Gupta, C., Wang, S., Ari, I., Mehta,
A.: E-Cube: multi-dimensional event sequence analysis using hierarchical pattern
query sharing. In: Proceedings of ACM SIGMOD International Conference on Man-
agement of Data (2011)

23. Liu, M., Rundensteiner, E.A.: Event sequence processing: new models and opti-
mization techniques. In: Proceedings of SIGMOD Ph.D. Workshop on Innovative
Database Research (IDAR) (2010)

A Generic Data Warehouse Architecture for Analyzing Workflow Logs 119

24. Lo, E., Kao, B., Ho, W.-S., Lee, S.D., Chui, C.K., Cheung, D.W.: OLAP on
sequence data. In: Proceedings of ACM SIGMOD International Conference on
Management of Data (2008)

25. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algo-
rithms. ACM Comput. Surv. 43(1), 1–41 (2010)

26. Marascu, A., Masseglia, F.: Mining sequential patterns from data streams: a cen-
troid approach. J. Intell. Inf. Syst. 27(3), 291–307 (2006)

27. Masseglia, F., Teisseire, M., Poncelet, P.: Sequential pattern mining. In: Wang, J.
(ed.) Encyclopedia of Data Warehousing and Mining. IGI Global, Hershey (2009)

28. Melton, J. (ed.).: Working draft database language sql - part 15: Row pattern
recognition (sql/rpr). ANSI INCITS DM32.2-2011-00005 (2011)

29. Mendes, L.F., Ding, B., Han, J.: Stream sequential pattern mining with precise
error bounds. In: Proceedings of the IEEE International Conference on Data Min-
ing (ICDM) (2008)

30. Mooney, C.H., Roddick, J.F.: Sequential pattern mining - approaches and algo-
rithms. ACM Comput.Surv. 45(2), 19 (2013)

31. Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-C.: Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In: Proceedings of Internatiional Conference on Data Engineering (ICDE) (2001)

32. Ramakrishnan, R., Donjerkovic, D., Ranganathan, A., Beyer, K.S., Krishnaprasad,
M.: SRQL: Sorted relational query language. In: Proceedings of Internatonal Con-
ference on Scientific and Statistical Database Management (SSDBM) (1998)

33. Sadri, R., Zaniolo, C., Zarkesh, A., Adibi, J.: Optimization of sequence queries
in database systems. In: Procedings of ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database System (PODS) (2001)

34. Sadri, R., Zaniolo, C., Zarkesh, A.M., Adibi, J.: A sequential pattern query lan-
guage for supporting instant data mining for e-services. In: Proceedings of Inter-
national Conference on Very Large Data Bases (VLDB) (2001)

35. Seshadri, P., Livny, M., Ramakrishnan, R.: Sequence query processing. SIGMOD
Record 23(2), 430–441 (1994)

36. Seshadri, P., Livny, M., Ramakrishnan, R.: SEQ: A model for sequence databases.
In: Proceedings of International Conference on Data Engineering (ICDE) (1995)

37. Seshadri, P., Livny, M., Ramakrishnan, R.: The design and implementation of
a sequence database system. In: Proceedings of Interntional Conference on Very
Large Data Bases (VLDB) (1996)

38. Vaisman, A., Zimányi, E.: Data Warehouse Systems. Springer, Heidelberg (2014).
ISBN 978-3-642-54655-6

39. van der Aalst, W.M.P.: Process cubes: slicing, dicing, rolling up and drilling down
event data for process mining. In: Song, M., Wynn, M.T., Liu, J. (eds.) AP-BPM
2013. LNBIP, vol. 159, pp. 1–22. Springer, Heidelberg (2013)

40. van Dongen, B., van der Aalst, W.M.P.: A meta model for process mining data.
In: Proceedings of of CAiSE Workshops (2005)

41. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010.
LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011)

42. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: Proceedings of ACM SIGMOD International Conference on Manage-
ment of Data (2006)

43. Zheng, Q., Xu, K., Ma, S.: When to update the sequential patterns of stream data?
In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. LNCS
(LNAI), vol. 2637, pp. 545–550. Springer, Heidelberg (2003)

ETL

HBelt: Integrating an Incremental ETL Pipeline
with a Big Data Store for Real-Time Analytics

Weiping Qu(B), Sahana Shankar, Sandy Ganza, and Stefan Dessloch

Heterogeneous Information Systems Group,
University of Kaiserslautern, Kaiserslautern, Germany

{qu,s shankar12,s ganza,dessloch}@informatik.uni-kl.de

Abstract. This paper demonstrates a system called HBelt which tightly
integrates a distributed, key-value data store HBase with an extended
ETL engine Kettle. The objective is to provide HBase tables with real-
time data freshness in an efficient manner. A distributed ETL engine is
extended and integrated as an overlay of HBase. Meanwhile, we extend
this ETL engine with the capability of processing incremental ETL flows
in a pipelined fashion. Delta batches are defined by the MVCC compo-
nent in HBase to flush the incremental ETL pipeline for multiple concur-
rent read requests.Experimental results show that high query throughput
can be achieved in HBelt for real-time analytics.

1 Introduction

Nowadays, many scalable, distributed data stores have been developed to deliver
large scale data analytics over high volume of structured/unstructured data for
valuable results. Data is first extracted, transformed and loaded (ETL) from
heterogeneous sources into a centralized data store using ETL tools.

In order to meanwhile keep track of updates happening at the sources side,
incremental ETL [9,10] has been widely used to propagate only deltas to the
analytical systems instead of re-loading source data from scratch. Incremental
ETL normally runs the maintenance flows periodically, i.e. hourly, or in micro-
batches (minutes). However, for time-critical decision making, it is desirable to
have real-time databases which provide queries with up-to-date state of touched
tables. This forces ETL engines to propagate deltas to the target system in a
very fast pace even with high update ratio in the external sources.

Background and Motivation. In our previous work [1], we introduced a
demand-driven bulk loading scheme to allow early uptime for analytical sys-
tems by first offloading large amounts of cold data into a distributed, scalable,
big data store HBase [2]. Data resides in HBase initially and becomes incremen-
tally available in the target system according to the access priorities. Meanwhile,
there are more and more updates collected from a variety of external sources. To
achieve data freshness for time-critical decision making, an efficient maintenance
mechanism is needed to refresh the data that are still buffered in HBase.

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 123–137, 2015.
DOI: 10.1007/978-3-319-23135-8 9

124 W. Qu et al.

In this work, we propose our HBelt system which tightly integrates HBase
with a pipelined data integration engine extended by an open-source ETL tool
(Pentaho Data Integration (Kettle) [3], shortly Kettle) for real-time analytics.
HBelt enables HBase tables to keep track of concurrent data changes in external
data sources and provides each analytical query with a consistent view of both
the base data and the latest deltas preceding the submission of the query. Data
changes are propagated to HBase in a query-driven manner. The contributions
of this paper are as follows:

– We deploy a Kettle environment directly in the same cluster shared by HBase.
A copy of an ETL flow instance runs on each HBase working node. Besides,
a HBase-specific partitioner is implemented in Kettle to distribute captured
deltas to the correct HBase working nodes.

– We define our consistency model in HBelt and embed the Multi-Version Con-
sistency Control (MVCC) component of HBase into Kettle. The MVCC com-
ponent is used to define delta batches that need to be propagated to the target
HBase tables for answering specific query requests.

– We propose a pipelined Kettle engine to process different delta batches in
parallel. Kettle is geared towards data pipelining for high throughput of an
ETL flow.

The remainder of this paper is as follows. We relate our work to several recent
attractive work in different domains in Sect. 2. We give a brief introduction of
key components in HBase and Kettle in Sect. 3. In Sect. 4, we introduce our
HBelt system which integrates HBase with Kettle in terms of consistency and
performance. Experiments are conducted and discussed in Sect. 5.

2 Related Work

PigLatin [7] is a script language developed in the Pig project. Pig scripts can be
used to perform batch ETL jobs that run as MapReduce [8] jobs and thereby can
be seen as a distributed ETL engine. Map/Reduce tasks are executed remotely
directly over data stored in cluster nodes, thus delivering high scalability and
parallelism. Furthermore, Pig also supports loading data into HBase through
its pre-defined HBaseStorage class. Regarding function shipping, HBelt is sim-
ilar to Pig which executes ETL flows directly on remote data nodes. However,
HBelt allows each query/request to access up-to-date state of data by integrating
MVCC component into Kettle. Meanwhile, we implemented pipelined version of
ETL flows to enable HBase to efficiently react to trickle-feeding updates instead
of batch processing.

Real-time databases result from the trend of merging OLTP & OLAP work-
loads, also known as one-size-fits-all databases. Hyper [13] is a typical example of
these databases and is designed as an in-memory database. In Hyper, updates in
OLTP workloads are performed in sequence in a single thread while each OLAP
query session will see a snapshot of the current table state in a child thread
forked from the parent update thread. Another example related to our work is

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 125

R-Store [6] which stores both real-time data and historical cubes in HBase. His-
torical cubes are used for OLAP queries and get incrementally maintained with
the updates captured from real-time OLTP data by a streaming MapReduce
called HStreaming. One difference between HBelt and R-Store is the location
of OLTP data. Real-time data resides in R-Store while HBelt assumes a more
general situation that real-time deltas are captured from external OLTP sources
using the extract component in ETL.

Golab et al. proposed temporal consistency and scheduling algorithms in
their real-time stream warehouse [11,12]. Each real-time query always accesses
the latest value preceding the submission time of the query. In their stream
warehouse, data is divided into multiple partitions based on consecutive time
windows. Each partition represents data in a certain time window and there are
three consistency levels defined for queries, i.e. open, closed and complete. A
partition is marked as open if data currently exists in or is expected to exist
in the partition. From the query perspective, a closed partition implies that
the scope of pending data has been fixed, whereas data is expected to arrive
in a limited time window. This means that the query can be executed over
base data that might be incomplete. The complete level is the strongest query
consistency and all the data has arrived in the partition. We reuse this notion
of temporal consistency in our work for consistency control by extending the
MVCC component in HBase.

3 Background

In this section, we give a brief introduction of HBase and Kettle as background
and describe only the components which are relevant to our work.

3.1 HBase

HBase [2] is a scalable, distributed key-value store that is widely used to deliver
real-time access to big data. It follows a master/slave architecture. In HBase, a
table is horizontally partitioned into a set of regions with non-overlapping key
ranges. Each region contains a set of in-memory key-value lists called memStore
and multiple on-disk storeFiles. Once a memStore fills up, it is flushed onto disk
as a new storeFile. All data (regions) reside only in slave nodes called HRegion-
Servers while the master node has only meta-data information which specifies
how the regions with different key ranges are partitioned across HRegionServers.

As a data store, it provides only primitive operations (i.e. put, get and
scan) based on a given row key. Based on the meta-data information (row key-
HRegionServer mappings), a master node delegates all the put/get operations to
corresponding HRegionServers where the actual operations take place. For large
scale data analytics over HBase, there have already been efforts that implements
an extra SQL layer over HBase which accesses tables stored in HBase through
these primitive operations [4,5].

126 W. Qu et al.

In HBase, only two transaction isolation levels are guaranteed, i.e. read
uncommitted and read committed. In order to achieve consistency between con-
current reads and writes, a component called Multi-Version Consistency Control
(MVCC) is used. Each region contains a MVCC instance which maintains an
internal write queue. A write queue is a list of Write Entry (we) elements which is
used to assign a unique write number to an individual write or a batch of writes.
Writes are not allowed to commit until their preceding writes have committed in
this write queue. In this way, sequential writes are guaranteed in HBase. When
a get/scan operation is issued with read committed as the transaction isolation
level, the MVCC component returns the latest committed write number to this
thread as read point readPt for fetching key-values whose write numbers are
lower than or equal to this value in this region.

3.2 Kettle

Kettle [3] (or PDI) is an open-source ETL tool that has been widely used in the
research community and provides a full-fledged set of transformation operations
(called step in Kettle). A stream or batch of files are taken as input and processed
row by row in each step. During flow execution, each step is running as an
individual thread. Step threads are connected with each other through an in-
memory queue called RowSet. The results of a preceding step are put in its
output rowset which in turn is the input rowset of its subsequent step where
rows get fetched. Step threads kill themselves once they are finished with their
batch of files.

Kettle also enables a cluster execution mode in which multiple copies of the
same flow instance can run in parallel over distributed nodes for better perfor-
mance. The cluster environment follows a master/slave architecture. The input
files of the flows running on the slave nodes are constructed by partitioning and
distributing rows in master node according to a user-defined partition schema.

4 HBelt System

In this Section, we introduce our HBelt system, which integrates a distributed,
HBase big data store with an extended, pipelined data integration engine based
on Kettle for real-time analytics. Analytical queries are issued to a relational
database layer over HBase in which actual target tables reside. In order to keep
track of concurrent data changes at the source side, the internal consistency in
HBase is maintained by multiple Kettle pipeline instances before each query is
executed. A single query sees a consistent view which consists of the base data
and the latest deltas preceding the submission time of this query. Furthermore,
we try to reduce the synchronization delay by introducing two kinds of paral-
lel computing techniques: data partitioning and data pipelining. Therefore, the
objective of HBelt is to ensure both consistency and performance. The architec-
ture is illustrated in Fig. 1.

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 127

4.1 Architecture Overview

As described in Sect. 3, a table stored in HBase are horizontally partitioned to
a set of regions with non-overlapping key ranges and distributed over multiple
HRegionServers. Current Kettle implementation (since Version 5.1) has provided
a so-called HBase Output step to maintain a HBase table by using a single flow
instance. All calculated deltas have to go through this step to arrive in target
HRegionServers. However, since both HBase and Kettle follow the master/slave
architecture, it is desirable to utilize the essence of distributed processing from
both systems in terms of integration. In HBelt, the same number of the flow
instance copies are constructed as the number of HRegionServers and further
executed directly on each single HRegionServer node.

Fig. 1. HBelt architecture

Take a logical ETL flow as an example, which processes data changes cap-
tured from external purchases and lineitems sources to maintain the target sales
table in HBase. In the master node (at the left side of Fig. 1), a change data cap-
ture (CDC) step uses methods like log-sniffing [14] or timestamps to capture the
source deltas. In order to forward source deltas to the right HRegionServers for
further flow execution, both the keys in the deltas and the key ranges of regions
stored in HBase tables need to be considered. This is done by a component
called Partitioner. In this example, purchase rows have purc id as key and both
lineitems rows and the sales table have compound keys (purc id, item id). The
partitioner component fetches cached meta-data of the sales table from HBase in

128 W. Qu et al.

the same master node and forms a user-defined partition schema in Kettle. This
meta-data shows the mapping from row keys to HRegionServers, based on which
the lineitems deltas can be distributed to server nodes correctly. For a purchases
row whose purc id might span across regions in multiple HRegionServers, copies
of this purchases row are sent to HRegionServers along with lineitems. In this
way, we guarantee that calculated deltas for the target sales table should reside
on the correct HRegionServer.

So far, we have introduced a sub-flow which consists of two steps: CDC and
Partitioner. This sub-flow runs independently of query requests on HBase tables
and feeds source deltas continuously to the delta input streams in HRegion-
Servers to reflect the concurrent updates on the source side.

4.2 Consistency Model

In this subsection, we define our consistency model in HBelt for real-time analyt-
ics over HBase. Take an example shown in Fig. 2. At the upper left side, there is
a traditional transaction log file recording five transactions (T1∼T5) committed
from t1 to t5, respectively. The CDC process mentioned in previous subsection
is continuously extracting these changes from the log file and sending corre-
sponding deltas to the delta input streams of both of the Kettle flow instances
(in this case only two flow instance copies are running on two individual HRe-
gionServers).

Fig. 2. Consistency model

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 129

Meanwhile, four distinct requests have been issued to HBase to perform
scan operations over regions stored in these two HRegionServers. The first scan
request R1 occurs at timestamp t1 which forces HBelt to refresh existing HBase
table using changes (e.g. insertions, updates and deletions) derived from the first
transaction T1 which is committed at t1. Once these changes have been success-
fully propagated and stored into the memStores in these two HRegionServers,
R1 is triggered to started immediately. Although the second scan request R2

is issued at later time t1.5, it still precedes the committing time of the second
transaction T2 (at t2). Hence, it shares the same state of the HBase table as
R1. The third scan request R3 has its occurring time t2.5 which succeeds the
committing time of T2 and precedes the committing time of T3. Since the deltas
from T2 are only available in the first HRegionServer, R3 first completes the
scan operation over regions in the first HRegionServer and waits for the regions
in the second HRegionServer to be refreshed by T2’s committed changes. To
answer the fourth request R4, relevant regions stored in both HRegionServers
need to be upgraded by the deltas from T1 to T4. Since neither of Kettle flows
has finished propagated these deltas to HBase, R4 is suspended until the HBase
table is refreshed with correct deltas.

4.3 MVCC Integration for Delta Batches

In this subsection, we show how maintenance flows and query requests are sched-
uled in each HRegionServer to achieve the consistency we defined in previous
subsection. Recall that in HBase the consistency in each region is maintained by
a Multi-Version Consistency Control instance (see Sect. 3) where a local write
queue is used to ensure sequential writes. A write queue maintains a list of open
Write Entries we for assigning unique write numbers to batches of writes during
insertions. Writes are only visible after they are committed and corresponding
wes are marked as complete. However, in order to make each query request see
a consistent view of base data and deltas, the current MVCC implementation in
HBase has to be extended to meet our needs.

At any time, there is always one and only one open write entry we in the write
queue. While source deltas continuously arrive in each HRegionServer, instead of
triggering the maintenance flow to start immediately, deltas are first buffered in
input streams and all of them are assigned the write number of this open we. We
define that all the deltas sharing the same write number belong to a delta batch
with a batch id. Once a read request is issued by an analytical query, this we is
first marked as closed instead of complete (Here we embedded the temporal
consistency described in Sect. 2 in our work). The closed state indicates that
the maintenance flow now gets started to digest this delta batch with we’s write
number as batch id and the final calculated deltas with this batch id have not yet
completely arrived in HBase. Therefore, the read request awaits the completion
of its maintenance flow and gets pushed into a waiting list read queue. Meanwhile,
a new write entry we ′ is created and inserted into write queue to paint newly
incoming deltas with we ′’s write number.

130 W. Qu et al.

At the time the last row with (we’s) batch id gets successfully inserted into
HBase memStore by the final maintenance step, we is finally marked as complete
and gets removed. All waiting reads in the read queue are notified of this event
and check whether the complete batch id matches their local ones. The read
request which waits for exactly this event gets started to continue with either a
get or scan operation. Even though during the scan operation more new delta
batches are inserted into the same regions, this read request would not be inter-
fered with since it has an older batch id which restricts the access of rows with
newer batch ids. In this way, we guarantee that each read request always sees
the latest value of a consistent view of base data and deltas preceding its sub-
mission time.

Fig. 3. MVCC integration for delta batches on HRegionServer

Figure 3 illustrates a snapshot taken at the time nine read requests have
been issued by analytical queries. The arrival of these requests forces MVCC to
group the corresponding deltas into nine batches which were once buffered in
the streams before each occurrence of request. These read requests are waiting
in the read queue until their delta batches get finished through the maintenance
flow. Meanwhile, nine pending batches are denoted by the write entries stored
in the write queue of MVCC component. They are all marked as closed except
the first one since the first delta batch has been successfully moved to HBase
memStore and can be made accessible to the first request. Thus, the first request
is reactivated by the final maintenance step and continues with the get/scan
operation. The second and third batches have already been put into the output
streams and their requests are about to start. Note that, due to high request rate,
delta batches 5–9 are still buffered in the input streams since the maintenance
flow is still processing previous batches.

4.4 Pipelining Delta Batches in Kettle

As we can see from the previous subsection, the maintenance flow could be busy
with processing different batches issued by multiple requests, especially with a
high request rate. Hence, there is a need to speed up the performance of the
maintenance flow. For each read request, in order to keep track of concurrent

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 131

updates at the source side, the synchronization latency incurred by the mainte-
nance flow is fixed. However, another potential optimization opportunity is to
increase the throughput of the system. To address this, a pipelined flow engine
based on Kettle is proposed.

As described in Sect. 3, the original Kettle implementation simply takes a
stream/batch of data as input with no comprehension of different consecutive
batches. It is important to distinguish different batches for specific transforma-
tion operations e.g. sort, aggregation, etc. in our work. Otherwise a maintenance
flow could generate incorrect deltas for each read request, leading to inconsis-
tent analytical results. For example, if a sort operation would receive rows from
two delta batches and process them at the same time, the results coming out of
this operation would be totally different from the results of sorting two batches
separately. This also holds for aggregation operations like sum() or avg().

Algorithm 1. Step Implementation in Pipelined Kettle
Input: rq // read queue which bufferes waiting read requests.

in // intput rowsets
out // output rowsets

Init: readPt // local read point
index // index used to iterate read queue.

while true do1

if rq is empty ‖ in is empty then2

wait();3

readPt ← rq [index++];4

init(); // clear local caches, counters, etc.5

while in.getRow().batchID == readPt do6

r ←processRow();7

out.add(r);8

out.notify();9

depose();10

In this work, we extended Kettle to a pipeline flow engine which is able to
react to different mini-batch jobs at the same time while still guaranteeing con-
sistency. The extension of a single step thread is given above (see Algorithm 1).
All steps in the maintenance flow share the same read queue which holds a list
of pending read requests mentioned in previous subsection. Furthermore, each
step maintains a local index which points at certain read request in the queue
as a local read point readPt. This readPt is actually the batch id of the delta
batch that needs to be processed. Once a step successfully fetches a batch id
that matches the id of the rows in its input rowset, this step first initializes
itself by clearing local caches and counters. After a row is processed, in addition
to putting the result into the output rowset, it notifies its subsequent step of
the existence of the output. When the batch is finished, instead of killing itself

132 W. Qu et al.

Fig. 4. Pipelined Kettle

as in the original implementation, it deposes itself (e.g. release used database
connections) and tries to fetch the next read request in the queue.

As shown in Fig. 4, a pipelined Kettle flow is being flushed by nine delta
batches. Due to diverse operational costs, the lookup step in the upper branch
of the join step has already started to work on the ninth batch while another
lookup step in the lower branch is still working on the sixth one. However, the
join step would not continue with processing the rows in subsequent (e.g. fifth
or sixth) batches until it makes sure that there is no more row of batch id 3
existing in neither of its input rowsets. Even though the fifth and sixth batches
are already available, they are still invisible to the join step since the current
readPt is still three. Data pipelining is introduced here to increase the throughput
of the maintenance flow. However, the synchronization latency for each request
is not improved or sometimes even increased, for example, the fifth batch cannot
start until the join step finished with all the deltas in the third batch. We will
examine it in the experiments.

5 Experimental Results

The objective of HBelt is to provide get/scan operations in HBase with real-
time data access to the latest version of HBase’s tables by tightly integrating
an ETL engine, i.e. Kettle, with HBase. Though current Kettle (since Version
5.1) has implemented “HBase Output” step towards Big Data Integration, in
our scenario, sequential execution of a single Kettle flow at once to maintain
target HBase tables for time-critical analytics could lead to long data main-
tenance delay at high request rate. In this section, we show the advantages of
our HBelt system by comparing its performance in terms of maintenance latency
and request throughput with the sequential execution mode. We mainly examine
the performance improvements by using data partitioning and data pipelining
techniques in HBelt.

In the experiments, our HBelt ran on a 6-node cluster where a node (2 Quad-
Core Intel Xeon Processor E5335, 4×2.00 GHz, 8 GB RAM, 1TB SATA-II disk)
served as the master and the rest five nodes (2 Quad-Core Intel Xeon Processor
X3440, 4×2.53 GHz, 4 GB RAM, 1TB SATA-II disk, Gigabit Ethernet) were the

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 133

slave nodes running HRegionServer and Kettle threads (see Subsect. 4.1). Mean-
while, the same cluster was used to accommodate an original version (0.94.4) of
HBase connected with a Kettle engine (Version 5.1) running on a client node
(Intel Core i7–4600U Processor, 2×2.10 GHz, 12 GB RAM, 500GB SATA-II disk)
to simulate the sequential execution mode.

We used TPC-DS benchmark [15] in our test. A store sales table (with SF
10) resided in HBase and was maintained by a Kettle flow with the update files
purchases (�: 10K) and lineitems (�: 100K) generated by TPC-DS dsdgen. The
maintenance flow is depicted in Fig. 5. Purchases and lineitems are the delta files
and are joined together in an incremental fashion after applying several surrogate
key lookup steps. The intermediate join results are further aggregated as the
final delta rows for the target store sales table. In sequential execution mode,
the source delta files (purchases & lineitems) resided in the client node and were
used as input for the Kettle flow to populate the store sales table in the 6-node
HBase cluster using HBase Output. However, in HBelt mode, these source delta
files were initially stored in the master node and later continuously distributed
and fed to the five slave nodes where two input rowsets were used to buffer
delta rows as delta input streams (instead of CSV Input steps). Furthermore, in
contrast to sequential execution mode, each region was the target output instead
of “HBase Output” step.

Fig. 5. Test maintenance flow in kettle

Data Pipelining: We first examined the performance improvement associated
with the data pipelining technique implemented in the Pipelined Kettle compo-
nent of our HBelt. The store sales table was not split in HBase and had only
one region. Thus, only one HRegionServer was activated to serve issued request
load and only one pipelined Kettle instance was dedicated to refresh the target
table with purchases and lineitems delta files. Moreover, the delta files were split
evenly to 210 chunks to emulate the input deltas to maintain the target table
for 210 read requests occurring consecutively in a small time window.

The maintenance latency for each request is shown in Fig. 6. In sequential
execution mode (SEQ), the same Kettle flow ran 210 times at the client side one
flow at once to refresh target HBase table with 210 delta chunks. The latency
difference between two adjacent requests is the duration of one flow execution.

134 W. Qu et al.

Fig. 6. Maintenance latencies of 210 consecutive read requests on single node

Since each flow execution took the same size of delta chunk as input, the main-
tenance latency grows linearly. The last request has to wait for the completions
of preceding 210 flow executions (∼10.5 min). Using HBelt, the flow pipeline
shown in Fig. 5 was flushed by 210 delta batches at the same time. The latency
difference between two adjacent requests depends on the slowest step in the
pipeline rather than one complete flow execution. In summary, HBelt outper-
forms SEQ in terms of maintenance latency even though only one region existed
in the HBase cluster, i.e. no data partitioning parallelism. Each request started
earlier than in SEQ. The synchronization delay for the last request is 400 s, thus
increasing the performance by ∼30 %. This proves that HBelt is able to deliver
high throughput at a high request rate or in case of “hotspot” issue in HBase,
i.e. a single HRegionServer has a higher load than others.

Data Partitioning: We show another advantage of HBelt here: running one
pipelined Kettle instance directly on each individual HRegionServer. Firstly, the
store sales tables were evenly pre-split to 10 regions with non-overlapping row
key ranges over 5 HRegionServers, thus each HRegionServer was active and man-
aged 2 regions. Secondly, the request load consisted of a thousand scan operations
in which each individual Region[1→10] was scanned by 50 scan operations, sub-
sequent 100 operations scanned Regions (1∼3), 100 operations scanned Regions
(4∼6), 100 operations scanned Regions (6∼8), 100 operations scanned Regions
(8∼10) and the rest 100 operations scanned the entire table. Hence, each request
required in average only 2/7 portion of the table to become up-to-date before it
was executed. Finally, we generated a set of delta files purchases and lineitems
of ten sizes {�: (10 K & 120 K), (20 K & 240 K), ..., (100 K & 1200 K)} each of
which were further split to 1000 chunks to simulate the delta inputs for the 1000
scan requests. In each chunk only 2/7 portion in average is needed to refresh the
necessary regions for one request.

The request throughputs with different delta size settings are shown in Fig. 7.
As the baseline, the request throughput in SEQ decreases steadily from 2.78
(�requests/s) to 0.46 (�requests/s) with increasing delta sizes, which indicates
growing maintenance overhead. The throughput in SEQ mode is much lower
than that in HBelt since two scan operations have to be executed sequentially

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 135

Fig. 7. Request throughput after issuing 1000 requests using diverse delta sizes

no matter how many deltas are really needed to answer certain request. HBelt
provides much higher throughput (19.28 to 4.35 �requests/s). The efficiency is
two fold. Due to data partitioning, HBelt is able to propagate deltas for concur-
rent requests with non-overlapping key ranges at the same time. For example,
a scan operation which accesses Region(1∼3) has no conflict with another scan
operation which touches Region(4∼6). Separate ETL pipeline can refresh inde-
pendent regions at the same time. Meanwhile, since deltas were split and dis-
tributed over multiple ETL pipeline instances, the size of input deltas dropped
drastically and the latency became less as well. In addition to data partitioning,
pipelined Kettle still provides data pipelining parallelism for multiple concurrent
requests arriving at the same HRegionServer.

Fig. 8. Request throughput with
small deltas (10 K purchases &
100K lineitems)

Fig. 9. Request throughput with
large deltas (50 K purchases &
500 K lineitems)

Figures 8 and 9 compare the throughput with increasing requests among three
settings: HBelt, sequential execution mode and an original HBase setting which
does not have maintenance overhead incurred by our ETL pipelines. With small
delta sizes (10 K purchases & 100 K lineitems), HBelt achieves performance much
similar to original HBase which does not guarantee data freshnees. However, as

136 W. Qu et al.

the size of delta grows, the request throughput of HBelt dropped significantly
while it still outperforms the sequential execution mode.

6 Conclusion

In this work, we introduced our HBelt system which integrates an ETL engine
Kettle with a big data store HBase to achieve real-time analytics over tables
stored in HBase. The integration utilized the architectural essence of both sys-
tems, i.e. master/slave architecture. A copy of the Kettle flow instance runs
directly on each HBase data node. File inputs are partitioned using our HBase-
specific partitioner and further distributed over these data nodes, thus allow-
ing multiple Kettle flow instances to work synchronously for concurrent non-
conflicting requests. In this way, we provide data partitioning parallelism in
HBelt. Furthermore, we defined the notion of our consistency model to enable
each request to see the latest version of tables preceding the request submission
time. The consistency component in HBase is embedded in Kettle to identify cor-
rect delta batches for answering specific HBase requests. Moreover, we extended
Kettle to a pipelined version which is able to work on multiple distinct delta
batches at the same time. A pipelined Kettle flow can be flushed by a large
number of delta batches, thus increasing request throughput. Finally, the exper-
imental results show that HBelt is able to reduce maintenance overhead and
raise request throughput for real-time analytics in HBase.

References

1. Qu, W., Dessloch, S.: A demand-driven bulk loading scheme for large-scale social
graphs. In: Manolopoulos, Y., Trajcevski, G., Kon-Popovska, M. (eds.) ADBIS
2014. LNCS, vol. 8716, pp. 139–152. Springer, Heidelberg (2014)

2. http://hbase.apache.org
3. Casters, M., Bouman, R., Van Dongen, J.: Pentaho Kettle Solutions: Building

Open Source ETL Solutions with Pentaho Data Integration. John Wiley & Sons,
Indianapolis (2010)

4. https://wiki.trafodion.org/
5. http://phoenix.apache.org/
6. Li, F., Ozsu, M.T., Chen, G., Ooi, B.C.: R-Store: a scalable distributed system for

supporting real-time analytics. In: IEEE 30th International Conference on Data
Engineering, ICDE 2014, pp. 40–51. IEEE, March 2014

7. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 1099–1110. ACM, June 2008

8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

9. Vassiliadis, P., Simitsis, A.: Near real time ETL. In: Kozielski, S., Wrembel,
R. (eds.) New Trends in Data Warehousing and Data Analysis. AIS, pp. 1–31.
Springer, Cambridge (2009)

http://hbase.apache.org
https://wiki.trafodion.org/
http://phoenix.apache.org/

HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store 137

10. Jörg, T., Dessloch, S.: Near real-time data warehousing using state-of-the-art ETL
tools. In: Castellanos, M., Dayal, U., Miller, R.J. (eds.) BIRTE 2009. LNBIP, vol.
41, pp. 100–117. Springer, Heidelberg (2010)

11. Golab, L., Johnson, T., Shkapenyuk, V.: Scheduling updates in a real-time stream
warehouse. In: IEEE 25th International Conference on Data Engineering, ICDE
2009, pp. 1207–1210. IEEE, March 2009

12. Golab, L., Johnson, T.: Consistency in a stream warehouse. In: CIDR, Vol. 11, pp.
114–122 (2011)

13. Kemper, A., Neumann, T.: HyPer: a hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In: IEEE 27th International Conference
on Data Engineering, ICDE 2011, pp. 195–206. IEEE, April 2011

14. Kimball, R., Caserta, J.: The Data Warehouse ETL Toolkit. John Wiley & Sons,
Indianapolis (2004)

15. http://www.tpc.org/tpcds/

http://www.tpc.org/tpcds/

Two-ETL Phases for Data Warehouse Creation:
Design and Implementation

Ahlem Nabli1, Senda Bouaziz1, Rania Yangui2(B), and Faiez Gargouri2

1 MIRACL Laboratory, Faculty of Sciences, Sfax University, 1171 Sfax, Tunisia
ahlem.nabli@fsegs.rnu.tn, bouaziz.senda@hotmail.fr

2 MIRACL Laboratory, Institute of Computer Science and Multimedia,
Sfax University, 1030 Sfax, Tunisia

yangui.rania@gmail.com, faiez.gargouri@isimsf.rnu.tn

Abstract. Building the ETL process is potentially one of the biggest
tasks of building a warehouse. In fact, it is complex, time consuming, and
consumes most of data warehouse projects implementation efforts, costs,
and resources. Nevertheless, the difference on data structures imposes
new requirements on the ETL process implementation and maintenance.
What makes these tasks even more challenging is the fact that data
continue to grow rapidly and business requirements change over time.
In this paper, we propose a method that contains Two-ETL phases, one
treats the pre-treatment phase and another deals with the actual ETL.
Our method consists on determining the correspondence table, modeling
new operations using the Business Process Modeling Notation (BPMN)
and implementing these operations with Talend Open Source (TOS).
In addition, our method allows the design of ETL process in an earlier
stage, which enormously facilitates the implementation of this process.
Another advantage of our proposal is the use of the BPMN which allows
to cover a deficit of communication that often occurs between the design
and implementation of business processes.

Keywords: Extract transform and load · Business process modeling
notation · Data warehouse design · Transformation operations · Corre-
spondence table

1 Introduction

Business Intelligence (BI) solutions are very important as they require the imple-
mentation and the design of complex ETL process. This process is a software
which allows the alimentation of a DW and its periodic refreshment from different
sources. It is often used to get back various information to feed regularly the DW.
New applications, such as, real-time data warehousing, require agile and flexible
tools that allow BI users to take suitable decisions based on extremely up-to-date
data. This is the case of the BWEC1 (Business for Women of Emerging Country)
1 Towards a new Manner to use Affordable Technologies and Social Networks to

Improve Business for Women in Emerging Countries.

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 138–150, 2015.
DOI: 10.1007/978-3-319-23135-8 10

Two-ETL Phases for Data Warehouse Creation: Design and Implementation 139

project that aims at improving the social economic situation of Handicraft women
in Algerian and Tunisian countries involved in this research works.

To feed the DW, data must be identified and extracted from their original
locations. Consequently, the data must be transformed and verified before being
loaded into the DW. The large amount of data from multiple sources causes a
high probability of errors and anomalies. This increases the need of a new ETL
tool which are able to be adapted with the constant changes, to produce and to
modify executable code quickly.

Recall that in the literature [1,2], the main stages for the DW design method-
ologies can be summarized as follows: requirement analysis, conceptual design,
logical design, ETL process design and physical design. In fact, it was recognised
that ETL process is a very time-consuming step, it takes about 80 % of the total
time of the decision-making implementation due to its difficulty and complexity
[3]. The design and the implementation of an ETL process usually involve the
development of very complex tasks imposing high levels of interaction with a vast
majority of the components of a DW system architecture. The implementation
and the maintenance of such processes face various design drawbacks, such as
the change of business requirements, which consequently leads to adapt existing
data structures and reuse existing parts of ETL system.

Several works [5,9,11,12] have dealt with ETL process modeling and they
don’t focus on incorporating pre-processing phase of ETL process since the con-
ceptual modeling phase of the DW. Furthermore, it has been noticed that while
trying to design the ETL process, people tend to overlook the work done in the
conceptual phases and which contain a useful knowledge for the ETL process. In
this paper, we propose a method called two-ETL phases for DW creation where
the first phase is carried out since the conceptual design of DW. This phase
handles the determination of the correspondence table and the modelling of the
transformation operations. The second phase deals with the implementation of
the ETL process.

The remainder of this paper is organized as follows. Section 2 reviews some
related works concerning the ETL modeling process. Section 3 describes our
proposed method to create a DW. Section 4 details the first ETL phase. Section 5
presents the second ETL phase. Finally, Sect. 6 gives a conclusion and some
future research directions.

2 Related Works

Various approaches for designing and optimizing ETL process have been pro-
posed in the last few years [5,9,11,12]. This approaches can be classified into
three main groups. The first group uses UML (Unified Modeling Language) to
model the ETL process. The second one uses MDA (Model Driven Architecture).
The third group uses BPMN (Business Process Modeling Notation).

UML Based ETL Process Modeling: Trujillo and Luján-Mora [4] have pro-
posed an extension of the UML language to model the ETL process. Also, Mallek
et al. [5] proposed the use of the UML activity diagram for the modeling of the

140 A. Nabli et al.

ETL process named ETL-WEB. More recently, El-Sappagh et al. [6] proposed
an entity-mapping diagram (EMD) framework, consisting in a new notation and
a new set of constructs for ETL conceptual modelling.

MDA Based ETL Process Modeling: Munoz et al. [7,8] presented the mod-
eling of the ETL process of DW with MDA by formally defining a set of trans-
formation rules QVT (Query, View, and Transformation). The PIM is modeled
using the UML activity diagram. Atigui et al. [9] have proposed an approach
where the designer built his unified conceptual model PIM which describes the
multidimensional structures and related ETL process.

BPMN Based ETL Process Modeling: El Akkaoui et al. [10] provide an
independent platform for the conceptual modeling of an ETL process based
on the BPMN. Using the same BPMN objects presented by [10,11] proposes
a correspondence between the ETL process and the needs of decision-makers
to easily identify which data are necessary and how include them in the DW.
Oliveira et al. [12] proposed to extend a previous work [10] by defining specific
conceptual models that takes into account of the capture of evolutionary data,
the change of dimensions, the treatment of the substitutions keys and the data
quality. Wilkinson et al. [13], for instance, presented a method to guide BPMN
specifications in the definition of conceptual models of ETL systems. Table 1
highlights a summary of the literature review which is based on five criteria:

– C1-Modeling of ETL process. This criterion is relative to the level of abstrac-
tion adopted in the ETL modeling approach: “C” (Conceptuel modeling of
ETL process) and “L” (Logical modeling of ETL process).

– C2-Modeling language: the language used for the modeling of the ETL process.
– C3-ETL operations such as:
• “D” Operations on the predefined data: all types of transformations real-

ized with the data such as aggregation, filter, join, concatenation, etc.
• “C” Operations expressing the constraints: all types of transformations and

declarations errors or constraints such as Incorrect, Log, etc.
• “U” Operations defined by the user: where the designer can define new

operations.
• “S” Operations for structuring: to unify the structure of the inputs.

– C4-ETL Level: indicates the level of the ETL process versus the DW design
methodologies.

– C5-Design approaches: take into account the needs in the ETL process.

Notice that, the majority of works proposed the conceptual or/and logi-
cal design for the ETL process for data driven approaches. Only the work of
Jovanovic et al. [14] and El-Akkaoui et al. [11] take into consideration the busi-
ness requirement in the ETL process.

For the modeling language of ETL process, BPMN notation seem to be a good
choice since it can cover a deficit of communication that often occurs between the
design and implementation of business process. For that, we adopt this modeling
language in our method.

Two-ETL Phases for Data Warehouse Creation: Design and Implementation 141

As general rules, the ETL process starts after the logical modeling of the DW
schema like the works of [10–13]. Nevertheless, Jovanovic et al. [14] propose to
start the ETL process at the logical level.

To facilitate and minimize the complexity of ETL process, we propose to
start the ETL process from the conceptual design phase of the DW and to take
into account the business requirements in the ETL process. In fact, starting an
ETL modeling at an earlier stage allows to benefit from the knowledge generated
during the conceptual modeling of data warehouses by saving the traceability of
the data in a correspondence table and modeling the transformation operations
with BPMN.

Table 1. Summary of the literature review.

Approaches C1 C2 C3 C4 C5

D C U S

Munoz et al., 2008 C/L UML (Activity Diagram) Yes No No No Fourth step No

Wilkinson et al., 2010 C/L BPMN Yes No No No Fourth step No

El-Sappagh et al., 2011 C UML Yes No Yes Yes Fourth step No

Atigui et al., 2012 C/L UML Yes Yes No No Fourth step No

El Akkaoui et al., 2012 C BPMN Yes Yes No No Fourth step Yes

Oliveira and Belo, 2012 C BPMN Yes Yes No No Fourth step No

Jovanovic et al., 2012 C / Yes Yes No No Third step Yes

Mallek et al., 2014 C UML (Activity Diagram) Yes Yes No Yes Fourth step No

Our approach C BPMN Yes Yes Yes Yes Second step Yes

3 Two-ETL Phases Method

In this paper, we propose a method called Two-ETL phases for DW creation from
heterogeneous sources. This method is composed of two phases to accomplish the
ETL process and overcome its complexity. The first phase is done in a parallel
way with the conceptual DW design and the second phase is realized to ensure
the implementation of the specified ETL. In this method we propose to advance
the ETL that is on the fourth level of the DW design methodologies into the
second level (cf. Fig. 1).

As input to our method, we have heterogeneous data sources with different
schemes and business requirements. Our method contains three main steps (cf.
Fig. 2.): (i) DW design process, (ii) first ETL phase and (iii) second ETL phase.
Step (i) and the step (ii) are operating in parallel to allow the design of DW
conceptual and logical shemes, the correspondence table and the transformation
operations. Finally, the third step (iii) consists on the implementation of new
operations or the use of predefined ones in order to create the DW.

The Two-ETL phases as defined greatly facilitates the ETL process by min-
imizing the complexity and the time allocated to the implementation based on
the explicit knowledge stored in the CT and modeling step. In the folowing, we
will detail the Two-ETL phases.

142 A. Nabli et al.

Fig. 1. Steps of DW design methodologie

Fig. 2. Generic view of our proposed method

4 First ETL Phase

In the DW (mixed or data driven) design approaches, a set of rules/heuristics is
used to identify potentials Multidimensional Concepts (MC) from the available
data sources in order to obtain the DW conceptual schema. When starting this
step, it is very important to save the data traceability of the used rules. For that,
we propose to save this traceability on a table called Correspondence Table (CT).

Since the CT is well identified, we carry on the identification of the transfor-
mation operations.The last step of first ETL phase is the conceptual modeling
of identified operations. As output of the first ETL phase we have the corre-
spondence table with full documentation of all transformation operations. The
explained process is modeled in BPMN language (cf. Fig. 3).

This flow uses pools of BPMN which provide a high expressivity for modeling.
This pool encloses three lanes. This lanes focuses on the identification of the DW
design shema, the determination of the correspondence, definition and modeling
of the transformation operations, which allow to generate the correspondence
table.

Two-ETL Phases for Data Warehouse Creation: Design and Implementation 143

Fig. 3. The first ETL phase

In the following, we will detail the preparation of the correspondence table,
the identification of the transformation operations and the modeling of these
operations.

4.1 Excerpt of the Correspondence Table

The identification of the Correspondence Table (CT) at the earliest phases of
DW design is very important for the ETL process. This table stores the DS
attributes names and the corresponding potential MC according to the used
rule. At this stage, CT contains the first two columns of Table 2. The CT is
then updated when the validation of potentials MC with business requirement is
done. At this level, we obtain the valid DW conceptual schema and the valid CT.
Finally, a set of rules is used to derive a logical schema. We recover the result
of applied rules on our CT. Table 2 presents an excerpt of the correspondence
table. The name of data sources (ONAT, Postal codes of Tunisia, ontology) will
be presented in the Sect. 5.

4.2 Identification of Transformation Operations

After the determination of the CT, we propose to clarify the various types of
transformation operations. In this context, we make a distinction between two
types of operations: the defined transformation operations, which are supported
by ETL tools (i.e. mapping, filtering, etc.) and the undefined transformation
operations, which are unsupported by the ETL tools. In fact, the defined oper-
ations can not cover all the possible transformations because they depend on
the data sources and the conceptual model of DW. Therefore, we need to apply
some other transformation operations which depend on the context of work.
These transformation operations are carried out through the addition of a new

144 A. Nabli et al.

Table 2. Excerpt of the correspondence table

Data sources Target data operations

Name of the DS Field (data warehouse) Operations names Operations

types

ONAT Full Name Name First Name Decomposition operation Undefined

ONAT BirthDate Age Group Discrimination operation Undefined

ONAT Date Day Explosion operation Undefined

Month

Year

Week

Quarter

Semester

ONAT Sex Sex Mapping operation Defined

ONAT and postal codes of Tunisia Postal Code Postal Code Join operation Defined

Office Desig

Governorate

Country

ONAT Address Street Number Decomposition operation Undefined

Street Desig

ONAT and ontology Activity Activity Mapping operation Defined

Activity Desig

ONAT and ontology Activity Group Activity Gr Join operation Defined

Activity Gr Desig

Raw Mat Desig

Raw Mat Price

expressions that contain the composition of two or more predefined functions
or calling a routine which contains a program according to the transformation
operation.

Based on the operator library, we alter the CT by a new two columns (cf.
Table 2): operation name and operation type. In the first one we indicate the
name of the operation (i.e. join, split, etc.) and the second one if the operation
is supported by ETL tool or not (defined or undefined).

4.3 Modeling of the Transformation Operations

In the ETL tools (Talend2, Pentaho Data Integration3, etc.) many transforma-
tion operations are available to transform data such as Mapping operation, Fil-
tering operation, etc. But in the real case study we can needs others operations
unsupported by those ETL tools for that we should add new operations.

This section is dedicated to present same proposed operations identified in
the correspondence table such as: decomposition operation, explosion operation
and discrimination operation.

Decomposition Operation: According to the correspondence table, the decom-
position operation occurs when we need to decompose a field of the source into
2 http://www.talend.com.
3 http://www.pentaho.fr/explore/pentaho-data-integration/.

http://www.talend.com
http://www.pentaho.fr/explore/pentaho-data-integration/

Two-ETL Phases for Data Warehouse Creation: Design and Implementation 145

multiple target attributes in the DW. This operation is modeled in the workflow
as a succession of tasks which are: select the field to decompose, define the crite-
ria by which we will do the decomposition, execute the operation decomposition
and save the resulted attribute into a temporary table.

Example 1. As mentioned in Table 2 the attribute Ful Name will be decom-
posed based on a regular expression to generate First Name and Name as
suggested in the DW (cf. Fig. 4).

Example 2. This type of operation is applied to the field Address to deter-
mine the parameter Street Number and weak attribute Street Desig of the
dimension Artisan (cf. Fig. 5).

Fig. 4. BPMN modeling of decomposition operation for Full Name attribute.

Fig. 5. BPMN modeling of decomposition operation for address attribute.

Discrimination Operation: This kind of operations occurs when we have to
assign a categorical attribute from a set of numeric values. In our case of study, we
have to define the parameter Age Group from the Birth date attribute. This
operation must be preceded by a conversion operation. The conversion operation
calculates the Age from the Birth date . Once the age is determined, we move to
the discrimination operation. The workflow of this operation is as follows: select
the attribute, define the conversion operation, execute this operation, define the
operation of discrimination, execute this operation and save the result in the
temporary table. An example of modeling is presented in Fig. 6.
Explosion Operation: The explosion operation aims at defining a multiple
attributes from a single field. A concrete example of this operation is manifested

146 A. Nabli et al.

Fig. 6. BPMN modeling of discrimination operation for Birth Date attribute.

by the generation of several attributes from the field Date . The workflow of
this operation is: select the date, define the applied operation, execute the oper-
ation and save the attributes in the temporary table. Figure 7 illustrates the
steps in the explosion operation of the field Date in Day , Month , Half year ,
Quarter , Week , and Year .

Fig. 7. BPMN Modeling of explosion operation for Date attribute.

5 Second ETL Phase

This phase consists of the implementation of the ETL process based on the
correspondence table and the modeled operations. So, we start by loading data
from data sources into a temporal database based on CT then the cleaning (For
example: treat the missing data and the null values) step is realized. After that,
we use the supported operations and implement the unsupported ones. Finally,
a set of aggregation functions used and then loaded into a DW shema. In Fig. 8,
we present the sequence flow of this phase.

Our method is experimented in the real case study BWEC project. Many
information are collected for this project about handicraft women such as those
about profiles, productions and the ability to use new technologies. These infor-
mation are represented through: the ONAT4 data source which contains a list
of artisans and their information, an ontology which contains the list of the raw
materials of production and the data source of Postal Codes of Tunisia. Figure 9
presents the DW schema to be loaded (b), the excerpt of ontology (c) and the
excerpt of ONAT (a).
4 http://www.onat.nat.tn/accueil/.

http://www.onat.nat.tn/accueil/

Two-ETL Phases for Data Warehouse Creation: Design and Implementation 147

Fig. 8. The second ETL phase

Fig. 9. Excerpt of the DS (a), (c) and the DW schema (b)

We have choisen Talend Open Studio (TOS) for the creation of our DW.
TOS is based on the creation of a “job” to maintain the execution of the data
process. The user can apply the various components of the palette to build the
work on the design side and view the generated code.

Available components in Talend realize some operations, but we notice the
absence of some operations detected in the source analysis phase. TOS allows
adding new operations. In the folowing, we detaied the realization of the new
operations.

148 A. Nabli et al.

Fig. 10. Expression of the discrimination operation

Fig. 11. Expression which determines the parameter quarter

Realization of the Discrimination Operation: The realization of the dis-
crimination operation requires two steps: the first step is the conversion of
Birth date in Age and the second step is the discrimination of Age Group
from the calculated Age . Figure 10 describes the insertion of two expressions
where we define the different age groups.

Realization of the Explosion Operation: The realization of the explosion
operation requires the addition of expressions that we have to determine the
parameters Day , Month , Half year , Quarter , Week , and Year . To do this,
we take the internal base ONAT input and output the Date table in Microsoft
SQL Server. Figure 11 shows the insertion of the phase to generate a Quarter
of each date of the source database.

Figure 12 present the execution of the ETL process (defined and imple-
mented), the statistics appear on the graphical interface elements. These sta-
tistics indicate the success of our method.

6 Conclusion

In this paper, we have proposed two-ETL phases as part of an integrated and
global approach for DW creating. Our method allows to paralyze the design of
ETL process with the conceptual DW design, which facilitates the implementa-
tion of this process. In this method, we have used the BPMN that allows to cover

Two-ETL Phases for Data Warehouse Creation: Design and Implementation 149

Fig. 12. General process of all operations

a deficit of communication that often occurs between the design and implemen-
tation of business processes. The first ETL phase allows the determination of
correspondences and the identification of transformation operations. This step
is performed with the DW design process. The result of this work provides the
correspondence table that saves the traceability of data. From the CT, we have
performed modeling of the operation to facilitate and minimize the complexity
of the second ETL phase. Finally we implemented these operations and loaded
them in the operational data store. Future works include developing a valida-
tion procedure for the produced models using this framework. This will allow to
produce a rigorous comparison between the outcome of this methodology, and
other ones, not only in terms of workflow structure, but also in terms of flex-
ibility, adaptability to change, usability, and performance. Changes can occur
during the lifecycle of the warehouse, not only in sources, but also within the
warehouse.

References

1. Golfarelli, M.: From user requirements to conceptual design in data warehouse
design-a survey. In: Data Warehousing Design and Advanced Engineering Appli-
cations: Methods for Complex Construction, pp. 6–11 (2010)

2. Nabli, A.: Approche d’aide à la conception automatisée d’entrepôt de données:
Guide de modèlisation. Presses Acadmiques Francophones (2013)

3. Favre, C., Bentayeb, F., Boussaid, O., Darmont, J., Gavin, G., Harbi, N., Kabachi,
N., Loudcher, S.: Les entrepôts de données pour les nuls. ou pas!. In: 2éme Atelier
aide à la Décision à tous les Etages (EGC/AIDE), Janvier 2013

4. Trujillo, J., Luján-Mora, S.: A uml based approach for modeling ETL processes
in data warehouses. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P.
(eds.) ER 2003. LNCS, vol. 2813, pp. 307–320. Springer, Heidelberg (2003)

150 A. Nabli et al.

5. Mallek, H., Walha, A., Ghozzi, F., Gargouri, F.: ETL-web process modeling. In:
ASD Advances on Decisional Systems Conference (2014)

6. El-Sappagh, A., Hendawi, A., Bastawissy, H.: A proposed model for data warehouse
ETL processes. J. King Saud Univ. Comput. Inf. Sci. 23(2), 91–104 (2011)

7. Muñoz, L., Mazón, J.-N., Pardillo, J., Trujillo, J.: Modelling ETL processes of data
warehouses with UML activity diagrams. In: Meersman, R., Tari, Z., Herrero, P.
(eds.) OTM-WS 2008. LNCS, vol. 5333, pp. 44–53. Springer, Heidelberg (2008)

8. Munoz, L., Mazon, J., Trujillo, J.: Automatic generation of ETL processes from
conceptual models. In: Data Warehousing and OLAP, pp. 33–40 (2009)

9. Atigui, F., Ravat, F., Teste, O., Zurfluh, G.: Using OCL for automatically pro-
ducing multidimensional models and ETL processes. In: Cuzzocrea, A., Dayal, U.
(eds.) DaWaK 2012. LNCS, vol. 7448, pp. 42–53. Springer, Heidelberg (2012)

10. El Akkaoui, Z., Zimanyi, E.: Defining ETL worfklows using BPMN and BPEL. In:
Data Warehousing and OLAP, pp. 41–48 (2009)

11. El Akkaoui, Z., Mazón, J.-N., Vaisman, A., Zimányi, E.: BPMN-based conceptual
modeling of ETL processes. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012.
LNCS, vol. 7448, pp. 1–14. Springer, Heidelberg (2012)

12. Oliveira, B., Belo, O.: BPMN patterns for ETL conceptual modelling and valida-
tion. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds.) ISMIS 2012. LNCS, vol.
7661, pp. 445–454. Springer, Heidelberg (2012)

13. Wilkinson, K., Simitsis, A., Castellanos, M., Dayal, U.: Leveraging business process
models for ETL design. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y.
(eds.) ER 2010. LNCS, vol. 6412, pp. 15–30. Springer, Heidelberg (2010)

14. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: Requirement-driven creation
and deployment of multidimensional and ETL designs. In: Castano, S., Vassiliadis,
P., Lakshmanan, L.V.S., Lee, M.L. (eds.) ER 2012 Workshops 2012. LNCS, vol.
7518, pp. 391–395. Springer, Heidelberg (2012)

Direct Transformation Techniques
for Compressed Data:

General Approach and Application Scenarios

Patrick Damme(B), Dirk Habich, and Wolfgang Lehner

Database Systems Group, Technische Universität Dresden, 01062 Dresden, Germany
{Patrick.Damme,Dirk.Habich,Wolfgang.Lehner}@tu-dresden.de

Abstract. Lightweight data compression techniques like dictionary or
run-length compression play an important role in main memory database
systems. Having decided for a compression scheme for a dataset, the
transformation to another scheme is very inefficient today. The common
approach works as follows: First, the compressed data is decompressed
using the source decompression algorithm resulting in the materialization
of the raw data in main memory. Second, the compression algorithm of
the destination scheme is applied. This indirect way relies on existing
algorithms, but is very inefficient, since the whole uncompressed data has
to be materialized as an intermediate step. To overcome these drawbacks,
we propose a novel approach called direct transformation, which avoids
the materialization of the whole uncompressed data. Our techniques are
cache optimized to reduce necessary data accesses. Moreover, we present
application scenarios, where such direct transformations can be efficiently
applied.

Keywords: Lightweight data compression · Main memory database
systems · Efficient algorithms

1 Introduction

As a consequence, e.g., of the developments in the main memory domain, mod-
ern database systems are very often in the position to store their entire data in
main memory. Aside from increased main memory capacities, a further driver
for in-memory database systems was the shift to a column-oriented storage for-
mat in combination with compression techniques. Using both mentioned soft-
ware concepts, large datasets can be held in main memory with a low memory
footprint. That means, modern in-memory database systems have to manage
and process large compressed datasets. For compression, lightweight compression
techniques have been established in this domain [1,3,5,6,9]. These lightweight
techniques provide a good compression rate and they are less CPU intensive than
heavyweight approaches like Huffman [4]. Examples of lightweight compression
techniques are: dictionary compression [1,9], run-length encoding [1,6] and null

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 151–165, 2015.
DOI: 10.1007/978-3-319-23135-8 11

152 P. Damme et al.

suppression [1,6]. Moreover, recent research in the field of lightweight compres-
sion techniques increases the performance by the utilization of parallelization
concepts like SIMD capabilities of modern CPUs [5,7,8].

Based on the availability of various different lightweight compression schemes,
the complexity of the physical database design increases. That means, for each
column an appropriate compression scheme has to be identified. Abadi et al. [1]
have proposed a decision tree to heuristically decide which compression scheme
to use for a column. As they have shown [1], the optimal lightweight compres-
sion scheme depends on various influencing factors like the number of distinct
values, data locality or access pattern. However, these influencing factors usu-
ally change over time. To react in an appropriate way on the physical database
layer, efficient techniques to transform compressed data from one compression
scheme to another are required. To the best of our knowledge, this aspect has
not been considered before for lightweightly compressed data. Therefore, this
paper primarily focuses on this aspect.

A näıve transformation approach would be the indirect way from a source to
a destination compression scheme. First, the compressed data is decompressed
using the source decompression algorithm resulting in the materialization of the
raw data in main memory. Second, the compression algorithm of the destination
scheme is applied. This indirect way relies on existing algorithms and can be
realized for arbitrary pairs of source and destination compression schemes. How-
ever, the näıve approach is very inefficient and the whole uncompressed data
has to be materialized as an intermediate step. To overcome these drawbacks,
we contribute a novel direct transformation approach in this paper:

– Our novel direct transformation techniques convert compressed data in scheme
X to another compression scheme Y in a direct and interleaved way.

– We avoid the materialization of the whole uncompressed data as in the näıve
approach. Furthermore, our direct techniques are cache optimized to reduce
necessary memory accesses.

– We introduce different direct transformation algorithms in detail.
– In our evaluation, we show that our direct transformation techniques outper-

form the indirect, classical way to convert the compression scheme.
– Furthermore, we present different application scenarios for our direct trans-

formation techniques.

The remainder of the paper is organized as follows: The next section briefly
reviews related work in the context of lightweight compression techniques. In
Sect. 3, we describe transformation approaches in general. Then, we present dif-
ferent examples of direct transformation techniques in Sect. 4. Section 5 shows
the results of our empirical evaluation. Before we conclude the paper in Sect. 7,
we highlight different applications requiring efficient transformation techniques.

2 Related Work

The field of lightweight compression has been studied for decades. The main
archetypes of lightweight compression techniques are dictionary compression

Direct Transformation Techniques for Compressed Data 153

(DICT) [1,9], delta coding (DELTA) [5,6], frame-of-reference (FOR) [3,9], null
suppression (NS) [1,6], and run-length encoding (RLE) [1,6]. DICT replaces
each value by its unique key. DELTA and FOR represent each value as the
difference to its predecessor respectively a certain reference value. These three
well-known techniques try to represent the original data as a sequence of small
integers, which is then suited for actual compression using a scheme from the
family of NS. NS is the most well-studied kind of lightweight compression. Its
basic idea is the omission of leading zeros in small integers. Finally, RLE tackles
uninterrupted sequences of occurrences of the same value, so-called runs. In its
compressed format, each run is represented by its value and length, i.e., by two
uncompressed integers. Therefore, the compressed data is a sequence of such
pairs (see Fig. 1).

Fig. 1. Examples of some uncompressed data and its representations in the described
formats of NS (left) and RLE (right). The data of 4-Gamma is given in binary, whereby
gray dots mean leading zero bits. All other data is presented in hexadecimal notation.

In recent years, research in the field of lightweight compression has mainly
focussed on the efficient implementation of these schemes on modern hardware.
For instance, Zukowski et al. [9] introduced the paradigm of patched coding,
which especially aims at the exploitation of pipelining in modern CPUs. Another
promising direction is the vectorization of compression techniques by using SIMD
instruction set extensions such as SSE and AVX. Numerous vectorized techniques
have been proposed, e.g., in [5,7,8]. The techniques 4-Wise Null Suppression and
4-Gamma Coding introduced by Schlegel et al. in [7] are especially important to
understand this paper.

4-Wise NS eliminates leading zeros at byte level and processes blocks of four
values at a time. During compression, the number of leading zero bytes of each
of the four values is determined. This yields four 2-bit descriptors, which are
combined to an 8-bit compression mask. The compression of the values is done
by a SIMD byte permutation bringing the required lower bytes of the values
together. This requires a permutation mask being looked up in an offline-created
table using the compression mask as a key. After the permutation, the code
words have a horizontal layout, i.e., code words of subsequent values are stored
in subsequent memory locations. Thus, the compressed data is a sequence of
compressed blocks (see Fig. 1). The decompression simply reads the compression
mask, looks up the appropriate permutation mask which reinserts the leading
zeros bytes and applies the permutation.

154 P. Damme et al.

4-Gamma eliminates leading zeros at bit level and processes blocks of four
values at a time. The compression algorithm first determines the minimum num-
ber of bits required to represent the highest of the four values. This number is
the shared prefix of the block. All values are represented by that many bits and
stored using a vertical layout, i.e., each of the four code words is stored to a sep-
arate memory word. This requires shift and logical operations, which are done
using vectorized instructions. Finally, the unary representation of the shared
prefix is stored to a separate memory location. Again, the compressed data is a
sequence of compressed blocks (see Fig. 1). The decompression determines the
length of the shared prefix and applies appropriate logical and shift operations
to the compressed block in order to extract the original values.

3 Transformation Algorithms in General

The aim of transformation algorithms is to change the compressed format some
data is represented in. Therefore, the transformation takes data represented in
its source format as input and outputs the representation of the data in its desti-
nation format. Note that this is a lossless process, i.e., after the transformation,
the original uncompressed data can still be obtained by applying the decompres-
sion algorithm of the destination format. We differentiate between two different
types of transformations: indirect and direct, which are described next. For our
novel direct transformation, we introduce two variants in Sect. 3.2.

3.1 Indirect Vs. Direct Transformations

For the implementation of a transformation, two different approaches exist: (1)
indirect transformations and (2) direct transformations.

Indirect transformations constitute a näıve approach. First, the compressed
input data is decompressed using the decompression algorithm belonging to the
source format. In this case, the entire uncompressed data is materialized in main
memory. Finally, the compression algorithm of the destination format is applied
to the uncompressed data in order to obtain the representation of the data in
the destination format.

Since indirect transformations rely solely on existing compression and decom-
pression algorithms, they can easily be implemented for arbitrary pairs of source
and destination formats. However, they suffer from a major inefficiency: The
materialization of the uncompressed data as an intermediate step. This requires
a lot of expensive load and store operations. Furthermore, it results in a subopti-
mal cache utilization: when the uncompressed data is read by the recompression,
it is not in the caches anymore.

In order to perform transformations efficiently, we propose to employ direct
transformations. The decisive criterion for direct transformations is that no
uncompressed data is written to main memory. Ideally, all intermediate data
of a transformation can reside in CPU registers or at worst in the L1 cache. This
allows for high-speed access to these intermediate data. We expect considerable

Direct Transformation Techniques for Compressed Data 155

speed ups of direct transformations compared to indirect ones. Our experimental
results presented in Sect. 5.1 prove this expectation correct. Direct transforma-
tions can, for instance, be accomplished by a tightly interleaved execution of
parts of the decompression algorithm of the source format and parts of the com-
pression algorithm of the destination format within the body of a loop iterating
over the input data. Thereby, intermediate stores and loads to and from memory
can be omitted.

We propose to investigate such direct transformations as a new class of algo-
rithms, which is closely related to compression algorithms. Figure 2 again con-
trasts the data flows of indirect and direct transformations.

Fig. 2. A comparison of the data flows of indirect (top) and direct (bottom)
transformations.

3.2 Precise Vs. Imprecise Transformations

In the literature there exists a multitude of compressed formats and associated
compression algorithms. Whereas a compressed format specifies the structure of
the compressed data, the respective compression algorithm tells how to make
use of this structure in order to obtain the best compression rate possible in the
given format. Hence, the output of the compression of the destination format
could be considered to be a reference for the transformation.

If a transformation algorithm produces a result which equals the result of
the compression of its destination format bit by bit, we call it a precise trans-
formation. Indirect transformations are always precise, since they actually use
the compression algorithm of their destination format. On the other side, direct
transformations do not necessarily need to be precise.

For certain combinations of source and destination formats this bitwise equal-
ity might require a disproportionately high effort. At the same time, data rep-
resented in a certain compressed format does not need to use the size reduction
potential of the format to its maximum extent. As an example, consider run-
length encoding (RLE) [1,6], which replaces each run in the uncompressed data
by its value and its length. The uncompressed sequence [7, 7, 7, 7, 7, 4, 4] would
be represented as [(7, 5), (4, 2)] in a precise way. It could, however, also be rep-
resented as [(7, 2), (7, 3), (4, 2)] and still be decompressable. Making use of this
observation, we introduce a relaxed definition of transformations:

156 P. Damme et al.

We call a (direct) transformation imprecise, if its output O satisfies:

1. O is a valid instance of the destination format.
2. There is some valid input data, such that O is not bitwise equal to the output

of the destination format’s compression.
3. An application of the decompression of the destination format to O yields

uncompressed data that is bitwise identical to the uncompressed data that
can be obtained from the output of the respective precise transformation.

The third criterion is especially crucial, since it guarantees that imprecise
transformations are in fact lossless and do not require any changes to the decom-
pression algorithm. Usually, the result of an imprecise transformation has a big-
ger size than that of a precise transformation for the same source and destination
formats with the same input data. We expect that imprecise transformations
might perform better than precise ones for certain pairs of source and destina-
tion formats.

In the following section, we present some of our direct transformation algo-
rithms including some imprecise variants.

4 Example Techniques

Figure 3 provides an overview of all transformation techniques, we have investi-
gated so far.1 However, in this paper we present only a selection of these tech-
niques, namely Rle2FourNs, FourNs2Rle, and FourNs2FourGamma covering all
aspects which have to be considered. Currently, we focus on unsigned 32-bit
integers as the data type of the uncompressed data. Our algorithms use vector-
ization through SIMD instructions, since they employ fragments of the vectorized
(de)compression algorithms of the involved formats.

Fig. 3. An overview of the transformation techniques investigated by us so far.

1 Our source code is downloadable at https://wwwdb.inf.tu-dresden.de/team/staff/
patrick-damme-msc/.

https://wwwdb.inf.tu-dresden.de/team/staff/patrick-damme-msc/
https://wwwdb.inf.tu-dresden.de/team/staff/patrick-damme-msc/

Direct Transformation Techniques for Compressed Data 157

4.1 Rle2FourNs

The foundation of the direct transformation from the format of RLE to that of 4-
Wise NS is the observation that runs of equal single values in the uncompressed
data yield (shorter) runs of byte-wise equal homogeneous2 compressed blocks in
the compressed format of 4-Wise NS.

The transformation algorithm iterates over its RLE-compressed input data
and performs the following steps for each pair of run value and run length:

1. The run value and run length are loaded from the compressed input data.
2. The number of compressed blocks of 4-Wise NS necessary to represent the

run is calculated by dividing the run length by four.
3. One block consisting of four copies of the run value is compressed the same

way 4-Wise NS would do it. Note that this is done only once per run. After
this step, the compressed block resides in a vector register in the CPU, i.e.,
no data is stored to main memory.

4. The compressed block is appended to the output data as often as necessary.
This is done by storing the content of the vector register of the previous step
to memory multiple times, which does not require any load instructions.

In practice, this procedure gets more complicated, since the run length cannot
be assumed to be a multiple of four. In the vicinity of the border between two
adjacent runs as well as at the end of the input buffer, it can be necessary to
process heterogeneous blocks.

For small run values, this approach can be further accelerated. Storing the
compressed block to memory is done using a vectorized store instruction, which
writes 16 bytes of vector register content to memory at once. If the run value
has exactly one effective byte3, then the compressed block including the com-
pression mask spans only five bytes. That is, it fits three times into a 16-byte
vector register. Hence it is possible to store out three compressed blocks at once.
A similar improvement can be made for run values having exactly two effective
bytes. In that case, three copies fit into two vector registers. We implemented
these optimizations by modifying the permutation masks used by 4-Wise NS to
not only permute, but also copy the data within the vector register.

4.2 FourNs2Rle

The direct transformation in the inverse direction, i.e., from the format of 4-Wise
NS to the format of RLE, makes use of the fact that runs of byte-wise equal
homogeneous compressed blocks in the compressed input data mean (longer)
runs of equal single values in the uncompressed format.

The transformation iterates over all compressed blocks of 4-Wise NS in its
input, performing the following steps for each block:
2 We call a block homogeneous, if it contains just one distinct value. Otherwise we call

it heterogeneous.
3 Following Schlegel et al. [7], we use the term effective bits to denote all but the

leading zero bits of a value. The analogous holds for the term effective bytes. By
definition, the value zero also has one effective bit respectively one effective byte.

158 P. Damme et al.

1. The compressed block is checked for homogeneity. First, the compression
mask is examined. Only if it indicates that all four values have the same
length, the actual values are compared in the compressed form. If the block
is homogeneous, the algorithm continues with step 2, otherwise with step 4.

2. The number of subsequent occurrences of the compressed block is determined
in the compressed input data, i.e., without decompression. This is done by a
simple loop starting at the first byte of the compressed block in the input
data. In every iteration, it compares one byte to the corresponding byte in
the next block, whose position can be calculated as the block size is known
from the compression mask.

3. The one value is extracted from the compressed block and appended to the
output as a run value once. The run length is obtained by multiplying the
number of subsequent occurrences of the compressed block from the previous
step by four and appended to the output as well. The algorithm proceeds to
the next compressed block and returns to step 1.

4. Since the current compressed block contains more than one distinct value, it
is not of interest if it is repeated. Instead, the single block is decompressed to
a temporary buffer residing in the L1 cache and immediately recompressed
using RLE. The algorithm continues with the next compressed block and
returns to step 1.

Hitherto, this yields only an imprecise transformation, which is given the
name FourNs2RleImprecise. The reason why the produced output might differ
from the output of a direct compression with RLE, is the coarse-grained view on
the data. Runs are only determined at block-level, but in fact, 4-Wise NS might
partition a run in the uncompressed data into up to three parts: The run might
start in a heterogeneous block, run through arbitrarily many homogeneous blocks
and finally end in a heterogeneous block again. What FourNs2RleImprecise lacks,
is to stitch these parts together. Doing so, however, causes additional overhead.
Avoiding this, is the justification for the imprecise technique.

4.3 FourNs2FourGamma

The main idea of the transformation from the format of 4-Wise NS to that of
4-Gamma is a temporary decompression of one compressed block of 4-Wise NS
immediately followed by the recompression with 4-Gamma.

The main loop of the algorithm processes each compressed block of 4-Wise
NS in the input data as follows:

1. The 8-bit compression mask is loaded and the respective permutation mask
for decompression as well as the size of the compressed block are looked up
in the tables for the decompression of 4-Wise NS.

2. The decompressing permutation is executed. Note that after this step, the
uncompressed block resides in a vector register and does not need to be stored
to main memory.

Direct Transformation Techniques for Compressed Data 159

3. The shared prefix of 4-Gamma is determined like in the compression of 4-
Gamma, i.e., by computing the maximum number of effective bits via the
number of leading zero-bits of the bitwise OR of the four values. This is done
based on the register contents from the previous step, i.e., without accessing
memory. The calculation requires four extractions of a 32-bit element from
a vector register, three scalar bitwise OR operations, and one invocation of a
scalar count-leading-zeros operation.

4. The four values are shifted to right and stored to the values section of the
output data, while the shared prefix is stored to the prefix section.

The precise calculation of the maximum number of effective bits of the
four uncompressed values in step 3 requires many instructions and therefore
costs a lot of time. In order to reduce these costs, the imprecise transformation
FourNs2FourGammaImprecise relaxes the strict interpretation of the shared pre-
fix. It approximates the maximum number of effective bits of the four values by
the maximum number of effective bytes increased by eight times. The crucial
point is that the latter number can directly be obtained from the 8-bit compres-
sion mask of 4-Wise NS by looking it up in a table indexed with the compression
mask. This table has a total size of 256 bytes and is created offline. Note that
the output data produced this way is perfectly decompressable by 4-Gamma
without any changes done to its decompression algorithm. Figure 4 contrasts the
result of the precise and the imprecise transformation for an example block.

Fig. 4. A comparison of the outputs of the precise and the imprecise variant of the
direct transformation FourNs2FourGamma.

5 Experimental Evaluation

We implemented our direct transformation algorithms as well as the corre-
sponding (de)compression algorithms in C++ and compiled them with g++ 4.8
using the optimization flag -O3. Our experiments were conducted on a machine
equipped with an Intel Core i7–4710MQ at 2.5 GHz and 16 GB of RAM. The L1
data, L2 and L3 caches have a capacity of 32 KB, 256 KB and 6 MB, respectively.

In all experiments, the underlying uncompressed data consisted of 100 M
unsigned 32-bit integers. We use synthetic test data in order to be able to freely
specify the properties of the data, especially the distribution of values and the
lengths of runs within the data. We report speeds in terms of million integers
per second (mis), whereby integer refers to an underlying uncompressed value.

160 P. Damme et al.

5.1 Indirect Vs. Direct Transformations

To find out if direct transformations reach higher speeds than indirect ones,
we ran both on the same data and measured the required run times. The
(de)compression algorithms employed in the indirect transformations are vec-
torized and hand-tuned to allow a fair comparison. The results are presented in
Fig. 5. The top row of diagrams shows the speeds side by side, while the bottom
row explicitly provides the speed ups.

Fig. 5. Comparison of the presented direct transformations (d) to the indirect ones (i).

The first two columns correspond to the transformations involving RLE.
Here the data was generated such that it contains runs. The values given at the
horizontal axis are the average run lengths. The length of each individual run was
chosen uniformly from the interval avg ± 2. We show the results of the direct
transformation when all original values have one (d1) or three (d3) effective
bytes each, and of the indirect transformation (i), for which the influence of the
number of effective bytes would not be visible at the scale of the diagrams.

Both directions of the transformation exhibit the same general trends: (1) the
speed increases as the average run length increases, and (2) the more effective
bytes the values have, the lower the maximum speed. Except for very small
average run lengths, the direct transformations outperform the indirect ones,
whereby FourNs2RlePrecise requires run lengths that are a little longer than
Rle2FourNs in order to overtake the indirect transformation. The speed ups
observed reach up to 8.6 and 3.2 for Rle2FourNs and up to 3.2 and 1.4 for
FourNs2RlePrecise, if all values have one respectively three effective bytes.

The third column of Fig. 5 provides the results for FourNs2FourGamma-
Precise. In this case, the data was generated such that all values have the same

Direct Transformation Techniques for Compressed Data 161

number of effective bits, which is given at the horizontal axis. It can clearly
be seen that the direct transformation is faster than the indirect one for all
numbers of effective bits. The speed up achieved is between 1.3 and 1.5, which
is still considerable.

Our experimental results show that direct transformations are much faster
than indirect ones and should thus be employed instead of the latter. We con-
ducted similar experiments for all other direct transformations shown in Fig. 3
and obtained similar results.

5.2 Precise Vs. Imprecise Transformations

In addition to precise transformations, we suggested that it could be faster
to perform imprecise transformations in certain cases. We experimentally com-
pared both variants. The results are given in Fig. 6. The top and bottom row
of diagrams are concerned with the precise (pr) and imprecise (im) variants of
FourNs2Rle and FourNs2FourGamma, respectively. The columns report speeds,
speed ups, and compression rates, from left to right.

Fig. 6. Comparison of the precise transformations (pr) to the imprecise ones (im).

The results show that the imprecise variant of FourNs2Rle is faster than the
precise one only for low average run lengths. A look at the compression rates
of the output of the precise and imprecise transformations reveals the reason.
As expected, the imprecise variant yields a worse compression rate than the
precise one and thus has to store more data. For average run lengths between
about 20 and 100, this difference is most significant. For this reason, the precise

162 P. Damme et al.

transformation is clearly faster here. However, this difference in compression
rates becomes negligible for long runs. As a consequence, the speed up of the
imprecise variant converges on 1.0 again. That is, the imprecise variant yields at
least only a slight slow down.

For FourNs2FourGamma we used two different distributions of the original
data: (A) all uncompressed values have the same number x of effective bits,
and (B) the number of effective bits is chosen uniformly from the interval [1, x],
whereby x is the number given at the horizontal axis. In this case, the facts
are much clearer. The imprecise variant significantly outperforms its precise
counterpart for both distributions and all possible xs yielding speed ups between
1.6 and 1.8, although it leads to a worse compression rate of the output.

To sum it up, the experiments revealed that imprecise direct transformations
can indeed be faster then precise ones. However, this is not generally the case
as not all combinations of source and destination formats as well as data char-
acteristics seem to be suited. Still, imprecise transformations remain to be an
interesting concept and will be promising for other transformation techniques.

6 Application Scenarios

In this section, we stress the usefulness of our direct transformation techniques
by presenting two interesting applications requiring efficient transformations.

6.1 Indirect Compression

One possible application of direct transformation techniques is the acceleration
of the actual compression. Assume we want to represent some uncompressed
data in the compressed format Y . In the classical case, i.e., without considering
transformations, there is only one way to achieve this: a direct compression by
applying the compression algorithm of Y to the uncompressed data. However,
also taking transformations into account, there are far more possibilities. We
can, for instance, first apply the compression algorithm of some intermediate
format X and then perform a transformation from the format X to the format
Y . One can trivially see that such an indirect compression can only lead to a
speed up if it employs a direct transformation. This is due to the fact that an
indirect transformation would undo the intermediate compression to the format
X as its first step and thus render it to be pure overhead.

The results presented in Fig. 7 prove that such indirect compressions can
indeed outperform direct ones. In the example, the compressed format of 4-
Wise NS was obtained from uncompressed data by either using the compression
algorithm of 4-Wise NS directly (dc) or by the indirection via the format of
RLE (ic). Again, the experiment was run for uncompressed values having one or
three effective bytes each. The difference of the speed of the direct compression
that is subject to the number of effective bytes is negligible at the scale of the
diagrams. While the speed of the direct compression is not affected by the average
run length, the indirect compression gets faster as the run length increases until

Direct Transformation Techniques for Compressed Data 163

it overtakes the direct one at run lengths of about 50 or 150, reaching speed ups
of up to 1.8 and 1.3 for one or three effective bytes per uncompressed value.

Unsurprisingly, this does not work for all possible indirect compressions. We
conducted the same experiment for the compression to the format of RLE and
to the format of 4-Gamma via the format of 4-Wise NS. Both resulted in slow
downs compared to the direct compression. Nevertheless, indirect compressions
still remain an interesting approach.

Fig. 7. Comparison of the direct compression (dc) to the format of 4-Wise NS to the
indirect one (ic) via the format of RLE.

6.2 Transformations During Query Processing

Another, even more promising application for direct transformations, is the
change of the compressed format during query processing. Currently, a shift
towards in-memory database systems as the prevailing technology for analytical
data processing is taking place. These systems keep all their data in main mem-
ory, so accessing intermediate results is as expensive as accessing the base data.
Thus, intermediate results must be treated efficiently. One way to do so, is to
compress not only the base data, but also intermediate results.

Compressed data offers advantages, such as reduced transfer times, better
cache utilization, and a higher TLB hit rate. Moreover, many plan operators can
directly process compressed data without decompression. On the other side, com-
pression has two major disadvantages. Firstly, it introduces a certain computa-
tional overhead, which makes efficient implementations crucial. Recent research
[5,7–9] has proven that this is manageable. Secondly, a compressed format has
to be chosen. Approaches exist to make this decision wisely, as, e.g. [1], but do
not consider the necessity to change the format later.

The optimal format depends on the properties of the data. While the proper-
ties of the base data might change only incrementally over time caused by DML
operations, the properties of intermediate results usually change dramatically
during the processing of a single query. Consequently, operators should be able
to output data in another format than their input. For example, a selection might
get dictionary-compressed data as input and let only small values pass, such that
afterwards a null suppression scheme would be more appropriate. Not adapting
the format of the operator’s output implies a waste of performance potential.
At this point, transformations can be a solution. They could be applied to the

164 P. Damme et al.

output of an operator or even inside an operator. This idea is especially well com-
binable with the transient decompression strategy proposed by Chen et al. in
[2]. The authors suggest that operators which are unable to process compressed
data directly should temporarily decompress their input, but use the compressed
form for the output, again. If a recompression has to be done anyway, it could, of
course, provide another format. Note that transformations during query process-
ing must be as efficient as possible, since they are applied online. Due to that,
our novel direct transformation techniques are inevitable.

7 Conclusions

In-memory database management systems are of increasing importance in both,
business and science. They regularly combine a column-oriented storage format
with lightweight compression techniques. The efficient implementation of light-
weight compression algorithms as well as the decision for an optimal compressed
format have been studied in the literature. However, if the characteristics of the
compressed data change over time or during query processing, efficient trans-
formations to other compressed formats can be beneficial, but have not been
investigated before. In order to fill this gap, we proposed to use direct transfor-
mations that avoid to materialize any uncompressed data in main memory and
are cache optimized. Furthermore, we presented precise and imprecise transfor-
mations as two variants of lossless direct transformations. Besides a conceptual
introduction of such techniques, we also described three concrete algorithms. We
conducted an experimental evaluation proving that our new techniques outper-
form the näıve approach of a complete decompression and recompression. To
highlight the usefulness of our direct transformations, we described two possible
application scenarios: indirect compression and transformations during query
processing.

Acknowledgments. This work was funded by the German Research Foundation
(DFG) in the context of the project “Lightweight Compression Techniques for the
Optimization of Complex Database Queries” (LE-1416/26-1).

References

1. Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in
column-oriented database systems. In: SIGMOD, pp. 671–682 (2006)

2. Chen, Z., Gehrke, J., Korn, F.: Query optimization in compressed database systems.
SIGMOD Rec. 30(2), 271–282 (2001)

3. Goldstein, J., Ramakrishnan, R., Shaft, U.: Compressing relations and indexes. In:
ICDE, pp. 370–379 (1998)

4. Huffman, D.: A method for the construction of minimum-redundancy codes. Proc.
IRE 40(9), 1098–1101 (1952)

5. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vectoriza-
tion. In: CoRR abs/1209.2137 (2012)

Direct Transformation Techniques for Compressed Data 165

6. Roth, M.A., Van Horn, S.J.: Database compression. SIGMOD Rec. 22(3), 31–39
(1993)

7. Schlegel, B., Gemulla, R., Lehner, W.: Fast integer compression using simd instruc-
tions. In: DaMoN Workshop, pp. 34–40 (2010)

8. Stepanov, A.A., Gangolli, A.R., Rose, D.E., Ernst, R.J., Oberoi, P.S.: SIMD-based
decoding of posting lists. In: CIKM, pp. 317–326 (2011)

9. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar RAM-CPU cache com-
pression. In: ICDE, pp. 59–70 (2006)

Transformation, Extraction
and Archiving

Analysis of the Blocking Behaviour of Schema
Transformations in Relational Database Systems

Lesley Wevers(B), Matthijs Hofstra, Menno Tammens,
Marieke Huisman, and Maurice van Keulen

University of Twente, Enschede, The Netherlands
{l.wevers,m.huisman,m.vankeulen}@utwente.nl
{m.hofstra,m.j.tammens}@student.utwente.nl

Abstract. In earlier work we have extended the TPC-C benchmark with
basic and complex schema transformations. This paper uses this bench-
mark to investigate the blocking behaviour of online schema transforma-
tions in PostgreSQL, MySQL and Oracle 11g. First we discuss exper-
iments using the data definition language of the DBMSs, which show
that all complex operations are blocking, while we have mixed results for
basic transformations. Second, we look at a technique for online schema
transformations by Ronström, based on triggers. Our experiments show
that pt-online-schema-change for MySQL and DBMS REDEFINITION
for Oracle can perform basic transformations without blocking, however,
support for complex transformations is missing. To conclude, we provide
a solution outline for complex non-blocking transformations.

1 Introduction

Software is in constant need of maintenance, adaptation and extension. For appli-
cations storing and maintaining data in a database, a software change often
involves restructuring of data, i.e., a schema change with an accompanying con-
version of the data. To ensure that no concurrency conflicts occur, many rela-
tional database systems block access to the data during a schema change. The
effect is that concurrent transactions completely halt until the execution of the
schema change has finished, which could take many hours to days for large data-
bases. This is a real problem for systems that need 24/7 availability, such as
telecommunication systems, payment systems and control systems [5,7].

Goals. We experimentally investigate the blocking behaviour of online schema
transformations in current DBMSs. We look at the capabilities provided by the
standard SQL data definition language (DDL) as implemented by the DBMSs,
and we investigate a method developed by Ronström [6], which can perform non-
blocking schema changes on any DBMS that supports triggers. We investigate
basic transformations provided by the SQL DDL such as adding columns and
indexes, and we look at complex transformations that require multiple DDL
operations, such as changing the cardinality of a relationship, or changing the
primary key of a table. While the basic transformations are the most common,
these complex transformations are often needed in realistic transformations.
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 169–183, 2015.
DOI: 10.1007/978-3-319-23135-8 12

170 L. Wevers et al.

Contenders. We investigate PostgreSQL, MySQL and Oracle 11g, which repre-
sent a large fraction of the DBMSs used in industry. We now provide a brief
overview of their capabilities for online schema transformations. First, Post-
greSQL does not provide non-blocking DDL, but it is interesting as it can per-
form many DDL operations instantaneously. Next, MySQL has recently added
support for online DDL1. In addition, a number of tools have been developed
in industry to perform online schema changes on MySQL using Ronström’s
method, including pt-online-schema-change2, oak-online-alter-table3, and the
online-schema-change tool developed at Facebook4. As these tools have similar
capabilities, we investigate pt-online-schema-change in our experiments as a rep-
resentative. Finally, Oracle 11 g does not provide online DDL, but it can perform
non-blocking schema changes using the DBMS REDEFINITION package5.

Approach. For our experiment we have developed a benchmark [8] that extends
the standard TPC-C benchmark6 with basic and complex schema transforma-
tions. We run the standard TPC-C workload, while concurrently executing a
schema transformation, and measure the impact on the TPC-C throughput. An
important aspect of our benchmark is that schema transformations should be
correct, i.e., they should satisfy the ACID properties, they should be composable
to allow the execution of complex transformations, and ideally, transformations
should be specified declaratively. We briefly discuss our requirements and the
benchmark in Sect. 2, and we discuss our experimental setup in Sect. 3.

Results. In Sect. 4 we discuss our experimental results for online transformations
using the DDL provided by the DBMSs. We see mixed results for basic trans-
formations, while all complex transformations block the TPC-C workload. In
Sect. 5 we discuss the experimental results for Ronström’s approach using pt-
online-schema-change for MySQL and Oracle’s DBMS REDEFINITION pack-
age. We see that pt-online-schema-change can perform all basic DDL operations
without blocking, but it can not perform complex transformations. Oracle can
perform some complex transformations, but is limited to operations on a single
table. We summarize our results in Sect. 6, and in Sect. 7 we discuss a solution
outline to support complex non-blocking schema transformations.

Contributions. The contributions of this paper are:

– An experimental investigation of the blocking behaviour of basic and complex
schema transformations using the DDL in PostgreSQL, MySQL and Ora-
cle 11g, and using Ronström’s method as implemented by pt-online-schema-
change and Oracle’s DBMS REDEFINITION.

– A solution outline for complex non-blocking schema transformations.
1 http://dev.mysql.com/doc/refman/5.6/en/innodb-online-ddl.html.
2 http://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html.
3 http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/
oak-online-alter-table.html.

4 https://www.facebook.com/notes/mysql-at-facebook/
online-schema-change-for-mysql/430801045932.

5 http://docs.oracle.com/cd/B19306 01/appdev.102/b14258/d redefi.htm.
6 http://www.tpc.org/tpcc/spec/tpcc current.pdf.

http://dev.mysql.com/doc/refman/5.6/en/innodb-online-ddl.html
http://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html
http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/oak-online-alter-table.html
http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/oak-online-alter-table.html
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932
http://docs.oracle.com/cd/B19306_01/appdev.102/b14258/d_redefi.htm
http://www.tpc.org/tpcc/spec/tpcc_current.pdf

Analysis of the Blocking Behaviour of Schema Transformations 171

2 Benchmark

In an earlier paper we have defined requirements for non-blocking schema trans-
formations, based on which we have extended the standard TPC-C benchmark
to measure the impact of various types of schema transformations on the TPC-C
workload. In this section we briefly discuss the requirements and the benchmark.
More details can be found in our earlier paper [8].

Requirements. We have defined requirements on the functionality of schema
transformations, and on their performance characteristics.

In terms of functionality, we assert that a schema transformation should sat-
isfy the ACID properties like any other transaction that updates the database.
Moreover, ideally, schema transformations should be specified declaratively. Sim-
ilar to queries, a user should not have to be concerned with how a transforma-
tion is executed, but only what the result of a transformation should be. For
instance, an implementation of the DDL satisfies this requirement if it provides
ACID guarantees for transactionally composed DDL operations. Moreover, the
system should provide a mechanism to update applications as part of the schema
transformation, e.g., by replacing stored procedures transactionally.

In terms of performance, a schema transformation should have minimal
impact on the performance of concurrent transactions. In particular, regular
transactions should not be blocked, should not experience excessive slowdown,
and should be able to complete without aborting. Moreover, the schema trans-
formation itself should be able to commit while concurrent transactions are run-
ning, and the time to commit from the start of the transformation should be
minimal. In our benchmark we measure the impact of schema transformations
on the OLTP throughput, and the time-to-commit of the transformation.

Transformations. Our benchmark contains basic transformations as provided
by the SQL data definition language. Additionally, we also investigate bulk data
updates without changing the schema, which is required in many complex trans-
formations. Furthermore, our benchmark also contains a number of complex
transformations, which generally consist of multiple DDL statements. In partic-
ular, we look at creating a column derived from another column, changing the
cardinality of a relationship, and changing a primary key. Most transformations
involve the largest table in the TPC-C schema, and update the stored proce-
dures to allow the TPC-C workload to keep running on the transformed schema.
A detailed description of the benchmark cases can be found in our earlier paper [8].

Benchmark Process. The execution of a benchmark case is done in four phases.
First, during the setup phase, we create a TPC-C database. Some benchmark
cases require a modification to the TPC-C schema, which we also perform in this
phase. Next, during the intro phase, we start the TPC-C benchmark load. We
wait for 10 min before starting the transformation, while measuring the baseline
TPC-C performance. Next, we start the transformation phase, where we execute
the benchmark transformation. We wait for it to complete, while logging the

172 L. Wevers et al.

begin and end time of the transformation. Finally, we wait for another 10 min
while measuring the TPC-C throughput in the outro phase.

Benchmark Results. As seen in Fig. 1, we present the result of a benchmark as
a line graph that plots the TPC-C transaction execution rate over time. We
mark the start and commit time of the transformation with vertical lines, and
we show the time-to-commit under the x-axis. Moreover, we plot aborted and
failed transactions in red. The y-axis starts at zero transactions per second,
which corresponds to blocking behaviour. We do not show the absolute TPC-
C throughput as we are only interested in blocking behaviour and the relative
performance of TPC-C during and after a schema transformation compared to
the intro phase.

3 Experimental Setup

An implementation of our benchmark, and all experimental results can be found
on our website7. We use the TPC-C implementation HammerDB8 to create the
TPC-C database and to provide stored procedures. We use HammerDB to gen-
erate one database for each DBMS, which we backup once, and then restore in
the setup phase of every experiment. Before starting the introduction phase of
the experiment, we let the TPC-C benchmark run for ten seconds, as to give the
DBMS some time to warm up. To generate load on the system, and to measure
the TPC-C performance, HammerDB provides a driver script. However, as this
script does not perform logging of transactions, we have ported the script to Java
and we have added logging facilities. For all experiments, we generate a data-
base of 30 warehouses, and we use 64 threads of load on the database. We do not
spawn new threads to start other transactions while a thread is blocked. For the
experiments we have used a quad-core Intel i7 machine with 16 GB of RAM and
a solid-state drive. For the software we used Ubuntu Linux kernel 3.20.0, Post-
greSQL version 9.1.14, MySQL version 5.6.20, pt-online-schema-change version
2.2.11, oracle 11 g release 11.2.0.3.0, and HammerDB version 2.14.

Stored Procedures. Many of our benchmark cases update the TPC-C stored
procedures so that the workload can keep running after the transformation. As
such, we need support from the DBMS to change stored procedures as part of a
schema transformation. PostgreSQL provides transactional DDL which also sup-
ports transactional upgrades of stored procedures. In contrast, MySQL does not
have transactional DDL, and does not provide a mechanism to upgrade stored
procedures safely. This means that stored procedure upgrades in our MySQL
experiments are not atomic. Oracle provides editions, which allow switching
between different versions of stored procedures safely. However, we found it dif-
ficult to automate our tests using editions, and chose to use non-atomic updates
of stored procedures. This does not affect the results of our experiments.
7 http://wwwhome.ewi.utwente.nl/∼weversl2/?page=ost.
8 http://hammerora.sourceforge.net/.

http://wwwhome.ewi.utwente.nl/~weversl2/?page=ost
http://hammerora.sourceforge.net/

Analysis of the Blocking Behaviour of Schema Transformations 173

Fig. 1. Adding and removing columns.

4 Experimental Results: Data Definition Language

This section shows our experimental results for online schema transformations
using the data definition language in PostgreSQL, MySQL and Oracle 11 g. First,
we look at basic operations, including column operations, index operations and
bulk data updates. To conclude, we investigate composition of DDL statements
to perform complex transformations.

4.1 Basic Transformations

Adding and Removing Columns. Figure 1 shows the impact of basic column
operations on the TPC-C workload. Both PostgreSQL and Oracle can add a
column instantaneously, without noticeably interrupting the TPC-C workload.
MySQL can not add a column instantaneously, but uses its online schema change
functionality. Despite this, MySQL still shows a short period of blocking at the
start of the operation, and we see a significant reduction in throughput. When
adding a column with a default value, PostgreSQL and Oracle now materialize
the column being created, which results in a period of blocking. For MySQL
we see the same behaviour as the previous case. When removing a column,
PostgreSQL can perform this operation instantaneously, and MySQL can use
its online schema change feature. Interestingly, DROP COLUMN causes Oracle
to block. Oracle also allows a column to be marked as unused, which effectively
removes the column without reclaiming disk space. Disk space can be reclaimed
using DROP UNUSED COLUMNS, however, this is still a blocking operation.

174 L. Wevers et al.

Fig. 2. Creating normal and unique indexes.

Creating Indexes. Figure 2 shows the impact of creating indexes on the TPC-C
workload. We have created indexes on two columns with different workload: the
OL DELIVERY D column which is nullable and is not written on insertion, while
the OL I ID is being written to on insertion. All tested DBMSs allow online cre-
ation of indexes. PostgreSQL shows a small impact on TPC-C throughput, but
behaves well. Oracle commits more quickly than PostgreSQL, but shows peri-
ods of significant blocking after the commit, suggesting that Oracle is creating
the index in the background. We have run the experiment for three hours after
the commit, and have seen that this behaviour persists during this period.
Despite supporting online index creation, MySQL blocks for a significant amount
of time on when indexing the OL I ID column. We see that creating a unique
index has similar characteristics to creating a regular index, but the time to com-
mit for PostgreSQL and MySQL is longer. Removing indexes is an instantaneous
operation in all three DBMSs, so we don’t show their results.

Bulk Data Transformations. For some transformations it is essential that we
can update data in bulk. An update statement differs from an ALTER TABLE
statement in that the schema is not changed. However, semantically it is a schema
transformation. Updating prices in a database to use a different currency is an
example of such a transformation. Moreover, bulk data operations are important
in many complex transformations to transform data or to move data between
tables. Where stored procedures may simply fail on a schema that it does not
expect, for bulk data updates this is not the case. As such, it is important that
bulk data transformations satisfy the ACID properties.

Analysis of the Blocking Behaviour of Schema Transformations 175

Fig. 3. Bulk data transformations in PostgreSQL and MySQL.

Figure 3 shows the impact of a bulk data update on the column in the caption
using PostgreSQL and MySQL. We do not show results for Oracle, because it
could not execute the bulk update due to concurrency conflicts. In both cases,
we use the serializable transaction level to guarantee correctness. We see that
PostgreSQL takes a table lock to guarantee serializability, and blocks the TPC-C
workload. Interestingly, MySQL does not block the workload when updating the
OL AMOUNT column, because it only locks the OL AMOUNT column, which
is not being updated by the TPC-C workload. We ran the experiment on the
C BALANCE column, which is being updated, and see that MySQL now blocks
toward the end of the operation. During the transformation, transactions can
still execute, as MySQL doesn’t take a complete table lock.

4.2 Complex Transformations

Transactional Composition. A natural way to construct a complex transforma-
tion from DDL operations is to wrap them into a transaction. If every DDL
operation is non-blocking, commits instantaneously, and does not block other
transformations from starting after committing, then the composed transforma-
tion can also be non-blocking and instantaneous. However, all complex transfor-
mations that we have considered involve bulk data updates, which, as we have
seen in the previous section, is blocking in current DBMSs. When composing
an instantaneous transformation with a bulk data update, the instantaneous
operation can take a table lock, which is held during the bulk data update.

We see this behaviour in PostgreSQL, as shown in Fig. 4 (top row). In the
leftmost experiment we have added a column OL TAX whose value is derived
from an existing column. First, we add the new column, which is non-blocking
and instantaneous, and then we fill the column using UPDATE, which results
in a table lock. We see the same behaviour in all complex cases that we have
tested.

Non-transactional Composition. MySQL and Oracle 11 g do not provide trans-
actional DDL: they auto-commit after each DDL operation. However, MySQL
does support online DDL. Can we use this to perform complex transformations
correctly? As many operations require bulk data operations that can not be
performed without blocking, this is not possible in general.

176 L. Wevers et al.

Fig. 4. Complex transformations in PostgreSQL and MySQL.

When composing non-blocking transformations non-transactionally, interme-
diate schemas are visible to concurrent transactions. If we keep using the original
stored procedures on these intermediate states, they can fail to execute, per-
form erroneous operations, or encounter lost updates, which could damage the
integrity of the database. We could update the stored procedures directly after
the commit of each transformation step to handle intermediate states. However,
this does not work for bulk data transformation, as the original stored proce-
dures will keep executing while the bulk data is in progress, which results in
concurrency conflicts. For instance, if we want to add a derived column, we can
first create a new column, and then fill it using a bulk update statement. How-
ever, while the update statement is in progress, the original transactions can
continue executing on the source column, which updates are not reflected in the
derived column, thus resulting in lost updates. To solve this, we could attempt
to update the stored procedures before the transformation starts, but this does
not solve the problem, as the new transactions can be blocked from writing to
the derived column while the bulk update is in progress.

Figure 4 (bottom row) shows results when performing complex transforma-
tions using the online DDL in MySQL, where we only update the stored pro-
cedures after the transformation. While the transformations are mostly non-
blocking, their results are incorrect in all cases because the TPC-C transac-
tions keep executing on intermediate transformation states, which results in lost
updates. In the second transformation, we also see many erroneous transactions
because we do not update the stored procedures after every transformation step.

4.3 Conclusions

Our experiments with MySQL, PostgreSQL and Oracle show that support for
non-blocking transformations using the DDL is rather weak. Most problem-

Analysis of the Blocking Behaviour of Schema Transformations 177

atic are adding columns with default values and performing bulk data updates.
As complex transformations regularly require bulk data updates, non-blocking
complex transformations are currently not possible at all. If non-blocking bulk
updates where possible, many complex transformations could in principle be
performed by adapting the stored procedures to intermediate states. However,
this would also be very costly to implement in terms of development effort.

5 Experimental Results: Ronström’s Method

Ronström proposed a method that allows changing of columns, adding indexes,
and horizontally and vertical splitting and merging of tables by using database
triggers [6]. The method works as follows. First, an interim table that matches
the desired schema is created. Next, triggers are created on the original table
that propagate any changes on the original table to the interim table. Next, data
is copied to the new tables in small batches, while performing the desired schema
transformation on the data. Finally, after copying the data, the original table is
replaced by the interim table. A benefit of Ronström’s method is that it can be
implemented on top of existing database systems that support triggers.

In this section, we investigate pt-online-schema-change, which implements
Ronström’s method for MySQL, and we look at the DBMS REDEFINITION
package provided by Oracle 11g. While tools similar to pt-online-schema-change
could be implemented for PostgreSQL, to our knowledge, at the time of writing
no such tools are available.

5.1 Pt-online-schema-change for MySQL

The pt-online-schema-change tool from the Percona Toolkit implements
Ronström’s method for MySQL. The tool accepts a single ALTER TABLE state-
ment, which it executes transactionally. Multiple transformations can be per-
formed using a single ALTER TABLE statement, but multi-table transformations
and data transformations are not supported. It creates a new table with the new
schema, and copies the rows from the source table to this new table. Copying is
done in chunks of a certain size, which can be configured using two strategies.
First, a fixed chunk size can be specified, and second, a fixed time per chunk can
be specified. While a chunk is being copied, the copied rows are locked for writing.
A larger chunk size impacts concurrent transactions more due to locking, while a
shorter chunk size slows down the schema transformation.

Effect of Chunk Size and Load. The chunk size and the TPC-C benchmark
load have a large effect on the performance of pt-online-schema-change. This
is because pt-online-schema-change executes transactions in LOW PRIORITY
mode, to minimize slowdown for concurrent transactions. Figure 5a shows the
behaviour of MySQL when pt-online-schema-change is used to add a column
with a TPC-C load of 64 threads and chunk size 1,000. The time to commit is
very long, about 102 min, much longer than the 6:51 used by MySQL to perform

178 L. Wevers et al.

the same operation. If we lower the TPC-C load from 64 threads to only 4
threads, and keep the chunk size at 1,000, pt-online-schema-change commits in
only 14:44, as shown in Fig. 5b. If we increase the chunk size to 10,000, pt-
online-schema-change completes in 4:17, as shown in Fig. 5c, however, we also
see a reduction in TPC-C performance.

Fig. 5. Adding a column using pt-online-schema-change.

Fig. 6. Experimental results for pt-online-schema-change.

Results. Figure 6 shows experimental results for pt-online-schema-change on sev-
eral basic transformations. All basic DDL operations could be performed using
pt-online-schema-change, and impact on performance is generally acceptable.
Interestingly, pt-online-schema-change does not suffer from the initial period of
blocking that we have seen in experiments using MySQL’s online DDL. However,
pt-online-schema-change does not support bulk data operations, and can not be
used to perform transformations consisting of multiple DDL statements.

5.2 DBMS REDEFINITION for Oracle

Since version 9i, Oracle provides the DBMS REDEFINITION package, which
allows schema transformations to be performed using Ronström’s method.
To use DBMS REDEFINITION, the following steps have to be followed. First,
an interim table has to be created with the desired schema. Next, the transfor-
mation is started by defining a mapping from fields in the original table to fields
in the interim table, and by specifying a key that must be present in both the

Analysis of the Blocking Behaviour of Schema Transformations 179

original and interim table, which is used to propagate updates on the original
table to the interim table. Next, after the transformation is complete, objects
such as indexes, constraints and stored procedures can be added to the table.
The package provides a method to copy all existing objects from the original
table to the interim table. Finally, the transformation can be finished to replace
the original table with the interim table. This is a blocking operation, and takes
longer if the interim table is not synchronized with the original table.

Fig. 7. Experimental results for Oracle’s DBMS REDEFINITION.

Figure 7 shows experimental results where we use DBMS REDEFINITION
to perform a bulk data update, and to add a column whose value is derived
from another column. In general, we see that transactions can continue execut-
ing during the transformation, but performance is poor, and there are peri-
ods during the transformation where the throughput drops to zero. Despite
this, DBMS REDEFINITION allows any single-table transformation to be per-
formed. Both of these cases can not be handled by pt-online-schema-change.
However, transformations that involve multiple tables can not be performed, as
the source of the transformation must be a single table. Compared to using the
data definition language, this approach is more verbose, as the interim table
must be defined, and all objects on the table must be copied.

6 Analysis Results

Our experiments with basic DDL operations in PostgreSQL, MySQL and Ora-
cle 11 g show mixed results. PostgreSQL can add and remove columns instanta-
neously and it can create indexes online, but blocks when adding a column with a
default value, and when performing bulk updates. MySQL provides online DDL
for adding and removing columns, but blocks for a significant period of time at
the start of the transformation. MySQL also supports online creation of indexes,
but our experiments show long periods of blocking at the end of the transfor-
mation. Similar to PostgreSQL, Oracle 11 g can add columns instantaneously,
however, adding columns with default values and removing columns takes very
long, and blocks concurrent transactions. Bulk data updates are a problem in
all tested DBMSs. PostgreSQL and MySQL simply block, while Oracle 11 g can
not execute the operation due to concurrency conflicts.

180 L. Wevers et al.

Using the DDL for complex non-blocking transformations is not possible in
any of the DBMSs. Using transactional DDL, PostgreSQL can generally per-
form all operations correctly, but blocks access to all affected tables during the
transformation. MySQL and Oracle do not support transactional DDL. Com-
posing non-blocking DDL operations non-transactionally is possible in general
by updating stored procedures after each transformation step, however, MySQL
and Oracle can not perform non-blocking data updates, which prevents us from
performing most complex transformations. Moreover, such an approach is non-
declarative, and can be costly to implement.

As an alternative to the DDL provided by the DBMSs, we have investigated
Ronström’s method. This method is interesting, as it can perform non-blocking
schema transformations based on blocking transformations in any DBMS that
implements triggers. The pt-online-schema-change tool shows that Ronström’s
method is a promising approach for basic online transformations: it can perform
all basic schema transformations without blocking, with the exception of bulk
data updates. However, complex transformation cases can not be handled by
pt-online-schema-change, as it only supports a single ALTER TABLE state-
ment at a time, and there is no support for UPDATE statements. Oracle’s
DBMS REDEFINITION shows that Ronström’s method can also be used for
more complex single-table operations, but its implementation shows a significant
amount of blocking.

7 Solution Outline

Native Support. With the existence of Ronström’s method, it could be argued
that DBMSs do not need to provide native support for online schema transfor-
mations, but only have to provide support for triggers and atomic updates of
schema meta-data. This is the approach that Oracle has taken with edition-based
redefinition9 and the DBMS PARAL-LEL EXECUTE package10. Edition-based
redefinition allows atomic updates of schema meta data and provides cross-
edition triggers that can transform data between versions of the schema. The
DBMS PARALLEL EXECUTE package can be used to avoid full table locks
while transforming data between versions.

A drawback of Ronström’s approach is that transformations can take a long
time to execute. Native implementations of Ronström’s method in DBMSs can
potentially be more efficient than external tooling. For instance, Løland and
Hvasshovd present Log Redo as an alternative implementation for Ronström’s
approach that avoids the use of triggers, and has minimal impact on perfor-
mance [3]. However, while more efficient implementations of Ronström’s method
could reduce execution time, this does not scale to very large databases.

On-the-fly Transformations. An interesting alternative to Ronström’s method
is to perform transformations lazily, or on-the-fly. The basic idea is to commit
9 http://docs.oracle.com/cd/E11882 01/appdev.112/e41502/adfns editions.htm.

10 http://docs.oracle.com/cd/E11882 01/appdev.112/e40758/d parallel ex.htm.

http://docs.oracle.com/cd/E11882_01/appdev.112/e41502/adfns_editions.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e40758/d_parallel_ex.htm

Analysis of the Blocking Behaviour of Schema Transformations 181

a transformation before transforming the data, and transform the data before
it is accessed. From the viewpoint of the user, this allows a transformation to
be executed instantaneously. Moreover, data can be transformed in the back-
ground during idle time. Lazy transformations have already been investigated in
the context of Object-Oriented database systems [1]. Additionally, Neamtiu has
shown that many relational schema changes can be performed on-the-fly [4].

Depending on the implementation, on-the-fly transformations have two
advantages over Ronström’s method. First, they compose naturally: two on-
the-fly operations executed in sequence form an on-the-fly operation. Second,
on-the-fly transformations can be implemented to execute in-place or incremen-
tally: reusing storage space or garbage collecting parts of the original table that
are already transformed. This avoids the problem of additional memory con-
sumption for intermediate tables as seen in Ronström’s method.

A drawback of on-the-fly transformations is that they must be implemented
in the DBMS. Moreover, they provide overhead on data access, which increases
latency. Most importantly, instantaneous transformations and on-the-fly trans-
formations are limited to operations that can produce results on-the-fly. For
instance, it is not possible to create an index or check a constraint instanta-
neously, and lookups in very large tables that do not have an index can not be
done instantaneously. Consequently, composing a blocking transformations with
an on-the-fly transformation leads to a blocking transformation. This shows that
on-the-fly transformation by themselves are not a full solution to the problem.

Complex Operations using Ronström’s Method. In his original paper, Ronström
has proposed the use of SAGAs to compose basic transformations into more
complex transformations [6]. The idea of SAGAs is to execute the individual
operations of a transaction as a sequence of transactions, where for each oper-
ation an undo operation is provided that can be used to rollback the complete
sequence of operations [2]. While SAGAs provide failure atomicity for composed
operations, they expose intermediate states of the transformation to concurrent
transactions. This requires applications that use the database to handle these
states, which is non-declarative and requires additional development effort.

However, we think that almost any relational transformation can be per-
formed atomically using Ronström’s method without the use of SAGAs. The
following is a sketch of the solution. First, to compose transformations, we can
chain interim tables, i.e., triggers on the original table propagate updates to the
first interim table, while triggers on the first interim table propagate updates to
a second interim table, and so on. Using multiple interim tables can require a lot
of memory. However, sequential transformations could potentially be combined
to use a single interim table. Second, we can define triggers on multiple tables
to propagate updates to one or more tables. This allows multi-table transfor-
mations. Finally, update propagation is inefficient for operations that require
lookups on tables that are not indexed. This can be solved by dividing a trans-
formation into two steps, where indexes are constructed in the first step, and
where the transformation is performed in the second step using these indexes.

182 L. Wevers et al.

From a practical viewpoint, manually implementing transformations using
this approach is quite complex, and optimizing such transformations even more
so. One has to reason about updates on all involved tables, and how these should
be propagated to interim tables. Data could be lost if certain triggers are missing
or wrongly implemented. To solve this, tooling could be developed to transform
declarative transformation specification into optimized execution plans.

Solution Outline. Rönstrom’s method is essentially an optimistic concurrency
control method: it performs operations on a snapshot of the state, and repairs
any conflicts that arise from concurrent operations. As such, Ronström’s method
never blocks access to the state, but it requires additional memory to maintain
multiple versions of the state. Moreover, it can only commit after the transforma-
tion has been completely executed. On the other hand, an on-the-fly method is
essentially a pessimistic concurrency control method: it avoids conflicts by trans-
forming data before access, i.e., it blocks access to parts of the database until
the transformation for that part has been executed. However, on-the-fly meth-
ods can commit immediately, and require less memory compared to Ronström’s
method as they can perform transformations in-place or incrementally.

A solution to minimize time to commit would combine both approaches by
first using Ronström’s method to check constraints and prepare indexes, and
then performing the remainder of the transformation using on-the-fly methods.
However, if time to commit is not crucial, Ronström’s method could be preferable
in situations where predictable low-latency access to data is crucial.

Similar to declarative query support, we envision that DBMSs allow us to per-
form arbitrary schema transformations declaratively. As such, a DBMS should
provide a schema transformation optimizer that can construct a non-blocking
execution plan from a declarative specification of a schema transformation with
the goal of minimizing throughput reduction, access latency, memory consump-
tion and time to commit.

References

1. Ferrandina, F., Meyer, T., Zicari, R.: Implementing lazy database updates for an
object database system. In: VLDB 1994, pp. 261–272 (1994)

2. Garcia-Molina, H., Salem, K.: Sagas. In: SIGMOD 1987. pp. 249–259. ACM (1987)
3. Løland, J., Hvasshovd, S.-O.: Online, non-blocking relational schema changes. In:

Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm,
K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp.
405–422. Springer, Heidelberg (2006)

4. Neamtiu, I., Bardin, J., Uddin, M.R., Lin, D.Y., Bhattacharya, P.: Improving cloud
availability with on-the-fly schema updates. In: COMAD 2013, pp. 24–34. Computer
Society of India (2013)

5. Neamtiu, I., Dumitras, T.: Cloud software upgrades: challenges and opportunities.
In: MESOCA 2011, pp. 1–10. IEEE (2011)

6. Ronström, M.: On-line schema update for a telecom database. In: ICDE 2000, pp.
329–338. IEEE (2000)

Analysis of the Blocking Behaviour of Schema Transformations 183

7. Sockut, G.H., Iyer, B.R.: Online reorganization of databases. ACM Comput. Surv.
41(3), 14:1–14:136 (2009)

8. Wevers, L., Hofstra, M., Tammens, M., Huisman, M., van Keulen, M.: A benchmark
for online non-blocking schema transformations. In: DATA 2015 (2015)

A Benchmark for Relation Extraction Kernels

João L.M. Pereira(B), Helena Galhardas, and Bruno Martins

INESC-ID and Instituto Superior Técnico, Universidade de Lisboa,
Lisbon, Portugal

{joaoplmpereira,helena.galhardas,bruno.g.martins}@tecnico.ulisboa.pt

Abstract. Relation extraction from textual documents is an important
task in the context of information extraction. This task aims at iden-
tifying relations between pairs of named entities and assigning them a
type. Relation extraction is often approached as a supervised classifica-
tion problem, involving pre-processing steps such as text segmentation,
entity recognition, and morphological and syntactic annotations. In pre-
vious studies, the way data is pre-processed differs among them, thus
making the comparison of classification techniques for relation extrac-
tion unfair and inconclusive. Some of these classification techniques for
relation extraction involve the use of kernels, which enable the compari-
son of complex structures. We propose a benchmark for the comparison
of different kernels for relation extraction. Specifically, we propose the
application of a common pre-processing stage, together with the use of
an online learning algorithm to train Support Vector Machines with ker-
nels designed for the classification of candidate pairs of related entities.
We also report the results of the systematic experimental validation we
have performed, using well known datasets in the area.

Keywords: Relation extraction · Benchmark · SVMs · Kernels · Online
learning

1 Introduction

Textual corpora available in digital format are growing fast. These documents
contain valuable information that, if properly identified and structured, can be
used by several applications (e.g., in news aggregators). Information Extraction
consists in automatically obtaining structured data from textual documents.
This activity is typically composed of several tasks, namely segmentation, entity
extraction, normalization, co-reference resolution and relation extraction [11].

This paper focuses on the Relation Extraction (RE) task. For example, given
the text: “The Taliban group Tehreek-e-Taliban Pakistan claimed the attack on
the Karachi airport in southern Pakistan”, a RE system should be able to iden-
tify the relation between the terrorist entity “Tehreek-e-Taliban Pakistan” and
the location entity “Karachi”, and to classify this relation as being of the type
outrage. The result will be the tuple 〈“Tehreek-e-Taliban Pakistan”,“Karachi”〉
of a relation with schema outrage(terrorist, location).
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 184–197, 2015.
DOI: 10.1007/978-3-319-23135-8 13

A Benchmark for Relation Extraction Kernels 185

There are different types of techniques for RE. These techniques are usu-
ally divided in two main groups: (i) rule-based, that specify logical inferences
manually designed by specialists; and (ii) Machine Learning (ML)-based, that
extract relations through the automatic analysis of patterns and/or correlations
in data [11]. Several techniques, specially the ML-based, depend on linguistic
and/or lexico-syntactic data annotations (e.g., part-of-speech tags for words).
The tasks for obtaining these annotations constitute a pre-processing step.

Currently, many of the techniques for RE are based on supervised ML which
identifies patterns in the previously annotated data that constitute a training
dataset. A RE task can be seen as a supervised ML problem by considering the
representation of a pair of entities as a data instance, and the relation type (or
a non-relation) as the class that a data instance can belong to. To provide the
dataset in the format usually accepted by a supervised ML technique, we have
to transform each data instance representing a pair of entities into a vector that
contains the relevant features (e.g., words or grammatical dependencies) of the
pair of entities. Representing such information in a vector is a very demanding
task in terms of execution time and memory. Moreover, it results in large vectors
because the space of all possible relevant features may be huge. Thus, supervised
ML techniques, and the models that they generate, can be inefficient since their
execution time highly depends on the length of the vectors. One way to circum-
vent this situation is to use complex data structures, which organize relevant
features in a more efficient way, and give them directly as input to the super-
vised ML techniques and the generated models. Then, we use kernel functions
that enable specific ML techniques to compare complex data structures. The
use of kernel functions is a common practice in the ML community, in particu-
lar in RE systems. For example, Support Vector Machines (SVMs) constitute a
supervised ML technique that can be based on kernels.

Over the years, some competitions (e.g., MUC [5], ACE [6] and SemEval [8]),
aiming at comparing RE systems, took place. Several RE systems based on
kernels were evaluated with datasets from these competitions. However, these
competitions did not enable a fair comparison of RE kernels. In fact, these com-
petitions used different pre-processing stages, distinct SVM training approaches,
and datasets that belong to the same domain, thus making the comparison of
kernels unfair. Inspired by the work of Marrero et al. [10], who proposed a
benchmark for entity extraction systems, we propose, in this paper, a bench-
mark for kernels for the RE task. This benchmark was developed using a RE
framework named REEL [1]1. The benchmark is composed of: (i) two sets of
documents from distinct domains: AImed2 and SemEval3; (ii) a common pre-
processing step, composed of segmentation, tokenization, normalization, capi-
talization, part-of-speech tagging and dependency analysis; (iii) a set of SVMs
based on state-of-the-art RE kernels; (iv) an online learning algorithm that trains

1 http://reel.cs.columbia.edu/
2 ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/interactions.tar.gz
3 http://semeval2.fbk.eu/semeval2.php?location=data

http://reel.cs.columbia.edu/
ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/interactions.tar.gz
http://semeval2.fbk.eu/semeval2.php?location=data

186 J.L.M. Pereira et al.

the SVMs involving various kernels; and (v) a validation process that measures
convergence, quality and execution time.

The rest of this paper is organized as follows. Section 2 presents the funda-
mental concepts. Section 3 describes the proposed benchmark. Section 4 describes
the experiments we performed and discusses the obtained results. Finally, in
Sect. 5, we conclude with final remarks and directions for future work.

2 Fundamental Concepts

In this section, we present the fundamental concepts required to understand
the rest of the paper. In Sect. 2.1, we introduce SVMs and online learning. In
Sect. 2.2, we describe the main RE kernels described in the literature.

2.1 SVMs and Online Learning

SVMs [9] constitute one of the most popular supervised ML techniques. A SVM
is a binary classification model that uses an hyperplane to separate the data that
belongs to two distinct classes. The biggest challenge when generating SVMs is
to find an optimal hyperplane that properly separates the data in two classes.
An hyperplane is represented by its normal vector w and the goal is to find
the optimal vector, w∗. For that, we define an objective function f(S;w) that
represents the proximity between two vectors w and w∗ for a given training
dataset S. Then, we apply optimization techniques [12] (e.g., gradient descent)
to this objective function, to obtain a vector w close to the optimal vector w∗.

The training dataset is composed of data instances. These data instances are
pairs of entities. A data instance (x, y) from the training dataset S is constituted
by an input vector x and a scalar y that represents the binary class the input
vector belongs to. A position of the vector x corresponds to a relevant feature of
the data instance. A SVM uses the vector w to predict the class of a data instance
x by computing the inner product 〈w,x〉. The objective function is then given by
f(S;w) = λ

2 ||w||2+
∑

(x,y)∈S loss(x, y;w) where ||w|| is a regularization method
applied to w that penalizes the model complexity degree (i.e., rewards fewer
patterns in a model) to prevent overfitting, and loss(x, y;w) is a loss function
given by max(0, 1 − y〈w,x〉) that returns a penalty value if the model predicts
the wrong class of a data training instance x. In order to evaluate the model’s
predictive performance against the training dataset S, the objective function
applies the loss function to each training data instance (x, y) ∈ S and sums the
returned penalty values. The λ parameter is introduced by the user in order
to adjust the two model components: the regularization and the loss function
computed for the training dataset. In practice, it balances the model complexity
degree with the model predictive performance for the training dataset.

In the context of RE, representing a data instance (i.e., a pair of entities and
its features) through a vector is not a straightforward task. In order to obtain a
vector, we need to transform a complex data structure that represents the data
instance into a vector. In this process, we have to generalize and omit several

A Benchmark for Relation Extraction Kernels 187

features that, comparatively to the original structure, result in weak representa-
tions of the data. A more satisfactory alternative than to relay on a single vector
is to represent the data instances by more complex and informative data struc-
tures (i.e., graphs or sequences). A kernel [11] can then be used to compare two
data instances represented by complex data structures. Kernels return a simi-
larity value between two complex structures and they behave as inner products
in non-linear feature spaces. Moreover, optimization techniques can compute a
vector w close to the optimal vector w∗ by calculating inner products between
vectors without accessing directly to the vector positions. Since the optimiza-
tion techniques do not directly access vector positions, we can replace the inner
products by kernels and generate a kernel based model.

Online learning techniques are ML techniques that use online optimization
algorithms to train a ML model. These algorithms find the best set of parameters
for an objective function by processing the data instances in an online fashion
(i.e., process a data instance at a time), thus enabling us to analyze the ML
model at a specific point of the training process. Online optimization techniques
are generally faster than other types of optimization techniques [12].

So far, we have presented binary SVM classifiers. However, most classification
problems involve more than two classes. These problems are called multi-class
classification problems and they are not solved directly using one SVM classi-
fier. We can use heuristics that combine several SVM classifiers, for example
One-VS-One or One-VS-All [9]. In Sect. 3.3, we provide more details about the
One-VS-One heuristic that we used in this work.

2.2 Relation Extraction Kernels

This section describes three state-of-the-art kernels. Each data instance (i.e.,
pair of entities) is initially described by a sentence composed of words and the
location of the words that compose each entity. This is an initial representation
given as input to a pre-processing stage that outputs complex structures to be
used by each kernel. In this paper, we considered the following kernels:

Subsequences Kernel (SSK): Bunescu and Mooney [4] developed a kernel
based on subsequences. SSK is composed by the sum of three sub-kernels that
compare sparse word subsequences (i.e., word sequences not necessarily contigu-
ous) in different locations of a sentence: before, after and between the pair of
entities. This kernel is defined by a function that computes the similarity between
words based on the number of features that the words have in common (e.g.,
word stem or word grammatical category).

Shortest Path Kernel (SPK): Bunescu and Mooney [3] also proposed a ker-
nel based on the comparison of dependency graphs. A dependency graph is a
directed graph that represents the grammatical dependencies between words in
a sentence. Each node represents a word and each edge represents a dependency
between the two nodes. SPK has the particularity of using, for comparison, only
the sub-graph that contains the shortest path between the entities. Only graphs

188 J.L.M. Pereira et al.

with the same number of nodes and similar edges in the shortest path are com-
pared (i.e., for the others, the kernel returns zero). The final value returned by
the kernel is calculated by multiplying the values returned by the comparison of
the nodes. The nodes that are in the same position of the sub-graphs are com-
pared using the same SSK function that computes the similarity between words.
This function counts the number of features that the words have in common.

Bag-Of-N-Grams Kernel (BNK): Giuliano et al. [7] proposed a kernel that
combines two simpler kernels, namely: (i) a global context kernel that considers
textual information related to the whole sentence and (ii) a local context kernel
that considers only the words around the entities. Similarly to SSK, the global
context kernel is separated in three sub-kernels that evaluate the similarity of
three independent sequences of words located before, between and after the pair
of entities. This kernel is based on n-grams instead of subsequences. N-grams
are small sets of contiguous words of size n (usually n = 3). Each sub-kernel
compares the number of common n-grams between two sequences of words. The
local context kernel compares the sequence of words centered at each entity and
constituted by 6 words (i.e., 3 words before the entity and 3 words after the
entity). The similarity between two words is obtained by the number of common
features, analogously to SSK and SPK.

Table 1. Statistical characterization of the datasets.

Sentences Candidate entities pairs Entities Relations Relation types

AImed 1159 5471 3754 996 1

SemEval 10717 10717 21434 8853 9

3 Benchmark

This section presents the development process of a benchmark for RE kernels.
This benchmark enables an impartial evaluation process to assess the suitabil-
ity of each kernel for the RE task. This evaluation process is composed of the
following tasks: (i) pre-processing of datasets described in Sect. 3.1 using the
techniques from the tools presented in Sect. 3.2; (ii) training and execution of
SVMs based on kernels using the learning techniques described in Sect. 3.3; and
(iii) evaluation of the kernels using the measures described in Sect. 3.4.

3.1 Datasets

This section describes the two datasets considered in the benchmark: AImed and
SemEval. We chose these datasets because they belong to two distinct domains
and they enclose different classification problems. Both datasets are composed
of English documents. Table 1 presents a statistical summary for these datasets.

A Benchmark for Relation Extraction Kernels 189

AImed: is composed of 255 Medline article abstracts, 200 of which referring
to interactions between proteins, and with a remaining 25 which do not refer
to any interaction. In total, AImed contains 5471 proteins pairs, of which 996
correspond to interactions and 4475 correspond to pairs without interaction.

SemEval (Semantic Evaluation) [8]: is an ongoing series of evaluations for com-
putational semantic analysis systems. It proposed, in 2010, a classification chal-
lenge for relations between entity pairs. The dataset associated to this challenge
is composed of 8000 training sentences and 2717 test sentences. Each sentence
is clearly identified and contains a single annotated candidate pair. This chal-
lenge includes the following nine asymmetric relation types: Member-Collection,
Cause-Effect, Component-Whole, Instrument-Agency, Entity-Destination, Prod-
uct-Producer, Message-Topic, Entity-Origin, and Content-Container.

3.2 Linguistic Pre-processing Techniques

RE techniques generally use various types of linguistic and/or lexico-syntactic
annotations. Therefore, it is necessary to pre-process the text in order to obtain
these annotations. For pre-processing the datasets, we use the following tech-
niques and tools:

1. Sentence Segmentation: Separates the text into sentences. We processed
the text with the Apache OpenNLP4 library, which is a tool for natural lan-
guage processing based on ML.

2. Tokenization: Identifies the words of every sentence, keeping their order in
the text. We processed the sentences with the Apache OpenNLP library.

3. Token Normalization: Labels the words with their stem, in such a way
that words of the same family have the same label (e.g., claimed and claims
have the same stem, claim). We used the Porter Stemming algorithm from
the Snowball5 framework, which finds the stem for each word.

4. Capitalization: Labels every word with two different representations, trans-
forming them according to two patterns. The first pattern replaces each char-
acter by one of four specific symbols, depending on whether it is a capital
letter, a lowercase character, a number or another character. In the second
pattern, a sequence of characters of the same type is replaced by the symbol
associated with the character type followed by the character +. For example,
the normalization of the word “Karachi” results in Ccccccc and Cc+. We used
our own implementation of the two patterns6.

5. Part-of-Speech Tagging: Produces Part-of-Speech (POS) tags and Generic
Part-of-Speech (GPOS) tags for each word. A POS tag represents the gram-
matical class (e.g., claimed labeled with verb past tense) that this word has in
the text, while a GPOS tag (e.g., verb) represents a high-level grammatical
class. We directly map the POS tags into GPOS tag and we used the Apache
OpenNLP library to obtain the POS tags.

4 http://opennlp.apache.org/
5 http://snowball.tartarus.org/
6 http://web.tecnico.ulisboa.pt/joaoplmpereira/Capitalization.html

http://opennlp.apache.org/
http://snowball.tartarus.org/
http://web.tecnico.ulisboa.pt/joaoplmpereira/Capitalization.html

190 J.L.M. Pereira et al.

6. Dependency Analysis: Produces a dependency tree or graph for each sen-
tence. We used the Stanford CoreNLP7 library, which contains a dependency
parser for identifying syntactical dependencies between words.

The Apache OpenNLP library uses a Maximum Entropy Model (MEM) [2]
previously trained with data in English for each pre-processing task: a MEM
for sentence segmentation8, a MEM for tokenization9, and a MEM for POS tag-
ging10. We use sentence segmentation, tokenization, and dependency analysis to
produce data structures that can be compared by kernels. Token normalization,
capitalization and POS tagging are optional pre-processing steps introduced in
the form of word features that improve the accuracy of the kernels.

3.3 Learning Techniques

We used an efficient online learning technique called Pegasos [12] to train the
SVMs. This involves an iterative process that performs multiple passes over the
training data.

In RE problems where the goal is to search for a single relation type (e.g.,
protein interaction extraction from AImed), it is sufficient to use a binary clas-
sifier. However, if the problem involves searching for various types of relations
(e.g., the RE task in SemEval), it is necessary to use multi-class classifiers. To
produce a multi-class classifier using binary classifiers, we used an One-VS-One
heuristic. This technique makes use of as many binary classifiers as pairs of
classes. We train each binary classifier with the subset of the training data that
is annotated with the corresponding pair of classes. In the test phase, a data
instance is evaluated by all the classifiers. Each classifier votes in the class asso-
ciated to the binary class that it assigns to the data instance. Then, we choose
the most voted class as the label.

3.4 Metrics

In this section, we present the metrics we use to evaluate the different kernels:

Convergence: Measures the proximity of a SVM to the optimal SVM. This
proximity is given by applying the objective function for SVMs with a training
dataset and the w of a SVM as arguments, as described in Sect. 2.1. This metric
enables us to understand the impact of changing the parameters of the learning
phase (i.e., λ and the number of iterations that indicate the number of passes
over the data) on the generated SVMs.

Quality of Binary Classification: The measures commonly used to evaluate
classification techniques are: precision, recall, and the F1-measure. Defining r as
7 http://nlp.stanford.edu/software/corenlp.shtml
8 http://opennlp.sourceforge.net/models-1.5/en-sent.bin
9 http://opennlp.sourceforge.net/models-1.5/en-token.bin

10 http://opennlp.sourceforge.net/models-1.5/en-pos-maxent.bin

http://nlp.stanford.edu/software/corenlp.shtml
http://opennlp.sourceforge.net/models-1.5/en-sent.bin
http://opennlp.sourceforge.net/models-1.5/en-token.bin
http://opennlp.sourceforge.net/models-1.5/en-pos-maxent.bin

A Benchmark for Relation Extraction Kernels 191

a relation type, precision is the fraction of correctly extracted relations of type
r over the total number of extracted relations of type r. Recall is the fraction
of correctly extracted relations of type r over the total number of relations of
type r present in the dataset. These measures are usually contradictory: by
increasing the recall value, we reduce the precision value and vice versa. To
globally evaluate a classification technique, it is necessary to combine these two
measures. A solution to combine these two scores is to use the F1-measure that
corresponds to the harmonic mean of precision and recall.

Quality of Multi-class Classification: In multi-class classification, we use
new measures obtained by averaging the values of precision and recall over
the multiple classes, namely macro-averages and micro-averages. Macro-averages
calculate directly the system precision or recall averages for the various classes.
To calculate the Micro-averages, first, we count, for all relations of type r, the
values used in the formulas of precision and recall: the number of correctly
extracted relations, the total number of extracted relations, and the total num-
ber of relations present in the dataset. We then compute the Micro-averages by
using these summed values into the precision or the recall formulas.

Execution Times: We measure two execution times: the time to train a SVM
and the time required to predict the class type for a pair of entities. Execution
times are extracted in nano seconds of the CPU time. Then, we convert them
into other units for easier comparison (i.e., seconds, minutes or hours).

4 Benchmark Results

In this section, we present the configurations and the results of the experiments
we performed using the benchmark presented in Sect. 3. In Sect. 4.1, we describe
the settings used in the experiments. In Sect. 4.2, we present the analysis of the
convergence values. In Sect. 4.3, we analyze the quality of the results obtained
for the various models. In Sect. 4.4, we analyze the execution times for training
a SVM and for classifying a data instance.

4.1 Setup

The experimental setup that we have used is as follows:

Datasets: We used the datasets described in Sect. 3.1, namely AImed and
SemEval. Both are pre-processed through the techniques and tools described
in Sect. 3.2. The AImed dataset was split into 10 folds over which we applied a
cross-validation process. The AImed dataset contains a single type of relation,
which means that extracting relations in this dataset is a binary classification
problem. The SemEval competition provided distinct training and testing splits.
Thus, for SemEval, it was not necessary to use cross-validation. Extracting rela-
tions from SemEval is a multi-class problem. The data is annotated with 9 types
of asymmetric relations, which gives a total of 19 distinct classes (two for each
type plus another for a non-relation).

192 J.L.M. Pereira et al.

Learning Techniques: We used the learning techniques described in Sect. 3.3.
In particular, we implemented the Pegasos technique extended to work directly
with kernels11. We used the extended version of Pegasos to train the SVMs: one
for the AImed dataset; and one for each of the 172 binary classifiers used by the
One-VS-One heuristic for the SemEval dataset.

Kernels: We used the SSK, SPK and BNK kernels described in Sect. 2.2, since
they use different data structures to represent the data instances.

Parameters: The parameter λ, which controls the importance of the regulariza-
tion versus the loss function in the SVM training, took values in {10−4, 10−5, 10−6,
10−7, 10−8}. The number of iterations T , which is introduced in the online learn-
ing technique to indicate how many passages should be made over the training
instances, took values in {50, 100, 150, 200}.

Software and Hardware: We developed the benchmark using the framework
for RE named REEL [1], which provides an implementation of SSK, SPK and
BNK. We performed the experiments on a machine with an Intel Core i5 CPU
M 460, 2.53 GHz and 4 GB of memory RAM.

4.2 Convergence

In this section, we evaluate the impact of the λ and T parameters over the
training of SVMs with RE kernels. To do this, we analyze the variation of the
objective function values with these parameters (see Fig. 1). The experiments
show that there is no substantial difference in the results obtained for different
kernels. Therefore, we only present the results obtained for BNK.

In general, the number of iterations required to stabilize the objective func-
tion values increases when we decrease the λ parameter values. In fact, for small
values of λ, we do not reach stable values for the objective function. Regarding
the number of iterations T , the objective function values start to slowly decrease
after iteration number 100, and stabilize after iteration 150. For the AImed
dataset (see Fig. 1(a)), the models that obtain the lowest objective function val-
ues are the models trained with a λ value of 10−6. For the SemEval dataset, the
models that obtain the lowest objective function values are the models trained
with a λ value of 10−5. This situation occurs because, for datasets in technical
language domains such as the AImed dataset, models tend to be more complex
(i.e., enclose more patterns), since it is difficult to find a suitable generalization
(i.e., few patterns that can explain the data).

From the results reported in this section, we conclude that: (i) models trained
with very low values for the λ parameter obtain worse results in terms of conver-
gence when compared to higher values, and (ii) after 150 iterations, there was
no significant variation in the objective function values.
11 http://web.tecnico.ulisboa.pt/joaoplmpereira/OnlineLearning.html

http://web.tecnico.ulisboa.pt/joaoplmpereira/OnlineLearning.html

A Benchmark for Relation Extraction Kernels 193

Fig. 1. Variation of the objective function values for BNK models with parameters λ
and T . (a) AImed; (b) Binary classifier for the pair of entities Content-Container(e2,e1)
vs Message-Topic(e1,e2) in the SemEval dataset

4.3 Quality of the Obtained Extractions

In this section, we evaluate the quality of the results obtained by the SVMs
using the kernels BNK, SPK and SSK. We begin by evaluating the impact of
the variation of the λ and T parameters in the quality of SVMs using the AImed
dataset (see Fig. 2), and then using the SemEval dataset (see Fig. 3).

Fig. 2. Variation of the quality of the results obtained through SVMs with kernels
BNK, SPK and SSK, for the AImed dataset.

194 J.L.M. Pereira et al.

Fig. 3. Variation of the quality of the results obtained through SVMs over the SemEval
test dataset for kernels BNK, SPK and SSK in T = 150.

For both datasets, BNK and SSK produce similar values for the F1-measure
(less than 5 % difference), as shown in Figs. 2(c) and (d), 3(e) and (f). The
precision values of SSK are slightly better than the ones of BNK (from 1 % to
5 %) as observed in Figs. 2(a), 3(a) and (b), but the opposite occurs for the recall
values (see Figs. 2(b), 3(c) and (d)). Generally, BNK presents more balanced
precision and recall values than SSK. In order to explain the differences observed
we need to consider the data structures that were used. Both kernels analyze
the sentences, splitting them in a similar way. However, in SSK, the features
are structured into subsequences which assign a fixed order to the words. BNK

A Benchmark for Relation Extraction Kernels 195

is more flexible because it uses data structures with sets of n-grams, which are
composed of n-grams independently of their position in the sentence.

In general, in both datasets, SPK gets worse results than the remaining ker-
nels (e.g., between 5 % and 20 % less). For the AImed dataset, this difference is
more significant than in the SemEval dataset. Since the precision values obtained
by SPK are comparable to those of the other two kernels (see Figs. 2(a), 3(a) and
(b)), the differences in terms of quality derive from its low recall. SPK obtains
the best macro-average of precision for SemEval. SPK obtains good results in
terms of precision because it compares shortest paths and it assigns zero to paths
with different size. So, this kernel becomes more inflexible to compare data sam-
ples. For AImed, SPK obtains low quality results than SSK and BNK (less than
30 %), because this dataset is composed of technical medical documents, and the
dependency parser used by SPK was trained with news articles. Therefore, the
dependencies found are inappropriate for this dataset and consequently lead to
the low quality performance of SPK. Due to the inadequate use of the depen-
dency parser, we consider unfair to compare SPK with the other kernels in the
AImed dataset.

In this section, we conclude that: (i) BNK and SSK have similar behaviors;
(ii) BNK is better in recall and returns more balanced precision and recall values;
(iii) SPK is the kernel that obtains, in general, worse results, but nevertheless,
stands out for the SemEval dataset in terms of precision.

4.4 Execution Time

In this section, we compare the kernels in terms of training and testing execution
times. The pre-processing execution times were not considered because they
heavily depend on the pre-processing techniques and tools used. For calculating
the training execution times, we consider an estimate of the CPU time. We
calculate this estimate by multiplying the number of calls to the kernel with
the average execution time of comparing two data instances. We did not take
the CPU time of the online optimization technique into consideration, because
it is significantly lower than the time needed to calculate the kernels (i.e., less
than 1 % of the total execution time). For the AImed dataset the execution
times correspond to the classifier training time. For the SemEval dataset, the
execution time is the sum of the training execution times of all classifiers used
in the multi-class problem.

Figures 4 and 5 report the training execution times for AImed and SemEval,
respectively. For both datasets, SPK is the fastest kernel. However, the pre-
processing step of SPK is usually much more expensive than the pre-processing
step of the other kernels, because it needs a dependency analysis process. SPK
only takes into account the shortest path between the entities in the dependency
graph therefore: (i) it compares less sentence features than the other two kernels;
(ii) it ignores a large quantity of comparisons since it only compares sentences
whose number of nodes in the shortest path between the two entities is equal.

For the AImed dataset, SSK is faster than BNK. However, for SemEval, the
inverse situation occurs. This difference is due to the size of the sentences in each

196 J.L.M. Pereira et al.

Fig. 4. Average execution times for training over the 10 folds of AImed dataset.

Fig. 5. Execution times for training over the SemEval dataset.

of the datasets i.e., the average size of a sentence in AImed is significantly higher
than in SemEval. SSK compares more subsets of tokens than BNK, but it uses a
dynamic programming algorithm that performs faster comparisons, even when
the sentence size increases. BNK is very penalized when the sentence length and
the diversity of words increase, especially in the AImed dataset.

Regarding the variation of the λ parameter, we conclude that there is a rela-
tionship between the λ values and the training execution times. Models trained
with lower λ values have lower execution times (see Figs. 4(a) and 5(a)). In
Sect. 4.2, the λ parameter was associated with the stability of the objective
function and convergence of the model. In fact, we observed that the objective
function values stabilize for low values of λ. When we make the λ parameter
constant and vary the number of iterations, we observe that the execution times
grow linearly with the number of iterations (see Figs. 4(b) and 5(b)).

The testing execution times are generally constant for both datasets. With
the AImed dataset, the testing execution time is 168 ms for BNK, 8 ms for SPK,
and 290 ms for SSK. For the SemEval dataset, it takes 11 ms for BNK, 0.68 ms
for SPK, and 6 ms for SSK to classify each data instance. Not surprisingly, the
results obtained are similar to the training phase results.

In this section, we conclude that: (i) SPK is the fastest in training and testing,
(ii) BNK and SSK have execution times with the same orders of magnitude.
However, (iii) SSK is faster than BNK in datasets of technical domains, such as

A Benchmark for Relation Extraction Kernels 197

AImed, and (iv) BNK is faster than SSK for datasets in the news domains such
as the SemEval dataset.

5 Discussion and Future Work

In this paper, we proposed a benchmark to compare kernels for RE tasks, in
which we train and analyze SVMs leveraging the kernels to be compared. We
conducted an extensive experimental analysis using our benchmark over three
state-of-the-art kernels, which enabled us to take the following main conclusions:
(i) SVMs stabilize after T = 100 iterations for models trained with lower values
of λ; (ii) BNK and SSK have a similar performance (i.e., quality and execution
time) for the AImed and SemEval datasets; (iii) SPK obtains high quality results
only when the dependency parser is trained with data of the same domain as
the dataset; (iv) SPK is the kernel that has lowest execution times.

As future work, we plan to develop techniques that are able to effectively
combine the various kernels for RE. This method should be domain independent
and should be used with different sets of kernels.

Acknowledgements. We would like to thank Gonçalo Simões for the fruitful discus-
sions, and for advice on preliminary versions of this paper.

This work was supported by Fundação para a Ciência e a Tecnologia, under Project
UID/CEC/50021/2013, andunderProjectDataStorm (ref. EXCL/EEI-ESS/0257/2012).

References

1. Barrio, P., Simões, G., Galhardas, H., Gravano, L.: REEL: a relation extraction
learning framework. In: JCDL (2014)

2. Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to
natural language processing. Comput. Linguist. 22, 39–71 (1996)

3. Bunescu, R., Mooney, R.J.: A shortest path dependency kernel for relation extrac-
tion. In: HLT-EMNLP (2005)

4. Bunescu, R., Mooney, R.J.: Subsequence kernels for relation extraction. In: CoNLL
(2006)

5. Chinchor, N.A.: Named entity task definition. In: MUC-7 (1998)
6. Doddington, G.R., et al.: The automatic content extraction (ACE) program - tasks,

data, and evaluation. In: LREC (2004)
7. Giuliano, C., Lavelli, A., Romano, L.: Exploiting shallow linguistic information for

relation extraction from biomedical literature. In: EACL (2006)
8. Hendrickx, I., et al.: SemEval-2010 task 8: multi-way classification of semantic

relations between pairs of nominals. In: SemEval (2010)
9. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector

machines. IEEE Trans. Neural Netw. 13, 415–425 (2002)
10. Marrero, M., Sanchez-Cuadrado, S., Lara, J.M., Andreadakis, G.: Evaluation of

named entity extraction systems. Res. Comput. Sci. 41, 47–58 (2009)
11. Sarawagi, S.: Information extraction. Found. Trends Databases 1, 261–377 (2008)
12. Shalev-Shwartz, S., Singer, Y., Srebro, N.: PEGASOS: primal estimated sub-

GrAdient SOlver for SVM. In: ICML (2007)

Web Content Management Systems
Archivability

Vangelis Banos(B) and Yannis Manolopoulos

Department of Informatics, Aristotle University, 54124 Thessaloniki, Greece
vbanos@gmail.com

Abstract. Web archiving is the process of collecting and preserving web
content in an archive for current and future generations. One of the key
issues in web archiving is that not all websites can be archived correctly
due to various issues that arise from the use of different technologies,
standards and implementation practices. Nevertheless, one of the com-
mon denominators of current websites is that they are implemented using
a Web Content Management System (WCMS). We evaluate the Website
Archivability (WA) of the most prevalent WCMSs. We investigate the
extent to which each WCMS meets the conditions for a safe transfer
of their content to a web archive for preservation purposes, and thus
identify their strengths and weaknesses. More importantly, we deduce
specific recommendations to improve the WA of each WCMS, aiming to
advance the general practice of web data extraction and archiving.

1 Introduction

The web has moved from small informal websites to large and complex sys-
tems, which require strong software systems to be managed effectively [4]. The
increasing needs of organisations and individuals in this area have led to the rise
of a new type of software, i.e. Web Content Management Systems (WCMSs) [15].
WCMSs are created in various different programming languages, using many new
web technologies [9]. There are millions of websites using WCMSs; for instance,
Wordpress is used by 74.6 million websites1, whereas Drupal is used by more than
1 million websites2. WCMSs have a large contribution in the development of the
web. However, we must not overlook the fact that the web is an ephemeral com-
munication medium. The average lifetime of a web page is below 100 days [14],
making it necessary to archive the web to preserve information for current and
future generations. Web archiving is the process of retrieving material from the
web and preserving it in an archive for perpetual availability for access and
research [16].

One of the open issues in web archiving is that not all websites are amenable
to being archived with correctness and accuracy. To define and measure this web-
site behavior we have previously introduced the metric of Website Achivability
1 https://managewp.com/14-surprising-statistics-about-wordpress-usage.
2 https://www.drupal.org.

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 198–212, 2015.
DOI: 10.1007/978-3-319-23135-8 14

https://managewp.com/14-surprising-statistics-about-wordpress-usage
https://www.drupal.org

Web Content Management Systems Archivability 199

(WA). WA is defined as the extent to which a website meets the conditions for the
safe transfer of its content to a web archive for preservation purposes [1,2]. The
open and continuously evolving nature of the web makes it difficult to predict
the WA of a website. There are a very large number of different combinations of
technologies, standards and development approaches used in web development
which affect WA.

We believe that the wide adoption of WCMSs has benefits for web archiving
and needs to be taken into consideration. WCMSs constitute a common technical
framework which may facilitate or hinder web archiving for a large number of
websites. If a web archive is compatible with a certain WCMS, it is highly
probable that it will be able to archive all websites built with this WCMS.

In this work, we evaluate the WA of 12 prominent WCMSs to identify their
strengths and weaknesses and propose improvements to improve web content
extraction and archiving. We conduct an experimental evaluation using a non-
trivial dataset of websites based on these WCMSs and make observations regard-
ing their WA characteristics. We also come up with specific suggestions for each
WCMS based on our experimental data.

Our aim is to improve the web archiving practice by indicating potential
issues to the WCMS development community. If our findings result in advances
in WCMS source code upstream, all web archiving initiatives will benefit as
the websites based on these WCMSs will become more archivable. The main
contributions of this work are:

– Specific observations regarding the WA Facets of 12 prominent WCMSs,
– Recommendations to improve each WCMS source code upstream to improve

their WA.

This paper is organised as follows: Sect. 2 presents work related to WCMS
archiving. Section 3 presents the CLEAR+ method to evaluate WA. Section 4
presents the ArchiveReady WA evaluation system, our experimental method
and the results which are discussed further in Sect. 5.

2 Related Work

WCMSs have been already studied in the context of web archiving due to their
wide scale usage. According to W3Techs, 38 % of the top 1 million websites
is created using a WCMS. Gomez et al., the creators of the Portuguese web
archive, report that there are millions of websites which are supported by a small
number of publishing platforms. During the development of their web crawling
process, they have come up with specific rules to harvest specific WCMSs, such as
Joomla, because they did not allow crawlers to harvest all their files [11]. Faheem
et al. have also presented an approach to create Application Aware Helpers
(AAH) that fit into the archiving crawl process chain to perform intelligent and
adaptive crawling of web applications. In their work they are focusing on specific
WCMSs [8]. Pinsent et al. have dedicated a chapter in the Preservation of Web
Resources Handbook 2008 regarding Content Management Systems Archiving.

200 V. Banos and Y. Manolopoulos

They mention that some WCMSs may present problems to a web crawler. The
content gathering may be incomplete or the web crawler may get stuck in a
‘loop’ as it constantly requests pages. This behaviour depends on the specific
implementation and the WCMS used [18]. Rumianek proposes a procedure to
overcome the problems faced by archivists of database-driven websites such as
WCMSs [19]. Although interesting, this approach is not practical as it requires
the implementation of new systems on top of existing web archiving platforms.

There has also been some work to try archiving content from blogs, which are
a special kind of WCMSs. Pennock et al. have created ArchivePress, a specialised
Wordpress CMS archiving tool, which creates plugins for WordPress to make it
operate as an archiving tool [17]. Kelly et al. have also investigated multiple
alternatives on archiving blogs [13]. The BlogForever project has created a new
approach to harvest, preserve, manage and reuse blog content [12]. Blanvillain
et al. have presented their BlogForever crawler which concentrated on techniques
to automatically extract content such as articles and comments from blog posts
using a simple and robust algorithm to generate extraction rules based on string
matching using the blog’s web feed in conjunction with blog hypertext [3].

There is interest in finding methods to archive WCMS-based websites but,
according to our knowledge, there has been no attempt to evaluate the feasibil-
ity of archiving different WCMSs and highlight their strengths and weaknesses
regarding web archiving. In our work, we try to conduct such an analysis using
a substantial experimental dataset and a novel method.

3 CLEAR+: A Credible Live Evaluation
of Archive Readiness Plus

The Credible Live Evaluation of Archive Readiness Plus method (CLEAR+) is
an approach to produce on-the-fly measurement of WA, which is defined as the
extent to which a website meets the conditions for the safe transfer of its content
to a web archive for preservation purposes [1,2]. We use the latest iteration of
the CLEAR+ method as of 02/2015.

In short, the basic operating principles of our method is that we communicate
through standard HTTP requests and responses with the target website in a sim-
ilar manner as regular web archiving systems and retrieve information that we
evaluate using recognized practices in digital curation (e.g. using adopted stan-
dards, validating formats, and assigning metadata) to generate a credible score
representing the target WA. We measure WA from several different perspec-
tives, which we call WA Facets, by conducting specific Evaluations on Website
Attributes (Fig. 1). For instance: “What is the percentage of valid versus invalid
hyperlinks? “Do the CSS files used in a website comply with W3C standards?
“What is the percentage of corrupt image files, if any?

The score for each WA Facet is computed as the weighted average of the
scores of the evaluations associated with this Facet. The significance of each
evaluation defines its weight. The WA Facets can be summarised as follows:

Web Content Management Systems Archivability 201

Fig. 1. Website attributes used for WA evaluation [1]

– FA: Accessibility indicates the facilitation of web archiving systems to access
and retrieve website content via standard web communication methods.

– FC : Cohesion is the robustness of a website against the failure of different
web services. This Facet is concerning websites which are dispersed across
different services (e.g. different servers for images, javascript widgets, and
other resources) in different domains.

– FM : Metadata Usage indicates the adequate provision of metadata [6]).
– FS : Standards Compliance indicates the encoding of digital resources using

known and transparent standards.

The outcomes of the WA evaluation are different scores in the range of [0–100]
for FA, FC , FM and FS . The final WA score is the average of the WA Facets scores.

4 Evaluation

We present the ArchiveReady system to evaluate WA and the method we fol-
low to define and evaluate a significant corpus of websites. Finally, we present
detailed results and we identify specific characteristics of different WCMSs.

4.1 ArchiveReady WA Evaluation System

ArchiveReady [1,2] is a real-time WA evaluation system, which is the reference
implementation of the CLEAR+ method. It is available at http://archiveready.
com. ArchiveReady is based on standard open source software and uses spe-
cialised tools to evaluate websites such as JHOVE for media file validation [7],
W3C HTML3, CSS4 and RSS5 validation services, as well as the PhantomJS
headless WebKit browser to access and process websites6. The WA evaluation
process can be summarised as follows:
3 http://validator.w3.org/.
4 http://jigsaw.w3.org/css-validator/.
5 http://validator.w3.org/feed/.
6 http://phantomjs.org/.

http://archiveready.com
http://archiveready.com
http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://validator.w3.org/feed/
http://phantomjs.org/

202 V. Banos and Y. Manolopoulos

1. ArchiveReady receives a target URL and performs an HTTP request to
retrieve the webpage hypertext.

2. After analysing it, multiple HTTP connections are initiated in parallel to
retrieve all web resources referenced in the target webpage, imitating a web
spider.

3. In stage 3, Website Attributes (Fig. 1) are evaluated. In more detail: (a) HTML
and CSS analysis and validation, (b) HTTP response headers analysis and
validation, (c) Media files (images, other objects) retrieval, analysis, and val-
idation. (d) Sitemap.xml and Robots.txt retrieval, analysis and validation,
(e) RSS feeds detection, retrieval, analysis and validation, (f) Network trans-
fer performance evaluation.

4. The metrics for the WA Facets are calculated according to the CLEAR+
method and the final WA rating is produced.

ArchiveReady provides a simple REST API to enable WA evaluation from third
party applications.

4.2 Website Corpus Evaluation Method

We use 5.821 random WCMS samples from the Alexa top 1 million websites7 as
our experimental dataset. We use this dataset because it contains high quality
websites from multiple domains and disciplines. This dataset is also used in other
related research [11,20]. We select our corpus with the following process:

1. We implement a simple python script to visit each homepage and look for the
<meta name=“generator” content=“software name” /> tag.

2. For each website having the required meta tag, we evaluate if it belongs to
one of the WCMSs listed in wikipedia8. If yes, we record it in our database.

3. We continue this process until we have a significant number of instances for
12 WCMSs (Blogger, DataLife Engine, DotNetNuke, Drupal, Joomla, Medi-
awiki, MovableType, Plone, PrestaShop, Typo3, vBulletin, Wordpress).

4. We evaluate each website using the ArchiveReady REST API and record the
outcomes in our database.

5. We analyse the results using SQL to calculate various metrics.

The generator meta tag is not used universally on the web due to a variety
of reasons, such as security. Thus, we have skipped a large number of websites,
which did not indicate the system they use. Also, we do not take into considera-
tion the version number of each WCMS as it would be impractical. There would
be too many different variables in our experiment to conduct useful research.
Also, it is highly improbable that the top internet websites would use legacy
versions of their WCMS. The Git repository for this paper9 contains all the cap-
tured data and the necessary scripts to reproduce all the evaluation experiments.
7 http://s3.amazonaws.com/alexa-static/top-1m.csv.zip.
8 http://en.wikipedia.org/wiki/List of content management systems.
9 https://github.com/vbanos/wcms-archivability-paper-data.

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://en.wikipedia.org/wiki/List_of_content_management_systems
https://github.com/vbanos/wcms-archivability-paper-data

Web Content Management Systems Archivability 203

4.3 Evaluation Results and Observations

For each WCMS, we present the average and standard deviation for each WA
Facet, as well as their cumulative WA (Fig. 2). First of all, our results are con-
sistent. While the WA Facet range is 0–100 %, the standard deviation of all
WA Facet values for each WCMS ranges from 4.2 % (Blogger, FA) to 13.2 %
(Mediawiki, FS). There are considerable differences between different WCMSs
regarding their WA. The top WCMS is DataLife Engine with a WA score of
83.52 %, with Plone and Drupal scoring also very high (83.06 % and 82.08 %).
The rest of the WCMSs score between 80.3 % and 77.2 %, whereas the lowest
score belongs to Blogger (65.91 %). In many cases, even though two or more
WCMSs may have similar WA score, their WA Facet scores are significantly
different and each WCMS has different strengths and weaknesses. Thus, it is
beneficial to look into each WA Facet differences.

Fig. 2. WA Facets average values and standard deviation for each WCMS

FA: Top value is around 69.85 % for Blogger and 69.51 % for DataLife Engine,
whereas the minimum value is below 60, at 56.29 % for Mediawiki and 58.15 %
for DotNetNuke.

FM : Top value is 99.24 % for Mediawiki, whereas the minimum value is 76.17 %
for DotNetNuke. The difference between the minimum and the maximum value
is around 23 points, which almost twice the difference between FA range (13).

204 V. Banos and Y. Manolopoulos

FC : Appears to have the greatest differentiation among the WCMSs. The min-
imum value is only 7.38 % for Blogger, whereas the maximum value is 96.01 %
for DotNetNuke. At first sight, there seems to be an issue in the way Blogger is
using multiple online services to host its web resources. Other WCMSs also vary
from 78.5 % (MovableType) to 92 % (Plone), which is a considerable variation.

FS : Range is between 71.42 % for Mediawiki and 88.06 % for PrestaShop. Again
these differences should be considered significant.

FA has the smallest differentiation and FC has the greatest one among all WA
Facets.

We continue our research with more detailed observations regarding specific
evaluations. Due to the large number of WA evaluations and the space restric-
tions, we choose to discuss only highly significant rules. Similar research is easy
to be conducted by anyone interested using the full dataset and source code
available on github. We present our observations grouped by the four different
WA Facets.

Table 1. A1 The percentage of valid URLs. Higher is better.

WCMS Valid URLs Invalid URLs Correct (%)

Blogger 45425 1148 97%

Mediawiki 39178 1763 96%

Drupal 52501 2185 96%

MovableType 22442 1009 96%

vBulletin 104492 5841 95%

PrestaShop 57238 3287 94%

DataLife Engine 31981 2342 93%

Plone 25719 1856 93%

Wordpress 47717 3515 93%

DotNetNuke 38144 2791 93%

Typo3 30945 3747 89%

Joomla 37956 4886 88%

FA: Accessibility refers to the web archiving systems’ ability to traverse all
website content via standard HTTP protocol requests [10].

A1: The percentage of valid versus invalid hyperlink and CSS URLs (Table 1).
These are critical for web archives to retrieve all WCMS published content.
Hyperlinks are created not only by users but also by WCMS subsystems. In any
case, some WCMSs check if they are valid, whereas others don’t. In addition,
some WCMSs may be incurred with invalid hyperlinks due to bugs. The results
show that not all WCMSs have the same frequency of invalid hyperlinks. Joomla

Web Content Management Systems Archivability 205

and Typo3 have a high percentage (88 % and 89 %), whereas Blogger, Mediawiki,
Drupal and MovableType have the highest percentage of invalid hyperlinks (97 %
and 96 %).

A2: The number of inline JavaScript scripts per WCMS instance (Table 2). The
excessive use of inline scripts in modern web development results in web archiving
problems. Plone, MovableType and Typo3 have the lowest number of inline
scripts per instance (4.82, 6.82 and 6.89). The highest usage by far comes from
Blogger (27.11), while Drupal (15.09) and vBulletin (12.38) follow.

Table 2. A2 The number of inline scripts per WCMS instance. Lower is better.

WCMS Instances Inline scripts scripts/instance

Plone 431 2076 4.82

MovableType 295 2011 6.82

Typo3 624 4298 6.89

Mediawiki 408 3753 9.20

DataLife Engine 321 3159 9.84

Wordpress 863 8646 10.02

DotNetNuke 598 6028 10.08

Joomla 501 5163 10.31

PrestaShop 466 5130 11.01

vBulletin 462 5721 12.38

Drupal 528 7969 15.09

Bogger 324 8783 27.11

The sitemap.xml10 protocol is meant to create files that include references to
all the webpages of the website. Sitemap.xml files are generated automatically
by WCMSs when their content is updated. The results of the A3 evaluation
(Table 3) indicate that most WCMS lack proper support for this feature. Only
DataLife Engine has a very high score (86 %). Also, Wordpress and Drupal score
over 60 %. All other WCMSs perform very poorly, which is surprising.

FC : Cohesion is relevant to the level of dispersion of files comprising a single
website to multiple servers in different domains. The lower the dispersion of a
website’s files, the lower the susceptibility to errors because of a failed third-party
system. We evaluate the performance for two FC related evaluations.

C1: The percentage of local versus remote images is presented in Table 4. Blogger is
suffering from the highest dispersion of images. On the contrary, Plone,
DotNetNuke, PrestaShop, Typo3 and Joomla have the higher FC , over 90 %.
10 http://www.sitemap.org/.

http://www.sitemap.org/

206 V. Banos and Y. Manolopoulos

Table 3. A3 Sitemap.xml is present. Higher is better.

WCMS Instances Issues Correct

DataLife Engine 321 46 86%

Wordpress 863 272 68%

Drupal 528 189 64%

PrestaShop 466 237 49%

MovableType 295 152 48%

Typo3 624 322 48%

Plone 431 249 42%

vBulletin 462 329 29%

Joomla 501 359 28%

Blogger 324 240 26%

DotNetNuke 598 461 23%

Mediawiki 408 335 18%

Table 4. C1 The percentage of local versus remote image. Higher is better.

WCMS Local images Remote images Percent

Plone 7833 290 96 %

DotNetNuke 13136 680 95 %

PrestaShop 19910 1187 94 %

Typo3 15434 897 94 %

Joomla 14684 1251 92 %

MovableType 8147 1388 86 %

Drupal 16636 3169 84 %

vBulletin 11319 2314 83 %

Wordpress 20350 4236 83 %

Mediawiki 4935 1127 81 %

DataLife Engine 9638 2356 80 %

Blogger 1498 8121 16 %

C2: The percentage of local versus remote CSS (Table 5). Again, Blogger has a
very low score (2 %), whereas all other WCMSs perform very well.

FS : Standards Compliance is a necessary precondition in digital curation
practices [5]. We evaluate S1: Validate if the HTML source code complies with
the W3C standards using the W3C HTML validator and present the results in
Table 6.

Web Content Management Systems Archivability 207

Table 5. C1 The percentage of local versus remote CSS. Higher is better.

WCMS Local CSS Remote CSS Percent

DotNetNuke 5243 101 98 %

Typo3 3365 154 96 %

Plone 1475 72 95 %

Joomla 4539 222 95 %

DataLife Engine 919 56 94 %

PrestaShop 5221 400 93 %

MovableType 578 42 93 %

vBulletin 1459 104 93 %

Mediawiki 1120 84 93 %

Drupal 2320 354 87 %

Wordpress 5658 1019 85 %

Blogger 18 954 2 %

Table 6. S1 HTML errors per instance. Lower is better.

WCMS Instances Errors Errors/Instance

Plone 431 12205 28.32

Mediawiki 408 14032 34.39

Typo3 624 23965 38.41

Wordpress 863 35805 41.49

Joomla 501 26609 53.11

PrestaShop 466 30066 64.52

DotNetNuke 598 43009 71.92

Drupal 528 47131 89.26

vBulletin 462 46466 100.58

MovableType 295 29994 101.67

DataLife Engine 321 34768 108.31

Blogger 324 71283 220.01

Plone has the lower number of errors (28.32), followed by Mediawiki (34.39)
and Typo3 (34.41). On the contrary, Blogger has the most errors per instance
(220.01), followed by far by DataLife Engine (108.31) and MovableType (101.67).

S3: The usage of Quicktime and Flash formats is considered problematic for
web archiving because web crawlers cannot process their contents to extract
information, including web resource references. Results show that their use is
very low in all WCMS (Table 7).

208 V. Banos and Y. Manolopoulos

Table 7. S2 The lack of use of proprietary files (Flash, QuickTime). Higher is better.

WCMS Instances No proprietary files Success

PrestaShop 466 460 99 %

Mediawiki 408 398 98 %

Blogger 324 310 96 %

Plone 431 412 96 %

Wordpress 863 821 95 %

Typo3 624 592 95 %

vBulletin 462 434 94 %

Drupal 528 494 94 %

DotNetNuke 598 548 92 %

DataLife Engine 321 294 92 %

MovableType 295 263 89 %

Joomla 501 439 88 %

Table 8. A5: valid feeds. Higher is better.

WCMS valid feeds invalid feeds Correct

Blogger 872 83 91 %

DataLife Engine 240 57 81 %

Wordpress 1283 317 80 %

Joomla 556 141 80 %

vBulletin 299 96 76 %

MovableType 271 120 69 %

Drupal 133 74 64 %

PrestaShop 82 112 42 %

Typo3 124 191 39 %

Plone 116 184 39 %

DotNetNuke 2 14 13 %

Mediawiki 10 521 2 %

S4: Check if the RSS feed format complies with W3C standards. The results
(Table 8) indicate that Blogger has mostly correct feeds (91 %), whereas every
other WCMS has various levels of correctness. The lowest scores belong to
Mediawiki (2 %) and DotNetNuke (13 %). In general, the results show that there
is a problem with RSS feed standard compliance.

FM : Metadata Usage: The lack of metadata impairs the archive’s ability to
manage content effectively. Web sites include a lot of metadata, which need to
be communicated in a correct manner to be utilised by web archives [6].

Web Content Management Systems Archivability 209

Table 9. M1: HTTP content-type header. Higher is better.

WCMS Instances Exists Success

Blogger 324 324 100 %

Drupal 528 527 100 %

MovableType 295 294 100 %

vBulletin 462 458 99 %

Plone 431 427 99 %

Typo3 624 618 99 %

Joomla 501 494 99 %

DotNetNuke 598 589 98 %

Mediawiki 408 401 98 %

DataLife Engine 321 315 98 %

PrestaShop 466 456 98 %

Wordpress 863 841 97 %

Table 10. M2: HTTP caching headers. Higher is better.

WCMS Instances Issues Percentage

Blogger 324 3 99%

Mediawiki 408 12 97%

Drupal 528 23 96%

DataLife Engine 321 16 95%

Plone 431 49 89%

MovableType 295 106 64%

Joomla 501 186 63%

Wordpress 863 466 46%

Typo3 624 364 42%

vBulletin 462 326 29%

PrestaShop 466 388 17%

DotNetNuke 598 569 5%

M1: Check if the HTTP Content-type header exists (Table 9). There is virtu-
ally no issue with HTTP Content-Type in all WCMSs. Their performance is
excellent.

M2: Check if any HTTP Caching headers (Expires, Last-modified or ETag) are
set. HTTP Caching is highly relevant to accessibility and performance. Blogger,
Mediawiki, Drupal, DataLife Engine and Plone have very good support of HTTP
Caching headers (Table 10).

210 V. Banos and Y. Manolopoulos

5 Discussion and Conclusions

We evaluated the WA and presented specific statistics regarding 12 prominent
WCMSs. We concluded that not all WCMSs are considered equally archiv-
able. Each one has its own strengths and weaknesses, which we highlight in the
following:

1. Blogger has by far the worst overall WA score (65.91 %, Fig. 2), mainly due
to the very low FC . Blogger files are dispersed in multiple different web
services, which is increasing the possibility of errors in case one of them fails.
In addition, Blogger scores very low in many metrics such as the number of
inline scripts per instance (Table 2) and HTML errors per instance (Table 6).
On the contrary, Blogger scores very high regarding FM and FS .

2. DataLife Engine has the highest WA score (83.52 %). One aspect that they
should look into is HTML errors per instance (Table 6), where it has the
second worst score.

3. DotNetNuke has the second worst WA score in our evaluation (77.2 %). FC

is their strong point (96.01 %) but they have issues in every other area. We
suggest that they look into their RSS feeds (13 % Correct) (Table 8), and
lacking HTTP caching support (5 %) (Table 10).

4. Drupal has the third highest WA score (82.08 %). It has good overall perfor-
mance; the only issue is the existence of too many inline scripts per instance
(15.09) (Table 2).

5. Joomla WA score is average (80.37 %). It has a large number of invalid URLs
per instance (12 %) (Table 1) and it has also the highest usage of proprietary
files (12 %) (Table 7) which is not good for accessibility and preservation.

6. Mediawiki WA score is low (77.81 %). This can be attributed to mostly
invalid feeds (only 2 % are correct according to standards) and very low
sitemap.xml support (18 %), Table 3.

7. MovableType WA score is average (80.02 %). It does not stand out in any
evaluation either in a positive or a negative way. General improvement in all
areas would be welcome.

8. Plone has the second highest WA score (83.06 %). It must be commented for
having the lowest number of HTML errors per instance (28.32) (Table 6) and
very high FC scores (96 % for images, Table 4 and 95 % for CSS, Table 5).

9. PrestaShop WA score is average (79 %). It has average scores in all evalua-
tions; however, it should be commented for not using any proprietary files
(top score: 99 % at Table 7).

10. Typo3 WA score is average (79 %). It has the largest number of invalid URLs
per instance (12 %) (Table 1).

11. vBulletin WA score is consistenly low (78.37 %). General improvement in all
areas would be welcome.

12. Wordpress WA score is average (78.47 %). We cannot highlight a specific
area, where it should be improved. As this is currently the most popular
WCMS, Wordpress developers should look into all WA Facets and try to
improve.

Web Content Management Systems Archivability 211

We recommend that the WCMS development communities investigate the
presented issues and resolve them as many are easy to be fixed without causing
any issues with existing users and installations. If the situation regarding the
highlighted issues is improved in the next releases of the investigated WCMS,
the impact would be significant. A large number of websites which could not be
archived correctly would no longer have these issues once they update their soft-
ware and newly created websites based on these WCMS would be more archiv-
able. Web archiving operations around the world would see great improvement,
resulting in general advancements in the state of web archiving.

References

1. Banos, V., Kim, Y., Ross, S., Manolopoulos, Y.: CLEAR: a credible method to
evaluate website archivability. In: Proceedings 10th International Conference on
Preservation of Digital Objects (iPRES) (2013)

2. Banos, V., Manolopoulos, Y.: A quantitative approach to evaluate website archiv-
ability using the clear+ method. Int. J. Digital Libr. (2015)

3. Blanvillain, O., Kasioumis, N., Banos, V.: Blogforever crawler: techniques and algo-
rithms to harvest modern weblogs. In: Proceedings 4th International Conference
on Web Intelligence, Mining & Semantics (WIMS) (2014)

4. Boiko, B.: Understanding content management. Bull. Am. Soc. Inf. Sci. Technol.
28(1), 8–13 (2001)

5. Coalition, D.P.: Institutional strategies - standards and best practice guidelines
(2012). http://www.dpconline.org/advice/preservationhandbook/institutional-stra
tegies/standards-and-best-practice-guidelines. Accessed 10 November 2014

6. Day, M.: Metadata, curation reference manual (2005). http://www.dcc.ac.uk/
resources/curation-reference-manual/completed-chapters/metadata. Accessed 10
November 2014

7. Donnelly, M.: JSTOR/Harvard Object Validation Environment (JHOVE). Digital
Curation Centre Case Studies and Interviews (2006)

8. Faheem, M., Senellart, P.: Intelligent and adaptive crawling of web applications
for web archiving. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol.
7977, pp. 306–322. Springer, Heidelberg (2013)

9. Fernández-Garcia, N., Sánchez-Fernandez, L., Villamor-Lugo, J.: Next generation
web technologies in content management. In: Proceedings (companion) 13th Inter-
national Conference on World Wide Web (WWW), pp. 260–261 (2004)

10. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,
T.: Hypertext transfer protocol-http/1.1 (1999). http://tools.ietf.org/html/rfc2616.
Accessed 10 November 2014

11. Gomes, D., Costa, M., Cruz, D., Miranda, J., Fontes, S.: Creating a billion-scale
searchable web archive. In: Proceedings (companion) 22nd International Confer-
ence on World Wide Web (WWW), pp. 1059–1066 (2013)

12. Kasioumis, N., Banos, V., Kalb, H.: Towards building a blog preservation platform.
World Wide Web 17(4), 799–825 (2014)

13. Kelly, B., Guy, M.: Approaches to archiving professional blogs hosted in the cloud.
In: Proceedings 7th International Conference on Preservation of Digital Objects
(iPRES) (2010)

http://www.dpconline.org/advice/preservationhandbook/institutional-strategies/standards-and-best-practice-guidelines
http://www.dpconline.org/advice/preservationhandbook/institutional-strategies/standards-and-best-practice-guidelines
http://www.dcc.ac.uk/resources/curation-reference-manual/completed-chapters/metadata
http://www.dcc.ac.uk/resources/curation-reference-manual/completed-chapters/metadata
http://tools.ietf.org/html/rfc2616

212 V. Banos and Y. Manolopoulos

14. Lawrence, S., Pennock, D.M., Flake, G.W., Krovetz, R., Coetzee, F.M., Glover,
E., Nielsen, F.Å., Kruger, A., Giles, C.L.: Persistence of web references in scientific
research. IEEE Comput. 34(2), 26–31 (2001)

15. McKeever, S.: Understanding web content management systems: evolution, lifecy-
cle and market. Ind. Manage. Data Syst. 103(9), 686–692 (2003)

16. Niu, J.: An overview of web archiving. D-Lib Magazine, 18(3/4) (2012)
17. Pennock, M., Davis, R.: Archivepress: a really simple solution to archiving blog

content. In: Proceedings 6th International Conference on Preservation of Digital
Objects (iPRES) (2009)

18. Pinsent, E., Davis, R., Ashley, K., Kelly, B., Guy, M., Hatcher, J.: PoWR: the
preservation of web resources handbook (2010)

19. Rumianek, M.: Archiving and recovering database-driven websites. D-Lib Magazine
19(1/2) (2013)

20. W3Techs. Usage of content management systems for websites (2014).
http://w3techs.com/technologies/overview/content management/all. Accessed 10
November 2014

http://w3techs.com/technologies/overview/content_management/all

Modeling and Ontologies

Evidence-Based Languages for Conceptual Data
Modelling Profiles

Pablo Rubén Fillottrani1,2 and C. Maria Keet3(B)

1 Departamento de Ciencias e Ingenieŕıa de la Computación,
Universidad Nacional del Sur, Bah́ıa Blanca, Argentina

prf@cs.uns.edu.ar
2 Comisión de Investigaciones Cient́ıficas, La Plata, Provincia de Buenos

Aires, Argentina
3 Department of Computer Science, University of Cape Town,

Cape Town, South Africa
mkeet@cs.uct.ac.za

Abstract. To improve database system quality as well as runtime use of
conceptual models, many logic-based reconstructions of conceptual data
modelling languages have been proposed in a myriad of logics. They each
cover their features to a greater or lesser extent and are typically moti-
vated from a logic viewpoint. This raises questions such as what would be
an evidence-based common core and what is the optimal language profile
for a conceptual modelling language family. Based on a common meta-
model of UML Class Diagrams (v2.4.1), ER/EER, and ORM/2’s static
elements, a set of 101 conceptual models, and availing of computational
complexity insights from Description Logics, we specify these profiles.
There is no known DL language that matches exactly the features of
those profiles and the common core is small (in the tractable ALNI).
Although hardly any inconsistencies can be derived with the profiles, it
is promising for scalable runtime use of conceptual data models.

1 Introduction

Database and information system development and use can be aided by con-
ceptual data models that have a logic-based underpinning, both at the analysis
stage and during runtime. Automated reasoning over isolated conceptual data
models, such as EER and UML Class Diagrams, to improve their quality and
avoid bugs aims to tackle this problem by various means. Notably, Description
Logics (DLs) is used (among many: [1,5,10]), but also other techniques, such
as constraint programming [8], OCL [27], CLIF [26], and Alloy [7]. There are
also scenarios for using the models at runtime, such as for scalable test data
generation [28] and for designing [6] and executing [13] queries with the concep-
tual model’s vocabulary rather than quirky database table names and columns.
Logic-based approximations of conceptual models are used also for querying
databases during the stage of query compilation [32].

All these efforts face the same issue: how to formalise the diagrams in which
logic? Even just zooming in on DLs shows that at times it is claimed that any
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 215–229, 2015.
DOI: 10.1007/978-3-319-23135-8 15

216 P.R. Fillottrani and C.M. Keet

one of the languages in the DLR family is good for representing and unifying
the conceptual data modelling languages [12], the much leaner DL-Lite family
of languages [1], or using SROIQ (OWL 2 DL) instead [33]. While one could
choose one’s pet language, from a scientific viewpoint, it would be good to know
which DL (or other logic) is most appropriate, and why? Here, ‘most appropriate’
is cast in the light of the needs from the viewpoint of the modelling languages,
and what features those conceptual modellers bother to use in their models. This
raises the following questions:

1. What is the profile of a common core of language features among the main
conceptual data modelling languages (CDMLs)?

2. Is there an optimal language profile to capture each of UML, ER and EER,
and ORM and ORM2, based on a set of publicly available diagrams?

3. Are any language features missing from the many extant DL languages, given
a set of actual conceptual models, or too much in any case?

To establish a common core, harmonisation of terminology across CDMLs is
needed. This has been done with a unifying metamodel of the static, struc-
tural entities (including constraints) of UML v2.1.4 (Class Diagrams), ER, EER,
ORM, and ORM2 [16,20]. The feature overlap that can be determined from the
metamodel is augmented by a classification of the entities in the models of a
dataset of 101 conceptual data models of the three language families. These
models were collected from projects, scientific papers, textbooks, and online
diagrams; the dataset and analysis are available online [15,21].Together with
the known computational complexity of various DL languages and formalisa-
tion trade-offs, a common core and profiles for each of the UML, ER/EER, and
ORM/ORM2 families have been specified. This ranges from ALNI of the core
to the “DLRifd without disjointness and completeness” for ORM2, with a good
approximation with CFDI∀−

nc . Remarkably, these conceptual model profiles/DL
fragments are all tractable, and therewith are very suitable for scalable runtime
usage of conceptual models. The only possible complication are the (sparsely
occurring) advanced datatype constraints, which DLs do not support well, and
promising computational complexity results are yet to be obtained. The remain-
der of the paper is structured as follows. We first introduce preliminaries about
the metamodel, the dataset, and fundamental formalisation choices (Sect. 2).
The core and CDML profiles are described and motivated in Sects. 3 and 4,
respectively. Related works are analysed in each profile section. We discuss in
Sect. 5 and conclude in Sect. 6.

2 Preliminaries

To put the profiles in context, we first describe the input we used, being the uni-
fying metamodel, the dataset, motivation for the logic chosen, and some insights
from philosophy that clarifies CDML formalisations. We assume the reader is
familiar with the basic DL notation; see [4] for details.

Evidence-Based Languages for Conceptual Data Modelling Profiles 217

2.1 Unifying Metamodel and Dataset

As the three CDML families under consideration—UML v2.1.4 Class Diagrams,
ER and EER (henceforth abbreviated as (E)ER), and ORM and ORM2 (hence-
forth abbreviated as ORM/2)—originate from different sub-fields in database
and information systems development, they each have their own vocabulary with
syntactic and semantic differences. This has been investigated and a terminology
comparison table and a unified metamodel are presented in [20], which there-
with facilitates cross-language comparisons as well as categorisation of entities
of models in those languages into the harmonised terminology. Further, it neatly
demonstrates the intersection of entities across the languages, which has been
extended in [16] also with constraints. Its top-type is Entity, which has four direct
subclasses: Relationship with 11 subclasses, Role, Entity type with 9 subclasses, and
Constraint with 49 subclasses. All entities also have constraints specified among
them on how they may be used, e.g., each relationship must have at least two
roles and a disjoint object type constraint is only declared on class subsumptions.

We have used this metamodel to classify the entities of the models in a set
of 101 UML, (E)ER, and ORM/2 models. Their average ‘model size’ (vocabu-
lary+subsumption) is about 50 entities/model, with at total of 8036 entities of
which 5191 (i.e., 64 %) are entities that were classified in an entity (language fea-
ture) that appears in all three language families and 1108 (13.8 %) in ones that
are unique to a language family (e.g., UML’s aggregation) [21]. While one would
prefer industry models, they are not publicly available. Only one paper presents
quantitative results on industry models, being a set of 168 ORM diagrams that
were made by a single engineer in the proprietary modelling tool from LogicBlox
[28]. Our model data for ORM is similar to theirs [21].

2.2 General Logic-Based Reconstruction Design Choices

There are two important considerations: which logic family to use, and what to
do with the relationships.

Concerning the language(s) to create a logic-based reconstruction of the three
main CDML families under consideration, and to compare them, one could go for
some ‘arbitrary’ very expressive logic, such as FOL, or one of its serialisations
(e.g., Common Logic’s CLIF), or a priori a decidable one (DLs) with CDM
features (DLR family of DLs) or in line with the Semantic Web (OWL species).
There is no best fit with respect to various requirements, as the comparison in
Table 1 demonstrates, other than that DLs give us a view on decidability and
computational complexity of concept satisfiablity, which is therefore chosen.

A formalisation decision that applies to each CDML family concerns the
relationships, which is due to two distinct ontological commitments as to what
they are, being the so-called standard view and positionalism. The standard view
uses directionality—or: a natural language ‘reading’ direction—of the relation-
ship where the participating objects have a fixed order, as formalised with the
n-ary predicate (n ≥ 2), conflating the verbalisation with the name of the rela-
tionship. In the positionalist commitment, relationships have (are composed of)

218 P.R. Fillottrani and C.M. Keet

Table 1. Selection of languages, requirements, and their evaluation for formalising
UML, (E)ER, and ORM/2; “–”: negative evaluation; “+”: positive. (OntoIOP is in the
process of standardisation with OMG, which aims to link logical theories represented
in the same or different languages.)

DLRifd OWL 2 DL FOL

– no implementation + several reasoners,
relatively scalable

– few reasoners, not really
scalable

– no interoperability + linking with
ontologies doable

– no interoperability with
existing infrastructures

– no integration + ‘integration’ with
OntoIOP

+ ‘integration’ with OntoIOP

+ formalisation exist – formalisation to
complete

± formalisation exist

+ little feature mismatch – what to do with
OWL 2 DL
features not in
the CDM
languages and vv.

+ little feature mismatch

– modularity infrastructure + modularity
infrastructure

– modularity infrastructure

± EXPTIME-complete ± N2EXPTIME-
complete

– undecidable

argument places that are entities of themselves, which are filled by the partic-
ipating objects, and those positions have no order in the relationship; refer to
[18,22] for theoretical details. The three selected CDML families are positional-
ist [20]—UML associations have association ends, ORM/2 fact types have roles,
(E)ER has components of a relationship—, but most DLs are standard view,
except for the DLR family. The DLR family has only one proof-of-concept
implementation [9], however, whereas the former do in so far as they are OWL
2 DL or proper fragments thereof. Therefore, we need to assess how to convert
positionalist relationships into standard view ones. There are several options,
each with its trade-offs that may affect the complexity of the language. We use
the diagrams in Fig. 1 as illustration to discuss them.

The UML standard v2.4.1 [25] and earlier versions require named association
ends (DL role components), like the teacher and taughtBy in Fig. 1, but not a
name of the association (DL role). Options to formalise it:

(1) make each association end a DL role, teacher and taughtBy, then choose:
(a) declare them inverse of each other with teacher ≡ taughtBy−,
(b) do not declare them inverses.

(2) choose to ‘bump up’ either teacher or taughtBy from association end to DL
role, and use the other through a direct inverse (ObjectInverseOf() in OWL
2) and omit the extension of the vocabulary with the other (e.g., teacher
and teacher− cf. adding also taughtBy).

Evidence-Based Languages for Conceptual Data Modelling Profiles 219

Fig. 1. Sample UML, EER and ORM2 diagrams, representing that a course is taught
by at least one professor, and a professor may teach zero or more courses (for space
limitations, some value types in the ORM diagram are suppressed).

The explicit inverses (Item 1a) is essentially a workaround for having made two
relationships where only one existed, trying to keep the two somehow related so
as to make up for the ‘splitting’. Arguably, declaring them inverses is not strictly
necessary, and omitting it could be considered comparable to omitting the iden-
tification constraint across the roles of a reification of an n-ary into n binaries
in OWL, which is generally tolerated. Either way, one can deterministically and
automatically generate a formalisation of the UML Class Diagram.

Item 2’s need for a choice among association ends can be done econom-
ical in the formalisation by taking the one that requires a cardinality con-
straint; in the example, the preference is for taughtBy, not teacher (the latter
has only a 0..∗), generating a domain and a range axiom for taughtBy, and a
Course � ∃taughtBy.Professor. This can be automated for cases like the exam-
ple, but not if Professor were to have also a 1..∗ (or more) multiplicity, which
then would make it an arbitrary choice again, and therewith, still not a single,
unique formalisation.

In favour of the latter main option, is that it has been shown that using
Item 2-inverses compared to Item 1a-inverses results in better automated rea-
soner performance, reducing time by more than a third [19]. Adding inverses to a
language may change its computational complexity, however, and a few popular
ones do not have inverses; e.g., ALCQ and ALCQI are both PSpace-complete
[29], and OWL 2 EL [24] does not have inverse object properties.

ER is also positionalist, but it has a different practical issue cf. UML. It
is customary to give the relationship a name that is ‘non-directional’, like the
teaching in Fig. 1 or its infinitive, rather than naming the relationship compo-
nents. Morphing it into the standard view then requires either:

(i) a renaming of the relationship to prevent an ambiguous DL role name in the
formalisation, or

(ii) an arbitrary domain and range assignment.

This user-mediated step favours using an ObjectInverseOf() rather than adding
a second new name if more than one cardinality constraint is not (0, n), but this
means also here it cannot be guaranteed it will result in exactly one formali-
sation of the diagram. (Some UML models have association names, not named

220 P.R. Fillottrani and C.M. Keet

association ends, but the same problem does not exist, for an association name
has a filled arrow-tip for the reading direction.)

ORM’s fact type readings can be useful candidates for naming DL roles, but
only one is required in a diagram, not n for the n participating entities. The
software assigns auto-generated identifiers to the ORM roles and to the fact
types (relationships) by default, but a modeller also can name them, which is
then shown in the diagram. Due to this freedom in modelling, one single rule is
not possible, but a sequence of possible cases—and choices—is needed. Thus, it
cannot be guaranteed that there will be only one formalisation.

In sum, no matter which formalisation option is chosen regarding relation-
ships, the CDML families each require their own transformation algorithm, and
due to the options, it is possible to construct different profiles based on the
formalisation choices. We will return to this in Sects. 4 and 5.

3 Core Profile

The Core Profile is composed by the elements of the metamodel that belong to
the three main families of languages: UML Class Diagrams, (E)ER and ORM/2,
and that are extensively used in the analysed models. Interoperability of model
semantics between models expressed in these different modelling languages can
be assured by restricting models to this set of entities. An important criterion
here was to find a ‘simple’ a language as possible whilst covering the main
common entities used in conceptual data models.

– Object Type C. This is represented by concept C in DL.
– Binary Relationship R between object types C and D. This is represented by

a DL role R together with the inclusion assertion � � ∀R.C 	∀R−.D to type
the relationship. This formalisation reflects the standard view of relationships.
We restrict it to binary relationships only, because general n-ary relationships
are rarely used in the whole set of analyzed models. (The (E)ER and ORM/2
models exhibit a somewhat higher incidence of n-aries, so they are included
in the respective profiles; see below.)

– Attribute a of datatype T within an object type C, including the transfor-
mation of ORM’s Value type following the transformation rule given in [17].
This is represented in a DL by a role a between concepts C and T , together
with the inclusion axiom C � ∀a.T . Formalisation of CDM datatypes in DL
as concrete domains or datatypes [3,23] generally translate a datatype into
a DL concept, and a datatype value as a DL nominal or instance, which
lead to high undecidability results. Although datatypes and concepts share
some properties (both can participate in inheritance and conjunction, both
can be attached with cardinality constraints), there are also important differ-
ences between them: a datatype cannot participate in relationships, cannot be
defined by quantifiers or negation over other datatypes, while concepts can-
not be composed (which is not the same as union) and cannot be filtered with
facets. Identity of a nominal is inherently different as identity of a datatype
value, and this is reflected in counting quantifiers.

Evidence-Based Languages for Conceptual Data Modelling Profiles 221

– Subsumption between two object types C and D. This is represented in DL
by the inclusion axiom C � D.

– Object Type cardinality m..n in relationship R with respect to object type.
This is represented by the inclusion axiom C �≥ nR′.�	 ≤ mR′.� where
R′ is either R or R− depending on C being the first or the second object
type in R. R is a unique name in the conceptual model (otherwise qualified
cardinality is needed).

– Mandatory constraint. This is a special case of the previous one, with n = 1.
It is interpreted as C � ∃R′.�, with R′ as before.

– Single identification (in object types with respect to an attribute, and 1:1
mandatory). Let C be an object type identified by attribute a. Then this
is interpreted in a DL by the inclusion axioms C � ∃a.�	 ≤ 1 a.� and
� �≤ 1 a−.C

In total, all the entities in the core profile sum up to 87.57% of the entities in all
the analysed models, covering The following entities, despite that they belong
to all three CDMLs, are not part of the core profile because of their very low
participation in the dataset: Role and Relationship Subsumption, Completeness
constraints, and Disjointness constraints. Note that this means that it is not
possible to express union of concepts in this Core Profile.

Reasoning over this Core Profile is quite simple. Since completeness and
disjointness constraints are not present, negation cannot be directly expressed.
It is possible to code negation only with cardinality constraints [4, chapter 2], but
then we need to reify each negated concept as a new idempotent role. Another
form of getting contradiction in this context is by setting several cardinality
constraints on the same relationship participation, which is unusual in modelling
languages. In any case, the main reasoning problems on the conceptual model
only are class subsumption and class equivalence. The description logic ALNI
(which is called PL1 in [14], and has polynomial subsumption) is expressive
enough to represent this profile, since we only need �, 	, inverse roles and
cardinalities constraints. Its data complexity is unknown.

The core profile shows that a relatively small set of entities concentrates most
usage on conceptual models, and that these entities are consistent by assuming
just single pairs of maximum and minimum cardinality constraints.

4 Specific CDML Profiles

We describe first the extension of the core so as to cover UML Class Diagrams
v2.4.1, and subsequently (E)ER and ORM/2.

4.1 UML Class Diagram Profile

The UML Class Diagram Profile is composed by the Core Profile plus the
following entities:

222 P.R. Fillottrani and C.M. Keet

– Shared, Composite Aggregation. No axiomatisation is added for these rela-
tionships since the UML 2.4.1 standard [25] does not include additional static
constraints, so they are coded as simple binary relationships.

– Subsumption between two UML associations R and S. Since we only have
binary relationships, this can be represented in DL as role inclusion R � S.

– Attributive Property Cardinality and Attribute Value Constraint. Cardinali-
ties on attributes can be represented as cardinalities on relationships, but in
order to represent value constraints it is necessary to include in the formalisa-
tion some datatype facilities to define new datatypes. The attribute is assigned
a new datatype which is derived from the original one plus the constraining
facets (in terms of XML Schema) on its values.

In total, 99.44% of all the elements in the analysed UML models are covered
by this profile. To formalise this profile in DLs we need to add role hierarchies
and datatypes (concrete domains) to the ALNI logic for the Core Profile. This
yields the logic ALNHI(D) that, as far as we know, has not been studied yet.
If we assume unique names and some reasonable (at least from the conceptual
modelling point of view) restrictions on the interaction between role inclusions
and cardinality constraints, we can represent this profile in DL-LiteHN

core, which
is NLOGSPACE for subsumption and AC0 for data complexity [2].

Typical UML elements like qualified relationship, completeness constraints,
and disjointness constraints do not belong to this profile. On the one hand, it is
possible to say that the extra expressiveness that is not being used by modellers
limit the formal meaning of their models. But since two of these rarely used
features are necessary for proving the EXPTIME-hardness of reasoning on UML
class diagrams [5], then reasoning over such limited diagrams becomes much
more efficient.

4.2 (E)ER Profile

The (E)ER Profile is composed by the Core Profile plus the following entities:

– Composite and Multivalued attribute. Multivalued attributes can be repre-
sented with attribute cardinality constraints, and composite attributes with
the inclusion of the union datatype derivation operator.

– Weak Object Type, Weak Identification. Each object type (entity type) in
(E)ER is assumed by default to have at least one identification constraint. In
order to represent external identification, we can use functionality constraints
on roles as in DLRifd [11], or in CFD [31].

– Ternary relationships. This is described below and in Algorithm 1.
– Associative Object type. This is formalised by the reification of the association

as a new DL concept with two binary relationships.
– Multiattribute identification. This can be formalised as a new composite

attribute with single identification.

99.06% of all the elements in the set of (E)ER models belong to this profile.

Evidence-Based Languages for Conceptual Data Modelling Profiles 223

The only DL language family with arbitrary n-aries and the advanced identi-
fication constraints is DLRifd , which happens to be positionalist. However, the
DL role components are not strictly needed for (E)ER, and one may wish to pur-
sue an n-ary DL without DL role components but with identification constraints,
like in the CFD family of languages. Therefore, we provide here Algorithm 1,
which summarises the procedure to go from (E)ER straight to the standard
view. The main steps involve binaries vs. higher arities, and recursive ones that
generally do have their named relationship components vs ‘plain’ binaries that
have only the relationship named.

Algorithm 1. (E)ER to standard view and common core

DR: domain of R; RR range of R; n set of R-components
if R is binary and DR �= RR then

Rename R to two ‘directional’ readings, Re1 and Re2
Make Re1 and Re2 a DL role each
Type role with � � ∀Re1.DR � ∀Re−

1 .RR

Declare inverses with Re1 ≡ Re−
2

else
if R is binary and DR = RR then

for all i, with i ∈ n do
if i is named then

Rei ← i
else

Rei ← user-added label or auto generated label
end if
Make Rei a DL role

end for
Type one Rei, i.e., � � ∀Rei.DR � ∀Re−

i .RR

Declare inverses among all Rei
end if

else
Reify R into R′ � �
for all i, 3 ≥ i ≥ n do

Rei ← user-added label or auto generated label
Make Rei a DL role,
Type Rei as � � ∀Rei.R

′ � ∀Re−
i .RR, where RR is the player ((E)ER entity

type) in n
Add R′ � ∃Rei.� and R′ � ≤ 1Rei.�

end for
Add external identifier � � ≤ 1 (iRei)

−.R′

end if

Using this translation, and since we do not have covering constraints in the
profile, we can represent the (E)ER Profile in the description logic DL-LiteN

core

[2] which has complexity NLOGSPACE for the satisfiability problem. This low
complexity is in no small part thanks to its unique name assumption, whereas

224 P.R. Fillottrani and C.M. Keet

most logics operate under no unique name assumption. A similar result is found
in [1] for ERref , but it excludes composite attributes and weak object types.

4.3 ORM/2 Profile

For ORM, there is no good way to avoid the ORM roles (DL role components),
as they are used for several constraints that have to be included. They can be
transformed away (discussed below) such that an ORM/2 Profile is obtained by
joining the features of the Core Profile. The following entities from the unifying
metamodel are added, noting that the starred ones include the formalisation
after the transformation from positionalist to standard view:

– Unary role, which is formalised as a boolean attribute. �
– Subsumption between roles; formalised by using DL role hierarchies. �
– n-ary relationships (n ≥ 2). This is formalised similarly as for (E)ER (see

Algorithm 1).
– Subsumption between relationships. This is formalised with an inclusion asser-

tion between the reified concepts.
– Disjoint constraints between ORM roles R and S. This is formalised as two

inclusion assertion for roles: R � ¬S and S � ¬R. �
– Nested object type. The nested object type is identified with the reified con-

cept of the relationship.
– Value constraints. We need to define a new datatype with the constraints, as

done in UML profile.
– Disjunctive mandatory constraint for object type C in roles Ri. This is

formalised as the inclusion axiom C � �i ∃Ri. �
– Internal Uniqueness constraint for roles Ri, 1 ≤ i ≤ n over relationship objec-

tified with object type R as described below. We need an identification axiom
(id C 1R1 . . . 1Rn) as in DLRifd .

– External Uniqueness constraint between roles Ri, 1 < i ≤ n not belonging to
the same relationship. Let C be the connected object type between all the Ri,
if it exists, or otherwise a new object type representing the reification of a new
n-ary relationship between the participating roles. Then we can formalise the
constraint with the identification axiom (id C 1R1 . . . 1Rn).

– External identification. This is the same as the previous one, with the excep-
tion that we are now sure such C exists (i.e., the mandatoryness is added cf.
simple uniqueness).

This profile contains 98.69% of all the elements in the analysed ORM/2 models.
This is still a high coverage considering the assortment of entities available in
the language. We decided not to include any ring constraint in this profile.
Although the irreflexivity constraint counts for almost half of all appearances of
ring constraints, its participation is still too low to be relevant.

In order to formalise this ORM/2 profile we need both n-aries and identifi-
cation constraints, as in the (E)ER Profile. It differs from the (E)ER profile, in
that ORM needs the argument positions for some constraints. We map this posi-
tionalist commitment into a standard view. This is motivated by the observation

Evidence-Based Languages for Conceptual Data Modelling Profiles 225

that typically fact type readings are provided, not user-named ORM role names,
and only 9.5 % of all ORM roles in the 33 ORM diagrams in our dataset had a
user-defined name, with a median of 0. We process the fact type (relationship
R) readings and ignore the role names as follows. DLR’s relationship is typed,
w.l.o.g. as binary and in DLR-notation, as R � [rc]C 	 [rd]D, with rc and rd
variables for the ORM role names and C and D the participating object types.
Let read1 and read2 be the fact type readings, like the teaches and taughtby in
Fig. 1, then use read1 to name DL role Re1 and read2 to name DL role Re2, and
type R as � � ∀Re1.C 	∀Re2.D. This turns, e.g., a disjoint constraints between
ORM roles rc of relationship R and sc of S into Re1 � ¬Se1 and Se1 � ¬Re1.

Concerning complexity of the ORM/2 Profile, this is not clear either. The
EXPTIME-complete DLRifd is the easiest fit, but contains more than is strictly
needed: neither concept disjointness and union are needed (but only among
roles), nor its fd for complex functional dependencies. The PTIME CFDI∀−

nc

[30] may be a better candidate if we admit a similar translation as the one given
in Algorithm 1, but giving up arbitrary number restrictions and disjunctive
mandatory on ORM roles.

5 Discussion

As mentioned in Sect. 2.2, other design choices could have led to another ‘core
profile’. This concerns two choices in particular: i) we used inverses and therewith
could avoid qualified cardinality restrictions (thanks to typing of the relation-
ship), and ii) transforming the positionalist into a standard view representation.
The advantages are that there are clear indications that the current core profile
is computationally better behaved and it can be used more easily with most
implemented languages. A disadvantage is that for the ORM/2 profile, a posi-
tionalist DL language is needed and for (E)ER, it would make it easier for it
fits more nicely with a known language (DLRifd). Transformations are very well
doable, as shown in Algorithm 1, but it adds an extra step in any implementa-
tion. The alternative is to create a ‘positionalist core’, but this is likely to be
computationally less well-behaved, and does not enjoy wide software support
when it comes to formal characterisations of the CDMLs.

5.1 On Missing and ‘Useless’ Features

As will be clear, there is no ‘ideal’ DL language for the CDMLs, not one that
captures exactly and only the needed features, that is positionalist to avoid forc-
ing the artificial standard view encoding, and has a usable implementation. The
major mismatches regarding implementations have to do with n-aries, DL role
components, advanced identifiers, and attributes with their data types, dimen-
sions and value constraints. Data types are being investigated for DLs (e.g.,
[3,23]), and the results obtained here may serve as a motivational use case. Fur-
ther, dimensional value types are yet to be addressed; e.g., a ternary ‘attribute’,

226 P.R. Fillottrani and C.M. Keet

say, height, consisting of the class it is measured for, the data type, and its mea-
surement unit. Others could be a ‘nice to have’, notably arbitrary n-aries and, for
ease of transformation algorithms from CDMLs to a logic, more implementations
of positionalism (a DL with DL role components).

Viewed from the perspective as to what can safely be omitted from a logic
for CDMLs, then, notably, nominals—computationally costly—are certainly not
needed (recall also Sect. 3), and disjointness and completeness are used remark-
ably few times. Whether the latter is due to a real perceived irrelevance for
conceptual data modelling or merely due to unfamiliarity by modellers is a sep-
arate line of investigation. The few disjointness and completeness constraints
encountered, however, were predominantly in models taken from courses, text-
books, and from the UML standard. Also, there are multiple relationships in
the models where properties, such as transitivity and reflexivity, certainly could
apply, and if one can declare them (as in ORM) it is done, but it is unclear
why it has been done so few times (23 in total in the 33 ORM/2 models). A
conjecture is that this is due to their limited implementation support.

5.2 Answering the Research Questions

The results obtained in the previous sections provide the answers to the three
questions posed in the introduction. Concerning question 1, the profile of a com-
mon core of language features among the main CDMLs has been specified in
Sect. 3, covering UML Class diagrams v2.4.1, ER and EER, and ORM and
ORM2. Although an important criterion was to keep the logic as ‘simple’ as
possible, it is, perhaps, remarkable that a language with such low expressiveness
as ALNI sufficed when taking into account the intersection of the languages
and the usage of the CDML features in actual conceptual data models. ALNI
in in PTIME, and possibly even better computationally well-behaved with the
unique name assumption, as no unique name assumption together with number
restrictions increases complexity, as shown with the DL-Lite family in [2]. Either
way, this makes it certainly promising for scalable implementations for interop-
erability or conceptual model-mediated analysis and management of large scale
data systems, including Ontology-Based Data Access, and to augment query
compilation with the ‘background knowledge’ of the conceptual model, meeting
requirements such as aimed for in [6,13,17,28,32].

Regarding question 2 on CDML profiles: based on the profiles defined that
took input from the set of 101 conceptual models, there is no optimal language
with known complexity that matches exactly a CDML profile to capture each of
the UML, (E)ER, and ORM/2 languages (recall Sect. 4), where each profile had
its own version of a mismatch. Of the three profiles, the one for UML is closest
to the core profile, mainly thanks to the removal of relational properties of the
aggregation associations from the UML standard (transitivity and asymmetry
were asserted in earlier versions of the standard), and that qualified associations
were hardly used.

This brings us to the answer to Question 3 on missing features and too many.
A shortcoming of the available DLs is the limited support for constraints on

Evidence-Based Languages for Conceptual Data Modelling Profiles 227

datatypes. Conversely, nominals, negation and union, and most relational prop-
erties do not seem to be needed. Using nominals to encode values is suboptimal
(see Sect. 3), whose in-depth argument is omitted due to space limitations.

6 Conclusions

Conceptual data model language-specific profiles for their logic-based reconstruc-
tion have been defined, as well as a common core. No CDM profile matches fully
with an existing DL language. The common core capturing most entities occur-
ring in the dataset of models amounts to ALNI which is PTIME. This means
that efficient translations between models in these languages can be done pre-
serving most of their elements and meaning. Even for the most expressive CDM
language ORM2, the vast majority of entities can be captured with a DLRifd
without disjointness and union or CFDI∀−

nc with arbitrary number restrictions.
No features are really missing from any DL, other than advanced datatype con-
straints, but rather tend to have too many constructs. Given the absence of nega-
tion, there is little TBox reasoning of interest, other than cardinality constraints.
The lean common core and profiles pave the way for a modelling-informed sin-
gle language for model interoperability, and for their runtime usage in scalable
databases and information systems.

Acknowledgments. This work is based upon research supported by the National
Research Foundation of South Africa (Project UID90041) and the Argentinean Ministry
of Science and Technology.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Rea-
soning over extended er models. In: Parent, C., Schewe, K.-D., Storey, V.C.,
Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 277–292. Springer, Heidelberg
(2007)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

3. Artale, A., Ryzhikov, V., Kontchakov, R.: DL-Lite with attributes and datatypes.
In: Proceedings of ECAI 2012, pp. 61-66. IOS Press (2012)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logics Handbook - Theory and Applications, 2nd edn.
Cambridge University Press, Cambridge (2008)

5. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artif. Intell. 168(1–2), 70–118 (2005)

6. Bloesch, A.C., Halpin, T.A.: Conceptual queries using ConQuer-II. In: Embley,
D.W. (ed.) ER 1997. LNCS, vol. 1331, pp. 113–126. Springer, Heidelberg (1997)

7. Braga, B.F.B., Almeida, J.P.A., Guizzardi, G., Benevides, A.B.: Transforming
OntoUML into Alloy: towards conceptual model validation using a lightweight
formal methods. Innov. Sys. Softw. Eng. 6(1–2), 55–63 (2010)

228 P.R. Fillottrani and C.M. Keet

8. Cadoli, M., Calvanese, D., De Giacomo, G., Mancini, T.: Finite model reasoning
on uml class diagrams via constraint programming. In: Basili, R., Pazienza, M.T.
(eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 36–47. Springer, Heidelberg (2007)

9. Calvanese, D., Carbotta, D., Ortiz, M.: A practical automata-based technique
for reasoning in expressive description logics. In: Proceedings of IJCAI 2011, pp.
798–804. AAAI Press (2011)

10. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query con-
tainment under constraints. In: Proceedings of PODS 1998, pp. 149–158 (1998)

11. Calvanese, D., De Giacomo, G., L., M.: Identification constraints and functional
dependencies in description logics. In: Proceedings of IJCAI 2001, pp. 155–160.
Morgan Kaufmann (2001), seattle, Washington, USA, August 4–10 (2001)

12. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation for-
malisms. J. Artif. Intell. Res. 11, 199–240 (1999)

13. Calvanese, D., Keet, C.M., Nutt, W., Rodŕıguez-Muro, M., Stefanoni, G.: Web-
based graphical querying of databases through an ontology: the WONDER system.
In: Proceedings of ACM SAC 2010, pp. 1389–1396. ACM (2010)

14. Donini, F., Lenzerini, M., Nardi, D., Nutt, W.: Tractable concept languages. In:
Proceedings of IJCAI 1991, vol. 91, pp. 458–463 (1991)

15. Fillottrani, P.R., Keet, C.M.: Ontology-driven unification of conceptual data mod-
elling languages (2012–2015). http://www.meteck.org/SAAR.html

16. Fillottrani, P.R., Keet, C.M.: KF metamodel formalisation. Technical report
1412.6545v1 December 2014, arxiv.org

17. Fillottrani, P.R., Keet, C.M.: Conceptual model interoperability: a metamodel-
driven approach. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS,
vol. 8620, pp. 52–66. Springer, Heidelberg (2014)

18. Fine, K.: Neutral relations. Philos. Rev. 109(1), 1–33 (2000)
19. Keet, C.M., d’Amato, C., Khan, Z.C., Lawrynowicz, A.: Exploring Reasoning with

the DMOP Ontology. In: Proceedings of ORE 2014. CEUR-WS, vol. 1207, pp.
64–70 (2014)

20. Keet, C.M., Fillottrani, P.R.: Toward an ontology-driven unifying metamodel for
UML class diagrams, EER, and ORM2. In: Ng, W., Storey, V.C., Trujillo, J.C.
(eds.) ER 2013. LNCS, vol. 8217, pp. 313–326. Springer, Heidelberg (2013)

21. Keet, C.M., Fillottrani, P.: An analysis and characterisation of publicly available
conceptual models. In: Proceedings of ER 2015. LNCS, Springer (2015). (in print)

22. Leo, J.: Modeling relations. J. Phil. Logic 37, 353–385 (2008)
23. Lutz, C., Areces, C., Horrocks, I., Sattler, U.: Keys, nominals, and concrete

domains. J. Artif. Intell. Res. 23, 667–726 (2005)
24. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web

Ontology Language Profiles. W3C recommendation, W3C 27 October 2009. http://
www.w3.org/TR/owl2-profiles/

25. Object management group: superstructure specification. standard 2.4.1, object
management group (2012). http://www.omg.org/spec/UML/2.4.1/

26. Pan, W., Liu, D.: Mapping object role modeling into common logic interchange
format. In: Proceedings of ICACTE 2010, vol. 2, pp. 104–109. IEEE Computer
Society (2010)

27. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: finite reasoning on
UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1–22 (2012)

28. Smaragdakis, Y., Csallner, C., Subramanian, R.: Scalable satisfiability checking
and test data generation from modeling diagrams. Autom. Softw.Eng. 16, 73–99
(2009)

http://www.meteck.org/SAAR.html
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://www.omg.org/spec/UML/2.4.1/

Evidence-Based Languages for Conceptual Data Modelling Profiles 229

29. Tobies, S.: Complexity results and practical algorithms for logics in knowledge
representation. Ph.D. thesis, RWTH-Aachen, Germany (2001)

30. Toman, D., Weddell, G.: On adding inverse features to the description logic CFD∀
nc.

In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS, vol. 8862, pp. 587–599.
Springer, Heidelberg (2014)

31. Toman, D., Weddell, G.E.: Applications and extensions of ptime description logics
with functional constraints. In: IJCAI. pp. 948–954 (2009)

32. Toman, D., Weddell, G.E.: Fundamentals of Physical Design and Query Compi-
lation. Synthesis Lectures on Data Management. Morgan & Claypool, San Rafael
(2011)

33. Wagih, H.M., Zanfaly, D.S.E., Kouta, M.M.: Mapping object role modeling 2
schemes into SROIQ(D) description logic. Int. J. of Comp. Theory Eng. 5(2),
232–237 (2013)

Ontological Commitments, DL-Lite Logics
and Reasoning Tractability

Mauricio Minuto Espil1(B), Maria Gabriela Ojea2,3, and Maria Alejandra Ojea3

1 ARBA, Buenos Aires, Argentina
mauriciominutoespil@yahoo.com.ar

2 Colegio del Salvador, Buenos Aires, Argentina
3 GCABA, Buenos Aires, Argentina

Abstract. We propose a particularly suitable family of description log-
ics for ontology definition, STOC-DL-Lite, which results a variant to
the well-known DL-Lite family. Our logics: a- augment DL-Lite logics
with ontological commitments, sentences that assert that there is an a-
priori agreement that certain concepts may exist as universal entities,
and b- modify the usual Tarskian notion of satisfiability, enforcing any
individual in the domain of a model to conform at least one licit type,
i.e. a set of concepts literals that characterizes an universal entity. We
show that, regarding time complexity, the satisfiability problem for the
boolean fragment of the presented family is tractable, in marked contrast
to DL-LiteN

bool, and its NP-complete satisfiability problem.

1 Introduction

Bringing entities an accurate description is essential for ontology building, par-
ticularly when providing semantics for managing Web data [8], or when designing
a Semantic Web application [13], or a data warehouse [12]. The publishing of
ontologies through conceptual theories in the Web shows a continuous devel-
opment, with special languages like OWL-DL being conceived for this purpose.
Nonetheless, a description language should be able to distinguish universal enti-
ties from mere concepts or attributes, in order to result appropriate in describing
real domains. Unfortunately, description logic languages with fixed Tarskian-like
semantics interpret universal variables (concepts or unary predicates) as subsets
of a non-specific set (the universe). As a consequence, domain specific univer-
sal entities are not recognized per se in the semantics of those languages. The
languages of description logics in the family of DL-Lite [2] do not escape the
problem: being pure logic languages, they are all entity-unaware. Let us present
some examples of the problem:

Example 1: Two philosophers P1 and P2 are reunited, discussing problems con-
cerning mutual interests. P1 asks P2 whether he agree on the existence of women
and fishes, to what P2 answers affirmatively. Next, P1 asks P2 whether he agree
that both women and fishes are animals, to what, again, P2 answers positively.
Finally, P1 poses P2 the following question:
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 230–244, 2015.
DOI: 10.1007/978-3-319-23135-8 16

Ontological Commitments, DL-Lite Logics and Reasoning Tractability 231

“According to what both of us agree, and supposing that you accept my saying
that there are a woman and a fish in the kitchen, what is the minimum number
of animals you consider are present in the kitchen?”

P2 answers that the minimum number is one, and justifies the answer trans-
lating the agreements into a set of DL-Lite axioms: woman � animal, fish �
animal, woman(x), fish(y), and applying DL-Lite semantics to solve the query.
For P2, since DL-Lite interpretations admits considering an individual o in the
domain as a member of both the interpretations of concepts woman and fish,
the legitimate answer in one. In opposition, P1 supports that two would be the
correct answer, because they never agreed on the possible existence of a woman
being also a fish, or a fish being also a woman, i.e. the possible existence of
mermaids. The position of P1 consists in considering concept woman � fish in
itself as referring to a distinct universal entity, and accepts the intersection of
the sets interpreting concepts woman and fish as the interpretation of concept
woman � fish (as DL-Lite semantics prescribe), only in the case that there is
an agreement in the discourse that an individual may conform woman � fish.
Since concept woman � fish does not occur by itself in any of the axioms, nor
the axioms woman � fish nor fish � woman were part of the agreement (thus
woman implying fish, or fish implying woman), the discourse does not entail
the possibility that woman � fish may refer to anything other than the empty
set. Hence, P1 considers that two is the legitimate answer.

Example 2: We can certainly assert that lions are vertebrate, and ants are
not. However, using the semantic notion of ordinary people, how can we handle
concept vertebrate and its negation applied to mountains? Clearly, it is not
the case that a mountain is a vertebrate, but, for ordinary people, invertebrate
(or not vertebrate) said of a mountain does not make any sense; vertebrate
and ¬ vertebrate are admissible when said of animals only, not of an individual
whatever in the universe. Now consider the following set of axioms: vertebrate �
animal; ¬ vertebrate � animal; mountain(Everest). Under DL-Lite semantics,
any model of the axioms would entail animal(Everest), since animal amounts
to the whole universe. Under the position of philosopher P1, however, concepts
animal � mountain and animal � ¬mountain are not mentioned in the axioms,
and thus are void of meaning, i.e. they refer to nothing. As a consequence,
animal(Everest) does not hold in any model of the axioms. Moreover, with
the same argument, P1 would consider mountain � vertebrate and mountain
� ¬ vertebrate both as referring to nothing, despite considering mountain as
containing the individual interpreting Everest.

Example 3: Suppose we have a database with the relation schema flight (airline,
origin, destination). It is also clear that a value must be present in columns
airline, origin and destination in every tuple of an instance of relation flight;
there are no flights with no airline, or no origin, or no destination in real life.
Moreover, although it is permissible that a null value occurs in a row as a column
value, its interpretation must refer to some value any, an existent, although
actually not known, value (as standards like SQL, for example, mandates). Now,

232 M.M. Espil et al.

suppose we have a domain consisting of individuals that include flights, and we
describe the schema of flights and its constraints through DL-Lite axioms as
follows:

flight
.= airline:any; flight

.= origin:any; flight
.= destination:any;1

airline:Aj � airline:any, for Aj an admissible airline;
origin:Oj � origin:any, for Oj an admissible origin;
destination:Dj � destination:any, for Dj an admissible destination;
airline:any � ¬ airline:Aj � ... (Aj an admissible airline) ... � ⊥;
origin:any � ¬ origin:Oj � ... (Oj an admissible origin) ... � ⊥;
destination:any � ¬ destination:Dj � ... (Dj an admissible destination) ... � ⊥;
origin:Oj � destination:Dj′ � ⊥, for Oj = Dj′ ;
Now, suppose we add the axiom airline:KLM(1502) asserting that there is a
flight 1502 in KLM. We would expect of flight 1502 having a concrete origin and a
concrete destination, according to the semantics of axioms. There is, however, no
restriction on a flight to have only one origin in the knowledge base. Nonetheless,
Philosopher P1 assumes the point, because there is no concept origin:O1 �
origin:O2, for O1 �= O2, in the knowledge base.

1.1 Contribution

In this paper, we present a family of description logics that semantically reflects
the position of philosopher P1, and we call this family of logics STOC-DL-Lite
(Strict Ontological-Committed DL-Lite). The family of logics we present enriches
DL-Lite logics, allowing the user to specify (explicitly or implicitly) ontological
commitments on concepts in a knowledge base K, heightening the status of each
concept receiving a commitment (which we call generically K-committed) up to
that of a universal entity: a distinct intension that characterizes a set of indi-
viduals in the described world. Semantically, the notion of entity in the logics is
strict: the described world is composed solely of individuals receiving an onto-
logical commitment in the knowledge base. Therefore, the semantics of any logic
in the family prescribes that every individual in the domain of an interpretation
must be a member of the interpretation of at least one K-committed concept,
which types the individual as entity. We present here the bool fragment with no
role hierarchies of the family (we use liberally the name STOC-DL-lite to design
this fragment), and provides the reader with its syntax and semantics. Finally,
we study the problem of deciding whether a STOC-DL-Lite knowledge base is
satisfiable. We exhibit a sound and complete decision procedure for satisfiability,
showing that, in terms of time complexity, the problem is tractable.

1.2 Related Work

The entailment of the existence of universal entities from the truth of statements
made during a discourse is a problem focus of ample and controversial debate

1 C
.
= D standing for C � D, D � C.

Ontological Commitments, DL-Lite Logics and Reasoning Tractability 233

in philosophy, epistemology, linguistics, and logic. Several positions have been
fixed in the past regarding the issue [17]. Particularly, a clear distinction has been
made among objects conforming a concept (or a mere idea), and objects charac-
terizing a universal entity: objects having a common identity with (potential or
real) distinct existence [16]. The use of description logics in modeling information
systems or in providing semantics to Web data is nowadays almost a standard
practice [15]. However, few logics clearly distinguish concepts from universal
entities in their semantics. The subject, although not explicitly introduced in
our terms, constitutes one goal of FCA (Formal Concept Analysis). There, ideal
concepts are named attributes while reserving the name concept to denote a
universal entity: an attribute or series of attributes with at least an individual
asserting its existence in an FCA-context [9]. An attempt has been made to
merge FCA-contexts with description logics [3]. The attempt falls short of goals,
however: since first order Tarskian semantics is preserved, hard reasoning prob-
lems result from it. Our approach, differently, abandons classic semantics, and
fully exploits the notion of implicational concept graph of FCA [19] as a mech-
anism for circumscribing precisely the set of universal entities that characterize
the individuals in the described world, with exclusive base on the information
provided in the knowledge base.

Our logic has a distinguished property: its satisfiability problem is tractable.
This property occurs as a consequence of the enforcement of a light form of
closeness in its semantics. Although partially non-monotonic w.r.t. reasoning,
the semantics of our logic does not introduce the notion of a closed-world w.r.t.
interpretation domains, as other approaches do [10,11]. Our logic closes the uni-
verse of possible combinations of concept literals to those explicitly combined in
the axioms of the knowledge base. It behaves like a content controlled form of
formula circumscription, different from other attempts to merge circumscription
with description logics [7,14]. It is similar in scope, although different in realiza-
tion, to the work in [4], where knowledge bases are translated into UML class
diagrams, and finite satisfiability is decided on acyclic structures only. The same
similarity in scope occurs with [18], where a syntax-driven tractable approximate
decision procedure for satisfiability is presented.

2 STOC-DL-Lite Logics

Syntactically, a knowledge base K in STOC-DL-Lite is made of a TBox, an
ABox, as any DL-Lite knowledge base [1], and a CBox, a set of global ontological
commitments. An ontological commitment is an expression ◦C, where C a well
formed concept s.t. ⊥ is not part of the composition of C. The occurrence of an
ontological commitment ◦C as a member of the CBox of K explicitly asserts that
C is a K-committed concept. Since K-commited concepts represent universal
entities, the CBox of a knowledge base K acts as the set of universal entities a
priori defined by K.

234 M.M. Espil et al.

2.1 STOC-DL-Lite Concepts and Axioms

TBoxes and ABoxes in STOC-DL-Lite are similar to those corresponding to
DL-Lite [1]. We have in STOC-DL-Lite a vocabulary composed by: a set NI of
individual names, a set NC of concept names, and a set NR of role names. Role
names give way to expressions of the form P and P− named generically roles,
for P a role name in NR, and R denotes the set of roles occurring in K. Roles
give way in turn to expressions of the form: ≥q R, R a role in R, q > 0 a natural
number, named generally number restrictions, and Rnr denotes the set of them
occuring in K. Concept names and roles give way finally to well-formed concepts,
and C denotes the set of them occurring in K. Concepts in C are classified as in
DL-Lite into:

– Global Concepts: Expressions of the form ⊥ or ¬⊥, their set denoted by Cglobal;
– Basic Concepts: Concept names A ∈ NC , or number restrictions ≥ q R in

Rnr, their set denoted by Cbase;
– Concept Literals: Expressions of the form A or ¬A, where A is a basic concept,

their set denoted by Clit;
– Complex Concepts: Expressions of the for A1 � ... � An, n > 1 a natural

number, where A1, ..., An are concept literals, s.t. no Aj , Ai, i�=j, involve the
same basic concept.

Analogously with DL-Lite, TBoxes in STOC-DL-Lite are formed upon inclu-
sion axioms of the form C � D, where C and D are concepts in C, C �= ⊥,
D �= ¬⊥, and ABoxes in are formed upon axioms of the form: A(a), where A
is a concept name, b is an individual name, or P (a,b), where P is a role name,
and a and b are individual names.

Notation: For simplicity, in what follows, for P a role name, expression R∼

stands for P− whenever R = P , or P whenever R = P−. In the case of concept
literals, expression ∼ l, l a concept literal, stands for concept ¬A whenever l =
A, and concept A whenever l = ¬A; expression l1 ‖ l2, which reads l1 clashes
with l2, holds whenever l1 = ∼ l2 and l1 and l2 involve the same concept name,
and whenever q′ ≤ q, and l1 = ≥q R and l2 = ¬≥q′ R, or vice versa.

We call any non-empty set of concept literals a (concept) type. In the case of
non-global concepts, expression �l ∈ L l, L �= ∅, denote concept literal A when-
ever L = {A}, and inductively (�l ∈ L\{A} l) � A whenever #L > 1 (#L the size
of set L) and A ∈ L. Since any non-global concept C ∈ C can be expressed as
�l∈L l, for some type L, concept C = �l∈L l will be represented in what follows
by type L, and we will say that C is a concept with type L, consequently calling
L the type for C. Let therefore L, L1 and L2 be concept types:

• we define B(L) = {B ∈ Cbase |B ∈ Lor ¬B ∈ L}, and
we say that L is clash-free if and only if:

there not exists l1 and l2 ∈ L s.t. l1 ‖ l2;

Ontological Commitments, DL-Lite Logics and Reasoning Tractability 235

• we say that:
− L1 �(K) L2 (L1 is included into L2 for K) if and only if:

axiom �l1 ∈ L1 l1 � �l2 ∈ L2 l2 is in K;
− L1 →(K) L2 (L1 implies L2 in K), if and only if:

L1 �(K) L2, or
for ≥q R, ≥q′ R ∈ Rnr: L1 = {≥q R} and L2 = {≥q′ R} and q′ < q, or
for ¬≥q R, ¬≥q′ R ∈ Rnr: L1 = {¬≥q R} and L2 = {¬≥q′ R} and q′ > q;

For � a binary relation on concept types that we call generically concept
implication and S = dom(�) ∪ ran(�), we define:

Definition 1. Implication Closure: Let L be a clash-free concept type. The clo-
sure L+

(�) of L w.r.t. concept implication � is the minimum set of concept
literals that includes L and satisfies the following rule:
− for any pair L1, L2 ∈ S s.t. L+

(�) ⊇ L1, if L1 � L2 holds, then each literal
l2 ∈ L2 is a member of L+

(�).

Definition 2. Consistency: Let L+
(�) be the closure of some clash-free type L

w.r.t. relation �, and Φ a set of types. We say that set Φ is compatible with type
L if and only if, for each L′ ∈ Φ, L′ �⊆ L+

(�). We say that a type L is consistent
w.r.t � and Φ, if and only if L+

(�) is clash-free and Φ is compatible with L.

Note that, even though a set of concept literals L was clash-free, L may be
inconsistent w.r.t � and Φ.

2.2 STOC-DL-Lite Semantics

In STOC-DL-Lite, universal entities are represented by K-committed concepts.
Not every commitment should be given explicitly through an axiom in the CBox,
however. Implicit commitments are also derived from the contents of the TBox
and the ABox of K. The set of all K-committed concepts yields what we call
the strict commitment context (SC-context, for short) for K, the set of types
for all the K-committed concepts. The members of the SC-context for K are
determined inductively through the application of a sound set of commitment
rules on the contents of the CBox, the TBox and the ABox, as follows:

Definition 3. Contexts: ξ(K), and ξ−(K), the positive and negative pre-contexts
for a knowledge baseK, are the minimum sets of concept literals w.r.t. set inclusion
satisfying the following:

1- if ◦ �l∈L l is a member of the CBox of K, then L is a member of ξ(K).
2- If l is a concept literal that occurs in K, then {l} and {∼ l} are members of

ξ(K).
3- if �l1∈L1 l1 � �l2∈L2 l2, #L1 > 0, #L2 > 0, occurs in the TBox of K, then

L1 and L2 are members of ξ(K).
4- if �l1∈L1 l1 � ⊥, #L1 > 0, occurs in the TBox of K, and there is no �l2∈L2 l2

� ⊥, L1 ⊃ L2, in the TBox of K, then L1 is a member of ξ−(K).

236 M.M. Espil et al.

5- if ≥q R occurs in ξ(K), then {≥1R} and {≥1R∼} are members of ξ(K).

Ξ−(K), the constraining context of knowledge base K is the maximal subset
of ξ−(K) s.t. each member of Ξ−(K) is clash-free, their members called (K-)
constraints. Ξ(K), the SC-context of knowledge base K is the maximal subset of
ξ(K) s.t. each member of Ξ(K) is consistent w.r.t. →(K) and Ξ−(K).

The rationale of the rules above is easy to grasp. Any consistent concept literal
occurring in K and any consistent concept explicitly mentioned in the knowledge
base as the whole left or right part of a full concept inclusion is considered K-
committed, and thus its type is considered a member of Ξ(K), the SC-context
for K. The type of the left right part of a concept inclusion with ⊥ as its right
part is considered a constraint, and is a member of set Ξ−(K) if it is minimal.

With the notion of SC-context in mind, we define the implication relation
→Ξ(K) among members of set Ξ(K), as the restriction of relation →(K) to
members of Ξ(K). We additionally define the reachability relation →+

Ξ(K) as
the transitive expansion of relation →Ξ(K), and thus we read that L2 ∈ Ξ(K) is
reachable from L1 ∈ Ξ(K) whenever we met L1 →+

Ξ(K) L2, and define �+
Ξ(K),

the autonomy relation as the transitive expansion of �(K), restricted to members
of Ξ(K). Context Ξ(K) and relation →Ξ(K) induce together a directed graph:

Definition 4. SC-Graph: The SC-graph for knowledge base K is a directed
graph GΞ(K) = (NΞ(K), AΞ(K)), where each member of Ξ(K) constitutes a node
of NΞ(K), and each pair L1, L2 of nodes in NΞ(K) s.t. L1 →Ξ(K) L2 holds con-
stitutes an arc (L1, L2) in AΞ(K).

We can divide, through the reachability relation →+
(K), the set of nodes N into

a set of classes of equivalence w.r.t. →+
(K), defining a class of equivalence of N

w.r.t. →+
(K) as a maximal size set of nodes in N s.t., for each pair n1 �= n2 ∈ N ,

n1 and n2 belongs to the same class if and only if both nodes are reachable from
each other, i.e. the pairs (n1, n2) and (n2, n1) are members of →+

(K). We consider
the classes of equivalence induced by graph G as the genuine representatives of
the committed concepts or “universal entities” in K. We thus define:

Definition 5. Characteristic Graph: The characteristic graph for SC-cont-ext
Ξ(K) is a directed graph G↔

Ξ(K) = (N ↔
Ξ(K),A↔

Ξ(K)), where N ↔
Ξ(K) is the set of

nodes nc =
⋃

L∈c L, for each class of equivalence c of N w.r.t. →+
(K), and A↔

Ξ(K)

is the set of pairs (nc1 , nc2), nc1 �= nc2 ∈ N ↔
Ξ(K), such that there is an arc (n1,

n2) ∈ AΞ(K) with n1 a member of class c1 and n2 a member of class c2. The
reader should note that graph G↔

Ξ(K) is acyclic.

The SC-graphs for the cases in Examples 1, 2 and 3, are exhibited in Figs. 1a,
b, and c, respectively. In Fig. 1d three classes of equivalence are depicted, their
inner arcs depicted by dashed lines.

In STOC-DL-Lite, a knowledge base K is satisfied in strictly committed
interpretations or SC-interpretations, for short. Differently from DL-Lite, an
SC-interpretation is not defined directly through an interpretation function that

Ontological Commitments, DL-Lite Logics and Reasoning Tractability 237

Fig. 1. Graphs for case examples

maps concepts to subsets of the interpretation domain; it is defined indirectly
through a set of licit types, which are minimal consistent types that result from
the closure of the nodes of the characteristic graph of K w.r.t. the concept impli-
cation induced by its arcs, and the application of the constraints in Ξ−(K).
Accordingly, we define:

Definition 6. Type Space: Let K be knowledge base, and let n be a member
of N ↔

Ξ(K). We call a type Ω = n+
A↔

Ξ(K)
a prototype for K if and only if Ω is

consistent w.r.t. A↔
Ξ(K) and Ξ−(K). We say that a constraint L ∈ Ξ−(K) is

applicable to a type L′ if and only if L ∩ L′ �= ∅, L \ L′ �= ∅, and B(L \ L′)
∩ B(L′) = ∅. We call a type Λ closed for K if and only if Λ is consistent w.r.t.
A↔

Ξ(K) and Ξ−(K), and Λ = W (k), where k is the superscript of the last element
of a sequence (W (i), Z(i)) s.t. W (1) = Ω, Ω a prototype for K, and Z(1) = ∅,
and (if it exists) W (i+1) = (W (i) ∪ {∼ l})+A↔

Ξ(K)
, l ∈ Υ \ W (i), for some Υ ∈

Ξ−(K) \ Z(i) applicable to W (i), and Z(i+1) = Z(i) ∪ {Υ}. For Λ a closed type
for K s.t. set Q = {¬≥q R ∈ Clit | ≥q R, ¬≥q R /∈ Λ} satisfies that Q+

A↔
Ξ(K)

⊆
Λ ∪ Q, we call type Θ = Λ ∪ Q an SC-type for K, and we call it licit if and
only if, additionally, there is no pair of SC-types Θ1 and Θ2 for K and basic
concept B ∈ Cbase s.t. B /∈ Θ, and Θ1 = Θ ∪ {B} and Θ2 = Θ ∪ {¬B}. We
call T (K), the set of all licit types for K, the (SC-)type space of K.

238 M.M. Espil et al.

An SC-interpretation is defined with base on the type space Kτ , as follows.

Definition 7. SC-Interpretation: An SC-interpretation J (K) for a knowledge
base K is a tuple (ΔJ (K), T (K), θT (K), . J (K)) where:

• ΔJ (K) is the domain of interpretation J (K);
• T (K) is the type space of K;
• θT (K), the typing function, is a mapping that assigns a licit type Θ in T (K)
to each individual o in the domain ΔJ (K);

• . J (K) is a mapping that assigns a subset of ΔJ (K) to each well-formed concept
in the vocabulary of K, in a manner that conditions in Table 1 are satisfied.

We say that a concept inclusion C � D holds in a SC-interpretation J (K),
formally, J (K) |=SC C � D, if and only if CJ (K) ⊆ DJ (K). If a concept inclusion
C � D holds in a SC-interpretation J (K), we say that J (K) is an SC-model
of C � D. We say that an assertion A(a) holds in a SC-interpretation J (K),
formally J (K) |=SC A(a) if and only if aJ (K) ∈ AJ (K). If an assertion A(a)
holds in an interpretation J (K), we say that J (K) is an SC-model of A(a).
A STOC-DL-Lite knowledge base K is said to be SC-satisfiable if and only if
there exists an SC-model J (K) of all axioms in the TBox and ABox of K. If
this is the case, we say that J (K) SC-satisfies K, formally, J (K) |=SC K, and
that J (K) is an SC-model of K.

Let us study the impact SC-interpretations have in the example cases:
In the case of Example 1, set Ξ(K) is made of concepts woman, fish, and

animal. The licit types are: {woman, animal}, {fish, animal}, and {animal}.
Notice that, in this case, woman � fish cannot have non-empty interpretations,
because there is no licit type Θ s.t. {woman, fish} ⊆ Θ. The same occurs with
{¬woman, fish}, and {woman, ¬ fish}. It is important to note that, if the
axiom ◦(woman � fish) had occurred in the CBox, concept woman � fish
would have been allowed to refer to a non-empty set, and at least one licit
type would have been included concepts woman and fish together among its
members.

In the case of Example 2, set Ξ(K) is made of {vertebrate}, {¬ vertebrate},
{animal} and {mountain}. The licit types are: {vertebrate, animal}, {¬ verte-
brate, animal}, and {mountain}. Notice that {animal} is a member of Ξ(K)
and therefore is a type, even though it cannot have proper autonomous indi-
viduals. It is not, however, a licit type, because {vertebrate, animal} and
{¬ vertebrate, animal} are types and the minimality restriction for licit types
does not hold. We highlight the fact, circling node animal with dashed lines in
the graph presented in Fig. 1b.

In the case of Example 3, an important thing to remark, and depicted in
Fig. 1c, is the presence of a “genuine” class of equivalence, a node that blend
together the nodes {flight}, {airline:any}, {origin:any}, and {destination:-
any} in the SC-graph, because of the double concept inclusions. Some of the
classes, as nodes of the characteristic graph, are depicted in Fig. 1d by a dashed
line surrounding the original nodes in the SC-graph. There is another impor-
tant issue to remark here: the derivation of licit types involving disjunctions

Ontological Commitments, DL-Lite Logics and Reasoning Tractability 239

through the “application” of constraints. Let us consider the derivation of one
licit type Θ originating in the class node for airline:KLM. Clearly the literals
in the “blending node” {flight, airline:any, origin:any, destination:any} are
members of Θ, because they must be members of the prototype ΩKLM generated
by airline:KLM (the “blending” node is reachable from airline:KLM). Because
of the occurrence of axiom origin:any � ¬ origin:Oj � ... � ⊥ in the knowledge
base, and the consequent occurrence of constraint {origin:any, ¬ origin:Oj , ...}
in Ξ−(K), and that the intersection of that constraint and set {airline:KLM,
flight, airline:any, origin:any, and destination:any} is set {origin:any}, one
literal origin:Oj , for some j, must be a member of Θ, because the constraint is
“applicable” to ΩKLM . The same argument follows for the constraint involving
destination:Dj′ , and one literal destination:Dj′ , for some j′, from the literals in
constraint {destination:any, ¬ destination:Dj′ , ... }, must occur in Θ. It is also
noticeable that Oj �= Dj′ must hold, because of the requisite that any SC-type
must be consistent w.r.t. set Ξ−(K). The occurrence of constraints {origin:Oj ,
destination:Dj′} in Ξ−(K), for Oj �= Dj′ , as a consequence of the occurrence of
axioms: origin:Oj � destination:Dj′ � ⊥, for Oj = Dj′ in the knowledge base,
prevent the simultaneous occurrence of literals origin:Oj and destination:D′

j ,
with Oj = Dj′ , in a consistent type. The desired “completion” schema for the
example is thus fulfilled.

Table 1. STOC-DL-LiteN
bool Semantics

Expression Interpretation

1 P ∈ R | P ∈ NR P J (K) ⊆ ΔJ (K) × ΔJ (K)

2 P − ∈ R|P ∈ NR (P −)J (K) = {(y, x)| (x, y) ∈ P J (K)}
3 ⊥ ∈ Cglobal ⊥J (K) = ∅
4 ¬⊥ ∈ Cglobal ¬⊥J (K) = ΔJ (K)

5 a ∈ NI aJ (K) ∈ ΔJ (K)

6 A ∈ NC AJ (K) = {o ∈ ΔJ (K) | A ∈ θT (K)(o)}
7 ≥ nR ∈ Rnr (≥ nR)J (K) = {x ∈ ΔJ (K) |#{y|(x, y) ∈ RJ (K)} ≥ n}

= {o ∈ ΔJ (K) | ≥ nR ∈ θT (K)(o)}
8 ¬A | A ∈ NC (¬A)J (K) = {o ∈ ΔJ (K) | ¬ A ∈ θT (K)(o)}
9 ¬ ≥ nR ∈ Clit (¬ ≥ nR)J (K) = ΔJ (K) \ (≥ nR)J (K)

10 �l∈Ll | l ∈ Clit, #L > 1 (�l∈Ll)J (K) = {o ∈ ΔJ (K) | L ⊆ θT (K)(o)}

3 Reasoning on STOC-DL-Lite Knowledge Bases

We have defined an SC-interpretation on grounds of type space T (K), the set
of all licit types of the given knowledge base K. The computation of set T (K)

240 M.M. Espil et al.

is therefore a prerequisite for performing any reasoning task on the contents of
K. We have thus devised a set of algorithms pursuing that goal:

a1: an algorithm that computes the contexts for K;
a2: an algorithm that computes GΞ(K), the SC-graph for K;
a3: an algorithm that computes G↔

Ξ(K), the characteristic graph for K;
a4: an algorithm that computes T (K), the set of all licit types for K;

A crucial point for each of those algorithms in order to show good perfor-
mance is the production of an efficient subroutine for computing closures of
sets of attributes w.r.t. a set of implications. This is not a difficult point: it is
well known that a linear time algorithm exists for the problem [6]. Since this
algorithm does not always produce the best performance on real cases, we have
adapted for the case the quadratic time algorithm CLOSURE from [5] instead,
because it shows better time response in general over the one presented in [6]. In
our case, we have parameterized CLOSURE with the implication relation given
as a parameter. For creating sets Ξ(K) and Ξ−(K), algorithm a1 performs a
single pass on the axioms of K, building sets ξ(K) and ξ−(K) and relations �(K)

and →(K). Set Ξ−(K) is built immediately; then, for each candidate concept C
with type L, performs a computation of the closure of L in order to decide con-
sistency. Algorithm a2 for creating graph GΞ(K) is straightforward, since the set
of nodes is set Ξ(K), and it is already computed. The set of arcs AΞ(K) is com-
puted, reducing the relation →(K) formed in algorithm a1 to include only pairs
n1, n2 ∈ Ξ(K). The building of the characteristic graph in algorithm a3 is more
involved: it requires the identification of the classes of equivalence induced by the
arcs in the SC-graph. Algorithm a3 invokes a procedure SAME CLASS that, for
a node n and a set of nodes N not including n, returns a node n′ ∈ N s.t. n′ is in
the same class of n, if such a node n′ exists. SAME CLASS simply search for an
n′ that is reachable from n s.t. n is reachable form n′. SAME CLASS compute
closures from n and each n′ ∈ N , until n′ fulfills that n′ belongs to the closure
of n and n belongs to the closure of n′. N is initiated with the nodes in NΞ(K),
and is reduced with each n′ found. A failure of procedure SAME CLASS closes a
class. Since the intersection of sets of equivalent nodes is empty, the process can
be repeated until there are no remaining nodes in N . It is easy to see, therefore,
that determining the classes of equivalence of the SC-graph lies in Ptime. Then,
with the set of nodes computed, a single pass on the set of arcs of the SC-graph
suffices for determining the set of arcs of the characteristic graph.

Finally, algorithm a4 computes set T (K) from graph G↔
Ξ(K). For determining

the set of prototypes, a4 computes the closure of each node in N ↔
Ξ(K) w.r.t. the

set of arcs N ↔
Ξ(K) (regarded as a relation), and checks for consistency. For deriv-

ing the SC-types, each prototype Θ is augmented in a cycle with one literal of
each type Θ \ L, L in Ξ−(K), and the resulting type check for consistency, until
there is no applicable constraints left unregarded. Finally, a pruning step is per-
formed, with base on the basic concepts that occur in Ξ(K), for the restriction
of minimality. It is not difficult to see that all the algorithms have a polynomial
time asymptotic behavior. We thus have the following:

Ontological Commitments, DL-Lite Logics and Reasoning Tractability 241

Theorem 1. The computation of the set of all licit types for a STOC-DL-Lite
knowledge base lies in Ptime.

3.1 Deciding Satisfiability in STOC-DL-Lite

A procedure for deciding the satisfiability of a DL-LiteN
bool knowledge base K is

well known [1]. The method consists in translating the contents of knowledge
base K into a first order sentence Kτ with at most one variable, and deciding
whether the sentence has a Herbrand model. Assuming that Σ and A are respec-
tively the TBox and ABox of K, .τ , the function that translates K, is defined
as follows:

Kτ = (
∧

s∈Σ sτ) ∧ (
∧

R∈R ε(R) ∧ δτ (R)) ∧ Aτ , where

– for A ∈ NC , B ∈ Cbase, and R ∈ R, the following terms are translated as:
(⊥)τ = ⊥, Aτ = A(x), (≥q R)τ = R≥q(x), (¬B)τ = ¬ (Bτ),

– for L ∈ 2 Clit , #L > 1, a complex concept is translated as:
(�l∈L l)τ =

∧
l∈L lτ ;

– an axiom s ∈ Σ of the form �l∈L l � �l′∈L′ l′, #L, #L′ > 0, is translated as:
sτ = ∀x :(�l∈L lj)τ ⇒ (�l′∈L′ l′)τ ;

– an axiom s ∈ Σ of the form �l∈L l � ⊥, #L > 0, is translated as:
sτ = ∀x :(�l∈L l)τ ⇒ ⊥;

– ε(R) is the sentence: ∀x : R≥1(x) ⇒ R∼
≥ 1(skR);

– δτ (R) is the sentence: ∀x : R≥q′(x) ⇒ R≥q(x),
= for each pair of naturals q and q′ s.t. q = 1 or ≥q R occurs in K,
and ≥q′ R occurs in K, and q < q′,
and there is no q′′ s.t. ≥q′′ R occurs in K and q < q′′ < q′;

– Aτ is the sentence: Aτ =
∧

A(b)∈A A(b) ∧
∧

R∈R,a∈ob(A) ≥qmax
(R,a) R(a),

where = ob(A) are all a ∈ NI that occur in A, and
qmax
(R,a) = > 0, and qmax

(R,a) is the maximum number from a set QR containing
number 1 and all q for which a concept ≥q R occurs in K, and
there are qmax

(R,a) many distict b with P (a,b) ∈ A, for R = P , and
there are qmax

(R,a) many distict b with P (b,a) ∈ A, for R = P−.

Since sentence Kτ does not have any existentially quantified variable nor
any function symbol, the Herbrand base HB(Kτ) for Kτ is made exclusively of
the constants occurring in Kτ . Since we are searching for a Herbrand model, we
must to search for a truth value assigment that turns t the conjunction of the
propositional formulas Kτ

x	→c resulting from substituting variable x with each
constant c in HB(Kτ). This is a hard problem in general. Nonetheless, we are
looking for SC-models instead of FO-models. Since each constant c is interpreted
by a member o of the domain, and, according to the semantics of our logic, o has
an associated licit type θT (K)(o), we can systematically test the implication of
sentence Kτ from each type in the type space T (K), and thus considering only
the cases where value t is a concrete possibility. The decision procedure follows:

242 M.M. Espil et al.

PROCEDURE SC-SAT(Kτ , T (K)):
Determine the Herbrand base HB(K) of Kτ, and sets Ob(A) and R from Kτ;
for each a in HB(Kτ):

for each Θ in T (K):
if for each sub-sentence sτ =

∧
l1∈L1

l1(x) ⇒
∧

l2∈L2
l2(x):

L1 ⊆ Θ and L2 ⊆ Θ hold, or L1 �⊆ Θ holds, and
for each sub-sentence sτ =

∧
l∈L l(x) ⇒ ⊥:

L �⊆ Θ holds, and
(there is no sub-sentence B(a) ∈ Aτ or
for each sub-sentence B(a) ∈ Aτ: B ∈ Θ holds);

then Type(a,Θ).value = t, else Type(a,Θ).value = f;
for each role R ∈ R,

if ≥q R ∈ Θ holds, for some q > 0,
then Type(a,Θ).rangeR �=∅ = t, else Type(a,Θ).rangeR �=∅ = f;
if a = skR and ≥q R ∈ Θ holds, for some q > 0,
then Type(a,Θ).domR �=∅ = t, else Type(a,Θ).domR �=∅ = f;

return
∧

a∈HB(Kτ) (
∨

Θ∈T (K) (Type(a,Θ).value ∧∧
R∈R (Type(a,Θ).rangeR �=∅ ⇒

∨
Θ′∈T (K) Type(skR∼ ,Θ′).value

∧ Type(skR∼ ,Θ′).domR∼ �=∅)));

We have the following:

Theorem 2. A STOC-DL-Lite knowledge base K has an SC-model if and only
if procedure SC-SAT on sentence Kτ and set T (K), the set of all licit types for
K returns t.

From the analysis of procedure SC-SAT we can distinguish two steps. In the
first step, it cycles on the constants in the Herbrand base of sentence Kτ and
on the types in T (K), filling with boolean values the component value and,
for each role R, the components rangeR �=∅ and domR �=∅, of the two-dimensional
array Type. The final step decides the satisfiability, evaluating a boolean formula
on the boolean contents of array Type, which involves a cycle on the constants in
HB(Kτ) with a double inner cycle on the licit types in T (K) and roles in R. It is
easy to see that procedure SC-SAT computes its value in a time proportional to
#Kτ × #lit T (K), #lit designing in this case the number of (possibly repeated)
literals occurring in the licit types. The size of sentence Kτ is linear in the size
of knowledge base K. The size #litT (K) is proportional to #Ξ(K) × #Ξ−(K),
therefore is polynomial in the size of knowledge base K. Since the computation
of set T (K) is polynomial in the size of knowledge base K, we have the following:

Theorem 3. Deciding if a given STOC-DL-Lite knowledge base K has an SC-
model lies in Ptime.

4 Conclusion

We have presented STOC-DL-Lite, an entity-oriented variant to logic DL-LiteN
bool,

which allows the user to describe universal entities through ontological committed

Ontological Commitments, DL-Lite Logics and Reasoning Tractability 243

concepts given explicitly though a CBox, or derived from the contents of the TBox
and ABox of a knowledge base. The semantics of the presented logic imposes a
form of closeness to interpretations, ensuring that any individual in the domain
of a model belongs to the interpretation of at least one committed concept.
The restriction reduces the search space for models dramatically, thus turning
the problem of satisfiability, which is NP-complete for the case of DL-LiteN

bool,
tractable in the case of our variant.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-lite in the light
of first-order logic. In: 22nd AAAI Conference on Artificial Intelligence, pp. 361–
366. AAAI Press (2007)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-lite family
and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)

3. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic
knowledge bases using formal concept analysis. In: Veloso, M.M. (ed.) 20th IJCAI
International Joint Conference on Artificial Intelligence, pp. 230–235 (2007)

4. Balaban, M., Maraee, A.: A UML-based method for deciding finite satisfiability
in description logics. In: Baader, F., Lutz, C., Motik, B. (eds.) DL 2008. CEUR
Workshop Proceedings, vol. 353. CEUR-WS.org (2008)

5. Bazhanov, K., Obiedkov, S.A.: Optimizations in computing the duquenne-guigues
basis of implications. Ann. Math. Artif. Intell. 70(1–2), 5–24 (2014)

6. Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal
form relational schemas. ACM Trans. Database Syst. 4(1), 30–59 (1979)

7. Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in DLs. J.
Artif. Intell. Res. (JAIR) 35, 717–773 (2009)

8. Civili, C., Console, M., De Giacomo, G., Lembo, D., Lenzerini, M., Lepore, L.,
Mancini, R., Poggi, A., Rosati, R., Ruzzi, M., Santarelli, V., Savo, D.F.: MASTRO
STUDIO: managing ontology-based data access applications. PVLDB 6(12), 1314–
1317 (2013)

9. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI),
vol. 3626. Springer, Heidelberg (2005)

10. Gries, O.: Generalized closed world reasoning in description logics with extended
domain closure. In: Cuenca Grau, B., Horrocks, I., Motik, B., Sattler, U. (eds.) DL
2009. CEUR Workshop Proceedings, vol. 477. CEUR-WS.org (2009)

11. Grimm, S., Motik, B.: Closed world reasoning in the semantic web through epis-
temic operators. In: Cuenca Grau, B., Horrocks, I., Parsia, B., Patel-Schneider,
P.F. (eds.) OWLED 2005. CEUR Workshop Proceedings, vol. 188. CEUR-WS.org
(2005)

12. Khouri, S., Bellatreche, L.: DWOBS: data warehouse design from ontology-based
sources. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS,
vol. 6588, pp. 438–441. Springer, Heidelberg (2011)

13. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The protégé OWL plu-
gin: an open development environment for semantic web applications. In: McIlraith,
S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp.
229–243. Springer, Heidelberg (2004)

244 M.M. Espil et al.

14. Krisnadhi, A.A., Sengupta, K., Hitzler, P.: Local closed world semantics: grounded
circumscription for description logics. In: Rudolph, S., Gutierrez, C. (eds.) RR
2011. LNCS, vol. 6902, pp. 263–268. Springer, Heidelberg (2011)

15. Obrst, L., Grüninger, M., Baclawski, K., Bennett, M., Brickley, D., Berg-Cross, G.,
Hitzler, P., Janowicz, K., Kapp, C., Kutz, O., Lange, C., Levenchuk, A., Quattri,
F., Rector, A., Schneider, T., Spero, S., Thessen, A., Vegetti, M., Vizedom, A.,
Westerinen, A., West, M., Yim, P.: Semantic web and big data meets applied
ontology - the ontology summit 2014. Appl. Ontology 9(2), 155–170 (2014)

16. Quine, W.V.: Ontology and ideology. Philos. Stud. 2, 11–15 (1951)
17. Rayo, A.: Ontological commitment. Philos. Compass 2(3), 428–444 (2007)
18. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness preserving approximation for TBox reason-

ing. In: Fox, M., Poole, D. (eds.) 24th AAAI Conference on Artificial Intelligence.
AAAI Press (2010)

19. Wille, R.: Implicational concept graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach,
H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 52–61. Springer, Heidelberg
(2004)

SeeCOnt: A New Seeding-Based Clustering
Approach for Ontology Matching

Alsayed Algergawy1,2(B), Samira Babalou3,
Mohammad J. Kargar3, and S. Hashem Davarpanah3

1 Institute of Computer Science, Friedrich Schiller University of Jena, Jena, Germany
alsayed.algergawy@uni-jena.de

2 Department of Computer Engineering, Tanta University, Tanta, Egypt
3 Department of Computer Engineering,

University of Science and Culture, Tehran, Iran

Abstract. Ontology matching plays a crucial role to resolve seman-
tic heterogeneities within knowledge-based systems. However, ontologies
contain a massive number of concepts, resulting in performance impedi-
ments during the ontology matching process. With the increasing number
of ontology concepts, there is a growing need to focus more on large-
scale matching problems. To this end, in this paper, we come up with
a new partitioning-based matching approach, where a new clustering
method for partitioning concepts of ontologies is introduced. The pro-
posed method, called SeeCOnt, is a seeding-based clustering technique
aiming to reduce the complexity of comparison by only using clusters’
seed. In particular, SeeCOnt first identifies and determines the seeds of
clusters based on the highest ranked concepts using a distribution con-
dition, then the remaining concepts are placed into the proper cluster
by defining and utilizing a membership function. The SeeCOnt method
can improve the memory consuming problem in the large-scale matching
problem, as well as it increases the matching quality. The experimental
evaluation shows that SeeCOnt, compared with the top ten participant
systems in OAEI, demonstrates acceptable results.

Keywords: Ontology matching · Clustering techniques · Large-scale
matching

1 Introduction

Ontology is the main backbone of the Semantic Web, which provides facilities for
integration, searching, and sharing of information on the web through making
those information understandable for machines [14]. Despite this crucial role and
due to the engineering of ontologies by different people or methods even if they
are created for the same domain, there exist different sorts of heterogeneities.
Semantic heterogeneity is a common and key problem in different knowledge-
based systems [5,6]. To obtain meaningful interoperation, one needs a semantic
mapping among ontologies. To cope with the semantic heterogeneity problem, a
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 245–258, 2015.
DOI: 10.1007/978-3-319-23135-8 17

246 A. Algergawy et al.

set of correspondences that identify similar concepts across different ontologies
have to be achieved through ontology matching. The construction of manual
match is an error-prone and labor intensive task that requires complete knowl-
edge of the semantics of the data in ontologies being matched. Solutions that try
to provide some automatic support for ontology matching have received steady
attention over the years [3,8,19,21].

Nowadays, there is a natural evolution of data, and consequently, there exist
many complex and large-scale ontologies in the real domains. For example, the
Foundational Model of Anatomy (FMA), SNOMED CT, and the National Can-
cer Institute Thesaurus (NCI) ontologies are semantically rich and contain tens
of thousands of concepts1. However, to process these large-scale ontologies, the
existing ontology matching tools have some problems, such as shortage of con-
sumed memory and/or long time consumption [21]. For example, the OAEI
campaign started in 2006 including the anatomy matching task as an evalua-
tion criterion for large-scale matching. The anatomy matching task is to match
the Adult Mouse Anatomy (2744 concepts) and the NCI Thesaurus (3304 con-
cepts). However, in 2011, only 6 of 16 systems could process those ontologies.
With the increasing number of concepts typical ontologies have, the OAEI cam-
paign included a new match track, called Large Biomedical Ontologies. In 2014,
only three matching systems could complete the total matching tasks in this
track [22].

In order to enable matching of large-scale ontologies, dividing the ontologies
into a set of partitions is a way which has been proposed so far via the methods
such as divide and conquer [15], clustering [1], and modularization [23]. We
argue that partitioning input ontologies plays a central role towards building an
effective and efficient matching system. To this end, in this paper, we introduce a
seeding-based clustering approach for partitioning ontologies, called SeeCOnt. In
particular, input ontologies are parsed and represented as concept graphs. We
then develop a Ranker function to rank ontology concepts exploiting concept
graph features. The highest ranked concepts are then selected to constitute the
cluster seeds. To assign remaining concepts to their proper clusters, we introduce
a membership function. We demonstrate that SeeCOnt reduces the complexity
of the comparisons by comparing concepts with only seeds instead of all the other
concepts. Finally, we adapt the Falcon-AO matching system to apply our new
approach. To validate the proposed approach, we conducted a set of experiments
utilizing different data sets from OAEI. The experimental results display that
SeeCOnt achieved acceptable performance compared with the top-ten matching
systems participating recently in OAEI.

The rest of the paper is structured as follows. Related work is presented
in Sect. 2. We describe the proposed approach Sect. 3. We report experiments
conducted and analysis results in Sect. 4. Section 5 concludes the paper.
1 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2014/.

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2014/

SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching 247

2 Related Work

Because its importance, several approaches have been proposed to deal with
the problem of matching two large ontologies [1,4,13,15,18,20,23]. Promising
areas for large-scale matching lie in four main directions: reduction of search
space for matching, parallel matching, self-tuning match workflows and reuse of
previous match results [18]. In this section, we pay attention to the approaches
that perform reduction of the search space. The standard approach of cross join
evaluation for ontology matching reduces the matching quality and matching
efficiency. In order to reduce the search space for matching, two methods can be
used; early pruning of dissimilar element pairs and partition-based matching.

In general, partitioning-based matching has three main stages: (i) partition-
ing each input ontology into a set of sub-ontologies and determining similar
partitions between two sets to form a matching task, (ii) applying a matching
method to each matching task to produce a set of partial match results, and
(iii) combining partial results to get the final match result. In the following we
present a set of matching systems that follow this architecture.

Quick ontology matching (QOM) was one of the first approaches to imple-
ment the idea of early pruning of dissimilar element pairs [7]. It iteratively applies
a sequence of matchers and can restrict the search space for every matcher.
COMA++ was one of the first systems to support partition-based schema match-
ing [4]. It depends on fragment matching which determines fragments of the two
schemas and identifies the most similar ones.

Another matching system that supports partition-based matching is Falcon-
AO [15]. It initially partitions the ontologies into relatively small disjoint blocks
by using structural clustering. Then, matching is applied to the most similar
blocks from the two ontologies. Dynamic partition-based matching is supported
by AnchorFlood [20]. It avoids the a-priori partitioning of the ontologies by
utilizing anchors (similar concept pairs). It takes them as a starting point to
incrementally match elements in their structural neighborhood until no further
matches are found or all elements are processed. Thus the partitions (segments)
are located around the anchors.

Zhong et al. propose an unbalanced ontology matching approach, which con-
cerns with matching a lightweight ontology with a more heavyweight one [25].
Algergawy et al. uses a clustering-based matching approach that is based on
an agglomerative bottom-up hierarchical fashion [1]. The clustering scheme is
performed based on the context-based structural node similarities. Then, a light
weight linguistic technique is used to find similar partitions to match.

3 SeeCOnt

To cope with matching large ontologies, we present a new seed-based cluster-
ing approach, called SeeCOnt. As shown in Fig. 1, SeeCOnt consists of three
components: preprocessing, ranking, and clustering. First, input ontologies are
parsed and represented internally as labelled directed graphs, called concept

248 A. Algergawy et al.

graphs. During the preprocessing step, the number of cluster heads (CH) is to be
determined. To quantify the importance of a concept in the concept graph, we
introduce a new function called Ranker exploiting the concept graph features.
Finally, remaining concepts are placed into their corresponding clusters accord-
ing to a proposed membership function. The outline of the SeeCOnt approach
is shown in Algorithm 1. In the following sections, we portray the description of
each phase of the algorithm.

Fig. 1. Architecture of the SeeCOnt method.

3.1 Preprocessing

First input ontologies are parsed and inferred by Apache Jena2 and then the
concept graph is drawn by mapping the inferred result. We define concept graph
G = (C,R,L) as a labeled directed graph. C = {c1, c2, ..., cn} is a finite set of
nodes presenting the concepts of the ontology. R = {r1, r2, ..., rm} stands for
a finite set of directed edges showing various relationships between concepts in
an ontology O, such that rk ∈ R represents a directed relation between two
adjacent concepts ci, cj ∈ C. L is a finite set of labels of graph nodes defining
the properties of each concept, such as the names of concepts. n(= |C|) and m
are the number of nodes (concept) and edges (relationship) in G, respectively.
Given the number of concepts in an ontology, the number of cluster heads (i.e.
K) can be computed according to the following equation.

K =
|C|
ε

(1)

where ε is the maximum size of each cluster (ε < |C|) and should be set by an
expert depending on the number of concepts.

Once each ontology is represented as a concept graph, the next step is to
partition concepts, C, of each graph into a set of separate (disjoint) clusters
T1, T2, ..., Tk such that the cohesion of nodes in one cluster should be high, while
the coupling of two clusters is low.
2 https://jena.apache.org/.

https://jena.apache.org/

SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching 249

Algorithm 1. Seeding-based clustering algorithm
Require: An ontology O, a parameter ε limiting the maximum number of concepts

in a cluster
Ensure: A set of clusters, T = {T1, T2, ..., Tk}

{// Phase 1: Preprocessing}
1: T ⇐ ∅;
2: CG ⇐ parse(O);

3: K ⇐ |CG|
ε

;
{// Phase 2: Concept Ranking}

4: for ci ∈ C do
5: scoreci ⇐ compute Ranker score(ci);
6: end for
7: CH ⇐ select top rank(C);

{//Phase 3: Clustering}
8: initialize each cluster with each CH node;
9: add each direct concept of CH to each cluster;

10: for non − clustered ci ∈ C do
11: max sim ⇐ 0;
12: for cj ∈ CHk do
13: simij ⇐ MemFun(ci, cj);
14: if simij ≥ max sim then
15: max sim ⇐ simij ;
16: concept place ⇐ j;
17: end if
18: end for
19: Clust.put(Ci, CHj)
20: end for

3.2 Concepts Ranking

The seeding-based clustering algorithm starts by selecting a set of nodes distin-
guishing as important nodes. These nodes are then selected to be cluster heads,
CH. In order to identify a node as an important one, we should first quan-
tify its role in the concept graph. To this end, we introduce a new function,
called Ranker. This function should be as simple as possible but effective. I.e.
the Ranker function should not consume much time, however, correctly rank
concepts inside an ontology, given that we deal with the large-scale matching
problem.

Ranker Function. The importance of a node in a concept graph is understand-
able through the node itself and its surroundings [11]. This matter leads us to
use graph-theoretic measures based on graph connections in the Ranker func-
tion. In the following, we present two different implementation of the Ranker
function. The first is based on the centrality measure of a concept, while the
second depends on the context of the concept.

250 A. Algergawy et al.

First Rank Function. The definition of “centrality” measure of a concept in
a concept graph is derived from the social network analysis [9]. Each person is
given a score based on his or her position at the network showing the importance
of each individual. To consider the effect of the concept itself through its edges,
we use a set of centrality measures, as given below.

– Degree Centrality (C1): This measure is the simplest measure that calculates
the number of connections of a node. In a directed graph, there is an in-degree
and out-degree centrality that calculates the number of input and output
links, respectively. The relationships between nodes can be considered as a
power source during concept ranking; nodes with high degree of centrality are
certainly more prominent than the others, since they receive a great deal of
power [16].

– Closeness Centrality (C2): This measure shows the importance of the close
nodes to the others in the graph. In this measure, reaching cost of a node to
the others is measured [16].

– Betweenness Centrality (C3): This measure is considered the most relevant in
that context. It consists in computing on each node the fraction of shortest
paths that pass through it [10].

– EcCentrality (C4): This measure calculates the maximum distance between
pairs of nodes. The intuition is that one node is the central if no node is far
from it [12].

– Stress Centrality (C5): This measure calculates the absolute number of the
shortest paths through a node [17].

A summary of these centrality measures and their descriptions are shown in
Table 1.

Table 1. Different Centrality Measures.

No. Name Formula Description

1 Degree Centrality C1(ci) = degreeCentrality(ci) -

2 Closeness Centrality C2(ci) =
1∑

cj∈C distance(ci,cj)
distance (ci,cj) function is the

shortest path between i and
j nodes in the graph

3 Betweeness Centrality C3(ci) =
∑

s,t∈ci

σs,t(ci)

σs,t
σs,t(ci) is the number of

shortest paths from s to t
through ci, and σs,t is the
total number of shortest
paths from s to t

4 EcCentrality C4(ci) =
1

maxcj∈C distance(ci,cj)
-

5 Stress Centrality C5(ci) =
∑

s,t∈ci
σs,t(ci) σs,t(ci) represents the number

of the shortest paths from s
to t via ci

The arising question now is which centrality measure(s) should be used to
implement our Ranker function. During the selection process we need to optimize

SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching 251

between two criteria: an accurate and fast measure. To this end, and based on
our experimental results shown later, we select the combination of the Degree,
C1 and closeness, C2 centrality measures. As a result we can formulate the
score of the first Ranker function for a given concept, ci, as below:

Ranker score1(ci) = C1(ci) + C2(ci) (2)

Second Rank Function. During the employment of the first Ranker function,
we observed that it is an effective measure but it requires a lot of time to rank
concepts. This makes it unsuitable for matching large ontologies. Therefore, we
propose another rank function that should be more applicable to large-scale
matching. First, we introduce the definition of the concept connexion set, then
show how to use this set to determine the importance of the concept.

Definition 1. Given a concept graph G = (C,R,L), the connexion set of a
concept ci ∈ C is defined as: Ψ(ci, d) = {SubClass(ci, d) ∪ SuperClass(ci, d)}

where Ψ(ci, d) is a set in which all the concepts with d levels that effect on
ci node. SubClass(ci, d) is the children of ci with d hierarchical levels, and
SuperClass(ci, d) is the parents of ci with d hierarchical levels. It is evident that
the importance of a concept increases as it has a larger number of surroundings.
Based on this we propose the following score function that can be used to rank
concepts of an ontology.

Ranker score2(ci) = |Ψ(ci, d)| (3)

Determining Cluster Heads. Once computing the importance of concepts
of a concept graph, the next step is to select which concepts represent cluster
heads, CH. If simply the nodes with the highest score are selected as the cluster
heads, distribution would be disregarded. To avoid this problem, the distance
between two cluster heads is measured, and among the highest score nodes, those
with a minimum distance of d from each other are selected as the cluster heads.
For this purpose, we adopt the Connexion set with d levels defined before.

3.3 Finalizing Clustering

At first, the SeeCOnt algorithm creates one cluster for each cluster head. Then,
it places direct children in the corresponding cluster and finally, for remaining
nodes, a membership function is used to determine the cluster of each node. In
general, clustering is done through the following three steps:

– Seeding : Creating a cluster for each cluster head, Algorithm 1, line 8.
– Direct Spread : Assigning direct children of each cluster head to the corre-

sponding cluster, Algorithm 1, line 9.
– In-Direct Spread : Calling a membership function for the remaining nodes,
Algorithm 1, lines 10–18.

252 A. Algergawy et al.

The direct Spread step reduces the time complexity, since the number of compar-
isons will be reduced as well as applying the membership function for all nodes
is time consuming. While by placing the nodes via the call of the membership
function, the same results would still be achieved.

Membership Function. Once determining cluster heads, (CH), and assigning
direct children to their proper heads, the next step is to place remaining con-
cepts into their fitting cluster. To this end, we develop a membership function,
MemFun. First, each concept is associated with a flag, F , such that if the F of c
concept is false, it means c is not assigned to any cluster and thus, the member-
ship function is called for the concept c. In addition, the F flag can only have
one value, i.e. each node can be placed in only one cluster so that no overlap
is observed in clusters. The membership function determines that each concept
ci ∈ C should be placed in which Ti, i < K cluster. For this, the similarity of ci
with all CHi is calculated and then ci is placed in a cluster with the maximum
similarity value. Using the proposed membership function, each concept is com-
pared with Cluster Heads, instead of comparing with all concepts like whatever
was done in [1,15], which reduces the complexity of comparison.

In order to measure the membership of a concept to a cluster head, a lin-
ear weighted combination of the following structural and semantic similarity
measures is calculated as in the following equation:

MemFun(ci, CHk) = α × SNSim(ci, CHk)
+ (1 − α) × SemSim(ci, CHk) (4)

where α is constant between 0 and 1 to reflect the importance of each similarity
measure, ShareNeighbors(SNSim) and semantic similarity SemSim are two
similarity measures that quantify the structural properties of the concept ci,
respectively.

Shared Neighbors. This measure considers the number of shared neighbors
between ci and CHk. The shared neighbour measure plays an important role
in structural similarity, because similar concepts have similar neighbors [2,24].
The neighbors of a concept are the concept’s children, concept’s parents, con-
cept’s siblings and the concept itself. In our implementation, we determine the
neighbors of the concept ci and the neighbors of the cluster head CHk, then
determine how many concepts are common between these two sets.

SNSim(ci, CHk) =
|SNci ∩ SNCHk

|
|SNci ∪ SNCHk

| (5)

where SNci and SNCHk
are the neighbor sets of the concept ci and the cluster

head CHk, respectively.

Hierarchical Semantic Similarity. It is evident that a higher semantic simi-
larity implies a stronger semantic connection, so we first calculate the semantic

SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching 253

similarities between the concept ci and the cluster head CHk. The most classic
semantic similarity calculation is based on the concept hierarchy. The hierarchy
semantic similarity between ci and CHk can be defined as below:

SemSim(ci, CHk) =
2 × N3

N1 + N2 + 2 × N3
(6)

where N1 and N2 are the numbers of sub-concept relations from ci and , CHk

to their most specific common superconcept C, and N3 is the number of sub-
concept relations from C to the root of the concept hierarchy.

Matching. Once settling on the similar clusters of the two ontologies, the next
step is to fully match similar clusters to obtain the correspondences between
their elements. Each pair of the similar clusters represents an individual match
task that is independently solved. Match results of these individual tasks are
then combined in‘to a single mapping, which represents the final match result.
We adopt the Falcon matching system [15] to perform this task.

4 Experimental Evaluation

To develop SeeCOnt, the open source Falcon-AO system3 was used. It was imple-
mented in Java with Apache 2.0 license. Falcon-AO has some components includ-
ing PBM (Partition Block Match) [24]. PBM is used for large-scale ontology
matching which was replaced by the SeeCOnt. All the experiments were carried
out on Intel core i5 with 4 GB internal memory on Windows 7 with Java com-
piler 1.7. Ontologies were parsed using Jena Apache, and the mapping functions
were implemented by Alignment API4.

4.1 Data Set

We tested with two common data sets from the OAEI5: Conference and Anatomy.
The conference data set containing 16 ontologies is much used in ontology match-
ing evaluation. The Anatomy data set contains two ontologies of human and
mouse anatomy with 3306 and 2746 concepts, respectively.

4.2 Evaluation Criteria

In our implementation, we attempt to get answers to the following questions:

– Which centrality measure should be used to implement the first Ranker
function?

– Which ranker function should be used to implement the ranker component?
3 http://ws.nju.edu.cn/falcon-ao.
4 http://alignapi.gforge.inria.fr.
5 http://oaei.ontologymatching.org.

http://ws.nju.edu.cn/falcon-ao
http://alignapi.gforge.inria.fr
http://oaei.ontologymatching.org

254 A. Algergawy et al.

– What is the relative performance of the SeeCOnt approach w.r.t. recent
matching approaches?

In order to answer these questions, we carried out sets of experimental evalua-
tions. In the following, we report on the answers of these questions.

4.3 Experimental Results

Centrality Measure Evaluation. We conducted the first set of experiments
to decide which centrality measure(s) should be used to implement the first
Ranker function. To this end, we performed an evaluation using three different
ontologies: Linkling, MICRO, and cmt from the Conference dataset. In this set,
all 32 combinations of the five centrality measures were assessed. We asked a
number of experts to select the top ten important concepts while we did not
say anything about our criteria to them. Due to differences between important
concepts by experts, we selected the most common shared important concepts.
The results of 32 combinations of these criteria on Linkling ontology are shown
in Fig. 2, where each bar is dedicated to one combination of different criteria,
C1 refers to Degree Centrality, C2 is Clossness Centrality, C3 is Betweenness
Centrality, C4 is EcCentrality, and C5 is Stress Centrality. In each test we use
one combination of C1–C5 criteria and select top ten important concepts, we
also examine how many of these criteria are similar to expert judge. The test
examines which combination was more similar to the experts view. Based on our
criteria, different sets of combinations could achieve these criteria, such as the
combinations C1+C2, C1+C4, C1+C2+C5, C1+C2+C3+C4 are more similar
to whatever experts think. From these combinations, we selected C1+C2 because
it outperforms the other combinations.

Fig. 2. Accuracy of combining centrality measures on “Linkling” ontology.

Selection of Ranker Function. In the previous experiments, we observed
that the centrality measures effectively quantify the importance of ontology con-
cepts. However, they consume much time, which makes using them for large-
scale matching impractical. Therefore, we conducted another set of experiments

SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching 255

to recognize which ranker function is suitable to the large matching problem.
To this end, we compare the two ranker functions, implemented in Eqs. 2 and
3, respectively. We used the conference and anatomy ontologies for this test.
Results are reported in Table 2. The table shows that the second ranker function
outperforms the first one w.r.t. both matching quality and the time needed to
complete the ranking process. This can be explained as the second ranker func-
tion exploits the concept connections which mostly reflects the importance of
the concept without going into much details through computing the importance
score as in the first ranker function. Therefore, we settle on the selection of the
second ranker function to implement the ranker component.

Table 2. Comparing two ranker functions.

ontology First ranker Second ranker

matching quality conference 0.609 0.624

time (sec.) anatomy/mouse 269.6 0.302

anatomy/nci 355.8 0.57

SeeCOnt Quality. This set of experiments has been conducted to validate the
effectiveness and quality of the SeeCOnt approach. To this end, we use ontologies
from the Conference and Anatomy data sets comparing SeeCOnt with Falcon-
AO [15] and work done in [1]. Results are presented in Figs. 3 and 4. Figure 3
demonstrates that SeeCOnt produces higher precision, recall, and F-measure
than the original Falcon-AO system. It could improves the quality of matching on
the conference track by 7 % compared to the original Falcon system. However, as
shown in Fig. 4, even if the SeeCOnt approach produces lower precision than the
precision in both Algergawy’ approach [1] and the original Falcon approach [15],
however it achieves higher recall than the other two systems. This results in
the F-measure produced by SeeCOnt is higher than the Algergawy’ approach
by 11 % and Falcon-AO by 14 %. These results demonstrate that our proposed

Fig. 3. Results for conference track. Fig. 4. Results for anatomy track.

256 A. Algergawy et al.

seed-based clustering is capable of grouping similar concepts in one partition to
be fully matched with another partition containing also similar concepts.

Figures 5 and 6 compare SeeCOnt with the top-ten matching systems, par-
ticipating in OAEI competition held in 2011–2014, in the Conference test and
in the Anatomy test, respectively. For simplicity of the chart, only F-Measure
of each system is shown in Figs. 5 and 6. The horizontal axis shows the partic-
ipating systems and the vertical axis shows F-measure. We see that SeeCOnt
approach has comparable results with the others.

Fig. 5. Comparing SeeCOnt with top-ten systems Participating in OAEI Competitions
in 2011–2014 in the Conference Test.

Fig. 6. Comparing SeeCOnt with top-ten Systems Participating in OAEI Competitions
in 2011–2014 in the Anatomy Test.

5 Conclusions

In this paper, we introduced a new clustering approach, SeeCOnt, to be used
within the context of matching large ontologies. SeeCOnt partitions a large-
scale ontology to several disjoint sub-ontologies and the problem of large-scale

SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching 257

ontology matching is converted into a set of small ontology matching tasks.
Firstly, we represented input ontologies as concept graphs. We then introduced
two different Ranker functions that can be used to quantify the importance of a
concept in the graph. The highly important concepts are selected to be cluster
heads. We further developed a new membership function that assign remaining
concepts to their proper clusters. This membership function reduces the num-
ber of comparisons since it only compares each concepts to each cluster head.
To validate SeeCOnt, we conducted an intensive set of experiments using the
Conference and Anatomy data sets. We compared our proposed approach with
recent matching systems participating in OAEI. Experimental results show that
SeeCOnt presents acceptable performance. In the future, we plan to extend our
work by looking for new strategies that determine and identify similar clusters
and that match those similar partitions in parallel.

Acknowledgments. A. Algergawy’work is partly funded by DFG in the INFRA1
project of CRC AquaDiva.

References

1. Algergawy, A., Massmann, S., Rahm, E.: A clustering-based approach for large-
scale ontology matching. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011.
LNCS, vol. 6909, pp. 415–428. Springer, Heidelberg (2011)

2. Algergawy, A., Nayak, R., Saake, G.: Element similarity measures in XML schema
matching. Inf. Sci. 180(24), 4975–4998 (2010)

3. Bellahsene, Z., Bonifati, A., Rahm, E.: Schema Matching and Mapping. Springer,
Heidelberg (2011)

4. Do, H.H., Rahm, E.: Matching large schemas: approaches and evaluation. Inf. Syst.
32(6), 857–885 (2007)

5. Doan, A., Halevy, A.: Semantic integration research in the database community:
A brief survey. AAAI AI Mag. 25(1), 83–94 (2005)

6. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kauf-
mann, USA (2012)

7. Ehrig, M., Staab, S.: QOM – quick ontology mapping. In: McIlraith, S.A., Plex-
ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 683–697.
Springer, Heidelberg (2004)

8. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013)
9. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw.

1(3), 215–239 (1979)
10. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry

40(1), 35–41 (1997)
11. Graves, A., Adali, S., Hendler, J.: A method to rank nodes in an RDF graph. In:

7th International Semantic Web Conference (Posters and Demos) (2008)
12. Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17, 57–63

(1995)
13. Hamdi, F., Safar, B., Reynaud, C., Zargayouna, H.: Alignment-based partitioning

of large-scale ontologies. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H.
(eds.) Advances in Knowledge Discovery and Management. SCI, vol. 292, pp. 251–
269. Springer, Heidelberg (2010)

258 A. Algergawy et al.

14. Hendler, J.: Agents and the semantic web. IEEE Intell. Syst. J. 16, 30–37 (2001)
15. Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer app-

roach. DKE 67, 140–160 (2008)
16. Kermarrec, A.-M., Merrer, E.L., Sericola, B., Trdan, G.: Second order centrality:

Distributed assessment of nodes criticity in complex networks. Comput. Commun.
34, 619–628 (2011)

17. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlo-
towski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analy-
sis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005)

18. Rahm, E.: Towards large-scale schema and ontology matching. In: Bellahsene, Z.,
Bonifati, A., Rahm, E. (eds.) Data-Centric Systems and Applications, vol. 5258,
pp. 3–27. Springer, Heidelberg (2011)

19. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

20. Seddiquia, M.H., Aono, M.: An efficient and scalable algorithm for segmented
alignment of ontologies of arbitrary size. Web Semant. 7(4), 344–356 (2009)

21. Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

22. Shvaiko, P., Euzenat, J., Mao, M., Jimnez-Ruiz, E., Li, J., Ngonga, A.: editors. 9th
International Workshop on Ontology Matching collocated with the 13th Interna-
tional Semantic Web Conference (ISWC 2014) (2014)

23. Wang, Z., Wang, Y., Zhang, S.-S., Shen, G., Du, T.: Matching large scale ontology
effectively. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS,
vol. 4185, pp. 99–105. Springer, Heidelberg (2006)

24. Hu, W., Zhao, Y., Qu, Y.: Partition-based block matching of large class hierarchies.
In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185,
pp. 72–83. Springer, Heidelberg (2006)

25. Zhong, Q., Li, H., Li, J., Xie, G.T., Tang, J., Zhou, L., Pan, Y.: A Gauss func-
tion based approach for unbalanced ontology matching. In: the ACM SIGMOD
International Conference on Management of Data, (SIGMOD 2009), pp. 669–680
(2009)

Time Series Processing

ForCE: Is Estimation of Data Completeness
Through Time Series Forecasts Feasible?

Gregor Endler(B), Philipp Baumgärtel, Andreas M. Wahl, and Richard Lenz

Computer Science 6 (Data Management),
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

{gregor.endler,philipp.baumgaertel,andreas.wahl,richard.lenz}@fau.de
https://www6.cs.fau.de

Abstract. Measuring the completeness of a data population often re-
quires either expert knowledge or the presence of reference data. If neither
is available, measuring population completeness becomes nontrivial. We
present the ForCE approach (Forecasting for Completeness Estimation),
a method to estimate the completeness of timestamped data using time
series forecasting. We evaluate the method’s feasibility using a medical
domain real-world dataset, which we provide for download. The method
is compared to three baselines. ForCE manages to surpass all three.

Keywords: Data quality · Population completeness · Time series ·
Forecasting

1 Introduction

Data quality is an important concern in all application domains of databases
[9]. Quality of data is multidimensional: Many aspects are differentiated in the
literature [1,18–20]. One of these dimensions is population completeness [15,19],
which evaluates whether all entities of a population are represented within the
database under scrutiny.

Measuring it is often difficult [6,13]. In rare cases, it can be guaranteed
that every real-world entity has a related record within the database. If this is
the case, and with the additional precondition that the semantics of occurring
null-values [21] are known, population completeness can be measured by count-
ing null-values. As an example, consider a school’s information system: Manual
entry and verification ensure that every pupil has a corresponding tuple in the
database. The school year’s final grades however are not entered at first and their
column contains null-values. Before the end of the school year, these entries are
not incomplete, as the final grades do not yet exist. After the school year how-
ever, nulls indicate missing values. By counting these, the completeness of the
population of final grades can be measured.

The original version of this chapter was revised: The authors corrected errors in the
figures appearing in Sect. 3.2 and the Appendix and adjusted the text referring to the
figures. An erratum to this chapter can be found at DOI: 10.1007/978-3-319-23135-8 32

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 261–274, 2015.
DOI: 10.1007/978-3-319-23135-8 18

http://dx.doi.org/10.1007/978-3-319-23135-8_32

262 G. Endler et al.

By contrast, many application scenarios do not satisfy these preconditions,
meaning that the database cannot guarantee the existence of an entry for every
real-world object. For instance, if a medical practitioner does not document a
performed treatment, there may not be a corresponding tuple in the database.
Thus, the data population of treatment entries is incomplete, even without the
presence of null-values. In this case, strictly measuring completeness is only
possible using reference data (also called master data in the literature) or expert
knowledge about the number of real-world entities in question. In cases where
neither is available, completeness needs to be estimated instead of measured.
According to Dustdar et al., developing metrics for this is commonly regarded
as highly nontrivial [4].

1.1 Motivation

Incompleteness is a frequent problem in many different application scenarios.
Our work on population completeness is embedded in the project context of an
ERP system1 for German medical centers [5]. These centers are loose affiliations
of medical practitioners, usually each with their own data management system.
The center’s manager requires accurate data about the benefits2 the center’s
practitioners provide to their patients. This is because every practitioner oper-
ates on a budget mandated quarterly by the “Association of Statutory Health
Insurance Physicians” (ASHIP). Once the budget is exhausted, all benefits a
practitioner provides are remunerated only as a fraction of their actual value.
At the end of each quarter, every practitioner receives an ASHIP invoice. This
invoice contains a manually curated and completed record of all benefits over
the quarter. At this point however, all accounts in the center have already been
finalized. This means that financial controlling and steering, e.g. by transfer-
ring patients to doctors who have not yet exhausted their budget, is no longer
possible.

While the ASHIP invoices constitute reference data for the center, they
become available too late to detect problems with data completeness. Some of
these cases may be caught with relatively straightforward data quality rules [10].
In many cases however, a data quality monitoring system [8] needs to offer more
powerful mechanisms to estimate the completeness of data used for financial
controlling.

The practices, and therefore the data sources, usually are independent of each
other, and are not under the control of a central authority [7]. In many cases,
this means that the practitioners in the center are not willing to replace their
data management systems with a shared database. They may also be reluctant
to change their data entry habits. To nevertheless create an overview over the
data of the center, the practitioners’ heterogeneous data sources send a daily
summary of their data, which is integrated into a central database.

1 enterprise resource planning system.
2 A “benefit” is any creditable treatment, counseling, or similar action a practitioner
performs.

Estimation of Data Completeness Through Time Series Forecasts 263

There is no direct way of knowing whether a sent summary is complete – it
may even be empty on some days. This does not necessarily imply an impairment
of data completeness. Conversely, even if data is delivered, there may still be
missing records.

1.2 Related Work

While our project context and test bed is specific to the German health system,
many other applications also depend on complete information and suffer from
similar problems [9]. There are many existing approaches to measuring pop-
ulation completeness, though most do use reference data or related concepts.
Dugas et al. [3], for example, require that business processes define the neces-
sary amount of data. Dersch-Mills et al. [2] use expert knowledge to choose the
most likely complete population among several as the reference data for all other
populations.

Several other approaches (Fan and Geerts [9], Naumann et al. [14], and
Razniewski and Nutt [17], to name but a few) consider query completeness in
incomplete or partially incomplete databases. All these solutions require either
the presence of reference data or tables already annotated with information
about their completeness. These annotations can only originate outside of the
database according to Razniewski and Nutt [17]. In some cases, a closed world
can be assumed [14].

To our best knowledge however, there is no commonly applicable method to
measure completeness of data without using reference data, expert knowledge,
or equivalent concepts. According to Fan and Geerts, “(...) effective algorithms
and metrics are yet to be developed, to assess the completeness of information
in our database for answering queries” [9, p. 93].

1.3 Contribution

We suggest an approach to measuring population completeness applicable to
time-stamped data items. We maintain that time series modeling techniques can
be used to classify parts of a data population as “complete” or “incomplete”.
Both technical and semantic timestamps are allowed, and the frequency with
which data items are introduced to the population does not need to be constant.
Our contributions are as follows:

1. An approach to classify parts of a data population as “complete” or “incom-
plete” respective of the data items they should contain (see Sect. 2).

2. An anonymized real-world dataset containing both dirty and cleaned data
about a population of benefits data of 20 medical practitioners over the course
of three months (see Sect. 3).

3. An evaluation of the feasibility of our approach (see Sect. 3).

264 G. Endler et al.

1.4 Problem Description

As an example of our motivational use case, consider the data shown in Fig. 1. It
shows the benefits a practitioner documents over a course of four weeks3. Each
data point shows the change Δ of the population of this practitioner’s overall
benefits, i.e. the change of the number of entries in the practitioner’s database.
Looking at the data of the first three weeks, we make two assumptions:

1. There is a characteristic spike at the middle of each week.
2. Δ is around 0 over the weekends.

These assumptions form a rough description of the population’s volatility.
The volatility of a population denotes the behavior over time of the population’s
change Δ. It is noteworthy that volatility alone does not allow any statement
about the quality of data, but rather is a characteristic of real-world entities or
populations.

However, knowing the volatility of a population allows us to make statements
about its expected growth. For example, judging from the data we expect the
practitioner to do most of the work in the middle of the week. If there is a
deviation from this expectation, we consider this to imply impaired completeness,
e.g. on day 25: The “middle of the week spike” is missing. Instead, the same
number of benefits as the day before is observed. If the practitioner actually did
provide more benefits on day 25, then our data is incomplete.

Note that the data in this example has already been cleaned – there are a
lot more errors, i.e. instances of incomplete data, in the original version.

Fig. 1. Benefits per day of one practitioner

3 Snippet of cleaned real-world data from a medical center. To exemplify our propo-
sition, an artificial error has been introduced at data point 25.

Estimation of Data Completeness Through Time Series Forecasts 265

2 Method

We call our approach ForCE (Forecasting for Completeness Estimation), and in
the following we describe how it classifies population completeness.

2.1 The ForCE Approach

We assume the data in question to be in the form of a time series T with
schema T (Δ, point in time). The actual unit of measure of point in time is
not of consequence and may be of arbitrary granularity. Every change Δ of a
population is considered. The identifying attribute of T is point in time – a
specific population has only one Δ at a specific time.

We use statistical time series methods (see Sect. 3.2) to model the change
over time of the data population in question. As an estimate of the population’s
volatility, we fit a model to a training set composed of data from the time series
up to a certain point in time. We can then forecast expected values of the series
at future timestamps. If the observed values are different from the expected
values, a problem with data quality may exist.

The classification process is shown as pseudocode in Algorithm 1. A portion
of the dataset data is chosen as a training set, to which a time series model is

input : data (dataset to classify)
start size (starting size of training set)
full history (flag to use variable or fixed length training set)

output: predicted class
(completeness predictions for all entries in data starting from

start size+1)

for i = start size; i < length(data); i++ do

if full history then
training set = data[1:i]

else
training set = data[(1+i-start size):i]

end

fit = model(training set)

expected value = forecast(fit, horizon=1)

observed value = data[i+1]

if expected value <= observed value then
predicted class[i+1] = “complete”

else
predicted class[i+1] = “incomplete”

end

end

return predicted class

Algorithm 1: Classifying completeness with the ForCE approach

266 G. Endler et al.

fitted. According to the flag full history, the training set either encompasses all
values that have already been observed, or is limited to a window of fixed size
over the observed values. More on this in Sect. 3.2. The resulting model is then
used to forecast the expected value at a horizon of 1, i.e. one data point after the
training set’s end. If the expected value is smaller or equal to the actual value
of the dataset, data is deemed “complete” at this point, else “incomplete”. At
each new iteration, the training set is extended to include the observed value,
and the process is repeated until all data points in data have been assigned a
completeness class.

Note that this way, the training set never includes the data point currently
under scrutiny. Thus, the training and testing sets are disjoint, even though
at the last step the whole dataset (excluding the last point) has been used in
training the model.

2.2 Data Preprocessing

To be able to apply the approach to any timestamped data, the data first needs
to be transformed into a time series. As a straightforward example in case of
relational data with schema R(A,B, ..., timestamp), we build a time series by
aggregating as follows:

Time series T :=
SELECT COUNT(*) AS delta, bin(timestamp) AS point_in_time
FROM R
GROUP BY bin(timestamp)
ORDER BY bin(timestamp)

bin() is a function that transforms the timestamp according to the desired
frequency, for example by truncating hours, minutes and seconds in case the
timestamp is of type datetime and the desired frequency is “daily”. In case that
the resulting relation does not contain all possible values of bin(timestamp),
we fill the gaps by inserting the missing tuples (0 , < point in time >).

If there are several distinguishable populations within the same table that
need to be separated, identifying columns should be selected and grouped by
additionally.

3 Evaluation

We evaluate the ForCE approach on an aggregated dataset4 based on 58130
benefits provided at a medical center participating in our project. Its schema is

BenefitData(ObservedBenefits, ActualBenefits, PractitionerId,Date)

The dataset comprises 1820 tuples: For each of the 20 distinct medical practi-
tioners, ObservedBenefits shows the number of benefits they documented over
4 available for download at www6.cs.fau.de/files/completeness data.zip.

www6.cs.fau.de/files/completeness_data.zip

Estimation of Data Completeness Through Time Series Forecasts 267

the course of one quarter (91 days), and ActualBenefits shows the actual num-
ber of benefits for each day taken from the ASHIP invoices (see Sect. 1.1). All
values of PractitionerId are pseudonymized so they can be distinguished, but
not related to actual persons. The number of benefits is 0 if no benefits were
documented/invoiced that day.

As shown in Algorithm 1, we build a time series model over all values of T
up to a point n to model the volatility of the population change of BenefitData.
We then forecast Δ at time n + 1 and in turn use this forecast to classify the
completeness at n+1. The predicted classes are compared with the actual com-
pleteness of the data population at this point to obtain performance measures
for the classifier.

3.1 Classification of Completeness

The classifier was implemented in the R environment5 and makes use of the
forecast package [11], which provides several functions to model time series. R
has the advantage of offering all functions necessary for this feasibility study out
of the box.

Performance Measures. For each day in the data, we classified the complete-
ness of each practitioner’s data. To evaluate the performance of our classifier, we
calculate several common measures of classifier performance. We use the abbre-
viations tp = true positives, tn = true negatives, fp = false positives, fn =
false negatives; “true positive” in this context means correctly classified as com-
plete, “true negative” means correctly classified as incomplete. The measures are
defined as follows:

– acc: Accuracy
(overall percentage of correctly classified instances)

acc = tp+tn
tp+tn+fp+fn (1)

– mcc: Matthews Correlation Coefficient
(correlation between the actual completeness and the classifier’s predictions)

mcc = tp∗tn−fp∗fn√
(tp+fp)(tp+fn)(tn+fp)(tn+fn)

(2)

– ppv: Positive Predictive Value / Precision
(percentage of instances correctly classified as complete)

ppv = tp
tp+fp (3)

– npv: Negative Predictive Value
(percentage of instances correctly classified as incomplete)

npv = tn
tn+fn (4)

5 See r-project.org.

268 G. Endler et al.

– sens: Sensitivity / Recall
(percentage of actual complete instances classified as complete)

sens = tp
tp+fn (5)

– spec: Specificity
(percentage of actual incomplete instances classified as incomplete)

spec = tn
tn+fp (6)

The mcc falls within the interval [−1, 1], with -1 meaning “strongly negatively
correlated”, 0 meaning “no correlation”, and 1 meaning “strongly positively
correlated”. All other measures take values from [0, 1].

Baselines. To judge the feasibility of classifying completeness with our approach
in the real-world example, we compare our classifier to three baselines:

– guess p: only predict positives, i.e. always predict the data to be complete
– guess n: only predict negatives, i.e. always predict data to be incomplete
– guess r: predict the completeness randomly with p = 0.5 for each outcome

The approach guess p is actually the de facto standard in medical centers:
Since no reference data is available during a quarter, population completeness
often gets ignored until the arrival of the ASHIP invoices.

We calculate the performance measures for the baselines dependent on the
distribution of the classes. With x = percentage of positives, we get the following:

Table 1. Results of baselines

tp fp tn fn

guess p x 1− x 0 0

guess n 0 0 1− x x

guess r 0.5x 0.5(1− x) 0.5(1− x) 0.5x

Applying these values to the measure formulas, we get:

Table 2. Performance measures of baselines

acc mcc ppv npv sens spec

guess p x NaN x NaN 1 0

guess n 1− x NaN NaN 1− x 0 1

guess r 0.5 0
0.25(x−x2)

0.5 0.5 0.5 0.5

The NaN values are due to division by zero and denote that this measure is
not applicable to the respective classifier. This is intuitively correct, e.g. a clas-
sifier that only predicts positives does not have a negative predictive value. The

Estimation of Data Completeness Through Time Series Forecasts 269

mcc also becomes incalculable in this case. Sensitivity trivially is 1 for guess p6,
0 for guess n, and vice versa for specificity. For the random classifier guess r, all
performance measures except the mcc are 0.5. If there are only positives or only
negatives, the mcc is NaN for guess r, and zero in all other cases.

The mcc is the only one of the performance measures whose absolute value
has expressivity since it is not sensitive to the cardinality of the classes “com-
plete” respectively “incomplete” and does not lose expressivity if one class is
significantly larger than the other. All other measures can only be assessed rela-
tively to the cardinality of the classes. As an example, when all data is complete,
a classifier that guesses “complete” for every instance reaches a perfect accuracy
of 1. However, this classifier will be useless in situations where detection of neg-
atives is critical. For this reason, we include the two “blind” classifiers guess p
and guess n, as they depend directly on the number of positives and thus enable
interpretation of the measures. In the remainder of this section, we mainly rea-
son about accuracy and mcc, since together with the baselines they contain all
the information necessary to evaluate the classifier’s performance. For further
information on results for the other measures, please see Fig. 6 in the appendix.

3.2 Results

In the following, we describe the results of our experiments. We start out by
comparing the results of several forecasting methods, then move on to the effect
of a fixed or variable length training set. We show differences in classifier perfor-
mance between the 20 practitioners, and close with an overall summary of our
method’s performance compared to the three baselines. The results are visual-
ized in box plots, showing median, 25 % and 75 % quantiles, 1.5 * interquartile
range, and outliers. When discussing the results, we will use the term “box” to
denote box, whiskers, and outliers of a single plot.

For each practitioner and forecasting method, the tests were repeated with
training data of minimal size up to the maximum size the data could still accom-
modate, both with fixed and varying windows of training data. As an additional
setting, when an observation was zero, the forecast was set to zero as well. This
captures the assumption that critical failures leading to a total absence of data
can be detected beforehand, e.g. through failed ping attempts to a data source.

Comparison of Forecasting Methods. We ran tests with the forecasting
methods mentioned in the description of the forecast function [11, p. 27–29].
Figure 2 shows the mcc of the methods. Each box contains the results of all test
datasets, i.e. of each practitioner. The last box, labeled “all”, is a summary of
all results, obtained by union of the result multisets of all other methods.

There is some noticeable variation from method to method, e.g. some produce
more outliers than others (i.e. values that lie beyond 1.5 * interquartile range),
and all quantiles vary slightly. None of the methods decidedly beats or falls short
of the others. Therefore, to avoid cherry picking, we always use the summary
of all methods in the following, since it shows the full range of results of all
forecasting methods.
6 If the classifier always guesses positive, all actual positives are caught.

270 G. Endler et al.

Ar
im

a

cr
os

to
n

et
s

ho
lt

H
ol

tW
in

t.

hw

m
ea

nf

nn
et

ar rw
f

se
s

sp
lin

ef

St
ru

ct
TS

th
et

af al
l

−1.0

−0.5

0.0

0.5

1.0

m
cc

Fig. 2. Comparison of forecasting methods

Training Set: Full History vs. Fixed Length. Figure 3 shows the effect
of the flag full history (see Algorithm 1). Each box contains the results for all
datasets and all forecasting methods. For the left box in each subplot, the full
history was used as training data, for the right box, a window of fixed length
was used. The results exhibit very little difference. This is in accordance to our
expectations, since the forecasting functions give greater weight to current values
than to older ones. This also means that the window size of the training data
does little to influence the results.

m
cc

 fu
ll

m
cc

 w
in

do
w

−1.0

−0.5

0.0

0.5

1.0

ac
c

fu
ll

ac
c

w
in

do
w

0.0

0.2

0.4

0.6

0.8

1.0

pp
v

fu
ll

pp
v

w
in

do
w

0.0

0.2

0.4

0.6

0.8

1.0

np
v

fu
ll

np
v

w
in

do
w

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

 fu
ll

se
ns

 w
in

do
w

0.0

0.2

0.4

0.6

0.8

1.0

sp
ec

 fu
ll

sp
ec

 w
in

do
w

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Training set: full history vs. fixed length

Comparison of Datasets. To compare the performance dependent on dataset,
Fig. 4 shows the results grouped by practitioners, ordered by median mcc. Their

Estimation of Data Completeness Through Time Series Forecasts 271

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−1.0

−0.5

0.0

0.5

1.0

practitioner

m
cc

Fig. 4. Comparison of datasets

numbers correspond to their PractitionerId in the uploaded dataset. Each box
contains the respective practitioner’s results for all forecasting methods. The
dotted line gives the result of guess r. Since the mcc is sensitive to class car-
dinality, the results of guess p and guess n are accounted for in the values of
the mcc.

The medians of practitioners 1 to 4 are below zero, meaning that on aver-
age their results are negatively correlated to the actual completeness. The four
datasets do reach a reasonable mcc in some but not in the majority of their cases.
This shows that the proposed method does not work well for these datasets.
However, if a dataset is partitioned into subsets, the result of ForCE is largely
stable between partitions. This means that “offending” datasets can be detected
a priori.

All other datasets outperform guess r in more than 75 % of their cases. Since
all predictions except for practitioners 1 to 4 are positively correlated to the
actual completeness in the majority of cases, the classifier on average is helpful
in judging completeness.

Classifier Performance Compared to Baselines. Figure 5 compares the
accuracy of the classifier to the baselines. Quantiles and 1.5 * interquartile range
are labeled with their values, truncated to three decimal places for legibility’s
sake. The box labeled “ForCE” contains our classifier’s results for all datasets
and all forecasting methods. All other boxes contain the results depending on
the number of positives in each dataset (see Table 2).

Practitioners 1 to 4 have been omitted from these results. This is valid since
datasets for which ForCE does not work well can be detected a priori as discussed
above. The baseline most difficult to beat here is guess p, since the test data
tends to be complete more often than incomplete. Both the classifier and guess p
reach perfect accuracy in some cases. The classifier’s 25 % quantile is close to
guess p’s median, meaning that almost 75 % of the classifier’s results are better
than the median of guess p. Barring the 75 % quantile, the classifier’s quantiles

272 G. Endler et al.

ForCE guess_p guess_r guess_n

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

0.258

0.538

0.644
0.729

1

0.125

0.392

0.545

0.756

1

0.5

0

0.244

0.455

0.608

0.875

Fig. 5. Performance of ForCE compared to baselines

are higher than the respective quantiles of guess p. Comparing the medians, the
classifier surpasses the baselines by 9.9, 14.4 and 18.9 % points respectively.

4 Discussion and Future Work

The results show that time series forecasting methods can indeed be used to clas-
sify the completeness of populations of timestamped data. The ForCE approach
outperforms naive approaches when tested on real-world data.

There are many ways in which one can improve the performance results estab-
lished here: There is a wealth of different methods for time series analysis in sta-
tistics and machine learning. It would be interesting to see how the use of neural
networks, hidden Markov models, support vector machines, Gaussian processes
or the like influences the classifier’s performance. Other nonlinear methods and
advances in time series modeling [12] are applicable as well. Another subject of
study is how well other approaches fare in this application, e.g. outlier detection
or arrival processes. All incremental improvements to the employed techniques
will also improve our method.

For this paper, we classified the completeness of populations. An extension of
our approach may use the confidence intervals many forecasting methods deliver
to give an estimate of the probability with which data items are missing.

Lastly, our approach needs to be tested with data from other domains. It
should perform well in areas where established results show that the time series
representation of the data in question can be forecast accurately. While our
test data and therefore results are limited to the specific medical use case, the
approach can easily be tested for other datasets. As an example, consider a
sensor that only sends an update if its output changes significantly. In a heavily
resource constrained environment [16], it may be necessary to omit heartbeats,
making it impossible to reliably detect sensor outages short of manually checking
the sensor. Applying our method may improve this situation.

Estimation of Data Completeness Through Time Series Forecasts 273

As a perspective for future applications, ForCE can easily be extended to
be a self-learning system. Its pool of forecasting and modeling functions can be
expanded as described above. During operation, all of these can be evaluated on
their performance measures, and the current best fit for a specific dataset can be
chosen for future calculations. The choice can then be re-evaluated regularly to
catch possible changes in the observed data’s behavior. Since the performance
measures can be calculated step-by-step for many different forecasting functions,
adding functionality to choose one of these on the fly would only require minimal
effort.

In the future, it will be interesting to test our approach by delivering the
results of ForCE to practice managers, then quantifying its impact on the center’s
data quality.

Acknowledgements. Parts of this work are supported by the German Federal Min-
istry of Education and Research (BMBF), grant No. 13EX1013D.

Appendix

Fo
rC

E

gu
es

s_
p

gu
es

s_
n

gu
es

s_
r

0.0
0.2
0.4
0.6
0.8
1.0

acc

Fo
rC

E

gu
es

s_
p

gu
es

s_
n

gu
es

s_
r

−1.0
−0.5

0.0
0.5
1.0

mcc

Fo
rC

E

gu
es

s_
p

gu
es

s_
n

gu
es

s_
r

0.0
0.2
0.4
0.6
0.8
1.0

ppv

Fo
rC

E

gu
es

s_
p

gu
es

s_
n

gu
es

s_
r

0.0
0.2
0.4
0.6
0.8
1.0

npv

Fo
rC

E

gu
es

s_
p

gu
es

s_
n

gu
es

s_
r

0.0
0.2
0.4
0.6
0.8
1.0

sens

Fo
rC

E

gu
es

s_
p

gu
es

s_
n

gu
es

s_
r

0.0
0.2
0.4
0.6
0.8
1.0

spec

Fig. 6. Overview of all performance measures

References

1. Batini, C., Scannapieco, M.: Data Quality: Concepts Methodologies and Tech-
niques. DCSA. Springer, Heidelberg (2006)

274 G. Endler et al.

2. Dersch-Mills, D., Hugel, K., Nystrom, M.: Completeness of information sources
used to prepare best possible medication histories for pediatric patients. Can. J.
Hosp. Pharm. 64, 10–15 (2011)

3. Dugas, M., Dugas-Breit, S.: A generic method to monitor completeness and speed
of medical documentation processes. Methods Inf. Med. 51(3), 252–257 (2012)

4. Dustdar, S., Pichler, R., Savenkov, V., Truong, H.L.: Quality-aware service-oriented
data integration: requirements, state of the art and open challenges. SIGMOD rec.
41(1), 11–19 (2012)

5. Endler, G.: Data quality and integration in collaborative environments. In: Pro-
ceedings of the SIGMOD/PODS 2012 PhD Symposium, PhD 2012, pp. 21–26.
ACM, New York (2012)

6. Endler, G., Baumgärtel, P., Lenz, R.: Pay-as-you-go data quality improvement for
medical centers. In: Ammenwerth, E., Hörbst, A., Hayn, D., Schreier, G. (eds.)
Proceedings of the eHealth2013 (2013)

7. Endler, G., Langer, M., Purucker, J., Lenz, R.: An evolutionary approach to IT
support for medical supply centers. In: Proceedings der 41. Jahrestagung der
Gesellschaft für Informatik e.V. (GI) (2011)

8. Endler, G., Schwab, P.K., Wahl, A.M., Tenschert, J., Lenz, R.: An architecture for
continuous data quality monitoring in medical centers. In: MEDINFO 2015 (2015)

9. Fan, W., Geerts, F.: Foundations of Data Quality Management. Morgan & Clay-
pool Publishers, San Rafael (2012)

10. Gorupec, M., Endler, G.: ruleDQ: Ein Regelsystem zur Datenqualitätsverbesserung
medizinischer Informationssysteme. In: Gesellschaft für Informatik (ed.) Lecture
Notes in Informatics (LNI) Seminars 13 / Informatiktage 2014, pp. 37–40 (2014)

11. Hyndman, R.J.: R package ’forecast’ - forecasting functions for time series and lin-
ear models. http://cran.r-project.org/web/packages/forecast/forecast.pdf (2015).
Accessed on 14 April 2015

12. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, vol. 7. Cambridge
University Press, Cambridge (2004)

13. Miller, D.W., Yeast, J.D., Evans, R.L.: Missing prenatal records at a birth center:
a communication problem quantified. In: AMIA Annual Symposium Proceedings
of American Medical Informatics Association (2005)

14. Naumann, F., Freytag, J.C., Leser, U.: Completeness of integrated information
sources. Inf. Syst. 29(7), 583–615 (2004)

15. Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Commun. ACM
45, 211–218 (2002)

16. Pollner, N., Steudtner, C., Meyer-Wegener, K.: Placement-safe operator-graph
changes in distributed heterogeneous data stream systems. In: Datenbanksysteme
für Business, Technologie und Web - Workshopband (2015)

17. Razniewski, S., Nutt, W.: Completeness of queries over incomplete databases.
PVLDB 4(11), 749–760 (2011)

18. Redman, T.C.: Data Quality: The Field Guide. Digital Press, Newton (2001)
19. Scannapieco, M., Missier, P., Batini, C.: Data quality at a glance. Datenbank-

Spektrum 14, 6–14 (2005)
20. Wang, R.Y., Ziad, M., Lee, Y.W.: Data Quality. ADS. Springer, New York (2002)
21. Zaniolo, C.: Database relations with null values. In: Proceedings of the 1st ACM

SIGACT-SIGMOD Symposium on Principles of database systems, PODS 1982,
pp. 27–33. ACM, New York (1982)

http://cran.r-project.org/web/packages/forecast/forecast.pdf

Best-Match Time Series Subsequence Search on
the Intel Many Integrated Core Architecture

Mikhail Zymbler(B)

South Ural State University, Chelyabinsk, Russia
mzym@susu.ru

Abstract. Subsequence similarity search is one of the basic problems
of time series data mining. Nowadays Dynamic Time Warping (DTW)
is considedered as the best similarity measure. However despite vari-
ous existing software speedup techniques DTW is still computation-
ally expensive. There are approaches to speed up DTW computation
by means of parallel hardware (e.g. GPU and FPGA) but accelerators
based on the Intel Many Integrated Core architecture have not been
payed attention. The paper presents a parallel algorithm for best-match
time series subsequence search based on DTW distance for the Intel Xeon
Phi coprocessor. The experimental results on synthetic and real data sets
confirm the efficiency of the algorithm.

1 Introduction

Subsequence similarity search is one of the basic problems of time series data
mining and appears in various applications, e.g. climate modeling [1], medical
monitoring [6], economic forecasting [5], etc. Best-match time series subsequence
search assumes that a query sequence and a longer time series are given, and the
task is to find a subsequence in the longer time series, whose distance from the
query is the minimum among all the subsequences.

Nowadays the Dynamic Time Warping (DTW) [2] is considered as the best
similarity measure in many time series applications [3]. DTW is computationally
expensive and there are many software approaches that have been proposed to
solve this problem, e.g. lower bounding [3], computation reusing [13], data index-
ing [9], early abandoning [11], etc. However, DTW is still very time-consuming
and there are approaches to speed up DTW computation by means of parallel
hardware, e.g. computer-cluster [15], multicore [14], FPGA and GPU [13,16] but
none for the Intel Many Integrated Core [4] accelerators.

In this paper we present a parallel algorithm for best-match subsequence
search based on DTW distance adapted for a central processor unit (CPU)
accompanied with the Intel Xeon Phi many-core coprocessor. The remainder
of the paper is organized as follows. Section 2 gives the formal definition of the
problem and briefly considers the Intel Xeon Phi architecture and program-
ming model and discusses related work. The suggested algorithm is described in
Sect. 3. Experimental results evaluating the algorithm are presented in Sect. 4.
Section 5 contains summary and directions of future work.
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 275–286, 2015.
DOI: 10.1007/978-3-319-23135-8 19

276 M. Zymbler

2 Background and Related Work

2.1 Problem Definition

A time series T is an ordered sequence t1, t2, . . . , tN of real data points, measured
chronologically, where N is a length of the sequence.

A query Q is a time series to be found in T ; n is a length of the query, n � N .
A subsequence Tim of time series T is its continuous subset starting from i-th

position and consisting of m data points, i.e. Tim = ti, ti+1, . . . , ti+m−1, where
1 ≤ i ≤ N and i + m ≤ N .

Best-match subsequence search aims to finding a subsequence Tin whose
Dynamic Time Warping distance from Q is the minimum among all the subse-
quences, i.e. DTW (Tin, Q) < DTW (Tmn, Q) for any m such that 1 ≤ m ≤ N−n.

In this paper we do not consider local-best-match search [16], which aims
to finding all the subsequences Tin whose distance from Q is the minimal
among their neighboring subsequences whose distance from Q is under specified
threshold.

Dynamic Time Warping (DTW) is a similarity measure between two time
series X and Y , where X = x1, x2, ..., xN and Y = y1, y2, ..., yN , is defined as
follows.

DTW (X,Y) = d(N,N),

d(i, j) = |xi − yj | + min

⎧⎨
⎩

d(i − 1, j)
d(i, j − 1)
d(i − 1, j − 1),

d(0, 0) = 0; d(i, 0) = d(0, j) = ∞; i = j = 1, 2, . . . , N.

2.2 The Intel Xeon Phi Architecture and Programming Model

The Intel Xeon Phi coprocessor is an x86 many-core coprocessor of 61 cores,
connected by a high-performance on-die bidirectional interconnect where each
core supports 4× hyperthreading and contains 512-bit wide vector processor unit
(VPU). Each core has two levels of cache memory: a 32 Kb L1 data cache, a
32 Kb L1 instruction cache, and a core-private 512 Kb unified L2 cache. The
Intel Xeon Phi coprocessor is to be connected to a host computer via a PCI
Express system interface. Being based on Intel x86 architecture, the Intel Xeon
Phi coprocessor supports the same programming tools and models as a regular
Intel Xeon processor.

There are three programming modes to deal with the Intel Xeon Phi coproces-
sor: native, offload and symmetric. In native mode the application runs indepen-
dently, on the coprocessor only. In offload mode the application is running on
the host and offloads computationally intensive part of work to the coprocessor.
The symmetric mode allows the coprocessor to communicate with other devices
by means of Message Passing Interface (MPI).

Best-Match Time Series Subsequence Search on the Intel 277

2.3 Related Work

Currently DTW is considered as best similarity measure for many applica-
tions [3], despite the fact that it is very time-consuming [7,15]. Research devoted
to acceleration of DTW computation includes the following.

The SPRING algorithm [12] uses computation-reuse technique. However,
this technique squeezes the algorithm’s applications because data-reuse supposes
non-normalized sequence. In [9] indexing technique to speed up the search was
used, which need to specify the query length in advance. Authors of [8] suggested
multiple index for various length queries. Lower bound technique was proposed
in [7] and prunes off unpromising subsequences using the lower bound of DTW
distance estimated in a cheap way. The UCR-DTW algorithm [11] integrates all
the possible existing speedup techniques and most likely it is the fastest of the
existing subsequence matching algorithms.

All the aforementioned algorithms aim to decrease the calling times of DTW
computation, not accelerating DTW itself. However, because of its complexity,
DTW still takes a large part of the total application runtime. That is why
there are researches exploiting the effectiveness of parallel hardware by means of
allocation of DTW calculation of different subsequences into different processing
elements.

In [14] subsequences starting from different positions of the time series are
sent to different Intel Xeon processors, and each processor computes DTW.
In [15] different queries are distributed onto different cores, and each subse-
quence is sent to different cores to be compared with different queries. GPU
implementation [17] parallelize the generation of the warping matrix but still
process the path search serially. GPU implementation proposed in [13] utilizes
the same ideas as in [14]. FPGA implementation described in [13] focuses on the
naive subsequence similarity search, and do not exploit any pre-processing tech-
niques. It is generated by a C-to-VHDL tool and due to lack of insight into the
FPGA can not be applied in big-scale tasks. To address these problems in [16]
a stream oriented framework was proposed. It implements coarse-grained par-
allelism by reusing data of different DTW computations and uses a two-phase
precision reduction technique to guarantee accuracy while reducing resource cost.

In this work a parallel algorithm of the time series subsequence DTW-based
similarity search on the Intel Xeon Phi many-core coprocessor is presented where
the UCR-DTW serial algorithm is used as a basis.

3 Best-Match Subsequence Search on the Intel Xeon Phi

Development of the best-match subsequence search algorithm consists of the
following steps, which will be discussed in detail further.

At first, we developed a parallel version of the UCR-DTW serial algorithm
[11] using OpenMP technology. However, experiments have shown that, despite
the one-order speedup of parallel algorithm, it works slower on the Intel Xeon
Phi coprocessor in native mode than on CPU. This results from low operational

278 M. Zymbler

intensity of our algorithm, i.e. insufficient FLOPs (floating point operations) per
byte of data to be effectively processed on the Intel Xeon Phi coprocessor.

Next, we modified our algorithm combining CPU and coprocessor to process
time series, i.e. CPU and the Intel Xeon Phi run parallel algorithm developed
at the previous step. Here we used offload mode to transfer code and data to
the coprocessor. Experiments, where we varied the portion size of data to be
transferred to the coprocessor, show results similar to those obtained at the first
step due to the same reason.

Finally, we developed an advanced version of the algorithm where the
coprocessor is exploited only for DTW computations whereas CPU performs
pruning and supports a queue of subsequences for the coprocessor. This signifi-
cantly increased the operational intensity of the computations on the coprocessor
and experiments shown acceptable performance of the algorithm.

3.1 Parallel Algorithm for CPU

The UCR-DTW algorithm proposed in [11] is one of the fastest existing subse-
quence matching algorithms. This algorithm (Fig. 1) uses a cascade estimation
of the lower bound of DTW distance. If the lower bound has exceeded some
threshold, the DTW distance also exceeds the threshold, so the subsequence can
be pruned off. Here the bsf (best-so-far) variable stores the distance to the most
similar subsequence.

Fig. 1. Serial algorithm

A parallel version of the UCR-DTW algorithm is depicted in Fig. 2. We
parallelize the original algorithm using the OpenMP technology. The time series
is splitted into equal-length portions and each portion is processed by a separate
OpenMP-thread. Let P denotes a number of OpenMP-threads, then a portion
assigned for processing to the k-th thread, 0 ≤ k ≤ P − 1, is defined as a
subsequence Tsl, where

Best-Match Time Series Subsequence Search on the Intel 279

s =
{

1 , k = 0
k · �N

P � − n + 2 , else

l =

⎧⎨
⎩

�N
P � , k = 0

�N
P � + n − 1 + (N mod P) , k = P − 1

�N
P � + n − 1 , else

It means that the head part of every portion except first overlaps with the
tail part of previous portion in n − 1 data points. This permits to keep possible
resulting subsequences from the junctions of portions.

Fig. 2. Parallel algorithm for CPU

Here UCR-DTW is a subroutine that implements the original serial algorithm.
In contrast with the serial version the bsf variable is shared among the threads.
This allows each thread to prune off unpromising subsequence using lower bound-
ing. Master thread reads new data from a file simultaneously with processing of
data that have been read.

The obtained algorithm is ready to run on the Intel Xeon Phi in native mode
but experiments have shown that (Fig. 6) although parallel algorithm expect-
edly surpasses the serial algorithm it works slower on the coprocessor than on
CPU. This was a result of low operational intensity of our algorithm, i.e. insuf-
ficient FLOPs per byte of data to be effectively processed on the Intel Xeon Phi
coprocessor.

3.2 Näıve Parallel Algorithm for CPU and the Intel Xeon Phi

Figure 3 depicts the modified version of the algorithm. This version is called
“näıve”, because in comparison with the previous version it only distributes

280 M. Zymbler

Fig. 3. Näıve parallel algorithm for CPU and the Intel Xeon Phi

work among CPU and the coprocessor. Here α is a parameter that determines
a proportion of data to be transferred to the coprocessor. We use offload mode
to organize data exchange between CPU and the coprocessor. The min dist
subroutine chooses a subsequence with minimal value of DTW.

As well as in the previous step we evaluated the obtained algorithm and
experiments have shown that regardless of the α value the algorithm has worse
performance in comparison with the parallel algorithm for CPU.

This is because we still have not increased operational intensity of calculations
on the coprocessor. Additionally, bsf shared variable can not be synchronized
between the CPU and the coprocessor while offloading is performed (the syn-
chronization is possible at the beginning and at the end of offload section). That
is why we have more non-pruned subsequences to compute DTW.

3.3 Advanced Parallel Algorithm for CPU and the Intel Xeon Phi

The advanced version of the algorithm obtained at the previous step is depicted
in Fig. 4.

The algorithm is based on the following two ideas. First, the coprocessor should
be exploited only for DTW computation whereas CPU prunes unpromising subse-
quences and computes DTW in case if it really does not have another job. Second,
CPU should support a queue of subsequences that are candidates to be offloaded
to the coprocessor to compute DTW for each candidate subsequence.

To reduce amount of data transferred to the coprocessor the following tech-
nique has been used. Queue does not store each candidate subsequence Tin but
stores its corresponding tuple (i, A), where A is an n-element array containing
LBKeogh lower bounds for each position of the subsequence which is used for
early abandoning of DTW [11]. CPU offloads current part of the time series once
whereas queue is offloaded each time it is full.

Best-Match Time Series Subsequence Search on the Intel 281

Fig. 4. Advanced parallel algorithm for CPU and the Intel Xeon Phi

The number of elements in the queue is calculated as C · h · W , where C
is a number of cores of the coprocessor, h is a hyperthreading factor of the
coprocessor and W is a number of candidates to be processed by a coprocessor’s
thread (i.e. W is a parameter of the algorithm).

One of the CPU threads is declared as a master and the rest as workers. At
start master sends a buffer with the current portion of the time series to the
coprocessor. If queue is full then master offloads it to the coprocessor to per-
form DTW computation for the corresponding subsequences by the coprocessor’s
threads.

A worker’s behavior is depicted in the Fig. 5. Worker computes cascade esti-
mates for the current subsequence. If it is dissimilar to the query then the worker

Fig. 5. UCR-DTW* subroutine

282 M. Zymbler

prunes it off otherwise worker pushes this subsequence to the queue. If the queue
is full and data previously transferred to the coprocessor have not been processed
yet, the worker computes DTW by itself.

At the end of offload section the information about most similar subsequence
found on the coprocessor is transferred to the CPU. The final result is computed
among the most similar subsequence found on the CPU and same that found on
the coprocessor.

4 Experimental Results

To evaluate the developed algorithm we performed experiments on the Tornado
SUSU supercomputer’s node (Table 1 contains its specifications).

Table 1. Specifications of the Tornado SUSU supercomputer’s node

Specifications Processor Coprocessor

Model Intel Xeon X5680 Intel Xeon Phi SE10X

Cores 6 61

Frequency, GHz 3.33 1.1

Threads per core 2 4

Peak performance, TFLOPS 0.371 1.076

We measured search runtime while varying query length. Experiments have
been performed on synthetic and real time series. We also investigated the impact
of queue size on the speedup and compared performance of the algorithm with
analogues for GPU and FPGA.

4.1 Performance

In the first experiment we used synthetic time series generated by one-
dimensional random walk [10] comprising of 100 million data points. Exper-
imental results (Fig. 6a) show that our algorithm is more effective for longer
queries. In case of shorter queries the algorithm has the same performance as
parallel algorithm for CPU only.

The second experiment investigates the algorithm’s performance on real elec-
trocardiographic (ECG) data with about 20 million data points (approximately
22 hours of ECG sampled at 250 Hz). Our algorithm shows (Fig. 6b) a three
times higher performance than the parallel algorithm for CPU only.

4.2 Impact of Queue Size

Results of experiments investigating the impact of queue size on performance are
depicted in Fig. 7. In the current experimental environment, i.e. hyperthreading

Best-Match Time Series Subsequence Search on the Intel 283

Fig. 6. Performance of the algorithm

Fig. 7. Impact of queue size on the speedup

factor of the coprocessor h is 4, number of cores of the coprocessor C is 601,
optimal number of candidates to be processed by a coprocessor’s thread W is
10, so optimal number of the elements in the queue is 2400. Experimental results
described in Sect. 4.1 have been achieved with this queue size.

4.3 Comparison with Analogues

We compared the performance of our algorithm with analogues for GPU and
FPGA developed in [13]. We repeated the experiments presented in that paper
using the same data set and query length.

The results of the experiments are depicted in Fig. 8, here percentage on the
top of the bar indicates a proportion of subsequences that have not been pruned

1 One of the coprocessor’s cores is not involved in computations as it is recommended
by the Intel Xeon Phi programmer’s manual.

284 M. Zymbler

Fig. 8. Comparison of performance

and subjected to the DTW calculation in our experiments. We also add to the
chart results of experiments on random walk and ECG data sets.

We took into account that the peak performance of the hardware we used is
significantly greater than its counterparts of that paper, i.e. overall peak perfor-
mance of our hardware was 1.44 TFLOPS whereas GPU as NVIDIA Tesla C1060
had 77.8 GFLOPS and FPGA as Xilinx Virtex-5 LX-330 had 65 GFLOPS.

To provide more “fair” comparison we added to the chart hypothetical results
for modern NVIDIA Tesla K40 (1.43 TFLOPS) and Xilinx Virtex-7 980XT
(0.99 TFLOPS) multiplying real results of NVIDIA Tesla C1060 and Xilinx
Virtex-5 LX-330 by a respective scaling factor. As we can see our algorithm
does not concede to analogous on performance.

5 Conclusion

In this paper an approach to best-match time series subsequence search under
DTW distance on the Intel Many Integrated Core architecture has been pre-
sented. The parallel algorithm combines capabilities of CPU and the Intel Xeon
Phi many-core coprocessor. The coprocessor is exploited only for DTW com-
putations whereas CPU performs lower bounding, prepares subsequences for
the coprocessor and computes DTW as a last resort. CPU supports a queue
of candidate subsequences to be offloaded to the coprocessor to compute DTW.
Experiments on synthetic and real data sets have shown that our algorithm does
not concede to analogous algorithms for GPU and FPGA on performance.

As future work we plan to extend our research in the following directions:
implement our algorithm for the cases of several coprocessors and cluster system

Best-Match Time Series Subsequence Search on the Intel 285

based on nodes equipped with the Intel Xeon Phi coprocessor(s) and apply our
approach to the task of local-best-match time series subsequence search.

Acknowledgment. This work was financially supported by the Ministry of education
and science of the Russian Federation (“Research and development on priority direc-
tions of scientific-technological complex of Russia for 2014–2020” Federal Program,
contract No. 14.574.21.0035).

References

1. Abdullaev, S., Lenskaya, O., Gayazova, A., Sobolev, D., Noskov, A., Ivanova, O.,
Radchenko, G.: Short-range forecasting algorithms using radar data: translation
estimate and life-cycle composite display. Bull. S. Ural State Univ. Ser. Comput.
Math. Soft. Eng. 3(1), 17–32 (2014)

2. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: Fayyad, U.M., Uthurusamy, R. (eds.) KDD Workshop, pp. 359–370.
AAAI Press (1994)

3. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. PVLDB 1(2), 1542–1552 (2008)

4. Duran, A., Klemm, M.: The intel many integrated core architecture. In: Smari,
W.W., Zeljkovic, V. (eds.) HPCS, pp. 365–366. IEEE (2012)

5. Dyshaev, M., Sokolinskaya, I.: Representation of trading signals based on kaufman
adaptive moving average as a system of linear inequalities. Bull. S. Ural State Univ.
Ser.: Comput. Math. Soft. Eng. 2(4), 103–108 (2013)

6. Epishev, V., Isaev, A., Miniakhmetov, R., Movchan, A., Smirnov, A., Sokolinsky,
L., Zymbler, M., Ehrlich, V.: Physiological data mining system for elite sports.
Bull. S. Ural State Univ. Ser.: Comput. Math. Soft. Eng. 2(1), 44–54 (2013)

7. Fu, A.W.C., Keogh, E.J., Lau, L.Y.H., Ratanamahatana, C.A.: Scaling and time
warping in time series querying. In: Böhm, K., Jensen, C.S., Haas, L.M., Kersten,
M.L., Larson, P., Ooi, B.C. (eds.) Proceedings of the 31st International Conference
on Very Large Data Bases, pp. 649–660. ACM, Trondheim, Norway, 30 August –
2 September 2005 (2005)

8. Keogh, E.J., Wei, L., Xi, X., Vlachos, M., Lee, S.-H., Protopapas, P.: Support-
ing exact indexing of arbitrarily rotated shapes and periodic time series under
euclidean and warping distance measures. VLDB J. 18(3), 611–630 (2009)

9. Lim, S.-H., Park, H.-J., Kim, S.-W.: Using multiple indexes for efficient subse-
quence matching in time-series databases. In: Li Lee, M., Tan, K.-L., Wuwongse,
V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 65–79. Springer, Heidelberg (2006)

10. Pearson, K.: The problem of the random walk. Nat. 72(1865), 294 (1905)
11. Rakthanmanon, T., Campana, B.J.L., Mueen, A., Batista, G.E.A.P.A., Westover,

M.B., Zhu, Q., Zakaria, J., Keogh, E.J.: Searching and mining trillions of time
series subsequences under dynamic time warping. In: Yang, Q., Agarwal, D., Pei,
J. (eds.) KDD, pp. 262–270. ACM (2012)

12. Sakurai, Y., Faloutsos, C., Yamamuro, M.: Stream monitoring under the time
warping distance. In: Chirkova, R., Dogac, A., Tamer Özsu, M., Sellis, T.K. (eds.)
Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007,
pp. 1046–1055. IEEE, The Marmara Hotel, Istanbul, Turkey, 15–20 April 2007
(2007)

286 M. Zymbler

13. Sart, D., Mueen, A., Najjar, W.A., Keogh, E.J., Niennattrakul, V.: Accelerating
dynamic time warping subsequence search with gpus and fpgas. In: Webb, G.I.,
Liu, B., Zhang, C., Gunopulos, D., Wu, X. (eds.) ICDM, pp. 1001–1006. IEEE
Computer Society (2010)

14. Srikanthan, S., Kumar, A., Gupta, R.: Implementing the dynamic time warping
algorithm in multithreaded environments for real time and unsupervised pattern
discovery. In: Department of Computer Science and Motial Nehru National Insti-
tute of Technology Engineering, ICCCT, pp. 394–398. IEEE Computer Society
(2011)

15. Takahashi, N., Yoshihisa, T., Sakurai, Y., Kanazawa, M.: A parallelized data
stream processing system using dynamic time warping distance. In: Barolli, L.,
Xhafa, F., Hsu, H.H. (eds.) CISIS, pp. 1100–1105. IEEE Computer Society (2009)

16. Wang, Z., Huang, S., Wang, L., Li, H., Wang, Y., Yang, H.: Accelerating subse-
quence similarity search based on dynamic time warping distance with FPGA. In:
Hutchings, B.L., Betz, V. (eds.) The 2013 ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, FPGA 2013, pp. 53–62. ACM, Monterey,
11–13 February 2013 (2013)

17. Zhang, Y., Adl, K., Glass, J.R.: Fast spoken query detection using lower-bound
dynamic time warping on graphical processing units. In: 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2012, pp. 5173–
5176. IEEE, Kyoto, Japan, 25–30 March 2012 (2012)

Feedback Based Continuous Skyline Queries
Over a Distributed Framework

Ahmed Khan Leghari1(B), Jianneng Cao2, and Yongluan Zhou1

1 Institute of Mathematics and Computer Science (IMADA),
University of Southern Denmark, Odense, Denmark

{ahmedkhan,zhou}@imada.sdu.dk
2 Department of Data Analytics, Institute for Infocomm Research,

A*, Singapore, Singapore
caojn@i2r.a-star.edu.sg

Abstract. Continuous skyline query processing is becoming wide spread.
Most of the work done in this field is focused to process skyline queries
on a single machine. Our focus is to process continuous skyline queries
over data streams, where data is arriving at server in the form of contin-
uous updates from multiple distributed input sources. A single machine
solution to run continuous skyline queries over streaming data is not
very scalable. Moreover, streaming data arriving from multiple sources
can overwhelm server’s computing power, specially if the skyline queries
are involved to compute high quality multidimensional skyline points.
We propose a three layer solution to compute continuous skyline points.
A bottom layer in our approach sends the local skyline points to the
middle layer, which after receiving feedback from the server filters the
false-positives, and produces the semi-global skyline points to be sent
to the server for global skyline. Our approach being scalable distributes
the workloads across the network on multiple machines and reduces the
number of unnecessary data points to be sent to the server, allowing it
to produce qualitative skyline points.

1 Introduction

A skyline query [1,2] running over a multi-dimensional data set produces a subset
of data points which are not dominated by others. In a multi-dimensional data
set, a data point is said to be dominant over the others if it is not worse than
the others in all dimensions and better in at least any single dimension. Skyline
queries are widely used in many decision making applications where one dimension
can be contrary to others, such as finding a cheap car online with luxury features,
powerful engine, impressive fuel economy, and cheap maintenance cost.

In a single machine persistent data setup the execution of a skyline query
incurs in just CPU and memory cost, but challenges are different while processing
streaming data. It is possible to process streaming data and run skyline queries
on a single machine, but running continuous queries over multiple streams result
in performance degradation caused by huge processing load, increased response

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 287–301, 2015.
DOI: 10.1007/978-3-319-23135-8 20

288 A.K. Leghari et al.

time and limited scalability. Since, in distributed stream processing applications
a time bounded response is of very high significance, and plays a decisive role for
the reliability and effectiveness of the application. This time bounded response
is inversely proportional to the processing load on the machine, therefore, run-
ning continuous skyline queries to process multiple streams adversely affect the
performance of the applications. Moreover, due to the hardware constraints the
number of streams that can be processed in parallel on a single machine are
also limited. Therefore, to achieve a better response time and greater scalability
a more preferable option is to reduce the processing load on single server by
distributing the processing of skyline queries among multiple machines.

In this paper we propose a distributed processing model for processing contin-
uous skyline queries over data streams as shown in Fig. 1, originating from multi-
ple sources and from different geographical locations. Our technique extends the
concept proposed by Lu et al. [1]. In [1] a two layer model of distributed contin-
uous skyline computing over data stream was proposed. In that model multiple
data sites continuously and directly send local skyline points to the server, even
though many of the local skyline points do not turn into actual global skyline
points. This leads to increased processing time and load on the server.

Moreover, as the streaming data is processed by a single server, hence it is
not very scalable and can process a limited number of data streams. To reduce
the processing load and to achieve better scalability we extend this approach
to three layers. The top layer sends periodic feedbacks to the middle layer that
enables middle layer to perform a local filtering of unnecessary skyline points to

Fig. 1. Three tier architecture of the system

Feedback Based Continuous Skyline Queries Over a Distributed Framework 289

reduce the amount of data to be sent to the server allowing it to compute high
quality skyline points.

The contributions of this paper are as follows: (i) An improved technique
to process continuous skyline queries over data streams in a distributed setup
(ii) A feedback based approach to minimize the false-positive skyline points to
be sent to the server. (iii) A three layer continuous skyline query processing
architecture that is scalable and computes high-quality multidimensional data
points.

The remainder of this paper is organized as follows: Sect. 2 provides an insight
into the past research related to our present work. Section 3 presents problem
description, illustrates the terminology used in the paper and system model.
Section 4 presents the fundamentals of the approach. Section 5 presents the steps
required to generate the skyline points in our approach. Section 6 explains the
adjustment of skyline points and early filtration of data using the feedback
mechanism. Section 7 describes the experiments and obtained results, and Sect. 8
presents the conclusion of the study.

2 Related Work

Skyline operator was first proposed by Borzsony et al. [2] as SKYLINE OF
clause in SQL’s SELECT statement, and since then the skyline queries have
been studied by many [3–29]. The work that is most relevant to ours is done by
[1,18].

Wu et al. [18] proposed a distributed progressive skyline query processing
over multiple machines. Their solution is based on data partitioning across share-
nothing architecture. The focus of their work is to achieve scalability through
parallelization of one time skyline queries on persistent data, whereas we focus to
distribute and parallelize the processing load to achieve better scalability while
running continuous skyline queries over multiple streams.

The work done by Lu et al. [1] provides the foundations for our work. They
proposed a two tier architecture to compute skyline points over dynamic data
arriving from multiple sources. Their approach is based on initialization and
maintenance phase, in the first phase the results in the form of local skylines
are obtained from the remote data sites, and in the maintenance phase the
local skylines are merged to obtain a global skyline. The global skyline is then
continuously updated on the basis of the local skylines. This approach performs
really well, the data points before being sent to global server are locally filtered,
but even after performing a local filtering many of the false-positive skyline
points are still processed by the global server. The number of these useless data
points are directly proportional to the frequency of updates performed at the
local data sites, and the number of streams involved in the process of computing
skyline points. This approach is not very scalable and frequent updates from
multiple data streams can overwhelm the computing power of a single server.

In this paper we extend the prior work done by Lu et al. [1] to incorporate
a middle layer in the system to make the solution more efficient by providing

290 A.K. Leghari et al.

a feedback mechanism to reduce the number of false-positive skylines processed
by the global server.

3 Background

3.1 Problem Description

We want to reduce the processing load on the server that can be achieved through
early pruning of the useless data points and by distributing the processing load
among multiple machines. The problem can be formulated as:

Let Q be a continuous skyline query registered at the centralized server. N is
the number of data sites, each maintaining a relation R of local skyline points,
minimize the number of unnecessary data points to be sent to the server, not
involved in the final computing of global skyline points.

To achieve this objective we perform a two-stage pruning of useless data
points described in the forthcoming sections.

3.2 Basic Definitions

(i) Dominance Relationship: A skyline query retrieves data points which are
not dominated by others in a multi-dimensional data set. A data point P
is said to be dominant over another point Q represented as P � Q, if P is
not worse than Q in any dimension and at-least better in one dimension.
The terms “better” and “worse” are general and have different meanings in
different contexts.

(ii) Data Site: Refer to Fig. 1, a data site is a processing unit at the bottom
layer of our model that receives streaming data from multiple streams.

(iii) Local Skyline Points: Skyline points which are computed from the
streaming data arriving at each data site.

(iv) Semi-Global Skyline Generator (2SG): A 2SG is a processing unit in
the middle layer of our model as shown in Fig. 1 that receives local skyline
points from the data sites connected to it.

(v) Semi-Global Skyline (SGS) Points: SGS points are computed at each
2SG, from the local skyline points sent by concerned data sites.

(vi) Global Skyline Points: Refer to Fig. 1, global skyline points are computed
at the top layer of our model. A server after receiving SGS points from 2SGs
generates global skyline points.

3.3 System Model

Refer to Fig. 1, there is a hierarchy of three processing layers. On the bottom layer,
there are n data sites. Each data site is located at different geographical loca-
tion, and receives continuous inputs in the form of data streams. Streaming data
can have many forms such as sensor data, web click stream, log streams or stock
streams. In this paper we use the stock streams as our streaming data, but our
proposed model is general and can be used with any form of streaming data.

Feedback Based Continuous Skyline Queries Over a Distributed Framework 291

Table 1. Local skylines generated at a data site

Data site ID name ask price bid price change volume

A Tuple 1 ABCD 44.45 42.60 -0.04 -0.09 % 1790802

B Tuple 4 SMSG 551.60 548.14 +0.10 +0.12 % 1886825

C Tuple 3 AFCD 82.72 80.72 -0.01 -0.07 % 1088307

D Tuple 2 MCDL 66.30 64.32 +0.06 +0.10 % 1355313

In our model stock streams arrive from multiple stock markets. A data site
after receiving data tuples from multiple stock streams performs local filtering
and produces local skylines as depicted in Table 1. These local skylines are then
sent to the corresponding regional Semi-Global Skyline Generators (2SGs) in
the middle layer. The number of 2SG machines can be adjusted according to the
volume and pace of data received from multiple data sites, and is an important
factor to satisfy the need of time critical applications. Each 2SG machine after
receiving multiple local skyline performs a filtering and generates a Semi-Global
Skyline (SGS). The generation of SGS from multiple local skylines reduces the
volume of data to be sent to the server by reducing the false-positive skyline
points. The SGS points are then sent to the top layer. This layer corresponds to
a centralized server. The server provides a skyline query interface, and generates
a global skyline from the SGS points.

4 Base of the Approach

Suppose a continuous skyline query is submitted at server to fetch stock com-
modities with the largest difference between ask price and bid price, max-
imum positive change per share and the highest volume of traded shares. In
response to that query each data site will generate local skyline points as shown
in Table 1 and send them to the corresponding 2SG. A 2SG after receiving local
skyline points from its connected data sites discards the data points dominated
by others such as Tuple 1 from data site A shown in Table 1, and computes SGS
points. These SGS points are then sent to server for generation of global skyline
points as depicted in Table 2.

We assume that each 2SG would send their SGS points to the server at
random interval and independent to any other 2SG. Refer to Fig. 1 in Sect. 1
and Fig. 2, the very first SGS points received by server from a 2SG-1 will be
fixed as a Skyline Threshold.

The server would then inform all 2SGs (except 2SG-1) that any future SGS
points computed at 2SGs must not be sent to server unless they are domi-
nant over the Skyline Threshold. As 2SG-1 would not receive any feedback in a
certain time, it would determine that the SGS points it sent are set as the Sky-
line Threshold. Later on, if SGS points at 2SG-1 change then the new SGS points
will immediately be sent to the server. The SGS points fixed as Skyline Threshold

292 A.K. Leghari et al.

Fig. 2. Adjustment of SGS points on the basis of the server feedback

will continuously be updated to represent the most recent dominant SGS points
sent by one or more 2SGs.

It is possible that multiple 2SGs send their SGS points at the same time,
or before receiving any Skyline Threshold. In that situation server will com-
pute global skyline from all the SGS points it received and then set a Sky-
line Threshold. Suppose Table 2 shows SGS points received by server at the
same time. From these SGS points the Server will compute a Skyline Threshold
based on the dominant dimensions of each tuple as shown in Table 3.

Table 2. SGS points received by Server

2SG Data site ID name ask price bid price change(%) volume

2 B Tuple 4 SMSG 551.60 548.14 +0.10 +0.11 1086825

4 C Tuple 3 AFCD 82.72 80.10 +0.01 +0.07 1888307

3 D Tuple 2 MCDL 66.30 65.32 +0.06 +0.20 1355313

This Skyline Threshold will be sent to all those 2SGs which have not yet
sent their SGS point to server. A 2SG after receiving threshold information
from server compares its present SGS points with the threshold information and
if it finds them better or dominant in any dimension then it sends them to the
server, otherwise it just discards them.

While processing streaming data the most important and valuable tuples
are the most recent ones, therefore, each tuple that arrives in the system has a
certain life span. An old tuple from a source S is discarded on a data site when
a new tuple from S arrives. A tuple at a data site is also discarded when it fails
to be part of the local skyline sent to a 2SG. A tuple on a 2SG is discarded

Table 3. Skyline Threshold set by server

max. diff.=(ask pirce-bid price) max. change per share(%) max. volume traded

3.46 0.14 1888307

Feedback Based Continuous Skyline Queries Over a Distributed Framework 293

being false-positive if it is not part of SGS points to be sent to the server. In the
same way a tuple expires if it is not part of global skyline points generated at
the server.

4.1 Importance of the Feedback

Feedback plays a very important role to reduce the processing load on the server.
Refer to Fig. 2 that shows the feedback messages sent from server to 2SGs.
After receiving SGS points from a 2SG, server sets a Skyline Threshold and
sends feedback to all other 2SGs except one to update them about the current
dominant skyline points computed at server. This feedback reduces the number
of false-positive skyline points to be sent to server. The number of messages sent
as a feedback can be obtained through the Eq. 1 as follows.

Feedback = (N − 1) ∗ T/C (1)

Here, N represents the total number of 2SGs in the setup subtracting the one
who sends most recent tuple to server, T represents the total number of tuples
in the stream and C represents the change in Skyline Threshold caused by the
dominance relationship between tuples in the stream. Therefore, in a setup of
one server and three 2SGs, if there are 100 tuples in the stream and each 4th

tuple in the stream modifies the Skyline Threshold, then the total number of
feedback messages sent by server would be as shown in Eq. 2.

50 = (3 − 1) ∗ 100/4 (2)

The dominance relationship among tuples arriving in the stream affects the
number of feedback messages sent by the server.

5 Generating Skyline

5.1 Generating Local Skyline

Refer to the Algorithm 1, every data site maintains a local relation that contains
the most recent input tuples received from a source. After the arrival of a new
input tuple the values of the old tuple that belongs to the same source are
removed from the local relation. After each update in the local relation, local
skyline points are computed.

For the sake of simplicity and efficiency we assume that the updates are sent
periodically by the sources and when there is any significant change in the price
of any stock commodity that exceeds a certain threshold. The updated local
skyline points are then sent to the respective 2SG.

294 A.K. Leghari et al.

Algorithm 1. Maintaing a local relation, and local skyline points at a data site
1: Input: tuplej , is the most recent input received by a data site DSk, sent by stock

market Sm.
2: do
3: if tuplej has been received then
4: copy tuplej into the memory
5: if some old tuplei from Sm already exists in the relation then
6: discrad tuplei
7: update the local relation R with tuplej
8: regenerate the local skyline
9: else

10: include the tuplej as the first update received from Sm

11: generate the local skyline
12: end if
13: end if
14: while(true)

5.2 Generating Semi-Global Skyline

Semi-Global Skyline (SGS) points are computed from the local skyline points
received from different data sites. Like a data site, a 2SG also maintains a relation
that consists of local skyline points sent by the data sites connected to a 2SG.
After receiving a local skyline from a data site the old skyline points of the
same data site are replaced by the new skyline points, and a dominance check
is performed with any existing local skyline points sent by other data sites.
SGS points are computed after updating the local relation and performing a
dominance check. Every tuple in the relation maintained by a 2SG is a local
skyline point, but not necessarily a SGS point. SGS points generated at each
2SG machine are subset of its local relation consisting of local skyline points
received from different data sites.

5.3 Generating Global Skyline

After a skyline query is registered at the server, the server sends the query
requests to all 2SGs. The 2SGs interpret the query requests and send them to
the data sites for obtaining local skylines. Each data site in return generates and
sends its local skyline to its corresponding 2SG. Each 2SG generates SGS points
from the local skylines and sends them to the server. A tuple arrived at a data
site is gradually promoted to be part of global skyline at server iff it is part of
local skyline points generated at a data site, it is not a false-positive SGS point
at a 2SG, it is a part of SGS points generated at a 2SG and it is not part of
false-positive global skyline points at the server. A false-positive skyline point is
a skyline point that is part of local skyline at a data site, but is not part of SGS
point at a 2SG, or it is a part of SGS point at a 2SG, but not a part of global
skyline points generated at server.

Feedback Based Continuous Skyline Queries Over a Distributed Framework 295

Algorithm 2. Seting Skyline Threshold and Generating global skyline at the
Server
1: Input: SGSk are the most recent semi-global skyline points received by server.
2: do
3: if SGSk has been received then
4: copy SGSk into the memory
5: if some other SGSj points already exist in the memory then
6: compare SGSk with SGSj

7: if SGSk � SGSj then
8: discard SGSj

9: update the Skyline Threshold
10: send new Skyline Threshold information to concerned 2SGs
11: Merge SGSk with existing global skyline points
12: else
13: update the Skyline Threshold accordingly
14: send new Skyline Threshold information to concerned 2SGs
15: Merge SGSk with existing global skyline points
16: end if
17: else
18: mark SGSk as the first SGS points
19: set the initial Skyline Threshold
20: send the initial Skyline Threshold information to concerned 2SGs
21: end if
22: end if
23: while(true)

Server receives SGS points and performs a dominance check and if newly
received SGS points qualify to be part of global skyline points then they are
merged with the existing points as sated in line 8–11,13–15,18–20 in
Algorithm 2 and the Skyline Threshold is also updated accordingly. The global
skyline points computed at a given point in time t1 expire after the generation
of global skyline points computed at a later point in time t2, here t2 > t1.

6 Adjusting Skyline

6.1 Adjusting the Semi-Global Skyline

Refer to the Algorithm 3, every time local skyline points are received from a
data site, a 2SG regenerates semi-global skyline points.

If a 2SG has already received a threshold feedback from the server, it performs
a dominance check against the threshold. After the dominance check, new SGS
points will be sent to the server for generation of global skyline points, iff they
found to be better in at least one dimension than the present threshold.

If the newly generated SGS points are not better than the threshold, then
they would simply be removed.

If a 2SG has not yet received any threshold information, it means that the
server has not received SGS point from any 2SG, in that case a 2SG would

296 A.K. Leghari et al.

immediately send its SGS points to the server. The two way communication
between server and 2SGs takes place as depicted in Fig. 2.

Algorithm 3. Adjusting the SGS at 2SG, after reciving feedback from server
1: Input: Let FBi be the recent feedback received from server to a 2SG at time t1.

Let SGSj be a semi-global skyline to be sent to the server at time t2.
2: do
3: if FBi has been received then
4: copy FBi into the memory
5: compare SGSj to the threshold information in FBi

6: if FBi � SGSj then
7: discard SGSj

8: else
9: send SGSj to the server

10: end if
11: end if
12: while(true)

6.2 Adjusting the Global Skyline

After receiving SGS points from a 2SG the server performs actions according to
the scenarios as described bellow:

(i) The newly received SGS points are better in all dimensions than the present
Refer to lines 3–11 in Algorithm 2, in this situation the present Skyline
Threshold would be updated to the new SGS points, and the new SGS
points would also be added into the relation of global skyline points updat-
ing any past global skyline points if already existed.

(ii) The received SGS points are the very first SGS points received by the server.
Refer to lines 18–20 in Algorithm 2, these SGS points would be set as a Sky-
line Threshold, and a feedback is sent to all 2SGs to send their respective
SGS points iff the SGS points are better than the Skyline Threshold in any
dimension. A 2SG whose SGS is set as a Skyline Threshold would not receive
any feedback from the server, and in future if it computes any updated SGS,
then the updated SGS points are sent immediately to the server.

(iii) The newly received SGS points are better in one or multiple dimensions.
Refer to lines 13–15 in Algorithm 2, the Skyline Threshold at server would
be updated according to the new dimensions and contain the dominant
points of the newly arrived SGS and the old threshold. The SGS points
would be added into the relation of global skyline points.

7 Experimental Evaluation

As our work extends the prior work done by Lu et al. [1], therefore we developed a
system based on the techniques described in this paper as well as borrowed some

Feedback Based Continuous Skyline Queries Over a Distributed Framework 297

of the concepts from [1]. The approach presented in [1] is simple and therefore,
in the forthcoming text we refer to it as the näive approach. The efficiency of
näive approach and feedback based approach is measured in the number of tuples
processed by server and the required processing time.

7.1 Experimental Setup

We performed multiple experiments. Our setup was based on a single server,
three 2SGs where each 2SG represented a distinct region and was connected
to four data sites in it’s proximity, and there were twelve data sites in total.
Each data site sent its local skyline points to corresponding 2SG, and all 2SGs
were sending their SGS points to the server. A continuous skyline query as the
example in Sect. 4 is used to process streams consisted of three million and six
million tuples, based on the historical stock quotes of the NASDAQ [30]. All our
experiments were involved in 2, 4 and 6 dimensional data tuples.

7.2 Results and Discussion

Refer to Fig. 3 that shows the number of tuples processed by each approach. In
the first round of experiment the stream consisted of 3 million tuples (3MT) and
the data dimensionality were gradually set as 2, 4 and 6. The server in Feedback
based approach processed 980668 (33 %), 1532321 (51 %) and 1546483 (52 %)
of the total tuples respectively while increasing the dimensionality from 2 to 6.
While the server in näive approach processed all 3 million tuples (3MT) that it
received.

Fig. 3. Tuples processed by server in Feedback based vs. Näive approach

Second experiment consisted of 6 million tuples (6MT). Server in Feedback based
approach processed 2466348 (41 %), 3224139 (54 %) and 3270668 (55 %) tuples,
while the näive approach processed all 6 million tuples (6MT). The results in
Fig. 3 show a considerable reduction in tuples processed by Feedback based
strategy.

Refer to Fig. 4 showing the number of feedback messages sent by server to
2SGs. While computing two dimensional skyline points from 3 million and 6
million tuples, server sent 653778 and 1644232 feedback messages respectively.

298 A.K. Leghari et al.

While computing 4-dimensional data points there were 1021547 and 2149426
feedback messages and the stream consisted of 3 million and 6 million tuples
respectively.

In the same way while computing 6-dimensional data points there were
1030988 feedback messages when the stream consisted of 3 million tuples, and
2180445 feedback messages were sent when the stream consisted of 6 million
tuples. The number of feedback messages increased with the growing number
of input tuples. Likewise, increasing the data dimensionality also affected the
dominance relationship among tuples as described in Sect. 4.1 and resulted in an
increase in the feedback.

Fig. 4. The affect of data dimensionality over feedback

Fig. 5. Processing time of Feedback based vs. Näive approach

Refer to Fig. 5 showing the comparison of processing time between Feedback
based and näive approach. While processing stream of 3 million tuples (3MT)
with growing number of data dimensionality, both of the approaches have shown
almost the same performance. Feedback based approach performed slightly bet-
ter while processing 6 million tuples (6MT). The results show that even though
the feedback based approach is involved in two-stage computation of skyline
points it still showed performance nearly identical to the näive approach.

The time spent in computing SGS points at 2SGs is a trade-off to reduce the
processing load on server, but as the server has to process considerably reduced
amount of data, thus the time saved at server neutralizes the affect.

Feedback Based Continuous Skyline Queries Over a Distributed Framework 299

Figure 6 shows the number of useless tuples discarded by 2SGs while process-
ing the streams. These tuples were discarded to reduce the processing load on the
server. While processing stream of 3 million and 6 million tuples and computing
2-dimensional SGS points a total of 2019332 (67 %) and 3533652 (59 %) tuples
were discarded respectively. In the same way while computing 4-dimensional
SGS points 1467679 (49 %) and 2775861 (46 %) tuples were discarded.

Fig. 6. Early prunning of unwanted tuples by 2SGs

Similarly, 1453517 (48 %) and 2729332 (45 %) tuples were discarded while
computing 6-dimensional SGS points over stream of 3 million and 6 million
tuples.

Our experiments showed that the approach used by [1], in which server
directly receives local skyline points from data sites leads to higher process-
ing load on the server, and wastes precious resources. Feedback based approach
considerably reduces the amount of data as well as the false-positives to be
processed by the server, allowing it to process continuous skyline queries over
data stream, and generate the global skylines in a timely manner. Moreover, the
middle layer in feedback based approach provides greater flexibility, and scalabil-
ity to handle multiple streams. An increase/decrease in number of input streams
can be handled by adjusting the number of 2SGs in the middle layer.

Even though the feedback based approach is better than the näive approach
in many ways, it also has a trade-off like any other approach that the number
of feedbacks depends on the dominance relationship among tuples in the stream
as discussed in Sect. 4.1, which can be affected by the growing data dimension-
ality. Many real life skyline applications do not involve in so many dimensions
therefore, the feedback based approach can perform well in a wide variety of
fields.

8 Conclusion

We presented an approach to process continuous skyline queries over data streams
in a distributed framework. Past strategies to execute skyline queries and process
multiple streams can overload the computing resources of the single server. This
could lead to a potential bottleneck and affect the applications that require a

300 A.K. Leghari et al.

time bounded response. In our approach, we introduce a feedback based mecha-
nism in a three layer architecture to process continuous skyline queries over data
stream. Through extensive experiments we proved that feedback based strategy
dramatically reduces the processing load on server, while exhibiting the time
requirements identical to other approaches.

References

1. Lu, H., Zhou, Y., Haustad, J.: Continuous skyline monitoring over distributed data
streams. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp.
565–583. Springer, Heidelberg (2010)

2. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of
the 17th International Conference on Data Engineering, pp. 421–430. IEEE (2001)

3. Endres, M., Roocks, P., Kießling, W.: Scalagon: an efficient skyline algorithm for
all seasons. In: Renz, M., Shahabi, C., Zhou, X., Chemma, M.A. (eds.) DASFAA
2015. LNCS, vol. 9050, pp. 292–308. Springer, Heidelberg (2015)

4. Liknes, S., Vlachou, A., Doulkeridis, C., Nørv̊ag, K.: APSkyline: improved sky-
line computation for multicore architectures. In: Bhowmick, S.S., Dyreson, C.E.,
Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014,
Part I. LNCS, vol. 8421, pp. 312–326. Springer, Heidelberg (2014)

5. Endres, M., Kießling, W.: High parallel skyline computation over low-cardinality
domains. In: Manolopoulos, Y., Trajcevski, G., Kon-Popovska, M. (eds.) ADBIS
2014. LNCS, vol. 8716, pp. 97–111. Springer, Heidelberg (2014)

6. Chester, S., Sidlauskas, D., Assent, I.: Bøgh, K.S.: Scalable parallelization of skyline
computation for multi-core processors (2015)

7. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE,
vol. 3, pp. 717–719 (2003)

8. Tan, K.L., Eng, P.K., Ooi, B.C., et al.: Efficient progressive skyline computation.
In: VLDB, vol. 1, pp. 301–310 (2001)

9. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm
for skyline queries. In: Proceedings of the 28th International Conference on Very
Large Data Bases, VLDB Endowment, pp. 275–286 (2002)

10. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm
for skyline queries. In: Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data, pp. 467–478. ACM (2003)

11. Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominating queries on multi-
dimensional data. In: Proceedings of the 33rd International Conference on Very
Large Data Bases, VLDB Endowment, pp. 483–494 (2007)

12. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in data-
base systems. ACM Trans. Database Syst. (TODS) 30(1), 41–82 (2005)

13. Dellis, E., Seeger, B.: Efficient computation of reverse skyline queries. In: Pro-
ceedings of the 33rd International Conference on Very Large Data Bases, VLDB
Endowment, pp. 291–302 (2007)

14. Morse, M., Patel, J.M., Jagadish, H.: Efficient skyline computation over low-
cardinality domains. In: Proceedings of the 33rd International Conference on Very
Large Data Bases, VLDB Endowment, pp. 267–278 (2007)

15. Lee, K.C., Zheng, B., Li, H., Lee, W.C.: Approaching the skyline in Z order. In:
Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB
Endowment, pp. 279–290 (2007)

Feedback Based Continuous Skyline Queries Over a Distributed Framework 301

16. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In:
Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB
Endowment, pp. 15–26 (2007)

17. Balke, W.-T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for
web information systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992,
pp. 256–273. Springer, Heidelberg (2004)

18. Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D.P., El Abbadi, A.: Parallelizing
skyline queries for scalable distribution. In: Ioannidis, Y., Scholl, M.H., Schmidt,
J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C.
(eds.) EDBT 2006. LNCS, vol. 3896, pp. 112–130. Springer, Heidelberg (2006)

19. Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline queries against mobile light-
weight devices in manets. In: Proceedings of the 22nd International Conference on
Data Engineering, ICDE 2006 p. 66. IEEE (2006)

20. Zhu, L., Tao, Y., Zhou, S.: Distributed skyline retrieval with low bandwidth con-
sumption. IEEE Trans. Knowl. Data Eng. 21(3), 384–400 (2009)

21. Huang, Z., Lu, H., Ooi, B.C., Tung, A.: Continuous skyline queries for moving
objects. IEEE Trans. Knowl. Data Eng. 18(12), 1645–1658 (2006)

22. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the sky: Efficient skyline computa-
tion over sliding windows. In: Proceedings 21st International Conference on Data
Engineering, ICDE 2005, pp. 502–513. IEEE (2005)

23. Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. IEEE
Trans. Knowl. Data Eng. 18(3), 377–391 (2006)

24. Wu, P., Agrawal, D., Egecioglu, O., El Abbadi, A.: Deltasky: Optimal maintenance
of skyline deletions without exclusive dominance region generation. In: IEEE 23rd
International Conference on Data Engineering, ICDE 2007, pp. 486–495. IEEE
(2007)

25. Zhang, Z., Cheng, R., Papadias, D., Tung, A.K.: Minimizing the communication
cost for continuous skyline maintenance. In: Proceedings of the 2009 ACM SIG-
MOD International Conference on Management of data, pp. 495–508. ACM (2009)

26. Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual partitioning: an
efficient method for continuous nearest neighbor monitoring. In: Proceedings of
the 2005 ACM SIGMOD International Conference on Management of Data, pp.
634–645. ACM (2005)

27. Mullesgaard, K., Pedersen, J.L., Lu, H., Zhou, Y.: Efficient skyline computation in
mapreduce. In: 17th International Conference on Extending Database Technology
(EDBT), pp. 37–48 (2014)

28. Lu, H., Zhou, Y., Haustad, J.: Efficient and scalable continuous skyline monitoring
in two-tier streaming settings. Inf. Syst. 38(1), 68–81 (2013)

29. Cui, B., Lu, H., Xu, Q., Chen, L., Dai, Y., Zhou, Y.: Parallel distributed processing
of constrained skyline queries by filtering. In: IEEE 24th International Conference
on Data Engineering, ICDE 2008, pp. 546–555. IEEE (2008)

30. NASDAQ. http://www.infochimps.com/. Accessed 03 December 2014

http://www.infochimps.com/

Performance and Tuning

Partitioning Templates for RDF

Rebeca Schroeder1(B) and Carmem S. Hara2

1 Universidade Do Estado de Santa Catarina - UDESC,
Joinville, SC 89.219-710, Brazil
rebeca.schroeder@udesc.br

2 Universidade Federal Do Paraná- UFPR, Curitiba, PR 81531-990, Brazil
carmem@inf.ufpr.br

Abstract. In this paper, we present an RDF data distribution approach
which overcomes the shortcomings of the current solutions in order to
scale RDF storage both with the volume of data and query requests. We
apply a workload-aware method that identifies frequent patterns accessed
by queries in order to keep related data in the same partition. In order
to avoid exhaustive analysis on large datasets, a summarized view of
the datasets is considered to deploy our reasoning through partitioning
templates for data items in an RDF structure. An experimental study
shows that our method scales well and is effective to improve the overall
performance by decreasing the amount of message passing among servers,
compared to alternative data distribution approaches for RDF.

1 Introduction

We have witnessed an ever-increasing amount of RDF data made available in
different application domains. The DBpedia dataset1 has now reached a size of
2.46 billion RDF triples extracted from Wikipedia. According to the W3C, some
commercial datasets may be even bigger reaching the score of 1 trillion triples2.
The envisioned architecture to manage these huge datasets is based on elastic
cloud-based datastores supported by parallel techniques for querying massive
amounts of data [5]. In order to scale RDF storage, datasets must be partitioned
across multiple commodity servers. By placing partitions on different servers, it
is possible to speedup query processing when each server can scan its partitions
in parallel. On the other hand, message passing among servers can be required at
query time when related data is spread among arbitrary partitions. These rounds
of communication over the network can become a performance bottleneck, lead-
ing to high query latencies. Therefore, the scalability of query processing depends
on how data is partitioned or replicated across multiple servers.

RDF data are represented by triples given by subject-predicate-object
(s, p, o) statements. In an RDF dataset, triples are related to each other
representing a graph. Thus, the RDF partitioning problem has been addressed
as a graph cut problem [5,15]. Likewise the general problem, partitioning a
1 http://wiki.dbpedia.org/Datasets.
2 http://www.w3.org/wiki/LargeTripleStores.

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 305–319, 2015.
DOI: 10.1007/978-3-319-23135-8 21

http://wiki.dbpedia.org/Datasets
http://www.w3.org/wiki/LargeTripleStores

306 R. Schroeder and C.S. Hara

distributed database is known to be NP-hard [8] and, therefore, heuristic-based
approaches become more attractive. In general, the heuristics applied by current
methods are solely based on the RDF graph structure, generating partitions
that do not express query patterns of the workload. As result, the query perfor-
mance decreases when data required by the same query pattern is distributed
over different servers. Besides the workload-oblivious reasoning, most of the cur-
rent approaches apply a graph partitioner algorithm on the whole RDF graph.
However, large graphs are hard to partition.

In this paper, we introduce a data partitioning approach which overcomes
the shortcomings of current solutions by reasoning over a set of query patterns
assumed as the expected workload. The contribution of this approach is twofold.
First, partitions are extracted from clusters of data accessed together by frequent
query patterns. Such coverage of query patterns provides scalability for query
processing by reducing the amount of message passing among machines at query
time. Second, we are able to define how data items must be clustered solely
based on the structure of query patterns. The query patterns are formulated
over a summarization schema that represents the data structures for an RDF
dataset. Thus, we define partitioning templates as the partitioning strategy to
be applied to instances of an RDF structure. By doing so, we avoid exhaustive
analyses on the whole data graph for defining data partitioning.

Despite the fact that most RDF datasets are schema-free, the lack of a schema
makes it harder to formulate queries on RDF graphs and define suitable strate-
gies for indexing and clustering. In fact RDF datasets range from structured
data (e.g. DBLP) to unstructured data (e.g. Wikipedia). However, there is a bit
of regularity in RDF data [9] and it is relatively easy to recover large part of the
implicit class structure underlying data stored in RDF triples as demonstrated in
[7]. In our approach, RDF structures are applied to identify the query patterns in
order to partition datasets. By following such a workload-agnostic approach, we
are able to efficiently handle the most frequent queries. Likewise in traditional
design approaches and the so-called 20–80 rule, we favor the important 20 % of
queries which corresponds to 80 % of the total database load.

The rest of the paper is organized as follows. Section 2 introduces the parti-
tioning problem. Our workload characterization method is presented in Sect. 3.
In Sects. 4 and 5, we describe our partitioning method involving data fragmen-
tation and allocation. In Sect. 6, we experimentally investigate the impact of our
method and compare to related approach. We discuss related work in Sect. 7 and
conclude in Sect. 8.

2 Preliminaries and Partitioning Objective

RDF data can be defined as a finite set of triples composed of subject, property
and object (s, p, o). Assume there are pairwise disjoint infinite sets U and L,
where U are URIs denoting Web resources, and L are literals. Thus, an RDF
triple (s, p, o) ∈ (U ×U ×{U ∪L}). RDF follows a data model in which triples are
related to each other, which can be represented as a directed graph. We denote
an RDF graph as D. That is, D is a set of triples which denote facts where the

Partitioning Templates for RDF 307

feature3

“Classic”

product1

lab
el

du
eD
at
e

feature

feature

fla
be
l

fla
be
l

“tableW” “Large”

feature5
“2014-05”

“sale”

feature1

du
eD
at
e

product3

label

lab
el

feature

fla
be
lfeature

“tableX”“2014-06”

product2

“tableY”

fe
at
ur
e

“2014-05”

dueDate

(a)RDFGraph

SELECT ?l ?fl
WHERE{

?p label ?l.
?p dueDate ?d
?p feature ?f.
FILTER (?d = "2014-05").
OPTIONAL{

?f flabel ?fl.
}

}

(b)SPARQLQuery

?l

?p

?f?d

?fl

fla
be

l

feature

la
be
l

[=”2014-05”]

du
eD

at
e

(c)

Fig. 1. RDF graph and a SPARQL query example

subject is the origin node of a property labelled edge directed to its object node.
As an example, the subject product1 is related to the object feature1 through
the property feature in Fig. 1a.

SPARQL is the W3C Recommendation language for querying RDF datasets.
The SPARQL core syntax is based on a set of triple patterns like RDF triples
except that subjects, properties and objects may be defined as variables. In our
work, pattern graphs represent the conjunctive fragment of SPARQL queries.
We assume the existence of a set V of variables that is disjoint of the sets U
and L. Variables in V are denoted by a question mark (?) prefix.

Definition 1 (Pattern Graph): A pattern graph is denoted by G = (V,E, r)
where: (1) V ⊆ {V ∪ U ∪ L}; (2) E ⊆ (V × U × V), where for each edge (ŝ,p̂,ô)
∈ E, ŝ is the source of the edge, p̂ is the property, ô is the target of the edge; and
(3) r is a set of filter expressions for variable nodes in G. A filter is expressed in
the form ?x θ c, where ?x ∈ V, c ∈ {U ∪ L} and θ ∈ {=, >,�, <,�}. Hereafter,
we use V (G) and E(G) to denote the set of vertices and the set of edges of a
pattern graph, respectively.

An example of pattern graph is given in Fig. 1c where variable nodes are
annotated with the associated filter expressions. The conjunctive fragment of
SPARQL queries involving operators AND, FILTER, OPTIONAL and UNION
can be represented as graph patterns as follows. Pattern triples are represented
by connected nodes denoting operators AND (solid edges) and OPTIONAL
(dashed edges). To simplify, we represent pattern graphs connected by the
UNION operator as independent graphs. Figure 1b shows a SPARQL query that
retrieves data for products and features associated with product where the due-
Date is “2014-05”. The equivalent representation for the pattern graph is shown
in Fig. 1c. Observe that although in the example the query is represented as a
tree, cycles are admitted by the pattern graph definition.

The workload is defined as pattern graphs representing a set of SPARQL
queries Q. Given that SPARQL is a graph-matching language, processing a query
against RDF graphs consists of a subgraph matching problem which can be com-
puted by graph homomorphism [17]. The subgraphs shown in Fig. 2a correspond
to matches of the pattern graph of Fig. 1c applied to the RDF graph in Fig. 1a.
We use B(q) = {b1, ..., bn} to denote the result of a query q, where bi is a sub-
graph of an RDF graph D, i.e., bi ⊆ D.

308 R. Schroeder and C.S. Hara

feature

feature

product1

labe
l

du
eD
at
e

“tableW”

fl
ab
el

“Large”

feature1

“2014-05”

fl
ab
el

“sale”

feature5

feature

product3

labe
l

du
eD
at
e

“tableY”

fl
ab
el

“Large”

feature1

“2014-05”

fl
ab
el

feature3

feature

“Classic”

b
1

b
2

(a) SPARQL Query Results

“Classic”

feature1

pf
la

be
l

“sale”“Large”

pf
la

be
l

du
eD

ate

label

“tableY”“2014-05”

product3 feature3

feature feature

du
eD

ate

label

“tableW”“2014-05”

product1 feature1feature5

feature feature

Server 1

du
eD

ate

label

“tableX”“2014-06”

product2

pf
la

be
l

feature5feature3

feature

Server 2 Server 3

P
1

P
2

P
3

(b) Query Segmentation on Partitioned Datasets

Fig. 2. SPARQL query results on partitioned data

Consider now processing the same query over a partitioned dataset. Figure 2b
illustrates the graph in Fig. 1a partitioned across 3 server. When the query is
issued, it is processed in parallel in all servers. Ideally, each subgraph in a result
should be stored in a single server. However, in our example, subgraphs b1 and b2
are segmented across two servers. Retrieving b1 requires Server1 and Server3 to
be accessed, while Server1 and Server2 are needed to retrieve b2. In order to avoid
this message passing among servers, the main goal of our approach is to partition
data so that query can be processed in parallel without inter-server communica-
tion whenever it is possible. More formally, we are interested in generating a parti-
tioning P = {P1, ..., Pm}, for an RDF graph denoted by D across m servers, where
the amount of partitions required to retrieve each subgraph in a query result B(q)
is minimized. To this end, we define the segmentation of the subgraphs in B(q)
with respect to a partitioning P and a query q as follows:

Definition 2 (Query Segmentation): Given a partitioning P of an RDF graph
D, the query segmentation measure P̂ of P with respect to q is defined as:

P̂ (q,P) =
∣∣∣{(b, P) ∈ (B(q) × P)|b ∩ P �= �}

∣∣∣ −
∣∣∣B(q)

∣∣∣ (1)

In this equation, the minuend determines how many partitions (or servers)
have to be accessed to retrieve all triples in each subgraph result. That is, given
a subgraph result b ∈ B(q) and a partition P , a pair (b, P) is in the minuend
set whenever P contains a triple in b. Ideally, no subgraph should be segmented.
That is, the size of the minuend should be equal to the number of subgraphs in
the result B(q), which leads to P̂ = 0. Intuitively, P̂ measures the amount of
inter-server communication to compute a query result. Given that a workload
consists not only of a single query, but a set of queries Q, the overall objective of
our partitioning strategy is to minimize P̂ for the set Q. To this end, we assume
that each query q in the set is associated with its expected frequency in a period
of time, which is denoted by f(q). Thus, we can formally define our problem as
to find a partitioning P that minimizes the following equation:

min
∑
q∈Q

f(q).P̂ (q,P) (2)

Observe that frequent queries have a higher impact on the equation than
infrequent ones. Intuitively, our strategy is based on favoring the most frequent
queries in the workload. To achieve our goal, we characterize the workload for

Partitioning Templates for RDF 309

Fig. 3. Workload data

examining the paths traversed by the queries and their frequencies in order to
quantify the affinity between pairs of nodes. Such affinity measure is the basis
for our partitioning reasoning.

3 Workload Characterization

In this section we present a method for representing workload information. The
core of this method is based on identifying and measuring affinity relations
among RDF nodes. We start by defining an RDF Structure, containing both
the structure of the RDF graph and the expected size of its instances. Although
RDF can define a schema-free model, in general an RDF graph represents both
schema and instances. Most datasets define the type property connecting enti-
ties to their respective classes. In Fig. 3a, the RDF Structure is illustrated in the
dashed shape containing classes as well as relationships among them. An RDF
Structure is an undirected cyclic graph defined as a 6-tuple S = (C,L, l, A, s, o),
where (1) C is a set of labelled nodes representing RDF classes; (2) L is a set of
labelled nodes denoting class properties with literal values; (3) l assigns a data
type to each node in L; (4) A is a set of undirected edges (n1, n2) ∈ (C×{C∪L})
which corresponds to associations between nodes; (5) s is a function that assigns
the expected size for the instances of nodes in {C ∪ L}; and (6) o gives the
expected cardinality of associations between two nodes; that is, it is a function
that maps a pair in (C×{C∪L}) to an integer that defines for each node n1 ∈ C
the expected number of occurrences of associations to a node n2 ∈ {C ∪ L}.

Figure 3a shows an RDF Structure. In the example, o(Product, Feature) = 8
because the average number of occurrences of Feature associated to an instance
of Product is 8. Similarly, an instance of Feature is related to 3 instances of
Product in average. That is, o(Feature, Product) = 3. Besides, there are multi-
valued relationships between (Product, Offer) and (Vendor, Offer). We assume
that for the remaining associations relating any other nodes n1 and n2 in the
example, o(n1, n2) = 1. The size of a node n is not depicted in the example.
If n is a literal node, s(n) is the number of bytes needed for storing its value.

310 R. Schroeder and C.S. Hara

For class nodes, on the other hand, the size corresponds to the size required to
store their property structures. To simplify the example, we consider that for
any node n, s(n) = 1.

Given a representation of an RDF Structure, we now turn to the workload
characterization. We define a workload as a set of queries Q represented as
pattern graphs and a function f that defines the expected frequency of each
query in Q. The workload can be represented as a usage matrix as depicted in
Fig. 3b. According to the example, q1 is expected to be executed 70 times and
involves the literal nodes label, dueDate, flabel and the classes Product and
Feature.

Given a workload on an RDF Structure, the affinity of two nodes ni and nj in
an RDF Structure as the frequency they are accessed together by any query in the
workload. Towards this goal, an affinity function aff (ni, nj) takes as input a set of
queries Q and computes the sum of frequencies of queries that involve both ni and
nj by a path in a specific direction, i.e., ni is the source node and nj is the target
node. More formally, we define Qij = {q ∈ Q | (ni, pij , nj) ∈ q}, and aff (ni, nj) =∑

f(q), q ∈ Qij . As an example, consider the workload given in Fig. 3b. The
affinity between Product and label consists of the sum of frequencies of queries
q1, q2, q4 and q5. Thus, aff (Product, label) = f(q1)+f(q2)+f(q4)+f(q5) = 115.
The affinity function can be used to label edges in a directed graph involving all
nodes in an RDF Structure, as depicted in Fig. 3c. We refer to this graph as an
affinity graph, which is defined as a tuple A = (N, Ê, aff), where N is the set
of nodes in the RDF Structure and Ê is a set of edges which relates two nodes
ni and nj by an affinity value (aff(ni, nj)).

We present our partitioning technique in two steps. The first consists of
data fragmentation. That is, determining how to cut an RDF Structure in order
to keep closely related data by affinity relations in a storage unit. The second
concerns data clustering thus, it relates to the problem of allocating related
fragments in the same server.

4 RDF Fragmentation

Distributed query processing performance is not only affected by the amount
of message passing, but also by the size of the messages. A suitable size for
messages motivated us to adopt a storage threshold as the basis for our parti-
tioning technique. We refer to this storage threshold as Γ. Intuitively, our goal
is to partition nodes of an RDF Structure, such that partitions contain as many
correlated nodes as possible that can fit in a given storage size. In what follows,
we introduce the RDF fragmentation problem and our proposal for solving it.

Given an RDF Structure S = (C,L, l, A, s, o) and an affinity graph A =
(N, Ê, aff), we are interested in obtaining a fragmentation template T =
{t1, ..., tm}, m ≥ 1, such that ti is a subgraph of S,

⋃m
i=1(ti) = (N,E′), where

E′ ⊆ E and each ti is defined with disjoint sets of nodes. Figure 4a presents an
example of a fragmentation template for the RDF Structure depicted in Fig. 3a.
Instances of template t1 extracted from an RDF graph according to this frag-
mentation template are illustrated in Fig. 4.

Partitioning Templates for RDF 311

Fig. 4. Templates and fragments

Given that the fragmentation process is based on a storage threshold, we also
need the notion of the size of a fragmentation template ti ∈ T . The size of ti
is given by the sum of the expected number of occurrences of nodes multiplied
by their sizes. The tree composition of fragmentation templates requires us to
measure the node occurrence in the nested structure. The function occ(n) maps
each node in a template ti to its expected number of occurrences in an instance
of ti. It is recursively defined as follows: occ(n) = 1 if n is the root node of ti,
and occ(n) = occ(p) × o(p, n) where p is a parent node of n in ti. The size of ti
is denoted by size(ti) =

∑
n∈ti

(occ(n) × s(n)).
In order to formally state our problem, we need the notion of a strongly

correlated set scs for a node in the affinity graph, defined as follows: scs(n) =
{n′|aff (n, n′) ≥ aff (n′, n′′) for every node n′′ directly connected to n′}. Intu-
itively, scs determines which nodes have stronger affinity with n than with any
other in the graph. We denote by scs+ the transitive closure of the scs relation.

We can now state our fragmentation problem: Find T such that the following
conditions are satisfied: (1) size(ti) ≤ Γ for every ti ∈ T ; and (2) if n1 and n2

are nodes in the same fragment then n2 ∈ scs+(n1). The first condition defines
that all fragments in T must fit in Γ and the second generates fragments that are
related by affinity values higher than the values with nodes in other fragments.

As an example, consider Γ = 20 and the affinity graph depicted in Fig. 3c.
The fragmentation template in Fig. 4a satisfies our conditions because (1) the size
of templates fits in the storage threshold, that is size(t1) = 19 and size(t2) = 4;
and (2) the affinity between any node in t1 with any node in t2 is lower than
the affinity between any pair of nodes in the same fragment, for example,
aff (Offer, Product) < aff (Offer, Vendor).

We propose a fragmentation algorithm based on RDF Structures and work-
load. The Algorithm affFrag takes as input an RDF Structure S with informa-
tion on node sizes and number of occurrences, an affinity graph A and a storage
threshold Γ. The algorithm computes templates of fragments based on strongly
correlated sets of nodes if their sizes lie within Γ.

312 R. Schroeder and C.S. Hara

Algorithm 1. Algorithm affFrag
Input: RDF Structure S = (C,L, l, A, s, o), Affinity Graph A = (N,E, aff) and Γ
Output: T fragmentation template

1 T ← {};
2 allNodes ← N;
3 allEdges ← E;
4 repeat
5 (n1, nb) ←edge in allEdges with highest affinity;
6 tNodes ← {n1};
7 tEdges ← {};
8 tSize ← s(n1);
9 Occ(n1) ← 1;

10 border ← {(n1, nb)|nb ∈ allNodes};
11 allNodes ← allNodes − {n1};
12 while tSize < Γ and border! = {} do
13 (n1, nb) ← extract edge from border with highest affinity, where n1 ∈ tNodes and nb �∈ tNodes;
14 nbEdges ← {(nb, n) ∈ allEdges|n ∈ allNodes};
15 if for all edges e ∈ nbEdges: aff (e) ≤ aff (n1, nb) then
16 Occ(nb) ← Occ(n1) × o(nb);
17 if s(nb) × Occ(nb) + tSize ≤ Γ then
18 tNodes ← tNodes ∪ {nb};
19 tEdges ← tEdges ∪ {(n1, nb)};
20 border ← border ∪ nbEdges;
21 allNodes ← allNodes − {nb};
22 tSize ← tSize + s(nb) × Occ(nb);
23 end

24 end

25 end
26 T ← T ∪ {(tNodes, tEdges)};
27 allEdges ← allEdges − tEdges;
28 until allNodes = {};
29 output T ;

The algorithm processes the edges in A in descending order of affinity. Given
an edge (n1, nb), the primary goal is to compute scs(n1). The node n1 is set to
be the root of the fragment being computed because it is the source node of the
edge with the highest affinity. A new fragment is generated by processing edges
(n1, nb) in border as follows: nb is only considered to be inserted in the current
fragment if it is related with higher affinity to some element in the current
fragment than to any other outside the fragment (Lines 14-15). According to
Line 13, the candidate nodes are processed in descending order of affinity in
order to fill up the fragment with those with highest affinity. At the end, all
nodes have been assigned to some fragment. However, before inserting new nodes
in the tNodes we check whether it is possible to do so within the size of Γ given
the size and occurrence of the node to be included (Line 16-17).

As an example, consider the affinity graph of Fig. 3c and Γ = 20 as the
input to affFrag. The first edge to be processed is the one with highest affinity
involving nodes Product and label. Product is inserted into a fragment t1 as
the root node. The size of t1 is initially set to 1, given our assumption that all
nodes have size 1. Since this is below the threshold, we keep inserting nodes to
t1 among those connected to Product which are kept in border. The one with
highest affinity is label. Such node is inserted in t1, since it is not connected
to any other node with higher affinity and this insertion does not exceed the
value of Γ. The same happens for inserting nodes dueDate, Feature and flabel
into t1. At this point, tSize = 19 given the simple occurrence of dueData and
label with the multiple occurrence of Feature and flabel. The next edges
in border to be considered relates Product to Offer and price. Offer should
not be inserted in the fragment because its affinity is higher with nodes that
are not in the current fragment. Thus, the first fragment is created with nodes

Partitioning Templates for RDF 313

Product, label, dueDate, Feature and flabel. A similar process creates the
second fragment with Offer, price, Vendor and vlabel. The final fragmentation
template generated is the one depicted in Fig. 4a.

The fragmentation template defines how to partition instances of an RDF
Structure, i.e., an RDF graph. Thus, a fragment is generated for each instance
of the root node according to the fragmentation template of ti ∈ T . In the
example, t1 must generate fragments for each product instance. According to
the RDF graph of Fig. 3a, the fragment generated for product instances may be
represented by the trees in Fig. 4b.

5 Clustering Fragments

Given our approach for the fragmentation problem, we now turn to the allocation
problem. That is, given that a fragment is our storage unit, we are now inter-
ested in determining which fragments should be allocated in the same server.
Although our fragmentation algorithm cuts the affinity graph based on affinity
relations, nodes in distinct fragments may still keep strong affinity relations.
This is because the fragmentation process has been designed to satisfy a storage
threshold. Since there may be several template elements connected by affinity
relations, we choose to group the ones with stronger affinities. More specifically,
consider a fragmentation template T = {t1, ..., tm} defined based on an affinity
graph A = (N, Ê, aff). Let ET ⊆ Ê be the set of edges connecting a node in a
fragment ti to the root of a fragment tj . Observe that it is possible that i �= j
as well as i = j. By connecting templates through a root node, we are able
to extend their tree structures to define a nesting arrangement among related
data. We define a clustering template as G = {g1, ..., gn}, n ≤ m, such that G
is a forest of linked fragmentation templates. Similar to the affFrag algorithm,
groups in G are built considering edges in ET in descending order of affinity
values. Although we do not define a threshold for the group size, it is limited by
the storage capacity of the server.

According to the fragmentation template in Fig. 4a, the dashed arrows denote
unprocessed edges in the fragmentation process. As discussed before, only edges
directed to root nodes in template elements are considered to define clusters
of fragments. Here, the edges (Feature, Product) and (Offer, Product) meet
this requirement. Given that both edges are directed to Product, we choose
only one of them in order to nest Product and keep the tree structure among
the template elements. To do so, we choose the one with the highest affinity.
Figure 5a presents a clustering template that relates t1 and t2 through the edge
(Offer, Product) with the highest affinity. Instances of this cluster template are
presented in Fig. 5b.

We apply a clustering template to an RDF graph in order to extract frag-
ments and cluster them properly. Some issues can arise in this process. First, a
fragment should be generated for each of the root classes in the fragmentation
template. However, it is possible that more fragments are required given by the
variability of the size of the nodes and the number of instances for multi-valued
relationships in the RDF graph. It is important to remind that both the size

314 R. Schroeder and C.S. Hara

Fig. 5. Clustering templates and fragments

and the instances considered in the RDF structure correspond to average values
provided as the expected workload. These values are applied to predict the size
of fragments in order to define fragmentation templates. In addition, we cre-
ate edges to represent edges unprocessed by the fragmentation process. To do
so, edges are created in the fragments that contain their source nodes. As an
example, notice that the edge (Offer, Product) denotes the cut between the
fragmentation templates t1 and t2 in Fig. 4a. However, the edges among Offer
and Product instances are created in the instances of t2 in order to keep the
connection among fragments as depicted in Fig. 5a.

The tree structure created by clustering and fragmentation templates may
produce some data redundancy of nested data related to multi-valued relation-
ships. However, we control the amount of replicas by applying a threshold to the
amount of replicated data allowed. Due to space limitations, we omit a detailed
discussion here.

6 Experimental Study

We have developed ClusterRDF, a system to deploy our approach based on
an architecture where RDF data is partitioned across a set of servers over a
distributed in-memory key-value store. We use the key-value datastore Scalaris
[12] as a scalable system to leverage scalability and content locality in order
to support our clustering solution. We have conducted an experimental study
for determining the effect of our approach on the performance of query data
retrieval. We compare ClusterRDF with its closest related approaches: the one
introduced by Huang et al. [5] and Trinity.RDF [16] using the Berlin SPARQL
Benchmark (BSBM).

Huang et al. applies the METIS [1] partitioner on an RDF graph, followed by
a replication step to overlap data across partitions according to an n-hop guar-
antee. We refer to this approach as METIS-2hops because we have implemented
the undirected 2-hop guarantee version of this method. Although Trinity.RDF
is focused on providing a query engine for RDF data, this system considers a
hash partitioning of RDF nodes and the power law distribution of node degrees
to cluster data.

Partitioning Templates for RDF 315

BSBM Queries

R
es

p
o

n
se

T
im

e
(m

s)
Metis- 2hops
ClusterRDF
T rinity.RDF

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q12
0

25

50

75

100

125

150

175

200

225

(a) Response Time - 8 servers and BSBM 5

Triple Overhead
Dataset #Triples Size ClusterRDF Metis-2hops
BSBM 1 40405 10.2MB 14141 27071
BSBM 2 75620 19.2MB 22686 44615
BSBM 3 191650 48.9MB 67329 120739
BSBM 4 375163 96MB 105045 213842
BSBM 5 3567636 922.3MB 891909 1748141
BSBM 6 35300350 9.97GB 7766077 15532154
BSBM 7 100399052 27GB 20079810 40159620

(b) Statistics of datasets

Fig. 6. Response time and statistics

BSBM provides a workload with 12 queries and a data generator that sup-
ports the creation of arbitrarily large datasets using the number of products as
scale factor. Among the 12 queries defined for the benchmark, we have chosen 11,
because the remaining one does not satisfy our definition of a pattern graph. For
a specific dataset size and workload provided by BSBM, we have generated data
clusters according to ClusterRDF, METIS-2hops and Trinity.RDF. Figure 6b
summarizes the statistics of the datasets used in this study. As expected, Clus-
terRDF and Metis-2hop produce space overhead in terms of triple replication.
However, Metis-2hop produces twice as many triples compared to our method.

The goal of the experiments reported in this section is to determine the effect
of our clustering method on the system performance, and compare it with both
Metis-2hops and Trinity.RDF. The comparison is based on the response time
required to retrieve query data from the datastore.

First, we compare the clustering approaches on a cluster of 8 servers and
BSBM 5 dataset. The results are shown in Figs. 6a and 7b. The reported times
in milliseconds are the average values computed over multiple runs of the exper-
iment and represent the cost of retrieving query data in parallel on a distributed
datastore. Each server in the distributed system starts a thread and performs an
arbitrary number of local or cross-server requests to retrieve the query data. In
such a parallel retrieval, the thread that executes the highest number of cross-
server requests determines the query response time. We have collected both the
maximum number of distributed requests issued by a single server as well as
the total number of distributed requests for all threads in Fig. 7a. Observe that
the total number of distributed requests corresponds to the query segmentation
denoted by the P̂ measure (Definition 2). In addition, we have collected the
total number of requests (local and distributed) in Fig. 7b. Observe that the lat-
ter corresponds to the size of query results. That is, it is a measure of the total
number of fragments retrieved.

Cross-server Requests. As expected, there is a direct correspondence between
the number of distributed requests and the response time. That is, a high num-
ber of cross-server requests induces a high cost to retrieve data spread among

316 R. Schroeder and C.S. Hara

BSBMQueries

D

is
tr

ib
u

te
d

 R
eq

u
es

ts

Metis-2hops (total)
Metis-2hops (max./ thread)
ClusterRDF (total)
ClusterRDF (max./ thread)
Trinity.RDF (total)
Trinity.RDF (max./thread)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q12
0

5

10

15

20

25

30

35

40

(a) # DistributedRequests
BSBM Queries

T

o
ta

l R
eq

u
es

ts

Metis-2hops
ClusterRDF
Trinity.RDF

0.4

1
2
4

10
20
40

100
200
400

1k
2k
4k

(b) # TotalRequests

Fig. 7. Number of requests- 8 servers and BSBM 5

distributed servers. Indeed, observe that the execution of Q1 on ClusterRDF
requires at most 4 servers accesses per thread, which takes 37.27 ms. The exe-
cution of the same query on the Metis-2hops and Trinity.RDF almost doubles
the number of requests and has the same effect on the response time (70.94 ms
and 67.52, respectively).

Intuitively, the number of cross-server requests required to retrieve query data
measures the effectiveness of the partitioning methods. The difference between
the results for the approaches can be explained by the coverage that each method
provides in terms of the query patterns. We may say that Metis-2hops assures a
2-hop coverage for any pattern graph. However, a 2-hop guarantee is not enough
to cover the whole pattern of the majority of queries in the BSBM workload.

Trinity.RDF provides a simple pattern graph coverage in most cases given its
fine-grained storage unit based on RDF nodes. This explains why Trinity.RDF
presents the worst results among the three. ClusterRDF provides a complete
coverage for queries Q2 and Q6, given that requests are issued to only one server.
For the remaining queries, ClusterRDF does not avoid cross-server requests.
However, it reduces the number of servers to be accessed if compared to the
two other alternatives. The results reported in Fig. 6a show that ClusterRDF
outperforms Metis-2hops and Trinity.RDF for most queries, except for Q5 and
Q9. This is because ClusterRDF assigns data to clusters according to the access
pattern of the most frequent queries of the workload.

Total Requests. The size of query results is reported by the quantity of total
requests in Fig. 7b. This measure represents the total amount of fragments (stor-
age units) retrieved. Scalaris provides a functionality for packing a set of requests
for the same server into a single message for minimizing the cost of message
passing. We have observed that the cost of these packed message can be ignored
when the amount of requests is up to 10 requests per server. This measure is also
related to the amount of irrelevant data in the fragments being retrieved. Notice
that ClusterRDF requires a lower number of server requests than Metis-2hops in
Q6, however ClusterRDF achieves a higher number of fragment requests. This
can be explained by the fact that the requested data are in the same cluster but

Partitioning Templates for RDF 317

Datasets

R
es

p
o

n
se

 T
im

e
(m

s)

D
istrib

u
ted

 R
eq

u
ests

D
istrib

u
ted

 R
eq

u
ests

MET IS- 2hops (requests)
ClusterRDF (requests)
MET IS- 2hops
ClusterRDF

1 2 3 4 5 6 7
10

20

40

100

200

400

1k

2k

0

2

4

6

8

10

12

14

(a) Data Scalability for Q7

Servers (dataset BSBM_5)

R
es

p
o

n
se

 T
im

e
(m

s)

MET IS- 2hops (requests)
ClusterRDF (requests)
MET IS- 2hops
ClusterRDF

1 4 8 1 2
20

40

60

80

100

0

2

4

6

8

(b) Server Scalability for Q3

Fig. 8. Data and server scalability

probably not in the same fragment. In Trinity.RDF, this amount is even bigger
for all queries because of the its fine-grained storage model.

Data Scalability. We test the methods running on a cluster of 8 servers on
7 datasets (BSBM 1 to BSBM 7) of increasing sizes. The results are shown in
Fig. 8a for query 7(in logarithmic scale). In general, the results of these queries
increase as the size of the dataset increases. The increase of the dataset size leads
to a higher number of distributed requests in most cases. This may be explained
by a higher degree of the RDF nodes which requires to balance the load among
servers. However, this only happens when the whole set of query data items is
not set to be clustered.

Server Scalability. We have deployed the systems in clusters with varying
number of servers, and test its performance on dataset BSBM 5. The results are
shown in Fig. 8b for query 3. In general, the increase on the number of servers
brings the benefits of the parallel processing and reduces the load of servers.
However, this increase can also lead data to be distributed among servers when
query data items are not set to be clustered. We believe that the high number
of requests being performed by each thread in parallel increases the competi-
tion for resources and impacts the system performance. The worst effect of this
competition is observed in Q3 on a cluster of 8 server for METIS-2hops, where
each thread requires to access all servers. Notice that the effect of the parallel
processing only reduces the response time when system capacity is increased to
12 servers and the number of server requests remains stable.

7 Related Work

Similar to our work, there are several graph-based approaches focused on data-
base partitioning. However, they differ on the data model and the heuristics
applied. A similar heuristic is used in the traditional algorithm MakePartition
[6] proposed for relational databases. However, the number of fragments gen-
erated for a given dataset tends to be larger given that they do not focus on

318 R. Schroeder and C.S. Hara

the storage capacity of the fragments. Affinity-based solutions have also been
applied to XML fragmentation [3,11,13]. Our approach targets the RDF model
and provides an extended coverage of such affinity-based approaches by cluster-
ing affinity fragments.

Our approach to generate fragmentation templates is similar to traditional
vertical fragmentation techniques. Here, each instance of a template root node
produces a fragment with its adjacent nodes. It is also similar to the hierar-
chical data model applied by Google F1 [14]. Clustering templates may also
be associated to horizontal partitioning of traditional databases. In this paper
we have compared ClusterRDF to other methods based on RDF graphs. As
pointed out in Sect. 6, Huang et al. [5] assigns an RDF graph to a traditional
graph partitioner and replicates cross-partition nodes in order to improve the
query coverage. However, they only consider the associations of RDF vertexes
and not the query patterns in order to provide an approximated coverage. Trin-
ity.RDF [16] applies a simplest heuristic on RDF graph. In this case, high-degree
nodes are identified to be clustered together with their adjacent nodes. We have
demonstrated through a benchmark use case that a clustering approach based
on workload analysis achieves a better approximation in terms of the coverage
of frequent query patterns.

8 Conclusion Remarks

We have proposed an approach for partitioning RDF data according to an appli-
cation workload defined on the structure of RDF graphs. This work makes con-
tributions in the context of highly distributed databases, where communication
costs must be reduced to provide a scalable service. In particular, ClusterRDF is
able to reduce communication costs for distributed query evaluation by provid-
ing a suitable partition for datasets. Our experiments show that ClusterRDF can
improve the query performance by roughly 27 % to 86 %, compared to METIS-
2hops[5], a closely related approach for RDF partitioning. We have also reported
that ClusterRDF can perform up to 10 times faster then the hash-partitioning
introduced by Trinity.RDF. Although ClusterRDF and METIS -2hops replicates
RDF data in order to provide better results, ClusterRDF reduces by 50 % the
replication storage overhead produced by METIS-2hops.

Recent works evidence both the feasibility of such methods [2,10] as well
as the availability of workload data [4]. In ClusterRDF, both the query pat-
terns as well as the partitioning strategy are formulated over a summarization
schema that represents the data structures for an RDF dataset. By doing so,
the same partitioning template for a query workload may be continually applied
to new data. However, considering dynamicity of query patterns is a topic for
future work. In addition, we plan to investigate metadata management, indexing
structures and query optimization strategies.

Acknowledgments. This work was partially supported by CAPES, CNPq, Fundação
Araucária and by AWS in Education.

Partitioning Templates for RDF 319

References

1. METIS (2013). http://glaros.dtc.umn.edu/gkhome/views/metis
2. Aluc, G., Özsu, M.T., Daudjee, K.: Workload matters: why RDF databases need

a new design. PVLDB 7(10), 837–840 (2014)
3. Bordawekar, R., Shmueli, O.: An algorithm for partitioning trees augmented with

sibling edges. Inf. Process. Lett. 108(3), 136–142 (2008)
4. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-driven approach

to database replication and partitioning. VLDB Endow. 3(1–2), 48–57 (2010)
5. Huang, J., Abadi, D.J.: Scalable SPARQL querying of large RDF graphs. PVLDB

4(11), 1123–1134 (2011)
6. Navathe, S., Ra, M.: Vertical partitioning for database design: a graphical algo-

rithm. In: ACM SIGMOD International Conference on Management of Data, vol.
18, pp. 440–450 (1989)

7. Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation
for RDF queries with multiple joins. In: ICDE, pp. 984–994 (2011)

8. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice-
Hall, Inc, Upper Saddle River (1991)

9. Pham, M.: Self-organizing structured RDF in MonetDB. In: IEEE International
Conference on Data Engineering Workshops, pp. 310–313 (2013)

10. Quamar, A., Kumar, K.A., Deshpande, A.: SWORD: scalable workload-aware data
placement for transactional workloads. In: EDBT, pp. 430–441 (2013)

11. Schroeder, R., Mello, R., Hara, C.: Affinity-based XML fragmentation. In: Inter-
national Workshop on the Web and Databases (WebDB), Scottsdale (2012)

12. Schütt, T., Schintke, F., Reinefeld, A.: Scalaris: reliable transactional p2p key/-
value store. In: ACM SIGPLAN Workshop on ERLANG, pp. 41–48 (2008)

13. Shnaiderman, L., Shmueli, O.: iPIXSAR: incremental clustering of indexed XML
data. In: International Conference on Extending Database Technology - Work-
shops, pp. 74–84 (2009)

14. Shute, J., Whipkey, C., Menestrina, D., et al.: F1: a distributed SQL database that
scales. VLDB Endow. 6(11), 1068–1079 (2013)

15. Yang, T., Chen, J., Wang, X., Chen, Y., Du, X.: Efficient SPARQL query eval-
uation via automatic data partitioning. In: Meng, W., Feng, L., Bressan, S.,
Winiwarter, W., Song, W. (eds.) DASFAA 2013, Part II. LNCS, vol. 7826,
pp. 244–258. Springer, Heidelberg (2013)

16. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed graph engine for
web scale RDF data. VLDB Endow. 6(4), 265–276 (2013)

17. Zou, L., Mo, J., Chen, L., Özsu, M.T., Zhao, D.: gStore: answering SPARQL queries
via subgraph matching. VLDB Endow. 4(8), 482–493 (2011)

http://glaros.dtc.umn.edu/gkhome/views/metis

Efficient Computation of Parsimonious
Temporal Aggregation

Giovanni Mahlknecht, Anton Dignös(B), and Johann Gamper

Free University of Bozen-Bolzano, Bolzano, Italy
giovanni.mahlknecht@gmail.com, {dignoes,gamper}@inf.unibz.it

Abstract. Parsimonious temporal aggregation (PTA) has been intro-
duced to overcome limitations of previous temporal aggregation opera-
tors, namely to provide a concise yet data sensitive summary of temporal
data. The basic idea of PTA is to first compute instant temporal aggrega-
tion (ITA) as an intermediate result and then to merge similar adjacent
tuples in order to reduce the final result size. The best known algorithm
to compute a correct PTA result is based on dynamic programming (DP)
and requires O(n2) space to store a so-called split point matrix, where
n is the size of the intermediate data. The matrix stores the split points
between which the intermediate tuples are merged.

In this paper, we propose two optimizations of the DP algorithm for
PTA queries. The first optimization is termed diagonal pruning and iden-
tifies regions of the matrix that need not to be computed. This reduces
the runtime complexity. The second optimization addresses the space
complexity. We observed that only a subset of the elements in the split
point matrix are actually needed. Therefore, we propose to replace the
split point matrix by a so-called split point graph, which stores only those
split points that are needed to restore the optimal PTA solution. This
step reduces the memory consumption. An empirical evaluation shows
the effectiveness of the two optimizations both in terms of runtime and
memory consumption.

1 Introduction

In a temporal database [2,8,12,13], each tuple is associated with a time interval
that represents the time period when the represented fact is true in the modeled
reality. An important operation in temporal databases is aggregation, which has
been studied in various flavors. In instant temporal aggregation (ITA) [1,7,9,16,
17,19], the aggregate value at a time instant t is computed from the set of all
tuples whose timestamp contains t. Result tuples at consecutive time instants
with identical aggregate values are then coalesced into result tuples over maximal
time intervals during which the aggregate results are constant. By aggregating at
the finest granularity level, ITA is the most precise form of temporal aggregation
and considers the distribution of the data, however the size of the result relation
might become up to twice as large as the input relation [1]. In contrast, span
temporal aggregation (STA) [1,7,14] allows an application to specify the time

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 320–333, 2015.
DOI: 10.1007/978-3-319-23135-8 22

Efficient Computation of Parsimonious Temporal Aggregation 321

intervals for which to report result tuples, e.g., for each month in 2014. For each
of these intervals a result tuple is computed by aggregating over all input tuples
that overlap with the interval. While the result size is predictable, STA may fail
to provide good summaries of the data since the user-specified intervals do not
consider the distribution of the data.

To overcome the shortcomings of ITA and STA, the work in [5] introduced
parsimonious temporal aggregation (PTA), which combines the best features of
ITA and STA. By merging similar adjacent tuples in the ITA result, the PTA
operator remains data-sensitive, yet allows the user to control the result size.
PTA computes compact aggregation summaries that reflect the most significant
changes in the data over time.

Example 1. As a running example we use relation patients in Fig. 1a, which
stores costs of hospital stays. Each tuple records a patient P , the department D
he/she is admitted, the daily costs C and the time period T of the hospital stay.
Consider the query “What is the sum of the daily costs for each department over
time?” This can be answered by a ITA query as shown in Fig. 1b. In order to
obtain a more concise summary that reflects only the most important changes
in the data, the PTA operator should be used instead. Figure 1c shows the PTA
result with a result size of four tuples, where the ITA tuples s2, s3 and s4, s5 are
merged into the PTA tuples z2 and z3, respectively.

P D C T
r1 Bob Ortho 600 [1,4]
r2 Mary Ortho 400 [1,2]
r3 Eve Ortho 40 [3,3]
r4 Eric Ortho 310 [3,4]
r5 Joe Ortho 30 [6,6]
r6 John Ortho 300 [6,9]
r7 Alex Ortho 100 [9,9]

. t
1 2 3 4 5 6 7 8 9

r3 r5 r7

r4 r6

r2

r1

(a) Relation patients.

Val T
s1 1000 [1,2]
s2 950 [3,3]
s3 910 [4,4]
s4 330 [6,6]
s5 300 [7,8]
s6 400 [9,9]

. t
1 2 3 4 5 6 7 8 9

s3=(910) s5=(300)

s2=(950) s4=(330) s6=(400)

s1=(1000)

split point 5
split point 3

split point 1

(b) Result of ITA for SUM(C).
Val T

z1 1000 [1,2]
z2 930 [3,4]
z3 310 [6,8]
z4 400 [9,9]

. t
1 2 3 4 5 6 7 8 9

z2=(930) z3=(310)

z1=(1000) z4=(400)

(c) Result of PTA for size c = 4.

Fig. 1. Input relation patients with ITA and PTA result.

Gordevičius et al. [5] propose an exact algorithm, named PTAc, to compute
PTA queries with a given result size c. It is based on dynamic programming

322 G. Mahlknecht et al.

and has a computational complexity of O(n2c) and a space complexity of O(n2),
where n is the size of the ITA result. The algorithm computes two c×n matrices:
an error matrix, which stores the error introduced when tuples are merged, and
a split point matrix, which tells us where to split the intermediate ITA result in
order to obtain the compression with the minimal error.

Figure 2 shows the two matrices for our running example, where we reduce
the final result to c = 4 tuples. The columns i = 1, . . . , n represent the chrono-
logically ordered ITA tuples, and the rows k the PTA result size, ranging from
1 to c. An element Ek,i represents the smallest error of reducing the first i ITA
tuples to k tuples. An element Jk,i represents the index of the ITA tuple (i.e.,
split point), where the ITA relation must be split to obtain the minimal error
Ek,i. In Fig. 2, the minimal error for a PTA result of size c = 4 is E4,6 = 1400
(value in the lower right corner of the error matrix). The optimal split points can
be retrieved from the split point matrix. The first split point (from right to left)
is the value in the lower right corner of the matrix, i.e., J4,6 = 5. We use this
value as column index in the previous line of the matrix, which gives the next
split point 3, etc. The three split points are in boldface in Fig. 2b. The matrices
E and J are filled row-wise for all k = 1, . . . , c, and for each k from left to right.

i=1 2 3 4 5 6

k=1 0 1667 5700 ∞ ∞ ∞
2 - 0 800 5700 6300 12375
3 - - 0 800 1400 6300
4 - - - 0 600 1400

(a) Error Matrix E.

i=1 2 3 4 5 6

k=1 0 0 0 0 0 0
2 0 1 1 3 3 3
3 0 0 2 3 3 5
4 0 0 0 3 3 5

(b) Split Point Matrix J.

Fig. 2. Matrices used by the PTAc algorithm for n = 6 and c = 4 (Color figure online).

In this paper, we propose two optimizations of the PTAc algorithm [5]. The
first optimization is diagonal pruning, which identifies regions of the error matrix
E and split point matrix J that need not to be computed (see light gray cells
in Fig. 2). This reduces the number of computations and thus the runtime. The
second optimization is to replace the split point matrix by a split point graph.
By analyzing the split point matrix, we discovered that many elements in the
matrix become obsolete during the computation, that is they are not needed
in order to construct the optimal solution once the DP scheme has completed.
Such split points could be eliminated during the incremental computation of
the matrix, yielding a sparse matrix. In Fig. 2b, the split points marked in dark
gray become obsolete when the next level of the matrix is computed. As a more
memory efficient solution we propose a split point graph, which stores only those
matrix elements that need to be kept until the DP scheme terminates.

Efficient Computation of Parsimonious Temporal Aggregation 323

To summarize, the main contributions of this paper are as follows:

– We show how diagonal pruning identifies regions of the error and split point
matrices that need not to be computed; this reduces the runtime.

– We replace the split point matrix by a memory-efficient split point graph,
storing only those split points that are needed to restore the optimal solution.

– We conduct an experimental evaluation that shows the effectiveness of our
optimization techniques.

The rest of the paper is structured as follows. Section 2 discusses related work.
Section 3 describes how to prune the search space of the DP scheme. Section 4
describes the split point graph as a memory efficient alternative to the split point
matrix. In Sect. 5 we present the results of an experimental evaluation.

2 Related Work

Various forms of temporal aggregation have been studied in the past (for an
overview see [3]). They differ mainly in how the time line is partitioned. Instant
temporal aggregation (ITA) [7,9,17] operates at the smallest granularity level.
Conceptually, it computes for each time instant t an aggregate over all tuples
that hold at t, followed by a coalescing phase that combines consecutive time
instants with identical aggregate values into tuples over time intervals. Moving-
window (or cumulative) temporal aggregation (MWTA) [11,14,19] extends ITA
and computes for each time instant t the aggregate values over all tuples that
hold in a window that is anchored at t. Though ITA and MWTA work at the
most detailed level and provide data sensitive summaries, the main drawback is
that the result size might become up to twice as large as the input relation. Span
temporal aggregation (STA) [1,7,14] allows the user to control the result size by
partitioning the time line into intervals that are specified in the query. For each
such interval, a result tuple is computed over all argument tuples that overlap
with that interval. STA does not consider the distribution of the data, and most
approaches consider only regular time spans expressed in terms of granularities,
e.g., years or months.

The work in [1,17] provides a uniform framework that generalizes previous
temporal aggregation operators and allows the comparison of different temporal
aggregation variants.

Tao et al. [15] were the first to introduce an approximate temporal aggrega-
tion technique. For a given time interval, it finds an approximate aggregation
result from all tuples that overlap with that interval, thus approximating span
temporal aggregation. By approximating STA, the method is not data-sensitive.

Another approximation operator is parsimonious temporal aggregation [4,5],
which aims to overcome limitations of previous temporal aggregation operators.
It is an approximation of ITA, hence it is data sensitive yet allows to control the
size of the result relation. Thus, the operator combines the best features of ITA
and STA. In this paper, we provide two optimization techniques for the dynamic
programming algorithm in [5] that computes correct PTA results.

324 G. Mahlknecht et al.

3 Diagonal Pruning

The PTAc algorithm uses a dynamic programming technique to compute two
matrices, the error matrix Ec×n and the split point matrix Jc×n, each with c
columns and n rows, where c is the size of the reduction (i.e., the size of the
PTA result) and n is the number of tuples in the input relation.

In this section we propose an approach, called diagonal pruning that omits
unnecessary computations by reducing the search space of the dynamic program-
ming algorithm.

Consider the cell Ek,i of the error matrix, i.e., the cell of the kth row and ith

column in E. For this cell the PTAc algorithm computes the minimum cost to
merge the first i (1 ≤ i ≤ n) input tuples 〈s1, . . . , si〉 into k (1 ≤ k ≤ c) result
tuples 〈z1, . . . , zk〉. The idea of diagonal pruning is to stop the computation of
matrix elements when i becomes too large, that is, when not enough input tuples
(n − i) are left to produce c − k result tuples.

Lemma 1 (Diagonal Pruning). For the computation of the error matrix E
and split point matrix J, given input size n, result size c, row k and column
variable i, i can be upper-bounded by i ≤ n − (c − k).

Proof. Recall that cell Ek,i of the error matrix stores the cost to merge the first
i of the n input tuples into k result tuples. The cost to merge a given number
of tuples into c result tuples is always lower than to merge it into < c result
tuples, since value-equivalent an adjacent tuples do not exits in the result of
temporal aggregation. Thus, to prove the lemma we need to show that, when
i > n − (c − k), there are not enough input tuples left to produce c result
tuples. Consider i = n − (c − k) + 1. The first n − (c − k) + 1 input tuples are
merged into k result tuples. In total we need c result tuples, but there are only
n− (n− (c−k)+1) = n−n+ c−k−1 = c−k−1 input tuples left to be merged
into c − k, which is not possible. The same arguments apply for the split point
matrix J.

Example 2. Consider our running example with 6 input tuples and c = 4 in
Fig. 2. The computation of E3,6 is unnecessary, since it is the cost of merging
the first 6 input tuples into 3 result tuples, but there are no input tuples left to
merge the input into 4. As such this result can never be used to compute E4,6.
Similar for E2,5, E2,6, E1,4, E1,5 and E1,6. In Fig. 2a elements that need not to
be computed are marked in light gray.

The number of cells in the matrix that can be pruned by diagonal pruning
depends on the reduction size c. In the k-th row of the matrix (c − k) cells can
be pruned. For c rows this yields

∑c
k=1 (c − k) = c2−c

2 pruned cells. Diagonal
pruning does not only reduce the number of computations, but it also reduces
the space consumption, since pruned cells do not have to be stored (see next
section).

The upper bound i defined by diagonal pruning can also be used in combina-
tion with the upper bound imax provided in the PTAc algorithm [5],

Efficient Computation of Parsimonious Temporal Aggregation 325

which considers temporal gaps in the data. By taking the minimum of the two
upper bounds we can obtain an even more effective pruning. Notice, however,
that the pruning strategy in [5] works only if the data contain gaps, whereas our
pruning strategy is independent of the data.

4 Space-Efficient PTA Computation

In this section, we address the quadratic space complexity of the PTAc algorithm.

4.1 Overview and Approach

Recall that the PTAc algorithm uses two matrices: an error matrix E, which
stores the error introduced when tuples are merged, and a split point matrix J,
which tells us where to split the intermediate ITA result in order to obtain the
compression with the minimal error.

The error matrix falls into a category of dynamic programming problems,
where a straightforward space reduction can be applied [6,10]. Since the compu-
tation of row k in E requires only the result of row k−1, only the last two rows
need to be kept in memory, yielding linear space complexity. This optimization
is already implemented in PTAc.

Unfortunately, this is not true for the split point matrix J. The optimal split
points that minimize the merging error can only be retrieved from the split
point matrix after the dynamic programming scheme terminates, i.e., when the
elements Ec,n and Jc,n in the lower right corner of the error and split point
matrix, respectively, are computed. Therefore, the PTAc algorithm has to store
the complete matrix, yielding O(n2) memory complexity.

By analyzing the split point matrix we observed that some split points in the
matrix become obsolete during the computation of the DP scheme, hence they
can be removed and need not to be kept until the end. More specifically, after
computing a row k of the split point matrix, it is possible to identify split points
in row k − 1, which cannot become part of any optimal solution anymore. This
yields a sparse matrix, where only a small number of elements need to be stored
until the end. In Fig. 2b, all matrix elements with a dark gray background could
be removed.

In the remainder of this section we introduce the split point graph, which
provides an efficient representation of the sparse split point matrix.

4.2 Split Point Graph

The split point graph is an alternative and memory-efficient structure to store the
same information as in the matrix J. In contrast to the matrix, the cells that are
not computed thanks to diagonal pruning are not stored in the graph. Moreover,
during the computation nodes can be eliminated once we are guaranteed that
they cannot become part of any solution with minimum error.

326 G. Mahlknecht et al.

The split point graph is organized into levels. Each level k corresponds to
a row of the split point matrix. A node in the split point graph has a label
representing a split point, and at most one outgoing edge. We denote by Nk,i

the node in the split point graph that corresponds to the cell Jk,i of the split
point matrix. Node Nk,i at level k has label i and points to a parent node at level
k− 1; nodes on level 1 have no outgoing edges. By following a path from a node
Nk,i up to level 1 we obtain the split path, i.e., sequence of split points, that incurs
the minimum error when reducing the first i tuples to size k. Consequently, the
split path for the PTA result relation of size c can be retrieved by following the
path from node Nc,n upwards until level k = 1 is reached.

Example 3. The split point graph for our running example is shown in Fig. 3d.
The split points for the reduction of 6 input tuples into 4 result tuples is obtained
from the labels, following the edges starting from node N4,6 up to a terminating
node. The split path for our running example is [5, 3, 1] (compare to Fig. 1b).

Graph Construction. The split point graph is constructed level-wise for k =
1, . . . , c. A node is inserted for each i = k, . . . , (n − (c − 1)), hence unnecessary
nodes that are not computed thanks to diagonal pruning are not inserted. For
each new node at level k, an edge to a parent node in level k − 1 is inserted.
The parent node is the node whose label corresponds to the split point element
that is computed by the PTAc algorithm. To find the parent node efficiently, we
keep a hash map on the node labels of the preceding row. Figure 3 shows the
level-wise construction of the split point graph for our running example.

Path Pruning. A node Nk,i of the split point graph can have multiple incoming
edges if the merging of tuples si and si+1 is either not possible due to a gap or
would result in a higher cost. If some nodes have more than one incoming edge,
some other nodes must have no incoming edge since the number of nodes at each
level is the same. We call such nodes orphan nodes. Orphan nodes are guaranteed
not to be part of the final optimal split path, since they are not reachable from
node Nc,n, where the optimal split path starts.

Orphan nodes at level k can be detected once the nodes at level k + 1 have
been computed, since only nodes at level k + 1 can have edges to nodes at level
k. In the split point matrix orphan nodes correspond to the split points that are
not reachable from the next row. For instance, in Fig. 3 node N2,4 is identified as
an orphan node, since level 3 has been computed and the node has no incoming
edge. The node corresponds to the entry J2,4 in the split point matrix shown in
Fig. 2b. This element is not reachable, as there is no cell with value 4 in row 3.

To efficiently detect orphan nodes during graph construction, we store an
edge counter in each node, which counts the number of incoming edges. The
counter is incremented whenever a new edge pointing to that node is inserted.
When a row k is completed, we scan through the map of row k−1 to find orphan
nodes, i.e., nodes with an edge count of 0. If an orphan node is encountered, it is
deleted from the graph, and the edge counter of its parent node is decremented.

Efficient Computation of Parsimonious Temporal Aggregation 327

If the parent node becomes an orphan node due to the deletion of a child node,
we recursively apply this deletion procedure. This process is called path pruning,
and it is applied each time a new row has been completed. For instance, when we
delete node N2,4 in Fig. 3c, node N1,3 becomes also orphan and can be deleted.

k=1

k=2

k=3

k=4

1 2 3 4 5 6

(a)

1 2 3 4 5 6

1 2 3 4 5 6

(b)

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

(c)

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

(d)

Fig. 3. Construction of split point graph. Gray boxes are never computed nor stored
due to diagonal pruning. Gray framed boxes are eliminated due to path pruning (Color
figure online).

Example 4. Figure 3 shows the step-by-step construction of the split point graph.
In Fig. 3a, three root nodes are created. The labels of these nodes correspond
to the index of the chronologically ordered input tuples 〈s1, . . . , sn〉. For exam-
ple, the third node represents that in order to reduce the first three tuples to
one tuple, the split point is at tuple s3, that is all tuples are merged together.
Figure 3b illustrates the computation of the second row, which inserts again three
new nodes in the graph. The nodes 2 and 3 point to parent 1. This represents
that in order to compress the first two or three tuples to two tuples, we have
to split at tuple s1. Similarly, if the tuples s1, . . . , s4 are reduced to two tuples,
the split point is at tuple s3. Since the node 2 at level 1 has no incoming edge,
path pruning can be applied and the node is removed from the graph. Figure 3c
shows the computation of the third level of the split point graph. At this level,
path pruning removes node 4 at level two and node 3 at level one. Figure 3d
shows the final split point graph. The split path of the optimal solution can be
retrieved by starting from node 6 (right most leave node) and following the path
up to the root node 1. The labels of the intermediate nodes along this path are
the split points, i.e., {5, 3, 1}.

4.3 Analysis

When using the split point graph instead of the split point matrix, split points
that are not computed thanks to diagonal pruning are not stored in the graph.
The number of elements that need to be computed despite diagonal pruning is
(n− c+1) · c. Depending on c, the maximum number of nodes of the split graph
with diagonal pruning reaches the value n2+2n+1

4 for c = n+1
2 .

Additionally to diagonal pruning, we apply path pruning, which eliminates
nodes that cannot be part of the final optimal path. Path pruning can be applied
when nodes during computation have no incoming edges, due to other nodes that

328 G. Mahlknecht et al.

have a smaller cost or due to gaps between tuples that are always a split point.
In our experiments we observed that on average path pruning removes 65% of
the nodes in the split point graph.

Figure 4a shows the number of elements of the split point matrix computed
by PTAc (i.e., n · c), the number of nodes in the split point graph with diagonal
pruning but without path pruning (i.e., (n− c+1) · c), and the number of nodes
in the split point graph with path pruning when 65% are removed on average.

0

5

10

15

20

25

0 1 2 3 4 5

N
o
d
es

[1
0
6
]

Reduction size c [103]

PTAc

Graph without path pruning

Graph with average path pruning

(a) Number of nodes.

0

50

100

150

200

0 1 2 3 4 5

M
em

o
ry

[M
B

]

Reduction size c [103]

PTAc

Graph without path pruning

Graph with average path pruning

(b) Memory usage.

Fig. 4. Impact of diagonal pruning and path pruning (n = 5000).

The effect of path pruning depends on the reduction size c. For a small
reduction size c, more paths can be pruned than for large values of c. For large
values of c, almost all nodes are part of a possible split path, because almost
between any input tuple a split point is placed. This is the reason why the graph
with path pruning is right-skewed in practice, as we will see in the experimental
evaluation in Fig. 9.

When using a split point graph instead of a matrix, nodes can be pruned,
but more space is required for single elements, since nodes need to be connected
by pointers and we additionally need an (incoming) edge counter per node for
path pruning. An element in the matrix requires 64 bits in our implementation,
whereas for a node we need 192 bits (64 bit each for label, pointer and counter).
Figure 4 illustrates the number of nodes and the corresponding memory usage for
the matrix, the graph without path pruning and the graph with path pruning.

5 Experimental Evaluation

In this section, we compare our proposed optimizations with the original PTAc
algorithm. We show that diagonal pruning reduces the runtime of PTAc and
that our split point graph successfully reduces the space requirements.

5.1 Setup and Data

For the experiments we used an Intel 1.7 GHz Core i5 machine with 8 GB main
memory running Mac OS X. The algorithms were implemented in C++ and run
on a single core.

Efficient Computation of Parsimonious Temporal Aggregation 329

We used two datasets: (1) ETDS, a synthetic employee data set donated
by F. Wang [18], which records the evolution of employees in a company, and
(2) SYNTH, a synthetic dataset. The values of the aggregation attribute are
uniformly distributed in the range [1;1000], and the duration of the tuples’
timestamp is uniformly distributed in the range [1;40].

The input of the PTAc algorithm is the result of an instant temporal aggre-
gation (ITA) query shown in Table 1. The runtime to create the ITA result is
not included in the measurements.

Table 1. ITA queries used as input for the experiments.

Name Grouping attributes Aggregation function ITA size cmin

ETDS deptno avg(salary) 57,408 9

SYNTH none avg(value) 500,000 1

In the experiments we compare the original PTAc algorithm with a matrix
implementation that extends the PTAc with diagonal pruning (MP) and the graph
implementation with path pruning and diagonal pruning (GP). An overview is
given in Table 2.

Table 2. Algorithm configuration used for experimental evaluation.

Label Split point implementation Diagonal pruning

PTAc matrix no

MP matrix yes

GP graph yes

5.2 Diagonal Pruning

In the first experiment we show the impact of diagonal pruning on the runtime
performance of PTAc. We use 5000 records each from SYNTH and ETDS as
input and vary the reduction size c from 100 to 4600. Fig. 5 shows the runtime
performance of the original PTAc algorithm (PTAc) and the matrix implemen-
tation with diagonal pruning (MP). As expected MP always outperforms the
original PTAc algorithm thanks to the pruning strategy. The improvement of
the runtime grows with an increasing reduction size c, since with a larger c more
cells of the matrix can be pruned (cf. Lemma 1).

330 G. Mahlknecht et al.

0

4

8

12

0 1 2 3 4 5

R
u
n
ti

m
e

[s
]

Reduction size c [103]

PTAc
MP

(a) Dataset: ETDS.

0

50

100

150

0 1 2 3 4 5

R
u
n
ti

m
e

[s
]

Reduction size c [103]

PTAc
MP

(b) Dataset: SYNTH.

Fig. 5. Runtime for varying reduction size c, with and without diagonal pruning.

5.3 Graph Implementation

In the next experiment we compare the overhead of the split point graph imple-
mentation (GP) with respect to the matrix implementation (MP), using the
same setting as in the previous experiment. The result is shown in Fig. 6. The
overhead by GP in terms of runtime compared to MP is very small. It is mainly
due to the overhead of the dynamic graph structure and path pruning.

0

2

4

6

8

0 1 2 3 4 5

R
u
n
ti

m
e

[s
]

Reduction size c [103]

GP
MP

(a) Dataset: ETDS.

0

20

40

60

80

0 1 2 3 4 5

R
u
n
ti

m
e

[s
]

Reduction size c [103]

GP
MP

(b) Dataset: SYNTH.

Fig. 6. Runtime for varying reduction size c, matrix versus graph.

In the next experiment we choose small values of c, where diagonal pruning
has little effect. We vary the input cardinality and compare the graph implemen-
tation GP with the original PTAc algorithm. Figure 7 shows the comparison for
c = 1%, 5% and 10% of the input cardinality. We can see that even for small
values of c, GP has a better or comparable runtime performance.

5.4 Space Efficiency

We now compare the space requirement of the GP algorithm that uses the split
point graph and the original PTAc algorithm that uses a matrix. We focus only
on the split point implementation of the two approaches. The size of a node in

Efficient Computation of Parsimonious Temporal Aggregation 331

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

R
u
n
ti

m
e

[s
]

Input cardinality n [103]

PTAc c=10%

GP c=10%

PTAc c=5%

GP c=5%

PTAc c=1%

GP c=1%

(a) Dataset ETDS.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

R
u
n
ti

m
e

[s
]

Input cardinality n [103]

PTAc c=10%

GP c=10%

PTAc c=5%

GP c=5%

PTAc c=1%

GP c=1%

(b) Dataset SYNTH.

Fig. 7. Runtime for varying input cardinality n, matrix versus graph.

the split point graph is 192 bits (64 bit label, 64 bit incoming edge counter for
path pruning and 64 bit pointer), whereas the size of a cell in the split point
matrix is 64 bits. We use both data sets, ETDS and SYNTH, and vary the
cardinality of the input. Figure 8 shows the memory usage in MB for c values of
1%, 5% and 10% of the input cardinality. We can observe that GP uses much
less space than the matrix implementation. The average values over all input
cardinalities are given in Table 3, where for instance −86.8% means that GP
uses 86.8% less memory than PTAc.

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

M
em

o
ry

[M
B

]

Input cardinality n [103]

PTAc, c=10%
GP, c=10%
PTAc, c=5%
GP, c=5%
PTAc, c=1%
GP, c=1%

(a) Dataset: ETDS.

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

M
em

o
ry

[M
B

]

Input cardinality n [103]

PTAc, c=10%
GP, c=10%
PTAc, c=5%
GP, c=5%
PTAc, c=1%
GP, c=1%

(b) Dataset: SYNTH.

Fig. 8. Memory usage for varying input cardinality n, matrix versus graph.

Next, we analyze the space reduction of our optimizations when varying c. We
use 5000 records of our data sets and compare the original matrix implementation
(PTAc) with the graph implementation with path pruning (GP) and the graph
implementation without path pruning. The result is shown in Fig. 9.

The experiments confirm our previous analysis and show that the split point
graph implementation with path pruning (GP) successfully reduces the memory
requirements for the computation of PTA. The matrix implementation (PTAc)

332 G. Mahlknecht et al.

Table 3. Average memory usage of GP compared to PTAc.

Dataset Reduction size in % of the input

1% 2% 5 % 10 %

ETDS -86.8 % -89.2 -85.5 % -77.6 %

SYNTH -85.9 % -85.8 % -78.6 % -67.9 %

0

50

100

150

200

0 1 2 3 4 5

M
em

o
ry

[M
B

]

Reduction size c [103]

PTAc

Graph without path pruning

GP

(a) Dataset: ETDS.

0

50

100

150

200

0 1 2 3 4 5
M

em
o
ry

[M
B

]

Reduction size c [103]

PTAc

Graph without path pruning

GP

(b) Dataset: SYNTH.

Fig. 9. Memory usage for varying reduction size c, matrix versus graph.

and the graph implementation without path pruning are independent of the data
distribution; therefore, they use the same amount of memory for both datasets.
GP has a huge pruning effect. It prunes approximately 2/3 of the graph. Path
pruning is more effective for the ETDS data set, since more dominant nodes in
the graph exist that attract more incoming edges, which results in more orphan
nodes that can be pruned.

6 Conclusion

In this paper, we introduced two optimization techniques for the PTAc algo-
rithm to compute correct parsimonious temporal aggregation queries. The first
optimization decreases the runtime of the algorithm by reducing the search space
of the dynamic programming scheme adopted by PTAc. The second optimiza-
tion regards the memory consumption, which for PTAc is quadratic in the input
data. We proposed to replace the split point matrix by a split point graph,
which stores only those split points that are needed to restore the optimal PTA
solution. Experiments showed that the two optimizations reduce the memory
requirements to about one third of the memory required by the original PTAc
algorithm. The effectiveness of both optimizations depends on the compression
rate. The best memory reduction is achieved for a reduction size up to 10 % or
greater than 80 % of the input relation. Runtime improvements are present for
all reduction sizes. The maximum effect is achieved when the reduction size is
close to the size of the input relation.

Efficient Computation of Parsimonious Temporal Aggregation 333

As part of future work we will study whether the proposed optimization
techniques can be generalized to other dynamic programming problems and
algorithms.

References

1. Böhlen, M.H., Gamper, J., Jensen, C.S.: Multi-dimensional aggregation for tempo-
ral data. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos,
M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol.
3896, pp. 257–275. Springer, Heidelberg (2006)

2. Dignös, A., Böhlen, M.H., Gamper, J.: Temporal alignment. In: SIGMOD, pp.
433–444 (2012)

3. Gamper, J., Böhlen, M.H., Jensen, C.S.: Temporal aggregation. In: Liu, L.,
Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 2924–2929. Springer,
Heidelberg (2009)

4. Gordevicius, J., Gamper, J., Böhlen, M.H.: Parsimonious temporal aggregation.
In: EDBT, pp. 1006–1017 (2009)

5. Gordevicius, J., Gamper, J., Böhlen, M.H.: Parsimonious temporal aggregation.
VLDB J. 21(3), 309–332 (2012)

6. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J.
ACM 24(4), 664–675 (1977)

7. Kline, N., Snodgrass, R.T.: Computing temporal aggregates. In: ICDE, pp. 222–
231 (1995)

8. Lorentzos, N.A.: Period-stamped temporal models. In: Liu, L., Özsu, M.T. (eds.)
Encyclopedia of Database Systems, pp. 2094–2098. Springer, Heidelberg (2009)

9. Moon, B., Lopez, I.F.V., Immanuel, V.: Efficient algorithms for large-scale tempo-
ral aggregation. IEEE Trans. Knowl. Data Eng. 15(3), 744–759 (2003)

10. Myers, E.W., Miller, W.: Optimal alignments in linear space. Comput. Appl. Biosci.
4(1), 11–17 (1988)

11. Navathe, S.B., Ahmed, R.: A temporal relational model and a query language. Inf.
Sci. 49(1–3), 147–175 (1989)

12. Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer, Norwell
(1995)

13. Snodgrass, R.T.: Developing Time-Oriented Database Applications in SQL. Mor-
gan Kaufmann, San Francisco (1999)

14. Snodgrass, R.T., Gomez, S., McKenzie, L.E.: Aggregates in the temporal query
language TQuel. IEEE Trans. Knowl. Data Eng. 5(5), 826–842 (1993)

15. Tao, Y., Papadias, D., Faloutsos, C.: Approximate temporal aggregation. In: ICDE,
pp. 190–201 (2004)

16. Tuma, P.: Implementing Historical Aggregates in TempIS. Ph.D. thesis, Wayne
State University, Detroit, Michigan (1992)

17. Lopez, V.I.F., Snodgrass, R.T., Moon, B.: Spatiotemporal aggregate computation:
A survey. IEEE Trans. Knowl. Data. Eng. 17(2), 271–286 (2005)

18. Wang, F.: Employee temporal data set (2009). http://timecenter.cs.aau.dk/
19. Yang, J., Widom, J.: Incremental computation and maintenance of temporal aggre-

gates. VLDB J. 12(3), 262–283 (2003)

http://timecenter.cs.aau.dk/

TDQMed: Managing Collections
of Complex Test Data

Johannes Held(B) and Richard Lenz

Computer Science 6 (Data Management),
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany

{johannes.held,richard.lenz}@fau.de

Abstract. Medical devices like Medical Linear Accelerators (LINAC)
are extensively tested before they are used in routine practice. Such sys-
tems typically interact with multiple other systems that produce com-
plex input data, like medical images annotated with extensive metadata.
Before such a system is actually used in a hospital with real patients
it has to be tested with test data as realistic as possible. Suitable test
data, however, cannot be easily generated. For this reason vendors typi-
cally accumulate large collections of patient files over the years to have
them available for various test scenarios. In the TDQMed project we
have developed methods and tools that enable a tester to estimate both
the quality of a test data collection and its applicability for a particu-
lar test goal. A prototype system has been implemented to demonstrate
the feasibility of measuring specific test data related quality criteria like
coverage of test space and closeness to reality. An evaluation with pro-
fessional testers indicates that the overall approach is promising.

Keywords: Test-data quality · Knowledge discovery · Information
extraction and integration

1 Introduction

The system test of data-intensive and data-driven systems – in our case medical
devices – bears some impediments. In our project, test data are patient files
composed of DICOM1 images from modalities like CT or MRT, treatment plans
like DICOM-RT2 for e.g. cancer therapy, and other medical documents. Every
patient is unique and the device has to be capable to process the corresponding
patient data flawlessly. Only for very special purposes, these test data items
may be generated despite their complexity. For example, test data generation
can be used for stress tests, as is it unlikely to find a real patient file containing
e.g. a lot of images. Generated test data with intentional errors can be used to
test the system’s overall reaction to corrupted input. Yet, these errors are still
artificial and do not resemble reality and complexity of a live system or a patient,
1 Digital Imaging and Communications in Medicine [9,10].
2 DICOM-RT is an extension suited for radio therapy [8].

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 334–347, 2015.
DOI: 10.1007/978-3-319-23135-8 23

TDQMed: Managing Collections of Complex Test Data 335

somewhat a requirement for proper system testing. Therefore, manufacturers of
medical devices collect patient files in big test data collections to resemble the
huge variety needed for system testing. To adapt these collections to new medical
devices and scenarios, new test data has to be added and the collection evolves
(and degrades) over time and suffers from low accessibility. Availability of test
data impacts the test planning and execution and testers need to know to what
extent the collected test data supports the actual test goals. As the software
testing of new medical devices is pending, manufactures need to know how good
their available test data covers the needed variety of scenarios to ensure a proper
test planning and acquisition of test data.

We propose a concept to measure test-data quality and introduce metrics
to gauge a test data collection’s applicability for system testing data-intensive
systems like medical devices. Therefore, we build an index on test data items
based on test scenarios (classes of input) and analyse their distribution in the test
space. We assess test-data quality by different indicators to assist test planning.
One indicator is the early identification of non-testable test cases due to missing
test data as this early knowledge can enables a timely acquisition of test data.
Another indicator is the assessment of the test data collection’s closeness to
reality, estimating to what extent test cases can be executed with realistic input
data. Another indicator is an estimation of the test data collection’s diversity.
This can be used to detect clusters and potentially redundant test data items,
which can be removed from the test data collection to reduce its complexity and
overall size.

Background and Method. We had a close cooperation with our project part-
ner and one validation partner. Our project partner is specialized in testing
medical devices and develops software solutions for model-based testing. The
results of our research are going to be implemented in their software to add a
test-data quality component. The validation partner is a major manufacturer
of medical devices and two divisions, planning and executing system tests, were
available for rounds of talks and validation meetings. Due to our partner’s align-
ment, we decided on the test phase system test. During the project’s lifespan,
we met every month to ensure a target-aimed research. We interviewed domain
experts and test experts about their requirements for test data collections and
asked for their notion of quality. Based on that, we developed generic quality
criteria and analysis methods for test data collections.

Structure. In Sect. 2 we give an overview on related work. We then describe
our concepts of test space and scenario, and our test-data quality indicators
and data model in Sect. 3. Section 4 describes in detail proposed analyses to
gauge test-data quality. We specify calibration techniques in Sect. 5 and present
implementation details of our prototype in Sect. 6. The evaluation, based on
questionnaires on our proposed methods, is given in Sect. 7 and is followed by
an overall discussion in Sect. 8. Section 9 summarizes our contribution.

336 J. Held and R. Lenz

2 Related Work

Data quality is an interdisciplinary research topic which is discussed in different
research communities from different viewpoints. Different approaches for generally
applicable frameworks for data quality have been proposed (e.g.: [1,13,17–19]).
A common understanding is that data quality is multi-dimensional. Most general
approaches to data quality try to identify and classify typical dimensions of data
quality along with typical indicators that can measure such a particular data qual-
ity aspect. Examples for frequently mentioned data quality dimensions are correct-
ness, accuracy, completeness, consistency and currency. However, the definitions
for these dimensions differ greatly.Moreover, each of these dimensions typically can
be broken down to more specific criteria, which might be relevant or irrelevant in a
particular context. Juran [7] coined the term ‘fitness for use’ as a definition for qual-
ity in general and data quality in particular. This definition also underpins the view
that ‘data quality lies in the eyes of the beholder.’ Thus, it is not surprising that
data quality dimensions need to be redefined, reinterpreted or at least adjusted to
the particular context of test data management. Correctness of data, for example,
is usually understood as ‘absence of errors.’ This is an important quality dimension
for a typical production context, where data is used to control processes or support
decisions. Test data, however, have a different use, namely to determine whether a
system can deal with a potential input or workload. It might even be an explicit test
goal to check whether the system can deal with incorrect data. Obviously, general
classifications of data quality criteria will not deliver a ready-to-use framework for
measuring test-data quality, but they can help to systematically investigate what
data quality in the context of test data actually means. Once, the relevant dimen-
sions for test-data quality have been identified, we must find indicators and metrics
that can contribute to measuring these criteria.

Test data are of good quality if they are suitable to support the particular
test goals. Testing in general is aimed at reducing the number of hidden errors as
early as possible. For the type of systems we are looking at, a complete test of all
imaginable circumstances is impossible, so test case creation and selection is of
utmost importance. Regarding black-box and system testing, a lot of researchers
have proposed methods for adequate test case prioritization and selection.
Di Nardo et al. surveyed four techniques of test case prioritization for regression
tests, focussing on various coverage criteria for e.g. code coverage and examined
the influence of coverage granularity on the results [6]. Thomas et al. proposed
a black-box technique that does not depend on source code or access to the
system under test [16]. They analyse ‘linguistic’ properties (like identifier name,
comments, etc.) of test case descriptions and use text analysis algorithms to
identify a test case’s function.

3 Model, Mapping and Metrics

We propose two criteria to describe quality of test data, valued as a test data
collection’s applicability for test goals.

TDQMed: Managing Collections of Complex Test Data 337

Fig. 1. At a glance: coverage of test space and closeness to reality.

Coverage of Test Space. The quality of a test data collection is indicated by
the ratio of the size of scenarios contained in the test data items to the size of
scenarios in the test space.

Closeness to Reality. The quality of a test data collection is indicated by
its degree of similarity to a reference data collection. The similarity measure is
based on the coverage of scenarios and the distribution of both data collections
in the test space.

Test Space and Scenario. According to Ostrand and Balcer [11] a test space
S of a test goal g contains all possible scenarios, that are classes of input for
the system under test for that test goal. For the sake of brevity, we consider
only one test goal (and test space) for the remainder of this paper. A scenario
is influenced by parameters and environment, which can be described as test-
relevant attributes. Such an attribute A is defined by its range, which is a set of
nominal, ordinal or numerical values.

A = {a1, a2, . . . , ak} (1)

Domain experts and test experts need to identify these test-relevant attributes
for every test goal. Using our domain specific language (DSL), they create a
configuration A that describes all test-relevant attributes (see Sect. 6). The
crossproduct of all test-relevant attributes Ai ∈ A for the test goal yields all
possible scenarios, thus building the n-dimensional test space S.

S =
∏
A

= A1 × A2 × · · · × An (2)

A scenario s ∈ S = (v1, v2, . . . , vn) resembles a class of input and is the minimum
unit of the test space S. Test data items are indexed by their contained scenarios.

338 J. Held and R. Lenz

Assume a test goal whose scenarios are constituted by three test-relevant attributes
A1 (‘patient position’), A2 (‘beam energy’) and A3 (‘region’).

A1 = {HFS,HFP,FFS}, A2 = {1, 2, 5, 10}, A3 = {Throat,Lung,Hand}
The test space S = A1×A2×A3, contains 3 ·4 ·3 possible scenarios. E.g. a scenario
(HFS, 5,Hand) reads as ‘Use a treatment plan for a patient in position HFS, being
treated with beams of level 5 targeted on the hand as input to test the SUT.’

As the test-relevant attributes Ai ∈ A are the dimensions spanning the test
space S, their ranges must be finite to provide a consistent test space. For non-
finite test-relevant attributes (like free text), a mapping to finite (e.g. categorical)
values can be defined by the domain experts in the configuration. Nonetheless,
we provide an evolutionary approach and accept and incorporate new values, as
such encounters bear a lot of information (see Sect. 4).

Mapping. Before we are able to evaluate test-data quality or perform any analy-
ses on the test data collection, we have to index each test data item and import
the information about its contained scenarios into our test-data quality database
(TDQ-DB). Because of its complexity, a test data item may provide multiple
scenarios. With D being a set of test data, the function map maps a test data
item d ∈ D to the power set of S (2S).

map : D → 2S (3)

Likewise, a test data collection (or any other set of data, e.g. reference data) is
described as union of all scenarios provided by its contained data items.

D =
⋃

d∈D

map(d) (4)

Featuring data safety and loose coupling, the mapping, highlighted in Fig. 2,
has to be realized externally to the test-data quality system (TDQ-Sys) by manu-
facturers. For this very reason, our approach to test-data quality is independent
from the actual test data model and the use case, as the TDQ-Sys has (and
needs) no access to the actual data and does not need to be able to understand
the original data format. Mapping and provenance information - not the actual
test data - is stored in the TDQ-DB and used as input for our proposed quality
measurement and the provided search feature.

Mapping reference data (data or statistics exported from live systems or
gathered during studies, etc.) is done in same way. However, it is not trivial to
obtain reference data and sometimes impossible due to data security concerns.
The mapping component can permit the usage of statistical data, as it can e.g.
map ‘fake’ data items to scenarios as encountered in the statistical data.

TDQMed: Managing Collections of Complex Test Data 339

Fig. 2. Information flow in our test-data quality system. The mapping is not part of
our system.

Metrics. coverage and closeness fit into the data quality dimension com-
pleteness: The more complete the test data collection covers the test space or
the reference data, the better. To describe the completeness of a data set, Pipino
et al. introduced the metric population completeness as the size of actual data
in a collection divided by the size of the population [12]. In our case, we define
the population as the test space S and the actual data as the set of all scenar-
ios covered by data items. We define a function pc, very similar to population
completeness, that allows to measure coverage of test space and closeness to
reality (see Sect. 4). It takes two subsets α, β of S and returns the ratio of the
intersection’s size to the size of the second set, the population.

pc : 2S × 2S → Q

pc(α, β) =
| α ∩ β |

| β | (5)

Due to the empty space phenomenon [3], the result of pc(α, β) will be near 0 if
| β | � | α |. We took care of this problem and offer three powerful calibration
techniques to reduce and shape the test space in Sect. 5.

The coverage of test space of the test data collection D, is measured by
coverage(D).

coverage(D) = pc(D, S) =
|D ∩ S|

|S| =
|D|
|S| (6)

Let R ⊆ S be the set of all scenarios contained in reference data. The close-
ness to reality of the test data collection (described by D) is measured by
closeness(D,R) using R as population.

closeness(D,R) = pc(D,R) =
|D ∩ R|

|R| (7)

4 Gauging Test-Data Quality

The mapping information can be utilized in many ways during the test process.

340 J. Held and R. Lenz

Analyzing the Mapping Step

By itself, the mapping step is an important part of test-data quality, as a data
item containing undefined values for test-relevant attributes contains an impor-
tant piece of advice. Two cases have to be distinguished:

– If the value is recognized as a standardized value, then the domain experts
and test experts forgot this value during the definition of the test-relevant
attribute. As a consequence, this value and therefore some scenarios would
not have been considered for testing at all.

– If the origin of this value remains unknown, valuable insights can be gath-
ered from the data item’s provenance. Being from a reference data collection,
this find contributes to the overall knowledge of the heterogeneity and the
compliance to standards in the live system.

A smooth mapping step increases the overall confidence in the identified test
space and therefore the knowledge about the system under test and its antici-
pated use cases.
Helpful during test phase Test Analysis and Design and for Test Data Management.

Analyzing Coverage and Closeness

A part from the values calculated by coverage and closeness, more knowledge
can be lifted. A list of scenarios that are not covered by test data is easy to
obtain: S \ D. Defining hazard scenarios H ⊂ S, it is equally easy to identify
which of these hazards cannot be tested, due to missing test data: H \ D. Early
enough in the test phase test analysis and design, this information can be used
to start a directed acquisition of test data.

closeness can be used pre-test to evaluate how many and which realistic
scenarios cannot be tested due to missing input data: R\D. closeness can also
be used post test: Taking actual tested scenarios as δ and scenarios, gathered
from studies or beta tests, as ω, closeness (δ,ω) then evaluates as an overall
quality indicator of the test process’ real-world anticipation.
Helpful during test phases Test Analysis and Design and Test Execution.

Analyzing Distribution and Diversity

Evaluating the test data collection’s distribution in the test space leads to a good
overview. This is especially helpful because it contains a lot of test data items and
requires a lot of storage. Suitable visualization techniques can depict whether
this great number of test data items are evenly distributed in test space or if
there are fields of attention. At the moment, we use scatter plots and ‘Parallel
Sets’ [2] to visualize the distribution but many more visualization techniques
can be used. Clusters of scenarios contained in test data items can be taken as
hints on an unrestricted growth of the test data collection. This information can
be a valuable input for the test data management and start a potential data
cleansing. Clusters of scenarios contained in reference data can be treated as an

TDQMed: Managing Collections of Complex Test Data 341

indicator for frequent real-world use cases. These point to scenarios that should
be tested thoroughly. However, these clusters can stem from provenance: Little
exported data from unaltered export hubs (clinics, etc.) can be a reason for
clusters. During our project, we noted that most of the test-relevant attributes
are of categorical type. This has an impact on the visualization and can be the
cause of clusters or correlations.

Besides this variety of visualizations to evaluate a test data collection’s dis-
tribution, its diversity should also be evaluated. The function s : D × D → R

measures the similarity of two test data items di, dj ∈ D. Many possible imple-
mentations for set similarity metrics are given by Deza et al [5] or Stahl [15].
These measures can be helpful to identify similar and therefore potentially redun-
dant test data items. It is important to know the test data’s diversity to better
control the growth of the test data collection.
Helpful during test phase Test Analysis and Design and for Test Data Management.

Supporting Test Case Selection

The mapping information stored in the TDQ-DB can be evaluated to support
existing methods for test case selection. Each test case is prioritized according to
whether its contained scenario is executable, realistic or realistic and executable.
A realistic test case is a test case for which its scenarios are contained in reference
data. A non-executable test case is a test case for which no test data item contains
the needed scenarios to act as input data. Non-executable test cases can then be
substituted early in time, lowering a testers failure quota during test execution
searching for non-existent test data items as input data. Next, realistic test cases
can be ranked according to their scenario’s relative frequency in the reference
data, thus prioritizing common real world use cases.
Helpful during test phase Test Analysis and Design.

Supporting Test Data Selection

Based on the n-dimensional mapping information for each test data item, we pro-
vide a search alongside the test-relevant attributes spanning the n-dimensional
test space. For a given test case, a tester can query the database for test data
items that are suitable as input. The query does not depend on fully qualified
search criteria for each dimension and by using similarity measurements, even
fuzzy searches are possible. However, fuzzy results may not be applicable for
every domain. The list of suitable test data items can be ranked according to
their closeness to reality or other quality means like reputation or provenance.
Helpful during test phase Test Execution.

5 Calibration Techniques

The size of the test space S is much greater than the number of scenarios D
covered by test data. Due to |S| � |D|, the empty space phenomenon [3] becomes

342 J. Held and R. Lenz

a real problem as e.g. coverage tends to be zero, the list of missing scenarios is
long and a search often finds zero if few results. We provide three calibration
techniques to shape the test space and to reduce its size. All three techniques
can be freely combined to shape the test space. The tester must be aware of his
tweaks, to understand and evaluate the results of his analyses upon the shaped
test space.

Equivalence Classes. The first way to reduce the test space is to group values
into equivalence classes, a common technique in software testing [14]. For each
value of a class, the SUT shows similar behaviour. This arrangement can be
based on specifications or other functional classification, e.g. storage footprint,
and can be nested to create hierarchies of equivalence classes.

Analyse Subspaces. Another technique to reduce the test space is to perform
the analyses on subspaces. Based on actual tasks or analysis queries, testers select
A∗ ⊂ A to span the subspace S∗. E.g. if some task is independent of A3 (region),
a subspace S∗ = A1 ×A2 can be used for analyses. The TDQ-Sys transparently
maps all stored mapping information into the new subspace and takes care of the
correct assignment and aggregation. Now, testers can perform their queries and
analyses on a reduced space and expect more meaningful answers. The results
need to be combined by the testers to reconstruct a holistic view on the test
data collection.

Mark Unwanted Scenarios. As the test space S is built via the crossproduct
of all test-relevant attributes A, all possible combinations of values are treated as
scenarios, describing an input for the SUT. Because of that, some scenarios are
impossible in the live system, out of range for an actual configuration of the SUT,
or simply no in the actual test focus. These unwanted scenarios can be marked
via rules. Applying these rules during analyses, the TDQ-Sys automatically hides
these unwanted scenarios.

6 Prototype

This section describes the most important parts of our prototype. The whole
system is written as a web application using the programming language ‘Ruby’.
The system configures itself at runtime using the configuration A.

Data Model. Data items are stored as pointers into the used test data manage-
ment system and provide the necessary provenance information and are enriched
with additional descriptive information, like timestamps. We store the map-
ping information about these data items in structure similar to a data ware-
house (DWH), see Fig. 3. This permits querying the database with powerful
OLAP queries and supports the creation of subspaces, as they are equal to the
slice&dice operator for data warehouses [4]. The qualifying dimensions, in our
case the test-relevant attributes, are stored according to the star schema, thus
enabling third-party tools to access the hierarchies of equivalence classes. Instead
of storing numerical values as quantifying facts, we store a list of data items in

TDQMed: Managing Collections of Complex Test Data 343

order to enable the search feature and the evaluation of test data diversity. To
allow third-party tools to take full advantage of the stored data, we make all
configuration information accessible via separate tables.

↩

←↩

Listing 1.1. Definition of two test-relevant attributes.

Domain Specific Language. The description of the test-relevant attributes
is a vital part of assessing test-data quality as it sets the stage: the test space.
Like Ostrand and Balcer [11], we rely on experienced testers to identify and
describe the test-relevant attributes. We profit from their valuable expertise and
their knowledge of attributes that are not present in standard documents or
specifications. To support this task, we designed a DSL and let testers describe
the test-relevant attributes with plain text that serves as configuration file for
the mapping component and the TDQ-Sys. An exemplary definition is shown in
Listing 1.1.

7 Evaluation

With the aid of our prototype, we showed that our proposed concepts and meth-
ods for assessing a test data collection’s data quality can be implemented with
justifiable expenditure. Moreover, the generic implementation emphasizes our
concept’s independence of domain and application. We synchronized our con-
cepts and methods with the tester’s demands and their requirements for test-
data quality, following the ‘fitness for use’ principle. We verified this alignment
with an evaluation, carried out with six domain and test experts from our vali-
dation partner. However, we could only evaluate the compliance and acceptance
of our concepts and methods. We were not able to measure real-world benefits
as a proof that the methods actually increase the likelihood that errors will be
detected earlier or that the methods help to simplify test case selection can be
performed only by an intervention. The reason behind this is that the validation

344 J. Held and R. Lenz

Fig. 3. Data warehouse like schema to store the mapping information

partner had no budget to duplicate his testing process and was not willing to
use the prototypic implementation in production.

For the evaluation, we presented our concepts and methods as well as our
prototype. Using questionnaires, we polled the alignment of the tester’s demands
and requirements with our concept, asked if they would take advantages utilizing
our methods and if they want to use the methods in their daily routine. Figure 4
shows the results of the evaluation.3 The interviewees state that they get addi-
tional information on the test (Fig. 4a) and note that this is helpful to evaluate
the test-data quality of the test data collection (Fig. 4b). They rated their ability
to assess test-data quality as partly good (Fig. 4c). Although the assessment itself
was hindered by the prototypical implementation (Fig. 4d), they want to have
such a tool (Fig. 4e) and value its integration in their daily routine as manageable
(Fig. 4f). The masking of unwanted scenarios is reported as a good possibility to
shape the test space (Fig. 4g) and the interviewees approve our concept of test
data as sets of scenarios (Figs. 4h and i). The initial costs of preparation and
identifying test-relevant attributes are estimated as high (Fig. 4j), telling us that
these steps need to be prepared well and supervised by experts.

8 Discussion

Treating test data as sets of scenarios, n-tuples of values of its test-relevant
attributes, comes along with loosing information. For example, the frequency of
3 Detailed information and results upon request.

TDQMed: Managing Collections of Complex Test Data 345

Fig. 4. Evaluation results with six participants.

scenarios within a test data item can be a valuable information for test data
selection. But it is not used for test-data quality and therefore is is not tracked.

Another point is the used level of abstraction. Defining a test data item as
a complete patient file, involves a loss of associations between scenarios. After
mapping, it is not possible to detect which scenarios are covered by which part
of the patient file. For a finer granularity of mapping, it is required to lower
the level of abstraction and treat e.g. a single document inside a patient file as
test data item. However, the granularity depends on the actual use cases and
operational sequence for testing, being the domain of the manufacturer and his
responsibility.

Although the test-relevant attributes are identified and described at the
beginning, the test space can be populated with new values for test-relevant
attributes, as stated earlier. Also, it is always possible to add or modify test-
relevant attributes, enforcing a complete re-mapping of all test data items, as all
mapping information in the TDQ-DB must be updated. Of course, it is always
possible to add new test data items.

There are costs associated with the usage of test-data quality. A priori, there
are the running costs of the TDQ-Sys, consisting of a database server and a web
server. First, depending on the complexity of the test data type, the implemen-
tation costs of the mapping component cannot be neglected. Other costs are
then time and labor for user training and for the required process to identify
and describe all test-relevant attributes.

346 J. Held and R. Lenz

9 Contribution

We introduced a concept to assess a test data collection’s quality as an indi-
cator for its applicability for test goals. We showed some benefits during the
test process that can be realized by utilizing our concept. First, the necessity to
identify test-relevant attributes and their values to build the test spaces for test
goals forces test experts to reflect on and revive their domain knowledge, induc-
ing positive effects on test planning. Next, analyzing the mapping step builds
confidence about the identified values and may discover unknown scenarios or
use cases which can be used for a more thorough test. The evaluation of coverage
of test space identifies untestable scenarios due to missing test data, triggering
a target-aimed acquisition in sufficient time. Analyzing the test data collection’s
distribution in the test space enables test data management to better govern
further growth. The similarity measurement can reveal possible redundant test
data. Shrinkage the test data collection relieves test data management and eases
searching for test data items. The n-dimensional and fuzzy searches help to find
matching test data for test cases and can be used to link test data to test cases
early on.

Although our research had a medical background, our concept is domain inde-
pendent, because of the decoupling done via the externalized mapping. However,
they are best suited to be used for the system test, as the complexity of test
data and the size of the test space are relatively low for unit testing or integra-
tion testing. We implemented a generic prototype that is configured at runtime
by configuration files written in our domain specific language, and explained
calibration techniques to adapt our methods in a demand-driven fashion.

Acknowledgements. This project is supported by the German Federal Ministry of
Education and Research (BMBF), project grant No. 01EX1013G.

References

1. Batini, C., Cappiello, C., Francalanci, C., Maurino, A.: Methodologies for data
quality assessment and improvement. ACM Comput. Surv. 41(3), 1–52 (2009)

2. Bendix, F., Kosara, R., Hauser, H.: Parallel sets: visual analysis of categorical data.
In: IEEE Symposium on Information Visualization, INFOVIS 2005, pp. 133–140,
No. 1. IEEE (2005)

3. Carreira-Perpiñán, M.: A review of dimension reduction techniques. Technical
report, University of Sheffield, Sheffield (1997)

4. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
ACM SIGMOD Rec. 26(1), 65–74 (1997)

5. Deza, E., Deza, M.M.: Encyclopedia of Distances. Springer, Heidelberg (2009)
6. Di Nardo, D., Alshahwan, N., Briand, L., Labiche, Y.: Coverage-based test case pri-

oritisation: an industrial case study. In: 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation, March 2013

7. Juran, J.M.: Juran on Planning for Quality. Free Press, New York (1988)

TDQMed: Managing Collections of Complex Test Data 347

8. Law, M.Y., Liu, B.: Informatics in radiology: DICOM-RT and its utilization in
radiation therapy. Radiographics Rev. Publ. Radiol. Soc. North Am. Inc. 29(3),
655–667 (2011)

9. Mildenberger, P., Eichelberg, M., Martin, E.: Introduction to the DICOM standard.
Eur. Radiol. 12(4), 920–927 (2002)

10. Mustra, M., Delac, K., Grgic, M.: Overview of the DICOM standard. In: 50th
International Symposium, ELMAR, pp. 10–12. IEEE, Zadar, September 2008

11. Ostrand, T.J., Balcer, M.J.: The category-partition method for specifying and
generating functional tests. Commun. ACM 31(6), 676–686 (1988)

12. Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Commun. ACM
45(4), 211–218 (2002)

13. Redman, T.C.: Data Quality: The Field Guide, data manag edn. Digital Press,
Newton (2001)

14. Sommerville, I.: Software Engineering. International Computer Science Series, 8th
edn. Addison-Wesley, Reading (2007)

15. Stahl, H.: Clusteranalyse großer Objektmengen mit problemorientierten Distanz-
maßen. Verlag Harri Deutsch, Thun, Frankfurt am Main, reihe wirtschaftswis-
senschaften edn. (1985)

16. Thomas, S.W., Hemmati, H., Hassan, A.E., Blostein, D.: Static test case prioriti-
zation using topic models. Empirical Softw. Eng. 19(1), 182–212 (2014)

17. Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological founda-
tions. Commun. ACM 39(11), 86–95 (1996)

18. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data
consumers. J. Manage. Inf. Syst. 12(4), 5–34 (1996)

19. Wang, R.Y., Ziad, M., Lee, Y.W.: Data Quality. Springer - Kluwer Academic,
Boston (2002)

Advanced Query Processing

A Self-tuning Framework for Cloud
Storage Clusters

Siba Mohammad(B), Eike Schallehn, and Gunter Saake

Institute of Technical and Business Information Systems,
Otto-von-Guericke-University of Magdeburg, Building 29,

Universitätsplatz 2, 39106 Magdeburg, Germany
{smohamma,eike,saake}@iti.cs.uni-magdeburg.de

Abstract. The well-known problems of tuning and self-tuning of data
management systems are amplified in the context of Cloud environments
that promise self management along with properties like elasticity and
scalability. The intricate criteria of Cloud storage systems such as their
modular, distributed, and multi-layered architecture add to the complex-
ity of the tuning and self-tuning process. In this paper, we provide an
architecture for a self-tuning framework for Cloud data storage clusters.
The framework consists of components to observe and model certain
performance criteria and a decision model to adjust tuning parameters
according to specified requirements. As part of its implementation, we
provide an overview on benchmarking and performance modeling com-
ponents along with experimental results.

Keywords: Cloud storage clusters · Self-tuning · Performance mod-
elling · Regression analytic · Benchmarking

1 Introduction

Although, conventional database systems are used for Cloud applications where
strict consistency and transactional processing are needed, properties of the
Cloud environment (multi tenancy, component failure, etc.) and the needs of
its application (scalability, availability, and fault tolerance, etc.) resulted in a
new breed of data storage systems. These systems were primarily developed for
internal use by companies such as Google, Amazon, Facebook, etc. For Cloud-
based and big data applications, Cloud storage systems are the storage systems
of choice to meet the mentioned requirements.

From the architectural point of view, these systems have a modular,
multi-layered architecture. According to application needs, multiple component
systems are combined together to provide needed functionalities. As a basic
component, a distributed file system (e.g. Google and Hadoop file systems) sup-
ports scalable, fault tolerant data storage and access. On top of it, typically
lays a structured-data storage system (e.g. Bigtable [4], Cassandra [10]). Sys-
tems of this layer structure data in non-relational data models; key-value model
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 351–364, 2015.
DOI: 10.1007/978-3-319-23135-8 24

352 S. Mohammad et al.

being the dominant. They also provide API access and SQL-like query languages
(e.g. CQL). Because of the non-relational nature of the underlying data model,
RDBMS-style aggregations and joins were typically not supported. To perform
such operations and more complex data analytic, a distributed processing sys-
tem is used on top of the previous layers; Map Reduce framework being the
dominant. Though later versions of Cloud storage systems support joins and
aggregations, these operations are internally transformed into Map Reduce jobs
(e.g. Hive and Pig)1. A more detailed architectural overview and a classification
of cloud storage systems can be found in [6].

Though Cloud storage systems were developed to be self-managing regard-
ing many aspects, e.g. dynamically adding or removing resources, there are still
numerous decisions to be made to actually fit the requirements of given appli-
cations to provide suitable performance. The contributions of this paper are as
follows:

– As a precondition for the proposed framework, we relate tasks of (self-)tuning
to layers and sub-clusters within a typical Cloud storage architecture.

– We describe the top-level view of our framework applicable to various optimi-
sation goals and parameters describing the application or the configuration.

– Based on measured and/or modelled performance of applications, we describe
a decision model suitable for self-tuning of configuration parameters.

– More specifically we address the common problem of adjusting the size of
(sub-)clusters in an experimental evaluation.

The rest of the paper is organized as follows. First, we provide a motivational
scenario in Sect. 2. In Sect. 3, we give an overview of the framework. After that,
we provide more detailed description of benchmarking and modelling compo-
nents in Sect. 4. Then, we discuss the current experimental results in Sect. 5.
After that, we provide an overview of related work in Sect. 6. The paper ends
with conclusion and future work in Sect. 7.

2 Motivation

The tuning and self-tuning of Cloud storage systems has gained more attention
by both industrial and academic research [20,22,24–26]. Because of the typical
shared nothing architectures with data partitioning and replication, some per-
formance aspects can be easily addressed for the overall system. Nevertheless,
the typical multi-layered distributed architecture of several component systems
adds complexity to the tuning tasks. Moreover, if there are several applications
with different and possibly changing requirements, using the same data storage
cluster, there is little chance to tune for a specific application.

Based on this assumption our approach applies the concept of creating dedi-
cated sub-clusters for single applications/workloads or groups of workloads with
similar requirements as shown Fig. 1. Here, application requirements can be

1 https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Joins.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Joins

A Self-tuning Framework for Cloud Storage Clusters 353

node
k

Horizontal (self-)tuning

Horizontal (self-)tuning

V
er

tic
al

(s
el

f-
)t

un
in

g
Application

node
1

Application

Workload WorkloadRequirements

. . .

node
n

Horizontal (self-)tuning

Horizontal (self-)tuning

V
er

ti
ca

l(
se

lf
-)

tu
ni

ng

Application

node
k+1

Application

Workload Workload

. . .

Fig. 1. (Self-)tuning for cloud storage systems

mapped to different tuning knobs to achieve applications optimisation goals. In
the multi-layered, modular architecture, these requirements can now be handled
on two dimensions. The first one, we call horizontal (self-)tuning, which takes
place within layer. The horizontal (self-)tuning includes aspects such as parti-
tioning, load balancing, replication, update strategies, and automatic scaling,
etc. Problems on this dimension are better supported because of the homoge-
neous processes of a single component type within one layer. The second one,
we call vertical (self-)tuning, which is carried out across layers. Vertical (self-
)tuning includes the mapping of application requirements expressed as optimiza-
tion goals, service levels, etc. to specific tuning knobs on each level of the storage
architecture. For the remainder of the paper, we focus on aspects of horizontal
self-tuning.

For illustration purposes, consider the example shown in Fig. 2, which is
based on data gathered from experiments described, in more details, in Sect. 4. As
shown in Fig. 2a, there are three different workloads, being read-heavy (r90w10),
evenly mixed (r50w50), and write-heavy (r10w90) showing very different perfor-
mance characteristics measured for different cluster sizes (overall latency for
entire workload, average over 5 independent runs). Decisions that can be made
based on this data include:

– finding the best cluster size for a single workload, e.g. indicated by a global
mimimum within resource restrictions, or

– creating an optimal setup of sub-clusters for all workloads.

Based on our overall approach, the latter is of great importance, and the results
of optimal sub-cluster configurations given different node constraints are shown
in Fig. 2b. For reasons of simplicity, the sum of the overall latency was used as an
optimisation goal, though different aggregation functions are conceivable. The
optimisation of this given problem can easily be done by brute force algorithms,
because it is linear and discrete in the number of nodes and only exponential

354 S. Mohammad et al.

(a) Measured latency characteristics for different workloads

(b) Optimal allocation of nodes to workloads

Number of Nodes 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Nodes for r10w90 3 3 4 3 4 5 5 6 6 8 8 9 9 10 11
Nodes for r50w50 3 3 3 5 5 5 6 6 6 6 6 6 7 7 7
Nodes for r90w10 3 4 4 4 4 4 4 4 5 4 5 5 5 5 5

Latency in sec 85 81.4 78.3 74.9 71.9 68.9 66.3 64.2 63.1 61.8 60.8 60.1 59.6 59.2 58.7

Fig. 2. Optimal allocation of nodes for three workloads 10 % read and 90% write
(r10w90), 50 % read and 50 % write (r50w50), and 90 % read and 10 % write (r90w10)
for different cluster sizes

in the number of workloads. More sophisticated approaches may be required
for non-discrete cases and those involving more complex parameter combina-
tions. Furthermore, the general framework presented in this paper will have to
deal with the fact, that measurements gathered from monitoring the system or
test runs are incomplete within the huge space of possible parameter combina-
tions. To predict the performance, a model of it needs to be derived from the
available data.

3 A Framework for Tuning Cloud Data Storage Cluster

In this section, we discuss our approach of addressing the aforementioned prob-
lem scenario. After formalizing the problem, we illustrate different components
of our infrastructure and their functionalities.

3.1 Problem Statement and Solution Approach

For our framework, we define the general optimization approach as follows: the
optimisation goal opt is to find a cluster configuration c out of a set of possible
configurations CC that minimizes (assuming a standard form of the problem)
the costs for all workloads w of a set of workloads WL that need to be supported
by the overall cluster.

opt = minimize
c∈CC

Γw∈WLcost(c, w)

A Self-tuning Framework for Cloud Storage Clusters 355

Here Γ represents some aggregation function suitable to the given cost com-
ponents considered, e.g. sum for energy consumption or average or maximum
for response time. Constraints can be defined on the cluster configuration as
discussed below:

Cluster Configurations in CC. These independent variables are controlled
variables and represent the actual knobs that can be used to achieve the
optimisation goal. Typical configuration aspects are for instance the cluster
size, hardware being used, replication factor and other database parameters,
etc. Formally, c can be described as an n-tuple that holds relevant parameters
as components, e.g. c1 = {cn = 10, rf = 3} for a cluster of 10 nodes and a
replication factor of 3.

Workload Characteristics in WL. These independent variables describe the
application, but are not controlled by the systems administrators or develop-
ers, i.e. though they may be highly dynamic, they can not be changed delib-
erately to achieve an optimisation goal. These include for instance workload
characteristics, access frequencies, user numbers, data volume and schema,
etc., which, again, can be modelled as an n-tuple, e.g. wl1 = {r = 90, w =
10, sf = 10, nc = 5} for a workload having 90 % read operations performing
on a 10GB database of 5 column families.

Optimisation Goal opt. The dependent variables used in prediction models for
system optimisation are typically those, for which an optimal value should
be achieved. For Cloud storage, these may include variables such as through-
put, latency, energy consumption, resource utilisation, consistency, etc. The
optimisation task, for which the model is being used, may be multi-objective,
requiring specific techniques not discussed in this paper.

Not all of the possible parameters describing a workload or a cluster config-
uration may be relevant or desirable to consider in a given application scenario.
Furthermore, there might be strong correlations between some of the indepen-
dent variables, which can be used to simplify the models creation and applica-
tion. While we discuss techniques to create a performance model in this paper,
here it is not our intention to investigate the complex space of variables and
their dependencies in its entirety, but rather focus on – in our opinion – a most
relevant subspace to discuss the modelling and prediction techniques, namely
finding the optimal size of sub-clusters for a given set of workloads. To achieve
this, we express the relation between performance metrics of a workload w with
cluster configuration c as a cost function where N is the total number of nodes
in the infrastructure:

opt =
∑

w∈WL

cost(w, nw)) → min

subject to ∑
w∈WL

nw ≤ N

356 S. Mohammad et al.

Cost Est. function

Benchmark

Decision
Component

Database (schema,size)
Workloads WL
Constrains/ thresholds
Optimization goals (WL, config)

Actual execution cost

M
onitoring/R

efinem
ent C

om
ponent

Cost Estimation
Component

Knowledge
base

Fig. 3. Self-tuning framework for cloud data management systems

3.2 Framework Architecture

As we illustrate in the Fig. 3, our framework is composed from the following
components:

Benchmark. The purpose of this component is to generate the training data
needed to model the performance of the data storage cluster for a certain
workload with different cluster sizes or possibly different configurations.

Cost Estimation Component. This component uses statistical-based data-
driven modeling to build performance models as mathematical functions.
These functions are derived by regression techniques done on statistical data
gathered from the benchmarking phase.

Decision Component. Tuning knobs are expressed as different independent
variables during the modeling process. Based on conditions derived from
workload thresholds, this component performs a filtering process on the
value-space of the independent variables. Then it solves the optimization
problem of the cost models, based on the optimisation goals of different
workloads, to find preferable values of the tuning knobs.

Monitoring/Refinement Component. This components is responsible for
adding measurement to the knowledge-base and initiating a re-modeling
process if

|Actual − Prediction| ≥ threshold

Knowledge-base. Stores information for reuse by the framework. Information
includes workloads description (i.e. schema and data access pattern) and
cost models.

A Self-tuning Framework for Cloud Storage Clusters 357

4 Benchmarking and Performance Modeling

In this section, we provide our current theoretical and empirical results in imple-
menting the tuning framework. As first steps in this direction, we developed a
benchmark and a cost estimation component. Our approach for predicting the
performance of a Cloud database cluster is to benchmark the cluster based on
several runs of workloads. Then, build a cost(performance) model using regres-
sion analytic techniques. We provide more details in the following subsections.

4.1 Benchmarking Cloud Storage Clusters

The purpose of our benchmark is to generate data to model the performance of
a Cloud storage cluster for a certain workload with different cluster sizes. Many
benchmarks [1,2,4,7] exist for comparing the performance of several database
systems for certain workloads or even checking the performance of one database
systems with different workloads to identify bottlenecks. Our implementation
supports the typical requirements of a benchmark such as allowing workload
configuration: read/write ratio, data size, throughput, etc. and it automates the
testing process for an increasing number of database system cluster size. We
provide the architecture of our benchmark in Fig. 4. The essential component
of the benchmark is the benchmark manager which is responsible for starting
the benchmark instances. It also acts as data storage system cluster controller,
performing operations of:

B
en

ch
m

ar
k

M
an

ag
er

Cloud Database Cluster

Benchmark Instance

C
lie

nt
-t

hr
ea

d

C
lie

nt
-t

hr
ea

d

Benchmark Instance

C
lie

nt
-t

hr
ea

d

C
lie

nt
-t

hr
ea

d

Benchmark Instance

C
lie

nt
-t

hr
ea

d

C
lie

nt
-t

hr
ea

d

C
lie

nt
-t

hr
ea

d
C

lie
nt

-t
hr

ea
d

C
lie

nt
-t

hr
ea

d
C

lie
nt

-t
hr

ea
d

C
lie

nt
-t

hr
ea

d
C

lie
nt

-t
hr

ea
d

Fig. 4. Benchmark architecture

358 S. Mohammad et al.

– Preparing and starting the database cluster for certain number of nodes.
– Creating the database schema, generating and loading data before the actual

workload, if needed.
– Rebooting database and operating system to flush the file system caches, main

memory and CPU caches in the case of a cold run.

The benchmark instances are responsible for starting the workload and collecting
measurements of performance. We designed the benchmark to allow specifying
the following workload characteristics:

– Database schema (table, number of columns), record size and replication
factor.

– Data access specifications: read/write ratio, number of rows to be read or
written, throughput (number of concurrent access).

As specified by the workload setting and based on the replication factor and
the maximum number of nodes intended for the data storage cluster, several
phases of the benchmark are performed. Each phase is defined by the number
of nodes in the cluster (cluster size). The cluster size varies between the data
replication factor and the maximum number of nodes available. In each phase,
multiple remote benchmark-instances are started by the benchmark-manager
using SSH (Secure Socket Shell). Each benchmark-instance starts multiple client-
threads depending on the number of the CPU cores and the memory size of the
host machine. After the workload ends, statistical data describing the perfor-
mance are retrieved from all client-generator machines and combined in one
output file. Within one phase, the benchmark automatically repeats the experi-
ment a number of times defined by the user and the average measurement is used
for the modeling process. After the experiment is done for the current number
of nodes, the benchmark starts again for next number of nodes.

4.2 Performance Modelling

This step includes analyzing the collected data to discover the underlying model.
There are several machine learning techniques used for modeling. These include
clustering, tree-based, genetic evolutionary algorithms and neural networks [9].
Regression analytic techniques are considered one of the simplest techniques for
predictive modeling. Their process relies on statistical and regression analysis to
find a formula or mathematical model to represent the relationship between
a dependent variable being the measured performance aspect (e.g. latency)
and one or more application-specific requirement such as workload criteria (e.g.
read/write ratio) or system configuration aspects (e.g. database cluster size).

As stated by Mark Kotanchek et al. [8], there is an infinite number of pre-
dictive models that fit a finite data set. Our goal is to find a model that fits the
data and has a relatively small error. To achieve this, we use different regres-
sion analysis techniques and measure the error rate. The dependent variable in
our implementation is the response time or latency and the independent vari-
ables are the number of nodes in the database cluster (cluster size) and the
read/write ratio.

A Self-tuning Framework for Cloud Storage Clusters 359

Table 1. Software and hardware configuration

5 Experiment and Evaluation

For our experiment, we choose Cassandra [10]. Our approach is database agnos-
tic, and Cassandra was chosen only as an example of Cloud storage systems.
Cassandra was designed for internal use by Facebook and was later adopted by
Apache. Large clusters of Cassandra are being used by systems like Netflix, Spo-
tify, and eBay2, etc. Cassandra provides scalable structured data storage, sup-
porting tune-able consistency, column family data model and a SQL-like query
language called CQL. We deploy Cassandra on a network of virtual machines
in our labs. Configuration of the testbed for this experiment is illustrated in
Table 1. For the deployment of the benchmark, we dedicate another set of vir-
tual machines in the same network with the same configuration. With the goal
of modeling the performance of the database cluster with different cluster sizes
and different workloads, the workloads we tested vary in the read/write percent-
age. Other workload criteria such as the schema, consistency level, row size, and
goal throughput (concurrent accesses) is kept the same. Each workload oper-
ates on one column family. Each read or write operation touches one row. Write
operations insert randomly generated strings. Read operations are select point
queries; the whole row is retrieved. The percentage of read/write operations in
the tested workloads are: 0, 10, 30, 50, 70, 90, and 100. Each workload was tested
with Cassandra cluster of sizes that vary between 3 (replication factor) and 11
(the maximum number of virtual machines dedicated for the database in our
infrastructure). Each experiment is repeated 5 times and the average value is
used for the modelling process.

The result from our experiment is illustrated by the surface in Fig. 5 which
represents how the cluster behaves (its latency in ms) with different workloads
(characterized by their read/write percentage) and different cluster sizes. We
test several regression analytic techniques: simple linear regression, polynomial
regression with several degrees, and exponential regression. As a result from
the regression process using the cubic regression gives the best residual stan-
dard deviation among the tested techniques, with a slight difference from the

2 Usecase higlights for Cassandra are found on http://planetcassandra.org and http://
www.datastax.com/customers.

http://planetcassandra.org
http://www.datastax.com/customers
http://www.datastax.com/customers

360 S. Mohammad et al.

Fig. 5. Benchmarking results

Fig. 6. Regression analysis results vs. input measurements

A Self-tuning Framework for Cloud Storage Clusters 361

quadratic regression. Figure 6 illustrates the surface representing the resulted
cubic model versus the points representing the input measurements.

To validate the result from the regression process, we test the model predic-
tion power against new workloads and calculate the mean absolute error per-
centage. The cubic model gives high prediction accuracy of 96.4 %.

The result from our experiment and evaluation shows that the cubic model
has the best residual standard deviation and characterizes the performance with
high prediction accuracy. Such a model (even with the low number of indepen-
dent parameters) can be beneficial to avoid allocating resources to the database
cluster that will obtain insignificant benefit from them. Our benchmark allows
specifying several workloads parameters, which allows extending the model.
However, more experiments must be done to generate the statistical (training
data) that is required for creating extended models.

6 Related Work

The work described in this paper is based on three areas of research: bench-
marking, performance modeling, and (self-)tuning. In the next paragraphs, we
provide a short overview of related work of these fields in the context of cloud
storage systems.

Related work on benchmarking Cloud storage systems includes general pur-
pose benchmarks [1,2,4,7] which measure latency for different systems and focus
on providing details about selecting workloads and benchmark architecture that
corresponds to the Cloud environment and its applications. Several studies [3,12]
build on these benchmarks. Another group of benchmarks focus on how a system
performance changes with different technical, or platform choices. An example
of that can be found in [11] which focuses on analyzing the performance of Cas-
sandra on two platforms using HDD or Flash memory. Another example [12]
provides read/write and structured query benchmark which investigates how
different implementation techniques of different systems affect the performance.
There is also the work of Rabl et al. [5] which provides an overview of the perfor-
mance impact of different storage architectures. The last group of benchmarks
examine specific properties of Cloud storage systems such as replication, con-
sistency, and elasticity. An example of such work can found in [3] which uses
different replication strategies and consistency levels and measures their effect
on latency and throughput.

Since virtualization is a major technique for cloud environment, a large part
of work [14,17,18] is dedicated to performance modeling for cloud application in
virtualized environments. The work of Noorshams et al. [14] investigates perfor-
mance modeling for virtualized storage systems. Another example is the work
of Kraft et al. [18] in which they present a simple model for predicting the
degradation in performance that results from storage devices contention in vir-
tualized environments. Other aspects such as modeling the scalability behavior
of network/CPU intensive applications can be found in [17]. Different techniques
for building models exists. A part of the research efforts uses machine learning

362 S. Mohammad et al.

techniques such as [19], which uses Kernel Canonical Correlation Analysis to
model the execution time of MapReduce jobs. Another approach can be found
in the work of [15] where they present an analytical model of the Spotify storage
architecture that allows to estimate the distribution of response time of storage
system.

Related work on (self-)tuning for Cloud storage systems falls in two parts.
The first one includes tuning database systems for specific workload, optimiza-
tion goal, or execution environment. Examples of such efforts include work of [26]
which aims to reduce energy consumption and thus cooling costs by applying
resource aware data placement and migration strategy. A part of work in this
category falls under scheduling. Chi et al. perform cost aware scheduling of
queries based on service level agreements [22] whereas Polo et al. perform Map
Reduce jobs scheduling to maximize resource utilization [20]. The second part
of the (self-)tuning efforts for Cloud storage systems is external to the database
system and includes tuning the underlying resources to achieve the optimiza-
tion goals of the database workload. Example of this is the work of [25] which
focuses on partitioning the CPU capacity of physical machines among different
database appliances. A more general example is the work of Xiong et al. [21]
where they perform cost aware resource management. Herodotou et al. devel-
oped a self-tuning framework, starfish [24], for big data analytics. An interesting
approach incorporates different DBMSs within one system (called DBMS+) and
depends on the query optimizer, of the incorporated systems, to perform the
tuning process [23]. Then the tuning process selects the appropriate execution
plan for each request.

7 Conclusion and Future Work

While Cloud storage systems are good at self-management, e.g. automatically
mapping to available resources, there are still many open issues to actually make
them self-tuning, i.e. adjust their parameters to application-specific require-
ments. In this paper, we presented an approach how such self-tuning functionality
can be integrated with an according system, by observing, modelling, predict-
ing the performance, and adjusting the configuration depending on a described
decision model. The practical evaluation applied Cassandra and focused on the
problem of assigning an optimal number of nodes to various workloads running
on sub-clusters to achieve the best possible overall latency.

As discussed throughout this paper, many open questions remain. From our
point of view, the most important ones are to be related to multi-objective
optimisation, which is the standard case for most real-life systems, where some
controlled trade-off between related or even contradicting goals has to be found.
Furthermore, we currently investigate the effect of heterogeneous environments
and their effect on predictability and resource assignment.

A Self-tuning Framework for Cloud Storage Clusters 363

References

1. Curino, C., Difallah, D.E., Pavlo, A., Cudre-Mauroux, P.: Benchmarking
OLTP/web databases in the cloud: the OLTP bench framework. In: Proceedings
of the 4th International Workshop on Cloud Data Management, pp. 17–20. ACM,
New York (2012)

2. Binnig, B., Kossmann, D., Kraska, T., Loesing, S.: How is the weather tomor-
row? towards a benchmark for the cloud. In: Proceedings of the 2nd International
Workshop on Testing Database Systems, pp. 9:1–9:6. ACM, New York (2009)

3. Wang, H., Li, J., Zhang, H., Zhou, Y.: Benchmarking replication and consistencys-
trategies in cloud serving databases: HBase and Cassandra. In: Big Data Bench-
marks, Performance Optimization, and Emerging Hardware 4th and 5th Work-
shops, pp. 71–82. Springer, Switzerland (2014)

4. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst. 26, 4:1–4:26 (2008)

5. Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H.A.,
Mankovskii, S.: Solving big data challenges for enterprise application performance
management. PVLDB 5(12), 1724–1735 (2012)

6. Mohammad, S., Breß, S., Schallehn, E.: Cloud data management: a short overview
and comparison of current approaches. In: 24th GI-Workshop on Foundations of
Database, pp. 41–46. CEUR-WS, Aachen (2012)

7. Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmark-
ing cloud serving systems with YCSB. In: 1st ACM Symposium on Cloud Com-
puting, pp. 143–154. ACM Press, New York (2010)

8. Kotanchek, M., Smits, G., Vladislavleva, E.: Trustable symbolic regression models:
using ensembles, interval arithmetic and pareto fronts to develop robust and trust-
aware models. In: Riolo, R., Soule, T., Worzel, B. (eds.) Genetic Programming
Theory and Practice V. Genetic and Evolutionary Computation Series, pp. 201–
220. Springer, US (2008)

9. Matsunaga, A., Fortes, J.A.B.: On the use of machine learning to predict the
time and resources consumed by applications. In: 10th International Conference
on Cluster, Cloud and Grid Computing, pp. 495–504. IEEE Press, New York (2010)

10. Lakshman, A., Malik, P.: Cassandra - a decentralized structured storage system.
Operating Syst. Rev. 44(2), 35–40 (2010)

11. Aplin, P.: Benchmarking Cassandra on Violin - Violin Memory. Technical report,
Violin Memory (2013)

12. Shi, Y., Meng, X., Zhao, J., Hu, X., Liu, B., Wang, H.: Benchmarking cloud-
based data management systems. In: 2nd International Workshop on Cloud Data
Management, pp. 47–54. ACM Press, New York (2010)

13. Piao, J.T., Yan, J.: Computing resource prediction for MapReduce applications
using decision tree. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb
2012. LNCS, vol. 7235, pp. 570–577. Springer, Heidelberg (2012)

14. Noorshams, Q., Bruhn, D., Kounev, S., Reussner, R.: Predictive performance mod-
eling of virtualized storage systems using optimized statistical regression tech-
niques. In: Proceedings of the 4th International Conference on Performance Engi-
neering, pp. 283–294. ACM, New York (2013)

15. Yanggratoke, R., Kreitz, G., Goldmann, M., Stadler, R.: Predicting response times
for the spotify backend. In: Proceedings of the 8th International Conference on
Network and Service Management, pp. 117–125. International Federation for Infor-
mation Processing, Laxenburg (2013)

364 S. Mohammad et al.

16. Kundu, S., Rangaswami, R., Dutta, K., Zhao, M.: Application performance mod-
eling in virtualized environment. In: Proceedings of the 16th International Sym-
posium on High Performance Computer Architecture (HPCA), pp. 1–10. IEEE
(2010)

17. Chen, X., Ho, C.P., Osman, R., Harrison, P.G., Knottenbelt, W.J.: Understand-
ing, modeling and improving the performance of web applications in multicore
virtualised environments. In: Proceedings of the 5th International Conference on
Performance Engineering, pp. 197–207. ACM, New York (2014)

18. Kraft, S., Casale, G., Krishnamurthy, D., Greer, D., Kilpatrick, P.: Performance
models of storage contention in cloud environments. Softw. Syst. Model. 12, 681–
704 (2013)

19. Ganapathi, A., Chen, Y., Fox, A., H. Katz, R., Patterson, D.A.: Statistics-driven
workload modeling for the cloud. In: Workshops Proceedings of the 26th Inter-
national Conference on Data Engineering (ICDE), pp. 87–92. IEEE, California
(2010)

20. Polo, J., Castillo, C., Carrera, D., Becerra, Y., Whalley, I., Steinder, M., Torres,
J., Ayguadé, E.: Resource-aware adaptive scheduling for MapReduce clusters. In:
Kon, F., Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 187–207.
Springer, Heidelberg (2011)

21. Xiong, P., Chi, Y., Shenghuo, Z., Moon, H.J., Calton, P., Hacigümüş, H.: Intelligent
management of virtualized resources for database systems in cloud environment.
In: Proceedings of the 27th International Conference on Data Engineering (ICDE),
pp. 87–98. IEEE, Washington (2011)

22. Chi, Y., Moon, H.J., Hacigümüş, H.: iCBS: incremental cost-based scheduling
under piecewise linear SLAs. Proc. VLDB Endow. 4, 563–574 (2011)

23. Lim, H., Han, Y., Babu, S.: How to fit when no one size fits. In: Proceeding of
the 6th Biennial Conference on Innovative Data Systems Research (CIDR), Online
Proceedings (2013)

24. Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, F., Bilgen, F., Babu, S.:
Starfish: a self-tuning system for big data analytics. In: Proceedings of the 5th
Biennial Conference on Innovative Data Systems Research (CIDR), pp. 261–272.
Online Proceedings (2011)

25. Aboulnaga, A., Salem, K., Soror, A.A., Minhas, U.F., Kokosielis, P., Kamath, S.:
Deploying database appliances in the cloud. IEEE Data Eng. Bull. 32, 13–20 (2009)

26. Goiri, I., Le, K., Nguyen, T.D., Guitart, J., Torres, J., Bianchini, R.: GreenHadoop:
leveraging green energy in data-processing frameworks. In: The 7th European Con-
ference on Computer Systems, pp. 5770. ACM, New York (2012)

Optimizing Sort in Hadoop
Using Replacement Selection

Pedro Martins Dusso1,2(B), Caetano Sauer1, and Theo Härder1

1 Technische Universität Kaiserslautern, Kaiserlautern, Germany
pmdusso@gmail.com

2 Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Abstract. This paper presents and evaluates an alternative sorting
component for Hadoop based on the replacement selection algorithm.
In comparison with the default quicksort-based implementation, replace-
ment selection generates runs which are in average twice as large. This
makes the merge phase more efficient, since the amount of data that
can be merged in one pass increases in average by a factor of two. For
almost-sorted inputs, replacement selection is often capable of sorting
an arbitrarily large file in a single pass, eliminating the need for a merge
phase. This paper evaluates an implementation of replacement selection
for MapReduce computations in the Hadoop framework. We show that
the performance is comparable to quicksort for random inputs, but with
substantial gains for inputs which are either almost sorted or require two
merge passes in quicksort.

Keywords: Sorting · Quicksort · Replacement selection · Hadoop

1 Introduction

This work implements and evaluates an alternative sorting component for Ha-
doop based on the replacement selection algorithm [9]. Sorting is used in Hadoop
to group the map outputs by key and deliver them to the reduce function.
Because of Hadoops big data nature, this sorting procedure usually is an external
sorting. The original implementation is based on the quicksort algorithm, which
is simple to implement and efficient in terms of RAM and CPU.

Sorting performance is critical in MapReduce, because it is not trivially par-
allelizable as map and reduce tasks. The data is parallelized by partitions on the
reduce key value, but this requires a lot of data movement. The sort stage of a
MapReduce job is network- and disk-intensive, and often reading a page from
the hard disk takes longer than the time to process it. Thus, CPU instructions
stop being the unit to measure the cost in the context of external sorting, and
we replace it by the number of disk accesses—or I/O operations—performed.
This difference makes algorithms designed only to minimize CPU instructions
not so efficient when analyzed from the I/O point of view. This means that the
superiority of quicksort for in-memory processing may not be directly manifested
in this scenario.
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 365–379, 2015.
DOI: 10.1007/978-3-319-23135-8 25

366 P.M. Dusso et al.

Our goal in this paper is to assess replacement selection for sorting inside
Hadoop jobs. To the best of our knowledge, this is the first approach in that direc-
tion, both in academia and in the open-source community. We observe that our
implementation performs better for almost-sorted inputs and for inputs that are
considerably bigger than the available main memory. Furthermore, it exploits
multiple hard drives for better I/O utilization.

The remainder of this work is organized as follows. Section 2 reviews related
work and motivates the use of replacement selection. Section 3 reviews algo-
rithms for disk-based sorting, focusing on the replacement selection algorithm.
In Sect. 4, we discuss implementation details. First, we present the internals
of Hadoop, focusing on the algorithms and data structures used to implement
external sorting using quicksort. Second, we present a custom memory manager
used to manage the space in the sort buffer in main memory efficiently. Third,
we present optimizations in the key comparison during the sort and finally a
custom heap with a byte array as the placeholder for the heap entries. In Sect. 5,
we compare our replacement selection method against the original quicksort.
Finally, Sect. 6 concludes this paper, providing a brief overview of the pros and
cons of our solution, as well as discussing open challenges for future research.

2 Background

Data management research has shown that replacement selection may deliver
higher I/O performance for large datasets [10,11] in the context of traditional
DBMS applications. Replacement selection is a desirable alternative for run
generation for two main reasons: first, it generates longer runs than a stan-
dard external-sort run-generation procedure. As Knuth remarks in [9], “the time
required for external merge sorting is largely governed by the number of runs
produced by the initial distribution phase”. The fact that the lesser number
of runs created by replacement selection leads to a faster merger phase is also
reported in [7]. Thus, to decrease the time required for the merge phase, we
increase the size of the runs.

As a second advantage, this algorithm performs reads and writes in a contin-
uous record-by-record process and, hence, it can be carried out in parallel. This
is particularly advantageous if a different disk device is used for writing runs
because heap operations can be interleaved with I/O reads and writes asynchro-
nously [7]. These optimizations are not possible with quicksort, which operates
in a strict read-process-write cycle of the entire input.

A potential disadvantage of replacement selection compared to quicksort is
that it requires memory management for variable-length records. Replacement
selection is based on the premise that when we select the smallest record from
the sort buffer in main memory, we can replace it with the incoming record. In
practice, this premise does not hold because variable-length records are the rule
and not the exception. When a record is removed from the sort workspace, the
free space it leaves must be tracked for use by following input records. If a new
input record does not fit in the free space left by the last selection, more records

Optimizing Sort in Hadoop Using Replacement Selection 367

must be selected until there is enough space. This leads to another problem,
namely the fragmentation of memory space. Thus, managing the space in the
sort buffer efficiently when records are of variable length becomes a necessity.
To address this issue, we implemented a memory manager based on the design
proposed by P. Larson in [10]. These characteristics will be evaluated empirically
in Sect. 4.

Run generation in quicksort is a simple, nevertheless effective, strategy to
create the sorted subfiles. First the records from the input are read into main
memory until the available main memory buffer is full. These records are then
sorted in-place using quicksort. Finally, they are written into a new temporary
file (run). If we assume fixed-length records such that m records fit in main
memory, this process is repeated s

m times, resulting in r := s
m runs of size m

stored in the disk.
Another advantage of quicksort is the vast research effort dedicated to it

during the last decades [1,2,7,14]. We call attention to the work in AlphaSort
[13], which is a sort component that enhances quicksort with CPU cache opti-
mizations. Two of these techniques include the minimization of cache misses and
the sorting of only pointers to records rather than whole records, which mini-
mizes data movements in memory. The reason behind the adoption of quicksort
in AlphaSort is “it is faster because it is simpler, makes fewer exchanges on
average, and has superior address locality to exploit the processor caching” [13].
These techniques are also employed by Hadoop in its quicksort implementation.
In Sect. 4.3 we discuss these techniques in the context of replacement selection.

3 Replacement Selection Sort

Sort algorithms can be classified into two broad categories. When the input set
fits in main memory, an internal sort can be executed. If the input set is larger
than main memory, an external sort is required. Memory devices slower than
main memory (e.g., hard disk) must work together to bring the records in the
desired ordering. We call a sorted subfile a run. The combination of sorting runs
in memory followed by an external merge process is described in two phases:
run generation, where intermediary sorted subfiles (i.e., runs) are produced, and
merge, where multiple runs are merged into a single ordered one.

A record is a basic unit for grouping and handling data. A key is a particular
field (or a subset of fields) used as criterion for the sort order. A value is the data
associated with a particular key, i.e., the rest of the record. Whether key and
value are disjoint or one is a subset of the other is irrelevant for our discussion.

3.1 Run Generation

The replacement selection technique is of particular interest because the expected
length of the runs produced is in average two times the size of available main
memory. This estimation was first proposed by E.H. Friend in [5] and later

368 P.M. Dusso et al.

described by E.F. Moore in [12], and is also described in [9]. In real-world appli-
cations, input data often exhibits some degree of pre-sortedness (i.e., there is
a correlation between the input and output orders). For instance, the order in
which products are ordered from a retail warehouse is closely correlated to the
order in which they are delivered. Thus, re-ordering a dataset from one crite-
rion to the other would require only small dislocations in the position of each
record. Replacement selection exploits this fact by trying to perform such move-
ments within an in-memory data structure. In such cases, the runs generated by
replacement selection tend to contain even more than 2m records. In fact, for
the best case scenario, namely when all records can be ordered by dislocating no
more than m positions, where m is the number of records that fit in main mem-
ory, replacement selection produces only one run. This means that an arbitrarily
large file can be sorted in a single pass.

Table 1. Run generation with replacement
selection

Assume a set of tuples 〈record,
status〉, where record is a record
read from the unsorted input and
status is a Boolean flag indicat-
ing whether the record is active or
inactive. Active records are can-
didates for the current run while
inactive records are saved for the
next run. The idea behind the algo-
rithm is as follows: assuming a
main memory of size m, we read
m records from the unsorted input
data, setting its status to active.
Then, the active tuple with the
smallest key is selected and moved
to an output file. When a tuple is
moved to the output (selection), its

place is occupied by another tuple from the input data (replacement). If the
record recently read is smaller than the one just written, its status is set to
inactive, which means it will be written to the next run. Once all tuples are in
the inactive state, the current run file is closed, a new output file is created, and
the status of all tuples is reset to active.

We introduce an example from Knuth [9] in Table 1 to explain in detail the
replacement selection algorithm. Assume an input dataset consisting of twelve
records with the following key values: 061, 512, 087, 503, 908, 170, 897, 275,
653, 426, 154, 509 and 612. We represent the inactive records in parentheses.
To select the smallest current record, Knuth advises in [9] to make this selection
by comparing the records against each other (in r − 1 comparisons) only for a
small number of records. When the number of records is larger than a certain
threshold, the smallest record can be determined with fewer comparisons using
a selection tree. In this case, a heap data structure can be employed. With a
selection tree, we need only log (r) comparisons, i.e., the height of the tree.

Optimizing Sort in Hadoop Using Replacement Selection 369

In Step 1, we load the first four records from the input data into the memory.
We select 061 as the lowest key value, move it to the output and replace the whole
record with a new record with key value 908. The lowest key value then becomes
087, which is moved to the output and replaced with 170. The just-added record
is also the smallest in Step 3, so we move it out and replace it with 897. Now we
have an interesting situation: when the record 503 is replaced, the record read
from the input is 275, which is lower than 503. Thus, since we cannot output 275
in the current run, it is set as inactive—a state that will be kept until the end
of the current run. Steps 6, 7, and 8 normally proceed until we move out record
908, which is replaced by 509. At this point, in Step 9, all records in memory are
inactive. We close the current run (with twice the size of the available memory),
revert the status of all records to active, and continue the algorithm normally.

3.2 Merge

Fig. 1. Merging twelve runs into
one with merging factor of six.

The goal of the second phase of external sort-
ing, namely the merge phase, is to create a
final sorted file from the existing runs. A heap
data structure is used to select the small-
est record among all runs, in the exact same
way as done in run generation with replace-
ment selection. A second improvement over
the nave procedure is to take advantage of
read and write buffers. Given r runs and
memory of size m, a read buffer of size m

r+1
can be used for each input run. The size of
the write buffer is then m − (m

r+1)r.
Assume that the minimum buffer size is

b. If the first phase of the algorithm produces more than m
b − 1 runs, then we

cannot merge these runs in a single step. A natural solution for this limitation
is to repeat the merging procedure on the merged runs, producing a merge tree.
Figure 1 shows an example of merge tree. At each iteration, m

b −1 runs are merged
into a new sorted run. The result is r − m

b + 2 runs for the next iteration—the
total number of runs minus the merged runs in this turn plus the new merged
run. Several heuristics exist to merge runs in such a way that the resulting tree
yields minimum I/O cost, such as cascade and polyphase merges, and can be
found in [6,9].

4 Implementation

In this section, we discuss details of our implementation, in which the open-source
Hadoop framework was extended with a new sort component. First, we present
the internals of Hadoop, focusing on the algorithms and data structures used to
implement external sorting using quicksort. Second, we present a custom memory
manager used to manage the space in the sort buffer efficiently. Third, we present

370 P.M. Dusso et al.

optimizations in the key comparison during the sort as well as a memory-efficient
customized heap data structure.

4.1 Hadoop Internals

In this section, we provide a brief review of the internal components involved in
a MapReduce computation in Hadoop. A primary goal of our design is to reuse
this infrastructure as much as possible, supporting the replacement selection
algorithm in a pluggable way. A detailed analysis of Hadoop’s architecture and
the components involved during the execution of a MapReduce job in Hadoop
can be found in [3].

Fig. 2. M/R tasks in detail

The following process happens in a
pipelined fashion, i.e., as soon as one step
finishes, the next can start using the output
emitted by the former. Figure 2 illustrates
the process. The map function emits records
(key-value pairs) while its input partition is
processed, and these records are separated
into partitions corresponding to the reduc-
ers that they will ultimately be sent to. How-
ever, the map task does not directly write the
intermediary results to disk. The records stay
in a memory buffer until they accumulate
up to a certain minimum threshold, measured
as the amount of occupied space in a buffer
called kvbuffer; this threshold is by default
80 % the size of kvbuffer. Hadoop keeps
track of the records in the key-value buffer
in two metadata buffers called kvindices
and kvoffsets. When the buffer reaches the
threshold, the map task sorts and flushes the
records to disk. When sorting kvoffsets,
quicksort’s compare function determines the
ordering of the records accessing directly the
partition value in kvindices through index
arithmetic. But quicksort’s swap function
only moves data in the kvoffsets buffer.
This corresponds to the pointer sort tech-
nique to be discussed in Sect. 4.3.

When the records are sorted, the map
task finally writes them to a run file (or spill

file, in the Hadoop nomenclature). Every time the memory buffer reaches the
threshold, the map task flushes it to the disk and creates a new spill. When the
map function completes processing the input partition and finishes emitting the
key-value pairs, one last spill is executed to flush the buffers. Because the input
split normally is larger than the memory buffer, when the map task has written

Optimizing Sort in Hadoop Using Replacement Selection 371

the last key-value, several runs could be present. The map task then must exter-
nally merge these spill files into a final output file that becomes available for the
reducers. Just like the spill files, this final output file is ordered by partition and,
within each partition, by key.

After the completion of a map task, each reduce task (possibly on a different
node) copies its assigned slice into its local memory. However, as long as this copy
phase is not finished, the reduce function may not be executed since it must wait
for the complete map output. Typically, the copied portion does not fit into the
reduce task’s local memory, and it must be written to disk. Once all map outputs
are copied, a cluster-wide merge phase begins. As we noted in Sect. 3.2, if we have
more than m − 1 map task outputs, the reduce cannot merge the intermediary
results of all maps at the same time. The natural solution is to merge these
spills iteratively. Hadoop implements an iterative merging procedure, where the
property io.sort.factor specifies how many of those spill files can merged into
one file at a time. The details underlying Hadoop’s iterative merging procedure
can be found in [3].

Hadoop’s sort component not only has to take care of sorting in-memory keys
and partitions but also merge these multiples sorted spills into one single, locally-
ordered file. It has to consider data structures carefully to store the records and
algorithms to manage and reorder these records. It should be clear that this
merge is only a local merge (performed by each map task). A second, cluster-
wide merge performed on the reduce side will merge the locally-ordered files
that each map task has processed. This global merge is beyond the scope of
this work because its performance is dictated only by the size and number of
runs generated, and it is thus independent of the in-memory sort algorithm.
Therefore, our analysis will consider a single merge phase, regardless of whether
it is local or global.

4.2 Memory Management

As introduced in Sect. 2, replacement selection needs a memory manager to
manage the space in the buffer efficiently when records are of variable length. It
is important to emphasize that memory management is not an issue in Hadoop’s
quicksort strategy because it only requires swapping records into main memory.
This means that a set of records is loaded into main memory and sorted in-place
without requiring additional space.

Our näıve implementation simply uses Java’s PriorityQueue class to imple-
ment the selection tree. Both memory management and heap implementation
are reused from Java’s standard library. However, this approach is inefficient
due to the JVM’s garbage collection overhead. To eliminate this overhead, we
implemented a custom memory manager based on the first-fit design proposed
by Larson in [10]. Other alternatives like the best-fit approach proposed in [11]
exist, but the evaluation of its efficacy is left for future work. The performance
gains of the customized memory manager are shown in the experiment of Fig. 3,
where run generation is performed for an input of 9 GB and a buffer of 16 MB.

372 P.M. Dusso et al.

The optimized implementation is approximately 20 % faster than the nave, Java-
based implementation.

Fig. 3. Comparion of buffer
implementations

In our implementation, the sort buffer is
divided into extents, and the extents are divided
into blocks of a predetermined size. The block
sizes are spaced 32 bytes apart, which results in
blocks of 32, 64, 96, 128, and so on. The extent
size is the largest possible block size, which is
8KB in our implementation.

For each block size, we keep a list containing
all free blocks of that particular size. The num-
ber of free lists is given by the extent size divided
by the block size, thus 8 × 1024/32 = 256. The
memory manager provides two main methods:
one to allocate a memory block big enough to
hold a record of a given size, and one to free a
block that is not in use anymore (i.e., a block
just selected for output).

Allocating a memory block big enough to
hold a given record means to locate the smallest
(we want to avoid waste at maximum) free block larger than the record size. The
allocate method works as follows: round up the record size to next multiple of 32
(�recordSize/blockSize� ∗ blockSize). Find the index of the resulting rounded
size in the free lists (roundedSize/blockSize− 1). Check if the list at the calcu-
lated index has a free block: if it does, return it. Otherwise, increment the index
and look in the next list (which will be 32 bytes larger). If no block with the
rounded record size is found, a larger block is taken and carved to the appropri-
ate size, returning the excess as a smaller free block on its appropriate list. For
instance, in the initial case where there is only one free block of 8192 bytes (the
extent size), suppose the memory manager must allocate a block for a record
of size 170. The rounded size of 170 is 192; because all other lists are empty,
the manager gets the 8192 block from its list. To avoid a major wasting, the
192 first bytes of the 8192 block are returned, and the other 8000 are placed in
its appropriate list. When the record is spilled from the buffer and its memory
block becomes free, we return the block to the appropriate list. We illustrate
this process in the example of Fig. 4, which shows a possible buffer state after a
sequence of allocate and free invocations.

All lists start initially empty except the last one, which points to blocks of
maximum size. As the blocks are allocated and freed, the lists are populated
with smaller blocks. In the example of Fig. 4, we have 10 blocks of variable sizes.
The block sizes are shown inside the blocks in the main-memory buffer (lower
part of the figure) and on top of the free list they belong to (upper part of the
figure). As smaller records are freed, the allocation process becomes faster, as
fewer lists have to be searched to find smaller blocks.

Optimizing Sort in Hadoop Using Replacement Selection 373

Fig. 4. A possible state of the memory manager and its
free lists

However, this can lead
to the following situation.
Without loss of generality,
imagine that the memory
manager is continuously
being asked for records of
32 bytes. After 256 block
requests—the amount of
blocks with 32 bytes in
an 8KB extent—assume
4 contiguous (i.e., physi-
cally adjacent) blocks are
freed. At this point, the
memory manager has 128
bytes of free memory frag-
mented into four blocks of
32 bytes. If this stream
of small records is inter-
rupted by a larger record

with 96 bytes, the memory manager will not find any block sufficiently large
for that record—despite having enough free memory to answer the request. To
remedy this situation, adjacent free blocks must be detected and coalesced into
a single free block of total size equal to the sum of their sizes. For example, a
block of 192 bytes being freed next to a free block of 64 bytes can be coalesced
into a block of 256 bytes. Such coalescence also requires updating the free lists
accordingly.

Detecting adjacent free blocks requires special free/occupied markers at the
beginning and end of blocks. When a block is freed, the markers of the neigh-
boring blocks are verified, and coalescence occurs if either neighbor has a free
marker. Because implementing this technique is not a trivial task, especially in a
memory-managed language like Java, we chose a simpler implementation with-
out block coalescence. Instead, we perform a global defragmentation operation
when large records cannot be allocated. As we show in Sect. 5, our implementa-
tion still delivers superior results than quicksort for the targeted cases, despite
the defragmentation penalty.

4.3 Pointer Sort

As introduced in Sect. 2, one of the main advantages of quicksort is the pointer
sort technique used to move fewer data. However, Nyberg et al. [13] state that
“pointer sort has poor reference-locality because it accesses records to resolve
key comparisons”. In an ideal scenario, the whole selection tree should fit on the
CPU data cache. But, in practice, the keys used to resolve record comparisons
may be too large to fit all at the same time in the data cache. Nyberg et al.
suggest the use of a prefix of the key rather than the full key to minimize cache
misses. The idea is that a small prefix of the sort key (e.g., 2 bytes) is usually

374 P.M. Dusso et al.

enough to resolve the vast majority of comparisons [7]. The complete record only
has to be accessed in the rare occasions in which the prefixes are equal. Further
techniques for key normalization and key reordering exist as in [8] and should
be evaluated in future work.

We implement this technique of pointer sorting with key prefixes by storing
only a pointer and a key prefix in the heap data structure. The pointer refers to
the block allocated for the record in the memory manager, as discussed above.
Since the entries in the heap are of fixed size, we optimized the algorithm even
further by implementing a custom heap instead of using Java’s PriorityQueue.

4.4 Custom Heap

Despite the customized memory manager for records, the JVM is still in charge
of managing entries in the heap data structure (i.e., the selection tree). Our
objective is to eliminate as far as possible the creation of objects in JVM’s
heap space during runtime, and allocate every needed array or object as soon as
possible. One of the main advantages of custom managed memory buffer was the
serialization of keys and values in a byte buffer of fixed size. To achieve the same
result but for the selection tree, we implemented a custom heap which employs
a byte array as the placeholder for the heap entries. We illustrate the idea in
Fig. 5, which shows the format of entries in the optimized heap. We use Java’s
ByteBuffer class to wrap the byte array, which provides methods such putInt
and getInt, as well similar methods to set and get other data types in arbitrary
positions in the byte array. When we add a record to the sort buffer, we add its
metadata “heap entry object” by directly writing the run, partition, etc., into
the custom heap byte array. With this design, we can directly control how much
memory the selection tree will consume, pre-allocating the heap space in a single
contiguous block.

Fig. 5. The format of entries in our optimized heap

5 Experiments

This section evaluates the performance of replacement selection in the context
of actual Hadoop jobs. First, we evaluate the run generation process, i.e., in-
memory sorting using quicksort vs. replacement selection. Our goal is to show
that (i) replacement selection indeed generates less runs, and (ii) the efficiency
of replacement selection is not much worse than quicksort, i.e., the gains made
at the merge phase are not wasted in a slower run generation phase. In fact,

Optimizing Sort in Hadoop Using Replacement Selection 375

when able to exploit the continuous run generation characteristic of replacement
selection, described in [7], where reads and writes overlap as the input is con-
sumed and the output is produced, replacement selection outperforms quicksort.
Second, we take a look at the special case of inputs with a certain degree of pre-
sortedness, which is where replacement selection is preferred to quickdort. These
experiments are executed as micro-benchmarks to isolate sort performance on a
single machine. Finally, in the third experiment set, we execute a full Hadoop
job in a cluster comparing the run time with both sorting algorithms.

5.1 Run Generation

To confirm the prediction that replacement selection generates less runs empiri-
cally, we ran an experiment with the lineitem table from the TPC-H benchmark
[15]. To randomize the sort order on the input, we consider a lineitem table
sorted by comment, and them used the column shipdate as sorting key. Since the
comment field is generated randomly by the benchmark, no correlation to the
ship date is expected.

(a) Exec. time and number of runs (b) Performance with two disks

Fig. 6. Experiment results for random inputs

Results for this experiment are presented in Fig. 6a. The buffer size used
in these experiments is 50 MB, of which 10 % are overheads of auxiliary data
structures (e.g., key prefixes). The table size is 700 MB which yields a ratio of 14
between input and buffer size. As shown in the graph, the run generation phase
in replacement selection takes a little longer, but it produces approximately
two thirds of the number of runs in quicksort. Note that the merge time is
approximately the same, despite the substantial difference in the number of
runs. This is expected because, in both cases, one merge pass was enough to
produce a single sorted output. In this case, replacement selection yields only

376 P.M. Dusso et al.

marginal gains in terms of CPU overhead in the merge phase, which are due
to the smaller size of the heap used to merge the inputs. Nevertheless, the goal
of this experiment is to show that replacement selection delivers comparable
performance to quicksort when inputs are randomly ordered, which is clearly
shown in the results. It substantially outperforms quicksort when inputs have a
certain degree of pre-sortedness or, similarly, when multiple passes are required
in quicksort. These cases are analyzed in Sects. 5.2 and 5.3 below.

The quicksort algorithm exhibits a fixed read-process-write cycle that does
not allow I/O overlapping. One of the advantages of replacement selection is
the continuous run generation process, alternately consuming input records and
producing run files [7]. To demonstrate this fact empirically, we extended Hadoop
with an asynchronous writer following the producer-consumer pattern. The idea
is to place sorted blocks of data into a circular buffer instead of writing them
directly to disk. Then, an asynchronous writer thread consumes blocks from this
buffer and performs the blocking I/O write. While it waits, the sorting thread
can sort other blocks of data in parallel. The results of our experiment are shown
in Fig. 6b, where we compare the elapsed time of run generation with two hard
disks—one for input and one for output. As predicted, quicksort delivers the same
performance regardless of whether the writer is synchronous or asynchronous,
whereas replacement selection benefits from writing asynchronously, performing
run generation approximately 30 % faster. This is because reads from one disk
are performed in parallel with writes on another disk. Using the asynchronous
writer, the performance of replacement selection approximates that of quicksort,
despite the higher overheads of heap operations and memory management.

(a) Partially ordered file (b) Distributed join

Fig. 7. Experiment results for pre-sorted input and join computation

Optimizing Sort in Hadoop Using Replacement Selection 377

5.2 Exploiting Pre-sortedness

One of the major advantages of replacement selection is that it can exploit pre-
sortedness on the input file. Estivill-Castro and Wood showed mathematically
in [4] that the length of the runs created by replacement selection increases as
the order in the input file increases. To confirm this prediction empirically, we
ran an experiment with the lineitem table again. We took as input the lineitem
table sorted by shipdate, using the column receiptdate as new sorting key. We
prepared the table by sorting the file by shipdate beforehand, but in practice this
scenario could also occur if there is a clustered index or materialized view on
shipdate. Since there is a strong correlation between the dates on which orders
are shipped and received, this constitutes a good example of pre-sorted input.

The input dataset used in this experiment is the same as on the experiment
of Fig. 6a, but with a different pre-sort order. As shown, the run generation
phase takes considerably longer with replacement selection, but it produces only
a single run at the end, meaning that no merge phase is required. As predicted,
replacement selection acts as a sort sliding-window in this case. Note that quick-
sort finishes run generation earlier, but an additional pass over the whole input
is required in the merge phase, requiring about 35 % more time in total.

5.3 Distributed Join

To conclude the experiments, we created a test scenario where a distributed
join of two TPC-H tables is performed. Joins are a common operation in data
management systems, and in MapReduce both inputs must be sorted by the
join key (i.e., a sort-merge join algorithm). The joined tables are lineitem, which
has about 1 GB, and orders, with 600 MB. This experiment was performed in a
small cluster running Hadoop 2.4.0 with six nodes and we measured the total
execution time of the jobs. The buffer size was 16 MB, which yields a 62.5 ratio
with the lineitem table and a 37.5 ratio with the order table. Note that despite
the tables being relatively small for typical Hadoop scales, the determinant factor
for performance is actually the ratio between input and sort buffer size. A real-
world large scale scenario would probably deal with sizes up to 1000× larger,
i.e., tables of 1 TB and 600 GB, and a sort buffer of 16 GB. In such situations,
the relative performance difference between the two algorithms would be very
close to what is observed in our experiment, because the ratio is the same. The
results in Fig. 7b confirm our expectation that replacement selection is faster,
because less runs are generated. Furthermore, it seems that it is also more robust
in terms of performance prediction, given the lower standard deviation.

6 Conclusion

This work described the implementation and evaluation of an alternative sort
component for Hadoop based on the replacement selection algorithm. The orig-
inal implementation, based on quicksort, is simple to implement and efficient in

378 P.M. Dusso et al.

terms of RAM and CPU. However, we demonstrated that under certain condi-
tions, such as pre-sorted inputs and large ratio between input and memory size,
replacement selection is faster due to the lower number of runs to be merged.
For the remaining cases, we showed that the performance is very close to that
of quicksort, meaning that the average long-term gain in a practical scenario is
in favor of replacement selection.

Despite the demonstrated advantages of replacement selection, we believe
the implementation has the potential to outperform quicksort even further with
certain optimizations. The main task in that direction is to optimize the main
memory management component (e.g., by implementing block coalescence [10])
and the heap data structure (e.g., by minimizing the number of comparisons
with a tree-of-losers approach or by optimizing key encoding [7–9]). Our work
has been published as an open source pluggable module for Hadoop1. We hope
to implement the mentioned optimizations and improve our code to integrate it
with the official Hadoop distribution.

Acknowledgements. We thank Renata Galante for her helpful comments and sug-
gestions on earlier revisions of this paper.

References

1. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In:
Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms.
SODA 1997, pp. 360–369. SIAM, Philadelphia, PA, USA (1997)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

3. Dusso, P.M.: Optimizing Sort in Hadoop using Replacement Selection. Master
thesis, University of Kaiserslautern (2014)

4. Estivill-Castro, V., Wood, D.: Foundations for faster external sorting (extended
abstract). In: Thiagarajan, P.S. (ed.) FSTTCS. LNCS, vol. 880, pp. 414–425.
Springer, Heidelberg (1994)

5. Friend, E.H.: Sorting on electronic computer systems. J. ACM 3(3), 134–168 (1956)
6. Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv.

25(2), 73–169 (1993)
7. Graefe, G.: Implementing sorting in database systems. ACM Comput. Surv. 38(3)

(2006)
8. Härder, T.: A scan-driven sort facility for a relational database system. In: Pro-

ceedings of VLDB, pp. 236–244 (1977)
9. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3,

2nd edn. Addison Wesley Longman Publishing Co. Inc., Redwood City (1998)
10. Larson, P.A.: External sorting: run formation revisited. IEEE Trans. Knowl. Data

Eng. 15(4), 961–972 (2003)
11. Larson, P.A., Graefe, G.: Memory management during run generation in external

sorting. In: Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data, pp. 472–483. SIGMOD 1998. ACM, New York, NY, USA
(1998)

1 http://bitbucket.org/pmdusso/hadoop-replacement-selection-sort.

http://bitbucket.org/pmdusso/hadoop-replacement-selection-sort

Optimizing Sort in Hadoop Using Replacement Selection 379

12. Moore, E.: Sorting method and apparatus, 9 May 1961. http://www.google.com.
br/patents/US2983904

13. Nyberg, C., Barclay, T., Cvetanovic, Z.: AlphaSort: a RISC machine sort. In: Pro-
ceedings of SIGMOD, pp. 233–242 (1994)

14. Skiena, S.S.: The Algorithm Design Manual. Springer, London (1998)
15. Transaction Processing Performance Council: TPC Benchmark H (Decision Sup-

port) Standard Specification. http://www.tpc.org/tpch/. Accessed 10 January
2014

http://www.google.com.br/patents/US2983904
http://www.google.com.br/patents/US2983904
http://www.tpc.org/tpch/

Distributed Sequence Pattern Detection
Over Multiple Data Streams

Ahmed Khan Leghari1(B), Jianneng Cao2, and Yongluan Zhou1

1 Department of Mathematics and Computer Science (IMADA),
University of Southern Denmark, Odense, Denmark

{ahmedkhan,zhou}@imada.sdu.dk
2 Department of Data Analytics, Institute for Infocomm Research,

A*, Singapore, Singapore
caojn@i2r.a-star.edu.sg

Abstract. Sequence pattern detection over streaming data has many
real world applications. Most of the present work is aimed to process
sequence queries over single data stream. Situations where streaming
data arrive from multiple sources have not been explored much. In tra-
ditional approaches a single centralized machine handles and processes
sequence queries over multiple data streams. While running sequence
queries on a single server, even though many of the events in data streams
do not lead to successful pattern detection they are still handled and
processed by the server. This consumes precious network bandwidth,
server’s computing resources and precious time. In this paper we focus
on sequence pattern detection, where patterns are defined on chains of
events that arrive from multiple distributed data streams. We propose
a three layer distributed framework to avoid unnecessary event process-
ing by the server, and to efficiently process sequence queries to detect
sequence patterns relying upon chains of events. The bottom layer of
data sources sends continuous data streams to the middle layer, which
then performs pattern detection locally, and on the basis of the feedback
received from the top layer of global server, sends events to the global
server to detect complete patterns. Our present work is aimed to detect
sequence patterns over multiple data streams, but, our proposed model
can be extended to many other areas of distributed stream processing.

Keywords: Stream processing · Pattern detection · Chain-dependency

1 Introduction

Stream processing has gained immense popularity in scientific community still,
complex event processing over multiple distributed data streams is relatively
less explored area and is focus of the present research. In a typical distributed
stream processing environment a single machine provides the interface for query
submission, query execution, processing of multiple data streams and for the
production of the result. Due to the possible importance and relevance of each
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 380–394, 2015.
DOI: 10.1007/978-3-319-23135-8 26

Distributed Sequence Pattern Detection Over Multiple Data Streams 381

event in a pattern, the server handles and processes each event in the data
stream, even though many of the events do not lead to successful pattern detec-
tion. These unwanted events consume precious network bandwidth, and valuable
resources at server. Situation can be worse when streaming data arrive from mul-
tiple sources and a time critical response is required for the correctness of result,
and for the reliability of applications. Therefore, in a single machine distributed
stream processing setup [1], the time wasted in processing unwanted events can
be a decisive factor in many time critical applications.

In complex event processing applications, the events arriving from various
distant sources can be correlated and interdependent on the arrival order and
time. Consider the scenario of an international stock market, where many of
the traders wait for the drop or rise of stock commodities in a particular order.
Prices of certain stock commodities can have affect on some other commodities
in international markets. This can be described as: if the price of commodity
A falls in stock market X at time t1, which caused the of commodity B to fall
in stock market Y at time t2, here t1 ≤ t2. Then buy the shares of commodity
P , as this commodity is going to be very profitable in near future. This type of
chain-dependency of stock events can be detected by running sequence queries
over stock streams arriving from distant stock markets around the world.

Moreover, stock streams carry information about hundreds of commodities,
but, majority of the stock traders just focus on particular shares, and specific
market trends as mentioned above, thus, sending continuous data streams con-
taining many unwanted and useless events directly to server is not an optimal
method for many reasons, and needs a considerable improvement. To tackle this
problem we propose a three layer architecture as depicted in Fig. 1 in Sect. 4 to
handle streaming data and process sequence queries without sending unwanted
events to the server.

The contribution of this paper are as follows.
(i) A three layer architecture to detect sequence patterns involving chains

of events, arriving from multiple distributed data streams. (ii) A coordination
mechanism between machines in three layer architecture that efficiently utilizes
the network bandwidth by discarding the unwanted events to be sent to the
server. (iii) Inclusion of a middle layer in the traditional distributed stream
processing model to minimize the computing load, reduce processing time, and
conserve precious resources on the server, by evaluating the sequence patterns
in distributed fashion.

In remainder of this paper Sect. 2 presents background, Sect. 3 presents related
work. Section 4 explains our approach. Section 5 presents experiments and results
and Sect. 6 presents the conclusion of our work.

2 Background

2.1 Basic Terminology

Data Stream. We consider data stream as a massive sequence of events. Each
event is modelled as a (d + 1)-dimensional tuple (ID, ts,A1, A2, . . . , Ad), where

382 A.K. Leghari et al.

ID is the stream’s unique identifier, ts is the timestamp showing when the
event is generated, and Ai’s are the attributes for i = 1, 2, . . . , d. Consider a
simplified example of stock market. Suppose that the stock trading stream is of
structure (ID, ts, name, ask price, bid price, volume), which represents
stock’s identity, the timestamp of the event, name, price asked by the seller, price
bid by the buyer, and the number of shares that changed hands.

Sequence Pattern. A sequence pattern is an ordered sequence of events,
which may come from multiple data streams. We define a sequence pattern as
({e1, e2, . . . , ek}, window constraints, event correlations), where

– event ei must happen before event ej (i.e., ei.ts ≤ ej .ts) for 1 ≤ i < j ≤ k,
– window constraints are the time window, in which all the events should

happen,
– and event correlations specify the correlations between events.

For example, e1(ask price, Shanghai, ts) and e2(ask price, Hongkong, ts)
are the ask prices of Industrial and Commercial Bank of China (ICBC) in China
mainland and Hongkong stock markets, respectively. Suppose that a user is inter-
ested in the case that: (a) if the ask price of in Shanghai increases than x and the
difference of ask price between the two stock markets is larger than 1 Chinese
Yuan, and (b) the time difference of the price asking is within 30 s. Then, the
window constraint is “WITHIN 30 s”, and the event correlations are

[
(e1.askprice > x) − (e2.askprice)

]
> 1 and |e1.ts − e2.ts| ≤ 30 Sec.

Sequence Query. A sequence query is to detect a sequence pattern. Consider
the example of stock market again. The SQL-like sequence query to detect the
sequence pattern of price difference of ICBC is.

SELECT e1, e2
FROM Shanghai AND Hongkong
WHERE

[
(e1.ask price>x) − (e2.ask price)

]
> 1 AND |e1.ts − e2.ts| ≤ 30 Sec

The example query runs over two different streams and can be processed by a
single server, but in a single machine setup a query involving multiple streams
can pose serious scalability challenges and processing issues due to the limited
resources.

Refer to Fig. 1 in Sect. 4 that depicts the distributed three layered architec-
ture of our approach and the example sequence query. When a sequence query
detecting a pattern over multiple streams is submitted to the server (Layer-1),
it is decomposed into multiple sub-queries, and each sub-query is then placed
on a relevant Semi-Global Server (SGS) (Layer-2). An SGS is a regional server
that detects a sub-pattern running a sub-query on the streams connected to it
(Layer-3). After successful detection of the sub-pattern the detailed information
is sent to the global server, which after receiving the information from all the
concerned SGSs combines it and marks the detection of sequence successful.

Distributed Sequence Pattern Detection Over Multiple Data Streams 383

Chain-Dependency. Refer to the example query, if the ask price in Shanghai
increases than x, then it would be useful to evaluate the ask price in Hongkong
and subsequently calculate the difference of two ask prices. Otherwise, there
is no use to evaluate the ask price in Hongkong. The evaluation of event e2
from Hongkong stock stream is dependent on the evaluation of event e1 from
Shanghai stock stream. This relationship of events where one of the event in
a stream must be evaluated before the other event from a different stream is
termed as Chain-Dependency.

Local-Chain Dependency. Refer to Fig. 1, suppose that events in the query
submitted to the global server are chain-dependent on each other, then an event
such as eb (Layer-2) is said to be Local-Chain Dependent on event ea, as they
are processed by the same SGS in their dependency order.

Global-Chain Dependency. Refer to Fig. 1, when chain-dependent events
such as ei that depends on eb arrive from event streams not connected through
same SGS (Layer-2), the relationship among them is termed as Global-Chain
Dependency.

3 Related Work

Event stream processing have been studied by many [2–26]. Ramakrishnan et al.
[7] discussed importance of sequence queries and suggested a model for sequence
data processing. Law et al. [18] discussed the limitations of relational algebra and
SQL. They suggested changes in the data model to support sequence and other
stream queries. Seshadri et al. [15] presented techniques and query evaluation
plans to efficiently process sequence queries. Wu et al. [19] presented SASE
(Stream based and shared event processing) to generate query plans and arrange
query operators to efficiently handle sequence queries and detect patterns.

The work that is most relevant to ours is done by Mei et al. [21], Balkesen
et al. [22] and Hirzel [23].

Mei et al. [21] presented ZStream to detect sequential patterns, and other
stream operations. Their approach considers many tree based plans and accord-
ing to the cost model selects the best possible plan to detect a pattern. Their
approach is also based on single machine and chooses an optimal plan for pattern
detection. While the focus of our work is to detect sequence patterns involving
chain dependent events arriving from multiple event streams, and to minimize
the number of unwanted events processed by server to reduce the processing load
and time on server.

Balkesen et al. [22] proposed an intra query parallelism scheme for scalable
pattern recognition. Their approach partitions the input stream and distributes
the input events among multiple cores for parallel processing. Their work targets
the multi-core architecture of a single machine, but a single machine implemen-
tation can easily lead to performance bottleneck while handling multiple fast
data streams.

Hirzel proposed [23] a partitioning scheme for distributed pattern matching
based on partition keys. His approach showed high throughput on multi-core

384 A.K. Leghari et al.

machines and on clusters. To achieve high throughput Hirzel’s scheme requires
a partitioning key, while in our approach multiple streams are handled in dis-
tributed fashion without any partitioning.

4 Sequence Pattern Detection

The sequence queries when submitted to the global server are grouped as follows.

(1). Queries that Detect Sequence Patterns Involving Local-Chain
Dependent Events (Local Queries). Some of the sequence patterns can be
successfully evaluated by processing data streams connected through the same
SGS. As the events are local-chain dependent in these sequence patterns there-
fore, there is no need for query decomposition.

(2). Queries that Detect Sequence Patterns Involving Global-Chain
Dependent Events (Global Queries). Queries in which the detection of
a complete sequence pattern requires involvement of more than one SGS are
termed as Global Queries. Refer to Fig. 1, in which global server (Layer-1)
receives a query that is further decomposed into three sub-queries. A sub-query
such as (ea, eb) consists of those events that arrive from streams connected
though the same SGS. Each sub-query runs over relevant streams and detects a
sub-pattern, or partial sequence.

Fig. 1. The architecture of distributed pattern detection

While detecting patterns involving global-chain dependent events the feed-
back from global server plays a very important role.

Importance of the Feedback. A feedback is a two way communication that
takes place between SGSs and global server to coordinate and complete the
detection of a sequence pattern.

Example: Fig. 1 shows that global server has received a query involving
global-chain dependent events (global query). Starting from the right in chain
dependency order, events ec, ek would be processed by SGS3, which are chain

Distributed Sequence Pattern Detection Over Multiple Data Streams 385

dependent on events ei, ej processed by SGS2, which themselves are chain depen-
dent on ea, eb. As events in the sequence pattern would be processed by multiple
SGSs, hence they are forming a global-chain. To detect a sequence pattern involv-
ing global-chain dependent events, the query submitted to global server would
be decomposed among SGSs participating in the detection process. Therefore, to
detect a sequence pattern such as (ea, eb, ei, ej , ec, ek) a query and it’s associated
time constraints would be decomposed into three sub-queries as (ea, eb), (ei, ej)
and (ec, ek) as mentioned in Fig. 1. Each sub-query would be placed on an SGS
that receives the relevant events from the connected streams. An SGS would
then detects a sub-pattern using it’s sub-query in it’s assigned sub-window.

In the Fig. 1, SGS-1 after detecting the sub-pattern ea, eb sends a notification
that a sub-pattern has been detected, upon feedback received from SGS-1, the
global sever then directs SGS-2 to detect sub-pattern ei, ej and so on. A feedback
sent to global server contains the Seq ID, sub-sequence ID, the time when the
first and the last event of sub-sequence was detected in the sub-window, and
when the notification was sent by a particular SGS.

4.1 Global Query Processing

When a sequence query is submitted to the global server, it inspects the query
and places it into the categories according to the characteristics of the chain
dependency of the events. The next step is to decompose the query into multiple
sub-queries. A sub-query is then placed on a particular SGS that receives a data
stream on which the sub-query is required to be run as shown in Fig. 1. Events
in global queries are processed according to the order of their chain-dependency,
therefore, these queries are further categorized according to the processing orders
of the events.

Fig. 2. A simple case of global-chain
dependent events in sequence

Fig. 3. Non-interleaved events in a
sequence pattern

Cat-(1). One Event Arriving from One SGS. Refer to Fig. 2, the sequence pat-
tern consists of 4 events: ei, ej , ek, el, each would arrive at a different SGS from
any of the stream connected to it. An event such as ej that arrives at time t2
on SGS2 is chain dependent on another event ei arrived at time t1 on SGS1
and so on, here t2 > t1. This is the simplest case of global-chain dependency,
as the sequence pattern consists of multiple events, each from a single SGS. To
avoid any processing and communication delay, an SGS after detecting the cor-
responding event would send it to the global server, which then evaluates the

386 A.K. Leghari et al.

sequence pattern using the query placed on it within the respective time-window
as described in the example query in Sect. 2.1. A time window is generated as
follows.

Sub windowi = Time window/(Tavg ∗ # of events) (1)

Here, Tavg denotes the average time required to evaluate an event multiplied
by the number of consecutive events to be evaluated at an SGS. Each sub-query
and associated sub-window is then provided to an SGS to detect a sub-sequence
pattern. Every SGS receives a sub-query relevant to the event streams connected
to it.

(Cat-2). Non-interleaved Events Arriving from Multiple SGS. If the processing
order of events in a sequence pattern is non-interleaved as depicted in Fig. 3, then
each SGS receives a sub-query to detect relevant sub-pattern at corresponding
SGS along with it’s respective sub-window calculated using the Eq. 1. Therefore,
Events ei, ej , ek would be processed by SGS1, events el, em would be processed
by SGS2, and SGS3 would process events eo, ej , em. All the SGSs would process
their respective events following the chain dependency order.

It is possible that events required to evaluate a sub-sequence would appear
multiple times in a sub-window, then each time a sub-sequence is detected by
an SGS, a notification is sent to global server that the partial evaluation of the
sequence is successful. If any of the relevant event in sub-sequence does not arrive

Algorithm 1. Evaluating a sequence pattern at Global Server

1: Input: Ni is the most recent notification received at server, from an SGSj

2: do
3: if Ni is received then
4: copy Ni into the memory
5: if Ni notifies that a sequence Seqk has been successfully evaluated at SGSj

then
6: Mark the evaluation of Seqk successful
7: else
8: if Ni notifies that a sequence Seqk has been partially evaluated at SGSj then
9: evaluate Seqk using information in Ni

10: if evaluation of Seqk completes using information in Ni then
11: Mark the evaluation of Seqk successful
12: else
13: inform concerned SGS to send information required for further evaluation

of Seqk
14: end if
15: end if
16: end if
17: end if
18: while(true)

Distributed Sequence Pattern Detection Over Multiple Data Streams 387

within the specified sub-window then the sub-query and any relevant information
is removed from the memory of an SGS. If the global server does not receive a
notification after the time assigned as a sub-window it marks the evaluation of
the sequence pattern unsuccessful, and removes the relevant information from
it’s memory. In the same way all other SGS awaiting to hear from global server
also discard the relevant information from their memories.

Each time the global server receives a notification from an SGS, such as SGS1,
denoting the successful evaluation of a sub-sequence, it inspects it’s sequence ID
and sub-sequence ID to determine the query associated to it, and if required then
directs the next SGS such as SGS2, that should further continue the process of
sequence pattern detection. The SGS2 after receiving a signal from global server
starts detecting events in it’s assigned sub-window, and each time it detects a
sub-sequence it notifies it to the global sever. The global server after receiv-
ing notification denoting the successful evaluation of a sub-sequence at SGS2,
directs SGS3 to start and continue the process of sub-sequence detection. The
notification based communication is described in Algorithm 1.

(Cat-3). Interleaved Events Arriving from Multiple SGSs. Figure 4 shows a
sequence pattern (ei, ej , ek, el, em, en) in which events making up the sequence
are required to be processed in interleaved order. The events ei, ek, em would be
processed by SGS1, and events ej , el, en would be processed by SGS2. Each event
is dependent on the detection of other event except the first event ei. Hence, the
processing of event ej at SGS2 requires the detection of event ei by SGS1, and
SGS1 requires the detection of event ej at SGS2 before it continues the detection
of event ek and so on. To process interleaved events in a pattern as shown in Fig. 4,
a straight forward process is that when an SGS detects an event it should send a
notification to the global server, who should direct the relevant SGS to detect the
next event in the pattern. But, as each successive event in the pattern would arrive
at alternating SGS, hence each SGS has to send multiple notifications for events
that it detects. The global server also has to communicate back and forth with
both SGSs to direct them to carry on the detection process. This would decrease
the overall efficiency of the approach due to the higher communication cost, and
potential delay while evaluating the sequence pattern.

Fig. 4. Interleaved events
in a sequence pattern

Fig. 5. Multiple interleaved events
in a sequence pattern

In global queries with interleaved events, size of sub-window would be cal-
culated according the Degree of Proximity (DoP) of events (Algorithm 2).

388 A.K. Leghari et al.

The DoP is the number of interleaved events to be arrived between two successive
events at a single SGS. In Fig. 4 the DoP between events ei, ek and ej arriving at
SGS1 is one, and the DoP between events arriving at SGS2 is also one.

Sub windowi = Time window/[Tavg ∗ (# of events + DoP)] (2)

A careful selection of DoP is important to calculate a suitable sub-window.
This can result in simultaneous evaluation of events on multiple SGSs, and reduce
back and forth communication between global server and SGSs. For all the events
evaluated in a single sub-window, a single notification carrying the relevant infor-
mation is sent to the global server.

However, choosing large overlapping sub-windows can waste precious
resources. Refer to Fig. 5, as an event en at time 6 is global-chain dependent
on another event arriving at time 5, therefore, assigning a large sub-window at
SGS2 to evaluate interleaved event ej arriving at time time 2 in the same sub-
window is poor strategy. Because before en there are multiple chain-dependent
events after ej which must be evaluated in the arrival order at SGS1, and if
any of the chain-dependent event before en and after ej does not arrive, then
the arrival of the remaining events have no importance. Therefore, a balanced

10: while(true)

strategy is required while calculating the size of a sub-window using DoP. In case
of multiple interleaved events in a sequence pattern a good idea is to generate
multiple sub-windows at each SGS for these interleaved events.

The processing in Cat-3 queries would take place as follows. Refer to Fig. 4, at
the time of query decomposition the sub-windows are calculated as described in
Eq. 2. The sub-windows assigned to SGS1 and SGS2 both are overlapped. SGS1
would start detecting the events at time 1 and when SGS1 would detect the
first event ei of the sub-sequence, it will send a signal to the global server which
then direct SGS2 to start detecting the events relevant to the sub-query assigned
to it. The SGS2 would start detecting the relevant events in it’s sub-window,
that possibly would start at time 2 creating an overlapping sub-window, and
stop at time 6. If SGS1 would successfully evaluate sub sequence pattern using

Distributed Sequence Pattern Detection Over Multiple Data Streams 389

the sub-query assigned to it, then it would send a notification at time 5 to the
global server like in the non-interleaved order of events. The global server after
receiving a notification from SGS1 waits for a notification to be received from
SGS2 at time 6. After receiving a notification from both of the SGSs denoting
the successful partial evaluation of the sequence pattern, it then performs a
global evaluation and marks the detection of a sequence pattern successful.

4.2 Local Query Processing

At the system startup time, each SGS receives it’s individual set of local queries
as well as another subset of sub-sequence queries from global server to detect
sequence patterns which can be partially detected by events arriving on that
SGS, but their successful evaluation depends on events arriving at multiple
SGS. An SGS detects sequence patterns running sequence queries over multiple
streams. None of the SGS sends events to the global server unless an event whose
successful evaluation requires global-chain dependent events from multiple SGS.
Events which are not relevant to any sequence pattern when arrive at an SGS
are simply discarded. Detection of a relevant event at an SGS would lead to the
steps described below.

(i). If an event ei detected is the very first event of a sequence pattern, then it is
checked that, are there other relevant events (making up the pattern sequence)
which are local-chain dependent to the very first event. All the relevant events
arriving in a time-window are examined for various combinations that can lead
to the successful detection of a sequence pattern. If events making up a sequence
pattern are local-chain dependent to the SGS, then the present and upcoming
events (if there is any) would be evaluated locally by SGS, and a notification is
sent to the global server that a sequence pattern has been successfully detected.
If events in a sequence pattern are global-chain dependent, and the sequence is
partially evaluated at an SGS using a sub-query, then a notification is sent to
the server specifying the detail required to carry on further evaluation.

(ii). If an event just detected is not the first event in a sequence pattern, then
it would be examined whether it belongs to a sequence pattern being evaluated
locally, or is a global-chain dependent event. In the latter case, the event can be
required to continue the partial evaluation of a sequence pattern. In the former
case an event can be the last event required for a successful evaluation of a
sequence pattern, or an event that belongs to the middle of a sequence pattern
and evaluated accordingly, and if required global server would be notified. On the
basis of the information received the global server performs some basic arithmetic
operations, and marks the evaluation of a particular sequence successful.

5 Experimental Evaluation

5.1 Experimental Setup

In the experimental system there was one global server and three semi-global
servers. Each SGS was receiving three event streams. An event stream repre-

390 A.K. Leghari et al.

sented stock events from a distinct stock market consisted of NASDAQ’s [27]
historical stock quotes. A single SGS received 1 million events in total from three
stock streams connected to it. There were 9 input streams in total, 3 at each
SGS, and the entire system received 3 million events. The sequence queries were
generated randomly and submitted to the global server after a random interval.
Each sequence query consisted of a variable set of stock events. The length of
a pattern in the sequence query was ranging between 3 to 6. The total number
of queries generated in the system was evenly divided among four categories of
the queries as per their order of chain-dependent events. Therefore, 25 percent
local queries were detecting patterns with local-chain dependent events on mul-
tiple SGSs, while rest of the 75 percent global queries consisted of 3 different
categories as mentioned in Sect. 4.

5.2 Results and Discussion

Refer to Fig. 6a, in the first experiment a number of 48063 local queries and
144189 global queries were used to detect various stock patterns from nine incom-
ing event streams. The total number of sequence pattern detected locally i.e. at
three SGSs were 72, and there was 458 patterns detected globally (Fig. 6b).
151 patterns were detected in Cat-1 queries involving global-chain dependent
events. Similarly 145, and 162 patterns were detected in the Cat-2 and Cat-3
sequence queries. Figure 6c shows that in 144189 global queries, 769008 events
were required to successfully detect all the patterns. In a traditional approach
the global server would have processed 3 million events to detect these patterns,
but, in our approach the total number of events received by the global server is
2458, that is 0.0819 % of the total data.

(a) No. of queries used in
Exp-1

(b) No. of local and global
patterns deteced in Exp-1

(c) No. of relvant events
sent to the global server in
Exp-1

Fig. 6. Configuration and results of experiment-1

The small number of events received by the global server is due to the reasons
that SGSs discarded the events which were not relevant to the sequence patterns,
or did not arrive in the time-window mentioned in the sequence query. All the
events which were not arriving in the order of chain-dependency were are also
discarded by the SGSs. Moreover, queries detecting patterns that relied upon
event streams from nearby regions were also processed at SGSs, these all factors

Distributed Sequence Pattern Detection Over Multiple Data Streams 391

(a) No. of queries used in Exp-
2

(b) No. of local and global
patterns deteced in Exp-2

(c) No. of relvant events sent
to the global server in Exp-2

Fig. 7. Configuration and results of experiment-2

contributed to minimize the number of events sent to the global server and thus,
conserved precious bandwidth and reduced considerable processing load on the
server.

In Experiment-2 (Fig. 7a), there were 47967 local queries and 191868 global
queries. The total number of patterns detected locally were 83, and there was 464
patterns involving different categories of global-chain dependent events (Fig. 7b).
Similarly, (Fig. 7c) a total of 767472 events were required in certain order to
detect the patterns by global queries, but the global server just received 2511
events from multiple SGSs. These 2511 events were the actual events of interest
and were evaluated successfully.

This experiment also shows a considerable gain in terms of bandwidth con-
sumption, as just 0.0837 % events out of 3 million events were sent to the global
server. Reducing 99 % of data rate and corresponding processing load on the
global server.

(a) Average No. of queries (b) Average No. of local and
global patterns deteced

(c) Average No. of relvant
events sent to the global server

Fig. 8. Average results of multiple experiments

We repeated experiments many times. The average number of local and global
queries used in the experiment were 47996.25, and 143988.75 (Fig. 8a). The aver-
age number of patterns detected locally were 82, and there were 459.75 patterns
involving events received from multiple SGSs (Fig. 8b). There were 767940 total
events in sequence queries required to evaluate the patterns, and the global server
just received 2344.25 events (Fig. 8c).

392 A.K. Leghari et al.

Fig. 9. No. of messges exchanged as a feedback

Refer to Fig. 9, in each experiment we also kept the record of total number
of messages, exchanged as a feedback between global server and SGSs while
processing global queries. The number of messages exchanged while processing
local queries are not included, as there was just two messages exchanged between
each SGS and global server for each query that successfully detected a sequence
pattern. First, when the local query is placed on the SGS, and the Second, when
the SGS sent a notification about the successful detection of a pattern.

If a local query does not detect a pattern then no message is sent to global
server. It can be clearly seen that the number of messages exchanged as a feed-
back are much smaller than the number of events that would have been received
by the global server without removal of unwanted events at SGSs. Thus by
adopting a three layer architecture to process queries in which events are chain-
dependent we have on average saved 95 % of the bandwidth (99 % excluding the
feedback) that would have been consumed by useless events.

6 Conclusion

In this paper we introduced sequence patterns in which events are chain-
dependent. Our experimental study shows that by establishing a feedback mech-
anism between two layers of servers to evaluate such patterns and pruning the
unwanted events at SGSs can result up to 99 % cutback in the data sent to the
global server, and can reduce the overall processing load on server.

References

1. Lu, H., Zhou, Y., Haustad, J.: Continuous skyline monitoring over distributed data
streams. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp.
565–583. Springer, Heidelberg (2010)

2. Brenna, L., Gehrke, J., Hong, M., Johansen, D.: Distributed event stream process-
ing with non-deterministic finite automata. In: Proceedings of the Third ACM
International Conference on Distributed Event-Based Systems, p. 3. ACM (2009)

3. Golab, L., Özsu, M.T.: Issues in data stream management. ACM Sigmod Rec.
32(2), 5–14 (2003)

Distributed Sequence Pattern Detection Over Multiple Data Streams 393

4. Liu, M., Li, M., Golovnya, D., Rundensteiner, E.A., Claypool, K.: Sequence pattern
query processing over out-of-order event streams. In: 2009 IEEE 25th International
Conference on Data Engineering. ICDE 2009, pp. 784–795. IEEE (2009)

5. Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 requirements of real-time stream
processing. ACM SIGMOD Rec. 34(4), 42–47 (2005)

6. Kawashima, H., Kitagawa, H., Li, X.: Complex event processing over uncertain
data streams. In: 2010 International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing (3PGCIC), pp. 521–526. IEEE (2010)

7. Ramakrishnan, R., Cheng, M., Livny, M., Seshadri, P.: What’s next? sequence
queries. In: Proceedings of International Conference Management of Data. Citeseer
(1994)

8. Wang, Y., Cao, K., Zhang, X.: Complex event processing over distributed proba-
bilistic event streams. Comput. Math. Appl. 66(10), 1808–1821 (2013)

9. Jiang, Q., Chakravarthy, S.: Scheduling strategies for processing continuous queries
over streams. In: Williams, H., MacKinnon, L.M. (eds.) BNCOD 2004. LNCS, vol.
3112, pp. 16–30. Springer, Heidelberg (2004)

10. Sharaf, M.A., Labrinidis, A., Chrysanthis, P.K.: Scheduling continuous queries
in data stream management systems. Proc. VLDB Endowment 1(2), 1526–1527
(2008)

11. Mani, M.: Efficient event stream processing: handling ambiguous events and pat-
terns with negation. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds.) DASFAA
Workshops 2011. LNCS, vol. 6637, pp. 415–426. Springer, Heidelberg (2011)

12. Schultz-Møller, N.P., Migliavacca, M., Pietzuch, P.: Distributed complex event
processing with query rewriting. In: Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, p. 4. ACM (2009)

13. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching
over event streams. In: Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, pp. 147–160. ACM (2008)

14. Babcock, B., Babu, S., Datar, M., Motwani, R., Thomas, D.: Operator scheduling
in data stream systems. VLDB J. Int. J. Very Large Data Bases 13(4), 333–353
(2004)

15. Seshadri, P., Livny, M., Ramakrishnan, R.: Sequence query processing. In: ACM
SIGMOD Record, vol. 23, pp. 430–441. ACM (1994)

16. Wu, J., Tan, K.-L., Zhou, Y.: QoS-oriented multi-query scheduling over data
streams. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS,
vol. 5463, pp. 215–229. Springer, Heidelberg (2009)

17. Diao, Y., Immerman, N., Gyllstrom, D.: Sase+: An Agile Language for Kleene
Closure Over Event Streams. ACM Press, New York (2007)

18. Law, Y.N., Wang, H., Zaniolo, C.: Query languages and data models for database
sequences and data streams. In: Proceedings of the Thirtieth International Con-
ference on Very Large Data Bases-Volume 30, VLDB Endowment, pp. 492–503
(2004)

19. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: Proceedings of the 2006 ACM SIGMOD International Conference on
Management of Data, pp. 407–418. ACM (2006)

20. Sadoghi, M., Singh, H., Jacobsen, H.A.: Towards highly parallel event process-
ing through reconfigurable hardware. In: Proceedings of the Seventh International
Workshop on Data Management on New Hardware, pp. 27–32. ACM (2011)

21. Mei, Y., Madden, S.: Zstream: a cost-based query processor for adaptively detect-
ing composite events. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, pp. 193–206. ACM (2009)

394 A.K. Leghari et al.

22. Balkesen, C., Dindar, N., Wetter, M., Tatbul, N.: Rip: Run-based intra-query par-
allelism for scalable complex event processing. In: Proceedings of the 7th ACM
International Conference on Distributed Event-Based Systems, pp. 3–14. ACM
(2013)

23. Hirzel, M.: Partition and compose: Parallel complex event processing. In: Pro-
ceedings of the 6th ACM International Conference on Distributed Event-Based
Systems, pp. 191–200. ACM (2012)

24. Zhou, Y., Ma, C., Guo, Q., Shou, L., Chen, G.: Sequence pattern matching over
time-series data with temporal uncertainty. In: EDBT, pp. 205–216 (2014)

25. Leghari, A.K., Wolf, M., Zhou, Y.: Efficient pattern detection over a distributed
framework. In: Castellanos, M., Dayal, U., Pedersen, T.B., Tatbul, N. (eds.) BIRTE
2013 and 2014. LNBIP, vol. 206, pp. 133–149. Springer, Heidelberg (2015)

26. Wu, J., Zhou, Y., Aberer, K., Tan, K.L.: Towards integrated and efficient scientific
sensor data processing: a database approach. In: Proceedings of the 12th Inter-
national Conference on Extending Database Technology: Advances in Database
Technology, pp. 922–933. ACM (2009)

27. http://www.infochimps.com/. 03 December 2014

http://www.infochimps.com/

Approximation and Skyline

Space-Bounded Query Approximation

Boris Cule, Floris Geerts(B), and Reuben Ndindi

University of Antwerp, Antwerp, Belgium
{boris.cule,floris.geerts,reuben.ndindi}@uantwerpen.be

Abstract. When dealing with large amounts of data, exact query
answering is not always feasible. We propose a query approximation
method that, given an upper bound on the amount of data that can
be used (i.e., for which query evaluation is still feasible), identifies a
part C of the data D that (i) fits in the available space budget; and (ii)
provides accurate query results. That is, for a given query Q, the query
result Q(C) is close to the exact answer Q(D). In this paper, we present
the theoretical framework underlying our query approximation method
and provide an experimental validation of the approach.

Keywords: Big data query processing · Query approximation · Data
reduction

1 Introduction

Traditional query processing has primarily focused on the efficient computation
of exact answers to queries. In applications with huge amounts of data, however,
even simple queries that require a single scan over the entire database cannot
be answered within an acceptable time bound. To accommodate for this, one
can either try to leverage parallelism and distributed computation, settle for
approximate query answering, rely on data-reduction techniques, or combina-
tions thereof. In this paper we consider approximate query answering, or AQA
for short.

Motivated by the need for big data analytics, recent work on AQA mainly
concentrates on the efficient and accurate evaluation of simple aggregate
queries. A recent proposal in this context is the BlinkDB system [1]. In a
nutshell, BlinkDB addresses the following question: Given a query workload
Q = {Q1, . . . , Q�} consisting of aggregate queries Qi, each equipped with an
importance weight pi, for i ∈ {1, . . . , �}, a database D and given a storage
capacity B, what is the best set of samples S = {S1, . . . , S�} of D that one
should materialise such that (i) the samples fit in the available storage, i.e.,
|S1 ∪ · · · ∪ S�| � B; and (ii) evaluating the queries on samples in S provides an
accurate estimate of the exact query answer. In addition, the most important
queries (i.e., those with high weight) should be approximated more accurately
than the less important queries (i.e., those with low weight).

In this paper, we consider a similar setting as in BlinkDB but for non-
aggregate queries. That is, we are interested in finding the best set C of tuples
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 397–414, 2015.
DOI: 10.1007/978-3-319-23135-8 27

398 B. Cule et al.

in the database D that one should store within the available storage capacity B

such that Qi(C) is “close” to Qi(D) for any i ∈ {1, . . . , �}. For this purpose, we
equip databases with distance functions to measure the closeness between two
databases (Sect. 2), replace the samples used in BlinkDB by so-called coverings
C of the data, i.e., sets of tuples that are within a certain distance from the
original database, and introduce the valid selection covering problem (Sect. 3).
We then show how to estimate the size of coverings (Sect. 4) and how the dis-
tance between coverings and the original data propagates through the queries
in the workload (Sect. 5). Finally, similar to BlinkDB, we identify the desired
coverings of the data by means of a mixed integer linear program (Sect. 6). An
experimental validation of our AQA framework (Sect. 7) concludes the paper.

2 Preliminaries

� Databases. Let R = (R1, . . . , Rn) be a relational schema consisting of n rela-
tions Ri, each having a fixed arity mi. Let R(A1, . . . , Ak) be a relation in R.
We assume that each relation carries a distinct set of attributes. Furthermore,
each attribute Ai in R comes equipped with a domain dom(Ai) ⊆ U, where U

is a countably infinite set. A tuple t of R(A1, . . . , Ak) is simply an element of
dom(A1) × · · · × dom(Ak). A database of R is given by D = (I1, . . . , In), where
Ii is a finite set of tuples of Ri, for i ∈ {1, . . . , n}. The active domain of D,
denoted by adom(D), is the set of elements from U present in D. Finally, the
size |D| of D refers to the number of tuples in D.

� Distances and Metric Databases. We further assume the presence of distance
functions dAi

: dom(Ai) × dom(Ai) → R, one for each attribute Ai in R.
A metric database (D, d) simply consists of a database D over R together with
a collection of distance functions dAi

for attributes Ai in R.
To compare the distance between tuples on arbitrary sets X of attributes,

we define dX(s, t) = max
{
dAi

(s[Ai], t[Ai]) | Ai ∈ X
}
, provided, of course, that

s and t are defined over a set Y of attributes such that X ⊆ Y . For example,
when dealing with numerical attributes Ai for which dAi

(s, t) = |s[Ai] − t[Ai]|,
we have that dX(s, t) = max

{
|t[Ai] − s[Ai]| | Ai ∈ X

}
. We also need to lift

distance functions to sets of tuples, i.e., database instances. Given two sets C
and D of tuples, we define for s ∈ C, dX(s,D) := min{dX(s, t) | t ∈ D} and
dX(C,D) = max{maxs∈C dX(s,D),maxt∈D dX(t, C)}. In addition, we define
diamX(D) := max{dX(s, t) | s, t ∈ D}. We denote the diameter with diam(D)
when X is the set of all attributes in D.

Example 1. Consider a part D of the Lineitem table from the TPCH benchmark
as shown in Fig. 1 with attributes line number (LN), quantity (QT), extended
price (EP), line status (LS), ship date (SD) and ship mode (SM). To turn D into
a metric database (D, d) we equip each of the attributes with a distance function.
For example, on the numerical attributes extended price and quantity we can use
the absolute difference between values, on ship date one can use a date-specific
distance function, and on the remaining categorical attributes the discrete dis-
tance function can be used. Consider tuples t1 and t2 in D. Their distance on the

Space-Bounded Query Approximation 399

LN QT EP LS SD SM

t1: 1 39 50634.87 O 1997-04-12 REG AIR
t2: 2 8 11379.84 F 1992-10-23 AIR
t3: 3 32 53079.36 F 1994-04-23 RAIL
t4: 4 12 22341.12 F 1993-08-11 REG AIR
t5: 5 27 29542.86 F 1992-10-28 TRUCK
t6: 6 11 16350.18 O 1997-11-28 REG AIR
t7: 7 3 4065.99 O 1996-10-07 RAIL
t8: 8 12 18102.24 O 1996-04-30 RAIL
t9: 9 37 56625.91 O 1997-09-12 TRUCK
t10 : 10 22 39112.26 F 1992-12-24 RAIL

Fig. 1. An instance D of the Lineitem relation.

extended price attribute is then given by dEP(t1, t2) = |50634.87 − 11379.84| =
39255.03. Now if we include the quantity attribute when comparing these two
tuples, then d{EP,QT}(t1, t2) = max{|50634.87 − 11379.84|, |39 − 8|} = 39255.03.
In this case the distance remains unchanged since the EP attribute dominates
the distance value. As another example, using the discrete distance function on
the line status attribute we have that dLS(t1, t2) = 1 whereas dLS(t2, t3) = 0.

To illustrate how the distance between sets of tuples is measured, consider
two subsets S1 and S2 of the instance D given by S1 = {t1, t3} and S2 = {t5, t6}.
For simplicity, we only use the quantity attribute. First, note that the dis-
tance between t1 and S2 is given by dQT(t1, S2) = min{dQT(t1, t5), dQT(t1, t6)} =
min{12, 28} = 12. Similarly, one can verify that dQT(t3, S2) = 5, dQT(t5, S1) = 5
and dQT(t6, S1) = 21. Then, the distance between S1 and S2 is given by
dQT(S1, S2) = max{max{12, 5},max{5, 21}} = 21. ��

� Conjunctive Queries. We consider conjunctive queries (CQ) specified by

Qi(Y) = πY σFi
(R′

1 × · · · × R′
k),

where each R′
j is a renaming ρj(Rj) of a relation Rj in R, Y is a set of attributes

and Fi is a selection predicate consisting of equality conditions of the form
Ai = Aj or Ai = c for attributes Ai and Aj and constant c ∈ dom(Ai).

3 The Valid Covering Selection Problem

In this section we first define the notion of a covering of a metric database
relative to a set of attributes as a way of approximating the data. Next, we use
these coverings to approximate the results of queries in some workload with a
given budget on the available space to store the coverings of the data.

� Data Approximation by Coverings. Consider two metric databases (D, d) and
(C, d) over R using the same distance functions dAi

. Let X be a set of attributes
and let ε � 0. We say that (C, d) is an (X, ε)-covering of (D, d) if for any tuple

400 B. Cule et al.

s ∈ D there exists a tuple t ∈ C such that dX(s, t) � ε, indicating that any tuple
in D is close to a tuple in C relative to the set X of attributes. Furthermore,
given a space budget constraint B, we say that an (X, ε)-covering (C, d) of (D, d)
is valid relative to B, or simply valid, if |C| � B, i.e., the covering fits in the
available space. A collection of coverings (C1, d), . . . , (C�, d) of (D, d) is valid if
|C1 ∪ · · · ∪ C�| � B. Clearly, when valid coverings are concerned, the budget B

imposes constraints on ε, and vice versa. For example, suppose that B = 1 then
ε = diam(D); if B = |D| then ε can be taken to be zero.

� Query Approximation by Coverings. We want to use coverings to approximate
query answers. More specifically, we are given a space budget B and a query
workload Q = {Q1, . . . , Q�} consisting of CQ queries. In addition, the frequency
or importance of query Qi in the workload is given by a parameter pi. Then,
given a metric database (D, d) we want to find the best valid collection of �
coverings (Ci, d), i ∈ {1, . . . , �}, of (D, d) that can be used to approximate each
query Qi in Q relative to a user-defined set Zi of attributes in the result schema
of the query and accuracy bounds δi. Formally:

Valid Covering Selection Problem. Given a metric database (D, d), query
workload Q = {Q1(Y1), . . . , Q�(Y�)}, sets of attributes Zi ⊆ Yi, weights pi, accu-
racy bounds δi, for i ∈ {1, . . . , �}, and a budget constraint B, find for each query
Qi a covering (Ci, d) of (D, d) such that maxi∈{1,...,�} pi·|δi−dZi

(Qi(D), Qi(Ci))|
is minimised and in addition, the collection (C1, d), . . . , (C�, d) is valid relative
to B. ��

That is, this problem asks which coverings one should store in the available
space as to “best” approximate the queries in the query workload. Here, with
“best” we mean that Q(Ci) approximates Q(D) on the given attributes Zi as
close as possible to the user-defined accuracy bound δi. A naive approach for
solving this problem is to just try all possible coverings and select the best ones.
Not only is this exhaustive enumeration of coverings undesirable, it also requires
the identification of coverings that are valid. Clearly, one cannot compute all such
coverings efficiently. Furthermore, to select the best set of coverings one needs to
compute Qi(D) (and also Qi(C) for that matter). Recall that we want to speed-
up query evaluation by considering approximations. The exact computation of
Qi(D) to find out the best way to approximate Qi(D) is clearly not an option!
To make the valid covering selection problem feasible, one therefore needs to
address the following two challenges.

Size Estimation: We are looking for valid coverings. This implies that one must
be able to determine the sizes of (X, ε)-coverings to identify those coverings that
are valid, i.e., fit into the budget. For this purpose we extend the catalog of the
DBMS with information about valid coverings. We show in the next section how
this can be efficiently implemented on top of a DBMS.

Error Propagation: What can we say about dZ(Q(D), Q(C)) without storing
(C, d) and without evaluating Q(D) and Q(C)? That is, how does the accuracy
bound on the data affect the accuracy bound on the query results? We will show
in Sect. 5 that one can estimate dZ(Q(D), Q(C)) solely based on the structure
of the query Q and the knowledge that (C, d) is an ε-covering.

Space-Bounded Query Approximation 401

4 Size Estimation of Coverings

In this section we consider how to estimate the size of an (X, ε)-covering of a
metric database (D, d) for a given set X of attributes and accuracy value ε.
The size of a minimum (X, ε)-covering is often referred to as the (X, ε)-covering
number and will be denoted by N(D,X, ε). Not surprisingly, it is infeasible to
compute N(D,X, ε) in practice. Indeed, one can verify that the computation of
N(D,X, ε) corresponds to finding a solution to the Vertex Cover problem,
which is known to be NP-complete [2]. Although algorithms exist that approx-
imate N(X,D, ε) (e.g., based on [3]), they rely on efficient methods that, given
a set S of tuples in D find a tuple t that maximises dX(t, S). Unfortunately,
most database systems do not adequately support the indexing of tuples relative
to arbitrary distance functions; a crucial feature for finding farthest removed
tuples. It is outside the scope of this paper to bring database systems up-to-date
with recent advances in metric indexing techniques as reported in [4].

Instead we aim to expand the DBMS’s catalog with quantitative informa-
tion on (X, ε)-coverings for various sets X of attributes and accuracy values ε.
We particularly want that this information is easy to compute and maintain
within the DBMS. As a first attempt, one can use Ñ(D,X, ε) = diamX(D)/ε
as a trivial upper bound on N(D,X, ε). Intuitively, this upper bound assumes
uniform distribution of values in X. A more sensible upper bound is given
by min{Ñ(D,X, ε), |πX(D)|} since |πX(D)| also provides an upper bound on
N(D,X, ε).

To obtain a more fine-grained, yet efficient-to-compute upper bound for
N(D,X, ε), we further assume that the domain values of attributes in X
can be (e.g., lexicographically) sorted. We can then obtain an estimate for
N(D,X, ε) by counting the number of non-empty buckets in an equi-width his-
togram H(D,X, ε). We denote this estimate by Ĥ(D,X, ε) for a given histogram
H(D,X, ε).

Recall that an equi-width histogram H(D,X, ε) consists of k tuples t1, . . . , tk
such that (i) t1[X] < t2[X] < · · · < tk[X]; (ii) for each i ∈ {1, . . . , k − 1},
dX(ti, ti+1) = ε; and finally (iii) for Di = {t ∈ D | ti[X] � t[X] < ti+1[X]} we
have D = D1 ∪ · · · ∪ Dk. That is, H(D,X, ε) partitions the data into “buckets”
Di of diameter ε.

We next describe a procedure, referred to as Cover Estim, for computing
Ĥ(D,X, ε). The pseudo-code of this procedure is shown in Fig. 2. In a nutshell,
Cover Estim (D,X, q, ε) recursively processes the attribute list X (line 5). When
the current attribute is Ai, the algorithm has already computed a histogram
H(D, 〈A1, . . . , Ai−1〉, ε) consisting of Ĥi−1 non-empty buckets and now further
refines each of these buckets B in H(D, 〈A1, . . . , Ai−1〉, ε) by means of the sub-
procedure bucket(B,Ai, ε). The result is a histogram H(D, 〈A1, . . . , Ai〉, ε) con-
sisting of Ĥi buckets, where Ĥi is obtained from Ĥi−1 by adding for each bucket
B in H(D, 〈A1, . . . , Ai−1〉, ε) the number of buckets returned by bucket(B,Ai, ε).
The recursive procedure halts when either an empty bucket is considered (line
2) or when enough attributes have been processed (line 7), at which point we
return the trivial upper bound min{diamX′(D)/ε, |πX′(D)|} for the remaining

402 B. Cule et al.

Fig. 2. Procedure for estimating the size of a covering.

attributes X ′ = 〈Aq+1, . . . , Ap〉. Note that q is a user-chosen parameter that
determines how many attributes should be processed using the bucket refinement
procedure. If q = p, the recursion stops when all attributes have been processed.
In this case, a recursive call with X = ∅ is made, indicating that the non-empty
bucket B under consideration does not need any further refinement and thus
will contribute a count of 1 to the estimate (line 8). Also note that if q = 0 then
no recursion takes place and the naive upper bound min{diamX(D)/ε, |πX(D)|}
is returned for the complete attribute set X (line 7).

It remains to detail the sub-procedure bucket(D,Ai, ε) which, given a data-
base D, attribute Ai and accuracy value ε, constructs a partition D1 ∪ · · · ∪ Dk

of the data corresponding to a histogram H(D,Ai, ε). Assuming that the sorted
attribute values for Ai can be cast as numerical values, which is often the case
in practice, we can leverage the presence of the Width bucket function in SQL.
This function takes as input an attribute Ai, the minimal and maximal value
of the active domain of Ai in D, and a desired number of buckets. The result
consists of pairs (t, i) where t ∈ D and i is the unique bucket number to which t
belongs. From this, the number of non-empty buckets and a histogram can easily
be computed. More specifically, bucket(D,Ai, ε) can be implemented by means
of the following SQL expression:

SELECT Width bucket(Ai,min,max,min
{⌈ diamAi

(D)

ε

⌉
, |πAi

(D)|
}
) AS bucket

FROM R GROUP BY bucket ORDER BY bucket

where we use the estimate min{�diamAi
(D)/ε�, |πAi

(D)|} for an upper bound
on the number of buckets. Furthermore, it should come as no surprise that the
recursive procedure Cover Estim can be implemented entirely in SQL, provided of
course that we know the attributes in X up front (otherwise a recursive SQL query
is needed). Indeed, the SQL implementation of Cover Estim consists of nested
variants of the SQL query given above, where the nesting level is determined by
the number of attributes in X. Observe that Cover Estim not only computes size
bounds but returns actual coverings.

Space-Bounded Query Approximation 403

Example 2. Recall the Lineitem database D given in Example 1. For the
extended price (EP) attribute the diameter of D is simply given by diamEP(D) =
maxt∈D t[EP] − mint∈D t[EP] = 52559.92. Observe that |πEP(D)| = 10, hence at
most 10 buckets are needed to exactly cover D on attribute EP. Taking our
ε = 8770, the quantity min

{⌈
52559.92

8770

⌉
, 10

}
= 6 is an upper bound on the num-

ber of buckets needed.
We now illustrate the Cover Estim procedure. Firstly consider the evalua-

tion of Cover Estim (D,EP, 0, 8770). In this case, all attributes are processed
by the naive method (q = 0) and therefore the procedure outputs the upper
bound of 6 buckets. Next, we set q = 1 so that the procedure Cover Estim
(D,EP, 1, 8770) now uses the non-naive method by evaluating the above SQL
query. We obtain a covering C = {t1, t4, t6, t7, t10} of D of size 5 buckets as fol-
lows: B1 = {t7, t2}, B2 = {t6, t8}, B3 = {t4, t5}, B4 = {t10} and B5 = {t1, t3, t9}.
Tuples are sorted in each bucket. It is readily verified that C is an (EP, 8770)-
covering of D. From this small example we can already see that the non-naive
method improves on the trivial upper bound on the number of buckets (five buck-
ets rather than six). Furthermore we also note that C is an ({EP,QT}, 8770)-
covering of D. This is so because after the Cover Estim procedure processes the
EP attribute, the buckets do not require any further refinement. Indeed, for each
bucket Bi, for i ∈ {1, . . . , 5}, we already have that diamQT(Bi) � ε. ��

Remarks. (1) We described a very specific method for estimating N(D,X, ε).
However, any other method (e.g., based on k-means clustering or other kinds of
histograms) can be easily plugged into our query approximation system. (2) It
is important to observe that the cost of estimating N(D,X, ε) is a one-time cost
and can be done when the DBMS is idle. (3) Clearly, the order in which the
attributes in X are fed to Cover Estim(D,X, ε) directly impacts the estimate of
N(D,X, ε). Further investigation is required to determine heuristics to select the
best order.

5 Error Propagation

The second challenge that we have to address is the efficient estimation of
dZ(Q(C), Q(D)) for (X, ε)-coverings (C, d) of (D, d). That is, we need to esti-
mate the error on the query result due to the use of coverings rather than the
original database. Since our aim is to speed-up the query evaluation of Q, one
cannot rely on computing Q(D), Q(C) and dZ(Q(D), Q(C)), as this requires
evaluating the queries. The estimation procedure for dZ(Q(D), Q(C)) should
thus be independent of (D, d) and thus also of the chosen covering (C, d). This
bears the question whether the knowledge of the query Q and the fact that there
is an (X, ε)-covering of the data is sufficient to obtain an accuracy bound on the
query result. We answer this question affirmatively, provided that we slightly
relax the query Q into an approximate query Q̃, as will be explained shortly.

The overall strategy to estimate dZ(Q(D), Q(C)) then consists of showing
under which conditions an (X, ε)-covering (C, d) of (D, d) can be transformed in a
(Z, ε′)-covering Q̃(C) of Q(D). Given this, we can then estimate dZ(Q(D), Q(C))

404 B. Cule et al.

usingdZ(Q(D), Q̃(C)) = ε′. In particular,we showhow ε′ canbe expressed in terms
of ε, hereby alleviating the need for evaluating any query in the estimation process.

� Query Relaxation. Let us first explain why query relaxations are needed.
Suppose that Q = σA=a(R) and let (D, d) be a metric database. Then Q(D)
contains all tuples t ∈ D with t[A] = a. Take any (A, ε)-covering (C, d) of (D, d).
Then, unless C contains tuples t of D with t[A] = a, we have that Q(C) = ∅
and thus Q(C) is not a covering of Q(D). In other words, we cannot guarantee
that any (A, ε)-covering (C, d) of (D, d) suffices to approximate Q(D). A similar
situation arises when considering Q = σA=B(R).

To remedy this situation, we not only approximate the data but also consider
relaxations of queries. More specifically, we compare Q = σA=a(R) on (D, d) with
its relaxation Q̃ = σd(A,a)�η(R) on (C, d), for some value η. The semantics of Q̃
is as expected: σd(A,a)�η(C) selects all tuples t in C for which dA(t[A], a) � η.
When considering (A, ε)-coverings (C, d) of (D, d) with ε � η, we then have
that dA(Q(D), Q̃(C)) � ε. Similarly, one can verify that when Q = σA=B(R) is
relaxed to Q̃ = σd(A,B)�η(R), then dA,B(Q(D), Q̃(C)) � ε for any ({A,B}, ε)-
covering (C, d) of (D, d) with ε � η

2 . Note that for a selection condition A = B
to make sense, attributes A and B must have the same domain and distance
function. We denote dA = dB by d. Hence, σd(A,B)�η(C) selects all tuples t in C
such that d(t[A], t[B]) � η. Now, given a tuple t in D such that t[A] = t[B] and
given an ({A,B}, ε)-covering (C, d) of (D, d) with ε � η

2 , we have that there exists
a tuple t′ ∈ C such that dA,B(t, t′) � ε. Indeed, observe that d(t′[A], t′[B]) �
d(t[A], t′[A]) + d(t[B], t′[B]) = 2ε � η. Hence, t′ ∈ Q̃(C) and Q̃(C) is a covering
of Q(D).

For a CQ query Q we denote by Q̃η the query obtained by replacing any
selection predicate in Q by its relaxed version, i.e., all occurrences of σA=a and
σA=B in Q are replaced by σd(A,a)�η and σd(A,B)�η, respectively.

Example 3. Recall again our Lineitem database D from Example 1. Consider the
constant selection query Q which selects all tuples t ∈ D with t[EP] = 18102.24
and projects on the EP attribute. We reuse our covering from Example 2, i.e.,
C = {t1, t4, t6, t7, t10}. The relaxed query Q̃ selects all tuples t ∈ C with t[EP] ∈
[18102.24 − 8770, 18102.24 + 8770] and also projects on the EP attribute. Eval-
uating both queries, we have Q(D) = {t8} and Q̃(C) = {t4, t6}, from which we
obtain

dEP(Q(D), Q̃(C)) = 4238.88 � 8770.

Hence, Q̃(C) is (EP, 8770)-approximation of Q(D). ��

� Propagation Algorithm. We next provide an algorithm, Error Prop, that given
a CQ query Q, a set X of attributes in R, an accuracy value ε, and relaxation
parameter η for Q̃η, returns:

(a) a set of attributes prop(Q,X) in the result schema of Q; and
(b) an error bound err(Q, ε),

Space-Bounded Query Approximation 405

Fig. 3. Error propagation algorithm.

such that for any (X, ε)-covering (C, d) of (D, d) it is guaranteed that

dZ(Q(D), Q̃η(C)) � err(Q, ε)

for any non-empty Z ⊆ prop(Q,X). The algorithm Error Prop works inductively
on the structure of the query Q and is described in Fig. 3. Its correctness can be
readily verified but this is omitted due to space limitations.

� Query Column Sets and Error Guarantees. One can see from the descrip-
tion of Error Prop(Q,X, ε, η) in Fig. 3 that certain conditions on coverings need
to hold when using them to approximate Q(D). That is, when prop(Q,X) is
empty, insufficiently many attributes are covered to approximate Q. Observe
that prop(Q,X) is empty when X does not contain (i) any attribute in the
relations occurring in Q (line 3); (ii) an attribute that appears in a selection
condition (lines 8, 11); or (iii) any of the projected attributes in Q (line 14).
Given a set of attributes Z in the result schema of Q, one can compute for each
relation Ri in R the minimal set of attributes Xi such that for X = X1∪· · ·∪Xn,
Z ⊆ prop(Q,X). In other words, the Xi’s are the attributes that are required
to be covered in Ri in order to approximate Q on Z. We denote by qcs(Q,Z)
the set of pairs (Ri,Xi). In analogy with the BlinkDB system, we also refer to
qcs(Q,Z) as the query column set of Q relative to Z. The query column sets
can be computed by starting from Z and by reversely applying the different
cases in Error Prop(Q,X, ε, η) for prop(Q,X). We omit the details due to space
limitations.

406 B. Cule et al.

Furthermore, even when the query column set X = qcs(Q,Z) is covered
it may be that err(Q,X) = +∞ and thus no approximation is achieved. This
happens when ε is too large compared to the chosen relaxation parameter η
and when Q contains selection conditions (lines 9, 12). In particular, from
Error Prop(Q,X, ε, η) we obtain the following error guarantees:

If

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a) Q does not contain selection conditions
or

(b) Q only contains constant selection conditions and ε � η
or

(c) Q contains an equality selection conditions and ε � η/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=⇒ err(Q, ε) = ε.

Otherwise, we have an unbounded (+∞) error. Of course, this also implies that
unbounded errors can be avoided altogether by considering relaxations Q̃η that
depend on ε, i.e., by letting η = 0 in case (a); η = ε in case (b); and η = 2ε
in case (c). In the following, we always assume that these relaxations are used
when approximating Q and simply denote the relaxation by Q̃.

Example 4. Consider query Q′ obtained from modifying query Q given in Exam-
ple 3 by projecting on two attributes {EP,QT} instead of only projecting on EP.
Suppose that we want to approximate Q′ on these attributes, i.e., Z = {EP,QT}
with user-defined threshold η = 8770. To identify which (X, ε)-coverings of D
can be used to approximate Q′, we must have that Z ⊆ prop(Q′,X). Evaluat-
ing the procedure Error Prop tells us that any (X, ε)-covering of D such that
{EP,QT} ⊆ X will do. This follows directly from the selection (line 8) and pro-
jection (line 14) rule in the procedure. Consider the ({EP,QT}, 8770)-covering
C from Example 2. It is readily verified that for ε = 8770, we get an error
bound err(Q′, ε) = ε = 8770. Hence, for any Z ⊆ {EP,QT} we guarantee that
dZ(Q′(D), Q̃′

η(C)) � 8770, i.e., we can approximate Q′ within the user-defined
threshold η on attributes Z. ��

6 Valid Covering Selection

We now have all ingredients at hand to describe our approach for solving the
valid covering selection problem. Let Q = {Q1, . . . , Q�} be the query workload
consisting of � CQ queries. For each query Qi the user specifies its importance
pi, the set of attributes Zi in Qi’s result schema to be approximated, and desired
error bound δi. Furthermore, a space budget B is given. Our approach works in
four steps:

1. We collect the query column sets qcs(Qi, Zi), for i ∈ {1, . . . , �}. Recall that in
order to approximate Qi(D) on attributes Zi, one minimally needs to cover
all attributes in qcs(Qi, Zi).

2. Next, we inspect the DBMS catalog that, by using the size estimation method
described in Sect. 4, is now extended with quadruples (Rj ,Xj , εj , Nj), indi-
cating that there is an (Xj , εj)-covering of size Nj of the instance Ij of Rj .

Space-Bounded Query Approximation 407

Note that there may be multiple coverings on each relation. Denote by cov(D)
the collection of all such quadruples in the catalog. Clearly, considering all
possible coverings on R would lead to exponentially many coverings in cov(D).
Instead, we assume that a set of candidate covering attributes is provided
based on those that actually were needed in the past or simply by inspecting
the query column sets of the workload queries.

3. We then solve a mixed integer linear program (MILP). Part of the solution
of this program are variables xij that, when set to 1, indicate that the ith

covering in cov(D) is used to approximate Qj .
4. We materialise all coverings (C1, d), . . . , (C�, d) identified in the previous step,

hereby avoiding replicating the same covering on a relation. Just like in
BlinkDB, the materialisation step is a one-time cost and if the query work-
load Q is representative for the past, present and future workload, the stored
coverings can be used for any future incoming queries as well. For now, to
obtain an approximation for queries in Q we evaluate Q̃j(Cj) on the stored
coverings. Recall that Q̃j is the relaxation of Qj by setting η to the appro-
priate value 0, εj , or 2εj , where εj is the accuracy of covering (Cj , dj) (See
Sect. 5).

The MILP ensures that (i) all coverings fit into the available space budget;
and (ii) the best possible accuracies of these coverings are selected for approx-
imating the workload queries. Observe that, assuming that cov(D) is available,
we only need to evaluate the relaxed queries on coverings. No other query eval-
uation or access to the data is needed. This implies, among other things, that
the size of the MILP is independent of the size of D and that solving it is a cost
that is negligible. We verify this in the experimental section. It remains to detail
the mixed integer linear program.

� MILP Formulation. Part of the MILP consists of a simple set covering prob-
lem: for each Qi ∈ Q find (R1,X1, ε1, N1), . . . , (Rn,Xn, εn, Nn) in cov(D) that
cover qcs(Qi, Zi). More specifically, if qcs(Qi, Zi) = {(R1, Y1), . . . , (Rn, Yn)} then
we must have that Yi ⊆ Xi for i ∈ {1, . . . , n}. We encode this set cover problem
in the MILP in the standard way. Let I = {1, . . . , |cov(D)|} and J = {1, . . . , �}.
For each (i, j) ∈ I × J and relation name R ∈ R, we introduce a constant cR

ij

and boolean variable xR
ij . Here, cR

ij = 1 if the ith covering in cov(D) contains
the attributes in qcs(Qj , Zj) corresponding to R; and cR

ij = 0 otherwise. Further-
more, xR

ij = 1 is to indicate that this covering on R is used to approximate Qj on
the Zj attributes and xR

ij = 0 indicates the opposite. To ensure that qcs(Qj ,Xj)
is fully covered we thus require that

∑
i∈I

cR
ijx

R
ij � 1 (for each j ∈J , R∈R such that (R,X) ∈ qcs(Qj , Zj)

for some non-empty set X of attributes.)

In addition, all coverings in cov(D) that are used for approximating queries in
Q need to be stored and must fit within the available space budget B. For each
i ∈ I we therefore introduce a variable xi that will be set to 1 if any of the xR

ij ’s

408 B. Cule et al.

for j ∈ J is 1; and xi is set to 0 otherwise. In other words, xi = max{xR
ij | j ∈

J,R ∈ R} and indicates which coverings in cov(D) are being used. We therefore
require

xR
ij � xi (for each i ∈ I, j ∈ J , R ∈ R), and xi �

∑
j∈J,R∈R

xR
ij (for each i ∈ I).

The space budget constraint is simply given by
∑

i∈I xiNi � B, where Ni is the
size of the ith covering in cov(D). It remains now to relate the selected coverings
(i.e., those with xR

ij = 1) to the error bound on the corresponding query Qj .
Since this error is given by err(Qj , ε) = ε we need to determine the maximum
ε used in the coverings for Qj . For this purpose we introduce variables yj , for
j ∈ J , and require that

xR
ijc

R
ijεi � yj (for each i ∈ I, j ∈ J,R ∈ R)

where εi is the accuracy value of the ith covering in cov(D). Finally, the objective
function of the MILP is

minimise : max
j∈J

pj |δj − yj |,

where δj is the user-specified accuracy threshold. It is easily verified that the
objective function can be transformed into a linear constraint, i.e., without using
max and absolute value | · |.

Example 5. We next illustrate the interaction of the space budget and accuracy
threshold in the valid covering selection method. Recall query Q′ from Example 4
and the ({EP,QT}, 8770)-covering, here denoted by C1, from Example 2. Let C2

be another covering of our Lineitem database D consisting of three buckets, i.e.,
C2 = {t4, t7, t10}. It is readily verified that C2 is a ({EP,QT}, 17520)-covering.
Then we have cov(D) with two coverings {C1, C2} of size 5 and 3 respectively.
We know that qcs(Q′, Z) = {EP,QT}. Let p1 = 1, δ1 = 5500 and B = 4.

The MILP can now be formulated with the required parameters as above.
In this case the program has a simple task: to decide which of the two coverings
should be used to approximate Q′. Based on the constraints, an optimal solution
would set x21 to 1, i.e., covering C2 is chosen since only C2 fits into B. Let us
consider another scenario where more space is available and we increase our
space budget, i.e., B = 7. Now, we see that any of the two coverings can fit into
the available budget. Note that the user desired error bound remains unchanged.
Again, by looking at the objective function of the MILP, it is easy to see that
an optimal solution would set x11 to 1, i.e., covering C1 is chosen because the
propagated error for covering C1, (ε1 = 8770), is more close to the desired error
bound, δ1 than the propagated error of C2, (ε2 = 17520). ��

7 Experimental Evaluation

In this section, we evaluate the performance of the procedure Cover Estim for
estimating the size and computing the coverings of the data, and the accuracy of

Space-Bounded Query Approximation 409

our solution to the valid selection problem on individual queries and on queries
in some workload.

� Evaluation Setting. Our experiments were run on a GNU/Linux machine with
Intel(R) Xeon(R) CPU 2.90 GHZ (16 Cores) and 32 GB memory. We use Post-
greSQL as the underlying database system. All experiments were repeated five
times and averages are reported. We used two datasets: (i) the TPC-H bench-
mark data1 (scale factor 1) consisting of 9 million tuples (1 GB); and (ii) the Big
Data benchmark2 (scale factor 1) consisting of tables uservisits and rankings
of 8 million (1.28 GB) and 155 million (25.4 GB) tuples, respectively. For schema
details on the datasets, consult the links in the footnote. On the TPC-H data,
our query workload Q consists of variants of Q1, Q3, Q6, Q13, Q19 of the TPC-H
queries. For the Big Data benchmark data, we use a variant of their scan and
aggregate query. In all of our experiments we consider coverings on attributes
that have a sorted domain and use distance functions as described in Sect. 2.

� Covering Computations. We first experimentally validate the efficiency of
the procedure Cover Estim, as described in Sect. 4, then illustrate how different
datasets can be compressed by means of coverings, and finally investigate the
impact of the parameter q on the quality and efficiency of the bounds returned
by Cover Estim.

Figure 4 shows the time to compute the size of coverings and the time to
materialise them on the Big Data benchmark dataset. More specifically, we
varied (i) the sizes of the input tables uservisits (1000 k to 10000 k) tuples
and rankings (1000 k to 10000 k) tuples; and (ii) the sets X of attributes to
be covered. On the left, we report the times for individual attributes dura-
tion and adrevenue in uservisits, and attributes avgduration and pagerank
in rankings; on the right we consider the combined attribute sets {duration,
adrevenue} and {avgduration, pagerank}. We fixed ε to be 0.0001.

Not surprisingly, estimating the size of coverings requires considerably less
time than materialising them. Indeed, while the size estimation typically takes
a couple of seconds, the materialisation takes tens of seconds. This verifies our
claim that extending the DBMS’s catalog with quantitative information on cov-
erings is feasible, especially since this is a one-time cost and can be computed
when the system is idle. We further observe that the running times strongly
depend on the set X of attributes. In particular, the running time increases
when X consists of more attributes. This is not unexpected since a larger X
results in a larger (X, ε)-covering. A similar behaviour is observed when varying
ε, i.e., the smaller the ε, the more time it takes to bound the size of the coverings.
Experiments on the TPC-H data gave analogous results (not reported).

We next considered the compressibility of the datasets. Figures 5(a) and (b)
show the size of the resulting covering on the two tables in the Big Data benchmark
data set for varying values of ε and for the attribute sets considered earlier. We
fixed the size of both tables to 10 million tuples. Similarly, Fig. 5(c) shows the size

1 http://www.tpc.org/tpch/.
2 https://amplab.cs.berkeley.edu/benchmark/.

http://www.tpc.org/tpch/
https://amplab.cs.berkeley.edu/benchmark/

410 B. Cule et al.

Fig. 4. Efficiency of Cover Estim for computing size and materialisation of coverings.

of coverings on the lineitem table in the TPC-H data set for the following sets
of attributes: {lextendedprice}, {lextendedprice, lquantity} and {lextendedprice,
lquantity, llinestatus}. One can see that the datasets compress rather well: for
reasonable values of ε the size of the corresponding covering provides a consider-
able reduction compared to the size of the original data. In other words, even for
a small space budget B one can find accurate coverings of the data. As before, the
more attributes are used in the covering, the larger the covering.

Finally, Fig. 5(d) shows the impact of the parameter q in Cover Estim. Recall
from Sect. 4 that q indicates how many attributes are processed by the recursive
bucketisation process, and consequently, how many attributes are treated by the
naive upper bound. Figure 5(d) reports the effect on the lineitem table and
attribute set {lextendedprice, lquantity, ldiscount}. We let q = 3 (most fine-
grained upper bound), q = 2 (last attribute is treated by naive upper bound), and
q = 1 (last two attributes are estimated by naive upper bound). Not surprisingly,
the quality of the size estimate degrades with decreasing q. On the other hand,
the running times for Cover Estim decrease when more attributes are treated
by the naive upper bound. Indeed, our experiments (not reported due to space
limitations) show that the size estimation for q = 2 takes half the time when
compared to q = 3.

� Query Approximation and Valid Covering Selection. Our next set of experi-
ments concerns the use of coverings to approximate query results. We first con-
sider individual queries and compare the theoretical upper bound with the actual
error made by our query approximation method. Next, we consider a query work-
load and investigate our solution to the valid cover selection problem.

Figure 6 shows the comparison of the actual error dZ(Q(D), Q̃(C)) with the
theoretical upper bound err(Q, ε) given in Sect. 5, for varying sizes of coverings
C of D. More specifically, we express the size |C| of C as a percentage of the
size |D| of D and report the error err(Q, ε), where ε is the accuracy associated
with the covering C. The computation of dZ(Q(D), Q̃(C)) is done by evaluating

Space-Bounded Query Approximation 411

Fig. 5. Compressibility of datasets and impact of parameter q.

Q(D) and Q̃(C) and by computing the distance between them. Due to space
limitations we only report two settings. In Fig. 6(a) we consider the lineitem
table of the TPC-H data and a constant selection query Q on the lextendedprice
attribute. Coverings are on this attribute only. In Fig. 6(b) we consider a join
query Q (i.e., cartesian product followed by equality selection) involving both
tables in the Big data benchmark data. Coverings are on attribute sets {duration,
adrevenue} on uservisits and {avgduration, pagerank} on rankings.

These experiments show that our approach actually provides better actual
accuracy bounds on the query results than is anticipated by the theoretical upper
bound. In particular, we note that for highly compressible attributes, such as
lextendedprice in lineitem we can get an actual error of 0 using only a small
fraction (13.2 %) of the original dataset. For this particular setting, Fig. 7(a)
verifies that answering queries on coverings takes less time than when using the
original data and, more importantly, that the error made by the approximation
is within reasonable bounds. In particular, Fig. 7(a) shows the actual error for
the constant selection query on the TPC-H data for various sizes of coverings
and the time it takes to answer its relaxation on the coverings. For example,

412 B. Cule et al.

Fig. 6. Comparison of actual and theoretical accuracy of query results.

Fig. 7. (a) Accuracy vs space trade-off for single query on TPC-H data; (b) effect of
space budget B on accuracy |δi − err(Qi, εi)| of queries in workload for the coverings
selected by the MILP.

evaluating the relaxation using 13.2 % of the data takes 1/4 of the time needed
to evaluate the query on the original data without loss of accuracy.

Finally, we consider a query workload Q of the 5 TPC-H queries mentioned
earlier. We extended the DBMS catalog with 50 different coverings (some of
them over the same sets of attributes). We have arbitrarily chosen the weights
and desired accuracy thresholds for each of the queries. Figure 7(b) shows the
errors, |δi − err(Qi, εi)|, made on each of the queries by using the coverings as
identified by the MILP given in Sect. 6, and this for varying space budgets B

(70 0000 to 130 000 tuples). As expected, increasing B results in a better approx-
imation of the queries. Furthermore, the increase in accuracy when increasing
the budget is more noticeable for queries with high importance (e.g., query Q19).
Solving the MILP took a few milliseconds, which is negligible in the overall query
approximation process.

Space-Bounded Query Approximation 413

8 Related Work and Conclusions

Approximate query answering (AQA) in relational databases has been the sub-
ject of extensive research. We refer to the recent survey [5] for more details. Most
research has focused on AQA systems that make use of concise data structures
called synopses built from the database. The synopses techniques can be divided
into two broad categories: non-sampling based, and sampling based. Examples of
non-sampling based synopses are wavelets [6], histograms [7,8], and kernels [9].
Sampling-based methods are the key components of AQA systems as described
in [1,10,11], among others. Most of these works, however, consider simple aggre-
gate queries. A notable exception is [7] where set-valued conjunctive queries are
approximated by means of a rewriting in terms of a compact histogram rep-
resentation of the data. The result of this rewriting is a histogram that is an
approximation of the query result. Although close in spirit to our use of cover-
ings, [7] does not provide accuracy guarantees and cannot be easily generalised
to non-histogram synopses. By contrast, our notion of covering is more general
and we do provide guarantees. Furthermore, [7] considers single queries only and
does not impose an upper bound on the available space. Finally, we recall that
the valid covering selection problem is inspired by the sampling-based BlinkDB
system [1], as mentioned in the Introduction.

� Conclusions. We have presented a formal approach for space bounded query
approximation and experimentally validated it. Much more needs to be done,
however: Can we enrich coverings so that they become samples that can be used
to approximate aggregate queries? How to incorporate other error measures?
Are there special classes of queries for which better (more compact and accu-
rate) coverings can be computed? Can our query approximation be integrated
in indexing methods or be part of the DBMS query optimiser? How can a large
number of coverings be efficiently stored and accessed? Can our approach benefit
from moving to other platforms, such as Apache Hive? These are just a number
questions that need to be addressed.

References

1. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB:
queries with bounded errors and bounded response times on very large data. In:
Proceedings of ECCS, pp. 29–42 (2013)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

3. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

4. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann Publishers Inc., San Francisco (2005)

5. Cormode, G., Garofalakis, M., Haas, P.J., Jermaine, C.: Synopses for massive data:
samples, histograms, wavelets, sketches. Found. Trends Databases 4(1–3), 1–294
(2012)

414 B. Cule et al.

6. Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate query
processing using wavelets. In: Proceedings of VLDB, pp. 111–122 (2000)

7. Ioannidis, Y.E., Poosala, V.: Histogram-based approximation of set-valued query-
answers. In: Proceedings of VLDB, pp. 174–185 (1999)

8. Poosala, V., Ganti, V.: Fast approximate answers to aggregate queries on a data
cube. In: Proceedings of SSDBM, pp. 24–33 (1999)

9. Gunopulos, D., Kollios, G., Tsotras, V.J., Domeniconi, C.: Approximating multi-
dimensional aggregate range queries over real attributes. In: Proceedings of SIG-
MOD, pp. 463–474 (2000)

10. Chaudhuri, S., Das, G., Narasayya, V.: Optimized stratified sampling for approx-
imate query processing. ACM TODS 32(2), 1–50 (2007)

11. Gibbons, P.B., Poosala, V., Acharya, S., Bartal, Y., Matias, Y., Muthukrishnan,
S., Ramaswamy, S., Suel, T.: Aqua: system and techniques for approximate query
answering. Bell Labs Technical report (1998)

Hybrid Web Service Discovery
Based on Fuzzy Condorcet Aggregation

Hadjila Fethallah(&), Belabed Amine, and Halfaoui Amel

Computer Science Department Informatics Research Laboratory,
Université de Abou Bekr Belkaid Temcen, Tlemcen, Algeria

{f_hadjila,belabed.amine,

a_halfaoui}@mail.univ-tlemcen.dz

Abstract. The web service discovery is a major issue in service oriented
computing. We distinguish several semantic service matchmakers that cover
multiple matching criteria, these approaches may use crisp logic-based matching,
token based similarity measures, and eventually machine learning that combines
many individual rankings into a global matching list. This latter category aims to
boost the discovery performance by using various matching algorithms, but it
introduces additional difficulties, such as the weighting of the matching algo-
rithms components, and the compensation between the matching criteria(inputs,
outputs, pre-conditions, effects….). The purpose of this paper is to handle the
aforementioned difficulties by introducing a majority vote based approach. This
technique fuses five individual rankings (four textual similarity measures and a
pure logic matching algorithm) into a global ranking. The different scores are
aggregated according to the condorcet principle. More specifically we use a fuzzy
dominance relationship, to compare the services, and thus we infer the condorcet
order of the final ranking. We have tested our approach, on the OWLSTC
benchmark, and the preliminary results are very encouraging.

Keywords: Web service discovery � Service matching � Fuzzy dominance �
Rank aggregation � Theory of social choice

1 Introduction

The web service technology is considered as an ideal scheme for realizing the inter-
operability and the integration of distributed applications. To fulfill this aim, the
community has developed many standard, such as SOAP, UDDI, WSDL, [7] and
BPEL [20]. Due to the rapid increase in the number of services over the internet,
service matchmaking has been an active area of research during the last years. One of
the major concerns, is to assess and rank services that fulfill (partially/or globally) a
given request. More specifically, we need an efficient and effective approach for
retrieving the top-k services according to several matching criteria.

In what follows, we present an example that clearly shows the different difficulties
involved in this issue.

Let us consider a user request that consists of a set of input concepts Pin1, Pin2…
and output concepts Pout1, Pout2…., (for the sake of simplicity we neglect the other
parameters such as preconditions, effects, paths…). To fulfill this request, we can use

© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 415–427, 2015.
DOI: 10.1007/978-3-319-23135-8_28

several matchmaking algorithms or similarity functions termed f1…fn, each function is
applied on set of parameters such as inputs or outputs.

Let RP be the request’ parameters set, i.e. RP = {Pin1,Pin2,… Pout1,Pout2….}.
Each matchmaking function fj matches the advertised services against the request (i.e.
the set of parameters RP). For each service S, if more than one parameter matches a
requested parameter, the most appropriate match is retained. More formally we match
the pair < RP, S > as follows:

8 pi 2 RP; match pi; Sð Þ ¼ MAXjSj
l¼1 fj pi; p0l

� � ð1Þ

Such that p’l is an input/output parameter belonging to S.
Each cell of the Table 1, indicates a matching score denoted: match(pi,S).
For more simplification, we also suppose, that all the services have a single input

Pin and a single output Pout, the same assumption is considered for the request (see
Table 1). In order to design an effective discovery system, we have to select a con-
sistent matchmaking algorithm.

In practice, there is no ideal approach that always gives the right degree of Match.
In fact, we discern different types of semantic matchmakers: we have logic approaches,
that leverage reasoning techniques such as subsumption test, non-logic approaches that
use information retrieval techniques, and datamining to assess the similarity between
the request and the services, and hybrid approaches that combine the previous cate-
gories in order to enhance the retrieval system performance. This class, may also apply
machine learning, so as to make the final decision.

To leverage the advantages of the proposed matching techniques, and thus boost
the performances, we suggest the use of a set of matching algorithms. We refer to this
suggestion as Sug1. Hence, the proposed approach belongs to the hybrid class.

The second key component of the discovery system consists in choosing the
aggregating mechanism of the partial matching scores, a partial matching score mea-
sures the closeness degree between a single parameter of the request and a single
parameter of the advertised service. To compute the global score (that handles all the
parameters), we adopt a majority vote approach, and more specifically we compute the
ranking according to the Condorcet principle.

To this end, we propose a fuzzy relationship to compare the services. This latter is a
fuzzified version of the pareto dominance relation. We recall that, the condorcet winner

Table 1. Partial matching scores of services

Services Parameter f1 f2 f3

X Pin 0.88 0.82 0.89
Pout 0.84 0.85 0.79

Y Pin 0.85 0.84 0.87
Pout 0.83 0.78 0.80

W Pin 0.75 0.66 0.79
Pout 0.82 0.67 0.71

Z Pin 0.70 0.61 0.80
Pout 0.76 0.70 0.74

416 H. Fethallah et al.

of a set of candidate objects, is the one that beats or ties with every other candidate in a
pair-wise comparison. In general, we notice that, several existing aggregating schemes
are not suitable for service matchmaking, the major reasons are:

(1) First, these techniques allow the compensation between parameters and thus, they
entail an information loss. More specifically, the fact of averaging the partial
scores (before comparison), may cause an erroneous ranking.

(2) Second, these techniques cannot pick up the tradeoffs given by the advertised
services, for example if the user focuses on services having medium output scores
and higher input scores, then the averaging process is not proper, because it
smoothes the final scores.

Thus, we propose in this paper, the use of all partial matching scores during the
comparison and without averaging them. After that, we sum the comparison results, to
get a final decision. This suggestion is referred to as Sug2.

Our aim is to propose a hybrid matching algorithm, which takes into account the
aforementioned suggestions. More specifically, we adopt a fuzzy version of the
dominance relationship, to compare the services.

The example revealed in Table 1, presents a user request and four advertised ser-
vices. These services are evaluated according to m different matchmaking functions f1,
f2,f3…., We also observe, that the matching degrees between two particular parameters
(for instance the service output and the request output) are non-deterministic and seem to
be stochastic, For instance, according to f1, W dominates Z, however, according to f3, Z
is better than W. To deal with this kind of ambiguity, we introduce the fuzzy dominance
score which measures the extent to which a service S1 dominates another service S2.
This fuzzy score is used for comparing and ranking the services.

The main ideas of our proposition are given below:

1. We propose a Condorcet based ranking of the advertised services, that takes into
account all the matching parameters (inputs, outputs,….) and all the matching
algorithms (f1,f2,….).

2. To implement the fuzzy version of the Condorcet approach, we propose a fuzzy
relation, so as to compare the services, and consequently we can compute the
Condorcet winner of an answer set.

Our choice is mainly motivated by May’s theorem, which states that in the case of a
two candidate election, “majority voting is the only method that is anonymous (equal
consideration of all voters), neutral (equal consideration of the candidates), and
monotonic (more support for a candidate does not jeopardize its election)” [19]. The
rest of this paper is organized as follows: the Sect. 2 presents the related work, the third
section introduces the developed approach, the fourth section shows the results and
finally we present in the fifth section our conclusions.

2 State of the Art

We focus in this section on two areas: the web service discovery as well as the data
fusion problem. For each of them we present the existing approaches.

Hybrid Web Service Discovery Based on Fuzzy Condorcet Aggregation 417

Semantic Web Service Discovery: We discern 03 types of semantic approaches. The
first class is based on pure logic matchmaking, and more specifically these algorithms
use subsumption test, or consistence test to establish the relatedness between a request
and a service.

In OWLMX [14], the authors propose 04 discrete scores for OWLS web services,
The major drawback of this class is the high rate of false positives and false negatives,
and the exponential complexity [2].

For this reason the research community has developed another kind of algorithms
which are based on non-logic approaches such as, graph matching, datamining, opti-
mization, probabilistic matching, information retrieval mechanisms… [11, 21, 23].

In [5] the authors use Probabilistic Latent Semantic Analysis (PLSA), [12] and
Latent Dirichlet Allocation (LDA) [4] to extract latent factors from semantic service
descriptions and retrieve services in latent factor space. Each service is represented as a
probability distribution over latent factors. A latent factor represents a group of con-
cepts and more formally it is a probability distribution over semantic concepts.
In URBE [22], the researchers use different service descriptors to assess the similarity
between the request and the services. They leverage a path based similarity for mea-
suring the closeness between concepts. In addition to that, they use mixed integer
programming to find the optimal matching.

The third category [13, 15] combines the previous types, in order to improve the
performances. More specifically, they aggregate the scores given by the individual
matching algorithms, so as to provide a global score. The aggregating scheme can be
static such as [15] or dynamic (or adaptive) such as [16, 24]. The static case, means that
the individual scores have a fixed priority (or the scores’ ranking is static), for instance
in OWLMX [14], or OWLMX2 [15] the logic score “exact” is always ranked before
the textual similarity scores. In contrast, to the aforementioned systems, the adaptive
approaches leverage machine learning, to boost the performances. For instance
OWLMX3 [16], uses SVM to decide whether the advertised service is proper to the
request or not. In [24] the authors propose three metrics for retrieving and sorting web
services, each of them uses a set of matching algorithms (logic, textual similarities..), so
as to provide a combined ranking.

Data Fusion: The rank aggregation (or data fusion) aims to build a global ranking from
a set of ranked lists of objects (or services/documents). These lists are given by different
search engines. Even if the problem seems to be simple, it is worth mentioning that, the
retrieval of the optimal combined ranking is NP-hard [8] under certain constraints.

Several aggregating techniques have sprung up [9, 10, 18], in particular we notice
four categories of data fusion techniques [1]. The hierarchy is based on two criteria:

(1) The presence/absence of the relevance scores
(2) The presence/absence of machine learning

If the scores are given by the individual ranking algorithms, the combined method
leverages them to build the novel order, for instance the work presented in [1] follows
this policy. Since almost no search engine provides the ranking scores, it is possible to
convert local ranks into relevance scores. In CombSUM [10], the combined relevance

418 H. Fethallah et al.

score of a document is the sum of the scores affected by each input ranking. Likewise
the CombANZ (CombMNZ) systems [10], compute the final score of a document, in
similar fashion with CombSUM, except that we divide (multiply) the score by the
number of rankings in which the document appears. According to [17], the CombMNZ
approach provides the highest search quality.

If the scores are not present (for rank aggregation), we use only the order of the
input ranking [1].We call these approaches order based methods or positional methods.
The first positional method is the Borda-fuse model [1]. For each document, it affects as
score the summation of its rank (position) in each list.

The Condorcet-fuse approach [18], leverages a majoritarian voting model. More
specifically, a document d1 is ranked before another document d2 in the fused list, if d1
is ranked before d2 more times than d2 is ranked before d1. The outranking approach
[9], leverages the majoritarian model by introducing several kinds of thresholds.

3 Web Service Retrieval and Ranking

3.1 Problem Statement

Before introducing the developed contribution, we begin by formalizing the concept of
top K dominating web services under multiple matching functions.

First of all we suppose that, each service (or request) is represented as a vector
containing the inputs/outputs parameters. A matching degree between a parameter of
the request RP = {p1 … pd,} and a service S, under the matching function fj is referred
to as: matchj(pi,S).

Since we have d requested parameters, we obtain d matching scores, each of them
belongs to [0,1]. Each function fj provides a partially ordered set of services, these
elements are labeled with a vector of matching degrees having d dimensions. This
vector is called matching instance. It is denoted Vqj. q represents the service identifier
and j represents the matching function identifier.

Simply speaking, the partially ranked list of fj is represented as follows:
PRLj = <(S1,V1j), (S2,V2j),….. (S|base|,V|base|j) > , each Vqj2 [0,1]*[0,1]*…[0,1].
For instance, if the user’s request has a single input and a single output, then, Vqj 2

[0,1]*[0,1].
Our purpose is to construct a fused (combined) list FL from a set of partially ranked

lists PRL1 ….PRLm, (given by m matching functions), such that the FL’s Top-K
elements, have the best precision rate and the best recall rate. We also notice that, the
implemented fusion technique, must take into account the suggestions Sug1 and Sug 2.

In order to satisfy the requirement Sug2, we use a fuzzy version of the dominance
relationship, we adapt the function proposed by [3] to our context. We notice that, the
(fuzzy) dominance function, compares (simultaneously) in a pairwise manner all the
vector components of the matching instances, hence, the contribution largely fulfills the
second suggestion Sug2.

In what follows we present the pareto dominance and its fuzzified version.

Hybrid Web Service Discovery Based on Fuzzy Condorcet Aggregation 419

3.2 Pareto Dominance

Let us consider two d-dimensional vectors u and v, we say that u dominates v, i.e.
u > v, if and only if u is at least as good as v in all dimensions and (strictly) better than
v in at least one dimension, i.e., 8i 2 [1, d], ui ≥ vi ∧ 9j 2 [1, d], uj > vj.

Form the definition, we observe that, the Pareto dominance is not always decisive
in comparing objects, in fact, it does not permit the differentiation between vectors with
a large variance, i.e., vectors which are very good in some dimensions and mediocre in
other ones (e.g., (0.95, 0.1) and (0.80, 0)) and good vectors, i.e., points that are (in
general) adequate in all dimensions (e.g., (0.8, 1) and (1, 0.7)). To explain this fact, let
us consider u = (u1, u2) = (0.95, 0.2) and v = (v1, v2) = (0.85, 0.9). According to the
Pareto principle, we have neither u > v nor v > u, i.e., the instances u and v are
incomparable. However, we can say that v is more appropriate than u since v2 = 0.9 is
bigger than u2 = 0.2, while v1 = 0.85 is very close to u1 = 0.95.

To take advantage of this observation, we propose a fuzzy version of the Pareto
dominance relationship to express the dominance degree between two matching
instances, i.e. we assess, the extent to which a matching instance vector (more or less)
dominates another one.

3.3 Fuzzy Dominance

Given two d-dimensional vectors u and v, the fuzzy dominance function adapted from
[3] computes the extent to which u dominates v:

FD u; vð Þ ¼ 1=dð Þ
Xd

i¼1
EFD ui; við Þ ð2Þ

Where the elementary fuzzy dominance EFD(x,y) is defined as follows:

EFD x; yð Þ ¼ 0 if x � yð Þ � e
ðx� y� eÞ Otherwise

�
ð3Þ

Where, ε 2 [0,1], this parameter is chosen by an expert or empirically. ε allows the
control of the dominance score between x and y. In this version, we neglect the
additional parameter λ proposed by [3], because the experiments do not show a high
importance of the parameter λ on the result’s quality. EFD constitutes a membership
function of the fuzzy relation “x dominate y”. It expresses the strength of the relation” x
is more or less greater than y”. The dominance function given in formula 2, is simply
an average value of the different elementary fuzzy dominance degrees.

3.4 Service Comparison

Since we have various relevance scores for each service (i.e., the matching scores given
by the different matching functions), we should design a comparison operator that takes
into account all of them (i.e.,we accomplish the first requirement Sug1). In what
follows, we elucidate our idea by considering a simple scenario. Let us consider two

420 H. Fethallah et al.

services S1 and S2, such that each of them is characterized by a set of matching
instances derived from the m matching functions f1 f2 ….fm. First, we compute the
extent to which S1 is better than S2, by adopting the following formula:

Dominance� degree S1; S2ð Þ ¼ 1=mð Þ
Xm

j¼1
1=mð Þ

Xm

k¼1
FD V1j;V2k

� � ð4Þ

Where V1j is the J th matching instance of S1
Where V2k is the K th matching instance of S2
Informally, this function computes the average dominance score between the

instances of S1 and the instances of S2.
Second, we compute the extent to which S2 is better than S1, by adopting the same

formula:

Dominance� degree S2; S1ð Þ ¼ 1=mð Þ
Xm

j¼1
1=mð Þ

Xm

k¼1
FD V2j;V1k

� �

Third, we rank the services according to the obtained scores:
If Dominance-degree(S1,S2) > Dominance-degree(S2,S1) then S1 is ranked before

S2, and this means that S1 is better than S2.
If Dominance-degree(S1,S2) < Dominance-degree(S2,S1) then S2 is ranked before

S1, and this means that S2 is better than S1
If Dominance-degree(S1,S2) = Dominance-degree(S2,S1) then S1 and S2 have same

rank, and this means that S2 and S1 are equivalents (S1 ≡ S2).
To clarify the comparison mechanism, we consider the following example: For the

sake of simplicity, we handle only two parameters: one input and one output and 03
matching functions f1 f2 f3 (i.e.03 matching instances per service), we also set ε to 0.

S1: {(1,0.6),(0.4,0.5),(0.7, 0.3)}, S2:{(0.7,0.7),(0.5,0.5),(0.6,0.7)}

Dominance-degree(S1,S2)=

1/3.[1/3.[(FD((1,0.6),(0.7,0.7)) + FD((1,0.6), (0.5,0.5)) + FD((1,0.6), (0.6,0.7))] +
1/3.[(FD((0.4,0.5),(0.7,0.7)) + FD((0.4,0.5), (0.5,0.5)) + FD((0.4,0.5), (0.6,0.7))] +
1/3.[(FD((0.7,0.3),(0.7,0.7)) + FD((0.7,0.3), (0.5,0.5)) + FD((0.7,0.3), (0.6,0.7))]] =

0.0888.

In a similar manner: Dominance-degree (S2,S1) = 0.1222. Since the second score is
bigger than the first score, we infer that S2 is better than S1 in the aggregated list.

3.5 Fuzzy Ranking Algorithm

Our proposition, referred to as FCAA (Fuzzy Condorcet Aggregating Algorithm),
computes the top-k Web services according to the Condorcet ranking principle. The
main ide a is to build a graph, such that, the nodes represent the services, and the edges
represent the relation “is better than”. If two services are equivalents then, we put two
edges S ! S’ and S’! S.

The major problem of the Condorcet based ranking, is the presence of cycles.
Several solutions are proposed to this issue, for instance, we may simply, view cycles
as ties. In [18] the local ordering of objects within a cycle is only of secondary

Hybrid Web Service Discovery Based on Fuzzy Condorcet Aggregation 421

importance, while their ordering with respect to the rest of the candidates is a prime
priority. In this contribution, we rank the services within a cycle, by using a simple
heuristic. This latter favors the services having the smallest variance, in other words if
we have for instance two equivalent services S and S’ such that S has two matching
instances (a1,b1), (a2,b2) and S’ has two matching instances (a’1,b’1), (a’2,b’2), then

Mean(S) = ((a1 + a2)/2, (b1 + b2)/2) we denote this mean by (a*,b*)
Mean(S’) = ((a’1 + a’2)/2, (b’1 + b’2)/2) we denote this mean by (a’*,b’*)
Variance(S) = Variance1(S) + variance2(S), where:
Variance1(S) = 1/2.[(a1-a*)2 + (a2-a*)2]
Variance2(S) = 1/2.[(b1-b*)2 + (b2-b*)2]

In a similar manner, we define Variance(S’), and hence S is better than S’ if and
only if Variance(S) < Variance(S’). The idea behind this heuristic is that we want to
privilege the services that have consistent scores in all the matching algorithms. This
policy will ensure more chances to retain reliable services. To infer the aggregated
ranking, we simply search a hamiltonian traversal of the constructed graph. This task
can be done in a polynomial time [18]. In what follows, we present the pseudo code of
the proposed ranking algorithm:

Algorithm : FuzzyCondorcetAggregatingAlgorithm

Inputs: a set of input source lists RPL1,…. RPLm

Output:Top-K(Global-Ranking)

1 For each input list RPLj Do

2 RPLj’= prune (RPLj)

3 End

4 Initialize C= (RPL1’) (RPL2∪ ∪

≡

∪’) … (RPLm’).

5 CondorcetGraph=(C,null) // the edges are not initialized.

6 For each service Si belonging to C Do

7 For each service Sj belonging to C and different from Si Do

8 If (Si is better than Sj) then add the edge (i,j) in CondorcetGraph End

9 If (Sj is better than Si) then add the edge (j,i) in CondorcetGraph End

10 If (Si Sj) then add the edges (i,j), and (j,i) in CondorcetGraph End

11 End

12 End

13 Global- Ranking = Hamiltonian-Path(CondorcetGraph).

14 Result=Top-K(Global- Ranking)

15 Return Result

422 H. Fethallah et al.

The explanation of the algorithm is given below:

(1) (Lines 1,2,3), we remove all the services where the matching scores (for inputs
and outputs) are 0 in all the matching algorithms. This phase will alleviate the
time complexity of the ordering. We discard all the services that have a matching
instance = (0,0….0), in all the matching functions.

(2) (Line 4), we fuse the pruned source lists in the set C.
(3) (Line 5) the graph is created by considering the elements of C as nodes, and the

edges are inserted according to the dominance degree, initially the edges are
empty.

(4) (Lines 6..12), we build the Condorcet graph by leveraging the fuzzy dominance
relationship.

(5) (Lines 13), we construct the hamiltonian path of the Condorcet graph (see Fig. 1),
this task is done by counting the out-degree of each service(or node), the root of
the hamiltonian graph is the node having an out degree = |C|-1, the other nodes of
the hamiltonian path are computed with an almost similar manner.

(6) (Lines 14..15), we extract the Top-K dominating services from the hamiltonian
path, for instance, in Fig. 1 Top-2(Global- Ranking) = <S19,S4>

We notice that Fig. 1 shows only the edges connecting two consecutive levels, or
nodes belonging to the same level. In our work, we use conjointly five matching
functions: four of them are similarity measures, more specifically we adopt: the
loss-of-information measure (IL), the extended Jaccard similarity (EJ), cosine similarity
(Cosine), and Jensen-Shannon information divergence based similarity (JS). The last
matching function (Logic) is a pure logic-based reasoning. This latter uses the sub-
sumption test, for making the decision, it gives fives scores: Exact, Plugin, Subsume,
SubsumedBy, and Fail. All these algorithms are presented in detail in [14]. These
similarity measures are preferred in this work, because they represent the most
promising techniques in information retrieval [14].

S19

S4

S3 S15 S22

S45

S9

S33 S18

S12

Fig. 1. Global ranking

Hybrid Web Service Discovery Based on Fuzzy Condorcet Aggregation 423

4 Experimental Study

We conduct a set of experiments to assess the effectiveness and the efficiency of the
proposal, the used test collection OWLTC V2.2, (http://www-ags.dfki.uni-sb.de/
*klusch/owls-mx/) involve real-world Web service descriptions, extracted principally
from public IBM UDDI registries. The data set contains: (a) 1007 service descriptions,
(b) 29 sample requests, and (c) a manually identified relevance set for each request. We
use 19 requests for assessing the approach quality (precision and recall).

In order to compare the efficiency, we measure, the mean execution time of the
different matching algorithms. All the algorithms were implemented in Java, and the
experiments were conducted on a Core I3 GHz machine with 4 GB of RAM, running
Window7.

In this, study we have implemented five matching functions and one fusion algo-
rithm, which are respectively: Extended Jaccard similarity measure (EJ), Information
Loss similarity measure (IL), jenson shanon similarity measure (JS), cosine similarity
measure (cosine), logic matching (Logic), and Fuzzy Condorcet Aggregating Algorithm
(FCAA).

We also compare our aggregating algorithm with the results given by the Borda
fuse model, we assume that the Borda’s experiments use a set of source lists having 50
elements. To choose the best value of ε, we have conducted several simulations of the
Fuzzy Condorcet Aggregating Algorithm, the best values belong to [0, 0.09], in what
follows we take ε = 0.05.

As demonstrated in Fig. 2, FCAA presents a little overhead, in comparison with the
05 matching algorithms. This cost is mainly due to the comparison task (see lines 8,
9,10), The fast algorithm is the logic approach, this latter is based on an ontological
encoding technique [6] for reducing the execution time of the subsume test. The rest of
algorithms have almost similar execution times. We also observe that fact of pruning
the input ranked lists (see step 2), enables the reduction of the computational cost,
because the entire data set is replaced with a small subset C.

0

20000

40000

60000

Average ExecutionTime (Milli.Sec)

Average ExecutionTime
(Milli.Sec)

Fig. 2. Average execution time

424 H. Fethallah et al.

http://www-ags.dfki.uni-sb.de/~klusch/owls-mx/
http://www-ags.dfki.uni-sb.de/~klusch/owls-mx/

We also notice that, the time complexity of the dominance-degree (formula 4) is
O(d.m2). Because we need to perform m2 elementary comparisons and each of them
requires d actions. To rank the services we must execute the dominance degree twice
for each pair (S,S’) (we neglect for the moment the equivalence case), and since we
have |C| services to rank, then each service is compared with |C|−1 elements. Finally, to
build the Condorcet graph and extract the Hamiltonian path, we need O(|C|2.d.m2)
steps. It obvious that this polynomial complexity enables a high efficiency for large
data sets.

The Tables 2 and 3, show the precision and the recall associated to the TOP 10 up
to TOP 60 answers. In general, the results indicate that FCAA is more effective than the
other algorithms, in terms of both criteria. Furthermore the FCAA superiority is
independent from the list size (K).

Since the Borda approach is very sensitive to the service ranks in the source lists, its
average recall is very weak in comparison with FCAA (especially for high values of k).
Likewise the precision superiority of the proposed approach is more apparent for k = 20
and k = 30. These experiments confirm the effectiveness of the Condorcet voting
model.

The Table 4 provides the details that concern the R-precision. This criterion rep-
resents a special execution scenario, in which the recall and the precision are equal.

According to the results, FCAA is better than the individual matching functions and
the Borda fuse model, we also notice that the information loss gives an almost similar
performance.

The only case where FCAA will give a poor performance, is described below:

Table 2. Average precision for 19 requests

Function Top 10 Top 20 Top 30 Top 40 Top 50 Top 60

EJ 0,81 0,64 0,58 0,51 0,42 0,36
IL 0,81 0,64 0,58 0,5 0,42 0,36
JS 0,8 0,65 0,57 0,49 0,41 0,36
LOGIC 0,73 0,53 0,48 0,42 0,37 0,31
COSINE 0,81 0,64 0,57 0,48 0,4 0,36
BORDA 0,83 0,67 0,58 0,5 0,42 0,38
FCAA 0,83 0,69 0,59 0,5 0,42 0,37

Table 3. Average recall for 19 requests

Function Top 10 Top 20 Top 30 Top 40 Top 50 Top 60

EJ 0,33 0,59 0,73 0,79 0,83 0,85
IL 0,33 0,59 0,74 0,79 0,84 0,86
JS 0,33 0,59 0,72 0,79 0,83 0,86
LOGIC 0,3 0,46 0,6 0,66 0,72 0,69
COSINE 0,33 0,59 0,72 0,78 0,82 0,86
BORDA 0,39 0,58 0,73 0,81 0,84 0,9
FCAA 0,4 0,61 0,77 0,84 0,87 0,9

Hybrid Web Service Discovery Based on Fuzzy Condorcet Aggregation 425

– When the majority of the matching functions commits an error about a good service
denoted S* and they ranked it beyond the first K elements, then the FCAA will not
correct the mistake because it is based on the majority vote principle.

– In this situation FCAA is not able to outperform the good matching algorithms.

We notice that these cases are very rare, because the majority of the similarity
measures are very effective in the Top 30 services (see Tables 2 and 3).

5 Conclusion

In this paper, we have proposed an aggregating algorithm based on Condorcet principle
for retrieving and ranking web services. Our proposition takes into account several
parameters as well as various matching functions during the ranking process. Our
contribution leverages five matching functions: four similarity measures and one logic
matching approach. The experimental results show that the proposed algorithm is quite
effective and efficient.

There are several directions for future work. First, we can learn additional
parameters such as ε and the number of input lists that participate in the election
process, second we can add additional matching functions, especially edge based
similarities, or even kernel based similarities. These directions may ensure more
chances to pick up the most relevant services.

References

1. Aslam, J.A., Montague, M.H.: Models for metasearch. In: SIGIR, pp. 275–284 (2001)
2. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Stud.

Logica 69, 5–40 (2001)
3. Benouaret, K.: Advanced techniques for web service query optimization. Ph.D. thesis in

Computer Science. Université Claude Bernard Lyon1 (2012)
4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–

1022 (2003)
5. Cassar, G., Barnaghi, P., Moessner, K.: Probabilistic matchmaking methods for automated

service discovery. IEEE Trans. Serv. Comput. J. 7(4), 1 (2013)

Table 4. Average R-precision for 19 requests

Function R-precision

EJ 0,697
IL 0,704
JS 0,696
LOGIC 0,562
COSINE 0,693
BORDA 0,70
FCAA 0,709

426 H. Fethallah et al.

6. Caseau, Y., Habib, M., Nourine, L., Raynaud, O.: Encoding of multiple inheritance
hierarchies and partial orders. Comput. Intell. 15, 50–62 (1999)

7. Curbera, F., Duftler, F., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling. the
web services web: an introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput. 6
(2), 86–93 (2002)

8. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In:
Proceedings of the ACM International Conference on World Wide Web (WWW), pp. 613–
622 (2001)

9. Farah, M., Vanderpooten, D.: An outranking approach for rank aggregation in information
retrieval. In: SIGIR, pp. 591–598 (2007)

10. Fox, E.A., Shaw, J.A.: Combination of multiple searches. In: 2nd TREC, NIST, pp. 243–252
(1993)

11. Hadjila, F., Chikh, A., Belabed, A.: Automated discovery of web services: an interface
matching approach based on similarity measure. In: Proceedings of the 1st International
Conference on Intelligent Semantic Web-Services and Applications, ISWSA 2010,
pp. 13:1–13:4. ACM, New York (2010)

12. Hofmann, T.: Probabilistic latent semantic analysis. In: Proceedings of Uncertainty in
Artificial Intelligence, UAI99, pp. 289–296 (1999)

13. Klusch, M., Kapahnke, P.: Semantic web service selection with SAWSDL-MX. In: CEUR
Proceedings of 2nd International Workshop on Service Matchmaking and Resource
Retrieval in the Semantic Web (SMR2), Karlsruhe, Germany. CEUR 416 (2008)

14. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with
OWLS-MX. In: Proceedings of 5th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), Hakodate, Japan. ACM Press (2006)

15. Klusch, M., Fries, B., Sycara, K.: OWLS-MX: a hybrid semantic web service matchmaker
for OWL-S services. Web Semant. 7(2), 121–133 (2009)

16. Klusch, M., Kapahnke, P.: OWLS-MX3: an adaptive hybrid semantic service matchmaker
for OWL-S. In: Proceedings of 3rd International Workshop on Semantic Matchmaking and
Resource Retrieval (SMR2) at ISWC, Washington, USA (2009)

17. Lee, J.-H.: Analyses of multiple evidence combination. In: SIGIR, pp. 267–276 (1997)
18. Montague, M.H., Aslam, J.A.: Condorcet fusion for improved retrieval. In: ACM CIKM,

pp. 538–548 (2002)
19. Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press,

Cambridge (1988)
20. OASIS. Web services business process execution language, April 2007. http://docs.oasis-

open.org/wsbpel/2.0/wsbpel-v2.0.pdf
21. Platzer, C., Rosenberg, F., Dustdar, S.: Web service clustering using multidimensional

angles as proximity measures. ACM Trans. Internet Technol. 9(3), 1–26 (2009)
22. Plebani, P., Pernici, B.: URBE: web service retrieval based on similarity evaluation. IEEE

Trans. Knowl. Data Eng. 21(11), 1629–1642 (2009)
23. Segev, A., Toch, E.: Context-based matching and ranking of web services for composition.

IEEE Trans. Serv. Comput. 99(PrePrints), 210–222 (2009)
24. Skoutas, D., Sacharidis, D., Simitsis, A., Kantere, V., Sellis, T.: Ranking and clustering web

services using multi-criteria dominance relationships. IEEE Trans. Serv. Comput. J. 3(3),
163–177 (2010)

Hybrid Web Service Discovery Based on Fuzzy Condorcet Aggregation 427

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

Confidentiality and Trust

Confidentiality Preserving Evaluation
of Open Relational Queries

Joachim Biskup(B), Martin Bring, and Michael Bulinski

Fakultät für Informatik, Technische Universität Dortmund, Dortmund, Germany
{joachim.biskup,martin.bring,michael.bulinski}@cs.tu-dortmund.de

Abstract. Relational database systems may serve to evaluate an open
query, returning a relation with all those tuples that satisfy the properties
expressed in the query, complemented with an often implicit statement
about the completeness of the result. Known inference control procedures
for enforcing a confidentiality policy have to inspect by theorem-proving
explicit completeness sentences expressed in first-order logic. Unfortu-
nately, experiments indicate that standard theorem provers are not effi-
cient enough to deal with completeness sentences of a larger size. We
describe and evaluate approaches to overcome the performance issues by
suitably transforming an original completeness sentence and by optimiz-
ing the number of prover calls with a completeness sentence involved.

Keywords: Active domain · Apriori knowledge · Binary search ·
Closed-world assumption · Combined lying and refusal · Confidentiality
policy · Constant symbol · Completeness sentence · Dictionary · Enu-
meration of a domain · Free variable · Inference control · Open query ·
Theorem-proving

1 Introduction

Inference control for information systems in general and relational databases
in particular is a mechanism to confine the information content and thus the
usability of data made accessible to a client to whom some piece(s) of informa-
tion should be kept confidential, see, e.g., [2,6]. Thus inference control aims at
protecting information rather than just the underlying data, as achieved by tra-
ditional access control or simple encryption. Though protection of information
is a crucial requirement for many applications, the actual enforcement is facing
great challenges arising from conceptual and computational problems.

In this work, we focus on the problems arising from controlling open queries to
a relational database, as managed by well-known products of a DBMS complying
with the SQL-standard. Basically, given a database schema and corresponding
relation instances (sets of tuples) an open query requests to return an answer
relation (set of tuples) that contains exactly those tuples that both fit the format

This work has been partially supported by the Deutsche Forschungsgemeinschaft
(German Research Council) under grant no. BI 311/12-2.

c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 431–445, 2015.
DOI: 10.1007/978-3-319-23135-8 29

432 J. Biskup et al.

and satisfy the properties expressed in the query. Notably, all tuples fitting the
format but not satisfying the properties are not explicitly returned. Rather, the
issuer of the query and receiver of the answer is assumed to apply a closed-
world assumption, which says that each format-fitting tuple not contained in
the answer does not satisfy the requested properties. Under the assumption that
infinite type extensions (domains) are declared by the schema, there are infinitely
many such “negative tuples”. Accordingly, controlling an open query necessarily
has to identify and, as far as requested by a confidentiality policy, to confine the
information supplied by all these tuples.

We will treat the problems raised in a formal approach to relational databases
based on first-order logic [1,8], where, e.g., tuples are seen as ground atoms,
queries are expressed by formulas which may contain free variables, semantic
constraints and other a priori knowledge are specified by sentences, and potential
secrets, i.e., elements of a confidentiality policy, are declared by sentences as well.

Example 1. Consider a database db with a relation ill relating patients to ill-
nesses as present for example in hospitals: db := {ill(Smith, cancer), ill(Miller,
flu), ill(Miller, rheumatism)}. Let psec be the confidentiality policy stating
that the information of person Smith suffering from cancer should be kept con-
fidential: psec := {ill(Smith, cancer)}. Additionally the requestor is assumed to
have the knowledge prior that person Smith or person Miller is actually suffering
from cancer : prior := {ill(Smith, cancer) ∨ ill(Miller, cancer)}. Assuming the
requestor is interested in the illnesses of person Miller, he submits the following
open query with a free variable x to the information system: ill(Miller, x).

The answer relation of this query would then consist of the two tuples
ill(Miller, flu) and ill(Miller, rheumatism). Applying the closed world assump-
tion yields, among others, the “negative tuple” ¬ill(Miller, cancer) which enables
the requestor to infer the confidential information of person Smith suffering from
cancer, as formally captured by the following entailment:

(
ill(Smith, cancer) ∨ ill(Miller, cancer)

)
∧

¬ill(Miller, cancer) |= ill(Smith, cancer)

Elaborated as part of a specific approach to inference control called Con-
trolled Interaction Execution, see [3,4] for an introduction, Biskup/Bonatti [5]
proposed and verified control procedures for open relational queries within a ded-
icated logic-oriented relational model dealing with different settings of a reaction
on detecting harmful information, including refusal, lying and the combination
thereof. As already indicated above, suitably representing and handling the per-
tinent closed-world assumptions are a most crucial aspect.

Representation is enabled by expressing the information content of the infi-
nitely many “negative tuples” by a single completeness sentence in first-order
logic. Conceptually, handling of completeness sentences is managed in two ways,
either in advance by determining a suitable bound for the set of tuples to be
explicitly inspected for inclusion into the controlled answer or repeatedly while

Confidentiality Preserving Evaluation of Open Relational Queries 433

inspecting tuples for inclusion one after another until the pertinent completeness
sentence for the answer becomes true, i.e., all remaining tuples are guaranteed
to not satisfying the pertinent properties. For both ways, not only the set of
“positive tuples” but also the corresponding completeness sentence are explicitly
returned to the requestor, and memorized by the control system.

Example 2. As seen in Example 1, the information ¬ill(Miller, cancer) has to
be restricted in order to avoid an information flow violating the confidentiality
policy. This may lead to the following result of an explicit finite answer relation
together with a suitable completeness sentence:

{ill(Miller, flu), ill(Miller, rheumatism)}
∀x

[
(x �= flu ∧ x �= rheumatism ∧ x �= cancer) ⇒ ¬ill(Miller, x)

]
Algorithmic handling of completeness sentences, however, turned out to be

a major obstacle to achieve efficient and scalable controlled query evaluation.
To confine information, possible inferences revealing confidential information
have to be detected by the control system by employing a theorem prover. The
difficulties in handling completeness sentences arise in the internal treatment of
completeness sentences by theorem provers. In this report we present a detailed
description of these difficulties together with some approaches to overcome them.
More specifically, focussing on the combination of refusal and lying, we will

– summarize the basic control procedures for open queries (Sect. 2);
– outline an implementation of those control procedures (Sect. 3);
– enhance theorem-proving with a completeness sentence (Sect. 4);
– optimize the number of pertinent prover calls (Sect. 5).

2 Basic Control Procedures for Open Queries

Regarding open queries there are three basic control procedures corresponding
to the three possible reaction types, namely refusal, lying and the combination
thereof, see [5] for details. The basic strategy of all of these procedures is the sim-
ulation of an open query by a sequence of closed queries. These closed queries
result from substituting the free variables by domain elements in all possible ways.
The order of inspecting tuples corresponding to the closed queries is determined
by a fixed enumeration sequence of the underlying domains of the free variables
contained in the open query to be evaluated. As mentioned in the introductory
section, a completeness sentence, formulated as a closed query as well, is employed
to detect a suitable bound for terminating the simulation sequence.

Unfortunately, fixing the domain enumerations will be costly in general, since
it requires to explicitly consider a large number of syntactically possible tuples
only a small fraction of which might turn out to be actually relevant for a
concrete application. However, the fixing is crucially necessary for proving that
the control procedures satisfy the formal notion of confidentiality preservation
used for Controlled Interaction Execution. In more intuitive terms, this notion

434 J. Biskup et al.

guarantees that a user always receives answers to his queries such that, from his
point of view, for each element of the confidentiality policy the answers could
be explained to result from relation instances in which the policy element is
not valid. In other words, for the user such possible “harmless” instances are
indistinguishable from the hidden actual instances (in which the policy element
might be valid or not).

In the basic control procedure of the refusal approach the tuples are treated
stepwise one after another. In each step the current tuple and a completeness sen-
tence – stating that all further tuples will belong to the set of “negative tuples” –
are inspected concerning their compliance with the confidentiality policy. If the
current tuple does not violate confidential information, it is added to the set of
“positive tuples” or the set of “negative tuples”, respectively, according to its
containment in the underlying database instance; otherwise, the current tuple is
added to a third collection of “refused answers”. Analogously, if the complete-
ness sentence does not violate any confidential information, it is returned to the
requestor according to its validity with respect to the database instance. If the
completeness sentence is harmless and true in the underlying database instance
then the enumeration is stopped, since all remaining tuples are covered by this
completeness sentence. In case of a harmful completeness sentence, it is refused
and the enumeration is also stopped, because information about further tuples
would be harmful as well.

Whereas the refusal approach obtains the final completeness sentence as a
result of inspecting the tuples in a sequential manner, the lying and combined
approach determine a suitable bound for considering tuples in advance. However,
for lying this bound is only tentative and in need for a later adjustment. For lack
of space, we omit all further explanations for the lying approach.

Regarding the control procedure of the (so-called alternative1) combined
approach, in the following we outline the essentials of the four-step forward-
backward algorithm to determine the final completeness sentence in a first phase;
formal details of the algorithm and justifications by means of providing formal
arguments in the proofs can be found in [5].

The first step determines a position k of the enumeration sequence as the
least position that makes the corresponding completeness sentence true in the
underlying database instance (but may still violate confidential information). In
a second forward searching step this position is increased until the corresponding
completeness sentence does not violate confidential information anymore yielding
a position m. In order to obtain the last “positive tuple” (which might be a lie),
by a third backward searching step beginning at position m, the position k is
then modified to a position k∗ satisfying the condition that the last “positive
tuple”, represented by k∗, together with the completeness sentence belonging
to m do not violate confidential information. The choice of k∗ may arise the
necessity (namely, if k∗ < k) of adjusting the completeness sentence belonging
to m by a fourth forward search step starting at k∗ and yielding the position
m∗. This adjustment results in the final completeness sentence which is specified

1 see Sect. 5.2 of [5].

Confidentiality Preserving Evaluation of Open Relational Queries 435

by the position m∗ (possibly also expressing a lie). Notably, the positions k∗

and m∗ are mutually optimal, i.e., k∗ is maximal with respect to m∗, and m∗ is
minimal with respect to k∗, and they are determined in an instance-independent
manner, i.e., without further considering the actual relation instances. The final
completeness sentence is returned to the requestor, and the last “positive tuple”
is added to the set of “positive tuples”.

In a second phase, all tuples in the ranges of [1, k∗ − 1] and [k∗ + 1, m∗] are
then treated as closed queries and appropriately added to the sets of “positive
tuples” and “negative tuples” or discarded as refused, respectively.

As needed for Controlled Interaction Execution in general, the outcome of
each step might depend on the results of previous steps, and thus the overall con-
trol procedure is inherently sequential, offering only limited options of employing
parallel computing.

3 An Implementation within the CIE-System

The control procedures for open relational queries outlined in Sect. 2 have been
implemented as part of the CIE-System described in [3]. The CIE-System serves
as a frontend for the underlying database, which is managed by an Oracle DBMS.
To ensure the preservation of confidential information, the view of the client must
not contain any confidential information, neither directly nor indirectly in form
of possible implications. This requirement is guaranteed by the use of a theorem
prover. The CIE-System uses the Prover9 [9], alternatively also the E-Prover2,
and provides an interface complying with the TPTP format [10].

At declaration time, the administrator has to declare a dictionary for each
attribute occurring in a relation. A dictionary contains sufficiently many ele-
ments of the corresponding domain in a fixed order. Since domains are infinite,
a dictionary cannot cover all domain elements; accordingly, the CIE-System
returns an error message if a dictionary will turn out to be too small.

For a given open query, the enumeration sequence for its free variables (which
defines the order in which the substituted tuples get inspected) is determined in
two steps. First, each variable is individually assigned an enumeration sequence:
if the variable occurs only in one predicate (relation) and always for the same
attribute, then the enumeration sequence is simply obtained by the dictionary
for that attribute; otherwise, if the variable occurs multiple times for different
attributes, then the dictionaries for these attributes are merged using the zipper
method. Second, if there is only one free variable, the enumeration sequence
determined so far is taken; otherwise, if there are at least two free variables, the
joint enumeration sequence for them is obtained by diagonalization, such that
each element of the enumeration sequence contains exactly one constant for each
of the free variables. The diagonalization has been implemented by inductively
using the Cantor pairing function π and its inverses.

2 http://www.eprover.org.

http://www.eprover.org

436 J. Biskup et al.

4 Theorem-Proving with Completeness Sentences

During the evaluation of an open query, a theorem prover is applied to ensure
that no confidential information is revealed by the query answer. In the process
of theorem-proving, a special challenge arises from the treatment of completeness
sentences the formal structure of which is explained in the following.

Let Φ(x) be a safe open relational query with free variables x and
c1, . . . , cn, cn+1, . . . the fixed enumeration sequence of the infinite combined
domains of x computed as described in Sect. 3. An answer of an open query gen-
erally consists of a positive and a negative part. The positive part is given by a set
of tuples Φ(ci1), . . . , Φ(cik) where the free variables of the open query are sub-
stituted by the elements ci1 , . . . , cik of the enumeration sequence. The negative
part is covered by a completeness sentence stating that all further substitutions
of the open query lead to “negative tuples”:

Compl(Φ(x), {ci1 , . . . , cik}) ≡ ∀x [x = ci1 ∨ · · · ∨ x = cik ∨ ¬Φ(x)] (1)

While computing the answer of an open query, each enumeration step n ∈ N
has to deal with a completeness sentence of the following kind:

Compl(Φ(x), n) ≡ ∀x [x = c1 ∨ · · · ∨ x = cn ∨ ¬Φ(x)] (2)

It states the following: all further substitutions, which are different from each
of the substitutions already considered before, will lead to “negative tuples”.
Notably, in both sentences a disjunct of the form x = ci actually consists of a
conjunction, namely x1 = ci,1 ∧ . . . ∧ xw = ci,w, where x = (x1, . . . , xw) and
ci = (ci,1, . . . , ci,w), relating each of the free variables of x to the corresponding
constant of the enumeration sequence element ci.

The fundamental problem of theorem-proving in the presence of a complete-
ness sentence is the performance: it drastically degrades when (i) there is more
than one free variable and (ii) the size of the completeness sentence, i.e., the
number of excluded elements of the enumeration sequence, increases. One cause
of this performance issue is the conversion of the completeness sentence to con-
junctive normal form which is done internally by the theorem provers.

More specifically, the above presented completeness sentence basically con-
sists of one big disjunction the operands of which are conjunctions of equality
formulas. Thus, the original completeness sentence is a formula in disjunctive
normal form, resulting in an exponential blow up during the conversion to con-
junctive normal form. This observation particularly applies for completeness
sentences covering formulas with more than one free variable. In case of just one
free variable, for each excluded element of the enumeration sequence there is
only one equality subformula needed, which can directly be added as operand
of the overall disjunction. To treat the performance issue two workarounds have
been developed which are described below.

4.1 Employing the Active Domain of a Completeness Sentence

The first workaround is based on the idea of an active domain of a completeness
sentence w.r.t. the constants of the excluded combinations and an explicit listing

Confidentiality Preserving Evaluation of Open Relational Queries 437

of all “negative tuples” which are covered by the completeness sentence and
consist solely of elements of the domain of the completeness sentence.

Let Compl(Φ(x), n) be a completeness sentence of the form presented in
equation (2) where each ci (“excluded combination”) is a vector consisting of w
constants denoted as (ci,1, . . . , ci,w). The active domain of Compl(Φ(x), n) w.r.t.
the constants of excluded combinations is then defined as

active domain cs := {c1,1, . . . , c1,w, , cn,1, . . . , cn,w}. (3)

For describing this active domain of the completeness sentence the additional
predicate ad is introduced together with the following formulas:

ad(c1,1), . . . , ad(c1,w), , ad(cn,1), . . . , ad(cn,w) (4)
∀z[¬ad(z) ∨ z = c1,1 ∨ . . . ∨ z = c1,w ∨ . . . ∨ z = cn,1 ∨ . . . ∨ z = cn,w] (5)

The formulas in (4) define which constants comprise the active domain of the
completeness sentence and the formula (5) states the completeness of the domain
by expressing that all constants which differ from the constants covered by the
formulas in (4) are not part of the active domain.

The original completeness sentence states which substitutions of the free
variables of the open query lead to “negative tuples” and therefore being different
from the “excluded combinations”. The transformation approach splits this set of
“negative tuples” described by the original completeness sentence into two parts.

The first part deals with those “negative tuples” that can be constructed by
substituting the free variables of the open query only by using constants of the
active domain of the completeness sentence. Since the completeness sentence
is a finite formula, and thus the set of constants of the active domain of the
completeness sentence is finite as well, there are only finitely many “negative
tuples” of this form. The idea of the transformation consists of an explicit listing
of these “negative tuples”, which are represented by the following formulas where
w is the number of free variables of the open query and ci with i ∈ {1, . . . , n}
are the “excluded combinations” (see Eq. (2)):

¬Φ(c), for each vector c of length w over active domain cs
satisfying for all i ∈ {1, . . . , n} : c �= ci (c is “not excluded”) (6)

The second part of “negative tuples” takes into account all further possible
substitutions of the free variables of the open query containing at least one con-
stant which is not contained in the active domain of the original completeness
sentence. The representation of this second part is based on the following obser-
vation: whenever a substitution contains a constant outside of the active domain
of the original completeness sentence, then this substitution cannot coincide with
an “excluded combination”. For, otherwise, this constant would be part of the
active domain of the original completeness sentence as well. This observation
leads to the following formulas for representing the second part of “negative
tuples” where the vector x of free variables of the open query has the form
x = (x1, . . . , xw):

∀x [ad(x1) ∨ ¬Φ(x)] . . . ∀x [ad(xw) ∨ ¬Φ(x)] (7)

438 J. Biskup et al.

These formulas state the following: whenever one variable is substituted by a
constant that is not part of the active domain of the original completeness sen-
tence then the corresponding formula Φ(x) is false.

Finally, the formulas (4), (5), (6) and (7) are added to the prover’s input in
order to replace the original completeness sentence.

Example 3. Let ill(x, y) be a query with free variables x and y and
Compl(ill(x, y), 2) ≡ ∀x, y [(x = Smith∧y = cancer)∨(x = Miller∧y = flu)∨
¬ill(x, y)] a completeness sentence. The transformation of Compl(ill(x, y), 2)
results in the following formulas (i) for the active domain of the completeness
sentence, (ii) describing the explicit “negative tuples”, and (iii) referring to “neg-
ative tuples” with at least one element outside the active domain, respectively:

ad(Smith), ad(cancer), ad(Miller), ad(flu)
∀z[¬ad(z) ∨ z = Smith ∨ z = cancer ∨ z = Miller ∨ z = flu]

¬ill(Smith, Smith) ¬ill(Smith,Miller) ¬ill(Smith, flu)
¬ill(cancer, Smith) ¬ill(cancer, cancer) ¬ill(cancer,Miller)
¬ill(cancer, flu) ¬ill(Miller, Smith) ¬ill(Miller, cancer)
¬ill(Miller,Miller) ¬ill(flu, Smith) ¬ill(flu, cancer)
¬ill(flu,Miller) ¬ill(flu, flu)

∀x, y [ad(x) ∨ ¬ill(x, y)] ∀x, y [ad(y) ∨ ¬ill(x, y)]

The effect of the described workaround is the avoidance of the costly conver-
sion of the original completeness sentence in conjunctive normal form resulting
in a huge improvement in performance. The obvious drawback is the drasti-
cally increasing size of the input of the theorem prover by defining the active
domain of the original completeness sentence together with explicitly listing lots
of “negative tuples” which can be constructed by active domain constants.

4.2 Introducing New Constants

A second workaround is based on the idea of reducing the general case of com-
pleteness sentences corresponding to open queries with arbitrary many free vari-
ables to completeness sentences similar to the ones corresponding to queries
with only one free variable. Therefore, for each excluded combination ci of the
completeness sentence, a new constant ccombii is introduced. To relate the new
constants to its origin, the following mapping functions are introduced as well:

fmapx1
(ccombii) = ci1 . . . fmapxw

(ccombii) = ciw (8)

Furthermore, a new predicate combi is introduced with the following intended
meaning: the predicate is true for exactly the excluded combinations of the

Confidentiality Preserving Evaluation of Open Relational Queries 439

original completeness sentence which are denoted by the new constants ccombii .
This is achieved by the following formulas:

combi(ccombi1) ∧ . . . ∧ combi(ccombin) (9)
∀z [z = ccombi1 ∨ . . . ∨ z = ccombin ∨ ¬combi(z)] (10)

The reduction of a completeness sentence with multiple variables to a complete-
ness sentence with only one variable is realized by formula (10). To relate the new
completeness sentence regarding the new predicate combi back to the original
completeness sentence with the formula Φ, the following formula is used:

∀x
[
∃z [combi(z) ∧ fmapx1

(z) = x1 ∧ . . . ∧ fmapxw
(z) = xw] ∨ ¬Φ(x)

]
(11)

Example 4. Let ill(x, y) be a query with free variables x and y and
Compl(ill(x, y), 2) ≡ ∀x, y [(x = Smith∧y = cancer)∨(x = Miller∧y = flu)∨
¬ill(x, y)] a completeness sentence. The transformation of Compl(ill(x, y), 2)
results in the following formulas for (i) the new constants ccombi1 and ccombi2

with the mapping functions, (ii) the new predicate combi and the new complete-
ness sentence, and (iii) the relationship between new and original completeness
sentence, respectively:

fmapx
(ccombi1) = Smith fmapy

(ccombi1) = cancer

fmapx
(ccombi2) = Miller fmapy

(ccombi2) = flu

combi(ccombi1), combi(ccombi2)
∀z [z = ccombi1 ∨ z = ccombi2 ∨ ¬combi(z)]

∀x, y
[
∃z [combi(z) ∧ fmapx

(z) = x ∧ fmapy
(z) = y] ∨ ¬ill(x, y)

]
The hope of this transformation has been that theorem provers will profit

from it. Unfortunately, however, we show below that the theorem provers suffer
in finding suitable substitutions for the variables x and z for formula (11) offering
in practice no substantial benefit.

4.3 Runtime Evaluation

We have experimentally compared the two ideas for a transformation of the
theorem prover’s input regarding their runtime. The comparison is based on
input instances which comprise exactly one completeness sentence with varying
size belonging to queries with two free variables. Additionally, formulas for the
unique name assumption of the used constants are added to the prover’s input.

The task for the theorem prover then consists of proving or refuting the impli-
cation of one specific tuple by the completeness sentence. The constants of the
tuple are different from the ones used in the completeness sentence. The results
of the runtime evaluation are presented in Table 1. They are based on the Prover9
on an Intel Core 2 Duo system using one core at 2.4 GHz.

440 J. Biskup et al.

Table 1. Runtime evaluation of theorem-proving with completeness sentences.

Size (“exclusions”) Without transformation Active domain
transformation

Reduction
transformation

50 5 s 0 s 0 s

75 4 min 30 s 0 s 0 s

85 23 min 25 s 0 s 2 s

100 > 5 hrs 0 s 5 s

500 n.a 0 s 44 min 7 s

1,000 n.a 1 s > 5 hrs

2,000 n.a 6 s n.a

5,000 n.a 1 min 3 s n.a

25,000 n.a 42min 36 s n.a

50,000 n.a > 5 hrs n.a

Handling of completeness sentences without a transformation yields the worst
run times, exceeding the limit for a practical employment in an interactive system
already for 100 excluded combinations. Fortunately, the active domain transfor-
mation essentially enhances the performance. However, at sizes of 2,000 and
above this transformation becomes impractical as well. The reduction transfor-
mation outperforms the handling without a transformation as well, but cannot
keep up with the active domain transformation.

These results refer to only one theorem-proving process, whereas the overall
control procedures in general require multiple, partly sequential proving tasks. As
a rule of thumb, for the lying and combined approaches the overall computing
time can be estimated as the runtime of one single theorem-proving process
multiplied with the number of “excluded combinations”.

4.4 Extension of the Theorem Prover

None of the transformations described so far solves the problem of efficient han-
dling of completeness sentences in theorem-proving tasks completely. A further
idea – not been realized yet – is extending a theorem prover by implementing a
built-in treatment of completeness sentences in an efficient manner.

5 Optimizing the Number of Prover Calls

Aiming at reducing the number of calls to the theorem prover specifically for the
combined approach, we developed two related optimizations for the implemen-
tation described in Sect. 3. In accordance with the outline of the basic control
procedure presented in Sect. 2, this implementation searches for an appropriate
completeness sentence and inspects the closed queries generated by substitu-
tions, respectively, in an essentially linear way. Inspired by the benefits of binary

Confidentiality Preserving Evaluation of Open Relational Queries 441

searching, we replaced the linear behavior by a processing that tries to cover
dynamically determined larger parts of the pertinent problem space.

5.1 Applying the Divide-and-Conquer Heuristic

Regarding searching for an appropriate completeness sentence, we have to deal
with the 4-step forward-backward search for the positions k,m, k∗,m∗ in the
underlying enumeration of the domain. Basically, position k is directly calculated
as the maximum of all positions of domain elements that lead to a (positive) tuple
in the answer relation. In contrast, each of the remaining positions m, k∗ and m∗

is determined by repeated probing, originally performed linearly with increases
or decreases, respectively, of 1, starting with k, m and k∗, respectively.

Now, to speed up step 2 of searching for m, starting at position k with an
increase of 1, we first iteratively double the increase until we have found the
respective completeness sentence being harmless, possibly for a still non-optimal
position. To find the optimal position m, we then start a binary search for the
range between the last and the immediately preceding position. The correctness
of the optimized search is justified by the fact that for any positions i < j the
completeness sentence for j is a weakening of the completeness sentence for i.

For step 3 of searching for k∗, which has to be in the range [0,m], we cannot
rely on a corresponding property that would justify a similar optimized searching.

For speeding up step 4 of searching for m∗, which is guaranteed to be either
equal to m or in the range [k∗, k − 1], we can proceed either as in step 2 or
directly by a binary search in the full range.

Regarding the inspection of the closed queries generated by substitutions, we
have to evaluate all tuples generated by a substitution with a position in the
sequence 〈1, . . . , k∗ − 1, k∗ + 1, . . . , m∗〉 in a controlled way by using the original
combined censor for closed queries. For each such tuple submitted as a query, this
censor checks by a first call to the theorem prover whether adding the correct
answer to the current knowledge would be harmless: if this is the case, the correct
answer is returned and the current knowledge is updated accordingly; otherwise,
the negated query is checked by a second call to the theorem prover and then
treated either by returning the negated query as a lie or requiring a refusal.
Essentially depending on the results of preceding substitutions as represented in
the current knowledge, and thus keeping track of them, conceptually we have
to proceed strictly in the given enumeration sequence. Clearly, any optimized
procedure returning the same result is equally acceptable.

Our optimization tentatively bundles several adjacent substitutions, say with
positions i, i+1, . . . , j −1, j. If there is actually only one position left, i.e., i = j,
then the original combined censor for closed queries is used for the respective
single tuple. Otherwise, if i < j, by calling the theorem prover only once it is
checked whether adding the conjunction of the correct answers to the resulting
tuples to the current knowledge would be harmless: if this is the case, all these
correct answers together are used to update the current knowledge; otherwise,
the positions are divided into a left part (of smaller positions) and a right part
(of larger positions) and then first the left lower part and subsequently the

442 J. Biskup et al.

right upper part are treated recursively. The recursion is initialized for the range
[1, k∗ − 1]. Subsequently, the remaining range [k∗ + 1,m∗] is inspected linearly
with the original combined censor for closed queries since, by the choice of k∗

and m∗, in that range there is no single correct “positive” tuple that is harmless
nor is the conjunction of all “negative” tuples harmless.

Example 5. To simplify the discussion, we consider (the front of length 8 of)
an abstract dictionary with positions 1, 2, . . . , 8 to be inspected in principle. We
assume that only the constant c3 at position 3 requires a distortion, while for all
other positions the correct answer can be returned. The standard linear probing
according to the given enumeration sequence of the dictionary performs as fol-
lows regarding the number of prover calls: position 3 leads to 2 calls, while all
other positions need only 1 call, summing up to 9 calls in total. The optimized
approach conceptually traverses an inspection tree in a depth-first manner prun-
ing a subtree once at its top node its range has been proved to not requiring
any distortion. Again, position 3 leads to 2 prover calls and the sibling position
in the dictionary to only 1 call, while each range captured by an inner node of
the pruned subtree also needs only 1 call, in this example summing up to 8 calls
in total. Figure 1 visualizes the overall situation.

Depending on the number and the distribution of positions requiring a dis-
tortion, the effectiveness of the optimization might vary considerably. More,
specifically, let P(rover)C(all)S(tandard) and P(rover)C(all)O(ptimized) be the
functions that count the number of calls of the theorem prover for a range r
using the standard and the optimized approach, respectively. Then we observe:

length(r) ≤ PCS(r) ≤ 2 · length(r) and
PCO(r) = 1 + PCO(left(r)) + PCO(right(r))

with the following special cases:

– for a range rdist0 that requires no distortion at all,
PCS(rdist0) = length(r) and
PCO(rdist0) = 1;

– for a range rdist1 that requires exactly 1 distortion,
PCS(rdist1) = 2 + (length(rdist1) − 1) and
PCO(rdist1) = 1 + 2 · log2(length(rdist1)) + 1;

– for a range rdistall
that requires a distortion at all positions,

PCS(rdistall
) = 2 · length(rdistall

) and
PCO(rdistall

) = (length(rdistall
) − 1) + 2 · length(rdistall

).

So we want to figure out when the optimized approach actually outperforms the
standard approach. Facing the difficulties of a general analytical evaluation, we
experimentally explored the threshold up to which the optimized approach is
expected to perform better than the standard approach, in terms of the number
d of positions requiring a distortion, for each d taking the average over all

(
d
l

)
selections of d many positions out of a range of length l, when fixing l. We
performed such an exploration for all lengths l up to 500 and found that the

Confidentiality Preserving Evaluation of Open Relational Queries 443

[1,8]
1

[2,2]
1

[3,3]
2

[4,4]
1

[5,5]
1

[6,6]
1

[7,7]
1

[1,1]
1

[8,8]
1

[1,2]
1

[3,4]
1

[5,6]
1

[7,8]
1

[1,4]
1

[5,8]
1

1 1

2 2 9 7

 3 3 6 4 10 13

 4 5 7 5 8 6

c1 c2 c3 c4 c5 c6 c7 c8

11 12 14 15

Fig. 1. The inspection tree of an abstract dictionary, constituted by the leaves, showing
(1) the complete depth-first traversal as left edge annotation, (2) a pruned depth-first
traversal as right edge annotation assuming that only position 3 requires a distortion,
(3) the inspected ranges as upper node marks, and (4) the required number of prover
calls as lower node marks.

threshold is approximately l/6, i.e., the overhead of the optimization resulting
from forming an inspection tree is expected to be profitable as long as there are
relatively few distortion positions for a sufficiently large range.

5.2 Experimental Runtime Results

As an example of our achievements when also using the active domain trans-
formation described in Sect. 4.1, we summarize our findings for five experiments
dealing with a somehow special situation:

– The fixed underlying database relation illS over attributes Patient,
Diagnostic and Symptom has only 8 tuples.

– The queries Φi have either one free variable x for the attribute Patient or two
free variables x and y for the attributes Patient and Symptom, respectively:
Φ1 ≡ illS(x, cancer, fever), Φ2 ≡ illS(x, cancer, fever),
Φ3 ≡ illS(x, pneumonia, y), Φ4 ≡ illS(x, virus, y), and
Φ5 ≡ illS(x, prolapse, y).

– Each of the confidentiality policies has only one potential secret Ψi:
Ψ1 ≡ illS(Smith, cancer, fever) at position 2 for x,
Ψ2 ≡ illS(Mann, cancer, fever) at position 100 for x,
Ψ3 ≡ illS(Morris, pneumonia, dyspnea) at position 128 for (y, x),
Ψ4 ≡ ¬illS(Beier, virus, stomach) at position 462 for (y, x), and
Ψ5 ≡ ¬illS(Bach, prolapse, lumbago) at position 801 for (y, x).

444 J. Biskup et al.

illS Patient Diagnostic Symptom Pos1 Pos2

Smith cancer anemia 2 5
Smith cancer fever 2 3
Jones cancer fever 7 28
Bloch cancer fever 30 465
Mann cancer fever 100 5050
Derp cancer fever 101 5151

Morris pneumonia dyspnea 8 128
Gray burnout fatigue 13 716

¬illS Beier
···

virus stomach 27 462

Bach
···

proplapse
···

lumbago 21 801

Patient Dict Diagnostic Dict Symptom Dict
Entry Pos Entry Pos Entry Pos

Smith 2 cancer 1 fever 1
Jones 7 pneumonia 3 anemia 2
Morris 8 virus 7 stomach 4
Gray 13 proplapse 10 dyspnea 9
Bach 21 burnout 18 lumbago 20
Beier 27 fatique 26
Bloch 30
Mann 100
Derp 101

Fig. 2. Left: All “positive tuples” and two “negative tuples” of the relation illS and
their positions Pos1 and Pos2 for the free variable x and the pair (y,x) of free variables,
respectively. Right: The positions of the relevant entries within their dictionaries.

The tuples of the database relation and also two further “negative tuples” are
shown in the left part of Fig. 2, together with their positions in the enumeration
sequences needed for evaluating the queries, whereas the right part specifies the
(relevant part of the) declared domains of the attributes. Figure 3 shows the
values of the positions computed in phase 1 and the means of the measured
runtimes of 10 repetitions (with small variances not shown).

Dealing with only one potential secret, the measured improvements of the
optimization crucially depend on the range of candidate tuples to be inspected.
In general, however, the number and the distribution of positions requiring a
distortion are also important. Even in our simple case, the only obvious difference
between the first and the second experiment, namely the positions 2 and 100 of
the potential secrets Ψ1 and Ψ2, respectively, causes an essential decrease of the
runtimes for phase 2, presumably since the early lie for Ψ1 makes the work for
the theorem prover harder. Each of the last two experiments exhibits an extreme
advantage of the divide-and-conquer heuristic, since the negative potential secret
requires to already lie for k∗ in phase 1 such that phase 2 needs only one prover
call and runs without further distortions.

Ex Positions Phase 1 Phase 2 Total
k m k∗ m∗ total

k m k∗ m∗ PCS PCO PCS PCO PCS PCO PCS PCO PCS PCO PCS PCO PCS PCO

1 101 101 101 101 0.1 0.1 2.0 2.0 2.1 2.1 2.0 2.0 6.1 6.1 51.9 11.9 58 18
2 101 101 101 101 0.1 0.1 2.0 2.0 2.1 2.1 2.0 2.0 6.1 6.1 51.9 2.9 58 9
3 128 128 127 127 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 24.2 11.2 25 12
4 0 462 462 462 < 0.1 < 0.1 220 10.0 1.5 1.5 1.5 1.5 220 14 935 2 950 16
5 0 801 801 801 < 0.1 < 0.1 600 42.0 4.5 4.5 4.5 4.5 609 50.5 n.a. 5.5 n.a 56

Fig. 3. For the different experiments, (i) the positions found in phase 1 and (ii) the
runtimes in seconds for phase 1 (for computing the positions and in total), for phase 2
and for the total answer generation, using the standard and the optimized approach.

Confidentiality Preserving Evaluation of Open Relational Queries 445

6 Conclusions

Based on a theoretical design presented in [5], we discussed an implementation
within the CIE-System [3] for inference control of open relational queries under
the closed-world assumption. We mainly focussed on the complexity issues result-
ing from two needs: (i) calling a theorem prover [9,10] for deciding implication
problems with a completeness sentence involved to detect potential violations of
the confidentiality policy – a functionality not covered by the expressiveness of
the underlying SQL-based DBMS – and (ii) inspecting many candidate tuples
according to query-/instance-independent fixed domain enumerations – to prov-
ably guarantee enforcement of a formal notion of confidentiality [5] in the spirit
of [7]. The latter need implies to deal with a large number of prover calls with
completeness sentences having a large number of conjunctive disjuncts.

We explored two optimizations: transformations of a single completeness sen-
tence occurring as an input of a single prover call and a divide-and-conquer
heuristic to reduce the number of such calls. Selected experiments confirmed a
substantial improvement regarding runtimes. Nevertheless, so far our implemen-
tation can handle only relatively small problem instances. This insight suggests
two challenging research topics: extending current theorem provers with dedi-
cated rules for relational completeness sentences and inventing an inference-proof
design of controlled open query evaluation without fixed domain enumerations.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Biskup, J.: Inference control. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclo-
pedia of Cryptography and Security, pp. 600–605. Springer, Heidelberg (2011)

3. Biskup, J.: Inference-usability confinement by maintaining inference-proof views of
an information system. Int. J. Comput. Sci. Eng. 7(1), 17–37 (2012)

4. Biskup, J.: Logic-oriented confidentiality policies for controlled interaction execu-
tion. In: Madaan, A., Kikuchi, S., Bhalla, S. (eds.) DNIS 2013. LNCS, vol. 7813,
pp. 1–22. Springer, Heidelberg (2013)

5. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a
decidable relational submodel. Ann. Math. Artif. Intell. 50(1–2), 39–77 (2007)

6. Farkas, C., Jajodia, S.: The inference problem: a survey. SIGKDD Explor. 4(2),
6–11 (2002)

7. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12(1), 5.1–5.47 (2008)

8. Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. MIT Press,
Cambridge (2000)

9. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/mccune/
prover9/

10. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF
and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

http://www.cs.unm.edu/mccune/prover9/
http://www.cs.unm.edu/mccune/prover9/

A General Trust Management Framework for
Provider Selection in Cloud Environment

Fatima Zohra Filali and Belabbas Yagoubi(B)

Department of Computer Science,
Oran 1 University - Ahmed Ben Bella, Oran, Algeria

{filalifz7,byagoubi}@gmail.com

Abstract. Trust has been a predominant issue in adopting cloud service
among consumers. It has been a critical concern for business application
and sensitive information. In a previous work [1], we proposed a trust
computing model for Cloud Computing which we validated by simu-
lation with well-known trust model. This paper proposes a framework
for trust management in Cloud Computing environment, based on the
proposed computing model. It describes the implementation of the gen-
eral trust framework. The proposed framework identifies the metrics of
performance to select the most suitable provider for performing service
transaction and integrate it into trust rating process while filtering biased
opinions.

Keywords: Cloud computing · Security · Trust · Performance ·
CertainLogic · Opinion · Service selection · Trust management

1 Introduction

For the last years, Cloud services have grown to become an essential paradigm
for both industry and academia, by allowing Cloud users to rent computing,
network, and storage resources. In that way, users pay for their use of services
without apprehensions about maintenance, management or cost.

In spite of all importance of Cloud Computing, most of the organizations
are not making a trend of Cloud Computing, and its evolution has raised many
concerns and was encountered by various obstacles. Security is one of the most
crucial problems for this model, and the risks accompanying the deployment
of services and applications are more important with the architecture of Cloud
environment [2].

Besides, Cloud provider’s interaction with users is not achieved completely,
and trust must be granted in this relationship. Otherwise, many organizations
are not willing to adopt Cloud Computing, without strong evidence of trustwor-
thiness; thus establishing trust between these entities becomes a very effective
way to secure the Cloud.

In [3] authors observed that organizations have limited knowledge about
Cloud Computing. In a survey of different organizations, they reported that
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 446–457, 2015.
DOI: 10.1007/978-3-319-23135-8 30

A General Trust Management Framework for Provider Selection 447

40 % do not know about Cloud’s component (such as SLA, SaaS, PaaS, IaaS),
20 % are concerned about security problems, 40 % are unaware of the services
provided, and 20 % do not trust Services providers. Therefore, we can remark
that is necessary to establish trust between Cloud provider and Cloud users,
since certain data is confidential by its nature, and handing it over to providers
without having a very high level of trust beforehand is definitely unacceptable
for users.

The rest of this paper is organized as follows. The Sect. 2 overviews the issues
and challenges in service selection and trust computing. Our proposed framework
with design details is presented in Sect. 3. Implementation and evaluation are
presented in Sect. 4. Finally the conclusion and future perspectives are discussed
in Sect. 5.

2 Challenges in Trust Management and Service Selection

Cloud service selection is among the most challenging issues in Cloud Computing
security [4–6]. In fact, selecting the best service is equivalent to selecting the most
trusted Cloud service. Thus, many studies focus on adopting trust as a solution
for cloud service selection. With that, many challenges arise, such as: How a user
can use a trustworthy service? On which metrics the trust can be established?
What is the metrics that define the performance offered by the provider?

In the next section, we present several dimensions for classification of majors
trust issues around Cloud systems. This classification served as a basis for design-
ing the proposed framework.

2.1 Assurance

The trust represents an important concern for any system, especially in Cloud
Computing [7–9]. To guarantee trust, most of the organizations negotiate a Ser-
vice Level Agreement (SLA) between providers and users [10,11]. However, no
guarantee is granted by the SLA, it only provides an assurance in case of data
damage. Many research have been made to assess the trust problem in the Cloud
computing. However, a robust trust management system needs to be developed
to enhance the security in providing trust and making the cloud more reliable.

2.2 Ratings and Feedbacks Trustworthiness

Trust systems represent a significant trend in decision making of Cloud service.
The basic principle is to let users rate the used services, for example at the end
of a transaction, and use the aggregated ratings about a given service to derive
a trust value. This value can be used to support other users in deciding whether
to interact with that service. A side effect that arises is provision of various
dishonest rating, resulting in incorrect ratings of the services.

448 F.Z. Filali and B. Yagoubi

2.3 Trust Sources

Another issue in trust management is the sources of the trust information. Trust
systems can use both implicit and explicit information for decision-making.
These evidences can be collected from different sources:

– Users, the evidences from direct interactions with the service.
– Cloud Service Provider, the information provided by registration.
– Recommendation from other sources and feedback given by other consumers.
– QoS values and performance of the service from the SLA agreement or moni-

toring services.

2.4 Trust Degree

Many researches have been made to model the trust and calculate the trustwor-
thiness of a service provider. Some models are based on probabilistic approaches
[12,13], others are based on Bayesian representation [14–16], some others use
fuzzy logic [17–19] or subjective logic [20–22].

These approaches are not suitable for the modelling of our solution. First,
the probabilistic approaches represent uncertainty of the evidences but the prob-
abilities are assumed to be known, which, is most likely difficult in a Cloud envi-
ronment. The approaches based on Bayesian probabilities suppose the use of the
probability density function, which bring to complex mathematical distributions
and hard interpretations. The approaches based on fuzzy logic models represent
a different sort of certainty, more oriented to linguistic uncertainty or fuzziness.
Finally, the approaches based on subjective logic are more appropriates, but the
parameters of belief, disbelief and certainty are dependent on each other.

Moreover, all these models quantify the trust as a probability value based on
direct trust or recommended trust. However, they ignore the objective factors for
the provided service (QoS). Hence, these models cannot assess the accuracy of the
trust value made by itself. In [23] the author proposed a model for the assessment
of propositional logic terms under uncertainty. The model has been proved to be
compliant with the standard probabilistic evaluation of propositional logic terms
and with subjective logic, which provides the justification for the mathematical
validity of the model. The proposed approach is more expressive than the stan-
dard probabilistic approach, and although it is as expressive as subjective logic. It
provides simpler representation since it is based on independent parameters and
provides a more intuitive and more expressive graphical representation. Further-
more, it has been shown that the parameters for assessing opinions in Certain-
Logic can be derived using multiple approaches and sources. Finally, they have
shown the applicability and the benefits of the model in a use case. They have
evaluated the trustworthiness of their system in Cloud Computing scenario.

Hence, we can remark that in the most proposed works, trust has been com-
puted using user feedback in some formalism. Most of these methods are based
on rating and neglect the fact that the provided performance of the service takes
an important part to win user confidence. Hence, a model that integrate these
two aspects would make the trust system more reliable.

A General Trust Management Framework for Provider Selection 449

2.5 Other Issues

Furthermore, a better trust management system for cloud services should take
into consideration the following requirements:

1. The trust should cover several factors of QoS among a bunch of services
offering similar features. Users need to know not only the purpose of the
service but also the qualities of the service.

2. The trust should be computed based on user preferences since different users
may be interested in different characteristics, and a service adapted to a
particular user may be not suitable for other users.

3. It is necessary to combine both subjective aspect (users feedback) and objec-
tive dimension (QoS performance) to evaluate the trust. Trust is a subjective
notion that predicts future action of an entity based on past actions. Thus,
the ratings of users are an important factor to sharing knowledge about direct
experiences in using Cloud services.

3 Proposed Framework

In this section, we describe the proposed framework for trust management and
service provider selection within cloud computing. We define the system archi-
tecture, and the trust relationships between the involved parties.

3.1 Framework Architecture

In this part, we describe the general system architecture for the proposed frame-
work of trust management.

Figure 1 depicts the main components of the trust selection system, which
consists of three different layers, namely Service Requester Layer, Service Man-
ager Layer and Service Provider Layer.

The Service Manager Layer. This level represents the system core. It
includes the trust management service where a service requester can give trust
feedbacks to a particular service, and where a service provider can register to the
service. The General Trust Calculator constitutes the essential part of this layer.
It is responsible for the service provider selection based on the model presented
below. The General Trust Monitor contains two monitors: performance and trust
responsible for supervising the execution of the application. The General Trust
Broker is in charge of exchanging resources between users and providers. It selects
suitable providers able to deliver the required service.

The Service Requester Layer. This level consists of different service
requesters who consume services in the service layer. For example, a new organi-
zation that has limited funding can use cloud services (e.g., hosting their services
in Amazon S3). Service requesters can give trust feedbacks of a particular cloud
service by invoking the trust system.

450 F.Z. Filali and B. Yagoubi

Fig. 1. Framework architecture

The Service Provider Layer contains cloud services, IaaS (Infrastructure as
a Service), PaaS (Platform as a Service), and SaaS (Software as a Service).

3.2 General Trust Framework Components

In this section, we present the descriptions of the main framework’s compo-
nents architecture and detailed formulas for computing the trustworthiness of
the providers and the selection process.
The proposed framework is composed of the following components:

User Services. The user will be given a set of services for registration to the
framework, finding the suitable service and providing the framework with the
feedback after completing a transaction with the selected service.

User Interface (UI) : a web interface provided to the users for interacting with
the platform.

Authentication Service (AS) : each user must be authenticated to accessing the
required service and rating the services

Provisioning Service (PS): The interaction of the user with the platform.

A General Trust Management Framework for Provider Selection 451

Framework Core Services. The basis of the framework is the General Trust
Manager (GTM), which is responsible for performing monitoring, evaluating and
calculating the trust.

Performance Monitor (PM): is responsible for collecting the QoS from the deliv-
ered service.

Trust Monitor (TM): manages the trust values from the user and feedbacks.

General Trust Calculator (GTC): The GTC is composed of two calculator : Trust
and Performance. The TC is based on the CertainTrust [24]. The PC integrates
a performance value to provide a more accurate evaluation of our model. For the
final selection of the reliable service, both the trust and performance values are
used. The proposed model ha been validated in a previous work [1]

Performance Calculator (PC): In [25] the authors proposed a trust model based
on QoS for Cloud Computing, based on four attributes: availability, reliabil-
ity, data integrity and Turnaround Efficiency. However, computing performance
based on these four attributes is insufficient to achieve a valid model. It must rely
on standardized and approved measures in the context of Cloud Computing. In
order to form a performance model, attributes defined by Service Measurement
Index (SMI) are used. Cloud Service Measurement Index Consortium (CSMIC)
[26] proposes a framework based on common characteristics of cloud services.
The purpose of this consortium is to express each of QoS attributes given in
the framework and offer a methodology for computing a relative index for com-
paring different cloud services. CSMIC has designed the Service Measurement
Index (SMI), which consists of a set of Key Performance Indicators (KPI) that
aids to standardize the measurement of services.

The attributes (xi) represent the performance factors of our model, which
include power, cost, response time, efficiency, transparency, interoperability, reli-
ability, availability, security.

Each of these features is included in a set of Key Performance Indicators
(KPIs), which describe the data to be gathered for measurement.

The performance value for Cloud Service (x) is computed by a utility function
used with the described objective attributes.

P (x) =
9∑

i=0

wi ∗ xi

wi represent a weight for each attribute with Σwi = 1

Trust Calculator (TC): Trust is a term that describes how much one believes in
another. Evaluating trust for service can help users to predict its future behavior
[12]. For service selection, the trust value is denoted as T(x).

In our opinion, the three main features that a reliable service must offer
besides the performance values are the time, the cost and the overall satisfaction
of the service.

452 F.Z. Filali and B. Yagoubi

Thus, to compute the final value of the trust, these three factors: time, cost,
satisfaction that are presented in the SMI framework [26] have been used. For
each transaction, the trust value is computed as a combination of these factors.

T (x) =
{

0.5 initial

α
∑n

k=1 (f(tk)∗f(ck)∗f(sk)

n

k : kth use of the service,
α represent the adjustment factor, and is calculated by :

α =
√

n

T + 1

n : Number of satisfactory service use,
T : Total use of the service.

f(tk) : Attenuation factor,

f(tk) =
e−(t0−tk−1)

T

f(ck) : Cost factor [26]

f(ck) =
ck

cpua ∗ netb ∗ vmc ∗ capacityd

with a + b + c + d = 1
f(sk) : Satisfaction factor,

f(sk) =
{

1 if user satisfied
Σ Satisfaction criteria

Total criteria else

Credibility Evaluator (CE): component responsible for filtering biased opinions.
It represents the euclidean distance between the user feedback and the expec-
tation of others users feedbacks for a service. If the distance is higher than a
threshold the opinion is biased and the feedback average are used instead.

Performance Preferences Integrator (PPI): component responsible for getting
the preferences given by the user in the interface to integrate it into the calcu-
lation process of the performance value.

General Trust Broker (GTB): responsible for selecting the most reliable
provider, based on the general trust value calculated by the General Trust Cal-
culator component.

Provider Services

Provider Inquisitor Service (PIS): proceeds to a look up for the different provider
values. It supplies the provider a limited access to the stored information and
statistics about the provided services, via the web interface.

A General Trust Management Framework for Provider Selection 453

Provider Authentication (PA): authenticate the provider to get access to the
stored information about the trust framework.

Provider Interface (PI): The provider will be given an interface to performing
registration and accessing statistical information of the different services.

Registration Service (RS): responsible for indexing the list of the offered services
by the providers.

Cloud Coordinator (CC): manages the different providers to access to the frame-
work. It gets the information from providers for monitoring. It is also responsible
for coordinating the broker of the framework with the provided services.

4 Performance Analysis

In this section, we evaluate the effectiveness of the proposed framework. We
analyse the framework reliability in the experiments presented below.

4.1 Framework Implementation

Experiments were conducted on an Intel Core i7 2.2 GHz processor, 8.0 GB RAM
running under Windows 8 Ultimate. The proposed framework prototype was
built from scratch using Java Enterprise Edition in Eclipse.
The service selection and trust computation contain several modules running
at the provider end. These components were implemented using java. A web
interface is provided to both provider and user, which uses Apache web server
for deploying the web system. MySQL at the backend database to store the trust
values, selection data and other results. The web interface is developed with the
JSP and servlets. The framework components are also developed with java. It
includes the following modules: GTC (TC and PC), GTB, CC, PPI, CE.

4.2 Metrics

In addition to developing and implement the framework, we also conduct a
comprehensive performance analysis using various metric values to estimate the
accuracy of the trust as discussed here.

Efficiency represents the number of trusted service provided per the total
number of the service.

Average Trust represents the ratio of the sum of the trust values to the number
of trust values.

Trust Bias represents the filtered value of user feedbacks.

454 F.Z. Filali and B. Yagoubi

4.3 Experiments

This section analyses the performance of the proposed trust system model in
terms of the discussed metrics.

Performance. The proposed framework is tested with 20 services (10 trusted
services and 10 untrusted services). We perform 200 requests users in 10 cycles of
time. Then, we counted the number of user requests allocated to trusted services,
by using the proposed trust management framework, and without using trust
management (selection based on the performance of the service). The results are
presented in the Fig. 2 below.

Fig. 2. Trusted service selection

In the experiment, we note that the proposed trust framework performs a
higher efficiency compared to performance selection. For the first cycle of time,
the proposed framework takes some time to stabilize due to initialization of the
first transactions. In addition, the performance selection chooses the service by
its performance value and does not consider the trustworthiness of the provider
compared to the proposed framework

Feedback Filtering. In this experience, the average trust value is computed
for the proposed model, by integrating the bias factor for filtering feedback and
without using the bias factor. We generate a set of random requests for different
datasets of users. In each round, the average trust values of the General Trust
with a credibility evaluator are compared to the average trust values without a
credibility evaluator. The Fig. 3 gives comparison between these values.

In the results, we can observe that even if the number of users increases, the
general trust value computed with the bias value produces regular results. Thus,
the selection of the more suited provider will increase for the proposed framework
with filtering the biased opinion even if the number of the user decrease compared
to a solution without filtering.

A General Trust Management Framework for Provider Selection 455

Fig. 3. Filtering user feedbacks

Fig. 4. Average trust selection

Trust Selection. In the last experiment, we compared the proposed framework
model to a solution based on trust (without including the performance in the
selection process). We generate a set of user requests over periods. Then, we
computed the average trust value for both approaches. The results are shown in
the Fig. 4.

From the result, we can notice the difference in the average values of trust
between the proposed solution and the approach based only on trust. Since, the
General trust take into account the opinion of the performance to compute the
average value. It gives a more reliable result, in comparison to the trust provided
by the feedbacks. Hence, it increases the number of trusted selected services.

5 Conclusion

This paper proposed a prototype framework for trust management. It is based
on a trust computing model that achieves a high trust accuracy.

456 F.Z. Filali and B. Yagoubi

The proposed trust model is based on the point that trustworthiness can
be evaluated by both objective and subjective metrics. Our method has also
proposed the user satisfaction estimation in the credibility evaluator. Even more,
we take into account the user preference in the overall selection process.

We plan to extend our work by conducting further experimentation under
several attacks and malicious users, to integrate a threat model into the proposed
framework.

References

1. Filali, F.Z., Yagoubi, B.: Global trust: a trust model for cloud service selection.
Int. J. Comput. Netw. Inf. Secur. 7, 41–50 (2015)

2. Puthal, D., Sahoo, B., Mishra, S., Swain, S.: Cloud computing features, issues and
challenges: a big picture. In: Computational Intelligence (2015)

3. Ahmad, S., Ahmad, B., Saqib, S.M., Khattak, R.M.: Trust model: clouds provider
and clouds user. Int. J. Adv. Sci. Technol. 44, 69–80 (2012)

4. Fernandes, D.A.B., Soares, L.F.B., Gomes, J.V.P., Freire, M.M., Inácio, P.R.M.:
Security issues in cloud environments: a survey. Int. J. Inf. Sec. 13(2), 113–170
(2014)

5. Noor, T.H., Sheng, Q.Z., Zeadally, S., Yu, J.: Trust management of services in cloud
environments: obstacles and solutions. ACM Comput. Surv. 46(1), 12 (2013)

6. Pearson, S., Benameur, A.: Privacy, security and trust issues arising from cloud
computing. In: Proceedings of Second International Conference on Cloud Comput-
ing, CloudCom 2010, 30 November - 3 December 2010, pp. 693–702, Indianapolis,
Indiana, USA (2010)

7. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models
of cloud computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)

8. Sherchan, W., Nepal, S., Paris, C.: A survey of trust in social networks. ACM
Comput. Surv. 45(4), 47 (2013)

9. Han, G., Jiang, J., Shu, L., Niu, J., Chao, H.: Management and applications of
trust in wireless sensor networks: a survey. J. Comput. Syst. Sci. 80(3), 602–617
(2014)

10. Wu, L., Garg, S.K., Buyya, R.: Sla-based resource allocation for software as a
service provider (saas) in cloud computing environments. In: 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp.
195–204. IEEE (2011)

11. Kouki, Y., Ledoux, T.: Csla: a language for improving cloud sla management.
In: International Conference on Cloud Computing and Services Science, CLOSER
2012, pp. 586–591 (2012)

12. Muller, T., Schweitzer, P.: On beta models with trust chains. In: Fernández-Gago,
C., Martinelli, F., Pearson, S., Agudo, I. (eds.) Trust Management VII. IFIP AICT,
vol. 401, pp. 49–65. Springer, Heidelberg (2013)

13. van Deursen, T., Koster, P., Petkovic, M.: Hedaquin: a reputation-based health
data quality indicator. Electr. Notes Theor. Comput. Sci. 197(2), 159–167 (2008)

14. Teacy, W.T.L., Luck, M., Rogers, A., Jennings, N.R.: An efficient and versatile
approach to trust and reputation using hierarchical Bayesian modelling. Artif.
Intell. 193, 149–185 (2012)

A General Trust Management Framework for Provider Selection 457

15. Tavakolifard, M., Knapskog, S.J.: A probabilistic reputation algorithm for decen-
tralized multi-agent environments. Electr. Notes Theor. Comput. Sci. 244, 139–149
(2009)

16. Whitby, A., JÃsang, A., Indulska, J.: Filtering out unfair ratings in Bayesian rep-
utation systems. In: The Third International Joint Conference on Autonomous
Agenst Systems (2004)

17. Iltaf, N., Ghafoor, A.: A fuzzy based credibility evaluation of recommended trust
in pervasive computing environment. In: 10th IEEE Consumer Communications
and Networking Conference, CCNC 2013, Las Vegas, NV, USA, 11–14 January
2013, pp. 617–620 (2013)

18. Song, S., Hwang, K., Kwok, Y.: Risk-resilient heuristics and genetic algorithms for
security-assured grid job scheduling. IEEE Trans. Comput. 55(6), 703–719 (2006)

19. Bharadwaj, K.K., Al-Shamri, M.Y.H.: Fuzzy computational models for trust and
reputation systems. Electron. Commer. Res. Appl. 8(1), 37–47 (2009)

20. Jøsang, A., Hayward, R., Pope, S.: Trust network analysis with subjective logic. In:
Twenty-Nineth Australasian Computer Science Conference on Computer Science
2006, (ACSC2006), Hobart, Tasmania, Australia, 16–19 January 2006, pp. 85–94
(2006)

21. Wang, Y., Singh, M.P.: Trust representation and aggregation in a distributed agent
system. In: Proceedings of the 21st National Conference on Artificial Intelligence
- Volume 2. AAAI 2006, pp. 1425–1430. AAAI Press, 2006

22. Jøsang, A.: Subjective logic, University of Oslo, Technical report (2013)
23. Ries, S., Habib, S.M., Mühlhäuser, M., Varadharajan, V.: CertainLogic: a logic

for modeling trust and uncertainty. In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 254–
261. Springer, Heidelberg (2011)

24. Ries, S.: Extending Bayesian trust models regarding context-dependence and user
friendly representation. In: Proceedings of the 2009 ACM Symposium on Applied
Computing (SAC), Honolulu, Hawaii, USA, 9–12 March 2009, pp. 1294–1301
(2009)

25. Manuel, P.: A trust model of cloud computing based on quality of service. Ann.
Oper. Res., 1–12 (2013)

26. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing
services. Future Gener. Comp. Syst. 29(4), 1012–1023 (2013)

Sybil Tolerance and Probabilistic Databases
to Compute Web Services Trust

Zohra Saoud1(B), Noura Faci1, Zakaria Maamar2, and Djamal Benslimane1

1 Claude Bernard Lyon 1 University, Lyon, France
zohra.saoud@univ-lyon1.fr

2 Zayed University, Dubai, UAE

Abstract. This paper discusses how Sybil attacks can undermine trust
management systems and how to respond to these attacks using advanced
techniques such as credibility and probabilistic databases. In such
attacks end-users have purposely different identities and hence, can pro-
vide inconsistent ratings over the same Web Services. Many existing
approaches rely on arbitrary choices to filter out Sybil users and reduce
their attack capabilities. However this turns out inefficient. Our app-
roach relies on non-Sybil credible users who provide consistent ratings
over Web services and hence, can be trusted. To establish these ratings
and debunk Sybil users techniques such as fuzzy-clustering, graph search,
and probabilistic databases are adopted. A series of experiments are car-
ried out to demonstrate robustness of our trust approach in presence of
Sybil attacks.

Keywords: Trust · Credibility · Sybil · Fuzzy clustering · Web service

1 Introduction

There is a large consensus in the R&D community about the role of trust in
Web services (WS)s selection [27,28]. Most existing Trust Management Sys-
tems (TMS)s rely on end-users’ interactions with WSs to compute trust. To this
end ratings, tags, and even narrative reviews out of these interactions are used.
However TMSs are vulnerable to different attacks for instance, biased feedback
and Sybil, which could undermine their efficiency. Biased feedback refers to rat-
ings that either promote or demote falsely a WS’s non-functional properties.
And Sybil refers to end-users who have purposely different identities and hence,
can provide inconsistent ratings over the same WSs. To deal with biased feed-
back approaches, such as Cloud Armor [17] and RateWeb [14], consider user’s
credibility when computing trust.

Credibility-based trust approaches assume that end-users are either experts
or untrustworthy. When these end-users do not agree on a certain WS rating the
majority opinion helps reach a consensus. Those who have close ratings to the
majority opinion are more credible than those who have distant ratings. How-
ever these approaches overlook end-users who are simultaneously experts and
c© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 458–471, 2015.
DOI: 10.1007/978-3-319-23135-8 31

Sybil Tolerance and Probabilistic Databases to Compute Web Services Trust 459

trustworthy. In a previous work we refer to such end-users as strict experts who
usually do not have specific interest in aligning themselves with the majority [18].
We use fuzzy-clustering technique to reduce the gap between strict experts’ rat-
ings and the current majority’s opinion so that a consensus is reached.

In this paper we put additional efforts into WSs trust by examining Sybil
attacks. Recently, social network-based trust approaches (e.g., [29] and [30])
have drawn the attention of the R&D community to tackle these attacks. Their
main assumption is that Sybils tend to be connected to a limited number of non-
Sybils in the network. A trust graph that represents end-users’ identities (nodes)
and trust-relations between end-users (edges) is built and labeled with capaci-
ties (i.e., a certain amount of ratings that can be broadcast by end-users through
edges). Using graph search techniques these approaches aim to decrease the
impact of Sybil attackers on the quality of the computed trust value. However
they assign capacities to nodes randomly, which does not help establish a concise
picture of the role of Sybil in either promoting or demoting WSs.

To address the random capacity assignment we identify a maximum number
of non-Sybil credible users who will be able to provide accurate ratings. Our
approach to deal with Sybil advocates for problem-specific knowledge graph
search with the user credibility as a heuristic. This credibility would guide the
way the ratings are collected from the most non-Sybil credible users. We rely on
our fuzzy credibility model reported in [18] to compute this credibility. A non-
Sybil user should collect a maximum number of ratings from credible peers in his
neighborhood graph. The proposed approach uses then selected-users’ credibility
to model their ratings in terms of probabilistic databases and compute WS trust
as a query evaluation.

The remainder of this paper is organized as follows. Section 2 discusses some
work on trust computing in presence of Sybils. Section 3 describes the proposed
trust approach. Section 4 gives details on our credibility model and defines the
both capacity distribution mechanism and user selection strategy used. Section 5
depicts how WS trust is computed. Section 6 analyzes experimental results
obtained. Finally, concluding remarks and future work are reported in Sect. 7.

2 Related Work

This section presents how some existing works tackle Sybil attacks and how trust
is computed in the context of social networks.

Sybil works. Sybil attacks are widely reported in the literature. Some solutions
advocate for early detection of Sybil by analyzing user profiles and relationships
between users in social networks. Other solutions focus on how to decrease the
impact of Sybil attacks on the quality of the computed trust value.

In [7] Danezis et Mittal propose SybilInfer, an algorithm that labels nodes in
a social network as either honest user or Sybil user. The authors define a proba-
bilistic model of honest networks that SybilInfer uses to infer potential regions of
dishonest nodes. Similarly Mislove et al. propose Ostra, an algorithm that pre-
vents undesirable communication between honest and dishonest nodes by using
trust relationships such as social links [15]. Both Ostra and SybilInfer assume

460 Z. Saoud et al.

a global knowledge of the social network such as structure and node profiles.
Ostra does not provide guarantees to properly discard Sybil nodes. And Sybil-
Infer determines the probability via sampling that, unfortunately, concurrently
reduces uncertainty and introduces additional uncertainty.

In [10] Hota et al. present two algorithms to detect Sybil nodes: multi-path
routing and verification. The first searches for any common segment in a path
between a node called verifier and the group of nodes suspected as Sybil. The
second confirms the status of this group by randomly selecting few nodes and
polling them. These nodes must then reply to this polling within a constrained
time frame. If an entity has more than one identity it will fail to reply within
this time.

In [24] Tran and al. propose SumUp, an online content rating system. SumUp
emphasizes on users accounts in social networks to respond to Sybil attacks. By
assigning capacities on the social links and collecting ratings in an approxi-
mate max-flow fashion, SumUp can successfully decreases the number of ratings
broadcast by the attacker through attack edges with high probability. SumUp
also relies on users’ feedback to further reduce the number of ratings provided
by the attacker if this latter still behaves inappropriately.

In [26] Viswanath et al. propose CANAL, a system that uses landmark rout-
ing and credit payments over large networks to efficiently tackle Sybil attacks.
Canal can be easily integrated into existing Sybil tolerance schemes and can
deploy solutions such as SumUp and Bazar over real systems.

To wrap up this first part of related work the random choice selection (e.g.,
blind breadth-first search) in the aforementioned algorithms challenges the num-
ber and quality of the ratings considered while computing WS trust. To this end
we advocate for heuristic search to guide the way the ratings are collected from
the most appropriate users. This should lead to better quality of the computed
WS’s trust value.

Trust Management Works. In existing probabilistic trust management appro-
aches (e.g., [23] and [31]) users rely on direct interactions with services or
ratings received from other users. False feedback/ratings are handled through a
suitable filtering mechanism. In the following we describe three relevant proba-
bilistic approaches.

TRAVOS is a trust model used in open Agent systems [23]. An agent trusts
a peer based on previous direct interactions. Interactions’ outcomes represent
ratings to express success or failure. The obtained binary ratings are then used to
form the probability-density function that models the probability of a successful
interaction with an agent. If there is a lack of direct experiences the model uses
other agents’ experiences to compute the trust value. The model determines the
credibility of agents to filter ratings provided by agents that are inaccurate due
to their limited knowledge or malicious behaviors.

PowerTrust is a trust system for P2P networks [31]. Initially nodes rate
individual interactions and compute local trust values using a Bayesian learn-
ing technique [3]. These local trust values are then used to evaluate a global

Sybil Tolerance and Probabilistic Databases to Compute Web Services Trust 461

trust value. This value is updated periodically using the Look-ahead Random
Walk (LRW) algorithm [13]. Along with a distributed ranking module, LRW
identifies the nodes that assess the reputation of providers.

To wrap up this second part of related work the aforementioned probabilistic
approaches overlook the ratings interpretation in the presence of uncertainty,
i.e. each rating is true at some extent and false at another extent. We thus
propose to model user ratings as a probabilistic database, interpret ratings in
terms of possible words and compute Web service trust as a query evaluation
over probabilistic database.

3 Approach to Tackle Sybil Attacks

Our trust approach relies on user ratings to compute WS trust. Users register
in a social network with an identity and hence have the right to rate WSs they
interact with. A user ui can also establish trust links with other users (uk).
A trust link represents the ui’s belief that uk is not a Sybil and will evaluate
honestly the WS. In [5] Cheng and Friedman demonstrate a trust function that
using only the structure of a social network does not allow to distinguish between
non-Sybil users and Sybil users. There is a need to know at least one non-
Sybil node, known as source to identify a trust graph of users. The source
operates as a rating collector. Max-flow algorithms have been applied to the
trust graph to limit the number of ratings that Sybil users can propagate on
some resource (e.g., [24]). However a user in the trust graph does not necessarily
provide accurate ratings.

We thus propose an approach that relies on both user’s trustworthiness in
the network and credibility to build the labeled trust graph. Formally, the trust
graph G is a tuple < S,N,E,CrN , CE > where S represents the source, N =
{N1, N2, ...} is a set of nodes that refer to user identities, E = {E(N1,N2), . . . ,
E(Ni,Nj), ...} is a set of edges (i.e., trust links) between nodes, CrN : N → [0, 1]
assigns a credibility value to each Ni, and CE : E → N assigns a capacity value
to each E(Ni,Nj).

Figure 1 illustrates our four-step trust approach to debunk Sybil users and
promote non-Sybil credible users.

– Social Network Pruning. The attack capability of a Sybil user refers to
the overall capacity of edges connected to this user. So smaller the value of
the incoming edges is fewer the number of biased ratings that the source
will collect is. In this step the in-coming edges per node in the social network
should not exceed some predefined threshold ein as suggested in [24]. Network
pruning would prevent the case where a Sybil has several incoming edges from
non-Sybil nodes and will consequently have a high attack capability. It also
eliminates redundant paths in the trust graph and consequently speeds up the
rating collection process.

– Trust Graph Building: Upon attack-capability decrease of Sybil users this
step aims to increase rating capability of non-Sybil credible users. First the
users in the pruned social network provide ratings to the credibility model

462 Z. Saoud et al.

described in Sect. 4.1. This model computes the user i’s credibility (Cri)
by using a fuzzy clustering technique. Then capacities are assigned to edges
through a ticket distribution mechanism that starts from the source acting
as the rating collector (cf. Sect. 4.2).

– User Selection: This step collects the maximum number of users within the
trust graph. For this purpose, we adapts the max-flow algorithm proposed by
Ford and Fulkerson [8] through heuristic search to guide user selection towards
non-Sybil credible users. More details on this step are given in Sect. 4.2.

– Database-based Trust Evaluation: This step assesses WS trust using
the selected users’ ratings. The ratings are stored in a probabilistic data-
base along with their credibility values. Ratings inconsistencies lead to dis-
agreement amongst end-users’ opinions. Troffaes shows that probabilities can
address this disagreement [25]. End-user’s credibility helps tackle uncertainty
over ratings. Therefore we associate credibility with probabilities. WS trust is
assessed using a query evaluation on the probabilistic ratings database as per
Sect. 5.

2 – Trust graph building

3 – User selection

4 – Database-based trust evalution

1 – Pruning the social network
Social network

S

Edge elimination

Level k Level k+1

CN1,CrN1

CN2,CrN2

CN3,CrN3

CE1

CE2

CE3

S’

1

1

1Source Sink

N1

N2

N3

S

2.1 User credibility evaluation 2.2 Capacity assignment

Pruned social network

Probabilistic ratings
database

service
s1

....
s1

user
N1

...
N100

rating
0.2

...

0.97

P
0.14

...

0.86

Query evaluation

Trust
graph

Fuzzy clusters

Selected users

C

Source

...

CE1, FE1

...

CN1,CrN1

...
...

Credibility

User choice

WS’s trust

Fig. 1. Approach overview

4 Credibility-based User Selection

This section first discusses the appropriateness of fuzzy clustering for establishing
users’ credibility. It also describes how credibility is used to build the labeled
trust graph G and the proposed user selection strategy.

Sybil Tolerance and Probabilistic Databases to Compute Web Services Trust 463

4.1 Credibility Model

Credibility has two components [2]: expertise and trustworthiness. Our model
target strict users who are experts and trustworthy. These users stick to their
ratings regardless of the majority for reasons listed in [20] including their verac-
ity and objectivity, and accuracy of ratings. Several studies in social psychology
(e.g., [12] and [21]) evaluate the impact of source credibility on belief and attitude
changes. These studies demonstrate that credible sources are persuasive and can
affect existing beliefs (e.g., ratings) and attitudes more than non-credible sources.
Therefore, strict users can “push” the majority to question (even review) their
ratings.

The credibility model aims at reducing the gap between strict users’ rat-
ings and the current majority’s rating so that a consensus is reached. Since
strict users can be in several groups they can affect groups’ beliefs in different
manners (e.g., strongly and weakly). Strong and weak membership terms are
fuzzy because they are not well-defined and/or their semantics are dependent
on domains and/or user preferences. To deal with uncertainty in group mem-
bership and derive overlapping groups the credibility model uses fuzzy cluster-
ing. Consensus clustering algorithms like K-means and fuzzy C-means generate
robust clusters, detect “unusual” ones, and handle noise and outliers [16]. Exist-
ing credibility-based trust approaches such as [14] and [17] rely on K-means to
compute the Majority (MK) consensus as a centroid of the most populated
cluster.

We use Bezdek’s Algorithm discussed in [1] to reduce the gap between strict
users’ (ui) ratings and MK consensus. Each ui provides a set of ratings (Xi) on a
set of common WSs. The algorithm takes as input ME={MEi,j} a membership
matrix where MEi,j represents the membership degree of Xi=1,n in the Cluster Cj

and generates as output a number of clusters (Nbcluster) with fuzzy boundaries.
A new Majority Cluster (CMaj) needs to be identified taking into account that
each user’s rating has a degree of membership per cluster. We use three strategies
to decide on CMaj that rely on qualitative values of membership degree in a fuzzy
cluster: weak, moderate, and strong. The experimental results we obtain in [18]
show that the strong strategy gives the most accurate results. This strategy
selects the cluster with the highest membership degree of ratings as CMaj . The
next step is computing the credibility of users in this cluster. Equation 1 identifies
ui’s credibility as a distance from a rating to the majority opinion represented by
the centroid of CMaj . This credibility is computed using the normalized euclidean
distance ‖∗‖N as the similarity measure:

CRj
i = 1 −

∥∥∥ Xi − centroid(Cstrong strategy
Maj)

∥∥∥
N

(1)

Now credibility is assessed for each user, we explain in the following sub-
sections how we use it for assigning capacities to the edges of the trust graph
and then for user selection.

464 Z. Saoud et al.

4.2 User Selection

In order to bootstrap non-Sybil credible users’ rating capability we develop a
novel credential mechanism. This mechanism distributes rating tickets (or capac-
ity) along the edges in the trust graph, using user credibility. The level of a node
is defined by letting the source to be at level 0, while a node at level k has at
least one parent at level k − 1. Node Ni receives C tickets through edges from
parent nodes (Parenti) at upper levels, consumes one ticket and re-distributes
the remaining tickets to child nodes (Childi) at lower levels. We associate Ni

with a capacity CNi as follows:

CNi =
∑

∀Nk∈Parenti

CE(Nk,Ni) − 1 (2)

We propose a ticket distribution strategy where a node Nk re-distributes CNk

through its outgoing edges according to Eq. 3. For flow conservation purpose in
the trust graph we round up or down the capacity values.

CE(Nk,Ni) = round(
CNk ∗ Cri∑

∀Nj∈Childk
Crj

) (3)

Upon trust graph building the next step is to select the higher number of non-
Sybil credible users. We formalize this selection constraint as a maximum-flow
problem. This problem refers to maximize the flow paths from the source S to
the sink S′ in the trust graph. For applicability purpose of maximum-flow algo-
rithm a sink is added to the trust graph and linked to the different leaf nodes.
The edges between the sink and these leaf nodes are labeled with 1. We are
inspired by Ford-Fulkerson algorithm based on three functions. The first func-
tion F : E → N assigns to each edge (E(Ni,Nj)) with some capacity (CE(Ni,Nj))
a flow value (F (E(Ni,Nj)) ≤ CE(Ni,Nj)). F (E(Ni,Nj)) represents the flow that
could be passed through E(Ni,Nj). The second function RF : E → N deals
with residual capacity. RF represents the remaining flow that could be passed
through E(Ni,Nj) (i.e., RF (E(Ni,Nj)) = CE(Ni,Nj) − FE(Ni,Nj)). The third func-
tion (GF) builds the residual graph that represents the graph’s state when some
flow is passed through one of the edges in this graph. Formally, GF is the tuple
< S,N,EF , CrN , CE >, where EF = {E(Ni,Nj) ∈ E\RF (E(Ni,Nj)) ≥ 0}.

When RF (E(Ni,Nj)) equals to 0 E(Ni,Nj) is considered as saturated so no
more flow could be passed through it. To find an augmenting path, there exists
path-search methods such as depth-first-search (DFS) used in [24]. However
these search methods rely only on the structure of the graph. We thus propose
Algorithm 1 that relies on greedy best-first search (findGreedyBFSPath) with
user credibility as heuristic. Algorithm 1 returns the maximum flow (F) and the
set of users (U) kept for rating. It aims to reach a global optimum (i.e., a path
from the source to the sink that contains the maximal number of non-Sybil
credible users) by finding a locally optimal choice. At each iteration Algorithm 1
starts from the source S and expands the flow path at the next level with the
most credible node Ni with the lowest value of the heuristic function h(Ni) =
1/CrNi and a non-null residual capacity RF (E(S,Ni)) > 0.

Sybil Tolerance and Probabilistic Databases to Compute Web Services Trust 465

Algorithm 1. User selection algorithm
Require: G = < S,N,E,CrN , CE > and S′

Ensure: F , U
for each E(Ni,Nj) ∈ E do

F (E(Ni,Nj)) ← 0
end for
U ← ∅
repeat

path=findGreedyBFSPath(GF)
for each E(Ni,Nj) ∈ path do

F ← F + 1
U ← U ∪ {Ni, Nj}

end for
until path = NULL
return F , U

5 Probabilistic Trust Assessment

In this section, we describe our proposed probabilistic database-based trust
model. It consolidates end-users’ ratings taking into account end-user credibil-
ity. We first discuss how our probabilistic database is structured using a tuple-
independent model and then how trust is assessed as a query evaluation.

5.1 Our Probabilistic-Data Model

Our trust approach designs a probabilistic database ProbDB in order to assess
trust. Formally, DataBase ProbDB=(S, T , prob) is a triple consisting of a data-
base Schema (S), a finite set of T uples (T), and a function prob that assigns a
probability value to each tuple t ∈ T . S defines Probabilistic Relations ProbR
represented as ProbR(A1,. . . , Am,p) where A1,. . . , Am denote a finite set of
Attributes and p denotes the probability value attached to t in a relation instance
of ProbR. The value p = prob(t) represents the confidence that the tuple exists
in the database. The Semantics (Sem) of ProbDB is defined through the possible
worlds model [6]. In [4] Cavallo and Pittarelli define Sem(ProbDB) as a discrete
probability space over a finite number (n) of database instances. They refer to the
various alternative states of ProbDB as “possible worlds” (pwdk). ProbDB with
n tuples will include 2n possible worlds. Formally, Sem(ProbDB)=(PWD,P)
where PWD = {pwd1, . . . , pwdn} is the set of possible worlds and P : PWD →
[0, 1] such that

∑
j=1,n Pj = 1 is the probability associated to the existence of

each possible world.
Let us consider the following tuple t: ui has correctly observed that WSj

satisfies his requests. The probability (prob(t)) means the extent to which
this observation is true. When prob(t) is equal to 1 (resp. 0) t is valid (resp. is
not) in all cases. We model this probability by the user credibility CRi. To
design ProbDB we first pre-process a traditional relational database (DB) that

466 Z. Saoud et al.

contains on top of collected ratings additional information on service providers
and evaluation periods. To obtain ProbDB we extract from DB relevant views
for trust assessment and add extra details such as credibility values obtained
by the credibility model in Sect. 4 to these views. Thus, DB is built upon an
extended schema compared to ProbDB. Different data models exist to handle
uncertainty in databases (e.g., [9] and [19]) according to whether the uncer-
tainty is related to tuples or attributes of the database. We use the independent
tuple-level uncertainty-model like the one in [6] where ProbDB is an ordinary
relational database where each tuple is associated with a probability of being
true regardless of any other tuple.

For illustration purposes let assume a database that contains one probabilis-
tic relation ProbR(service, end-user, rating, p) where service, end-user, rating
denote service’s identifier, end-user’s name, and satisfaction degree of end-user
in this service (Fig. 2a). ProbR consists of three tuples t1, t2, and t3 with prob-
abilities 0.12, 0.84, and 0.88, respectively. These latter correspond to credibility
values computed using our credibility model on a random dataset.

service end-user rating ...

s1 u1 0.2

s2 u1 0.76

s1 u3 0.97

−→ t1
t2
t3

service end-user rating p

s1 u1 0.2 0.12

s2 u1 0.76 0.84

s1 u3 0.97 0.88

(a) (a) DB versus ProbDB
service end-user rating

s1 u1 0.2

s2 u1 0.76

s1 u3 0.97

service end-user rating

s1 u1 0.2

s2 u1 0.76

service end-user rating

s1 u1 0.2

s1 u3 0.97

service end-user rating

s2 u1 0.76

s1 u3 0.97

pwd1, P1 = 0.09 pwd2, P2 = 0.01 pwd3, P3 = 0.02 pwd4, P4 = 0.65

service end-user rating

s1 u1 0.2

service end-user rating

s2 u1 0.76

service end-user rating

s1 u3 0.97

service end-user rating

pwd5, P5 = 0.01 pwd6, P6 = 0.09 pwd7, P7 = 0.12 pwd8, P8 = 0.12

(b) (b) ProbDB’s possible worlds

Fig. 2. Probabilistic database illustration

Figure 2b shows the possible worlds pwdk for ProbDB and their associated
probabilities (Pk). Each pwdk contains a subset of the tuples present in ProbDB.
Pk is calculated using the independence assumption (multiply together the exis-
tence probabilities of tuples present in pwdk and non-existence probabilities of
tuples not present in pwdk). For example, P2 for pwd2={t1, t2} is computed as
0.12*0.84*(1-0.88) = 0.01.

We note that ProbR contains tuples linked to end-users who provide rat-
ings for different services. These end-users can be constant (i.e., always credible
or not) or inconsistent (i.e., swing from credible to uncredible and vice versa)

Sybil Tolerance and Probabilistic Databases to Compute Web Services Trust 467

in their evaluations. Indeed some end-users are more credible than others and
provide correct ratings, while others are less credible and do the opposite. Let
consider two tuples t1 and t2 related to u1. If t1 is false, then it is false because
u1 is wrong. t2 is likely to be false, too. Thus, if one tuple is false, the probability
that the other tuple is false increases as well. Therefore, the proposed probabilis-
tic data-model does not comply with the independent tuple model (e.g., [22]);
each tuple is associated with a probability that needs to be independent from
the rest of tuples.

In order to achieve the independence rule in the model, We normalize
ProbDB (ProbDBN) into two tuple-independent probabilistic relations PEER
and ProbR1. PEER stores all end-users and their respective credibility values.
Since PEER should often be updated we consider it as a view instead of a table.
ui is credible about WSj if his ratings are consistent. Equation 4 assesses ui’s
credibility (CRi) over the ratings he provided in the past.

CRi =
∏
j

CRj
i (4)

From ProbR we compute CR1 as 0.12 ∗ 0.84 = 0.1. As u3 provides only one
rating, CR3 remains the same in PEER. ProbR1 stores all tuples that now are
independent subject to the end-user credibility (Fig. 3).

PEER
end-user p

u1 0.1

u3 0.88
ProbR1

service end-user rating p

s1 u1 0.2 0.12

s2 u1 0.76 0.84

s1 u3 0.97 0.88

Fig. 3. ProbDB normalization

5.2 Trust Assessment as a Query Evaluation

To establish WS’s trust from ProbDBN we develop specific queries. An end-user
trusts WSj if it has successfully satisfied a large number of end-users’ requests.
We establish WS’s trust by aggregating end-users’ ratings into one probabilis-
tic value. This can be expressed using a SQL query SELECT AV G to obtain
the rating average value from ProbR1. Intuitively, applying this query on pwdk
means that end-users in pwdk jointly observe that WSj satisfies their requests
with probability Pk. Let FAVG(rating)(σservice=WS1) be the following SQL query:

SELECT AVG(rating) FROM ProbDBN

WHERE service = WS1;

ProbDBN is interpreted as 25 = 32 pwdk. Figure 4a shows pwd1’s content.
Figure 4b shows that FAVG(rating)(σservice=WS1)’s evaluation returns four pos-
sible answers for trust value 0.585, 0.2, 0.97 and empty set ordered by existence
probability. In [11] Jayram et al. represents FAVG()(σ)’s result over probabilistic
databases as a weighted average of possible answers for the trust value.

468 Z. Saoud et al.

end-user
t1 u1

t2 u3

service end-user rating
t′
1 s1 u1 0.2

t′
2 s2 u1 0.76

t′
3 s1 u3 0.97

trust value p

0.970 0.774

0.585 0.106

∅ 0.106

0.20 0.014

(a) pwd1, P1 = 0.008 (b) FAV G(rating)(σservice=s1)’s results

Fig. 4. Query evaluation on ProbDBN

Despite the simplicity of possible worlds semantics it raises some challenging
computational concerns even for simple query operations like in [6]. Many studies
have shown that the query evaluation problem is �P-hard. Several algorithms
(e.g., [6] and [11]) are provided to handle complex queries over massive data
streams.

6 System Development

We implemented a JAVA trust assessment system using Eclipse IDE and Post-
greSQL to store users’ ratings on WSs. The experiments’ objective is to challenge
the robustness of our approach in the presence of Sybils by injecting invalid rat-
ings for the same user. Robustness is an important quality attribute when it
comes to executing critical applications.

6.1 Parameter Setting

Nowadays there is a serious lack of publicly available real datasets on WSs’
ratings. To address this limitation we looked for a dataset that could encompass
similar information suitable for WSs evaluation and could also represent users’
trust relationships. The social rating network dataset Epinions1 seems to be a
good dataset for our work. Epinions.com is a well-known knowledge sharing and
review site. Users need to register for free so they can submit their personal
reviews (e.g., narrative reviews and integer ratings from 1 to 5) on various items
such as products, companies, and movies. Every Epinions user maintains a list
of trust relationships with other users. The dataset used in our experiments
was crawled from Epinions.com in November and December 2013. This latter
contains 664, 824 ratings from 49, 290 users on 139, 738 items. We consider an
item as a WS and normalize the items’ rating values. We also use the open-source
library Apache Mahout for the fuzzy C-means algorithm (Sect. 4) and Jung library
for max-flow algorithm. To prune the social network we fix the incoming edges
threshold ein to 3 based on the experiments done in [24] that show that more
than 80 % of ratings are collected when ein ≥ 3.

In our experiments we alter a variable ratio of existing users’ ratings in
the dataset to make them act like Sybils and preserve ratings of the remaining
1 http://www.epinions.com.

http://www.epinions.com

Sybil Tolerance and Probabilistic Databases to Compute Web Services Trust 469

users. Since Sybils provide inconsistent ratings their satisfaction is reversed. This
permits to disturb the trust model by making users act as Sybils and then non-
Sybils and so on.

6.2 Experiments

We carried out several experiments that compute trust values based on two
parameters: (i) ratio of altered users in the dataset; and (ii) choice of a trust
model Mi. Three models are selected to assess trust as per Sect. 5. Database
tuples’ probabilities are assessed using the fuzzy credibility model described in
Sect. 4. The models differ in terms of using or not a Sybil-defense mechanism
and user selection mechanism. M1 does not use a Sybil-defense mechanism and
involves all users in trust assessment. Both M2 and M3 use a Sybil-defense
mechanism. The former uses DFS search to select users and the latter use the
heuristic user selection mechanism defined in Sect. 4.2. Trust is assessed as a
query evaluated on the probabilistic database ProbDBN . The experiment ana-
lyzes the performance of these models in achieving realistic trust values when
altering the ratio of Sybils. Figure 5 shows that both M2 and M3 provide bet-
ter accurate trust values (i.e., closer to those obtained before rating alterations)
than M1. This shows the importance of Sybil-defense in improving the trust
model robustness. However it can be seen that trust results given by M2 oscil-
late significantly compared to those given by M3. This is due to the arbitrary
choice of users by operating a DFS search compared to our selection mechanism
that relies almost on credible users.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 5 10 15 20 25 30

T
ru

st

% of Sybils

True trust M1 M2 M3M3M1 M2

Fig. 5. Quality of trust

470 Z. Saoud et al.

7 Conclusion

In this paper, we proposed an approach that addresses the attacks of Sybil users
on Web services with focus on their trust computation. These users provide
inconsistent ratings over the same Web services since they use different identi-
ties. To debunk Sybil users the approach relies on credible users who provide
consistent ratings and hence, can be trusted. Both users, Sybil and non-Sybil,
are part of a graph that is searched using a rating-ticket distribution mechanism
and an adapted max-flow algorithm, both based on user’s credibility. The objec-
tive is to select the highest number of non-Sybil credible users and decrease the
attack capability of Sybil users. In term of future work we would like to investi-
gate further credit payment models to improve the quality of trust value in the
presence of Sybils.

References

1. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Kluwer Academic Publishers, Norwell (1981)

2. Bordens, K., Horowitz, I.: Social Psychology. Psychology Press, Mahwah (2001)
3. Buchegger, S., Boudec, J.Y.L.: A robust reputation system for peer-to-peer and

mobile ad-hoc networks. In: P2P Econ, Cambridge, USA (2004)
4. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: Very Large

Data Bases Conferences, Brighton, England (1987)
5. Cheng, A., Friedman, E.: Sybilproof reputation mechanisms. In: Proceedings of the

2005 ACM SIGCOMM Workshop on Economics of Peer-to-peer Systems. ACM,
New York, NY, USA (2005)

6. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB
J. 16(4), 523–544 (2007)

7. Danezis, G., Mittal, P.: Sybilinfer: detecting sybil nodes using social networks.
Technical report (2009)

8. Ford, L.R., Fulkerson, D.R.: A simple algorithm for finding maximal network flows
and an application to the hitchcock problem. Can. J. Math. 9(2), 210–218 (1957)

9. Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of infor-
mation retrieval and database systems. ACM Tran. Inf. Syst. (TOIS) 15(1), 32–66
(1997)

10. Hota, C., Srikanth, M., Yla-Jaaski, A., Lindqvist, J., Kristiina, K.: Safeguarding
against sybil attacks via social networks and multipath routing. In: 2007 Second
International Conference on Communications and Networking in China, CHINA-
COM 2007 (2007)

11. Jayram, T.S., Kale, S., Vee, E.: Efficient aggregation algorithms for probabilistic
data. In: Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans,
USA (2007)

12. Lesko, W.: Readings in Social Psychology: General, Classic and Contemporary
Selections. Allyn & Bacon, Boston (1997)

13. Mihail, M., Saberi, P.A.: Random walks with lookahead in power law random
graphs. Internet Math. 1(1), 147–152 (2007)

14. Malik, Z., Bouguettaya, A.: Rateweb: reputation assessment for trust establishment
among web services. Very Large Data Bases (VLDB) J 18(4), 885–911 (2009)

Sybil Tolerance and Probabilistic Databases to Compute Web Services Trust 471

15. Mislove, A., Viswanath, B., Gummadi, K., Druschel, P.: You are who you know:
inferring user profiles in online social networks. In: Proceedings of the Third ACM
International Conference on Web Search and Data Mining. WSDM 2010 (2010)

16. Nguyen, N., Caruana, R.: Consensus clusterings. In: International Conference on
Data Mining, Omaha, USA (2007)

17. Noor, T., Sheng, Q., Ngu, A., Alfazi, A., Law, J.: Cloud armor: a platform for
credibility-based trust management of cloud services. In: The ACM Conference on
Information and Knowledge Management (CIKM) (2013)

18. Saoud, Z., Faci, N., Maamar, Z., Benslimane, D.: A fuzzy clustering-based credibil-
ity model for trust assessment in a service-oriented architecture. In: International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), Parma, Italy (2014)

19. Sarma, A., Benjelloun, O., Halevy, A., Widom, J.: Working models for uncertain
data. In: International Conference on Data Engineering (ICDE), Atlanta, USA
(2006)

20. Schum, D., Morris, J.: Assessing the competence and credibility of human sources
of intelligence evidence: contributions from law and probability. Law Probab. Risk
6(1), 247–274 (2007)

21. Sternthal, B., Phillips, L., Dholakia, R.: The persuasive effect of source credibility:
a situational analysis. Public Opin. Q. 42(3), 285–314 (1978)

22. Suciu, D.: Probabilistic databases. SIGACT News 39(2), 17–43 (2008)
23. Teacy, W.T., Patel, J., Jennings, N.R., Luck, M.: Travos: trust and reputation in

the context of inaccurate information sources. Auton. Agent. Multi-Agent Syst.
12(2), 239–256 (2006)

24. Tran, N., Min, B., Li, J., Subramanian, L.: Sybil-resilient online content voting. In:
Proceedings of the 6th USENIX Symposium on Networked Systems Design and
Implementation, Berkeley, CA, USA (2009)

25. Troffaes, M.: Generalizing the conjunction rule for aggregating conflicting expert
opinions. Int. J. Intell. Syst. 21(3), 229–259 (2006)

26. Viswanath, B., Mondal, M., Gummadi, K., Mislove, A., Post, A.: Canal: scaling
social network-based Sybil tolerance schemes. In: Proceedings of the 7th European
Conference on Computer Systems (EuroSys 2012), Bern, Switzerland (2012)

27. Vu, L.-H., Hauswirth, M., Aberer, K.: QoS-based service selection and ranking
with trust and reputation management. In: Meersman, R., Tari, Z. (eds.) OTM
2005. LNCS, vol. 3760, pp. 466–483. Springer, Heidelberg (2005)

28. Wang, Y., Singh, M.: Formal trust model for multiagent systems. In: Proceedings
of the International Joint Conference on Artifical Intelligence, Hyderabad, India
(2007)

29. Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: Sybillimit: A near-optimal social
network defense against sybil attacks. In: Proceedings of the 2008 IEEE Symposium
on Security and Privacy. IEEE Computer Society, Washington, DC, USA (2008)

30. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.: Sybilguard: defending against
sybil attacks via social networks. SIGCOMM Comput. Commun. Rev. 36, 267–278
(2006)

31. Zhou, R., Hwang, K.: Powertrust: a robust and scalable reputation system for
trusted peer-to-peer computing. IEEE Trans. Parallel Distrib. Syst. 18(4), 460–
473 (2007)

Erratum to: ForCE: Is Estimation
of Data Completeness Through Time Series

Forecasts Feasible?

Gregor Endler(&), Philipp Baumgärtel, Andreas M. Wahl,
and Richard Lenz

Computer Science 6 (Data Management),
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
{gregor.endler,philipp.baumgaertel,andreas.wahl,

richard.lenz}@fau.de

https://www6.cs.fau.de

Erratum to:
Chapter ‘ForCE: Is Estimation of Data Completeness
Through Time Series Forecasts Feasible?’ in:
T. Morzy et al. (Eds.):
Advances in Databases and Information Systems, LNCS,
DOI: 10.1007/978-3-319-23135-8_18

The authors corrected errors in the figures appearing in Sect. 3.2 and the Appendix and
adjusted the text referring to the figures.

The updated original online version for this chapter can be found at
DOI: 10.1007/978-3-319-23135-8_18

© Springer International Publishing Switzerland 2017
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, p. E1, 2015.
DOI: 10.1007/978-3-319-23135-8_32

http://dx.doi.org/10.1007/978-3-319-23135-8_18
http://dx.doi.org/10.1007/978-3-319-23135-8_18

Author Index

Algergawy, Alsayed 245
Amel, Halfaoui 415
Amine, Belabed 415

Babalou, Samira 245
Banos, Vangelis 198
Baumgärtel, Philipp 261
Behrend, Andreas 63
Benslimane, Djamal 458
Biskup, Joachim 431
Bouaziz, Senda 138
Bozovic, Nick 49
Bring, Martin 431
Bulinski, Michael 431

Cao, Jianneng 287, 380
Chevalier, Max 79
Cule, Boris 397

Damme, Patrick 151
Dessloch, Stefan 123
Dignös, Anton 320
Dusso, Pedro Martins 365

Endler, Gregor 261
Endres, Markus 32
Espil, Mauricio Minuto 230

Faci, Noura 458
Fethallah, Hadjila 415
Filali, Fatima Zohra 446
Fillottrani, Pablo Rubén 215

Galhardas, Helena 184
Gamper, Johann 320
Ganza, Sandy 123
Gargouri, Faiez 138
Geerts, Floris 397
Ghrab, Amine 92

Habich, Dirk 151
Hara, Carmem S. 305
Härder, Theo 365
Hashem Davarpanah, S. 245

Held, Johannes 334
Herrmann, Kai 63
Hofstra, Matthijs 169
Huisman, Marieke 169

Kargar, Mohammad J. 245
Kaster, Daniel S. 18
Koncilia, Christian 106
Kopliku, Arlind 79
Kwashie, Selasi 3

Leghari, Ahmed Khan 287, 380
Lehner, Wolfgang 63, 151
Lenz, Richard 261, 334
Li, Jiuyong 3
Liu, Jixue 3

Maamar, Zakaria 458
Mahlknecht, Giovanni 320
Malki, Mohammed El 79
Manolopoulos, Yannis 198
Maria Keet, C. 215
Martins, Bruno 184
Mohammad, Siba 351

Nabli, Ahlem 138
Ndindi, Reuben 397

Ojea, Maria Alejandra 230
Ojea, Maria Gabriela 230
Oliveira, Paulo H. 18

Pereira, João L.M. 184
Pichler, Horst 106

Qu, Weiping 123

Romero, Oscar 92

Saake, Gunter 351
Saoud, Zohra 458
Sauer, Caetano 365
Schallehn, Eike 351
Schroeder, Rebeca 305

Shankar, Sahana 123
Skhiri, Sabri 92

Tammens, Menno 169
Teste, Olivier 79
Tournier, Ronan 79
Traina Jr., Caetano 18

Vaisman, Alejandro 92
van Keulen, Maurice 169
Vassalos, Vasilis 49
Voigt, Hannes 63

Wahl, Andreas M. 261
Wevers, Lesley 169
Wrembel, Robert 106

Yagoubi, Belabbas 446
Yangui, Rania 138
Ye, Feiyue 3

Zhou, Yongluan 287, 380
Zimányi, Esteban 92
Zymbler, Mikhail 275

474 Author Index

	Preface
	Organization
	Keynotes
	The Story of Webdamlog
	The Case for Small Data Management
	Tutorials
	Towards an Era of Trust in PersonalData Management
	Query Processing: Beyond SQL and Relations
	Contents
	Database Theory and Access Methods
	Conditional Differential Dependencies (CDDs)
	1 Introduction
	2 Conditional Differential Dependencies (CDDs)
	3 Discovery of CDDs
	4 The Discovery Algorithm
	5 Ranking CDDs
	6 Empirical Evaluation
	7 Conclusion and Future Works
	References

	Improving the Pruning Ability of Dynamic Metric Access Methods with Local Additional Pivots and Anticipation of Information
	1 Introduction
	2 Background and Related Work
	2.1 Similarity Queries
	2.2 Metric Access Methods
	2.3 Related Work

	3 The CLAP Technique
	4 Anticipation of Child Information
	5 Application of CLAP and ACIR to Slim-Tree
	6 Experimental Results
	6.1 Performance in Similarity Queries
	6.2 Evaluation of Construction Issues and Scalability of Gain

	7 Conclusions
	References

	The Structure of Preference Orders
	1 Introduction
	2 Background
	2.1 Base Preference Constructors
	2.2 Complex Preference Constructors
	2.3 Better-Than Graph

	3 Analysis of BTGs with Regular SV-Semantics
	3.1 BTGs for WOPs
	3.2 BTGs for Pareto Preferences
	3.3 BTGs for Prioritization
	3.4 BTGs for Semi-Pareto
	3.5 BTG for Rank

	4 Analysis of BTGs with Trivial SV-Semantics
	4.1 Numerical Base Preferences with Trivial SV-Semantics
	4.2 Categorical Base Preferences with Trivial SV-Semantics

	5 Summary and Outlook
	References

	User Requirements and Database Evolution
	Two Phase User Driven Schema Matching
	Abstract
	1 Introduction
	2 The Strong Vs. Weak Approach
	2.1 Matching Methods

	3 The Human-in-the-Loop Approach
	3.1 The Human in the Loop Match Combiner
	3.2 Over-Fitting as a (Rare) Problem
	3.3 Confidence in the Human Expert

	4 Experiments and Evaluation of the System
	4.1 Overview
	4.2 Small Schema Tests
	4.3 Medium Schema Tests
	4.4 Large Schema Comparison
	4.5 Conclusions on Experiments

	5 Related Work
	6 Conclusions and Future Work
	References

	CoDEL -- A Relationally Complete Language for Database Evolution
	1 Introduction
	2 CoDEL
	3 Relational Completeness
	4 Related Work
	5 Conclusion
	References

	Multidimensional Modeling and OLAP
	Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems
	Abstract
	1 Introduction
	2 State of the Art
	3 Multidimensional Conceptual Model and Cube
	3.1 Conceptual Multidimensional Model
	3.2 OLAP Cube
	3.3 Case Study

	4 Modeling a Data Warehouse Using Column-Oriented Stores
	4.1 Column-Oriented Data Model Formalism
	4.2 Column-Oriented Models for Data Warehousing
	4.3 Mappings with the Conceptual Model

	5 Experiments
	5.1 Protocol
	5.2 Experimental Results

	6 Conclusion
	Acknowledgements
	References

	A Framework for Building OLAP Cubes on Graphs
	1 Introduction
	2 Running Example
	3 Multidimensional Concepts on Graphs
	4 Building OLAP Cubes on Property Graphs
	5 Building OLAP Cubes on GRAD
	5.1 OLAP Cubes on GRAD
	5.2 Dimension Hierarchies on GRAD

	6 Framework Architecture and Implementation
	7 Related Work
	8 Conclusion
	References

	A Generic Data Warehouse Architecture for Analyzing Workflow Logs
	1 Introduction
	1.1 Motivation and Contribution
	1.2 Related Work

	2 Running Example
	2.1 Support Process
	2.2 Event Log
	2.3 Example Queries

	3 Architecture
	3.1 User Interface
	3.2 DWH Model
	3.3 SeWA Engine
	3.4 Implementation

	4 Summary
	References

	ETL
	HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store for Real-Time Analytics
	1 Introduction
	2 Related Work
	3 Background
	3.1 HBase
	3.2 Kettle

	4 HBelt System
	4.1 Architecture Overview
	4.2 Consistency Model
	4.3 MVCC Integration for Delta Batches
	4.4 Pipelining Delta Batches in Kettle

	5 Experimental Results
	6 Conclusion
	References

	Two-ETL Phases for Data Warehouse Creation: Design and Implementation
	1 Introduction
	2 Related Works
	3 Two-ETL Phases Method
	4 First ETL Phase
	4.1 Excerpt of the Correspondence Table
	4.2 Identification of Transformation Operations
	4.3 Modeling of the Transformation Operations

	5 Second ETL Phase
	6 Conclusion
	References

	Direct Transformation Techniques for Compressed Data: General Approach and Application Scenarios
	1 Introduction
	2 Related Work
	3 Transformation Algorithms in General
	3.1 Indirect Vs. Direct Transformations
	3.2 Precise Vs. Imprecise Transformations

	4 Example Techniques
	4.1 Rle2FourNs
	4.2 FourNs2Rle
	4.3 FourNs2FourGamma

	5 Experimental Evaluation
	5.1 Indirect Vs. Direct Transformations
	5.2 Precise Vs. Imprecise Transformations

	6 Application Scenarios
	6.1 Indirect Compression
	6.2 Transformations During Query Processing

	7 Conclusions
	References

	Transformation, Extraction and Archiving
	Analysis of the Blocking Behaviour of Schema Transformations in Relational Database Systems
	1 Introduction
	2 Benchmark
	3 Experimental Setup
	4 Experimental Results: Data Definition Language
	4.1 Basic Transformations
	4.2 Complex Transformations
	4.3 Conclusions

	5 Experimental Results: Ronström's Method
	5.1 Pt-online-schema-change for MySQL
	5.2 DBMS_REDEFINITION for Oracle

	6 Analysis Results
	7 Solution Outline
	References

	A Benchmark for Relation Extraction Kernels
	1 Introduction
	2 Fundamental Concepts
	2.1 SVMs and Online Learning
	2.2 Relation Extraction Kernels

	3 Benchmark
	3.1 Datasets
	3.2 Linguistic Pre-processing Techniques
	3.3 Learning Techniques
	3.4 Metrics

	4 Benchmark Results
	4.1 Setup
	4.2 Convergence
	4.3 Quality of the Obtained Extractions
	4.4 Execution Time

	5 Discussion and Future Work
	References

	Web Content Management Systems Archivability
	1 Introduction
	2 Related Work
	3 CLEAR+: A Credible Live Evaluation of Archive Readiness Plus
	4 Evaluation
	4.1 ArchiveReady WA Evaluation System
	4.2 Website Corpus Evaluation Method
	4.3 Evaluation Results and Observations

	5 Discussion and Conclusions
	References

	Modeling and Ontologies
	Evidence-Based Languages for Conceptual Data Modelling Profiles
	1 Introduction
	2 Preliminaries
	2.1 Unifying Metamodel and Dataset
	2.2 General Logic-Based Reconstruction Design Choices

	3 Core Profile
	4 Specific CDML Profiles
	4.1 UML Class Diagram Profile
	4.2 (E)ER Profile
	4.3 ORM/2 Profile

	5 Discussion
	5.1 On Missing and `Useless' Features
	5.2 Answering the Research Questions

	6 Conclusions
	References

	Ontological Commitments, DL-Lite Logics and Reasoning Tractability
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 STOC-DL-Lite Logics
	2.1 STOC-DL-Lite Concepts and Axioms
	2.2 STOC-DL-Lite Semantics

	3 Reasoning on STOC-DL-Lite Knowledge Bases
	3.1 Deciding Satisfiability in STOC-DL-Lite

	4 Conclusion
	References

	SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching
	1 Introduction
	2 Related Work
	3 SeeCOnt
	3.1 Preprocessing
	3.2 Concepts Ranking
	3.3 Finalizing Clustering

	4 Experimental Evaluation
	4.1 Data Set
	4.2 Evaluation Criteria
	4.3 Experimental Results

	5 Conclusions
	References

	Time Series Processing
	ForCE: Is Estimation of Data Completeness Through Time Series Forecasts Feasible?
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contribution
	1.4 Problem Description

	2 Method
	2.1 The ForCE Approach
	2.2 Data Preprocessing

	3 Evaluation
	3.1 Classification of Completeness
	3.2 Results

	4 Discussion and Future Work
	References

	Best-Match Time Series Subsequence Search on the Intel Many Integrated Core Architecture
	1 Introduction
	2 Background and Related Work
	2.1 Problem Definition
	2.2 The Intel Xeon Phi Architecture and Programming Model
	2.3 Related Work

	3 Best-Match Subsequence Search on the Intel Xeon Phi
	3.1 Parallel Algorithm for CPU
	3.2 Naïve Parallel Algorithm for CPU and the Intel Xeon Phi
	3.3 Advanced Parallel Algorithm for CPU and the Intel Xeon Phi

	4 Experimental Results
	4.1 Performance
	4.2 Impact of Queue Size
	4.3 Comparison with Analogues

	5 Conclusion
	References

	Feedback Based Continuous Skyline Queries Over a Distributed Framework
	1 Introduction
	2 Related Work
	3 Background
	3.1 Problem Description
	3.2 Basic Definitions
	3.3 System Model

	4 Base of the Approach
	4.1 Importance of the Feedback

	5 Generating Skyline
	5.1 Generating Local Skyline
	5.2 Generating Semi-Global Skyline
	5.3 Generating Global Skyline

	6 Adjusting Skyline
	6.1 Adjusting the Semi-Global Skyline
	6.2 Adjusting the Global Skyline

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Results and Discussion

	8 Conclusion
	References

	Performance and Tuning
	Partitioning Templates for RDF
	1 Introduction
	2 Preliminaries and Partitioning Objective
	3 Workload Characterization
	4 RDF Fragmentation
	5 Clustering Fragments
	6 Experimental Study
	7 Related Work
	8 Conclusion Remarks
	References

	Efficient Computation of Parsimonious Temporal Aggregation
	1 Introduction
	2 Related Work
	3 Diagonal Pruning
	4 Space-Efficient PTA Computation
	4.1 Overview and Approach
	4.2 Split Point Graph
	4.3 Analysis

	5 Experimental Evaluation
	5.1 Setup and Data
	5.2 Diagonal Pruning
	5.3 Graph Implementation
	5.4 Space Efficiency

	6 Conclusion
	References

	TDQMed: Managing Collections of Complex Test Data
	1 Introduction
	2 Related Work
	3 Model, Mapping and Metrics
	4 Gauging Test-Data Quality
	5 Calibration Techniques
	6 Prototype
	7 Evaluation
	8 Discussion
	9 Contribution
	References

	Advanced Query Processing
	A Self-tuning Framework for Cloud Storage Clusters
	1 Introduction
	2 Motivation
	3 A Framework for Tuning Cloud Data Storage Cluster
	3.1 Problem Statement and Solution Approach
	3.2 Framework Architecture

	4 Benchmarking and Performance Modeling
	4.1 Benchmarking Cloud Storage Clusters
	4.2 Performance Modelling

	5 Experiment and Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Optimizing Sort in Hadoop Using Replacement Selection
	1 Introduction
	2 Background
	3 Replacement Selection Sort
	3.1 Run Generation
	3.2 Merge

	4 Implementation
	4.1 Hadoop Internals
	4.2 Memory Management
	4.3 Pointer Sort
	4.4 Custom Heap

	5 Experiments
	5.1 Run Generation
	5.2 Exploiting Pre-sortedness
	5.3 Distributed Join

	6 Conclusion
	References

	Distributed Sequence Pattern Detection Over Multiple Data Streams
	1 Introduction
	2 Background
	2.1 Basic Terminology

	3 Related Work
	4 Sequence Pattern Detection
	4.1 Global Query Processing
	4.2 Local Query Processing

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Results and Discussion

	6 Conclusion
	References

	Approximation and Skyline
	Space-Bounded Query Approximation
	1 Introduction
	2 Preliminaries
	3 The Valid Covering Selection Problem
	4 Size Estimation of Coverings
	5 Error Propagation
	6 Valid Covering Selection
	7 Experimental Evaluation
	8 Related Work and Conclusions
	References

	Hybrid Web Service Discovery Based on Fuzzy Condorcet Aggregation
	Abstract
	1 Introduction
	2 State of the Art
	3 Web Service Retrieval and Ranking
	3.1 Problem Statement
	3.2 Pareto Dominance
	3.3 Fuzzy Dominance
	3.4 Service Comparison
	3.5 Fuzzy Ranking Algorithm

	4 Experimental Study
	5 Conclusion
	References

	Confidentiality and Trust
	Confidentiality Preserving Evaluation of Open Relational Queries
	1 Introduction
	2 Basic Control Procedures for Open Queries
	3 An Implementation within the CIE-System
	4 Theorem-Proving with Completeness Sentences
	4.1 Employing the Active Domain of a Completeness Sentence
	4.2 Introducing New Constants
	4.3 Runtime Evaluation
	4.4 Extension of the Theorem Prover

	5 Optimizing the Number of Prover Calls
	5.1 Applying the Divide-and-Conquer Heuristic
	5.2 Experimental Runtime Results

	6 Conclusions
	References

	A General Trust Management Framework for Provider Selection in Cloud Environment
	1 Introduction
	2 Challenges in Trust Management and Service Selection
	2.1 Assurance
	2.2 Ratings and Feedbacks Trustworthiness
	2.3 Trust Sources
	2.4 Trust Degree
	2.5 Other Issues

	3 Proposed Framework
	3.1 Framework Architecture
	3.2 General Trust Framework Components

	4 Performance Analysis
	4.1 Framework Implementation
	4.2 Metrics
	4.3 Experiments

	5 Conclusion
	References

	Sybil Tolerance and Probabilistic Databases to Compute Web Services Trust
	1 Introduction
	2 Related Work
	3 Approach to Tackle Sybil Attacks
	4 Credibility-based User Selection
	4.1 Credibility Model
	4.2 User Selection

	5 Probabilistic Trust Assessment
	5.1 Our Probabilistic-Data Model
	5.2 Trust Assessment as a Query Evaluation

	6 System Development
	6.1 Parameter Setting
	6.2 Experiments

	7 Conclusion
	References

	Erratum to: ForCE: Is Estimationof Data Completeness Through Time SeriesForecasts Feasible?
	Author Index

