
CP-nets: From Theory to Practice

Thomas E. Allen(B)

University of Kentucky, Lexington, KY, USA
thomas.allen@uky.edu

1 Introduction

Consider the problem of buying an automobile. The vehicle that a customer
prefers may depend on many factors including the customer’s life commitments,
hobbies, income level, concern about the environment, and so on. For example, a
customer may prefer a minivan to a sports car if he has young children. Another
customer may prefer a pick-up truck with a towing package to one that lacks
such a feature if she enjoys hiking and kayaking. Numerous other factors, such
as whether the paint shows pollen or whether the spare tire is accessible could
also prove important.

Many decision domains, like this one, have a combinatorial structure. If I
am asked to choose from a very small set of alternatives O = {O1, . . . , O4}, I
can usually provide at least a partial ordering. I may be unsure how to compare
alternatives O1 and O3, but know that I like O4 better than both, and O2

less than O1 and O3. However, if the preference involves a large number of
features (e.g., make, model, dealership, warranty, color, etc.), then this approach
is no longer practical, or even possible, given time constraints. Indeed, the best
alternative may not yet exist in the physical world. Perhaps I could describe my
most preferred alternative in terms of its features, but it does not exist unless I
have it built to my custom specifications.

Formally, a preference relation � is a partial preorder on a set of alternatives
(or outcomes) O. The expression o � o′ means that o is preferred to o′. If
neither outcome is preferred to the other, they are said to be incomparable,
written o �� o′. In this case, O4 � O1, O4 � O3, O1 � O2, and O3 � O2.
Since the relationship is assumed to be transitive, one can further reason that
O4 � O2. However, since the relationship between O1 and O3 is left unspecified,
we say that these alternatives are incomparable (O1 �� O3). In the discussion that
follows, let us assume that O is finite and can be factored into features (variables)
V = {X1, . . . , Xn} with associated domains, s.t. O = X1×· · ·×Xn. For example,
the binary valued feature brakes = {antilock, conventional} would be one
of many features that collectively model all conceivable alternatives in the set
Automobiles.

Conditional preference networks (CP-nets) have been proposed for such prob-
lems [4]. Rather than comparing alternatives as atoms, the decision maker con-
siders the interplay of the features—how the preference over one feature depends
on the values of others in the decision domain. For example, if I am purchasing
a vintage sports car, I may be willing to forgo modern safety features such as
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 555–560, 2015.
DOI: 10.1007/978-3-319-23114-3 33



556 T.E. Allen

anti-lock brakes, but if I am purchasing a new minivan, then I definitely prefer
anti-lock brakes. One can formalize this as

minivan ∧ new : antilock � conventional.

Such statements are known as ceteris paribus rules, from the Latin “as long as
everything else stays the same.” That is, if I am comparing two new minivans,
one with anti-lock brakes and one with conventional brakes, I will always prefer
the alternative with antilock brakes, provided the values of other features (price,
color, make, model, etc.) are the same for both alternatives. The relationship
among the features is further specified through a dependency graph, a directed
graph in which the nodes represent the relevant features and a directed edge from
one feature to another indicates that the latter (known as the child) depends on
the former (the parent). The rules themselves are stored in conditional preference
tables of the feature to which they apply (Fig. 1).

Definition 1. A CP-net N is a directed graph. Each node represents a variable
Xi ∈ V and is annotated with a conditional preference table (CPT) describ-
ing the subject’s preferences over the domain of Xi given its dependencies. An
edge (Xh,Xi) indicates that the preferences over Xi depend directly on the value
of Xh.

Alternatives that differ in just one feature (e.g., two Automobiles that are
identical except for their age) can be compared directly, provided CPT(age)
contains an applicable rule. Alternatives that differ in more than one feature can
be compared only if a transitive sequence of rules exists between the two alter-
natives. For example, 〈children, sportscar, vintage, conventional〉 ≺ 〈children,
minivan, vintage, conventional〉 ≺ 〈children,minivan, new, conventional〉 ≺
〈children,minivan, new, antilock〉. Such sequences are known as (improving)
flipping sequences, since each rule “flips” the value of just one variable.

Fig. 1. A simple CP-net



CP-nets: From Theory to Practice 557

There is much to like about CP-nets. They let us model preferences over
factored domains with exponentially many conceivable alternatives. They cap-
ture visually the if-then rules that many of us think we employ when we reason
about such alternatives. They are qualitative; that is, they only ask us to specify
whether one thing is better than another, without assigning a numeric weight
as to precisely how much we prefer it. Finally, the problem of determining the
optimal (most preferred) outcome with respect to a CP-net can be answered in
linear time in the number of features if CPTs are complete.

On the other hand, while many academic papers discuss CP-nets (at last
count, the seminal journal paper had over 750 citations, according to Google
Scholar) and many applications have been proposed, we are not yet aware of
their use in real-world applications. There are several reasons for this. First,
determining dominance—whether one arbitrary outcome is better than another
with respect to a CP-net—is known to be very hard (PSPACE-complete) in
the general case [5]. An application for automobile shoppers, to continue our
example, is not particularly useful if it requires several days in the worst case
to determine whether one vehicle is better than some other vehicle that I am
considering! Additionally, much of the research on CP-nets makes strong, often
unrealistic assumptions, such as that the features must be binary, CPTs must
be complete (contain a rule for every combination of parent features), that indif-
ference is not allowed, or that the graph must conform to a particular structure
(e.g., rooted tree, acyclic digraph, etc.). My research involves addressing these
issues to make CP-nets more useful for complex engineering applications.

In the sections that follow, I briefly discuss three areas of ongoing research:
how to generate CP-nets i.i.d., practical approaches to the problem of dominance
testing (DT), and new methods for learning CP-nets.

2 Generating CP-nets

Often, one needs to generate CP-nets in an i.i.d. manner. For example, con-
sider that we wish to compare the expected running time of two algorithms that
perform dominance testing. Both algorithms are designed for the same sort of
input—e.g., binary valued features and complete, acyclic CPTs with an assumed
bound on in-degree (number of parents). To compare the two algorithms, we wish
to generate a set of dominance testing problems that are representative of the
DT problems in this set. We are not aware of real-world datasets of DT problems;
moreover, even if such datasets were readily available, one would like to compare
the algorithms’ expected performance on any allowable input. Generating the
outcome pairs for such an experiment is easy since one can just assign the value
of each feature as an independent coin-flip. However, it is not so clear how to
generate the CP-nets such that each instance is valid and equally likely with
respect to the set of all CP-nets under consideration. Often researchers simply
permute the nodes and insert edges at random so as to avoid cycles and then
randomly assign CPT entries. However, it is easy to show that this approach
leads to statistical bias, with high-indegree CP-nets grossly undersampled at the
expense of low-indegree CP-nets.



558 T.E. Allen

Other motivations for generating CP-nets i.i.d. include Monte Carlo algo-
rithms (e.g., for learning, reasoning with, or aggregating CP-nets), statistical
analyses of the properties of CP-nets (such as how expected flipping sequence
length varies as the number of edges in the dependency graph increases), voting
profiles for social choice experiments, black-box testing of algorithms for correct-
ness, and finding hard problem instances. In each case, an unbiased generation
algorithm is needed.

Many asymptotic results are known for problems that involve learning or rea-
soning with CP-nets. However, the combinatoric properties of CP-nets are less
understood. Since these properties are central to understanding how to generate
unbiased random instances, I began by studying how to count the number of
CP-nets for various types of graphs (directed trees, polytrees, directed acyclic
graphs with bounded indegree, etc.) [2]. For this I built upon results such as
Prüfer codes, which can be used to represent and generate labeled trees [8], and
the so-called DAG codes for directed acyclic graphs [11], introducing novel recur-
rences for counting and generating CP-nets efficiently. As part of this process,
I studied the problem of assuring that a CPT generated at random was consis-
tent with the graph, showing that this is equivalent to the set of nondegenerate
functions of k Boolean inputs where k is the node’s indegree. I have also devel-
oped and implemented (in C++ and x86 assembly language) a novel method for
generating random binary, complete CP-nets i.i.d. for various graphs, including
directed trees, polytrees, DAGs with bounded indegree, and unbounded DAGs.
My implementation can generate thousands of CP-nets with up to 100 features
uniformly at random in just a few seconds. I am presently extending this method
to accommodate more general classes of CP-nets, such as those with multi-valued
variables, incomplete CPTs, CP-nets that can model indifference as well as strict
preferences, and CP-nets that are compatible with a partially specified (incom-
plete) CP-net.

3 Reasoning with CP-nets

While the problem of finding the most preferred outcome can be conducted in
linear time in the number of nodes, the problem of dominance testing is known
to be hard in general, requiring worst-case exponential time in practice. A sig-
nificant aspect of this complexity is the possibility of exponentially long flipping
sequences [4]. In earlier work, I observed that long sequences appeared to be
rare [1]. I also reasoned that very long transitive sequences were unlikely to pro-
vide useful information about human preferences if the possibility of noise was
taken into account. That is, if even some small percentage of the rules could
be represented incorrectly—for example, due to an entry error during the elic-
itation process, then the probability that a given sequence correctly represents
the decision maker’s preferences diminishes to what would be expected from
chance as the length of the transitive sequence increases. However, my earlier
experiments relied on generation methods that did not provide i.i.d. guarantees.
More recently, I have been performing additional experiments using the method



CP-nets: From Theory to Practice 559

of i.i.d. generation discussed above. These show that in most cases the expected
flipping length is relatively close to the Hamming distance, the number of fea-
tures in which the two alternatives differ. I have also shown that the average
path length of the dependency graph is a good predictor of flipping sequence
length.

I have also shown how to reduce general dominance testing problems to one
of Boolean satisfiability so that the heuristic methods employed by modern SAT
solver can be leveraged. Others have elsewhere shown how to reduce the problem
to one of planning [4], model checking [10], or (indirectly) constraint satisfaction
[9]. In more recent work, I have suggested the possibility of limiting search depth
based on the expected length of flipping sequence given parameters that are easy
to compute.

In future work, I hope to show the effect of indifference and incomparability
on flipping sequence lengths. I am also comparing the performance of differ-
ent algorithms that have been proposed and considering how to combine such
algorithms into a portfolio for dominance testing. Finally, I am interested in
discovering better heuristic methods for dominance testing.

4 Eliciting and Learning CP-nets

CP-nets can be elicited directly or indirectly from a user or learned from obser-
vational data. Direct elicitation assumes human subjects can introspect on the
cause-and-effect processes that underlie their preferences. This is a particularly
strong assumption that seems unrealistic in many settings [3].

Indirect elicitation relies on the weaker assumption that subjects can answer
whether one alternative is preferred to another (“I prefer the blue minivan to the
red one”) without providing explanations for such preferences. At the ADT-2013
conference [7], I presented a heuristic algorithm, earlier proposed by Guerin [6],
for indirectly eliciting CP-nets through user queries. In that paper we assumed
strict, complete preferences over binary variables and that the user could answer
queries consistently.

In later work [1], I considered the problem of learning CP-nets from choice
data. There I relaxed some of the customary modeling assumptions in favor of
models with multi-valued variables over which the subject may be indifferent
and/or inconsistent. I presented the case that such CP-nets are necessary for
many simple, real-world problems. I then showed how to leverage the power
of SAT solvers to learn such CP-nets from choice data. More recently, I have
proposed a novel encoding for tree-shaped CP-nets that enables local search. This
method allows searching for a suitable tree-shaped CP-net even if the comparison
set is inconsistent due to noise. Moreover, since it is a learning- rather than
an elicitation-based method, it does not depend on the subject’s capacity to
introspect or to respond or choose consistently. In future work, I hope to improve
on this method and extend it to a richer class of CP-nets.



560 T.E. Allen

References

1. Allen, T.E.: CP-nets with indifference. In: 2013 51st Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp. 1488–1495. IEEE (2013)

2. Allen, T.E., Goldsmith, J., Mattei, N.: Counting, ranking, and randomly generating
CP-nets. In: MPREF 2014 (AAAI-14 Workshop) (2014)

3. Allen, T.E., Chen, M., Goldsmith, J., Mattei, N., Popova, A., Regenwetter, M.,
Rossi, F., Zwilling, C.: Beyond theory and data in preference modeling: bringing
humans into the loop. In: Proceedings of ADT. LNAI. Springer, Heidelberg (2015,
In print)

4. Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: CP-nets: a tool for
representing and reasoning with conditional ceteris paribus preference statements.
J. Artif. Intell. Res. 21, 135–191 (2004)

5. Goldsmith, J., Lang, J., Truszczynski, M., Wilson, N.: The computational complex-
ity of dominance and consistency in CP-nets. J. Artif. Intell. Res. 33(1), 403–432
(2008)

6. Guerin, J.T.: Graphical Models for Decision Support in Academic Advising. Ph.D.
thesis. University of Kentucky (2012)

7. Guerin, J.T., Allen, T.E., Goldsmith, J.: Learning CP-net preferences online from
user queries. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS, vol.
8176, pp. 208–220. Springer, Heidelberg (2013)

8. Kreher, D.L., Stinson, D.: Combinatorial Algorithms: Generation, Enumeration,
and Search. CRC Press, Boca Raton (1999). ISBN 9780849339882

9. Li, M., Vo, Q.B., Kowalczyk, R.: Efficient heuristic approach to dominance testing
in CP-nets. In: Proceedings of AAMAS, pp. 353–360 (2011)

10. Santhanam, G.R., Basu, S., Honavar, V.: Dominance testing via model checking.
In: AAAI (2010)

11. Steinsky, B.: Efficient coding of labeled directed acyclic graphs. Soft Comput.
7(5), 350–356 (2003). doi:10.1007/s00500-002-0223-5. http://dx.doi.org/10.1007/
s00500-002-0223-5. ISSN 1432-7643

http://dx.doi.org/10.1007/s00500-002-0223-5
http://dx.doi.org/10.1007/s00500-002-0223-5
http://dx.doi.org/10.1007/s00500-002-0223-5

	CP-nets: From Theory to Practice
	1 Introduction
	2 Generating CP-nets
	3 Reasoning with CP-nets
	4 Eliciting and Learning CP-nets
	References


