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Abstract. A new geometrical fuzzy approach for image contrast
enhancement is here presented. Synergy among ascending order statis-
tics and entropy evaluations are exploited to get contrast enhancement
by evaluation of distances among points inside fuzzy unit hyper-cube.
The obtained results can be considered interesting, especially compared
with consolidated techniques which encourages further studies in this
direction.

1 Introduction

Contrast enhancement techniques, representing the first treatment to enhance
image quality, are subdivided in two main trends. The first, direct type one,
formulates a criterion of contrast measurement and enhances the image qual-
ity by improving of such measure. The second one, of indirect type (such as
histogram equalization), acts on the image histogram modifying the intensity
of the gray levels of pixels has a gray levels transformation in which dark pix-
els appear darker and light ones appear brighter. Both techniques produce a
stretching of the global distribution of the intensity of the gray levels requir-
ing the elaboration of adaptive procedures of features extraction directly and
automatically from the image. Owing to the uncertainty and vagueness of the
sampling techniques, the construction of an image is not free from uncertaintess
and noise (loss of informative content during the transformation of objects from
three-dimensional to bi-dimensional images, ambiguity of the definition of edges,
regions and boundaries). So, it follows the necessity to implement an adaptive
procedure of contrast enhancement which manipulates data uncertainty. For the
reasons given above, scientific research has produced important results through
fuzzy techniques both with direct and indirect approaches [1], [2], [3]. In addition,
a lot of efforts have been done about adaptive formulation of contrast indica-
tors enhancing the image quality by evaluations of differences of gray levels in
local neighborhoods [2]. By adaptive extraction of features, meaningful contri-
butions have been proposed where the main fuzzy entropy plays a determining
role for the gray levels fuzzification [3]. Good results have been also obtained by
wavelet-fuzzy techniques in which approximation/detail coefficients and transfor-
mation/saturation operators are exploited to get contrast enhancement [4], [5].
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In addition, a lot of papers deal with got contrast enhancement by fuzzy genera-
tion of histogram equalization [6], [12], [13], [14] and specific statistical applica-
tions [7], [9], [10] can be considered particularly meaningful. However, scientific
literature is poor in papers in which histogram stretching is carried out by fuzzy
geometrical approaches where intelligible contrast enhancement procedures have
been adjusted (particularly helpful for not technical experts). So, in this work,
the authors present a new approach based on a particular fuzzy formulation in
which the features extraction characterizes the fuzzification of the gray levels
ranges. Moreover, some statistical-entropic considerations calibrate the proce-
dure adaptively. Finally, synergy among ascending order statistics and fuzzy
geometries yields contrast enhancement steps automatically. The proposed pro-
cedure, characterized by a low computational load shows very useful for real-time
applications, when applied to a lot of images with different features, being in
addition the obtained results wholly qualitatively and quantitatively comparable
with those obtained by consolidated techniques. The paper is organized as fol-
lows. Starting from gray levels images, the steps of the proposed procedure will
be illustrated giving a reason for each operational choice. Then, the obtained
results on images with different features are presented, making qualitative and
quantitative comparisons with the same images treated by using already consol-
idated techniques. Finally, some conclusions are drawn.

2 Material and Methods

Generally, an M ×N image I with L levels can be defined by means of a matrix
of pixels on which, for each pixel position (i, j), i = 0, 1, 2, ...,M − 1 and j =
0, 1, 2, ..., N−1, we associate its gray level xij . In a fuzzy domain, it is imperative
to fix the membership value to each pixel to I by means a function µI(xij) : I →
[0, 1] defining the membership degree of xij to I. In particular, if µI(xij) = 1
the corresponding pixel is totally belonging to I; if µI(xij) = 0 xij does not
belong to I totally. Intermediate values of µ show a partial membership of xij

to I. If µI(xij) is the informative content of xij in I, we can represent I by
∑M−1

i=0

∑N−1
j=0 [xij , µI(xij) = gij ], ∀x ∈ I, i = 0, 1, 2, ...,M−1, j = 0, 1, 2, ..., N−1

where µI(xij) = gij is the gray level of xij [8], [11]. So, contrast enhancement
process can be defined thinking that if xij is dark it has to be made darker; if
xij is light it has to be made lighter; if xij is gray it has to remain gray. Stating
that dark, light and gray are fuzzy terms, it is necessary to express them by a
suitable function regulating the mapping of I in the fuzzy domain by means of
the image features themself. In this way, image contrast enhancement is designed
as the transformation of this function making darker the gray levels considered
dark, and clearer the ones thought as clear.

2.1 Choice of the Typology of Mapping in the Fuzzy Domain

Scientific literature suggests us different typologies of mapping functions:
linear piecewise (triangular, trapezoidal, sigma-functions) and smoother ones
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(S-functions, bell-shaped, broken gaussian) to guarantee a better transaction
among gray levels. Here, let here choose, define and exploit an S-function as
follows

gij = µI(xij) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0 ≤ xij ≤ a
(xij−a)2

(b−a)·(c−a) a ≤ xij ≤ b

1 − (xij−c)2

(c−b)·(c−a) b ≤ xij ≤ c

1 xij ≥ c

(1)

in which a, b, c (b not necessarily equal to (a + c)/2) have to be adaptively
determined.

2.2 Adaptive Setting of S-Function Parameters

S-function construction has to perform principles of noise reduction and loss
information minimization. So, to determine a and c, it has been elaborated an
algoritm acting directly on the image histogram to reduce the noise, starting
from the approach developed in [3]. Regarding b, a consolidated approach based
on maximum fuzzy entropy principle has been exploited because high value of
entropy is a measure of a better fuzzy information in the image.

How Determine Parameters a and c. Let gmax, gmin and Hist(g) be the
maximum and minimum values of gray levels in I and the relative histogram
respectively. Hist(g) will present z maximum locals (peaks) labeled by Hist(g1),
Hist(g2),..., Hist(gz) and their mean value, Xistmax

(g), will gets the form [3]
Xistmax

(g) = 1
z

∑z
i=1 Xistmax

(gi). From the set of peaks we select k of them
(k ≤ z) which exceed Xistmax

(g) excluding the other ones because they can be
considered less meaningful. From the selected k peaks, let consider only the first
one (Xistmax

(g1)) and the last one (Xistmax
(gk)) . The gray levels lower than

(Xistmax
(g1)) can be considered as background, and the upper to (Xistmax

(gk))
can be considered as noise: this way we preserve the informative content of the
image and, at the same time, we reduce the noise. Two particular gray levels,
LA and LB will be determined, so that the loss of information in the ranges
[gmin, LA] and [LB , gmax] is equal to a particular value f1, with 0 < f1 < 1
(tipically f1 = 0.01):

LA∑

i=gmin

Hist(i) =
gmax∑

i=LB

Hist(i) = f1 (2)

However, the selection of the peaks occurs by thresholding on a mean value
evaluated by Eq.(2) [3] which does not consider the mutual positions of the
peaks. Here, the authors propose a weighted mean computed as

Xistmax
(g) =

∑z
i=1 Histmax

(gi) · gi∑z
i gi

(3)
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so that Xistmax
(g) is the height of the centre of gravity of the histogram taking

into account the mutual positions above mentioned. Finally, a and c parameters
can be determined by a = gmax−gmin

2 + gmin if (a > LA) → a = B1 and
c = gmax−gk

2 + gk if (a > LA) → a = B1.

How Determine Parameter b. Being fuzzy entropy a reliable measure of
uncertainty of a system and high entropy values keeping anhigh informative
content, the evaluation of b occurs by fuzzy entropy maximisation: b ∈ [a+1, c−
1], so its optimal evaluation, bopt, can be determined by Hmax(I, a, bopt, c) =
{H(I, a, b, c) ∈′ gmin ≤ a < b < c ≤ gmax}. If H is Shannon’s entropy (or other
entropic formulations depending on the application under study), the ambiguity
of an image I, H(I), can be expressed as

1
MN

M∑

m=1

N∑

n=1

S(gmn) = −gmn ·log2gmn−(1−gmn)·log2(1−gmn), 0 < H(I) < 1

(4)
with Shannon’s function S increasing monotonically on [0, 0.5] and decreasing
monotonically on [0.5, 1] with a maximum falling on gmn = 0.5.

2.3 S-Function Transformation

S-Function Partition in Partially Superimposed Portions. We subdivide
the range [gmin, gmax] in three sub-intervals partially superimposed, generating
fuzzy rectangular patches labelled by A, B and C respectively. Specifically, A is
set around 0.5 value of fuzzy membership (gray area of image); B and C are sets
around dark and bright areas of the image respectively (Fig. 1). Moreover, each
patch is supported on its sub-interval: SupportA = b+c

2 − a+b
2 , SupportB = b−a,

SupportC = c − b in which Supportj (j=A, B, C), represents the basis of each
fuzzy rectangular patch characterized by particular values of ascending order
statistics which represent a set of features dirtectly extracted from the image.
Contrast enhancement will be done by transformation of the S-function starting
from the statistics above obtained (Table I and Fig. 1). Next section highlights
the details of such idea.

Extraction and Fuzzification of Statistical Features. From Supportj ,
we evaluate mean, variance, skewness and kurtosis, labelled by MN(·),
V AR(·), SK(·), KU(·), constituting the following patterns [MN(Supportj),
V AR(Supportj), SK(Supportj), KU(Supportj)], j = A,B,C which, inside R

4,
represents three points

Pj = [MN(Supportj), V AR(Supportj), SK(Supportj)KU(Supportj)] ∈ R
4.
(5)

To underline the fuzzy nature of the approach, it is advisable to fuzzify Pj by a
sigmoidal function (anyway other types of function can be taken into account)
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Fig. 1. Fuzzy subdivision in partially
overlapped ranges A, B, C (gray, dark
and bright areas respectively).

Fig. 2. Gray, dark and bright areas as
points inside a Fuzzy Unit Hyper-Cube
(FUHC4).

as P ∗
j = 1

1+e−m(Pj−n) (tipically m = 11 and n = 0.5): in this way P ∗
j fall inside

a four-dimensional Fuzzy Unit Hyper-Cube, FUHC4 ( Fig. 2) [15]:

P ∗
j = [

1
1 + e−m(MN(Supportj)−n)

, (6)

1
1 + e−m(V AR(Supportj)−n)

,
1

1 + e−m(SK(Supportj)−n)
,

1
1 + e−m(KU(Supportj)−n)

] ∈ FUHC4

So, S-function transformation occurs by evaluation of mutual distances of the
points P ∗

j and two crucial fuzzy points (BTOT and CTOT ) inside FUHC4 as
detailed in the following subsection.

Construction of the Transformed S-Function. Having obtained P ∗
A, P ∗

B

and P ∗
C points as above described, their mutual distances are evaluated as

d(P ∗
i , P

∗
j ) = ||P ∗

i − P ∗
j ||2, i, j = A,B,C. (7)

So, the following cases can occur:
a) d(P ∗

A, P
∗
B) = ||P ∗

A − P ∗
B||2 > d(P ∗

A, P
∗
C) = ||P ∗

A − P ∗
C ||2 where patch A repre-

sents brighter areas with respect to the other ones;
b) d(P ∗

A, P
∗
B) = ||P ∗

A−P ∗
B ||2 < d(P ∗

A, P
∗
C) = ||P ∗

A−P ∗
C ||2 in which patch A has to

be considered as darker with respect to the other ones. In both cases, S-function
transformation is made by an anticlockwise rotation of the tangent line to S-
function (t-line in short) in a crucial point H (where brightness and darkness are
concomitant) (Fig. 1) representing the superimposition among S-function and
patches A, B and C: H = (S−function)∩Patch(A)∩Patch(B)∩Patch(C). If A
is brighter than dark, in FUHC4, P ∗

A is closer to the point of maximum bright-
ness, i.e. CTOT (membership value equals to unity), and farther from to point
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of maximum darkness darkness, i.e. BTOT (membership values equals to zero),
so the t-line slope will be increased by the factor d(P∗

A,CTOT )
d(P∗

A,BTOT ) = ||P∗
A−CTOT ||2

||P∗
A−BTOT ||2 .

Dually, if patch A is darker instead of brighter, t-line slope will be decreased by
the factor d(P∗

A,BTOT )
d(P∗

A,CTOT ) = ||P∗
A−BTOT ||2

||P∗
A−CTOT ||2 .

S-function transformation for patch A (brighter than dark)
Being H = (b, (b − a)/(c − a)), t-line can be written as:

µ(gmn) =
b − a

c − a
+

2
c − a

(gmn − b) (8)

Considering that d(P ∗
A, P

∗
B) > d(P ∗

A, P
∗
C), the new slope (µ′

t)new becomes:

(µ′
t)new = (µ′

t)old + (µ′
t)old

d(P ∗
A, CTOT )

d(P ∗
A, BTOT )

= (9)

2
c − a

(1 + d(P ∗
A, CTOT )/d(P ∗

A, BTOT ))

So, the new tangent line (r-line), written as

µ(gmn) =
b − a

c − a
+

2
c − a

(1 + d(P ∗
A, CTOT )/d(P ∗

A, BTOT ))(gmn − b) (10)

intersects µ(gmn) = 0 and µ(gmn) = 1 in

K =

⎛

⎝b +
a − b

2 ·
(
1 + d(P∗

A,CTOT )

d(P∗
A,BTOT )

) , 0

⎞

⎠

and

Z =

⎛

⎝
(

1 − b − a

c − a

)

· a − b

2
c−a ·

(
1 + d(P∗

A,CTOT )

d(P∗
A,BTOT )

) , 1

⎞

⎠

respectively where

gK = b +
a − b

2 ·
(
1 + d(P∗

A,CTOT )

d(P∗
A,BTOT )

)

and

gZ =
(

1 − b − a

c − a

)

· a − b

2
c−a ·

(
1 + d(P∗

A,CTOT )

d(P∗
A,BTOT )

)

are the gray levels of K and Z. So, the new S-function µ(gmn)new becomes
(Fig. 3):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 gmn ≤ gK
b−a
c−a+

+ 2
c−a ·

(
1 + d(P∗

A,CTOT )
d(P∗

A,BTOT )

)
· (gmn − g) gK ≤ gmn ≤ gZ

1 gmn ≤ gZ

(11)
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Fig. 3. Modification of the S-function.

Fig. 4. Low contrast image of a reli-
gious building with a lot of architec-
tural details.

Defuzzification procedure to obtain the enhanced image
Finally, we need to apply an inverse transformation µ−1 to extract the new
values of fuzzy membership (µ′

t)new to come back in the space domain with
the enhanced gray levels (g′

mn). Specifically, the procedure can be expressed as
µ−1((µ′

t)new).

Defuzzification for Patch A Darker Instead of Brighter. Dually, if
d(P ∗

A, P
∗
B) < d(P ∗

A, P
∗
C), t-line slope is reduced to the value:

(µ′
t)new = (µ′

t)old − (µ′
t)old · d(P

∗
A, BTOT )

d(P ∗
A, CTOT )

= (12)

=
2

c − a
·
(

1 +
d(P ∗

A, BTOT )
d(P ∗

A, CTOT )

)

So, S-function transformation and defuzzification are analogous to the above
detailed ones as for d(P ∗

A, P
∗
B) > d(P ∗

A, P
∗
C).

Table 1. Features of localization of each patch covering S-function

Fuzzy Patches Localizzation Support Range

A around membership b+c
2

− a+b
2

value=0.5
B around dark areas b− a

C around bright areas c− b
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3 Results and Discussion

The proposed algorithm have been applied to a wide set of images with differ-
ent features. In particular, qualitative/quantitative comparisons with histogram
equalization and the approach elaborated in [3] have been carried out to evalu-
ate the goodness of the procedure. From Fig. 4 to Fig.19 the most meaningful
examples of the elaborations are shown. In particular, Fig.4 refers to a very low
contrast image of a religious building with many architectural details; Fig. 8 visu-
alizes a monument showing extended shadowy zones; Fig. 12 concerns a human
face poorely lighted and Fig. 16 displays a low contrast seascape. In Table 2,
for each image under study, sizes and adaptive setting of S-function parameters
are reported. Figs. 5-9-13 and 17 refer to the image obtained by the proposed
algorithm, while Figs. 6-10-14 and 18 refer to the treatment by [3]. Finally, Figs.
7-11-15 and 19 show the contrast enhancement by histogram equalization. After
treatments, owing to the excessive brightness, the religious building preserves
its architectural details but with a loss of sharpness (Fig. 6) and, owing to the
low increase of contrast, loss of architectural shadings (Fig. 7). Fig. 8, after the
treatment, was subjected to an increase of the contrast with a slight darkening
of the shadowy areas and a meaningful increase of the shading details (Fig. 9),
while the following elaborations enhance a bit the quality of the image (Fig.
10) and in a remarkable way the contrast (Fig. 11) respectively. Fig. 12 is a
quite dark image with a low contrast; after the treatment with the algorithm
proposed (Fig. 13), the contrast is sensibly enhanced, even if original obscurity
remains. The outlines are well defined with a good presence of luminosity in
the top of the hat. Elaborations reported in Figs. 14 and 15 enhance sensibly
luminosity and contrast, but there is no trace of such peculiarities in Fig. 13.
Finally, the proposed algorithm on the seascape image (Fig. 16) gets good results
in terms of contrast enhancement and levels of details in the sea areas, but the
perception of fog (Fig. 17) remains ans persists even applying other elabora-
tions (Figs. 18 and 19). Such qualitative analysis is confirmed by qualitative

Fig. 5. Contrast enhancement carried
out by the proposed algorithm: good
highlighting of dark areas, architec-
tural and chiaroscuro details.

Fig. 6. Contrast enhancement by [3]
where an excessive increase of bright
with loss of details and chiaroscuro
effects are shown.
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Fig. 7. Contrast enhancement by
histogram equalization where a good
preservation of details takes place.
Nevertheless, the contrast increase is
reduced.

Fig. 8. Particular of a sculpture with
a good presence of details.

Fig. 9. The proposed algorithm shows
a good differentiation of details both in
bright and shadowy areas with shaded
effects (poorly highlighted in the origi-
nal image).

Fig. 10. Contrast enhancemen by [3],
which increases the brightness of a lot
of details.

Fig. 11. Contrast enhanement by his-
togram equalization. It comes out a
further increase in brightness together
with a better contrast in shadowy
zones.

Fig. 12. Low contrast human face
with high presence of shadowy areas.
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Fig. 13. The proposed algorithm
brings about a good increase of the
contrast keeping the shadiness of the
image.

Fig. 14. Contrast enhancement by [3]
where details, hardly recognizable in
the starting-image, are here in the lime-
light.

Fig. 15. Contrast enhancement by his-
togram equalization: light increase of
the performance with respect to the
proposed algorithm.

Fig. 16. Low contrast seascape with
presence of details and background line
extremely darkened.

Fig. 17. Contrast enhancement by
the proposed procedure. Good global
image enhancement, with clearness of
the details of the rocks and a remark-
able reduction of the fog.

Fig. 18. Contrast enhancement by [3].
Image enhancement acceptable even if
the foggy effect remains.
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Fig. 19. Good contrast quality obtained by histogram equalization.

evaluations of MSE/PSNR as reported in Table 2. If N × M is the number
of pixel contaned in the image, and referring to the i-th pixel in the original
image (gmn) and in the image to evaluate (g′

mn), MSE can be computed as
MSE = 1

N×M

∑N
m=1

∑M
n=1(gmn −g′

mn)2. Moreover, if L is the dinamic range of
the pixel values (tipically equal to 2n − 1, n = bits/pixel), PSNR gets the form
PSNR = 10 · log10 L2

MSE .

Table 2. Adaptive setting of S-function parameters for each approach and quantitative
evaluations of the contrat enhancement quality

Image Size a b c MSE/PSNR MSE/PSNR MSE/PSNR
proposed algorithm approach [3] histogram equalization

Church 480 × 320 39 85 136 1229/17.26 1421/16.638 343/22.81
Statue 480 × 320 19 55 145 924/18.508 739/19.478 895/18.645
Male Face 480 × 320 37 128 177 1153/17.546 922/18.517 883/18.705
Seascape 480 × 320 4 17 122 1224/17.657 1261/17.157 1039/17.998

4 Conclusions

The proposed approach may find wide applications in image processing, pat-
tern recognition and computer vision. In particular, contrast enhancement of
the image quality represents the first step in image processing. To face this
topic, Scientific Community has consolidated two main categories of approach:
direct and indirect ones, both producing noteworthy results in several applica-
tion fields. Starting form the assumption that gray levels structure of an image
can be formalized by fuzzy algoritms for contrast enhancement, the presence of
fuzziness in the informative content of an image needs ad-hoc procedures for
elaborating suitable protocols for getting satisfactory performance. In addition,
the increasing requirement from non technical experts to hand simple contrast
enhancement protocols (for example, medical and paramedical staff in biomed-
ical ambit) it is imperative to tune intelligible algorithms characterized by a
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low computational complexity (useful for real-time applications). For the rea-
sons mentioned above, the authors have proposed a new geometrical adaptive
approach to get the purpose. In particular, has been here presented an indirect
fuzzy approach to enhance the contrast, based on statistical-geometrical con-
siderations and entropic formulations, to modify the histogram distribution of
the original gray levels of an image: an adaptive setting of the parameters of a
properly defined S-function has been done, which reduces the possibility over
and/or under enhancement. The experimental results can be considered, both
qualitatively and qualitatively, particularly encouraging in sight of further stud-
ies in this direction.
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