
Considering Execution Environment Resilience:
A White-Box Approach

Stefan Klikovits1,2(B), David P.Y. Lawrence1,3,
Manuel Gonzalez-Berges2, and Didier Buchs1

1 Université de Genève, Centre Universitaire d’Informatique, Carouge, Switzerland
{stefan.klikovits,david.lawrence,didier.buchs}@unige.ch

2 CERN, European Organization for Nuclear Research, Geneva, Switzerland
{stefan.klikovits,manuel.gonzalez}@cern.ch

3 Honeywell International Sarl., Rolle, Switzerland

Abstract. Over the last decade code-based test case generation tech-
niques such as combinatorial testing or dynamic symbolic execution have
seen growing research popularity. Most algorithms and tool implementa-
tions are based on finding assignments for input parameter values in order
to maximise the execution branch coverage. Only few of them consider
dependencies from outside the Code Under Test’s scope such as global
variables, database values and subroutine calls as influences to the execu-
tion path. In order to fully test all possible scenarios these dependencies
have to be taken into account for the test input generation. This paper
introduces ITEC, a tool for automated test case generation to support
execution environment resilience in large-scaled, complex systems. One
of ITEC’s corner stones is a technique called semi-purification, a source
code transformation technique to overcome limitations of existing tools
and to set up the required system state for software testing.

Keywords: Resilience · Automated test case generation · Software
testing · Semi-purification · Execution environment resilience

1 Introduction

At the Large Hadron Collider (LHC), its experiments and several other installa-
tions at CERN physicists and engineers employ a Supervisory Control And Data
Acquisition (SCADA) system to mediate between operators and controllers/fron-
tend computers which connect to the sensors and actuators. As such applications
require the configuration of hundreds of controllers, CERN has developed two
frameworks on top of Siemens’ Simatic WinCC Open Architecture (WinCC OA)
[7] SCADA platform to facilitate their creation.

Due to lack of tool support for the WinCC OA’s scripting language Control
(CTRL) [8], it was so far not possible to write and execute unit tests in an efficient
manner. Recently, the Industrial Controls Engineering group at CERN started
the development of such a unit testing framework to fill this need. However,
after more than ten years of development, CERN is left with over 500,000 lines
c© Springer International Publishing Switzerland 2015
A. Fantechi and P. Patrizio (Eds.): SERENE 2015, LNCS 9274, pp. 46–61, 2015.
DOI: 10.1007/978-3-319-23129-7 4

Considering Execution Environment Resilience: A White-Box Approach 47

of CTRL code for which only a very small set of unit tests exist. Hence, the
verification of the source code remains a mainly manual task leading to high
testing costs in terms of manpower and slower release times.

This situation is especially tedious during the frequent changes in the WinCC
OA execution environment. Before every introduction of a new operating system
version, the installation of patches or the release of a new framework version the
code base needs to be re-tested. Over the lifetime of the LHC, these environ-
ment changes happen repeatedly (often annually) and involve a major testing
overhead.

This paper introduces the Iterative TEst Case system (ITEC), a system
for the automatic generation of test cases for the frameworks. ITEC relies on
existing automatic test case generation (ATCG) methodologies such as dynamic
symbolic execution [1,2] or combinatorial testing [3,4] to generate test input.
Currently, many ATCG methodologies do not support the modification of source
code dependencies, such as global variables, external resources (e.g. databases)
and function/subroutine calls. While during manual unit test creation set-up
routines and test doubles [11] (mocks, stubs, etc.) are frequently used to prepare
and simulate a desired system state, techniques such as random testing and
combinatorial testing and their respective tool implementations often do not
support generation of test doubles and set-up routines. To overcome this caveat
we introduce a technique called semi-purification which creates a bridge between
existing testing tools and the mentioned requirements. Semi-purification is a
process that replaces dependencies with additional function parameters, so that
ATCG tools can generate test input for all code execution paths.

The rest of this paper is structured as follows: Sect. 2 describes the devel-
opment style and applications at CERN and illustrates the resulting prob-
lems. Section 3 gives an overview of ITEC and describes the general work- and
information flow. Section 4 explains semi-purification, in detail, followed by the
introduction of some non-trivial semi-purification challenges in Sect. 5. Section 6
concludes.

2 Problem Description

The EN-ICE group at CERN has been developing and maintaining two frame-
works for the development of SCADA applications for accelerators, experiments
and infrastructure. WinCC OA, the underlying platform, provides amongst many
other features the functionality to obtain and display data from sensors and send
commands to actuators. Figure 1 depicts the typical three layers schema (field
objects/sensors - frontend controllers - SCADA) of control systems at CERN
and their connection to the operator work stations.

Currently about 600 individual WinCC OA systems are in action for the
LHC and its experiments alone1 – all of them relying on the functionality of
the frameworks. Additionally many more applications use the frameworks, such
1 Gonzalez-Berges, M. – Presentation at ETM Day, (CERN, 2013).

48 S. Klikovits et al.

Operator
workstations

WinCC OA

Technical
network

Fieldbus

Local
touchpanel

SCADA
servers

Controllers

Sensors &
actuators

Su
pe

rv
is
io
n

Co
nt
ro
l

Fi
el
d

Icons: (C) Siemens AG 2015, All rights reserved

Fig. 1. Layer model dedepicting the connection of field objects, frontend controllers
(e.g. PLCs) and Operator Work Stations (OWS) through SCADA applications

as the electrical network supervision with its tens of thousands devices and
hundreds of thousands measurement and control points.

The frameworks’ libraries and UI controls are primarily written in WinCC
OA’s proprietary scripting language Control (CTRL). CTRL’s syntax is based
on ANSI C, but provides some specific extensions such as for accessing the
WinCC OA database. Other language modifications include the removal of fea-
tures such as pointers, structs and typedefs and introduction of reference para-
meters, dynamic arrays and implicit type casting.

The syntax modifications are significant enough to exclude the use of exist-
ing unit testing frameworks. Hence, to date, mainly manual testing has been
employed for verification. It has been considered to translate CTRL and use
existing unit test case frameworks, but the backlog of not unit test covered code
would still remain significant.

At the time of writing, CERN supports the execution of WinCC OA on two
operating systems (OS) and typically up to two versions each (currently Win-
dows 7, Windows Server 2008 R2 and Scientific Linux CERN 6). As CERN’s
security protocol requires the switch to current operating system versions, reg-
ular upgrades are essential. The operators also introduce patches and updates
in frequent intervals. Additionally, new WinCC OA releases are published every
one to two years. Due to Siemens’ support policy it is necessary to upgrade to
new versions, which often involves updating the software because of changed
features and/or compatibility issues.

This all results in an ever changing execution environment over the entire
runtime of the LHC (over 30 years in total). Before every change, the software
has to be tested and adapted if necessary. Due to the frameworks’ sizes and the
lack of automated CTRL test cases, this task takes a long time to complete.

The current release testing process requires developers to thoroughly verify
the functionality of all components and fix any defects discovered. After several
iterations of the test-fix cycle, the code base reaches a point that is deemed ready
for shipment.

Considering Execution Environment Resilience: A White-Box Approach 49

Although the manual verification has been complemented by a few automated
user interface tests, testing remains a repetitive manual process, consuming time
that developers could spend more productively on other tasks.

3 Iterative Test Case Generation System

To overcome the lack of test cases and code coverage, we propose the Iterative
TEst Case (ITEC) generation system. ITEC generates and executes test input
for pieces of source code, referred to as Code Under Test (CUT). The size of the
CUT can vary in granularity from individual procedures to multiple functions
connected by subroutine calls.

As displayed in Fig. 2, ITEC’s workflow is split into four subtasks, each indi-
vidually essential for the quality of the overall result.

Fig. 2. Overview of the system’s standard workflow on a high level with all in- and
outputs of the system

A1. In the first step, the user chooses the Code Under Test (CUT). This can be
a single function, a library or an entire component.

A2. Before the test case generation, verified test cases (“test seeds”) can option-
ally be fed into the system to gather information from previous generations and
existing (possibly manually implemented) test cases.

The test input generation itself is based on modified versions of the CUT.
These modifications are made by a process we call semi-purification, which
assures that external dependencies such as global variables, database values and
other libraries are taken into account for the generation.

After the test data generation the resulting test input has to be cleansed
from unviable values. The cleaning is necessary, as due to the transformation
of the CUT it is possible that third party ATCG methodologies produce values
that are impossible for the original code base.

A3. Based on the generated test input, the next task is to create and execute
test cases. The required test setup procedures will be derived from the analysis
of the semi-purification changes in A2. Subsequently, the test cases are executed
and the changes to the system recorded. These observations will be added as
assertions to the test cases.

50 S. Klikovits et al.

A4. As the correctness of the assertions generated in A3 has not been verified
yet, ITEC will take advantage of existing test reports from previous test runs.
These reports are used to assist in the decision to accept/refute the test obser-
vations (results). However, as there might not be enough test results available,
or the existing information could be misleading, the final decision lies with the
test engineer who serves as the test oracle.

After the judgment, the user has the choice to select a subset of the generated
tests cases to be stored as future regression tests. Additionally a test report
containing information about the generated test cases and the test execution
logs is produced.

4 Generating Test Cases

The generation of test cases has experienced growing research interest. Although
already introduced in the 1970s and 1980s the recent gain in computing power
made the usage of methodologies such as adaptive random testing [6], combi-
natorial test case generation [3,4] and dynamic symbolic execution [1,2] more
feasible. Leaning onto the insights of existing quality assurance research in the
areas of specification based testing [12], test selection [13] and also quality assur-
ance for resilient systems [14], we aim to build on these Automatic Test Case
Generation (ATCG) processes for our purposes. In most cases ATCG methods
produce a set of different test inputs that can be mapped on the input parame-
ters of the function under test. The aim is to produce test inputs that execute
the Code Under Test (CUT) along as many different execution paths as possible.

For this purpose we have to first define the notion of a function, for which
we create test cases.

Definition 1 (Pure function). We define a function f = 〈π, impl〉 to be a
program function, that depends on its input parameter names π ∈ Π and its
implementation impl ∈ Impl, and consists of a sequence of statements describing
its behaviour.

Definition 2 (Input parameter value assignment). Before the execution
of a function f , it is necessary to assign values to its input parameters. This
assignment is defined as follows:

assign : Π → V (1)

Definition 3 (Function execution). We define exec as the execution of a
function f with a given inputs assignment in a system with a certain state. The
result of this function execution is a deterministic return value.

We define a unit test case for such a function in the following manner:

Definition 4 (Test case). A test case t = 〈i, e〉 consists of i = assign(π), an
assignment of input parameter values, and e, the expected value for the return
value.

Considering Execution Environment Resilience: A White-Box Approach 51

However, in many cases the CUT is not a pure function [5], meaning that next
to the parameters Π, f has a set of additional dependencies D from outside its
function scope, such as global variables or access to external resources through
the file system or databases.

Definition 5 (Function dependencies). The dependencies d of a non-pure
function f is a set of variables and resources, defined outside f ’s scope part of
the system state. (d ⊆ state). For our purposes we assume we can access the
variable/resource value through val(di); di ∈ d.

Further, the function can change the system state by modifying global vari-
ables and resources. These so-called observable side effects are defined by the set
S, where S is the set of changes to the system produced by the execution of a
function.

Definition 6 (Non-pure functions and side effects). Let f be a non-pure
function defined with parameters π ∈ Π, dependencies d ∈ D and observable
side effects s ∈ S. Then the execution of f with an input parameters assignment
on a system with a given state, is the transition of the system to a new state and
the production of a return value.

exec(f, assign, state) → r, state′ (2)

s is the set of new values that have been changed by the transition outside the
function’s scope.

s = state′\state (3)

For our purpose we will denote a non-pure functions as f = 〈π, d, impl〉.
We therefore extend our previous definitions to define test cases for non-pure

functions.

Definition 7 (Test case for non-pure functions). Given a non-pure func-
tion under test f , a test case t = 〈p, i, e〉 for f consists of the preparatory pro-
cedure p, the input value assignment i and the expected values e for some or all
of the observations of the return value and the side-effects r ∪ s.

In order to keep the test cases of such a function deterministic, the system
has to be brought into a known state before execution. That means that a
preparatory procedure must be executed in order to set each dependency to the
required value.

Definition 8 (Preparatory procedure). The execution of a preparatory pro-
cedure p ∈ Impl of a test case for a non-pure function with dependencies d
modifies the state of the system so that each di ∈ d returns the desired value.

Many ATCG methodologies (e.g. random testing, combinatorial testing) per-
form their generations in a black-box fashion based on a function’s signature
but ignore that external dependencies in the function body influence its behav-
iour too. Therefore, to effectively cover all necessary combinations of parameters

52 S. Klikovits et al.

and dependencies we have to modify the CUT using a technique called semi-
purification. This ensures that the generation will take these dependencies into
consideration. The generated values for the additional parameters can then be
used to replace the dependencies with test doubles.

4.1 Removing Dependencies Through Semi-purification

Leaning onto the notion of pure functions, we refer as semi-pure to those proce-
dures whose outcome only depends on its input values, but may have a certain
number of side effects. Accordingly, semi-purification is the process of convert-
ing a not semi-pure function into a semi-pure one. During the semi-purification
process dependencies from outside the CUT’s scope are discovered and replaced
by new input parameters. Since the resulting functions only depend on their
input parameters, we can then employ standard ATCG methodologies to create
test input.

To start with, we define the semi-purification process for external resources
and global variables. These efforts are derived from the concept of localization.
Localization is a refactoring technique that completely replaces the access to
global variables and has been first picked up programmatically by Sward and
Chamillard [9] for Ada programs. The topic was revisited for C programs by
Sankaranarayanan and Kulkarni [10]. Leaning onto this technique, we not only
replace global variables, but also database and other resource accesses with new
input parameters.

Definition 9 (Semi-purification). Semi-purification is the process of convert-
ing a function’s dependencies d into additional parameters π.

SP : D → Π (4)

For simplification, we can imagine that when SP is applied onto an entire func-
tion f = 〈π, d, impl〉, it converts some (or all) of the dependencies.

SP : Π × D × Impl → Π × D × Impl (5)
SP (π, d, impl) = 〈π ∪ Δπ, d′, impl′〉 (6)

where d′ ⊆ d and Δπ = {SP (di)|di ∈ d}.
In our case, we want to remove all global variables and external resources,

hence after the semi-purification d′ = ∅. We require this process to be neutral,
meaning that the return values and side effects are the same when executing the
functions.
Definition 10 (Semi-purification neutrality). SP has to be implemented so
that it is neutral for any given f . Neutrality is given, iff

∀assign, ∀Δassign, ∀state : exec(f, assign, state) = exec(SP (f), {assign, Δassign}, state
′
) (7)

where state′ ⊆ state and ∀Δπi ∈ Δπ : val(di) = Δassign(Δπi);Δπi = SP (di); di ∈ d.

Considering Execution Environment Resilience: A White-Box Approach 53

It is to be said that it is possible to check this neutrality but it is hard to prove it.
We rely that the experiences and assertions of our predecessors [9,10] are valid.
At a future stage we will aim to investigate this matter deeper. Our tool will use
an algorithm that will work according to the properties described in this paper,
however, at the time of writing the implementation phase is not completed.

Example of Semi-purification. The following subsection shows a small exam-
ple of the process of semi-purification. Listing 1 shows a non-pure function that
relies not only on its input values, but also on the values that are obtained from
a database (dbGet(x)) and a global variable (GLOBAL VAR). To deterministically
test f(x) it is necessary to execute the preparatory procedure before executing
the function call to the CUT. In our example test case (Listing 2) we do this by
explicitly setting the values of the global variable and the data point.

Listing 1. A non-pure function

1 f (x){
2 i f GLOBAL VAR:
3 return dbGet (x)
4 else :
5 return −1
6 }

Listing 2. A test case for a f(x)

1 t e s t f (){
2 dbSet (” t e s t ” ,5) // prepare
3 GLOBAL VAR = True
4 x = f (” t e s t ”) // act
5 assert (x == 5) // a s s e r t
6 }

To convert f(x) into a semi-purified function we introduce additional input
parameters (a and b) for its dependencies. The references to GLOBAL VAR and
the database access (dbGet(x)) are replaced by a and b, respectively. The semi-
purified version of the function from the previous example can be seen in Listing
3. The according test case (Listing 4) does not require a preparatory procedure.

Listing 3. Semi-purified f(x)

1 f s p (x , a , b){
2 i f a : //GLOBAL VAR:
3 return b // dbGet (x)
4 else :
5 return −1
6 }

Listing 4. Test case for f sp(x,a,b)

1 t e s t f s p (){
2 x = f (” t e s t ” ,True , 5) // act
3 assert (x == 5) // a s s e r t
4 }

Recursive Application of Semi-purification. Oftentimes the CUT is not
an individual procedure, but includes subroutine calls to perform its operation.
In these cases the semi-purification has to be applied recursively and the changes
made to a subroutine (callee) need to be propagated to the caller in order to
keep the CUT valid.

Listing 5. Recursive Semi-purification
1 functionA (x){
2 a = functionB (x)
3 return a
4 }
5
6 functionB (x){
7 b = GLOBAL VAR
8 b++
9 return b

10 }

Listing 6. Semi-purified CUT
1 functionA (x , y){
2 a = functionB (x , y)
3 return a
4 }
5
6 functionB (x , y){
7 b = y
8 b++
9 return b

10 }

54 S. Klikovits et al.

An example of this behaviour can be seen in Listing 5 which displays the
CUT (functionA). The semi-purification of the subroutine (removing the depen-
dency to GLOBAL VAR) modifies the function signature of functionB. This change
has to be incorporated into the function call in functionA and also added to
functionA’s signature. The resulting code can be observed in Listing 6.

4.2 Creating Test Inputs and Preparatory Routine

Following the semi-purification process we can execute ATCG tools on the mod-
ified CUT. The result is a set of test case inputs that could be used to verify the
semi-purified version of the CUT. However, we aim to generate regression tests
for the original CUT and hence need to re-convert the output.

The result of applying ATCG methodologies onto semi-purified functions, is a
power set of assignments of values to the input parameters assign′ : (π ∪Δπ) →
V . For simplicity, instead of one assignment assign′, we will imagine the elements
of the output as two separate mappings assign and Δassign, one for the original
parameters and one for the additional semi-purified parameters.

Definition 11 (Test input generation for semi-purified functions). We
define the test input generation TIG for a semi-purified function f ′ that produces
a power set of parameter value assignments, assign : Π → V and Δassign :
ΔΠ → V .

TIG : f → P(assign) (8)

TIG(π ∪ Δπ, ∅, impl) =
⋃

i∈0,...,n

{assigni,Δassigni} (9)

However, as the target is to produce test cases for the original CUT, the gen-
erated test inputs need to be re-transformed accordingly. This means that we
have to take the value assignments for the newly introduced parameters in f ′

and convert them into a preparatory procedure.

Definition 12 (Inverse Semi-purification). Given a function f and its cor-
responding semi-purified version f ′ we define SP−1 as the operation that con-
verts Δassign into a preparatory procedure P .

SP−1 : Δassign → P (10)

where the execution of a p ∈ P asserts that each di ∈ d returns the value defined
in Δassign(SP (di)).

The preparatory procedure includes for example the setting of global vari-
ables, data point values or the preparation of other external resources such as the
file system state. Figure 3 shows the schematic representation of the information
flow for the test input generation.

Considering Execution Environment Resilience: A White-Box Approach 55

〈assign, p〉1,...,n

f = 〈π, d, impl〉

〈assign, Δassign〉1,...,n

f ′ = 〈π ∪ Δπ, ∅, impl′〉

SP −1

SP

T
I
G

I
T

E
C

Fig. 3. Using ATCG on non-pure functions by removing dependencies on global vari-
ables and external resources.

4.3 Semi-purification of Subroutine Calls

Using the above described method, it is possible to create functions that only
depend on their input parameters. Recursive application of semi-purification on
subroutines permits the generation of test input for function interactions. How-
ever, when testing programs with a deep control flow graph, the semi-purification
process might easily result in a procedure with dozens of input parameters and
many subroutines that have to be rewritten. Whereas the approach we intro-
duced so far permits the generation of integration tests, this approach comes
with caveats. The generation of test inputs for CUTs of this complexity is com-
putationally expensive, as for most ATCG methodologies the complexity rises
with the number of input parameters. Additionally, in many cases the function
calls connect multiple libraries, voiding the initial goal of creating unit tests.

To overcome this limitation, we introduce a semi-purification process that
removes a function’s subroutine calls (SRC). The two processes can be seen as
complementary actions, each removing different dependencies. For the rest of
this paper we continue with the following notation: Global variable and resource
dependencies remain D, subroutine dependencies are identified by DSRC . SPSRC

is the process of replacing some of these subroutine calls with additional input
parameters ΔΠ ′. The set of remaining subroutines D′

SRC contains SRCs that
should not be replaced (e.g. built-in string operations or hashing procedures).
For certain CUTs and situations this set is empty.

Definition 13 (Semi-purification of Subroutine Calls). Semi-purification
SPSRC of subroutine calls is the process of converting a function under test
(with subroutine calls) f = 〈π, d∪dSRC , impl〉 into a function f ′′ = 〈π∪Δπ′, d∪
d′

SRC , impl′〉 where Δπ′ is the set of newly introduced parameters to replace some
(or all) of the subroutine dependencies dSRC .

SPSRC : Π × D × Impl → Π × D × Impl (11)
SPSRC(π, d ∪ dSRC , impl) = 〈π ∪ Δπ′, d ∪ d′

SRC , impl′〉 (12)

where d′
SRC ⊆ dSRC and Δπ′ = {SP (di)|di ∈ dSRC}.

ATCG methodologies can then generate the input for the function
with fewer dependencies (or none at all). The resulting input assignments

56 S. Klikovits et al.

(assign,Δassign′) have to be re-transformed into test input for the original func-
tion. The additional test input for replaced subroutine calls (Δassign′) needs to
be converted into a preparatory procedure P ′ that create test doubles for the
masked out SRCs.

The entire workflow combining the two semi-purification routines (SP and
SPSRC) is displayed in Fig. 4.

Definition 14 (SPSRC neutrality). SP has to be implemented so that it is
neutral for any given f . Neutrality is given, iff

∀assign, ∀Δassign, ∀state : exec(f, assign, state) = exec(SP (f), {assign, Δassign
′}, state

′
)

(13)
where state′ ⊆ state and

∀Δπ
′
i ∈ Δπ

′
: val(di) = Δassign

′
(Δπ

′
i);Δπ

′
i = SP (di); di ∈ d (14)

Definition 15 (SP−1
SRC). The inverse semi-purification of SRCs is defined as

the generation of a preparatory procedure p′ ∈ Impl for ΔdSRC .

SP−1
SRC : Δassign′ → P ′ (15)

so that the execution of a p ∈ P asserts that each subroutine di ∈ dSRC returns
the value defined in Δassign′(SP (di)).

For subroutines the creation of a preparatory procedure includes the specification
of test doubles for these functions that provide the specified values.

〈assign, p ∪ p′〉1,...,n

f = 〈π, d ∪ dSRC , impl〉

〈assign, Δassign, p′〉1,...,n

f ′ = 〈π ∪ Δπ, dSRC , impl′〉 f ′′ = 〈π ∪ Δπ ∪ Δπ′, d′
SRC , impl′′〉

〈assign, Δassign, Δassign′〉1,...,n
SP −1

SP

SP −1
SRC

SPSRC

T
I
G

I
T

E
C

I
T

E
C

Fig. 4. The full semi-purification workflow, including subroutine replacement

5 Problematic Areas of Semi-purification

The application of semi-purification reaches limits in certain areas. The following
section will introduce some of these areas and show our plans to overcome these
problems.

Considering Execution Environment Resilience: A White-Box Approach 57

5.1 Loops

One such situation is the presence of subroutine calls inside iterations (loops and
recursions).

Looking at the semi-purified function sleepUntilReady in Listing 7 where
the parameter a has been newly introduced to replace the dependency on
dbGet(notReadyDP).

Listing 7. Loop example

1 s leepUnti lReady (a){
2 while a : // r ep l a c e s dbGet (notReadyDP)
3 s l e ep (5) // s l e ep f o r 5 seconds
4 }

The algorithm that we introduced so far is not sufficient to fully test the
functionality of this function. ATCG methodologies would create two test inputs
(True and False) for a. However, the case where the function is executed with
a = True, the test case would result in an endless loop.

In order to generate a test case for the a = True we have to change the
parameter a to be a list of values and the loop to access a new element of this
list as shown on the Listing 8. Using these modifications it is possible to generate
the test input to achieve the desired behaviour.

Listing 8. Modified loop

1 s leepUnti lReady (a){
2 i = 0
3 while a[i] :
4 s l e ep (5)
5 i++
6 }

Please note, that the example above can lead to an IndexOutOfBounds error,
that we have to account for. In general it is not possible to create (single thread)
test cases for unbounded loops, so we have to transform the loop to be bounded.
ATCG tools work around the limitation of unbound loops by having certain
timeout constraints on the time or number of execution paths analysed. We aim
to investigate this issue in the future by instrumenting the loops and drawing
conclusions from this execution information.

5.2 Dependencies Between Subroutines

Another problematic scenario is in the case of dependencies between subrou-
tines. Listing 9 shows such a CUT, containing two read and one write access
to a global variable (SPEED VAR). The semi-purification algorithm we introduced
above would create the CUT presented in Listing 10.

The problem with the näıve approach of semi-purification is that each access
to a dependency is replaced with a new input parameter. Here a and b access
the same variable which’s value cannot change in standard (single thread) exe-
cutions. For this reason the semi-purification process should replace them with
the same parameter. The write access remains unmodified as it is a side effect
and there are no further reads from this dependency.

58 S. Klikovits et al.

Listing 9. CUT with dependencies

1 adjustSpeed (){
2 x = getTheSpeed ()
3 i f x < 10 :
4 doubleTheSpeed ()
5 }
6
7 getTheSpeed (){
8 return SPEED VAR
9 }

10
11 doubleTheSpeed (){
12 speed = SPEED VAR
13 SPEED VAR = speed∗2
14 }

Listing 10. Näıvely semi-purified CUT

1 adjustSpeed (a ,b){
2 x = getTheSpeed (a)
3 i f x < 10 :
4 doubleTheSpeed (b)
5 }
6
7 getTheSpeed (a){
8 return a // SPEED VAR
9 }

10
11 doubleTheSpeed (b){
12 speed = b // SPEED VAR
13 SPEED VAR = speed∗2
14 }

Additionally, it is in general necessary to discover sequential write-read sce-
narios, where an external value is first set, then read. In this cases it is necessary
to re-use the value from the write for the read as well, as otherwise the behaviour
of the modified CUT is changed.

5.3 Concurrency

The example from the previous subsection shows the generation of impossible
scenarios for single-thread execution. However, WinCC OA uses so-called “man-
agers” to perform tasks. Each manager has its own context and works as an
individual process.

manager
Ctrl UI

manager

Device
Drivers

Dist
manager

DB
manager

EV
manager

Fig. 5. WinCC OA’s manager concept

Figure 5 displays some of the WinCC OA managers such as the event manager
(EV), the database manager (DB) and the Control manager (Ctrl). The EV
serves as message router and keeps an in-memory image of the current database
values, handles alarms and executes functions on the data points.

Each manager is directly connected to the EV and hence it is possible that
two processes modify the same resource without noticing the other one’s updates.

Considering Execution Environment Resilience: A White-Box Approach 59

Figure 6 schematically displays such a behaviour where Process1 sets a data
point value while Process2 modified the state meanwhile. This scenario becomes
inherently more complex, considering that CERN’s control systems consist of
hundreds of subsystems, which each resemble the one in Fig. 6 and can access
each other’s data points via communication through the Dist managers. To pre-
vent this, it is possible to ask for a lock on a data point and stop other managers
from modifying it.

Fig. 6. Process1 overwrites the data point without noticing the changes

For the semi-purification it is essential to detect these situations and avoid
race conditions and dirty reads and writes, but also identify when locks are being
used.

ITEC has to be capable of generating test cases for these situations, mean-
ing that while single thread unit tests are essential, ITEC should also allow
for generating test cases to prevent concurrency issues and race conditions to
happen.

As most of these error-situations can only be observed through exceptions
and error codes, it is necessary that the test doubles fulfil those needs too.

6 Conclusion

CERN’s recent efforts to create a unit testing framework for the proprietary
CTRL language opened the door for a modern quality assurance process. How-
ever, after over a decade of development, the backlog of source code without auto-
mated test coverage makes changes in the execution environment challenging.

To address this problem and increase the testing process resilience, we out-
lined ITEC, a testing system that has the purpose to automatically generate
test cases at a unit level for existing source code. To that end, ITEC bases its
efforts on existing automated test case generation techniques such as adaptive
random testing, combinatorial testing and dynamic symbolic execution.

60 S. Klikovits et al.

Unfortunately, a large majority of the techniques previously mentioned are
not well suited for practical tests generation. As a matter of fact, dependencies
on global variables, external resources and subroutine calls are usually disre-
garded. Therefore, to overcome these obstacles often encountered in CERN’s
source codes, we thoroughly and formally presented a novel technique called
semi-purification, its goals being to strip the code under test (CUT) from depen-
dencies that lie outside the considered scope. For that purpose, we first addressed
the semi purification of code in the presence of global variables and external
resources. We then quickly extended the semi-purification’s scope to also take
into account subroutine calls as dependencies.

Finally, we succinctly addressed additional problems that often hinder the use
of ATCG techniques. Among these, we discussed the pertinent idea of considering
system concurrency with unit tests and illustrated the needs to deal with these
kind of situations by examining an existing problem over the considered system.

References

1. Qu, X., Robinson, B.: A case study of concolic testing tools and their limitations.
In: 2011 International Symposium on Empirical Software Engineering and Mea-
surement, pp. 117–126. IEEE Computer Society, Los Alamitos (2011)

2. King, J.C.: A new approach to program testing. ACM SIGPLAN Not. 10(6), 228–
233 (1975). ACM, New York

3. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
11:1–11:29 (2011). ACM, New York

4. Colbourn, C.J.: Combinatorial aspects of covering arrays. In: Le Matematiche, vol.
58, Catania, Italy (2004)

5. Haskell. Functional programming (2014)
6. Anand, S., Burke, E.K., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp, W., Har-

man, M., Harrold, M.J., Mcminn, P.: An orchestrated survey of methodologies for
automated software test case generation. J. Syst. Softw. 86(8), 1978–2001 (2013)

7. ETM Professional Control: WinCC OA at a glance. Technical report, Siemens AG
(2012)

8. ETM Professional Control: Control script language (2015). http://etm.at/index
e.asp?id=2&sb1=54&sb2=118&sb3=&sname=&sid=&seite id=118. Accessed 18
Apr 2015

9. Sward, R.E., Chamillard, A.T.: Re-engineering global variables in Ada. In: Pro-
ceedings of the 2004 ACM SIGAda International Conference on Ada, pp. 29–34.
ACM, New York (2003)

10. Sankaranarayanan, H., Kulkarni, P.: Source-to-source refactoring and elimination
of global variables in C programs. J. Softw. Eng. Appl. 6(5), 264–273 (2013)

11. Meszaros, G.: Test double patterns (Chapter 23). In: XUnit Test Patterns: Refac-
toring Test Code, pp. 521–590. Prentice Hall PTR, Upper Saddle River (2006)

12. Barbey, S., Buchs, D., Péraire, C.: A theory of specification-based testing for
object-oriented software. In: Hlawiczka, A., Simoncini, L., Silva, J.G.S. (eds.)
EDCC 1996. LNCS, vol. 1150, pp. 303–320. Springer, Heidelberg (1996)

http://etm.at/index_e.asp?id=2&sb1=54&sb2=118&sb3=&sname=&sid=&seite_id=118
http://etm.at/index_e.asp?id=2&sb1=54&sb2=118&sb3=&sname=&sid=&seite_id=118

Considering Execution Environment Resilience: A White-Box Approach 61

13. Péraire, C., Barbey, S., Buchs, D.: Test selection for object-oriented software based
on formal specifications. In: Gries, D., de Roever, W.-P. (eds.) PROCOMET 1998.
LNCS (IFIP), pp. 385–403. Springer, New York (1998)

14. Lawrence, D., Buchs, D., Wellig, A.: Using instrumentation for quality assessment
of resilient software in embedded systems. In: Majzik, I., Vieira, M. (eds.) SERENE
2014. LNCS, vol. 8785, pp. 139–153. Springer, Heidelberg (2014)

	Considering Execution Environment Resilience: A White-Box Approach
	1 Introduction
	2 Problem Description
	3 Iterative Test Case Generation System
	4 Generating Test Cases
	4.1 Removing Dependencies Through Semi-purification
	4.2 Creating Test Inputs and Preparatory Routine
	4.3 Semi-purification of Subroutine Calls

	5 Problematic Areas of Semi-purification
	5.1 Loops
	5.2 Dependencies Between Subroutines
	5.3 Concurrency

	6 Conclusion
	References

