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Abstract. Rail road switches enable trains to be guided from one track
to another, and rail road switches heaters are used to avoid the forma-
tion of snow and ice during the cold season in order to guarantee their
correct functioning. Managing the energy consumption of these devices
is important in order to reduce the costs and minimise the environmental
impact. While doing so, it is important to guarantee the reliability of the
system.

In this work we analyse reliability and energy consumption indicators
for a system of (remotely controlled) rail road switch heaters by devel-
oping and solving stochastic models based on the Stochastic Activity
Networks (SAN) formalism. An on-off policy is considered for heating
the switches, with parametric thresholds representing the temperatures
activating/deactivating the heating. Initial investigations are carried on
to understand the impact of different thresholds on the indicators under
analysis (probability of failure and energy consumption).

1 Introduction

A rail road switch is a mechanism enabling trains to be guided from one track
to another. It works with a pair of linked tapering rails, known as points. These
points can be moved laterally into different positions, in order to direct a train
into the straight path or the diverging path. Such switches are therefore critical
components in the railway domain, since reliability of the railway transportation
system highly depends on their correct operation, in absence of which potentially
catastrophic consequences may be generated.

Unfortunately, during winter, snow and ice can prevent the switches to work
properly. Indeed the mechanisms which allow a train to be directed can be
blocked by an excessive amount of snow or ice. To overcome this issue, the rail
road switches need to be cleaned from possible snow or ice forming on top of
it. In the past, the switches were kept clear manually by employers who were
sweeping the snow away. More recently, heaters are used so that the temperature
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of the rail road switch can be kept above freezing. The heaters may be powered
by gas or electricity.

The managing of the heaters is automatic, and is controlled by a central
unit using a Powerline [3]. Powerline communications have the possibility to
transmit coded information through the existing electric lines. A Powerline is a
transmission system that uses electric lines, with a very extensive infrastructure
in nearly each building. The main advantage of adopting the existing network is
the absence of additional costs for the installation of the infrastructure.

Powerlines are used in order to automate and optimize several tasks, i.e.
switching on and off the lights of the station, checking the status of railway
track switches, managing the traffic of trains in the station and the rail road
switch heating system.

Nowadays, there is a great attention towards cautious usage of energy sources
to be employed in disparate application domains, including the transportation
sector, to save both in financial terms and in environmental impact. Therefore,
studies devoted to analyse and predict energy consumption are more and more
gaining importance, especially in combination with other non functional prop-
erties, such as reliability, safety and availability.

In this paper, we address reliability and energy consumption of rail road
switch heaters. A failure in those switches can lead to major malfunctions.
Indeed, while managing energy optimization we must ensure reliability. In fact,
by turning on all the heating system at the same time, an overhead of energy con-
sumption can lead to a blackout. Alternatively, an excessively parsimonious pol-
icy to save on energy can cause the failure of some rail road switch heaters. The
proposed analysis contributes to gain insight on the interplay between energy
consumption and reliability in order to select an appropriate policy for the heat-
ing of the switches by selecting minimum and maximum temperature thresholds,
which guarantees a satisfactory trade-off. Note that failure of the heating system
is accounted for by other components of the railway system, namely interlock-
ing mechanisms which guarantee safety; however we do not include them in our
analysis.

We adopt a stochastic model-based approach to analyse the behaviour of
the rail road switch heating system under different circumstances. A modu-
lar and parametric approach is followed, to assure usability of the developed
analysis framework in a variety of system configurations, as well as to promote
extension and refinements of the model itself, to account for further involved
aspects/phenomena and so enhance its adherence to sophisticated and realistic
implementations with respect to the current preliminary version. In particular,
we exploit Stochastic Activity Network (SAN) [15] to model the heating system,
and use the Möbius tool [4] to perform experiments.

Structure of the Paper. In Sect. 2 we describe the considered rail road switch
heating system. Stochastic model-based analysis is introduced in Sect. 3, while in
Sect. 4 we present the models of the rail road switch heating system. The results
of our experiments are discussed in Sect. 5, related work and conclusions are in
Sects. 6 and 7.
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2 The System Under Analysis

In Fig. 1 a rail road switch heater is displayed. The picture is taken from [14].
The heating system consists in a series of tubular flat heaters along the rail

road track, which warm up the rail road by induction heating. To accomplish its
task, the rail road switch heater system reads through sensors the temperatures
of the air and of the rail road, and checks if the temperatures are between
given thresholds [14]. Based on this general behaviour, we have based the policy
employed to activate/deactivate the heating on two threshold temperatures:

– warning threshold : this temperature represents the lower temperature that
the system should not trespass. If the temperature is lower than the warning
threshold, then the risk of ice or snow can lead to a failure of the rail switch
and therefore the heating system needs to be activated;

– working threshold : this is the working temperature of the heating system.
Once this temperature is reached, the heating system can be safely turned off
in order to avoid an excessive waste of energy.

Fig. 1. An example of a rail road switch heater heathen by electric induction c©2006
– 2012 Rails Company

Hence the time during which a single heater is active depends on its location
and the weather conditions. Heaters located in a colder geographical area will
consume more energy then those under warmer temperatures.

The network of heaters will share information through central computational
unit, using the Powerline. The central unit manages the maximum amount of
power that can be delivered to the system, in order to prevent possible blackouts.
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3 Stochastic Model-Based Analysis

Stochastic model-based approaches are useful to support the development of
new systems, in all the phases of their life cycle. In the early design phases it
is important to validate a model of a system in order to avoid waste of time
and resources in the development phase. This can be done by pointing out the
properties and the requirements of the system, building a model that represents
its behaviour and checking that the properties are satisfied by the model. It is
possible to choose between different alternatives for the same system, and select
the one that better suits the requirements. An early modelling phase is also
useful to highlight problems in the design of the system.

When the design phase is completed, a model allows predicting the overall
behaviour of the system, fostering an analysis for the fulfilment of constraints in
the design phase and the acceptance cases. For an already existing system, an
a-posteriori analysis of properties such as dependability or performance is useful
in order to improve the system in its future releases. Moreover, with a model-
based analysis it is possible to predict future behaviour to plan the maintenance
and the upgrading of the system.

3.1 Stochastic Activity Network

Several stochastic modelling methodologies have been proposed in literature.
Stochastic Activity Networks [15] are a widely adopted formalism for the analy-
sis of systems under performance, dependability and quality of service. The
formalism is a generalization of Stochastic Petri Nets [2], and has similarities
with Generalised Stochastic Petri Nets [1]. A SAN is composed of the follow-
ing entities: places, activities, arcs, input gates and output gates. Places in SAN
have the same interpretation as those of Petri Nets. Activities are of two types:
instantaneous and timed. Instantaneous activities are fired once the enabling
conditions are satisfied. Timed activities are fired following a temporal stochas-
tic distribution of time. There are different policies of activation and reactivation
of timed activities, for a marking based policy of reactivation of timed activity.
An enabled activity is aborted when the SAN moves into a new marking in
which the enabling conditions of the activity no longer hold. Cases are associ-
ated to activity, and are used to represent uncertainty about the action taken
upon completion of the activity. A marking is stable if no instantaneous activity
is activated. Input gates control the enabling of the activity and the change of
marking at completion of the activity. Output gates define the change of mark-
ing upon completion of activity. The primitives of the SAN (activities, input and
output gates) can be defined using C++ code. When an activity completes, the
following sequence of events is executed:

– one of the cases of the activity is chosen according to its probability,
– the functions of the connected input gates are executed,
– one token is removed from the places connected by the input arc,
– the function of the output gates connected to the activity are executed,
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– one token is added to the places connected to the activity or one of its cases
by the output gate.

For evaluating the energy consumption and the probability of failure of the
system modelled, we use the Möbius tool [4]. Möbius is a software tool for mod-
elling the behaviour of complex systems, supporting various formalisms such as
SAN, PEPA, Fault Tree, etc... Developed models are then solved by using dif-
ferent analytical and simulative solvers. This tool can be used for studying the
reliability, availability, and performability of systems. It follows a modular mod-
elling approach, with proper operators Rep and Join to compose atomic models
into an overall composed model.

4 Modelling Framework

In this section we describe the rail road heating system model.
We developed a SAN model to represent the system which is actually struc-

tured as composed by five atomic sub models, properly combined through Rep
and Join operators (see Fig. 4).

Three of the five atomic models are selectors for the profile, locality and the
unique identifier of each switch. The remaining two are the atomic model for the
queue, shared among the replicas, and the main model for the rail road switch
heater.

The main parameters of the SAN model are the lower and working temper-
ature of the device, and the maximum power that the system can provide every
instant of time, i.e. the maximum number of heaters that can be turned on at
the same time.

Weather forecast. To model the external weather conditions, our model takes in
input a table containing profiles of average temperatures in those days for which
the analysis is relevant (a.g. winter days).

The time window under analysis is divided in intervals to which an average
reference temperature is assigned. Current instance of the model concentrate on
nights only, from 6:00 am to 6:00 pm, divided in intervals of two hours. However,
the model can be easily modified to consider longer periods, as well as different
number of intervals.

At starting time, a SAN will select one of these profiles. A probability is
assigned to each profile. Less frequent profiles will have a lower probability.
The probability in which a particular profile will be selected, depends on the
aforementioned value. In Fig. 2 left, the SAN model corresponding to the action
of selecting the profile is displayed. The probability is selected in the SAN model
with a timed activity with different cases, each case corresponds to a profile. A
C++ function in the output gate will load the selected profile.

We note that an alternative way of deciding the actual temperature would
be to select stochastically the temperature depending on the previous temper-
ature and the actual time. However, by adopting this methodology we would
have obtained a non realistic zig-zag evolution of the temperature during the
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Fig. 2. On the left the SAN model ProfileSelector, on the right the SAN model Local-
itySelector.

night. Indeed after each interval temperatures would have a non-zero probabil-
ity of increasing or decreasing. Thus there could be the unwanted case where
temperatures increase and decrease several times during the night.

Location. Rail road switch heaters are located in different zones, with different
weather conditions, while we assume that they are remotely controlled by the
central management unit. At a higher altitude, the probability to have temper-
atures lower than the average selected for that profile is greater than the case of
rail road switch heaters located at lower altitudes. For modelling this variation
of temperature, the model takes as input a vector of locations, which are numer-
ical values representing the gap from the average temperature for that profile.
In case there are many rail road switch heaters located at higher altitudes, it
will be more probable that the actual temperature will be lower than the aver-
age. The SAN that selects the location for the device is depicted in Fig. 2 right.
The network works similarly to the one for the selection of the profile. A timed
activity has different cases, according to the different probabilities of selecting a
location. Once the activity is fired, a C++ function is called which assigns the
given probability to the rail road switch heating module.

4.1 Rail Road Switch Heater

In Fig. 3 the SAN model representing the rail road switch heater is depicted.
The SAN takes in input the profile and the location of the device, and a unique
identifier. This unique identifier will be computed by a separate SAN, not shown
here. There are two subnets present in the network:

Heater subnet represents the status of the heater. It can be switched on or off, or
it can be a failure state. An extended place temperature represents the internal
temperature of the device, while the places on and off represent the status of
the system. A shared place sharedOn is useful to know how many heaters are
turned on at a given time. According to the heating policy, once the system
temperature goes below a pre-defined warning threshold, the heating needs to
be activated otherwise a switch failure is experienced (represented by the place
failure). Then, once the temperature raised and reached the working threshold,
the heating system can be safely turned off.
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The energy consumption of the overall system depends on the value of those
thresholds. A smaller gap between the two values represents a frequent activation
of the heating system, but for a shorter period of time. Alternatively, by taking
a wider gap between the two values, we will obtain a less frequent activation,
but the activation will be for longer periods of time. In the next section, we
instantiate the model with varying values for these thresholds, to show their
impact and benefit on both energy consumption and system reliability.

Clock subnet represents a clock which updates at each unit of time the parame-
ters, i.e. the temperature of the rail road and the temperature of the air. For
this case study, the unit of time is assumed to be one hour. Each time the clock
activity is fired, the temperatures will be updated in the output gate using C++
functions. We model the physical behaviour of the rail road in terms of temper-
ature decay and increase, when the heating is switched off and on, respectively.
For the temperature of the air, a new value will be picked up by the table for
the selected profile and depending on the location of the device, this value will
be higher or lower than a given amount of degrees, selected in the locality table.

For the internal temperature of the device, we will model the actual temper-
ature of the system by using an equation of heat exchange through convection,
which simulates the data that will come as input from the sensors.

The energy place represents the amount of energy consumed by the system.
Each time the clock activity is fired, if the heater is switched on, then the energy
consumed is augmented. By taking into account the power consumed by the
heater, it is possible to calculate the consumption of energy in kilowatt.

Moreover, in Fig. 3, the place free represents the queue of active rail road
switch heaters. This place is shared among all the instances of the SAN. The
capacity of the queue represents the number of heaters that can be turned on at
the same time, that we call NHMax. For example, assuming that the power con-
sumed by a single heater per hour is 35KW , if NHMax = 2 than the maximum
energy that the system can provide is 70KW : no more than two heaters can be
turned on at the same time. If the capacity of the queue is exceeded, a blackout
failure may occur. Hence the thresholds for the activation of the switches must be
chosen also taking into account this constraint. With the queue model, it is also
possible to implement different priorities in which a particular rail road switch
heater must be turned on and off (not implemented in this paper). Although a
sub-model Queue is included in the composed model in Fig. 4, in this work it is
only consists of the place free.

4.2 Physical Model for Heat Exchange

As mentioned above, we need to simulate the data read by the sensors in order
to estimate the energy consumption of the heaters. To do so, we instantiate a
physical model representing the exchange of heat through convection. Indeed the
rail road gets cooled by the external temperature and warmed by the heaters.

To make the needed calculation we consider the portion of the rail road track
to be heated, which for simplicity is an iron bar representing the rail road track.
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We assume that the bar is exposed to the external temperature both from the
top and the bottom.

The heater is represented by an electric cable that passes through the rail road
in different points in order to warm up the iron. We assume that the power used
by the heater is constant, in order to estimate the kilowatt per hours consumed
during the time interval that we consider (6pm - 6am).

Every hour the sensor reads a new data for the internal temperature of the
rail road track. Assuming that the value of the temperature of the air and the
previous internal temperature are known, we foresee the updated internal tem-
perature of the device using the following equation representing exchange of heat
by convection. This equation is derived from a differential equation on the time:

Tfin = Ta + (Ti − Ta) · e−u·A·t
m·c +

Q

u · A · L
The coefficient of convective exchange u is calculated as:

u = (
g · β ·(Ti − Ta) · ρ2 ·AV 3

µ2
)

1
4 · 0.54 + 0.26

2
· K

AV

The parameters of the previous equation are: Tfin is the new internal tem-
perature of the heater; u is the the coefficient of convective exchange; c is the
heat capacity of iron; A is the surface area exposed to the external temperature;
AV is the ratio between area and volume of the iron bar; t is the interval of time,
one hour in our case; m is the mass of the iron bar; Ti is the previous internal
temperature; Te is the external temperature of the surrounding area; Q is the
power used when the heater is turned on, if the heater is turned off this value
will be zero. Moreover L is the length of the electric cable for heating the rail
road; g is the gravity acceleration; β is the thermal expansion coefficient; ρ is
the density of air; µ is the dynamic viscosity and K is the thermal conductivity
of iron.

The function representing the heating exchange is written in C++, and it is
called by the output gate O1 displayed in Fig. 3 to update the temperature of the
rail road every hour. This C++ module is the portion of the system representing
the real world model that we want to optimize. This module can be easily mod-
ified to reflect different scenarios of energy optimization. For example, energy
optimization could be applied to the enlightening of a station, by turning off the
lights when they are not needed. In this case, the temperature should represent
the quantity of light during that part of the day, the thresholds should repre-
sent when the lights must be turned on and off, while the energy consumption
equation should take into account the amount of consumed electricity.

4.3 The Composed Model

The composed model is displayed in Fig. 4. The atomic SAN models are Rail-
SwitchHeater, LocalitySelector, ProfileSelector, SwitchIDSelector and Queue.
The box Join1 represents the join of all the atomic models except Queue. Those
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Fig. 3. The SAN model RailRoadSwitchHeater.

atomic models share the places relative to the locality of the device, its weather
profile and unique ID. The box Rep1 represents the network of heaters. A para-
meter numRep identifies the number of devices composing the network. Recall
that each device has its own weather forecast profile and locality. Finally, the
node Join2 composes the network of rail road switch heaters with the model
representing the Queue. Indeed all the sub models share the same queue.

Fig. 4. The composed model

5 Analysis results

In this section we describe the preliminary experiments we have performed in
order to find suitable trade-offs in terms of reliability and energy consumption
for different settings of the model parameters. These experiments do not refer
to a rail road configuration taken from reality, but consider a restricted plau-
sible configuration adopted as a working example to show the benefits of our
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analysis framework. Indeed, the parametric nature of our model allows its cus-
tomization to a wide variety of system configurations in terms of both size and
characterization of system components.

5.1 Measures of Interest

We consider two different measures of interest which represent the energy con-
sumption and reliability of the system under analysis:

1 CE(t, l): the mean energy consumed by a heater in the interval [t, t + l];
2 PFAIL(t, l): the mean probability that a switch fails (becomes frozen) at

time t + l, given that at time t is not failed.

The interval [t, t + l] goes from 6:00 pm to 6:00 am. CE(t, l) is defined by
accumulating in the interval [t, t+l], that is the time that each replica of the SAN
model RailSwitchHeater spends in the marking represented by one token in the
place ON , multiplied for the energy consumed in a unit of time. PFAIL(t, l) is
defined as the probability that at time t+l there is one token in the place Failure
of the SAN model RailSwitchHeater. PFAIL(t, l) can be used to compute the
mean time to a catastrophic failure.

Other measures may help in understanding aspects related with energy con-
sumption and system failure, so to take appropriate actions in improving the
system. Some of them are introduced in the following, although their quantita-
tive evaluation is left as future work:

– the probability of heating activation in an interval of time; it is useful for
understanding in which hours the probability that a heater is switched on is
greater, i.e. the hours of the night with a greater consumption of energy;

– the probability of activation of a given number of heaters in an interval of
time; it is useful for improving planning operations performed by the central
computational unit;

– the average number of heaters switched on in an interval of time; again, it is
useful for planning purposes.

5.2 Scenarios and Settings

The table of the profiles used for the experiments are displayed in Table 1. We
consider average cold winter nights, which are primary relevant for our study.
Starting from the temperature at 6 pm, it decreases and reaches the minimum
at 6 am.

We consider three main localities, displayed in Table 2. We note here that
it is more probable to select a locality at a lower altitude, where there is no
variation between the selected profile temperature. It must be pointed out that
these parameters can be easily modified to deal with different conditions.

The parameters considered for calculating the heat exchange between the
rail road, the heaters and the external air are showed in Table 3. We consider an
iron bar of 6 meters of length, 4 cm of height and 28 cm of width to represent
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Table 1. The profiles of temperatures per night

06 pm 08 pm 10 pm 00 am 02 am 04 am 06 am Probability

profile 1 2◦ 0◦ -2◦ -2.5◦ -3◦ -3.3◦ -3.8◦ 0.25

profile 2 0◦ -1◦ -2◦ -3◦ -4◦ -4.5◦ -5◦ 0.2

profile 3 3◦ 1◦ 0◦ -1◦ -2◦ -3◦ -3.5◦ 0.2

profile 4 0◦ -2◦ -3.5◦ -4.8◦ -6.2◦ -6.8◦ -6.9◦ 0.15

profile 5 1◦ -1◦ -3◦ -3.5◦ -4◦ -4.5◦ -5.5◦ 0.2

Table 2. The temperature variation and the probability of occurrence of such variation
for the three considered localities

Temperature Variation Probability

locality 1 -0.8 ◦ 0.3

locality 2 -0.3 ◦ 0.3

locality 3 0 ◦ 0.4

the portion of rail road track that needs to be heated. In the table l, h and w are
respectively the length, height and width of the iron bar. The other parameters
are described in Sect. 4, and we use standard value for the parameters of the
air and of the iron, i.e. viscosity, density, conductivity, heat capacity etc... We
assume that all the rail road switch heaters use the same amount of power, which
in this case is 35 KiloWatt.

Table 3. The parameters for the model of heat exchange by convection

For this case study, we set the freezing thresholds to zero. If the temperature
goes below this value the system reaches a failure state. In our experiments
we consider four different combinations of thresholds, at different temperatures
and with tight or wide gaps between the working threshold and the warning
threshold.

The network is composed of four rail road switch heaters, and we study the
results at varying of NHMax, representing how many heaters can be turned on
at the same time, that in turn represents the maximum throughput of energy
of the system in a unit of time. We assume that all the heaters have initial
temperature of 5 degrees Celsius.
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The four pairs of thresholds are (1,4), (4,7), (5,6), (4,50). We consider differ-
ent gaps between the thresholds. Moreover we study the behaviour of the heating
system for thresholds that are more and more distant from the temperature of
failure.

The experiments were taken on the Möbius tool [4], by using simulation
with 10000 batches. The results were computed in one minute on a machine
with processor Intel Core i3.2328M 2.20 GHz with 8 GB of RAM, showing the
efficiency of the model.

5.3 Results Discussion

We report the results for two of the aforementioned measures of interest: CE(t, l)
and PFAIL(t, l).

The results for the probability of failure are reported in Fig. 5. As expected,
by minimizing the throughput of energy the probability of failure increases.

Moreover, the probability of failure increases in case the gap between the
two thresholds is greater. Indeed the time taken by the heater to warm up the
rail road is higher when the gap is wider. Hence the temperature of the other
pending heaters may go below the freezing threshold, leading to a failure of the
system.

The results for the energy consumption are reported in Fig. 6. We note that
by increasing NHMax we have more energy available, which in turn results in a
major energy consumption (recall Sect. 4). The same happens when we consider
greater value for the thresholds.
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Fig. 6. The graph for the energy consumption

Interestingly, a wider gap is worse than a strict gap when NHMax is large
enough, while the converse holds in case NHMax is limited.

The threshold (4, 50) is used for checking the consumption of energy in case
the heater, once activated, will never be turned off during the whole night.
Indeed at 35 KW of power, the system never reaches the working temperature.
Of course this threshold is the worst both for the probability of failure, and
for the energy consumption. Note that if the starting temperature is not below
the warning threshold, the heater will not be activated for the whole night.
Indeed the temperature of the heater needs some hours to fall below the warning
threshold. For example, in Fig. 6 for thresholds (4, 50) and NHmax = 1 we have
CE(t, l) = 92.8 ≈ 10.5∗35

4 , so after two or three hours the temperature of the
track will go below 4 degrees Celsius.

Our experiments show that it is better to take a tight gap between the mini-
mum and the maximum thresholds. Also keeping those thresholds not too close
to the freezing threshold improves reliability, as well as guarantees a sufficient
amount of heaters to be activated at the same time. Indeed this is necessary for
guaranteeing the reliability of the system and minimizing the energy consump-
tion.

Hence, the best scenario in this example is represented by the pair of thresh-
olds (1, 4) for NHMax = 3 and (4, 5) for NHMax = 2.

6 Related Works

Although not tailored to the rail road switch heating system, there are several
works in the literature that analyse and optimise the energy consumption in
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several application domains using formal approaches. A few of them are recalled
in the following.

In [13] Generalized Stochastic Petri Nets [1] are used to solve the dynamic
power management problem for systems with complex behaviour. Dynamic
power management addresses reduction of power dissipation in embedded sys-
tems, with a selective shut-off or slow-down of system components that are idle
or underutilized. A time-out policy is used for power saving, which turns on
a component when it is used and turns it off when it is not used for a cer-
tain amount of time. Comparisons are also performed with other models based
on Markov Decision Processes (MDP). GSPN allows to express a finer model,
with synchronizations and conflicts between different modules, that is shown
to be more accurate in power saving then MDP models. In our case complex
behaviours are modelled with SAN, which are a generalization of GSPN. We
also consider a policy of switching on/off the heater when a given temperature
threshold is reached. We express a finer behaviour by using C++ code in the
SAN model which computes the physical model of the heat transfer. Indeed the
amount of time in which a heater is not used, (i.e. turned off) is derived from
the external temperature, the internal temperature of the iron bar, and the heat
transfer law.

In [11] the problem of power management in smart grids is handled with
Learning Automata (LA), that provide a mechanism of learning from the envi-
ronment the optimal solution over a period of time. The model of the system
is hierarchical: at the root there is a LA-based main power station, that sup-
plies the power to LA-based transmission system, and adjusts the power supply
according to requirements based on learning the system. The LA-transmission
system calculates the performance of the system. The studied performance met-
rics are the power utilization and the customer satisfaction, in terms of satisfied
energy demand. It is shown that, by adjusting the power supplied to the different
clients, it is possible to obtain a good trade-off between power utilization and
customer satisfaction. In [7] the dynamic power management problem is inter-
preted as a hybrid automaton control problem and integrated stochastic control.
Hybrid automata mixed both a discrete state, representing the power mode of
the system, and a continuous one, representing the consumed power. An inte-
grated stochastic control is synthesised based on a learning feedback, and it is
used to predict probabilistically the range lengths of the future idle period based
on the past history. Two strategies are compared: on demand wake-up of a com-
ponent (that was previously turned off) and pre-emptive wake-up. The former
provides better results for conservation of energy and prevention of latency. In
our work we do not implement learning mechanisms, and the power supplied is
fixed by the number of heaters that can be turned on in a unit of time. It would
be interesting to relax this constraint and implement a power adjustment with
a prediction mechanism for minimising the power supplied, for example in case
of warmer nights.

In [12] the applicability of self-organizing systems for different fields of power
system control is discussed. Agent-based decentralized power flow control is com-
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pared with current practice based on central decision making. The authors study
how to balance the voltage and frequencies stability of the network to meet the
demand of energy. These parameters are linked to reliability and safety of the
system. It is shown how a decentralized control can improve reliability, safety and
efficiency by providing a real-time adaptivity to changes in the network (failure
of a node, blackout). In our case we consider a central unit which manages the
different heaters. The demand of energy is adjusted according to the maximum
energy that can be delivered by the central unit. In case of failure of a heater, the
energy is automatically shared between the remaining active heaters. We show
that by managing the temperature thresholds it is possible to improve reliability
even in case of low energy demand.

In [8] the authors analyse the survivability of a smart house, that is the
probability that a house with locally generated energy (photovoltaic) and a bat-
tery storage can continuously be powered in case of a grid failure. Hybrid Petri
Nets [5] are used for modelling this scenario. Different strategies of battery man-
agement are considered. In the first all the battery is consumed when needed, in
the second there is a minimum threshold of energy saved in case of grid failure.
In the third case the battery is also charged to a maximum threshold when the
grid is operating. It is shown how the third strategy is better both for the local
usage of energy and for the survivability of the smart house. The authors con-
sider a randomly chosen probability of failure and fixed thresholds. Instead, in
our case the probability of failure is derived from the model. Moreover, we do
not consider fixed thresholds, but we analyse how different values for thresholds
impact in the energy consumption and reliability.

Concerning the analysis and optimization of a railway station using formal
techniques, in [6] Stochastic Activity Network are used to improve timetable
and delay minimization of the traffic in a station. The model takes in input the
railway topology and the required service. Experiments are taken to measure the
capacity of the line in terms of number of trains that traverse the line, and the
percentage usage of each track segment. In [10] an Automatic Train Supervision
is designed that prevents the occurrence of deadlocks. A formal model that
designs railway layout and the Automatic Train Supervision behaviour is used
to verify such deadlock properties. The verification phase is performed by using
the UMC model checking verification framework [9]. It would be interesting to
integrate such studies with the possible failure of switches studied here, in order
to analyse how a failure in a switch impacts on possible delays of trains, and
deadlocks.

7 Conclusion and Future Work

We have presented the result of a preliminary research activity in model-based
analysis for a rail road switch heating system. We used Stochastic Activity Net-
works to evaluate both the energy consumption and the probability of failure.

The system reads in real time both the temperature of the external air, the
one of the rail road track, and according to given thresholds decides when to turn
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on and off the heaters. We evaluated the probability of failure of the system and
the energy consumption at varying the thresholds and the maximum number of
heaters that can be turned on at the same time. To represent the heat exchange
between the portion of the rail road track, the external air and the heaters,
we describe a physical model of heat exchange by convection. Simulations of
the model have been taken using the Möbius tool [4]. At the moment we have
instantiated the model to representative (but realistic) parameters, to obtain a
first indication of the behaviour of our system. The results suggest that, in order
to have a good trade off between probability of failure and energy consumption
it is important to:

– guarantee enough energy to allow at least two heaters working simultaneously;
– keep the minimum temperature distant from the temperature of failure;
– use a small gap between the minimum and the maximum temperatures, in

order to better distribute the time in which each heather is turned on.

This work represents a first step in the design of a rail road switch heating
system with attention to energy consumption and reliability, which often are
opposed requirements. Several directions for extending this study have been
identified.

We plan to instantiate our model to case study from real world, i.e. an existing
rail road switch heating system, to confirm our initial investigation.

Additional measures of interest, such as those discussed in Sect. 5, would help
to obtain more insight on the behaviour of the system and its energy consump-
tion.

Moreover we plan to study how the energy consumption is modified by chang-
ing parameters of the underlying physical model. Indeed, the obtained results
may suggest that, by changing the material of which the heaters are composed,
its length or the power consumed, a better trade off between reliability and
energy optimization can be obtained.

It would also be interesting to let the power consumed by the system vary
at different weather conditions. This may help to improve the reliability of the
system. Indeed in case of emergency a major throughput may prevent a failure.

Moreover, by implementing a priority queue, it is possible to develop strate-
gies for activating and deactivating those heaters which are in a critical situation,
i.e. when the temperature is closer to the failure point. At the moment, in case
of conflicts between different heaters that need to be turned on, the choice is
made stochastically by the system.

We plan to adapt the model to other different case studies for energy opti-
mization in the context of a railway station, exploiting the modularity of the
proposed approach.
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