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Preface

The way software is developed is changing. It must take into account multifaceted
constraints such as unpredictable markets, evolving customer requirements, pressures
of shorter time-to-market, etc. At the same time, software is controlling critical func-
tionalities in several domains such as transportation, health care, manufacturing, and IT
infrastructures. As a result, modern software systems require on the one hand adding
frequently (daily or weakly) new features, functionalities, or new versions of software
artifacts according to changing contexts, business opportunities, or customer feedback,
on the other hand ensuring their resilience – the ability of a system to persistently
deliver its services in a dependable way even when facing changes, unforeseen failures,
and intrusions.

The SERENE 2015 workshop provides a forum for researchers and practitioners to
exchange ideas on advances in all areas relevant to software engineering for resilient
systems, including, but not limited to:

1. Development of resilient systems

– Incremental development processes for resilient systems
– Requirements engineering and re-engineering for resilience
– Frameworks, patterns, and software architectures for resilience
– Engineering of self-healing autonomic systems
– Design of trustworthy and intrusion-safe systems
– Resilience at run-time (mechanisms, reasoning, and adaptation)

2. Verification, validation, and evaluation of resilience

– Modelling and model-based analysis of resilience properties
– Formal and semi-formal techniques for verification and validation
– Experimental evaluations of resilient systems
– Quantitative approaches to ensuring resilience
– Resilience prediction

3. Case studies and applications

– Empirical studies in the domain of resilient systems
– Methodologies adopted in industrial contexts
– Cloud computing and resilient service provisioning
– Resilient cyber-physical systems and infrastructures
– Global aspects of resilience engineering: education, training, and cooperation

This volume contains the papers presented at SERENE 2015, 7th International
Workshop on Software Engineering for Resilient Systems, held during September 7–8,
2015 in Paris.



There were 18 submissions. Each submission was reviewed by at least three, and on
average 3.1, Program Committee members. The committee decided to accept 10 papers.

We adopted EasyChair for managing the submission, reviewing, and proceedings
phases.
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Biological Immunity and Software Resilience:
Two Faces of the Same Coin?

Marco Autili, Amleto Di Salle, Francesco Gallo(B),
Alexander Perucci, and Massimo Tivoli

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università dell’Aquila, L’Aquila, Italy

{marco.autili,amleto.disalle,francesco.gallo,massimo.tivoli}@univaq.it,
alexander.perucci@graduate.univaq.it

Abstract. Biological systems modeling and simulation is an important
stream of research for both biologists and computer scientists. On the
one hand, biologists ask for systemic approaches to model biological sys-
tems to the purpose of simulating them on a computer and predicting
their behavior, which is resilient by nature. This would limit as much
as possible the number of experiments in laboratory, which are known
to be expensive, often impracticable, hardly reproducible, and slow. On
the other hand, beyond facing the development challenges related to the
achievement of the resilience to be offered by biological system simula-
tors, computer scientists ask for a well-established engineering methodol-
ogy to systematically deal with the peculiarities of software resilient sys-
tems, in their more general sense. In line with this, in this paper we report
on our preliminary study of immune systems (a particular kind of bio-
logical systems) aimed at devising software abstractions that enable the
systematic modeling of resilient systems and their automated treatment.
We propose a bio-inspired concept architecture for structuring resilient
systems based on the Akka implementation of the widely-known Actor
Model, which supports scalable and resilient concurrent computation. To
the best of our knowledge, this work represents a first preliminary step
towards devising a bio-inspired paradigm for engineering the develop-
ment of resilient software systems.

1 Introduction

Biological systems modeling and simulation is an important stream of research
for both biologists and computer scientists. As stated by Hofmeyr [16], the impor-
tance of adopting a systemic approach to biology is not new. Its relevance in the
modern biological context comes from the need of robust mathematical models
and computer simulations that faithfully predict the behaviour of entire biolog-
ical systems, which are resilient by nature. In this direction, the construction of
predictive models of bio-molecular networks is of paramount importance.

Based on differential equations, cellular networks of moderate size have been
modeled successfully. However, when large-scale networks are concerned, the

c© Springer International Publishing Switzerland 2015
A. Fantechi and P. Patrizio (Eds.): SERENE 2015, LNCS 9274, pp. 1–15, 2015.
DOI: 10.1007/978-3-319-23129-7 1



2 M. Autili et al.

construction of predictive quantitative models is not easy, if not impossible, due
to limited knowledge of mechanistic details and kinetic parameters. Indeed, the
knowledge about these systems is typically available in the form of a textual
description plus some informal diagrams, which often lead to ambiguities.

Furthermore, as noted by Sackmann et al. [27], the amount of biological
knowledge is increasing, and experiments in laboratory tend to be expensive,
slow, and often impracticable. As a result, the assistance of computers is becom-
ing indispensable. Computer-assisted experiments could be less expensive, faster
and more easily reproducible: “executable software models of biological systems
can be used for predictions, preparation and elimination of unnecessary, danger-
ous or unethical laboratory experiments” [21]. As discussed in Sect. 6, one of the
major questions systems biology is currently trying to answer is how to represent
biological knowledge in a machine-processable way.

On the other side of the coin, beyond facing the development challenges
related to the achievement of the resilience to be offered by biological system sim-
ulators, computer scientists ask for a well-established engineering methodology
to systematically deal with the peculiarities of software resilient systems, in their
more general sense [18]. By observing a strong analogy with biological systems,
software engineering approaches in the literature (see Sect. 6) achieve resilience
by means of mechanisms, e.g., replication, containment, isolation and delegation,
which ensure that parts of the system can fail and recover without compromising
the system as a whole. For example, recovery of components can be delegated
to another (external) component and high-availability is ensured by replication
where necessary. Thus, just like biological systems, software resilient systems
are more flexible, loosely-coupled, scalable, and more amenable to change. They
are significantly more tolerant of failure with respect to non-resilient systems.
Still confirming the conceptual relation between biological systems and software
resilient systems, biological immunity is related to the ability of an organism to
resist a particular infection or toxin by the action of specific antibodies or sen-
sitized white blood cells. This ability recalls the concept of software resilience,
i.e., the ability of a system to persistently deliver its services in a dependable way
even when facing changes, unforeseen failures and intrusions.

The work proposed in this paper starts from the observation that biological
immunity and software resilience may be considered as two faces of the same coin.
As a particular kind of biological systems, immune systems are resilient systems
par excellence. Thus, while architecting resilient software systems, it does make
sense to be inspired by the fundamental elements, relations, and behaviors of
immune systems.

In line with the above, in this paper we report our preliminary study of
immune systems aimed at devising software abstractions that enable systematic
modeling and automated treatment of resilient software systems. We propose a
bio-inspired concept architecture for structuring resilient systems based on the
Akka1 implementation of the widely-known Actor Model [15], which supports
scalable and resilient concurrent computation. To achieve this, we have devised
1 http://akka.io/.

http://akka.io/
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an abstraction of immune system elements that are then mapped to concrete
concepts of the Akka Actor Model. To the best of our knowledge, this work
represents a first preliminary step towards devising a bio-inspired paradigm for
engineering the development of resilient software systems.

The paper is organized as follows. In Sect. 2, we set the context of our work by
summarizing the fundamentals of immune systems and introducing the devised
abstractions. Leveraging these abstractions, in Sect. 3 we briefly describe three
immune system scenarios that are representative with respect to the resilience
concept. Basing on the Akka Actor Model introduced in Sect. 4, in Sect. 5, we
propose a bio-inspired concept architecture for resilient software systems and
we apply it to the described scenarios. Section 6 discusses related work, and
Sect. 7 concludes and outlines future research directions that we will undertake
to extend and put in practice the proposed concept architecture, and to precisely
define the bio-inspired paradigm on top of it.

2 Immune Systems

An immune system [16] is a particular kind of biological system that is self-
protecting against diseases. It is made of biological structures and processes
within an organism. The minimum biological structure within an immune system
is the cell, which in turn is made of molecules.

A key feature of an immune system is the ability to distinguish between (i)
non-infectious structures, which must be preserved since they do not represent
a disease, and (ii) infectious structures, i.e., pathogens, which must be removed
since they result in injuries to the organism the immune system belongs to.

The discrimination between non-infectious and infectious structure takes
place at the molecular level and is mediated by specific cell structures that
enable the presentation and recognition of harmful components referred to as
antigens (i.e., small fragments of a pathogen). In particular, these cell structures
are able to detect anomalous/undesired situations through antigens recognition,
and to place the immune system in a state of alarm. From this state, other cell
structures are in charge of reacting with a defensive response, hence removing
infectious structures.

By referring to [19], the main elements of an immune system can be summa-
rized as follows:

– Lymphocytes. They are the cells of an immune system. For the purposes of
this paper, it is enough to distinguish between T Cells and B Cells:
• T Cells. They can be of two kinds, T Helper and T Killer. The former

are cells responsible for preventing infections by managing and strength-
ening the immune responses enabled by the recognition of antigens. The
latter are cells able to destroy certain tumor cells, viral-infected cells, and
parasites. Furthermore, they are responsible for down-regulating immune
responses, when needed.

• B Cells. They are responsible for producing antibodies in response to
foreign proteins of bacteria, viruses, and tumor cells.
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Fig. 1. Immune system components

Both B Cells and T Cells carry receptor molecules that make them able to
recognize specific pathogens. In particular, T Killers recognize pathogens only
after antigens have been processed and presented in combination with a Major
Histocompatibility Complex (MHC) molecule. In contrast, B Cells recognize
pathogens without any need for antigen processing.

– Macrophages. They are important in the regulation of immune responses.
They are often referred to as Antigen-Presenting Cells (APC) because they
pick up and ingest foreign materials and present these antigens to other cells of
the immune system such as T Cells and B Cells. This is one of the important
first steps in the initiation of an immune response.

– Memory Cells. When B Cell and T Cell are activated and replicated, some
cells belonging to their progeny become long-lived Memory Cells. The role of
Memory Cells is to build an immunological memory that makes the immune
system stronger in being self-protecting to future infections/attacks. In par-
ticular, a Memory Cell remembers already recognized antigens and lead to a
stronger immune response when these antigens are recognized again.

– Immune response. An immune response to foreign antigens requires the
presence of APC in combination with B Cells or T Cells. When an APC
presents an antigen to a B Cell, the B Cell produces antibodies that specifically
bind to that antigen in order to kill/destroy it. If the APC presents an antigen
to a T Cell, the T Cell becomes active. Active T Cells essentially proliferate
and kill target cells that specifically express the antigen presented by the
APC. The production of antibodies and the activity of T Killers are highly
regulated by T Helpers. They send signals to T Killers in order to regulate
their activation, proliferation (replication) and efficiency (specialization).
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Following the description above, Fig. 1 shows the main elements of an immune
system as constructs of a simple graphical notation that we use in Sect. 3 for
immune system modeling purposes. The figure shows also the messages (signals)
that the system elements can exchange.

3 Immune System Scenarios

By leveraging the graphical modeling notation introduced above, in this section,
we briefly describe two scenarios in the immune systems domain, which are
representative for a broad class of resilient systems. The scenarios provide the
reader with a high-level description of the interactions that happen among the
elements of an immune system during an immune response.

Fig. 2. Immune system - Scenario 0

Scenario 0. Figure 2 shows a scenario where the elements of an immune system
are in an inactive state, marked with the off label. In particular, two APC engulf
a virus or bacteria: each APC decomposes the pathogen (virus or bacteria) and
exposes on its surface a piece of the pathogen, i.e., an antigen (see the triangle
and pentagon in the figure). Metaphorically, we can think of this as a setup
phase of a computer system, where each system’s component is in an idle state
and the antigen is a “perturbation” that comes from the outside or even by the
system itself. In our context, we can see this perturbation as either a new or an
anomalous, undesired, system behavior.

Scenario 1a and 1b. Continuing Scenario 0, the presence of an antigen causes
the activation of one or more cells of the immune system (left-hand side of Fig. 3).
In this case, the antigen is caught only by those cells that are able to treat it; so
they switch from the off state to the on state. By referring to the right-hand side
of Fig. 3, T Helpers recognize specific antigens and replicate themselves (replicate
signals); T Helpers make T Killers and APC active (by sending to them an
activation signal); T Killers replicate themselves. Some T Helpers specialize into
Memory Cells (specialization signal). This scenario highlights how an immune
response is a distributed and decentralized process.
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Fig. 3. Immune system - Activation scenarios

Scenario 1c. In this scenario, a B Cell becomes active after that it caught a
known antigen and the T Helper close to it became active. This scenario points
out that a B Cell has less constraints to satisfy with respect to T Cells, i.e., a B
Cell does not need to interface with MHC molecules (Fig. 4).

These simple, yet representative scenarios, lead us to observe that, as a particular
kind of resilient system in a specific domain:

– an immune system is composed of loosely-coupled elements, hence promoting
modularity;

– the elements of an immune system can interact with each other by exchanging
asynchronous messages, hence enhancing reliability;

– an immune system can react to unforeseen events, e.g., intrusions, being there-
fore fault tolerance;

– an immune system can foresee, e.g., dangerous situations through preventive
recognition, hence achieving robustness;

– the elements of an immune system have the ability to adapt to context changes
and recover from undesired situations, therefore showing flexibility and evolv-
ability.

4 Actor Model

The Actor Model is a formal mathematical model of concurrent computation
that was first proposed by C. Hewitt et al. in 1973 [15]. Over the years, this
model has seen several programming languages employing the notion of actor,
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Fig. 4. Immune system - Scenario 1c

most notably Erlang [2] (a concurrent programming language designed for pro-
gramming fault-tolerant distributed systems) and Scala [13] (which offers a con-
current programming model based on the Scala standard library dedicated to
Actors).

For the purpose of this paper, we focus on the Akka toolkit2, which is a
framework that natively permits a programming style based on the Actor Model.
Akka is written in Java and Scala, and offers an unified runtime and program-
ming model that allows for building highly concurrent, distributed, and resilient
message-driven applications.

In this section, after introducing the Actor Model, we present the Akka
framework (Sect. 4.1), whose elements are then used in Sect. 5 to present our
Akka-based Concept Architecture.

The Actor Model is characterized by (i) inherent concurrency of computa-
tion within and among Actors, (ii) dynamic creation/replication of Actors, (iii)
inclusion of Actor addresses in messages, and (iv) interaction only through direct
asynchronous message passing.

The Akka Actor Model achieve resilience by offering software abstractions
that support the systematic development of flexible, loosely-coupled and scalable
applications, which are significantly more tolerant of failure and stay responsive
in the face of failure. Resilience is achieved through replication, containment,
isolation and delegation mechanisms. Specifically, Akka components are isolated
from each other, thereby ensuring failures isolation within the affected compo-
nent only; the failing parts of the system have the possibility to recover without
compromising the system as a whole; recovery actions are delegated to other
2 http://akka.io.

http://akka.io
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(supervisor) components and, when needed, components replication is used to
achieve high-availability.

4.1 Akka Actor Model

Actors are objects that encapsulate state and behavior, and communicate
through message passing. Akka allows for modeling applications in terms of
interacting actors that can be dynamically assigned sub-tasks, and arranging
related functions into an organizational/hierarchical structure while thinking
about how to tolerate/escalate failures.

An actor has its own state and can be seen as a container for Behavior, a Mail-
box, Children and a Supervisor Strategy. Actors have a hierarchical structure
and each actor has a supervisor, with the root supervisor being the SystemActor.
In more details:

Actor Reference: actor references are used to represent actors to the out-
side. References enables transparency in the sense that an actor can be,
e.g., restarted without needing to update references elsewhere, or seamlessly
moved on remote hosts.

Behavior: messages are matched against the current behavior of the actor,
i.e., to functions which defines the actions to be taken in reaction to the
message. Importantly in our setting, the behavior of an actor can be changed
dynamically, e.g., to allow the actor to come back to work after an “out-of-
service” state is reached.

Mailbox: the mailbox connects the sender and receiver actor, and allows for
enqueuing the exchanged messages in order to support asynchronous com-
munication.

Children: an actor is potentially a supervisor and can create children for dele-
gating sub-tasks. The creation and termination actions are not blocking (i.e.,
they happen behind the scenes in an asynchronous way).

Supervisor Strategy: a supervisor actor has strategy for handling faults of its
children. For our purpose, the important aspect here is that fault handling
is done transparently by the Akka framework, by exploiting monitors and
by applying the available supervision strategies. Moreover, another crucial
aspect towards achieving resilience is that strategies can be updated/added
dynamically.

5 Akka-Based Concept Architecture

Figure 5 shows the bio-inspired concept architecture we are working on. It rep-
resents the starting point to support the bio-inspired paradigm that we have in
mind for engineering the development of resilient software systems. Indeed, by
referring to the scenarios 0, 1a, and 1b described in Sect. 3, we show only those
elements that are strictly needed to provide the reader with intuitions on how to
put together the elements of the concept architecture into a logically coherent
argumentation.
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Fig. 5. Bio-inspired concept architecture for resilient systems

According to the Akka framework, the System actor creates the
KillerSupervisor, HelperSupervisor and ConsumerSupervisor supervisor
actors. By taking inspiration from immune systems (Sect. 2) and related scenar-
ios (Sect. 3), the supervisor actors are in charge of detecting changes, intrusions,
failures, and undesired behaviors. For instance, referring to systems where secu-
rity is a crucial dependability requirement, the addition of a new component that
behaves as a trojan, or the presence of a component that misbehaves. Another
example, when referring to systems where performance is crucial, would be the
presence of a component that does not perform as expected anymore.

Furthermore, supervisor actors are in charge of creating respective sub-actors,
namely KillerActor, HelperActor and ConsumerActor, which are responsible
for, e.g., self-protecting/self-reconfiguring the system from the detected unde-
sired behavior/change by putting in place a resolutive response. This is done
through recognition of the kind of problem and production/replication of those
set of actors that can realize a suitable solution. E.g., removing, isolating, dis-
abling the introduced trojan or the misbehaving component; replacing the com-
ponent that badly perform with a new version of it that performs as expected.

In particular, by mimicking what happens in scenarios 0, 1a and 1b (Fig. 3)
when the presence of an antigen causes the activation of one or more cells of
the immune system and the antigen is caught only by those cells that are able
to treat it, in our concept architecture, the occurrence of the problem/change
is signalled by means of dispatch messages. Each message activates specific
instances of HelperActor and KillerActor. The former play the role of res-
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olutive response managers. After activation, a HelperActor instance aims at (i)
inducing replication of HelperActor instances by sending replication messages;
(ii) activating KillerActor and ConsumerActor instances by sending activation
messages; and (iii) specializing some actor instances in MemoryActor instances
by sending specialization messages. KillerActors are actuators that consume
messages and actually put in place the problem resolution or reconfiguration
strategy that realizes the triggered response.

Considering resilience attributes of immune systems [3] and the support to
resilience offered by the Akka Actor Model (Sect. 4), our concept architecture
applied to the scenarios 0, 1a, and 1b is able to meet the following software
resilience attributes:

– agility

−immune systems: they have multiple barriers or layers of defense to prevent
a pathogen from causing harm.
−software systems: system undesired behaviors or changes represent the soft-
ware counterpart of pathogens and our Actor Model implementation com-
partmentalizes the, e.g., undesired behavior, and allows its resolution locally
without compromising the operation of the system as a whole.

– redundancy

−immune systems: having the ability to replicate antibodies increases the
probability that a pathogen that matches these antibodies will be stopped.
Furthermore, generated antibodies keep memory of the already matched
pathogens, hence strengthening the ability to stop it.
−software systems: Akka toolkit offers persistence that enables actors to per-
sist their internal state so that it can be recovered when a produced or repli-
cated actor is started, restarted after a JVM crash or by a supervisor, or
migrated in a cluster.

– dynamic learning

−immune systems: as a redundancy enabler, based on previous knowledge
about already recognized antigens, the immune system is able to learn new
disturbances and related resolutive responses.
−software systems: if some change or undesired behavior occurs at run time,
and the affected actor is not able to manage it, the actor initially treats it
as an unknown message. As a such, the message is passed to its supervisor.
Based on historical knowledge, the supervisor is able to learn if there are
other actors able to deal with the change or undesired behavior. If it is the
case, the related resolutive logic is dynamically injected into the affected actor
through the PartialFunction mechanism offered by Akka. Clearly, different
policies can be applied when the supervisor has not been able to learn possible
solutions, e.g., killing the affected actor, or requiring human intervention.
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– flexibility

−immune systems: antibodies are produced and added depending on the need,
without any redesign.
−software systems: the flexibility concept is native in Akka since actors can
be dynamically produced or replicated, without blocking the system.

– robustness

−immune systems: leveraging Apoptosis [23] or “programmed cell death” as a
mechanism for deletion of “unwanted” cells, an immune system has the ability
to keep working even when multiple cells are killed since not properly working
anymore.
−software systems: in the Actor Model, robustness is a form of fault toler-
ance. It uses the “let it crash” policy to manage the programmed death of
faulty components that can be dynamically killed or stopped for preserving
the system functioning, if possible, or at least for preventing dangerous sys-
tem’s misbehaviours.

6 Related Work

In this section, we discuss related work in the areas of (i) biological systems
modeling and simulation and (ii) software resilient systems.

Biological systems modeling and simulation. Current approaches to bio-
logical systems modeling and simulation can be organized into three classes,
namely quantitative, qualitative, and rule-based approaches.

Quantitative approaches [12,29]. They make use of differential equations and
stochastic simulation to model biological processes. They essentially suffer two
main issues. On the one hand they do not scale in the heterogeneity of con-
stituent elements of the biological system, hence preventing their applicability
to biological processes with many species and variables. On the other hand, as
complex mathematical models, they are hard to be exploited and difficult to
understand by end-users, not only biologists but also software engineers.

Qualitative approaches [21,27]. They are primarily based on the biological sys-
tem’s network structure and, differently from quantitative approaches, do not
require knowledge about internal parameters of the system, e.g., kinetic parame-
ters. Rather, models can be produced to abstract different views of a biological
process hence allowing to reason at different biological organization levels, e.g.,
sub-cellular, cellular, tissue, organ, organism and ecosystem. The focus, here, is
to identify how different components are connected together, how they are con-
trolled and how they behave when functioning as a system. However, for these
approaches to be effective and profitable, two main aspects must be ensured:
(i) the model representation language must be rich enough to represent the var-
ious heterogeneous system’s elements and to capture all the system behaviours
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at the different organization levels; and (ii) the system identification technique
must be powerful enough to identify substantially complex models, which can
enable realistic simulation. The class of qualitative approaches comprises vari-
ous formalisms that span from Boolean Network models [30] to constraint-based
models [26], to Petri Nets [4,14], to logical models [20,24]. In addition to static
analysis of the structural properties of a biological system’s network topology,
Petri Nets and logical models enable to reason on the systems behaviour by
means of discrete dynamic modeling [1,8,24,30].

Rule-based approaches. They promote the production of rule-based models by
using specialized languages such as BioNetGen language [9] or Kappa [6]. Being
more reusable than equations, rule-based models allow for enhancing modularity,
hence making tractable the modeling and analysis [11] of complex biological
systems involving several different species [7]. Rules can also be used to generate
simulations, both deterministic and agent-based [28].

Software resilient systems. The work in [17] proposes an approach to auto-
matically detect faults of a redundant duplex system by using a model checker.
The proposed method analyzes vulnerabilities of different variants of an algo-
rithm by applying fault injection modelling. Relying on the Event-B model,
in [22], the authors present a formal approach to model and assessing recon-
figurable systems that guarantees resilience of data processing. The proposed
system architecture is able to dynamically scale and reconfigure.

Natural and Biological systems, such as Ant colonies and Immune sys-
tems, have several features that can be exploited in designing and developing
resilient systems. More precisely, these super organisms often use self-organizing
behaviors and feedback loops [5] that allow the system to achieve reliable and
robust solutions using information gathered from entities [25], without central-
ized control. The biological immune system can be seen as a massively distrib-
uted architecture: the multitude of independent cells work together resulting in
the emergent behavior of the immune system. The immune system evolves to
adapt and improve the overall system performance (e.g., organizational mem-
ory) [10,31]. These systems can be seen as complex collective systems in which
the behaviour emerges from the product of interactions between individual enti-
ties. These entities follow a simple set of rules (i.e., not via top-down mechanism)
and react only to their local environment. Features and principles as bottom-up
mechanisms, feedback loops could be used for designing a scalable, adaptive and
efficient framework.

7 Conclusions and Future Work

In this paper we proposed a bio-inspired concept architecture for resilient soft-
ware systems based on the Akka Actor Model. Our proposal originates from
the observation that immune systems natively enjoy resilience properties that
have a direct counterpart in software resilient systems. Our long term goal is
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to reach a mature enough knowledge about the key concepts that are com-
mon to both immune systems and resilient systems. By transposing (i) the ele-
ments of immune systems, (ii) their self-protecting behavior, and (iii) their rela-
tionships/interaction with other elements into their respective software design
principles, this knowledge would allow us to elevate our preliminary concept
architecture to a rigorously defined bio-inspired architectural style for resilient
systems. This architectural style would constitute a common ground on top of
which building the novel biological development paradigm we have in mind for
software resilient systems.

To reach this goal, several challenges have to be faced. They are related to the
definition and realization of general-purpose mechanisms that, being amenable
of domain-specific customizations, support features such as:

– automatic recognition of software failures/changes through, e.g., run-time
monitoring, feedback loops;

– dynamic learning of the solutions required to correctly react to the recognized
failures/changes based on, e.g., dynamically acquired historical knowledge;

– modular actuation of the (learned) solution, without compromising the overall
system function;

– opportunistic selection of those available solutions that better fit some prede-
fined policy, e.g., to guarantee specified non-functional requirements;

– self-stabilization of the self-* actions, e.g., self-adaptation, self-reconfiguration,
to guarantee the system equilibrium with respect to some specified invariant
properties, despite continuous applications of self-* actions;

– multilayer management of failures/changes (and related strategies) in a mod-
ular, yet cohesive, way depending on the affected layer(s), e.g., application,
middleware, operating system, network layer.
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Abstract. Faults in embedded systems are on the rise due to shrinking
hardware feature sizes, increasing software complexity, and security vul-
nerabilities. Since such faults cannot be completely prevented, systems
have to cope with their effects. Frequently, redundancy is used to achieve
fault tolerance. However, with homogeneous redundancy common-cause
faults such as software bugs or hardware faults in shared resources are
not tolerated - diversity is needed.

In this paper, we highlight the potential of automatically introducing
diversity via dynamic software diversity techniques. Recently, these tech-
niques have attracted attention in the security domain. Furthermore, we
present the idea of using such dynamic software diversity methods to
create feedback-based systems that are able to adapt the execution of
the program in such a way that the consequences of faults are leveraged.
Finally, we demonstrate the approach with two use cases. We show that
by using address space layout randomization - a widespread technique to
prevent malicious attacks - it is possible to detect memory-related soft-
ware bugs during runtime. Additionally, we illustrate the idea of adap-
tive dynamic software diversity by showing a simple example of how to
recover from common-cause faults in the address decoder via software
by inserting memory gaps with adjustable size.

Keywords: Software diversity · Self-adaptive systems · Resilience ·
Fault tolerance · ASLR · Redundancy

1 Introduction

Since ever more functionality is integrated into electronic devices, embedded
systems have to fulfill increasing demands on high computing performance and
have to realize ever more features [32]. At the same time, they have to offer
dependability, since they are strongly integrated into everyday objects and play
a crucial role in many critical application domains such as automotive, aerospace
or critical infrastructures. Dependability is a superordinate concept regrouping
different attributes such as safety, reliability, availability and security [2]. At the
same time, embedded systems have to cope ever often with unforeseen scenarios
caused by an increasing number of faults that jeopardize the dependability. The
causes for this increasing number of faults are numerous:
c© Springer International Publishing Switzerland 2015
A. Fantechi and P. Patrizio (Eds.): SERENE 2015, LNCS 9274, pp. 16–30, 2015.
DOI: 10.1007/978-3-319-23129-7 2
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– Random hardware faults, such as soft errors and permanent errors due to
manufacturing, process variations, aging, etc. occur more an more frequently
due to shrinking hardware features sizes [28,34].

– Software faults are increasing due to growing software complexity [32].
– Security attacks pose an emerging risk, since ever more systems are intercon-

nected [14].

To prevent such faults many systematic techniques for analyzing the depend-
ability of systems have been proposed. For example, safety standards recommend
failure mode and effects analysis, failure tree analysis or fault injection exper-
iments [23]. These techniques are mainly used to assess the dependability of
systems and to design appropriate countermeasures to prevent identified possi-
ble problematic situations in the presence of failures. However, the applicability
of these approaches is limited, since they require detailed knowledge about the
hard- and software system.

At the same time, the increasing demands on embedded systems lead to the
trend to commercial off-the-shelf (COTS) hardware [27]. While there are proces-
sors available that are designed and produced for high reliability applications,
their performance typically lags behind that of COTS multi-purpose proces-
sors. Additionally, COTS processors typically come at a much lower price than
their reliability-hardened counterparts [13]. However, when using COTS-based
hardware platforms, there are limited possibilities to add hardware-based fault
tolerance techniques and details about the hardware (e.g. netlists, RTL models
etc.) are typically not available.

Furthermore, the ever increasing complexity of embedded systems signifi-
cantly complicates systematic approaches, since it is hard to identify all possible
internal states and faults. To handle this challenge, we propose research towards
the automated introduction of diversity in redundant systems as an alternative
method to manage faults. This paper contributes towards this approach by

– presenting the idea of using the basic concepts of automated software diversity
techniques that have been mainly proposed in the security domain to also
increase the fault tolerance regarding non-malicious common-cause faults in
redundancy-based embedded systems,

– introducing the concept of adaptive automated software diversity as a
feedback-based method to react to observed malfunctions in order to establish
resilience, and finally

– highlighting the potential of the approach by presenting two use cases show-
ing that by using address space layout randomization - a widespread dynamic
software diversity technique to prevent security gaps - it is possible to detect
memory-related software bugs, and showing that adapting the size of dynamic
memory gaps is a simple way of establishing resilience regarding memory
address decoder faults.
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2 Background and Related Work

2.1 Dependability and Resilience

System dependability attributes have a major impact on product development
and product release as well as for company brand reputation. For this docu-
ment we define dependability according to [2] as an integrating concept that
encompasses the following attributes:

– Safety : the absence of catastrophic consequences on the users and environ-
ment.

– Reliability : the continuity of correct service.
– Availability : the readiness of correct service.
– Security : the concurrent existence of availability for authorized users only,

confidentiality, and integrity with improper meaning of unauthorized.

To maintain safety despite faults, the system has to detect the malfunction-
ing in order to react in such a way that hazardous events leading to catastrophic
consequences (e.g. injuries of people) are prevented. For example, a safety mech-
anism could switch into a safe state. To establish reliability and/or availability
the consequences of the fault should be mitigated such that the system can
continue the operation. Thus, resilience is needed. According to [10] software
resilience refers to the robustness of a software to adapt itself so as to absorb
and tolerate the consequences of failures, attacks or changes within and without
the system boundaries. Consequently, to make systems resilient, they have to
cope with changing circumstances regardless of their root cause. In order to deal
with unforeseen events the idea of software self-adaptability has received atten-
tion [6]. For example, self-healing systems autonomously detect and recover from
faulty states by changing their configuration. However, so far these techniques
are mainly used in complex server systems.

Methods for embedded systems to recover from an unhealthy state are
still a research challenge. Although hardware faults can be bypassed with self-
modifying hardware (e.g. [24,33]), this technique is not applicable for COTS
hardware and only offers limited flexibility. Thus, there remains the need for
sophisticated software-based methods to handle unforeseen scenarios caused by
faults.

2.2 Redundancy

Redundancy is a common way to establish fault tolerance [32]. As hardware is
becoming ever cheaper due to Moore’s law there are increasing opportunities
to establish redundancy in a cost efficient way. For example, there is a rise of
multicore technology in the embedded domain [26]. This allows to take advan-
tage of the additional resources available in order to establish redundancy at a
relatively low cost.

While spatial redundancy means that multiple program replicas that imple-
ment the same logical function are executed in multiple hardware channels, tem-
poral redundancy techniques use only one hardware channel and perform the
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same execution multiple times subsequently. Then, a voting scheme is used to
detect faults by comparing the outputs of the redundant executions.

Typical redundancy techniques are M-out-of-N (MooN) architectures, where
M channels out of a total N channels have to work correctly. For example, a Dual
Modular Redundancy (1oo2 ) architecture means that there are two redundant
channels, which are compared by a voter. If the outputs do not match, an error
is detected. Depending on the application, the system can go into a safe state to
prevent serious hazards. Since the voter is a single point of failure, it has to be
highly reliable. Thus, it has to guarantee a high level of integrity (i.e., by using
reliable hardware components and being certified with a high integrity level as
described in safety standards). A 1oo2 system can guarantee data integrity as
long as only one channel fails. However, if both variants are identical and include
the same systematic fault, they fail in the same way and the fault is not detected.
Thus diversity is needed to make it possible for the same fault to lead to different
consequences. A classic approach to add diversity is N -version programming.
This means that based on the same specification, several development teams
work independently to design and implement N versions. Since this approach
is very cost-intensive, we propose to automatically introduce diversity in the
execution of the software.

The authors of [7] introduced a method combining adaptability and redun-
dancy, by adapting the number N of redundant systems dynamically. Here, we
propose not to adapt the number of redundant channels, but the behaviors of
the channels.

2.3 Automated Software Diversity

Recently, automated diversity gained attention in the security domain as a tech-
nique of diversifying each deployed program version [25]. This forces attackers
to target each system individually. A simple way of automatically introducing
diversity in execution is to use different compilers and compiler options to gen-
erate multiple program versions. It has been shown that diverse compiling not
only enhances the security of systems [37] but it can also increase the hardware
and software fault tolerance [11,17]. In contrast to static techniques that gener-
ate multiple diverse program versions, dynamic software diversity techniques use
only one binary that is deployed and introduces the diversity during operation.
More details about automated software diversity research is provided in [4,25].

3 Dynamic Software Diversity Approach

Dynamic software diversity (DSD) techniques integrate randomization points
in the executable. Examples of randomization points and their parameters are
shown in Table 1. Then, the same program can perform diverse executions lead-
ing to the same results [4]. Diversity in execution can mean, for example, diverse
performances, diverse memory locations, or diverse order of execution. Table 2
shows examples of dynamic diversity techniques. for example, data re-expression
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Table 1. Examples of adjustable parameters of dynamic software diversity methods

Randomization method Parameter

Memory gaps between objects [5] Gap size

Changing base address of program [5] Base address

Changing base address of libraries and stack [8] Base address

Permutation of the order of routine calls variables [5] Order of calls

Permutation of the order of variables [5] Order of variables

Insertion of NOP instructions [22] Number of NOPs

Data re-expression / data diversity Parameter in re-expression

(in = f(in, k), out = f−1(out, k)) [1] algorithm (k)

Table 2. Classification of known automated dynamic diversity uses. While ‘x’ indicates
the given goal is reported in literature, ‘o’ hints to possible goals for future research.

is a well-established method to increase the fault tolerance with data diversity
by transforming the original input to produce new inputs to redundant variants
[1]. After execution the distortion introduced by the re-expression is removed
before comparison. So a given initial data within the program failure region can
be re-expressed to an input data that circumvents the faulty region [32].

However, most of the proposed DSD techniques focus on increasing the secu-
rity by introducing uncertainty in the target. Today, if an attacker finds a vulner-
ability in a software program, he can exploit that knowledge to target all running
copies of that program. Automated software diversity can decrease the software
homogeneity and increase the cost to attackers by randomization implementa-
tion aspects of programs. The idea to diversify a software program each time it
is deployed on a target recently gained attention in the security community [25].
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The goal is to force the attacker to redesign the attack each time it is applied.
Consequently, the risk of widely replicated attacks is reduced. For example, to
circumvent buffer overflow attacks, used memory locations can be diversified.
This forces the attacker to rewrite the attack code for each new target.

We propose to use such approaches also in redundant systems. If diverse repli-
cas are used redundantly and their state is checked with a voting mechanism,
an attacker has to find vulnerabilities in both replicas. Furthermore, we assume
that it also increases the chance to detect non-malicious faults. The introduced
diversity could lead to the detection of faults that have not been considered by
systematic fault prevention techniques. For example, it is possible that program-
ming bugs are detected that have not been found during the test and verification
stage. Furthermore, hardware faults that appear during operation and affect all
redundant executions can be identified, since the hardware is used differently by
the diverse replicas. To sum it up, we propose to apply DSD techniques in redun-
dant configurations to increase the chance to detect faults and to consequently
enhance the safety.

4 Adaptive Dynamic Software Diversity Approach

A promising approach for resilience, is software that offers a reliable opera-
tion despite uncertain environments. Hardware faults, software bugs, or security
exploits can be regarded as sources of uncertainty in the operation that has to be
handled. For example, permanent hardware faults cannot be fixed during run-
time. Thus, the software has to change the way it uses the faulty hardware such
that the fault is masked. Adapting the software execution is probabilistic and
does not require knowledge about the exact root cause of the fault. We propose
to learn from detected anomalies and to diversify the execution with adaptive
dynamic software diversity (ADSD). We define ADSD as

a method of automatically and dynamically diversifying the way that hardware
and/or software components are used such that it learns from previously observed
anomalies in order to increase the fault tolerance.

In [20], we provide a preliminary introduction of the idea of adaptive dynamic
software diversity (ADSD) as a mean to bypass faults. Here, we provide further
details of the approach and present a simple illustrative use case.

Figure 1 shows the basic structure of an ADSD system. Typically, a fault tol-
erant system contains the program, which performs the intended functionality of
the system and a decision mechanism (DM) that monitors the program execu-
tion [32]. The DM detects anomalies, indicates alarms and decides which outputs
to forward. For example, the diagnosis could be a plausibility check, a voter of a
redundant system, or a self-aware technique that detects anomalies. Additionally,
we propose a diversification control that creates a feedback-loop. This compo-
nent manages the ADSD by collecting and analyzing data on detected anomalies
obtained from the DM. The program is designed in such a way that it can be
randomized during execution according to parameters that can be adjusted dur-
ing runtime (see Table 1). Then, the diversification control can decide to alter
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Fig. 1. Basic structure of ADSD. Based on information of a monitoring component
(DM), a diversification controller decides whether and how to reconfigure the random-
ization mechanism of the main program [20].

the execution by changing one or multiple randomization parameters. Finally,
the program reconfigures itself by using the adapted parameters.

5 Experimental Evaluation

We evaluated two use case applications in redundant configurations. We con-
sidered Dual Modular Redundancy (DMR) and Triple Modular Redundancy
(TMR) for both use cases. The redundancy is established as temporal redun-
dancy meaning that the replicas are executed one after the other. Each execution
stores the corresponding result. Finally, a voter compares them after all replicas
finished calculation.

A DMR system features two redundant channels. Such a system detects a
fault, if the results of the redundant replicas are different. However, by purely
comparing the outputs it is not possible to identify the faulty replica. This would
require additional anomaly detection (i.e., plausibility checks). Here, we do not
apply such mechanisms. Thus, we adapt the randomization mechanism of both
replicas.

In a TMR configuration three replicas perform the same calculation. If all
three outputs are different a warning is signaled and no output is forwarded,
since the whole system seems to be corrupted. If at least two replicas provide
the same output, this output is regarded to be correct and is forwarded. If two
outputs match and one output is different, it is assumed that a fault occurred
in the replica that produced the different output. A replica is also considered to
contain a fault if an execution leads to a fail-stop failure. These failures can be
detected relatively easily, since they lead to an observable crash of the system
(e.g. segmentation fault or an infinite loop). If one replica is regarded as faulty,
the randomization parameter of this replica is adapted. If it is observed that all
three replicas lead to different outputs, all three replicas are reconfigured. For
demonstration purposes, we change the reconfiguration parameter randomly.
However, in order to achieve a more effective mechanism we plan to refine this
approach to a more sophisticated logic in future work.
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We evaluated how many faults can be detected by using the coverage metric

cdetection =
#detected faults

#faults
, (1)

where #faults denotes the number of injected faults that actually have an
impact on the reliability of the application, since they are not masked.

The techniques can not only be used to detect faults, but also to recover from
them. To evaluate the ability to recover, we define the following metric:

crecovery =
#bypassed faults

#faults
, (2)

where #bypassed faults is the number of faults that could be mitigated with
the evaluated technique.

5.1 Use Case I: Detecting Memory-Related Software Bugs via
Address Space Layout Randomization

Here, we illustrate the potential of DSD techniques to increase the fault detection
capabilities by evaluating the potential of the widely-established DSD technique
address space layout randomization (ASLR) to detect memory-related software
bugs during runtime.

Address Space Layout Randomization. ASLR randomizes base addresses
to protect from security attacks [12]. It randomly arranges the starting address
of the executable and the positions of the stack, heap, and libraries. To support
ASLR the application has to be compiled in such a way that position indepen-
dent code is generated. ASLR complicates memory corruption, code injection
and code reuse attacks. For example, it is an effective countermeasure against
buffer overflow attacks and it can prevent an attacker from jumping to a particu-
lar exploited function in memory. Today, ASLR is the only widely-deployed prob-
abilistic defense against security attacks. It is supported by nearly all commonly
used operating systems such as Linux (since kernel version 2.6.12), Android
(since version 4.0), OS X (since version 10.5) and Microsoft Windows (since
Windows Vista). However, as far as the authors of this work know, it has not
been evaluated for safety or reliability purposes.

Evaluation Methodology. To assess the efficiency of fault tolerance mecha-
nisms, a software including faults is required. We proceeded as follows to create
benchmarks representing typical software faults:

– First, we used the GSM application of the MiBench benchmark suite for
telecommunication applications [15] as a stating point.

– Then, we injected the most frequent types of software faults found in field
studies.

– Finally, in order to further increase the representativity of the tested faults,
we filtered out those faults that should be detected through software testing.
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Fig. 2. Examples of injected memory-related Mandelbugs that are not detected by
considered fault prevention mechanisms.

Software-Fault Injection. In order to represent realistic faults, we used the SAFE
software-fault injection tool presented in [29]. It deliberately introduces faults
into a software in order to assess its behavior in the presence of faults. The faults
are injected by small changes in the program code. Various versions of a program
are created, where each version includes another fault as exemplified in Fig. 2.
This technique is similar to the well-known mutation test technique. However,
while the goal of mutation testing is to evaluate the test suite, software-fault
injection is meant to assess fault tolerance techniques.

The main purpose of software-fault injection is to represent residual faults.
These are those faults that are not detected by rigorous design and testing and
affect the safe operation of the system. For the development of the SAFE tool
several field data were analyzed to characterize faults that can realistically occur
in complex software [30]. The majority of bugs belong to a relatively small set
of fault types and are independent from the particular system. More precisely,
the SAFE tool injects a set of fault types that represent a total of about 68 %
collected faults that where collected from real-world software. Table 3 shows the
faults injected from the SAFE tool in our examples.

Table 3. Overview of injected fault types [29]

Fault type Description

MFC Missing function call

MIFS Missing IF construct and statements

MVAE Missing variable assignment using an expression

MVAV Missing variable assignment using a value

MVIV Missing variable initialization using a value

WPFV Wrong variable used in parameter of function call
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Table 4. Overview of generated test cases for the GSM benchmark

Number of injected fault types Fault prevention Bug classification

MFC MIFS MVAE MVAV MVIV WPFV Total Warning Static A. Und. Bohrb. Mandelb.

51 53 65 0 21 352 542 51 62 426 184 247

The SAFE tool assures that the source code including the injected fault is
syntactically correct. In order to better reproduce the fault types observed in
practice, additional constraints are applied to select fault locations. For instance,
the MFC fault type only affects function calls that do not return any value or do
not use the return value. Another example is that an if -construct is only removed
(MIFS) in case the construct contains less than six statements. A programmer
would likely notice a missing larger if -construct.

Filtering of Faults. In order to further increase the representativity of the tested
faults, we do not consider faults that result in a warning of the compiler (option
flags -Wall -Wextra). Furthermore, we filter out those faults that are found
using the Clang static source code analyzer [9]. This drastically reduces the
number of test cases (see Table 4).

The difficulty of detecting a software fault using testing depends on the deter-
minism of its caused failure [29]. If a fault causes an error that always leads to
the same failure for a given input, the fault can be detected relatively easily
during testing. These kind of bug are called Bohrbugs. Another kind of bugs are
Mandelbugs, which are much more difficult to detect, since they do not always
lead to an error. Typically, the occurrence of Mandelbugs depends on timing
(e.g. race conditions) or on the use of resources (e.g. addressing wrong memory
regions). In this paper, we consider Mandelbugs that are memory-related. As
shown in Table 4 this classification further reduces the number of evaluated test
cases. To sum up, we generated 242 faults that are particularly hard to detect
by testing for our evaluation.

ASLR Configurations. The binaries were generated with GCC v4.8.2 and
executed natively with Ubuntu running on a PC featuring a single-core Intel
Xeon CPU. In Linux the ASLR can be configured by a parameter called
randomize va space. This parameter can be changed in order to set following
options:

– 0: Disable ASLR
– 1: Randomize the base addresses of the stack, virtual dynamic shared object

(VDSO) page, and the shared memory regions.
– 2: Randomize the base addresses of the stack, virtual dynamic shared object

(VDSO) page, the shared memory regions, and the data segment.

Experimental Results. We executed each binary containing one bug ten times
for each ASLR configuration and stored the resulting output and applied this
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Table 5. Detection coverage as defined of exemplary ASLR configurations regarding
different programming mistakes leading to memory-related software-bugs.

Fault type DMR configurations TMR

Name #Faults 0 vs.1 0 vs. 2 1 vs. 2 2 vs. 2 1 vs. 2 vs. 3

MFC 18 83 % 83 % 83 % 83 % 83 %

MIFS 15 0 % 0 % 0 % 0 % 0 %

MVAE 26 35 % 38 % 23 % 23 % 38 %

MVIV 8 38 % 38 % 13 % 13 % 38 %

WPFV 180 47 % 47 % 41 % 41 % 47 %

Total 247 45% 45% 38% 39% 45%

procedure for the two input samples provided by the MiBench benchmark suite.
The bugs never lead to a crash of the whole program, but always lead to a silent
corruption of the output value.

Unfortunately, using ASLR it was not possible change the configuration of
the execution in such a way that any of the injected software bug was mitigated
and correct results were produced. However, frequently the erroneous outputs
of diverse replicas were different leading to a high fault detection rate as shown
in Table 5. Even if using the same configuration in a DMR configuration (2 vs.
2) on both redundant replicas in average about 39 % of all tested faults can
be detected. When deactivating the ASLR feature on one channel and using
it on the other channel (0 vs. 1 and 0 vs. 2) the detection coverage is even
as high as 47 % for the tested application. The results also show that there is
only a small gain of adding a third channel to establish a TMR system. The
results indicate that ASLR is not only an effective method to prevent malicious
attacks, but also enhances the fault detection of memory-related software bugs in
redundant configurations. However, additional exhaustive experiments including
more faults, benchmark applications, and input values, are required in order to
make more reliable statements.

5.2 Use Case II: Adaption of Memory Gaps to Bypass Address
Decoder Faults

Dynamic Software Diversity with Memory Gaps. To realize an auto-
mated software diversity mechanism we used random memory gaps as proposed
in [5]. We arranged important variables used to control loops (i,j), storing the
result (n), and manipulating the input in an early processing stage (seed) in
a struct as shown in Fig. 3. Dummy variables with adjustable size are intro-
duced in order to offer the possibility to manipulate the starting addresses of
the protected variables. The size of the memory gaps represents the reconfigura-
tion parameter that can be changed by the diversification control. Thus, if the
diversification control decides to change a replica, the size of the memory gaps
is adapted. We have chosen a random size between 0 and 64 bytes. Initially, the
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Fig. 3. Important variables are defined in a struct that introduces memory gaps
between the variables with configurable size.

size of the memory gaps is configured differently for the three replicas (0 bytes,
32 bytes and 64 bytes). We plan further research to analyze the trade-off between
a high degree-of freedom and additional memory requirements.

If no fault is detected, there is no need to diversify the program replicas.
However, if there is a fault, the diversification control changes the size of the
introduced memory gap. These is applied to all replicas when considering a
DMR system or a TMR system where all three outputs are different. If only one
output differs in a TMR configuration, only the erroneous replica is adapted.

Evaluation Methodology. Our exemplary use case is based on an implemen-
tation written in C and compiled for the ARM9 architecture. The application is
the bitcount benchmark obtained from the MiBench benchmark suite for auto-
motive applications [15]. The application counts the number of bits in an array
of integers.

Fault Injection Framework. We simulated the benchmark application with a
QEMU-based fault injection framework as presented in [18,19,21]. This frame-
work allows to inject transient and permanent CPU and memory faults. We used
it to inject permanent stuck-at address decoder faults. To model such faults the
framework changes the address of the victim memory cells accordingly whenever
it is accessed. This leads to accessing wrong memory locations.

Fault Injection Experiments. We injected 256 permanent stuck-at-1 and stuck-
at-0 faults in the RAM addresses corresponding to the variables shown in Fig. 3.
Due to masking effects, only 131 of these faults had an impact on the output
values. Here, the injected fault lead to the situation that a wrong memory cell
containing another value that the intended memory cell was addressed.

5.3 Experimental Results

As shown in Table 6 the homogeneous temporal redundant approach without the
ADSD technique, failed to detect the introduced faults. The reason for this is that
only one hardware channels was used and the fault in this hardware affected all
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Table 6. Summary of the experimental results of use case II

w/o ADSD with adaptive memory gaps

DMR TMR

Faults detected (Ccoverage) 0 % 100 % 100 %

Faults tolerated (Crecovery) 0 % 82 % 94 %

executions in the same way, since they used exactly the same hardware resources.
However, if the replicas use the memory slightly differently realized by a different
initial configuration of the size of the memory gaps, the injected address decoder
faults always lead to different consequences and thus are always detected.

Furthermore, if an error is detected the gapsizes are adjusted. For both redun-
dant configurations - DMR and TMR - it was possible to recover from most of
the detected faults. The TMR configuration performs better, since here it is
possible to identify the faulty replica and thus only this replica is reconfigured.
In summary, the results indicate that this adaptive technique is a simple and
effective solution to recover from permanent address-decoder faults.

6 Conclusion

For many application domains of embedded systems dependability it is of utmost
importance. At the same time the number of faults that may appear and the com-
plexity of embedded systems increases dramatically, which hampers the applica-
tion of traditional systematic approaches to prevent faults. Thus, methods are
required that are able to detect unforeseen faults. To achieve this, we propose
to use redundant systems that exhaustively integrate diversity in an automated
way. In order to contribute towards this research direction, we proposed to exploit
DSD techniques proposed in the security domain. The potential of this approach
has been highlighted with a use case showing that using address space layout
randomization allows to detect memory-related software bugs. Furthermore, we
proposed to use DSD in a feedback-based configuration in order to establish
resilience and exemplified this approach with a simple use case.

Although, the presented experiments indicate the potential of the proposed
approach, more analysis is required in order to provide a stronger evidence. Thus,
in the future, we plan to conduct more sophisticated and exhaustive evalua-
tion of the proposed approaches. Furthermore, the actual realization of (A)DSD
depends on the application and the considered fault model. Thus, we plan to
develop techniques for specific complex applications and we hope to encourage
further researchers to explore techniques based on the promising yet challenging
idea of (A)DSD.
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17. Höller, A., Kajtazovic, N., Römer, K., Kreiner, C.: Evaluation of diverse compiling
for software fault tolerance. In: Design Automation and Test in Europe (2015)
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Abstract. Formal methods, especially model checking techniques, are
often used for the verification of the resilience of safety critical systems.
The usual complexity of the verification problem in real life systems (due
to state space explosion and the handling of time dependent behavior)
demands efficient techniques. In this paper we propose a decomposition
approach: the layered structure of the system is exploited to decompose
the verification problem to smaller and tractable ones. In addition, the
structure of the requirements (formalized as the combination of reacha-
bility and liveness properties) is also exploited to construct simpler ver-
ification problems for the model checker. The decomposition approach
is demonstrated in case of the verification of a distributed protocol in a
SCADA system that shall provide functionality even after the occurrence
of a finite number of transient faults.

1 Introduction

The application of formal methods in the model based development and verifica-
tion of safety critical systems is becoming a more and more important technique.
Model checking is an automatic formal verification method for deciding if the
model fulfills properties formalized in temporal logic. However, even for simple
systems the complexity of verification might grow too large to be manageable
due to the inherent distributed and timed characteristic of such systems. In
particular, the verification of distributed systems often leads to the well-known
phenomena of state space explosion which is a major obstacle for successful
model checking. Real-time systems require methods being able to handle timed
behaviors expressed with real-valued clock variables and their relations, further
increasing the complexity of verification. Due to the above mentioned reasons,
model checking techniques are often unable to verify complex real-time systems
in a fully automatic manner. Decomposition can serve as a solution: safety critical
systems are mainly composed hierarchically, where different layers of functions
rely on each other. Experts can exploit this layered structure to decompose the
verification problem to smaller and tractable ones. In addition, the specified
properties in real-life systems are typically complex in the sense that they are
usually combinations of reachability and liveness queries. On the basis of the
expected behavior of the system and the structure of the property specification,
c© Springer International Publishing Switzerland 2015
A. Fantechi and P. Patrizio (Eds.): SERENE 2015, LNCS 9274, pp. 31–45, 2015.
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experts can decompose the specification and give simpler verification problems
to the model checker.

In this paper, this decomposition approach is demonstrated by the verifi-
cation of a distributed safety critical protocol, whose main functionality is to
guarantee reliable communication between components in a distributed SCADA
(Supervisory Control and Data Acquisition) system. The protocol is hierarchi-
cally layered in the sense that it implements two functionalities: master election
and the allocation of communication identifiers, where the latter functionality
is based on the former one, i.e., performed by an elected master. The require-
ment for the protocol is to provide this functionality even after the occurrence
of a finite number of transient faults. This requirement is formalized in linear
temporal logic and a decomposition scheme is introduced in order to make veri-
fication feasible. The main goal of our work is to show how the structure of the
system and the specification can be exploited to provide efficient verification.
This decomposition approach is a generic scheme that can be followed in similar
systems where the functions can be decomposed and a similar combination of
reachability and liveness properties shall be verified.

The structure of the paper is the following. In Sect. 2, as the context of our
work, the safety critical protocol is introduced. The background of our work is
given in Sect. 3. The abstraction and decomposition rules are defined in Sect. 4,
and then applied to the verification problem in Sect. 5. Finally, related work is
mentioned and the conclusions of the paper are drawn.

2 Description of the Protocol

In this section, as the context and motivation of our work, the protocol and
specified properties are introduced in details. The main purpose of the protocol
is to ensure stable and fault tolerant communication between components of a
distributed SCADA system. In the protocol, communication is performed in two
layers: the lower layer serves for administration, while the upper layer transmits
information between the components.

There are two types of components in the system: at most four communica-
tion units called as eths, and at most ten input-output units called as lios that
are connected via a CAN bus that serves as the communication channel. Each
component has a 29 bit physical address called hwid that is used in administra-
tive messages to identify a specific component on the bus. However, components
also get assigned a 4 bit logical address called cid that is used in the higher level
communication protocols instead of hwid to save bandwidth. The cids of eths
are assigned statically from the range [0...3], while lios obtain their cid values
dynamically from the range [4...13] from a distinguished eth that is an elected
master. cid values 14 and 15 are reserved for addressing multicast and broadcast
messages, respectively.

The functionalities of the protocol can be summarized as follows:
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Fig. 1. Master election

– Master election. From the eths that communicate on the bus, the one with
the lowest cid value must be elected as master.

– Assignment of logical addresses. The master eth must ensure that all lios have
a unique cid .

Since the system is used in a critical context, it must provide the above func-
tionalities even in the presence of a finite number of predefined faults. Accord-
ingly, the verification must be aimed at the checking of the correct functionality
of the protocol in a fault-free case and also in the presence of these faults. As
the protocol was designed using SysML models (with time extensions), we will
refer to the relevant statechart models to present the operation of the protocol.
These statecharts were used to derive the formal models that were the basis of
verification using our fault modeling and decomposition approach.

2.1 Master Election

To ensure that lios obtain unique logical addresses, cids can only be assigned by a
distinguished eth called master. The purpose of master election is to ensure that
during the operation of the system, the eth with the lowest cid is consistently
considered as master by all eths that are up. A simple timed statechart model
of master election is depicted in Fig. 1.

The behavior of eths defined by the statechart can be summarized as follows.
Note that syncTimer and slaveTimer are clock variables that are used to define
time dependent behavior (in the same way as clock variables are used in the
common timed automata formalism [1]): their values are constantly increasing
by an equal rate and can be checked in guard expressions and reset by actions.
Moreover, state invariants can be defined (written into the state symbol in square
brackets) that may also contain clock variables.
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– A message Normal(cid) is broadcasted at every tSync time units with the cid
of the eth as payload. This message serves as a heartbeat between eths.

– Initially, the eth is a slave. If for the last tSlave time units the eth has not
received any Normal messages with lower cid value than the eth itself has,
then the eth becomes master.

– An eth remains master as long as it does not receive a message Normal with
a cid lower than its own cid .

Summarizing the above, an eth is master if and only if (iff) all heartbeats
received in the last tSlave time units are from eths with a cid not lower than its
own - the reception of a message with a lower cid value immediately brings the
eth back to the slave role.

2.2 Assignment of Logical Addresses

To keep record of the cids of all lios, each eth maintains an array cidTable that
is indexed with cids from range [4...13] and contains hwids as values. For a cid
x from the above range, an eth then assumes that cidtable[x] is the hwid of the
lio to whom x is assigned as cid . If cidtable[x] = −1, then x is assumed to be
unassigned.

The assignment of cids is performed by the master eth, while slaves only
update their cidTables based on received messages. The statechart model of the
cid assignment is showed in Fig. 2 for both masters and slaves. These models can
be interpreted as refinement of the corresponding composite states (containing
this way sub-machines) in the model of master election.

Fig. 2. Assignment of logical addresses as slave (a) and master (b)
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The role of a slave eth is simply to keep track of assigned cid values by
listening to Assign messages sent by the master and updating its cidTable based
on them.

The behavior of a master eth can be summarized as follows (note that here
searchTimer is a clock variable and cidTimer is an array of clock variables).

– Every tSync time units it broadcasts a message Search. As a response, each
lio is supposed to send a message Login(x, y) where x is the current cid of
the lio (-1 if undefined) and y �= −1 is its hwid .

– Upon receiving a message Login(x, y), the following steps are performed.
1. By calling a method sweep(), any occurrence of a given hwid other than

the first is erased from cidTable. As turned out during verification, this
method is required for resilient operation of the protocol.

2. Based on the entries in cidTable, a new cid is calculated by the function
newCid so that the following conditions are met.
• If y appears in cidTable as a value at some index, then the index is

returned as result. Since sweep() ensures that each hwid is unique in
cidTable, the result is well defined.

• Else if x �= −1 and x is unassigned then it is returned as result.
• Else the lowest unassigned cid is returned. The existence of such a cid

is ensured by sweep().
3. The cidTable is updated, the corresponding timer in cidTimer is reset and

a message Assign is sent with the new cid .
– Other than that, if a row of cidTable corresponding to an assigned cid was

not updated in the last tCid time units, then the cid gets unassigned.

2.3 LIOs

The model of a lio is shown on Fig. 3.

– Initially, the lio has no cid assigned (cid = −1).
– Upon receiving a message Search, the lio replies with a message Login(cid ,

hwid).
– Upon receiving a message Assign(x, y), if hwid = y, then cid is updated to x.

The message is ignored otherwise.

Fig. 3. Behavior of LIOs
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3 Background

The formal background of our work is given in this section. The behavior of
the system is formalized (on the basis of the SysML statecharts) as a transition
system. The requirements of the protocol are described as formulas in linear
temporal logic.

3.1 Transition Systems

Transition systems are widely used for the formal modeling of the behavior of
reactive systems. A transition system over a set of atomic propositions AP is a
tuple TS = (S, T, I, L) such that

– S is a set of states,
– T ⊆ S × S is a transition relation,
– I ⊆ S is the set of initial states and
– L : S −→ 2AP is a labeling function.

L can be extended to sequences of states in the obvious way. We assume that
T is left total, that is for all s1 ∈ S there exists s2 ∈ S such that (s1, s2) ∈ T .
Moreover, throughout this paper, we assume that each state s ∈ S is an n-tuple
of values of state variables vi ∈ V from the respective domain, and AP is a set
of ground atomic predicates over V (i.e., these predicates do not contain free
variables).

The behavior of a transition system can be characterized in terms of its
initial traces. A path of TS is an infinite sequence of states s0s1s2 . . . such that
(si, si+1) ∈ T for all i ≥ 0. An initial path is a path where s0 ∈ I. A trace
induced by a path π is L(π). An initial trace is a trace induced by an initial
path.

3.2 Linear Temporal Logic

Linear temporal logic is widely used for the formal definition of the expected
properties of a system.

A (propositional) linear temporal logic (LTL) over AP with temporal con-
nective F (finally) has formulas of the form

ϕ :: = true
∣
∣a

∣
∣¬ϕ

∣
∣ϕ ∨ ϕ

∣
∣Fϕ

Here, a ∈ AP . Let σ = A0A1A2 . . . be an infinite sequence such that Ai ⊆ AP
for all i ≥ 0. Let the postfix AiAi+1Ai+2 . . . be denoted by σ[i . . .]. Then the
satisfiability relation of the logic |= is the smallest relation satisfying the following
rules.
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σ |= true
σ |= a iff a ∈ A0

σ |= ¬ϕ iff σ �|= ϕ
σ |= ϕ ∨ ψ iff σ |= ϕ or σ |= ψ
σ |= Fϕ iff σ[i...] |= ϕ for some i ≥ 0

Other usual Boolean connectives false, ∧, → and ↔ can be expressed in
terms of ¬ and ∨. Temporal connective G (globally) is defined as Gϕ � ¬F¬ϕ.
It semantics is

σ |= Gϕ iff σ[i...] |= ϕ for all i ≥ 0

A property expressed by a formula of the form FGϕ where ϕ is a propositional
formula is called a persistence property, and ϕ is called its persistence condition.
According to the semantics of the temporal connectives, σ |= FGϕ iff there exists
some i ≥ 0 such that for all j ≥ i we have Ai |= ϕ. Informally, a persistence
property with condition ϕ expresses that the system eventually stabilizes to the
configuration defined by ϕ.

Given a transition system TS and a temporal logic formula ϕ over AP , the
model checking problem is to show that σ |= ϕ for all initial traces σ of TS ,
denoted TS |= ϕ, or give a counterexample.

3.3 Abstraction

Abstraction is a key element in the efficient verification of complex systems as it
reduces the state space by omitting irrelevant aspects of the system model. One
such technique is cone of influence reduction (COI) [5] that proved its efficiency
in several tools and approaches. It removes state variables that do not influence
variables included in the temporal logic specification by building a dependency
graph based on the transition relation. COI is a property preserving abstraction
(hence the name reduction), that is, the system satisfies the property iff the
reduced system does so.

4 Verification Approach

In this section we introduce the verification approach used for the analysis of
the distributed protocol.

In general, the verification process of a fault tolerant system consists of many
modeling and model checking steps. First, the system has to be verified leaving
any fault assumptions out of consideration, thus the formal model of the fault-
free system has to be developed. After the successful verification of the fault-free
system, to verify fault tolerance, possible faults and their effects on the system
have to be taken into account. Hence fault models have to be defined, that
composed with the model of the fault-free system represent the behavior of the
system under the given fault assumptions.
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Since the verification of all possible faults and their combinations is often
infeasible, at this point the verification engineer may restrict the range of inves-
tigated faults to selected ones. However, omitting any relevant fault or combina-
tion of faults can lead to verification results that cannot be justified with respect
to the behavior of the real system.

In this section we introduce a different approach, which is based on the
following assumptions and restrictions:

– Permanent and crash faults are not modeled since the focus is the verification
of resilience, i.e., resuming the correct behavior of the system after transient
faults. Permanent and crash faults are easier to detect than transient faults
and need redundancy to provide fault tolerance.

– The effects of transient faults are modeled on a logical level as disturbances in
the behavior of the related components in the form of additional transitions
(called fault transitions) between states of the fault-free model. With regard
to the common fault classification (crash, omission, timing, computation and
Byzantine faults) we have the following considerations. Crash faults are not
modeled as mentioned above. Omissions are covered by fault transitions that
step over the omitted processing steps (including message sending or message
processing). The effects of delayed messages and corrupt messages are cov-
ered by the combination of fault transitions that cause the loss of the original
message and creation of a faulty one. Similarly, data corruption is covered
by fault transitions that alter the state variables. Control flow errors among
states, including the restart of the component, are also covered by fault tran-
sitions. Regarding Byzantine faults, those faults are covered whose effects can
be modeled in terms of transitions between the states of the fault-free model.

– The resilience of the system is expressed as a persistence property: the effects
caused by a transient fault shall be tolerated in such a way that after the
occurrence of a fault (and the related disturbance), the behavior will eventually
resume the correct one (this way almost all states along a path will belong to
a correct behavior).

As presented in the following sections, the second restriction allows a system-
atic verification of faults, without requiring separate (manual) modeling of each
fault. The third restriction enables in certain cases the use of a decomposition
approach that divides the verification task into smaller and simpler ones.

In the following the used notations are introduced then the proof strategy for
the efficient verification of fault models is detailed. Finally, the decomposition
of persistence properties into simpler properties is given.

4.1 Notation

We introduce the following notations for two different restrictions of a transition
system with respect to a propositional formula. Let TS = (S, T, I, L). Then
TSϕ = (S, T, S|ϕ, L) and TSϕ = (S|ϕ, T |ϕ, S|ϕ, L|ϕ). Here, we define S|ϕ =
{s ∈ S | L(s) |= ϕ}, T |ϕ = T ∩ (S|ϕ × S|ϕ) and L|ϕ : S|ϕ −→ 2AP , where
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L|ϕ(s) = L(s). For example, TS true = (S, T, S, L), that is, TS with all states
considered as potential initial states.

It is easy to see that (TSψ)ϕ = (TSϕ)ψ, thus in this case the brackets can be
omitted. Moreover, (TSϕ)ψ = TSϕ∧ψ = TSψ∧ϕ = (TSψ)ϕ and (TSϕ)ψ = TSψ.

4.2 Modeling Transient Faults

Let TS = (S, T, I, L) be a transition system over AP . We model a fault in
TS as a set of transitions F ⊆ S × S such that F ∩ T = ∅, where a fault
transition (s, s′) ∈ F models the effects of the occurrence of the fault in state s.
In other words, we consider transient faults that can be expressed in terms of a
nondeterministic change of state in the fault-free system. Naturally, the range of
faults that can be modeled this way depends on the formulation of the system.

Given TS and F , we can define a transition system TSF that models the
system with a finite number of possible occurrences of transient fault(s) F as
TSF = (SF , TF , IF , LF ) over AP where

– SF = S ×N. Given a state (s, n), n is the number of transient faults that can
still occur in the system.

– IF = I × N. Initially, any finite number of faults are allowed to occur.
– LF ((s, n)) = L(s).
– TF is the smallest relation defined by the following rules (using a natural

deduction style notation for antecedents and consequent):

(s, s′) ∈ T n ∈ N
normal transition

((s, n) , (s′, n)) ∈ TF

(s, s′) ∈ F n ∈ N
fault transition

((s, n + 1) , (s′, n)) ∈ TF

To verify that a system TS satisfies a persistence property FGϕ even if a transient
fault defined by F can occur finitely many times, the following direct approach
can be applied:

1. Construct TSF from TS and F .
2. Check TSF |= FGϕ.

However, the fact that the system TSF satisfies a persistence property FGϕ
often originates from the stronger property that TS stabilizes to ϕ-states starting
from any of its states. Using the above notation, this can be expressed by the
following rule.

TS true |= FGϕ
fault abstraction

TSF |= FGϕ

It is easy to see that this approach is sound, that is, if the antecedent hold,
then the consequent also holds.
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Proof. We prove the stronger property that LF (π) |= FGϕ for all paths of TSF .
Assume TS true |= FGϕ and let π = (s0, n0) (s1, n1) (s2, n2) . . . be a path of
TSF . We apply induction on n0. If n0 = 0, then LF (π) = L(π) is an initial
trace of TS true, thus the statement holds. Now assume n0 > 0. If (si, si+1) ∈ T
for all i ≥ 0, the same applies as in the base case. So assume there is a state
(si−1, ni−1) with a minimal i such that (si−1, si) ∈ F . Since ni < ni−1, by the
induction hypothesis, LF (π)[i . . .] |= FGϕ, thus LF (π) |= FGϕ.

Since the rule is sound for any F , it allows the verification of fault tolerance
without the need of explicitly modeling faults.

4.3 Decomposition of Persistence Properties

The resilience of the system is expressed as a persistence property FGϕ. The
verification of such properties is a complex task as the model checker has to
handle all traces and check if they contain fair cycles (with fairness constraint
¬ϕ) as counterexamples. In the following, we describe two rules that in definite
cases enable the simplification of the model checking problem of such properties.
We omit soundness proofs due to their simplicity.

The first rule describes the decomposition of a persistence property according
to the expected behavior of the system. Without loss of generality, we can assume
that the persistence condition is of the form ϕ ∧ ψ. Here, both ϕ and ψ define
some configuration of the system that is expected to eventually persist. If the
persistence of the system with respect to ϕ depends on its persistence with
respect to ψ, the following rule can be applied to simplify the model checking
problem.

TS |= FGϕ TSϕ |= FGψ
FG-detachment

TS |= FG(ϕ ∧ ψ)

Here, all states of TSϕ are ϕ-states. The main advantage of such a decom-
position is that if ϕ and ψ refer to different variables of the system, then the
subproblems can be simplified significantly by abstractions that depend on the
property, such as cone of influence reduction.

The second rule divides the model checking problem into two simpler
problems.

TS |= Fϕ TSϕ |= Gϕ
G-detachment

TS |= FGϕ

Here, the check of TS |= Fϕ is a query searching for a lasso shaped ini-
tial path of (¬ϕ)-states (as counterexample). The check TSϕ |= Gϕ basically
amounts to verify whether ϕ is inductive, which is a less expensive step.
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5 Verification of the Protocol

This section details the application of the approach presented in the previous
section in the verification of the protocol. The formal, dense time model of the
system was constructed as a network of timed automata [1,4], whose opera-
tional semantics can be expressed in terms of a transition system [4]. The ver-
ification aims at proving the resilience of the system: even in the presence of
transient faults, the components shall be able to communicate with each other.
This requires that after a finite number of faults, the system will persistently
have a unique master and all lios have a logical address assigned in a consistent
way. Among others, this formulation admits the verification of correctness in the
presence of the following transient faults:

– An eth or lio restarts.
– The content of an eths cidTable changes.
– The cid of a lio changes.
– The content or recipient of a message changes.
– A message is lost.
– A message is created.

5.1 Decomposing the Verification of the Protocol

To enable model checking, the statechart model containing the composite stat-
echarts of all eths and lios is mapped to a network of timed automata. Signal
events are handled by an automaton representing a bounded capacity commu-
nication channel that is able to store and delay the sent messages until their
reception. The resulting formal model can be analyzed by the model checker
UPPAAL [3].

As the protocol has two functionalities (master election and assignment of
communication IDs), the requirement of resilience is a composite property that
includes the temporal correctness of these functionalities. Accordingly, resilience
is formalized as a persistence property FG(ϕ ∧ ψ), where ϕ expresses that there
is a unique master in the system, whereas ψ states that each lio was assigned a
unique logical address that corresponds to a row of the masters cidTable.

The following proof tree shows the decomposition of this top level requirement.

TS true |= FGϕ TSϕ
true |= FGψ

FG-detachment
TS true |= FG(ϕ ∧ ψ)

fault abstraction
TSF |= FG(ϕ ∧ ψ)

Instead of verifying the system model with different fault configurations, we
employ the fault abstraction rule: this simulates that the verification starts after
the occurrence of any finite number of transient faults. The next reduction rule
splits up the property according to the FG-detachment rule: in the protocol,
master election is a precondition for the successful logical address assignment.
By proving the subproperties we can infer the validity of the property itself.
Now, the task is to prove two properties referring to different aspects of the
system.
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– TS true |= FGϕ expresses that the system initialized in any state will have a
master and the participants will not change their role.

– TSϕ
true |= FGψ expresses that the system initialized in any state will finally

have consistent cid assignment, assuming there is a unique stable master.

In the following sections the proofs of these two properties are detailed.

5.2 Verification of Master Election

The verification of the master election protocol is reduced to the model check-
ing of the FGϕ temporal logic specification on system TS true. Now, the rule
G-detachment can be applied, and thus the resulting model checking queries to
be proven are TS true |= Fϕ and TSϕ |= Gϕ.

As these resulting temporal logic formulas refer to only some aspects of the
system, cone of influence abstraction can be employed to construct transition
system TS1 from TS true. Behavior related to cid assignment is not relevant in
the verification of master election: no interaction in master election is triggered
or influenced by the administration of cid assignment. This enables the cone of
influence reduction to fully reduce the model to the following elements, that are
included in the model TS 1:

– Four eths (with behavior as in Fig. 1).
– Communication channel.

The model (TS 1)ϕ is the same as TS 1, the only difference is that the initial
states are those where the master has already been elected.

The property to be verified is ϕ, which refers to the situation of successful
master election:

– eth0 is master.
– eth1, eth2 and eth3 are slave.

The formal proof tree that was applied in the verification of the master
election protocol is the following:

TS 1 |= Fϕ

TS true |= Fϕ

(TS 1)ϕ |= Gϕ

TSϕ |= Gϕ
G-detachment

TS true |= FGϕ

5.3 Verification of Logical Address Assignment

The verification of the logical address assignment protocol is reduced to the
model checking of temporal logic specification FGψ on system TSϕ

true. Similar to
the verification of the master election protocol, the rule G-detachment can be
applied to decompose the problem into two parts. The resulting model checking
queries to be proven are TSϕ

true |= Fψ and TSϕ
ψ |= Gψ.
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In transition system TSϕ
true, the master election procedure is assumed to

have been successful, thus in the verification of cid assignment we can exploit
that there will be no more changes in the roles of the eths. In addition, the
resulting temporal logic formulas refer only to aspects of the system related to
cid assignment. These advantages of the decomposition can be exploited and
cone of influence reduction can be applied to construct transition system TS2

from TSϕ
true, where TS 2 contains:

– eth0 as master (with behavior as in Fig. 2).
– Ten lios (Fig. 3).
– Communication channel.

The property to be verified is ψ, which refers to the situation where the lios
have unique cid values and it is consistent with the knowledge of the master:

– For each two rows of eth0.cidTable, if they contain an equal value, then both
values are −1 (thus the assigned cid values in the table of the master are
unique).

– The cids assigned to lios correspond to the values in eth0.cidTable.
– Each lio has a cid different from −1.

The formal proof tree that was applied in the verification of the cid assign-
ment protocol is the following:

TS 2 |= Fψ

TSϕ
true |= Fψ

(TS 2)ψ |= Gψ

TSϕ
ψ |= Gψ

G-detachment
TSϕ

true |= FGψ

5.4 Result of the Verification

The verification problem was decomposed according to the proof rules detailed
in the previous sections. COI abstraction was applied to the formal models,
which significantly reduced the size of the formal models. When the first version
of the protocol design was verified, insufficiencies were revealed in the proto-
col: an oscillation between states could occur that prevented the proof of the
liveness property regarding the successful cid assignment. After the required
modification of the design (among others the inclusion of the sweep() func-
tion) the UPPAAL model checker could then verify all the four tasks successfully
within seconds. Without the proposed approach, namely the decomposition and
abstraction steps, the verification could not succeed due to the resource limita-
tions.

6 Related Work

Ensuring the correctness of safety critical systems is an important, but challeng-
ing task, which has an increasing number of successful attempts as the formal



44 T. Tóth et al.

verification tools and approaches become more and more mature. The verifica-
tion of a startup protocol used in the same system as described in this paper
was introduced in [11]. As an example of another safety critical real-time system
with successful formal verification we mention a safety logic of a nuclear power
plant [2]. In that approach time was discretized, which was not required in our
current work. There were many attempts to verify the timed behavior of distrib-
uted protocols, for example, the real-time scheduling of a time triggered protocol
was verified in [9]. In our paper, the verification was done by the UPPAAL model
checker, which has many successful applications, see for example [6,10].

The approach introduced in this paper integrated many advanced techniques
from the field of formal verification, among others abstraction, separation of
aspects (decomposition) and cone of influence reduction.

Our fault modeling approach is similar to the one applied in the FSAP and
xSAP framework [3], our contribution is the specific fault abstraction tailored
to the persistence property.

Decomposition approaches proved their efficiency even for complex systems
with a huge number of variables, for example in the verification of the latest Intel
processors [8]. We applied similar ideas in our work but in the distributed systems
domain. The verification of the FlexRay protocol is somewhat similar to our
problem: in [7] authors developed an approach for abstracting data dependent
and timed behavior of the system. In our approach we used the same data
abstraction in combination with cone of influence reduction.

7 Conclusions

In our study we addressed the verification of a protocol in a distributed safety
critical system. The protocol has to ensure communication between components
of a SCADA system even in the presence of faults. In the model of the pro-
tocol, the great number of state variables, the time dependent behavior and
the message-based asynchronous communication between components led to the
well-known state space explosion problem, making the “brute force” verification
intractable. To tackle these problems we devised an approach which combines
the decomposition of the temporal specification with abstraction.

Fault abstraction is used to construct a single formal model that covers the
effects of various transient faults that may disturb the operation of the protocol.
This abstract model includes all behaviors of the system where a finite number
of transient faults is allowed to occur. We proved the soundness of the approach.

We introduced two decomposition rules for persistence properties in lin-
ear temporal logic which are tailored to the problem domain. When applying
these rules, we exploited the composite structure of the system functionalities
(behaviour) to obtain simpler subtasks where the system could be simplified
significantly by cone of influence reduction. By using the introduced approach,
the verification of the protocol was successfully elaborated.
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Abstract. Over the last decade code-based test case generation tech-
niques such as combinatorial testing or dynamic symbolic execution have
seen growing research popularity. Most algorithms and tool implementa-
tions are based on finding assignments for input parameter values in order
to maximise the execution branch coverage. Only few of them consider
dependencies from outside the Code Under Test’s scope such as global
variables, database values and subroutine calls as influences to the execu-
tion path. In order to fully test all possible scenarios these dependencies
have to be taken into account for the test input generation. This paper
introduces ITEC, a tool for automated test case generation to support
execution environment resilience in large-scaled, complex systems. One
of ITEC’s corner stones is a technique called semi-purification, a source
code transformation technique to overcome limitations of existing tools
and to set up the required system state for software testing.

Keywords: Resilience · Automated test case generation · Software
testing · Semi-purification · Execution environment resilience

1 Introduction

At the Large Hadron Collider (LHC), its experiments and several other installa-
tions at CERN physicists and engineers employ a Supervisory Control And Data
Acquisition (SCADA) system to mediate between operators and controllers/fron-
tend computers which connect to the sensors and actuators. As such applications
require the configuration of hundreds of controllers, CERN has developed two
frameworks on top of Siemens’ Simatic WinCC Open Architecture (WinCC OA)
[7] SCADA platform to facilitate their creation.

Due to lack of tool support for the WinCC OA’s scripting language Control
(CTRL) [8], it was so far not possible to write and execute unit tests in an efficient
manner. Recently, the Industrial Controls Engineering group at CERN started
the development of such a unit testing framework to fill this need. However,
after more than ten years of development, CERN is left with over 500,000 lines
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of CTRL code for which only a very small set of unit tests exist. Hence, the
verification of the source code remains a mainly manual task leading to high
testing costs in terms of manpower and slower release times.

This situation is especially tedious during the frequent changes in the WinCC
OA execution environment. Before every introduction of a new operating system
version, the installation of patches or the release of a new framework version the
code base needs to be re-tested. Over the lifetime of the LHC, these environ-
ment changes happen repeatedly (often annually) and involve a major testing
overhead.

This paper introduces the Iterative TEst Case system (ITEC), a system
for the automatic generation of test cases for the frameworks. ITEC relies on
existing automatic test case generation (ATCG) methodologies such as dynamic
symbolic execution [1,2] or combinatorial testing [3,4] to generate test input.
Currently, many ATCG methodologies do not support the modification of source
code dependencies, such as global variables, external resources (e.g. databases)
and function/subroutine calls. While during manual unit test creation set-up
routines and test doubles [11] (mocks, stubs, etc.) are frequently used to prepare
and simulate a desired system state, techniques such as random testing and
combinatorial testing and their respective tool implementations often do not
support generation of test doubles and set-up routines. To overcome this caveat
we introduce a technique called semi-purification which creates a bridge between
existing testing tools and the mentioned requirements. Semi-purification is a
process that replaces dependencies with additional function parameters, so that
ATCG tools can generate test input for all code execution paths.

The rest of this paper is structured as follows: Sect. 2 describes the devel-
opment style and applications at CERN and illustrates the resulting prob-
lems. Section 3 gives an overview of ITEC and describes the general work- and
information flow. Section 4 explains semi-purification, in detail, followed by the
introduction of some non-trivial semi-purification challenges in Sect. 5. Section 6
concludes.

2 Problem Description

The EN-ICE group at CERN has been developing and maintaining two frame-
works for the development of SCADA applications for accelerators, experiments
and infrastructure. WinCC OA, the underlying platform, provides amongst many
other features the functionality to obtain and display data from sensors and send
commands to actuators. Figure 1 depicts the typical three layers schema (field
objects/sensors - frontend controllers - SCADA) of control systems at CERN
and their connection to the operator work stations.

Currently about 600 individual WinCC OA systems are in action for the
LHC and its experiments alone1 – all of them relying on the functionality of
the frameworks. Additionally many more applications use the frameworks, such
1 Gonzalez-Berges, M. – Presentation at ETM Day, (CERN, 2013).
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Fig. 1. Layer model dedepicting the connection of field objects, frontend controllers
(e.g. PLCs) and Operator Work Stations (OWS) through SCADA applications

as the electrical network supervision with its tens of thousands devices and
hundreds of thousands measurement and control points.

The frameworks’ libraries and UI controls are primarily written in WinCC
OA’s proprietary scripting language Control (CTRL). CTRL’s syntax is based
on ANSI C, but provides some specific extensions such as for accessing the
WinCC OA database. Other language modifications include the removal of fea-
tures such as pointers, structs and typedefs and introduction of reference para-
meters, dynamic arrays and implicit type casting.

The syntax modifications are significant enough to exclude the use of exist-
ing unit testing frameworks. Hence, to date, mainly manual testing has been
employed for verification. It has been considered to translate CTRL and use
existing unit test case frameworks, but the backlog of not unit test covered code
would still remain significant.

At the time of writing, CERN supports the execution of WinCC OA on two
operating systems (OS) and typically up to two versions each (currently Win-
dows 7, Windows Server 2008 R2 and Scientific Linux CERN 6 ). As CERN’s
security protocol requires the switch to current operating system versions, reg-
ular upgrades are essential. The operators also introduce patches and updates
in frequent intervals. Additionally, new WinCC OA releases are published every
one to two years. Due to Siemens’ support policy it is necessary to upgrade to
new versions, which often involves updating the software because of changed
features and/or compatibility issues.

This all results in an ever changing execution environment over the entire
runtime of the LHC (over 30 years in total). Before every change, the software
has to be tested and adapted if necessary. Due to the frameworks’ sizes and the
lack of automated CTRL test cases, this task takes a long time to complete.

The current release testing process requires developers to thoroughly verify
the functionality of all components and fix any defects discovered. After several
iterations of the test-fix cycle, the code base reaches a point that is deemed ready
for shipment.
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Although the manual verification has been complemented by a few automated
user interface tests, testing remains a repetitive manual process, consuming time
that developers could spend more productively on other tasks.

3 Iterative Test Case Generation System

To overcome the lack of test cases and code coverage, we propose the Iterative
TEst Case (ITEC) generation system. ITEC generates and executes test input
for pieces of source code, referred to as Code Under Test (CUT). The size of the
CUT can vary in granularity from individual procedures to multiple functions
connected by subroutine calls.

As displayed in Fig. 2, ITEC’s workflow is split into four subtasks, each indi-
vidually essential for the quality of the overall result.

Fig. 2. Overview of the system’s standard workflow on a high level with all in- and
outputs of the system

A1. In the first step, the user chooses the Code Under Test (CUT). This can be
a single function, a library or an entire component.

A2. Before the test case generation, verified test cases (“test seeds”) can option-
ally be fed into the system to gather information from previous generations and
existing (possibly manually implemented) test cases.

The test input generation itself is based on modified versions of the CUT.
These modifications are made by a process we call semi-purification, which
assures that external dependencies such as global variables, database values and
other libraries are taken into account for the generation.

After the test data generation the resulting test input has to be cleansed
from unviable values. The cleaning is necessary, as due to the transformation
of the CUT it is possible that third party ATCG methodologies produce values
that are impossible for the original code base.

A3. Based on the generated test input, the next task is to create and execute
test cases. The required test setup procedures will be derived from the analysis
of the semi-purification changes in A2. Subsequently, the test cases are executed
and the changes to the system recorded. These observations will be added as
assertions to the test cases.
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A4. As the correctness of the assertions generated in A3 has not been verified
yet, ITEC will take advantage of existing test reports from previous test runs.
These reports are used to assist in the decision to accept/refute the test obser-
vations (results). However, as there might not be enough test results available,
or the existing information could be misleading, the final decision lies with the
test engineer who serves as the test oracle.

After the judgment, the user has the choice to select a subset of the generated
tests cases to be stored as future regression tests. Additionally a test report
containing information about the generated test cases and the test execution
logs is produced.

4 Generating Test Cases

The generation of test cases has experienced growing research interest. Although
already introduced in the 1970s and 1980s the recent gain in computing power
made the usage of methodologies such as adaptive random testing [6], combi-
natorial test case generation [3,4] and dynamic symbolic execution [1,2] more
feasible. Leaning onto the insights of existing quality assurance research in the
areas of specification based testing [12], test selection [13] and also quality assur-
ance for resilient systems [14], we aim to build on these Automatic Test Case
Generation (ATCG) processes for our purposes. In most cases ATCG methods
produce a set of different test inputs that can be mapped on the input parame-
ters of the function under test. The aim is to produce test inputs that execute
the Code Under Test (CUT) along as many different execution paths as possible.

For this purpose we have to first define the notion of a function, for which
we create test cases.

Definition 1 (Pure function). We define a function f = 〈π, impl〉 to be a
program function, that depends on its input parameter names π ∈ Π and its
implementation impl ∈ Impl, and consists of a sequence of statements describing
its behaviour.

Definition 2 (Input parameter value assignment). Before the execution
of a function f , it is necessary to assign values to its input parameters. This
assignment is defined as follows:

assign : Π → V (1)

Definition 3 (Function execution). We define exec as the execution of a
function f with a given inputs assignment in a system with a certain state. The
result of this function execution is a deterministic return value.

We define a unit test case for such a function in the following manner:

Definition 4 (Test case). A test case t = 〈i, e〉 consists of i = assign(π), an
assignment of input parameter values, and e, the expected value for the return
value.
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However, in many cases the CUT is not a pure function [5], meaning that next
to the parameters Π, f has a set of additional dependencies D from outside its
function scope, such as global variables or access to external resources through
the file system or databases.

Definition 5 (Function dependencies). The dependencies d of a non-pure
function f is a set of variables and resources, defined outside f ’s scope part of
the system state. (d ⊆ state). For our purposes we assume we can access the
variable/resource value through val(di); di ∈ d.

Further, the function can change the system state by modifying global vari-
ables and resources. These so-called observable side effects are defined by the set
S, where S is the set of changes to the system produced by the execution of a
function.

Definition 6 (Non-pure functions and side effects). Let f be a non-pure
function defined with parameters π ∈ Π, dependencies d ∈ D and observable
side effects s ∈ S. Then the execution of f with an input parameters assignment
on a system with a given state, is the transition of the system to a new state and
the production of a return value.

exec(f, assign, state) → r, state′ (2)

s is the set of new values that have been changed by the transition outside the
function’s scope.

s = state′\state (3)

For our purpose we will denote a non-pure functions as f = 〈π, d, impl〉.
We therefore extend our previous definitions to define test cases for non-pure

functions.

Definition 7 (Test case for non-pure functions). Given a non-pure func-
tion under test f , a test case t = 〈p, i, e〉 for f consists of the preparatory pro-
cedure p, the input value assignment i and the expected values e for some or all
of the observations of the return value and the side-effects r ∪ s.

In order to keep the test cases of such a function deterministic, the system
has to be brought into a known state before execution. That means that a
preparatory procedure must be executed in order to set each dependency to the
required value.

Definition 8 (Preparatory procedure). The execution of a preparatory pro-
cedure p ∈ Impl of a test case for a non-pure function with dependencies d
modifies the state of the system so that each di ∈ d returns the desired value.

Many ATCG methodologies (e.g. random testing, combinatorial testing) per-
form their generations in a black-box fashion based on a function’s signature
but ignore that external dependencies in the function body influence its behav-
iour too. Therefore, to effectively cover all necessary combinations of parameters
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and dependencies we have to modify the CUT using a technique called semi-
purification. This ensures that the generation will take these dependencies into
consideration. The generated values for the additional parameters can then be
used to replace the dependencies with test doubles.

4.1 Removing Dependencies Through Semi-purification

Leaning onto the notion of pure functions, we refer as semi-pure to those proce-
dures whose outcome only depends on its input values, but may have a certain
number of side effects. Accordingly, semi-purification is the process of convert-
ing a not semi-pure function into a semi-pure one. During the semi-purification
process dependencies from outside the CUT’s scope are discovered and replaced
by new input parameters. Since the resulting functions only depend on their
input parameters, we can then employ standard ATCG methodologies to create
test input.

To start with, we define the semi-purification process for external resources
and global variables. These efforts are derived from the concept of localization.
Localization is a refactoring technique that completely replaces the access to
global variables and has been first picked up programmatically by Sward and
Chamillard [9] for Ada programs. The topic was revisited for C programs by
Sankaranarayanan and Kulkarni [10]. Leaning onto this technique, we not only
replace global variables, but also database and other resource accesses with new
input parameters.

Definition 9 (Semi-purification). Semi-purification is the process of convert-
ing a function’s dependencies d into additional parameters π.

SP : D → Π (4)

For simplification, we can imagine that when SP is applied onto an entire func-
tion f = 〈π, d, impl〉, it converts some (or all) of the dependencies.

SP : Π × D × Impl → Π × D × Impl (5)
SP (π, d, impl) = 〈π ∪ Δπ, d′, impl′〉 (6)

where d′ ⊆ d and Δπ = {SP (di)|di ∈ d}.
In our case, we want to remove all global variables and external resources,

hence after the semi-purification d′ = ∅. We require this process to be neutral,
meaning that the return values and side effects are the same when executing the
functions.
Definition 10 (Semi-purification neutrality). SP has to be implemented so
that it is neutral for any given f . Neutrality is given, iff

∀assign, ∀Δassign, ∀state : exec(f, assign, state) = exec(SP (f), {assign, Δassign}, state
′
) (7)

where state′ ⊆ state and ∀Δπi ∈ Δπ : val(di) = Δassign(Δπi);Δπi = SP (di); di ∈ d.
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It is to be said that it is possible to check this neutrality but it is hard to prove it.
We rely that the experiences and assertions of our predecessors [9,10] are valid.
At a future stage we will aim to investigate this matter deeper. Our tool will use
an algorithm that will work according to the properties described in this paper,
however, at the time of writing the implementation phase is not completed.

Example of Semi-purification. The following subsection shows a small exam-
ple of the process of semi-purification. Listing 1 shows a non-pure function that
relies not only on its input values, but also on the values that are obtained from
a database (dbGet(x)) and a global variable (GLOBAL VAR). To deterministically
test f(x) it is necessary to execute the preparatory procedure before executing
the function call to the CUT. In our example test case (Listing 2) we do this by
explicitly setting the values of the global variable and the data point.

Listing 1. A non-pure function

1 f (x){
2 i f GLOBAL VAR:
3 return dbGet (x )
4 else :
5 return −1
6 }

Listing 2. A test case for a f(x)

1 t e s t f (){
2 dbSet ( ” t e s t ” ,5) // prepare
3 GLOBAL VAR = True
4 x = f ( ” t e s t ” ) // act
5 assert (x == 5) // a s s e r t
6 }

To convert f(x) into a semi-purified function we introduce additional input
parameters (a and b) for its dependencies. The references to GLOBAL VAR and
the database access (dbGet(x)) are replaced by a and b, respectively. The semi-
purified version of the function from the previous example can be seen in Listing
3. The according test case (Listing 4) does not require a preparatory procedure.

Listing 3. Semi-purified f(x)

1 f s p (x , a , b){
2 i f a : //GLOBAL VAR:
3 return b // dbGet (x )
4 else :
5 return −1
6 }

Listing 4. Test case for f sp(x,a,b)

1 t e s t f s p (){
2 x = f ( ” t e s t ” ,True , 5 ) // act
3 assert (x == 5) // a s s e r t
4 }

Recursive Application of Semi-purification. Oftentimes the CUT is not
an individual procedure, but includes subroutine calls to perform its operation.
In these cases the semi-purification has to be applied recursively and the changes
made to a subroutine (callee) need to be propagated to the caller in order to
keep the CUT valid.

Listing 5. Recursive Semi-purification
1 functionA (x){
2 a = functionB (x )
3 return a
4 }
5
6 functionB (x){
7 b = GLOBAL VAR
8 b++
9 return b

10 }

Listing 6. Semi-purified CUT
1 functionA (x , y){
2 a = functionB (x , y)
3 return a
4 }
5
6 functionB (x , y){
7 b = y
8 b++
9 return b

10 }
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An example of this behaviour can be seen in Listing 5 which displays the
CUT (functionA). The semi-purification of the subroutine (removing the depen-
dency to GLOBAL VAR) modifies the function signature of functionB. This change
has to be incorporated into the function call in functionA and also added to
functionA’s signature. The resulting code can be observed in Listing 6.

4.2 Creating Test Inputs and Preparatory Routine

Following the semi-purification process we can execute ATCG tools on the mod-
ified CUT. The result is a set of test case inputs that could be used to verify the
semi-purified version of the CUT. However, we aim to generate regression tests
for the original CUT and hence need to re-convert the output.

The result of applying ATCG methodologies onto semi-purified functions, is a
power set of assignments of values to the input parameters assign′ : (π ∪Δπ) →
V . For simplicity, instead of one assignment assign′, we will imagine the elements
of the output as two separate mappings assign and Δassign, one for the original
parameters and one for the additional semi-purified parameters.

Definition 11 (Test input generation for semi-purified functions). We
define the test input generation TIG for a semi-purified function f ′ that produces
a power set of parameter value assignments, assign : Π → V and Δassign :
ΔΠ → V .

TIG : f → P(assign) (8)

TIG(π ∪ Δπ, ∅, impl) =
⋃

i∈0,...,n

{assigni,Δassigni} (9)

However, as the target is to produce test cases for the original CUT, the gen-
erated test inputs need to be re-transformed accordingly. This means that we
have to take the value assignments for the newly introduced parameters in f ′

and convert them into a preparatory procedure.

Definition 12 (Inverse Semi-purification). Given a function f and its cor-
responding semi-purified version f ′ we define SP−1 as the operation that con-
verts Δassign into a preparatory procedure P .

SP−1 : Δassign → P (10)

where the execution of a p ∈ P asserts that each di ∈ d returns the value defined
in Δassign(SP (di)).

The preparatory procedure includes for example the setting of global vari-
ables, data point values or the preparation of other external resources such as the
file system state. Figure 3 shows the schematic representation of the information
flow for the test input generation.
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〈assign, p〉1,...,n

f = 〈π, d, impl〉

〈assign, Δassign〉1,...,n

f ′ = 〈π ∪ Δπ, ∅, impl′〉
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Fig. 3. Using ATCG on non-pure functions by removing dependencies on global vari-
ables and external resources.

4.3 Semi-purification of Subroutine Calls

Using the above described method, it is possible to create functions that only
depend on their input parameters. Recursive application of semi-purification on
subroutines permits the generation of test input for function interactions. How-
ever, when testing programs with a deep control flow graph, the semi-purification
process might easily result in a procedure with dozens of input parameters and
many subroutines that have to be rewritten. Whereas the approach we intro-
duced so far permits the generation of integration tests, this approach comes
with caveats. The generation of test inputs for CUTs of this complexity is com-
putationally expensive, as for most ATCG methodologies the complexity rises
with the number of input parameters. Additionally, in many cases the function
calls connect multiple libraries, voiding the initial goal of creating unit tests.

To overcome this limitation, we introduce a semi-purification process that
removes a function’s subroutine calls (SRC). The two processes can be seen as
complementary actions, each removing different dependencies. For the rest of
this paper we continue with the following notation: Global variable and resource
dependencies remain D, subroutine dependencies are identified by DSRC . SPSRC

is the process of replacing some of these subroutine calls with additional input
parameters ΔΠ ′. The set of remaining subroutines D′

SRC contains SRCs that
should not be replaced (e.g. built-in string operations or hashing procedures).
For certain CUTs and situations this set is empty.

Definition 13 (Semi-purification of Subroutine Calls). Semi-purification
SPSRC of subroutine calls is the process of converting a function under test
(with subroutine calls) f = 〈π, d∪dSRC , impl〉 into a function f ′′ = 〈π∪Δπ′, d∪
d′

SRC , impl′〉 where Δπ′ is the set of newly introduced parameters to replace some
(or all) of the subroutine dependencies dSRC .

SPSRC : Π × D × Impl → Π × D × Impl (11)
SPSRC(π, d ∪ dSRC , impl) = 〈π ∪ Δπ′, d ∪ d′

SRC , impl′〉 (12)

where d′
SRC ⊆ dSRC and Δπ′ = {SP (di)|di ∈ dSRC}.

ATCG methodologies can then generate the input for the function
with fewer dependencies (or none at all). The resulting input assignments
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(assign,Δassign′) have to be re-transformed into test input for the original func-
tion. The additional test input for replaced subroutine calls (Δassign′) needs to
be converted into a preparatory procedure P ′ that create test doubles for the
masked out SRCs.

The entire workflow combining the two semi-purification routines (SP and
SPSRC) is displayed in Fig. 4.

Definition 14 (SPSRC neutrality). SP has to be implemented so that it is
neutral for any given f . Neutrality is given, iff

∀assign, ∀Δassign, ∀state : exec(f, assign, state) = exec(SP (f), {assign, Δassign
′}, state

′
)

(13)
where state′ ⊆ state and

∀Δπ
′
i ∈ Δπ

′
: val(di) = Δassign

′
(Δπ

′
i);Δπ

′
i = SP (di); di ∈ d (14)

Definition 15 (SP−1
SRC). The inverse semi-purification of SRCs is defined as

the generation of a preparatory procedure p′ ∈ Impl for ΔdSRC .

SP−1
SRC : Δassign′ → P ′ (15)

so that the execution of a p ∈ P asserts that each subroutine di ∈ dSRC returns
the value defined in Δassign′(SP (di)).

For subroutines the creation of a preparatory procedure includes the specification
of test doubles for these functions that provide the specified values.

〈assign, p ∪ p′〉1,...,n

f = 〈π, d ∪ dSRC , impl〉

〈assign, Δassign, p′〉1,...,n

f ′ = 〈π ∪ Δπ, dSRC , impl′〉 f ′′ = 〈π ∪ Δπ ∪ Δπ′, d′
SRC , impl′′〉

〈assign, Δassign, Δassign′〉1,...,n
SP −1

SP

SP −1
SRC

SPSRC
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I
G
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Fig. 4. The full semi-purification workflow, including subroutine replacement

5 Problematic Areas of Semi-purification

The application of semi-purification reaches limits in certain areas. The following
section will introduce some of these areas and show our plans to overcome these
problems.
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5.1 Loops

One such situation is the presence of subroutine calls inside iterations (loops and
recursions).

Looking at the semi-purified function sleepUntilReady in Listing 7 where
the parameter a has been newly introduced to replace the dependency on
dbGet(notReadyDP).

Listing 7. Loop example

1 s leepUnti lReady (a){
2 while a : // r ep l a c e s dbGet (notReadyDP)
3 s l e ep (5) // s l e ep f o r 5 seconds
4 }

The algorithm that we introduced so far is not sufficient to fully test the
functionality of this function. ATCG methodologies would create two test inputs
(True and False) for a. However, the case where the function is executed with
a = True, the test case would result in an endless loop.

In order to generate a test case for the a = True we have to change the
parameter a to be a list of values and the loop to access a new element of this
list as shown on the Listing 8. Using these modifications it is possible to generate
the test input to achieve the desired behaviour.

Listing 8. Modified loop

1 s leepUnti lReady (a){
2 i = 0
3 while a[i] :
4 s l e ep (5)
5 i++
6 }

Please note, that the example above can lead to an IndexOutOfBounds error,
that we have to account for. In general it is not possible to create (single thread)
test cases for unbounded loops, so we have to transform the loop to be bounded.
ATCG tools work around the limitation of unbound loops by having certain
timeout constraints on the time or number of execution paths analysed. We aim
to investigate this issue in the future by instrumenting the loops and drawing
conclusions from this execution information.

5.2 Dependencies Between Subroutines

Another problematic scenario is in the case of dependencies between subrou-
tines. Listing 9 shows such a CUT, containing two read and one write access
to a global variable (SPEED VAR). The semi-purification algorithm we introduced
above would create the CUT presented in Listing 10.

The problem with the näıve approach of semi-purification is that each access
to a dependency is replaced with a new input parameter. Here a and b access
the same variable which’s value cannot change in standard (single thread) exe-
cutions. For this reason the semi-purification process should replace them with
the same parameter. The write access remains unmodified as it is a side effect
and there are no further reads from this dependency.



58 S. Klikovits et al.

Listing 9. CUT with dependencies

1 adjustSpeed (){
2 x = getTheSpeed ( )
3 i f x < 10 :
4 doubleTheSpeed ( )
5 }
6
7 getTheSpeed (){
8 return SPEED VAR
9 }

10
11 doubleTheSpeed (){
12 speed = SPEED VAR
13 SPEED VAR = speed∗2
14 }

Listing 10. Näıvely semi-purified CUT

1 adjustSpeed (a ,b){
2 x = getTheSpeed (a)
3 i f x < 10 :
4 doubleTheSpeed (b)
5 }
6
7 getTheSpeed (a){
8 return a // SPEED VAR
9 }

10
11 doubleTheSpeed (b){
12 speed = b // SPEED VAR
13 SPEED VAR = speed∗2
14 }

Additionally, it is in general necessary to discover sequential write-read sce-
narios, where an external value is first set, then read. In this cases it is necessary
to re-use the value from the write for the read as well, as otherwise the behaviour
of the modified CUT is changed.

5.3 Concurrency

The example from the previous subsection shows the generation of impossible
scenarios for single-thread execution. However, WinCC OA uses so-called “man-
agers” to perform tasks. Each manager has its own context and works as an
individual process.

manager
Ctrl UI

manager

Device
Drivers

Dist
manager

DB
manager

EV
manager

Fig. 5. WinCC OA’s manager concept

Figure 5 displays some of the WinCC OA managers such as the event manager
(EV), the database manager (DB) and the Control manager (Ctrl). The EV
serves as message router and keeps an in-memory image of the current database
values, handles alarms and executes functions on the data points.

Each manager is directly connected to the EV and hence it is possible that
two processes modify the same resource without noticing the other one’s updates.
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Figure 6 schematically displays such a behaviour where Process1 sets a data
point value while Process2 modified the state meanwhile. This scenario becomes
inherently more complex, considering that CERN’s control systems consist of
hundreds of subsystems, which each resemble the one in Fig. 6 and can access
each other’s data points via communication through the Dist managers. To pre-
vent this, it is possible to ask for a lock on a data point and stop other managers
from modifying it.

Fig. 6. Process1 overwrites the data point without noticing the changes

For the semi-purification it is essential to detect these situations and avoid
race conditions and dirty reads and writes, but also identify when locks are being
used.

ITEC has to be capable of generating test cases for these situations, mean-
ing that while single thread unit tests are essential, ITEC should also allow
for generating test cases to prevent concurrency issues and race conditions to
happen.

As most of these error-situations can only be observed through exceptions
and error codes, it is necessary that the test doubles fulfil those needs too.

6 Conclusion

CERN’s recent efforts to create a unit testing framework for the proprietary
CTRL language opened the door for a modern quality assurance process. How-
ever, after over a decade of development, the backlog of source code without auto-
mated test coverage makes changes in the execution environment challenging.

To address this problem and increase the testing process resilience, we out-
lined ITEC, a testing system that has the purpose to automatically generate
test cases at a unit level for existing source code. To that end, ITEC bases its
efforts on existing automated test case generation techniques such as adaptive
random testing, combinatorial testing and dynamic symbolic execution.



60 S. Klikovits et al.

Unfortunately, a large majority of the techniques previously mentioned are
not well suited for practical tests generation. As a matter of fact, dependencies
on global variables, external resources and subroutine calls are usually disre-
garded. Therefore, to overcome these obstacles often encountered in CERN’s
source codes, we thoroughly and formally presented a novel technique called
semi-purification, its goals being to strip the code under test (CUT) from depen-
dencies that lie outside the considered scope. For that purpose, we first addressed
the semi purification of code in the presence of global variables and external
resources. We then quickly extended the semi-purification’s scope to also take
into account subroutine calls as dependencies.

Finally, we succinctly addressed additional problems that often hinder the use
of ATCG techniques. Among these, we discussed the pertinent idea of considering
system concurrency with unit tests and illustrated the needs to deal with these
kind of situations by examining an existing problem over the considered system.
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Abstract. Engineering modern many-core systems is a challenging task
because of their scale and complexity. We cannot focus on ensuring their
dependability without understanding its interplay with performance and energy
consumption. This calls for developing new structuring mechanisms that step
away from the traditional ways systems are developed (such as strict layering,
strong encapsulation, abstractions, hiding). The paper reports on the initial steps
of a PhD work focusing on development methods and tools for architecting
cross-layer fault tolerance in many-core systems in which error detection and
error recovery are applied at several system layers in a concerted coordinated
fashion to ensure the overall system efficiency.

Keywords: Error detection � Error recovery � Performance � Power con-
sumption � Abstractions � Encapsulation

1 Introduction

Fault tolerance [1] is the means of dependability, allowing us to prevent system failures
in the presence of faults. To achieve this after an error is detected in a component of a
computer system (e.g. hardware, operating system or software), an error recovery
mechanism returns the system to the full or reduced system functionality.

Term cross-layer interaction [2] was introduced to refer to the idea that it is better
suited to ensure system efficiency with respect to various non-functional characteristics
by reasoning about system layers together, rather than by completely abstracting the
functionality of individual layers and trying to improve the efficiency of each of them in
isolation. The examples of such characteristics are resource usage, reliability, perfor-
mance and power consumption.

Many-core systems are likely to become the predominant type of the architectures
used in the future. According to [3] the number and variety of cores will be continually
increasing. One of the challenges in the area is that there is a need to understand the
trade-off between reliability and energy-consumption, as more energy is necessary to
support the operation of redundant cores. Another challenge is that fault tolerance is
typically developed on one system layer even though these systems are always built as
multilayer architectures.
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Developing a useful and general support to help in engineering cross-layer fault
tolerance is a challenge. The main problem is that in this work one needs to develop
techniques that assist in breaking the conventional way the abstractions are created.
This paper reports on the initial work in the PhD study conducted by the first author in
the area of developing methods and tools to support engineering of cross-layer fault
tolerance for the many-core systems.

2 TCP/IP as a Motivating Example

The TCP/IP stack (see Fig. 1) provides an excellent example of cross-layer fault
tolerance applied to ensure fault tolerance and improved performance. All layers of the
TCP/IP stack participate in error detection and recovery in a concerted fashion.

The Link layer, the lowest layer of the TCP/IP stack, is used to transmit the packets
between the Internet layer interfaces of two nodes inside a local network segment. The
Transport layer provides host-to-host communication for the Application layer. The
Application layer supports data exchange between processes on different hosts over the
network connection supported by the lower layers.

TCP provides reliable packets transmission, even though the packets may be lost,
corrupted or delivered out-of-order. At the Link layer, the Ethernet frame contains a
CRC-32 checksum: a received frame with an incorrect checksum is discarded. The
main protocol at the Internet layer is IP (Internet Protocol), which has two imple-
mentations, IPv4 and IPv6. The header of the IPv4 packet is protected by CRC-16
checksum. The IP packets with wrong checksums are dropped by the receiver. The
IPv6 header does not contain a checksum, assuming that Link layer provides an ade-
quate error detection. The UDP and TCP packets of the Transport Layer have CRC-16
checksums, which protect the payload and addressing information.

TCP sends Acknowledgement to the sender to confirm the correct receipt or
Negative Acknowledgement if the packet checksum is incorrect. In the latter case, the
Automatic Repeat reQuest (ARQ) method is used to retransmit the corrupted packet. If
the sender receives neither Acknowledgement nor Negative acknowledgement by
timeout, it resends the packet. Such situation can happen when the packet is lost or

Fig. 1. TCP/IP stack
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rejected by the lower layers due to incorrect checksum. In addition, a TCP packet
contains a sequence number, which allows the receiver to discard duplicate packets and
sequence reordered packets. This, in particular, shows that the errors of the lower layers
are detected and recovered by concerted efforts at several layers.

At the Application layer, the developer can choose an appropriate Transport layer:
either the connection oriented and reliable TCP or the connectionless UDP. The
developer’s choice between reliable data delivery and data delivery in time depends on
the application requirements. If UDP was chosen, than it might be necessary to
implement error detection and error recovery at the application layer by adding
redundant data e.g. status code or encryption.

To conclude, TCP/IP is a useful example of how fault tolerance can be applied in
coordination at several system layers. This was done to ensure its efficiency and
flexibility. In our opinion the main factor contributing to the success of this protocol is
the way the fault tolerance was designed and engineered.

3 Many-Core Systems

Computer systems with tens, hundreds or thousands processor cores are called
many-core systems [4], whereas multi-core systems have typically only 2–8 cores. It is
expected that these systems will replace multi-core systems in the near future and that
they will become widely used in the safety-critical applications. Many-core architecture
uses low performance small cores each of which alone is less productive than a large
core, however hundred or thousand of small cores deliver better performance than ten
large cores. Even though we can expect that the throughput will increase with the
increasing number of cores, the performance growth is restricted by the percentage of
serial code in the application (Amdahl’s Law). Engineering of the efficient many-core
systems is now an area of active research focusing on developing scalable methods for
structuring complex many-core applications and for efficient parallelization at the OS
and hardware layers.

Another challenge in developing these systems is ensuring their fault tolerance. The
first problem is that when voltage and frequency scaling is applied to reduce power
consumption the reliability is affected when near-threshold values are used. So we need
to understand the interplay between energy and reliability. Moreover the modern
semiconductors are more vulnerable to faults or negative effects like ageing and var-
iation due to their extra small sizes. Many-core systems can provide redundancy to deal
with these problems (e.g. some cores can be used to provide error detection and error
recovery for other cores). Our analysis shows that in many-core systems fault tolerance
is typically applied at the individual layers such as OS, application, communication
middleware, memory, etc.

Ensuring high performance, low energy consumption, efficient resource utilisation
and high reliability, as well as understanding their interplays are the main challenges
for all types of many-core systems ranging from the large-scale systems, like data
centres to the small-scale systems, like mobile devices.
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4 Layered Fault Tolerance

Computer-based systems are prone to faults at different layers of the system stack,
starting from circuitry degradation at the hardware layer to the bugs in the application
source code. In designing large systems substantial efforts are being made to mitigate
the effects of errors caused by faults at all layers of the system stack. Traditionally, the
errors are handled at the layers where they are detected. Such an approach, reducing the
complexity of system engineering, is very convenient for the developers and for the
teams of developers as it simplifies system composition, reuse, maintenance and
modification. This situation illustrates the predominance of convenience over the
system efficiency in run time.

Let us look first into several examples of how fault tolerance of system components
is typically ensured. Triple modular redundancy is a form of N-modular redundancy
when three components perform the same operation and a single output is produced by
a majority-voting system. The recovery block [5] works with several implementations
of the same algorithm: after executing the primary variant, an acceptance test verifies
the results. If the acceptance test fails, the system is rolled back and the secondary
variant is tried. Eventually, either a variant passes the test or an exception handler is
invoked. The N-version programming [6] is an approach aiming to reduce the prob-
ability of software faults by developing two or more functionally equivalent program
versions independently in accordance with the same initial specification. These ver-
sions are executed concurrently and a special voting algorithm choses the correct
output.

The two typical approaches used to ensuring fault tolerance at several layers are
action nesting and extending component interfaces with exceptions. The best examples
of the former are exception handling and nested ACID (Atomicity, Consistency, Iso-
lation, Durability) transactions. The latter are best represented by F. Cristian’s approach
to providing recovery for modular software [7] and the idealised fault tolerance
component pattern [8]. Even though these techniques support layered system struc-
turing for fault tolerance they do not support concerted cross-layer fault tolerance at
multiple layers when the decision to apply error detection and recovery is made for all
layers together.

The substantial disadvantage of the layered approach is that the system layers are
considered separately. Under such circumstances, it is impossible to adjust the layers in
order to achieve optimal system operation in terms of performance, energy efficiency or
resource utilization. Unnecessary error corrections are possible when the upper layer
cannot specify the required quality of service of the bottom layer.

For example, let us consider a many-core system where the fault rate of one core is
significantly larger than the rate of another core. When an error is detected, the error
recovery could be achieved by re-executing the calculations on the same core making it
slower. If there were a special cross-layer mechanism, which can make a decision that
under some fault rate value, hardware layer error recovery should be applied, but after
exceeding this value, it is necessary to inform OS about the faulty core, than the system
fault tolerance as a whole would be more efficient. In the latter case, OS would be
capable to hide the faulty core from the applications for some time.
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The optimality and the effectiveness of the system fault tolerance could be achieved
only when all the layers of the system are considered together. This is unfeasible when
the strict layered approach is used.

5 Cross-Layer Fault Tolerance

The cross-layer fault tolerance assumes that fault tolerance mechanisms are distributed
among all layers of the system stack and designed together (see Fig. 2). The final
decision is made according to the whole system state rather than to the states of the
individual layers separately.

The Cross-Layer Reliability Visioning Study [2] proposes that it is necessary to use
a cross-layer, full-system-design approach to reliability. The authors argue that in a
cross-layer reliable system the entire system stack needs to collaborate in order to
recover the errors and tolerate variations. This will be achieved because the relevant
information about the system state is shared across the layers. In addition, the appli-
cation domain of the system should always be taken into account, since different
domains have various reliability requirements.

Study [2] introduces the cross-layer approach to the reliable system design, fore-
casting that the electronics industry is about to approach two inflection points that
require drastic changes in integrated circuits design. The first point is reliability and
predictability. In the fabrication technologies less than 65 nm gate leakage became a
serious problem that led to reliability deterioration. This will push the designers to alter
the assumptions that semiconductors and other microelectronic elements will operate
without fails during the whole system lifetime. The second point is energy consump-
tion, which is a crucial issue for contemporary computer systems. Paper [9] states that
nowadays the entire Information and Communication Technologies sector consumes
about 10 % of the energy generated in the whole world.

Fig. 2. Cross-layer fault tolerance
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As mentioned in Sect. 2, the TCP/IP stack illustrates the practical usage of
cross-layer approach to ensure system fault tolerance. The cross-layer design is now
widely used in the area of the wireless sensor networks (WSNs). Since reliability,
performance and energy consumption are crucial factors for these systems, the optimal
operation of the whole system can only be guaranteed when the layers are considered
together. Single layer approach cannot share important information among different
layers. Consequently, each layer does not have complete information and it is
impossible to achieve the optimal system operation. In addition, the single layer
approach is incapable of adapting to the environmental change. Paper [10] discusses
cross-layer adaptivity techniques, which leverage functionalities at different layers of
the protocol stack. The application layer is frequently involved in these activities,
supporting current system operation in accordance with measurements and forecasts of
the monitored system. Study [11] proposes a new routing protocol based on the
cross-layer principle in order to manage faults in wireless sensor networks, decrease
signalling overhead and power consumption. A cross-layer data delivery protocol for
delay/fault-tolerant mobile sensor networks was developed in [12]. The protocol aims
to optimize energy consumption in the light of throughput requirement, stable con-
nectivity of the sensor nodes and sufficient channel bandwidth.

The on-going work on cross-layer fault tolerance is patchy and is mainly focusing
on the area of WSNs. Cross-layer fault tolerance is not applied in many-core systems,
which will be the predominant architecture in the future. Unfortunately, development
of cross-layer fault tolerance complicates the system design and it breaks the
abstractions and needs a holistic approach. To make it practical the developers need to
be assisted by novel system and software engineering techniques. The aim of this PhD
study is to develop such techniques (architectures, models, patterns, libraries, tools) and
to demonstrate that applying the cross-layer fault tolerance for many-core systems can
improve performance and energy-efficiency.

6 Ongoing and Future Work

Several topics are being investigated during the first year of the study to understand
better the domain and to develop an initial understanding of the requirements for
cross-layer fault tolerance engineering in many-core systems.

6.1 Experiments with Odroid-XU3 Board

The Odroid-XU3 board is a small Octa-Core computing device implemented on
energy-efficient hardware, which is based on the ARM big.LITTLE heterogeneous
architecture and consists of a high performance Cortext-A15 quad core processor block
(big), a low power Cortex-A7 quad core block (little), GPU and DRAM. The following
experiments were carried out to understand the correlation between power consumption
and performance. To clarify the voltage-frequency dependencies for the A7 and A15
power domains, the first experiment measured voltage, current and power at different
frequencies without any additional workload. The second experiment involved
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measuring the same parameters under 100 % load created by a stress test program
executing 50 million square root operations, and brought unexpected results, that at the
identical frequency, A7 was a bit faster than A15 and consumed four times less power.
The same trend was observed with sine and cosine functions. Experiments with other
operations gave the anticipated results when A15 was more than twice faster than A7 at
the same frequency and almost three times faster at a maximum frequency. In the third
experiment, we investigated the influence of thread sleep state (between active state
periods) on energy consumption. Our results show that in terms of energy, it is more
efficient to execute the task as fast as possible. Fourth experiment was held to inves-
tigate possible power and energy savings after disabling CPU cores for the cases when
the workload is not very high. It was found that power consumption reduces more than
8 times after disabling all four cores of A15 processor. This technique can be used to
reduce power and energy consumption of many-core systems during their idle time.

6.2 Threads Scheduling

In order to understand the behaviour of the scheduler at the ultimate load in Windows
and Ubuntu OSs the threads scheduling experiments were carried out. Two or more
threads with 10 ms tasks, requiring as much CPU time as possible were bound to one
CPU core using thread affinity. It was observed that Windows and Ubuntu schedulers
have different logic. Windows scheduler tries to run one thread to completion and after
that switches to another thread, whereas Ubuntu scheduler tries to switch between
different threads during execution. These findings should be taken into account while
designing cross-layer fault tolerance for high performance and reliable many-core
systems.

6.3 Global Exception Catch Block

Breaking the abstractions will lead to the situation when the encapsulation principle is
violated. This, in turn, can be the reason for the inconsistent state. Let us consider the
hypothetical global catch block, which will specify that all exceptions down the call
stack should be propagated to this global catch block, even though there are catch
blocks below that can handle these exceptions. For example, we have module 1, that
calls function Do of module 2 inside the try-global-catch statement. An implementation
of the Do function already has a standard try-catch statement inside. If an exception is
thrown in function Do and the standard catch block in the same function has only error
loggers and does not attempt any recovery or rollback, than module 2 remains con-
sistent after the exception is propagated to the global catch block of module 1.
However, if function Do has a transaction that should be rolled back in the catch block,
than the state of module 2 could become inconsistent after exception propagation to the
global catch block in module 1, since the catch block in the Do function will not be
applied. This simple example illustrates that it is necessary to study the effects of error
propagation through the system layers in order to understand the problems to be faced
during development of cross-layer fault tolerance. We are now developing an advanced
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exception handling scheme to support global exception handling as a programming
mechanism for cross-layer fault tolerance.

6.4 Relax Framework

The authors of [13] propose a co-called language-level Relax mechanism for providing
energy-efficient reliability and cross-layer fault tolerance for supercomputers. It allows
the developer to specify code regions where low-reliability computations should be
tolerated. In case of error, recovery is performed by re-execution of the “relaxed” code
block. We plan to apply the similar approach on Odroid-XU3 board, by using little
cores for detection of the calculation errors of big cores. If the error is detected, the
recovery will be done by simple re-execution of the calculation. This technique will be
useful for developing more sophisticated cross-layer fault tolerance mechanisms for
many-core systems.

6.5 Future Work

Our short-term plans include work in the two areas. Firstly, we will apply the Order
Graphs – the scalable approach developed in our group [14] - to model fault tolerance,
power consumption and performance of many-core systems and to represent
cross-layer fault tolerance. In particular, we would like to apply the idea of model
fidelity to the area of fault/failure significance and of developing the corresponding
cross-layer fault tolerance. Secondly, a medium-scale case study will be implemented
to gain the experience in developing cross-layer fault tolerance for many-core systems.

Acknowledgments. This work is supported by the EPSRC/UK PRiME project and by the
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Abstract. Design for resiliency always needs a proper trade-off between
dependability of a system, and (cost) overhead. Cloud computing offers
surplus resources at a favorable cost, thus (modular) redundancy based solutions
became affordable for a broad spectrum of applications. The paper aims at a
risk model based assessment of the benefit of applying redundant cloud
resources.
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1 Introduction

Faults, errors and failures are omnipresent in human made systems. The huge risk
potential originating in failures and outages in mission critical and hard SLA (Service
Level Agreement) bound applications is traditionally well confined by means of
architectural fault tolerance based, for instance, on modular redundancy. Similarly,
business-critical services could suffer of losses up to millions of dollars per downtime
hour [1], which makes rough granular redundancy, despite of its high cost, to a
financially feasible optimum.

The joint characteristics of critical applications is the high value of the assets
endangered by faults and their consequences, which drive the trade-off cost point high.
On the contrary, the availability of cheap computing power provided by cloud com-
puting pushes the cost balance point by orders of magnitude down, thus making
redundancy based resilience to a favorite candidate for a broad spectrum of
applications.

The typically low level of SLA guaranteed by the providers of public clouds is still
a deal breaker barrier for professional applications, despite all the attractiveness of
cheap cloud resources. Even private clouds cannot reach such an assured SLA like
dedicated HA servers, thus the designers are afraid to build a cathedral on the sand by
adopting cloud based solutions.

For instance, telecommunications solution providers, traditionally confined by the
requirements of carrier grade services, are clearly on the brink of embracing the ben-
efits of cloud computing through Network Function Virtualization (NFV) [2], in the
case if a proper dependability, security and resilience can be guaranteed.
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Our motivating example, NFV is based on three core ideas: moving from pro-
prietary telco specific boxes to standard hardware, decoupling the telco application
environment from the HW platform by virtualization, and leveraging common data-
center and cloud technologies, in order to focus onto the telco specific parts. NFV is
envisioned to offer groundbreaking benefits, such as reduced equipment and energy
costs by consolidation and economies of scale, faster time to market by software
implemented functionality reusing COTS components, and runtime resource
optimization.

The logic interface (system boundary) hides the majority of details of the under-
lying platform from the cloud user. However, the SLA provided by a complex
framework would be highly sensitive to platform failures unless an appropriate
redundancy scheme is masking the insufficiencies of the underlying infrastructure.
Moreover, in reality, cloud providers lack strict SLAs assuring well-defined and
measureable KPIs. Even the relevant NFV documents are at an early stage [3].

The core question arising from this dichotomy: How can cloud services of varying
quality be trusted by critical applications of high dependability requirements?

This paper focuses on critical applications running on virtual machines hosted on
public clouds. We interpreted the definition of dependability [4] (“the ability of a
system to avoid service failures that are more frequent or more severe than is
acceptable.”) with a risk based approach, effectively transforming dependability
requirement violations into a risk issue. Here the severity and rate of failures are
quantified as the expected value of loss (risk) due to potential service outages. Either
the failure rate or the severity needs to be confined in order to mitigate risk.

2 Cloud Computing Basics

The most widely accepted cloud computing definition is as follows [5]:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction.”

The different, partly independent aspects exposed by the definition offer several
opportunities for resiliency:

• On-demand self-service and rapid elasticity facilitate error compensation by diag-
nostics based on demand redundancy. Moreover, rapid re-provisioning supports
software (and platform) rejuvenation.

• Isolation and reconfiguration based resiliency by exchanging suspicious resource
instances to fresh ones selected from an independent part of the system. Note that
reconfiguration may rely on the fast rearrangement of Software Defined Networks
(SDN) instead of using the time consuming migration mechanisms. This promises
the inclusion of soft real time systems into the application scope of clouds.
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2.1 Service Models of Cloud Computing

Cloud applications depend on several subsystems. The definition of the system
boundary between the cloud user and provider domains differs in the individual service
models according to the level of abstraction of the platform services.

Generally, the key layers are (Fig. 1): the infrastructure (consisting of the HW
platform, host OS equipped with a virtual machine monitor –VMM), virtual platform
(virtual resources, machines), guest OS, application container and the application itself.
There are three corresponding primary service models of cloud computing: Infra-
structure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS).

The individual service models offer further means of fault tolerance, in addition to
the previously mentioned ones, differing primarily in their respective granularity of
fault management and resilience. For instance, IaaS supports rollback and rollforward
between different VM images, reinitialization from an image, and diagnosis. PaaS may
provide similar means, even supporting design per implementation diversity. SaaS
typically elevates the services provided by the application framework (middleware).

The applicability of different resiliency mechanisms differs to a great extent by the
ownership of the layers [5]. Self-operating a cloud (Private cloud) or part of it (Hybrid
cloud) naturally grants observability and controllability of the provider domain,
enabling more efficient error detection, both concurrent and preemptive. In contrast to
this, cloud platforms operated by an independent organization (Public cloud) or a group
of organizations (Community cloud) do not necessarily grant this, making them inferior
from error detection point of view.

Fig. 1. Cloud service models and redundancy architectural pattern alternatives
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The physical structure of cloud is also a major factor to be considered (Fig. 2).
Cloud resources are mostly hosted in multiple locations (regions), which are further
subdivided into physically isolated locations, named availability zones (AV zones),
providing geographic diversity [6]. Low latency dedicated links connect the AV zones,
whilst regions are interconnected via Internet, implying generally worse, less reliable
and unsecure communication.

3 Risk Model

3.1 Objective and Scope

One potential answer to the fundamental question formulated in the introduction as:
“How can cloud services of varying quality be trusted by critical applications of high
dependability requirements?” is the exploitation of the affordable resources in the
cloud in the form of modular redundancy (Redundancy architectural pattern) [7].

Narrowing it down, the actual question driving this paper is the following: In order
to optimize risk, how many redundant virtual machines are needed? For sim-
plicity, the concepts are illustrated for a simple fault tolerance scheme.

Our approach in answering the questions is based on three essential model ele-
ments: cloud pricing, used to quantify the exact cost of cloud resources, such as the
operational cost of a VM (VM price/hour); the cloud fault model, used for downtime
estimation; and the cost of downtime losses used for risk assessment.

3.2 Cloud Model

The target topology of interdependence follows the layers described above [8–11, 18].
Since regions and AV zones are physically separated, a tree structure is used there in
contrast to the connectivity within an availability zone (Fig. 3).

A similar top-down structured interdependence graph as in [9] is used for basic
fault impact analysis. Leading from the consumer (client) through regions (data centers)
and availability zones (AV zone) to virtual machines (VM).

All nodes, except the consumer node have two states: 1 (up), 0 (down). Nodes may
fail and be repaired according to their respective time between failures sk and time to

Fig. 2. Physical cloud model

74 S. Bozóki et al.



repair gk stochastic distributions. We reuse distribution types and their actual param-
etrization from literature processing observation data [12].

Note that the characteristic distributions used here differ essentially from those used
in traditional reliability analysis as no initial or aging faults appear in professional
clouds during operation (thus Weibull styled approximations are unfaithful). Similarly,
software dominated faults are long tailed and do not possess the forever young property
making the exponential approximation unfaithful as well. Best fitting is achieved by
applying resource type dependent Gamma distribution, widely used for life expectancy
testing or if the times between Poisson distributed events are relevant.

Similarly, lognormal distribution describes best the complex multifactor repair
process with heavy differences between hardware and software faults.

A complete but consistent set of failure related data is simply unavailable for the
wide public. Accordingly, infrastructure related empirical data will be reused from
publications observing a private data center while data related to regions originate in
published data gained by external observers of public cloud services [13].

The basic principles, implementation and operational procedures are highly similar
in different clouds independently of they are private or public nature. We still assume
that a fundamental consistency between this data related to different cloud objects
remains valid.

Note that the layered approach to fault tolerance patterns basically decomposes the
calculations into two loosely coupled parts corresponding to the different layers.

We will reuse for VMs and the basic infrastructure the numerical parameters
extracted of large number of observations [12] in the following pilot calculations: for
instance, the Gamma distributed random variable denoting the time between failures sk
corresponds to 19.6 h of MTBF, while lognormal random variable gk has 37.22 days of
MTTR. Overall, this results in a 97.85 % VM availability and failure rate of
rVM = 2.15 %.

Let the random variable fn(t) denote the state of the nth node at time t (Fig. 4); If
node n is an initially fault free VM (checked during provisioning) i.e. fn(0) = 1, then:

Fig. 3. Abstract cloud model

Fig. 4. Timeline and state change
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If exactly f failure-repair actions are performed until the time instance t:

fn tð Þ ¼ 0 if
X f

k¼1
sk þ

Xf�1

k¼1
gk � t\

X f

k¼1
sk þ

Xf�1

k¼1
gk þ gf

fn tð Þ ¼ 1 if
Xf�1

k¼1
sk þ

Xf�1

k¼1
gk � t\

Xf�1

k¼1
sk þ sf þ

Xf�1

k¼1
gk where f [ 1

An application loses its underlying infrastructure if all the candidate VMs (or VM
ensemble) needed by it are down or unreachable. This way the reliability block diagram
(and its related fault tree in Fig. 5) is simply the serial connection of the region, the AV
zone and the respective set of VMs (with potential redundant parallel blocks).

The top level fault tree (Fig. 5) is refined for the case of an example scenario with 2
regions, each composed of 2 AV zones, and two VMs in each AV zone. A system fails
if all region paths fail. A region path fails if the region fails or all the zone paths fail.
A zone path fails if the zone fails or all the VMs fail. Note that autonomous fault
management performed by the built-in supervisory control of the cloud is for the sake
of simplicity omitted of the model.

Let gn(t) and hn(t) denote random variables corresponding to the states of AV zones
and regions at time t. The same sources were used for parametrization of the avail-
ability models of the AV zones as for the VMs for the sake of consistency [12]. This
identified power and network outages as primary origins of down times in AV zones.
The failure rate rAV of AV zones (0.24 %) is 11 % of that of VMs.

Fig. 5. Example fault trees
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The region failure rate (rRE) is extracted from a one year long historic data on
downtime events [13]. The examined data set had three primary attributes: provider
name, region name, and downtime.

It is assumed that we have N regions Ni AV zones in the ith region. For simplicity,
regions are assumed to be identical both in the size and failure characteristics. Let
denote by Nij the number of VMs deployed in the jth AV zone of the ith region.

The total system failure rate rtotal becomes:

rtotal ¼
YN

i¼1
ð1� ð1�

YNi

j¼1
ð1� ð1� rNij

VMÞð1� rAV ÞÞÞð1� rREÞÞ ð1Þ

3.3 Downtime and Risk Assessment

Risk assessment using the fault model was based on different redundancy schemes
differing in the number of VMs and their allocation (Table 1). Three significantly
different cloud providers were selected using T-test with 0.025 significance level in
order to avoid the overfitting of the results to a particular provider [13]. VM cost was
based on the offering of a cloud provider [14]. The penalty of application downtime
was assumed to be linear with the length of the outage [1, 15]. (for a more sophisticated
value assessment of cloud see [16]) The expected annual total cost was calculated using
the hourly cost of the VMs and the hourly cost of downtime.

3.4 Extending the Basic Model

The basic model was extended by the variance of network and compute resources [17].
This restriction would allow assessment of soft real time systems with timing con-
straints. A resource was considered down if its performance was below a threshold,
respectively network was down over a latency limit, whilst compute was down when
the computation time exceeded a given percentage of the mean computation time. The
availability of resources is plotted against different thresholds in Fig. 6.

Fig. 6. Varying network and compute availability based on different thresholds
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3.5 Calculations

The basic assumption is that the user has a control over:

• Redundancy Degree: the number of virtual machines used in modular replication
based his fault tolerance scheme compensating independent faults in the individual
VMs.

Table 1. Assessment of the basic and extended model
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• Deployment for Diversity: by populating copies into different cloud regions to
avoid geographically correlated faults.

The calculations were based on the rtotal formula (Eq. 1). The different numbers of
VMs allocated to regions are delimited by semicolon. Penalty was 2*105$/
downtime-hour. As different providers apply similar technologies (with potentially dif-
ferent implementations) for the management of VMs and AV zones, we approximated
their failure rates uniformly based on [12].

4 Related Work

[19] deals with different strategies from the provider view to optimally meet SLA
requirements. Our work presented addresses a similar question, however from the
perspective of a cloud tenant wanting to meet only his own SLA. While providers are
capable and motivated to search for a global portfolio optimum, tenants of the cloud are
usually incapable or disincentivized in it. Moreover, as previously mentioned, a pro-
vider has a wider variety of candidate means to use: underlying infrastructure, tenant
SLA budget, implementation specific (vSpeher) fault and error management mecha-
nisms etc. On the other hand, tenants could operate on the infrastructure of several
providers, allowing to optimize the portfolio of offered resources with varying SLAs.
This makes our work naturally different, but complementary.

[20] presents a detailed model of a queueing and scheduler based job execution
service deployed on cloud infrastructure, which distributes jobs and their related tasks
to worker loads, the dynamically provisioned virtual machines. In general, our aims
and perspective are similar, the assessment of running applications (cloud user per-
spective) on a scalable cloud infrastructure. Compared, their work is more specialized
and focused on the widely used queueing and scheduler based job execution services,
while our present work is more general, and lacks application specific details.

[21] Presents an interesting analysis of cloudification based on the case study of
deploying a scientific grid on a private cloud. It clearly indicates that the profitability of
deploying a scientific grid architecture on top of a private cloud is a viable alternative if
the environmental parameters (VM size, PM size, job characteristics etc.) are right.
Although their aim of assessing cloudification is similar to ours, our cloud user on a
public cloud based perspective is different from their private cloud case study.

5 Conclusion

The basic model presented considers only availability, showing that the cloud is ready
for critical applications from a pure availability point of view. However, the extended
model highlights the Achilles heel of current public cloud computing platforms,
resource quality variance, especially for network resources.

Redundancy seemed a viable risk mitigation strategy capable of reducing annual
total costs. The affordability of multiple modular redundant platforms pushes the
boundary of criticality from the cloud to demanding commercial applications.

Risk Assessment Based Cloudification 79



The model presented in the paper was slightly simplified for an easier under-
standing. It is able to support risk assessment, providing an estimate for the required
redundancy depending on the value of the continuity of services.

Modern cloud technology offers several new opportunities for the implementation
of a redundant architecture. Software defined networks designated for a fast recon-
figuration are favorite candidates to substitute the heavily time consuming failover
implementations based on migration.

Applications of changing criticality during their execution result in different levels
of required redundancy. Dynamic redundancy allocation can provide a tradeoff
between dependability and resiliency versus cost.
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Abstract. Rail road switches enable trains to be guided from one track
to another, and rail road switches heaters are used to avoid the forma-
tion of snow and ice during the cold season in order to guarantee their
correct functioning. Managing the energy consumption of these devices
is important in order to reduce the costs and minimise the environmental
impact. While doing so, it is important to guarantee the reliability of the
system.

In this work we analyse reliability and energy consumption indicators
for a system of (remotely controlled) rail road switch heaters by devel-
oping and solving stochastic models based on the Stochastic Activity
Networks (SAN) formalism. An on-off policy is considered for heating
the switches, with parametric thresholds representing the temperatures
activating/deactivating the heating. Initial investigations are carried on
to understand the impact of different thresholds on the indicators under
analysis (probability of failure and energy consumption).

1 Introduction

A rail road switch is a mechanism enabling trains to be guided from one track
to another. It works with a pair of linked tapering rails, known as points. These
points can be moved laterally into different positions, in order to direct a train
into the straight path or the diverging path. Such switches are therefore critical
components in the railway domain, since reliability of the railway transportation
system highly depends on their correct operation, in absence of which potentially
catastrophic consequences may be generated.

Unfortunately, during winter, snow and ice can prevent the switches to work
properly. Indeed the mechanisms which allow a train to be directed can be
blocked by an excessive amount of snow or ice. To overcome this issue, the rail
road switches need to be cleaned from possible snow or ice forming on top of
it. In the past, the switches were kept clear manually by employers who were
sweeping the snow away. More recently, heaters are used so that the temperature

c© Springer International Publishing Switzerland 2015
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of the rail road switch can be kept above freezing. The heaters may be powered
by gas or electricity.

The managing of the heaters is automatic, and is controlled by a central
unit using a Powerline [3]. Powerline communications have the possibility to
transmit coded information through the existing electric lines. A Powerline is a
transmission system that uses electric lines, with a very extensive infrastructure
in nearly each building. The main advantage of adopting the existing network is
the absence of additional costs for the installation of the infrastructure.

Powerlines are used in order to automate and optimize several tasks, i.e.
switching on and off the lights of the station, checking the status of railway
track switches, managing the traffic of trains in the station and the rail road
switch heating system.

Nowadays, there is a great attention towards cautious usage of energy sources
to be employed in disparate application domains, including the transportation
sector, to save both in financial terms and in environmental impact. Therefore,
studies devoted to analyse and predict energy consumption are more and more
gaining importance, especially in combination with other non functional prop-
erties, such as reliability, safety and availability.

In this paper, we address reliability and energy consumption of rail road
switch heaters. A failure in those switches can lead to major malfunctions.
Indeed, while managing energy optimization we must ensure reliability. In fact,
by turning on all the heating system at the same time, an overhead of energy con-
sumption can lead to a blackout. Alternatively, an excessively parsimonious pol-
icy to save on energy can cause the failure of some rail road switch heaters. The
proposed analysis contributes to gain insight on the interplay between energy
consumption and reliability in order to select an appropriate policy for the heat-
ing of the switches by selecting minimum and maximum temperature thresholds,
which guarantees a satisfactory trade-off. Note that failure of the heating system
is accounted for by other components of the railway system, namely interlock-
ing mechanisms which guarantee safety; however we do not include them in our
analysis.

We adopt a stochastic model-based approach to analyse the behaviour of
the rail road switch heating system under different circumstances. A modu-
lar and parametric approach is followed, to assure usability of the developed
analysis framework in a variety of system configurations, as well as to promote
extension and refinements of the model itself, to account for further involved
aspects/phenomena and so enhance its adherence to sophisticated and realistic
implementations with respect to the current preliminary version. In particular,
we exploit Stochastic Activity Network (SAN) [15] to model the heating system,
and use the Möbius tool [4] to perform experiments.

Structure of the Paper. In Sect. 2 we describe the considered rail road switch
heating system. Stochastic model-based analysis is introduced in Sect. 3, while in
Sect. 4 we present the models of the rail road switch heating system. The results
of our experiments are discussed in Sect. 5, related work and conclusions are in
Sects. 6 and 7.
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2 The System Under Analysis

In Fig. 1 a rail road switch heater is displayed. The picture is taken from [14].
The heating system consists in a series of tubular flat heaters along the rail

road track, which warm up the rail road by induction heating. To accomplish its
task, the rail road switch heater system reads through sensors the temperatures
of the air and of the rail road, and checks if the temperatures are between
given thresholds [14]. Based on this general behaviour, we have based the policy
employed to activate/deactivate the heating on two threshold temperatures:

– warning threshold : this temperature represents the lower temperature that
the system should not trespass. If the temperature is lower than the warning
threshold, then the risk of ice or snow can lead to a failure of the rail switch
and therefore the heating system needs to be activated;

– working threshold : this is the working temperature of the heating system.
Once this temperature is reached, the heating system can be safely turned off
in order to avoid an excessive waste of energy.

Fig. 1. An example of a rail road switch heater heathen by electric induction c©2006
– 2012 Rails Company

Hence the time during which a single heater is active depends on its location
and the weather conditions. Heaters located in a colder geographical area will
consume more energy then those under warmer temperatures.

The network of heaters will share information through central computational
unit, using the Powerline. The central unit manages the maximum amount of
power that can be delivered to the system, in order to prevent possible blackouts.
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3 Stochastic Model-Based Analysis

Stochastic model-based approaches are useful to support the development of
new systems, in all the phases of their life cycle. In the early design phases it
is important to validate a model of a system in order to avoid waste of time
and resources in the development phase. This can be done by pointing out the
properties and the requirements of the system, building a model that represents
its behaviour and checking that the properties are satisfied by the model. It is
possible to choose between different alternatives for the same system, and select
the one that better suits the requirements. An early modelling phase is also
useful to highlight problems in the design of the system.

When the design phase is completed, a model allows predicting the overall
behaviour of the system, fostering an analysis for the fulfilment of constraints in
the design phase and the acceptance cases. For an already existing system, an
a-posteriori analysis of properties such as dependability or performance is useful
in order to improve the system in its future releases. Moreover, with a model-
based analysis it is possible to predict future behaviour to plan the maintenance
and the upgrading of the system.

3.1 Stochastic Activity Network

Several stochastic modelling methodologies have been proposed in literature.
Stochastic Activity Networks [15] are a widely adopted formalism for the analy-
sis of systems under performance, dependability and quality of service. The
formalism is a generalization of Stochastic Petri Nets [2], and has similarities
with Generalised Stochastic Petri Nets [1]. A SAN is composed of the follow-
ing entities: places, activities, arcs, input gates and output gates. Places in SAN
have the same interpretation as those of Petri Nets. Activities are of two types:
instantaneous and timed. Instantaneous activities are fired once the enabling
conditions are satisfied. Timed activities are fired following a temporal stochas-
tic distribution of time. There are different policies of activation and reactivation
of timed activities, for a marking based policy of reactivation of timed activity.
An enabled activity is aborted when the SAN moves into a new marking in
which the enabling conditions of the activity no longer hold. Cases are associ-
ated to activity, and are used to represent uncertainty about the action taken
upon completion of the activity. A marking is stable if no instantaneous activity
is activated. Input gates control the enabling of the activity and the change of
marking at completion of the activity. Output gates define the change of mark-
ing upon completion of activity. The primitives of the SAN (activities, input and
output gates) can be defined using C++ code. When an activity completes, the
following sequence of events is executed:

– one of the cases of the activity is chosen according to its probability,
– the functions of the connected input gates are executed,
– one token is removed from the places connected by the input arc,
– the function of the output gates connected to the activity are executed,
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– one token is added to the places connected to the activity or one of its cases
by the output gate.

For evaluating the energy consumption and the probability of failure of the
system modelled, we use the Möbius tool [4]. Möbius is a software tool for mod-
elling the behaviour of complex systems, supporting various formalisms such as
SAN, PEPA, Fault Tree, etc... Developed models are then solved by using dif-
ferent analytical and simulative solvers. This tool can be used for studying the
reliability, availability, and performability of systems. It follows a modular mod-
elling approach, with proper operators Rep and Join to compose atomic models
into an overall composed model.

4 Modelling Framework

In this section we describe the rail road heating system model.
We developed a SAN model to represent the system which is actually struc-

tured as composed by five atomic sub models, properly combined through Rep
and Join operators (see Fig. 4).

Three of the five atomic models are selectors for the profile, locality and the
unique identifier of each switch. The remaining two are the atomic model for the
queue, shared among the replicas, and the main model for the rail road switch
heater.

The main parameters of the SAN model are the lower and working temper-
ature of the device, and the maximum power that the system can provide every
instant of time, i.e. the maximum number of heaters that can be turned on at
the same time.

Weather forecast. To model the external weather conditions, our model takes in
input a table containing profiles of average temperatures in those days for which
the analysis is relevant (a.g. winter days).

The time window under analysis is divided in intervals to which an average
reference temperature is assigned. Current instance of the model concentrate on
nights only, from 6:00 am to 6:00 pm, divided in intervals of two hours. However,
the model can be easily modified to consider longer periods, as well as different
number of intervals.

At starting time, a SAN will select one of these profiles. A probability is
assigned to each profile. Less frequent profiles will have a lower probability.
The probability in which a particular profile will be selected, depends on the
aforementioned value. In Fig. 2 left, the SAN model corresponding to the action
of selecting the profile is displayed. The probability is selected in the SAN model
with a timed activity with different cases, each case corresponds to a profile. A
C++ function in the output gate will load the selected profile.

We note that an alternative way of deciding the actual temperature would
be to select stochastically the temperature depending on the previous temper-
ature and the actual time. However, by adopting this methodology we would
have obtained a non realistic zig-zag evolution of the temperature during the
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Fig. 2. On the left the SAN model ProfileSelector, on the right the SAN model Local-
itySelector.

night. Indeed after each interval temperatures would have a non-zero probabil-
ity of increasing or decreasing. Thus there could be the unwanted case where
temperatures increase and decrease several times during the night.

Location. Rail road switch heaters are located in different zones, with different
weather conditions, while we assume that they are remotely controlled by the
central management unit. At a higher altitude, the probability to have temper-
atures lower than the average selected for that profile is greater than the case of
rail road switch heaters located at lower altitudes. For modelling this variation
of temperature, the model takes as input a vector of locations, which are numer-
ical values representing the gap from the average temperature for that profile.
In case there are many rail road switch heaters located at higher altitudes, it
will be more probable that the actual temperature will be lower than the aver-
age. The SAN that selects the location for the device is depicted in Fig. 2 right.
The network works similarly to the one for the selection of the profile. A timed
activity has different cases, according to the different probabilities of selecting a
location. Once the activity is fired, a C++ function is called which assigns the
given probability to the rail road switch heating module.

4.1 Rail Road Switch Heater

In Fig. 3 the SAN model representing the rail road switch heater is depicted.
The SAN takes in input the profile and the location of the device, and a unique
identifier. This unique identifier will be computed by a separate SAN, not shown
here. There are two subnets present in the network:

Heater subnet represents the status of the heater. It can be switched on or off, or
it can be a failure state. An extended place temperature represents the internal
temperature of the device, while the places on and off represent the status of
the system. A shared place sharedOn is useful to know how many heaters are
turned on at a given time. According to the heating policy, once the system
temperature goes below a pre-defined warning threshold, the heating needs to
be activated otherwise a switch failure is experienced (represented by the place
failure). Then, once the temperature raised and reached the working threshold,
the heating system can be safely turned off.
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The energy consumption of the overall system depends on the value of those
thresholds. A smaller gap between the two values represents a frequent activation
of the heating system, but for a shorter period of time. Alternatively, by taking
a wider gap between the two values, we will obtain a less frequent activation,
but the activation will be for longer periods of time. In the next section, we
instantiate the model with varying values for these thresholds, to show their
impact and benefit on both energy consumption and system reliability.

Clock subnet represents a clock which updates at each unit of time the parame-
ters, i.e. the temperature of the rail road and the temperature of the air. For
this case study, the unit of time is assumed to be one hour. Each time the clock
activity is fired, the temperatures will be updated in the output gate using C++
functions. We model the physical behaviour of the rail road in terms of temper-
ature decay and increase, when the heating is switched off and on, respectively.
For the temperature of the air, a new value will be picked up by the table for
the selected profile and depending on the location of the device, this value will
be higher or lower than a given amount of degrees, selected in the locality table.

For the internal temperature of the device, we will model the actual temper-
ature of the system by using an equation of heat exchange through convection,
which simulates the data that will come as input from the sensors.

The energy place represents the amount of energy consumed by the system.
Each time the clock activity is fired, if the heater is switched on, then the energy
consumed is augmented. By taking into account the power consumed by the
heater, it is possible to calculate the consumption of energy in kilowatt.

Moreover, in Fig. 3, the place free represents the queue of active rail road
switch heaters. This place is shared among all the instances of the SAN. The
capacity of the queue represents the number of heaters that can be turned on at
the same time, that we call NHMax. For example, assuming that the power con-
sumed by a single heater per hour is 35KW , if NHMax = 2 than the maximum
energy that the system can provide is 70KW : no more than two heaters can be
turned on at the same time. If the capacity of the queue is exceeded, a blackout
failure may occur. Hence the thresholds for the activation of the switches must be
chosen also taking into account this constraint. With the queue model, it is also
possible to implement different priorities in which a particular rail road switch
heater must be turned on and off (not implemented in this paper). Although a
sub-model Queue is included in the composed model in Fig. 4, in this work it is
only consists of the place free.

4.2 Physical Model for Heat Exchange

As mentioned above, we need to simulate the data read by the sensors in order
to estimate the energy consumption of the heaters. To do so, we instantiate a
physical model representing the exchange of heat through convection. Indeed the
rail road gets cooled by the external temperature and warmed by the heaters.

To make the needed calculation we consider the portion of the rail road track
to be heated, which for simplicity is an iron bar representing the rail road track.



Stochastic Model-Based Analysis of Energy Consumption 89

We assume that the bar is exposed to the external temperature both from the
top and the bottom.

The heater is represented by an electric cable that passes through the rail road
in different points in order to warm up the iron. We assume that the power used
by the heater is constant, in order to estimate the kilowatt per hours consumed
during the time interval that we consider (6pm - 6am).

Every hour the sensor reads a new data for the internal temperature of the
rail road track. Assuming that the value of the temperature of the air and the
previous internal temperature are known, we foresee the updated internal tem-
perature of the device using the following equation representing exchange of heat
by convection. This equation is derived from a differential equation on the time:

Tfin = Ta + (Ti − Ta) · e−u·A·t
m·c +

Q

u · A · L
The coefficient of convective exchange u is calculated as:

u = (
g · β ·(Ti − Ta) · ρ2 ·AV 3

µ2
)

1
4 · 0.54 + 0.26

2
· K

AV

The parameters of the previous equation are: Tfin is the new internal tem-
perature of the heater; u is the the coefficient of convective exchange; c is the
heat capacity of iron; A is the surface area exposed to the external temperature;
AV is the ratio between area and volume of the iron bar; t is the interval of time,
one hour in our case; m is the mass of the iron bar; Ti is the previous internal
temperature; Te is the external temperature of the surrounding area; Q is the
power used when the heater is turned on, if the heater is turned off this value
will be zero. Moreover L is the length of the electric cable for heating the rail
road; g is the gravity acceleration; β is the thermal expansion coefficient; ρ is
the density of air; µ is the dynamic viscosity and K is the thermal conductivity
of iron.

The function representing the heating exchange is written in C++, and it is
called by the output gate O1 displayed in Fig. 3 to update the temperature of the
rail road every hour. This C++ module is the portion of the system representing
the real world model that we want to optimize. This module can be easily mod-
ified to reflect different scenarios of energy optimization. For example, energy
optimization could be applied to the enlightening of a station, by turning off the
lights when they are not needed. In this case, the temperature should represent
the quantity of light during that part of the day, the thresholds should repre-
sent when the lights must be turned on and off, while the energy consumption
equation should take into account the amount of consumed electricity.

4.3 The Composed Model

The composed model is displayed in Fig. 4. The atomic SAN models are Rail-
SwitchHeater, LocalitySelector, ProfileSelector, SwitchIDSelector and Queue.
The box Join1 represents the join of all the atomic models except Queue. Those
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Fig. 3. The SAN model RailRoadSwitchHeater.

atomic models share the places relative to the locality of the device, its weather
profile and unique ID. The box Rep1 represents the network of heaters. A para-
meter numRep identifies the number of devices composing the network. Recall
that each device has its own weather forecast profile and locality. Finally, the
node Join2 composes the network of rail road switch heaters with the model
representing the Queue. Indeed all the sub models share the same queue.

Fig. 4. The composed model

5 Analysis results

In this section we describe the preliminary experiments we have performed in
order to find suitable trade-offs in terms of reliability and energy consumption
for different settings of the model parameters. These experiments do not refer
to a rail road configuration taken from reality, but consider a restricted plau-
sible configuration adopted as a working example to show the benefits of our



Stochastic Model-Based Analysis of Energy Consumption 91

analysis framework. Indeed, the parametric nature of our model allows its cus-
tomization to a wide variety of system configurations in terms of both size and
characterization of system components.

5.1 Measures of Interest

We consider two different measures of interest which represent the energy con-
sumption and reliability of the system under analysis:

1 CE(t, l): the mean energy consumed by a heater in the interval [t, t + l];
2 PFAIL(t, l): the mean probability that a switch fails (becomes frozen) at

time t + l, given that at time t is not failed.

The interval [t, t + l] goes from 6:00 pm to 6:00 am. CE(t, l) is defined by
accumulating in the interval [t, t+l], that is the time that each replica of the SAN
model RailSwitchHeater spends in the marking represented by one token in the
place ON , multiplied for the energy consumed in a unit of time. PFAIL(t, l) is
defined as the probability that at time t+l there is one token in the place Failure
of the SAN model RailSwitchHeater. PFAIL(t, l) can be used to compute the
mean time to a catastrophic failure.

Other measures may help in understanding aspects related with energy con-
sumption and system failure, so to take appropriate actions in improving the
system. Some of them are introduced in the following, although their quantita-
tive evaluation is left as future work:

– the probability of heating activation in an interval of time; it is useful for
understanding in which hours the probability that a heater is switched on is
greater, i.e. the hours of the night with a greater consumption of energy;

– the probability of activation of a given number of heaters in an interval of
time; it is useful for improving planning operations performed by the central
computational unit;

– the average number of heaters switched on in an interval of time; again, it is
useful for planning purposes.

5.2 Scenarios and Settings

The table of the profiles used for the experiments are displayed in Table 1. We
consider average cold winter nights, which are primary relevant for our study.
Starting from the temperature at 6 pm, it decreases and reaches the minimum
at 6 am.

We consider three main localities, displayed in Table 2. We note here that
it is more probable to select a locality at a lower altitude, where there is no
variation between the selected profile temperature. It must be pointed out that
these parameters can be easily modified to deal with different conditions.

The parameters considered for calculating the heat exchange between the
rail road, the heaters and the external air are showed in Table 3. We consider an
iron bar of 6 meters of length, 4 cm of height and 28 cm of width to represent
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Table 1. The profiles of temperatures per night

06 pm 08 pm 10 pm 00 am 02 am 04 am 06 am Probability

profile 1 2◦ 0◦ -2◦ -2.5◦ -3◦ -3.3◦ -3.8◦ 0.25

profile 2 0◦ -1◦ -2◦ -3◦ -4◦ -4.5◦ -5◦ 0.2

profile 3 3◦ 1◦ 0◦ -1◦ -2◦ -3◦ -3.5◦ 0.2

profile 4 0◦ -2◦ -3.5◦ -4.8◦ -6.2◦ -6.8◦ -6.9◦ 0.15

profile 5 1◦ -1◦ -3◦ -3.5◦ -4◦ -4.5◦ -5.5◦ 0.2

Table 2. The temperature variation and the probability of occurrence of such variation
for the three considered localities

Temperature Variation Probability

locality 1 -0.8 ◦ 0.3

locality 2 -0.3 ◦ 0.3

locality 3 0 ◦ 0.4

the portion of rail road track that needs to be heated. In the table l, h and w are
respectively the length, height and width of the iron bar. The other parameters
are described in Sect. 4, and we use standard value for the parameters of the
air and of the iron, i.e. viscosity, density, conductivity, heat capacity etc... We
assume that all the rail road switch heaters use the same amount of power, which
in this case is 35 KiloWatt.

Table 3. The parameters for the model of heat exchange by convection

For this case study, we set the freezing thresholds to zero. If the temperature
goes below this value the system reaches a failure state. In our experiments
we consider four different combinations of thresholds, at different temperatures
and with tight or wide gaps between the working threshold and the warning
threshold.

The network is composed of four rail road switch heaters, and we study the
results at varying of NHMax, representing how many heaters can be turned on
at the same time, that in turn represents the maximum throughput of energy
of the system in a unit of time. We assume that all the heaters have initial
temperature of 5 degrees Celsius.
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The four pairs of thresholds are (1,4), (4,7), (5,6), (4,50). We consider differ-
ent gaps between the thresholds. Moreover we study the behaviour of the heating
system for thresholds that are more and more distant from the temperature of
failure.

The experiments were taken on the Möbius tool [4], by using simulation
with 10000 batches. The results were computed in one minute on a machine
with processor Intel Core i3.2328M 2.20 GHz with 8 GB of RAM, showing the
efficiency of the model.

5.3 Results Discussion

We report the results for two of the aforementioned measures of interest: CE(t, l)
and PFAIL(t, l).

The results for the probability of failure are reported in Fig. 5. As expected,
by minimizing the throughput of energy the probability of failure increases.

Moreover, the probability of failure increases in case the gap between the
two thresholds is greater. Indeed the time taken by the heater to warm up the
rail road is higher when the gap is wider. Hence the temperature of the other
pending heaters may go below the freezing threshold, leading to a failure of the
system.

The results for the energy consumption are reported in Fig. 6. We note that
by increasing NHMax we have more energy available, which in turn results in a
major energy consumption (recall Sect. 4). The same happens when we consider
greater value for the thresholds.
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Fig. 6. The graph for the energy consumption

Interestingly, a wider gap is worse than a strict gap when NHMax is large
enough, while the converse holds in case NHMax is limited.

The threshold (4, 50) is used for checking the consumption of energy in case
the heater, once activated, will never be turned off during the whole night.
Indeed at 35 KW of power, the system never reaches the working temperature.
Of course this threshold is the worst both for the probability of failure, and
for the energy consumption. Note that if the starting temperature is not below
the warning threshold, the heater will not be activated for the whole night.
Indeed the temperature of the heater needs some hours to fall below the warning
threshold. For example, in Fig. 6 for thresholds (4, 50) and NHmax = 1 we have
CE(t, l) = 92.8 ≈ 10.5∗35

4 , so after two or three hours the temperature of the
track will go below 4 degrees Celsius.

Our experiments show that it is better to take a tight gap between the mini-
mum and the maximum thresholds. Also keeping those thresholds not too close
to the freezing threshold improves reliability, as well as guarantees a sufficient
amount of heaters to be activated at the same time. Indeed this is necessary for
guaranteeing the reliability of the system and minimizing the energy consump-
tion.

Hence, the best scenario in this example is represented by the pair of thresh-
olds (1, 4) for NHMax = 3 and (4, 5) for NHMax = 2.

6 Related Works

Although not tailored to the rail road switch heating system, there are several
works in the literature that analyse and optimise the energy consumption in
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several application domains using formal approaches. A few of them are recalled
in the following.

In [13] Generalized Stochastic Petri Nets [1] are used to solve the dynamic
power management problem for systems with complex behaviour. Dynamic
power management addresses reduction of power dissipation in embedded sys-
tems, with a selective shut-off or slow-down of system components that are idle
or underutilized. A time-out policy is used for power saving, which turns on
a component when it is used and turns it off when it is not used for a cer-
tain amount of time. Comparisons are also performed with other models based
on Markov Decision Processes (MDP). GSPN allows to express a finer model,
with synchronizations and conflicts between different modules, that is shown
to be more accurate in power saving then MDP models. In our case complex
behaviours are modelled with SAN, which are a generalization of GSPN. We
also consider a policy of switching on/off the heater when a given temperature
threshold is reached. We express a finer behaviour by using C++ code in the
SAN model which computes the physical model of the heat transfer. Indeed the
amount of time in which a heater is not used, (i.e. turned off) is derived from
the external temperature, the internal temperature of the iron bar, and the heat
transfer law.

In [11] the problem of power management in smart grids is handled with
Learning Automata (LA), that provide a mechanism of learning from the envi-
ronment the optimal solution over a period of time. The model of the system
is hierarchical: at the root there is a LA-based main power station, that sup-
plies the power to LA-based transmission system, and adjusts the power supply
according to requirements based on learning the system. The LA-transmission
system calculates the performance of the system. The studied performance met-
rics are the power utilization and the customer satisfaction, in terms of satisfied
energy demand. It is shown that, by adjusting the power supplied to the different
clients, it is possible to obtain a good trade-off between power utilization and
customer satisfaction. In [7] the dynamic power management problem is inter-
preted as a hybrid automaton control problem and integrated stochastic control.
Hybrid automata mixed both a discrete state, representing the power mode of
the system, and a continuous one, representing the consumed power. An inte-
grated stochastic control is synthesised based on a learning feedback, and it is
used to predict probabilistically the range lengths of the future idle period based
on the past history. Two strategies are compared: on demand wake-up of a com-
ponent (that was previously turned off) and pre-emptive wake-up. The former
provides better results for conservation of energy and prevention of latency. In
our work we do not implement learning mechanisms, and the power supplied is
fixed by the number of heaters that can be turned on in a unit of time. It would
be interesting to relax this constraint and implement a power adjustment with
a prediction mechanism for minimising the power supplied, for example in case
of warmer nights.

In [12] the applicability of self-organizing systems for different fields of power
system control is discussed. Agent-based decentralized power flow control is com-
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pared with current practice based on central decision making. The authors study
how to balance the voltage and frequencies stability of the network to meet the
demand of energy. These parameters are linked to reliability and safety of the
system. It is shown how a decentralized control can improve reliability, safety and
efficiency by providing a real-time adaptivity to changes in the network (failure
of a node, blackout). In our case we consider a central unit which manages the
different heaters. The demand of energy is adjusted according to the maximum
energy that can be delivered by the central unit. In case of failure of a heater, the
energy is automatically shared between the remaining active heaters. We show
that by managing the temperature thresholds it is possible to improve reliability
even in case of low energy demand.

In [8] the authors analyse the survivability of a smart house, that is the
probability that a house with locally generated energy (photovoltaic) and a bat-
tery storage can continuously be powered in case of a grid failure. Hybrid Petri
Nets [5] are used for modelling this scenario. Different strategies of battery man-
agement are considered. In the first all the battery is consumed when needed, in
the second there is a minimum threshold of energy saved in case of grid failure.
In the third case the battery is also charged to a maximum threshold when the
grid is operating. It is shown how the third strategy is better both for the local
usage of energy and for the survivability of the smart house. The authors con-
sider a randomly chosen probability of failure and fixed thresholds. Instead, in
our case the probability of failure is derived from the model. Moreover, we do
not consider fixed thresholds, but we analyse how different values for thresholds
impact in the energy consumption and reliability.

Concerning the analysis and optimization of a railway station using formal
techniques, in [6] Stochastic Activity Network are used to improve timetable
and delay minimization of the traffic in a station. The model takes in input the
railway topology and the required service. Experiments are taken to measure the
capacity of the line in terms of number of trains that traverse the line, and the
percentage usage of each track segment. In [10] an Automatic Train Supervision
is designed that prevents the occurrence of deadlocks. A formal model that
designs railway layout and the Automatic Train Supervision behaviour is used
to verify such deadlock properties. The verification phase is performed by using
the UMC model checking verification framework [9]. It would be interesting to
integrate such studies with the possible failure of switches studied here, in order
to analyse how a failure in a switch impacts on possible delays of trains, and
deadlocks.

7 Conclusion and Future Work

We have presented the result of a preliminary research activity in model-based
analysis for a rail road switch heating system. We used Stochastic Activity Net-
works to evaluate both the energy consumption and the probability of failure.

The system reads in real time both the temperature of the external air, the
one of the rail road track, and according to given thresholds decides when to turn
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on and off the heaters. We evaluated the probability of failure of the system and
the energy consumption at varying the thresholds and the maximum number of
heaters that can be turned on at the same time. To represent the heat exchange
between the portion of the rail road track, the external air and the heaters,
we describe a physical model of heat exchange by convection. Simulations of
the model have been taken using the Möbius tool [4]. At the moment we have
instantiated the model to representative (but realistic) parameters, to obtain a
first indication of the behaviour of our system. The results suggest that, in order
to have a good trade off between probability of failure and energy consumption
it is important to:

– guarantee enough energy to allow at least two heaters working simultaneously;
– keep the minimum temperature distant from the temperature of failure;
– use a small gap between the minimum and the maximum temperatures, in

order to better distribute the time in which each heather is turned on.

This work represents a first step in the design of a rail road switch heating
system with attention to energy consumption and reliability, which often are
opposed requirements. Several directions for extending this study have been
identified.

We plan to instantiate our model to case study from real world, i.e. an existing
rail road switch heating system, to confirm our initial investigation.

Additional measures of interest, such as those discussed in Sect. 5, would help
to obtain more insight on the behaviour of the system and its energy consump-
tion.

Moreover we plan to study how the energy consumption is modified by chang-
ing parameters of the underlying physical model. Indeed, the obtained results
may suggest that, by changing the material of which the heaters are composed,
its length or the power consumed, a better trade off between reliability and
energy optimization can be obtained.

It would also be interesting to let the power consumed by the system vary
at different weather conditions. This may help to improve the reliability of the
system. Indeed in case of emergency a major throughput may prevent a failure.

Moreover, by implementing a priority queue, it is possible to develop strate-
gies for activating and deactivating those heaters which are in a critical situation,
i.e. when the temperature is closer to the failure point. At the moment, in case
of conflicts between different heaters that need to be turned on, the choice is
made stochastically by the system.

We plan to adapt the model to other different case studies for energy opti-
mization in the context of a railway station, exploiting the modularity of the
proposed approach.
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Abstract. Replacing former pure mechanical functionalities by mecha-
tronics-based solutions, introducing new propulsion technologies, and
connecting cars to their environment are only a few reasons for the still
growing E/E-System complexity at modern passenger cars. Hence, for
an engineering company in the automotive embedded system domain it
is vital to establish mature development processes, including a smart
tool chain orchestration. Starting from the customer requirements until
the final release of the product, traceability and consistency between all
development artifacts shall be given. However, achieving this by linking
the development items manually is a tedious and error-prone task. The
aim of this work is to enhance the development process by introducing
a fully automatic transformation of a system design model into a soft-
ware framework model and vice versa. With this novel approach, the
full traceability, between the system and software architectural levels, is
guaranteed.

Keywords: Automotive · Model-based development · Embedded
systems · Traceability · Model-based software engineering

1 Introduction

Embedded systems are already integrated into our everyday life and play a
central role in all domains including automotive, aerospace, healthcare, indus-
try, energy, or consumer electronics. In 2010, the embedded systems market
accounted for almost 852 billion dollar, and is expected to reach 1.5 trillion
by 2015 (assuming an annual growth rate of 12 %) [17]. Current premium cars
implement more than 90 electronic control units (ECU) with close to 1 Gigabyte
software code [6], are responsible for 25 % of vehicle costs and an added value
between 40 % to 75 % [22].

The trend of replacing traditional mechanical systems with modern embed-
ded systems enables the deployment of more advanced control strategies pro-
viding additional benefits for the customer and environment, but at the same
c© Springer International Publishing Switzerland 2015
A. Fantechi and P. Patrizio (Eds.): SERENE 2015, LNCS 9274, pp. 99–113, 2015.
DOI: 10.1007/978-3-319-23129-7 8
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time, the higher degree of integration and criticality of the control application
raise new challenges. To cope with this situation, smart methods and techniques
have to be applied starting from the very beginning of a systems development.
Some kind of guidelines, like the functional safety standard for E/E-Systems at
modern passenger cars ISO 26262, has been introduced in recent years.

To handle upcoming issues with modern real-time systems, also in relation
to ISO 26262, model-based development supports the description of the sys-
tem under development in a more structured way. Model-based development
approaches enable different views for different stakeholders, different levels of
abstraction, and central storage of information. This improves the consistency,
correctness, and completeness of the system specification and thus supports the
demands of time-to-market (first time right). Nevertheless, such seamless inte-
gration of model-based development are rather exception than the rule and often
fall short due to the lack of integration of conceptual levels and tooling levels [3].

The aim of this paper is to bridge the existing gap between model-driven
system engineering tools and software engineering tools. More specifically, the
approach is based on the enhancement of a model-driven system-engineering
framework with software-architecture design capabilities. Furthermore, a model-
transformation framework enables a seamless description of safety-critical
software, from requirements at the system level down to software component
implementation in a bidirectional way. The model-transformation framework
automatically generates software architectures in Matlab/Simulink described via
high level control system models in SysML format. The goal is, on one hand, to
support a consistent and traceable refinement from the early concept phase to
software implementation. On the other hand, the bidirectional update function
of the transformation framework enables facilitation of gaining mutual benefits
for basic software and application software development from the coexistence of
both information within the central database.

The document is organized as follows: In the course of this paper, Sect. 2
presents an overview of related approaches as well as model-based development
and integrated tool chains. In Sect. 3 a description of the proposed bridging
approach for the refinement of the model-based system engineering model to
software development is provided. An application and evaluation of the approach
is presented in Sect. 4. Finally, this work is concluded in Sect. 5 with an overview
of the presented approach.

2 Related Works

Model-based systems and software development, as well as tool integration are
engineering domains and research topics aimed at moving the development steps
closer together and thus improving the consistency of the system over the exper-
tise and domain boundaries. In Pretschner’s roadmap [18], the authors highlight
the benefits of a seamless model-based development tool-chain for automotive
software engineering.

Broy et al. [3] mention concepts and theories for model-based development
of embedded software systems. The authors claim model-based development the
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best approach to manage the large amount of information and complexity of
modern embedded systems with safety constraints. The paper illustrates why
seamless solutions have not been achieved so far, they mention commonly used
solutions, and arising problems by using an inadequate tool-chain (e.g. redun-
dancy, inconsistency and lack of automation).

Nevertheless, the challenge of enabling a seamless integration of models into
model-chains is still an open issue [19,20,24]. Often, different specialized models
for specific aspects are used at different development stages with varying abstrac-
tion levels. Traceability between these different models is commonly established
via manual linking due to process and tooling gaps. Holtmann et al. [8] claim
this lack of automation for those linking tasks and missing guidance which model
should to be used at which specific development stage as crucial drawback of
model-driven development (MDD). The very specific and non-interacting tools
requiring manual synchronization, are often inconsistent or rely on redundant
information.

An issue is also addressed by Giese et al. [7]. System design models have to be
correctly transferred to the software engineering model, and later changes must
be kept consistent. The authors propose a model synchronization approach con-
sisting of tool adapters between SysML models and software engineering models
in AUTOSAR representation. A drawback of this approach, each transformation
step implies potential sources for ambiguous mapping and model mismatching.

An important topic to deal with is the gap between system architecture and
software architecture - especially while considering component-based approaches
such as UML and SysML for system architecture description and AUTOSAR
for SW architecture description. Using SysML [2,7,10,12,15] or X-MAN [11] for
architectural description and AUTOSAR for software system description are two
common variants in the automotive domain. Buchmann et al. [4] present an app-
roach of another domain, based on bi-directional and incremental transformation
between XML class diagrams and Java source code. The authors also highlight
the crucial importance of powerful tool support for model-driven software engi-
neering. Boldt [2] proposed the use of a tailored Unified Modeling Language
(UML) or System Modeling Language (SysML) profile as the most powerful and
extensible way to integrate an AUTOSAR method in company process flows.

An automotive tool-chain for AUTOSAR is also presented by Voget [25].
The work focuses on ARTOP, a common platform for innovations which pro-
vides common base functionality for development of AUTOSAR compliant tools.
Unfortunately, the Eclipse-based ARTOP platform serves only as a common base
for AUTOSAR tool development and is not a ready-to-use tool-solution. More-
over, ARTOP also requires time-consuming initial training before a tool can be
developed.

The approach of bridging the gap between model-based system engineering
and software engineering models based on EAST-ADL2 architecture description
language and a complementary AUTOSAR representation is also very com-
mon in the automotive software development domain [5,14,23]. EAST-ADL
represents an architecture description language using AUTOSAR elements to
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represent the software implementation layer of embedded systems [1]. More
recently the MAENAD Project1 is also focusing on this approach.

Pagel et al. [16] mention the benefit of generating XML schema files directly
from a platform-independent model (PIM) for data exchange via different tools.
Performing extra transformation steps would only add potential sources for error
and ambiguous mappings could result in unwanted side-effects.

Kawahara et al. [10] propose an extension of SysML which enables descrip-
tion of continuous time behavior. Their tool integration is based on Eclipse and
couples SysML and Matlab/Simulink R© via API .

Tool support for automotive engineering development is still organized as a
patchwork of heterogeneous tools and formalisms [1]. On the one hand, general-
purpose modeling languages (such as UML or SysML) provide modeling power
suitable to capture system wide constraints and behavior, but lack in synthe-
sizability. On the other hand, special-purpose modeling languages (such as C,
Assembler, Matlab, Simulink, ASCET) are optimized for fine granular design
and being less efficient in high-level design.

2.1 The Underlying Framework of the Proposed Approach

This section gives a brief overview of the underlying framework and related pre-
liminary work which supports the proposed approach. The basic concept behind
this framework is to have a consistent information repository as a central source
of information, to store all information of all involved engineering disciplines
of embedded automotive system development in a structured way. The concept
focuses on allowing different engineers to do their job in their specific manner, but
providing traces and dependency analysis of features concerning the overall sys-
tem, e.g. safety, security, or dependability. Furthermore, the proposed approach
is intended as an affordable, versatile, and tool independent method. This makes
the method especially attractive for limited resources of small and micro-sized
companies or small projects. Especially such projects or start-up companies often
struggle with setting up their development processes or achieving adequate qual-
ity with limited resources (such as time or manpower). Therefore this approach
stir out of common AUTOSAR based approaches and force a direct model trans-
formation from SysML representation to Matlab/Simulink. The reason to make
the decision of not fostering an AUTOSAR approach is based on one hand on
focusing not only on AUTOSAR but rather generally on Matlab/Simulink based
automotive software development. On the other hand, experiences we made with
our previous approach [12] confirm the problem mentioned by Rodriguez et al.
[20]. Not all tools fully support the whole AUTOSAR standard, because of its
complexity, which leads to several mutual incompatibilities and interoperability
problems.

The approach presented in this work and the work of Mader et al. [14] are
based on similar concepts, but in contrast to their work, our technique supports
automatic generation of whole software architectures, interface definition, timing
1 http://maenad.eu/.

http://maenad.eu/
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Fig. 1. Portrayal of the bridging approach transferring system development artefacts
to SW development phase

setting, and auto-routing of signals in addition to their automatic generation of a
software model. Figure 1 shows an overview of this approach and the embedded
bridging of abstract system development and concrete software development
models. For a more detailed overview of orchestration of the whole tool-chain
see [13].

3 Model-Transformation Bridge

As mentioned in the previous section, the fundamental concept behind this
framework is to have a consistent information repository as central source of
information, to store all information of all involved engineering disciplines of
embedded automotive system development in a structured way. This affordable,
versatile, and tool independent approach forces a direct model transformation
from SysML representation to Matlab/Simulink and is especially attractive for
software development without full orchestration of AUTOSAR toolchain or non-
AUTOSAR based development.

The contribution proposed in this work is part of the framework presented in
[13] towards software development in the automotive context. More specifically,
our contribution consists of the following parts:

– UML Software Modeling Framework : Enhancement of an UML profile for the
definition of software development artifacts, more precisely, for the definition
of the components interfaces and SW architecture composition. Required for
consistent SW system description, see Fig. 1 – model addon.

– SW Architecture Exporter : Exporter to generate the designed SW architecture
in the third party tool Matlab/Simulink for further detailed development, see
Fig. 1 – tool bridge.
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– SW Architecture Importer : Importer to integrate refined SW architecture and
interfaces from the software development tool (e.g., as a result of round-trip
engineering), see Fig. 1 – tool bridge.

This proposed approach closes the gap, also mentioned by Giese et al. [7],
Holtmann et al. [8], and Sandmann and Seibt [21], between system-level devel-
opment at abstract UML-like representations and software-level development
modeling tools (e.g. Matlab/Simulink or Targetlink R©). The bridging supports
consistency of information transfer between system engineering tools and soft-
ware engineering tools and minimizes redundant manual information exchange
between these tools. This contributes to simplify seamless safety argumentation
according to ISO 26262 [9] for the developed system. Benefits of this development
approach are highly noticeable in terms of more efficient re-engineering cycles,
and easy reuse of development artifacts with changing dependencies. As can
be seen in Fig. 1, the lack of supporting tools for information transfer between
system development tools and software development tools can be dispelled by
our approach. The implementation of the bridge, based on versatile C# class
libraries (dll) and Matlab COM Automation Server, ensures tool independence of
the general-purpose UML modeling tool (such as Enterprise Architect or Artisan
Studio) and version independence of Matlab/Simulink through API command
implementation. This makes the method especially attractive for projects and
companies with limited resources (such as manpower or finances). Especially
small projects or start-up companies often struggle with setting up their devel-
opment processes to achieve adequate quality.

3.1 UML Software Modeling Framework

The first part of the approach is the development of a specific UML modeling
framework enabling software architecture design in AUTOSAR like representa-
tion within a state-of-the-art system development tool (in this case Enterprise
Architect). This EA profile makes the UML representation more manageable
for the needs of the design of an automotive software architecture by taking
advantage of an AUTOSAR aligned abstraction layer. Furthermore, the profile
enables an explicit definition of components, component interfaces, and con-
nections between interfaces. This provides the possibility to define software
architecture and ensures proper definition of the communication between the
architecture artifacts, including interface specifications (e.g. upper limits, initial
values, formulas). In addition this profile ensures the versatilely to also enable
AUTOSAR aligned development as proposed in [12].

Hence, the SW architecture representation within EA can be linked to sys-
tem development artifacts and traces to requirements can be easily established.
This further benefits in terms of constraints checking, traceability of develop-
ment decisions (e.g. for safety case generation), and reuse. Figure 2 shows an
example of software architecture artifacts and interface information represented
in Enterprise Architect.
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Fig. 2. Snapshot of the SW architecture representation within the system development
tool and representation of the interface information

3.2 SW Architecture Exporter

The second part of the approach is an exporter which is able to export the soft-
ware architecture, component containers, and their interconnections designed in
SysML to the software development tool Matlab/Simulink. The implementation
of the exporter is based on Matlab COM Automation Server and generates
models through API command implementation. This ensures tool version-
independence of the presented approach. Per user input the software architecture
representation to be transferred is selected and a background task generates
a corresponding Matlab/Simulink model. Listing 1.1 shows some excerpts of
the automatically generated Matlab API commands. As can be seen in this
listing, each model artifact, parameter, and connection is transferred to Mat-
lab/Simulink, blocks are arranged and sized in correct manner and also unique
links to the EA representation and assigned safety-criticality of the artifact
(Listing 1.1 line 3 and 8) are established.

Listing 1.1. Excerpts of Matlab API commands
addpath ( genpath ( ’C:\EGasSystem ’ ) )
add block ( ’ Simulink /Ports & Subsystems/Model ’ , ’ EGasSystem/EGasCtrl ’ )
set param ( ’ EGasSystem/EGasCtrl ’ , ’ ModelNameDialog ’ , ’ EGasCtrl ’ , \

. . . ’ Descr ipt ion ’ , ’ EA ObjectID@1969 ;ASIL@QM’ )
set param ( ’ EGasSystem/EGasCtrl ’ , ’ Pos i t ion ’ , [ 2 5 0 50 550 250 ] )

.

.

.
add block ( ’ Simulink /Ports & Subsystems/In1 ’ , ’ EGasSystem/APedl2 ’ )
set param ( ’ EGasSystem/APedl2 ’ , ’ Pos i t ion ’ , [ 5 0 200 80 215 ] )
set param ( ’ EGasSystem/APedl2 ’ , ’ Outmin ’ , ’ 0 ’ , ’Outmax ’ , ’ 5 ’ , \

. . . ’ OutDataTypeStr ’ , ’ s i n g l e ’ , ’ Descr ipt ion ’ , ’ EA ObjectID@1966 ;\

. . . ASIL@B ’ ) ;

.

.

.
add l i n e ( ’ EGasSystem ’ , ’ APedl1 /1 ’ , ’EGasMonr/1 ’ , ’AUTOROUTING’ , ’ON’ )

.

.

.
save system ( ’ EGasSystem ’ )
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c l o s e sy s t em ( ’ EGasSystem ’ )
cd . .
cd C:\EGasSystem

If dSpace2 tools are used for the subsequent C code generation instead of the
Simulink CoderTM, the software architecture can be exported into a TargetLink
model optionally. In this case, the Matlab API command generator simply uses
the TargetLink common blockset for creating the software framework model.

Furthermore, the signals from the software architecture design are analysed
and transferred to the Simulink/TargetLink data dictionary by the exporter.
This guarantees a consistent handling of the defined component interfaces as
well as the connections between the interfaces throughout the development.

3.3 SW Architecture Importer

The last part of the approach is the import functionality add-on for the system
development tool. This functionality, in combination with the export function,
enables bidirectional update of software architecture representation in the system
development tool and the software modules in Matlab/Simulink. The importer
identifies the unique links to the EA representation (shown in Listing 1.1 line 3
and 8) and thereby differentiates new and modified model artifacts.

On the one hand, this ensures consistency between system development arti-
facts and changes done in the software development tool. On the other hand,
the import functionality enables reuse of available software modules, guarantees
consistency of information across tool boundaries, and shares information more
precisely and less ambiguously.

Triggered via user input, a user interface within the system development
tool (shown in Fig. 3) depicts modifications between the two representations and
enables selective update of the UML based SW representation. As can be seen
in Fig. 3, also a highlighting of the type of change (see Table 1) is provided.

Table 1. SW architecture importer indicators of type of change

Indicator Type of change

A Model artifact added

AC Interface connection added

D Model artifact deleted

DC Interface connection deleted

U Model artifact updated

UC Interface connection updated

2 http://www.dspace.com/.

http://www.dspace.com/
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Fig. 3. SW architecture importer user interface

4 Application of the Proposed Approach

This section demonstrates the benefits of the introduced approach for the devel-
opment of automotive embedded systems. To provide a comparison of the
improvements of our approach, we use the 3 layer monitoring concept [26] as
evaluation use-case. This elementary use-case is well-known in the automotive
domain and because of this reason representative. This use-case is an illustrative
material, reduced for internal training purpose of both, students and engineers.
Therefore, the disclosed and commercially non-sensitive use-case is not intended
to be exhaustive or representing leading-edge technology. An overview of the
use-case is given in Table 2.

Table 2. Overview of the evaluation use-case SW architecture

Object type Element-count Configurable attributes per element

SW modules 7 3

SW interfaces 34 10

Connections 30 0

The definition of the software architecture is usually done by a software archi-
tect within the software development tool (Matlab/Simulink). With our app-
roach, this work package is included in the system development tool (depicted
in Fig. 4). This does not hamper the work of the software system architect but
enables constraint checking features and helps to improve system maturity in
terms of consistency, completeness, and correctness of the development artifacts.
Beside this, the change offers a significant benefit for development of safety-
critical software in terms of traceability, replicability of design decisions, visual-
izes dependencies unambiguously, and puts visual emphasis on view-dependent
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Fig. 4. Top-level representation of demonstration use-case in enterprise architect

constraints (such as graphical safety-criticality highlighting of SW modules in
Fig. 4).

The presented use-case amounts to a total count of 41 model artifacts with
361 configuration parameters and 30 relations between the elements. This small
example already indicates that relations between the model elements and number
of model elements become confusing. Therefore, manual transformation of the
information represented within the models is cumbersome and error-prone and
would inherit lots of additional work to ensure consistency of both models in
terms of safety-critical software development.

With our approach these information and model artifacts are checked for
consistency constraints (such as point-to-point consistency of interface configu-
rations) before automatically transferred via 212 lines of auto-generated Mat-
lab API code. This auto-generation of Matlab API code provides evidence and
ensures completeness of the model transformation. Furthermore, the SW import
functionality enables round-trip engineering and bi-directional updates of both
models and therefore supports evidence for consistency of both models.

According to the presented bridge approach in Sect. 3, the first step during
the transformation is the decomposition of the software architectural design.
Each software subsystem (like the AUTOSAR Composition EGasCtrl in Fig. 4)
is analysed and the comprised software modules (e.g. EGasCtrl::InpPreProc in
Fig. 5) are extracted. An essential information at the software module architec-
ture is the trigger definition, representing the later task timing property of the
module at the integrated system.

With the gathered architectural, timing, and interface information the Simu-
link/TargetLink model is generated by the previously described utilization of the
Matlab COM Automation Server. During this process, a new Simulink root model
is created and for each trigger type, which appears at the architectural design,
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Fig. 5. Software module representation at the demonstrated use-case

an own subsystem is placed at the models top level. Afterwards, each software
subsystem is transferred to the appropriate timing subsystem or even split up
into multiple tasks if necessary. E.g. the subsystem E-GasSystem::EGasCtrl con-
tains software modules with different timing attributes. Therefore, the EGasCtrl -
Subsystem is available at multiple timing subsystems at the Simulink/TargetLink
model. To facilitate a multi developer scenario, a separate model file is created
for each software subsystem and linked as a reference model at the root model.
To complete the Simulink/TargetLink model subsystem generation, all software
modules are transferred into their appropriated software subsystem.

The transformation process described so far, generates a software framework
out of the Autosar Composition and Autosar Application blocks at the design.
To provide a complete model framework, which serves as a basis for the sub-
sequent software unit development, the interfaces as well as their connections
are transferred to Simulink/TargetLink in the next step. For an efficient and
dependable handling of the signals, a Data Dictionary and the related tool Data
Dictionary Manager is used. Again, to facilitate a multi developer scenario, a
data dictionary file is created for each software subsystem and included at a data
dictionary root file. Every signal from the architectural design is stored at the
appropriate data dictionary, including all available attributes like value limits,
scaling, etc. Furthermore, the exporter algorithm simply link this entry wherever
the signal occurs in the Simulink/TargetLink model (see Fig. 6).
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Fig. 6. Link to the signal at the data dictionary, set by the exporter

Fig. 7. Architectural design to Simulink/TargetLink model transformation workflow
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The process workflow Architectural Design to Simulink/TargetLink Model
Transformation is shown in Fig. 7, with the blue-coloured subsystem creation
path, and the green-coloured signal creation path. Although, the chosen use-case
example is not too complex, presenting all generated artifacts would go beyond
the scope of this contribution. Therefore, the illustration showcases the creation of
the Simulink/TargetLink root model, the software subsystem EGasCtrl including
the signals from and to the basis software, and the software module InpPreProc,
which was already presented in Fig. 5.

If the Simulink/TargetLink model already exists when the Software Archi-
tecture Exporter is triggered, the Software Architecture Importer is started auto-
matically in the background to check the consistency between the architectural
design and the software model. If all artifacts at the model are available at
the design, and new items exist at the design, the software model is updated
by the exporter analogue to the procedure described above for completely new
Simulink/TargetLink models. If there are new or deleted artifacts at the soft-
ware model, a notification is displayed and the user is prompted to determine
the further procedure, like shown in Fig. 3, Sect. 3.

5 Conclusion

Dependable system development is an emerging trend in automotive industry,
aiming to provide a convincing argumentation that the system under develop-
ment has achieved a certain level of maturity. Without an adequate tool chain,
which enables a smooth transition between the different levels along the system
development, it is hard to obtain this demanded maturity.

Especially creating a software model from the architectural design manually
is exhausting and error-prone. The risk to e.g. connect signals incorrect, set
wrong attributes or simply overlook a changed parameter is very high.

This paper presented an efficient approach to avoid the risk of introducing
errors while developing the software according to the architectural design, by cre-
ating the software model framework fully automated. Furthermore, the concept
facilitates bidirectional traceability as well as consistency. These properties are
elemental key factors for a high quality development and postulated by the wide-
spread quasi-standard Automotive SPICE. Additionally, the shown techniques
facilitate round-trip engineering by the presented import/export functionality
regarding the models on different development levels and tools.

In terms of safety-critical development and reuse the presented approach
features are crucial to transfer information between separated tools and link
supporting safety-relevant information. Moreover, the approach eliminates the
need of manual information rework without adequate tool support, ensuring
reproducibility, and traceability argumentation.

The application of the presented approach has been demonstrated utilizing
a simplified version of the well-known E-Gas concept, which is intended to be
used for training purpose of students and engineers and not for representing an
exhaustive or commercial sensitive project.
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Abstract. The increasing availability of streams of data and the need
of auto-tuning applications have made big data mainstream. NewSQL
databases have become increasingly important to ensure fast data
processing for the emerging stream processing platforms. While many
architectural improvements have been made on NewSQL databases
to handle fast data processing, anomalous events on the underlying,
complex cloud environments may undermine their performance. In
this paper, we present Tejo, a supervised anomaly detection scheme
for NewSQL databases. Unlike general-purpose anomaly detection for
the cloud, Tejo characterizes anomalies in NewSQL database clusters
based on Service Level Objective (SLO) metrics. Our experiments with
VoltDB, a prominent NewSQL database, shed some light on the impact
of anomalies on these databases and highlight the key design choices to
enhance anomaly detection.

1 Introduction

Big data has transformed the way we manage information. As an unprecedented
volume of data has become available, there is an increasing demand for stream
processing platforms to transform raw data into meaningful knowledge. These
velocity-oriented platforms may rely on cloud databases to provide fast data
management of continuous and contiguous flows of data with horizontal scala-
bility. Therefore, cloud databases represent an important technology component
for a broad range of data-driven domains, including social media, online adver-
tisement, financial trading, security services, and policy-making process.

The architecture of row-store-based relational databases has evolved to meet
the requirements of big data on the cloud [19], like elasticity, data partition-
ing, shared nothing, and especially high performance. The so-called NewSQL
databases offer high-speed, scalable data processing in main-memory with con-
sistency guarantees through ACID (atomicity, consistency, isolation, and dura-
bility) transactions.

To ensure fast data management, NewSQL databases rely on built-in, fault-
tolerance mechanisms, like data partitioning, replication, redundant network
c© Springer International Publishing Switzerland 2015
A. Fantechi and P. Patrizio (Eds.): SERENE 2015, LNCS 9274, pp. 114–127, 2015.
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topologies, load balancing, and failover. Although these mechanisms handle fail-
stop failures successfully, many other cloud performance anomalies may remain
unnoticed [20]. For instance, Do et al. [8] found that a single limping network
interface can cause a three orders of magnitude execution slowdown in cloud
databases. Therefore, we believe that the dependability of NewSQL databases
might be improved by detecting these anomalies.

This paper proposes Tejo, a supervised anomaly detection scheme for
NewSQL databases. We make three specific contributions. First, we introduce
a scheme for analysing performance anomalies using fault injection tools and a
supervised learning model. Second, we shed some light on the impact of perfor-
mance anomalies in NewSQL databases. Third, we highlight the importance of
selecting the proper features and statistical learning algorithm to enhance the
anomaly detection efficiency on these databases.

In the next section, we lay out the recent trends in data stream processing and
anomaly detection with statistical learning. Following this, in Sect. 3 we describe
the design of Tejo, in particular its components and its two-phased functioning,
namely learning and detection phase. In Sect. 4 we evaluate VoltDB, a prominent
NewSQL database, using Tejo. In our experimental setup, VoltDB served two
workloads, whose data was partitioned and replicated across a cluster of virtual
machines (VMs). Finally, we discuss the related work in Sect. 5, and conclude in
Sect. 6.

2 Background

2.1 Big Data Stream Processing and NewSQL Databases

To processing continuous streams of big data, we consider the emerging stream
processing platforms [15], as depicted in Fig. 1. In these platforms, streams of
data are processed by two complementary systems: the fast stream processing
system and big archival engine. The former manages high-speed data streams to
provide real-time analytics and data-driven decisioning, providing services like
fraud heuristics, market segmentation, or optimal customer experience; while
the later computes huge volumes of historical data for long-term data ana-
lytics, such as scientific results, seasonal predictions, and capacity planning.
Big archival engines are built on data warehouse technologies like Hadoop and
column-stores. In contrast, fast stream processing technologies are still emerg-
ing. Among these technologies are NewSQL databases like VoltDB [23] and

Fig. 1. The emerging stream processing platforms for big data.
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S-Store [4]. To support incremental, stateful ingest of data streams into a scal-
able system, NewSQL databases provide low-latency via in-memory distributed
processing and a strong support for transaction management with ACID guar-
antees. However, as NewSQL databases are deployed on cloud infrastructures
to scale to large clusters, cloud performance anomalies may undermine their
capacity of fast stream processing.

2.2 Anomaly Detection Using Statistical Learning

Statistical learning has been a widely used technique to predict performance
anomalies in large-scale distributed systems [5]. It makes prediction by processing
feature vector x with a fixed number of dimensions d (x ∈ X ⊂ R

d) from
the input space X . There are two main methods: supervised and unsupervised
learning.

The supervised learning method couples each input with a y, a label, from
the output space Y. To learn, we have N pairs (x, y) drawn independent and
identically distributed (i.i.d.) from a fixed but unknown joint probability den-
sity function Pr(X,Y ). This method searches for a function f : X → R in
a fixed function class F in the learning dataset. State-of-the-art algorithms,
like random forests [2], aim to find f� in F with the lowest empirical risk
f� ∈ arg minf∈F remp(f), where remp(f) = 1

N

∑N
i=1 I{f(x) �=yi} is computed over

the training set, and I{.} is the indicator function which returns 1 if the predicate
{.} is true and 0 otherwise. Similarly, an unsupervised learning method relies on
N unlabelled samples having probability density function Pr(X). Unlike super-
vised learning, predictions provide insights into how the data is organized or
clustered.

Most of the anomaly detection approaches for distributed systems are based
on a general-purpose, unsupervised learning method [12–14]. However, prediction
efficiency remains the main drawback of this method [16]. Results in our previous
work [21] confirm that a supervised learning method overcomes an unsupervised
one in cloud anomaly detection. In this work, we extend our supervised learning
model as a component of Tejo to classify anomalous VMs in four different classes.

Fig. 2. Tejo operates in two distinct phases: learning and detection phase.
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3 Approach

Tejo comprises three components, namely a set of fault injection tools, a data
handler, and a learning model. These components interoperate into two distinct
phases: learning and detection phase. While the first phase allows us to evaluate
the performance of a NewSQL database under anomalies, the second permits the
detection of these anomalies. Figure 2 depicts the components and the two-phase
functioning of Tejo.

3.1 The Components of Tejo

Fault Injection Tools. To provoke performance anomalies, this component
emulates four categories of faulty events in VMs of a NewSQL database cluster.

Network faults. Communication issues are common in distributed systems. To
analyse their impact, we inject three types of network faults, namely packet loss,
network latency, and limping network. Packet loss and network latency emulates
interconnection issues, such as network partition. Limping network reproduces
anomalies previously observed by Do et al. [8], where the transmission rate of
limping network interface is smaller than the manufacturer’s specification.

Memory faults. As NewSQL databases fit the entire data to the main memory,
they become more vulnerable to anomalies in memory availability. To provoke
such anomalies, we make arbitrary amounts of main memory unavailable. As
a result, the database instance is likely to perform more costly disk I/O oper-
ations. A typical example of this fault is a VM running out of memory due
to a misconfiguration, memory leaking, overloading, or an unbalanced resource
allocation.

Disk faults. Although most NewSQL databases manage data in main memory,
disk-intensive processes may have an impact of its performance. This category of
fault emulates an arbitrary number of jobs performing several disk operations,
including writes, reads, and file syncs.

CPU faults. CPU is a key resource in a virtual machine. As unattended number of
processes compete the database instance to CPU resources, they may undermine
the performance of the database cluster. The CPU fault emulates an arbitrary
number of jobs performing arithmetic operations to overload the VM cores.

The Data Handler. This component computes data from the monitoring sys-
tem (i) to collect the performance counters of a NewSQL database and (ii) to
provide data to characterize performance anomalies.

Collect the performance counters of a NewSQL database. The data handler sam-
ples monitoring data to collect the current state of the NewSQL cluster, as
depicted in Fig. 2. To this end, it frequently communicates with the monitoring
system to fetch raw monitoring data and to convert it into useful, aggregated
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information. The content of the resulting aggregated information depends on the
aim of each functioning phase, learning or detection, detailed below.

Providing data to characterize performance anomalies. After aggregating sam-
ples of monitoring data, the data handler organizes this data into feature vec-
tors. These vectors represent the state of the VMs of the database cluster or
the workload. The vectors are stored in datasets for performance analysis or
anomaly detection.

The Learning Model. The learning model is at the heart of the Tejo scheme.
The purpose of this model, the so-called predictive task, is to characterize the
behaviour of VMs under performance anomalies. Given an i.i.d. sample (x, y),
described in Subsection 2, we model our predictive task as a classification prob-
lem, whose inputs and outputs are defined as follows.

Inputs. We represent the input space x as a VM running a database instance.
This input data corresponds to a feature vector computed by the data handler
component. The size of the feature vector matters. In general, the higher the
dimension of this vector, the higher the predictive efficiency is. However, an
increase in the input dimension rises the computational cost of predictions.

Outputs. The supervision y associated to each input VM x is based on five pos-
sible classes, Y ∈ {0, 1, 2, 3, 4}, whose labels are normal, network-related anom-
aly, memory-related anomaly, disk-related anomaly, and CPU-related anomaly
respectively. Depending on the phase of Tejo (detailed below), these labels are
assigned by either computing the training dataset or by a learning algorithm.

3.2 Two-Phase Functioning

Learning Phase. In this phase, Tejo learns the behaviour of the database
cluster under anomalies and reports on its performance.

Requirements. As illustrated in Fig. 2a, Tejo relies on an already existing mon-
itoring system to poll performance counters from both VMs and workload. To
measure the cluster-wide performance counters, we assume that the workload can
be replayed or run through a benchmark tool. We consider that Tejo’s analyst
specifies expected SLO metrics, such as average throughput and 99th percentile
latency. The analyst must also specify parameters of the fault campaign and
running experiments, including intensity and duration of each fault, number of
injections, and interval between consecutive fault injections.

Functioning. As the replayed/benchmark workload runs, the fault injection tool
performs a fault injection campaign to emulate performance anomalies. Mean-
while, performance counters from both the workload and VMs running the data-
base cluster are collected by the monitoring system and computed by the data
handler component. As the data handler computes the monitoring data in feature
vectors, it adds information about injected faults and labels. Labels correspond
to output classes of learning model and are added with respect to SLO metrics.
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The feature vectors are then stored in the training dataset. After running the
workload and accomplishing the fault injection campaign, the learning model
computes the feature vectors of VMs from the training dataset.

Reports. Besides providing data to learn the behaviour of anomalous VMs, ana-
lysts can observe the impact of anomalies in the throughput and 99th percentile
latency. They may evaluate which anomalies cause SLO violations, gaining more
insight into the efficiency of existing fault-tolerance mechanisms.

Detection Phase. In this phase, Tejo reports on the efficiency of the learning
model and performs anomaly detection in VMs at runtime.

Requirements. Similar to the training phase, Tejo relies on an existing monitoring
platform to gather data for predictions. It requires that the learning model has
already been trained as detailed in learning phase described above. We assume
that SLO targets and the workload are the same as those of the learning phase.

Functioning. While the NewSQL database serves the workload, the data handler
gathers the monitoring data and creates feature vectors of VMs in the detection
dataset. As soon as a new feature vector is created, the learning model computes
it to detect performance anomalies whenever they occur.

Reports. Tejo’s learning model predicts labels of incoming feature vectors. Then
alerts are generated about detected anomalies. These alerts may be handled by
the database to trigger recovery procedures. Besides generating alerts, it reports
on the efficiency of the learning model, including comparing different learning
algorithms, ranking performance counters with regard to their importance, calcu-
lating the computational cost, and verifying model over-fitting or under-fitting.

4 Evaluation

We evaluate VoltDB, a NewSQL database, with Tejo. First, we describe our
experimental setup. Second, we measure the impact of performance anomalies
in a VoltDB cluster. Finally, we report on the predictive efficiency of these anom-
alies.

4.1 Experimental Setup

We performed our experiments on a private cloud consisting of two Dell Pow-
erEdge R620 hosts. Each host has two-core Xeon E5-2660 at 2.2 GHz, 64 GB of
memory, and two 130 GB SATA disks. Hosts are connected by Gigabit Ethernet.
We chose VMware as the virtualization technology and ESXi 5.1.0 as hypervisor.
Figure 3 depicts our private cloud, highlighting the consolidation of VMs. Each
VM of the NewSQL database cluster has 4 GB of memory, 4 CPU cores, a disk
of 16 GB, and is connected to a 100 Mbps virtual network.
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Fig. 3. Experimental setup.

Components of Tejo and Monitoring System. As fault injection tools, we
chose Dummynet (v3.0) [3] for network faults and stress-ng (v0.01.30)1 for disk,
memory, and CPU faults. These tools provide a flexible, easy-to-reproduce way
to inject arbitrary fault intensities. Table 1 lists the parameters of our fault injec-
tion campaign. The data handler component was implemented as a collection
of python/shell scripts along with PostgreSQL database for datasets. We imple-
mented our learning model using the Scikit-learn library [17], from which we
evaluated three learning algorithms: random forests [2], gradient boosting [10],
and SVM [7]. We used Ganglia as monitoring system. Our setup required addi-
tional Ganglia plug-ins for collecting performance counters of the workload and
VoltDB. Every 15 seconds, we collected 147 performance metrics of each VM,
and the average throughput and the 99th percentile latency from the served
workload.

Table 1. The key parameters of Tejo for our fault injection campaign.

Fault Intensity ranges Unit

Light Medium Heavy

Network Pkt loss 1.6–3.2 4–5.6 6.4–8 %

Latency 8–20 26–38 44–56 ms

Limping 85-65 56-38 29-11 Mbps

Memory 73–79 82–88 91–97 %

Disk 10–20 25–35 40–50 writers

CPU 19–39 49–69 79–99 %

NewSQL Database and Workloads. We evaluated VoltDB (v4.x) as
NewSQL database. We set the number of partitions VoltDB to 18 across a cluster
of six VMs with failover mechanisms enabled. We varied the replication degree
k from two to zero (i.e., replication disabled). We evaluated VoltDB with two
workloads, the popular TPC-C benchmark for OLTP2, and Voter3, a workload
1 stress-ng. http://kernel.ubuntu.com/∼cking/stress-ng/.
2 TPC-C benchmark (v5.10). http://www.tpc.org/tpcc/.
3 Voter. https://github.com/VoltDB/voltdb/tree/master/examples/voter.

http://kernel.ubuntu.com/~cking/stress-ng/
http://www.tpc.org/tpcc/
https://github.com/VoltDB/voltdb/tree/master/examples/voter
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derived from leaderboard maintenance application for Japanese version of the
“American Idol”.

4.2 Evaluating Performance Anomalies in VoltDB

We run Tejo in learning mode (Subsect. 3.2) to evaluate the impact of faults
in VoltDB. We selected a dataset containing 200,000 samples, including per-
formance counters of VMs and the workload. Data was evenly collected across
the two evaluated workloads. Figure 4 shows the impact of faults on the perfor-
mance of VoltDB with a replication degree k=2. For each workload, they show
the resulting performance anomalies on the average throughput and 99th per-
centile latency, including mean values without faults, the expected SLO metrics,
and 95 % confidence interval for performance metrics under fault injection.

Overall, the impact of increasing levels of faults was higher on the 99th per-
centile latency than the average throughput. For instance, Fig. 4a shows that
the 99th percentile latency of VoltDB serving Voter workload soars under faults,
especially for network and memory faults. Although the mean of the 99th per-
centile latency without fault was 25 ms, it reaches 945 ms under memory faults.
Similar results were found as VoltDB served TPC-C workload. However, we
noticed that TPC-C has a greater performance degradation under memory faults
(Fig. 4c). The reason for that is the main memory usage of each workload. While
Voter uses 25 % of main memory from each VM, TPC-C utilises almost 50 %.
Consequently, TPC-C is more sensitive to memory faults than Voter. Disk faults
had a limited impact of the performance of VoltDB, slightly higher on TPC-C
than Voter due to a greater need to synchronize data from the main memory
to disk (Fig. 4c). Surprisingly, CPU faults had no impact on the performance of
both workloads, even under heavy fault intensity (i.e., 99 % of CPU usage).

To shed some light on the capacity of data replication to mitigate the impact
of performance anomalies, we varied the replication degree k of VoltDB from
two to zero (i.e., replication disabled). Figure 5 shows a summary of the results
of the impact of faults with medium intensity on VoltDB. In general, our results
suggest that higher the replication degree the worse is the performance. The
reason is that NewSQL databases as VoltDB strive to provide ACID properties
both for concurrent transactions and for replicas. The impact of a fault on a
single node spreads across the replicas on the cluster more easily, worsening its
performance.

4.3 Predictive Efficiency Analysis

We evaluated the predictive efficiency of learning model of Tejo with three learn-
ing algorithms, random forests, gradient boosting, and SVM. To this end, we used
data derived from the dataset of Subsect. 4.2. The derived data was computed
by the Tejo’s data handler, as described in Subsect. 3.2. Each new sample had
147 features (d = 147, as discussed in Subsect. 2.2) and a label corresponding to
a class of Tejo’s learning model (see Subsect. 3.1). Recall that anomaly-related
labels are only assigned to samples that violated the SLO. The resulting dataset
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Fig. 4. Performance anomalies in VoltDB as serving Voter and TPC-C, with a repli-
cation degree k=2.
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Fig. 5. Medium fault impact on VoltDB with different k values.
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contained 10,000 samples for each evaluated workload, including 5,000 of samples
representing anomalous events in VMs. To validate the learning model properly,
this dataset was split in two uneven parts: three-fifths of data for training the
model and two-fifths for testing its predictive efficiency. We used two well-known
measures to evaluate the learning model efficiency, precision and F1-score. We
also computed the overhead of predictions with each learning algorithm.

Table 2 summarizes our results. Regardless the learning algorithm, the learn-
ing model of Tejo was able to detect 96 % of anomalies properly. It performed
better with random forests algorithm, whose overall score was 0.99 (up to 1) for
both precision and F1-score measures. Random forests also provided the lowest
overhead for anomaly detection, requiring less than 30 microseconds for a pre-
diction. The SVM algorithm had the worst predictive performance, particularly
to detect memory-related anomalies. SVM also incurred the highest overhead for
anomaly detection with our model, performing two orders of magnitude slower.
According to Friedman [10], this happens because SVM shares the disadvan-
tages of ordinary kernel methods, such as poor computational scalability and
inability to deal with irrelevant features. In contrast, boosting methods, like
random forests and gradient boosting, overcome these issues by using a linear
combination of (many) trees.

Table 2. Anomaly detection performance with different learning algorithms.

Algorithm Class Workload

Voter TPC-C

Precision F1-score Overhead Precision F1-score Overhead

Random forests Normal 0.99 0.99 23μs 0.98 0.99 26μs

Network 0.98 0.98 0.99 0.98

Memory 0.99 0.98 0.98 0.99

Disk 0.99 0.98 1.00 1.00

Gradient boosting Normal 0.99 0.99 30μs 0.96 0.98 33μs

Network 0.99 0.99 0.99 0.96

Memory 0.99 0.99 0.98 0.99

Disk 1.00 1.00 1.00 1.00

SVM Normal 0.98 0.97 4294μs 0.98 0.98 5441μs

Network 0.97 0.96 0.99 0.97

Memory 0.85 0.91 0.87 0.93

Disk 1.00 0.97 1.00 1.00

In addition to the predictive efficiency evaluation, Tejo allows us to analyse
the importance of features using boosting methods. Figure 6 plots the impor-
tance of features of the Tejo’s learning model, where the sum of all features
importances is equal to one. Figure 6a shows the 10 most-important features for
anomaly detection in VoltDB serving Voter, seven out of 10 corresponding to
performance counters of TCP layer of VMs. This suggests that the peer-to-peer
communication pattern among the VoltDB cluster is key for anomaly detection.
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Fig. 6. Analysis of the importance of features for anomaly detection.

To provide insights into all 147 features, we organized them into seven dis-
tinct categories and measured their grouped importance, as depicted in Fig. 6b.
Indeed, it confirms that features from TCP performance counters form the main
category, accounting for more than half the total of importance (0.5345). Sur-
prisingly, the category of VoltDB features had the lowest importance for the
anomaly detection task. This suggests that the contribution of database-specific
features is negligible, therefore our learning model is likely to have similar predic-
tive performance with different NewSQL databases. Results for TPC-C workload
showed a similar trend.

5 Related Work

Fault Tolerance in Distributed Databases. Distributed databases use repli-
cation and advanced request scheduling to improve data availability. Bayou [18] is
data storage that relies on replication to ensure data availability against fail-stop
failures, but they are not able to deal with performance anomalies. Skute [1] pro-
vides an adaptive replication scheme that mitigates the impact of performance
anomalies. However, it does not provide mechanisms to ensure high data avail-
ability, such as high throughput and bounded latency. Emerging cloud databases,
like VoltDB and MongoDB, offer high data availability using enhanced main
memory data structures [22]. But, our findings of this and previous study [21]
show that performance anomalies on the cloud, including malfunctioning net-
work cards, disk and main memory, can undermine the performance of cloud
databases.

Cake [25] offers a scheduling scheme to enforce high-level data availability
requirements for end users. However, Cake was not designed to identify faulty
VMs. Eriksson et al. [9] provide a routing framework that helps cloud operators
to mitigate the impact of network failures. We believe that our work is comple-
mentary to theirs. Alerts from Tejo about anomalies in network, memory, disk
and CPU of VMs, can contribute to enhance the efficiency of such scheduling
mechanisms.
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Anomaly Detection with Statistical Learning. Anomaly detection is com-
monly implemented based on an unsupervised learning method. Gujrati et al. [13]
provide prediction models based on event logs of supercomputers to detect
platform-wide anomalies, whereas we are interested in detecting anomalous VMs
based on monitoring data. Chen et al. [6] propose an anomaly detection approach
for large-scale systems that improves the prediction efficiency of an entropy-
based information theory technique by performing a principal component analy-
sis (PCA) of system inputs. However, this introduces computational overhead
that undermines its scalability and causes a slowdown in anomaly predictions.
While we focus on detecting performance anomalies in NewSQL databases, Lan
et al. [14] provide a general-purpose anomaly detection approach that relies on
features selection to enhance prediction efficiency. Similarly, Guan and Fu [12]
perform feature extraction based on PCA to identify the most relevant inputs
for anomaly detection. Yet, results of our previous work [21] confirm that a
supervised method with all features outperforms a unsupervised one by reduc-
ing the number of false positives by 10 %. In this work, we extended our previous
supervised learning model to detect multiple classes of anomalies based on SLO
metrics.

Guan et al. [11] implement a probabilistic prediction model based on a super-
vised learning method. Although their model allows us to compare the depend-
ability of virtualized and non-virtualized cloud systems, it suffers from poor
prediction efficiency when it is used to predict cloud performance anomalies.
Tan et al. [24] propose general-purpose prediction model to prevent performance
anomalies. Their supervised learning-based model combines 2-dependent Markov
chain model with the tree-augmented Bayesian networks. But, the authors did
not provide information about the prediction efficiency and the capacity of their
approach to generalize. We show with Tejo that the choice of the learning algo-
rithm and features contribute to enhance predictive efficiency of performance
anomalies.

6 Conclusion

The emerging stream processing platforms rely on NewSQL databases deployed
on the cloud to compute big data with high velocity. However, performance
anomalies caused by faults on the cloud infrastructure, that are likely to be
common, may undermine the capacity of NewSQL databases to handle fast data
processing. To analyse these performance anomalies, we proposed Tejo, a super-
vised anomaly detection scheme for NewSQL databases. This scheme allows us
to evaluate the performance of NewSQL database as faults on network, mem-
ory, CPU, and disk occur. Experiments with VoltDB, a prominent NewSQL
database, showed that the 99th percentile latency soars two orders of magni-
tude as memory and network faults happen. We showed that Tejo also provides
a learning model to detect these performance anomalies. Our findings suggest
that learning algorithms based on boosting methods are better to detect anom-
alies on a VoltDB cluster, and features from the TCP layer of VMs are the best
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predictors. Results also suggest that the contribution of VoltDB-specific features
is negligible, therefore our learning model is likely to have similar efficiency with
different NewSQL databases.
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Abstract. Computing a user-task assignment for a workflow coming
with probabilistic user availability provides a measure of completion rate
or resiliency. To a workflow designer this indicates a risk of failure, espe-
cially useful for workflows which cannot be changed due to rigid security
constraints. Furthermore, resiliency can help outline a mitigation strategy
which states actions that can be performed to avoid workflow failures. A
workflow with choice may have many different resiliency values, one for
each of its execution paths. This makes understanding failure risk and
mitigation requirements much more complex. We introduce resiliency
variance, a new analysis metric for workflows which indicates volatility
from the resiliency average. We suggest this metric can help determine
the risk taken on by implementing a given workflow with choice. For
instance, high average resiliency and low variance would suggest a low
risk of workflow failure.

Keywords: Workflow satisfiability problem · Quantitative analysis ·
Resiliency metrics

1 Introduction

Many business domains including finance, healthcare and eScience use the con-
cept of workflow to efficiently orchestrate their everyday business processes [5,
14,15]. Although definitions may vary, workflows typically consist of tasks (the
work) and ordering conditions (the flow) [1]. Completing every execution, or
instance of a workflow means assigning each task to a user in accordance with
required security constraints. Often these are enforced by regulations ensuring
only users with correct capabilities are matched with appropriate tasks whilst
limiting data access and reducing the threat of collusion and fraud [7,17].

Finding a user assignment for every task such that all security constraints
are met is a well studied problem, known as the workflow satisfiability problem
(WSP) [9,29]. The WSP has been shown to be NP-hard, meaning every com-
bination of users to tasks may have to be tried before finding an assignment
that satisfies a workflow. The WSP assumes all users will be available during
execution, however periodic user unavailability at runtime means a satisfiable
workflow at design time may become unsatisfiable during its operation.

c© Springer International Publishing Switzerland 2015
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In cases where no valid user is available for a specific task assignment, the
security constraints inadvertently block a workflow from completing. Any avail-
able users are either not permitted to perform the task, or are permitted but
cannot do so due to constraints with previously executed tasks. Without vio-
lating the security policy, the alternative is to terminate early thus causing
a workflow failure. Forcing early termination of a workflow may bring heavy
operational penalties in terms of monetary costs, lost productivity and reduced
reputation. In practice, blocked workflows are typically managed by perform-
ing mitigating actions which facilitate a completable workflow, often essential in
healthcare and other critical domains where failure tolerance is small. For exam-
ple, it may be that authorising a security override (e.g. break glass [24]) has
less long-term impact than allowing the workflow to fail. Elucidating permitted
mitigation actions to be taken if a workflow becomes blocked forms a workflow
mitigation strategy.

When designing workflows it is favourable to predict the risk of workflow fail-
ure and understand requirements, in terms of actions, impact and cost of a suit-
able mitigation strategy. This is especially important for workflows coming with
rigid security constraints that cannot be changed at design time. One method
is to consider the workflow resiliency problem, an extension of the WSP that
looks to find an assignment to satisfy a workflow even when some users become
unavailable [29]. The quantitative approach to this problem taken in [20] allows
a workflow’s resiliency to be expressed as a measure of expected completion rate.
This value in turn indicates the risk of workflow failure, and therefore the likely
need to perform mitigation actions.

In [20], the authors consider analysing the resiliency of workflows with only
sequential and parallel control patterns such that each has a single execution
path. Computing the resiliency for workflows of this form provides a singular
comprehensible indicator of failure risk. Low failure risk (high resiliency) would
imply an infrequent need to perform any mitigation actions. This could favour a
mitigation strategy consisting of short-term, low cost actions such as a security
constraint emergency override. High failure risk (low resiliency) would suggest
a broader strategy including more permanent yet costly mitigation actions such
as staff training and repealing user unavailability.

This paper considers workflows with gateways, or choice co-ordinators such
that multiple execution paths exist that can be taken at runtime to complete
a workflow, and where each path may come with a different resiliency value.
Understanding risk failure and mitigation strategy requirements of such work-
flows can be much more complex, especially when a workflow contains hundreds
if not thousands of execution paths. Taking the resiliency average, or expected
resiliency alone may be a misleading indicator of failure risk, especially when a
workflow contains paths of both very high and very low resiliency.

We introduce resiliency variance, a new metric for workflow failure risk analy-
sis that indicates overall resiliency variability or volatility from the resiliency
average. In business terms, volatility is typically viewed as a measure of risk; a
variance metric helps determine the risk an investor might take on when purchas-
ing a specific asset [11]. Similarly, resiliency variance could provide a workflow
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designer with an indicator of failure risk taken on by implementing a given work-
flow with choice. This could also be useful for predicting a suitable mitigation
strategy. For example, a workflow with high expected resiliency and low variance
indicates low failure risk and mitigation cost whilst high variance would suggest
a much higher failure risk and mitigation cost.

We give an overview of workflow resiliency related work in Sect. 2 whilst
Sect. 3 defines a workflow with choice. Section 4 discusses workflow resiliency
and its calculation before introducing resiliency variance and show how it is cal-
culated using a real-world university based purchase request workflow. Section 5
provides a discussion on workflow mitigation techniques and how resiliency vari-
ance could inform mitigation strategy choice. Concluding remarks are given in
Sect. 6.

2 Related Work

A number of previous studies on workflow resiliency and its enhancement appear
in the literature. Wang et al. took a first step in [29] to quantify resiliency and
declare a workflow as k resilient if it can withstand up to k absent users in all
instances. In [20] Mace et al. consider workflows that are not always k resilient
and provide a measure of quantitative resiliency indicating how much a workflow
is likely to terminate for a given security policy and user unavailability model.
This approach illustrates a trade-off exists between aspects such as success rate,
expected termination point and computation time.

Basin et al. in [4] overcome scenarios where no valid user-task assignment
exists by reallocating roles to users at runtime to satisfy security constraints. A
new assignment of users to roles is calculated with the minimum cost to risk,
administration and maintenance. This is feasible in certain business domains
but may have limited application in workflows where roles are more specialised;
for example is adding an untrained user to the role doctor to satisfy a security
policy better than overriding it and enabling a constrained but qualified doctor?

Wainer et al. consider in [28] the explicit overriding of security constraints in
workflows, by defining a notion of privilege. In [8] Brunel et al. suggest a security
policy may still be satisfied even though some security constraints may be vio-
lated. This is considered acceptable by defining additional conditions that apply
in the case of violation that must be satisfied to comply with the security policy.
Bakkali [2] suggests enhancing resiliency through delegation and the placement
of criticality values over workflows. Delegates are chosen on their suitability but
may lack competence; this is considered the ‘price to pay’ for resiliency. As del-
egation takes place at a task level it is not currently clear whether a workflow
can still complete while meeting security constraints. In [10] Crampton et al.
suggest a mechanism that can automatically respond to the absence of users by
delegating a task appropriately when no qualified user is available to perform it.

Current literature does not fully address the issue of workflows that must
operate but may not be resilient in every instance. Although many approaches
have been suggested in isolation, a range of different remediation options includ-
ing policy overrides are necessary for a more optimal solution.
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3 Workflow

In general, a workflow consists of a set of tasks which can be executed following
some constraints: some tasks must be executed before others, some tasks can
be executed in parallel, some tasks can be executed instead of others. There
exist several definitions for workflows in the literature, for instance as a partial
ordering of tasks [9] or as a directed graph [27]. The aim of the work presented
here is to study the resiliency of workflows with choice, using the notion of
resiliency introduced in [20], where a workflow is defined as a set of users, a
partially ordered set of tasks and a security policy.

However, this definition does not allow for choice, i.e., for having different
paths in a workflow according to the evaluation of some choices. For instance, a
workflow managing the purchasing process might have different tasks based on
the cost of the purchase. In this section, we first give an inductive definition for
a workflow with choice inspired from [16], and we show how it can be reduced
into a definition compatible with [20].

3.1 Task Structure with Choice

A task structure is built upon two sets: a set T of atomic tasks and a set C
of atomic choices. Intuitively, the former set represents each action that can be
performed, while the latter represents the different points where the workflow can
branch. The set TSC of task structures with choice is then defined inductively:

– Given a single task t ∈ T , t also belongs to TSC ;
– Given two task structures ts1 ∈ TSC and ts2 ∈ TSC , ts1 → ts2 also belongs

to TSC , and corresponds to the sequential execution of ts1 followed by ts2;
– Given two task structures ts1 ∈ TSC and ts2 ∈ TSC , ts1 ∧ ts2 also belongs

to TSC , and corresponds to the parallel ordering ts1 and ts2;
– Given a choice c ∈ C and two task structures ts1 ∈ TSC and ts2 ∈ TSC ,

c : ts1 ? ts2 also belongs to TSC , and corresponds to the task structure ts1 if
c evaluates to true, and to ts2 otherwise.

c1 t3

t2 c2

t4

t1 t5 t6

T

F

T

F

Fig. 1. Running example task struc-
ture
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Running example. As a running example to illustrate the different concepts
presented here, we define T = {t1, t2, t3, t4, t5, t6}, C = {c1, c2} and

ts1 = t1 → [c1 : [t2 → [c2 : t5 ? t4]] ? t3] → t6

Note that for the sake of simplicity, we do not consider in the running exam-
ple any parallel composition. We give a graphical representation of ts1 in Fig. 1
where tasks are represented as circles and choices as diamonds. In order to repre-
sent the end of a choice, we use the empty diamond symbol, and in this particular
example, both choices c1 and c2 finish at the same point. The directed arcs rep-
resent the ordering of task execution.

It is worth pointing out that in the graphical notation used in Fig. 1, the
choice nodes correspond to or-nodes and the empty diamond to a merge coordi-
nator in [27].

3.2 Task Structure Reduction

At runtime, the choices in a task structure are resolved, and only the corre-
sponding paths are executed. We adopt here an approach where we do not know
how each choice is going to be resolved at runtime, and we therefore consider
beforehand all possible solutions. Intuitively, we want to reduce a task structure
with choice to one without choice, for which all tasks should be executed.

Hence, we write TS for the subset of TSC corresponding to task structures
without choice, and we model the reduction process through the function red :
TSC × ℘(C) → TSC , such that, given a task structure ts and a set of choices
γ ⊆ C, red(ts, γ) corresponds to the reduction of ts where each choice in γ is
evaluated as true, and any other choice as false. More formally:

red(t, γ) = t

red(ts1 → ts2, γ) = red(ts1, γ) → red(ts2, γ)
red(ts1 ∧ ts2, γ) = red(ts1, γ) ∧ red(ts2, γ)

red(c : ts1 ? ts2, γ) =

{

red(ts1, γ) if c ∈ γ

red(ts2, γ) otherwise

All possible instances without choice of a task structure with choice can be
defined by:

ins(ts) = {ts′ ∈ TS | ∃γ ⊆ C red(ts, γ) = ts′}
A task structure without choice can be converted to a set of tasks with a

partial ordering, thus allowing us to reuse existing corresponding techniques.
Given a task structure ts, we first write τ(ts) for the set of tasks appearing in ts
(which can be straightforwardly defined by induction over ts). We then define
the function ord : TS → ℘(T × T ), which, given a task structure without choice
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ts, returns the ordering relation over the tasks in ts.

ord(t) =∅
ord(ts1 ∧ ts2) =ord(ts1) ∪ ord(ts2)

ord(ts1 → ts2) ={(t1, t2) | t1 ∈ τ(ts1) ∧ t2 ∈ τ(ts2)}
∪ ord(ts1) ∪ ord(ts2)

Running example. The possible instances of ts1 are:

– t1 → t2 → t5 → t6 (corresponding to γ = {c1, c2});
– t1 → t2 → t4 → t6 (corresponding to γ = {c1});
– t1 → t3 → t6 (corresponding to γ = {c2} and γ = ∅).
Since these instances do not contain any parallel structure, the ordering for each
instance is simply the total ordering of the tasks following the sequence.

3.3 Security Policy

Next we define a set of users U that comes with a security policy over the set of
tasks T . In general, a security policy is a triple p = (P, S,B) where:

– P ⊆ U × T are user-task permissions, such that (u, t) ∈ P if, and only if u is
allowed to perform t.

– S ⊆ T ×T are separations of duty, such that (t, t′) ∈ S if, and only if the users
assigned to t and t′ are distinct.

– B ⊆ T × T are bindings of duty, such that (t, t′) ∈ B if, and only if the same
user is assigned to t and t′.

A workflow therefore consists of a set of tasks, with an ordering relation over
the tasks, a set of users, and a security policy.

Definition 1. A workflow is a tuple w = (ts, U, p), where ts is a task structure,
U is a set of users, and p is a security policy.

Note we assume ts to be equivalent to an inducement of the task manager τ
given an initial task t0 ∈ T from the definition of workflow given in [20]. Given
a workflow w = (ts, U, p) and a set of choices γ ⊆ C, we abuse the notation and
write red(w, γ) for the workflow w′ = (red(ts, γ), U ′, p′), where p′ corresponds to
p restricted to tasks appearing in red(ts, γ) and U ′ corresponds to U restricted
to users appearing in p′. Similarly, we write ins(w) for the set of workflows w′

such that there exists γ ⊆ C satisfying w′ = red(w, γ).

Running example. We now consider a set of users U1 = {u1, u2, u3, u4} and
a security policy p1 = (P1, S1, B1) that states:

– P1 = {(u1, t1), (u2, t1), (u2, t2), (u3, t2), (u1, t3),
(u3, t3), (u1, t4), (u4, t4), (u3, t5), (u4, t5), (u1, t6),
(u4, t6)}



134 J.C. Mace et al.

– S1 = {(t1, t2), (t1, t6), (t2, t5), (t2, t6), (t3, t6}
– B1 = {(t4, t6)}.
Figure 2 illustrates p1, where the dotted arrows labelled ‘ 	=’ and = signify the
constraints given in S1 and B2 respectively. A label [um, . . . , un] states the users
that are authorised by P1 to execute ti.

4 Workflow Resiliency

Given a workflow w = (ts, U, p), we need to assign tasks in ts to users in U
in order to execute them, while respecting the policy p. If ts contains some
choice elements, it is not strictly necessary to assign all tasks, only those that
will be chosen at runtime. However, as mentioned above, we assume here that
we have no control over the choices, and therefore we cannot know beforehand
which subset of tasks must be assigned. Hence, we reduce the problem of task
assignment for a workflow with choice to considering the task assignment of all
possible instances without choice, thanks to the function red. In this section, we
first describe the resiliency problem for workflows without choice, following the
existing literature, and we then lift the problem to workflows with choice.

4.1 Resiliency Without Choice

Given a workflow without choice, finding a complete assignment that satisfies all
the security constraints is known as the Workflow Satisfiability Problem (WSP),
and we refer for instance to [9,29] for further reading on this problem.

Solving the WSP assumes any u ∈ U will always be available for every
instance of a workflow. However in practice, sickness, vacation, heavy workloads,
etc., can cause users to periodically be unavailable for task assignments. It is then
important to find a valid and complete assignment that maximises the chance
of a workflow w to finish: finding an assignment such that w will likely finish 9
out of 10 cases is clearly better than choosing one where w will likely finished
only 1 out of 10 cases. This is called the resiliency problem, whether a workflow
w can be satisfied even when some users become absent.

User unavailability in workflows was introduced by Wang and Li [29], who
considered a somewhat binary approach where users are either available or not. A
workflow is classified as k resilient if the workflow can still be satisfied regardless
of which k users become absent. In [20], Mace et al. introduced probabilistic user
availability and showed that computing the optimal policy of a Markov Decision
Process (MDP [6]) is equivalent to finding an assignment that maximises a value
function returning the probability of the workflow w to finish. We refer to [20]
for the detail of this approach, and given a workflow without choice w, we write
res(w) ∈ [0, 1] for its resiliency. Our main contribution in this paper consists in
adapting this measure to workflows with choice.

It is worth pointing out that understanding when users will and will not
be available is an obvious requirement when calculating resiliency, which may
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Table 1. Running example probabilistic user
availability models

AM1 AM2

u1 u2 u3 u4 u1 u2 u3 u4

t1 0.95 0.90 0.96 0.94 0.95 0.90 0.96 0.94

t2 0.88 1.00 0.90 0.97 0.88 1.00 0.90 0.97

t3 0.85 0.77 0.99 0.89 0.85 0.77 0.85 0.89

t4 0.40 0.88 0.89 0.52 0.78 0.88 0.89 0.80

t5 0.93 0.87 0.96 0.96 0.93 0.87 0.82 0.82

t6 0.98 0.94 0.98 0.98 0.98 0.94 0.98 0.98

Table 2. Running example
resiliency measures

AM1 AM2

res(w11) 0.89 0.76

res(w22) 0.48 0.74

res(w33) 0.92 0.79

expR(w1) 0.76 0.76

varR(w1) 0.0403 0.0004

be deduced from a mixture of operational logs, behavioural analysis and user
submissions (known and tentative absences). A key influential aspect is how
the unavailability of users is modelled in the corresponding MDP [21]. In this
paper we consider a dynamic user availability model meaning any user who
becomes unavailable for a task may become available again at any step later in
the workflow.

A key influential aspect is how the unavailability of users is modelled in the
corresponding MDP [21]. We assume a dynamic availability model for the rest
of this paper.

4.2 Resiliency with Choice

We now consider adapting the resiliency measure for a workflow without choice
to a resiliency measure for a workflow with choice using the aid of our running
example.

Running example. We consider a workflow w1 = (ts1, U1, p1) such that
ins(w1) = {w11, w22, w33} where:

– w11 = (t1 → t2 → t5 → t6, U11, p11)
– w22 = (t1 → t2 → t4 → t6, U22, p22)
– w33 = (t1 → t3 → t6, U33, p33).

We consider two different probabilistic user availability models AM1 and AM2,
given in Table 1 and assume that AM2 is the result of escalation type mitiga-
tion actions carried out on AM1, for instance by cancelling user vacations (see
Sect. 5.1). An entry ti × ui is the probability of user ui being available for the
assignment of task ti. The resiliency of each wii ∈ ins(w1) is given in Table 2.

Resiliency Extrema. Finding the minimal resiliency for a workflow with choice
w indicates which w′ ∈ ins(w) will give the lowest success rate for w if executed.
This can be interpreted as the worst case, or the instance in w with the highest
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failure risk. On first glance this indicates which parts of w need the most atten-
tion in terms of mitigation. For instance, in our running example, w1 is most
likely to fail when w22 is executed which gives the minimal resiliency, 0.48 and
0.74 under AM1 and AM2 respectively. Imagine now that under AM1, w22 has
a low probability of execution, e.g., 0.01, or 1 execution in 100 cases whereas
w33 with 0.92 resiliency has a high execution probability, e.g., 0.80, or 80 in 100
cases. In general, the resiliency for w1 will therefore be much higher meaning a
costly mitigating strategy for the infrequent, low resiliency case may not be cost
effective.

A bound on the expected success rate can be placed on w by calculating both
the maximal and minimal resiliency for w. In our running example under AM1,
w1 has a large bound with an expected finish rate of between 0.48 (w22) and 0.92
(w33). Under the mitigated AM2, w1 has a much smaller bound such that the
expected finish rate is between 0.74 (w22) and 0.79 (w33). The resiliency bound
can be a useful resiliency measure when all w′ ∈ ins(w) have an equiprobable
chance of being executed. If however under AM1, w33 has a low execution prob-
ability of 0.01 whilst w22 has a high execution probability of 0.8 then in general
the resiliency achieved will tend towards the minimal value of 0.48. Placing a
bounds on the resiliency in this case becomes a misleading measure of resiliency
to the workflow designer.

Resiliency Distribution. Given a workflow with choice w, calculating the
resiliency for every possible instance w′ ∈ ins(w) provides the full resiliency
distribution for w. This can enable the workflow designer to identify instances of
low resiliency, and therefore those needing more extensive mitigation. A tolerance
threshold for resiliency may exist for w, deemed acceptable when every instance
w′ has a resiliency equal to or more than the threshold, in other words the
probability that every w′ meets the threshold is 1.

In our running example we assume a resiliency threshold of 0.50 and for
simplicity, an equiprobable execution model for all w′ ∈ ins(w1) where the exe-
cution probability of w′ is 0.33. A more complex probabilistic model could easily
be imagined, and we leave such cases for future works. Under AM1 the proba-
bility of w1 meeting this threshold is therefore 0.66 (unacceptable), whilst under
the mitigated AM2 the probability is now 1 (acceptable).

Illustrating a comparison of risk failure between a pre and post mitigated
workflow to business leaders using resiliency distribution may be complex, espe-
cially when they contain hundreds if not thousands of execution paths. It may
be more useful for a workflow designer to provide a singular, easy to understand
measure of resiliency for a workflow with choice.

Expected Resiliency. We now assume a probability function prob : W →
[0, 1], which given a workflow without choice w′ ∈ ins(w), returns the probability
of w′ being executed. The expected resiliency indicates the likely success rate
across every instance in a workflow with choice w, calculated as the average
resiliency of all w′ ∈ ins(w). We define the function expR : W → [0, 1], which
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given a workflow with choice w returns the expected resiliency of w.

expR(w) =
∑

w′∈ins(w)

prob(w′).res(w′)

In our running example, assuming prob(w′) = 0.33 for all w′ ∈ ins(w1), the
expected resiliency is 0.76 for w1 under both AM1 and AM2, shown in Table 2.

This in turn indicates an expected failure rate for w1 of 0.24. Under AM1

with an equiprobable execution model means the expected resiliency of 0.76 is
not assured with every execution of w1. Each time the instance w22 is executed,
the probability of w1 terminating successfully is only 0.48. This means roughly
half of these instance executions will cause w1 to fail. When executing w11 and
w33 the actual resiliency is much higher than the expected value. Clearly in this
case the expected resiliency alone gives a misleading measure of resiliency for a
workflow with choice, in other words the expected resiliency cannot actually be
expected in every case.

Under the mitigated model AM2, the expected resiliency is now roughly
attained whichever w′ ∈ ins(w1) is executed. In this case the expected resiliency
measure alone is arguably enough to indicate the true failure risk of w1. In other
words, a resiliency of ≈ 0.76 can be expected with every execution of w1. This
remains so even when the probabilistic execution model for all w′ ∈ ins(w1) is
not equally weighted. Note that to achieve this the resiliency of w11 and w33

under AM1 has been reduced to 0.76 and 0.79 respectively.

Resiliency Variance. The resiliency variance is a measure of how spread out
a distribution is, or the variability from the expected resiliency of all instances
in a workflow with choice w. A resiliency variance value of zero indicates that
the resiliency of all w′ ∈ ins(w) are identical such that the expected resiliency
alone will give a true indicator of risk failure. All resiliency variances that are
non-zero will be positive. A large variance indicates that instances are far from
the mean and each other in terms of resiliency, whilst a small variance indicates
the opposite. As discussed in the Introduction, the resiliency variance can give
a prediction of volatility or failure risk to a workflow designer taken on when
implementing a particular workflow with choice. To quantify the resiliency vari-
ance measure we define a function varW : W → R, which given a workflow with
choice w returns the resiliency variance of w.

varR(w) =
∑

w′∈ins(w)

prob(w′).(res(w′) − expR(w))2

The resiliency variance for our running example w1, calculated under avail-
ability models AM1 and AM2 is given in Table 2.

An equiprobable execution model is again used for simplicity. Under AM1 a
resiliency variance of 0.0403 is calculated, equivalent to a large standard devia-
tion of 0.20 (

√

varR(w1)). Under the mitigated AM2 the resiliency variance has
been reduced to 0.0004, equivalent to a much smaller standard deviation of 0.02
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Table 3. Resiliency measures for purchase request workflow

AM3 AM4

minR(w2) 0.48 0.55

maxR(w2) 0.96 0.83

expR(w2) 0.67 0.67

varR(w2) 0.0183 0.0052

from the expected resiliency. Here we have a decrease by a factor of 10. Clearly
this indicates in this case that all instances of w1 under AM2 have a probability
of terminating successfully close to the expected resiliency of 0.76.

The former case (AM1) indicates that instances in w1 can have a large spread
in terms of resiliency despite having the same expected resiliency as the latter
case (AM2) coming with a small spread, or variance. Under AM1, the results
show that instances exist in w1 with much lower and higher probabilities of
terminating successfully than the expected resiliency for w1. The workflow w1

can be considered volatile or high risk as it has a high risk of failing if one
such instance with low resiliency is executed. Coupled with expected resiliency,
resiliency variance can provide an easy to understand measure of workflow risk
failure and allow workflow designers to quickly compare similar complex work-
flows (e.g., pre and post mitigation) to help them predict a suitable mitigation
strategy.

4.3 Purchase Request Workflow

In this section we calculate resiliency measures including resiliency variance for
a purchase request workflow w2 that forms part of a real-life procurement pro-
cedure used by a large Australian-based university1. The workflow consists of 18
atomic tasks and 5 atomic choices, 4 users, and a security policy with 9 sepa-
ration of duty constraints. The workflow task structure consists of 18 instances,
i.e., 18 possible execution paths.

To calculate the resiliency measures we encode w2 within the probabilistic
model checking tool PRISM, which enables the specification, construction and
analysis of probabilistic models such as MDPs [19]. PRISM is an intuitive choice
as it can model both probabilistic and non-deterministic choice, and gives an
efficient way to solve an MDP. For a systematic encoding of a workflow in PRISM
and the mechanisms to compute the resiliency measure we refer the reader to
the following technical report [22].

Resiliency measures for w2 are given in Table 3 under two probabilistic avail-
ability models AM3 and AM4. We assume AM4 results from mitigation car-
ried out on AM3. Measures calculated are minimal and maximal resiliency
represented as minR(w2) and maxR(w2) respectively, expected resiliency and

1 http://www.fin.unsw.edu.au/files/PP/Purchase Order Procedure.pdf.

http://www.fin.unsw.edu.au/files/PP/Purchase_Order_Procedure.pdf
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resiliency variance. The expected resiliency is the same for w2 under both AM3

and AM4 yet the resiliency variance is reduced by a factor of 3.5 under the latter,
indicating w2 now has a lower risk of failure.

5 Mitigation Strategy

In this section we give an overview of the main techniques discussed in the
literature that could be implemented within a workflow mitigation strategy to
overcome situations when no valid user-task assignment exists. These mitigation
actions are categorised into two classes, long-term actions and emergency actions.

5.1 Long-Term Actions

Long-term actions can help raise the resiliency of a workflow by providing a
secure solution that does not involve having to violate the security policy or
change the task structure [25,26]. Long-term actions can also often provide a
more permanent solution to parts of a workflow that commonly becomes blocked.
Long-term actions arguably take time and can be expensive in monetary terms
to complete, yet the long-term benefits can be high. Those actions of interest
include:

– suspension: a workflow is suspended until a user becomes available. This can
be appropriate if deadlines are not important and/or there is some assurance
of future availability. Essentially a task is assigned to a user and executed
when the user becomes available.

– escalation: the probability of a valid user being available for a task is increased.
A user may be asked to return from vacation or come in on their day off, or they
may need to suspend another task they are currently executing. We assume
the use of this action in our running example to mitigate user availability
model AM1, thereby creating AM2.

– training: a user’s capabilities are raised to an acceptable level before granting
permission to perform a task.

– change policy [3,4] - security constraints are removed or changed (e.g., reallo-
cating roles) which can take time and may need to be done multiple times if
a workflow is to complete. Changes may not be possible due to legal require-
ments or impractical if users do not have the correct skills.

5.2 Emergency Actions

Emergency actions can help raise the resiliency of a workflow by overriding the
security policy or changing the task structure. Such actions provide a quick-fix
to a workflow that becomes blocked but do not offer any permanent solution to
parts of a workflow that commonly becomes blocked. A less secure solution is
provided than long-term actions that may also impact the output quality of the
workflow if the task structure is indeed changed. Emergency actions are arguably
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quick and cheap in monetary terms to complete, yet the long-term benefits can
be low. A distinction is made between overriding which implies some control is
in place over who and how policies can be broken while violation is unsolicited.
Those actions of interest include:

– delegation [2,13,18]: if user is unavailable they may delegate a task assignment
to a peer or subordinate who would not normally be authorised to perform the
task. This overrides the user-task permissions but can result in lower standards
and higher risk.

– break glass [23]: certain users are given the right to override a security con-
straint to gain privileges when the assigned user is unavailable, set up with
special accounts. Justification is typically sought after access is granted.

– skipping: a task is bypassed and executed at a later time, although out of
sequence. This is similar to suspension although other tasks are executed while
waiting for a user to become available.

– forward execution: the workflow instance is rolled back [12] until another
assignment path can be taken which bypasses the invalid user-task assign-
ment.

5.3 Strategy Selection

Implementing a suitable mitigation strategy is important to reduce a workflow’s
chance of failure, especially one with both a high expected success rate and rigid
security constraints. Ultimately a favourable mitigation strategy will give a high
expected resiliency and a low resiliency variance. Clearly we are not in a position
to state which and when particular mitigation actions should be implemented as
part of a mitigation strategy as this is highly context dependent. We do however
offer some discussion on this matter and show how the resiliency measures for a
workflow with choice discussed in Sect. 4.2 could be useful in this regard.

It may be the case that a mitigation strategy can consist of only long-term
actions, especially where security is paramount and no emergency actions are
permitted. Alternatively, finishing a workflow in a timely manner may be the
priority meaning a mitigation strategy consists of only emergency actions. A
third option is a mitigation strategy consisting of both long-term and emergency
actions that is fully comprehensive and means the most appropriate option is
always available.

Although long-term mitigation actions can be costly in both time and mon-
etary terms, it may be the case that such actions need only be performed once.
For instance, training a staff member once for a particular task means they can
perform the task in all future executions when necessary. Implementing long-
term mitigation actions for all instances of low resiliency would seem a sensible
option however if some or all low resiliency instances have a very low probability
of execution, this approach may not be cost effective. Emergency actions alone
may be acceptable. If on the other hand emergency actions are implemented for
an instance with a high probability of execution yet low resiliency it is likely
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that these often less secure actions will need to be performed multiple times.
Long-term actions may be more appropriate here.

Using the minimum resiliency of a workflow with choice may lead to over mit-
igation, especially if the lowest resiliency instances are infrequently executed.
Using the maximum resiliency may produce the opposite effect such that a
workflow is under mitigated. Workflows with high resiliency variance and low
resiliency variance can have the same measure of expected resiliency meaning
this measure alone may be misleading. The expected resiliency and resiliency
variance together can inform mitigation strategy choice as follows:

– high resiliency and high variance: a combination of both action types with a
higher proportion of emergency actions

– low resiliency and high variance: a combination of both action types with a
higher proportion of long-term actions

– high resiliency and low variance: emergency actions
– low resiliency and low variance: long-term actions.

6 Conclusion

It is important that a workflow designer can predict the risk of failure before
implementing a workflow, especially if its design must include rigid security con-
straints. In [20] the probability of finding a user assignment for all tasks in a
workflow without choice provides a measure of completion rate or resiliency.
We extend this approach by considering workflows with choice which may come
with multiple resiliency values, one for each execution path. We consider com-
puting different resiliency measures including resiliency variance which indicates
volatility from the resiliency average. We suggest this metric can help predict
the risk taken on when implementing a given workflow and help determine suit-
able mitigation actions which should be executed when no valid user assignment
exists for a workflow task.
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