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Preface

The 4th International Conference on Algorithmic Decision Theory (ADT 2015)
brought together researchers and practitioners coming from diverse areas such as
artificial intelligence, database systems, operations research, decision theory, discrete
mathematics, game theory, multiagent systems, computational social choice, and the-
oretical computer science with the goal of improving the theory and practice of modern
decision support. Previous conferences were held in Venice (2009), Piscataway (2011),
and Brussels (2013).

Some of the scientific challenges facing the ADT community include big preference
data, combinatorial structures, partial and/or uncertain information, distributed decision
making, and large user bases. Such challenges occur in realworld decision making in
domains such as electronic commerce, recommender systems, network optimization
(communication, transport, energy), risk assessment and management, and e-government.

This volume contains the papers presented at ADT 2015. The conference itself was
held during September 27–30 in Lexington, Kentucky. The meeting was co-located
with the 13th International Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR 2015). A joint session and invited speaker were shared with this
conference.

Each submission to ADT 2015 was reviewed by at least three Program Committee
members. Reviewing was double blind. The committee decided to accept 32 papers out
of the 70 submissions, giving an acceptance rate of 45 %. The program also includes
six peer-reviewed papers written for the associated doctorial consortium.

I would like to thank Judy Goldsmith for her tireless efforts as local chair, the three
invited speakers (Steve Brams, Jerome Lang, and Brent Venable), the LPNMR 2015
chairs for their help and cooperation, as well as the many people who volunteered to
help in some way or other to make the meeting happen. I also thank the authors for
trusting us with their latest research results, as well as the Program Committee and all
their additional reviewers for their help with selecting and preparing the conference
program.

I end by thanking my wife, Andrea, and my daughter, Bronte, who gave me the time
and space to be a program chair yet again. Thank you.

July 2015 Toby Walsh
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Beyond Theory and Data in Preference
Modeling: Bringing Humans into the Loop
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Anna Popova4, Michel Regenwetter2, Francesca Rossi5,

and Christopher Zwilling2

1 University of Kentucky, Lexington, KY, USA
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{mchen67,regenwet,zwillin1}@illinois.edu

3 NICTA and UNSW, Sydney, Australia
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4 Dell Research Labs, Austin, TX, USA
anna popova@dell.com

5 University of Padova, Padova, Italy
frossi@math.unipd.it

Abstract. Many mathematical frameworks aim at modeling human
preferences, employing a number of methods including utility functions,
qualitative preference statements, constraint optimization, and logic for-
malisms. The choice of one model over another is usually based on the
assumption that it can accurately describe the preferences of humans
or other subjects/processes in the considered setting and is computa-
tionally tractable. Verification of these preference models often leverages
some form of real life or domain specific data; demonstrating the models
can predict the series of choices observed in the past. We argue that this
is not enough: to evaluate a preference model, humans must be brought
into the loop. Human experiments in controlled environments are needed
to avoid common pitfalls associated with exclusively using prior data
including introducing bias in the attempt to clean the data, mistaking
correlation for causality, or testing data in a context that is different from
the one where the data were produced. Human experiments need to be
done carefully and we advocate a multi-disciplinary research environment
that includes experimental psychologists and AI researchers. We argue
that experiments should be used to validate models. We detail the design
of an experiment in order to highlight some of the significant computa-
tional, conceptual, ethical, mathematical, psychological, and statistical
hurdles to testing whether decision makers’ preferences are consistent
with a particular mathematical model of preferences.

1 Introduction

In the AI world of preference modeling, researchers often test their preference
framework, particularly in the realm of recommendation systems and other deci-
sion support systems. However, most of the testing focuses on usability and func-
tionality. Almost none that we are aware of looks at whether humans actually act
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-23114-3 1



4 T.E. Allen et al.

the way a certain preference model states; i.e., test the underlying assumptions
of the model itself. Interest in testing preference models proposed in computer
science began, for us, when thinking about conditional preference networks (CP-
nets) [6]. Although there are many hundreds of papers on CP-nets, none that we
know of has looked at actually eliciting CP-nets from non-computer scientists,
nor done choice-based tests to see if people act in a manner consistent with hav-
ing an underlying CP-net preference structure. In this paper we describe both
the process and the challenges that go into designing and implementing a human
subjects experiment to test, for instance, the validity of CP-nets. We argue that
human subjects experiments are an important opportunity for both interdisci-
plinary collaboration as well as extending the scope and impact of preference
research in computer science.

Even within the work on preference elicitation, we have noticed a focus on
optimization (see, e.g., [7]) to make the process fast and not too invasive for the
user. While we celebrate the increasing libraries of preference data available, such
as PrefLib [44], we also have concerns about the efficacy of using those data alone
for validating preference models. In particular, we see many models validated
on the Sushi Dataset [30], e.g. [25], which was generated for a very particular
scenario and yet is now exploited for tests in fundamentally different settings.
When we generalize or attempt to switch the domain of some data we intro-
duce bias, which can potentially lead to spurious conclusions about the methods
under study [53]. There are usability studies for preference elicitation software
(e.g., [9,52]) and humans are being brought into the loop in recommender sys-
tems (e.g., [28,66]). These studies are crucial steps and the efforts should be
rewarded and expanded within the broader communities that work with prefer-
ences. Running good tests with human subjects is necessary and nontrivial.

When we say that we advocate for studies with human subjects, by this we
do not mean tests involving introspection. There is an urban legend in AI that
the early work on chess involved asking chess players to introspect, and that
this destroyed their intuitive processes. This likely refers to De Groots’ work on
chess:

“The only way of working with ‘systematic introspection’ would have been
to interrupt the process after, say, every two minutes in order to have the
subject introspect, and then continue. A few preliminary trials, however,
with the author as subject showed this technique to be relatively ineffective
as well as extraordinarily troublesome. After each interruption one feels
disturbed and cannot continue normally. Apart from being unpleasant for
the subject the technique is highly artificial in that it disrupts the unity
of the thought process [16, pp. 80–81].”

If we were to ask athletes to pay active attention to every body movement
during peak performance, quite plausibly they would either disregard our instruc-
tions or fall short of peak performance due to a lack of focus. This is why ath-
letes have coaches who monitor them. Likewise, asking decision makers to divert
attention and memory resources away from their task in order to monitor their
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decision making introspectively likely interferes with the very process we are
studying, making introspection an ineffective method for eliciting preferences
or thought processes [50,51,70]. Indeed, without actively allocating cognitive
resources to commit information to memory, there is no reason to expect that
a decision maker can accurately recall the deliberations underlying his decision
afterwards. This is why psychologists run laboratory experiments where human
actions in a controlled environment are observed, rather than asking people
how they think. They draw inferences about latent preferences from observable
quantities such as choice proportions, buying or selling prices, reaction times,
eye movements, all of which need not reveal one single consistent picture [39,71].
The challenge is to model the relationship between theoretical constructs (e.g.,
preferences) and observed data (e.g., choices) [59].

2 Preferences in Computer Science

Preference handling in artificial intelligence is a robust and well developed disci-
pline with its own working groups and specialized workshops [23]. Often, much
of the work takes the form of creating or defining models and then analyzing the
computational complexity of various reasoning tasks within these models [8,19].
One such model that has gained prominence since its introduction in 2004 is the
CP-net [6]. A CP-net is a formal model able to capture conditional preference
statements (cp-statements) such as, “For dinner, if I have beef, I prefer fruit to
ice cream for dessert, but if I have fish, I prefer ice cream to fruit for dessert”
and “I prefer beef over fish for dinner.”

Formally, a CP-net [6] consists of a directed graph G = 〈V,E〉, where the
nodes V represent variables (sometimes called features) of an object, each with
its own finite domain or set of values. For each variable Vi in the graph there
is a possibly empty set of parent variables Pa(Vi). For each variable, an ordinal
preference relation over its values is specified by a collection of cp-statements,
called a conditional preference table (CPT). The assignment of values to Pa(Vi)
can affect the preference relation over Vi. For example, in Fig. 1 the variable
Protein can take the values beef or fish and beef is preferred. As Protein has
no parents, there is only one cp-statement. However, Pa(dessert) = Protein
and therefore, depending on the assignment to Protein either fruit is preferred
to ice cream or vice versa.

A CP-net is a compact representation of the preference graph on outcomes.
An outcome is a complete assignment of values to variables. The outcome graph
GO = 〈VO, EO〉 has nodes representing each possible set of values for the feature
variables, and a directed edge between any two nodes that differ on exactly one
feature value. The direction of the edge is determined by the preference over
that feature, conditioned on the (otherwise fixed) values of its parent variables.
The transitive closure of the preference graph gives the partial order over out-
comes specified by the CP-net. A sequence of worsening flips is a directed path
from an outcome o to o′ through the outcome graph. This flipping sequence, if
it exists, proves that outcome o is preferred to o′. We call this relation domi-
nance and it is NP-hard to compute in the general case. Part of the difficulty of
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computing dominance arises because the outcome graph is exponentially larger
than the CP-net graph, and improving flipping sequences can be exponentially
long [6]. Tractable subproblems exist (such as when the graph has the shape of
a directed tree), as well as computational heuristics for determining dominance
[34]. Understanding the CP-net as a human decision making tool may help us
formalize other cases where reasoning with CP-nets is tractable, such as when
the preference graph has low degree or the dominance relation has short flipping
sequences [2].

Preference representation and reasoning plays a key role in many other areas
broadly included under the umbrella of Artificial Intelligence (AI). For example,
within the area of constraint reasoning [62], the annual Max-sat solver com-
petition1 includes problem instances that encode both hard constraints and soft
preferences for domains such as scheduling, time-tabling, and facility location.
Both traditional social choice and computational social choice [12] are fields that
actively work with choice data and are beginning the transition towards working
with repurposed data explicitly [44,63]. However, these fields are still primar-
ily focused on worst case assumptions, not behavioral or explanatory models of
human decision making. Various forms of weighted logic representations such
as penalty logics [17], possibilistic logics [20], and answer set programs with soft
constraints [72] all explicitly rank states (assignments to all parameters) of the
world. This ordered set of states is often interpreted as preferences over the states
themselves. These fields primarily focus on algorithms for and quantifying the
complexity of reasoning with choice data and preference models; testing these
models and theories against human choice behavior is not a central focus.

The data focused fields of machine learning and data mining investigate
preferences both implicitly and explicitly when working with, for example, large
volumes of customer data [27]. This is perhaps most obvious in the sub-fields of
recommender systems [61] and preference learning [22]. The objective in both
of these areas is to learn and interpret observed choices (data) in order to make
tangible recommendations or predictions, e.g. algorithms for the Netflix Prize
Challenge [5] or Amazon product recommendations [35]. These areas are well
developed preference handling fields where data are readily available from both
academic sources [3] and as part of a number of industrial or commercial licenses
or competitions (e.g. Kaggle, and the Yelp Academic Datasets). However, often
these systems are only evaluated on their ability to minimize an error or loss
function [5,61] when compared to held out choice data (i.e., data not in the
training set). The explicit goal of these systems is not to understand the features
of a user’s internal preference reasoning or if the system itself can affect the user’s
explicit choice.

Humans are being brought into the loop in more and more areas of computer
science, often leading to important and exciting impacts. More researchers are
focusing on understanding how users reason internally and why users implement
recommendations [18,56,66]. Trust building through explanation in recommen-
dation systems is becoming standard practice due to its increased effectiveness

1 http://maxsat.ia.udl.cat/introduction/.

http://maxsat.ia.udl.cat/introduction/
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Protein Dessert

Protein:

Pa(Vi) Order

∅ beef > fish

Dessert:

Pa(Vi) Order

beef fruit > ice cream
fish ice cream > fruit

beef
fruit

fish
fruit

beef
ice cream

fish
ice cream

Fig. 1. A simple CP-net (left) and the induced preference graph over outcomes (right).

in leading to implemented recommendations [55]. Additional experiments with
human subjects have also helped to validate activities like learning preferences
through click tracking [28] and understanding the cognitive burden of asking cer-
tain preference queries [9]. The field of computer-human interaction (CHI) often
performs studies of human behavior, validating models with laboratory exper-
iment. Indeed, the most recent ACM Computer-Human Interaction conference
(ACM:CHI 2014) provided courses on survey design and performing human stud-
ies [40,47]. However, in the broad set of communities that deal with preferences
in AI, the human element is still often misunderstood.

The omission of human centered testing bypasses both a host of practical con-
siderations and formal verification of preference models. These problems require
controlled human subjects experiments and offer exciting opportunities for cross
disciplinary research. There are over 800 references to the original CP-nets paper
with not a single human subjects study to investigate whether a CP-net is a
model of human choice, nor any testing of the model for consistency with respect
to the way individuals reason about individual preference.

3 Legal Considerations in Human Subjects Research

Collecting data from human participants involves a panoply of challenges includ-
ing important legal and ethical considerations that are sometimes poorly under-
stood or considered by researchers. We have encountered colleagues in the US2

2 Human-subjects standards vary from country to country and are also sometimes
imposed by international academic societies.
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and abroad from non-social science disciplines who had unknowingly broken laws
by illegally gathering data from humans without undergoing appropriate prior
review by an Institutional Review Board (IRB) and without undergoing legally
required ethics training. While the IRB process can be cumbersome, it is an
important step in using human subjects data. Modern tools such as Amazon’s
Mechanical Turk are a key resource [14,43] that many in preference handling are
embracing for collecting human subjects data [41].

Data from humans may or may not be considered human subjects data.
Studying completely anonymized data sets is usually not considered human sub-
jects research; hence, the ease of using data from a repository such as PrefLib [44]
or the UCI Machine Learning Repository [3]. But if one can link data to the
individual from whom those data came, then one operates under the strictures
of human subjects research regulations. In many cases, however, an expedited
process is in place when an IRB officer deems a study exempt, due to minimal
risk, and waives the requirement of a full review by the board. Reviews by the
board will evaluate a vast range of considerations or requirements, of which we
review a few.

Incentivization: Generally, research in experimental psychology rewards
participants in one of two major ways. Most experiments recruit undergraduate
psychology students in exchange for course credit, this is commonly referred to
as the “subject pool.” Other experiments pay participants with cash or other
rewards. Decision making experiments in this category often give some of the
chosen options as real rewards in order to motivate participants to invest cog-
nitive effort and reveal true preferences. Generally, behavioural and experimen-
tal economists disregard studies that do not link rewards to performance as
being “insufficiently incentivized” [29]. There are also considerations of “over-
incentivization” in that very large rewards can be blocked by some IRBs for
being coercive. Another consideration is whether participants are allowed to
receive payments, e.g., based on age, legal, or immigration status.

Informed Consent & Deception: Since the infamous “Milgram exper-
iments” [45] in which participants were led to believe that they were tortur-
ing others, ethical issues in human subjects research have been discussed in
great detail. Many protections have been put in place to protect participants in
psychology, economics, and medical experiments from being harmed. Scientists
and lab personnel are required to undergo extensive training, e.g., the Collab-
orative Institutional Training Initiative (CITI, https://www.citiprogram.org/),
before they may carry out research on humans. Ethical issues of informed con-
sent emerged prominently in the mass media recently when it came to light that
Facebook carried out social and emotional experiments on some of its users with-
out clear-cut informed consent [68]. In behavioural and experimental economics,
outright deception is often frowned upon [29].

Confidentiality: It is straightforward that the protection of human
subjects, besides avoiding immediate bodily or psychological harm, starts
with proper confidentiality assurances. Considerations of what constitutes
“anonymized” data is a growing concern in computer science and other dis-
ciplines. High-profile cases in recent years have shown that even a sequence of

https://www.citiprogram.org/
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movie rental dates can be enough to discern personally identifiable information
from a supposedly anonymized dataset [49]. Besides the obvious concerns about
data trails from scheduling participants, time-stamped electronic data collection,
and accounting records of payments, the use of cloud-based tools, such as stor-
age or email, where servers may reside outside the country, or with commercial
providers, threatens confidentiality.

4 Perspectives from Mathematical Psychology

Let C be a finite set of choice alternatives, and let � denote pairwise preference,
i.e., x � y with x, y ∈ C denotes that a person strictly prefers x to y. Many
models of preferences, including CP-nets, require � to be transitive.

How would one test whether decision makers’ preferences are transitive? Psy-
chologists differentiate between theoretical constructs and observables. A binary
preference relation, a real valued utility function, a CP-net, are theoretical con-
structs that we cannot observe directly, just as a physicist cannot observe gravity
itself. In decision making, actual choices made by actual people are observables
that are presumably related to the latent construct, just as an apple falling is
an observable manifestation of gravity.

A major conceptual, mathematical, and experimental challenge for testing
theories about preferences comes from the fact that decision makers experi-
ence uncertainty in what to choose when faced with multi-attribute options in
which attributes trade off in complex ways. Experimentally, we observe substan-
tial amounts of variability between people and even within a single person over
repeated choices among the same options. It is not uncommon for a decision
maker to choose x over y on 70 % of occasions, and y over x otherwise, even
within a one-hour study. This led economists and psychologists to mathemat-
ically model uncertainty and variability in choice. Arguably, the most natural
way to model uncertainty in choice is via probabilistic models [4,10,36–38,67].

There are two major classes of probabilistic choice models. One assumes that
the theoretical construct of preference is deterministic but choices are probabilis-
tic, the other assumes that the theoretical construct itself is probabilistic. For
transitivity, the first model type assumes that each decision maker has one fixed
deterministic preference � over the course of the experiment, whereas the lat-
ter model casts preferences as a probability distribution over a set of transitive
preferences. For CP-nets the analogue is to distinguish two major possibilities:

1. the decision maker uses one single fixed CP-net, but makes probabilistic errors
in revealing this CP-net in overt choices;

2. the choice probabilities are induced by an unknown probability distribution
over a collection of CP-nets.

An error specification may assume that the decision maker has unknown
preference �, and if x � y then she is more likely to pick x than y, formally and
more precisely,
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Pxy > τ, with a bound on error rates of 1 − τ ≤ 1
2
. (1)

A random preference specification considers a (finite) collection R of permissible
preference relations (e.g., transitive relations, CP-nets, etc.), a probability dis-
tribution P on R, and models the binary choice probability Pxy as a marginal
probability

Pxy =
∑

�∈R
P(x � y). (2)

Characterizing the binary choice probabilities that are consistent with a ran-
dom preference specification (2) can be mathematically and computationally
prohibitive. In the case that R is the collection of all strict linear orders over a
finite set C, the binary choice probabilities (2) form a convex polytope known as
the linear ordering polytope [21,24,33]. The mathematical structure of this poly-
tope is known only for small sizes of C and finding a complete minimal description
in terms of facet-defining inequalities is computationally hard [42]. Building a
random preference model in which the collection of permissible preferences R is
composed of CP-nets would require that we understand the permissible binary
choice probabilities (2). The currently standard approach would be to employ
methods from polyhedral combinatorics, by defining and studying appropriate
CP-net-polytopes, in which probability distributions over CP-nets are conceptu-
alized as convex combinations of deterministic CP-nets.

We have sketched the conceptual and mathematical challenge of defining
uncertain choices induced by theoretical preferences that form CP-nets, using
probabilities. The next challenge is that those probabilities {Pxy |x �= y;x, y ∈ C},
in turn, are theoretical constructs. If we are to study CP-nets in the laboratory
and if we are to allow different decision makers to use CP-nets differently, then we
need to draw inferences about probabilities from finite samples using appropri-
ate statistical tools. Both the error models (1) and the random preference mod-
els (2) impose multiple simultaneous order-constraints on the parameters of joint
Bernoulli processes. This causes serious challenges in maximum-likelihood meth-
ods because point estimates may lie on the boundary of the parameter space (e.g.,
on a face of a convex polytope) where standard likelihood theory breaks down.
Frequentist and Bayesian order-constrained likelihood-based inference methods
have only become available recently [15,32,48,59]. Some of the algorithms, e.g.,
for computing Bayes Factors between two competing convex polytopes, are com-
putationally expensive, with current researchers sometimes using thousands of
CPU-hours per Bayes Factor.3

The task, then, for a quantitative test of CP-nets in individual decision mak-
ers, includes: the development of “probabilistic specifications” that represent the
uncertainty experienced by the decision maker, the adoption of suitable statis-
tical tools, and the design and implementation of an experiment that generates

3 For an example of the complexities involved in testing transitivity of preferences,
including a critical review of the prior literature, see, e.g. [11,57,58,60].
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data suitable for either testing the mathematical model as a hypothesis or for
selecting between the model for CP-nets and alternative theoretical proposals.
Both the mathematical characterization and the statistical inference involve sig-
nificant mathematical and computational challenges.

5 Other Considerations for Laboratory Experiments

In defining a laboratory experiment on human decision making, attention must
also be give to the following issues which, while not legal or ethical in nature,
can affect the design and implementation of an experiment.

Data bias: Statistical inferences from finite sample data generally require
repeated observations either from multiple people or from a given participant.
In order to eliminate potential biases and the effect of irrelevant variables, a
decision-making experiment asking participants to decide among choice options
can implement a variety of “cross-balancing” precautions. These include, e.g.,
showing a given choice option randomly in different locations on a display to com-
pensate for attentional biases and making different stimuli “equally complex” to
balance cognitive load. Statistical tests and analyses often assume independent
and identically distributed observations. These assumptions affect the experi-
mental design itself, e.g., separating repeated observations through decoys to
attenuate violations of independence.

Correlation vs. causality: This has important implications for selecting
experimental methods over data mining or other approaches. If one wishes to
make causal attributions that values in one variable “cause” outcomes in another
variable, one needs to use random assignment to experimental conditions (e.g.,
placebo versus treatment).

Falsifiability, diagnosticity, and parsimony: According to these prin-
ciples, theoretical predictions motivate what stimuli to use and hence precede
data collection. Epistemologically, restrictive theories are favored because they
lead to falsifiable predictions [54]. There are at least three major ways in which
behavioral scientists use statistical inference.

1. Many scholars support a theoretical claim by statistically rejecting a null
hypothesis of “no effect,” a practice that has come under intense criticism
[13,46,69].

2. Others, similar to data mining methods, formulate mathematical models and
use statistics to estimate parameters through data fitting, then interpret the
inferred parameter values in terms of scientific primitives. Oftentimes the
validity or replicability of the findings are assessed through goodness-of-fit on
hold-out samples or through predictions about future data.

3. More and more behavioral scientists use Bayesian methods to carry out com-
petitions among theories that vary in their parsimony, by weighing prior
beliefs with empirical evidence, and penalizing flexible models [31,48].

Several disciplines within social science are currently engaged in a major
debate about replicability,4 publication bias, and scientific integrity [26,64,65].
4 See, e.g., http://psychfiledrawer.org/.

http://psychfiledrawer.org/
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Most social science journals only consider novel findings for publication, leading
some researchers to draw scientific conclusions from very slight statistical effects,
and several high-profile scholars have been accused and/or found guilty of faking
their data. The practical consequence of the recent debate is that researchers
must take care to ensure that their models and experiments stem from rigorous
theories, which make precise predictions that can be tested in a laboratory setting
through the use of appropriately applied statistics.

6 Case Study: The CP-net Experiment

We have recently completed data collection on an experiment to test whether
decision makers subjectively represent preferences in a way that is consistent
with a mathematical CP-net representation. We have incorporated the consid-
erations above with many additional practical and logistic constraints.

A good rule of thumb for running a first experiment in a given domain is to
start simple. Since there is no prior empirical work on actual CP-nets of actual
people, we needed to design the study without having to hypothesize too many
details about CP-nets that are suitable for the domain under consideration.
Otherwise, were we to conclude that “our” CP-net is not descriptive of our
participants, we would not learn much about the general descriptive validity of
CP-nets. If we allow all CP-nets on a given set of choice options as potential
preference states, then we need to limit the number of CP-nets that are possible.
We do not want to make the CP-nets trivial but we also cannot make them overly
complex as it will lead to intractable experiments. Therefore we limit ourselves
to acyclic dependency graphs with four binary nodes/variables. This means that
our CP-nets have 16 choice alternatives. This permits a rich set of preference
states, exactly 481,776 distinct CP-nets (computed as all possible non-degenerate
boolean functions on n = 4 binary variables [1]).

The next major set of considerations is to decide on actual stimuli that are
both interesting and that may tell us something about everyday decision mak-
ing, at least at face value. Furthermore, at least some of the stimuli need to
be ‘deliverable’ as real prizes while the other ones need to be ‘cross-balanced.’
We therefore selected two domains, restaurant menu choices (since they are com-
mon hypothetical illustrations in the CP-net literature) and choices among retail
goods or services. For example, for the restaurant menu options we chose “appe-
tizer” versus “dessert” as one attribute, “chicken” versus “shrimp” as another
attribute, etc.

Since we incentivized our participants by offering them some of their choices
as real rewards, team members spent significant time contacting retail and
restaurant managers to find ways to purchase rewards through university pur-
chase orders and to ensure that a person will be given the exact reward we
specify (as opposed to being able to use, say, a gift certificate in a fungible way).
Likewise, multiple team members agonized over finding a sufficiently rich set of
‘comparable’ stimuli, even for trials that are not used to determine real rewards.
For example, all stimuli need to be credible as potential rewards of a compara-
ble value and payable by a federal grant. Over two domains with 60 participants
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the experiment distributed rewards of $4992.00 USD. The distributed rewards
consisted of $2400.00 of prescribed meals at a local restaurant, $220.00 of video
rentals, and $2372.00 of merchandise at the university bookstore.

There are also major tradeoffs between practical, logistical and statistical
prerogatives: Ultimately, participants need to make sufficiently many choices
among sufficiently many options to allow statistical estimation, hypothesis test-
ing, or model selection. We decided to make each “trial” of the experiment a
ternary paired comparison, i.e., two meals are presented and the decision maker
can either express a preference for one, the other, or express “no preference.”
Statistically, this means that each “trial” provides an observation for a trino-
mial random variable. In order to obtain repeated observations, we needed to
show each pair several times, at the risk of making the experiment laborious and
repetitive. Hence, we substituted different “instantiations” of a given “choice”
on different trials, “chicken” on one trial could be “Chicken Marsala” and on
another trial could be “Chicken della Nonna.” However, this means that we may
have introducing many unintended variables that we are not modeled in the
CP-net. Therefore, when showing a participant two meals that share the value
“chicken” for the variable “main dish,” we showed them the identical chicken
dish in both options, so as to make it impossible for them to have a pairwise
preference on a variable that we model as having identical values in both options.

There is a tradeoff between the number of times we ask a user to make a deci-
sion and the statistical tests we can then employ to perform reliable statistical
analysis. Since we are asking users to choose between two meals, with 16 total
meals, that gives 120 trials or pairwise comparisons that we must elicit from each
user, and each of these trials must be repeated. Some of our models are convex
(polytopes), in which case we can pool data across subjects even if there are
individual differences between them. Some of our (error) models are not convex
and should best be evaluated separately for each individual. Advanced statistical
methods that do not require asymptotic statistics can get by with fewer than 10
trials per user per question.

The tasks involved in preparing for this experiment include: computing a
list of all 4-variable CP-nets; developing the initial set of variables for each
domain; negotiating agreements with the Institutional Review Board for human-
subject research; getting agreement from vendors to provide specified rewards
(and dealing with the video rental business going out of business before some of
the long term rewards could be redeemed); creating multiple equivalent wordings
of the same reward (e.g., 6 T-shirts in one trial and a half dozen short sleeved
shirts in another); developing and testing the GUIs and interface functionality
on iPads for the experiment. These tasks took about 350–400 person hours. As
members of the team are extremely experienced with navigating the bureaucracy
of IRB approval and negotiating non-fungible rewards with outside vendors, this
number likely underestimates the time required for a first time experimenter.

For data collection, we consider both the participants’ time and the cost of
running the study: 2 sessions for each of the 60 participants and about 90 min
per session. There are 5 iPads, but scheduling is complicated, so we ran about
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50 experimental sessions to get the data from those 60 participants. The person
overseeing each experimental session spent about an hour for each experimental
session distributing and collecting the informed consent paperwork, making sure
the app was running on the iPads and ready to use, making sure the iPads were
charged, introducing people to the study, answering questions, explaining the
payment, scheduling their second session, making sure the results were uploaded,
making sure each participant’s payment was provided confidentially in a separate
room, making sure the post-test questionnaire was filled out, etc. Thus, the
number of person-hours for running the experiment (about 180 person-hours of
subjects’ time, plus about 100 hours of experimenters’ time) was slightly less
than the time spent preparing the experiment itself.

7 Conclusion

In this paper we have highlighted some of the key pitfalls and challenges associ-
ated with human subjects experiments within preference model testing. Ideally,
experimentalists in AI can use this as both a call to action and as a starting point
for conducting their own experiments both in human subjects labs and lever-
aging the power of online tools such as Mechanical Turk [41,43]. We have only
skimmed the surface of the relevant literatures in computer science and psychol-
ogy. There is a vast literature on experimental studies in other fields including
decision sciences, experimental economics, medical, and other cognitive studies
areas. We hope this article serves as a jumping off point into the literature.

Data are available in large quantities, but we should resist the temptation to
rely on past data alone when testing a preference modeling framework. Human
experimentation should be part of the testing process. However, in doing this,
we need to pay attention to several conceptual, mathematical, statistical, com-
putational, legal and ethical considerations, as well as tackle many practical and
logistic complications. We believe that AI and psychology researchers should
work together in this endeavor. For AI researchers, understanding the func-
tions and limitations of human decision making can lead to the development of
more accurate models and heuristics in the multitude of areas that engage with
humans and preferences. For psychologists, understanding the computational
burden of reasoning with various preference models can inform new experiments
and processes.

We have just completed data collection at the time of acceptance of this
manuscript, after clearing all the significant development and logistical hurdles
we have outlined in this paper. Proper analysis of this data will take months; dis-
crepancies in the publication culture of computer science and psychology means
we must target psychology journal submissions first (as data must be novel for
publication). This will give us the first real experiment which will contemplate
the question of whether or not subjects’ preferences over two domains (retail
and food) are at least noisily consistent with CP-net models and whether or
not, given adequate instruction, the subjects can write these preferences down
in a way that is consistent with their previous choices.
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Abstract. Preference trees, or P-trees for short, offer an intuitive and
often concise way of representing preferences over combinatorial domains.
In this paper, we propose an alternative definition of P-trees, and for-
mally introduce their compact representation that exploits occurrences of
identical subtrees. We show that P-trees generalize lexicographic prefer-
ence trees and are strictly more expressive. We relate P-trees to answer-
set optimization programs and possibilistic logic theories. Finally, we
study reasoning with P-trees and establish computational complexity
results for the key reasoning tasks of comparing outcomes with respect
to orders defined by P-trees, and of finding optimal outcomes.

1 Introduction

Preferences are essential in areas such as constraint satisfaction, decision making,
multi-agent cooperation, Internet trading, and social choice. Consequently, pref-
erence representation languages and algorithms for reasoning about preferences
have received substantial attention [8]. When there are only a few objects (or
outcomes) to compare, it is both most direct and feasible to represent preference
orders by their explicit enumerations. The situation changes when the domain
of interest is combinatorial, that is, its elements are described in terms of com-
binations of values of issues, say x1, . . . , xn (also called variables or attributes),
with each issue xi assuming values from some set Di — its domain.

Combinatorial domains appear commonly in applications. Since their size is
exponential in the number of issues, they are often so large as to make explicit
representations of preference orders impractical. Therefore, designing languages
to represent preferences on elements from combinatorial domains in a concise
and intuitive fashion is important. Several such languages have been proposed
including penalty and possibilistic logics [4], conditional preference networks
(CP-nets) [2], lexicographic preference trees (LP-trees) [1], and answer-set opti-
mization (ASO) programs [3].

In this paper, we focus our study on combinatorial domains with binary
issues. We assume that each issue x has the domain {x,¬x} (we slightly abuse
the notation here, overloading x to stand both for an issue and for one of the
elements of its domain). Thus, outcomes in the combinatorial domain determined
by the set I = {x1, . . . , xn} of binary issues are simply complete and consistent
c© Springer International Publishing Switzerland 2015
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sets of literals over I. We denote the set of all such sets of literals by CD(I). We
typically view them as truth assignments (interpretations) of the propositional
language over the vocabulary I. This allows us to use propositional formulas over
I as concise representations of sets of outcomes over I. Namely, each formula ϕ
represents the set of outcomes that satisfy ϕ (make ϕ true).

For example, let us consider preferences on possible ways to arrange a vaca-
tion. We assume that vacations are described by four binary variables:

1. activity (x1) with values water sports (x1) and hiking (¬x1),
2. destination (x2) with Florida (x2) and Colorado (¬x2),
3. time (x3) with summer (x3) and winter (¬x3), and
4. the mode of travel (x4) could be car (x4) and plane (¬x4).

A complete and consistent set of literals ¬x1¬x2x3x4 represents the hiking vaca-
tion in Colorado in the summer to which we travel by car.

To describe sets of vacations we can use formulas. For instance, vacations
that take place in the summer (x3) or involve water sports (x1) can be described
by the formula x3 ∨ x1, and vacations in Colorado (¬x2) that we travel to by
car (x4) by the formula ¬x2 ∧ x4.

Explicitly specifying strict preference orders on CD(I) becomes impractical
even for combinatorial domains with as few as 7 or 8 issues. However, the setting
introduced above allows us to specify total preorders on outcomes in terms of
desirable properties outcomes should have. For instance, a formula ϕ might be
interpreted as a definition of a total preorder in which outcomes satisfying ϕ are
preferred to those that do not satisfy ϕ (and outcomes within each of these two
groups are equivalent). More generally, we could see an expression (a sequence
of formulas)

ϕ1 > ϕ2 > . . . > ϕk

as a definition of a total preorder in which outcomes satisfying ϕ1 are preferred to
all others, among which outcomes satisfying ϕ2 are preferred to all others, etc.,
and where outcomes not satisfying any of the formulas ϕi are least preferred. This
way of specifying preferences is used (with minor modifications) in possibilistic
logic [4] and ASO programs [3]. In our example, the expression

x3 ∧ x4 > ¬x3 ∧ ¬x2

states that we prefer summer vacations (x3) where we drive by car (x4) to
vacations in winter (¬x3) in Colorado (¬x2), with all other vacations being the
least preferred.

This linear specification of preferred formulas is sometimes too restrictive.
An agent might prefer outcomes that satisfy a property ϕ to those that do not.
Within the first group that agent might prefer outcomes satisfying a property ψ1

and within the other a property ψ2. Such conditional preference can be naturally
captured by a form of a decision tree presented in Fig. 1. Leaves, shown as boxes,
represent sets of outcomes satisfying the corresponding conjunctions of formulas
(ϕ ∧ ψ1, ϕ ∧ ¬ψ1, etc.).
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ϕ

ψ1 ψ2

Fig. 1. A preference tree

Trees such as the one in Fig. 1 are called preference trees, or P-trees. They
were introduced by Fraser [5,6], who saw them as a convenient way to represent
conditional preferences. Despite their intuitive nature they have not attracted
much interest in the preference research in AI. In particular, they were not
studied for their relationship to other preference formalisms. Further, the issue of
compact representations received only an informal treatment by Fraser (P-trees
in their full representation are often impractically large), and the algorithmic
issues of reasoning with P-trees were also only touched upon.

In this paper, we propose an alternative definition of preference trees, and
formally define their compact representation that exploits occurrences of iden-
tical subtrees. P-trees are reminiscent of LP-trees [1]. We discuss the relation
between the two concepts and show that P-trees offer a much more general, flex-
ible and expressive way of representing preferences. We also discuss the relation-
ship between P-trees and ASO preferences, and between P-trees and possibilistic
logic theories. We study the complexity of the problems of comparing outcomes
with respect to orders defined by preference trees, and of problems of finding
optimal outcomes.

Our paper is organized as follows. In the next section, we formally define
P-trees and a compact way to represent them. In the following section we present
results comparing the language of P-trees with other preference formalisms. We
then move on to study the complexity of the key reasoning tasks for preferences
captured by P-trees and, finally, conclude by outlining some future research
directions.

2 Preference Trees

In this section, we define preference trees and discuss their representation. Let I
be a set of binary issues. A preference tree (P-tree, for short) over I is a binary
tree with all nodes other than leaves labeled with propositional formulas over
I. Each P-tree T defines a natural strict order �T on the set of its leaves, the
order of their enumeration from left to right.

Given an outcome M ∈ CD(I), we define the leaf of M in T as the leaf
reached by starting at the root of T and proceeding downwards. When at a
node t labeled with ϕ, if M |= ϕ, we descend to the left child of t; otherwise,
we descend to the right child of t. We denote the leaf of M in T by lT (M).
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x1≡x2

x4

l1 l2

x4

(a) Full

x1≡x2

x4

(b) Compact

Fig. 2. P-trees on vacations

We use the concept of the leaf of an outcome M in a P-tree T to define a total
preorder on CD(I). Namely, for outcomes M,M ′ ∈ CD(I), we set M �T M ′

(M is preferred to M ′), if lT (M) �T lT (M ′), and M �T M ′ (M is strictly
preferred to M ′), if lT (M) �T lT (M ′).1 We say that M is equivalent to M ′,
M ≈T M ′, if lT (M) = lT (M ′). Finally, M is optimal if there exists no M ′ such
that M ′ �T M .

Let us come back to the vacation example and assume that an agent prefers
vacations involving water sports in Florida or hiking in Colorado over the other
options. This preference is described by the formula (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2) or,
more concisely, as an equivalence x1 ≡ x2. Within each of the two groups of
vacations (satisfying the formula and not satisfying the formula), driving (x4)
is the preferred transporting mode. These preferences can be captured by the
P-tree in Fig. 2a. We note that in this example, the preferences at the second
level are unconditional, that is, they do not depend on preferences at the top
level.

To compare two outcomes, M = ¬x1¬x2¬x3x4 and M ′ = x1x2x3¬x4, we
walk down the tree and find that lT (M) = l1 and lT (M ′) = l2. Thus, we have
M �T M ′ since l1 precedes l2.

The key property of P-trees is that they can represent any total preorder on
CD(I).

Proposition 1. For every set I of binary issues, for every set D ⊆ CD(I) of
outcomes over I, and for every total preorder � on D into no more than 2n

clusters of equivalent outcomes, there is a P-tree T of depth at most n such that
the preorder determined by T on CD(I) when restricted to D coincides with �
(that is, �T |D =�).

Proof. Let � be a total preorder on a subset D ⊆ CD(I) of outcomes over I,
and let D1 � D2 � . . . � Dm be the corresponding strict ordering of clusters
of equivalent outcomes, with m ≤ 2n. If m = 1, a single-leaf tree (no decision
nodes, just a box node) represents this preorder. This tree has depth 0 and so,
the assertion holds. Let us assume then that m > 1, and let us define D′ = D1 ∪
. . . ∪D�m/2� and D′′ = D \D′. Let ϕD′ be a formula such that models of D′ are

1 We overload the symbols �T and �T by using them both for the order on the leaves
of T and the corresponding preorder on the outcomes from CD(I).
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precisely the outcomes in D′ (such a formula can be constructed as a disjunction
of conjunctions of literals, each conjunction representing a single outcome in D′).
If we place ϕD′ in the root of a P-tree, that tree represents the preorder with
two clusters, D′ and D′′, with D′ preceding D′′. Since each of D′ and D′′ has
no more than 2n−1 clusters, by induction, the preorders D1 � . . . � D�m/2� and
D�m/2�+1 � . . . � Dm can each be represented as a P-tree with depth at most
n − 1. Placing these trees as the left and the right subtrees of ϕD′ respectively
results in a P-tree of depth at most n that represents �. �

Compact Representation of P-trees. Proposition 1 shows P-trees to have
high expressive power. However, the construction described in the proof has little
practical use. First, the P-tree it produces may have a large size due to the large
sizes of labeling formulas that are generated. Second, to apply it, one would need
to have an explicit enumeration of the preorder to be modeled, and that explicit
representation in practical settings is unavailable.

However, preferences over combinatorial domains that arise in practice typ-
ically have structure that can be elicited from a user and exploited when con-
structing a P-tree representation of the preferences. First, decisions at each level
are often based on considerations involving only very few issues, often just one
or two and very rarely more than that. Moreover, the subtrees of a node that
order the “left” and the“right” outcomes are often identical or similar.

Exploiting these features often leads to much smaller representations. A com-
pact P-tree over I is a tree such that

1. every node is labeled with a Boolean formula over I, and
2. every non-leaf node t labeled with ϕ has either two outgoing edges, with the

left one meant to be taken by outcomes that satisfy ϕ and the right one by
those that do not (Fig. 3a), or one outgoing edge pointing
– straight-down (Fig. 3b), which indicates that the two subtrees of t are

identical and the formulas labeling every pair of corresponding nodes in
the two subtrees are the same,

– left (Fig. 3c), which indicates that right subtree of t is a leaf, or
– right (Fig. 3d), which indicates that left subtree of t is a leaf.

The P-tree in Fig. 2a can be collapsed as both subtrees of the root are the
same (including the labeling formulas). This leads to a tree in Fig. 2b with a

ϕ

t

(a)

ϕ

t

(b)

ϕ

t

(c)

ϕ

t

(d)

Fig. 3. Compact P-trees
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straight-down edge. We note that we drop box-labeled leaves in compact repre-
sentations of P-trees, as they no longer have an interpretation as distinct clusters.

Empty Leaves in P-trees. Given a P-tree T one can prune it so that all sets
of outcomes corresponding to its leaves are non-empty. However, keeping empty
clusters may lead to compact representations of much smaller (in general, even
exponentially smaller) size.

A full P-tree T in Fig. 4a uses labels ϕ1 = ¬x1 ∨ x3, ϕ2 = x2 ∨ ¬x4, and
ϕ3 = x2∧x3. We check that leaves l1, l2 and l3 are empty, that is, the conjunctions
ϕ1 ∧ ¬ϕ2 ∧ ϕ3, ¬ϕ1 ∧ ϕ2 ∧ ϕ3 and ¬ϕ1 ∧ ¬ϕ2 ∧ ϕ3 are unsatisfiable. Pruning
T one obtains a compact tree T ′ (Fig. 4b) that is smaller compared to T , but
larger than T ′′ (Fig. 4c), another compact representation of T , should we allow
empty leaves and exploit the structure of T .

ϕ1

ϕ2

ϕ3 ϕ3

l1

ϕ2

ϕ3

l2

ϕ3

l3

(a) T

ϕ1

ϕ2

ϕ3

ϕ2

(b) T ′: pruned T

ϕ1

ϕ2

ϕ3

(c) T ′′

Fig. 4. P-trees with empty leaves

That example generalizes and leads to the question of finding small-sized
representations of P-trees (we conjecture that the problem in its decision version
asking about the existence of a compact representation of size at most k is NP-
complete). From now on, we assume that P-trees are given in their compact
representation.

3 P-trees and Other Formalisms

In this section we compare the preference representation language of P-trees
with other preference languages.

P-trees Generalize LP-trees. As stated earlier, P-trees are reminiscent of
LP-trees, a preference language that has received significant attention recently
[1,10,11]. In fact, LP-trees over a set I = {x1, . . . , xn} of issues are simply
special P-trees over I. Namely, an LP-tree over I can be defined as a P-tree
over I, in which all formulas labeling nodes are atoms xi or their negations ¬xi,
depending on whether xi or ¬xi is preferred, and every path from the root to a
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leaf has all atoms xi appear on it exactly once. Clearly, LP-trees are full binary
trees of depth n (assuming they have an implicit extra level of “non-decision”
nodes representing outcomes) and determine strict total orders on outcomes in
CD(I) (no indifference between different outcomes). An example of an LP-tree
over {x1, x2, x3, x4} for our vacation example is given in Fig. 5.

x1 ¬x1>x1

x3 x3>¬x3

x2 ¬x2>x2

x4

¬x4>x4

x4

x4>¬x4

x4 ¬x4>x4

x2

x2>¬x2

x2

x2>¬x2

x3 x3>¬x3

x2 ¬x2>x2

x4

¬x4>x4

x4

x4>¬x4

x4 ¬x4>x4

x2

x2>¬x2

x2

x2>¬x2

Fig. 5. A full LP-tree on vacations

In general representing preferences by LP-trees is impractical. The size of
the representation is of the same order as that of an explicit enumeration of the
preference order. However, in many cases preferences on outcomes have structure
that leads to LP-trees with similar subtrees. That structure can be exploited, as
in P-trees, to represent LP-trees compactly. Figure 6a shows a compact repre-
sentation of the LP-tree in Fig. 5. We note the presence of conditional preference
tables that make up for the lost full binary tree structure. Together with the
simplicity of the language, compact representations are essential for the prac-
tical usefulness of LP-trees. The compact representations of LP-trees translate
into compact representations of P-trees, in the sense defined above. This matter
is not central to our discussion and we simply illustrate it with an example.
The compactly represented P-tree in Fig. 6b is the counterpart to the compact
LP-tree in Fig. 6a, where ϕ = (x2 ∧ x4) ∨ (¬x2 ∧ ¬x4).

The major drawback of LP-trees is that they can capture only a very small
fraction of preference orders. One can show that the number, say G(n), of LP-
trees over n issues is

G(n) =
n−1∏

k=0

(n − k)2
k · 22k

and is asymptotically much smaller than L(n) = (2n)!, the number of all pref-
erence orders of the corresponding domain of outcomes. In fact, one can show
that

G(n)
L(n)

<
1

2(2n·(n−log n−2))
.

This is in stark contrast with Proposition 1, according to which every total
preorder can be represented by a P-tree.
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x1 ¬x1>x1

x3 x3>¬x3

x2¬x2>x2

x4
x2 :x4>¬x4¬x2 :¬x4>x4

x4 ¬x4>x4

x2 x2>¬x2

(a) A compact LP-tree

¬x1

x3

¬x2

ϕ

¬x4

x2

(b) The corresponding P-tree

Fig. 6. A compact LP-tree as a compact P-tree

Even very natural orderings, which have simple (and compact) representa-
tions by P-trees often cannot be represented as LP-trees. For instance, there is
no LP-tree on {x1, x2} representing the order 00 � 11 � 01 � 10}. However, the
P-trees (both full and compact) in Fig. 2 do specify it.

P-trees Extend ASO-Rules. The formalism of ASO-rules [3] provides an
intuitive way to express preferences over outcomes as total preorders. An ASO-
rule partitions outcomes into ordered clusters according to the semantics of the
formalism. Formally, an ASO-rule r over I is a preference rule of the form

C1 > . . . > Cm ← B, (1)

where all Ci’s and B are propositional formulas over I. For each outcome M ,
rule r of the form (1) determines its satisfaction degree. It is denoted by SDr(M)
and defined by

SDr(M) =

⎧
⎨

⎩

1, M |= ¬B

m + 1, M |= B ∧∧1≤i≤m ¬Ci

min{i : M |= Ci}, otherwise.

We say that an outcome M is weakly preferred to an outcome M ′ (M �r M ′)
if SDr(M) ≤ SDr(M ′). Thus, the notion of the satisfaction degree (or, equiva-
lently, the preference r) partitions outcomes into (in general) m + 1 clusters.2

Let us consider the domain of vacations. An agent may prefer hiking in
Colorado to water sports in Florida if she is going on a summer vacation. Such
preference can be described as an ASO-rule:

¬x1 ∧ ¬x2 > x1 ∧ x2 ← x3.

Under the semantics of ASO, this preference rule specifies that the most desirable
vacations are summer hiking vacations to Colorado and all winter vacations, the

2 This definition is a slight adaptation of the original one.
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next preferred vacations are summer water sports vacations to Florida, and the
least desirable vacations are summer hiking vacations to Florida and summer
water sports vacations to Colorado.

It is straightforward to express ASO-rules as P-trees. For an ASO-rule r of
form (1), we define a P-tree Tr as shown in Fig. 7. That is, every node in Tr has
the right child only (the left child is a leaf representing an outcome and is not
explicitly shown). Moreover, the labels of nodes from the root down are defined
as follows: ϕ1 = ¬B ∨ C1, and ϕi = Ci (2 ≤ i ≤ m).

ϕ1

ϕ2

ϕm

Fig. 7. A P-tree Tr

Theorem 1. Given an ASO-rule r, the P-tree Tr has size linear in the size of r,
and for every two outcomes M and M ′

M �ASO
r M ′ iff M �Tr

M ′

Proof. The P-tree Tr induces a total preorder �Tr
where outcomes satisfying

ϕ1 are preferred to outcomes satisfying ¬ϕ1 ∧ ϕ2, which are then preferred to
outcomes satisfying ¬ϕ1 ∧ ¬ϕ2 ∧ ϕ3, and so on. The least preferred are the ones
satisfying

∧
1≤i≤m ¬ϕi. Clearly, the order �Tr

is precisely the order �ASO
r given

by the ASO rule r. �
There are other ways of translating ASO-rules to P-trees. For instance, it

might be beneficial if the translation produced a more balanced tree. Keeping the
definitions of ϕi, 1 ≤ i ≤ m, as before and setting ϕm+1 = B ∧¬C1 ∧ . . .∧¬Cm,
we could proceed as in the proof of Proposition 1.

For example, if m = 6, we build the P-tree T b
r in Fig. 8, where ψ1 = ϕ1 ∨

ϕ2 ∨ ϕ3 ∨ ϕ4, ψ2 = ϕ1 ∨ ϕ2, ψ3 = ϕ1, ψ4 = ϕ3, ψ5 = ϕ5 ∨ ϕ6, and ψ6 = ϕ5. The
indices i’s of the formulas ψi’s indicate the order in which the corresponding
formulas are built recursively.

This P-tree representation of a preference r of the form (1) is balanced with
the height �log2(m + 1)�. Moreover, the property in Theorem 1 also holds for
the balanced tree T b

r . The size of T b
r is in O(sr log sr), where sr is the size of rule

r. It is then larger by the logarithmic factor than Tr but has a smaller depth.

Representing P-trees as RASO-Theories. Preferences represented by com-
pact P-trees cannot in general be captured by ASO preferences without a sig-
nificant (in some cases, exponential) growth in the size of the representation.
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ψ1

ψ2

ψ3 ψ4

ψ5

ψ6

Fig. 8. T b
r when m = 6

However, any P-tree can be represented as a set of ranked ASO-rules, or an
RASO-theory [3], aggregated by the Pareto method.

We first show how Pareto method is used to order outcomes with regard to
a set of unranked ASO-rules. Let M and M ′ be two outcomes. Given a set P of
unranked ASO-rules, M is weakly preferred to M ′ with respect to P , M �u

P M ′,
if SDr(M) ≤ SDr(M ′) for every r ∈ P . Moreover, M is strictly preferred to M ′,
M �u

P M ′, if M �u
P M ′ and SDr(M) < SDr(M ′) for some r ∈ P . Finally, M is

equivalent to M ′, M ≈u
P M ′, if SDr(M) = SDr(M ′) for every r ∈ P .

In general, the resulting preference relation is not total. However, by ranking
rules according to their importance total preorders can in some cases be obtained.
Let us assume P = {P1, . . . , Pg} is a collection of ranked ASO preferences divided
into g sets Pi, with each set Pi consisting of ASO-rules of rank di so that d1 <
d2 < . . . < dg. We assume that a lower rank of a preference rule indicates its
higher importance. We define M �rk

P M ′ w.r.t P if for every i, 1 ≤ i ≤ g,
M ≈u

Pi
M ′, or if for some i, 1 ≤ i ≤ g, M �u

Pi
M ′, and M ≈u

Pj
M ′ for every j,

j < i.
Given a P-tree T , we construct an RASO-theory ΦT as follows. We start with

ΦT = ∅. For every node ti in a P-tree T , we update ΦT = ΦT ∪{ϕi
di← conditions},

where ϕi is the formula labeling node ti, di, the rank of the ASO-rule, is the
depth of node ti, and conditions is the conjunction of formulas ϕj or ¬ϕj labeling
all nodes tj that have two children and that are ancestors of ti in T . We use ϕj

in the conjunction if the path from the root to ti descends from tj to its left
child. Otherwise, we use ¬ϕj .

For instance, the P-tree T in Fig. 6b gives rise to the following RASO-theory:

¬x1
1←.

x3
2←.

¬x2
3← x3. ¬x4

3← ¬x3.
(x2 ∧ x4) ∨ (¬x2 ∧ ¬x4)

4← x3. x2
4← ¬x3.

Theorem 2. For every P-tree T , the RASO-theory ΦT has size polynomial in
the size of T , and for every two outcomes M and M ′

M �RASO
ΦT

M ′ iff M �T M ′
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Proof. The claim concerning the size of ΦT is evident from the construction.
(⇐) Let us assume M �T M ′. Denote by (ϕi1 , . . . , ϕij

) the order of formulas
labeling the path determined by M from the root to a leaf. Let ϕik

, 1 ≤ k ≤ j,
be the first formula that M and M ′ evaluate differently. Then, M |= ϕik

and
M ′ �|= ϕik

. Denote by d the depth of ϕik
in T . Based on the construction of

ΦT , for every RASO-rule r of rank less than d, we have M ≈ASO
r M ′. For every

RASO-rule r of rank d, we have M �ASO
r M ′ if r comes from ϕik

, and we have
M ≈ASO

r M ′ for other rules of rank d (in fact, the satisfaction degrees of M
and M ′ on all these other rules are equal to 1). Thus, M �RASO

ΦT
M ′. If M and

M ′ evaluate all formulas ϕik
, 1 ≤ k ≤ j, the same, then M ≈RASO

ΦT
M ′ and so,

M �RASO
ΦT

M ′, too.
(⇒) Towards a contradiction, let us assume that M �RASO

ΦT
M ′ and M ′ �T

M hold. We again denote by (ϕi1 , . . . , ϕij
) the order of formulas labeling the path

determined by M from the root to a leaf. There must exist some formula ϕik
,

1 ≤ k ≤ j, such that M ′ |= ϕik
, M �|= ϕik

, and all formulas ϕ�, 1 ≤ � ≤ k − 1,
are evaluated in the same way by M and M ′. Based on RASO ordering, we have
M ′ �RASO

ΦT
M , contradiction. �

Hence, the relationship between P-trees and ASO preferences can be summa-
rized as follows. Every ASO preference rule can be translated into a P-tree, and
every P-tree into a theory of ranked ASO preference rules. In both cases, the
translations have size polynomial in the size of the input. Examining the inverse
direction, the size of the ASO rule translated from a P-tree could be exponential,
and the orders represented by ranked ASO theories strictly include the orders
induced by P-trees, as RASO-theories describe partial preorders in general.

P-trees Extend Possibilistic Logic. A possibilistic logic theory Π over a
vocabulary I is a set of preference pairs

{(φ1, a1), . . . , (φm, am)},

where every φi is a Boolean formula over I, and every ai is a real number
such that 1 ≥ a1 > . . . > am ≥ 0 (if two formulas have the same importance
level, they can be replaced by their conjunction). Intuitively, ai represents the
importance of φi, with larger values indicating higher importance.

The tolerance degree of outcome M with regard to preference pair (φ, a),
TD (φ,a)(M), is defined by

TD (φ,a)(M) =

{
1, M |= φ

1 − a, M �|= φ

Based on that, the tolerance degree of outcome M with regard to a set Π of
preference pairs, TDΠ(M), is defined by

TDΠ(M) = min{TD (φi,ai)(M) : 1 ≤ i ≤ m}.

The larger TDΠ(M), the more preferred M is.
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For example, for the domain of vacations, we might have the following set
of preference pairs {(¬x1 ∧ x3, 0.8), (x2 ∧ x4, 0.5)}. According to the possibilistic
logic interpretation, vacations satisfying both preferences are the most preferred,
those satisfying ¬x1 ∧ x3 but falsifying x2 ∧ x4 are next in the preference order,
and those falsifying ¬x1 ∧ x3 are the worst.

Similarly as for ASO-rules, we can apply different methods to encode a pos-
sibilistic logic theory in P-trees. Here we discuss one of them. We define TΠ

to be an unbalanced P-tree shown in Fig. 7 with labels ϕi defined as follows:
ϕ1 =

∧
1≤i≤m φi, ϕ2 =

∧
1≤i≤m−1 φi ∧ ¬φm, ϕ3 =

∧
1≤i≤m−2 φi ∧ ¬φm−1, and

ϕm = φ1 ∧ ¬φ2.

Theorem 3. For every possibilistic theory Π, the P-tree TΠ has size polynomial
in the size of Π, and for every two outcomes M and M ′

M �Poss
Π M ′ iff M �TΠ M ′.

Proof. It is clear that the size of the P-tree TΠ is polynomial in the size of Π.
Let mi(M,Π) denote the maximal index j such that M satisfies all φ1, . . . , φj in
Π. (If M falsifies all formulas in Π, we have mi(M,Π) = 0.) One can show that
M �Poss

Π M ′ if and only if mi(M,Π) ≥ mi(M ′,Π), and mi(M,Π) ≥ mi(M ′,Π)
if and only if M �TΠ

M ′. Therefore, the theorem follows. �

4 Reasoning Problems and Complexity

In this section, we study decision problems on reasoning about preferences
described as P-trees, and provide computational complexity results for the three
reasoning problems defined below.

Definition 1. Dominance-testing (DomTest): given a P-tree T and two dis-
tinct outcomes M and M ′, decide whether M �T M ′.

Definition 2. Optimality-testing (OptTest): given a P-tree T and an outcome
M of T , decide whether M is optimal.

Definition 3. Optimality-with-property (OptProp): given a P-tree T and
some property α expressed as a Boolean formula over the vocabulary of T , decide
whether there is an optimal outcome M that satisfies α.

Our first result shows that P-trees support efficient dominance testing.

Theorem 4. The DomTest problem can be solved in time linear in the height
of the P-tree T .

Proof. The DomTest problem can be solved by walking down the tree. The
preference between M and M ′ is determined at the first non-leaf node n where
M and M ′ evaluate ϕn differently. If such node does not exist before arriving at
a leaf, M ≈T M ′. �
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An interesting reasoning problem not mentioned above is to decide whether there
exists an optimal outcome with respect to the order given by a P-tree. However,
this problem is trivial as the answer simply depends on whether there is any
outcome at all. However, optimality testing is a different matter. Namely, we
have the following result.

Theorem 5. The OptTest problem is coNP-complete.

Proof. We show that the complementary problem, testing non-optimality of an
outcome M , is NP-complete. The membership is obvious. A witness of non-
optimality of M is any outcome M ′ such that M ′ �T M , a property that can be
verified in linear time (cf. Theorem 4). NP-hardness follows from a polynomial
time reduction from SAT [7]. Given a CNF formula Φ = c1 ∧ . . . ∧ cn over a set
of variables V = {X1, . . . , Xm}, we construct a P-tree T and an outcome M as
follows.

1. We choose X1, . . . , Xm, unsat as issues, where unsat is a new variable;
2. we define the P-tree TΦ (cf. Fig. 9) to consist of a single node labeled by

Ψ = Φ ∧ ¬unsat;
3. we set M = {unsat}.

We show that M = {unsat} is not an optimal outcome if and only if Φ =
c1 ∧ . . . ∧ cn is satisfiable.

(⇒) Assume that M = {unsat} is not an optimal outcome. Since M �|= Ψ ,
M belongs to the right leaf and there must exist an outcome M ′ such that
M ′ � M . This means that M ′ |= Φ ∧ ¬unsat. Thus, Φ is satisfiable.

(⇐) Let M ′ be a satisfying assignment to Φ over {X1, . . . , Xm}. Since no
ci ∈ Φ mentions unsat, we can assume unsat �∈ M ′. So M ′ |= Ψ and M ′ is
optimal. Thus, M = {unsat} is not optimal. �

Ψ

Fig. 9. The P-tree TΦ

Theorem 6. The OptProp problem is ΔP
2 -complete.

Proof. (Membership) The problem is in the class ΔP
2 . Let T be a given preference

tree. To check whether there is an optimal outcome that satisfies a property α, we
start at the root of T and move down. As we do so, we maintain the information
about the path we took by updating a formula ψ, which initially is set to �
(a generic tautology). Each time we move down to the left from a node t, we
update ψ to ψ ∧ ϕt, and when we move down to the right, to ψ ∧ ¬ϕt. To
decide whether to move down left or right form a node t, we check if ϕt ∧ ψ is
satisfiable by making a call to an NP oracle for deciding satisfiability. If ϕt ∧ ψ
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is satisfiable, we proceed to the left subtree and, otherwise, to the right one. We
then update t to be the node we moved to and repeat. When we reach a leaf
of the tree (which represents a cluster of outcomes), this cluster is non-empty,
consists of all outcomes satisfying ψ and all these outcomes are optimal. Thus,
returning YES, if ψ ∧ α is satisfiable and NO, otherwise, correctly decides the
problem. Since the number of oracle calls is polynomial in the size of the tree T ,
the problem is in the class ΔP

2 .
(Hardness) The maximum satisfying assignment (MSA) problem3 [9] is ΔP

2 -
complete. We first show that MSA remains ΔP

2 -hard if we restrict the input to
Boolean formulas that are satisfiable and have models other than the all-false
model (i.e., ¬x1 . . . ¬xn).

Lemma 1. The MSA problem is ΔP
2 -complete under the restriction to formulas

that are satisfiable and have models other than the all-false model.

Proof. The membership in ΔP
2 is evident. Given a Boolean formula Φ over

{x1, . . . , xn}, we define Ψ = Φ ∨ (x0 ∧ ¬x1 ∧ . . . ∧ ¬xn) over {x0, x1, . . . , xn}. It
is clear that Ψ is satisfiable, and has at least one model other than the all-false
one. Let M be a lexicographically maximum assignment satisfying Φ and assume
that M has xn = 1. Extending M by x0 = 1 yields a lexicographically maxi-
mum assignment satisfying Ψ and this assignment obviously satisfies xn = 1,
too. Conversely, if M is a lexicographically maximum assignment satisfying Ψ
and xn = 1 holds in M , then it follows that M |= Φ. Thus, M restricted to
{x1, . . . , xn} is a lexicographically maximal assignment satisfying Φ and xn = 1.
Thus, the unrestricted problem has a polynomial reduction to the restricted one.
That proves ΔP

2 -hardness. �
We now show the hardness of the OptProp problem by a reduction from

this restricted version of the MSA problem. Let Φ be a satisfiable propositional
formula over variables x1, . . . , xn that has at least one model other than the
all-false one. We construct an instance of the OptProp problem as follows. We
define the P-tree TΦ as shown in Fig. 10, where every node is labeled by formula
Φ ∧ xi, and we set α = xn.

Φ∧x1

Φ∧xn

Fig. 10. The P-tree TΦ

3 Given a Boolean formula Φ over {x1, . . . , xn}, the maximum satisfying assignment
(MSA) problem is to decide whether xn = 1 in the lexicographically maximum
satisfying assignment for Φ. (If Φ is unsatisfiable, the answer is no.).
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Our P-tree TΦ induces a total preorder consisting of a sequence of singleton
clusters, each containing an outcome satisfying Φ, followed by a single cluster
comprising all outcomes that falsify Φ and the all-false model. By our assump-
tion on Φ, the total preorder has at least two non-empty clusters. Moreover, all
singleton clusters preceding the last one are ordered lexicographically. Thus, the
optimal outcome of TΦ satisfies α if and only if the lexicographical maximum
satisfying outcome of Φ satisfies xn. �

5 Conclusion and Future Work

We investigated the qualitative preference representation language of preference
trees, or P-trees. This language was introduced in early 1990s (cf. [5,6]), but
have not received a substantial attention as a formalism for preference repre-
sentation in AI. We studied formally the issue of compact representations of
P-trees, established its relationship to other preference languages such as lex-
icographic preference trees, possibilistic logic and answer-set optimization. For
several preference reasoning problems on P-trees we derived their computational
complexity.

P-trees are quite closely related to possibilistic logic theories or preference
expressions in answer-set optimization. However, they allow for much more struc-
ture among formulas appearing in these latter two formalisms (arbitrary trees
as opposed to the linear structure of preference formulas in the other two for-
malisms). This structure allows for representations of conditional preferences.
P-trees are also more expressive than lexicographic preference trees. This is the
case even for P-trees in which every node is labeled with a formula involving
just two issues, as we illustrated with the 00 � 11 � 01 � 01 example. Such
P-trees are still simple enough to correspond well to the way humans formulate
hierarchical models of preferences, with all their decision conditions typically
restricted to one or two issues.

Our paper shows that P-trees form a rich preference formalism that deserves
further studies. Among the open problems of interest are those of learning P-trees
and their compact representations, aggregating P-trees coming from different
sources (agents), and computing optimal consensus outcomes. These problems
will be considered in the future work.
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Abstract. We consider the situation in which group activities need to
be organized for a set of agents when each agent can take part in at
most one activity. The agents’ preferences depend both on the activity
and the number of participants in that activity. In particular, the prefer-
ences are given by means of strict orders over such pairs “(activity, group
size)”, including the possibility “do nothing”. Our goal will be to assign
agents to activities on basis of their preferences, the minimum require-
ment being that no agent prefers doing nothing, i.e., not taking part in
any activity at all. We take two different approaches to establish such
an assignment: (i) by use of k-approval scores; (ii) considering stability
concepts such as Nash and core stability.

For each of these approaches, we analyse the computational complex-
ity involved in finding a desired assignment. Particular focus is laid on
two natural special cases of agents’ preferences which allow for positive
complexity results.

1 Introduction

In many situations activities need to be organized for a set of agents, with the
agents having preferences over the activities. However, often the preferences of
the agents do not depend solely on the activity itself, but also on the number
of participants in the activity (see also [7]). We consider such a scenario and
assume that each agent can be assigned to at most one activity. E.g., consider a
company which would like to provide free sports classes in order to achieve a high
employee satisfaction [10], or the organizer of a social or business event (such as
a workshop), who wants to arrange social activities for the free afternoon [7]. In
the former case, for cost reasons the company might allow each employee to take
part in at most one activity; in the latter case, since the activities take place at
the same time, each agent can take part in at most one activity. Now, often the
agents have preferences not only over the available activities, but also over the
number of attendees of the activity. For example, one would be willing to take
a sauna with up to 5 attendees, but does not wish to take part if the sauna is
more crowded. On the other hand, for activities connected with costs that need
to be shared by the attendees, an agent might only take part if a high number
of attendees joins, while the desired numbers of attendees may be different for
each agent. These examples already indicate two natural special cases we will
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 35–51, 2015.
DOI: 10.1007/978-3-319-23114-3 3
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consider in this paper: vaguely speaking, in the case of decreasing preferences
the agents want the number of other agents joining an activity to be as low as
possible; in the case of increasing preferences, the agents would like as many
agents as possible to join the same activity.

Thus, in this work we consider a setting in which the agents have preferences
over pairs of the form “(activity, group size)”. In these pairs, we include the
possibility “do nothing” to which we refer as the void activity a∅. Note that a∅
allows the agents to express which pairs “(activity, group size)” they are not
really happy with by ranking them below a∅ (they would rather do nothing than
join the respective activity with the corresponding total number of attendees).
Throughout this paper, we assume the agents’ preferences to be strict orders
over such pairs (including a∅).

The goal, of course, would be a “good” assignment of agents to activities.
As a minimum requirement, the assignment should be individually rational, i.e.,
no agent should be forced to take part in an activity with a total number of
attendees such that she would prefer doing nothing. Taking into account the
special cases of increasing and decreasing preferences, we follow two different
approaches to find a “good” assignment, and provide computational complexity
results for each of them:

(i) By use of k-approval scores derive a group decision from the agents’ rank-
ings (Sect. 3); (ii) Find stable assignments with respect to different stability
concepts such as Nash or core stability (Sect. 4).

Finally, note that, as already pointed out in [7], avoiding to take into account
the number of participants may lead to rather unsatisfactory assignments. One
might, e.g., externally impose constraints on the number of participants instead,
or simply neglect the number of participants. In the latter case, imagine 80 agents
assigned to take a sauna. In the first case, for instance, in an activity (such as
a bus trip) whose costs need to be shared the minimum number of participants
such that an agent is actually willing to take part in the activity (i.e., such that
an agent prefers joining the activity to doing nothing) might highly vary.

1.1 Related Work

The most closely related work is [7]. There, the general group activity selection
problem (GASP) is introduced, where the agents’ preferences are weak orders
over the pairs “(activity, group size)”. The authors analyse computational com-
plexity aspects of the special case of a-GASP, where the agent’s preferences are
not strict orders but trichotomous; i.e., each agent partitions the set of pairs
“(activity,group size)” into the following three clusters: pairs approved by an
agent (i.e., pairs that are preferred to the void activity), the void activity itself,
and pairs that are disapproved by the agents (i.e., pairs which the void activity
is preferred to). In that framework, the focus is laid on maximum individually
rational assignments (i.e., an individually rational assignment with the maximum
number of agents assigned to a non-void activity) and Nash stable assignments,
while the adaption of further stability concepts is briefly discussed. In their
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Table 1. Computational complexity with respect to stability in o-GASP

General preferences Increasing
preferences

Decreasing
preferences

Nash stable NP-complete NP-complete in P

Individually stable NP-complete NP-complete in P

Contractually ind. stable in P

Core stable NP-complete NP-complete in P

computational study, several special cases including increasing and decreasing
preferences are considered.

In our work, we focus on another obvious variant of the group activity selec-
tion problem, in which the agents’ preferences are strict orders. We apply the
stability concepts and the notions of increasing/decreasing preferences of a-GASP
to our framework and, in Sect. 4, analyse the computational complexity involved
in finding such stable assignments with respect to increasing/decreasing prefer-
ences. An overview over the results settled in Sect. 4 is given in Table 1, for strict
orders in general and the special cases of increasing resp. decreasing preferences
(NP-completeness results refer to the decision problem if there exists an assign-
ment satisfying the respective stability notion; membership in P indicates that
such an assignment always exists and can be found in polynomial time).

The model presented in this paper is closely related to that of hedonic
games [2,5], and in particular anonymous hedonic games [2]. In the latter setting,
the goal is to find a “good” partition of the set of agents into several groups,
while the agents have preferences over the size of the possible group they are
part of. In contrast, in our setting the agents’ preferences depend on the group
size and the specific activity they would like to join.

In general (i.e., non-anonymous) hedonic games, the agents’ preferences are
over the possible groups (i.e., the composition of the group rather than only
its size) they are part of. By introducing dummy agents for the activities and
suitable preferences, the general group activity selection problem – and hence
our model – can be embedded in the general hedonic game framework (see [7]
for a detailed description of that representation). As already pointed out by [7],
note that our setting has useful structural properties that distinguish it from
a hedonic game though – e.g., it allows for a succinct representation of agents’
preferences. In addition, in our model two natural special cases are inherent that
admit efficient algorithms for finding good outcomes.

Both anonymous and non-anonymous hedonic games have been studied by [1]
from a computational viewpoint. In particular, in [1] it is shown that deciding
whether there is an outcome that is core stable, Nash stable, individually stable
or contractually individually stable is NP-complete for both anonymous and non-
anonymous hedonic games. While these results translate to the general group
activity selection problem introduced in [7], they do not directly imply similar
hardness results for the setting considered in this work.
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Table 2. Computational complexity of maximizing k-approval scores in o-GASP

General preferences Increasing
preferences

Decreasing
preferences

1-approval in P in P

2-approval NP-complete in P in P

3-approval NP-complete in P

k-approval, k ≥ 4 NP-complete NP-complete

Further related work includes the works of [9,11]. In [9], the stable invitation
problem is introduced, both in an anonymous and non-anonymous version. In
the stable invitation problem, the goal is to find a set of agents to be invited to an
event. In the anonymous stable invitation problem, the agents have preferences
over the number of invitees; in the non-anonymous case, the agents additionally
specify a set of accepted agents and a set of rejected agents. [9] provide a num-
ber of complexity results with respect to stability, and also consider strategic
behaviour of the agents.

In the work of [11], agents have preferences over pairs made up of a role and
a coalition; the role refers to the actual role the agent takes in the coalition, and
the coalition specifies the composition of roles that make up the coalition. [11]
provide a number of computational complexity results with respect to different
notions of stability.

In Sect. 3, we apply k-approval scores used in voting theory (see [6] for a sur-
vey) to find a desirable outcome. Such scores have been analysed outside of their
classical framework, e.g., with respect to computational complexity in fair divi-
sion problems (see, for instance, [3,8]). In this work, we provide computational
complexity results for finding an individually rational assignment maximizing
k-approval scores, for any fixed k ∈ N. We point out that approval scores in gen-
eral take back the setting to the one of a-GASP analysed in [7] (see Sect. 2.1 for
details); an analysis of k-approval scores, however, is not provided in [7]. Table 2
summarizes the results of Sect. 3 (NP-completeness results refer to the decision
problem version).

2 Formal Framework

Definition 1. An instance (N,A, P ) of the Group activity selection problem
with ordinal preferences (o-GASP) is given as follows. N is a set of agents with
n = |N |; unless stated otherwise, the agents are denoted by N = {1, . . . , n}.
A = A∗ ∪ {a∅} is a set of activities, where A∗ = {a1, . . . , am}; X = (A∗ ×
{1, . . . , n}) ∪ {a∅} is the set of alternatives. Finally, the profile P = 〈V1, . . . , Vn〉
consists of n votes, one for each agent. For agent i, a vote Vi (also denoted by
�i) is a strict order over X; the set Si ⊆ X such that for each x ∈ Si we have
x �i a∅, is the induced approval vote of agent i. We say that agent i approves
of the alternatives in Si.
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Definition 2. Given an instance (N,A, P ) of o-GASP, we say that agent i has
increasing preferences if for each a ∈ A∗, (a, k) �i (a, k − 1) holds for each
k ∈ {2, . . . , n}. An agent i has decreasing preferences if for each a ∈ A∗, (a, k −
1) �i (a, k) holds for each k ∈ {2, . . . , n}.

An instance (N,A, P ) of o-GASP has increasing (decreasing) preferences, if
each agent i ∈ N has increasing (decreasing) preferences.

Definition 3. Given an instance (N,A, P ) of o-GASP, a mapping π : N → A
is called assignment. The set πa := {i ∈ N |π(i) = a} denotes the set of agents
assigned to a ∈ A. The set πi := {j ∈ N |π(j) = π(i)} denotes the set of agents
assigned to the same activity as agent i ∈ N .

An assignment is said to be individually rational if for every a ∈ A∗ and
every agent i ∈ πa it holds that (a, |πa|) �i a∅.

As done in [7], we consider individual rationality as a minimum fairness
and stability requirement an assignment must satisfy: If an assignment is not
individually rational, then there is an agent that would rather join the void
activity (i.e., do nothing) than taking part in the assigned activity (and hence
this agent wants to deviate from that activity).

Note that the assignment π defined by π(i) = a∅ for all i ∈ N is always indi-
vidually rational; therewith, an individually rational assignment always exists.
Let #(π) = |{i ∈ N | π(i) 	= a∅}| denote the number of agents assigned to a
non-void activity. Finally, π is maximum individually rational if π is individually
rational and #(π) ≥ #(π′) for every individually rational assignment π′.

In this paper, we consider individually rational assignments only. In particu-
lar, in any instance (N,A, P ) of o-GASP we will restrict the attention to the part
of the profile which excludes alternatives ranked below a∅. In addition, through-
out the paper we assume that Si 	= ∅ holds for each agent i, since otherwise in
any individually rational assignment i can only participate in the void activity.
Finally, in this paper several proofs are omitted due to space constraints.

2.1 k-approval Scores

In an instance of o-GASP, a scoring function f maps an assignment to a non-
negative real number by means of f(π) :=

∑
i∈N fi(π(i), |πi|) with fi : X → R

+
0 .

In approval scores, for i ∈ N , let fi(x) = 1 for x ∈ Si and fi(x) = 0 for x /∈ Si.
k-approval scores, k ∈ N, correspond to approval scores in the case that |Si| = k
holds for all i ∈ N . The value f(π) is called score of π.

Our first task will be to find an individually rational assignment that maxi-
mizes k-approval scores (Sect. 3).

Note that in general, approval scores take back the setting to the one of
a-GASP considered in [7], and an individually rational assignment with maximum
approval score corresponds to a maximum individually rational assignment. For
the problem of finding such an assignment a number of computational complex-
ity results are given in [7]. For instance, it is shown that finding a maximum
individually rational assignment is NP-hard both for decreasing and increasing
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preferences; on the positive side, if there is only one activity, a maximum indi-
vidually rational assignment can be found in polynomial time.

However, the complexity involved in finding a maximum individually rational
assignment in the case that |Si| = k for each agent i, i.e., the problem of finding
an individually rational assignment of maximum k-approval score, k ∈ N, was
not analysed. We close this gap by giving a detailed analysis of that problem in
Sect. 3.

2.2 Stability Concepts

A different approach is to investigate upon individually rational assignments that
satisfy classical stability concepts such as, for instance, Nash and core stability.
The stability concepts considered in this paper are defined as follows.

A Nash stable assignment requires that no agent has the wish to deviate from
her assigned activity. Abusing notation, for any k ∈ N, we associate (a∅, k) with
a∅, i.e., we define (a∅, k) := a∅.

Definition 4. Given an instance (N,A, P ) of o-GASP, an assignment π : N →
A is Nash stable if it is individually rational and there is no agent i ∈ N and
no a ∈ A∗ \ {π(i)} such that (a, |πa| + 1) �i (π(i), |πi|).

Note that in the above definition of Nash stability an agent is allowed to
deviate in favour of activity a even if the agents currently assigned to a are
opposed to this. In contrast, in the notion of individual stability an agent is
allowed to join such a group of agents only if none of the group members objects.
Contractual individual stability additionally requires that none of the agents
assigned to the activity the agent leaves are worse off.

Definition 5. Given an instance (N,A, P ) of o-GASP, an individually rational
assignment π : N → A is individually stable, if there is no agent i ∈ N and no
a ∈ A∗ \ π(i) such that (a, |πa| + 1) �i (π(i), |πi|), and for all i′ ∈ πa it holds
that (a, |πa| + 1) �i′ (a, |πa|).
Definition 6. Given an instance (N,A, P ) of o-GASP, an individually rational
assignment π : N → A is contractually individually stable, if there is no agent
i ∈ N and no a ∈ A∗ \ π(i) such that (i) (a, |πa| + 1) �i (π(i), |πi|), (ii) for all
i′ ∈ πa it holds that (a, |πa| + 1) �i′ (a, |πa|), and (iii) there is no h ∈ πi with
(π(i), |πi| − 1) ≺h (π(i), |πi|).

In a weak core stable assignment π, there is no subset E of agents such that,
by deviating from π, all members of E can strictly improve their situation. In
a strong core stable assignment π, there is no subset E of agents such that, by
deviating from π, at least one member of E can strictly improve her situation
while none of the other members is worse off. Generalizing the notion of indi-
vidual stability, both stability notions require the deviating group of agents to
use an activity to which only members of the group are assigned.
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Definition 7. Given an instance (N,A, P ) of o-GASP, an individually rational
assignment π : N → A is weak core stable if there is no E ⊆ N and no a ∈ A∗

with πa ⊂ E such that (a, |E|) �i (π(i), |πi|) for all i ∈ E.

Definition 8. Given an instance (N,A, P ) of o-GASP, an individually rational
assignment π : N → A is strong core stable if there is no E ⊆ N and no a ∈ A∗

with πa ⊂ E such that (a, |E|) �i (π(i), |πi|) holds for at least one i ∈ E while
there is no i ∈ E with (a, |E|) ≺i (π(i), |πi|).

Relations Between the Concepts. Clearly, a strong core stable assignment
is also weak core stable. In particular, the concepts of weak core stability and
strong core stability coincide.

Proposition 1. An assignment π is weak core stable if and only if π is strong
core stable.

Proof. Clearly, the if-part holds. For the only-if-part, consider a weak core stable
assignment π. If π is not strong core stable, then there exist a subset E ⊆ N and
an activity a ∈ A∗ with πa ⊂ E such that (π(h), |πh|) 	�h (a, |E|) for all h ∈ E
and

(a, |E|) �i (π(i), πi) (1)

for at least one agent i ∈ E. Because π is weak core stable, there must be an
agent j ∈ E with (a, |E|) 	�j (π(j), |πj |). However, with (π(j), |πj |) 	�j (a, |E|)
this means that π(j) = a (thus, πj = πa) and |πj | = |πa| = |E| hold. Now, (1)
and |πa| = |E| imply that for agent i we get i ∈ E \ πa. In turn, this implies
that πa \ E 	= ∅ holds. This contradicts to πa ⊂ E. ��

Thus, in what follows we use the notion core stability instead of weak/strong
core stability.

Summing up, we can observe the following relations between the concepts
(here, a ⇒ b means if assignment π satisfies a, then it satisfies b):

Nash stable ⇒ individually stable ⇒ contractually individually stable; core
stable ⇒ individually stable.

In addition, in the case of increasing preferences, Nash stable ⇔ individually
stable holds. In the case of decreasing preferences, the following relations hold:

core stable ⇔ individually stable ⇔ contractually individually stable (the
first equivalence is stated in Proposition 2 on page 15).

3 Maximizing k-approval Scores

Theorem 1. In o-GASP with 1-approval scores, an individually rational assign-
ment with maximum score can be found in polynomial time.

Proof. Clearly, it is sufficient to find, for each a ∈ A, the maximum h ∈ N such
that (a, h) ∈ Si holds for at least h agents and assign h of these agents to a.
Obviously, this can be done in polynomial time. ��
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Theorem 2. Given κ ∈ N, for o-GASP with 2-approval scores it is NP-complete
to decide if there is an individually rational assignment with score at least κ.

Proof. The proof proceeds by a reduction from the NP-complete problem E3-
Occ-Max-2Sat [4]. ��
Theorem 3. For o-GASP with k-approval scores, in the case of increasing pref-
erences an individually rational assignment of maximum score can be found in
polynomial time, for any fixed k ∈ N.

Proof. If k ≥ n
2 , then obviously n is bounded by 2k and thus by a constant.

Since the number of possible assignments of agents to activities is bounded by
(m+1)n, it follows that there are at most (m+1)2k possible assignments. Thus,
an individually rational assignment of maximum score can be determined in time
exponential in k. Since k is fixed, we can therefore find an individually rational
assignment of maximum score in polynomial time.

If k < n
2 , then by increasing preferences we know that for each activity a,

either no agent or at least
⌈
n
2

⌉
+ 1 agents are assigned to a in an individually

rational assignment. Thus, in any individually rational assignment there is at
most one activity to which at least one agent is assigned. Hence, if there is an
h ∈ N for which there is an activity a such that (a, h) ∈ Si holds for at least h
agents, then it is sufficient to find the maximum such h. If such an h ∈ N does
not exist, then the only individually rational assignment is π(i) = a∅ for each
i ∈ N . Clearly, this can be checked in polynomial time. ��
Theorem 4. In o-GASP with 2-approval scores, in the case of decreasing pref-
erences an individually rational assignment of maximum score can be found in
polynomial time.

Proof. By decreasing preferences, an agent cannot approve of (a, h) for any h ≥ 3
and a ∈ A∗. In addition, (a, 2) ∈ Si implies (a, 1) ∈ Si. Let A2 be the set of
activities a ∈ A∗ for which (a, 2) is approved by at least two agents. Clearly,
for each a ∈ A2 at most two of the agents that approve of a can be assigned
to activity a (and hence to any activity of A∗) in any individually rational
assignment. Note that to any a ∈ A∗ \ A2, at most one agent can be assigned in
any individually rational assignment.

We now construct an individually rational assignment of maximum score in
two steps. In the first step, we arbitrarily assign two of the agents who approve of
a ∈ A2 to a. In a second step, for the remaining activities we apply a maximum
cardinality matching in a bipartite graph to derive our desired assignment.

1. For each a ∈ A2, assign two arbitrary agents approving of (a, 2) to a.
2. Let A′ := A∗ \ A2. Let G = (V,E) with V = N ∪ A′, E = {{i, a}|i ∈ N, a ∈

A′, (a, 1) ∈ Si}. Compute a maximum cardinality matching M in G. For
a ∈ A′, assign agent i to a if {i, a} ∈ M .

It is not hard to verify that the resulting assignment π is in fact an individually
rational assignment of maximum score. ��
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Theorem 5. For any k ≤ 3, in o-GASP with k-approval scores, in the case
of decreasing preferences an individually rational assignment of maximum score
can be found in polynomial time.

Proof (sketch). The cases k = 1 and k = 2 are covered by Theorems 1 and 41.
Let k = 3. Analogously to the case k = 2, by decreasing preferences an agent

cannot approve of (a, h) for any h ≥ 4 and a ∈ A∗. In addition, (a, 3) ∈ Si

implies (a, 2) ∈ Si and (a, 1) ∈ Si. Analogously to A2, let Aj be the set of
activities a ∈ A∗ for which (a, j) is approved by at least j agents, j ∈ {1, 3}.
Analogously to the case k = 2, we construct an individually rational assignment
of maximum score in two steps. Before dealing with these, we state a simple
observation.

Observation. There is an individually rational assignment of maximum score
such that to each a ∈ A3 exactly three agents are assigned, and to each activity
of A2 \ A3 exactly two agents are assigned.

Therefore, in the first step for each a ∈ A3 we arbitrarily assign to a three of
the agents who approve of (a, 3). Clearly, in the second step it hence suffices to
find an assignment of maximum score for the remaining activities and agents.
This will be done by computing a minimum cost flow in a dedicated graph. In
what follows, we introduce that graph and argue that the resulting assignment
is in fact an individually rational assignment of maximum total score. Note that
for the second step, we restrict our attention to activities in (A1 ∪A2)\A3, since
to each activity of A3 agents have already been assigned in the first step.

Let A′ := (A1 ∪ A2) \ A3. We define the directed graph G = (V,E) with
V = {s, t} ∪ N ∪ {a, a1, ã1, a2|a ∈ A′} as follows:

– for each a ∈ A′,
• introduce the edges (s, a), (a, a1), (a1, ã1), (a, a2) of zero cost each, and

(a1, t) of cost −3
• for each i ∈ N , introduce

* the edge (ã1, i) of cost −4 if (a, 1) ∈ Si

* the edge (a2, i) of cost −9 if (a, 2) ∈ Si and a ∈ A2
– for each i ∈ N introduce the edge (i, t) of zero cost
– the capacity of each edge entering in ã1 ∈ A′, i ∈ N or t is 1; for a ∈ A′, the

capacity of an edge entering in a, a1 or a2 is 2.

Note that for a ∈ A′, an edge emanating from a2 is only contained in G if at
least two agents approve of (a, 2).

Let f be an integer min cost flow from s to t (over all flow sizes 1, . . . , 2m).
The proof continues by showing that f induces an individually rational assign-
ment πf : N → A′ of maximum score. This can be proven by the use of the
following properties:

(i) for each a ∈ A2 \ A3, f sends two units of flow along (a, a2); (ii) each
assignment π : N → A′ induces an integer flow from s to t in G. ��
1 In fact, the case of 2-approval scores can be embedded in the 3-approval setting. The

2-approval case, however, allows for a very intuitive determination of an assignment
of maximum score as described in the proof of Theorem 4.
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Theorem 6. Let κ ∈ N. For any fixed k ≥ 4, under k-approval scores in o-GASP
it is NP-complete to decide if there is an individually rational assignment with
score at least κ, even when all agents have decreasing preferences.

Proof. The proof proceeds by a reduction from E3-Occ-Max-2Sat [4]. ��

4 Finding Stable Assignments

In this section, we consider the problem of finding a stable assignment w.r.t. the
different notions of stability defined in Sect. 2.2.

4.1 Nash Stability

The first stability concept we consider is Nash stability. In the setting of a-GASP,
it is NP-complete to decide whether a Nash stable assignment exists; however,
in the case of increasing or decreasing preferences, a Nash stable assignment
always exists and can be found in polynomial time [7]. In contrast, as Example 1
shows, in the setting of o-GASP even when all agents have increasing preferences
a Nash stable assignment does not necessarily exist. In particular, we show that
in o-GASP (i) it is NP-complete to decide whether a Nash stable assignment
exists even if all agents have increasing preferences, while (ii) in the case of
decreasing preferences, a Nash stable assignment always exists and can be found
in polynomial time.

Example 1. Let N = {1, 2, 3, 4, 5, 6} and A∗ = {a, b, c}. Let P be given as
follows:

1 2 3 4 5 6

(b, 6) (a, 6) (c, 6) (b, 6) (a, 6) (c, 6)
(b, 5) (a, 5) (c, 5) (b, 5) (a, 5) (c, 5)
(b, 4) (a, 4) (c, 4) (b, 4) (a, 4) (c, 4)
(b, 3) (a, 3) (c, 3) (b, 3) (a, 3) (c, 3)
(a, 6) (a, 2) (b, 6) (b, 2) (c, 6) (c, 2)
(a, 5) a∅ (b, 5) a∅ (c, 5) a∅
(a, 4) (b, 4) (c, 4)
(a, 3) (b, 3) (c, 3)
(a, 2) (b, 2) (c, 2)
(a, 1) (b, 1) (c, 1)
a∅ a∅ a∅

Clearly, all agents have increasing preferences. Note that for each activity α ∈ A∗

there are exactly three agents who rank (α, k) above a∅ for some k.
Assume that there is a Nash stable assignment π. Clearly, π must assign agent

1 to a non-void activity, because otherwise 1 would like to join a. Analogously,
agents 3 and 5 must be assigned to a non-void activity.

Assume π(1) = a. Then π(2) = a must hold since π is Nash-stable. For the
same reason, π(5) = a must hold as well. Recall that also agent 3 has to be
assigned to a non-void activity, i.e., π(3) ∈ {b, c} holds. π(3) = c would imply
that three agents are assigned to c, which is impossible due to π(5) = a. Thus,



Group Activity Selection from Ordinal Preferences 45

π(3) = b holds. Clearly, this implies π(4) = b because otherwise 4 would like to
join activity b in contradiction with Nash stability. But then 1 would like to join
b, which violates Nash stability.

Therefore, π(1) = b must hold, implying π(3) = π(4) = b. Since agent 5
must be assigned to a non-void activity, π(5) = c follows (π(5) = a is impossible
because this would require π(1) = π(2) = a), which in turn implies π(6) = c.
But now agent 3 would like to join c which violates Nash stability.

Thus, a Nash stable assignment does not exist. Note that removing any agent
from the above instance results in a new instance which admits a Nash stable
assignment. E.g., if agent 6 is removed, then the assignment π′ with π′(2) = a∅,
π′(1) = π′(3) = π′(4) = b and π′(5) = c is Nash stable.

Theorem 7. It is NP-complete to decide whether o-GASP admits a Nash stable
assignment, even when all agents have increasing preferences.

Proof. The proof proceeds by a reduction from Exact Cover by 3-Sets. ��
On the positive side, for the case of decreasing preferences, bymeans ofAlgorithm1
we propose a polynomial-time algorithm that computes a Nash stable assign-
ment. Given an individually rational assignment π, if i wants to deviate from π(i)
we denote by fc(i, π) agent i’s favourite choice, i.e., the activity a ∈ A∗ \ {π(i)}
such that (a, |πa| + 1) is the best-ranked among all alternatives in the ranking
�i that satisfy (a′, |πa′ | + 1) �i (π(i), |πi|).

Starting with all agents being assigned to the void activity, in each step
Algorithm 1 assigns an agent who wishes to deviate from the current assignment
to her favourite choice b. If another agent assigned to b opposes to this, i.e., wants
to deviate after i joins b, that agent is assigned to her favourite choice in the
subsequent step.

Theorem 8. Given an instance of o-GASP with decreasing preferences, a Nash
stable assignment always exists and can be determined in polynomial time.

Proof. We show that Algorithm 1 terminates in polynomial time, with the result-
ing assignment π being Nash stable. Note that for each b ∈ A∗, during the execu-
tion of Algorithm 1, the number of agents assigned to b, i.e., πb is non-decreasing.

Complexity. First, we show that in the execution of Algorithm 1, for any i ∈ N ,
b ∈ A∗ and 1 ≤ k ≤ n, b is at most once i’s favourite choice with currently
k − 1 agents assigned to b, i.e., at most once we have π(i) = a∅, fc(i, π) = b and
|πb| = k−1. Assume the opposite. That means, during one loop of the algorithm
i is assigned to b (let loop � denote the first such loop), and in a later loop i is
assigned to a∅ again. Note that we must have

(b, k) �i a∅ (2)

and
(b, k) �j (d, |πd| + 1) (3)
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Algorithm 1. Nash stable assignment for decreasing preferences
1: π(h) := a∅ for all h ∈ N . C := ∅. i := 1. loop := 0.
2: while C ⊂ N do

3: loop := loop + 1. // counts the number of executions of the while-loop
4: if �a ∈ A∗ \ {π(i)} such that (a, |πa| + 1) �i (π(i), |πi|) then
5: C := C ∪ {i}
6: i := min (N \ C)
7: else
8: b := fc(i, π)
9: if there is a j ∈ πb such that

– a∅ �j (b, |πb| + 1) or
– (d, |πd| + 1) �j (b, |πb| + 1) for some d ∈ A∗ \ {b}
then

10: C := (C ∪ {i}) \ {j}
11: π(i) := b
12: π(j) := a∅
13: i := j
14: else
15: C := C ∪ {i}
16: π(i) := b

for all d ∈ A∗ \ {b} after loop �. Clearly, directly after execution of loop �,
|πb| ∈ {k − 1, k} holds, depending on whether i was assigned to b according to
lines 10–13 or 15–16. In the latter case |πb| = k holds. Thus, b with |πb| = k − 1
cannot be any agent’s favourite choice in a later stage because the number of
agents assigned to b is non-decreasing during the execution of the algorithm.

Thus, we must have |πb| = k−1 after loop �. To enable that in a loop g > �, b
is again i’s favourite choice, i must be assigned to a∅ in a loop �′ with � < �′ < g.
This is only possible if either (i) a∅ �i (b, |πb|+1) or (ii) (d, |πd|+1) �i (b, |πb|+1)
for some d ∈ A∗ \{b} holds in loop �′. Clearly, since for each activity the number
of agents assigned to the activity in loop �′ is at least as high as in loop �,
there are at least k − 1 agents assigned to b when entering loop �′. Assume we
have |πb| = k − 1 at the beginning of loop �′. Obviously, (i) cannot hold in this
case due to (2). Analogously, (3) contradicts with (ii), because the agents have
decreasing preferences and the number of agents assigned to d is at least as high
at the beginning of loop �′ as after loop �.

As a consequence, at the beginning of loop �′ we must have |πb| ≥ k. This,
however, contradicts with the fact that, in loop g, b with |πb| = k − 1 is i’s
favourite choice, because the number of agents assigned to b in loop g is at least
as high as in loop �′.

Hence, for each i ∈ N , b ∈ A∗ and 1 ≤ k ≤ n, b is at most once i’s favourite
choice with currently k − 1 agents assigned to b. With m = |A∗| that means
that the algorithm terminates after at most n · mn = mn2 loops. In each loop,
the highest computational effort is the execution of line 9, which, in the worst
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case, requires checking (d, |πd| + 1) �j (b, |πb| + 1) for all agents j and activities
d ∈ A∗ \ {b}; this can be bounded by O(m2n2). Thus, the running time of the
algorithm can be bounded by O(mn2 · m2n2), i.e., by O(m3n4).

Correctness. After termination of the algorithm, we have C = N ; let π∗ denote
the final assignment π, i.e., the assignment π after the final loop. It is easy to
verify that π∗ is individually rational. Let i ∈ N , with π∗(i) = a ∈ A∗ ∪ {a∅}.
Let � denote the loop in which i was put into set C for the last time. In that
loop, i was assigned to her favourite choice. Thus, right after loop �, i did not
want to deviate from π(i) in order to join another activity b ∈ A∗ ∪ {a∅}. Since
the number of agents assigned to an activity is non-decreasing and each agent
has decreasing preferences, i does not want to deviate from π∗(i) and join an
activity to which agents are assigned by π∗. ��

4.2 (Contractual) Individual Stability

In the case of increasing preferences individual stability coincides with Nash
stability. Theorem 7 hence implies the following corollary.

Corollary 1. It is NP-complete to decide whether o-GASP admits an individu-
ally stable assignment, even when all agents have increasing preferences.

In contrast, for the case of decreasing preferences we already know that a
Nash stable assignment can be found in polynomial time by use of Algorithm 1
(see Theorem 8). Since Nash stability implies individual stability, we can con-
clude that in case of decreasing preferences an individually stable assignment
can be determined in polynomial time. However, below we propose a very sim-
ple algorithm which efficiently determines an individually stable assignment.

Algorithm 2. Individually stable assignment for decreasing preferences
1: π(h) := a∅ for all h ∈ N . N ′ := N . A′ := A∗.

// A′ is the subset of activities to which no agent is assigned
2: while N ′ 	= ∅ do
3: i := min N ′

4: if ∃ a ∈ A′ such that (a, 1) �i a∅ then
5: assign i to a ∈ A′ with (a, 1) �i (a′, 1) for all a′ ∈ A′ \ {a}
6: A′ := A′ \ {a}
7: N ′ := N \ {i}

Theorem 9. Given an instance of o-GASP with decreasing preferences, an indi-
vidually stable assignment always exists and can be determined in polynomial
time.
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Proof. Algorithm 2 runs in O(n2m) time. For correctness, observe that an agent
assigned to an activity does not want (i) another agent to join due to the agent’s
decreasing preferences and (ii) does not want to join another activity to which
no agent is assigned by the choice of a in line 5. Again by line 5, for an agent i
assigned to a∅ there is no activity to which no agent is assigned that i would like
to join; for activities a∗ ∈ A∗ with |πa∗ | ≥ 1, each agent assigned to a∗ objects
to i joining a∗. ��

Algorithm 3. Contractually individually stable assignment
1: π(h) := a∅ for all h ∈ N . N ′ := N .
2: while N ′ �= ∅ do
3: i := min N ′

4: if ∃a ∈ A∗ \ π(i) such that
I. (a, |πa| + 1) �i (π(i), |πi|),
II. for all i′ ∈ πa it holds that (a, |πa| + 1) �i′ (a, |πa|), and
III. there is no h ∈ πi with (π(i), |πi| − 1) ≺h (π(i), |πi|)
then

5: take the best-ranked such a in the ranking �i

6: π(i) := a
7: N ′ := N
8: else
9: N ′ := N ′ \ {i}

On the other hand, a contractually individually stable assignment always
exists and can be found efficiently. Algorithm 3 computes such an assignment.
In each step, the algorithm picks an agent i and checks if i wants to join another
activity a (I), such that no agent currently assigned to the same activity as i
is worse off (III), and all agents currently assigned to a are better off (II); i is
assigned to the best-ranked of such activities, if such an activity exists. Note
that if i wishes to deviate from a non-void activity, (III) means that each agent
currently assigned to the same activity as i is better off when i leaves. The
algorithm proceeds as long as there is an agent i for which such an improvement
is possible.

Theorem 10. Given an instance of o-GASP, a contractually individually stable
assignment always exists and can be determined in polynomial time.

Proof. The correctness of the algorithm is obvious. Clearly, the algorithm ter-
minates since each time an agent is assigned to an activity in line 6, at least
one agent is strictly better off while no agent is worse off. For the running time
of the algorithm, note that each agent i can deviate from its current assigment
at most n · m times. The running time of each execution of lines 4 -7 (i.e., the
if-part) can very roughly be bounded by O((nm)2). Thus, the overall running
time of the algorithm is bounded by a polynomial in n and m. ��
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4.3 Core Stability

For the setting of a-GASP, a weak core stable assignment always exists and
can be determined efficiently [7]. While in o-GASP an analogous result holds for
decreasing preferences as well (see Corollary 2), in general this is not the case. In
particular, our results show that deciding whether o-GASP admits a core stable
assignment is computationally hard even in the case of increasing preferences.

As the following example emphasizes, even in the case of increasing prefer-
ences a core stable assignment does not always exist.

Example 2. Let us again consider instance (N,A, P ) of Example 1. Assume that
there is a core stable assignment π. Suppose π(1) = a∅. Then πa = ∅ follows,
and the set E = {1} would prefer joining a, which violates core stability. Thus,
agent 1 must be assigned to a non-void activity; analogously, agents 3 and 5
must be assigned to a non-void activity.

If π(1) = a, then π(2) = π(5) = a follows (otherwise |πa| ≤ 2 holds and
hence each member of E = {1, 2, 5} ⊃ πa would be better off with all members
of E being assigned to a). Recall that agent 3 is assigned to a non-void activity.
By individual rationality of π, π(5) 	= c hence implies that π(3) = b holds.
However, by π(1) = a it follows that |πb| ≤ 2 holds; but then each member of
E = {1, 3, 4} ⊃ πb would be better off with all members of E being assigned to
b. This violates core stability.

Therewith, π(1) = b holds, which means π(3) = π(4) = b. Since agent 5 is
assigned to a non-void activity, π(5) = c must hold due to π(1) 	= a. By π(3) 	= c
we can conclude that |πc| ≤ 2 holds. But then each member of E = {3, 5, 6} ⊃ πc

is better off with all members of E being assigned to c, which violates core
stability.

Thus, a core stable assignment does not exist. However, note that if agent 6
is removed, then the assignment π′(1) = π′(3) = π′(4) = b and π′(5) = c is core
stable.

Theorem 11. It is NP-complete to decide whether o-GASP admits a core stable
assignment, even when all agents have increasing preferences.

Proof. The hardness-proof proceeds by a reduction from Exact Cover by 3-
Sets. For membership in NP, observe that a core stable assignment π serves as
certificate: For each a ∈ A∗, by scanning the whole profile for each value k > |πa|
in polynomial time we can check if there exists a set E ⊃ πa of size |E| = k such
that (a, |E|) �i (π(i), |πi|) for all i ∈ E. Thus, overall in polynomial time we can
verify if π is indeed core stable. ��
In contrast, in the case of decreasing preferences a core stable assignment always
exists and can be determined in polynomial time. This is a consequence of the
following proposition.

Proposition 2. In any instance of o-GASP with decreasing preferences, an
assignment π is core stable if and only if π is individually stable.
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Proof. The only-if part is satisfied for general instances of o-GASP. For the if-
part, assume that π is individually stable but not core stable. I.e., there are
E ⊆ N and a ∈ A∗ with πa ⊂ E such that (a, |E|) �i (π(i), |πi|) for all i ∈ E.
For j ∈ πa, (a, |E|) �j (a, |πa|) follows, which by |E| > |πa| and decreasing
preferences implies πa = ∅. Take an arbitrary i ∈ E\πa, i.e., i ∈ E. By decreasing
preferences, (a, |E|) �i (π(i), |πi|) implies (a, |πa| + 1) �i (π(i), |πi|). Trivially,
(a, |πa|+1) �j (a, |πa|) is satisfied for all j ∈ πa = ∅. Thus, π is not individually
stable in contradiction with our assumption. ��
Corollary 2. Given an instance of o-GASP with decreasing preferences, a core
stable assignment always exists and can be found in polynomial time.

Proof. The proof follows from Proposition 2 and Theorem 9. ��

5 Conclusion

In this paper, we have analysed the computational complexity involved in find-
ing solutions to the problem of assigning agents to activities on basis on their
preferences over pairs made up of an activity and the size of the group of agents
participating in that activity. A number of solution concepts are provided for this
problem. With respect to the two natural special cases of decreasing and increas-
ing preferences, computational complexity results are provided for the task of
finding such a solution. A related research direction would be to find an individ-
ually rational assignment maximizing other types of positional scores. Another
interesting direction for future research would be to investigate the complexity
involved in the considered problems if the number of activities is bounded.
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game. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS, vol. 8176,
pp. 351–362. Springer, Heidelberg (2013)



Towards Decision Making via Expressive
Probabilistic Ontologies

Erman Acar(B), Camilo Thorne, and Heiner Stuckenschmidt

Data and Web Science Group, Universität Mannheim, Mannheim, Germany
{erman,camilo,heiner}@informatik.uni-mannheim.de

Abstract. We propose a framework for automated multi-attribute deci-
sion making, employing the probabilistic non-monotonic description log-
ics proposed by Lukasiewicz in 2008. Using this framework, we can model
artificial agents in decision-making situation, wherein background knowl-
edge, available alternatives and weighted attributes are represented via
probabilistic ontologies. It turns out that extending traditional utility
theory with such description logics, enables us to model decision-making
problems where probabilistic ignorance and default reasoning plays an
important role. We provide several decision functions using the notions
of expected utility and probability intervals, and study their properties.

1 Introduction

Preference representation and its link to decision support systems is an ongoing
research problem in artificial intelligence, gaining more attention every day. This
interest has led on the one hand to the analysis of decision-theoretic problems
using methods common in A.I. and knowledge representation, and on the other
hand to apply methods from classical decision theory to improve decision support
systems. In this regard there has been a growing interest over the last decade in
the use of logics to model preferences, see [1,3,14–19].

Description Logics (DLs) are a family of knowledge representation languages
that are based on (mostly) decidable fragments of first order logic. They were
designed as formal languages for knowledge representation becoming one of the
major formalisms in this field over the last decade. Alongside this and from a
more practical point of view, they formally underpin semantic web OWL Web
Ontology Language1, the semantic web key representation and ontology standard
(defined by the World Wide Web Consortium).

In this work, we propose a formal framework which is based on expressive
probabilistic DLs [13], viz., the non-monotonic P-SHOIN (D) family of DL lan-
guages, designed to model uncertainty and uncertain, non-monotonic reasoning.

In such languages one can express objective (statistical) uncertainty (ter-
minological knowledge concerning concepts), as well as subjective (epistemic)
uncertainty (assertional knowledge concerning individuals). Furthermore, due to
their non-monotonicity, one can represent and reason with default knowledge.
1 http://www.w3.org/TR/owl-features/.
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Also, their probabilistic component employs imprecise probabilities to model
uncertainty, which in turn allows to model probabilistic ignorance with consid-
erable flexibility, in contrast to classical probability theory.

We show that our framework can represent decision-theoretic problems and
solve them using DL inference services, taking advantage of imprecise proba-
bilities and background knowledge (as represented by ontologies) to compute
expected utilities in a fine-grained manner that goes beyond traditional deci-
sion theory. One reason why this is possible within a DL-based decision making
framework, is because one can express the various dependency relations between
attributes/decision criteria with rich DL concept hierarchies and evaluate there-
after alternatives in terms of their logical implications.

Our framework can be interpreted as modeling the behavior of an agent, or
as a model for systems that support group decisions. In this work, we pursue
the former interpretation and focus on modeling artificial agents where each
attribute/decision criterion has an independent local utility value (weight). We
consider available alternatives in the form of DL individuals, and attributes in
the form of DL concepts. Finally, we represent the agent’s background knowledge
and beliefs via a probabilistic DL knowledge base.

In this work, we present several decision functions in order to model agents
with different characteristics. Furthermore, the employed logic’s use of impre-
cise probabilities to model uncertainty, allows considerable expressive power to
model non-standard decision behaviour that violate the axioms of (classical)
expected utility e.g., Ellsberg paradox. Using the framework, we show that it
is straightforward to provide decision functions which model ambiguity averse
decision-making. In so doing, we investigate the various properties of such deci-
sion functions as well as their connection to ontological knowledge.

2 Preliminaries

Preferences and Utility. Traditional utility theory [10] models the behavior
of rational agents, by quantifying their available choices in terms of their utility,
modeling preference (and eventual courses of action) in terms of the induced
partial orders and utility maximization.

Let A = {a1, . . . , an} be a set of alternatives, and a (rational) preference is
a complete and transitive binary relation � on A. Then, for any ai, aj ∈ A for
i, j ∈ {1, . . . , n}, strict preference and indifference is defined as follows: ai � aj

iff ai � aj and aj �� ai (Strict preference), ai ∼ aj iff ai � aj and aj � ai

(Indifference).
It is said that, ai is weakly preferred2 (strictly preferred) to aj whenever

ai � aj (ai � aj), ai is indifferent to aj whenever ai ∼ aj . Moreover, ai, aj are
incomparable iff ai || aj ⇐⇒ ai �� aj and aj �� ai, which implies that � is a
partial ordering.

2 It is also called preference-indifference relation, since it is the union of strict prefer-
ence and indifference relation.
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In order to represent the preference relation numerically one introduces the
notion of utility, which is is a function that maps an alternative to a positive real
number reflecting its degree of desire. For a decision theoretic framework, two
questions are essential; given a (finite) set of alternatives (i) which alternative
is the best one(s)? (ii) How does the whole preference relation look like i.e., a
complete list of order of alternatives (e.g., a1 � a3 � . . . ). Throughout the paper,
these two main questions will also be of our concern, along with a restriction to
single (non-sequential) decisions.

Formally, given a finite set of alternatives A = {a1, . . . , an}, and preference �
on A, u : A → R is a utility function iff for any ai, aj ∈ A with i, j ∈ {1, . . . , n},
ai � aj ⇐⇒ u(ai) > u(aj), ai � aj ⇐⇒ u(ai) ≥ u(aj), ai ∼ aj ⇐⇒ u(ai) =
u(aj).

For the proof that such a function exists, we refer the reader to the so-called
representation theorems in [7].

The basic principle in utility theory is that a rational agent should always
try to maximize its utility, or should take the choice with the highest utility.
Utility functions modeling behaviours based on more than one attribute (i.e.,
n-ary) are called multi-attribute utility functions. Let X = {X1, . . . , Xn} be
a set of attributes where n ≥ 2, and Ω = X1 × · · · × Xn be the set of
outcomes over which the agent’s preference relation is defined. An alterna-
tive/outcome is a tuple (x1, . . . , xn) ∈ Ω. Let � be the preference relation defined
over X, then u is a multi-attribute utility function representing � iff for all
(x1, . . . , xn), (y1, . . . , yn) ∈ Ω, (x1, . . . , xn) � (y1, . . . , yn) ⇐⇒ u(x1, . . . , xn) ≥
u(y1, . . . , yn). For an introductory text on multi-attribute utility theory, see [10].

Moreover, a utility function u is said to be unique up to affine transformation
iff for any real numbers m > 0 and c, u(x) ≥ u(x′) iff m ·u(x)+ c ≥ m ·u(x′)+ c.

Along the paper, we will use two running examples to point out two important
limitations of traditional decision theory that we will overcome with description
logics. theoretic: Ellsberg’s Paradox and a a touristic agent example.

Ellsberg’s Paradox. Assume that there is an urn, full with three different
colours of balls, namely red, blue and yellow. You know only that 1/3 of the
balls are red, and the blue and yellow balls together make up the remaining
2/3. However, it is possible that either there is no single blue ball (that is all of
them are yellow) or that all of them are blue. Now, before randomly picking up
a ball from the urn, you are asked to make a guess, choosing red or blue with
the following two gambles:
1st Gamble: If you guess correctly, you get the prize.
2nd Gamble: If you guess correctly, or the ball is yellow, you get the prize.

If you prefer to choose red to blue (i.e., red � blue) in Gamble A, then
following the sure-thing principle, you are supposed to also have red � blue in
Gamble B, since

U(red) · Pr(red) > U(blue) · Pr(blue)
=⇒

U(red) · (Pr(red) + Pr(yellow)) > U(blue) · (Pr(blue) + Pr(yellow)).
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However, people usually choose red � blue in the first gamble, and blue � red in
the second. This particular situation is called Ellsberg’s paradox [6] and is not
compatible with the preferential predictions that ensue from subjective utility
theory (which we will not mention here (see [7] for details)), and arises in the
presence of ambiguity in probabilities [6].

The Tourist Example. Imagine a tourist trying to decide in which hotel to
stay. He/she would rather stay at a 5 star hotel, rather than a 4 star hotel (among
other features he may desire). But what if the hotel suggested in his trip has a
bad reputation? Intuitively, we know that this has a negative impact, but how
do we factor in background knowledge about, say, hotels? This example will be
used to motivate the importance of using structured knowledge (e.g., ontologies,
concept hierarchies) in decision making in order to perform logical reasoning.

The P-SHOIN (D) Probabilistic DL. Lukasiewicz’s probabilistic description
logics (DLs), see [13], extend classical DLs with probabilistic, non-monotonic
reasoning. DLs are logics –typically fragments of first order logic– specifically
designed to represent and reason on structured knowledge, where domains of

Table 1. Syntax and semantics of the DL SHOIN (D). Notice that D refers to concrete
domains. The first block introduces individuals. The second block recursively defines
concepts (others can be introduced by explicit definition), while the third does it with
roles. The fourth formally introduces terminological statements, resp., concept (ISA)
and role inclusion statements. Finally, the fifth block introduces assertional facts a.k.a.
membership assertions, resp. concept and role membership assertions. A TBox T is a
set of terminological statements, an ABox A is a set of assertions, and a KB is a pair
T = (T , A). Entailment and satisfiability are defined in the usual way. The syntax and
semantics of P-SHOIN (D) extend this definition.

Syntax Semantics w.r.t. classical interpretation I = (ΔI , ·I)

i iI ∈ ΔI

A AI ⊆ ΔI

D DI ⊆ D = Num ∪ String

OneOf (i1, . . . , in) (OneOf(i1, . . . , in))I := {i1, . . . , in}
¬φ (¬φ)I := ΔI \ φI

∃r.φ (∃r.φ)I := {d | exists e s.t. (d, e) ∈ rI and e ∈ φI}
∃≤kr (∃≤kr)I := {d | exists at most kes s.t. (d, e) ∈ rI}
φ1 � φ2 (φ1 � φ2)

I := φI ∩ φ′I

p pI ⊆ ΔI × ΔI

r− (r−)I := {(d, e) | (d, e) ∈ rI}
Tr(r) (Tr(r))I := the transitive closure of r in ΔI × ΔI

φ1 � φ2 I |= φ1 � φ2iffφI
1 ⊆ φI

2

r1 � r2 I |= r1 � r2iffrI
1 ⊆ rI

2

φ(i) I |= φ(i)iffiI ∈ φI

r(i, j) I |= r(i, j)iff(i, j)I ∈ rI
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interest are represented as composed of objects structured into: (i) concepts,
corresponding to classes, denoting sets of objects; (ii) roles, corresponding to
(binary) relationships, denoting binary relations on objects. Knowledge is pred-
icated through so-called assertions, i.e., logical axioms, organized into an inten-
sional component (called TBox, for “terminological box”), and an extensional
one (called ABox, for “assertional box”), viz. the former consists of a set of uni-
versal statements and the latter of a set of atomic facts. A DL knowledge base
(KB) is then defined as the combination of a TBox and an ABox.

For simplicity, we restrict the discussion in this paper to the P-SHOIN (D)
family of probabilistic logics, which is an extension of the known SHOIN (D) DL
whose syntax and semantics we briefly recall in Table 1. SHOIN (D) underpins
the OWL-DL fragment of OWL (in the OWL 1.1 standard).

Example 1. DLs KBs can be used to formally model domain knowledge, and
formally reason over it. Consider the hotel domain. Consider now the KB with
TBox T = {OneStarHotel � Hotel � ∃hasService.ExtendedBreakfast}, which
states that every one star hotel is an hotel and there is an extended break-
fast service, and ABox A = {OneStarHotel(tapir)}, which says that Tapir
is a one star hotel.3 Following SHOIN (D) semantics, we will conclude that
Tapir is a hotel and it has an extended breakfast service (T,A) |= Hotel �
∃hasService.ExtendedBreakfast(tapir). ♣

Given that the semantics of the P-SHOIN (D) family is very rich, we avoid
giving a full description of it (which would go beyond the scope of this paper),
and provide, rather a basic overview of their syntax and semantics, and cover its
main properties (on which our results rely) in a succinct Appendix. For its full
definition and properties, we refer the reader to [13]. A general remark is that the
framework that we present here is (w.l.o.g.) independent from a particular choice
of P-DL, provided they cover numeric domains (more in general, data types).

Syntax. The P-SHOIN (D) family extends the syntax of SHOIN (D) with the
language of conditional constraints defined as follows: IP is the set of probabilistic
individuals o, disjoint from classical individuals IC = I\IP , C is a finite nonempty
set of basic classification concepts or basic c-concepts, which are (not necessarily
atomic) concepts in SHOIN (D) that are free of individuals from IP . Informally,
they are the DL concepts relevant for defining probabilistic relationships. In what
follows we overload the notation for concepts with that of c-concepts.

In addition to probabilistic individuals, TBoxes and ABoxes can be extended
in P-SHOIN (D) to probabilistic TBoxes (PTBoxes P ) and ABoxes (PABoxes
Po), via so-called conditional constraints, expressing (or encoding) uncertain,
default knowledge about domains of interest. A PTBox conditional constraint
is an expression (ψ|φ)[l, u], where ψ and φ are c-concepts, and l, u ∈ [1, 0].
Informally, (ψ|φ)[l, u] encodes that the probability of ψ given φ lies, by default,
within [l, u]. A PABox constraint (ψ|φ)[l, u] ∈ Po however, relativizes constraint
(ψ|φ)[l, u] to the individual o.
3 By convention, objects are written with lower case.
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A probabilistic KB K := (T, P, (Po)o∈IP ) consists of T a classical KB4, P
a PTBox (a set of conditional constraints), and a collection of PABoxes, each
of which is a (possibly empty) set of relativized conditional constraints for each
probabilistic o ∈ IP .

Semantics. A world I is a finite set of basic c-concepts φ ∈ C such that {φ(i) |
φ ∈ I} ∪ {¬φ(i) | φ ∈ C\I} is satisfiable, where i is a new individual (intuitively
worlds specify an individual unique up to identity), whereas IC is the set of
all worlds relative to C. I |= T iff T ∪ {φ(i) | φ ∈ I} ∪ {¬φ(i) | φ ∈ C\I} is
satisfiable. I |= φ iff φ ∈ I. I |= ¬φ iff I |= φ does not hold. For c-concepts φ and
ψ, I |= ψ � φ iff I |= ψ and I |= φ. Note that above notion of satisfiability based
on worlds is compatible with the satisfiability of classical knowledge bases, that
is, there is a classical interpretation I = (ΔI , ·I) that satisfies T iff there is a
world I ∈ IC that satisfies T .5

A probabilistic interpretation Pr is a probability function Pr : IC → [0, 1]
with

∑
I∈IC Pr(I) = 1. Pr |= T , iff I |= T for every I ∈ IC such that Pr(I) > 0.

The probability of a c-concept φ in Pr is defined as Pr(φ) =
∑

I|=φ Pr(I). For
c-concepts φ and ψ with Pr(φ) > 0, we write Pr(ψ|φ) to abbreviate Pr(ψ �
φ)/Pr(φ). For a conditional constraint (ψ|φ)[l, u], Pr |= (ψ|φ)[l, u] iff Pr(φ) = 0
or Pr(ψ|φ) ∈ [l, u]. For a set of conditional constraints F , Pr |= F iff Pr |= F
for all F ∈ F . Notice that T has a satisfying classical interpretation I = (ΔI , ·I)
iff Pr |= T 6. We provide further technical details in the Appendix.

Satisfaction and entailment in SHOIN (D) can be extended to probabilis-
tic interpretations Pr, see the Appendix. More important for our purposes are
the defeasible entailment relations induced by P-SHOIN (D), viz., lexicographic
entailment ||∼lex and tight lexicographic entailment ||∼lex

tight. Probabilistic KBs
in general and conditional constraints in particular encode as we said probable,
default knowledge, and tolerate to some degree inconsistency (w.r.t. classical
knowledge). Lexicographic entailment supports such tolerance by intuitively: (i)
partitioning P (ii) selecting the lexicographically least set in such partition con-
sistent with T . See the Appendix for the technicalities.

Reasoning Problems. A reasoning problem that will be of our interest is
probabilistic membership PCmem (probabilistic concept membership): given a
consistent probabilistic KB K, a probabilistic individual o ∈ IP , and a c-concept
ψ, compute l, u ∈ [0, 1] such that K ||∼lex

tight (ψ|�)[l, u] for o.

3 Representing Decision Making Problems

In this section we introduce probabilistic DL decision bases. Regarding notation,
we will try to stick to that in [13] as much as possible, to give the reader easy
access to the referred paper.
4 Note that T is not used to denote a classical TBox anymore but rather the whole

classical knowledge base, TBox and ABox.
5 See Proposition 4.8 in [13].
6 See Proposition 4.9 in [13].
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Attributes and Preferences. We define the non-empty set of attributes as a
subset of c-concepts derived from basic c-concepts C. Informally, every world I
determines a subset of attributes that is to be satisfied. We will assume that the
set of attributes X possibly contains redundancies.

Decision Base. We define a decision base that models an agent in a deci-
sion situation; background knowledge of the agent is modelled by a probabilistic
knowledge base, the finite set of available alternatives are modelled by a set of
individuals, and a weight function that is defined over the set of attributes which
will be used to derive the preference relation of the agent.

Definition 1 (Decision Base). A probabilistic description logic decision base
is a triple D := (K,A,U) where:

– K = (T, P, (Po)o∈IP ) is a consistent probabilistic KB encoding background
knowledge,

– A ⊆ I is the set of alternatives,
– U is UBox, that is a finite graph of a bounded real-valued function w : X −→

R
+ with w(⊥) = 0. †

Informally, the role of K is to provide assertional information about the alter-
natives at hand, along with the general terminological knowledge information
that the agent may require to reason further over alternatives; indeed X is the
set of concepts φ such that K logically entails φ(a). Moreover, U can be defined
to include negative weights as well, (i.e., w : X −→ R instead or R

+) to model
undesirable outcomes or punishments.7 However, for the sake of brevity, we will
consider here only positive weights.

Alternatives with Classical Knowledge. In this particular setting, we
assume we are in possession of certain information about the alternatives, and
consider only the certain subsumption relations between concepts. We do this by
providing a value function for alternatives, defined over the classical component
of the framework (i.e., the classical DL KB T in the decision base).

Definition 2 (Utility of an Alternative). Given a decision base D =
(K,A,U), the utility of an alternative a ∈ A is,

U(a) :=
∑

{w(φ) | T |= φ(a) ∧ φ ∈ X}. (1)

where K = (T, P, (Po)o∈IP ) and a ∈ IC . †

7 Alternatively, U can be studied in two partition, that is, the set of pairs with non-
negative (denoted U+) and negative weights (denoted U−). In extreme cases, U = U+

when U− = ∅ (similarly for U = U+).
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In this work, for the sake of simplicity, we define U as a summation. Note however
that U can be potentially any utility function, such as, e.g., U(a) = 2(p1w(φ) ·
p2w(ψ)) + p3 exp(w(γ)) + c, were a to satisfy ψ, φ, γ ∈ X, where pi, c ∈ R,
for i = 1, 2, 3. Furthermore, we assume that w is defined without knowing the
exact knowledge base and its transitive closure on subsumption, without having
complete knowledge about the ontological relations between attributes.

Notice that each alternative corresponds to an outcome. Using U , we define
the preference relation � over alternatives A = {a1, . . . , an}: ai � aj iff U(ai) >
U(aj), for i, j ∈ {1, . . . , n}; � and ∼ are defined similarly.

Definition 3 (Optimal Choice). Given a decision base D = (K,A,U), the
optimal choice w.r.t. D is,

Opt(A) := arg max
a∈A

U(a) (2)

That is, an alternative gets a reward for satisfying each attribute independently.
†

Intuitively, the function U measures the value of an alternative with respect
to the concepts (possibly deduced) that it belongs. The following proposition is
an immediate result of that.

Proposition 1. Let T be a classical part of the knowledge base of D and a1, a2 ∈
A be any two alternatives. If for every φ ∈ X with T |= φ(a1), there is a ψ ∈ X
with T |= ψ(a2) such that T |= φ � ψ, then a1 � a2.

Proof. ψ be any basic c-concept such that T |= ψ(a2) and (ψ,w(ψ)) ∈ U , then
U(a2) ≥ w(ψ). By assumption, there is a φ ∈ X such that T |= φ � ψ and
T |= φ(a), hence T |= ψ(a). It follows that U(a1) ≥ w(ψ), therefore a1 � a2. �

Intuitively, ceteris paribus (everything else remains the same) any thing that
belongs to a subconcept should be at least as desirable as something that belongs
to a superconcept; for instance, a new sport car is at least as desirable as a
sport car (since anything that is a new sport car is a sport car i.e., new sport
car � sport car).8 The following results says that two alternatives are of same
desirability if they belong to exactly the same concepts.

Corollary 1. Let D be decision base with a classical knowledge base T and
a set of alternatives A. Then for any two alternatives a, a′ ∈ A, a ∼ a′ iff
{ψ | ψ ∈ X,T |= ψ(a)} = {φ | φ ∈ X,T |= φ(a)}.
Proof. By applying Proposition 1 in both directions (i.e., a ∼ a′ =⇒ a � a′

and a′ � a). �

8 Recall that we concern ourselves with desirable attributes, i.e., weights are non-
negative.
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The intuitive explanation for Corollary 1 is that we measure the desirability
(and non-desirability) of things, according to what they are, or to which concepts
they belong. This brings forward the importance of reasoning, since it might
not be obvious at all that two alternatives actually belong to exactly the same
concepts w.r.t attributes.

Example 2. Consider the following decision base about choosing a trip:

T={ hasHotel(trip1,merdan), hasHotel(trip2, armada),FiveStarHotel(meridian),
Expensive � ¬Economic,∃hasHotel.FiveStarHotel � Expensive,
∃hasHotel.ThreeStarHotel � Economic,ThreeStarHotel(armada)}

U={ (Expensive, 10), (Economic, 15)} A = {trip1, trip2}
Here U(trip1) = 10, since the agent knows that trip1 has a five star hotel, it is
an Expensive trip. Similarly, U(trip2) = 15, therefore trip2 � trip1. Opt(A) =
trip2. ♣

Properties of the Utility Function. Since every individual is corresponds
to a subset of attributes that it satisfies, in this section we will treat U as if it
was formally defined over the set of attributes X rather than that of individuals
so that we can discuss some common properties of U following the definitions
given in [3].

Proposition 2. Suppose that U is a value function. Then U is (a) normalized,
(b) non-negative, (c) is monotone, (d) concave, (e) sub-additive, (f) unique up to
positive affine transformation.

Proof. We deal with each property separately:

(a) This holds when the individual does not satisfy any attributes, whence
U(∅) = 0.

(b) Follows from Proposition 1 and property (a).
(c) Follows from Proposition 1.
(d) Let Y,Z, T ⊆ X with Z ⊆ Y . Since the classical part of the logic is monotonic

and weights are positive, whenever I |= Y , I |= Z, which implies U(X ∪
Y ) − U(Y ) ≤ U(X ∪ Z) − U(Z).

(e) Follows from (d).
(f) Let Y,Z ⊆ X with U(Y ) ≥ U(Z) and M(x) = ax + b with a > 0 and b,

M(U(Y )) ≥ M(U(Z)) ⇐⇒ a · ∑
ψ∈Y w(ψ) + b ≥ a · ∑

ψ∈Z w(ψ) + b

⇐⇒ ∑
ψ∈Y w(ψ) ≥ ∑

ψ∈Z w(ψ). �

Decisions with Default Ontological Reasoning. In many situations, prefer-
ential statements that are done by human agents are not meant to be strict state-
ments, say, as in the formal sciences, nor do they take full ontological knowledge
into account. When someone asserts that she prefers a suite to a standard room
(i.e., suite � standard room), it is often the case that the statement is not meant
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to hold for every suite e.g., a a burned suite (burned suite �� standard room).
We would like to model such preferential statements in our framework, but they
potentially violate Proposition 1. Indeed, the decision rule for classical ontologies
(Definition 3) cannot deal with such cases. To do this we need to go beyond clas-
sical KBs, and consider full P-SHOIN (D) KBs and their reasoning techniques.

Example 3. (cont’d) Now consider the previous example extended with the fol-
lowing knowledge P and T :

T = {BadFamedFiveStarHotel � FiveStarHotel}
P = {(Desirable|∃hasHotel.FiveStarHotel)[1, 1],

(¬Desirable|∃hasHotel.BadFamedFiveStarHotel)[1, 1]}
U = {(Desirable, 10)}

which encodes the following knowledge: A bad famed five star hotel is a five star
hotel. Generally, a trip which has a five star hotel is desirable. Generally, a trip
which has a bad famed five star hotel is undesirable. ♣

With classical SHOIN (D) reasoning, it follows that any trip that has
a bad famed five star hotel is a trip that has five star hotel, in symbols
∃hasHotel.BadFamedFiveStarHotel � ∃hasHotel.FiveStarHotel. Note that in the
light of this information, it is entailed that trip1 is desirable. However, if the
agent also learns (added to its knowledge base) that meridian is a bad famed
five star hotel, then trip1 will not be desirable anymore9.

Decisions with Ontological Probabilistic Reasoning. In this section, we
will generalize our previously introduced choice functions with probabilities, that
will result in different behavioral characteristics in the presence of uncertainty.
Those behavioral characteristics can be interpreted as different types of agents
(optimistic, pessimistic etc.), or a decision support system that orders alterna-
tives with respect to different criteria (best possible uncertain outcome, worst
possible uncertain outcome etc.) and user preferences.

A remark on notation before defining expected utility intervals: we will use
the notation [PCmem(K, a, φ)] to denote the tight interval [l, u] that is the
answer to the query PCmem, with regard to knowledge base K, individual a ∈ IP
and c-concept φ. Moreover, l = �PCmem(K, a, φ)� and r = �PCmem(K, a, φ)�

As we have a set of probability functions instead of a single probability func-
tion which results in probability intervals, we get an interval of the expected
utilities. That is, EU(a) =

∑
φ∈X Pr(φ) ·w(φ) is the expected utility of an alter-

native a w.r.t. Pr, and EI is the expected utility interval defined as follows.

9 This is done via Lehmann’s lexicographic entailment; in this particular example
z-partition is (P0, P1) where P0 = {(¬Desirable|∃hasHotel.FiveStarHotel)[1, 1]} and
P1 = {(Desirable|∃hasHotel.FiveStarHotel)[1, 1]} that is, (T, P )∪BadFamedFiveStar
Hotel(meridian) ||∼lex ¬Desirable(trip1).
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Definition 4 (Expected Utility Interval of an Alternative). Given a deci-
sion base D, the expected utility interval of an alternative a ∈ A is,

EI(a) :=
[ ∑

φ∈X

�PCmem(K, a, φ)� · w(φ),
∑

φ∈X

�PCmem(K, a, φ)� · w(φ)] (3)

Notice that each element in the interval is an expected utility, defined via a
(potentially) distinct probability distribution. For simplicity we will denote by
EI(a) the infimum and EI(a) the supremum of EI(a) (i.e., the extrema of
EI(a)). †

Now, using expected utility intervals we will define some decision functions
(mainly from the literature of imprecise probabilities) which generalize the notion
of choices by maximum expected utility. A decision function δ maps non-empty
sets of alternatives A to a subset of A where a ∈ δ(A) iff a � a′ for every a′ ∈ A10.

We proceed to define decision functions characterizing different kinds of ratio-
nal agents. In terms of their use of intervals, they are similar to the Γ -maximax,
Γ -minimax, Interval Dominance and E-admissibility in the literature of impre-
cise probabilities [8].

Definition 5 (Optimistic, Pessimistic Choices). Given a decision base D =
(K,A,U), and EI(a) = [EI(a), EI(a)] for any a ∈ A w.r.t. D, then δ is, resp.
optimistic or pessimistic iff

Opt(A) := arg max
a∈A

EI(a) or Opt(A) := arg max
a∈A

EI(a). (4)

We denote the preference order w.r.t. optimistic and pessimistic choice with �opt,
�opt respectively. Strict orders are defined accordingly. †
Definition 6 (Cautious Choice). The decision function δ is said to be cau-
tious iff δid(A) := {a ∈ A | EI(a) ≥ EI(a′) for all a′ ∈ A}. †

We will denote the preference ordering of cautious choices with �id (id for
interval dominance). Interval dominance offers a formalisation for incomparabil-
ity; that is, if two alternatives a and a′ have neither overlapping expected utility
intervals (i.e., EI(a) �= EI(a′)), nor dominate each other (which means that an
agent cannot decide between them), then a1 || a2. Notice that �id is a partial
weak order whereas �opt and �opt are total-weak orders.

Example 4. Consider an hotel choosing agent and KB K where

T = {GoodHotel � ¬BadHotel,Hotel � FourStarHotel � OneStarHotel}
P = {((GoodHotel|FourStarHotel)[1, 1], (BadHotel|OneStarHotel)[1, 1]}

Pritz = {(FourStarHotel|�)[0.5, 0.7], (Hotel|�)[1, 1]}
Ptivoli = {(FourStarHotel|�)[0.3, 0.1](Hotel|�)[1, 1]}

Pholiday = {(OneStarHotel|�)[0.1, 0.3], (Hotel|�)[1, 1]}
10 Note that this definition essentially coincides with that choice functions in the impre-

cise probability literature [8], with the exception that it is allowed to return an empty
set.
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According to K our agent knows that a good hotel is not a bad hotel (symmetri-
cally), that usually a four star hotel is a good hotel, and usually one star hotel is
a bad hotel, that tivoli is a four star hotel with a probability of at least 0.3, and
so on. For the sake of simplicity, it is further assumed that an hotel is either four
star or one star hotel. Assume that the agent can choose among three courses
of action, viz., among alternatives A = {ritz, tivoli, holiday}, relatively to the
UBox U = {(GoodHotel, 10), (BadHotel, 0)}. If the agent is pessimistic, she will
choose holiday since it is a Good Hotel with probability of at least 0.7, (his
preference being holiday �opt ritz �opt tivoli). An optimistic agent will instead
choose tivoli (i.e., tivoli �opt ritz �opt holiday). Finally, a cautious agent prefers
holiday to ritz. However, in general it cannot make a choice, since tivoli || ritz
and tivoli || holiday. ♣

Notice that interval dominance is a very strict restriction that is not very
helpful in normative settings. We give a less strict version based on Levi’s notion
of E-admissibility in [8,12] (E for expected).

Definition 7 (E-Admissible Choice). An alternative a ∈ A is E-admissible
(a ∈ δe(A)) iff for every φ ∈ X, there is a Pr(φ) ∈ [l, u] s.t. K ||∼lex

tight a : φ[l, u],
and for every a′ ∈ A\{a} and for every Pr′(φ) ∈ [l′, u′] s.t. K ||∼lex

tight a′ :
φ[l′, u′], Pr(φ) > Pr′(φ) holds. We denote the preference relation with �e. †

Informally, δe looks for a probability distribution that lets an alternative
weakly dominates every other.

Example 5. Consider alternatives A = {a1, a2, a3} with expected utility intervals
on a single attribute, that are [5, 7], [1, 10] and [1, 8]. Assume that there are two
distributions Pr and Pr′ such that expected utility of each alternatives w.r.t.
Pr is 5, 7, 6, and 6, 7, 8 w.r.t. Pr′. Also assume that there is no Pr′′ such
that EU(a1) ≥ EU(a2) and EU(a1) ≥ EU(a3). Then, δe(A) = {a2, a3}, that is,
a3 ||e a2 and a2 �e a1 as well as a3 �e a1.

Proposition 3. The following statements hold: (i) �opt ⊆�e and, on the other
hand, (ii) �id ⊆�opt ∩ �opt.

Proof. We prove each condition separately:

(a) Let (a, a′) ∈�opt. By definition of Opt(A), there is a Pr(φ) ∈ [l, u], (indeed
Pr(φ) = u) such that, on the one hand EI(Opt(A)) = Pr(φ) · w(φ), and
EI(Opt(A)) ≥ EI(Opt(A\Opt(A))) on the other hand. These fact together
imply that (a, a′) ∈ �e.

(b) Let (a, a′) ∈�i; then EI(a) ≥ EI(a′), which means (i) a = Opt(A) and (ii)
a′ = Opt(A), whence (a, a′) ∈ �opt ∩ �opt. �
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Modeling Ambiguity Averse Decisions. As it is commonly motivated by
imprecise probability literature, the classical theory of probability is not able
make distinctions between different layers of uncertainty. One such common
example is that under complete ignorance.

In this section, we will encode the Ellsberg example in our framework and
show that it is possible to model ambiguity averse decisions.

One popular interpretation for the behaviour explained in preliminary section
is that, human agents tend to prefer more precise outcomes to less precise ones.
That is, one feels safer where one has an idea about risk (one is less ignorant
about the outcomes). The theory of imprecise probabilities offers a straightfor-
ward representation of the problem.

Definition 8 (Ellsberg-like Choice). Given alternatives a, a′ ∈ A, a �ebg a′

holds iff (EI(a) + EI(a))/2 = (EI(a′) + EI(a′))/2, and (EI(a) − EI(a)) <
(EI(a′) − EI(a′)). We will denote the corresponding decision function as δebg

and call it an Ellsberg-like choice. †
Informally, such a function chooses a tighter interval where means are

the same. Th reader is invited to verify that the preference relation Ellsberg-
dominates denoted �ebg, behaves accordingly to the experiment scenario given
in Preliminaries (Sect. 2).

Example 6. One possible encoding of the problem is as follows. For convenience,
we will give l, u ∈ Q.

T = {Yellow � ¬Blue,Blue � ¬Red,Yellow � ¬Red
P = {(Red|�)[1/3, 1/3]},A = {choosered, chooseblue}

Pchoosered = {(ChosenRed|�)[1, 1], (ChosenBlue|�)[0, 0]}
Pchooseblue = {(ChosenBlue|�)[1, 1], (ChosenRed|�)[0, 0]}

U = {(Red � ChosenRed, 1), (Blue � ChosenBlue, 1)}
Notice that agent only knows that red balls are one third of the domain (as well
as red, blue and yellow are distinct). The framework automatically infers that
yellow balls are of between 0 and 2/3 (as well as for red), and yellow or blue are
2/3 exactly. Given this information, it is easy to verify that choosered �ebg

chooseblue. Now modifying UBox, i.e., replacing (Red � ChosenRed, 1) with
((Red � Yellow) � ChosenRed, 1), and replacing (Blue � ChosenBlue, 1) with
((Blue � Yellow) � ChosenBlue, 1), agent has the preference chooseblue �ebg

choosered (since EI(choosered) = [1/3, 1] and EI(chooseblue) = [2/3, 2/3]).

Note that it is still too strict, which one may not expect to hold often. Below,
we will give a more tolerant form of this function.

Definition 9 (Ambiguity Averse Opportunist Choice). Given alterna-
tives a, a′ ∈ A, a �ag a′ iff EI(a) ≤ EI(a′), EI(a) ≥ EI(a′) and EI(a) −
EI(a′) ≥ EI(a′) − EI(a). We call the induced choice function an ambiguity
averse choice. †
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Intuitively, it brings an extra condition such that the mean needs to be greater
or equal. The following result shows that �ebg is a special case of �ag.

Proposition 4. Let a, a′ be two alternatives. Then, a �ebg a′ implies a �ag a′.

Proof. Assume that (i) (EI(a) + EI(a))/2 = (EI(a′) + EI(a′))/2 and also (ii)
(EI(a) − EI(a)) < (EI(a′) − EI(a′)). Then by (i), it follows that (EI(a) +
EI(a)) = (EI(a′) + EI(a′)) (iii), that is (EI(a) − EI(a′)) = (EI(a′) − EI(a)),
hence (EI(a) − EI(a′))/(EI(a′) − EI(a)) = 1. We know that EI(a) ≥ EI(a)
and EI(a′) ≥ EI(a′). By (ii), (EI(a) − EI(a′)) < (EI(a′) − EI(a)) (iv), and
by (iii) and (iv), (EI(a′) − EI(a)) ≥ 0, hence EI(a′) ≥ EI(a). Similarly for
EI(a) ≥ EI(a′) �

In a loose sense, one can combine them with the previously mentioned func-
tions (e.g., δe+ag) in order to model more complex behaviours. However, we
leave their compositions and compatibilities, along with subtle connections to
the probabilistic ontologies to future work.

4 Related Work

Our framework can be seen as a part of the literature on weighted logics for
representing preferences [3,11], with an emphasis on agent modeling. Our notion
of UBox to generate utility functions was for instance partially derived from the
notion of goal bases (occasionally defined in terms of multi-sets) as understood
in the literature of propositional languages for preferences [11,19]. There is also
a substantial tradition on defeasible reasoning over preferences, see [2,4,5,9], on
which we have leveraged.

On the DL side, several weighted DL languages have been proposed, albeit
without covering uncertainty over instances [16,17]. In them, constructs similar
to goal bases are used, called “preference sets”, and elements of multi-attribute
utility theory are partially incorporated into their settings.

Further recent works which can be considered to be loosely related (as sensu
stricto non utility-theoretic) recent approaches include: an application of DL-
based ontologies to CP-Nets, see [15], and a probabilistic logic-based setting [14]
based on Markov Logics (precise probabilities) and using Markov networks to
model and reason over preferences.

An uncertainty-based approach which attempts to focus on multi-criteria
decision making (MCDM) problems is [18]; it is mainly based on the applica-
tion of general fuzzy logic to MCDM problems. Although the terms utility and
preference are not explicitly used, it refers to preferences implicitly.

5 Conclusions and Further Work

We have introduced a description logic based framework, to effectively express
and solve non-sequential decision-making problems with multiple attributes.
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As the major part of decision theory literature takes uncertainty into account,
we based our approach on Lukasiewicz’ P-SHOIN (D) family of probabilistic
description logics ([13]). We have shown that it is straightforward to define deci-
sion functions representing ambiguity aversion; a case that violates the axioms
of expected utility. In so doing, one can define preference relations and deci-
sion functions that we believe model decisions by rational (human) agents much
better.

Another major direction is to investigate the value of information (structured
knowledge in this context) in different ontological frameworks, viz., to explore
in which ways and how much prior knowledge influences decisions about to be
taken by agents.

Furthermore, it would be interesting to extend the framework to sequential
decisions (e.g., a Di → Di+1 sequence of decision bases). This is possible, since
the language extensively uses conditional constraints. Once a sequential exten-
sion is defined, one can express strategies and game-theoretic issues. Further-
more, it would be interesting to apply the framework or an appropriate modifi-
cation, to common problems such as fair division, voting, preference aggregation
etc.

We are currently working on the implementation of the framework as a
Protégé11 plug-in. The development of our Protégé plugin is motivated by the
idea to demonstrate the benefits of our approach to a set of different application
scenarios where decision making is involved.

Appendix

Consistency, Lexicographic and Logical Consequence. A probabilistic
interpretation Pr verifies a conditional constraint (ψ|φ)[l, u] iff Pr(φ) = 1 and
Pr(ψ) |= (ψ|φ)[l, u]. Moreover, Pr falsifies (ψ|φ)[l, u] iff Pr(φ) = 1 and Pr(ψ) �|=
(ψ|φ)[l, u]. A set of conditional constraints F tolerates a conditional constraint
(ψ|φ)[l, u] under a classical knowledge base T , iff there is model Pr of T ∪ F
that verifies (ψ|φ)[l, u] (i.e., Pr |= T ∪ F ∪ {(ψ|φ)[l, u], (φ|�)[1, 1]}). A PTBox
PT = (T, P ) is consistent iff T is satisfiable, and there exists an ordered partition
(P0, . . . , Pk) of P such that each Pi (where i ∈ {0, . . . , k}) is the set of all
F ∈ P\(P0 ∪ · · · ∪ Pi−1) that are tolerated under T by P\(P0 ∪ · · · ∪ Pi−1).
Following [13], we note that such ordered partition of PT is unique if it exists,
and is called z-partition. A probabilistic knowledge base KB = (T, P, (Po)o∈IP )

is consistent iff PT = (T, P ) is consistent, and for every probabilistic individuals
o ∈ IP , there is a Pr such that Pr |= T ∪ Po.

For probabilistic interpretations Pr and Pr′, Pr is lexicographically preferable
(or lex-preferable) to Pr′ iff there exists some i ∈ {0, . . . , k} such that |{F ∈ Pi |
Pr |= F}| > |{F ∈ Pi|Pr′ |= F}| and |{F ∈ Pj | Pr |= F}| = |{F ∈ Pj | Pr′ |=
F}| for all i < j ≤ k. A probabilistic interpretation Pr is a lexicographically
minimal (or lex-minimal) model of T ∪ F iff Pr |= T ∪ F and there is no

11 http://protege.stanford.edu/.

http://protege.stanford.edu/
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Pr′ such that Pr′ |= T ∪ F and Pr′ is lex-preferable to Pr. A conditional
constraint (ψ|φ)[l, u] is a lexicographic consequence (or lex-consequence) of a set
of conditional constraints F under a PTBox PT (or F ||∼lex (ψ|φ)[l, u]) under
PT, iff Pr(ψ) ∈ [l, u] for every lex-minimal model Pr of T ∪ F ∪ {(φ|�)[1, 1]}.
Moreover, PT ||∼lex F , iff ∅ ||∼lex F under PT . Note that the notion of lex-
consequence faithfully generalizes the classical class subsumption. That is, given
a consistent PTBox PT = (T, P ), a set of conditional constraints F , and c-
concepts φ and ψ, if T |= φ � ψ, then F ||∼lex (ψ|φ)[1, 1] under PT .

Furthermore, we say that (ψ|φ)[l, u] is a tight lexicographic consequence (or
tight lex-consequence) of F under PT , denoted F ||∼lex

tight (ψ|φ)[l, u] under PT ,
iff l = inf{Pr(ψ) | Pr ||∼lex T ∪ F ∪ {(φ|�)[1, 1]} and u = sup{Pr(ψ) | Pr ||
∼lex T ∪ F ∪ {(φ|�)[1, 1]}. Moreover, PT ||∼lex

tight F iff ∅ ||∼lex F . Note that
[l, u] = [1, 0] (empty interval) when there is no such model. For a probabilistic
knowledge base KB = (T, P, (Po)o∈IP ), KB ||∼lex F where F is a conditional
constraint for o ∈ IP iff Po ||∼lex F under (T, P). Moreover, KB ||∼lex

tight F

iff Po ||∼lex
tight F under (T, P ). A conditional constraint (ψ|φ)[l, u] is a logical

consequence of T ∪ F (i.e., T ∪ F |= (ψ|φ)[l, u]) iff each model of T ∪ F is also a
model of (ψ|φ)[l, u]. Furthermore, (ψ|φ)[l, u] is a tight logical consequence of T ∪F
(i.e., T ∪ F |=tight (ψ|φ)[l, u], iff l = inf{Pr(ψ|φ) | Pr |= T ∪ F and Pr(φ) > 0}
and u = sup{Pr(ψ|φ) | Pr |= T ∪ F and Pr(φ) > 0}. Given a PTBox PT =
(T, P ), Q ⊆ P is lexicographically preferable (or lex-preferable) to Q′ ⊆ P iff there
exists some i ∈ 0, . . . , k such that |Q∩Pi| > |Q′ ∩Pi| and |Q∩Pj | = |Q′ ∩Pj | for
all i < j ≤ k, where (P0, . . . , Pk) is the z-partition of PT. Q is lexicographically
minimal (or lex-minimal) in a set S of subsets of P iff Q ∈ S and no Q′ ∈ S is lex-
preferable to Q. Furthermore, let F be a set of conditional constraints, and φ and
ψ be two concepts, then a set Q of lexicographically minimal subsets of P exists
such that F ||∼lex (ψ|φ)[l, u] under PT iff T ∪ Q ∪ F ∪ (φ|�)[1, 1] |= (ψ|�)[l, u]
for all Q ∈ Q. This is extended to tight case lex-consequence.
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Abstract. For agents it can be advantageous to vote insincerely in order
to change the outcome of an election. This behavior is called manipula-
tion. The Gibbard-Satterthwaite theorem states that in principle every
non-trivial voting rule with at least three candidates is susceptible to
manipulation. Since the seminal paper by Bartholdi, Tovey, and Trick
in 1989, (coalitional) manipulation has been shown NP-hard for many
voting rules. However, under single-peaked preferences – one of the most
influential domain restrictions – the complexity of manipulation often
drops from NP-hard to P.

In this paper, we investigate the complexity of manipulation for the
k-approval and veto families of voting rules in nearly single-peaked elec-
tions, exploring the limits where the manipulation problem turns from
P to NP-hard. Compared to the classical notion of single-peakedness,
notions of nearly single-peakedness are more robust and thus more likely
to appear in real-world data sets.

1 Introduction

Elections are a useful framework for preference aggregation with many applica-
tions in both human societies and in multiagent systems. Well-known examples
are political elections in human societies and the design of recommender sys-
tems [16], planning [10], and machine learning [22] in multiagent systems, just
to name a few.

Informally, an election is given by a set of candidates and a set of voters
who have to express their preferences over the set of candidates. A voting rule
describes how to aggregate the voters’ preferences in order to determine the win-
ners of a given election. In computational social choice, a central research topic
is to study computational questions regarding insincere behavior in elections.
A prominent example is coalitional manipulation. Coalitional manipulation deals
with situations in which a group of voters casts their votes strategically in order
to alter the outcome of an election. (If the coalition has size one, the problem
is called single manipulation). The famous Gibbard-Satterthwaite theorem says
that, in principle, every reasonable voting rule for at least three candidates is
susceptible to manipulation [17,20].
c© Springer International Publishing Switzerland 2015
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Manipulability is considered to be an undesirable property for a voting rule.
In their seminal paper Bartholdi, Tovey, and Trick suggested that although vot-
ing rules are manipulable, the manipulator’s task of successfully manipulating
the election can still be computationally hard, i.e., NP-hard [1]. Indeed, since
the paper by Bartholdi, Tovey, and Trick, (coalitional) manipulation has been
shown NP-hard for many voting rules.

In contrast, under domain restrictions, the computational complexity of
manipulation drops from NP-hard to P for many voting rules. One popular
model of domain restriction in elections is the model of single-peaked prefer-
ences introduced by Black [2]. Unfortunately, the concept of single-peakedness is
fragile and is unlikely to appear in real-world data sets. To overcome this limita-
tion, recent research has established notions of nearly single-peaked preferences
which are more robust [6,7,11,14].

To the best of our knowledge, the only paper investigating (coalitional)
manipulation in nearly single-peaked elections is the work by Faliszewski,
Hemaspaandra, and Hemaspaandra [14] (a detailed comparison to our paper
can be found in the Related Work Section). Our paper follows this new line of
research and extends it with the following contributions:

– In our complexity analysis, we provide dichotomy results for constructive coali-
tional weighted manipulation under k-approval in the voter deletion model.
The voter deletion model assumes that at most � voters are not single-peaked
with respect to the linear axis. Our results pinpoint the border between P
membership and NP-completeness with respect to the number of approved
candidates and the distance to single-peakedness.

– For veto we show how the complexity of constructive coalitional weighted
manipulation behaves under seven notions of nearly single-peakedness that
have been recently introduced [11,14]. Our dichotomies show that constructive
coalitional weighted manipulation in nearly single-peaked electorates is either
trivial (and therefore in P) or NP-complete depending on the distance to
single-peakedness.

Related Work. Our work continues the line of research on manipulation of elec-
tions. The first paper investigating manipulation in elections is the seminal paper
of Bartholdi, Tovey, and Trick [1], where they studied the single manipula-
tion problem with unweighted voters and proved the problem to be solvable
in polynomial-time for all scoring rules.

Constructive coalitional weighted manipulation (CCWM, for short) was first
introduced by Conitzer, Sandholm, and Lang [5]. Later, Hemaspaandra and
Hemaspaandra provided a dichotomy result for the CCWM problem for scor-
ing rules [18]. In particular, they showed that CCWM is easy for plurality, but
is NP-hard for all other k-approval and k-veto rules. Procaccia and Rosenschein
have extended this line of research by studying the average-case complexity of
manipulation [19].

Walsh was the first who studied the complexity of manipulation in single-
peaked elections, especially with a view to answer the question whether the
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complexity of manipulation changes under single-peaked elections [21]. In par-
ticular, he demonstrated that the complexity of CCWM under single transferable
vote remains NP-hard even for single-peaked elections. Faliszewski et al. proved
that for single-peaked profiles, CCWM for m-candidate 3-veto elections is NP-
complete for m = 5 and is in P for all other m [13]. Furthermore, they showed
that for single-peaked profiles, CCWM for veto is in P and they completely
characterized which scoring rules have easy CCWM problems and which scoring
rules have hard CCWM problems for three-candidate elections. Brandt et al.
generalized the latter result for m-candidate scoring rules [3].

The present paper was mostly motivated by Faliszewski, Hemaspaandra, and
Hemaspaandra [14]: Amongst others, they investigated the complexity of the
CCWM problem under veto elections in nearly single-peaked societies, where
they used the nearly single-peaked notion of �-Voter Deletion (which is called
�-Maverick in their paper). We extend their results to seven common notions of
nearly single-peakedness that were recently discussed in the literature [11,14].

Two recent publications have studied the complexity of computing the dis-
tance to single-peaked electorates. Erdélyi, Lackner, and Pfandler [11] have
focused on the single-peaked domain whereas Bredereck, Chen, and Woeginger
[4] considered distances to a larger number of domain restrictions. Both papers
mostly contain NP-hardness results with a few notable exceptions such as that
the candidate deletion distance is computable in polynomial time. For a practi-
cal use of nearly single-peaked preferences, it would be desirable to have efficient
algorithms to compute distances. This line of research has been initiated by
Elkind and Lackner [8], where several approximation and fixed-parameter algo-
rithms have been presented.

Organization. The remainder of the paper is organized as follows. In Sect. 2,
we recap some voting theory basics. Section 3 gives an overview on the nearly
single-peakedness notions and their relations handled in this paper. Our results
on manipulation are presented in Sect. 4. Section 5 provides some conclusions
and future directions.

2 Preliminaries

Let C be a finite set of candidates, V be a finite set of voters, and let � be a vote
(i.e., a total order) on C. Without loss of generality let V = {1, . . . , n}. Let P =
(�1, . . . ,�n) be a (preference) profile, i.e., a collection of votes. For simplicity,
we will write for each voter i ∈ V , c1c2 . . . cm instead of c1 �i c2 �i . . . �i cm.
For two preference profiles on the same set of candidates P = (�1, . . . ,�n)
and L = (�n+1, . . . ,�s), let (P,L) = (�1, . . . ,�s) define the union of the two
preference profiles. An election is defined as a triple E = (C, V,P), where C is
the set of candidates, V the set of voters, and P a preference profile over C.
Throughout the paper let m denote the number of candidates and n the number
of votes.

A voting correspondence (or voting rule) F is a mapping from a given election
E = (C, V,P) to a non-empty subset W ⊆ C; we call the candidates in W the
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winners of the election E. A prominent class of voting rules is the class of
scoring rules, which are defined using a scoring vector α = (α1, . . . , αm), αi ∈ N,
α1 ≥ · · · ≥ αm. In an m-candidate scoring rule each voter has to specify a tie-
free linear ordering of all candidates and gives αi points to the candidate ranked
in position i. The winners of the election are the candidates with the highest
overall score. k-approval is an m-candidate scoring rule with α1 = · · · = αk = 1
and αk+1 = · · · = αm = 0. veto is the scoring rule defined by the scoring vector
α1 = · · · = αm−1 = 1 and αm = 0.

In the case of k-approval we say that the first k candidates in a given ranking
have been approved whereas the others have been disapproved. For k-approval
and veto, preferences actually do not have to be full rankings but dichotomous
preferences suffice. Dichotomous preferences only distinguish between approved
and disapproved candidates. In this paper we often do not give full rankings but
rather the set of approved candidates. Strictly speaking, we use this notation to
describe some total order that ranks the approved candidates above the disap-
proved candidates; all such total orders are equivalent from the perspective of
k-approval.

Definition 1. Let an axis A be a total order on C denoted by <. Furthermore,
let � be a vote with c as its highest ranked candidate. The vote � is single-peaked
with respect to A if for any x, y ∈ C, if x < y < c or c < y < x then c � y � x
has to hold. A preference profile P is said to be single-peaked with respect to
an axis A if each vote is single-peaked with respect to A. A preference profile P
is said to be single-peaked consistent if there exists an axis A such that P is
single-peaked with respect to A.

Note that, given a set of approved candidates and an axis A, there exists a
single-peaked total order that corresponds to these approved candidates if and
only if the candidates form an interval on A. Thus, for dichotomous preferences,
one could also define single-peakedness in terms of intervals on an axis. We
remark that recently several other domain restrictions specifically for dichoto-
mous preferences have been proposed and studied [9].

To establish NP-hardness results we will reduce from the well-known NP-
complete problem Partition (see, e.g., [15]), which is defined as follows.

Partition

Given: A finite multiset S = {x1, . . . , xs} of positive integers with∑s
i=1 xi = 2X for some positive integer X.

Question: Is there a subset S′ ⊂ S such that the sum of the elements in S′

is exactly X?

3 Nearly Single-Peakedness

As we build upon the notions of nearly single-peakedness which were studied by
Erdélyi, Lackner, and Pfandler [11], we briefly recapitulate the relevant defini-
tions and results. All these notions have been previously introduced and defined
in the literature [11,12,14].
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In the following, let E = (C, V,P) be an election and � a positive integer. Also,
by P[C ′] we denote the profile P restricted to the candidates in C ′. Analogously if
A is an axis over C, we denote by A[C ′] the axis A restricted to candidates in C ′.

Voter Deletion: A profile P is �-Voter Deletion single-peaked consistent if by
removing at most � votes from P one can obtain a preference profile P ′ that
is single-peaked consistent. (We remark that this notion is also referred to
as �-maverick-SP [14] and as �-maverick single-peaked consistent [11]).

Candidate Deletion: A profile P is �-Candidate Deletion single-peaked consis-
tent if we can obtain a set C ′ ⊆ C by removing at most � candidates from
C such that the preference profile P[C ′] is single-peaked consistent.

Local Candidate Deletion: Let A be an axis over C. A vote � on a candidate
set C ′ ⊂ C is called a partial vote. A partial vote on C ′ is said to be single-
peaked with respect to A if it is single-peaked with respect to A[C ′]. A profile
P is �-Local Candidate Deletion single-peaked consistent if there exists an
axis A such that by removing at most � candidates from each vote we obtain
a partial profile P ′ that is single-peaked with respect to A.

Additional Axes: A profile P is �-Additional Axes single-peaked consistent if
there is a partition V1, . . . , V�+1 of the voter set V such that the correspond-
ing preference profiles P1, . . . ,P�+1 are single-peaked consistent.

Global Swaps: A profile P is �-Global Swaps single-peaked consistent if P can be
made single-peaked by performing at most � swaps of consecutive candidates
in the profile. (Note that these swaps can be performed wherever we want –
we can have � swaps in only one vote, or one swap each in � votes.)

Local Swaps: A profile P is �-Local Swaps single-peaked consistent if P can
be made single-peaked consistent by performing no more than � swaps of
consecutive candidates per vote.

Candidate Partition: A profile P is �-Candidate Partition single-peaked con-
sistent if the set of candidates C can be partitioned into at most � disjoint
sets C1, . . . , C� with C1∪ . . .∪C� = C such that the profiles P[C1], . . . ,P[C�]
are single-peaked consistent.

We denote by V D(P)/CD(P)/LCD(P)/AA(P)/GS(P)/LS(P)/CP (P) the
smallest � such that P is �-Voter Deletion/�-Candidate Deletion/�-Local Can-
didate Deletion/�-Additional Axes/�-Global Swaps/�-Local Swaps/�-Candidate
Partition single-peaked consistent.

Theorem 2. (cf. [11]) Let P be a preference profile. Then the following inequal-
ities hold:

(1) LS(P) ≤ GS(P). (4) LCD(P) ≤ LS(P). (7) CP (P) ≤ CD(P) + 1.

(2) LCD(P) ≤ CD(P). (5) V D(P) ≤ GS(P). (8) CP (P) ≤ LS(P) + 1.

(3) CD(P) ≤ GS(P). (6) AA(P) ≤ V D(P).

This list is complete in the following sense: Inequalities that are not listed here
and that do not follow from transitivity do not hold in general. The resulting
partial order with respect to ≤ is displayed in Fig. 1 as a Hasse diagram.
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Fig. 1. Hasse diagram of the partial order described in Theorem 2.

Finally, let us summarize the complexity results concerning the detection of
nearly single-peaked elections. Here, the question is whether a given election
is �-X single-peaked consistent. This problem is polynomial-time solvable for
the Candidate Deletion distance and NP-complete for all X ∈ {Voter Deletion,
Local Candidate Deletion, Additional Axes, Global Swaps, Local Swaps} [4,11].

4 Manipulation

In what follows we investigate the computational complexity of coalitional
manipulation in scoring rules under the assumption that the underlying elec-
tions are nearly single-peaked. For this we have to formally define the coalitional
weighted manipulation problem in general and for nearly single-peaked elec-
torates. Let F be a voting correspondence.

F-Constructive Coalitional Weighted Manipulation (F-CCWM)

Given: An election (C, V,P), where C is a set of candidates, V a set
of nonmanipulative voters, and P = (P1, . . . , Ph) a preference
profile; in addition, a set of manipulative voters S with V ∩ S =
∅, a weight function w from V ∪ S to N, and a distinguished
candidate p ∈ C.

Question: Is there a preference profile L = (L1, . . . , Ls) for the manipula-
tive voters in S such that p is a (co-)winner in (C, V ∪S, (P,L))
with respect to the voting correspondence F?

In this paper we study F-CCWM for nearly single-peaked preferences. For
a fixed, non-negative integer � and X ∈ {Voter Deletion, Candidate Deletion,
Local Candidate Deletion, Additional Axes, Global Swaps, Local Swaps, Candi-
date Partition}, we define F-�-X-CCWM to be F-CCWM restricted to profiles
that are �-X single-peaked consistent with respect to an axis A. Note that the
combined election (C, V ∪ S, (P,L)) has to be �-X single-peaked consistent. In
addition, we assume that this axis is part of the input. In the case of the addi-
tional axes distance, we assume that all axes are part of the input; in the case
of the candidate partition distance, we assume that the actual partition is part
of the input. To be more precise, F-�-X-CCWM is defined as follows:



Manipulation of k-Approval in Nearly Single-Peaked Electorates 77

F-�-X-CCWM

Given: An F-CCWM instance, an axis A, additional axes A1, . . . , A� if
X is Additional Axes, a partition of the candidate set C if X is
Candidate Partition.

Question: Is there a preference profile L = (L1, . . . , Ls) for the manipu-
lative voters in S such that (i) p is a (co-)winner in (C, V ∪
S, (P,L)) with respect to the voting correspondence F and (ii)
(C, V ∪ S, (P,L)) is �-X single-peaked consistent?

Remark. As mentioned earlier, it is NP-hard to verify whether an election is
�-X single-peaked consistent for all notions of distance X considered in this
paper except for the Candidate Deletion distance (for which this problem is in
P) and for the Candidate Partition distance (for which its complexity is not
known) [4,11]. These NP-hardness results, however, do not influence the com-
plexity of F-�-X-CCWM due to our assumption that the axis is part of the
input. Given a fixed axis A and X ∈ {Voter Deletion, Candidate Deletion, Local
Candidate Deletion, Global Swaps, Local Swaps}, it requires only polynomial
time to verify that an election is �-X single-peaked with respect to A. The
same holds for Additional Axis if all axes are given and for Candidate Parti-
tion if the partition of the candidates is given. Consequently, the complexity of
F-�-X-CCWM can be studied separately from the complexity of deciding �-X
single-peaked consistency.

Let us start with our first result on CCWM. Following the notation
of Faliszewski, Hemaspaandra, and Hemaspaandra [14], let (α1, α2, α3) elec-
tions denote three-candidate scoring rule elections with scoring-vector α =
(α1, α2, α3). In that paper it was proven that for each α1 ≥ α2 > α3, (α1, α2, α3)-
1-Voter Deletion-CCWM is NP-complete. This result implies that Veto-
1-Voter Deletion-CCWM for three-candidate elections is NP-complete. In
contrast, Veto-CCWM is in P for single-peaked societies. The following propo-
sition makes use of Theorem 2 and shows that the same holds for all other notions
of distance studied in this paper.

Proposition 3. Let X ∈ {Candidate Deletion, Local Candidate Deletion, Addi-
tional Axes, Global Swaps, Local Swaps}. For each α1 ≥ α2 > α3, the problems
(α1, α2, α3)-1-X-CCWM and (α1, α2, α3)-2-Candidate Partition-CCWM
are NP-complete.

Proof. Faliszewski, Hemaspaandra, and Hemaspaandra [14] show NP-complete-
ness of the (α1, α2, α3)-1-Voter Deletion-CCWM problem. We now show
that a three candidate, 1-voter deletion single-peaked consistent election is also
1-X single-peaked consistent for all X and 2-candidate partition single-peaked
consistent. It is easy to see that every election E over three candidates is 1-
candidate deletion, 1-local candidate deletion, and 2-candidate partition single-
peaked consistent. From Theorem 2, Inequality (6), follows that E is also 1-
additional axes single-peaked consistent.
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Let C = {a, b, c} be the set of candidates, and without loss of generality
assume that E is 1-voter deletion single-peaked consistent along the axis a <
b < c. Note that there are only two possible non-single-peaked votes, acb and
cab. In both votes, swapping the last two candidates leaves us with single-peaked
votes with respect to axis a < b < c. Thus, E is 1-global swaps single-peaked
consistent. From Theorem 2, Inequality (1), follows that E is 1-local swaps single-
peaked consistent. �

4.1 Manipulation for k-Approval

We continue by investigating the computational complexity of manipulation for
the k-approval voting rule in �-Voter Deletion single-peaked societies. CCWM
for k-approval is known to be NP-complete in general [18]. This holds even for
single-peaked elections in many settings [3]. We extend these results to �-Voter
Deletion single-peaked societies. More concretely, we show a dichotomy result:
k-Approval-�-Voter Deletion-CCWM is in P if and only if � < 2k−m

m−k , and
NP-complete otherwise. This gives a complete picture for k-approval with respect
to �-Voter Deletion single-peakedness. Both the P membership and NP-hardness
result are generalizations of the results for veto elections [14] and our proofs can
be seen as refinements of the corresponding proofs.

Theorem 4. Let m ≥ 3, k > 1, � ≥ 1 be fixed integers such that k < m and
� ≥ 2k−m

m−k . Then k-Approval-�-Voter Deletion-CCWM for elections with
m candidates is NP-complete.

Proof. Membership in NP is trivial. We reduce from Partition with a sum of
2X. Let b be a positive integer such that max(1, 2k − m) ≤ b ≤ k − 1. Note that
such a b always exists since 1 < k < m. Let C = {x, y, p, c1, . . . , cm−3}, where p
is the distinguished candidate. To construct the votes in P, we split the sequence
pc1 · · · cb−1 into consecutive blocks of size m − k. (If necessary the last block is
filled with candidates from cb, . . . , cm−3.) Let d =

⌈
b

m−k

⌉
. These blocks give d

sets of candidates D1, . . . , Dd. Furthermore, let e = m−3−b
2 . We fix the axis A

to cb+�e� < · · · < cm−3 < x < p < c1 < · · · < cb−1 < y < cb < · · · < cb+�e�−1.
The profile P comprises the following votes:

– P contains d votes of weight X: For each i ∈ {1, . . . , d},

Vi : C \ Di is approved, w(Vi) = X.

Note that all these votes are not single-peaked.
– � − d votes of weight 1: For i ∈ {d + 1, . . . , �},

Vi : {x, y, p, c1, . . . , ck−4, cm−4}, w(Vi) = 1.

Also these votes are not single-peaked and hence we have exactly � non-single-
peaked votes. Consequently, we force the manipulators to cast single-peaked
votes.
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Let the set L consist of s manipulators with weights x1, . . . , xs.
At this point, candidates have the following scores: The candidates x and

y are approved by all votes and hence they have a score of d · X + (� − d).
Candidate p is approved by all votes except V1 since p ∈ D1 and thus has a
score of (d− 1) ·X +(�− d). The candidates c1, . . . , cb−1 have a score of at most
(d − 1) · X + (� − d) since they are contained in at least one Di. The candidates
cb, . . . , cm−3 have a score of at most d · X + (� − d).

Since the manipulators can cast only single-peaked votes and they want to
approve p but not both x and y, the manipulators approve an interval on A of
length k that contains p and either x or y.

Intuitively, the manipulators can only make p a winner if they manage to
give 2X points to p and X points to x and y such that x, y, and p are tied. Note
that in a single-peaked vote where p is approved, also either x or y has to be
approved. We claim that there is a subset S′ ⊂ S such that the elements in S′

sum to X if and only if p can be made a winner of the election by constructive
coalitional weighted manipulation.

“⇒”: Suppose there is a subset S′ ⊂ S such that the elements in S′ sum to
X. Let all the manipulators whose weight is in S′ approve

{x, p, c1, . . . , cb−1, cm−k+b−1, . . . , cm−3},

i.e., they approve a “block” of length k that starts at cb−1 and goes to the left
on axis A. All the manipulators whose weight is in S \ S′ approve

{p, y, c1, . . . , ck−2},

i.e., they approve a “block” of length k that starts at p and goes to the right. In
both cases the vote is single-peaked. It is easy to see that p gains 2X, whereas
x and y only gain X points. Note that the maximum score where p ties with x
and y is (d + 1) · X + (� − d) as x and y obtain d · X + (� − d) points from the
nonmanipulators and the manipulators can distribute a score of 2X, but never
approve x and y together. Note that none of the other candidates can surpass
the score of x, y, and p. Hence, x, y, and p are among the winners tied for first
place making the distinguished candidate p a winner.

“⇐”: Suppose that p can be made a winner of the election by constructive
coalitional weighted manipulation. Note that according to the scores given by
the nonmanipulators, p is missing X points to be tied with x and y. The only
way p can gain X points on these two candidates is if the manipulators can
be divided into two groups, both weighing X points. The first group approves
p, x, and suitable candidates from {c1, . . . , cm−3}. The second group approves
p, y, and suitable candidates from {c1, . . . , cm−3}. Thereby, p gains 2X points,
whereas x and y gain only X points each. Thus, there is a subset S′ ⊂ S such
that the elements in S′ sum to X. �

Theorem 5. If � < 2k−m
m−k , then k-Approval-�-Voter Deletion-CCWM is

in P.
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Proof. Without loss of generality let A : c1 < c2 < · · · < cm. Every vote dis-
approves m − k candidates. Consequently, the � non-single-peaked voters dis-
approve at most � · (m − k) < 2k − m candidates. Therefore, there is at least
one candidate contained in {cm−k+1, . . . , ck} that is approved by all non-single-
peaked voters, since |{cm−k+1, . . . , ck}| = 2k − m. (Note that 0 ≤ � < 2k−m

m−k
implies 2k − m > 0). Single-peaked voters may disapprove only candidates in
{c1, . . . , cm−k, ck+1, . . . , cm}. Thus, candidates in {cm−k+1, . . . , ck} approved by
all non-single-peaked voters are also approved by all single-peaked voters. Since
there exists at least one candidate that is approved by all voters (including the
manipulators), p is a winner if and only if it is approved by all voters (both
manipulators and nonmanipulators). �

The following corollary shows how Theorem 4 carries over to Veto-�-Voter
Deletion-CCWM.

Corollary 6. (also shown in [14]) Let m, � ∈ N be fixed such that � > m − 3.
Then Veto-�-Voter Deletion-CCWM is NP-complete. Otherwise, Veto-�-
Voter Deletion-CCWM is in P.

4.2 Manipulation for Veto

In this section we study the complexity of constructive coalitional weighted
manipulation in nearly single-peaked societies under the veto rule. For veto,
CCWM is NP-complete in general [18], whereas the problem is in P for single-
peaked elections [13]. In contrast to the previous section, we study here only a
single rule, veto, but consider a variety of notions for nearly single-peakedness.
Table 1 summarizes the complexity results regarding Veto-�-X-CCWM under
several notions of nearly single-peakedness. Note that all results in this table
yield dichotomies.

Table 1. Complexity results regarding Veto-�-X-CCWM under several notions of
nearly single-peakedness, assuming m ≥ 3.

X in P NP-complete Reference

Voter Deletion � ≤ m − 3 � > m − 3 [14] & Cor. 6

Candidate Deletion � ≤ m − 3 � > m − 3 Thm. 7

Local Candidate Del. � = 0 � ≥ 1 Prop. 8

Global Swaps m = 2k: � ≤ k2 − k − 1 � > k2 − k − 1 Thm. 10

m = 2k − 1: � ≤ k2 − 2k � > k2 − 2k Thm. 10

Local Swaps � < �m−1
2

� � ≥ �m−1
2

� Thm. 11

Candidate Partition � < m
2

� ≥ m
2

Thm. 12

Additional Axes � < m
2

− 1 � ≥ m
2

− 1 Thm. 13
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In the following we will prove each entry of this table. We assume throughout
this section that there are at least three candidates, since for less than three
candidates Veto-CCWM is in P [5,18].

All P membership proofs in this section follow the same reasoning as the proof
of Theorem 5. More specifically, we show that there is at least one candidate that
is never vetoed. As a consequence, a candidate p can only be amongst the winners
if p is never vetoed (both by the nonmanipulators and the manipulators). Clearly,
it is possible in polynomial time to determine whether a candidate is approved
by all nonmanipulative voters and to construct the manipulator’s votes that
approve p. In the following P membership proofs we only argue that there is
indeed at least one candidate that is never vetoed and omit the remainder of the
argument.

Theorem 7. Let m ≥ 3. For each � ≥ 0, if � ≤ m − 3 Veto-�-Candidate
Deletion-CCWM is in P and NP-complete otherwise.

Proof. We are first handling the � ≤ m−3 case. Let A be the axis along which the
election is nearly single-peaked and let cl and cr be the leftmost and rightmost
candidates in A, respectively. Note that in a veto election over a single-peaked
society, only cl and cr can be vetoed. In an �-Candidate Deletion single-peaked
society there are at most � additional candidates vetoed in those votes not con-
sistent with the axis A. Thus, there are at most � + 2 ≤ m − 1 candidates that
are vetoed. Consequently, there has to be at least one candidate who never got
vetoed.

We now turn to the case where � > m − 3. In this case, hardness follows
immediately from the fact that every profile is (m−2)-candidate deletion single-
peaked consistent and Veto-CCWM is an NP-hard problem [5,18,19]. �

In the following proposition we require that � ≥ 1. The � = 0 case would mean
that the election is single-peaked, for which Brandt et al. [3] proved that con-
structive coalitional weighted manipulation under the veto rule is in P.

Proposition 8. For each m ≥ 3 and � ≥ 1, Veto-�-Local Candidate
Deletion-CCWM is NP-complete.

Proof. The crucial observation here is that with � ≥ 1 every candidate can be
vetoed, since the vetoed candidate can be the one that is locally deleted. Thus,
this problem is equivalent to Veto-CCWM, which is NP-complete for each
m ≥ 3 [5,18,19]. �

In the following, for any two candidates c1, c2 ∈ C let dA(c1, c2) be the distance
of two candidates on the axis A. For example, for the axis A = c1 < c3 < c5 <
c4 < c2 < c6 the distance dA(c1, c2) = 4.

Lemma 9. Let E = (C, V,P) be a single-peaked election along the axis A, where
cl and cr are the leftmost and rightmost candidates, respectively. The number of
swaps required to make a candidate c ∈ C the lowest-ranked candidate in a vote
v ∈ V is at least min(dA(c, cr), dA(c, cl)).
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Proof. Without loss of generality assume that c is closer to cr in A than to cl (i.e.,
dA(c, cr) < dA(c, cl)). If a vote v coincides with the axis A then clearly exactly
min(dA(c, cr), dA(c, cl)) = dA(c, cr) swaps are needed to make c the candidate
who gets vetoed in v.

If v does not coincide with A, we have to distinguish three cases. First, let
c be the peak of v. In this case it is clear that c has to be swapped with all
other candidates to get vetoed and thus we need exactly dA(c, cr) + dA(c, cl) ≥
min(dA(c, cr), dA(c, cl)) swaps. Second, let c be left from v’s peak on axis A. This
means that, according to the definition of single-peakedness, all the candidates
left from c on axis A are ranked lower than c in v. To swap c through to the last
position, we will have to make at least dA(c, cl) > min(dA(c, cr), dA(c, cl)) swaps.
Finally, let c be right from v’s peak on axis A. This means that all the candidates
on axis A right from c are ranked lower than c in v. To swap c through to the
last position, we will have to make at least dA(c, cr) = min(dA(c, cr), dA(c, cl))
swaps. �

Using Lemma 9, the following two theorems can be shown.

Theorem 10. Let k ≥ 2 be a positive integer.

1. Let the number of candidates be m = 2k. For each � ≥ 0, Veto-�-Global
Swaps-CCWM is in P if � ≤ k2 − k − 1 and NP-complete otherwise.

2. Let the number of candidates be m = 2k−1. For each � ≥ 0, Veto-�-Global
Swaps-CCWM is in P if � ≤ k2 − 2k and NP-complete otherwise.

Proof. Without loss of generality, let A : c1 < · · · < cm be the axis for which the
election is nearly single-peaked. Let us consider case (1) first, i.e., m = 2k. We
count the number of candidates who can be vetoed. These are the two candidates
c1 and cm, and those candidates that can be ”swapped” to the last position with
at most � swaps. Observe that it requires at least one swap each for swapping
c2 and cm−1 to the lowest position in a vote (cf. Lemma 9). For c3 and cm−2

at least three swaps are required, etc. We can make at most k2 − k − 1 =
−1 + 2

∑k−1
i=0 i swaps and consequently less than m different candidates can be

swapped to a last position in some vote (cf. Lemma 9). Thus, there is at least
one candidate who is never vetoed. In case (2), i.e., m = 2k − 1, note that
k2 − 2k = −1 + (k − 1) + 2

∑k−2
i=0 i and hence less than m can be vetoed.

To show hardness we reduce from Partition. Let m = 2k and � ≥ k2 − k.
(The case that m = 2k−1 works analogously). Given a multiset S = {x1, . . . , xs}
of s integers that sum to 2X, define the following instance of Veto-�-Global
Swaps-CCWM. Let C = {p, cl, cr, c1, . . . , cm−3} be the set of candidates and
let p be the distinguished candidate. Let A be the axis for which the election is
nearly single-peaked and let candidates cl and cr be the leftmost and rightmost
candidates in A. Let the nonmanipulative voters consist of m−2 voters, each with
weight X such that for every candidate c ∈ C\{cl, cr} there is a nonmanipulative
voter who ranks c last but otherwise the votes are identical with the axis A or
its reverse A (if c is closer to cl on A, then we choose the axis as vote which
ranks cl last). Note that in this case we need 2

∑k−1
i=0 i = k2 − k global swaps to



Manipulation of k-Approval in Nearly Single-Peaked Electorates 83

make the profile single-peaked which is still less or equal �. Let L consist of s
manipulators with weights x1, . . . , xs.

We claim that there is a subset S′ ⊂ S such that the elements in S′ sum to X
if and only if p can be made a winner of the election by constructive coalitional
weighted manipulation.

“⇒”: Suppose there is a subset S′ ⊂ S such that the elements in S′ sum to
X. Let all the manipulators whose weight is in S′ vote identically to the axis A,
and all the manipulators whose weight is in S \ S′ vote reverse. It is easy to see
that now all candidates tie for first place and, thus, the distinguished candidate
p is a winner.

“⇐”: Suppose that p can be made a winner of the election by constructive
coalitional weighted manipulation. Note that p ties (with c1, . . . , cm−3) for the
third place X points behind both candidates cl and cr. The only way p can gain
X points on these two candidates is if the manipulators can be divided into two
groups, both weighing X points and vetoing candidates cl and cr, respectively.
Thus, there is a subset S′ ⊂ S such that the elements in S′ sum to X. �

Theorem 11. Let m ≥ 3 denote the number of candidates. For each � ≥
0, Veto-�-Local Swaps-CCWM is in P if � < m−1

2 � and NP-complete
otherwise.

Proof. Let A be the axis along the election is nearly single-peaked, and let cl

and cr be the leftmost and rightmost candidates in A, respectively. Observe that
there is a candidate on A with distance at least m−1

2 � to both cl or cr. Thus,
for � < m−1

2 �, there is a candidate that is never vetoed.
For showing hardness, note that when we start with the single-peaked votes

c1 � c2 � · · · � cm or cm � · · · � c2 � c1, m−1
2 � swaps suffice to make any

candidate rank last. Thus, every candidate can be vetoed and Veto-�-Local
Swaps-CCWM for � ≥ m−1

2 � is equivalent to Veto-CCWM, which is NP-
complete for m ≥ 3 [5,18,19]. �

Theorem 12. Let m ≥ 3 be the number of candidates in an election E. For
each � ≥ 1, Veto-�-Candidate Partition-CCWM is in P if � < m

2 and
NP-complete otherwise.

Proof. In the � < m
2 case we again count the number of candidates who can

be vetoed. As we can veto at most two candidates per partition and we have
� single-peaked partitions, there can be at most 2� different candidates being
vetoed. Since 2� < m, there has to be at least one candidate who is never
vetoed.

For the other case, � ≥ m
2 , note that since there are at least m

2 partitions, all
candidates can be vetoed while preserving candidate partition single-peakedness.
Hardness for this case follows from the result for the general case [5,18,19]. �

Finally, we turn to Veto-�-Additional Axes-CCWM.

Theorem 13. Let m ≥ 3. For each � ≥ 0, Veto-�-Additional Axes-CCWM
is in P if � < m

2 − 1 and NP-complete otherwise.
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Proof. The proof is similar to the candidate partition case (Theorem 12). The
important observation is that for this purpose candidate partition and alternative
axes provide the same freedom: In both cases at most two candidates per axis
or partition can be vetoed. Note that the −1 in the bound on � comes from the
fact that � additional axes give us � + 1 axes in total. �

5 Conclusions and Open Questions

We have investigated the computational complexity of manipulation in nearly
single-peaked elections, where we focused on k-approval and veto. For veto we
have studied seven notions of nearly single-peakedness that were recently stud-
ied in the literature [11,14]. In contrast, for k-approval, we have explored how
k influences the complexity if we consider voter deletion as notion for nearly
single-peakedness. In both cases we proved dichotomies that exactly pinpoint
the border of tractability. These results give insight into the sources of hardness
and reveal in which settings we can hope for computationally hard instances.

There are several ways to continue with this direction of research. Extending
our results to k-approval (or even arbitrary scoring rules) for all notions of nearly
single-peakedness is certainly an important direction to go. Another way is to
consider other notions of strategic behavior such as bribery and control in the
light of nearly single-peakedness.
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Abstract. Manipulation and bribery have received much attention from
the social choice community. We study these concepts for preference
formalisms that identify a set of optimal outcomes rather than a single
winning outcome. We assume that preferences may be ranked (differ
in importance), and we use the Pareto principle adjusted to the case of
ranked preferences as the preference aggregation rule. For two important
classes of preferences, representing the extreme ends of the spectrum, we
provide characterizations of situations when manipulation and bribery
is possible, and establish the complexity of the problems to decide that.

1 Introduction

In a common preference reasoning scenario, a group of agents is presented with
a set of configurations or outcomes. These outcomes come from a combinatorial
domain, that is, they are characterized by several multivalued attributes and are
represented as tuples of attribute values. Each agent has her individual prefer-
ences on the outcomes. The problem is to aggregate these preferences, that is, to
define a “group” preference relation or, at the very least, to identify outcomes
that could be viewed by the entire group as good consensus choices. This sce-
nario has received much attention in the AI and decision theory communities
[12,19,20].

The two key questions are: how to represent preferences, and how to reason
about them. Modeling preferences over combinatorial domains is challenging as
the sheer number of outcomes makes explicit representations infeasible. To cir-
cumvent the problem of size, one resorts to implicit representation languages
that aim to provide concise and intuitive approximations to agents’ true pref-
erences. The survey by Domshlak et al. [12] and the monograph by Kaci [20]
discuss several of them.

The other aspect of the scenario above is preference aggregation. The goal
is to aggregate diverse preferences of a group of agents into a single consensus
preference ordering on outcomes or, for some applications, into a set of con-
sensus optimal outcomes. Preference aggregation may cause agents to behave
strategically. They may misrepresent their true preferences, or coerce others to
do so, in order to secure consensus preference aggregation outcomes that are
more favorable to them. This is the problem that we study in our paper.
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 86–102, 2015.
DOI: 10.1007/978-3-319-23114-3 6
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The preference aggregation scenario and the problem of strategic misrepre-
sentation of preferences are similar to problems in social choice theory [1,2].
There the concern is to determine a winner (sometimes, a strict ordering of the
candidates) based on the votes cast by a group of voters. If we think of voters as
agents, of candidates as options, and of votes as preferences, the connection is
evident and was noted before [11]. However, the distinguishing aspect of the vot-
ing problem considered in social choice is that the number of options (candidates
in an election) is small and preferences (votes) are specified explicitly. The main
research goals are to design voting rules (procedures to determine a winner or
winners based on votes), to identify socially desirable properties that voting rules
should have, and to determine which voting rules have which properties. Most
of the common voting rules proposed and studied in social choice rely on some
form of quantitative scoring [5]. They are typically quite strong. That is, when
the number of voters is sufficiently large they rarely return multiple winners.

In contrast, in research of preferences over combinatorial domains the num-
ber of candidates is large. Thus, the primary objective is to design languages
to represent preferences in an intuitive and concise way [12,20]. Collections of
preferences in the language, in some cases ranked, to reflect a varying impor-
tance of agents, are called preference theories. The semantics of the language,
that is, a mapping assigning to a preference theory a set of preferred objects
from the domain plays the role of a preference aggregation method. To identify
preferred elements, quantitative methods similar to basic voting rules have been
considered. However, the primary focus has been on qualitative principles such
as the Pareto rule and its ranked versions [9]. Such rules are in general weaker
(select more outcomes as optimal) than the quantitative ones. In fact, it is one
of the reasons why they are of interest. Namely, in the context of combinatorial
domains, concise representations of preferences are likely to introduce errors,
being only approximations to actual preferences. Strongly discriminating rules
may fail to return an outcome optimal with respect to the true preferences of the
agents. Weaker formalisms, which select more outcomes, offer a better chance
that a true optimal outcome will not be missed.

The problem we study in this paper, misrepresenting preferences by agents
to influence preference aggregation to their advantage, has its roots in strategic
voting studied in social choice [2,18,22]. Strategic voting comes in two flavors.
Manipulation consists of a voter misrepresenting her vote to secure a better
outcome for herself [18,22]. Bribery consists of coercing other voters to vote
against their preferences [13].

Manipulation, arguably the more fundamental of the two and being around
longer, has received by far more attention so far. The classical work of Gibbard
and Satterthwaite [18,22] established the main impossibility result stating that
no rule in a certain broad class is robust to manipulation (or strategy proof ).
However, some researchers argued that one of the key desiderata on the class
of rules considered in the Gibbard-Satterthwaite result, the requirement that
a rule be resolute (that is, always returning a single winner) is in many cases
unreasonable [17,21,23] and at odds with socially desirable requirements of equal
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treatment of candidates and voters [23]. This critique opened the door to research
of strategy proofness of voting rules that are irresolute, that is, may return
several winners. Early results identifying situations in which multi-winner rules
are strategy proof, as well as those when impossibility results similar to that of
Gibbard and Satterthwaite still hold, were found by Gärdenfors [17] and Kelly
[21]. Additional results along these lines are surveyed by Taylor [23] and Barberà
[3]. More recently strategy proofness of irresolute rules have been studied by
Brandt [6], Brandt and Brill [7], and Brandt and Geist [8]. It turns out that how
preferences on candidates are extended to preferences on sets is essential for
the possibility of strategic behaviors. In particular, Brandt et al. found several
strategy proof irresolute rules for the so-called Kelly, Fishburn and Gärdenfors
extensions.

The way we view preference reasoning corresponds to the setting of irresolute
rules in social choice research. We model agents’ preferences as total preorders
on the space D of outcomes. We assign ranks to preferences as, in real settings,
agents will have a hierarchical structure and some will be more important than
others. We select a ranked version of Pareto efficiency as the principle of pref-
erence aggregation. We define the manipulation and bribery in this setting, and
establish conditions under which manipulation and bribery are possible.

In each case, the key question is whether misrepresenting preferences can
improve for a particular agent the quality of the collection of all preferred out-
comes resulting from preference aggregation. To be able to decide this question,
we have to settle on a way to compare subsets of D based on that agent’s prefer-
ence preorder on elements of D, an issue that underlies all research on strategy
proofness of irresolute rules. In this paper, we focus on four natural extensions
of a total preorder on D to a total preorder on the power set P(D). For each of
these extensions we characterize a possibility of manipulation or bribery under
the Pareto rule (or ranked Pareto rule, for ranked theories). These results apply
directly to the setting of social choice as they do not depend on any prefer-
ence representation language. Since in many cases strategy proofness cannot be
assured, following the well established research in computational social choice
[4,13,14,16], we turn attention to study the complexity of deciding whether
manipulation or bribery are possible. Indeed, the intractability of computing
deviations from true preferences to improve the outcome for an agent may serve
as a barrier against strategic behaviors. We look at these questions in the setting
of combinatorial domains, the setting not covered by the earlier results. We use
our characterizations results as the main tool in this part of our work.

2 Technical Preliminaries

A preference on D is a total preorder on D, that is, a binary relation on D
that is reflexive, transitive and total. Each such relation, say �, determines two
associated relations: strict preference, denoted �, where x � y if and only if
x � y and y �� x, and indifference, denoted ≈, where x ≈ y if and only if x � y
and y � x. The indifference relation ≈ is an equivalence relation on D and
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partitions D into equivalence classes, D1, . . . , Dm, which we always enumerate
from the most to the least preferred. Using this notation, we can describe a total
preorder � by the expression

�: D1 � D2 � · · · � Dm.

For example, a total preorder � on D = {a, b, c, d, e, f} such that a ≈ d, b ≈
e ≈ f and a � b � c (these identities uniquely determine �) is specified by an
expression

�: a, d � b, e, f � c.

(we omit braces from the notation specifying sets of outcomes to keep the nota-
tion simple). For every x ∈ D, we define the quality degree of x in �, written
q�(x), as the unique i such that x ∈ Di.

Let us consider a group A of N agents each with her own preference on D
and with its rank in the set. We denote these agents by integers from {1, . . . , N},
their ranks by r1, . . . , rN (lower rank values imply higher importance), and their
preferences by �1, . . . ,�N . Sometimes, we write �i,ri

for the preference of an
agent i, indicating at the same time, the rank of the agent (the rank of her
preference). We write Di

1, . . . , D
i
mi

for the equivalence classes of the relation ≈i

enumerated, as above, from the most to the least preferred with respect to �i. We
call the sequence (�1,r1 , . . . ,�N,rN

) of preferences of agents in A a (preference)
profile of A. For instance,

�1,1: f � a, c, e � b, d

�2,1: a, c � d, e, f � b

�3,2: a � b, c � d � e, f.

is a profile of agents 1, 2 and 3. The preferences of agents 1 and 2 are equally
ranked and more important than the preferences of agent 3.

Let A be a set of N agents with a profile P = (�1,r1 , . . . ,�N,rN
). We say

that a ∈ D is Pareto preferred in P to b ∈ D (more formally, Pareto-preferred by
a group A of agents with profile P ), written a �P b, if for every i ∈ A such that
b �i a, there is j ∈ A such that rj < ri and a �j b. Similarly, a ∈ D is strictly
Pareto-preferred in P to b ∈ D, written a �P b, if a �P b and b ��P a, that is,
precisely when there is a rank r such that for every i ∈ A with ri ≤ r, a �i b,
and for at least one i ∈ A with ri ≤ r, a �i b. Finally, a ∈ D is Pareto optimal
in P if there is no b ∈ D such that b �P a. We denote the set of all elements in
D that are Pareto-optimal in P by Opt(P ). Virtually all preference aggregation
techniques select “group optimal” elements from those that are Pareto-optimal.
From now on, we omit the term “Pareto” when speaking about the preference
relation �P on D and optimal elements of D determined by this relation, as we
do not consider any other preference aggregation principles.

Let P be the profile given above. Considering the preferences of agents 1
and 2, a and c are indifferent, no outcome can strictly dominate a, c or f , and
outcomes b, d, e are strictly dominated by a and c. According to the preference
of agent 3, a is strictly better than c. Thus, Opt(P ) = {a, f}. It is interesting to
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note that for each of the first two agents, the set Opt(P ) contains at least one
of her “top-rated” outcomes. This is an instance of a general fairness property
of the Pareto principle.

Theorem 1. For every profile P of a set A of agents, and for every top-ranked
agent i ∈ A, the set Opt(P ) of optimal outcomes for P contains at least one
outcome most preferred by i.

Proof. Let us pick any outcome w ∈ D that is optimal for i (that is, w ∈ Di
1).

Clearly, there is v ∈ Opt(P ) such that v �P w. In particular, v �i w. Thus,
v ∈ Di

1 and v ∈ Opt(P ). �

Coming back to our example, it is natural to ask how satisfied agent 3 is with
the result of preference aggregation and what means might she have to influence
the result. If she submits a different (“dishonest”) preference, say

�′
3,2: a, c � b � d � e, f

then, writing P ′ for the profile (� 1,1,�2,1,�′
3,2), Opt(P ′) = {a, c, f}. It may

be that agent 3 would prefer {a, c, f} to {a, f}, for instance, because the new
set contains an additional highly preferred outcome for her. Thus, agent 3 may
have an incentive to misrepresent her preference to the group. We will call such
behavior manipulation. Similarly, agent 3 might keep her preference unchanged
but convince agent 1 to replace his preference with

�′
1,1: b � f � a, c, e � d.

Denoting the resulting profile (�′
1,1,�2,1,�3,2) by P ′′, Opt(P ′′) = {a, b, f} and,

because of the same reason as above, this collection of outcomes may also be
preferred to {a, f} by agent 3. Thus, agent 3 may have an incentive to try to
coerce other agents to change their preference. We will call such behavior simple
bribery.

We now formally define manipulation and simple bribery. For a profile
P = (�1,r1 , . . . ,�N,rN

) and a preference �′
i,ri

, we write P�i,ri
/�′

i,ri
for the pro-

file obtained from P by replacing the preference �i,ri
of the agent i with the

preference �′
i,ri

. Let now A be a group of N agents with a profile P = (�1,r1

, . . . ,�N,rN
), and let �′

i,ri
be a preference of agent i on subsets of D.

Manipulation: An agent i can manipulate preference aggregation if there is a
preference �′

i,ri
such that Opt(P�i,ri

/�′
i,ri

) �′
i Opt(P ).

Simple Bribery: An agent t is a target for bribery by an agent i, if there is a
preference �′

t,rt
such that Opt(P�t,rt/�′

t,rt
) �′

i Opt(P ).1

Clearly, when deciding whether to manipulate (or bribe), agents must be
able to compare sets of outcomes and not just single outcomes. This is why we
1 Bribery is traditionally understood as an effort by an external agent to bribe a

group of voters to obtain a more satisfying result. To stress the difference between
this notion and the notion we consider in the paper, we use the term simple bribery.
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assumed that the agent i has a preorder �′
i on P(D). However, even when D

itself is not a combinatorial domain, P(D) is. Thus, explicit representations of
that preorder may be infeasible.

The question then is whether the preorder �′
i of P(D), which parameterizes

the definitions of manipulation and bribery, can be expressed in terms of the
preorder �i on D, as the latter clearly imposes some strong constraints on the
former. This problem has received attention from the social choice and AI com-
munities [3,10,15,17,21] and it turns out to be far from trivial. The difficulty
comes from the fact that there are several ways to “lift” a preorder from D to
the power set of D, none of them fully satisfactory (cf. impossibility theorems
[3]). In this paper, we sidestep this issue and simply select and study several
most direct and natural “liftings” of preorders on sets to preorders on power
sets. We introduce them below. We write X and Y for subsets of D and � for a
total preorder on D that we seek to extend to a total preorder on P(D).

Compare Best: X �cb Y if there is x ∈ X such that for every y ∈ Y , x � y.

Compare Worst: X �cw Y if there is y ∈ Y such that for every x ∈ X, x � y.
For the next two definitions, we assume that � partitions D into strata

D1, . . . , Dm, as discussed above.

Lexmin: X �lmin Y if for every i, 1 ≤ i ≤ m, |X ∩Di| = |Y ∩Di|, or if for some
i, 1 ≤ i ≤ m, |X ∩ Di| > |Y ∩ Di| and, for every j ≤ i − 1, |X ∩ Dj | = |Y ∩ Dj |.
Average-Rank:2 X �ar Y if ar�(X) ≤ ar�(Y ), where for a set Z ⊆ D,
ar�(Z) denotes the average rank of an element in Z and is defined by ar�(Z) =∑m

i=1 i |Z∩Di|
|Z| .

Finally, we describe the classes of profiles that we focus on here. Namely,
as the setting of ranked preferences is rich, we restrict attention to the two
“extreme” cases. In the first one, all agents are equally ranked. In such case, the
Pareto principle makes many outcomes optimal as pairs of outcomes are often
incomparable. Nevertheless, all practical aggregation techniques, can be under-
stood as simply refining the set of Pareto-optimal outcomes. Thus, improving
the quality of the Pareto-optimal set is a desirable objective as it increases a
chance of a more favorable outcome once a refinement is applied. In the second
setting, we assume all agents have distinct ranks. In such case, the Pareto princi-
ple is natural and quite effective, resulting in a total preorder refining the one of
the most important agent by breaking ties based on preferences of lower ranked
agents.

3 Equally Ranked Preferences

In this section, we discuss the manipulation and simple bribery problems in
the case where all preferences are equally ranked, and study them with respect
2 This method is well defined only if both sets to compare are non-empty. This is not

a strong restriction because our aggregation method returns only non-empty sets of
optimal outcomes.
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to each of the four extensions of total preorders on D to P(D) defined above.
An equally ranked preference profile is a profile P = (�1,r1 , . . . ,�N,rN

), where
r1 = · · · = rN . To simplify the notation, we write it as P = (�1, . . . ,�N ).

3.1 Manipulation

Given a set A of N agents and a profile P = (�1, . . . ,�N ), the manipulation
problem is to determine whether an agent i can find a total preorder � such that
Opt(P�i/�) �′

i Opt(P ) where �′
i is the total preorder agent i uses to compare

subsets of D.

Theorem 2. Manipulation is impossible for compare best and compare worst
on profiles of equally ranked preferences.

Proof. Let A be a set of N agents 1, . . . , N with a profile of equally ranked
preferences P = (�1, . . . ,�N ). We want to show that for every i ∈ A and every
total preorder �, Opt(P ) �cb

i Opt(P�i/�) and Opt(P ) �cw
i Opt(P�i/�).

For compare best, let v ∈ Opt(P ) be an outcome that is also optimal for
i (such a v exists by Theorem 1). It follows that for every w ∈ D, v �i w.
Thus, v �i w, for every w ∈ Opt(P�i/�). By the definition of �cb

i , Opt(P ) �cb
i

Opt(P�i/�).
For compare worst, let us assume that there is a total preorder � such that

Opt(P�i/�) �cw
i Opt(P ). It follows from the definition of �cw

i that there is w′ ∈
Opt(P ) such that for every w ∈ Opt(P�i/�), w �i w′. Thus, w′ /∈ Opt(P�i/�)
and, consequently, there is v ∈ Opt(P�i/�) such that v �P�i/� w′. It follows
that v �j w′, for every agent j �= i. Since by an earlier observation, v �i w′, we
obtain v �P w′, a contradiction with w′ ∈ Opt(P ). �

On the other hand, manipulation is possible for every agent using the lexmin
comparison rule precisely when not every outcome in D is optimal. The reason
is that by changing her preference an agent can cause a Pareto-nonoptimal out-
come become Pareto-optimal, while keeping the optimality status of every other
outcome unchanged.

Theorem 3. Let A be a set of N agents 1, . . . , N with a profile of equally ranked
preferences P = (�1, . . . ,�N ) and let i ∈ A. There exists a total preorder � such
that Opt(P�i/�) �lmin

i Opt(P ) if and only if Opt(P ) �= D.

Proof. (⇐) Let us assume that �i is given by

�i: Di
1 �i . . . �i Di

mi
.

Let � be the smallest k such that Di
k\Opt(P ) �= ∅ and let a ∈ Di

�\Opt(P ). We will
now construct a preference � for agent i so that Opt(P ) ∪ {a} = Opt(P�i/�).
For that preference, we have Opt(P�i/�) �lmin

i Opt(P ), which demonstrates
that i can manipulate preference aggregation in P .

To construct �, we first note that since a /∈ Opt(P ), there is w ∈ Opt(P )
such that w �P a. Since w �i a and a ∈ Di

�, w ∈ Di
j , for some j ≤ �. Without

loss of generality, we may assume that this w is chosen so that to minimize j.
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In the remainder of the proof, we write P−i for the profile obtained from P
by removing the preference of agent i. To simplify the notation, we also write
P ′ for P�i/�.
Case 1: w ≈P −i a. Since w �P a, we have w �i a, that is, j < �. Let us define
� as follows:

�: D′
1 � . . . � D′

mi
,

where D′
j = Di

j∪{a}, D′
� = Di

�\{a}, and D′
k = Di

k, for the remaining k ∈ [1..mi].
Thus a ≈P ′ w. We also have that for every w′, w′′ ∈ D \ {a}, w′ �P ′ w′′ if and
only if w′ �P w′′ (the degrees of quality of outcomes other than a remain the
same when we move from P to P ′). Finally, for every w′ ∈ D, a �P ′ w′ if and
only if w �P ′ w′. These observations imply that Opt(P ′) = Opt(P ) ∪ {a}.
Case 2: w �P −i a. Let us define � as follows:

�: D′
1 � . . . � D′

mi+1,

where D′
k = Di

k, for k < j, D′
j = {a}, D′

�+1 = Di
� \ {a}, and D′

k = Di
k−1, for

every k ∈ {j + 1, . . . , mi + 1} such that k �= � + 1. Informally, � is obtained
by pulling a from Di

�, and inserting it as a singleton cluster directly before Di
j .

Since a is the only outcome moved, for every w′, w′′ ∈ D \ {a}, w′ �P ′ w′′ if and
only if w′ �P w′′ (and similarly, for the derived relation �P ′).

Let us observe that a ∈ Opt(P ′). Indeed, if for some w′ ∈ D, w′ �P ′ a, then
w′ ∈ Di

k, for some k < j. It follows that w′ ∈ Opt(P ) and w′ �i a. Consequently,
w′ �P a, contrary to our choice of w.

Let w′ ∈ Opt(P ) and let us assume that w′′ �P ′ w′ for some w′′ ∈ D. Since
a /∈ Opt(P ), w′ �= a. If w′′ �= a, then w′′ �P w′ (indeed, a is the only outcome
whose relation to other outcomes changes when we move from P to P ′). This
is a contradiction with w′ ∈ Opt(P ). Thus, w′′ = a. Consequently, w′′ �P ′ w′

implies a �P −i w′ and a � w′. By the construction of �, the latter property
implies that w �i w′. Since w �P −i a �P −i w′, w �P w′, a contradiction. It
follows that w′ ∈ Opt(P ′) and, consequently, we have Opt(P ) ∪ {a} ⊆ Opt(P ′).

Conversely, let us consider w′ ∈ Opt(P ′) such that w′ �= a. Let us assume
that for some w′′ ∈ Opt(P ), w′′ �P w′. If w′′ �= a, we can get w′′ �P ′ w′,
a contradiction. If w′′ = a, we can get a �k w′ for every k ∈ A and k �= i
from a �P w′ and a � w′. Thus a �P ′ w′ which contradicts the property that
w′ ∈ Opt(P ′). It follows that w′ ∈ Opt(P ). Thus, Opt(P ′) ⊆ Opt(P ) ∪ {a}.
Consequently, Opt(P ) ∪ {a} = Opt(P ′).
(⇒) If Opt(P ) = D, then there is no set S such that S �lmin

i Opt(P ). �

For the average-rank preorder for comparing sets, an agent can manipulate the
result to her advantage if there are Pareto-nonoptimal outcomes that are highly
preferred by the agent, or when there are Pareto-optimal outcomes that are low
in the preference of that agent, as the former can be made optimal and the
latter made non-optimal without changing the Pareto-optimality status of other
outcomes.
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Theorem 4. Let A be a set of N agents 1, . . . , N with a profile of equally ranked
preferences P = (�1, . . . ,�N ) and let i ∈ A. There exists a total preorder � such
that Opt(P�i/�) �ar

i Opt(P ) if and only if:

1. For some j < ar�i
(Opt(P )), there exists a′ ∈ Di

j such that a′ /∈ Opt(P ); or
2. For some j > ar�i

(Opt(P )), there are a′ ∈ Opt(P ) ∩ Di
j and a′′ ∈ Opt(P )

such that a′ �= a′′, and a′′ �k a′, for every k ∈ A, k �= i.

Proof. (⇐) Let us assume that the first condition holds. Let � be the smallest
k such that Di

k \ Opt(P ) �= ∅, and let a′ ∈ Di
� \ Opt(P ). Reasoning as in the

proof of the previous theorem, we can construct a total preorder � such that
Opt(P ′) = Opt(P ) ∪ {a′} (where P ′ denotes P�i/�). Clearly, ar�i

(Opt(P ′)) <
ar�i

(Opt(P )) and so, Opt(P ′) �ar
i Opt(P ) (i can manipulate).

If the second condition is satisfied then, let us assume that a′′ ∈ Di
j′ . Then,

we have j′ ≥ j (otherwise, a′′ �P a′, contradicting optimality of a′ in P ). Let
us construct � as in the previous argument, but substituting a′′ for a′ (and, as
before, we write P ′ for P�i/�). Without loss of generality, we may select a′′ so
that j′ be minimized.

We know that a′′ ∈ Opt(P ′). Moreover, by the definition, a′′ � a′. Thus,
a′′ �P ′ a′ and so, a′ /∈ Opt(P ′).

Next, if w ∈ Opt(P ) and w �i a′, then w ∈ Opt(P ′). To show this, let us
assume that there is w′ ∈ Opt(P ′) such that w′ �P ′ w. Since w �i a′, w �= a′′

and w � a′′. The latter implies that w′ �= a′. Thus, w′ �P w, a contradiction.
Finally, if w /∈ Opt(P ) and a′ �i w, w /∈ Opt(P ′). Indeed, it is clear that if

w′ �P w then w′ �P ′ w.
Since j > ar�i

(Opt(P )), these observations imply that ar�i
(Opt(P ′)) <

ar�i
(Opt(P )).

(⇒) We set x = ar�i
(Opt(P )). By the assumption, there is a total preorder �

on D such that ar�i
(Opt(P�i/�)) < x. Let us set O = Opt(P�i/�) and let D1

be the set of all elements w ∈ D such that q�i
(w) < x. If D1 \Opt(P ) �= ∅, then

the condition (1) holds. Thus, let us assume that D1 ⊆ Opt(P ). We denote by
O′ the set obtained by

1. removing from Opt(P ) every element w ∈ D1 \ O
2. removing from Opt(P ) every element w /∈ O such that q�i

(w) = x
3. including every element w ∈ O \ Opt(P ) such that q�i

(w) = x.

We have ar�i
(O′) ≥ x. Moreover, O′ differs from O (if at all) only on elements

w such that q�i
(w) > x. If O contains every element w ∈ Opt(P ) such that

q�i
(w) > x, then ar�i

(O) ≥ ar�i
(O′) and so, ar�i

(O) ≥ x, a contradiction.
Thus, there is an element w ∈ OptOpt(P ) such that q�i

(w) > x and w /∈ O.
Since O = Opt(P�i/�), it is only possible if the condition (2) holds. �

The main message of these theorems is that when the result of preference aggre-
gation is a set of optimal outcomes, then even the most elementary aggregation
rule, Pareto principle, may be susceptible to manipulation. Whether it is or is
not depends on how agents measure the quality of a set. If the comparison is
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based on the best or worst outcomes, manipulation is not possible (a positive
result). However, under less simplistic rules such as lexmin or average-rank the
possibility for manipulation emerges (a negative result that, in some settings,
we later moderate by means of the complexity barrier).

3.2 Simple Bribery

In the same setting, the simple bribery problem is to decide whether an agent
i can find an agent t, t �= i, and a total preorder � such that Opt(P�t/�) �′

i

Opt(P ). Our results on bribery are similar to those we obtained for manipulation,
with one notable exception, and show that whether bribery is possible depends
on how agents measure the quality of sets of outcomes.

Theorem 5. Simple bribery is impossible for compare best on profiles of equally
ranked preferences.

The result can be proved in the same way as Theorem 2. We stress that it
states that no agent using compare best preorder on sets can successfully bribe
any other agent.

The situation changes if agents are interested in maximizing the worst out-
comes in a set. Unlike in the case of manipulation, simple bribery may now be
possible. Given a set X ⊆ D and a total preorder �, by Min�(X) we denote
the set of all “worst” elements in X, that is the set that contains every element
x ∈ X such that for every y ∈ X, y � x.

Theorem 6. Let A be a set of N agents 1, . . . , N with a profile of equally ranked
preferences P = (�1, . . . ,�N ) and let i ∈ A. There exist t ∈ A, t �= i, and a
total preorder � such that Opt(P�t/�) �cw

i Opt(P ) if and only if for every
a ∈ Min�i

(Opt(P )), there is a′ ∈ D such that a′ �i a, and a′ �k a, for every
k ∈ A, k �= t.

Proof. (⇐) To define �, we modify the total preorder �t as follows. For every
a ∈ Min�i

(Opt(P )), we move a′ (the element satisfying a′ �i a, and a′ �k a, for
every k ∈ A, k �= t, whose existence is given by the assumption) from its cluster
in �t to the cluster of �t containing a.

First, we note that for every a ∈ Min�i
(Opt(P )), a′ �P�t/� a. Second, the

only change when moving from P to P�t/� is in the profile of agent t, and that
profile changes by promoting elements a′ (indeed, for every a ∈ Min�i

(Opt(P )),
a �t a′; otherwise, we would have a′ �P a, contrary to a ∈ Opt(P )). Thus, some
of these elements might become optimal but their degrees of quality in �i are
better than those of their corresponding elements a. Finally, other elements than
a′s cannot become optimal. These three observations imply that Opt(P�t/�) �cw

i

Opt(P ).
(⇒) Let an agent t �= i and a total preorder � satisfy Opt(P�t/�) �cw

i Opt(P ).
To simplify notation, we set Q = P�t/�.

Let us consider a ∈ Min�i
(Opt(P )). Since Opt(Q) �cw

i Opt(P ), a /∈ Opt(Q).
It follows that there is a′ ∈ Opt(Q) such that a′ �Q a. Thus a′ �i a (otherwise,
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we would have Opt(P ) �i Opt(Q), a contradiction). Moreover, for every k ∈ A,
k �= t, a′ �k a. �

Simple bribery is also possible when lexmin or average-rank methods are used by
agents to extend a preorder on D to a preorder on P(D). Similarly to Theorem
5, the following two theorems are literal generalizations of the earlier results on
manipulation and we omit the proofs.

Theorem 7. Let A be a set of N agents 1, . . . , N with a profile of equally ranked
preferences P = (�1, . . . ,�N ) and let i, t ∈ A, t �= i. There exists a total preorder
� such that Opt(P�t/�) �lmin

i Opt(P ) if and only if Opt(P ) �= D.

Theorem 8. Let A be a set of N agents 1, . . . , N with a profile of equally ranked
preferences P = (�1, . . . ,�N ) and let i ∈ A. There exist t ∈ A, t �= i, and a
total preorder � such that Opt(P�t/�) �ar

i Opt(P ) if and only if:

1. For some j < ar�i
(Opt(P )), there exists a′ ∈ Di

j such that a′ /∈ Opt(P ); or
2. For some j > ar�i

(Opt(P )), there are a′ ∈ Opt(P ) ∩ Di
j, and a′′ ∈ Opt(P )

such that a′ �= a′′ and a′′ �k a′, for every k ∈ A, k �= t.

Theorems 6, 7 and 8 show that a possibility for simple bribery may arise when
compare worst, lexmin and average-rank are used to compare sets of outcomes.
There is, however, a difference between lexmin and the other two methods. For
the former, if simple bribery is possible, then every agent can be the target (can
be used as t in the theorem). This is not the case for the other two methods.

4 Strictly Ranked Preferences

In this section, we discuss the manipulation and simple bribery problems in
the setting in which all agents have distinct ranks and so, can be seen as
strictly ranked. A strictly ranked preference profile can be written as P = (�1,1,
. . . ,�N,N ) (after possibly relabeling agents). In this section, we will write such
profiles as P = (�1, . . . ,�N ). Such a preference formalism generates a total pre-
order over outcomes. Moreover, all optimal outcomes are indifferent and share
the same quality degree for every preference. In general, proceeding from the
most important preference to the least, the relation between two outcomes is
decided by the first preference, where they have different quality degrees.

Our first two results in this section concern the manipulation problem.

Theorem 9. Manipulation is impossible for compare best, compare worst and
average-rank on profiles of strictly ranked preferences.

Proof. Let A be a set of N agents 1, . . . , N with a profile P = (�1, . . . ,�N ) and
i ∈ A. Let us assume the preference of an agent i ∈ A is

�i: Di
1 �i Di

2 �i · · · �i Di
mi

.

Since all optimal outcomes are indifferent, we can assume a ∈ Di
j for every

a ∈ Opt(P ). Let a be any optimal outcome. According to the definitions of
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compare-best, compare-worst and average-rank, if Opt(P ′) is better than Opt(P )
based on the corresponding extension of �i, then there exists a′ ∈ Opt(P ′) such
that a′ �i a. Since a′ �∈ Opt(P ), a �P a′. And because of a′ �i a, a �j a′ for
some j < i. This can not be changed no matter how i changes her preference.
Thus a �P ′ a′ and a′ �∈ Opt(P ′). �

For lexmin, agent i can get a better result by making non-optimal outcomes
equivalent or worse to currently optimal outcomes become optimal. The precise
description of the conditions when it is possible is given below.

Theorem 10. Let A be a set of N agents 1, . . . , N with a profile of strictly
ranked preferences P = (�1, . . . ,�N ). For every i ∈ A, manipulation is possible
for lexmin if and only if at least one of the following conditions holds:

1. There exists a′ ∈ D \ Opt(P ), such that for every a′′ ∈ Opt(P ), a′′ ≈P/i a′ 3

2. There exists a′ ∈ D \ Opt(P ), such that

|{a : a ∈ D, a ≈P a′}| > |Opt(P )|,
and for every a′′ ∈ Opt(P ) and for every l ≤ i, a′′ ≈l a′

3. There exists a′ ∈ D \ Opt(P ), such that

|{a : a ∈ D, a ≈P a′}| = |Opt(P )|,
for every a′′ ∈ Opt(P ) and for every l ≤ i, a′′ ≈l a′, and for some w ∈ D,
w ≈P/i a′ and w′ �≈i a′.

We will now consider simple bribery. There are rather intuitive conditions
describing when simple bribery is possible for the compare best, compare worst
and average-rank set comparison methods, and somewhat more complicated ones
for lexmin.

Theorem 11. Let A be a set of N agents 1, . . . , N with a profile of strictly
ranked preferences P = (�1, . . . ,�N ). For every i ∈ A, simple bribery is possible
for compare best, compare worst and average-rank if and only if there exists
a′ ∈ D such that a′ �i a for every a ∈ Opt(P ).

Since all optimal answer sets in Opt(P ) are indifferent, if Opt(P ′) �cb/cw/ar
i

Opt(P ), then there exists a′ ∈ Opt(P ′) such that a′ �i a. Thus, it is clear
that if there is no a′ ∈ D such that a′ �i a for every a ∈ Opt(P ), Opt(P )
cannot be dominated by any set of optimal answer sets and simple bribery is
impossible. If such a′ exists, the agent i can bribe the agent on the top level to
modify her preference by putting a′ at the first place. Then Opt(P ′) = {a′} and
Opt(P ′) �cb/cw/ar

i Opt(P ). If agent i is at the top level, her top choice must be
in Opt(P ) and such a′ does not exist.

Theorem 12. Let A be a set of N agents 1, . . . , N with a profile of strictly
ranked preferences P = (�1, . . . ,�N ). For every i ∈ A, simple bribery is possible
for lexmin if and only if at least one of the following three conditions holds:
3 a′′ ≈P/i a

′ means a′′ ≈P a′ except for �i.
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1. There is a′ ∈ D such that for all a′′ ∈ Opt(P ), a′ �i a′′

2. There is a′ ∈ D \ Opt(P ) such that for some t ∈ A, t �= i, and for every
a′′ ∈ Opt(P ), a′ ≈P/t a′′

3. There is a′ ∈ D and t, j ∈ A such that t ≤ j, t �= i,

|{a : a ∈ D, a ≈P/t a′}| > |Opt(P )|,
for every a′′ ∈ Opt(P ), a′ ≈i a′′, a′′ �j a′, and a′′ ≈l a′, for every l < j.

5 Complexity

So far we studied the problems of manipulation and simple bribery ignoring the
issue of how preferences (total preorders) on D are represented. In this section,
we will establish the complexity of deciding whether manipulation or simple
bribery are possible. For this study, we have to fix a preference representation
schema.

First, let us assume that preference orders on elements of D are represented
explicitly as sequences D1, . . . , Dm of the indifference strata, enumerating them
from the most preferred to the least preferred. For this representation, the char-
acterizations we presented in the previous section imply that the problems of the
existence of manipulation and bribery can be solved in polynomial time. Thus,
in the “explicit representation” setting, computational complexity cannot serve
as a barrier against them.

However, for combinatorial domains explicit representations are not feasible.
We now take for D a common combinatorial domain given by a set U of binary
attributes. We view elements of U as propositional variables and assume that
each element of U can take a value from the domain {true, false}. In this way,
we can view D as the set of all truth assignments on U . Following a common
convention, we identify a truth assignment on U with the subset of U consisting
of elements that are true under the assignment. Thus, we can think of D as the
power set P(U) of U .

By taking this perspective, we can use a formula ϕ over U as a concise implicit
representation of the set M(ϕ) = {X ⊆ U : X |= ϕ} of all interpretations of U
(subsets of U) that satisfy ϕ, and we can use sequences of formulas to define
total preorders on P(U) (= D).

A preference statement over U is an expression

ϕ1 > ϕ2 > · · · > ϕm, (1)

where all ϕis are formulas over U and ϕ1 ∨ · · · ∨ ϕm is a tautology. A preference
statement p = ϕ1 > ϕ2 > · · · > ϕm determines a sequence (D1, . . . , Dm) of
subsets of P(U), where, for every i = 1, . . . , m,

Di = {X ⊆ U : X |= ϕi} \ (D1 ∪ · · · ∪ Di−1).

These subsets are disjoint and cover the entire domain P(U) (the latter by the
fact that ϕ1 ∨ · · · ∨ ϕm is a tautology). It follows that if X ⊆ U , then there
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is a unique iX such that X ∈ DiX . The relation �p defined so that X �p Y
precisely when iX ≤ iY is a total preorder on P(U). We say that the preference
expression p represents the preorder �p. 4

This form of modeling preferences (total preorders) is quite common. Pref-
erence statements were considered by Brewka, Niemelä and Truszczynski [9] as
elements of preference modules in answer-set optimization programs. 5 Further-
more, modulo slight differences in the notation, preference statements can also
be viewed as preference theories of the possibilistic logic [20].

We will now study the complexity of the existence of manipulation and simple
bribery when preferences are given in terms of preference statements. That is,
we assume that the input to these problems consists of N ranked preferences
�1,r1 , . . . ,�N,rN

. We will denote by (Di
1, . . . , D

i
mi

) the sequence of indifference
strata determined by �i,ri

, as defined above. We refer to these two problems as
the existence-of-manipulation (EM) problem and the existence-of-simple-bribery
(ESB) problem, respectively. These problems are parameterized by the method
used to compare sets. We denote the methods by cb (compare best), cw (compare
worst), lmin (lexmin) and ar (average-rank).

For equally ranked preference statements, since for the compare best and com-
pare worst methods for comparing sets manipulation is impossible, the problems
are (trivially) in P. Similarly, the problem of deciding whether simple bribery is
possible for compare best is in P, too. The summary of the complexity results
for all the cases is given by the following theorem.

Theorem 13. The complexity of deciding whether manipulation and simple
bribery are possible for equally ranked preferences with four ways to lift preorders
on outcomes to preorders on sets of outcomes is as follows:

cb cw lmin ar

EM P P NP-comp ΣP
2 -hard, in PSPACE

ESB P ΣP
2 -hard, ΠP

2 -hard, in ΔP
3 NP-comp ΣP

2 -hard,inPSPACE

For strictly ranked preferences, for the compare best, compare worst and
average-rank methods, the manipulation is impossible and so, deciding its exis-
tence is trivially in P. On the other hand, simple bribery is possible for all set
comparison methods. The complete complexity results are given by Theorem 14.

Theorem 14. The complexity of deciding whether manipulation and simple
bribery is possible for strictly ranked preferences with four ways to lift preorders
on outcomes to preorders on sets of outcomes is as follows:
4 The partition of D into strata that is determined by �p is not always (D1, . . . , Dm)

as some sets Di may be empty.
5 The original definition [9] allows for more general preference statements. However,

they all can be effectively expressed as preference statements we defined here.
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cb cw lmin ar

EM P P ΔP
2 -hard P

ESB ΔP
2 -comp ΔP

2 -comp ΔP
2 -hard ΔP

2 -comp

6 Conclusions and Future Work

We studied manipulation and simple bribery problems arising when one aggre-
gates sets of ranked preferences. As a preference aggregation method we used
the Pareto rule. We considered two extreme cases of that general setting. In
one of them, all preferences are equally ranked, in the other one the preferences
are strictly ranked. In the scenario we investigated, agents submit preferences
on elements of the space of outcomes but, when considering manipulation and
simple bribery, they need to assess the quality of sets of such elements. In the
paper, we considered several natural ways in which a total preorder on a space
of outcomes can be lifted to a total preorder on the space of sets of outcomes.
For each of these “liftings”, we found conditions characterizing situations when
manipulation (simple bribery) are possible. These characterizations show that in
many cases it is impossible for any agent to strategically misrepresent preferences
(compare best and compare worst for manipulation, in both equally ranked and
strictly ranked settings; compare best for simple bribery in the equally ranked
setting; and, somewhat surprisingly, average-rank for manipulation in the strictly
ranked setting). In those cases, the Pareto principle is “strategy-proof”.

However, in all other cases, it is no longer the case. Manipulation and simple
bribery cannot be a priori excluded. To study whether computational complex-
ity may provide a barrier against strategic misrepresentation of preferences, we
considered a simple logical preference representation language closely related to
possibilistic logic and answer-set optimization. For sets of preferences given in
this language (in the settings of equally ranked or strictly ranked preferences)
and for each way of lifting preorders from sets to power sets for which manipu-
lation and simple bribery are possible, we proved that deciding the existence of
manipulation or simple bribery is intractable.

Our work leaves several interesting open problems. First, methods to lift
preorders from sets to power sets can be defined axiomatically in terms of prop-
erties for the lifted preorders to satisfy. Are there general results characterizing
the existence of manipulation (simple bribery) for lifted preorders specified only
by axioms they satisfy? Second, we do not know the exact complexity of the
problems EBcw, EMar and EBar for the equally ranked preferences, nor for
EM lmin and EBlmin for the strictly ranked preferences (the superscript indi-
cates the set comparison method used). Finally, in the setting of equally ranked
preferences, most aggregation rules of practical significance properly extend the
Pareto one. We conjecture that at least for some of these rules, one can derive
results on existence of manipulation and simple bribery from our results con-
cerning the Pareto rule.
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Abstract. Most of the computational study of election problems has
assumed that each voter’s preferences are, or should be extended to, a
total order. However in practice voters may have preferences with ties.
We study the complexity of manipulative actions on elections where vot-
ers can have ties, extending the definitions of the election systems (when
necessary) to handle voters with ties. We show that for natural election
systems allowing ties can both increase and decrease the complexity of
manipulation and bribery, and we state a general result on the effect of
voters with ties on the complexity of control.

1 Introduction

Elections are commonly used to reach a decision when presented with the pref-
erences of several agents. This includes political domains as well as multiagent
systems. In an election agents can have an incentive to cast a strategic vote in
order to affect the outcome. An important negative result from social-choice the-
ory, the Gibbard-Satterthwaithe theorem, states that every reasonable election
system is susceptible to strategic voting (a.k.a. manipulation) [16,26].

Although every reasonable election system can be manipulated, it may be
computationally infeasible to determine if a successful manipulation exists.
Bartholdi et al. introduced the notion of exploring the computational complex-
ity of the manipulation problem [1]. They expanded on this work by introducing
and analyzing the complexity of control [2]. Control models the actions of an
election organizer, referred to as the chair, who has control over the structure
of the election (e.g., the voters) and wants to ensure that a preferred candidate
wins. Faliszewski et al. introduced the model of bribery [9]. Bribery is closely
related to manipulation, but instead of asking if voters can cast strategic votes
to ensure a preferred outcome, bribery asks if a subcollection of the voters can
be paid to change their vote to ensure a preferred outcome.

It is important that we understand the complexity of these election prob-
lems on votes that allow ties, since in practical settings voters often have ties
between some of the candidates. This is seen in the online preference repository
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 103–119, 2015.
DOI: 10.1007/978-3-319-23114-3 7
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PrefLib, which contains several election datasets containing votes with ties,
ranging from political elections to elections created from rating data [23]. Most
of the computational study of election problems for partial votes has assumed
that each voter’s preferences should be extended to a total order (see e.g., the
possible and necessary winner problems [21]). However an agent may view two
options as explicitly equal and it makes sense to view these preferences as votes
with ties, instead of as partial rankings that can be extended.

Election systems are sometimes even explicitly defined for voters with ties.
Both the Kemeny rule [20] and the Schulze rule [27] are defined for votes that
contain ties. Also, there exist variants of the Borda count that are defined for
votes that contain ties [8].

The computational study of the problems of manipulation, control, and
bribery has largely been restricted to elections that contain voters with tie-free
votes. Important recent work by Narodytska and Walsh [25] studies the com-
putational complexity of the manipulation problem for top orders, i.e., votes
where the candidates ranked last are all tied and are otherwise total orders. The
manipulation results in this paper can be seen as an extension of the work by
Narodytska and Walsh. We consider orders that allow a voter to state ties at
each position of his or her preference order, i.e., weak orders. We mention that
in contrast to the work by Narodytska and Walsh [25], we give an example of a
natural case where manipulation becomes hard when given votes with ties, while
it is in P for total orders. Additionally, we are the first to study the complexity of
the standard models of control and bribery for votes that contain ties. However,
we mention here that Baumeister et al. consider a different version of bribery
called extension bribery, for top orders (there called top-truncated votes) [3].

The organization of this paper is as follows. In Sect. 2 we state the formal
definitions and problem statements needed for our results. The results in Sect. 3
are split into three sections, each showing a different behavior of voting with ties.
In Sect. 3.1 we give examples of election systems where the problems of manip-
ulation, bribery, and control increase in complexity from P to NP-complete.
Conversely, in Sect. 3.2 we give examples of election systems where the complex-
ity of manipulation and bribery becomes easier, and state a general result about
the complexity of control. In Sect. 3.3 we solve an open question from Narodyt-
ska and Walsh [25] and give examples of election systems whose manipulation
complexities are unaffected by voters with ties. Additionally, we completely char-
acterize 3-candidate Copelandα coalitional weighted manipulation for rational
and irrational voters with ties. We discuss related work in Sect. 4 and our general
conclusions and open directions in Sect. 5.

2 Preliminaries

An election consists of a finite set of candidates C and a collection of voters
V (also referred to as a preference profile). Each voter in V is specified by
its preference order. We consider voters with varying amounts of ties in their
preferences. A total order is a linear ordering of all of the candidates from most
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to least preferred. A weak order is a transitive, reflexive, and antisymmetric
ordering where the indifference relation (“∼”) is transitive. In general, a weak
order can be viewed as a total order with ties. As usual, we will colloquially
refer to indifference as ties throughout this paper since the indifference relation
specifies the preference for two elements being equal. A top order is a weak order
with all tied candidates ranked last, and a bottom order is a weak order with all
tied candidates ranked first. In Example 1 below we present examples of each of
the orders examined in this paper.

Example 1. Given the candidate set {a, b, c, d}, a > b ∼ c > d is a weak order,
a ∼ b > c > d is a bottom order, a > b > c ∼ d is a top order, and a > b > c > d
is a total order. Notice that every bottom order and every top order is also a
weak order, and that every total order is also a top, bottom, and weak order.

An election system, E , maps an election, i.e., a finite candidate set C and
a collection of voters V , to a set of winners, where the winner set can be any
subset of the candidate set. The voters in an election can sometimes have an
associated weight where a voter with weight w counts as w unweighted voters.

We examine two important families of election systems, the first being scoring
rules. A scoring rule uses a vector of the form 〈s1, . . . , sm〉, where m denotes
the number of candidates, to determine each candidate’s score when given a
preference profile. When the preferences are all total orders, a candidate at
position i in the preference order of a voter receives a score of si from that voter.
The candidate(s) with the highest total score win. We consider the following
three scoring rules.

Plurality: with scoring vector 〈1, 0, . . . , 0〉.
Borda: with scoring vector 〈m − 1,m − 2, . . . , 1, 0〉.
t-Approval: with scoring vector 〈1, . . . , 1︸ ︷︷ ︸

t

, 0, . . . , 0〉.

To properly handle voters with ties in their preference orders we define several
natural extensions which generalize the extensions from Baumeister et al. [3] and
Narodytska and Walsh [25].

Write a preference order with ties as G1 > G2 > · · · > Gr where each Gi

is a set of tied candidates. For each set Gi, let ki =
∑i−1

j=1 ‖Gj‖ be the number
of candidates strictly preferred to every candidate in the set. See the caption of
Table 1 for an example.

We now introduce the following scoring-rule extensions, which as stated
above, generalize previously used scoring-rule extensions [3,25]. In Table 1 we
present an example of each of these extensions for Borda.

Min: Each candidate in Gi receives a score of ski+‖Gi‖.
Max: Each candidate in Gi receives a score of ski+1.
Round down: Each candidate in Gi receives a score of sm−r+i.
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Average: Each candidate in Gi receives a score of

∑ki+‖Gi‖
j=ki+1 sj

‖Gi‖ .

Table 1. The score of each candidate for preference order a > b ∼ c > d using Borda
with each of our scoring-rule extensions. We write this order as {a} > {b, c} > {d},
i.e., G1 = {a}, G2 = {b, c}, and G3 = {d}. Note that k1 = 0, k2 = 1, and k3 = 3

Borda score(a) score(b) score(c) score(d)

Min 3 1 1 0

Max 3 2 2 0

Round down 2 1 1 0

Average 3 1.5 1.5 0

The optimistic and pessimistic models from the work by Baumeister et al. [3]
are the same as our max and min extensions respectively, for top orders. All of
the scoring-rule extensions for top orders found in the work by Narodytska and
Walsh [25] can be realized by our definitions above, with our round-down and
average extensions yielding the same scores for top orders as their round-down
and average extensions. With the additional modification that sm = 0 our min
scoring-rule extension yields the same scores for top orders as round up in the
work by Narodytska and Walsh [25].

Notice that plurality using the max scoring-rule extension for bottom orders
is the same as approval voting, where each voter indicates either approval or
disapproval of each candidate and the candidate(s) with the most approvals
win. For example, given the set of candidates {a, b, c, d}, an approval vector that
approves of a and c, and a preference order a ∼ c > b > d yield the same scores
for approval and plurality using max respectively.

In addition to scoring rules, elections can be defined by the pairwise major-
ity elections between the candidates. One important example is Copelandα [7]
(where α is a rational number between 0 and 1), which is scored as follows.
Each candidate receives one point for each pairwise majority election he or she
wins and receives α points for each tie. We also mention that Copeland1 is often
referred to, and will be throughout this paper, as Llull [17]. We apply the defini-
tion of Copelandα to weak orders in the obvious way (as was done for top orders
in [3,25]).

We sometimes look at voters whose preferences need not be rational and we
refer to those voters as “irrational.” This simply means that for every unordered
pair a, b of distinct candidates, the voter has a > b or b > a. For example, a
voter’s preferences could be (a > b, b > c, c > a). We also look at irrational votes
with ties.

When discussing elections defined by pairwise majority elections we some-
times refer to the induced majority graph of a preference profile. A preference
profile V where each voter has preferences over the set of candidates C induces
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the majority graph with a vertex set equal to the candidate set and an edge set
defined as follows. For every a, b ∈ C the graph contains the edge a → b if more
voters have a > b than b > a.

2.1 Election Problems

We examine the complexity of the following election problems.
The coalitional manipulation problem (where a coalition of manipulators

seeks to change the outcome of the election) for weighted voters, first studied by
Conitzer et al. [6], is described below.

Name: E-CWCM
Given: A candidate set C, a collection of nonmanipulative voters V where each

voter has a positive integral weight, a preferred candidate p ∈ C, and a
collection of manipulative voters W .

Question: Is there a way to set the votes of the manipulators such that p is an
E winner of the election (C, V ∪ W )?

Electoral control is the problem of determining if it is possible for an election
organizer with control over the structure of an election, whom we refer to as
the election chair, to ensure that a preferred candidate wins [2]. We formally
define the specific control action of constructive control by adding voters (CCAV)
below. CCAV is one of the most natural cases of electoral control and it models
scenarios such as targeted voter registration drives where voters whose votes will
ensure the goal of the chair are added to the election.

Name: E-CCAV
Given: A candidate set C, a collection of voters V , a collection of unregistered

voters U , a preferred candidate p ∈ C, and an add limit k ∈ IN.
Question: Is there a subcollection of the unregistered voters U ′ ⊆ U such that

‖U ′‖ ≤ k and p is an E winner of the election (C, V ∪ U ′)?

Bribery is the problem of determining if it is possible to change the votes of
a subcollection of the voters, within a certain budget, to ensure that a preferred
candidate wins [9]. The case for unweighted voters is defined below, but we also
consider the case for weighted voters.

Name: E-Bribery
Given: A candidate set C, a collection of voters V , a preferred candidate p ∈ C,

and a bribe limit k ∈ IN.
Question: Is there a way to change the votes of at most k of the voters in V so

that p is an E winner?

2.2 Computational Complexity

We use the following NP-complete problems in our proofs of NP-completeness.
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Name: Exact Cover by 3-Sets
Given: A nonempty set of elements B = {b1, . . . , b3k} and a collection S =

{S1, . . . , Sn} of 3-element subsets of B.
Question: Does there exist a subcollection S ′ of S such that every element of

B occurs in exactly one member of S ′?

Name: Partition
Given: A nonempty set of positive integers k1, . . . , kt such that

∑t
i=1 ki = 2K.

Question: Does there exist a subset A of k1, . . . , kt such that
∑

A = K?1

Some of our results utilize the following variation of Partition, referred to as
Partition′, for which we prove NP-completeness by a reduction from Partition.

Name: Partition′
Given: A nonempty set of positive even integers k1, . . . , kt and a positive even

integer K̂.
Question: Does there exist a partition (A,B,C) of k1, . . . , kt such that

∑
A =∑

B + K̂?

Theorem 1. Partition′ is NP-complete.

Proof. The construction here is similar to the first part of the reduction to a
different version of Partition from Faliszewski et al. [9].

Given k1, . . . , kt such that
∑t

i=1 ki = 2K, corresponding to an instance
of Partition, we construct the following instance k′

1, . . . , k
′
t, �

′
1, . . . , �

′
t, K̂ of

Partition′. Let k′
i = 4i + 4t+1ki, �′

i = 4i, and K̂ = 4t+1K +
∑t

i=1 4i. (Note
that in Faliszewski et al. [9] “3”s were used, but we use “4”s here so that when
we add a subset of k′

1, . . . , k
′
t, �

′
1, . . . , �

′
t, K̂, we never have carries in the last t+1

digits base 4, and we set the last digit to 0 to ensure that all numbers are even.)
If there exists a partition (A,B,C) of k′

1, . . . , k
′
t, �

′
1, . . . , �

′
t such that

∑
A =∑

B+K̂, then ∀i, 1 ≤ i ≤ t, �(∑A)/4i mod 4 = �(∑B+K̂)/4i mod 4. Note
that �(∑A)/4i mod 4 = ‖A ∩ {k′

i, �
′
i}‖, �(∑B)/4i mod 4 = ‖B ∩ {k′

i, �
′
i}‖,

and �K̂/4i mod 4 = 1. So, ‖A ∩ {k′
i, �

′
i}‖ = ‖B ∩ {k′

i, �
′
i}‖ + 1. It follows that

exactly one of k′
i or �′

i is in A and neither is in B. Since this is the case for every
i, it follows that B = ∅. Now look at all ki such that k′

i is in A. That set will
add up to K, and so our original Partition instance is a positive instance.

For the converse, it is immediate that a subset D of k1, . . . , kt that adds
up to K can be converted into a solution for our Partition′ instance, namely, by
putting k′

i in A for every ki in D, putting �′
i in A for every ki not in D, letting

B = ∅, and putting all other elements of k′
1, . . . , k

′
t, �

′
1, . . . , �

′
t in C. �

3 Results

3.1 Complexity Goes up

The related work on the complexity of manipulation of top orders [25] did not
find a natural case where manipulation complexity increases when moving from
total orders to top orders. We will show such cases in this section.
1 Here and elsewhere we write

∑
A to denote

∑
a∈A a.
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Single-peakedness is a restriction on the preferences of the voters introduced
by Black [4]. Given a total order A over the candidates, referred to as an axis, a
collection of voters is single-peaked with respect to A if each voter has preferences
that strictly increase to a peak and then strictly decrease, only strictly increase,
or only strictly decrease with respect to A.

For our purposes we consider the model of top order single-peakedness intro-
duced by Lackner [22] where given an axis A, a collection of voters is single-
peaked with respect to A if no voter has preferences that strictly decrease and
then strictly increase with respect to A. Notice that for total orders, if a pref-
erence profile is single-peaked with respect to Black’s model [4] it is also single-
peaked with respect to Lackner’s model [22].

For single-peaked preferences we follow the model of manipulation from
Walsh [28] where the axis is given and both the nonmanipulators and the manip-
ulators all cast votes that are single-peaked with respect to the given axis.
3-candidate Borda CWCM is known to be in P for single-peaked voters [12].

Theorem 2. [12] 3-candidate Borda CWCM for single-peaked total orders is
in P.

We now consider the complexity of 3-candidate Borda CWCM for top orders
that are single-peaked. In all of our reductions the axis is a <A p <A b. Single-
peakedness with respect to this axis allows the following top order votes: a >
p > b, a ∼ p ∼ b, a > p ∼ b, p > a > b, p > b > a, p > a ∼ b, b > p > a,
and b > p ∼ a. It does not allow a > b > p or b > a > p.

Theorem 3. 3-candidate Borda CWCM for single-peaked top orders using max
is NP-complete.

Proof. Given a nonempty set of positive integers k1, . . . , kt such that
∑t

i=1 ki =
2K we construct the following instance of manipulation.

Let the set of candidates be C = {a, b, p}. We have two nonmanipulators
with the following weights and votes.

– One weight 3K nonmanipulator voting a > p ∼ b.
– One weight 3K nonmanipulator voting b > p ∼ a.

From the nonmanipulators, score(p) = 6K, while score(a) and score(b) are both
9K.

Let there be t manipulators, with weights k1, . . . , kt. Without loss of gener-
ality, all of the manipulators put p first. Then p receives a score of 10K overall.
However, a and b can score at most K each from the votes of the manipulators,
for p to be a winner. So the manipulators must split their votes so that a sub-
collection of manipulators with weight K votes p > a > b and a subcollection
with weight K votes p > b > a. Notice that these are the only votes possible to
ensure that p wins and that the manipulators cannot simply all vote p > a ∼ b
since both a and b receive a point from that vote (since we are using max) and
we have no points to spare. �
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The above argument for max does not immediately apply to the other scoring-
rule extensions. In particular, for min the optimal vote for the manipulators is
always to rank p first and to rank the remaining candidates tied and less preferred
than p (as in Proposition 3 of Narodytska and Walsh [25]). So that case is in P,
with an optimal manipulator vote of p > a ∼ b.

It is not hard to modify the proof to show that the reduction of the proof of
Theorem 3 also works for the round-down case.

Theorem 4. 3-candidate Borda CWCM for single-peaked top orders using
round down is NP-complete.

The average scoring-rule extension case is more complicated since it is less
close to Partition than the previous cases. We will still be able to show NP-
completeness, but we have to reduce from the special, restricted version of Par-
tition that we defined previously in Sect. 2.2 as Partition′.2

Theorem 5. 3-candidate Borda CWCM for single-peaked top orders using aver-
age is NP-complete.

Proof. Let k1, . . . , kt, K̂ be an instance of Partition′. We are asking whether
there exists a partition (A,B,C) of k1, . . . , kt such that

∑
A =

∑
B + K̂. Recall

that all numbers involved are even. Let k1, . . . , kt sum to 2K. Without loss of
generality, assume that K̂ ≤ 2K.

Let the candidates C = {a, b, p}. We have two nonmanipulators with the
following weights and votes.

– One weight 6K + K̂ nonmanipulator voting a > p ∼ b.
– One weight 6K − K̂ nonmanipulator voting b > p ∼ a.

From the nonmanipulators, score(p) is 6K, score(a) + score(b) = 30K and
score(a) − score(b) = 3K̂.

Let there be t manipulators, with weights 3k1, . . . , 3kt.
First suppose there exists a partition (A,B,C) of k1, . . . , kt such that

∑
A =∑

B + K̂. For every ki ∈ A, let the weight 3ki manipulator vote p > b > a. For
every ki ∈ B, let the weight 3ki manipulator vote p > a > b. For every ki ∈ C, let
the weight 3ki manipulator vote p > a ∼ b. Notice that after this manipulation
that score(p) = 18K, score(a) = score(b), and score(a) + score(b) = 30K + 6K.
It follows that score(p) = score(a) = score(b) = 18K.

For the converse, suppose that p can be made a winner. Without loss of
generality, assume that p is ranked uniquely first by all manipulators. Then
score(p) = score(a) = score(b) = 18K. Let A′ be the set of manipulator weights
that vote p > b > a, let B′ be the set of manipulator weights that vote p >
a > b, and let C ′ be the set of manipulator weights that vote p > a ∼ b. No
2 A similar situation occurred in the proof of Proposition 5 in Narodytska and

Walsh [25], where a (very different) specialized version of Subset Sum was con-
structed to prove that 3-candidate Borda CWCM (in the non-single-peaked case)
for top orders using average remained NP-complete.
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other votes are possible. Let A = {ki | 3ki ∈ A′}, B = {ki | 3ki ∈ B′}, and
C = {ki | 3ki ∈ C ′}. Therefore (A,B,C) corresponds to a partition of k1, . . . , kt.
Note that

∑
A =

∑
B + K̂. �

We now consider cases where the complexity of control can increase when
moving from total order votes to votes with ties. We examine the complexity of
CCAV, which is one of the most natural models of control and known to be in
P for plurality for total orders [2].

Theorem 6. [2] Plurality CCAV for total orders is in P.

However below we show two cases where CCAV for plurality is NP-complete for
bottom orders and weak orders.

As mentioned in the Preliminaries, plurality using max for bottom orders is
the same as approval voting. So the theorem below immediately follows from the
proof of Theorem 4.43 from Hemaspaandra et al. [19].

Theorem 7. Plurality CCAV for bottom orders and weak orders using max is
NP-complete.

We now show that the case of plurality for bottom orders and weak orders
using average is NP-complete.

Theorem 8. Plurality CCAV for bottom orders and weak orders using average
is NP-complete.

Proof. Let B = {b1, . . . , b3k} and a collection S = {S1, . . . Sn} of 3-element sub-
sets of B be an instance of Exact Cover by 3-Sets, where each Sj = {bj1 , bj2 , bj3}.
Without loss of generality let k be divisible by 4 and let � = 3k/4. We construct
the following instance of control by adding voters.

Let the candidates C = {p}∪B. Let the addition limit be k. Let the collection
of registered voters consist of the following (3k2 + 9k)/4 + 1 voters. (When
“· · · ” appears at the end of a vote the remaining candidates from C are ranked
lexicographically. For example, given the candidate set {a, b, c, d}, the vote b >
· · · denotes the vote b > a > c > d.)

– For each i, 1 ≤ i ≤ �, k + 3 voters voting bi ∼ bi+� ∼ bi+2� ∼ bi+3� > · · · .
– One voter voting p > · · · .
Let the collection of unregistered voters consist of the following n voters.

– For each Sj ∈ S, one voter voting p ∼ bj1 ∼ bj2 ∼ bj3 > · · · .
Notice that from the registered voters, the score of each bi candidate is (k−1)/4
greater than the score of p. Thus the chair must add voters from the collection of
unregistered voters so that no bi candidate receives more than 1/4 more points,
while p must gain k/4 points. Therefore the chair must add the voters that
correspond to an exact cover. �
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We now present a case where the complexity of bribery goes from P for total
orders to NP-complete for votes with ties.

Theorem 9. [9] Unweighted bribery for plurality for total orders is in P.

The proof that bribery for plurality for bottom orders and weak order using
max is NP-complete immediately follows from the proof of Theorem 4.2 from
Faliszewski et al. [9], which showed bribery for approval to be NP-complete.

Theorem 10. Unweighted bribery for plurality for bottom orders and weak
orders using max is NP-complete.

3.2 Complexity Goes down

Narodytska and Walsh [25] show that the complexity of coalitional manipulation
can go down when moving from total orders to top orders. In particular, they
show that the complexity of coalitional manipulation (weighted or unweighted)
for Borda goes from NP-complete to P for top orders using round-up. This is
because in round-up an optimal manipulator vote is to put p first and have all
other candidates tied for last.

In contrast, notice that the complexity of a (standard) control action cannot
decrease when more lenient votes are allowed. This is because the votes that
create hard instances of control are still able to be cast when more general votes
are possible. The election chair is not able to directly change votes, except in a
somewhat restricted way in candidate control cases, but it is clear to see how
this does not affect the statement below.

Observation 11. If a (standard) control problem is hard for a type of vote with
ties, it remains hard for votes that allow more ties.

What about bribery? Bribery can be viewed as a two-phase action consisting
of control by deleting voters followed by manipulation. Hardness for a bribery
problem is typically caused by hardness of the corresponding deleting voters
problem or the corresponding manipulation problem. If the deleting voters prob-
lem is hard, this problem remains hard for votes that allow ties, and it is likely
that the bribery problem remains hard as well. Our best chance of finding a
bribery problem that is hard for total orders and easy for votes with ties is a
problem whose manipulation problem is hard, but whose deleting voters problem
is easy. Such problems exist, e.g., all weighted m-candidate t-approval systems
except plurality and triviality.3

Theorem 12. [9] Weighted bribery for m-candidate t-approval for all t ≥ 2 and
m > t is NP-complete.

For m-candidate t-approval elections (except plurality and triviality) the cor-
responding weighted manipulation problem was shown to be NP-complete by
Hemaspaandra and Hemaspaandra [18] and the corresponding deleting voters
problem was shown to be in P by Faliszewski et al. [10].
3 By triviality we mean a scoring rule with a scoring vector that gives each candidate

the same score.
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Theorem 13. Weighted bribery for m-candidate t-approval for weak orders and
for top orders using min is in P.

Proof sketch. To perform an optimal bribery, we cannot simply perform an
optimal deleting voter action followed by an optimal manipulation action. For
example, if the score of b is already at most the score of p, it does not make
sense to delete a voter with vote b > p ∼ a. But in the case of bribery, we would
change this voter to p > a ∼ b, which could be advantageous.

However, the weighted constructive control by deleting voters (WCCDV)
algorithm from [10] still basically works. Since m is constant, there are only a
constant number of different votes possible. And we can assume without loss
of generality that we bribe only the heaviest voters of each vote-type and that
each bribed voter is bribed to put p first and have all other candidates tied for
last. In order to find out if there exists a successful bribery of k voters, we look
at all the ways we can distribute this k among the different types of votes. We
then manipulate the heaviest voters of each type to put p first and have all other
candidates tied for last, and see if that makes p a winner. �

3.3 Complexity Remains the Same

Narodytska and Walsh [25] show that 4-candidate Copeland0.5 CWCM remains
NP-complete for top orders. They conjecture that this is also the case for 3
candidates and point out that the reduction that shows this for total orders
from Faliszewski et al. [13] won’t work. We will prove their conjecture, with a
reduction similar to the proof of Theorem 5.4

Theorem 14. 3-candidate Copelandα CWCM remains NP-complete for top
orders, bottom orders, and weak orders, for all rational α ∈ [0, 1) in the
nonunique winner case (our standard model).

Proof. Let k1, . . . , kt and K̂ be an instance of Partition′, which asks whether
there exists a partition (A,B,C) of k1, . . . , kt such that

∑
A =

∑
B + K̂.

Let k1, . . . , kt sum to 2K and without loss of generality assume that K̂ ≤ 2K.
We now construct an instance of CWCM. Let the candidate set C = {a, b, p}
and let the preferred candidate be p. Let there be two nonmanipulators with the
following weights and votes.

– One weight K + K̂/2 nonmanipulator voting a > b > p.
– One weight K − K̂/2 nonmanipulator voting b > a > p.

From the votes of the nonmanipulators, score(a) = 2, score(b) = 1, and
score(p) = 0. In the induced majority graph, there is the edge a → b with
weight K̂, the edge a → p with weight 2K, and the edge b → p with weight 2K.
Let there be t manipulators with, weights k1, . . . , kt.
4 Menon and Larson independently proved the top order case of the following theo-

rem [24].
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Suppose that there exists a partition of k1, . . . , kt into (A,B,C) such that∑
A =

∑
B + K̂. Then for each ki ∈ A, have the manipulator with weight

ki vote p > b > a, for each ki ∈ B, have the manipulator with weight ki

vote p > a > b, and for each ki ∈ C have the manipulator with weight ki

vote p > a ∼ b. From the votes of the nonmanipulators and manipulators,
score(a) = score(b) = score(p) = 2α.

For the other direction, suppose that p can be made a winner. When all of
the manipulators put p first then score(p) = 2α (the highest score that p can
achieve). Since α < 1, the manipulators must have voted such that a and b tie.
This means that a subcollection of the manipulators with weight K voted p >
b > a, a subcollection with weight K − K̂ voted p > a > b, and a subcollection
with weight K̂ voted p > a ∼ b. No other votes would cause b and a to tie.
Notice that the weights of the manipulators in the three different subcollections
form a partition (A,B,C) of k1, . . . , kt such that

∑
A =

∑
B + K̂. �

3-candidate Copelandα CWCM is unusual in that the complexity can be
different if we look at the unique winner case instead of the nonunique winner
case (our standard model). We can prove that the only 3-candidate Copeland
CWCM case that is hard for the unique winner model remains hard using a very
similar approach.

Theorem 15. 3-candidate Copeland0 CWCM remains NP-complete for top
orders, bottom orders, and weak orders, in the unique winner case.

Proof. Let k1, . . . , kt and K̂ be an instance of Partition′, which asks whether
there exists a partition (A,B,C) of k1, . . . , kt such that

∑
A =

∑
B + K̂.

Let k1, . . . kt sum to 2K and without loss of generality assume that K̂ ≤ 2K.
We now construct an instance of CWCM. Let the candidate set C = {a, b, p}.
Let the preferred candidate be p ∈ C. Let there be two nonmanipulators with
the following weights and votes.

– One weight K + K̂/2 nonmanipulator voting a > p > b.
– One weight K − K̂/2 nonmanipulator voting b > a > p.

From the votes of the nonmanipulators score(a) = 2, score(b) = 0, and score(p) =
1. The induced majority graph contains the edge a → b with weight K̂, the edge
a → p with weight 2K, and the edge p → b with weight K̂. Let there be t
manipulators, with weights k1, . . . , kt.

Suppose that there exists a partition of k1, . . . , kt into (A,B,C) such that∑
A =

∑
B +K̂. Then for each ki ∈ A have the manipulator with weight ki vote

p > b > a, for each ki ∈ B have the manipulator with weight ki vote p > a > b,
and for each ki ∈ C have the manipulator with weight ki vote p > a ∼ b.
From the votes of the nonmanipulators and the manipulators score(p) = 1 and
score(a) = score(b) = 0.

For the other direction, suppose that p can be made a unique winner. When
all of the manipulators put p first then score(p) = 1. So the manipulators must
have voted so that a and b tie, since otherwise either a or b would tie with p and
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p would not be a unique winner. Therefore a subcollection of the manipulators
with weight K voted p > b > a, a subcollection with weight K − K̂ voted
p > a > b, and a subcollection with weight K̂ voted p > a ∼ b. No other votes
would cause a and b to tie. �

Theorem 16. 3-candidate Copelandα CWCM remains in P for top orders, bot-
tom orders, and weak orders, for α = 1 for the nonunique winner case and for
all rational α ∈ (0, 1] in the unique winner case.

The proof of this theorem follows using the same arguments as the proof of the
case without ties from Faliszewski et al. [13].

Tournament Result. We now state a general theorem on two-voter tourna-
ments for votes with ties. See Brandt et al. [5] for related work on tournaments
constructed from a fixed number of voters with total orders.

Theorem 17. A majority graph can be induced by two weak orders if and only
if it can be induced by two total orders.

Proof sketch. Given two weak orders v1 and v2 that describe preferences over
a candidate set C, we construct two total orders, v′

1 and v′
2 iteratively as follows.

For each pair of candidates a, b ∈ C and i ∈ {1, 2}, if a > b in vi then set
a > b in v′

i.
For each pair of candidates a, b ∈ C, if a > b in v1 (v2) and a ∼ b in v2

(v1) then the majority graph induced by v1 and v2 contains the edge a → b. To
ensure that the majority graph induced by v′

1 and v′
2 contains the edge a → b

we must set a > b in v′
2 (v′

1).
After performing the above steps there may still be a set of candidates C ′ ⊆ C

such that v1 and v2 are indifferent between each pair of candidates in C ′. For
each pair of candidates a, b ∈ C ′, a ∼ b in v1 and v2, which implies the majority
graph does not contain and edge between a and b. To ensure that majority
graph induced by v′

1 and v′
2 does not contain an edge between a and b, without

loss of generality set v′
1 to strictly prefer the lexicographically smaller to the

lexicographically larger candidate and the reverse in v′
2.

The process described above constructs two orders v′
1 and v′

2 and ensures
that the majority graph induced by v1 and v2 is the same as the majority graph
induced by v′

1 and v′
2. Since for each pair of candidates a, b ∈ C and i ∈ {1, 2}

we consider each possible case where a ∼ b is in vi and set either a > b or b > a
in the corresponding order v′

i, it is clear that v′
1 and v′

2 are total orders. �

Observe that as a consequence of Theorem 17 we get a transfer of NP-
hardness from total orders to weak orders for two manipulators when the
result depends only on the induced majority graph. The proofs for Copelandα

unweighted manipulation for two manipulators for all rational α for total orders
depend only on the induced majority graph [13,14], so we can state the following
corollary to Theorem 17.

Corollary 18. Copelandα unweighted manipulation for two manipulators for
all rational α �= 0.5 for weak orders is NP-complete.
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Irrational Voter Copeland Results. As mentioned in the preliminaries,
another way to give more flexibility to voters is to let the voters be irrational. A
voter with irrational preferences can state preferences that are not necessarily
transitive and as mentioned in Faliszewski et al. [11] a voter is likely to posses
preferences that are not transitive when making a decision based on multiple
criteria.

Additionally, the preferences of voters can include ties as well as irrationality.
When voters are able to state preferences that can contain irrationality and ties
they can represent all possible pairwise preferences that they may have over all
of the candidates.

It is known that unweighted Copelandα manipulation is NP-complete for
total orders for all rational α except 0.5 [13,14]. For irrational voters, this prob-
lem is in P for α = 0, 0.5, and 1, and NP-complete for all other α [14]. Weighted
manipulation for Copelandα has not been studied for irrational voters. We will
do so here.

Theorem 19. 3-candidate Copelandα CWCM remains in P for irrational voters
with or without ties, for α = 1 for the nonunique winner case and for all rational
α ∈ (0, 1] in the unique winner case.

Theorem 20. 3-candidate Copelandα CWCM remains NP-complete for irra-
tional voters with or without ties, for α = 0 in the unique winner case and for
all rational α ∈ [0, 1) in the nonunique winner case.

The proofs of the above two theorems follow from the arguments in the proofs
of the corresponding rational cases, i.e., the proofs of Theorem 4.1 and 4.2
from Faliszewski et al. [13] for the case of voters without ties and the proofs of
Theorems 14, 15, and 16 above for the case of voters with ties.

When α = 1, also known as Llull, interesting things happen. It is known that
4-candidate Llull CWCM is in P for the unique and nonunique winner cases [15].
For larger fixed numbers of candidates, this is open. Though it is known that
unweighted manipulation for Llull (with an unbounded number of candidates)
is NP-complete in the nonunique winner case [14]. In contrast, we will show now
that for irrational voters, all these problems are in P.

Theorem 21. Llull CWCM is in P for irrational voters with or without ties,
in the nonunique winner case and in the unique winner case.

Proof. Given a set of candidates C, a collection of voters V , k manipulators,
and a preferred candidate p ∈ C, the preferences of the manipulators will always
contain p > a for all candidates a �= p. This determines the score of p. In
addition, let the initial preferences of the manipulators be a > b for each pair
of candidates a, b ∈ C − {p} such that a defeats b in V or such that a ties b in
V and a is lexicographically smaller than b. Note that, if k > 0, there are no
pairwise ties in the election with the manipulators set in this way and that the
manipulators all have strict preferences between every pair of candidates (i.e.,
no ties in their preferences). For every a �= p, let score0(a) be the score of a with
the manipulators set as above.
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Construct the following flow network. The nodes are: a source s, a sink t, and
all candidates other than p. For every a ∈ C − {p}, add an edge with capacity
score0(a) from s to a and add an edge with capacity score(p) from a to t. For
every a, b ∈ C −{p}, add an edge from candidate a to candidate b with capacity
1 if, when all manipulators set b > a, the score of a decreases by 1 (and the score
of b increases by 1).

If there is manipulation such that p is a winner, then for every candidate
a ∈ C − {p}, score(a) ≤ score(p) so there is a network flow that saturates all
edges that go out from s.

If there is a network flow that saturates all edges that go out from s then for
every a, b ∈ C − {p} such that there is a unit of flow from a to b, change a > b
to b > a in all manipulators.

This construction can be adapted to the unique winner case by letting the
capacity of the edge from a to t be score(p) − 1 instead of score(p). �

4 Related Work

The recent work by Narodytska and Walsh [25] studied the complexity of manip-
ulation for top orders and is very influential to our computational study of more
general votes with ties. Baumeister et al. [3] and Narodytska and Walsh [25]
studied several extensions for election systems for top orders, which we further
extend for weak orders.

Most of the related work in the computational study of election problems
assumes that the partial or tied preferences of the voters must be extended to
total orders. We mention the important work on partial orders by Konczak and
Lang [21] that introduces the possible and necessary winner problems. Given a
preference profile of partial votes, a possible winner is a candidate that wins in
at least one extension of the votes to total orders, while a necessary winner wins
in every extension [21].

Baumeister et al. [3] also look at the possible winner problem and in their case
they examine the problem given different types of incomplete votes, i.e., top trun-
cated, bottom truncated, and top and bottom truncated. Baumeister et al. also
introduced the problem of extension bribery, where given voters with preferences
that are top truncated, voters are paid to extend their vote to ensure that a pre-
ferred candidate wins [3]. We do not consider the problem of extension bribery, but
instead we use the standard model of bribery introduced by Faliszewski et al. [9].
In this model the briber can set the entire preferences of a subcollection of voters
to ensure that a preferred candidate wins [9].

5 Conclusions and Future Work

We examined the computational complexity of the three most commonly studied
manipulative attacks on elections when voting with ties. We found a natural case
for manipulation where the complexity increases for voters with ties, whereas it
is easy for total orders. For bribery we found examples where the complexity
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increases and where it decreases. We examined the complexity of Copelandα

elections for voters with ties and even irrational votes with and without ties. It
would be interesting to see how the complexity of other election problems are
affected by voters with ties, specifically weak orders, which we consider to be a
natural model for preferences in practical settings.
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Abstract. In this paper, we present an approach to build the struc-
ture of a Bayesian network from multiple disparate inputs. Specifically,
our method accepts as input multiple partially overlapping datasets
with missing data along with expert opinions about the structure of
the model and produces an associated directed acyclic graph represent-
ing the graphical layer of a Bayesian network. We provide experimental
results where we compare our algorithm with an application of Struc-
tural Expectation Maximization. We also provide a real world example
motivating the need for combining disparate sources of information even
when noisy and not fully aligned with one another.

Keywords: Bayesian network · Expert opinions · Multiple incomplete
datasets

1 Introduction

Decision and Risk Analysis make extensive uses of influence diagrams, at the
heart of which lies the probabilistic model known as a Bayesian network.
Bayesian networks (BNs) [14] are a compact representation of the relationships
among random variables. They provide an intuitive graphical representation of
the variables dependence and independence relations along with an efficient way
to perform inference queries. A Bayesian network is composed of two main ele-
ments: (i) the structure of the network captured by the directed acyclic graph
and representing dependence and independence relations among the variables
and (ii) the parameters of the network in the form of conditional probability
tables, representing conditional distributions of the variables given all possible
scenarios of their parents. Building a Bayesian network typically involves first
determining the structure of the network and then estimating the parameters.
We focus in this paper on the first step, the determination of the directed acyclic
graph underlying the network.

In the past, it has been customary to assume that one would have access to
one single clean input (one set of experts or one dataset) to determine the struc-
ture of the network. This assumption needs to be revisited as radical technology
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changes from the past 30 years have modified the context in which Bayesian
networks are built. While the availability of information and experts has sig-
nificantly increased, the quality of this knowledge may not have improved in
general. Technology makes it simpler to assemble in a few clicks a distributed
team of experts, and through web-based techniques, to elicit information from
them in a minimally disruptive way. However, web-based elicitation can also
result in experts being less engaged and consequently less focused and reliable.
Having access to a distributed team of experts also increases the chance of con-
flicting opinions while the asynchronous approach to elicitation makes it difficult
to resolve conflict directly. Similarly, Big Data does not necessarily imply better
data. In fact, Big Data is mainly a euphemism to talk about overwhelming data:
undeniably in large volumes but mostly unstructured, incomplete, evolving and
noisy.

A critical objective for decision and risk analysis is thus to be able to make
use of messy inputs in a rigorous way. By messy inputs, we mean multiple dis-
parate and noisy inputs including multiple overlapping and incomplete datasets,
conflicting expert opinions, facts extracted from the literature or from statistical
sources such as census information, and constraints derived from domain knowl-
edge such as reference ontologies. In this paper, we address one such subproblem
by providing an approach to build the structure of a Bayesian network from
multiple, incomplete and partially overlapping datasets and expert opinions.
Our focus is on combining the work that has been carried out in the Artifi-
cial Intelligence community around structure learning and whenever relevant to
adapt it to our purpose.

2 Related Work

The problem of building a Bayesian network structure from multiple datasets has
been studied for some years, thus there is a fair amount of literature upon which
to build on. Although it is possible to collate the datasets together and apply
the Structural Expectation Maximization algorithm [7], this is not satisfying as
the algorithm assumes that data is missing at random, which would not apply
in this context [3].

One stream of research has thus explored how multitask learning methods
(i.e. simultaneously learning multiple structures from multiple datasets) could
be extended to learning one common structure. However, these approaches do
not generalize simply to cases where datasets have only partial overlap in their
attributes [12]. In addition, learning a single representative structure may lead
to negative transfer of knowledge as the number of datasets increase [13].

Another stream of research deals with the fusion of Bayesian networks learnt
from individual datasets. This means that a Bayesian network structure is gen-
erated from each dataset and then a consensus Bayesian network is defined
[9,10,15]. These methods depend on the prior knowledge of node ordering of the
final target Bayesian network and they fuse two networks at a time which further
leads to questions about the bias in selecting the order in which multiple net-
works are fused. This problem was also addressed by [3,19]. The ION algorithm
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proposed by [3] learns an equivalence class of structures as an output from a set
of input structures learnt from the individual datasets. However, ION algorithm
was not capable of resolving contradictions between multiple input structures,
which may arise because of statistical errors in the conditional independence
tests. This issue was resolved in [17,18] by using Fisher’s method [6] of combin-
ing p-values to resolve conflicts in the measurement of conditional independence
relations. However, [17,18] do not address the issues of either missing data in
partially overlapping datasets or the incorporation of expert opinions.

Finally, a third stream of research extends constraint based algorithm for
structure learning to cases with multiple datasets. An extension of PC-algorithm
for multiple datasets was proposed by [8], though the authors assume that they
have completely overlapping datasets as their inputs. To perform conditional
independence testing required by the PC algorithm, they suggest a heuristic
based on the combination of mutual information measured between variables
from different datasets. We follow a similar approach in this paper but we (i)
extend to partially overlapping datasets with missing entries, (ii) incorporate
expert opinions into the structure building algorithm and (iii) borrow the method
from [17] for combining conditional independence tests, namely Fisher’s method.
Grounded in statistics, it has been broadly validated in meta-analysis and in
that respect is a more plausible solution to the problem of combining statistical
independence tests from multiple datasets than the heuristic defined by [8].

3 Problem Set Up: Learning a Bayesian Network from
Multiple Sources

The main goal of this paper is to learn a single Bayesian network from multi-
ple sources of information, which we define more formally in this section after
introducing some notations. The next section will discuss the structure building
algorithm.

3.1 Preliminary Definitions

Let V = {X1,X2, . . . , Xn} be a set of random variables. A Bayesian network
BN = 〈G, Θ〉 is defined by

– a directed acyclic graph (DAG) G = 〈V, E〉 where V represents the set of
nodes (one node for each variable) and E the set of edges representing the
relationships between the variables,

– parameters Θ = {θijk}1≤i≤n,1≤j≤qi,1≤k≤ri
, the set of conditional probability

tables of each node Xi knowing its parents state Pa(G,Xi) (with ri and qi as
respective cardinalities of Xi and Pa(G,Xi)).

In this paper we consider directed graphs containing only directed edges (→),
undirected graphs containing only undirected edges (−) and partially directed
graphs containing directed and/or undirected edges.
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The skeleton of a Bayesian network graph G over V is an undirected graph
over V that contains an edge {X,Y } for every edge (X,Y ) in G. Two nodes of a
graph are said to be adjacent if there is an edge connecting the two nodes and
we assume that there is at most one edge between any two nodes. The set of all
adjacent nodes for a node Xi in a graph G is denoted by ADJ(G,Xi). Thus if
there is an edge from Xi to Xj , then Xi ∈ ADJ(G,Xj), however, if Xi → Xj ,
then Xi is called a parent of Xj and Xj is called the child of Xi. The set of all
such parents of node Xi in a graph G is denoted by Pa(G,Xi) and the set of
children of Xi by Ch(G,Xi).

Let G = 〈V, E〉 be a graph. An ordering of the nodes X1, . . . , Xn is a topo-
logical ordering relative to G if, whenever we have Xi → Xj , then i < j.

Definition 1 (Conditional Independence). Let V be a set of random vari-
ables with X,Y,Z ⊆ V disjoint sets of random variables, and let P be a joint
probability distribution defined on V, then X is said to be conditionally indepen-
dent of Y given Z, denoted by X Y Z, if

P (X|Y,Z) = P (X|Z).

There can be more than one possible directed acyclic graph (DAG) to capture
a set of conditional dependence and independence statements. In that sense,
DAGs constitute an equivalence class where two DAGs are equivalent if and only
if they have the same skeleton and the same v-structures [20]. To describe each
equivalence class, we use partially directed acyclic graphs (PDAGs), in which
some arcs are directed and others are undirected. In fact, we use a subset of
PDAG, the completed-PDAGs (CPDAGs) which is defined as the set of PDAGs
that have only undirected arcs and unreversible directed arcs. CPDAGs are also
referred to as maximally oriented graphs.

3.2 Defining Input Datasets

The set of input datasets is denoted by D = {D1,D2, . . . , Dm}. Given any
two datasets Di and Dj , we assume that we are in a non trivial case where
there is at least one overlapping variable within each dataset, i.e. ∀i,∃j :
Supp(Di)∩Supp(Dj) 
= φ, where support Supp of a dataset is defined as the set
of all variables measured in a dataset. We assume that for each dataset are com-
posed of sj i.i.d. samples, Dj = {Dj [1],Dj [2], . . . ,Dj [sj ]}. We further assume
that there can be some missing values in each dataset (assumed to be miss-
ing at random). Finally we assume that there are no hidden variables and that
datasets collectively cover all variables, i.e.,

⋃
j Supp(Dj) = V. We also assume

that the effort of pre-processing the datasets to match and link entities has
been completed: variables have been matched so there is no ambiguity in map-
ping variables among the datasets, all variables are categorical, and matching
variables have the same set of possible values across the datasets. For instance,
assume that a variable Smoker appears in multiple datasets then all instances
have been identified as representing the same concept and their states have been
unified and take the same values (for instance {Never, Former,Current}) in all
those datasets.
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3.3 Defining Input Expert Opinions

We consider prior domain knowledge in the form of conditional independence
statements from multiple experts, and also direct dependence information such
as forbidden arcs and required arcs.

Conditional Independence (CI) Statements are of the form X Y Z where
X,Y,Z ⊆ V are disjoint sets of random variables. In order to resolve conflicts
among multiple CI statements, we assume that a confidence measure is attached
to each CI statement in the form a p-value. Such p-values come naturally when
performing statistical tests. In the context of expert-provided opinions, they
need to be further defined. If the expert derives his/her conclusion from statisti-
cal analysis, as is common for instance in the medical literature, then a p-value is
readily available assuming it is reported. In other cases, when the statements of
conditional dependence or independence of the expert come from his/her accu-
mulated expertise, then we refer to the definition of the concept of p-value namely
the probability of obtaining the observed result (i.e. whether the expert says “D”
or “I”) from the sample (the expert knowledge) given that the null hypothesis
(dependence) is actually true. In mathematical terms, if the expert says “D”
then the p-value is P(“D”|D) and if the expert says “I”, then the p-value is
P(“I ”|D). This means that we need to evaluate P(“I ”|D) (and P(“D”|D) if we
allow for a “does not know” answer) which represents a somewhat subjective
estimation of the expert abilities. Such measures are not unusual, however, they
have been used in models for expert opinion aggregation using Bayesian updat-
ing [1] though there remain ample room in the field of expert opinion aggregation
for deriving practical estimation procedures of the likelihood model.

Forbidden and Required Arcs. Let F be the set of directed edges which are
forbidden, R is the set of directed edges which are required. According to [11],
background knowledge described by K = 〈F,R〉 is consistent with graph G if
and only if there exists a graph G′ which is consistent DAG extension of G such
that

(i) all of the edges in R are oriented correctly in G′ and
(ii) no edge A → B in F is oriented as such in G.

For background described by K = 〈F,R〉, we assume that we have a single expert
opinion (or a consensus of multiple expert opinions). This assumption doesn’t
diminish the generality of our work, since forbidden and required arcs are gener-
ally used to model temporal constraints in dynamic Bayesian networks and there
is seldom any conflict in the expert opinions regarding temporal constraints.

4 Structure Learning Method

As we mentioned previously, the structure learning method used in this paper is
a modified version of the constraint-based method: PC-algorithm [16]. The orig-
inal PC-algorithm was designed for learning a CPDAG from a single complete
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dataset. It consists of three main stages. In the first stage, the algorithm begins
with a complete undirected graph and learns a skeleton by recursively deleting
the edges based on conditional independence tests performed on the dataset.
In the second stage, some edges are oriented by adding the set of v-structures,
obtaining a PDAG. In the final stage, some other undirected edges are oriented to
form a CPDAG, which represents the equivalence class of DAGs associated with
the input datasets. One known issue associated with the original PC-algorithm is
that its iterative approach makes the generation process dependent on the order
of variables used to construct the initial graph G. To address that problem, we
implement the modifications proposed by [2] to make it order independent. This
order-independent version of PC-algorithm was termed PC-Stable.

In the following sections, we consider each stage of the original PC-algorithm
and discuss the modifications made to extend it to simultaneously handle mul-
tiple partially-overlapping and incomplete datasets together with background
knowledge from multiple experts. We named our algorithm PCFS where F stands
for Fischer, as we used Fischer’s method for combining conditional independence
tests and S stands for Stable as we implement the order independent version of
the PC-algorithm. A sketch of our algorithm is given in Fig. 1.

4.1 Preliminary Step: Addressing Data Incompleteness

The PC-algorithm, and in general all constraint-based algorithms, use informa-
tion about conditional independence obtained by performing statistical tests on
the data. However, constraint-based methods are not equipped to handle missing
data in the datasets [4]. Hence as a preliminary step, we perform data imputation
for all datasets using Structural Expectation Maximization (EM) [7]. We use EM
algorithm to construct individual Bayesian networks BN i for each incomplete
dataset Di. These Bayesian networks will be used to estimate the missing data in
their respective datasets using forward sampling with available data as evidence.

4.2 Step 1: Skeleton Generation

The PC-algorithm starts from the complete undirected graph associated with
the variable set from which edges are recursively deleted to obtain the skeleton.
We make a first modification here by making PCFS start with an initial graph
which is obtained after removing edges corresponding to variables that are never
jointly measured in any two datasets. In other words, our starting point is the
union of the complete graphs associated with the variables in each dataset. This
new initialization allows us to reduce false positive errors that indicate an edge
in the learned model that does not appear in the true model.

The algorithm then proceeds as follows: For every possible pair of variables
Xi and Xj and for increasing value of |S|, where S denote the conditioning
subset, S ⊆ a(Xi) − {Xj}, it tests whether Xi Xj S. The term a(Xi) repre-
sents adjacency of Xi in the initial graph. Contrary to changing adjacencies in
the original PC-algorithm, the order independent version requires a(Xi) to be
determined at the onset of each iteration on |S| [2].
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Several statistical methods are available to test conditional independence
between any variables X, Y given Z ⊆ V from each dataset and these test
results can be combined to obtain a common CI decision [8]. It was empirically
shown in [17] that using the PC-algorithm based on evaluating p-values (for
the hypothesis X Y Z) from each dataset and then combining these p-values
using Fisher’s method [6] was outperforming many existing methods. Another
important advantage of using p-values is that they do not depend on the shapes
of distributions across the different datasets.

Suppose we have k independent tests for (X Y Z), with p values given by
p1, p2, . . . , pk. These p-values are obtained from the k datasets (out of m available
datasets) where X, Y and Z are jointly measured. Fisher proposed a method to
combine p-values from multiple sources of data using the test statistic

TF = −2Σk
i=1log(pi),

where TF has a χ2 distribution with 2k degrees of freedom under the null
hypothesis. TF is tested against F−1

χ2
2k

(1−α), where α is the significance level. In
[17], Fisher’s method was applied for p-values that were obtained from multiple
datasets, however, in this paper we use Fisher’s formula to further combine with
multiple expert opinions in the form of CI statements.

We assume that there are � expert opinions available for the null hypothesis
X Y Z and the p-values corresponding to these expert opinions are given by
pe
1, p

e
2, . . . , p

e
� . Then based on Fisher’s method we combine p-values from multiple

sources of information using the test statistic

TF = −2
(
Σk

i=1log(pi) + Σ�
i=1log(pe

i )
)
,

where TF has a χ2 distribution with 2(k + �) degrees of freedom under the null
hypothesis. Thus TF is tested against F−1

χ2
2(k+�)

(1−α). In essence, we assume that

each expert has as much influence on the aggregated result than one dataset.
In the original PC algorithm, the conditioning set for which the independence

holds is recorded in the SepSet for use when orienting the arcs. PCFS also records
the combined p-values corresponding to the edges that have been removed. This
information is used at the very last stage of the algorithm when we search for
admissible CPDAG to the skeleton obtained.

4.3 Steps 2 and 3: Orienting the Edges

The second and third stages of the PC-Algorithm focus on transforming the
skeleton obtained into a CPDAG. The second stage begins with orienting v-
structures in the skeleton. V -structures are instances of the pattern Xi → Xj ←
Xk in the DAG. In order to determine v-structures, the algorithm considers
all the unshielded triples in the skeleton, i.e. Xi − Xj − Xk, and orients an
unshielded triple as Xi → Xj ← Xk if and only if Xj 
∈ Sepset(Xi,Xk). Once
all v-structures have been determined, the third stage seeks to orients some of the
remaining undirected edges using rules R1, R2 and R3 (also known as Meek’s
rules) to produce a CPDAG [11].
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As mentioned before, we implement order-independent variations of those
two steps. In addition, we adapt the third stage of the algorithm to incorpo-
rate domain knowledge in the form of Required and Forbidden arcs. Specifically,
we implement the methods proposed by Meek to account for prior background
knowledge [11]. Meek’s algorithm compares PDAG with the domain knowledge
and if some information is conflicting, the algorithm produces an error. Other-
wise, it iteratively adds the prior knowledge (directed edges) not present in the
PDAG and again applies the orientation rules R1, R2 and R3 recursively with
another rule R4. These orientation rules are necessary to infer all the new edge
orientations induced by the addition of the prior knowledge and they produce a
PDAG consistent with K = 〈F,R〉 [11, Theorem 4].

Note that the approach mentioned above produces no output CPDAG (and
an error) whenever there is a conflict between the input PDAG and domain
knowledge.

4.4 Step 4: Obtaining a DAG

Following these orientation rules, we apply the DAGextension algorithm to
convert the output CPDAG to a DAG [5]. It is possible that the output CPDAG
does not admit a consistent DAG extension. In those cases, and also in cases
where there were no output CPDAG after the third step, we use a greedy search
algorithm to modify the skeleton.

Specifically, this algorithm, called GSearch, adds back some of the edges
previously removed during the skeleton generation process following a chosen
heuristic. Our reason for revisiting the output skeleton from step 1 and searching
the space of its neighbors is that the skeleton generation process is based on
imperfect statistical tests while the orientation of arcs is deterministic. For each
new candidate skeleton, we re-apply the orientation steps to determine whether
there exist an admissible output. This approach leads to alternation between the
space of skeletons and the space of PDAGs. This alternation is terminated in
two scenarios:

– if the function DAGextension produces a DAG as an output or
– if the function DAGextension produces an empty set and the greedy search

heuristic exhausts all the deleted edges from the skeleton generation process.

In the first case, we have a successful completion of our method. The sec-
ond scenario indicates that there is no consistent explanation of the datasets D
together with domain knowledge in terms of a Bayesian network for the given
significance value α. In such situations we perform a search over the space of
different possible values of α. This adaptive adjustment of α is not addressed in
this paper.

There are several possible heuristics that can be used for thickening the
skeleton (adding previously removed edges). In our implementation of Gsearch,
we choose the subset of deleted edges which corresponds to the largest p-value
associated to the set of edges removed during the skeleton generation phase.
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A randomly selected edge from this subset is then added to the skeleton to go
back to the orientation stage and we update the Sepset accordingly. Upon failure
to produce to a DAG output from the orientation stage, the previously added
edge is removed and another edge from the subset is added to the skeleton. Once,
all the edges in the subset corresponding to the largest p-value are exhausted,
it proceeds to second largest p-value and so on. This process is continued until
an admissible output is found or the GSearch function exhausts all the deleted
edges. Other variations of this greedy search involve addition of more than one
edge at a time.

5 Experimental Results

We present in this section two types of experiments that we have undertaken. The
first set of experiments is aimed at validating our approach to build Bayesian
networks from multiple partially overlapping datasets by comparing it with a
baseline approach, namely applying Structural Expectation Maximization to
the stacked datasets. We seek to determine whether the additional sophistica-
tion of our approach is useful compared with naive methods. The second set
of experiments present the application of our method to a real world context,
namely vulnerability modeling for eldercare. Our aim in those experiments is to
illustrate the approach but also to explore the benefits of combining multiple
datasets and expert opinions in building more reliable models.

5.1 Validation Experiments

Set Up: Validation experiments are based on synthetic data generated from
a known Bayesian network, specifically, the four-node Sprinkler network repre-
sented on Fig. 2. In this experiment, we look at creating a Bayesian network
structure from two partially overlapping datasets of the same size (ranging from
10 to 1000 entries) and for different overlap sizes (ranging from 1 to 4). For each
overlap size, we generated all possible combinations of variables overlap. For
each such configuration, we generated then generated the associated datasets
by sampling from our reference network. In fact, we generate 10 iterations for
each dataset size and overlap variable configuration. We create network struc-
tures using PCFS for several values of α, specifically {0.001, 0.01, 0.05, 0.1, 0.2}
but also using Structural Expectation Maximization on the stacked datasets. We
evaluate the distance of each output structure to our ground truth (the reference
network) using Graphical Edit Distance (GED). The GED between two DAGs
corresponds to the minimal sequence of operations needed to transform the one
DAG into another. Operations considered are edge-insertion, edge-deletion and
edge-reversal.

Results: Fig. 3 presents the results of our experiments grouped by overlap size
of the input datasets. We start with general observations. First it appears that
edit distance generally decreases across all models with higher level of overlap.
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Fig. 1. PCFS algorithm

We also note that the sample sizes that we have considered have limited effects on
the distances, as for each overlap size, the patterns repeat across the sample sizes.
While we expected that higher overlap led to better models, we are surprised
that whether the datasets have 10 or 1000 entries - a difference of two orders of
magnitude - does not seem to affect performance.
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Fig. 2. Reference Bayesian network for the validation experiments
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Fig. 3. Edit distance between outputs of various structure learning methods and the
original network for different overlap sizes.

We now compare the performance of the different models. For overlap of 1,
all PCFS variations outperform SEM, sometimes significantly. For overlap of 2
and 3, SEM is already performing quite well and only PCFS algorithm with a
judiciously chosen value of α display slightly better performances. For overlap
of 4 this pattern is even clearer. This is not surprising as this latter situation
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corresponds to fully overlapping datasets and means that SEM would be thus
applied in a context aligned with the assumption that data is missing at random.
However, for some sample sizes, we observe that there are cases where PCFS still
outperforms SEM.

Overall, our findings indicate that the PCFS algorithm may be better suited
for situations where the overlap is small. In addition it seems that the choice of α
has an influence on the performance of the algorithm and should be investigated
further. Our objective is to perform further similar experiments, in fact exploring
all four-node DAG structures along with larger networks, so as to have a stronger
base to draw conclusions from. We feel however that the current results are
encouraging as they indicate that there are situations, here the low overlap
cases, in which PCFS significantly outperforms SEM.

5.2 Real-World Illustrative Example

In the context of a project on social care for the elderly, we have built a model to
provide person-specific standardized vulnerability assessment of patients. This
model combines a Markov chain model that describes the evolution of persons
through states with a Bayesian network that enables to customize the Markov
chain parameters. For instance, in a different social care context, the evolution of
a person in and out of employment over time, and thus the vulnerability to unem-
ployment, can be influenced by multiple factors such as gender, age, education.
At the time of our study, the main impediment that we faced was the chal-
lenge of building the underlying model from limited information. In fact, while
our system was to be deployed in China, we used data from the Longitudinal
Study on Aging (LSOA, description and data available at www.cdc.gov/nchs/
lsoa/lsoa2.htm) from the US National Institute of Health, hence representing an
American cohort. The main reason was availability and the relatively large size
of the dataset (several thousands entries). While we later obtained data from
the China Health and Retirement Longitudinal Study (CHARLS, http://charls.
ccer.edu.cn), it only partially overlapped with our model and contained a few
hundred entries. We decided at the time to keep the initial model despite the geo-
graphical misalignment of the cohort though this situation served as the initial
motivation to the problem addressed in this research. In this section, we revisit
this decision and build models that leverage both the American and Chinese
datasets. We also include some expert opinion inputs in the form of conditional
dependence statements that were extracted from the literature.

Set Up: For our illustrative example, we selected a subset of the variables used
in the original eldercare model. Specifically our aim is to estimate the risk of
being unable to live independently, measured through the level of difficulty expe-
rienced by the person in terms of walking and eating independently (Variables
Difficulty Walking, Difficulty Eating). Those represent a subset of the Activity
of Daily Living (ADLs) which are broadly used in the social care domain. Based
on the more extensive model, we selected 13 variables to predict the ability of

www.cdc.gov/nchs/lsoa/lsoa2.htm
www.cdc.gov/nchs/lsoa/lsoa2.htm
http://charls.ccer.edu.cn
http://charls.ccer.edu.cn
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elderly to walk and eat independently. Those were: Age, Difficulty in Doing Light
Housework, Difficulty Finger Grasping (US), Difficulty Picking Coin (China),
Difficulty in Reaching OverHead, Difficulty Stooping, Difficulty Walking Quar-
ter Mile (US), Difficulty Walking 1 km (China), Gender, Has Diabetes, Marital
Status, Smoker and Veteran (US). For the ones that are not common to both
datasets, we have indicated in parenthesis for which country they are reported.
Both datasets have missing values. The Chinese dataset contains 463 entries and
the American one 3604 entries.

In terms of expert opinions, we relied on the search feature provided by
the PubMed service (http://www.ncbi.nlm.nih.gov/pubmed/) to identify pos-
sible dependence or independence relations among the variables in our model.
We do not claim to be exhaustive in this search. We found evidence of depen-
dence between Smoker and Difficulty Walking (3 papers: PubMed IDs 1576581,
23741513, 18394514), Gender and Difficulty Walking (1 paper: PubMed ID
18394514) and between Has Diabetes and Difficulty Walking (1 paper: PubMed
ID 23741513). Finally we add logical dependence constraints between the follow-
ing pairs of variables: Difficulty Walking Quarter Mile and Difficulty Walking,
Difficulty Walking Quarter Mile and Difficulty Walking 1 km, Difficulty Walking
and Difficulty Walking 1 km, Difficulty Finger Grasping and Difficulty Picking
Coin. As we did not have p-values for the above opinions, we used a somewhat
arbitrary number representing experts reliability, namely P(“D”|D) = 0.95 thus
P(“I ”|D) = 0.05.

Using this information, we built several Bayesian network models: Two using
PCFS with α = 0.05, one including expert opinions and one without. We also
built three models using Structural Expectation Maximization (SEM): the first
one using only the Chinese data, the second using the American data and the
third one using both datasets stacked together.

We do not have access to a ground truth in this case. To compare the models
to one another, we evaluate how accurate they are at predicting Difficulty Walk-
ing and Difficulty Eating. This means that we need to learn the parameters of
the Bayesian networks for the ones built with PCFS (SEM learns structure and
parameters at once). For that task we used the parameter Expectation Maxi-
mization using the stacked datasets. To avoid overfitting, we set aside 10 % of
each dataset for testing and used only the remaining 90 % for training.

Results: We present the accuracy of each model on each cohort on Fig. 4.
Our first observation pertains to the comparison of performance between PCFS
and PCFS with constraints. For both cohorts and both prediction tasks (Dif-
ficulty Eating and Difficulty Walking), we see no difference in performance
between the two models. Thus in this case, the information brought by expert
opinions had no influence on the model. This may be due to the fact that our
expert opinions consisted only in dependence statements which are somewhat
neutral from a Bayesian network perspective. Indeed, adding an unwanted arc is
problematic as it increases the size of the conditional probability table, and thus
the difficulty of the parameter elicitation task, but it does not rule out expressing

http://www.ncbi.nlm.nih.gov/pubmed/
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Fig. 4. Predictions of Difficulty Walking, Difficulty Eating using different Bayesian
networks

independence at the parameter level. By contrast, the absence of an arc irreme-
diably constrains the nature of the relations among the variables. Furthermore,
it is possible that the relations from the expert opinion pool are already strongly
captured in the datasets, even with limited number of samples (as in the Chinese
cohort).

We now analyze of the predictions for the Chinese cohort, on the left side of
the figure. The results in that figure are based on about 40 samples. Looking at
the prediction for Difficulty Eating, PCFS outperforms two SEM models (China
and US) but its performance is similar to the model from SEM applied on
the combined datasets. Interestingly, the SEM model trained on the US cohort
performs better than the one trained on the Chinese cohort. The most likely
explanation for this result is the difference in size between the datasets. Looking
at the prediction for Difficulty Walking, we observe unexpected results. The
best models are the SEM models with either the Chinese or American datasets
and both have similar performance. In addition the SEM model trained on the
combined datasets performs poorly, the worst of all our 5 models. In other words
the model trained on American input only works as well as the one trained on
Chinese data with an accuracy of about 80 %, but when combined through SEM
they lead to an accuracy of about 60 %, much below the combination through
PCFS which provides an accuracy of 70 %. We do not have an explanation why
combining the datasets leads to lower performance than each separately but we
observe that PCFS appears in this instance to be a better approach to combining
knowledge.

Looking at the American cohort, on the right side of Fig. 4, we observe that
for Difficulty Eating, predictions based on PCFS are on par, though slightly bet-
ter than those with SEM on the American or combined datasets, slightly below
80 % but that the predictions made with the Chinese dataset are much lower
(around 10 % accuracy). Here again the relative sizes of the datasets plays a
role. The results suggest that combining knowledge has limited value. In fact,
as the SEM model based on US data is also quite useful for predicting difficul-
ties with eating on the Chinese cohort, it seems that for that specific prediction
task, the dataset captures sufficient knowledge and does not benefit from exter-
nal sources of information. For Difficulty Walking, PCFS outperforms the SEM
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algorithms with an accuracy of about 60 %. As in the Chinese cohort, it appears
to be a more useful approach to knowledge combination than SEM for which the
model based on the combined dataset leads to an accuracy of about 40 % which
is lower than the model based on US data only which provides an accuracy of
approximately 50 %.

6 Conclusion

This paper presents an algorithm, named PCFS, which adapts the PC-
Algorithm, Fischer’s method and Meek’s approach to incorporating forbidden
and required arcs so as to be able to build a Bayesian network structure from
multiple partially overlapping incomplete datasets and expert opinions in the
form of conditional independence statements and domain knowledge. We focus
in this paper on learning the structure of the model, not on the parameters.
While we present validation based on the four-node Sprinkler network, further
experiments are warranted to understand both the influence of the significance
parameter along with the benefits of PCFS over Structural Expectation Max-
imization. Our findings from the real world case study are encouraging. They
did validate that combining knowledge could lead to better models and that in
such cases PCFS appeared as a valuable alternative to Structural Expectation
Maximization.
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Abstract. To tackle the potentially hard task of defining the reward
function in a Markov Decision Process (MDPs), a new approach, called
Interactive Value Iteration (IVI) has recently been proposed by Weng and
Zanuttini (2013). This solving method, which interweaves elicitation and
optimization phases, computes a (near) optimal policy without knowing
the precise reward values. The procedure as originally presented can be
improved in order to reduce the number of queries needed to determine
an optimal policy. The key insights are that (1) asking queries should be
delayed as much as possible, avoiding asking queries that might not be
necessary to determine the best policy, (2) queries should be asked by
following a priority order because the answers to some queries can enable
to resolve some other queries, (3) queries can be avoided by using heuris-
tic information to guide the process. Following these ideas, a modified
IVI algorithm is presented and experimental results show a significant
decrease in the number of queries issued.

1 Introduction

In problems of sequential decision-making under uncertainty, an agent has to
repeatedly choose according to her current state an action whose consequences
are uncertain in order to maximize a certain criterion in the long run. Such
problems can be represented as Markov Decision Processes (MDPs) [9]. In this
model, the outcome of each action is stochastic and numeric rewards are granted
each time an action is performed. The numerical values of rewards are defined
either by the environment or by a human user and the goal of the agent is to
choose a policy (which specifies which action to take in every state) such as to
maximize the expectation of the discounted sum of future rewards. The latter
case, where a human must specify the reward values, represents a difficulty when
using MDP methods as this task can be cognitively hard, even for an expert
user. And yet, it is well known that the optimal policy is extremely sensitive to
the numerical reward values. This problem has motivated much work aiming at
mitigating the burden of defining precisely the reward function. In the literature,
four main approaches can be distinguished, although their boundaries may be
blurry.
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 139–152, 2015.
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Robust Approach. In the first approach, the parameters of the MDP (i.e., rewards
and possibly also probabilities) are assumed to be imprecisely known. A natural
way [2,7] to handle such situation is to search for robust solutions, i.e., solutions
that are as good as possible even in the worst case. However, this method often
leads to solutions that are too pessimistic. A better approach is based on min-
imax regret [20]. Here, one tries to minimize the gap between the value of the
best policy (after the true reward values are revealed) and that of the chosen
policy. However, this leads to NP-hard problems.

Non Standard Decision Criterion. A second approach is to change the deci-
sion criterion optimized by the agent. Different criteria have been proposed. For
instance, Delage and Mannor [6] proposed to use a criterion based on quantiles
(on distributions over history values). Unfortunately, by changing the decision
criterion, one loses all the nice properties satisfied by the standard criterion (e.g.,
existence of an optimal stationary deterministic policy). Weng [16,17] proposed
two new decision criteria that could be used when only the order over rewards,
but not the exact values, is known. In both cases, all or some of the nice prop-
erties of the standard criterion are preserved. However, those approaches have
not yet been experimentally evaluated.

Preference Learning. Another approach, which has been mainly developed for
reinforcement learning (i.e., a context more general than MDP), aims at learning
the reward values, either from demonstrations (live [1] or from recorded logs [8])
or from interactions with a human tutor [15]. One drawback of this approach is
that it generally assumes that demonstrations from human tutors can be easily
translated into the state/action representation of the learning agent, which may
be difficult as humans and agents evolve in different state/action spaces.

Preference Elicitation. A final approach assumes a human tutor is present and
the agent may query her to get more precise information about reward values.
In a series of papers, Regan and Boutilier [10–13] show how to compute policies
which optimize minmax regret with respect to all candidate functions, and dis-
cuss how this criterion can be used to generate informative queries to ask the
tutor about the true reward function. Iteratively issuing such queries is shown to
allow convergence to the optimal policy for this function. However the problem
of computing such robust policy reveals to be NP-hard [20] and their algorithm
issues bound queries which can be cognitively difficult to answer. Following the
same line of research, Weng and Zanuttini [18], revisited a well known algorithm
for solving MDPs, Value Iteration, by incorporating the elicitation process in
the solving procedure. In this new algorithm called Interactive Value Iteration
(IVI), a human tutor is queried about multi-sets of rewards when the informa-
tion acquired so far does not allow to continue solving the MDP. This procedure
is appealing as answering comparison queries is much less cognitively demanding
than giving the reward function to optimize. However, the original IVI procedure
does not try to explicitly minimize the number of queries issued and may lead
to a prohibitive effort for the tutor.
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In this paper, we address the problem of modifying IVI in order to reduce
the number of queries issued. To that aim, we propose a variation of IVI based
on the ideas that (1) delaying the queries open the possibility that some of them
meanwhile become unnecessary, (2) the order in which the queries are asked
matters, and this order should be optimized, (3) queries can be avoided by using
heuristic information to guide the iteration process. We show empirically that
these combined techniques can greatly reduce the number of queries issued.

The paper is organized as follows. After recalling the main features of inter-
active value iteration (Sect. 2), we present our proposed optimizations (Sect. 3).
Finally, we provide the results of numerical tests that show a significant decrease
in the number of queries issued (Sect. 4).

2 Background

2.1 Markov Decision Process

A Markov Decision Process (MDP) [9] is defined by a tuple M = (S,A,p,r, γ)
where S is a finite set of states, A is a finite set of actions, p : S × A → P(S)
is a transition function with P(S) being the set of probability distributions over
states, r : S × A → R is a reward function and γ ∈ [0, 1[ is a discount factor.

A (stationary, deterministic) policy π : S → A associates an action to each
state. Such a policy is evaluated by a value function vπ : S → R and a Q-function,
Qπ : S × A → R defined as follows:

vπ(s) = r(s, π(s)) + γ
∑

s′∈S

p(s, π(s), s′)vπ(s′) (1)

Qπ(s, a) = r(s, a) + γ
∑

s′∈S

p(s, a, s′)vπ(s′) (2)

Then a preference relation is defined over policies by: π � π′ ⇔ ∀s ∈ S, vπ(s) ≥
vπ′

(s). A solution to an MDP is a policy, called optimal policy, that ranks the
highest with respect to �. Such a policy can be found by solving the Bellman
equations.

v∗(s) = max
a∈A

r(s, a) + γ
∑

s′∈S

p(s, a, s′)v∗(s′) (3)

As can be seen, the preference relation � over policies is directly induced by the
reward function r. In a setting where the reward function is not known with cer-
tainty, taking the maximum over actions (as done in (3)) can be problematic. In
this paper we will query ordinal information from a tutor to unveil the maximal
actions.

2.2 Ordinal Reward MDP

In this paper, while the rewards’ numerical values are assumed to be unknown, we
suppose that the order over rewards is given. Such situation can be represented as



142 H. Gilbert et al.

an Ordinal Reward MDP (ORMDP) [16] defined by a tuple (S,A, p, r̂, γ) where
the reward function r̂ : S×A → E takes its values in a set E = {r1 < r2 . . . < rk}
of unknown ordered rewards.

In order to count the number of each unknown reward obtained by a policy, an
ORMDP can be reformulated as a Vector Reward MDP (VMDP) (S,A, p, r, γ)
where r(s, a) is the vector in R

k whose ith component is 1 for r̂(s, a) = ri, and
0 on the other components. Like in standard MDPs, in such a VMDP we can
define the value function vπ and the Q-function Q

π
of a policy π by:

vπ(s) = r(s, π(s)) + γ
∑

s′∈S

p(s, π(s), s′)vπ(s′) (4)

Q
π
(s, a) = r(s, a) + γ

∑

s′∈S

p(s, a, s′)vπ(s′) (5)

where additions and multiplications are componentwise. The i-th component of a
vector v ∈ R

k can be interpreted as the expected number of unknown reward ri.
Therefore, a value function in a state can be interpreted as a multi-set or

a bag of elements of E. Now comparing policies amount to comparing vectors.
Interactive value iteration [18] is a procedure inspired from value iteration to find
the optimal policy according to the true unknown reward function by querying
when needed an expert for comparisons of two bags of elements of E. We present
in the next section how this algorithm works.

2.3 Interactive Value Iteration

In order to find an (approximate) optimal policy for an ORMDP with an initially
unknown preference relation over vectors, Weng and Zanuttini [18] developed a
variant of value iteration, named Interactive Value Iteration (IVI), where the
agent may ask a tutor which of two sequences of rewards should be preferred.
An example of query is “r1+r3 ≥ 2r2?”, meaning “is receiving r1 and r3 as good
as receiving 2r2?”. As the tutor answers queries, the set of admissible reward
functions shrinks and more vectors can be compared without querying the tutor.

At the beginning of the process, the agent only knows the order over rewards,
i.e., r1<r2<. . .<rk, and knows that she can set without loss of generality r1 to
0 and rk to 1 [17]. This initial knowledge is represented by a set K of linear
constraints. When having to choose the best of two value vectors v and v′ in a
given state (see Algorithm 2), function StDom(v, v′) compares the two vectors
with respect to the following dominance relation (which is analogous to stochastic
dominance):

∀j = 1, . . . , k

k∑

i=j

vi ≥
k∑

i=j

v′
i (6)
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In case no dominance is found, the next step is to check whether one of the
two vectors is necessarily preferred to the other given the constraints in K. The
function KDom(v, v′) checks whether v is not less preferred than v′ (denoted by
v � v′) by solving the following linear program:

z∗
K = min (v − v′) · r (7)

s.t. r ∈ C(K) (8)

where the dot in (7) denotes the inner product and C(K) the set of reward
functions r = (r1, . . . , rk) satisfying all constraints in K. We distinguish the
following three cases: (1) A non-negative optimal value for the objective function
z∗
K implies that for any possible reward function, v � v′; v is then said to

KDominate v′. (2) In case of negativity of the optimal value z∗
K , KDom(v′, v) is

called to check if v′ � v for all reward function satisfying constraints in K. (3)
If the two vectors can still not be compared, the tutor is asked which of v or v′

should be preferred. A query is a 2-subset {v, v′} from which the tutor picks her
preferred element (if indifferent, she arbitrarily picks one of them). If she picks
v, then v � v′, otherwise v′ � v. If v � v′ (resp. v′ � v), then the new constraint
(v − v′).r ≥ 0 (resp. (v′ − v).r ≥ 0) is added to K.

Algorithm 1 summarizes the IVI procedure. It uses the functions Init, that
returns the initial set K of linear constraints induced by r1<. . .<rk, and getBest
(Algorithm 2) that returns the best of two vectors. The function getBest calls first
function StDom, then function KDom, and finally function query (Algorithm 3)
if no dominance is found. Note that StDom(v, v′)=KDom(v, v′) for initial set
K, and that StDom(v, v′)⇒ KDom(v, v′) in all cases. Nevertheless, the IVI pro-
cedure takes advantage of the computational efficiency of StDom to save some
calls to KDom.

Weng and Zanuttini [18] showed that the number of queries used by IVI is
polynomial in the size of the MDP. However, as the tutor is queried each time
two vectors cannot be compared, it seems that a more sophisticated approach
could greatly reduce the number of queries needed by the algorithm. In the next
section, we propose a modified version of IVI that integrates several techniques
in order to reduce the number of queries.

3 Modified Interactive Value Iteration

Interactive Value Iteration is appealing for users as answering comparison queries
is significantly less cognitively demanding than directly defining the reward func-
tion. And yet to be a reasonable alternative, the number of queries needs to be
as low as possible. As stated in the introduction, several ideas are investigated to
address this problem: (1) delaying queries in order to avoid asking some unnec-
essary queries; (2) prioritizing queries in order to ask the most informative ones
first; (3) allowing small mistakes in the dominance tests in the early stages in
order to anticipate the shrinking of the set of admissible reward functions.
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3.1 Delaying the Queries

In Algorithm 1, the tutor is queried whenever two vectors v and v′ cannot be
compared. The intuition behind the improvement that we propose is that by
delaying the query phase after all vectors (each vector refers to a possible action
in a given state) are generated we might benefit from the fact that new dominance
relations might appear later on. Indeed when trying to assess which of three
vectors v1, v2, and v3 is the best, we may be able to find that v3 dominates both
v1 and v2; this is enough for us, even if we ignore which is better between v1

and v2. Therefore querying which of v1 and v2 is best, as would do Algorithm 1,
is unnecessary. Thus, delaying the querying step from the loop over actions will
prevent asking some unnecessary queries. For this purpose, we replace Lines 8
to 13 in Algorithm 1 by the following lines:

where primitives StDFilter and KDFilter are given in Algorithms 4 and 5: the
former checks the dominance described by Eq. 6 for each pair of vectors v, v′ in
Q and returns the set of undominated vectors; the latter does the same thing
for K-dominance.

Basically, Q(s) is a set of vectors (discounted collections of unknown rewards)
associated to a state s while Q(s, a) is related to the value of taking an action
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a in state s. As in the original IVI, we filter out dominated and K-dominated
vectors before starting the querying phase. Finally, in the while loop we query
the user about pairs of non-dominated vectors in Q(s) until Q(s) contains a
single element, that is assigned to vt(s) in the last line. This idea of delaying the
queries can be pushed further by delaying the querying phase out of the loop
over states or by waiting several time steps before asking queries. We will return
to this point when discussing future works in Sect. 5.

Algorithm 4. StDFilter
Data: Q
Result: Filtered Q
for v ∈ Q do

for v′ ∈ Q with v �= v′ do
if StDom(v, v′) then
Q ← Q \ {v′}

return Q

Algorithm 5. KDFilter
Data: Q
Result: Filtered Q
for v ∈ Q do

for v′ ∈ Q with v �= v′ do
if KDom(v, v′) then
Q ← Q \ {v′}

return Q

3.2 Prioritizing the Queries

By delaying the queries out of the loop over actions and even out of the loop
over states, one can choose to ask queries in a different order than the sequential
one induced by the original IVI procedure. Certainly this order will count as
queries are not all equally informative. Thus queries that we presume might
solve many others should be asked first. Defining a relevance score to guide
the querying process seems to be a promising technique to curb the number of
queries necessary to solve the MDP. For this purpose, we now replace Lines 8 to
13 in Algorithm 1 by the following lines:

where function X -score (with X ∈ {Q,K,S}) is one of the priority functions
described below, the value of which is intended to reflect how informative a query
is, and Queries is the set of all unsolved queries over S. Note that here the best
vector returned by query(v, v′,K) does not need to be saved.

To define priority functions evaluating the informative value of a query, sev-
eral methods could be considered. Here we propose two types of heuristics. The
first type aims at reducing as much as possible the set of remaining unsolved
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queries (i.e., focusing on the impact on the cardinality of Queries, the set of
unsolved queries) while the second type tries to reduce as much as possible the
set of admissible reward functions (i.e., focusing on the impact on the polytope
C(K)).

Strategies Aiming at Reducing the Cardinality of Set Queries. Let {v, v′} be a
query. If we know that, for instance, v is preferred to v′, this induces an additional
constraint that reduces the polytope C(K). This new, smaller, polytope may
induce new relations of K-dominance — for instance, we might be able to check
that for all r ∈ C(K ∪ {v � v′}) a vector v1 is preferred to another vector v2 —
in other words the information carried in an answer to a query can generalize to
other queries. A natural idea to evaluate the information value of a query is then
to count the number of queries that can be resolved if v � v′, the number of
queries resolved if, on the other hand, v′ � v and to take the minimum between
the two values. This relevance score will be called Q-score (Q for Queries). Let
Qval(v, v′) be the number of queries decided if v � v′; then:

Q-score({v, v′}) = min{Qval(v, v′), Qval(v′, v)}. (9)

This idea is simple and natural but comes at the cost of solving 4(N − 1) linear
programs (one for each call to KDom) in the worst case if N is the number of
queries.

Strategies Aiming at Directly Reducing Polytope C(K). Another idea is to use the
optimal objective values given by procedure KDom. Consider a query {v, v′} ∈
Queries. Let Kval(v, v′) be the optimal value of the linear program described
by Eqs. 7–8, normalized by ||v − v′||. Since neither v nor v′ could be filtered,
both Kval(v, v′) and Kval(v′, v) are necessarily negative. We define the priority
of query {v, v′} as

K-score({v, v′}) = min{|Kval(v, v′)|, |Kval(v′, v)|}. (10)

The idea of K-score is that Kval(v, v′) and Kval(v′, v) give us an approximation of
the volume of the polytope on both sides of the constraint defined by the query.
Thus it is likely that a high K-score query will reduce largely the polytope no
matter the answer of the tutor. This alternative has the benefits of its algorithmic
simplicity. Indeed the computation of Kval(v, v′) and Kval(v′, v) only requires to
solve small linear programs.

Alternatively, following the same idea, we sampled rewards in the admissible
reward space (using a Gibbs sampler [5]). Let SR be the set of samples generated
and consider a query {v, v′} ∈ Queries. Let Sval(v, v′) = |{r ∈ SR : (v − v′).r ≥
0}|. We define the priority of query {v, v′} as its S-score (S for sampling):

S-score({v, v′}) = min{Sval(v, v′),Sval(v′, v)}. (11)

The numbers of samples on each side of the hyperplane defined by the query
{v, v′} gives us an approximation of the volumes of the polytope on each side
of the query. Hence a query which has roughly 50% of samples on both sides
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will approximately cut the polytope in two equal volumes and it will be deemed
a very informative query according to this strategy. A similar idea was used
by Rosenthal and Veloso [14] in a context where rewards are a weighted sum
of known subrewards and the elicitation procedure searches for the unknown
weights.

3.3 Allowing Small Mistakes in the Early Stages

The modification of IVI we propose in this subsection aims at making a com-
promise between the number of iterations of the procedure and the number of
queries issued. The idea is to take the “risk” of slowering convergence by avoiding
as much as possible to ask queries in the early stages. For this purpose, the con-
dition z∗

K ≥ 0 in function KDom (we recall that z∗
K corresponds to the optimal

value of program (7–8)) is loosened: a vector v′ is considered to be dominated if
z∗
K ≥ −err(t), where err(t) ≥ 0 is a function that decreases to 0 with t. Clearly,

this trick has the potentiality to avoid many queries during the early stage with
the possible drawback of temporarily driving IVI towards a misleading direc-
tion. To insure that this modification will not prevent the algorithm to converge
towards the optimal value function, we modify the main loop of IVI so that the
algorithm will keep running until err(t) ≤ δ with δ << 1.

3.4 Synthesis

Algorithm 6 synthesizes our modifications to IVI. The initialization of the algo-
rithm (lines 1 to 4) is unchanged. The main loop (lines 5 to 22) iterates until the
value function converges to the optimal value function and the err(t) function
converges to 0. From line 7 to line 13, we fill the sets of possible value vectors
for each state by computing and appending the Q-values of the corresponding
state-action pairs (lines 7 to 11) and then filter out the vectors (lines 12 and 13)
that we already know are dominated by using functions StDFilter (Algorithm 4)
and KDFilter (Algorithm 5). This latter algorithm now takes an extra parameter
(i.e., err(t)) for implementing the idea presented in the previous subsection. In
the second part of the loop we consider the set of all unsolved queries Queries
composed of pairs of non-dominated vectors of a same state. While there exists
unsolved queries we select and issue the most informative query (lines 16 and
17) using the priority score, X -score (X ∈ {Q,K,S}). Once the tutor answered
the query, the acquired information may enable to filter other vectors (line 18)
thus reducing the number of unsolved queries (line 19). Once all the queries are
solved, each set Q(s) is composed of a single element, corresponding to vt(s)
(the value vector of s for the next time step). The optimal value function for
M = (S, A, p, r̂, γ) is returned. By using standard bookkeeping techniques, we
could return the optimal policy as well.
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4 Numerical Tests

We tested our approach on three different domains: randomly generated MDPs,
autonomic computing [4] and a simulated setting of personalized assistance to
impaired people (Coach domain [3])1. The original IVI and the improved version
described in Sect. 3 were coded in python using Gurobi 6.0 as an LP solver. The
discount factor γ is set to 0.95, ε to 10−3, δ to 10−7 and err(t) = e−t. The
number of samples used by the S-score is 5000. All numeric results are averaged
over 20 runs.

Random MDPs. We first compared IVI and different variations of our improved
IVI on randomly generated MDPs; Given fixed n, m, k (the numbers of states,
of actions and of different types of rewards), we randomly generate the tran-
sition function assuming that each pair (s, a) has �log2(n)� successors (chosen
uniformly from the set of states) and transition probabilities are obtained by
sampling between 0 and 1 and then normalizing. The type of reward of each
pair (s, a) is picked from the uniform categorical distribution r1, . . . , rk; the
numerical values are randomly generated in interval [0, 1] and reordered in order
to be consistent.

In Figs. 1 (the number of queries asked as a function of n; k = |E| is fixed
to 10 and m to 5) and 2 (the number of queries asked as a function of the
1 In both the autonomic computing domain and in Coach, we randomly generated the

transition values and the rewards in such a way to satisfy the constraints imposed
by the problem domain.
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Fig. 1. Number of queries vs number
of states for each priority scores.

Fig. 2. Number of queries vs number
of rewards for each priority scores.

Fig. 3. Number of queries vs number
of states for different query strategies.

Fig. 4. Number of queries vs number of
rewards for different query strategies.

number |E| of different ordinal rewards; n is fixed to 50 and m to 5) we compare
the different priority scores that can be used to choose the next query to ask;
the graph shows that all three techniques (Q-score, K-score and S-score) are
similarly effective with S-score performing best.

In Fig. 3 we compare the impact of the different improvements that we
described in Subsects. 3.1–3.3 with the performance of the original IVI (k = |E|
is fixed to 10 and m to 5). For the queries’ priority we focus on the S-score since
this seemed to be the best performing strategy. As expected, IVI asks the highest
number of queries (around 80 with 100 states; 120 with 300 states); delaying the
moment of asking queries already gives a very significant advantage (around 60
and 85 queries for 100, 300 states). If we additionally ask queries according to
the priority induced by the S-score, the number of queries reduces even more
(around 45 and 55 queries for 100, 300 states); but surprisingly this improve-
ment is less than the improvement obtained by the combination of delaying the
queries and the heuristic of allowing small errors in the initial iterations. The
best results are obtained by combining the S-score with the “error” heuristic
(about 40 queries with 300 states). Interestingly, with our improvements, the
number of queries asked by modified IVI grows very slowly with respect to the
number of states.
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Figure 4 compares the same strategies but with different numbers of rewards
(i.e., k = |E|), the number of states n being fixed to 50 and m to 5. By comparing
Fig. 3 with Fig. 4 we can see that parameter k impacts much more the number
of queries than parameter n; especially when considering the version of IVI
including all our improvements (denoted as “Delayed + S-score + err” in the
plots).

Autonomic Computing. We also applied our algorithm on the domain of auto-
nomic computing [4]. In this domain, we assume there are κ application server
elements on which N available resources have to be assigned. A feasible alloca-
tion is an integer vector a = (a1, . . . , aκ) with

∑κ
i=1 ai ≤ N . The client’s demand

(changing over time) is an integer vector d = (d1, . . . , dκ) representing κ levels of
demand in {1, . . . , D}. A state of the MDP is a vector (a, d) defining current alloca-
tion and demand. An action is the adoption of a new allocation m = (m1, . . . , mκ).
The reward of taking action m in state (a, d) is r((a, d),m) = u(a, d) − c(a, d, m)
where u(a, d) =

∑κ
i=1 u(ni, di) is the sum of non-decreasing utility-functions

u(ai, di) and c(a, d, m) is the sum of the costs for removing a resource unit from the
server. An action deterministically sets the next allocation, while the uncertainty
about demands is stochastic and exogenous.

We ran IVI and modified IVIs on instances with κ = 2, N = 3 and D = 3 (90
states and 10 actions). While the original IVI needs 188.7 queries to converge,
by delaying the queries we reduce this number to 108.9. Prioritizing the order
in which the queries are asked further reduces the number of queries to 86.9.
Finally by using the heuristic that allows small mistakes in the first iterations
of the algorithm, we only need to ask 66.3 queries.

Coach. Finally, we present our experimental results on the “Coach” domain [3].
In this problem, we provide assistance to a person with dementia accomplishing
a daily-life activity (e.g., handwashing) that is decomposed into T = {0, . . . , l}
phases. Different types of aids are available, modeled by actions A = {0, . . . , m};
a ∈ A is a form of assistance, each associated with a different level of intrusiveness
between 0 and m; 0 represents no prompt (no aid is given), m−1 represents the
most intrusive prompt and m means that a caregiver has to be called. The goal
is to aid the person in completing the task, with enough aid but avoiding being
too intrusive.

A state in the MDP is described as a tuple (t, d, f) where t ∈ T is the current
timestep, d ∈D={0, . . . , 5} is the delay (time already spent in the current phase
of the task) and f ∈ A is the last prompt used. Transitions model the chance
of “success”, i.e., the probability that the person moves to the next phase. To
model the effectiveness of the aid, at each phase t < l of the task, the probability
of success is increasing with the level of intrusiveness of the action a; however the
probability is decreasing with d. The reward associated to taking action a in state
(t, d, f) is defined by r((t, d, f), a)=rgoal(t)+rprogress(d)+rdelay(d)+rprompt(a)
where rgoal(t) gives a large reward when the final phase is reached and 0 oth-
erwise, rprogress(d) is a small reward when passing to the next phase with no
delay and 0 otherwise, rdelay(d) and rprompt(a) are increasing cost functions.
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We ran IVI and our improved versions of IVI on instances with l = 14 and
m = 6 (630 states and 7 actions). The original version of IVI needed 169.9
queries to converge. By delaying the queries we reduced this number to 114.7.
Prioritizing the order in which the queries where issued curbed this score to 77.9.
Lastly by allowing small mistakes at the beginning of the algorithm the number
of queries issued decreased to 71.2.

5 Conclusion and Future Works

IVI is an appealing procedure that mitigates the burden of defining the reward
function of an MDP by interweaving the elicitation and resolution phases. In
order to find an optimal policy for an MDP, this procedure queries the tutor
about comparisons of multisets of rewards when needed. This paper presents
modifications to the original algorithm that are shown to reduce substantially
the number of queries issued. The main ideas of the paper are that we can avoid
unnecessary queries by delaying the querying phase, and reasoning about the
order in which we ask the query.

A natural extension of our work would be to explore new priority scores
to guide the querying process. For instance, a strategy alternative to the ones
proposed in Sect. 3.1 would be to work in the space of differences of value vectors
v−v′. Points v−v′ for which v � v′ (resp. v′ � v) would be labelled + (resp. −)
and an SVM method would be used to find the hyperplane (going through point
0) best separating + and − labels. The vector orthogonal to this hyperplane can
be interpreted as the most likely reward function given K. The next query would
then be the unsolved query closest to this hyperplane.

Additionally, we intend to delay even more the querying phase by waiting
several time steps before asking queries. In this setting (similar to the one of
multiobjective MDPs [19]), sets Q(s) would not reduce to a singleton at the end
of each iteration. Our preliminary results in this direction (where we delay over
3 time steps) are promising and lead to an even more important reduction of the
number of queries. Indeed only ≈ 25 queries are needed to solve a random MDP
with 50 states, 5 actions and 10 ordinal rewards (results averaged on 20 runs).
However, the number of possible value vector for each state can easily explode in
this setting and we need to adapt our algorithm to prevent this from happening.
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Abstract. We consider a multicriteria sorting procedure based on a
majority rule, called MR-Sort. This procedure allows to sort each object
of a set, evaluated on multiple criteria, in a category selected among a
set of pre-defined and ordered categories. With MR-Sort, the ordered
categories are separated by profiles which are vectors of performances on
the different attributes. Using the MR-Sort rule, an object is assigned to
a category if it is at least as good as the category lower profile and not
better than the category upper profile. To determine whether an object
is as good as a profile, the weights of the criteria on which the object
performances are better than the profile performances are summed up
and compared to a threshold. If the sum of weights is at least equal to the
threshold, then the object is considered at least as good as the profile. In
view of increasing the expressiveness of the model, we substitute additive
weights by a capacity to represent the power of coalitions of criteria.
This corresponds to the Non-Compensatory Sorting model characterized
by Bouyssou and Marchant. In the paper we describe a mixed integer
program and a heuristic algorithm that enable to learn the parameters
of this model from assignment examples.

1 Introduction

In Multiple Criteria Decision Analysis (MCDA), the “sorting problem setting”
(or ordered classification) consists in assigning each alternative of a set, evaluated
on several monotone criteria, in a category selected among a set of pre-defined
and ordered categories. Several MCDA methods are designed to handle sorting
problems. In this paper, we consider a sorting model that satisfies the require-
ments of the non-compensatory sorting models characterized in [1,2]. The model
is a generalization of MR-Sort [3,4]. In MR-Sort, categories are separated by pro-
files which are vectors of performances on the different criteria. Each criterion of
the model is associated a weight representing its importance or its voting power.
Using this model, without veto, we assign an alternative to a category if it is
considered at least as good as the category lower profile and not at least as good
as the category upper profile. An alternative is considered as good as a profile if
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its performances are at least as good as the profile performances on a weighted
majority of criteria. In MR-Sort, the weighted majority of criteria is reached if
the sum of weights of criteria on which the alternative is at least as good as the
profile is greater than a threshold.

Such a model contrasts with utility based models such as UTADIS [5,6].
It belongs to a class of decision models referred as noncompensatory in the
literature [7,8], because it just takes into account whether or not an evaluation
is above the profile value, not by how much it passes or misses this profile value.
These methods are well suited to criteria assessed on ordinal scales.

Consider a MR-Sort model involving 4 criteria (c1, c2, c3 and c4) and 2
ordered categories (C2 � C1), separated by a profile b1. Using this model, an
alternative is assigned to the “good” category (C2) iff its performances are as
good as the profile b1 on at least one of the four following minimal criteria
coalitions: c1 ∧ c2, c3 ∧ c4, c1 ∧ c4 and c2 ∧ c4. A coalition of criteria is said to be
minimal if removing any criterion is enough to reject the assertion “alternative
a is as good as profile b”. With an MR-Sort model, this can be achieved by
selecting, for instance, the following weights and majority threshold: w1 = 0.3,
w2 = 0.2, w3 = 0.1, w4 = 0.4 and λ = 0.5. We have w1 + w2 = λ, w3 + w4 = λ,
w1 + w4 > λ and w2 + w4 > λ. All the other coalitions of criteria, which are
not supersets of the four minimal coalitions listed above, are not sufficient to be
considered as good as b1 (e.g. w1 + w3 < λ).

Assume that we want a model for which the two minimal sufficient criteria
coalitions are: c1 ∧ c2 and c3 ∧ c4. Modeling this classification rule with an MR-
Sort model is impossible. To model these rules, we have to choose weights wi, i =
1, . . . , 4, summing up to 1, such that w1 + w2 ≥ λ and w3 + w4 ≥ λ. Summing
these two inequalities yields 1 ≥ 2λ. If we want these coalitions to be the only
minimal sufficient ones, we must also have : w1+w3 < λ, w1+w4 < λ, w2+w3 < λ
and w2 + w4 < λ. Summing these four inequalities yields 2 < 4λ. Hence, there
exist no weights and majority threshold for which the 2 above coalitions are the
only two minimal sufficient coalitions. In view of being able to represent such
a type of rule, we consider in this paper an extension of MR-Sort allowing to
model interactions between criteria. This formulation expresses the majority rule
of MR-Sort by using a capacity like in the Choquet Integral [9]. This model is
called the Non Compensatory Sorting Model (NCS model). It was introduced
and characterized in [1,2].

In this paper, we aim at studying the additional descriptive ability of the NCS
model as compared to MR-Sort. We assess this experimentally on real datasets.
The paper is organized as follows. The next section describes formally what is
a non compensatory sorting model. Section 3 recalls previous work dealing with
learning the parameters of MR-Sort models from assignment examples. The
next two sections describe respectively a Mixed Integer Program and a heuristic
algorithm that allow to learn the parameters of a NCS model. Some experimental
results are finally presented.
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2 MR-Sort and NCS Models

2.1 MR-Sort Model

MR-Sort is a method for assigning objects to ordered categories. It is a simplified
version of ELECTRE TRI, another MCDA method [10,11].

The MR-Sort rule works as follows. Formally, let X be a set of objects eval-
uated on n ordered attributes (or criteria), F = {1, ..., n}. We assume that
X is the Cartesian product of the criteria scales, X =

∏n
j=1 Xj . An object

a ∈ X is a vector (a1, . . . , aj , . . . , an), where aj ∈ Xj for all j. The ordered
categories which the objects are assigned to by the MR-Sort model are denoted
by Ch, with h = 1, . . . , p. Category Ch is delimited by its lower limit profile
bh−1 and its upper limit profile bh, which is also the lower limit profile of cate-
gory Ch+1 (provided 0 < h < p). The profile bh is the vector of criterion values
(bh,1, . . . , bh,j , . . . , bh,n), with bh,j ∈ Xj for all j. We denote by P = {1, ...., p}
the list of category indices. By convention, the best category, Cp, is delimited
by a fictive upper profile, bp, and the worst one, C1, by a fictive lower profile,
b0. It is assumed that the profiles dominate one another, i.e.: bh−1,j ≤ bh,j , for
h = {1, . . . , p} and j = {1, . . . , n}.

Using the MR-Sort procedure, an object is assigned to a category if its crite-
rion values are at least as good as the category lower profile values on a weighted
majority of criteria while this condition is not fulfilled when the object’s crite-
rion values are compared to the category upper profile values. In the former
case, we say that the object is preferred to the profile, while, in the latter, it is
not. Formally, if an object a ∈ X is preferred to a profile bh, we denote this by
a � bh. Object a is preferred to profile bh whenever the following condition is
met:

a � bh ⇔
∑

j:aj≥bh,j

wj ≥ λ, (1)

where wj is the nonnegative weight associated with criterion j, for all j and λ sets
a majority level. The weights satisfy the normalization condition

∑
j∈F wj = 1;

λ is called the majority threshold ; it satisfies λ ∈ [1/2, 1].
The preference relation � defined by (1) is called an outranking relation

without veto or a concordance relation ([11]; see also [12,13] for an axiomatic
description of such relations). Consequently, the condition for an object a ∈ X
to be assigned to category Ch reads:

∑

j:aj≥bh−1,j

wj ≥ λ and
∑

j:aj≥bh,j

wj < λ. (2)

The MR-Sort assignment rule described above involves pn + 1 parameters,
i.e. n weights, (p − 1)n profiles evaluations and one majority threshold.

A learning set A is a subset of objects A ⊆ X for which an assignment is
known. For h ∈ P , Ah denotes the subset of objects a ∈ A which are assigned
to category Ch. The subsets Ah are disjoint; some of them may be empty.
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2.2 NCS Model

Limitation of MR-Sort. Before describing the NCS model, we show the limits
of MR-Sort. As an illustration, consider an application in which a committee for
a higher education program has to decide about the admission of students on the
basis of their evaluations in 4 courses: math, physics, chemistry and history. To
be accepted in the program, the committee considers that a student should have a
sufficient majority of evaluations above 10/20. From the committee point of view,
courses (criteria) coalitions don’t have the same importance. The strength of a
coalition of courses varies as a function of the courses belonging to the coalition.
The committee stated that the following subsets are the minimal coalitions of
courses in which the evaluation should be above 10/20 in order to be accepted:
{math, physics}, {math, chemistry} and {chemistry, history}. To illustrate this
rule, Table 1 shows evaluations of several students and, for each student, whether
he is accepted or refused.

Representing these assignments by using a MR-Sort model with profile fixed
at 10/20 in each course is impossible. There are no additive weights allowing
to model such rules. MR-Sort is not adapted to handle such type of problems
since it does not allow to model attribute interactions. In view of taking crite-
rion interactions into account, we modify the definition of the global outranking
relation, a � bh, given in (1).

Capacity. The new model described hereafter uses capacities. A capacity is a
function μ : 2F → [0, 1] such that:

– μ(B) ≥ μ(A), for all A ⊆ B ⊆ F (monotonicity);
– μ(∅) = 0 and μ(F ) = 1 (normalization).

The Möbius transform allows to express the capacity in another form:

μ(A) =
∑

B⊆A

m(B) ∀A ⊆ F with m(B) =
∑

C⊆B

(−1)|B|−|C|μ(C).

The value m(B) can be interpreted as the weight that is exclusively allocated
to B as a whole. A capacity can be defined directly by its Möbius transform

Table 1. Evaluation of students and their acceptance/refusal status

Math Physics Chemistry History A/R

James 11 11 9 9 A

Marc 11 9 11 9 A

Robert 9 9 11 11 A

John 11 9 9 11 R

Paul 9 11 9 11 R

Pierre 9 11 11 9 R
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also called Möbius interaction. A Möbius interaction or Möbius mass m is a set
function m : 2F → [−1, 1] satisfying the following conditions:

∑

j∈K⊆J∪{j}
m(K) ≥ 0 ∀j ∈ F, J ⊆ F\{i} and

∑

K⊆F

m(K) = 1. (3)

If m is a Möbius interaction, the set function defined by μ(A) =
∑

B⊆A m(B) is
a capacity. Conditions (3) guarantee that μ is monotone [14].

NCS Model. Using a capacity to express the weight of the coalition in favor
of an object, we transform the outranking rule (1) as follows:

a � bh ⇔ μ(A) ≥ λ with A = {j ∈ F : aj ≥ bh,j}
and μ(A) =

∑

B⊆A

m(B) (4)

Computing the value of μ(A) with the Möbius transform requires the evaluation
of 2|A| parameters. In a model involving n criteria, this implies the elicitation of
2n parameters, with μ(∅) = 0 and μ(F ) = 1. To reduce the number of parameters
to elicit, we use a 2-additive capacity in which all the interactions involving more
than 2 criteria are equal to zero. Inferring a 2-additive capacity for a model
having n criteria requires the determination of n(n+1)

2 − 1 parameters.
Finally, the condition for an object a ∈ X to be assigned to category Ch can

be expressed as follows:

μ(Fa≥bh−1) ≥ λ and μ(Fa≥bh) < λ (5)

with Fa≥bh−1 = {j ∈ F : aj ≥ bh−1,j} and Fa≥bh = {j ∈ F : aj ≥ bh,j}.
This model fits with the definition of a NCS model given in [1,2]. We note

that MR-Sort is a special case of a NCS model in which a simple additive capacity
is used.

3 Learning the Parameters of a MR-Sort Model

Learning the parameters of MR-Sort and ELECTRE TRI models has been
already studied in several articles [3,4,15–21]. In this section, we recall how to
learn the parameters of an MR-Sort model using respectively an exact method
[3] and a heuristic algorithm [4].

3.1 Mixed Integer Programming

Learning the parameters of a MR-Sort model using linear programming tech-
niques has been proposed in [3]. The paper describes a Mixed Integer Program
(MIP) taking a set of assignment examples and their vector of performances
as input and finding the parameters of a MR-Sort model such that the largest
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possible number of examples are restored by the inferred model. We recall in
this subsection the main steps to obtain the MIP formulation.

The condition for an object x to be assigned to category Ch (Equation (2))
can be written as follows:

a ∈ Ch ⇐⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑n
j=1 ch−1

a,j ≥ λ with ch−1
a,j =

{
wj if aj ≥ bh−1,j

0 otherwise
∑n

j=1 ch
a,j < λ with ch

a,j =

{
wj if aj ≥ bh,j

0 otherwise

To linearize these constraints, we introduce for each value cl
a,j , with l = {h−1, h},

a binary variable δl
a,j that is equal to 1 when the performance of the object a is

at least as good as or better than the performance of the profile bl on criterion
j and 0 otherwise. To obtain the value of δl

a,j , we add the following constraints,
where M is an arbitrary large positive constant:

M(δl
a,j − 1) ≤ aj − bl,j < M · δl

a,j (6)

By using the value δl
a,j , the values of cl

a,j are obtained as follows:
{

cl
a,j ≥ 0

cl
a,j ≤ wj

{
cl
a,j ≤ δl

a,j

cl
a,j ≥ δl

a,j − 1 + wj

The objective function of the MIP consists in maximizing the number of
examples compatible with the learned model, i.e. minimizing the 0/1 loss func-
tion. In order to model this, new binary variables, γa for all a ∈ A, are introduced.
The value of γa is equal to 1 if object a is assigned to the expected category, i.e.
the category it is assigned to in the learning set, and equal to 0 otherwise. To
obtain the correct value of γa variables, two additional constraints are added:

{∑n
j=1 ch−1

a,j ≥ λ + M(γa − 1)∑n
j=1 ch

a,j < λ − M(γa − 1)

The objective function chosen for the linear program consists in maximiz-
ing the number of examples compatible with the model. Formally it reads:
max

∑
a∈A γa. Finally, the combination of all the constraints leads to the MIP

given in AppendixA.

3.2 A Heuristic Algorithm

The MIP presented in the previous section is not suitable for large data sets
because of the high computing time that is required to infer the MR-Sort para-
meters. In view of learning MR-Sort models in the context of large data sets,
a heuristic algorithm has been proposed in [4]. As in the MIP, the heuristic
algorithm takes as input a set of assignment examples and their vectors of per-
formances. The algorithm returns the parameters of a MR-Sort model.
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min
∑

a∈A(x′
a + y′

a)
s.t. ∑

j:aj≥bh−1,j

wj − xa + x′
a = λ ∀a ∈ Ah, h = {2, ..., p}

∑

j:aj≥bh,j

wj + ya − y′
a = λ − ε ∀a ∈ Ah, h = {1, ..., p − 1}

n∑

j=1

wj = 1

wj ∈ [0; 1] ∀j ∈ F
λ ∈ [0.5; 1]

xa, ya, x′
a, y′

a ∈ R
+
0

ε a small positive number.
(7)

The heuristic algorithm proposed in [4] works as follows. First a population
of MR-Sort models is initialized. After the initialization, the two following steps
are repeated iteratively on each model in the population:

1. A linear program optimizes the weights and the majority threshold on the
basis of assignment examples and fixed profiles.

2. Given the inferred weights and the majority threshold, a heuristic adjusts the
profiles of the model on the basis of the assignment examples.

After applying these two steps to all the models in the population, the
⌊

n
2

⌋

models restoring the least numbers of examples are reinitialized. These steps are
repeated until the heuristic finds a model that fully restores all the examples or
after a number of iterations specified a priori.

The linear program designed to learn the weights and the majority threshold
is given by (7). It minimizes a sum of slack variables, x′

a and y′
a, that is equal to 0

when all the objects are correctly assigned, i.e. assigned to the category defined in
the input data set. We remark that the objective function of the linear program
does not explicitly minimize the 0/1 loss but a sum of slacks. This implies that
compensatory effects might appear, with undesirable consequences on the 0/1
loss. However in this heuristic, we consider that these effects are acceptable. The
linear program doesn’t involve binary variables. Therefore, the computing time
remains reasonable when the size of the problem increases.

The objective function of the heuristic varying the profiles maximizes the
number of examples compatible with the model. To do so, it iterates over each
profile h and each criterion j and identifies a set of candidate moves for the
profile, which correspond to the performances of the examples on criterion j
located between profiles h − 1 and h + 1. Each candidate move is evaluated as a
function of the probability to improve the classification accuracy of the model.
To evaluate if a candidate move is likely or unlikely to improve the classification
of one or several objects, the examples which have an evaluation on criterion
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j located between the current value of the profile, bh,j , and the candidate move,
bh,j + δ (resp. bh,j − δ), are grouped in different subsets:

V +δ
h,j (resp. V −δ

h,j ): the sets of objects misclassified in Ch+1 instead of Ch (resp.
Ch instead of Ch+1), for which moving the profile bh by +δ (resp. −δ) on j
results in a correct assignment.

W+δ
h,j (resp. W−δ

h,j ): the sets of objects misclassified in Ch+1 instead of Ch (resp.
Ch instead of Ch+1), for which moving the profile bh by +δ (resp. −δ) on
j strengthens the criteria coalition in favor of the correct classification but
will not by itself result in a correct assignment.

Q+δ
h,j (resp. Q−δ

h,j): the sets of objects correctly classified in Ch+1 (resp. Ch+1)
for which moving the profile bh by +δ (resp. −δ) on j results in a misclassi-
fication.

R+δ
h,j (resp. R−δ

h,j): the sets of objects misclassified in Ch+1 instead of Ch (resp.
Ch instead of Ch+1), for which moving the profile bh by +δ (resp. −δ) on j
weakens the criteria coalition in favor of the correct classification but does
not induce misclassification by itself.

T+δ
h,j (resp. T−δ

h,j ): the sets of objects misclassified in a category higher than Ch

(resp. in a category lower than Ch+1) for which the current profile evaluation
weakens the criteria coalition in favor of the correct classification.

A formal definition of these sets can be found in [4]. The evaluation of the
candidate moves is done by aggregating the number of elements in each subset.
Finally, the choice to move or not the profile on the criterion is determined by
comparing the candidate move evaluation to a random number drawn uniformly.
These operations are repeated multiple times on each profile and each criterion.

4 Mixed Integer Program to Learn a 2-Additive
NCS Model

As compared to a MR-Sort model, a NCS model involves more parameters.
In a standard MR-Sort model, a weight is associated to each criterion, which
makes overall n parameters to elicit. With a NCS model limited to two-additive
capacities, the computation of the strength of a coalition of criteria involves the
weights of the criteria in the coalition and the pairwise interactions (Möbius
coefficients) between these criteria. Overall there are n(n+1)

2 − 1 coefficients. In
the two-additive case, let us denote by mj the weights of criterion j and by mj,k

the Möbius interactions between criteria j and k. The capacity μ(A) of a subset
of criteria is obtained as: μ(A) =

∑
j∈A mj +

∑
{j,k}⊆A mj,k. The constraints (3)

on the interaction read:

mj +
∑

k∈J

mj,k ≥ 0 ∀j ∈ F,∀J ⊆ F\{j} (8)

and
∑

j∈F mj +
∑

{j,k}⊆F mj,k = 1.
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The number of monotonicity constraints evolves exponentially as a function
of the number of criteria, n. In [22], two other formulations are proposed in order
to reduce significantly the number of constraints ensuring the monotonicity of
the capacities. The first formulation reduces the number of constraints to 2n2

but leads to a non linear program. The second formulation reduces the number
of constraints to n2 + 1 without introducing non linearities but adds n2 extra
variables.

With a 2-additive MR-Sort model, the constraints for an alternative a to be
assigned to a category h (5) can also be expressed as follows:

{∑n
j=1 ch−1

a,j +
∑n

j=1

∑j
k=1 ch−1

a,j,k ≥ λ + M(γa − 1)∑n
j=1 ch

a,j +
∑n

j=1

∑j
k=1 ch

a,j,k < λ − M(γa − 1)
(9)

with:

– ch−1
a,j (resp. ch

a,j) equals mj if the performance of alternative a is at least as
good as the performance of profile bh−1 (resp. bh) on criterion j, and equals 0
otherwise;

– ch−1
a,j,k (resp. ch

a,j,k) equals mj,k if the performance of alternative a is at least
as good as the performance of profile bh−1 (resp. bh) on criteria j and k, and
equals 0 otherwise.

For all a ∈ A, j ∈ F and l ∈ P , constraints (8) imply that cl
a,j ≥ 0 and that

cl
a,j,k ∈ [−1, 1]. The values of ch−1

a,j and ch
a,j are obtained in a similar way as it is

done for learning the parameters of a standard MR-Sort model by replacing the
weights with the corresponding Möbius coefficients (10).

{
cl
a,j ≥ 0

cl
a,j ≤ mj

{
cl
a,j ≤ δl

a,j

cl
a,j ≥ δl

a,j − 1 + mj

(10)

However it is not the case for the variables ch−1
a,j,k and ch

a,j,k, because they involve
two criteria. To linearize the formulation, we introduce new binary variables,
Δl

a,j,k equal to 1 if alternative a has better performances than profile bl on
criteria j and k and equal to 0 otherwise. We obtain the value of Δl

a,j,k thanks
to the conjunction of constraints given in (6) and the following constraints:

2Δl
a,j,k ≤ δl

a,j + δk
a,j ≤ Δl

a,j,k + 1

In order to obtain the value of cl
a,j,k, which can be either positive or negative,

for all l ∈ P , we decompose the variable in two parts, αl
a,j,k and βl

a,j,k such that
cl
a,j,k = αl

a,j,k − βl
a,j,k with αl

a,j,k ≥ 0 and βl
a,j,k ≥ 0. The same is done for mj,k

which is decomposed as follows: mj,k = m+
j,k −m−

j,k with m+
j,k ≥ 0 and m−

j,k ≥ 0.
The values of αl

a,j,k and βl
a,j,k are obtained thanks to the following constraints:

⎧
⎪⎨

⎪⎩

αl
a,j,k ≤ Δl

a,j,k

αl
a,j,k ≤ m+

j,k

αl
a,j,k ≥ Δl

a,j,k − 1 + m+
j,k

⎧
⎪⎨

⎪⎩

βl
a,j,k ≤ Δl

a,j,k

βl
a,j,k ≤ m−

j,k

βl
a,j,k ≥ Δl

a,j,k − 1 + m−
j,k
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Finally, we obtain the MIP displayed in AppendixB.

min
∑

a∈A(x′
a + y′

a)
s.t.

n∑

j:aj≥bh−1,j

⎛

⎝mj +
j∑

k:ak≥bh−1,k

mj,k

⎞

⎠ − xa + x′
a = λ ∀a ∈ Ah,

h = {2, ..., p}
n∑

j:aj≥bh,j

⎛

⎝mj +
j∑

k:ak≥bh,k

mj,k

⎞

⎠ + ya − y′
a = λ − ε ∀a ∈ Ah,

h = {1, ..., p − 1}
n∑

j=1

mj +
n∑

j=1

j∑

k=1

mj,k = 1

mj +
∑

k∈J

mj,k ≥ 0 ∀j ∈ F,∀J ⊆ F\{j}

λ ∈ [0.5; 1]
mj ∈ [0, 1] ∀j ∈ F

mj,k ∈ [−1, 1] ∀j ∈ F,∀k ∈ F, k < j
xa, ya, x′

a, y′
a ∈ R

+
0 a ∈ A

ε a small positive number.
(11)

5 A Heuristic Algorithm to Learn a 2-Additive
NCS Model

The MIP described in the previous section requires a lot of binary variables and
is therefore not well-suited for large problems. In the present section, we describe
an adaptation of the heuristic described in Subsect. 3.2 in view of learning the
parameters of a NCS model. Like for the MIP in the previous section, we limit
the model to 2-additive capacities in order to reduce the number of coefficients
as compared to a model with a general capacity.

One of the components that needs to be adapted in the heuristic in order
to be able to learn a 2-additive NCS model is the linear program that infers
the weights and the majority threshold (7). Like in the MIP described in the
previous section, we use the Möbius transform to express capacities. In view of
inferring Möbius coefficients, mj and mj,k, ∀j,∀k with k < j, we modify the
linear program as shown in (11).

The value of xa − x′
a (resp. ya − y′

a) represents the difference between the
capacity of the criteria belonging to the coalition in favor of a ∈ Ah w.r.t. bh−1

(resp. bh) and the majority threshold. If both xa − x′
a and ya − y′

a are positive,
then object a is assigned to the correct category. In order to try to maximize the
number of examples correctly assigned by the model, the objective function of
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the linear program minimizes the sum of x′
a and y′

a, i.e. the objective function
is min

∑
a∈A(x′

a + y′
a).

The heuristic adjusting the profile also needs some adaptations in view of
taking capacities into account. More precisely, the formal definition of the sets in
which objects are classified for computing the candidate move evaluation should
be adapted. The semantics of the sets, recalled in Sect. 3.2 remains identical.
The formal definitions of these sets have to be adapted to take into account the
capacity. The rest of the algorithm remains unchanged.

6 Experiments

The use of the MIP for learning a NCS model is limited because of the large
number of binary variables involved. It contains more binary variables than the
MIP learning the parameters of a simple additive MR-Sort model. Experiments
reported in [3] have demonstrated that the computing time required to learn the
parameters of a standard MR-Sort model having a small number of criteria and
categories from a small set of assignment examples becomes quickly prohibitive.
Therefore we cannot expect to be able to treat large problems using the MIP
for learning NCS models.

In view of assessing the performance of the heuristic algorithm designed
for learning the parameters of a NCS model, we use it to learn NCS mod-
els from several real data sets presented in Table 2. These data sets, available
at http://www.uni-marburg.de/fb12/kebi/research/repository/monodata, have
been already used to assess other algorithms (e.g. [4,23]). They involve from
120 to 1728 instances, from 4 to 8 monotone attributes and from 2 to 36 cat-
egories. In our experiments, categories have been binarized by thresholding at
the median.

In our first experiment, we use 50 % of the alternatives in the data sets as
learning set and the rest as test set. We learn MR-Sort and NCS models using
both heuristics. We repeat this procedure for 100 random splits of the data sets

Table 2. Data sets

Data set #Instances #Attributes #Categories

DBS 120 8 2

CPU 209 6 4

BCC 286 7 2

MPG 392 7 36

ESL 488 4 9

MMG 961 5 2

ERA 1000 4 4

LEV 1000 4 5

CEV 1728 6 4

http://www.uni-marburg.de/fb12/kebi/research/repository/monodata
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Table 3. Average and standard deviation of the classification accuracy of the test set
when using 50 % of the examples as learning set and the rest as test set

Data set Heuristic MR-Sort Heuristic NCS

DBS 0.8377 ± 0.0469 0.8312 ± 0.0502

CPU 0.9325 ± 0.0237 0.9313 ± 0.0272

BCC 0.7250 ± 0.0379 0.7328 ± 0.0345

MPG 0.8219 ± 0.0237 0.8180 ± 0.0247

ESL 0.8996 ± 0.0185 0.8970 ± 0.0173

MMG 0.8268 ± 0.0151 0.8335 ± 0.0138

ERA 0.7944 ± 0.0173 0.7944 ± 0.0156

LEV 0.8408 ± 0.0122 0.8508 ± 0.0188

CEV 0.9064 ± 0.0119 0.9118 ± 0.0263

Table 4. Average and standard deviation of the classification accuracy of the learning
set when using the MR-Sort and NCS models learned on the whole data set

Data set Heuristic MR-Sort Heuristic NCS

DBS 0.9268 ± 0.0096 0.9326 ± 0.0087

CPU 0.9643 ± 0.0048 0.9703 ± 0.0091

BCC 0.7605 ± 0.0147 0.7761 ± 0.0085

MPG 0.8419 ± 0.0099 0.8389 ± 0.0069

ESL 0.9164 ± 0.0033 0.9168 ± 0.0042

MMG 0.8419 ± 0.0099 0.8409 ± 0.0091

ERA 0.8035 ± 0.0052 0.8027 ± 0.0053

LEV 0.8501 ± 0.0082 0.8643 ± 0.0038

CEV 0.9005 ± 0.0141 0.9172 ± 0.0101

in learning and test sets. We observe from Table 3 that the classification accuracy
obtained with the NCS heuristic is on average comparable to the one obtained
with the MR-Sort heuristic. The use of a more expressive model does not help
much to improve the classification accuracy of the test set.

In a second experiment, we check the ability of MR-Sort and NCS to restore
the whole data set. To do so, we run both heuristics 100 times. The average
classification accuracy and standard deviation of the learning set are given in
Table 4. The NCS heuristic does not always give better results than the MR-
Sort one in restoring the learning set examples. Except for the MPG data set,
we observe a slight advantage (of the order of one standard deviation) in favor
of NCS when the number of attributes is at least 6. There is almost no difference
for the data sets described by 4 or 5 attributes and for MPG (7 attributes).
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Table 5. Average computing time (in seconds) required to find a solution with MR-
Sort and NCS heuristics when using all the examples as learning set

Data set Heuristic MR-Sort Heuristic NCS

DBS 3.0508 6.9547

CPU 3.1646 5.2069

BCC 3.3700 7.7545

MPG 4.4136 9.9294

ESL 3.8466 7.2495

MMG 6.1481 13.4848

ERA 5.9689 14.4875

LEV 5.8986 13.2356

CEV 11.1122 31.7042

Average computing times of the results in Table 4 are displayed in Table 5.
Learning a NCS model can take up to almost 3 times as much as learning a
simple MR-Sort model.

The above experiments on benchmark data sets available in the literature
failed to show a clear advantage at using NCS rather than MR-Sort. This raises
the following question. Which type of data set would reveal a gain of expressivity
provided by NCS over MR-Sort? We investigate this question in the next section.

7 Potential Gain in Descriptive Power with the NCS
Model

Among NCS assignment rules, some can be exactly represented by additive
weights and a threshold (the MR-Sort rules), while the others require a non-
additive capacity and a threshold. We call the latter non-additive NCS rules.
These are not MR-Sort rules but they can be approximated by a MR-Sort model.
The experiment described below aims at assessing how well a non-additive NCS
rule can be approximated by a MR-Sort rule.

Consider a NCS model assigning alternatives in two categories, C1 and C2.
For a given profile, the set of all possible alternatives can be partitioned in 2n

subsets, where n is the number of criteria. Each of these subsets is characterized
by one of the 2n relative positions of an alternative w.r.t. the profile. On each
criterion, the performance of an alternative is either at least as good as the profile
or worse. Due to the ordinal nature of the NCS rule, all alternatives that share
the same relative position w.r.t. the profile (i.e. all alternatives in the same class
of the partition in 2n subsets) are assigned to the same category. If we assume
that the evaluations of the alternatives on all criteria range in the [0, 1] interval,
we can set the profile values to 0.5 on all criteria. The set of n-dimensional
Boolean vectors is composed of exactly one example of each possible relative
position w.r.t. the profile.
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Our experiments are conducted as follows.

1. We modify the MIP described in Sect. 3.1 to learn only the weights and the
majority threshold of a MR-Sort model on the basis of fixed profiles and
assignment examples. The objective function of the MIP remains the mini-
mization of the 0/1 loss.

2. We generate all possible NCS rules for n = 4, 5, 6 criteria. For more detail
about how this can be done, see [24]; the list of all non-equivalent NCS rules
is available at http://olivier.sobrie.be/shared/mbfs/. Each non-additive NCS
rule, is used to assign the set of n-dimensional Boolean vectors to one of the
two categories (using the 0.5 constant profile). These sets of representative
alternatives constitute our learning sets.

3. The modified MIP is used to learn the weights and majority threshold of a
MR-Sort model, which restores as well as possible the assignments made by
the non-additive NCS rule.

The results of the experimentation are displayed in Table 6. Each row of the
table contains the results for a given number of criteria, n = 4, 5, 6. The second
column shows the percentage of non-additive NCS rules among all possible rules
for each given number of criteria. The last three columns contain the min, max
and average percentage of the 2n examples assigned by non-additive rules that
cannot be restored by a simple additive model.

Table 6. Average, minimum and maximum 0/1 loss of the learning sets after learning
additive weights and the majority threshold of a MR-Sort model

n % Non-additive MR-Sort

Min. Max. Avg.

4 11 % 6.2 % 6.2 % 6.2 %

5 57 % 3.1 % 9.4 % 3.9 %

6 97 % 1.6 % 12.5 % 4.8 %

We observe that a MR-Sort model on 4 criteria is, in the worst case, not
able to restore 6.2 % of the examples in the learning set (1 example out of 16).
With 5 and 6 criteria, the maximum 0/1 loss increases respectively to 9.4 % (3
examples out of 32) and 12.5 % (8 examples out of 64).

Note that these proportions were obtained using learning sets in which each
type of relative position w.r.t. the profile is represented exactly once. Therefore
these conclusions should be valid for learning sets in which all types of relative
positions are approximately equally represented. On a test set, the difference in
classification performance between a non-additive NCS rule and its approxima-
tion by a MR-Sort rule can be amplified, or, on the contrary, can fade, depending
on the proportion of the test alternatives belonging to the various types of rela-
tive positions w.r.t. the profile.

http://olivier.sobrie.be/shared/mbfs/
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Table 6 reveals another important information. The proportion of non-
additive NCS rules among all NCS rules quickly grows with the number of
attributes: from 11 % of 2-additive NCS rules for n = 4 to 97 % for n = 6.
It hence becomes more and more likely that a NCS rule is not a MR-Sort one
when n grows.

The results in Table 6 could help to better understand the relatively poor
gains observed in the previous section when comparing the heuristic algorithm
for learning a 2-additive NCS model and a MR-Sort model. We noticed that the
classification accuracy of the learned NCS rule tended to be slightly better for
the data sets involving at least 6 attributes. The lack of an advantage for data
sets involving 4 attributes might be due to the relative scarcity of non-additive
NCS rules for n = 4 (11 %). When a gain is obtained, it is tiny, which might
result from the fact that the approximation of a non-additive NCS rule by a
MR-Sort rule is relatively good, at least up to n = 6. Investigating the NCS
for n ≥ 7 model in a systematic way, using the same method as we did in our
last experiments, is almost impossible due to the extremely fast growth of the
number of possible NCS rules (see [24]). It is however arguable that non-additive
NCS rules could be at an advantage, as compared to MR-Sort rules, when the
number of attributes is at least as large as 6.

A MIP Learning the Parameters of a MR-Sort Model

max
∑

a∈A γa

s.t.
n∑

j=1

ch−1
a,j ≥ λ + M(γa − 1) ∀a ∈ Ah, h = {2, ..., p}

n∑

j=1

ch
a,j < λ − M(γa − 1) ∀a ∈ Ah, h = {1, ..., p − 1}

aj − bl,j < M · δl
a,j ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

aj − bl,j ≥ M(δl
a,j − 1) ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

cl
a,j ≤ δl

a,j ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}
cl
a,j ≤ wj ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

cl
a,j ≥ δl

a,j − 1 + wj ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}
bh,j ≥ bh−1,j ∀j ∈ F, h = {2, ..., p − 1}

n∑

j=1

wj = 1

δl
a,j ∈ {0, 1} ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

cl
a,j ∈ [0, 1] ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

bh,j ∈ R ∀j ∈ F,∀h ∈ P
γa ∈ {0, 1} ∀a ∈ A
wj ∈ [0, 1] ∀j ∈ F
λ ∈ [0.5, 1]

(12)



168 O. Sobrie et al.

B MIP Learning the Parameters of a 2-Additive NCS
Model

max
∑

a∈A γa

s.t.
n∑

j=1

(
ch−1
a,j +

j∑

k=1

αh−1
a,j,k −

j∑

k=1

βh−1
a,j,k

)
≥ λ + M(γa − 1) ∀a ∈ Ah,

h = {2, ..., p}
n∑

j=1

(
ch
a,j +

j∑

k=1

αh
a,j,k −

j∑

k=1

βh
a,j,k

)
< λ − M(γa − 1) ∀a ∈ Ah,

h = {1, · · · , p − 1}
mj +

∑

k∈J

(m+
j,k − m−

j,k) ≥ 0 ∀j ∈ F,∀J ⊆ F\{j}
n∑

j=1

mj +
n∑

j=1

j∑

k=1

(m+
j,k − m−

j,k) = 1

bh,j ≥ bh−1,j ∀j ∈ F, h = {2, ..., p}
cl
a,j ≤ δl

a,j ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}
cl
a,j ≤ mj ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

cl
a,j − mj ≥ δl

a,j − 1 ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}
aj − bl,j < M · δl

a,j ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}
aj − bl,j ≥ M(δl

a,j − 1) ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}
δl
a,j + δl

a,k ≥ 2Δl
a,j,k ∀{j, k} ∈ F : k < j,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

δl
a,j + δl

a,k ≤ Δl
a,j,k + 1 ∀{j, k} ∈ F : k < j,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

αl
a,j,k ≤ Δl

a,j,k ∀{j, k} ∈ F : k < j,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}
αl

a,j,k ≤ m+
j,k ∀{j, k} ∈ F : k < j,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

αl
a,j,k + m+

j,k ≥ Δl
a,j,k − 1 ∀{j, k} ∈ F : k < j,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

βl
a,j,k ≤ Δl

a,j,k ∀{j, k} ∈ F : k < j,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}
βl

a,j,k ≤ m−
j,k ∀{j, k} ∈ F : k < j,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

βl
a,j,k − m−

j,k ≥ Δl
a,j,k − 1 ∀{j, k} ∈ F : k < j,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

cl
a,j ∈ [0, 1] ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

δl
a,j ∈ {0, 1} ∀j ∈ F,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}

αl
a,j,k, βl

a,j,k ∈ [0, 1] ∀{j, k} ∈ F : k < j,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}
Δl

a,j,k ∈ {0, 1} ∀{j, k} ∈ F : k < j,∀a ∈ Ah,∀h ∈ P, l = {h − 1, h}
mj ∈ [0, 1] ∀j ∈ F

m+
j,k,m−

j,k ∈ [0, 1] ∀j ∈ F,∀k ∈ F, k < j

bh,j ∈ R ∀j ∈ F,∀h ∈ P
γa ∈ {0, 1} ∀a ∈ A
λ ∈ [0, 1]

(13)



Learning the Parameters of a Non Compensatory Sorting Model 169

References

1. Bouyssou, D., Marchant, T.: An axiomatic approach to noncompensatory sorting
methods in MCDM, I: the case of two categories. Eur. J. Oper. Res. 178(1), 217–
245 (2007)

2. Bouyssou, D., Marchant, T.: An axiomatic approach to noncompensatory sorting
methods in MCDM, II: more than two categories. Eur. J. Oper. Res. 178(1), 246–
276 (2007)

3. Leroy, A., Mousseau, V., Pirlot, M.: Learning the parameters of a multiple criteria
sorting method based on a majority rule. In: Brafman, R. (ed.) ADT 2011. LNCS,
vol. 6992, pp. 219–233. Springer, Heidelberg (2011)

4. Sobrie, O., Mousseau, V., Pirlot, M.: Learning a majority rule model from large
sets of assignment examples. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT
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approach to obtain robust conclusions with ELECTRE TRI. Eur. J. Oper. Res.
138(1), 332–348 (2002)

19. Doumpos, M., Marinakis, Y., Marinaki, M., Zopounidis, C.: An evolutionary app-
roach to construction of outranking models for multicriteria classification: the case
of the ELECTRE TRI method. Eur. J. Oper. Res. 199(2), 496–505 (2009)



170 O. Sobrie et al.

20. Cailloux, O., Meyer, P., Mousseau, V.: Eliciting ELECTRE TRI category limits
for a group of decision makers. Eur. J. Oper. Res. 223(1), 133–140 (2012)

21. Zheng, J., Metchebon, S., Mousseau, V., Pirlot, M.: Learning criteria weights of
an optimistic Electre Tri sorting rule. Comput. OR 49, 28–40 (2014)
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Abstract. In many multi-agent applications, such as patrol, shopping,
or mining, a group of agents must use limited resources to successfully
accomplish a task possibly available at several distinct sites. We investi-
gate problems where agents must expend resources (e.g. battery power)
to both travel between sites and to accomplish the task at a site, and
where agents only have probabilistic knowledge about the availability
and cost of accomplishing the task at any location. Previous research
on Multiagent Stochastic Physical Search (mSPS) has only explored the
case when sites are located along a path, and has not investigated the
minimal number of agents required for an optimal solution. We extend
previous work by exploring physical search problems on both paths and
in 2-dimensional Euclidean space. Additionally, we allow the number of
agents to be part of the optimization. Often, research into multiagent
systems ignores the question of how many agents should actually be
used to solve a problem. To investigate this question, we introduce the
condition of k-agent sufficiency for a multiagent optimization problem,
which means that an optimal solution exists that requires only k agents.
We show that mSPS along a path with a single starting location is at
most 2-agent sufficient, and quite often 1-agent sufficient. Using an opti-
mal branch-and-bound algorithm, we also show that even in Euclidean
space, optimal solutions are often only 2- or 3-agent sufficient on average.

Keywords: Stochastic physical search · Planning under uncertainty ·
Multiagent optimization · k-Agent sufficiency

1 Introduction

We investigate the problem of multiple agents seeking for a single item that may
possibly be obtained at one of several locations. We assume that the availability
and actual cost to acquire the item at any site is not fully known beforehand, but
that a priori probabilistic cost distributions are known. In particular we exam-
ine problems where there is a finite resource that must be expended to both
travel and obtain the item of interest. We refer to this class of problems as Mul-
tiagent Stochastic Physical Search (mSPS). Examples of this type of problem
include battery-powered mining or space exploration robots seeking a precious
metal deposit or specific mineral sample, hikers seeking a suitable location to
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 171–186, 2015.
DOI: 10.1007/978-3-319-23114-3 11



172 D.S. Brown et al.

Fig. 1. (a) Example of a two-agent strategy where agent 1 is allocated a starting budget
of b1 = 32 and the path π1 = 〈us, u4, u3〉 and agent 2 is allocated a starting budget
of 14 and the path π2 = 〈us, u1, u2〉. Probability distributions over cost are shown
next to each site. The joint probability of success of the shown multiagent search
strategy is 1 − Pr(failure of agent 1) · Pr(failure of agent 2) = 1 − Pr(failure at u4) ·
Pr(failure at u3) ·Pr(failure at u1) ·Pr(failure at u2) = 1− 0.5 · 0.7 · 0.7 · 0.5 = 0.8775.
(b) Using a single agent, the same probability of success can be achieved with a strategy
that requires less budget.

set up a base camp, or tourists using public transportation to explore several
different shopping areas for a desired souvenir. What makes the above problems
challenging, is that while actual distance costs may be reliably and accurately
estimated using satellite imagery, maps, or taxi fares, the actual cost to accom-
plish the task (or purchase the item of interest) at a specific location may be
unknown until an agent actually visits the site. One of the major challenges is
that we assume each agent must use a single budget (e.g. battery power, fuel,
or currency) to both travel and obtain the item. This adds extra complexity to
the problem because it means that taking a different path to a site can change
the probability of success—a longer path will consume more budget, reducing
the budget available to obtain the item. Figure 1(a) shows an example problem
along with a possible two-agent solution that allocates a total budget of 46 and
achieves a joint probability of success of 0.8775. However, Fig. 1(b) shows that
an equivalent probability of success can be achieved using only a single agent
with a lower total budget of 35.

In many multiagent search problems it is often assumed that the number of
agents is fixed and that having multiple searchers is better than a single searcher.
However, this may not be the case when searchers start from the same location,
when both search and acquisition are costly, and when there is a limit to the total
allocatable budget. For example, in many vehicle routing problems, the number
of vehicles is part of the problem definition and solutions often assume that all
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the vehicles will be used [14]. Some vehicle routing problems try to minimize the
number of required agents, but these problems do not consider probabilities of
success or costs to purchase or acquire an item along a vehicle’s route [15]. Work
on the multiple traveling salesman (a special case of the mSPS) and its extensions
sometimes allows the number of salesman to be variable, but we know of no
proven bounds on the maximum number of agents required for different problems
[2,11]. In many other multiagent scenarios such as multiagent task allocation,
the number of agents is also often assumed to be fixed [5,12]. Previous work
on stochastic physical search has either focused on single agent solutions or has
assumed that the number of agents is not part of the optimization [1,3,7,9,10].

Our research assumes that there is a given upper bound on the number of
agents available to search for the item; however, we do not restrict our solu-
tions to a fixed number of agents. Instead, we algorithmically decide which of
the available agents should participate in the search in order to maximize the
probability of successfully obtaining the item as well as minimizing the required
total budget allocated to the agents. Because our problem is bi-objective we
use the standard epsilon constraint method to split the problem into two dual
objectives. The Min-Budget objective is to minimize the total budget allocated
to the agents while guaranteeing a specified minimum probability of success.
The Max-Probability objective is to maximize the probability of success given
an upper bound on the budget that can be allocated. In both of these problems,
the agents all start at the same starting location and a solution is an allocation
of resources to each agent, along with a search path for each agent.

While stochastic physical search problems capture many real world plan-
ning and algorithmic decision problems, very little is known about the solution
properties of these problems. Work by Aumann et al. and Hazon et al. has
proposed optimal algorithms for the case when sites are located along a path;
however, their work never actually computes or analyzes optimal solutions and
does not investigate the frequency of optimal solutions that required more than
one agent [1,6,7]. Work by Brown et al. and Hudack et al. has examined the
Min-Budget and Max-Probability problems on general graphs and 2-dimensional
euclidean spaces; however, they only consider the single agent case [3,9]. This
paper provides, to the best of our knowledge, the first theoretical and empir-
ical investigation of the solution properties of the multiagent Min-Budget and
Max-Probability problems.

We start by examining problems where the item may possibly be obtained
from a set of locations on a path. We examine two cases: (1) single-cost and (2)
multi-cost. We prove that in both cases, problems are at most 2-agent sufficient,
and empirically investigate the frequency of 1-agent sufficient problems. We next
investigate solutions to the Min-Budget and Max-Probability problems when
locations are in 2-dimensional Euclidean space. We provide a theoretical analysis
of when multiple agents are unnecessary and use an exact branch-and-bound
algorithm to provide empirical insights into k-agent sufficiency for 2-dimensional
problems. We show that in many cases, even when searching in two dimensions,
the optimal strategy is to use a very small number of searchers, rarely requiring
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more than 3 searchers. We conclude by discussing the factors that contribute
to a search problem being k-agent sufficient for different values of k along with
areas for future research.

2 Problem Definition

A stochastic physical search problem is defined by a graph G(S+, E) with a set
of locations S+ = S ∪ {us} where S = {u1, . . . , um} is the set of m sites offering
an item of interest, us is the starting location, and E ⊆ S+ × S+ is the set of
edges. Each (i, j) ∈ E has a non-negative cost of travel tij . For each site i ∈ S we
are given a cost probability mass function pi(c), which gives the probability that
the item will cost c at site ui. We assume that the actual cost is not revealed until
the agent visits the site and that the cost remains fixed thereafter. We further
assume that there is a finite number of possible costs in the support of pi(c),
∀i ∈ S. Finally, we define a set N of nmax = |N | agents that are available, but
not required, to be used in the search. Each agent n starts at us with a starting
budget b∗

n,∀n ∈ N . We let b∗ = {b∗
n : n ∈ N} and let B∗ =

∑
n∈N b∗

n, the total
budget allocated to all agents. We assume that once budgets are allocated they
are non-transferable, that two or more agents cannot combine their budgets to
obtain the item, and that agents cannot share information about sites they have
visited with other agents. Following previous work on stochastic physical search
problems [7], we assume that success is achieved if any agent is able to purchase
the item. We also assume that the item cannot be found at the start site, us.

We examine two dual problems (1) Min-Budget: Given a required probabil-
ity of success p∗

succ find the initial budget allocation b∗ that satisfies p∗
succ and

that minimizes B∗. (2) Max-Probability: Given an upper bound on the budget
available for allocation of B∗ determine the optimal budget allocation b∗ so as
to maximize the probability of success. A solution to either problem is an allo-
cation of starting budgets b∗ along with a set of paths Π∗ where each individual
path πn ∈ Π∗ is a sequence of sites in S+, where πn

i is the ith site visited along
path πn, and where each path starts at the start site, i.e., πn

0 = us,∀n ∈ N . We
assume that success is achieved if any agent arrives at a site where the actual
cost is less than or equal to that agent’s remaining budget.

2.1 k-Agent Sufficiency

Before we investigate solutions to the Min-Budget and Max-Probability mSPS
problems we define the term k-agent sufficiency as it relates to multiagent opti-
mization problems of the kind investigated in this paper.

Definition 1. A mSPS problem is k-agent sufficient if an optimal solution exists
such that |B+| = k where B+ = {b∗

n ∈ b∗ | b∗
n > 0,∀n ∈ N}.

The following result is true for all mSPS problems.

Proposition 1. If an SPS problem has zero travel costs between all sites, then
it is 1-agent sufficient.
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Proof. Assume you have two agents i and j with starting budgets bi, bj > 0.
Since the agents can travel between sites without incurring costs, an equivalent
probability of success can be achieved with a single agent, given less starting
budget b′ = max(bi, bj) ≤ bi + bj . �	
Thus, for the remainder of the paper we assume that all travel costs are non-zero.

3 mSPS Along a Path

We first investigate the Min-Budget and Max-Probability problems where the
set of locations in S+ are restricted to be along a path. We note that the follow-
ing discussion on paths is not purely academic, as many multi-agent coverage
algorithms convert their complex environment into a path and many perimeter
monitoring and border control tasks could also be represented by sites along a
path [4,7,8,13].

To simplify our analysis, we follow the methodology used by Hazon et al. [7],
and assume WLOG (without loss of generality) that all locations are along a
line such that the travel cost between any two sites ui and uj is tij = |ui − uj |.
We also assume WLOG that the sites are ordered from left to right such that
u1 ≤ u2 ≤ · · · ≤ um. We first examine the case when there is only one possible
cost to obtain the item. Despite the simplicity of this problem, we show that the
results for k-sufficiency are non-trivial. We then examine the case where there
are multiple possible item costs.

Before examining the single and multi-price cases, we note the following.

Proposition 2. When us is the leftmost (rightmost) location, then the problem
is 1-agent sufficient and the optimal strategy only moves to the right (left).

Proof. Any other strategy to cover the same locations would use at least as much
budget and achieve no greater probability of success. �	
Thus, the most interesting cases, in terms of k-agent sufficiency, are those where
the start site us is towards the middle of the path.

3.1 Single Price

We first assume that all sites either offer the item for a cost of c0 or do not offer
the item at all (this can simply be modeled as a cost of ∞). All we are given are
the a priori probabilities pi that the item is available for cost c0 at site i.

We first note the following useful lemma and definition proposed by Aumann
et al. [1].

Lemma 1. Consider a price c0 and suppose that an agent’s optimal strategy
starting at point us covers the interval [u�, ur] while the remaining budget is at
least c0. Then WLOG we may assume that the agent’s optimal strategy is either
(us � ur � u�) or (us � u� � ur).
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Definition 2. Agents i and j are said to be separated by a strategy if each site
in S that is reached by i is not reached by j.

We now prove the following lemma and theorem which give us our first k-
agent sufficiency condition.

Lemma 2. With a single price, there exists an optimal multiagent strategy
where every agent is separated.

Proof. Assume by contradiction that two agents i and j are not separated in
every optimal strategy. Consider the intervals covered by these two agents, [li, ri]
and [lj , rj ], respectively. Let [L,R] = [li, ri] ∪ [lj , rj ] be the full combined coverage
area of the two agents. In the case that [li, ri] ⊂ [lj , rj ] we can safely remove
agent i from the strategy, resulting in a strategy with the same probability of
success but lower budget. Otherwise, WLOG we can assume based on Lemma 1
that only i reaches L and only j reaches R. However, now the separated strategy
of us � L for agent i and us � R for j guarantees at least the same probability
of success with no more budget. This contradicts our assumption. �	
Theorem 1. For a path with a single possible price, there is always an optimal
strategy with fewer than 3 agents. If using two agents is optimal, then only one
agent moves left and only one agent moves right in the optimal strategy.

Proof. This follows as a direct result of Lemmas 1 and 2. �	
The work of Aumann et al. [1] provides an O(m) algorithm for the single

agent single price problem. Based on the result of Theorem 1 we can easily
adapt the algorithm given by Aumann et al. to obtain an O(m) algorithm for
the multiagent single item cost Min-Budget and Max-Probability cases by simply
checking each possible single agent coverage region to see if dividing the region
between two agents results in lower budget or higher probability of success. Each
of these checks can be done in constant time.

3.2 Single Price k-Agent Sufficiency

We now examine when the single price problem is 1-agent sufficient. When there
are multiple agents, each one has to carry at least c0 of budget to enable pur-
chasing when the item is available. Thus the question of 1-agent sufficiency is
directly related to the ratio of travel distances and c0. We note that for increas-
ing values of c0, there exists a point at which c0 is so high that it dominates the
total travel cost.

Theorem 2. Suppose that the optimal strategy covers the interval [u�, ur] while
the remaining budget is at least c0. If c0 ≥ max(|us − u�|, |ur − us|) then the
problem is 1-agent sufficient.
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Proof. Assume by contradiction that the optimal solution requires two agents, i
and j. Let bi and bj be the starting budgets of i and j, where ti = bi − c0 and
tj = bj − c0 are the portions of the budgets allocated for travel. By assumption
and by Theorem 1 we have

c0 ≥ max(|us − u�|, |ur − us|) = max(ti, tj). (1)

For a single searcher to cover both search paths it must have as a minimum
travel budget

t′ = 2min(ti, tj) + max(ti, tj) (2)

to enable an out and back trip on the shorter leg, followed by an out trip on the
longer leg. Thus the budget b′ for a single agent is given by

b′ = t′ + c0 (3)
= 2min(ti, tj) + max(ti, tj) + c0 (4)
≤ ti + tj + max(ti, tj) + c0 (5)
≤ ti + tj + 2c0 (6)
= bi + bj (7)

Which contradicts our assumption that two agents were required. �	
Figure 2 shows an example of how the number of agents allocated changes

for both Min-Budget and Max-Probability as c0 is increased. To obtain these
results we uniform randomly generated 25 sites along a 100 unit long interval
and let us be the median site. Probabilities of success pi are randomly chosen
between 0 and 0.5 for each site. For the Min-Budget problem, we examined
several different values for the required probability of success. We know that the
best success probability is achieved by visiting all the sites, giving

pmax
succ = 1 −

∏

i∈S

1 − pi. (8)

To vary the solutions we set the required probability of success equal to
ρ·pmax

succ for different values of ρ. The results for Min-Budget are shown in Fig. 2(a).
The x-axis shows the cost of the item and the y-axis shows the percentage of
1000 random instances that were 1-agent sufficient. When ρ = 1 all the sites
must be visited. We see that as expected, when ρ = 1, most problems are not
1-agent sufficient, until the cost gets close to max(|us − u1|, |um − us|) ≈ 50,
when 1-agent sufficiency is guaranteed by Theorem 2. However, as soon as all
of the sites are not required (i.e. ρ < 1), the probability of an instance being
1-agent sufficient dramatically increases.

Figure 2(b) shows the results for Max-Probability. Because there is only a
single purchase cost we can think of this cost as a fixed start-up cost that is
incurred for each agent used. Thus, for low values of c0 and low starting budget,
it is more beneficial to divide and conquer and send one agent left and one agent
right. On the other hand, for large values of c0 the start-up cost to use a second
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Fig. 2. Percentage of 1000 random 25-site, single-price problems that are 1-agent suf-
ficient. Sites are randomly placed in the interval [0, 100]. (a) Min-Budget results for
different required probabilities of success p∗

succ = ρ · (1 −∏i∈S 1 − pi) where pi is the
probability the item is available for the single cost. (b) Max-Probability results for
different total budget allotments B.

agent is so high that most optimal solutions only require a single agent. Note
that given a starting budget of 100 with c0 = 0 the optimal solution is to always
use two agents with each agent coverage one half of the solution space. However,
as c0 increases the two agent solution coverage region decreases because agents
cannot reach the farther endpoints and still have enough to purchase the item.
Eventually, c0 is so high that giving two agents c0 plus budget to travel requires
more budget than using a single agent. Given a starting budget of 150 and
c0 = 0 one agent has enough to traverse the entire interval. In this case we see
that as c0 increases, eventually two agents can cover a larger region (resulting in
higher probability of success) than one agent on its own. However, past a certain
point the start-up cost of c0 starts to dominate the travel costs and single agent
solutions become more common.

3.3 Multiple Prices on a Path

We now consider the case where there can be a large number of different realiz-
able costs at the sites. Note that Lemma 1 is not always true for multiple pur-
chase prices. Figure 3 shows a simple example where multiple direction changes
are optimal. However, we do have the following result:

Lemma 3. In the multi-price case, if agent i and agent j both only travel left
(right), then one of them is unnecessary.

Proof. WLOG assume agent i travels past the leftmost (rightmost) point visited
by j. Let bi and bj be the starting budgets of i and j and let ti = |li − us| and
tj = |lj − us| be the distances traveled by each agent, respectively. Consider the
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Fig. 3. When there are multiple realizable costs, optimal paths can often include several
changes of direction. Shown is the optimal strategy for a single agent solving Max-
Probability with starting budget of 51, or equivalently solving Min-Budget with a
required probability of success equal to 0.99.

new strategy where only one agent i′ travels with budget

bi′ = ti + (bi − ti + bj − tj) (9)
= bi + bj − tj (10)
≤ bi + bj . (11)

This single-agent strategy guarantees no decrease in probability of success with
no increase in total budget. �	

We also utilize the following lemma, adapted from Aumann et al. [1].

Lemma 4. Consider two agents i and j that start at us. Then, there is an
optimal strategy such that one of the following holds:

– j moves only in one direction which is opposite to i’s final movement direction.
Furthermore, if i’s final movement direction is right (left) then j passes the
leftmost (rightmost) site that is reached by i.

– either i or j is unnecessary.

Using Lemmas 3 and 4, we can now prove the following theorem, which is
the multi-cost analogue of Theorem 1.

Theorem 3. For the same-start mSPS problem on a path, there is always an
optimal strategy with fewer than 3 agents.

Proof. Assume by contradiction that 3 agents are necessary in every optimal
strategy. Denote these agents i, j, and k. Consider agents i and j. WLOG by
Lemma 4 assume that i only moves left in the optimal solution, i passes the
leftmost site reached by j, and j’s final movement direction is right.

Now consider the results of Lemma 4 applied to agents j and k. There are
two cases: (1) Agent k only moves left and passes the leftmost site reached by
j. Then either [li, ri] ⊂ [lk, rk] or [lk, rk] ⊂ [li, ri]. In either case, by Lemma 3
one of the agents is unnecessary. (2) Agent j only moves right and passes the
rightmost site reached by agent k, and k’s final movement direction is left. If
k passes the leftmost point covered by i, then i is unnecessary by Lemma 3.
Otherwise, i passes the leftmost site visited by k. Consider two cases: (a) at lk, i
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has remaining budget less than or equal to k. In this case i is not needed and k
can travel to li. (b) i has more budget than k at lk. In this case i also has more
budget available than k at all sites left of us so k only has to travel right. Thus,
by Lemma 3 either j or k are unnecessary. �	

3.4 Multi-price k-Agent Sufficiency

We now investigate when the multi-price mSPS problem along a path is 1-agent
sufficient. Once again we have the obvious cases that if travel costs are all zero,
then the problem is 1-agent sufficient and all the sites are located to one side of
the start site. We also have the following multi-price analogue of Theorem 2.

Theorem 4. Consider a strategy that has two agents with paths πi and πj and
budgets bi and bj, respectively. WLOG let bi = ti + cpur

i and bj = tj + cpur
j

where ti is the budget needed to travel along πi and cpur
i is the remainder that

is allocated to purchase. If max(ti, tj) ≤ min(cpur
i , cpur

j ), then the problem is
1-agent sufficient.

The proof is almost identical to the proof of Theorem 2.
Figure 4 shows an example of how the number of agents allocated changes for

Min-Budget and Max-Probability over different cost profiles for multiple costs
along a 100 unit path with 10 sites. Unlike the single-price case, the multi-price
problem appears to be NP-Hard. Aumann et al. examine the case where all
agents have access to a shared budget and show that even this case is NP-Hard
[1]. In this paper, we assume that a distinct, non-sharable, initial budget must be
allocated to each agent for both the Max-Probability and Min-Budget problems,
adding another dimension of complexity to the problem. However, we were able
to use a simplified version of the branch-and-bound algorithm described in Sect. 4
to obtain exact results for smaller sized problems.

Similar to the previous empirical results, we see that as the item costs
increase, 1-agent sufficient solutions become more common for the Min-Budget
case, but as ρ is increased (i.e. more sites are required to be visited) solutions tend
towards two agents unless item costs dominate travel costs. For Max-Probability
we see that very small or very large starting budgets lead to solutions with fewer
agents, but there is always a dip between the low and high budgets where it
becomes more beneficial to use two agents. The scaling and location of this
dip is determined by the distribution over item costs, with higher item costs
penalizing multiagent solutions.

4 mSPS in 2-D Euclidean Space

The results above have all assumed that the sites are located along a simple
path. We now assume that sites are located in 2-dimensional Euclidean space,
where the cost to travel between sites is the euclidean distance between sites,
i.e. tij = ‖ui − uj‖2. When solving both the Min-Budget and Max-Probability
problems in Euclidean space, we have the following result:
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Fig. 4. Percentage of 200 random 10-site, single-price problems that are 1-agent suf-
ficient where the item costs are either all zero or uniform randomly chosen from
some interval. (a) Min-Budget results over different required probabilities of success
p∗
succ = ρ · (1 −∏m

i=1 1 − pi) where pi is the probability the item is available for the
single cost at site i. (b) Max-Probability results over total starting budgets.

Proposition 3. The optimal solution for both the Min-Budget and Max-
Probability Euclidean mSPS problems consists of distinct non-overlapping paths.

Proof. We prove this by contradiction. Assume in the optimal solution that there
is a site uk ∈ S that is visited by at least two agents a1 and a2. Because agents
cannot share budget to purchase an item, the probability of success obtained at
that site will remain unchanged if the agent with lower budget does not travel
to uk. WLOG assume agent a1 is thus chosen not to visit the site and instead
goes straight to its next site on its path. By the triangle inequality this path
length is less than or equal to the original path length resulting in a strategy
with no more budget and at least equivalent probability of success, resulting in
the desired contradiction. �	

Thus, for the Euclidean problem, we can safely exclude overlapping paths
from our search space. This separation principle allows us to find optimal solu-
tions to the mSPS problem using an extension of the branch-and-bound formu-
lation proposed by Brown et al. for solving the single-agent SPS problem on
general graphs [3]. Any graph more complex than a simple path has been shown
to be NP-complete [7]; however, we were able to find optimal solutions for small
problems up to about 20 sites in 2-d Euclidean space. This allows us to examine
the characteristics of optimal solutions to the mSPS problem in a more general
and applicable setting.

We note that for each site i ∈ S we can use the possible costs at i to form a
partition over all possible budgets that may be brought to site i. For example,
the cost profile shown in Fig. 5 partitions the budget space into three intervals
with the corresponding probabilities of failure if an agent arrives at that site
with any budget in that interval. There are three possibilities when the agent
arrives at the site: (1) the agent’s budget is in the interval [0, 3) and it cannot
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Fig. 5. A cost profile (a) partitions the interval [0, ∞) into several possible budget
intervals (b), each with an associated probability of failure.

obtain the item, (2) the agent’s budget is in the interval [3, 10) and it has enough
left to obtain the item at the lower cost but not the higher cost, and so will fail
to obtain the item with probability 0.3, and (3) the agent has sufficient budget
to obtain the item for any of the possible costs.

Both the Min-Budget and Max-Probability branch-and-bound algorithms
need to determine the optimal budget allocation over nmax agents. While the
number of all possible budget allocations is infinite, we can ignore most of these
intervals and only focus on each budget interval [c�, cu) induced by the possible
costs at each site. Thus rather than branching on individual budget values we
branch on possible budget intervals for each agent. This can still result in an
exponential number of branches, but does allow exact solutions. We refer the
reader to [3] for the full details of the successor function and bounding criteria
for the single agent case. To extend the work by Brown et al. to the multiagent
case, we simply added a budget interval for each available agent. The successors
for each state are found as follows: iterate over all unvisited sites and all available
agents; add the site to the agent’s path; and update the agent’s budget interval,
the total budget required for all agents, and the joint probability of failure.

5 k-Agent Sufficiency in 2-Dimensions

We introduce the following definition that allows us to characterize a certain
class of 1-agent sufficient mSPS problems for the 2-dimensional Euclidean case

Definition 3. A mSPS problem is purchase-dominated if

min{c : Pi(c) > 0, i ∈ S} > max
i∈S+,j∈S+

tij , (12)

i.e., the minimum purchase cost at any site is greater than the maximum travel
cost between any two sites.

Theorem 5. If a mSPS problem in Euclidean space is purchase-dominated, then
it is 1-agent sufficient.

Proof. WLOG, assume that we have an optimal solution that requires two agents
i and j with paths πi, πj of corresponding travel costs ti and tj . Additionally,
each agent may need some additional budget to use for purchasing, cpur

i and
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cpur
j . We show that we can achieve the same probability of success using a single

agent. To do this assume that a single agent first visits all sites in πi and then
visits all sites (except for the start site) in πj with a corresponding total path
cost equal to ti + tj − tus,πj

1
+ tπi

ω,πj
1
, where ω is the index to the last element

of the path. Additionally, this agent may need some extra budget to allow for
purchasing. This agent will need cpur

i to get the probability of failure pi
fail on

path πi. The agent also needs min(0, cpur
j −cpur

i ) to get the probability of failure
pj

fail on path πj . Thus the single agent case requires

b′ = ti + tj − tus,πj
1

+ tπi
ω,πj

1
+ cpur

i + min(0, cpur
j − cpur

i ) (13)

≤ ti + tj + tπi
ω,πj

1
+ max(cpur

i , cpur
j ) (14)

< ti + tj + min(cpur
i , cpur

j ) + max(cpur
i , cpur

j ) (15)
= ti + tj + cpur

i + cpur
j (16)

= B∗ (17)

Resulting in single agent strategy with no more budget and at least equivalent
probability of success as the strategy with two agents. �	

5.1 Results for Clustered Sites

When sites are located in 2-dimensional Euclidean space, there is the potential
for many widely separated clusters of sites, which may result in solutions that
require more than 2 agents. To examine the effect of clustered sites on the optimal
number of agents we ran two experiments, one for Min-Budget and one for
Max-Probability. For both experiments we generated data sets consisting of 5
well-separated cluster centers identified in a 100-by-100 region and generated
15 site locations according to varying cluster tendency (ct), or the probability
that a site will be near a cluster center. For ct = 0.0 all sites were uniformly
randomly generated in the region, and for increasing ct it becomes more likely
that sites are located in close proximity to the cluster centers until at ct = 1.0,
there are no uniform-randomly generated sites. The start site is always placed in
the center of the region. For the Min-Budget experiment we used ρ = 0.95 and
generated random item costs in the intervals [0], [10, 30] and [30, 50]. For the
Max-Probability experiment we used item costs of 0 and explored total budgets
of 100, 600, and 1000. We ran 100 replicates for each setting.

The results are shown in Fig. 6. We see that for Min-Budget, the number
of agents used grows as the item costs decrease. Additionally, we see that as ct
increases, there is a slight increase in the average number of agents used. For
Max-Probability there are two trends that are largely insensitive to the clustering
tendency: the 100 budget case, and the 1000 budget case. With budget 100,
the optimal solutions tend to include two agents to visit sites that are widely
separated, but the limited budget tends not to be split any further. With 1000
budget, one agent can typically visit any useful sites. With budget 600 there is a
different trend: the number of agents is greatest at ct = 0.25 which corresponds
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Fig. 6. Average number of agents used in optimal plans for Min-Budget and Max-
Probability for 15 sites clustered into 5 clusters in a 100 unit by 100 unit region, with
variable clustering tendencies.

to forcing many well-separated sites, so a divide and conquer strategy is used.
At ct = 1.0, the tight clusters of points make it easier for a single agent to travel
within a cluster with very low travel cost.

Our empirical results for these and other settings revealed a tendency towards
very few agents in the optimal solution. To obtain a better intuition for this
phenomenon, we analyzed increasing numbers of equidistant sites located on a
circle centered on the start site.

Theorem 6. Given an mSPS problem in 2-dimensional Euclidean space with
all sites S equidistant from the start site, the problem never requires more than
5 agents.

Proof. We assume that all sites must be visited in the optimal solution, if all sites
are not required, then this can only result in fewer required agents. Additionally,
we assume that item costs are all zero, since having positive item costs can never
increase the number of agents required in the zero-cost case.

Consider |S| sites equally spaced around a circle of radius r. The case of
|S| = 1 trivially only requires one agent. Consider two sites as shown in Fig. 7(a).
In this case B∗ = 2r for two agents, but B∗ = 3r for one agent so two agents
are necessary. The three site case is shown in Fig. 7(b). In this case using three
agents is optimal since the removal of an agent from the solution causes another
agent to travel a distance of

√
2r + r > 2r. The cases for 4 and 5 sites are

similar—sending an agent along the radius of the circle is cheaper than sending
an agent along an edge of the inscribed regular polygon. Figure 7(c) and (d)
show the case for |S| = 6. This is the break even point where traveling along an
edge of the hexagon requires the same budget as traveling along the radius, thus
the problem is 1-agent sufficient. For |S| > 6 the edges of the inscribed regular
|S|-gon will be strictly less than r so these cases are all 1-agent sufficient. Even
if we relax the assumption that sites are equally spaced, we still only need at
most 5 agents. �	
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Fig. 7. Geometric argument that if all sites are equidistant from the start site, then
an optimal solution will never require more than 5 agents.

6 Conclusions and Future Work

Often, research into multiagent systems ignores the question of how many agents
should actually be used to solve a problem. To investigate this question, we intro-
duced the condition of k-agent sufficiency, as it relates to Multiagent Stochastic
Physical Search. We provided the first theoretical and empirical analysis of k-
agent sufficiency for mSPS when sites are along a path and in 2-d Euclidean
space. We showed that mSPS along a path with a single starting location is
always 2-agent sufficient, and quite often 1-agent sufficient. We also showed that
even in 2-d Euclidean space with a single starting location, optimal solutions usu-
ally require at most 3 agents on average. Our results show strong evidence that
optimal solutions to the mSPS problem in 2-d Euclidean space never requires
more than 5 agents even if sites located in widely-separated clusters. Using a
geometric argument we show why this is true when sites are equidistant from
the start site. We conjecture that in general, optimal solutions to mSPS problems
in 2-d Euclidean space require at most 5 agents. We hope that these results will
inspire other researchers in multiagent planning and optimization to consider
cases where multiple agents are not always necessary or even desirable, rather
than simply showing that an algorithm or solution method scales to x agents.

We note that there are many assumptions not considered in this paper which
may cause the number of agents in an optimal solution to increase. Some of
these assumptions include no communication during search, starting all agents
from the same initial location, having a limit on the maximum budget per agent,
having needs for redundancy or collaboration, and problems where the objec-
tive is to minimize time. Future work should examine these extensions to see
if there are still k-agent sufficiency conditions. We also hope to leverage the k-
agent sufficiency results shown in this paper to develop efficient heuristics and
approximation algorithms for solving difficult mSPS problem instances.
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15. Vokř́ınek, J., Komenda, A., Pěchouček, M.: Agents towards vehicle routing prob-
lems. In: Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems, pp. 773–780. International Foundation for Autonomous
Agents and Multiagent Systems (2010)



Utility and Decision Theory



Geometry on the Utility Space
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Abstract. We study the geometrical properties of the utility space (the
space of expected utilities over a finite set of options), which is commonly
used to model the preferences of an agent in a situation of uncertainty.
We focus on the case where the model is neutral with respect to the
available options, i.e. treats them, a priori, as being symmetrical from
one another. Specifically, we prove that the only Riemannian metric that
respects the geometrical properties and the natural symmetries of the
utility space is the round metric. This canonical metric allows to define
a uniform probability over the utility space and to naturally generalize
the Impartial Culture to a model with expected utilities.

Keywords: Utility theory · Geometry · Impartial culture · Voting

1 Introduction

Motivation. In the traditional literature of Arrovian social choice [2], espe-
cially voting theory, the preferences of an agent are often represented by ordinal
information only1: a strict total order over the available options, or sometimes
a binary relation of preference that may not be a strict total order (for example
if indifference is allowed). However, it can be interesting for voting systems to
consider cardinal preferences, for at least two reasons.

Firstly, some voting systems are not based on ordinal information only, like
Approval voting or Range voting.

Secondly, voters can be in a situation of uncertainty, either because the rule
of the voting system involves a part of randomness, or because each voter has
incomplete information about other voters’ preferences and the ballots they will
choose. To express preferences in a situation of uncertainty, a classical and ele-
gant model is the one of expected utilities [5,10,12,17]. The utility vector −→u
representing the preferences of an agent is an element of R

m, where m is the
1 This is not always the case: for example, Gibbard [7] considers voters with expected

utilities over the candidates.
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number of available options or candidates; the utility of a lottery over the options
is computed as an expected value.

For a broad set of applications in economics, the options under consideration
are financial rewards or quantities of one or several economic goods, which leads
to an important consequence: there is a natural structure over the space of
options. For example, if options are financial rewards, there is a natural order
over the possible amounts and it is defined prior to the agents’ preferences.

We consider here the opposite scenario where options are symmetrical a
priori. This symmetry condition is especially relevant in voting theory, by a
normative principle of neutrality, but it can apply to other contexts of choice
under uncertainty when there is no natural preexistent structure on the space
of available options.

The motivation for this paper came from the possible generalizations of the
Impartial Culture to agents with expected utilities. The Impartial Culture is a
classical probabilistic model in voting theory where each agent draws indepen-
dently her strict total order of preference with a uniform probability over the set
of possible orders.

The difficulty is not to define a probability law over utilities such that its
projection on ordinal information is the Impartial Culture. Indeed, it is sufficient
to define a distribution where voters are independent and all candidates are
treated symmetrically. The issue is to choose one in particular: an infinity of
distributions meet these conditions and we can wonder whether one of these
generalizations has canonical reasons to be chosen rather than the others.

To answer this question, we need to address an important technical point. As
we will see, an agent’s utility vector is defined up to two constants, and choosing
a specific normalization is arbitrary. As a consequence, the utility space is a
quotient space of Rm, and a priori, there is no canonical way to push a metric
from R

m to this quotient space. Hence, at first sight, it seems that there is no
natural definition of a uniform distribution of probability over that space.

More generally, searching a natural generalization of the Impartial Culture to
the utility space naturally leads to investigate different topics about the geometry
of this quotient space and to get a better understanding of its properties related
to algebra, topology and measure theory.

We emphasize that our goal is not to propose a measure that represents real-
life preferences. Such approach would follow from observation and experimental
studies rather than theoretical work. Instead, we aim at identifying a measure
that can play the role of a neutral, reference, measure. This will give a model for
uniformness to which real distributions of utilities can be compared. For example,
if an observed distribution has higher density than the reference measure in
certain regions of the utility space, this could be interpreted as a non-uniform
culture for the population under study and give an indication of an overall trend
for these regions. With this aim in mind, we will assume a symmetry hypothesis
over the different candidates.

Contributions and Plan. The rest of the paper is organized as follows. In
Sect. 2, we quickly present Von Neumann–Morgenstern framework and define



Geometry on the Utility Space 191

the utility space. In Sect. 3, we show that the utility space may be seen as a
quotient of the dual of the space of pairs of lotteries over the candidates. In
Sect. 4, we naturally define an inversion operation, that corresponds to reversing
preferences while keeping their intensities, and a summation operation, that is
characterized by the fact that it preserves unanimous preferences.

Since the utility space is a manifold, it is a natural wish to endow it with a
Riemannian metric. In Sect. 5, we prove that the only Riemannian representa-
tion that preserves the natural projective properties and the a priori symmetry
between the candidates is the round metric. Finally, in Sect. 6, we use this result
to give a canonical generalization of the Impartial culture and to suggest the use
of Von Mises–Fisher model to represent polarized cultures.

2 Von Neumann–Morgenstern Model

In this section, we define some notations and we quickly recall Von Neumann–
Morgenstern framework in order to define the utility space.

Let m ∈ N \ {0}. We will consider m mutually exclusive options called can-
didates, each one represented by an index in {1, . . . , m}. A lottery over the
candidates is an m-tuple (L1, . . . , Lm) ∈ (R+)m such that (s.t.)

∑m
j=1 Lj = 1.

The set of lotteries is denoted Lm.
The preferences of an agent over lotteries are represented by a binary relation

≤ over Lm.
Von Neumann–Morgenstern theorem states that, provided that relation ≤

meets quite natural assumptions2, it can be represented by a utility vector −→u =
(u1, . . . , um) ∈ R

m, in the sense that following the relation ≤ is equivalent to
maximizing the expected utility. Formally, for any two lotteries L and M :

L ≤ M ⇔
m∑

j=1

Ljuj ≤
m∑

j=1

Mjuj .

Mathematical definitions, assumptions and proof of this theorem can be
found in [10,12,16], and discussions about the experimental validity of the
assumptions are available in [6,12].

For the purposes of this paper, a crucial point is that −→u is defined up to an
additive constant and a positive multiplicative constant. Formally, for any two
vectors −→u and −→v , let us note −→u ∼ −→v iff ∃a ∈ (0,+∞),∃b ∈ R s.t. −→v = a−→u +b

−→
1 ,

where
−→
1 denotes the vector whose m coordinates are equal to 1. With this

notation, if −→u ∈ R
m is a utility vector representing ≤, then a vector −→v ∈ R

m is
also a utility vector representing ≤ iff −→u ∼ −→v .

In order to define the utility space, all vectors representing the same prefer-
ences must be identified as only one point. The utility space over m candidates,

2 The necessary and sufficient condition is that relation ≤ is complete, transitive,
archimedean and independent of irrelevant alternatives.
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denoted Um, is defined as the quotient space Rm/ ∼. We call canonical projection
from R

m to Um the function:

∼
π :

R
m → Um−→u → ∼

u = {−→v ∈ R
m s.t. −→v ∼ −→u }.

For any −→u ∈ R
m, we denote without ambiguity ≤∼

u the binary relation over Lm

represented by −→u .
Figure 1 represents the space R

3 of utility vectors for 3 candidates, without
projecting to the quotient space. The canonical base of R3 is denoted (−→e1 ,−→e2 ,−→e3).
Utility vectors −→u (1) to −→u (4) represent the same preferences as any other vector
of the half-plane ∼

u, represented in gray. More generally, each non-trivial point
∼
u in the quotient utility space corresponds to a half-plane in R

m, delimited by
the line vect(

−→
1 ), the linear span of

−→
1 . The only exception is the point of total

indifference
∼
0. In R

m, it does not correspond to a plane but to the line vect(
−→
1 )

itself.
To deal with utilities, conceptually and practically, it would be convenient to

have a canonical representative −→u for each equivalence class ∼
u. In Fig. 2(a), for

each non-indifferent ∼
u, we choose its representative satisfying min(ui) = −1 and

max(ui) = 1. The utility space U3 (except the indifference point) is represented
in R

3 by six edges of the unit cube. In Fig. 2(b), we choose the representative

−→
1 −→u (2)

−→u (3)

−→u (1)

−→u (4)

−→e1 −→e2

−→e3

∼
u

Fig. 1. Space R
3 of utility vectors for 3 candidates (without quotient).

−→
1

−→e2

−→e3

−→e1

(a) Edges of the unit cube in R
3.

−→e1 −→e2

−→e3

−→
1

(b) Circle in R
3.

Fig. 2. Two representations of U3.
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satisfying
∑

ui = 0 and
∑

u2
i = 1. In that case, U3 \ {∼

0} is represented in R
3 by

the unit circle in the linear plane that is orthogonal to
−→
1 .

If we choose such a representation, the quotient space Um can inherit the
Euclidean distance from R

m; for example, we can evaluate distances along the
edges of the cube in Fig. 2(a), or along the unit circle in Fig. 2(b). But it is
clear that the result will depend on the representation chosen. Hence, it is an
interesting question whether one of these two representations, or yet another
one, has canonical reasons to be used. But before answering this question, we
need to explore in more generality the geometrical properties of the utility space.

3 Duality with the Tangent Hyperplane of Lotteries

In this section, we remark that the utility space is a dual of the space of pairs
of lotteries. Not only does it give a different point of view on the utility space
(which we think is interesting by itself), but it will also be helpful to prove
Theorem 3, which characterizes the summation operator that we will define in
Sect. 4.

In the example represented in Fig. 3, we consider m = 3 candidates and−→u = (53 ;− 1
3 ;− 4

3 ). The great triangle, or simplex, is the space of lotteries L3.
Hatchings are the agent’s indifference lines: she is indifferent between any pair
of lotteries on the same line (see [12], Section 6.B). The utility vector −→u repre-
sented here is in the plane of the simplex, but it is not mandatory: indeed, −→u
can be arbitrarily chosen in its equivalence class ∼

u. Nevertheless, it is a quite
natural choice, because the component of −→u in the direction

−→
1 (orthogonal to

the simplex) has no meaning in terms of preferences.
The utility vector −→u can be seen as a gradient of preference: at each point, it

reveals in what directions the agent can find lotteries she likes better. However,
only the direction of −→u is important, whereas its norm has no specific meaning.
As a consequence, the utility space is not exactly a dual space, but rather a
quotient of a dual space, as we will see more formally.

L1

L2

L3

1

1

1

L3

−→u

Fig. 3. Space L3 of lotteries over 3 candidates.
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For any two lotteries L = (L1, . . . , Lm) and M = (M1, . . . , Mm), we call
bipoint from L to M the vector

−−→
LM = (M1−L1, . . . , Mm −Lm). We call tangent

polytope of Lm the set T of bipoints of Lm.
We call tangent hyperplane of Lm:

H = {(Δ1, . . . , Δm) ∈ R
m s.t.

m∑

j=1

Δj = 0}.

In Fig. 3, the tangent polytope T is the set of the bipoints of the great
triangle, seen as a part of a vector space (whereas Lm is a part of an affine
space). The tangent hyperplane H is the whole linear hyperplane containing T .

Let us note 〈−→u | −→v 〉 the canonical inner product of −→u and −→v . We call positive
half-hyperplane associated to −→u the set −→u + = {−→

Δ ∈ H s.t. 〈−→u | −→Δ 〉 ≥ 0}. By
definition, a lottery M is preferred to a lottery L iff the bipoint

−−→
LM belongs to

this positive half-hyperplane:

L ≤∼
u M ⇔ 〈−→u | −−→LM 〉 ≥ 0 ⇔ −−→

LM ∈ −→u +.

Let H� be the dual space of H, that is, the set of linear forms on H. For any−→u ∈ R
m, we call linear form associated to −→u the following element of H�:

〈−→u | :
H → R−→
Δ → 〈−→u | −→Δ 〉.

We observed that the utility vector can be seen as a gradient, except that only its
direction matters, not its norm. Let us formalize this idea. For any (f, g) ∈ (H�)2,
we denote f ∼ g iff these two linear forms are positive multiples of each other,
that is, iff ∃a ∈ (0,+∞) s.t. g = af . We denote ∼

π(f) = {g ∈ H� s.t. f ∼ g}: it
is the equivalence class of f , up to positive multiplication.

Proposition 1. For any (−→u ,−→v ) ∈ (Rm)2, we have:

−→u ∼ −→v ⇔ 〈−→u | ∼ 〈−→v |.
The following application is a bijection:

Θ :
Um → H�/ ∼

∼
π(−→u ) → ∼

π(〈−→u |).

Proof. −→u ∼ −→v
⇔ ∃a ∈ (0,+∞),∃b ∈ R s.t. −→v − a−→u = b

−→
1

⇔ ∃a ∈ (0,+∞) s.t. −→v − a−→u is orthogonal to H
⇔ ∃a ∈ (0,+∞) s.t. ∀−→

Δ ∈ H, 〈−→v | −→Δ 〉 = a〈−→u | −→Δ 〉
⇔ 〈−→u | ∼ 〈−→v |.
The implication ⇒ proves that Θ is correctly defined: indeed, if ∼

π(−→u ) =
∼
π(−→v ), then ∼

π(〈−→u |) = ∼
π(〈−→v |). The implication ⇐ ensures that Θ is injective.

Finally, Θ is obviously surjective.
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Hence, the utility space can be seen as a quotient of the dual H� of the
tangent space H of the lotteries Lm. As noticed before, a utility vector may be
seen, up to a positive constant, as a uniform gradient, i.e. as a linear form over
H that reveals, for any point in the space of lotteries, in what directions the
agent can find lotteries that she likes better.

4 Inversion and Summation Operators

As a quotient of R
m, the utility space inherits natural operations from R

m:
inversion and summation. We will see that both these quotient operators have
an intuitive meaning regarding preferences. The summation will also allow to
define lines in Sect. 5, which will be a key notion for Theorem5, characterizing
the suitable Riemannian metrics.

We define the inversion operator of Um as:

− :
Um → Um

∼
π(−→u ) → ∼

π(−−→u ).

This operator is correctly defined and it is a bijection; indeed, ∼
π(−→u ) = ∼

π(−→v )
iff ∼

π(−−→u ) = ∼
π(−−→v ). Considering this additive inverse amounts to reverting the

agent’s preferences, without modifying their relative intensities.
Now, we want to push the summation operator from R

m to the quotient Um.
We use a generic method to push an operator to a quotient space: considering
∼
u and ∼

v in Um, their antecedents are taken in R
m thanks to ∼

π−1, the sum is
computed in R

m, then the result is converted back into the quotient space Um,
thanks to ∼

π.
However, the result is not unique. Indeed, let us take arbitrary representa-

tives −→u ∈ ∼
u and −→v ∈ ∼

v. In order to compute the sum, we can think of any
representatives. So, possible sums are a−→u +a′−→v +(b+ b′)

−→
1 , where a and a′ are

positive and where b + b′ is any real number. Converting back to the quotient,
we can get for example ∼

π(2−→u +−→v ) and ∼
π(−→u +3−→v ), which are generally distinct.

As a consequence, the output is not a point in the utility space Um, but rather
a set of points, i.e. an element of P(Um).

This example shows how we could define the sum of two elements ∼
u and ∼

v.
In order to be more general, we will define the sum of any number of elements
of Um. Hence we also take P(Um) as the set of inputs.

We define the summation operator as:

∑
:

P(Um) → P(Um)
A → {∼

π (
∑n

i=1
−→ui) , n ∈ N, (−→u1, . . . ,

−→un) ∈ (∼
π−1(A)

)n}
.

Example 2. Let us consider U4, the utility space for 4 candidates. In Fig. 4, for
the purpose of visualization, we represent its projection in H, which is permitted
by the choice of normalization constants b. Since H is a 3-dimensional space, let
(
−→
h1,

−→
h2,

−→
h3) be an orthonormal base of it.
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−→u

−→v

∑{∼
u,

∼
v}

−→
h1

−→
h2

−→
h3

Fig. 4. Sum of two utility vectors in the utility space U4.

For two non-trivial utility vectors ∼
u and ∼

v, the choice of normalization multipli-
cators a allows to choose representatives −→u and −→v whose Euclidean norm is 1.

In this representation, the sum
∑{∼

u,
∼
v} consists of utilities corresponding to

vectors a−→u + a′−→v , where a and a′ are nonnegative. Indeed, we took a represen-
tation in H, so all normalization constants b vanish. Moreover, a, a′ or both
can be equal to zero because our definition allows to ignore −→u , −→v or both. Up to
taking representatives of unitary norm for non-trivial utility vectors, let us note
that the sum

∑{∼
u,

∼
v} can be represented by the dotted line and the point

−→
0 of

total indifference.

Geometrically, the sum is the quotient of the convex hull of the inputs. Note
that this convex hull is actually a convex cone. We will see below the interpre-
tation of the sum in terms of preferences.

Due to our definition of the sum operator, we consider the closed cone: for
example, the inputs themselves (e.g. ∼

u) fit in our definition, and so is the total
indifference ∼

π(
−→
0 ). That would not be the case if we took only ∼

π(a−→u +a′−→v +b
−→
1 ),

where a > 0 and a′ > 0. The purpose of this convention is to have a concise
wording for Theorem3 that follows.

We now prove that, if A is the set of the utility vectors of a population, then∑
A is the set of utility vectors that respect the unanimous preferences of the

population.

Theorem 3 (characterization of the sum). Let A ∈ P(Um) and ∼
v ∈ Um.

The following conditions are equivalent.

1. ∼
v ∈ ∑

A.
2. ∀(L,M) ∈ Lm

2:
[
(∀∼

u ∈ A,L ≤∼
u M) ⇒ L ≤∼

v M
]
.

Proof. First, let us remark that the tangent polytope T generates the tangent
hyperplane H by positive multiplication. That is:

∀−→
Δ ∈ H,∃−−→

LM ∈ T ,∃λ ∈ (0,+∞) s.t.
−→
Δ = λ

−−→
LM.
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Indeed, T contains a neighborhood of the origin in vector space H.
Let −→v ∈ ∼

π−1(∼
v). We have the following equivalences.

– ∀(L,M) ∈ Lm
2, (∀∼

u ∈ A,L ≤∼
u M) ⇒ L ≤∼

v M ,
– ∀−−→

LM ∈ T ,
(
∀−→u ∈ ∼

π−1(A), 〈−→u | −−→LM 〉 ≥ 0
)

⇒ 〈−→v | −−→LM 〉 ≥ 0,

– ∀−→
Δ ∈ H,

(
∀−→u ∈ ∼

π−1(A), 〈−→u | −→Δ 〉 ≥ 0
)

⇒ 〈−→v | −→Δ 〉 ≥ 0 (because T gener-
ates H),

–
⋂

−→u ∈∼
π−1(A)

−→u + ⊂ −→v +,
– −→v is in the convex cone of ∼

π−1(A) (because of the duality seen in Sect. 3),
– ∼

v ∈ ∑
A.

Example 4. Let us consider a non-indifferent ∼
u and let us examine the sum of

∼
u and its additive inverse −∼

u. By a direct application of the definition, the sum
consists of ∼

u, −∼
u and

∼
0.

However, we have just proved that the sum is the subset of utility vectors
preserving the unanimous preferences over lotteries. Intuitively, we could think
that, since ∼

u and −∼
u seem to always disagree, any utility vector ∼

v respects the
empty set of their common preferences; so, their sum should be the whole space.
But this is not a correct intuition.

Indeed, let us examine the example of −→u = (1, 0, . . . , 0). About any two lot-
teries L and M , inverse opinions ∼

u and −∼
u agree iff L1 = M1: in that case,

both ∼
u and −∼

u are indifferent between L and M . The only points of the utility
space meeting this common property are ∼

u and −∼
u themselves, as well as the

indifference point
∼
0.

5 Riemannian Representation of the Utility Space

Since the utility space is a manifold, it is a natural desire to endow it with a
Riemannian metric. In this section, we prove that there is a limited choice of
metrics that are coherent with the natural properties of the space and with the
a priori symmetry between the candidates.

First, let us note that the indifference point
∼
0 must be excluded. Indeed, its

unique open neighborhood is Um in whole, and no distance is consistent with this
property3. In contrast, Um \ {∼

0} has the same topology as a sphere of dimension
m − 2, so it can be endowed with a distance.

Now, let us define the round metric. The quotient R
m/ vect(

−→
1 ) is identified

to H and endowed with the inner product inherited from the canonical one of
R

m. The utility space Um \{∼
0} is identified to the unit sphere of H and endowed

with the induced Riemannian structure. We note ξ0 this Riemannian metric on
Um \ {∼

0}.
In order to get an intuitive vision of this metric, one can represent any posi-

tion ∼
u by a vector −→u that verifies

∑
ui = 0 and

∑
u2

i = 1. We obtain the

3 Technically, this remark proves that Um (with its natural quotient topology) is not
a T1 space [8].
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(m − 2)-dimensional unit sphere of H and we consider the metric induced by
the canonical Euclidean metric of Rm. That is, distances are measured on the
surface of the sphere, using the restriction of the canonical inner product on each
tangent space. For m = 3, such a representation has already been illustrated in
Fig. 2(b).

With this representation in mind, we can give a formula to compute distances
with ξ0. We denote J the m×m matrix whose all coefficients are equal to 1 and
PH the matrix of the orthogonal projection on H:

PH = Id − 1
m

J.

The canonical Euclidean norm of −→u is denoted ‖−→u ‖. For two non-indifferent
utility vectors −→u and −→v , the distance between ∼

u and ∼
v in the sense of metric

ξ0 is:

d(∼
u,

∼
v) = arccos

〈
PH−→u

‖PH−→u ‖
∣∣∣∣

PH−→v
‖PH−→v ‖

〉
.

If −→u and −→v are already unit vectors of H, i.e. canonical representatives of
their equivalence classes ∼

u and ∼
v, then the formula amounts to d(∼

u,
∼
v) =

arccos〈−→u | −→v 〉.
A natural property for the distance would be that its geodesics coincide with

the unanimity segments defined by the sum. Indeed, imagine that Betty with
utilities ∼

uB is succesfully trying to convince Alice with initial utilities ∼
uA to

change her mind. Assume that Alice evolves continuously, so that her utility
follows a path from ∼

uA to ∼
uB . Unless Betty argues in a quite convoluted way, it

makes sense to assume on one hand that Alice’s path is a shortest path, and on
the other hand that whenever Alice and Betty initially agree on the comparison
of two lotteries, this agreement continues to hold all along the path. This is
precisely what assumption 1a below means: shortest paths preserve agreements
that hold at both their endpoints.

We will now prove that for m ≥ 4, the spherical representation is the only
one that is coherent with the natural properties of the space and that respects
the a priori symmetry between candidates.

Theorem 5 (Riemannian representation of the utility space). We
assume that m ≥ 4. Let ξ be a Riemannian metric on Um \ {∼

0}.
Conditions 1 and 2 are equivalent.

1. (a) For any non-antipodal pair of points ∼
u,

∼
v ∈ Um \ {∼

0} (i.e. ∼
v �= −∼

u), the
set

∑{∼
u,

∼
v} of elements respecting the unanimous preferences of ∼

u and ∼
v

is a segment of a geodesic of ξ; and
(b) for any permutation σ of {1, . . . , m}, the action Φσ induced on Um \ {∼

0}
by

(u1, . . . , um) → (uσ(1), . . . , uσ(m))

is an isometry.
2. ∃λ ∈ (0,+∞) s.t. ξ = λξ0.
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Proof. Since the implication 2 ⇒ 1 is obvious, we now prove 1 ⇒ 2. The deep
result behind this is a classical theorem of Beltrami, which dates back to the
middle of the nineteenth century: see [3] and [4].

The image of a 2-dimensional subspace of H in Um \ {∼
0} by the canonical

projection ∼
π is called a line in Um \ {∼

0}. This notion is deeply connected to the
summation operator: indeed, the sum of two non antipodal points in Um\{∼

0} is a
segment of the line joining them. Condition 1a precisely means that the geodesics
of ξ are the lines of Um \ {∼

0}. Beltrami’s theorem then states that Um \ {∼
0} has

constant curvature. Note that this result is in fact more subtle in dimension 2
(that is, for m = 4) than in higher dimensions; see [13], Theorem 1.18 and [14],
Theorem 7.2 for proofs.

Since Um \ {∼
0} is a topological sphere, this constant curvature must be pos-

itive. Up to multiplying ξ by a constant, we can assume that this constant
curvature is 1. As a consequence, there is an isometry Ψ : Sm−2 → Um \ {∼

0},
where Sm−2 is the unit sphere of Rm−1, endowed with its usual round metric.
The function Ψ obviously maps geodesic to geodesics, let us deduce the following.

Lemma 6. There is a linear map Λ : Rm−1 → H inducing Ψ , that is such that:

Ψ ◦ Π = Π ◦ Λ,

where Π denotes both projections R
m−1 → Sm−2 and H → Um \ {∼

0}.
Proof. First, Ψ maps any pair of antipodal points of Sm−2 to a pair of antipodal
points of Um \ {∼

0}: indeed in both cases antipodal pairs are characterized by the
fact that there are more than one geodesic containing them. It follows that Ψ
induces a map Ψ ′ from the projective space P(Rm−1) (which is the set of lines
through the origin in R

m−1, identified with the set of pairs of antipodal points of
Sm−2) to the projective space P(H) (which is the set of lines through the origin
in H, identified with the set of pairs of antipodal points of Um \ {∼

0}).
The fact that Ψ sends geodesics of Sm−2 to geodesics of Um\{∼

0} and condition
1a together imply that Ψ ′ sends projective lines to projective lines.

As is well known, a one-to-one map R
n → R

n which sends lines to lines must
be an affine map; a similar result holds in projective geometry, concluding that
Ψ ′ must be a projective map. See e.g. [1] for both results.

That Ψ ′ is projective exactly means that there is a linear map Λ : Rm−1 → H
inducing Ψ ′, which then induces Ψ : Sm−2 → Um \ {∼

0}.

Using Λ to push the canonical inner product of R
m−1, we get that there

exists an inner product (−→u ,−→v ) → φ(−→u ,−→v ) on H that induces ξ, in the sense
that ξ is the Riemannian metric obtained by identifying Um \ {∼

0} with the unit
sphere defined in H by φ and restricting φ to it.

The last thing to prove is that φ is the inner product coming from the canon-
ical one on R

m. Note that hypothesis 1b is mandatory, since any inner product
on H does induce on Um \ {∼

0} a Riemannian metric satisfying 1a.
Each canonical basis vector −→ej = (0, . . . , 1, . . . , 0) defines a point in Um \ {∼

0}
and a half-line j = R+ej in H. Condition 1b ensures that these half-lines are
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permuted by some isometries of (H, φ). In particular, there are vectors −→uj ∈ j

that have constant pairwise distance (for φ).

Lemma 7. The family −→u1, . . . ,
−−−→um−1 is, up to multiplication by a scalar, the

unique basis of H such that −→uj ∈ j and
∑

j<m
−→uj ∈ −m.

Proof. First, by definition of the −→uj , these vectors form a regular simplex and∑
j
−→uj =

−→
0 . It follows that −→u1, . . . ,

−−−→um−1 has the required property and we have
left to show uniqueness.

Assume −→v1, . . . ,−−−→vm−1 is a basis of H such that −→vj ∈ j and
∑

j<m
−→vj ∈ −m.

Then there are positive scalars a1, . . . , am such that −→vj = aj
−→uj for all j < m,

and
∑

j<m
−→vj = am

∑
j<m

−→uj .
Then

∑
j<m aj

−→uj =
∑

j<m am
−→uj , and since the uj form a basis, it must hold

aj = am for all j.

Now consider the canonical inner product φ0 on H that comes from the
canonical one on R

m. Since permutations of coordinates are isometries, we get
that the vectors −→vj = Π(−→ej ) (where Π is now the orthogonal projection from R

m

to H) form a regular simplex for φ0, so that
∑

j
−→vj =

−→
0 . It follows that −→uj = λ−→vj

for some λ > 0 and all j. We deduce that the −→uj form a regular simplex for both
φ and φ0, which must therefore be multiple from each other. This finishes the
proof of Theorem 5.

However, the implication 1 ⇒ 2 in the theorem is not true for m = 3. For
each non-indifferent utility vector, let us consider its representative verifying
min(ui) = 0 and max(ui) = 1. This way, Um \ {∼

0} is identified to edges of the
unit cube in R

3, as in Fig. 2(a). We use this identification to endow Um \ {∼
0}

with the metric induced on these edges by the canonical inner product on R
3.

Then conditions 1a and 1b of the theorem are met, but not condition 2.
Another remark is of paramount importance about this theorem. Since we

have a canonical representative −→u for each equivalence class ∼
u as a unit vector

of H, we could be tempted to use it to compare utilities between several agents.
We stress on the fact that this representation cannot be used for interpersonal

comparison of utility levels or utility differences.
For example, for two agents, consider the following representatives:

{−→u = (0.00, 0.71,−0.71) ,−→v = (0.57, 0.22,−0.79) .

The fact that v3 < u3 does not mean that an agent with preferences ∼
v dislikes

candidate 3 more than an agent with preferences ∼
u. Similarly, when changing

from candidate 1 to candidate 2, the gain for agent ∼
u (+0.71) cannot be compared

to the loss for agent ∼
v (−0.35).

Theorem 5 conveys no message for interpersonal comparison of utilities.
Indeed, utilities belonging to two agents are essentially incomparable in the
absence of additional assumptions [9]. Taking canonical representatives on the
(m−2)-dimensional sphere is only used to compute distances between two points
in the utility space.
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6 Application: Probability Measures on the Utility Space

Once the space is endowed with a metric, it is endowed with a natural probability
measure: the uniform measure in the sense of this metric (this is possible because
the space has a finite total measure). We will denote μ0 this measure, which is
thus the normalized Riemannian volume defined by the metric ξ0.

In practice, to draw vectors according to a uniform probability law over
Um \ {∼

0}, it is sufficient to use a uniform law on the unit sphere in H. In other
words, once one identifies Um \ {∼

0} with the unit sphere in H, then μ0 is exactly
the usual uniform measure.

In the present case, the fact that the round sphere has many symmetries
implies additional nice qualities for μ0, which we sum up in a proposition.

Proposition 8. Let μ be any probability measure on Um \ {∼
0}.

1. Assume that for all δ > 0, μ gives the same probability to all the balls in
Um \ {∼

0} of radius δ (in the metric ξ0); then μ = μ0.
2. If μ is invariant under all isometries for the metric ξ0, then μ = μ0.

Both characterizations are classical; the first one is (a strengthening of) the
definition of the Riemannian volume, and the second one follows from the first
and the fact that any two points on the round sphere can be mapped one to the
other by an isometry.

In Fig. 5(a), we represent a distribution with 100 agents drawn uniformly and
independently on the sphere, with 4 candidates. Like for Fig. 4, we represented
only the unit sphere of H.

The solid dark lines draw the permutohedron, a geometrical figure represent-
ing the ordinal aspect of these preferences. Each facet is constituted of all the
points who share the same strict order of preference. A utility vector belongs to
an edge if it has only three distinct utilities: for example, if the agent prefers
candidate 1 to 4, 4 to 2 and 3, but is indifferent between candidates 2 and 3.
Finally, a point is a vertex if it has only two distinct utilities: for example, if the
agent prefers candidate 1 to all the others, but is indifferent between the others.

Vertex 1 > 2, 3, 4

Vertex 1, 4 > 2, 3

Facet 1 > 4 > 3 > 2

Edge 1 > 4 > 2, 3

(a) Uniform (Impartial Culture). (b) Von Mises–Fisher.

Fig. 5. Two distributions of 100 agents on U4.
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In this distribution, each agent has almost surely a strict order of preference.
Each order has the same probability and agents are independent, hence this
distribution is a natural generalization of the Impartial Culture when considering
expected utilities.

Since the point
∼
0 is a geometrical singularity, it is difficult to include it

naturally in such a measure. If one wants to take it into account, the easiest way
is to draw it with a given probability and to use the distribution on Um \ {∼

0} in
the other cases. That being said, we have just noticed that all other non-strict
orders have a measure equal to 0 ; so for a canonical theoretical model, it can
be argued that a natural choice is to attribute a measure 0 to the indifference
point also.

Having a distance, hence a uniform measure, allows also to define other mea-
sures by their densities with respect to the uniform measure. Here is an example
of a law defined by its density. Given a vector −→u0 in the unit sphere of H and
κ a nonnegative real number, the Von Mises–Fisher (VMF) distribution of pole−→u0 and concentration κ is defined by the following density with respect to the
uniform law on the unit sphere in H:

p(−→u ) = Cκeκ〈 −→u | −→u0 〉,

where Cκ is a normalization constant. Given the mean resultant vector of a dis-
tribution over the sphere, VMF distribution maximizes the entropy, in the same
way that, in the Euclidean space, Gaussian distribution maximizes the entropy
among laws with given mean and standard deviation. Hence, without additional
information, it is the “natural” distribution that should be used. Figure 5(b)
represents such a distribution, with the same conventions as Fig. 5(a). To draw
a VMF distribution, we used Ulrich’s algorithm revised by Wood [15,18].

Qualitatively, VMF model is similar to Mallows model, which is used for
ordinal preferences [11]. In the later, the probability of an order of preference σ is:

p(σ) = Dκe−κδ(σ,σ0),

where σ0 is the mode of the distribution, δ(σ, σ0) a distance between σ and σ0

(typically Kendall’s tau distance), κ a nonnegative real number (concentration)
and Dk a normalization constant. Both VMF and Mallows models describe a
culture where the population is polarized, i.e. scattered around a central point,
with more or less concentration.

However, there are several differences.

– VMF distribution allows to draw a specific point on the utility sphere, whereas
Mallows’ chooses only a facet of the permutohedron.

– In particular, the pole of a VMF distribution can be anywhere in this contin-
uum. For example, even if its pole is in the facet 1 > 4 > 3 > 2, it can be
closer to the facet 1 > 4 > 2 > 3 than to the facet 4 > 1 > 3 > 2. Such a
nuance is not possible in Mallows model.

– In the neighborhood of the pole, VMF probability decreases like the exponen-
tial of the square of the distance (because the inner product is the cosine of
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the distance), whereas Mallows probability decreases like the exponential of
the distance (not squared).

– VMF is the maximum entropy distribution, given a spherical mean and dis-
persion (similarly to a Gaussian distribution in a Euclidean space), whereas
Mallows’ model is not characterized by such a property of maximum entropy.

The existence of a canonical measure allows to define other probability mea-
sures easily in addition to the two we have just described. Such measures can
generate artificial populations of agents for simulation purposes. They can also
be used to fit the data from real-life experiments to a theoretical model, and as
a neutral comparison point for such data.

To elaborate on this last point, let us stress that given a (reasonably regular)
distribution μ on a space such as Um \{∼

0} there is a priori no way to define what
it means for an element ∼

u to be more probable than another one ∼
v. Indeed, both

have probability 0 and what would make sense is to compare the probability of
being close to ∼

u to the probability of being close to ∼
v. But one should compare

neighborhoods of the same size, and one needs a metric to make this comparison.
Alternatively, if one has a reference distribution such as μ0, then it makes sense
to consider the density f = dμ

dμ0
, which is a (continuous, say) function on Um\{∼

0}.
Then we can compare f(∼

u) and f(∼
v) to say whether one of these elements is more

probable than the other according to μ. Note that in the present case, comparing
the probability of δ-neighborhoods for the metric ξ0 or the density relative to
μ0 gives the same result in the limit δ → 0, which is the very definition of the
Riemannian volume.

7 Conclusion

We have studied the geometrical properties of the classical model of expected
utilities, introduced by Von Neumann and Morgenstern, when candidates are
considered symmetrical a priori. We have remarked that the utility space may
be seen as a dual of the space of lotteries, that inversion and summation operators
inherited from R

m have a natural interpretation in terms of preferences and that
the space has a spherical topology when the indifference point is removed.

We have proved that the only Riemannian representation whose geodesics
coincide with the projective lines naturally defined by the summation operator
and which respects the symmetry between candidates is a round sphere.

All these considerations lay on the principle to add as little information as
possible in the system, especially by respecting the a priori symmetry between
candidates. This does not imply that the spherical representation of the utility
space Um is the most relevant one in order to study a specific situation. Indeed,
as soon as one has additional information (for example, a model that places
candidates in a political spectrum), it is natural to include it in the model.
However, if one wishes, for example, to study a voting system in all generality,
without focusing on its application in a specific field, it looks natural to consider
a utility space with a metric as neutral as possible, like the one defined in this
paper by the spherical representation.
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8. Guénard, F., Lelièvre, G.: Compléments d’analyse. Number, vol. 1 in Compléments
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Decision Theory
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Abstract. Moving beyond the dualistic view in AI where agent and
environment are separated incurs new challenges for decision making,
as calculation of expected utility is no longer straightforward. The non-
dualistic decision theory literature is split between causal decision theory
and evidential decision theory. We extend these decision algorithms to
the sequential setting where the agent alternates between taking actions
and observing their consequences. We find that evidential decision theory
has two natural extensions while causal decision theory only has one.

Keywords: Evidential decision theory · Causal decision theory · Plan-
ning · Causal graphical models · Dualism · Physicalism

1 Introduction

In artificial-intelligence problems an agent interacts sequentially with an environ-
ment by taking actions and receiving percepts [RN10]. This model is dualistic:
the agent is distinct from the environment. It influences the environment only
through its actions, and the environment has no other information about the
agent. The dualism assumption is accurate for an algorithm that is playing chess,
go, or other (video) games, which explains why it is ubiquitous in AI research.
But often it is not true: real-world agents are embedded in (and computed by)
the environment [OR12], and then a physicalistic model1 is more appropriate.

This distinction becomes relevant in multi-agent settings with similar agents,
where each agent encounters ‘echoes’ of its own decision making. If the other
agents are running the same source code, then the agents’ decisions are logi-
cally connected. This link can be used for uncoordinated cooperation [LFY+14].
Moreover, a physicalistic model is indispensable for self-reflection. If the agent is
required to autonomously verify its integrity, and perform maintenance, repair,
or upgrades, then the agent needs to be aware of its own functioning. For this, a
reliable and accurate self-modeling is essential. Today, applications of this level
of autonomy are mostly restricted to space probes distant from earth or robots
navigating lethal situations, but in the future this might also become crucial for
sustained self-improvement in generally intelligent agents [Yud08,Bos14,SF14a,
RDT+15].
1 Some authors also call this type of model materialistic or naturalistic.
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 205–221, 2015.
DOI: 10.1007/978-3-319-23114-3 13
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environment

hidden state s

at

et

agent π

environment model μ

self-model

Fig. 1. The physicalistic model. The hidden state s contains information about the
agent that is unknown to it. The distribution μ is the agent’s (subjective) environment
model, and π its (deterministic) policy. The agent models itself through the beliefs about
(future) actions given by its environment model μ. Interaction with the environment at
time step t occurs through an action at chosen by the agent and a percept et returned
by the environment.

In the physicalistic model the agent is embedded inside the environment, as
depicted in Fig. 1. The environment has a hidden state that contains information
about the agent that is inaccessible to the agent itself. The agent has an envi-
ronment model that describes the behavior of the environment given the hidden
state and includes beliefs about the agent’s own future actions (thus modeling
itself).

Physicalistic agents may view their actions in two ways: as their selected
output, and as consequences of properties of the environment. This leads to sig-
nificantly more complex problems of inference and decision making, with actions
simultaneously being both means to influence the environment and evidence
about it. For example, looking at cat pictures online may simultaneously be a
means of procrastination, and evidence of bad air quality in the room.

Dualistic decision making in a known environment is straightforward calcu-
lation of expected utilities. This is known as Savage decision theory [Sav72].
For non-dualistic decision making two main approaches are offered by the deci-
sion theory literature: causal decision theory (CDT) [GH78,Lew81,Sky82,Joy99,
Wei12] and evidential decision theory (EDT) [Jef83,Bri14,Ahm14]. EDT and
CDT both take actions that maximize expected utility, but differ in the way this
expectation is computed: EDT uses the action under consideration as evidence
about the environment while CDT does not. Section 2 formally introduces these
decision algorithms.

Our contribution is to formalize and explore a decision-theoretic setting with
a physicalistic reinforcement learning agent interacting sequentially with an envi-
ronment that it is embedded in (Sect. 3). Previous work on non-dualistic deci-
sion theories has focused on one-shot situations. We find that there are two
natural extensions of EDT to the sequential case, depending on whether the
agent updates beliefs based on its next action or its entire policy. CDT has
only one natural extension. We extend two famous Newcomblike problems to the
sequential setting to illustrate the differences between our (generalized) decision
theories.
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Section 4 summarizes our results and outlines future directions. A list of
notation can be found on page 15 and the formal details of the examples can be
found in the technical report [ELH15].

2 One-Shot Decision Making

In a one-shot decision problem, we take one action a ∈ A, receive a percept e ∈ E
(typically called outcome in the decision theory literature) and get a payoff u(e)
according to the utility function u : E → [0, 1]. We assume that the set of actions
A and the set of percepts E are finite. Additionally, the environment contains a
hidden state s ∈ S. The hidden state holds information that is inaccessible to
the agent at the time of the decision, but may influence the decision and the
percept. Formally, the environment is given by a probability distribution P over
the hidden state, the action, and the percept that factors according to a causal
graph [Pea09].

A causal graph over the random variables x1, . . . , xn is a directed acyclic graph
with nodes x1, . . . , xn. To each node xi belongs a probability distribution P (xi |
pai), where pai is the set of parents of xi in the graph. It is natural to identify the
causal graph with the factored distribution P (x1, . . . , xn) =

∏n
i=1 P (xi | pai).

Given such a causal graph/factored distribution, we define the do-operator as

P (x1, . . . , xj−1, xj+1, . . . , xn | do(xj := b)) =
n∏

i=1
i�=j

P (xi | pai) (1)

where xj is set to b wherever it occurs in pai, 1 ≤ i ≤ n. The result is a new
probability distribution that can be marginalized and conditioned in the stan-
dard way. Intuitively, intervening on node xj means ignoring all incoming arrows
to xj , as the effects they represent are no longer relevant when we intervene; the
factor P (xj | paj) representing the ingoing influences to xj is therefore removed
in the right-hand side of (1). Note that the do-operator is only defined for dis-
tributions for which a causal graph has been specified. See [Pea09, Chapter 3.4]
for details.

2.1 Savage Decision Theory

In the dualistic formulation of decision theory, we have a function P that takes an
action a and returns a probability distribution Pa over percepts. Savage decision
theory (SDT) [Sav72,Bri14] takes actions according to

arg max
a∈A

∑

e∈E
Pa(e)u(e). (SDT)

In the dualistic model it is usually conceptually clear what Pa should be.
In the physicalistic model the environment model takes the form of a causal
graph over a hidden state s, action a, and percept e, as illustrated in Fig. 2.
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a e

s

Fig. 2. The causal graph P (s, a, e) = P (s)P (a | s)P (e | s, a) for one-step decision
making. The hidden state s influences both the decision maker’s action a and the
received percept e.

According to this causal graph, the probability distribution P factors causally
into P (s, a, e) = P (s)P (a | s)P (e | s, a). The hidden state is not independent of
the decision maker’s action and Savage’s model is not directly applicable since we
do not have a specification of Pa. How should decisions be made in this context?
The literature focuses on two answers to this question: CDT and EDT.

2.2 Causal and Evidential Decision Theory

The literature on causal and evidential decision theory is vast, and we give only a
very superficial overview that is intended to bring the reader up to speed on the
basics. See [Bri14,Wei12] and references therein for more detailed introductions.

Evidential decision theory (endorsed in [Jef83,Ahm14]) considers the proba-
bility of the percept e conditional on taking the action a:

arg max
a∈A

∑

e∈E
P (e | a)u(e) with P (e | a) =

∑

s∈S
P (e | s, a)P (s | a) (EDT)

Causal decision theory has several formulations [GH78,Lew81,Sky82,Joy99];
we use the one given in [Sky82], with Pearl’s calculus of causality [Pea09]. Accord-
ing to CDT, the probability of a percept e is given by the causal intervention of
performing action a on the causal graph from Fig. 2:

arg max
a∈A

∑

e∈E
P (e | do(a))u(e) with P (e | do(a)) =

∑

s∈S
P (e | s, a)P (s)

(CDT)

where P (e | do(a)) follows from (1) and marginalization over s.
The difference between CDT and EDT is how the action affects the belief

about the hidden state. EDT assigns credence P (s | a) to the hidden state s if
action a is taken, while CDT assigns credence P (s). A common argument for
CDT is that an action under my direct control should not influence my belief
about things that are not causally affected by the action. Hence P (s) should be
my belief in s, and not P (s | a). (By assumption, the action does not causally
affect the hidden state.) EDT might reply that if action a does not have the
same likelihood under all hidden states s, then action a should indeed inform
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me about the hidden state, regardless of causal connection. The following two
classical examples from the decision theory literature describe situations where
CDT and EDT disagree. A formal definition of these examples can be found in
the technical report [ELH15].

Example 1. (Newcomb’s Problem [Noz69]) In Newcomb’s Problem there are two
boxes: an opaque box that is either empty or contains one million dollars and
a transparent box that contains one thousand dollars. The agent can choose
between taking only the opaque box (‘one-boxing’) and taking both boxes (‘two-
boxing’). The content of the opaque box is determined by a prediction about the
agent’s action by a very reliable predictor: if the agent is predicted to one-box,
the box contains the million, and if the agent is predicted to two-box, the box is
empty. In Newcomb’s problem EDT prescribes one-boxing because one-boxing
is evidence that the box contains a million dollars. In contrast, CDT prescribes
two-boxing because two-boxing dominates one-boxing: in either case we are a
thousand dollars richer, and our decision cannot causally affect the prediction.
Newcomb’s problem has been raised as a critique to CDT, but many philosophers
insist that two-boxing is in fact the rational choice,2 even if it means you end
up poor.

Note how the decision depends on whether the action influences the belief
about the hidden state (the contents of the opaque box) or not.

Newcomb’s problem may appear as an unrealistic thought experiment. How-
ever, we argue that problems with similar structure are fairly common. The main
structural requirement is that P (s | a) �= P (s) for some state or event s that
is not causally affected by a. In Newcomb’s problem the predictor’s ability to
guess the action induces an ‘information link’ between actions and hidden states.
If the stakes are high enough, the predictor does not have to be much better
than random in order to generate a Newcomblike decision problem. Consider for
example spouses predicting the faithfulness of their partners, employers predict-
ing the trustworthiness of their employees, or parents predicting their children’s
intentions. For AIs, the potential for accurate predictions is even greater, as the
predictor may have access to the AI’s source code. Although rarely perfect, all
of these predictions are often substantially better than random.

To counteract the impression that EDT is generally superior to CDT, we also
discuss the toxoplasmosis problem.

Example 2. (Toxoplasmosis Problem [Alt13])3 This problem takes place in a
world in which there is a certain parasite that causes its hosts to be attracted to
cats, in addition to uncomfortable side effects. The agent is handed an adorable
2 In a 2009 survey, 31.4 % of philosophers favored two-boxing, and 21.3 % favored

one-boxing (931 responses); see http://philpapers.org/surveys/results.pl. Is that the
reason there are so few wealthy philosophers?.

3 Historically, this problem has been known as the smoking lesion problem [Ega07]. We
consider the smoking lesion formulation confusing, because today it is universally
known that smoking does cause lung cancer.

http://philpapers.org/surveys/results.pl
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little kitten and is faced with the decision of whether or not to pet it. Petting the
kitten feels nice and therefore yields more utility than not petting it. However,
people suffering from the parasite are more likely to pet the kitten. Petting the
kitten is evidence of having the parasite, so EDT recommends against it. CDT
correctly observes that petting the kitten does not cause the parasite, and is
therefore in favor of petting.

Newcomb’s problem and the toxoplasmosis problem cannot be properly for-
malized in SDT, because SDT requires the percept-probabilities Pa to be speci-
fied, but it is not clear what the right choice of Pa would be. However, both CDT
and EDT can be recast in the context of SDT by setting Pa to be P ( · | do(a))
and P ( · | a) respectively. Thus we could say that the formulation given by Savage
needs a specification of the environment that tells us whether to act evidentially,
causally, or otherwise.

3 Sequential Decision Making

In this section we extend CDT and EDT to the sequential case. We start by
formally specifying the physicalitic model depicted in Fig. 1 in the first subsec-
tion, and discuss problems with time consistency in Sect. 3.2, before defining the
extensions proper in Sects. 3.3 and 3.4. The final subsection dissects the role of
the hidden state.

3.1 The Physicalistic Model

For the remainder of this paper, we assume that the agent interacts sequentially
with an environment. At time step t the agent chooses an action at ∈ A and
receives a percept et ∈ E which yields a utility of u(et) ∈ R; the cycle then
repeats for t + 1. A history is an element of (A × E)∗. We use æ ∈ A × E to
denote one interaction cycle, and æ<t to denote a history of length t − 1. The
percepts between time t and time m are denoted et:m. A policy is a function
that maps a history æ<t to the next action at. We only consider deterministic
policies.

We assume that the agent is given an environment model μ, but knows neither
the hidden state s nor its own future actions. The unknown hidden state may
influence both percepts and actions. Actions and percepts in turn influence the
entire future. The environment model μ is given by a probability distribution
over hidden states and histories that factors as

μ(s,æ<t) = μ(s)
t−1∏

i=1

μ(ai | s,æ<i)μ(ei | s,æ<iai) (2)

for any t ∈ N. While such a factorization is possible for any distribution, we
additionally demand that this factorization is causal according to the causal
graph in Fig. 3. The distribution μ(at | s,æ<t) gives the likelihood of the agent’s
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a1 e1 a2 e2 . . .

s

Fig. 3. The (infinite) causal graph for a sequential environment. Each action at and
each percept et is represented by a node in the causal graph. Actions and percepts
affect all subsequent actions and percepts: causality follows time. The hidden state s
is only ever indirectly (partially) observed.

own actions provided a hidden state s ∈ S (for example, the prior probability
of an infected agent petting the kitten in the toxoplasmosis problem above). For
technical reasons, this distribution must always leave some uncertainty about
the actions: if the environment model assigned probability zero for an action a′,
the agent could not deliberate taking action a′ since a′ could not be conditioned
on. Formally, we require μ( · | s) to be action-positive for all s ∈ S:

∀æ<tat ∈ (A × E)∗ × A.
(
μ(æ<t | s) > 0 =⇒ μ(at | s,æ<t) > 0

)
(3)

The distribution μ is a model of the environment, a belief held by the agent,
but not the distribution from which the actual history is drawn. The actual his-
tory is distributed according to the true environment distribution. Because the
environment contains the agent, the agent’s algorithm might get modified by it
and the actions that the agent actually ends up taking might not be the actions
that were planned. In the end, model and reality will disagree: for example, we
simultaneously assume the agent’s policy π to be deterministic and the environ-
ment model to be action positive. Nevertheless, we assume the given environment
model is accurate in the sense that it faithfully represents the environment in
the ways relevant to the agent. In other words, we are interested in problems
that arise during planning, not problems that arise due to poor modeling.

3.2 Time Consistency

When planning for the infinite future we need to make sure that utilities do not
sum to infinity; typically this is achieved with discounting. Here, we simplify by
fixing a finite m ∈ N to be the agent’s lifetime: the agent cares about the sum
of the utilities of all percepts e1 . . . em until and including time step m, but does
not care what happens after that (presumably the agent is then retired).

In sequential decision theory we need to plan the next m − t actions in time
step t. We plan what we would do for all possible future percepts et:m by choosing
a policy π : (A×E)∗ → A that specifies which action we take depending on how
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the history plays out. For example, we take action at, and when we subsequently
receive the percept et, we plan to take action at+1. Problems arise once we get
to the next step and even tough we did take action at and the percept did turn
out to be et, we change our mind and take a different action ât+1. This is called
time inconsistency. Time inconsistency is an artifact of bad planning since the
agent incorrectly anticipates her own actions. The choice of discounting can lead
to time inconsistency: a sliding fixed-size horizon is time inconsistent, but a fixed
finite lifetime is time consistent [LH14].

We achieve time consistency by using a fixed finite lifetime, and by calculating
decisions recursively using value functions. A value function V π

μ,m is a function
of type ((A × E)∗ ∪ ((A × E)∗ × A)) → R. It gives an estimate of future reward:
V π

μ,m(æ<t) and V π
μ,m(æ<tat) are estimates of how much reward the policy π will

obtain in environment μ within lifetime m subsequent to history æ<t and æ<tat

respectively. For any history æ<t, we define V π
μ,m(æ<t) := V π

μ,m(æ<tπ(æ<t)). We
say that a policy π is optimal and time consistent for the value function Vμ,m iff
π(æ<t) = arg maxa V π

μ,m(æ<ta) for all histories æ<t ∈ (A × E)t−1 and all t ≤ m.

3.3 Sequential Evidential Decision Theory

Evidential decision theory assigns probability P (e | a) to action a resulting in
percept e (Sect. 2.2). There are two ways to generalize this to the sequential
setting, depending on whether we use only the next action or the whole future
policy as evidence for the next percept.

Definition 3 (Action-Evidential Decision Theory). The action-evidential
value of a policy π with lifetime m in environment μ given history æ<tat is

V aev,π
μ,m (æ<tat) :=

∑

et

μ(et | æ<tat)
(
u(et) + V aev,π

μ,m (æ<tatet)
)

(SAEDT)

and V aev,π
μ,m (æ<tat) := 0 for t > m. Sequential Action-Evidential Decision Theory

(SAEDT) prescribes adopting an optimal and time consistent policy π for V aev
μ,m.

It may be argued that (SAEDT) does not take all available (deliberative)
information into account. When considering the consequences of an action, future
developments of the environment-policy interactions could also be used as evi-
dence. That is, we could condition not only on the next action, but on the future
policy as a whole (within the lifetime). In order to define conditional probabili-
ties with respect to (deterministic) policies, we define the following events. For a
given policy π, let Πt:m be the set of all strings consistent with π between time
step t and m:

Πt:m := {æ1:∞ | ∀t ≤ i ≤ m. π(æ<i) = ai}
The likelihood of a next percept et provided a history æ<t and a (future) policy
π followed from time step t until lifetime m (denoted πt:m) is then defined as

μ(et | æ<t, πt:m) := μ(et | æ<t ∩ Πt:m). (4)
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This is an atemporal conditional because we are conditioning on future actions up
until the end of the agent’s lifetime. The conditional (4) is well-defined because
we only take the actions from time step t to m into account; conditioning on
policies with infinite lifetime leads to technical problems because such policies
typically have μ-measure zero.

Definition 4 (Policy-Evidential Decision Theory). The policy-evidential
value of a policy π with lifetime m in environment μ given history æ<tat is

V pev,π
μ,m (æ<tat) :=

∑

et

μ(et | æ<tat, πt+1:m) ·
(
u(et) + V pev,π

μ,m (æ<tatet)
)

(SPEDT)
and V pev,π

μ,m (æ<t) := 0 for t > m. Sequential Policy-Evidential Decision Theory
(SPEDT) prescribes adopting an optimal and time consistent policy π for V pev

μ,m.

For one-step decisions (m = t + 1), SAEDT and SPEDT coincide.
To all our embedded agents, past actions constitute evidence about the hid-

den state. For evidential agents, this principle is extended to future actions.
SAEDT and SPEDT differ in how far they extend it. The action-evidential
agent only updates his belief on the action about to take place. In that sense,
he only updates his belief about the next percept on events taking place before
this percept. The policy-evidential agent takes the principle much further, using
“thought-experiments” of what action he would take in hypothetical situations,
most of which will never be realized. This is illustrated in the next example.

Example 5 (Sequential Toxoplasmosis). In our sequential variation of the tox-
oplasmosis problem the agent has some probability of encountering a kitten.
Additionally, the agent has the option of seeing a doctor (for a fee) and getting
tested for the parasite, which can then be safely removed. In the very beginning,
an SPEDT agent updates his belief on the fact that if he encountered a kitten,
he would not pet it, which lowers the probability that he has the parasite and
makes seeing the doctor unattractive. An SAEDT agent only updates his belief
about the parasite when he actually encounters a kitten, and thus prefers seeing
the doctor. See Fig. 4 for more details and a graphical illustration.

The observant reader may ask whether SPEDT could be enticed to make
some percepts unlikely by choosing improbable actions subsequent to them. For
example, could an SPEDT agent decide on a policy of selecting highly improbable
actions in case it rained to make histories with rain less likely? The answer is
no, as most such policies would not be time consistent. If it does rain, the highly
improbable action would usually not the best one, and so the policy would not
be prescribed by Definition 4.

3.4 Sequential Causal Decision Theory

In sequential causal decision theory we ask what would happen if we causally
intervened on the node at of the next action and fix it to π(æ<t) according to
the policy π. This is expressed by the notation do(at := π(æ<t)), or do(π(æ<t))
for short.
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Healthy

No doc Kitten (0)

Not pet Healthy, not pet (0)

Pet Healthy, pet (1)

Doc Healthy (−4)

Toxo

No doc

Kitten (0)

Not pet Sick, not pet (−10)

Pet Sick, pet (−9)

Sick (−10)

Doc Cured (−4)

0.5

0.5

0.5

0.5

0.5

0.5

0.2

0.8

0.8

0.2

0.2

0.8

Fig. 4. One formalization of the sequential toxoplasmosis problem. Dashed lines con-
nect states indistinguishable to the agent. The numbers on the edges indicate probabil-
ities of the environment model μ, and the numbers in parenthesis indicate utilities of
the associated percepts. In the first step, the environment selects the hidden state that
is unknown to the agent. The agent then decides whether to go to the doctor. If he
does not go, he may encounter a kitten which he can choose to pet or not. SAEDT and
SPEDT will disagree whether going to the doctor is the best option in this scenario.
[ELH15] contains the full calculations.

Definition 6 (Sequential Causal Decision Theory). The causal value of a
policy π with lifetime m in environment μ given history æ<tat is

V cau,π
μ,m (æ<tat) :=

∑

et∈E
μ(et | æ<t, do(at))

(
u(et) + V cau,π

μ,m (æ<tatet)
)

(SCDT)

and V cau,π
μ,m (æ<tat) := 0 for t > m. Sequential Causal Decision Theory (SCDT)

prescribes adopting an optimal and time consistent policy π for V cau
μ,m.

For sequential evidential decision theory we discussed two versions (SAEDT)
and (SPEDT), based on next action and future policy respectively. In SCDT
we perform the causal intervention do(at := π(æ<t)). We could also consider
a policy-causal decision theory by replacing μ(et | æ<t, do(at)) with μ(et |
æ<t, do(πt:m)) in Definition 6. The causal intervention do(πt:m)) of a policy π
between time step t and time step m is defined as

μ(et | æ<t, do(πt:m)) :=
∑

et+1:m

μ(et:m | æ<t, do(at := π(æ<t), . . . , am := π(æ<m))).

(5)
However, since the interventions are causal, we do not get any extra evidence
from the future interventions. Therefore policy-causal decision theory is the same
as action-causal decision theory:
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Proposition 7 (Policy-Causal = Action-Causal). For all histories æ<t ∈
(A×E)∗ and all et ∈ E, we have μ(et | æ<t, do(πt:m)) = μ(et | æ<t, do(π(æ<t))).

We defer the proof to the end of this section. The following two examples illus-
trate the difference between SCDT and SAEDT/SPEDT in sequential settings.

Example 8 (Newcomb with Precommitment). In this variation to Newcomb’s
problem the agent first has the option to pay $300,000 to sign a contract that
binds the agent to pay $2000 in case of two-boxing. An SAEDT or SPEDT agent
knows that he will one-box anyways and hence has no need for the contract. An
SCDT agent knows that she favors two-boxing, but signs the contract only if
this occurs before the prediction is made (so it has a chance of causally affecting
the prediction). With the contract in place, one-boxing is the dominant action,
and thus the SCDT agent is predicted to one-box.

Example 9 (Newcomb with Looking). In this variation to Newcomb’s problem
the agent may look into the opaque box before making the decision which box
to take. An SCDT agent is indifferent towards looking because she will take both
boxes anyways. However, an SAEDT or SPEDT agent will avoid looking into
the box, because once the content is revealed he two-boxes.

3.5 Expansion Over the Hidden State

The difference between sequential versions of EDT and CDT is how they update
their prediction of a next percept et (Definitions 3, 4 and 6). The following propo-
sition expands the different beliefs in terms of the hidden state.

Proposition 10. For all histories æ<tatet ∈ (A × E)∗ the following holds for
the next-percept beliefs of SAEDT, SPEDT and SCDT respectively:

μ(et | æ<tat) =
∑

s∈S
μ(s | æ<tat)μ(et | s,æ<tat) (6)

μ(et | æ<t, πt:m) =
∑

s∈S
μ(s | æ<t, πt:m)μ(et | s,æ<t, πt:m) (7)

μ(et | æ<t, do(at)) =
∑

s∈S
μ(s | æ<t)μ(et | s,æ<tat) (8)

Proof. For the action-evidential conditional we take the joint distribution with
s, and then split off et:

μ(et | æ<tat) =
∑

s∈S μ(s,æ<tatet)
μ(æ<tat)

=
∑

s∈S μ(s,æ<tat)μ(et | s,æ<tat)
μ(æ<tat)

=
∑

s∈S
μ(s | æ<tat)μ(et | s,æ<tat)
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Similarly for the policy-evidential conditional:

μ(et | æ<t, πt:m) =
∑

s∈S μ(s,æ<tπ(æ<t)et, πt+1:m)
μ(æ<t, πt:m)

=
∑

s∈S μ(s,æ<tπ(æ<t), πt+1:m)μ(et | s,æ<tπ(æ<t), πt+1:m)
μ(æ<t, πt:m)

=
∑

s∈S μ(s,æ<t, πt:m)μ(et | s,æ<tπ(æ<t), πt+1:m)
μ(æ<t, πt:m)

=
∑

s∈S
μ(s | æ<t, πt:m)μ(et | s,æ<tπ(æ<t), πt+1:m)

=
∑

s∈S
μ(s | æ<t, πt:m)μ(et | s,æ<t, πt:m)

For the causal conditional we turn to the rules of the do-operator [Pea09,
Theorem 3.4.1]. The first equality below holds by definition. In the denominator
of the second equality we can use Rule 3 (deletion of actions) to remove do(at)
because the do-operator removes all incoming edges to at and makes at inde-
pendent of the history æ<t. In the numerator of the second equality we use the
definition of do (1):

μ(et | æ<t, do(at)) =
μ(æ<t, et | do(at))
μ(æ<t | do(at))

=
∑

s∈S μ(s,æ<t)μ(et | s,æ<tat)
μ(æ<t)

=
∑

s∈S
μ(s | æ<t)μ(et | s,æ<tat) �

Proposition 10 shows that between SCDT and SAEDT, the difference in
opinion about et only depends on differences in their (acausal) posterior belief
μ(s | . . .) about the hidden state. SCDT and SAEDT thus become equivalent in
scenarios where there is only one hidden state s∗ with μ(s∗) = 1, as this renders
μ(s∗ | æ<t) = μ(s∗ | æ<tat) = μ(s∗) = 1. SPEDT, on the other hand, may
disagree with the other two also after a hidden state has been fixed.

From a problem modeler’s perspective, it is also instructive to consider the
effect of moving uncertainty between the hidden state and environmental sto-
chasticity. For two different environment models μ and μ′, the action and per-
cept probabilities may be identical (i.e., μ(at | æ<t) = μ′(at | æ<t) and μ(et |
æ<tat) = μ′(et | æ<tat)) even though μ and μ′ have non-isomorphic sets of hid-
den states S and S ′. For example, given any μ, an environment model μ′ with a
single hidden state s0, μ′(s0) = 1, may be constructed from μ by μ′(s0,æ<t) :=∑

s∈S μ(s,æ<t). The transformation will not affect SAEDT and SPEDT, as the
definitions of their value functions only depends on the ‘observable’ action- and
percept-probabilities μ(at | æ<t) and μ(et | æ<tat) which are preserved between
μ and μ′. But the transformation will change SCDT’s behavior in any μ where
SCDT disagrees with SAEDT, as SCDT and SAEDT are equivalent in μ′ that
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only has a single hidden state. That SCDT depends on what uncertainty is
captured by the hidden state is unsurprising given that the hidden state has
a special place in the causal structure of the problem. Ultimately, the modeler
must decide what uncertainty to put in the hidden state, and what to attribute
to environmental stochasticity. A general principle for how to do this is still an
open question [SF14b].

The value functions of SAEDT, SPEDT and SCDT can be rewritten in the
following iterative forms, where the latter form uses Proposition 10. Numbers
above equality signs reference a justifying equation. Let ai := π(æ<i) for i ≥ t:

V aev,π
μ,m (æ<t) =

m∑

k=t

∑

et:k

u(ek)
k∏

i=t

μ(ei | æ<iai)

(6)
=

m∑

k=t

∑

et:k

u(ek)
k∏

i=t

∑

s∈S
μ(s | æ<iai)μ(ei | s,æ<iai)

V pev,π
μ,m (æ<t) =

m∑

k=t

∑

et:k

u(ek)
k∏

i=t

μ(ei | æ<i, πi:m)

(7)
=

m∑

k=t

∑

et:k

u(ek)
k∏

i=t

∑

s∈S
μ(s | æ<iπi:m)μ(ei | s,æ<i, πi:m)

V cau,π
μ,m (æ<t) =

m∑

k=t

∑

et:k

u(ek)
k∏

i=t

μ(ei | æ<i, do(ai))

(8)
=

m∑

k=t

∑

et:k

u(ei)
k∏

i=t

∑

s∈S
μ(s | æ<i)μ(ei | s,æ<iai)

Proof of Proposition 7. By the definition (5) of do(πt:m),

μ(et | æ<t, do(πt:m)) =
∑

et+1:m

μ(et:m | æ<t, do(at := π(æ<t), . . . , am := π(æ<m)))

=
∑

s,et+1:m

μ(s | æ<t)μ(et:m | s,æ<t, do(π(æ<t), . . . , π(æ<m)))

(1)
=

∑

s,et+1:m

μ(s | æ<t)
m∏

i=t

μ(ei | s,æ<iπ(æ<i))

=
∑

s

μ(s | æ<t)μ(et | s,æ<tπ(æ<t))

(8)
= μ(et | æ<t, do(π(æ<t)))

The second equality follows from the equivalence P ( · ) =
∑

s P (s)P ( · | s)
applied to the distribution μ( · | æ<t, do(at := π(æ<t), . . . , am := π(æ<m))),
and the third equality by (repeated) application of (1) to μ(æt:m | s,æ<t) =∏m

i=t μ(ai | s,æ<i)μ(ei | s,æ<iai). �
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4 Discussion

Our paper is a first stab at the problem of how physicalistic agents should make
sequential decisions. CDT and EDT provide an existing basis for non-dualistic
decision making, which we extended to the sequential setting. There are two
natural ways for making sequential evidential decisions: do I update my beliefs
about the hidden state based on my next action (‘what I do next’, SAEDT)
or my whole policy (‘the kind of agent I am’, SPEDT)? By Proposition 7, this
distinction does not exist for causal decision theory, because with that theory
the agent does not consider its own actions evidence at all. Therefore we have
only one version of sequential causal decision theory, SCDT.

Table 1. Decisions made by SAEDT, SPEDT and SCDT in Examples 1, 2, 5, 8, and
9. The latter three examples are sequential. Winning moves are in italics; in Newcomb
with looking the winning move is to be indifferent and one-box. Because Savage decision
theory is dualistic, these problems cannot be properly formalized in it.

SAEDT SPEDT SCDT

Newcomb 1-box 1-box 2-box

Newcomb w/ precommit not commit, 1-box not commit, 1-box commit, 1-box

Newcomb w/ looking not look, 1-box not look, 1-box indifferent, 2-box

Toxoplasmosis not pet not pet pet

Seq. Toxoplasmosis doctor, not pet not doctor, not pet doctor, pet

To illustrate the differences between the decision theories, we discussed three
variants of Newcomb’s problem (Examples 1, 8, and 9) and two variants of the
toxoplasmosis problem (Examples 2 and 5). We implemented SCDT, SAEDT,
and SPEDT; Table 1 shows their behavior on those examples.4

So which decision theory is better? The answer to this question depends
on which decision you consider to be correct (or even rational) in each of the
problems. We posit that ultimately, what counts is not whether your decision
algorithm is theoretically pleasing, but whether you win. Winning means getting
the most utility. If maximizing utility involves making crazy decisions, then this
is what you should do!

In Newcomb’s problem, winning means one-boxing, because you end up
richer. In the toxoplasmosis problem, winning means petting the kitten, because
that yields more utility. (S)CDT performs suboptimally in the Newcomb vari-
ations, while the evidential decision theories perform suboptimally in the toxo-
plasmosis variations. This entails that neither CDT nor EDT are the final answer
to the problem of non-dualistic decision making.

Furthermore, neither CDT nor EDT agents are fully physicalistic: they do
not model the environment to contain themselves [SF14b]. For example, when

4 Source code available at http://jan.leike.name/.

http://jan.leike.name/
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playing a prisoner’s dilemma against your own source code [SF15], your opponent
defects if and only if you defect. This logical connection between your action and
your opponent’s is disregarded in the formalization based on causal graphical
models that we discuss here because it is not causal.

Timeless decision theory [Yud10] and updateless decision theory [SF14b] are
recent attempts of more physicalistic decision theories. However, so far both
have eluded explicit formalization [SF15]. We conclude that finding a physicalis-
tic decision theory remains an important open problem in artificial intelligence
research.

List of Notation

:= defined to be equal
N the natural numbers, starting with 0
R the real numbers
A the (finite) set of possible actions
E the (finite) set of possible percepts
S the set of hidden states
u the utility function u : E → [0, 1]
at the action in time step t
et the percept in time step t
æ<t the first t − 1 interactions, a1e1a2e2 . . . at−1et−1

æi:k the interactions between and including time step i and time step k,
aieiai+1ei+1 . . . akek

æ1:∞ a history of infinite length
s a hidden state
π a deterministic policy, i.e., a function π : (A × E)∗ → A
πt:k policy π restricted to the time steps between and including t and k
V aev,π

μ,m action-evidential value of policy π in environment μ up to time step
m, defined in (SAEDT)

V pev,π
μ,m policy-evidential value of policy π in environment μ up to time step

m, defined in (SPEDT)
V cau,π

μ,m causal value of policy π in environment μ up to time step m, defined
in (SCDT)

k, i time steps, natural numbers
t (current) time step
m lifetime of the agent
Pa distribution over percepts induced by action a in (SDT)
P distribution over percepts and actions in one-shot decision making
μ an accurate environment model
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Abstract. In the context of Multiple Criteria Decision aiding (MCDA),
we present necessary conditions to obtain a representation of a cardinal
information by a Choquet integral w.r.t a 2-additive capacity. A cardinal
information is a preferential information provided by a Decision Maker
(DM) containing a strict preference, a quaternary and indifference rela-
tions. Our work is focused on the representation of a cardinal information
by a particular Choquet integral defined by a 2-additive capacity. Used
as an aggregation function, it arises as a generalization of the arithmetic
mean, taking into account the interaction between two criteria. Then, it
is a good compromise between simple models like arithmetic mean and
complex models like general Choquet integral. We consider also the set
of fictitious alternatives called binary alternatives or binary actions from
which the Choquet integral w.r.t a 2-additive capacity can be entirely
specified. The proposed MOPIC (MOnotonicity of Preferential Informa-
tion for Cardinal) conditions can be viewed as an alternative to balanced
cyclones which are complex necessary and sufficient conditions, used in
the characterization of a 2-additive Choquet integral through a cardinal
information.

Keywords: MCDA · Preference modeling · Choquet integral · MAC-
BETH

1 Introduction

MultiCriteria Decision Aid (MCDA) aims at representing the preferences of a
Decision-Maker (DM) on a set of alternatives (or actions, options) X evaluated
over a finite set of attributes or criteria N = {1, . . . , n} (n > 1) often conflicting.
An alternative can be identified as an element x = (x1, . . . , xn) of the Cartesian
product X = X1 × · · · × Xn, where X1, . . . , Xn represent the set of points of
view or attributes. The Multi-Attribute Utility Theory (MAUT) is one of the
decision models usually used to represent the preferences of the DM.

In practice, MAUT elaborates a preference relation over X by asking to the
DM some pairwise comparisons of alternatives on a finite subset X ′ of X. X ′ is
called a learning data set (or reference set) and has a small size in general. Hence
we get a preference relation �X′ on X ′. The question is then: how to construct
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 222–235, 2015.
DOI: 10.1007/978-3-319-23114-3 14
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a preference relation �X on X, so that �X is an extension of �X′? To this end,
people usually suppose that �X is representable by an overall utility function:

x �X y ⇔ F (U(x)) ≥ F (U(y)) (1)

where U(x) = (u1(x1), . . . , un(xn)), ui : Xi → R is called a utility function,
and F : R

n → R is an aggregation function. Usually, we consider a family
of aggregation functions characterized by a parameter vector θ (e.g., a weight
distribution over the criteria). The parameter vector θ can be deduced from the
knowledge of �X′ , that is, we determine the possible values of θ for which (1) is
fulfilled over X ′.

The aggregation function F we study is the Choquet integral w.r.t. a 2-
additive capacity, the latter being the parameter vector. To identify this parame-
ter vector, we assume that the DM can provide cardinal information (preferences
given with preference intensity) on a particular set of alternatives X ′ called the
set of binary actions denoted by B. A binary action is a fictitious alternative
which takes either the neutral value 0 for all criteria, or the neutral value 0 for
all criteria except for one or two criteria for which it takes the satisfactory value
1. The binary actions are used in many applications through the MACBETH
methodology [1,2,4].

In [10], a characterization of the representation of a cardinal information on
binary actions by a 2-additive Choquet integral have been proposed. This result
is based on some cycles called cyclone in a directed graph where multiple edges
are allowed between two vertices. The main disadvantage of this axiomatization
is the difficulty to implement these conditions in practice, because cyclone are
very complex to detect and not easy to understand during the decision process.
Therefore, an alternative to these axioms is the use of methods dealing with
inconsistencies based on techniques of linear programming, and relaxing con-
straints when a linear program is infeasible [9].

Our aim is to provide some necessary and simple conditions, called MOPIC
properties, which can be tested before the use of the previous algorithm. These
conditions, directly related to the monotonicity constraints of a 2-additive capac-
ity, can help the DM to better understand and explain his inconsistent judgments
when his preferences are not compatible with MOPIC properties. We also provide
some sufficient conditions to obtain a cardinal information representable by a
Choquet integral w.r.t. a 2-additive capacity. These sufficient conditions concern
a particular case of cardinal information called “quasi-ordinal information”.

The next section presents basic concepts we need in the representation of a
cardinal information by a 2-additive Choquet integral, while the last section is
dedicated to the four MOPIC properties.

2 Basic Concepts

We assume that, given two alternatives x and y the DM is able to assess the
difference of attractiveness between x and y when he prefers strictly x to y. The
difference of attractiveness will be provided under the form of semantic categories
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ds, s = 1, . . . , q defined so that, if s < t, any difference of attractiveness in the
class ds is smaller than any difference of attractiveness in the class dt. The
MACBETH approach [2] uses the following six semantic categories: d1 = very
weak, d2 = weak, d3 = moderate, d4 = strong, d5 = very strong, d6 = extreme.
For a subset A of N , the notation z = (xA, yN−A) means that z is defined by
zi = xi if i ∈ A, and zi = yi otherwise.

2.1 Choquet Integral w.r.t. a 2-Additive Capacity

The Choquet integral is a well-known aggregation function used in MCDA taking
into account interaction phenomena between criteria. We define the Choquet
integral w.r.t a 2-additive capacity [6] below.

Definition 1. 1. A capacity on N is a set function μ : 2N → [0, 1] such that:
(a) μ(∅) = 0
(b) μ(N) = 1
(c) ∀A,B ∈ 2N , [A ⊆ B ⇒ μ(A) ≤ μ(B)] (monotonicity).

2. The Möbius transform (see [3]) of a capacity μ on N is a function m : 2N →
R defined by:

m(T ) :=
∑

K⊆T

(−1)|T\K|μ(K),∀T ∈ 2N . (2)

3. A capacity μ on N is 2-additive if
• For all subsets T of N such that |T | > 2, m(T ) = 0;
• There exists a subset B of N such that |B| = 2 and m(B) �= 0.

Notation. Our notation for a capacity μ and its Möbius transform m are
simplified by using the following shorthand: μi := μ({i}), μij := μ({i, j}),
mi := m({i}), mij := m({i, j}), for all i, j ∈ N , i �= j. Whenever we use i
and j together, it always means that they are different.

Given x := (x1, ..., xn) ∈ R
n
+, the Choquet integral w.r.t. a 2-additive capac-

ity μ (called for short a 2-additive Choquet integral) can be written as follows
(see [7]):

Cμ(x) =
n∑

i=1

vixi − 1
2

∑

{i,j}⊆N

Iij |xi − xj | (3)

where

1. The index vi given by

vi :=
∑

K⊆N\i

(n − |K| − 1)!|K|!
n!

(μ(K ∪ i) − μ(K)) (4)

represents the importance of the criterion i and corresponds to the Shapley
value of μ.

2. The index Iij given by
Iij := μij − μi − μj (5)

represents the interaction between the two criteria i and j.
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2.2 Binary Actions and Cardinal Information

We assume that the DM is able to identify for each criterion i two reference
levels:

1. A reference level 1i in Xi which he considers as good and completely satisfying
if he could obtain it on criterion i, even if more attractive elements could
exist. This special element corresponds to the satisficing level in the theory
of bounded rationality of Simon [12].

2. A reference level 0i in Xi which he considers neutral on i. The neutral level
is the absence of attractiveness and repulsiveness. The existence of this neu-
tral level has roots in psychology [13], and is used in bipolar models like
Cumulative Prospect Theory [14].

We set for convenience ui(1i) = 1 and ui(0i) = 0. A binary action or binary
alternative is an element of the set

B = {0N , (1i,0N−i), (1ij ,0N−ij), i, j ∈ N, i �= j} ⊆ X

where

• 0N = (1∅,0N ) =: a0 is an action considered neutral on all criteria.
• (1i,0N−i) =: ai is an action considered satisfactory on criterion i and neutral

on the other criteria.
• (1ij ,0N−ij) =: aij is an action considered satisfactory on criteria i and j and

neutral on the other criteria.

Using the Choquet integral, we get the following consequences:

1. For any capacity μ,

Cμ(U((1A,0N−A))) = μ(A), ∀A ⊆ N. (6)

2. For any 2-additive capacity,

Cμ(U(a0)) = 0 (7)

Cμ(U(ai)) = μi = vi − 1
2

∑

k∈N, k �=i

Iik (8)

Cμ(U(aij)) = μij = vi + vj − 1
2

∑

k∈N, k �∈{i,j}
(Iik + Ijk) (9)

The last two equations come from general relations between the capacity μ and
interaction (see [5] for details). Generally the DM is able to compare some alter-
natives using his knowledge of the problem, his experience, etc. These alterna-
tives form a set of reference alternatives and allow to determine the parameters
of a model (weights, utility functions, subjective probabilities,. . . ) in the decision
process (see [8] for more details). As shown by the previous Eqs. (7), (8), (9), it
should be sufficient to get some preferential information from the DM only on
binary actions. To entirely determine the 2-additive capacity, this preferential
information is expressed by the following relations:
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• P = {(x, y) ∈ B × B : the DM strictly prefers x to y},
• I = {(x, y) ∈ B × B : the DM is indifferent between x and y},
• For the semantic category “dk”, k ∈ {1, ..., q}, Pk = {(x, y) ∈ P such that DM

judges the difference of attractiveness between x and y belonging to the class
“dk”}. If there is no ambiguity, a category ds will be simply designated by s.

Without loss of generality, we will suppose that all the relations Pk are nonempty
(we can always redefine the number q when some Pk are empty). The relation
P is irreflexive and asymmetric while I is reflexive and symmetric.

Definition 2. The cardinal information on B is the structure {P, I, P1, . . . , Pq}.
The cardinal information is used also in the MACBETH methodology [2].
Now we will suppose P to be nonempty for any cardinal information
{P, I, P1, . . . , Pq} (“non triviality axiom”) and P = P1 ∪ P2 ∪ · · · ∪ Pq.

2.3 The Representation of the Cardinal Information by a 2-Additive
Choquet Integral

A cardinal information {P, I, P1, . . . , Pq} is said to be representable by a 2-
additive Choquet integral if there exists a 2-additive capacity μ such that:

1. ∀x, y ∈ B, x P y ⇒ Cμ(U(x)) > Cμ(U(y)),
2. ∀x, y ∈ B, x I y ⇒ Cμ(U(x)) = Cμ(U(y)),

3. ∀x, y, z, w ∈ B, ∀s, t ∈ {1, . . . , q} s.t. s < t,
[ (x, y) ∈ Pt

(z, w) ∈ Ps

}
⇒ Cμ(U(x)) −

Cμ(U(y)) > Cμ(U(z)) − Cμ(U(w))
]

Necessary and sufficient conditions to represent a cardinal information by a
2-additive Choquet integral are given in [10]. These conditions are based on
some cycles called cyclones in a directed graph (multigraph) where multiple
edges are allowed between two vertices. Figure 1 represents an example of a
multigraph computed by using this characterization when N = 1, 2, 3, 4, P1 =
{(a23, a2)} and P2 = {(a1, a23); (a4, a0)}. Because cyclones are very difficult to
detect and understand in practice , there is a real need to find some simple
necessary or sufficient conditions to represent a cardinal information. The next
section provides MOPIC properties which are necessary conditions, simplest than
those “cyclones”, to get this representation.

Before defining MOPIC properties, we need to introduce the monotonic-
ity relation M on B translating the simple monotonicity conditions, on pairs
and singletons, of a 2-additive capacity. For each (x, y) in {(ai, a0), i ∈ N}
∪{(aij , ai), i, j ∈ N, i �= j},

x M y if not (x (P ∪ I) y). (10)

A path of (P ∪ I ∪ M) from x to y is denoted by x TC y and x TCPl
y if this

path contains an element of Pl, l ∈ {1, . . . , q}. If there exists a cycle of (I ∪ M)
containing x and y, we use the notation x ∼ y. For all i, j ∈ N , the notation
i ∨ j denotes one of the two criteria i or j.
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Fig. 1. A Graph of 4 criteria with some “cyclones”

Proposition 1. Let be μ a 2-additive capacity and {P, I, P1, . . . , Pq} a cardinal
information on B. For all x, y, z, w in B.

If

⎧
⎨

⎩

x Pl y
z TCPh

w
l < h

then Cμ(U(z)) − Cμ(U(w)) > Cμ(U(x)) − Cμ(U(y)).

Proof. If z TCPh
w then there exist z1, z2 ∈ B such that z TC z1 Ph z2 TC w.

hence we have Cμ(U(z)) − Cμ(U(w)) ≥ Cμ(U(z1)) − Cμ(U(z2)). As l < h ⇒
Cμ(U(z1))−Cμ(U(z2)) > Cμ(U(x))−Cμ(U(y), we have Cμ(U(z))−Cμ(U(w)) >
Cμ(U(x)) − Cμ(U(y)).

3 MOPIC Properties

3.1 General Definitions

The MOPIC (MOnotonicity of Preferential Information for the Cardinal case)
properties are defined as follows:

Definition 3 (MOPIC Properties). For all distinct i, j, k in N and l, l′ ∈
{1, . . . , q}, a cardinal information {P, I, P1, . . . , Pq} on B fulfills the property:

1. MOPIC-1 if

ai TCPl
a0

aij Pl′ aj

l > l′

⎫
⎬

⎭ ⇒ ∀k ∈ N \ {i, j}, [not(aik ∼ ak) and not(ajk ∼ ak)]. (11)

2. MOPIC-2 if

ai∨j TCPl
a0

aij Pl′ ak

l > l′

⎫
⎬

⎭ ⇒ [not(aik ∼ ah) and not(ajk ∼ ah)], h ∈ {i, j} \ i ∨ j.

(12)
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3. MOPIC-3 if

ak TCPl
a0

aij Pl′ ai∨j

l > l′

⎫
⎬

⎭ ⇒ [not(aik ∼ ah) and not(ajk ∼ ah)], h ∈ {i, j}\ i∨j. (13)

4. MOPIC-4 if
ak TCPl

aij

l > l′

}
⇒ [not(aik Pl′ ai∨j)]. (14)

Proposition 2. If a cardinal information {P, I, P1, . . . , Pq} on B is repre-
sentable by a 2-additive Choquet integral, then this information satisfies the
properties MOPIC-1, MOPIC-2, MOPIC-3 and MOPIC-4.

Proof. The assertion has been proved in [10] for MOPIC-1, MOPIC-2 and
MOPIC-3. We give only the proof for MOPIC-4 which is a new property.

Let be i, j, k in N and l, l′ ∈ {1, . . . , q} such that l > l′. If ak TCPl
aij and

aik Pl′ ai∨j then by using Proposition 1 we have Cμ(U(ak)) − Cμ(U(aij)) >
Cμ(U(aik)) − Cμ(U(ai∨j)) i.e. Cμ(U(ak)) + Cμ(U(ai∨j)) > Cμ(U(aij)) +
Cμ(U(aik)). Hence we get μk + μi + μj > μk + μi∨j > μik + μij which con-
tradicts the monotonicity condition μik + μij ≥ μk + μi + μj .

The four MOPIC properties are inspired from the necessary and sufficient
conditions called “MOPI” conditions introduced in the characterization of an
ordinal information {P, I} by a 2-additive Choquet integral [11]. The MOPI
properties are defined as follows:

Definition 4 (MOPI Property). Let i, j, k ∈ N , i fixed. A Monotonicity of
Preferential Information in {i, j, k} w.r.t. i is the following property (denoted by
({i, j, k},i)-MOPI):

aij ∼ ai∨j

aik ∼ ai∨k

i ∨ j �= i ∨ k

⎫
⎬

⎭ ⇒ [not(al TCP a0), l ∈ {i, j, k} \ {i ∨ k, i ∨ j}] (15)

We proved in [10] that MOPIC-1, MOPIC-2 and MOPIC-3 are mutually
independent. The following examples show that MOPIC-4 is independent from
the other MOPIC properties.

Example 1. 1. N = {1, 2, 3}, P1 = {(a13, a1)} and P2 = {(a3, a12)}. MOPIC-
4 is not satisfied because we have a3 P2 a12 and a13 P1 a1 (see Fig. 2), while
MOPIC-1, MOPIC-2 and MOPIC-3 are satisfied.

2. N = {1, 2, 3}, I = {(a13, a3)}, P1 = {(a12, a1); (a13, a1)} and P2 =
{(a2, a0); (a3, a12)}. MOPIC-4 is not satisfied (as shown in Fig. 2), MOPIC-
2 and MOPIC-3 are satisfied, MOPIC-1 is not satisfied because a2 P2 a0,
a12 P1 a1 and a13 ∼ a3 (see Fig. 3).

3. N = {1, 2, 3}, I = {(a23, a2)}, P1 = {(a12, a3), (a12, a1)} and P2 =
{(a1, a0), (a2, a13)}. MOPIC-2 is not satisfied because a1 P2 a0, a12 P1 a3

and a23 ∼ a2. Because we have a2 P2 a13 and a12 P1 a1 then MOPIC-4 is
not satisfied (see Fig. 4).
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Fig. 2. MOPIC-4 is not satisfied. MOPIC-1, MOPIC-2 and MOPIC-3 are satisfied
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Fig. 3. MOPIC-4 and MOPIC-1 are not satisfied. MOPIC-2 and MOPIC-3 are satisfied
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Fig. 4. MOPIC-4 and MOPIC-2 are not satisfied

4. N = {1, 2, 3}, I = {(a13, a1)}, P1 = {(a13, a2); (a12, a2)} and P2 =
{(a3, a0); (a1, a23)}. MOPIC-2 is not satisfied because a3 P2 a0, a12 P1 a1

and a13 ∼ a2. On the other hand a1 P2 a23 and a13 P1 a2 implies that
MOPIC-4 is not satisfied (see Fig. 5).

In order to better explain inconsistencies when it is not possible to represent
a cardinal information, we give the following necessary condition based on a
particular dominance relation called k -dominance (k like “kardinal”).
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Fig. 5. MOPIC-4 and MOPIC-3 are not satisfied

Definition 5 (k-dominance). Let be {P, I, P1, . . . , Pq} a cardinal informa-
tion on B.

A binary action y is k-dominated (by a binary action x) if there exist
x1, . . . , xr ∈ B, x′

1, . . . , x
′
r ∈ B, l1, . . . , lr−1 ∈ {1, . . . , q}, h1, . . . , hr−1 ∈

{1, . . . , q} and a bijection g from {(xi, xi+1)}i=1,...,r−1 to {(x′
j , x

′
j+1)}j=1,...,r−1

such that:
⎧
⎨

⎩

x = x1 Pl1 x2 Pl2 . . . Plr−2 xr−1 Plr−1 xr = y

x = x′
1 TCPh1

x′
2 TCPh2

. . . TCPhr−1
x′

r−1 TCPhr
x′

r = y
(16)

[g((xi, xi+1)) = (x′
j , x

′
j+1)] ⇒

⎧
⎨

⎩

xi Pli xi+1

x′
j TCPhj

x′
j+1

li < hj

(17)

The Eq. (16) means that there exist two different paths of (P ∪ I ∪ M) from x
to y.

Example 2. In Fig. 6, we can see that y is k-dominated by x by considering
r = 4, x1 = x, x2 = t2, x3 = t3, x4 = y, x′

1 = x, x′
2 = z1, x′

3 =
z2, x′

4 = y and the bijection g given by: g((x1, x2)) = (x′
2, x

′
3), g((x2, x3)) =

(x′
1, x

′
2), g((x3, x4)) = (x′

3, x
′
4).

The k -dominance appears as a concept related to Proposition 1. It is independent
to monotonicity conditions of a 2-additive capacity. Indeed, it is not difficult to
check that, no binary action is k -dominated in preferences given in Example 1.
The following proposition shows that this non-dominance property is necessary
in the representation of a cardinal information.

Proposition 3. Let be {P, I, P1, . . . , Pq} a cardinal information on B.
If {P, I, P1, . . . , Pq} is representable by a 2-additive Choquet integral, then

no binary action in B is k-dominated.
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Fig. 6. y is k -dominated by x

Proof. It is a consequence of Definition 5 and Proposition 1.

Even if all the properties presented in this section are necessary but not suf-
ficient, it is important to include them in the algorithm which deals with incon-
sistencies in the representation of a cardinal information. Their implementation
is simple compared to the complex cyclones obtained by the characterization
theorem.

In the next section, we give through the Theorem 1, some sufficient conditions
to obtain a cardinal information representable by a cardinal information. These
conditions are based on the notion of quasi-ordinal information related to the
k-dominance.

3.2 Some Sufficient Conditions to Represent a Cardinal Information

Definition 6 (Quasi-ordinal Information). A cardinal information
{P, I, P1, . . . , Pq} on B is said to be quasi-ordinal if for all x, y, z, w ∈ B

and l, h ∈ {1, . . . , q}, the following conditions hold:

x Pl y
z Ph w
not(x ∼ z)
l > h

⎫
⎪⎪⎬

⎪⎪⎭
⇒ x TC z and

x Pl y
z Ph w
x ∼ z
l > h

⎫
⎪⎪⎬

⎪⎪⎭
⇒ w TCP y (18)

Remark 1. A quasi-ordinal information is not a necessary condition. To check
it, it is sufficient to take N = {1, 2, 3}, I = ∅, P1 = {(a12, a1)} and P2 =
{(a2, a3)}. Therefore {P, I, P1, P2} is a cardinal information representable by
a 2-additive Choquet integral (but it is not quasi-ordinal) if we choose as μ:
μ(N) = 1, μ(∅) = μ3 = 0, μ1 = 2

7 , μ2 = 3
7 and μ12 = μ13 = μ23 = 4

7 .

Proposition 4. If {P, I, P1, . . . , Pq} is a quasi-ordinal information on B and
(P ∪ I ∪ M) contains no strict cycle (a cycle containing an element of P ), then
each binary action of B is not k-dominated.
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Proof. We assume that {P, I, P1, . . . , Pq} is a quasi-ordinal information and
(P ∪ I ∪ M) contains no strict cycle. Let us suppose the existence of y ∈ B
k -dominated by x ∈ B i.e. there exist x1, . . . , xr ∈ B, x′

1, . . . , x
′
r ∈ B and a

bijection g from {(xi, xi+1)}i=1,...,r−1 to {(x′
j , x

′
j+1)}j=1,...,r−1 such that:

•
⎧
⎨

⎩

x = x1 Pl1 x2 Pl2 . . . Plr−2 xr−1 Plr−1 xr = y

x = x′
1 TCPh1

x′
2 TCPh2

. . . TCPhr−1
x′

r−1 TCPhr
x′

r = y

• [g((xi, xi+1)) = (x′
j , x

′
j+1)] ⇒

⎧
⎨

⎩

xi Pli xi+1

x′
j TCPhj

x′
j+1

li < hj

.

If we denote g((x1, x2)) = (x′
j1

, x′
j2

) then we get

⎧
⎪⎪⎨

⎪⎪⎩

x1 Pl1 x2

x′
j1

TCPh
x′

j2

l1 < h
h ∈ {h1, . . . , hr}

.

x′
j1

TCPh
x′

j2
⇒ there exist z, w ∈ B such that x′

j1
TC z Ph w TCx′

j2
.

Furthermore x = x1 implies x TC z by using hypothesis x = x′
1 TCPh1

x′
2

TCPh2
. . . TCPhr−1

x′
r−1 TCPhr

x′
r = y and {x′

j1
, x′

j2
} ⊆ {x′

1, . . . , x
′
r}.

If not(x1 ∼ z) then we should have

⎧
⎪⎪⎨

⎪⎪⎩

x1 Pl1 x2

z Ph w
not(x1 ∼ z)
l1 < h

and z TC x1, because

{P, I, P1, . . . , Pq} is a quasi-ordinal information on B. This leads to a contra-

diction with x = x1 TC z. So we necessarily have

⎧
⎪⎪⎨

⎪⎪⎩

x1 Pl1 x2

z Ph w
x1 ∼ z
l1 < h

As {P, I, P1, . . . , Pq} is a quasi-ordinal information on B, we get x2 TCP w.
To end the proof, let us show that x2 and w are containing in a strict cycle.

If g((x2, x3)) = (x′
j3

, x′
j4

) then there exist z′, w′ ∈ B such that:⎧
⎪⎪⎨

⎪⎪⎩

x2 Pl2 x3

x′
j3

TCPh′ x′
j4

l2 < h′

h′ ∈ {h1, . . . , hr}
and x′

j3
TC z′ Ph′ w′ TCx′

j4
. We also have w TC z′ because

x′
j2

TC x′
j3

.

• If z′ ∼ x2 then z′ TC x2 TCP w TC z′ is a strict cycle of (P ∪ I ∪ M).
A contradiction with the hypothesis (P ∪ I ∪ M) contains no strict cycle.

• If not(z′ ∼ x2) then z′ TC x2 because {P, I, P1, . . . , Pq} is a quasi-ordinal
information on B. Hence z′ TC x2 TCP w TC z′ is a strict cycle of (P ∪I∪M).
A contradiction with the hypothesis (P ∪ I ∪ M) contains no strict cycle.

We have shown that if there is a binary action y k -dominated by a binary alter-
native x, then there exist x2, w ∈ B contained in a strict cycle. A contradiction.
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Theorem 1. Let be {P, I, P1, . . . , Pq} a cardinal information on B. If the fol-
lowing three conditions hold:

1. (P ∪ I ∪ M) contains no strict cycle;
2. Every subset K of N such that |K| = 3 satisfies the MOPI condition;
3. {P, I P1, . . . , Pq} is a quasi-ordinal information.

Then {P, I, P1, . . . , Pq} is representable by a 2-additive Choquet integral.

Proof (Sketch of). The proof is done in the spirit of the proof of the characteri-
zation theorem of the representation of an ordinal information {P, I} on B by
a 2-additive Choquet integral (see [11]).

As (P ∪ I ∪ M) contains no strict cycle and every subset K of N such that
|K| = 3 satisfies the MOPI condition, it is possible to compute a partition
B0, B1, ..., Bm of B by applying a topological sorting. If we denote by [x] the
set of all binary actions belonging to the same set of the partition with x, then
we can define the following relation P∼: [t] P∼ [u] ⇔ ∃t′ ∈ [x], ∃u′ ∈ [u] such
that t′ (P ∪ M) u′.

Let us consider the following two applications:

1. μ : B → R defined such as for each i ∈ {0, ...,m},

∀x ∈ Bi, μ(φ(x)) =
{

0 if i = 0
(2n)i else.

2. ν : 2N → [0, 1] defined by:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ν∅ = 0
νi = μi

α , ∀i ∈ N
νij = μij

α , ∀i, j ∈ N

ν(K) =
∑

{i,j}⊆K

νij − (|K| − 2)
∑

i∈K

νi, ∀K ⊆ N, |K| > 2.

where α =
∑

{i,j}⊆N

μij − (n − 2)
∑

i∈N

μi.

As proved in [11], ν is a 2-additive capacity on B such that:

1. ∀x, y ∈ B, x P y ⇒ Cμ(U(x)) > Cμ(U(y)),
2. ∀x, y ∈ B, x I y ⇒ Cμ(U(x)) = Cμ(U(y)).

Let be x, y, z, w ∈ B, s, t ∈ {1, . . . , q} such that

⎧
⎨

⎩

(x, y) ∈ Pt

(z, w) ∈ Ps

s < t
.
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1. Case 1: we suppose not(x ∼ z)
{P, I, P1, . . . , Pq} being a quasi-ordinal information, we have [x] P∼ [z]
because x TC z. Therefore, if x ∈ Bl, y ∈ Bl′ , z ∈ Bh and w ∈ Bh′ then l > l′,
h > h′ and l > h. If k0 = max{l′, h, h′}, we have:

(2n)l ≥ (n + n)(2n)k0 > (2n)h + (2n)h′
+ (2n)l′ > (2n)h + (2n)h′ − (2n)l′ ,

because n ≥ 2 and k0 �= h′.
Hence Cμ(U(x)) − Cμ(U(y)) > Cμ(U(z)) − Cμ(U(w)).

2. Case 2: we suppose x ∼ z
{P, I, P1, . . . , Pq} being a quasi-ordinal information, we have [w] P∼ [y]
because w TCP y. Therefore, if x ∈ Bl, y ∈ Bl′ , z ∈ Bh and w ∈ Bh′ then
l = h, h > h′ and h′ > l′.

We have Cμ(U(x))−Cμ(U(y)) > Cμ(U(z))−Cμ(U(w)) because Cμ(U(x)) =
Cμ(U(z)) and Cμ(U(w)) > Cμ(U(y)).

4 Conclusion

We presented some necessary and simple conditions to represent a cardinal infor-
mation by a 2-additive Choquet integral. As the characterization of such prefer-
ences is not an easy task, these conditions can help the DM during the decision
process to manage his inconsistencies. The sufficient conditions we gave can
be easily extended to a more general case than binary actions, because the k-
dominance and the quasi-ordinal information do not depend on the 2-additive
structure of our problem. Therefore we plan in future works to elaborate more
MOPIC properties and more interesting sufficient conditions in the representa-
tion of a cardinal information.
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Abstract. This paper deals with states that are immune to group devi-
ations. Group deviations help the players of a strategic game to escape
from undesirable states but they compromise the stability of a sys-
tem. We propose and analyse a solution concept, called profitable devia-
tion strong equilibrium, which is between two well-known equilibria: the
strong equilibrium and the super strong equilibrium. The former pre-
cludes joint deviations by groups of players who all benefit. The latter
is more demanding in the sense that at least one member of a deviating
coalition must be better off while the other members cannot be worst
off. We study the existence, computation and convergence to a profitable
deviation strong equilibrium in three important games in algorithmic
game theory: job scheduling, max cut and singleton congestion game.

Keywords: Algorithmic game theory · Equilibrium · Group deviation

1 Introduction

A central question in game theory is to define a solution concept which captures
the plausible outcomes of a game. The notion of equilibrium (a state that is
stable against a given type of deviation) has a prominent place in this area.
Indeed, if some players find profitable to deviate from a given state and if they
can do it then this state is an unlikely outcome of the game.

In a world populated with selfish individuals, the Nash equilibrium is a cred-
ible outcome because no single player can unilaterally deviate and be better off
[24]. This notion can be refined by allowing group deviations. In a strong equi-
librium [4], there is no improving move, i.e. no way for a group of players to
coordinate their actions such that every member is better off. In a super strong
equilibrium, no weak improving move (a group deviation in which no member is
worst off and at least one member is better off) exists. This latter solution con-
cept is attractive because there is room for both selfishness and altruism in the
moves that it precludes. Some disinterested players can take part in a deviating
coalition if their individual costs remain unchanged.

The more deviations an equilibrium excludes, the more sustainable it is. More-
over, sophisticated moves can help the players to escape from some undesirable
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states (e.g. those having a high social cost). However, as the set of possible devia-
tions grows, the induced set of stable states reduces. Indeed, only very restricted
classes of games admit a super strong equilibrium. Therefore, it is challeng-
ing to devise a solution concept (equivalently, the moves that it rules out) in
which deviations comprising disinterested players (those who are not worst off)
are allowed and the solution concept is guaranteed to exist in some non-trivial
games. An additional desideratum is that the game admits a potential, i.e. the
players naturally converge to a stable state from any initial configuration.

This paper deals with some games which possess a strong equilibrium but not
a super strong equilibrium. Our motivation is to propose a solution concept that
is between them. Ideally, such a solution concept would meet the aforementioned
desiderata. The main difficulty is to find a tradeoff between the guaranteed
convergence to an equilibrium and the sophistication of the possible deviations,
especially when disinterested players are involved.

This question has already been posed and treated in different ways. Let
us mention some of them. We can assume that the players are embedded in
a social network [18], e.g. there is a partition of the player set so that two
coalitions involved in a weak improving move cannot overlap [12]. Another way is
to consider that every player minimizes a function which combines his individual
cost and a social cost [6]; this behavior can even push a single player to slightly
increase his own cost if it is profitable to some other players. A third way is
to consider the Nash equilibria whose vector of individual costs is not Pareto
dominated by the cost vector of another state [7,8].

The above concepts do not necessarily refine, as we require, the notion of
strong equilibrium. In this paper we propose a different approach. We stress the
fact that some games are not stable against weak improving moves because in
such moves, it is not mandatory for a coalition member who benefits to concretely
change his strategy. So we find important to take this information into account
in order to understand which players are legitimate in the coalition.

Take a strong equilibrium σ and consider a coalition of players having a weak
improving move which turns σ into a new state σ′. Separate the entire set of
players according to 3 criteria: Does a player belong to the coalition? Is a player
better off, indifferent or worst off? Does a player concretely move? The situation
is depicted in the next table where no member of the coalition can be worst off
and A ∪ C can not be empty.

Better off Indifferent Worst off

oalition move A B

¬move C

¬coalition ¬move D E

Indifferent players who stick to their strategy are dummy so we can assume
that they do not belong to the coalition. If E = ∅ then nobody is worst off and σ′

is clearly more desirable than σ. Now suppose E �= ∅. If B = ∅ then σ cannot be
a strong equilibrium. If A = ∅ then the coalition reduces to B∪C. The deviation
from σ to σ′ can be immediately followed by the reverse deviation performed by
the coalition B ∪ E (i.e. from σ′ to σ where B moves but E does not move).



238 L. Gourvès

The case A = ∅ is problematic and for the games studied in this paper,
counterexamples showing that a game does not necessarily possess a super strong
equilibrium fall in this case. Therefore, we propose to impose that for a coalition
involved in a weak improving move, the subset of players who move and benefit
cannot be empty.

2 Definitions and Contribution

A strategic game has a set N = {1, . . . , n} of players. Each player i has a finite
set of actions Ai. The strategy of a player is a distribution of probabilities over his
action set. A strategy is said to be pure if one action is chosen with probability
1; otherwise it is said to be mixed. In this paper we focus on pure strategies. The
word pure is omitted for the sake of readability.

Let σ = (σ1, . . . , σn) be a state of the game where σi ∈ Ai is the strategy of
player i. The set of all possible states is Σ = A1 ×A2 × . . .×An. Let σ−i denote
σ without player i’s strategy, i.e. σ−i := (σ1, . . . , σi−1, σi+1, . . . , σn). The state
obtained by the replacement of player i’s strategy by s′

i in a state σ is denoted
by (σ−i, s

′
i).

Depending on the situation, the players either maximize or minimize an indi-
vidual function. In the first case every player i has a utility function ui : Σ → R.
In the second case, every player i has a cost function ci : Σ → R.

For a coalition of players C ⊆ N , σ−C denotes σ in which the strategy of
every member of C is removed. Similarly σC denotes σ restricted to the strategy
of the members of C. Given a coalition C and two states σ1 and σ2, (σ2

−C , σ1
C)

is the state in which player i’s strategy is σ1
i if i ∈ C, otherwise it is σ2

i .
For a state σ, a coalition C has an improving move if there is σ′

C such that
ui(σ−C , σ′

C) > ui(σ) for all i ∈ C (ci(σ−C , σ′
C) < ci(σ) for all i ∈ C, resp.). The

improving move is unilateral if |C| = 1. A coalition C has a weak improving move
with respect to σ if there is σ′

C such that ui(σ−C , σ′
C) ≥ ui(σ) for all i ∈ C and

ui(σ−C , σ′
C) > ui(σ) for at least one i ∈ C (ci(σ−C , σ′

C) ≤ ci(σ) for all i ∈ C
and ci(σ−C , σ′

C) < ci(σ) for at least one i ∈ C, resp.).
A state σ is a Nash equilibrium (NE) if there is no unilateral improving

move, a strong equilibrium (SE) if there is no improving move, a super strong
equilibrium1 (SSE) if there is no weak improving move.

In this paper we introduce a solution concept which is between the SE and
the SSE. A coalition C has a profitable deviation weak improving move with
respect to σ if there is σ′

C such that ui(σ−C , σ′
C) ≥ ui(σ) for all i ∈ C and

ui(σ−C , σ′
C) > ui(σ) for at least one i ∈ C such that σi �= σ′

i (ci(σ−C , σ′
C) ≤ ci(σ)

for all i ∈ C and ci(σ−C , σ′
C) < ci(σ) for at least one i ∈ C such that σi �= σ′

i,
resp.). A state σ is a profitable deviation strong equilibrium (PDSE) if there is
no profitable deviation weak improving move.

The relation NE ⊇ SE ⊇ PDSE ⊇ SSE clearly holds. See Fig. 1 where for
each solution concept, we also provide the deviation that it is immune to.

Throughout the article we mention other solution concepts:
1 Also known as strictly strong Nash equilibrium [28].
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SSE PDSE SE NE

PoNE

unilateral
improving

move

improving
move

profitable
deviation

weak
improving

move

weak
improving

move

Fig. 1. Hierarchy of solution concepts and deviations.

– A Pareto optimal Nash equilibrium (PoNE for short) is a state σ that is a
NE and moreover, there is no σ′ such that ∀i ∈ N, ci(σ′) ≤ ci(σ) and ∃i′ ∈
N, ci′(σ′) < ci′(σ) [7,8]. Actually, we can see a PoNE as a SSE in which
only coalitions of size 1 or |N | are allowed. But by definition, a PoNE is not
necessarily a SE.

– Given a partition P of the player set, a state is a P-SSE (partition super strong
equilibrium) if no group of players P ∈ P has a weak improving move [12].

– A consideration graph G = (N,F ) is undirected and unweighted. Its node set
is the player set. The maximal cliques of the graph correspond to the possible
coalitions. The neighborhood of C ⊆ N is NG(C) := {j : i ∈ C ∧ (i, j) ∈ F}.
For a state σ, a coalition C has a considerate weak improving move if there is
σ′

C such that ui(σ′
C , σ−C) ≥ ui(σ) for all i ∈ C ∪ NG(C) and uj(σ′

C , σ−C) >
uj(σ) for at least one player j ∈ C. A state is a considerate super strong
equilibrium (CSSE) if there is no considerate weak improving move [18]. Note
that CSSE generalize P-SSE when the consideration graph consists of disjoints
cliques.

The dynamics associated with a given equilibrium and its related type of
deviation is defined as every series of states σ0, σ1, . . . such that σi+1 is obtained
by a profitable deviation performed on σi. We say that the dynamics converges
if, starting from any given state of Σ, the series ends and its last state is an
equilibrium. In other words, the game admits a potential [23] which is a highly
desirable property. Note that several deviations may be possible for a given state
(e.g. best vs better response). Here, we do not make any assumption on which
deviation is performed when more than one is possible. Therefore, the property
of convergence fails each time a cycle of better moves exists.

We study three types of games which have received a lot of attention in the
field of algorithmic game theory: a job scheduling game (Sect. 3), a max cut
game (Sect. 4) and monotone singleton congestion games (Sect. 5). These games
(or some special cases) are known to admit a SE but they do not necessarily pos-
sess a SSE. Thus, we are mainly interested in identifying the conditions which
guarantee the existence of a PDSE and the possibility of the players to converge
to a PDSE from any initial state. In addition, we try to understand how the
PDSE relates with other equilibria. The three games are treated in separate sec-
tions. For the sake of redability, we have grouped our results and some elements
of previous works. Due to space limitations, some proofs are put in an appendix.
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3 Job Scheduling

In the job scheduling game [1,9–11,13], every player i ∈ N controls exactly one
job, also denoted by i for the sake of simplicity. There is a set of machines
M = {1, . . . ,m}. A player has to decide on which machine to execute its job so
M is the strategy space of everyone.

In the general case, the machines are unrelated, meaning that the weight of
job i on machine j is a positive value denoted by wj(i). This quantity is known
for every pair of indices from N ×M . The machines are said to be identical if for
every j, j′ ∈ M and i ∈ N , it holds that wj(i) = wj′(i). In the case of identical
machines, the weight of job i is denoted by w(i). The machines are said to be
uniformly related (related for short) if there is a speed sj for every j ∈ M and
a work w(i) for every job i ∈ N such that wj(i) = w(i)

sj
. Therefore, identical

machines is a special case of related machines, and related machines is a special
case of unrelated machines.

The load of machine j under the state σ is defined as Lj(σ) =
∑

{i:σi=j} wj(i).
The cost of player i under the state σ is the load of the machine where its job is
placed, i.e. ci(σ) = Lσi

(σ).
The scheduling game always admits a pure NE [11,13] and also a SE [1].

Indeed, associate a vector Λ(σ) with every state σ where Λi(σ) is the i-th
largest load of a machine under σ (i.e. order the elements of the multi-set
{L1(σ), . . . , Lm(σ)} in a non increasing way to get Λ(σ)). Λ(σ) is said to be
lexicographically smaller than Λ(σ′), denoted by Λ(σ) ≺ Λ(σ′), if there exists
k such that Λk(σ) < Λk(σ′) and Λj(σ) = Λj(σ′) for all j < k. Following [1],
a state whose corresponding vector is lexicographically minimal must be a SE.
However, even if the game is with two (or more) identical machines, a SSE does
not necessarily exist [1].

Our contribution is summarized in Table 1.

Table 1. Summary of results for the scheduling game.

m = 2 m ≥ 3

Identical NE = PDSE

Related PoNE �= PDSE �= SE PDSE not guaranteed

Unrelated PDSE guaranteed

Proposition 1. For the scheduling game with two unrelated machines, a PDSE
always exists and the dynamics converges.

Proof. Suppose σ is the current state and σ′ denotes the strategy profile obtained
after a profitable deviation weak improving move is performed by a non-empty
set of players C. We consider two cases in order to show that Λ(σ′) ≺ Λ(σ).

– There exists x ∈ {1, 2} such that all the players of C are on machine x and
3−x in σ and σ′, respectively. Clearly, machine x is more loaded than machine
3−x in σ : Lx(σ) > L3−x(σ). Since the players in C benefit, we have Lx(σ) >
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L3−x(σ′). Since some players, with positive weights, have left machine x, we
have Lx(σ) > Lx(σ′). Therefore Λ(σ′) ≺ Λ(σ).

– Some players of C move from machine 1 to machine 2 and vice versa. Since
the cost of a member of C does not increase with the deviation, we have
L1(σ) ≥ L2(σ′) and L2(σ) ≥ L1(σ′), and at least one of these inequalities
is strict because the deviation is profitable for at least one player. Therefore
Λ(σ′) ≺ Λ(σ).

In conclusion, we can start from any strategy profile and let the players per-
form some deviations until they reach a state that is (locally) lexicographically
minimal. �

Observation 1. For the scheduling game with two related machines, it holds
that:

(i) a SE or PoNE is not necessarily a PDSE;
(ii) a PDSE is not necessarily a PoNE.

Proposition 2. For the scheduling game with two identical machines, a NE
must be a PDSE.

Proof. Let σ be a NE of the scheduling game with two identical machines. For
the sake of contradiction, suppose σ is not a PDSE. A coalition of players C
can perform a profitable deviation weak improving move leading to a new state
σ′. If there is a unique machine, say machine 1, such that σi = 1 for all i ∈
C then σ is not a NE, contradiction. Indeed, every member of C can, alone,
deviate and benefit. Henceworth suppose

⋃
i∈C{σi} = {1, 2}. By hypothesis,

one has ci(σ) ≥ ci(σ′) for all i ∈ C and this inequality is strict for at least one
member of C. In other words, L1(σ) ≥ L2(σ′) and L2(σ) ≥ L1(σ′) and one of
these inequalities is strict. This gives L1(σ) + L2(σ) > L1(σ′) + L2(σ′), but it
contradicts L1(σ) + L2(σ) = L1(σ′) + L2(σ′) which holds because the machines
are identical. �

It is noteworthy that a NE can be efficiently computed if the machines are
identical or related [13].

Proposition 3. There exists an instance of the scheduling game with m ≥ 3
identical machines which does not have any PDSE.

Proof. The instance consists of m ≥ 3 machines and m + 2 jobs. The m + 1 first
jobs have weight 1. Job m + 2 has weight 1

2 .
By the pigeon hole principle, there is at least one machine which accommo-

dates at least two unit jobs. We consider three cases.

– One machine, say j, accommodates at least three unit jobs. There must be
another machine, say j′, which does not accommodate any unit job. The cost
of a player on j is at least 3, and if this player moves to j′, his cost would
be either 3

2 or 1, depending on the presence of job m + 2 on j′. Therefore the
current strategy profile cannot be a NE.
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– Two machines, say j and j′, both accommodate two unit jobs. There must
be another machine, say j′′, which does not accommodate any unit job. As in
the previous case, the current strategy profile cannot be a NE.

– One machine accommodates exactly two unit jobs (suppose this is machine 1)
while any other machine accommodates exactly one unit job. If job m+2 is on
machine 1 then the state is not a NE because the half job can move to machine
2 and decrease its cost. Suppose wlog. that job m + 2 is on machine 2. There
exists a profitable deviation in this case. Let 1 and 2 be the two unit jobs on
machine 1. Let 3 and 4 be the unit jobs on machines 2 and 3, respectively.
The deviation, performed by coalition {1, 2, 4,m + 2} is the following. Job 4
goes to machine 1, job 2 goes to machine 2, jobs 1 and m + 2 go to machine
3. Thus the cost of job 2 remains 2, the cost of job 4 remains 1, the cost of
job m + 2 remains 3

2 and the cost of job 1 drops from 2 to 3
2 . Only the utility

of job 3, who does not belong to the coalition, decreases.

In conclusion, there exists a deviation from any given strategy profile. �

4 Max Cut Game

The max cut game [3,14,15,17] is defined on a simple undirected graph G =
(V,E). Every edge (i, j) ∈ E has a non negative integer weight w(i, j). A player
is associated with each vertex so N = V and we interchangeably mention a
player and its corresponding vertex. The strategy of a player is 0 or 1. For a
given state σ, the utility of player i is ui(σ) =

∑
j∈V :(i,j)∈E∧σi �=σj

w(i, j). The
cut induced by a state is the set of edges having one extremity in the 0-part and
the other extremity in the 1-part. Thus a player’s utility is proportional to the
weight of its contribution to the cut.2

Every instance of the max cut game admits a SE [14]. In fact, each improving
move induces a decrease in the weight of the cut associated with a state. However,
it is not the case for weak improving moves.

Observation 2. The max cut game does not always admit a SSE.

Proof. Take a complete graph on 3 nodes, each edge having weight 1. If the three
players have the same strategy then the corresponding state is not a NE. If there
are two players with the same strategy, say players 1 and 2 playing 0 while player 3
plays 1, then players 1 and 2 can collude such that player 2 deviates. The payoff of
player 2 remains unchanged (it is 1) but player 1’s utility becomes 2 instead of 1. �

The existence of a partition super strong equilibrium (P-SSE) is guaranteed
in every instance of the max cut game and for every partition P of the set of
players.

Theorem 1. For every partition P of N , the max cut game has a P-SSE and
the dynamics converges.
2 Note that the max cut game can be defined as a congestion game, but not as a

singleton congestion game, so the results of Sect. 5 do not apply.
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Proof. We are given a partition P of N . A state σ induces a cut in the original
graph G. Let wP (σ) denote the weight of the cut restricted to the graph induced
by P ∈ P. Define Λ(σ) as a couple whose first coordinate Λ1(σ) is equal to wN (σ),
i.e. the cut induced by σ. The second coordinate Λ2(σ) is equal to

∑
P∈P wP (σ).

As an example, consider a complete graph on three 3 nodes a, b and c. Each
edge has weight 1. The partition is {{a, b}, {c}}. The state σ = (0, 0, 1) (a and b
both play 0 while c plays 1) is such that Λ(σ) = (2, 0). The whole cut has weight
2, corresponding to the first coordinate. For the second coordinate, the weight
of the cut within both {a, b} and {c} is 0.

For two consecutive states σ and σ′ of the dynamics, we can show that
Λ(σ) ≺ Λ(σ′). The weak improving move which turned σ into σ′ has been
performed by a coalition P ∈ P.

One can partition the player set in six subsets P 0
0 , P 1

0 , P 0
1 , P 1

1 , P̄0 and P̄1.
For (x, y) ∈ {0, 1}2, P y

x denotes the players of P who play x and y in σ and
σ′, respectively. For x ∈ {0, 1}, P̄x denotes the players of N \ P who play x in
both σ and σ′. For two disjoint subsets A and B of N , w(A,B) denotes the total
weight of the edges having one extremity in A and the other one in B (clearly
w(A,B) = w(B,A)).

Suppose there is one player in P 1
0 ∪P 0

1 for whom the deviation is profitable. We
deduce that

∑
i∈P 1

0 ∪P 0
1

ui(σ) <
∑

i∈P 1
0 ∪P 0

1
ui(σ′). One can rewrite this inequality

as 2w(P 1
0 , P 0

1 )+w(P 1
0 , P 1

1 ∪P̄1)+w(P 0
1 , P 0

0 ∪P̄0) < 2w(P 1
0 , P 0

1 )+w(P 1
0 , P 0

0 ∪P̄0)+
w(P 0

1 , P 1
1 ∪ P̄1) ⇔ w(P 1

0 , P 0
1 ∪P 1

1 ∪ P̄1)+w(P 0
1 , P 0

0 ∪ P̄0) < w(P 1
0 , P 0

1 ∪P 0
0 ∪ P̄0)+

w(P 0
1 , P 1

1 ∪ P̄1). Add w(P 0
0 , P 1

1 )+w(P̄0, P̄1) on both sides of the inequality to get
that w(P 1

0 ∪P 0
0 ∪P̄0, P

0
1 ∪P 1

1 ∪P̄1) < w(P 0
1 ∪P 0

0 ∪P̄0, P
1
0 ∪P 1

1 ∪P̄1). In other words,
the weight of the cut induced by σ (left part) is strictly smaller that the weight
of the cut induced by σ′ (right part). Thus Λ(σ) ≺ Λ(σ′) holds because the first
coordinate of each of these vectors is the weight of the corresponding cuts.

Now suppose the deviation leaves the utility of every member of P 1
0 ∪ P 0

1

unchanged. At least one player in P \ (
P 1
0 ∪ P 0

1

)
= P 0

0 ∪ P 1
1 must benefit from

the deviation. This gives us
∑

i∈P 1
0 ∪P 0

1

ui(σ) =
∑

i∈P 1
0 ∪P 0

1

ui(σ′) (1)

∑

i∈P 0
0 ∪P 1

1

ui(σ) <
∑

i∈P 0
0 ∪P 1

1

ui(σ′) (2)

Rewrite Inequality (1) as 2w(P 1
0 , P 0

1 ) + w(P 1
0 , P 1

1 ∪ P̄1) + w(P 0
1 , P 0

0 ∪ P̄0) =
2w(P 1

0 , P 0
1 )+w(P 1

0 , P 0
0 ∪P̄0)+w(P 0

1 , P 1
1 ∪P̄1) ⇔ w(P 1

0 , P 0
1 ∪P 1

1 ∪P̄1)+w(P 0
1 , P 0

0 ∪
P̄0) = w(P 1

0 , P 0
1 ∪ P 0

0 ∪ P̄0) + w(P 0
1 , P 1

1 ∪ P̄1). Adding w(P 0
0 ∪ P̄0, P

1
1 ∪ P̄1) on

both sides leads to

w(P 1
0 ∪ P 0

0 ∪ P̄0, P
0
1 ∪ P 1

1 ∪ P̄1) = w(P 0
1 ∪ P 0

0 ∪ P̄0, P
1
0 ∪ P 1

1 ∪ P̄1) (3)

This inequality means that the deviation leaves the weight of the cut unchanged,
i.e. Λ1(σ) = Λ1(σ′). With similar operations, one can rewrite Inequality (2) as

w(P 0
0 , P 0

1 ) + w(P 1
1 , P 1

0 ) + w(P 0
0 , P 1

1 ) < w(P 0
0 , P 1

0 ) + w(P 1
1 , P 0

1 ) + w(P 0
0 , P 1

1 ) (4)
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Adding w(P 1
0 , P 0

1 ) on both sides gives w(P 0
0 ∪ P 1

0 , P 1
1 ∪ P 0

1 ) < w(P 0
0 ∪ P 0

1 , P 1
1 ∪

P 1
0 ) ⇔ wP (σ) < wP (σ′). Now observe that for any P ′ ∈ P \P , wP ′(σ) = wP ′(σ′)

holds because the players of P ′ do not participate to the deviation. It follows
that Λ2(σ) < Λ2(σ′). In conclusion Λ(σ) ≺ Λ(σ′). �

Proposition 4. Every instance of the max cut game has a PDSE and the
dynamics converges.

Proof. Let σ and σ′ be two consecutive states of the dynamics. We are going to
show that the weight of the cut induced by σ′ is larger than the weight of the
cut induced by σ. The deviation is performed by a coalition C ⊆ N .

We can partition N in four subsets N0
0 , N1

0 , N0
1 and N1

1 . For (x, y) ∈ {0, 1}2,
Ny

x denotes the players who play x and y in σ and σ′, respectively. For two
disjoint subsets A and B of N , w(A,B) denotes the total weight of the edges
having one extremity in A and the other extremity in B.

It is known that if the deviation is an improving move then the weight
of the cut increases [14] so we focus on profitable deviation weak improving
moves. By definition, there must be at least one player i∗ ∈ N1

0 ∪ N0
1 such

that ui∗(σ′) > ui∗(σ). In addition, for every player i ∈ N1
0 ∪ N0

1 we have
ui(σ′) ≥ ui(σ). If we sum these inequalities over N1

0 ∪ N0
1 then we get that

2w(N1
0 , N0

1 )+w(N1
0 , N0

0 )+w(N0
1 , N1

1 ) > 2w(N1
0 , N0

1 )+w(N1
0 , N1

1 )+w(N0
1 , N0

0 ).
Add w(N0

0 , N1
1 )−w(N1

0 , N0
1 ) on both sides to get that w(N0

0 , N1
1 )+w(N1

0 , N0
1 )+

w(N1
0 , N0

0 ) + w(N0
1 , N1

1 ) > w(N0
0 , N1

1 ) + w(N1
0 , N0

1 ) + w(N1
0 , N1

1 ) + w(N0
1 , N0

0 ).
In other words, the weight of the cut induced by σ is strictly smaller that the
weight of the cut induced by σ′. �

Proposition 5. In the max cut game it holds that

(i) a SE, or PoNE, is not necessarily a PDSE;
(ii) a PDSE must be a PoNE.

Proof. For item (i) consider the instance depicted on Fig. 2.A where solid edges
have weight 1 and the dashed edge has weight ε where 1 > ε > 0. Suppose
players a and b play 0 while players c and d play 1. This state is a SE and also a
PoNE but it is not a PDSE since players a and d can switch their strategies such
that player d’s utility remains 1 whereas player a’s utility becomes 2 instead
of 1 + ε.

For item (ii) consider a state σ that is not a PoNE. If it is because a uni-
lateral deviation is possible, then σ is not a PDSE. Suppose a Pareto improving
deviation is possible for the grand coalition, inducing a new state σ′. We have
ui(σ′) ≥ ui(σ) for every i ∈ N . If ui∗(σ′) > ui∗(σ) and σ′

i∗ �= σi∗ hold for some
i∗ ∈ N then σ cannot be a PDSE (the members of C ′ = {i ∈ N : σi �= σ′

i} can
flip their strategy and i∗ ∈ C ′). The last case is when σ′

i = σi for every i such
that ui(σ′) > ui(σ). Consider the state σ′′ such that σ′′

i = 1 − σ′
i, ∀i ∈ N . We

have ui(σ′) = ui(σ′′
i ) for all i ∈ N . Therefore C ′′ = {i ∈ N : σi �= σ′′

i } is equal to
N \ {i ∈ N : σi �= σ′

i}. It follows that σ cannot be a PDSE because the members
of C ′′ can flip their strategy and there must be i∗ ∈ C ′′ such that ui(σ′′) > ui(σ)
and σ′′

i �= σi. �
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Fig. 2. Illustration of Proposition 5.

We can observe that the weight of a cut induced by a PDSE is, in the worst
case, 2/3 of the maximum weight cut. Indeed, the price of anarchy for SE is
2/3 [14]. Because a PDSE is a SE, every PDSE induces a cut whose weight
is at least 2/3 of the maximum weight of a cut. This ratio is assymptotically
tight by considering the instance of Fig. 2.B. Solid edges have weight M � 1
and dashed edges have weight 1. The state which separates {a, b} from {c, d}
is a PDSE whose induced cut has weight 2(M + 1). The state which separates
{a, c} from {b, d} induces a cut of weight 3M . This example can be extended to
unweighted graphs (each edge has weight 1 and there is only one edge between
two nodes) by replacing nodes b and a by two sets of nodes {b1, . . . , bk} and
{a1, . . . , ak}, respectively. The edge set is {(ai, bi), (bi, c), (ai, d)}, for i = 1..k,
plus {(a1, c), (b1, d)}.

Computing a NE of the max cut game is, in general, a PLS-complete problem
[27]. Therefore, it is unlikely to design a polynomial algorithm for computing a
stable state. However, we can efficiently compute a NE if the graph is unweighted:
start from any initial state and, while the current state is not a NE, perform
profitable unilateral deviations. At each step the cut contains a greater number of
edges, so the algorithm stops after at most |E| rounds. An interesting question is
to settle the complexity of computing a PDSE of the max cut game in unweighted
graphs (or more generally computing a SE).

5 Singleton and Monotone Congestion Games

A congestion game [25] is a tuple 〈N,M, (fj)j∈M , (Ai)i∈N 〉 where N is a finite
set of n players, M is a finite set of m resources, fj : N → R≥0 is a resource
function associated with resource j ∈ M , and Ai is the strategy set of player
i ∈ N . In a congestion game, every Ai is a collection of subsets of M , so Ai ⊆ 2M .
The argument of fj is the number of players having resource j in their action
(the identity of these players is irrelevant). The congestion vector associated with
state σ is denoted by �(σ). It is an m-dimensional vector which contains, for every
resource j, the number of players having j in their strategy. In a congestion game,
the cost ci(σ) of player i under strategy profile σ is defined as

∑
j∈σi

fj(�j(σ)).
A congestion game is said to be singleton when the strategy space of every

player is a collection of single resources, monotone when the resource func-
tions are either all non decreasing or all non increasing and symmetric when
A1 = A2 = . . . = An. It is known that every congestion game admits a NE
[25]; for every singleton congestion game with non decreasing resource functions,
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a NE must be a SE [20,28] and a NE can be computed in polynomial time [22];
every singleton congestion game with non increasing resource functions admits
a SE [26]; a SSE is not guaranteed to exist in a symmetric singleton congestion
game with 2 non decreasing resource functions [1,12,28]. A congestion game that
is singleton, symmetric and monotone with strictly increasing functions is also
known as a resource selection game. A resource selection game always admits a
considerate equilibrium [18] and a partition equilibrium [2].

Various complexity results related to the recognition or computation of SE
and PoNE in congestion games can be found in [19].

The next two subsections deal with monotone singleton congestion games,
that is non decreasing resource functions (Sect. 5.1) and non increasing resource
functions (Sect. 5.2). Note that for m ≥ 2 resources with non monotone cost
functions, we cannot guarantee the existence of a SE, so the existence of PDSE
is excluded in this case.

5.1 Non Decreasing Resource Functions

Known and new results are summarized in Table 2.

Table 2. Singleton congestion games with non decreasing resource functions.

m = 2 m ≥ 3

SSE not guaranteed [12,28] PDSE not guaranteed

PDSE guaranteed SE guaranteed [20,28]

– dynamics converges NE = SE

– PoNE �= PDSE �= SE

Proposition 6. When m = 2, every instance of the singleton congestion game
with non decreasing resource functions admits a PDSE and the dynamics con-
verges.

Proof. Given any strategy profile σ, let Λ(σ) be a two-dimensional vector whose
first and second coordinates are the maximum and the minimum between f1(�1(σ))
and f2(�2(σ)), respectively. If a profitable deviation weak improving move exists,
turning state σ into σ′, then Λ(σ′) ≺ Λ(σ) because the resource functions are
non increasing (see the proof of Proposition 1 for the details). �

Next observation states that though the set of NE and the set of SE coincide
[20], the set of PDSE can be a strict subset of these sets.

Observation 3. In symmetric singleton congestion games with two resources
having non decreasing resource functions, it holds that:

(i) a SE is not necessarily a PDSE;
(ii) a PDSE is not necessarily a PoNE.
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Proposition 7. There exists an instance of the symmetric singleton congestion
game with m ≥ 3 resources having non decreasing functions which does not have
any PDSE.

Proof. The instance falls in the case of resource selection. It consists of m ≥ 3
resources and m + 2 agents. For each resource j ∈ M , one has fj(x) = x for
x = 1..n. We consider two cases.

– One resource, say j, is played by at least three players. There must be another
resource, say j′, which is played by at most one player. The cost of a player
on j is at least 3, and if this player moves to j′, his cost would be at most 2.
Therefore the current strategy profile cannot be a NE.

– Two resources, say j and j′, are both selected by two players. There must a
third resource, say j′′, which is played by at most one player. Let a and b be
the players on j; let c and d be the players on j′; if there is a player on j′′

then denote it by e. The cost of players a, b, c and d is 2. Suppose b moves to
j′, c moves to j and d moves to j′′. The new cost of c is 2, the new cost of b
is 1 and the new cost of d is at most 2. Therefore, a profitable deviation weak
improving move exists.

In conclusion, there exists a deviation from any given strategy profile. �

5.2 Non Increasing Resource Functions

The results are summarized in Table 3.

Table 3. Singleton congestion games with non increasing resource functions.

Symmetric Asymmetric

SSE guaranteed for all m SSE not guaranteed (m ≥ 2)

– dynamics converges PDSE not guaranteed (m ≥ 3)

iff m = 2 PDSE guaranteed for m = 2

– dynamics converges

– SE = PDSE �= PoNE

Observation 4. Asymmetric singleton congestion games with m = 2 resources
and non increasing resource functions are not guaranteed to possess a SSE.

Proof. There are 2 resources and 3 players. For i ∈ {1, 2} player i’s single strategy
is resource i. The strategy of player 0 is {1, 2}. The resource functions are defined
as fj(x) = 2/x for the two resources. This instance does not have any SSE
because if player 0 plays resource r then his deviation to the other resource 3−r
is profitable to player 3 − r and the cost of player 0 remains unchanged. �

Observation 5. Asymmetric singleton congestion games with m ≥ 3 resources
and non increasing resource functions are not guaranteed to possess a PDSE.
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Proof. Let us first describe an instance with 3 resources {r1, r2, r3} and 3 players
{1, 2, 3}. Ai = {ri, ri+1} for i ∈ {1, 2, 3} (with the convention r4 = r1). The
resource functions are identical: frj

(x) = 2/x for j = 1..3. If the players chose
pairwise distinct resource then the strategy profile is not a NE (therefore it is
not a PDSE). Indeed every player has cost 2 whereas one player can deviate and
select the same resource as another player, and his cost becomes 1. Suppose from
now on that a resource is selected by two players, another resource is selected by
one player and the last resource is not selected. By the symmetry of the instance,
one can suppose w.l.o.g. that the current strategy profile is (r1, r2, r1). In this
case players 2 and 3 can collude and deviate to strategy profile (r1, r3, r3). The
cost of player 3 remains 1 whereas the cost of player 2 is 1 instead of 2. Thus a
profitable deviation weak improving move always exists.

Next instance consists of m ≥ 4 resources. Let us first suppose that m = 2k
for some k ≥ 2. The resource set is {r1, . . . , rk} ∪ {r′

1, . . . , r
′
k}. There are k + 1

players {0, 1, . . . , k} such that Ai = {ri, r
′
i} for i ∈ {1, . . . , k} and A0 is the entire

resource set. The resource functions are defined as fj(x) = 2/x for all j. Let σ
be a strategy profile. There is (at least) one player, say p, whose strategy σp is
different from the strategy of player 0. Thus the cost of player p is 2 while the
cost of player 0 at least 1. If σp = rp then σ̄p denotes r′

p, otherwise σp = r′
p

and σ̄p denotes rp. Players 0 and p can deviate such that they both play σ̄p.
The new cost of these players is 1 so the deviation is a profitable deviation weak
improving move. Therefore σ cannot be a PDSE. Now suppose that m = 2k + 1
for some k ≥ 2. We slightly modify the instance by adding a single resource r0
which is only available to player 0. With similar arguments, the instance cannot
admit a PDSE. �

Proposition 8. Every asymmetric singleton congestion game with 2 non
increasing resource functions admits a PDSE which can be built in O(1) time.
In addition, the dynamics are guaranteed to converge.

Proof. Denote the two resources by 1 and 2. The set of players can be partitioned
in 3 sets N1, N2 and N3. N1 and N2 contain the players whose single strategy
is 1 and 2, respectively. N3 contains the remaining agents who can select either
1 or 2. The players of N1 ∪ N2 have no choice so a strategy profile only depends
on the strategy of the members of N3. If f1(|N1 ∪ N3|) ≤ f2(|N2 ∪ N3|) then
put the players of N3 on resource 1, otherwise put them on resource 2. The
resulting strategy profile must be a PDSE because the players of N3 have the
lowest possible cost and they are the only players who can deviate.

Given any strategy profile σ, let Λ(σ) be a two-dimensional vector whose
first and second coordinates are maxj∈{1,2} fj(�j(σ)) and minj∈{1,2} fj(�j(σ)),
respectively. If a profitable deviation weak improving move is performed, turning
state σ into σ′, then it is not difficult to see that Λ(σ′) ≺ Λ(σ). �

Note that the proof of Proposition 8 still holds if we do not impose the game to
be singleton because the non-singleton 2-resource game reduces to a singleton
game (see [16], proof of Theorem 1).
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Proposition 9. For asymmetric singleton congestion games with 2 non increas-
ing resource functions, the set of SE and the set of PDSE coincide.

Proof. A PDSE is, by definition, a SE. For the sake of contradiction, take a SE
σ which admits a profitable deviation weak improving move but this deviation is
not an improving move. Let σ′ denote the state after the deviation. The game is
such that some players have a single strategy and the others can choose between
the two resources. Clearly, the members of the coalition doing the profitable
deviation weak improving move belong to the latter. In the profitable deviation
weak improving move, let x12 (x21 resp.) denote the number of players moving
from resource 1 to resource 2 (from resource 2 to resource 1 resp.). If x12 = x21

then the members exchange their costs, so the existence of a player who is better
off implies the existence of a player who is worst off, contradiction. Suppose wlog.
that x12 > x21. We consider two cases:

– The deviating agent who is better off moves from resource 1 to resource 2,
i.e. f2(�2(σ′)) < f1(�1(σ)). In this case, σ admits a deviation by x12 −x21 > 0
players, from resource 1 to resource 2, such that all the members are better
off.

– The deviating agent who is better off moves from resource 2 to resource 1,
i.e. f1(�1(σ′)) < f2(�2(σ)). Thus x21 �= 0 and σ admits a deviation by x21

players, from resource 2 to resource 1, such that all the members are better
off. Indeed, �1(σ′) = �1(σ)−x12 +x21 implies �1(σ′) < �1(σ)+x21. Since f1 is
non increasing and by the hypothesis, f1(�1(σ)+x21) ≤ f1(�1(σ′)) < f2(�2(σ)).

In any case, σ is not a SE, contradiction. �

Observation 6. For asymmetric singleton congestion games with 2 non increas-
ing resource functions, a PDSE is not necessarily a PoNE, and vice versa.

Proposition 10. Every symmetric singleton congestion game with non increas-
ing resource functions admits a SSE which can be built in O(m) time. In addition,
the dynamics are guaranteed to converge only when m ≤ 2.

Proof. Let j� = arg minj∈M fj(n) and consider σ�, the state where every player
plays j�. Under σ�, the cost of every player is fj�(n), and this is the lowest
possible cost because the resource functions are non increasing. Therefore no
player can decrease its cost with a unilateral or group deviation.

Suppose there are m = 2 resources denoted by 1 and 2. Given any strategy
profile σ, let Λ(σ) be a two-dimensional vector whose first and second coordi-
nates are maxj∈{1,2} fj(�j(σ)) and minj∈{1,2} fj(�j(σ)), respectively. If a weak
improving move is performed, turning state σ into σ′, then it is not difficult to
see that Λ(σ′) ≺ Λ(σ).

Suppose there are m ≥ 3 resources and 3 players. Define fj(x) as 1/x for
every j ∈ M . We are going to describe three states σ1, σ2 and σ3 such that a
profitable deviation weak improving move can be a transition between σi and
σi+1 for i ∈ {1, 2, 3} and σ3+1 = σ1. In σ1 players 1 and 2 are on resource 1
while player 3 is on resource 2. In σ2 players 1 and 3 are on resource 3 while
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player 2 is on resource 1. In σ3 players 2 and 3 are on resource 2 while player
1 is on resource 3. The cost profiles associated with σ1, σ2 and σ3 are (12 , 1

2 , 1),
(12 , 1, 1

2 ) and (1, 1
2 , 1

2 ), respectively. �

The computation of a PDSE for a singleton congestion game with 2 (non decreas-
ing or non increasing) resources is direct since there are essentially n+1 possible
states: x players on the first resource and n − x on the other, with 0 ≤ x ≤ n.

6 Conclusion

To conclude, our positive results concerning the existence of a PDSE occur when
two strategies are available to each player. For scheduling games and monotone
singleton congestion games with 3 or more strategies, there are instances without
any PDSE. This observation triggers two questions. Can we characterize the 2-
strategy games which admit a PDSE? Can we learn from the counterexamples
with 3 (or more) strategies how to refine the notion of PDSE such that a similar
solution concept exists when more than 2 strategies are available?

As a future work it would be interesting to extend our results to other 2-
strategy games. In the max sat game (see for example [5]) there is a set of
weighted disjunctive clauses defined over a set of variables. Each variable is
controlled by a player who can play true or false. The payoff of a player is the
weight of the satisfied clauses where its variable appears. We can also think of
player-specific singleton congestion games with two resources [22].
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Abstract. Computing the winners of an election is an important task in
voting and preference aggregation. The declarative nature of answer-set
programming (ASP) and the performance of state-of-the-art solvers ren-
der ASP very well-suited to tackle this problem. In this work we present
a novel, reduction-based approach for a variety of voting rules, ranging
from tractable cases to problems harder than NP. The encoded voting
rules are put together in the extensible tool Democratix, which handles
the computation of winners and is also available as a web application.
To learn more about the capabilities and limits of the approach, the
encodings are evaluated thoroughly on real-world data as well as on ran-
dom instances.

1 Introduction

Voting and preference aggregation are central topics in the field of computational
social choice. Here one is interested in how opinions (or preferences) can be
aggregated in order to obtain a collective decision. Application areas range from
(political) elections to multi-agent systems. Further applications are network
design and ranking algorithms for search engines (see, e.g., [15,22]). Although
voting and preference aggregation are vivid and growing research areas, the num-
ber of available implementations and tools is still rather limited. In particular,
a general, customizable, and freely available system could support and encourage
experimental research in this interdisciplinary area.

In this paper we present a novel reduction-based approach for winner deter-
mination: Hereby, we express voting rules in the formalism of answer-set pro-
gramming (ASP) (see, e.g., [21,30]). ASP allows one to model problems declara-
tively, which not only leads to readable and maintainable code but also results in
succinct encodings (compared to imperative languages). These encodings often-
times closely resemble the mathematical definitions of the respective voting rules,
thereby yielding an “executable specification”. Furthermore, due to the develop-
ments of the last years, sophisticated solvers have become available for ASP (e.g.,
[19,26]). All encoded voting rules are readily available in our tool Democratix
that allows the user to automatically obtain the winners of elections and also to
specify further voting rules. This makes the tool especially well-suited for exper-
imenting with new voting rules, and allows one to model new rules “hands-on”
c© Springer International Publishing Switzerland 2015
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together with experts from other fields (similar to [32]). To enable a broader
range of users to work with Democratix, the tool is also made available as a
tutorial-like web application.

So far, preference aggregation in combination with ASP has hardly ever
been explored. One exception is the work of Konczak [25], where the possi-
ble/necessary winner problem in the setting of incomplete preferences is solved
for several cases which are polynomially decidable. In contrast, here we consider
twelve different voting rules over fully specified preferences. For four of these
rules it is harder than NP to decide whether a given candidate is among the
winners. Furthermore, some work exists on implementations for specific voting
rules, including Kemeny winner determination (cf. [1,9,13,14]) and approxima-
tion of Dodgson and Young elections [12]. Additionally, some commercial tools
(e.g., OpenSTV [31]) are available as well as software that supports some poly-
nomial voting rules (e.g., http://vote.sourceforge.net/). Moreover, there exist
user-friendly web-platforms for preference aggregation, such as Whale3 [6] and
the recently developed Pnyx system [8]. In contrast to Democratix, these plat-
forms are designed for end-users rather than to be a research tool and comprise
a fixed set of voting rules. Another branch of research in social choice, where
reduction-based approaches have been successfully employed, is automated the-
orem proving. One example is the application of the satisfiability problem (SAT)
for finding strategyproof social choice functions [7] and in the area of “ranking
sets of objects” [20]. Before that, reductions to SAT and constraint satisfaction
problems (CSP) have been applied for proving, e.g., Arrow’s theorem [35].

Despite this progress, to the best of our knowledge, there does not exist a
uniform system that permits the declarative specification of hard voting rules.
Democratix is the first tool that computes, using an exact approach, all winners
with respect to declaratively specified voting rules that can be harder than NP.
In more detail, our main contributions are the following:

– Democratix comprises novel ASP encodings for a variety of voting rules, rang-
ing from tractable (such as Plurality, Borda and other scoring rules, Maximin,
Copelandα, Bucklin, and Black) to intractable (Kemeny, Dodgson, Young, and
Slater) rules. It features a uniform interface for all voting rules and hence can
easily be extended and integrated into other tools. This makes the tool espe-
cially suitable for experimenting with voting rules in a declarative way.

– The tool is available as a web application that allows one to evaluate the
voting rules on any election with complete strict-orders given in the PrefLib
format [28]. Several interactive examples help to make the tool also accessi-
ble to non-experts. Furthermore, we think that the web application is useful
for demonstrations and teaching, as examples can be executed and modified
directly in the browser.

– We evaluate our approach using the instances from PrefLib and a collection
of randomly generated elections. Benchmark results show the capabilities and
limits of our approach. Results indicate that our approach works very well for
all tractable rules. For the hard rules, we obtain a mixed picture. We thus
study how the runtime is influenced by different representations of a voting
rule by comparing three alternative encodings of Kemeny’s rule.

http://vote.sourceforge.net/
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The web application, the Democratix source-code, and the encodings of the
voting rules are available at: http://democratix.dbai.tuwien.ac.at/

This work is structured as follows: In Sect. 2 we recall the required basics of
voting theory and ASP; followed by Sect. 3, where we present our encodings. An
overview of the Democratix system and the web application is given in Sect. 4. In
Sect. 5, we provide an experimental evaluation of the tool. Finally, we conclude
in Sect. 6 and provide an outlook on further developments.

2 Preliminaries

2.1 Voting Theory

Let C be a finite set of candidates with |C| = m and V = {1, 2, . . . , n} a finite
set of voters. Furthermore, let � be a preference relation, i.e., a strict total order
over C. The top-ranked candidate of � is at position 1, the successor at position
2, . . ., and the last-ranked candidate is at position m. The vote of voter i ∈ V is
the preference relation �i. A collection of preference relations P = (�1, . . . ,�n)
is called a preference profile. A voter i prefers candidate c over candidate c′ if
c �i c′. We denote by prf(P, c, c′) the number of voters in P that prefer c over
c′. An election is given by E = (C, V,P). A voting rule F is a mapping from an
election E to a non-empty subset of the candidates W ⊆ C, i.e., the winners of
the election. We briefly recall the voting rules discussed in this paper.

Scoring rules. The class of (positional) scoring rules can be expressed by scoring
vectors α = (α1, . . . , αm), where αi ∈ N for 1 ≤ i ≤ m with α1 ≥ α2 ≥ · · · ≥
αm and α1 > αm. To evaluate an election according to a scoring rule, the
candidate ranked at position i gains αi points. The winners of the election are
the candidates having maximum score.

The plurality rule can easily be expressed via the vector α = (1, 0, 0, . . . , 0).
Similarly, the veto rule is expressed by α = (1, 1, . . . , 1, 0). In another rule, k-
approval, the candidates at position 1 to k gain one point each. Finally, Borda’s
rule uses the scoring vector α = (m − 1,m − 2, . . . , 0).

Condorcet. The Condorcet winner is a candidate c ∈ C such that for all c′ ∈
C \ {c} the condition prf(P, c, c′) > n

2 holds. Notice that there are elections
without Condorcet winner.

Dodgson and Young. Since having a Condorcet winner is a very favorable prop-
erty there are several voting rules that try to modify an election as little as
possible to obtain a Condorcet winner. There are various notions characteriz-
ing this minimality of change. One such rule is the voting rule attributed to
Dodgson. For this rule, the Dodgson score of a candidate c is defined to be the
minimum number of swaps of adjacent candidates in the votes necessary to make
c a Condorcet winner. The winners are the candidates with minimum Dodgson
score. In contrast to swapping candidates, in the related Young rule votes are
removed until a Condorcet winner exists.

http://democratix.dbai.tuwien.ac.at/
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Kemeny. Kemeny’s rule is based on the distance between votes. For two votes
v1, v2 and two candidates c1, c2 we define disagree(v1, v2, c1, c2) to be 0 if v1
and v2 rank the candidates c1 and c2 in the same way, and to be 1 other-
wise. The distance between two votes v1 and v2 is defined as dist(v1, v2) =∑

{c1,c2}⊆C disagree(v1, v2, c1, c2). The distance between a preference relation �
and an election E = (C, V,P = (�1, . . . ,�n)) is given by the Kemeny score
kemeny(�, E) =

∑
1≤i≤n dist(�,�i). A preference relation � with minimum

kemeny(�, E) is called a Kemeny consensus with respect to E. The winners are
the top-ranked candidates in any Kemeny consensus.

Notice that determining the winner according to a scoring rule as well as
finding the Condorcet winner can be done in polynomial time. However, deciding
whether a candidate is a winner was shown to be ΘP

2 -complete for Dodgson [23],
Young [33] as well as Kemeny [24]. Recall that the class ΘP

2 contains all problems
that can be decided in polynomial time by a deterministic Turing machine using
O(log n) calls to an NP-oracle, where n is the input size.

2.2 Answer-Set Programming

We introduce normal logic programs under the answer-set semantics (see [10,21,
30]), thereby restricting ourselves to the syntax and semantics relevant for this
work. For more details on ASP see, e.g., [16,18].

We fix a countable set U of domain elements, also called constants. An atom
is an expression p(t1, . . . , ta), where p is a predicate of arity a ≥ 0 and each ti
is either a variable or an element from U . We use “ ” to denote an anonymous
variable. An atom is ground if it is free of variables. BU denotes the set of all
ground atoms over U .

A normal rule r with 0 ≤ k ≤ n is of the form

h ← b1, . . . , bk, not bk+1, . . . , not bn.

The head of a rule r is the set H(r) = {h}, containing exactly one element. The
body of r is B(r) = B+(r) ∪ B−(r) with B+(r) = {b1, . . . , bk} and B−(r) =
{bk+1, . . . , bn}. Here, h, b1, . . . , bn are atoms, and “not ” stands for default nega-
tion. An atom x is a positive literal, while not x is a default negated literal. We
denote by b(t1; . . . ; tl) the sequence of unary atoms b(t1), . . . , b(tl). Extending
normal rules we have integrity constraints where H(r) = ∅ and B(r) 
= ∅.

A rule r is safe if each variable in r occurs in B+(r). A rule r is ground if no
variable occurs in r. A fact is a ground rule with empty body. A program π is
a finite set of safe rules. I ⊆ BU is an answer set of π iff it is a subset-minimal
set satisfying the Gelfond-Lifschitz reduct πI = {H(r) ← B+(r) | I ∩ B−(r) =
∅, r ∈ Gr(π)}, where Gr(π) is the grounding of π.

Additionally we consider the class of optimization programs, i.e., programs
containing also weak constraints

�b1, . . . , bk, not bk+1, . . . , not bn. [w]
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where all bj with 1 ≤ j ≤ n are as in rules and the weight w is a positive integer
variable occurring in b1, . . . , bk or a constant. Answer sets are minimized w.r.t.
the costs, i.e., the sum of weights.

In addition to atoms, the body of a rule can contain aggregates of the
form x := aggrt{p(t1, . . . , ta) : p1 : · · · : pl} where aggr ∈ {sum,min,max},
p(t1, . . . , ta) is an atom, p1, . . . , pl are conditional atoms and t is an integer
variable occurring in t1, . . . , ta. Variable x gets assigned an integer that cor-
responds to the value of aggr evaluated on the values of t in all grounded
instantiations of p in interpretation I, such that p1, . . . , pl are in I. Further-
more, x := count{p(t1, . . . , ta)} counts the number of grounded occurrences of
p(t1, . . . , ta) in I. In addition, we allow standard relations and arithmetic expres-
sions. All these extensions are readily supported by modern ASP solvers.

3 Winner Determination with ASP

In this section we present our approach for encoding voting rules in ASP and
describe some of the encodings in detail. Special focus is devoted to voting rules
that are harder than NP. For Kemeny’s rule, we additionally highlight how dif-
ferent design choices can be put into practice in the Democratix system. Addi-
tionally, we show how voting rules can be combined.

Encoding Elections. For the encodings to follow we assume the election to
be given as a set of ASP facts. Let E = (C, V,P) be an election with C =
{c1, . . . , cm} and V = {1, . . . , n}. Furthermore, let prefs(P) = {�1, . . . ,�l},
l ≤ n, denote the set of distinct preference relations occurring in the profile
P, and vc(P,�) denote the number of times preference relation � occurs in
P. For 1 ≤ i ≤ l, let the preference relation �i ∈ prefs(P) be of the form
ci1 �i ci2 �i · · · �i cim . The input of the ASP encoding is now given as follows:
Each distinct preference relation �i is represented by m facts p(i, j, cij ), where
1 ≤ j ≤ m, and a single fact vcnt(i, vc(P,�i)). (This representation usually
reduces the size of the encoded election as each distinct preference relation is
encoded only once.) Additionally, for convenience, three unary facts vnum(n),
cnum(m), and pnum(l) are added to the input. Note that it is easy to adapt this
representation to handle also incomplete votes as well as non-anonymous voting
rules. For voting rules such as Copelandα and k-approval it is also possible to
pass parameters along with the input instance in form of ASP facts.

The output of the ASP solver applied to the encoding of a voting rule together
with the encoding of the election is either one or several answer sets contain-
ing winner predicates, or UNSATISFIABLE (e.g., in case we want to compute the
Condorcet winner, but there is none for the given election). For encodings of
problems that contain weak constraints, only the minimal answer sets, i.e., the
answer sets with minimum cost, are returned by the solver.
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Encoding 1: Borda

cand(I ) ← cnum(M ), 1 ≤ I ≤ M . (1)
posScore(P ,C ,S · VC ) ← p(P ,Pos,C ), cnum(M ),S := M − Pos, vcnt(P ,VC ). (2)

score(C ,N ) ← cand(C ),N := sum
S

{posScore( ,C ,S)}. (3)

maxScore(M ) ← M := max
S

{score( ,S)}. (4)

winner(C ) ← cand(C ), score(C ,M ),maxScore(M ). (5)

Scoring rules. The family of scoring rules can be expressed very naturally in ASP.
Here, we start with an ASP program for Borda’s rule, depicted in Encoding 1.
The first rule is used to obtain the cand relation, which contains all elements of
{1, . . . , m}. Then, we determine for each candidate in every preference relation
the score according to his position (rule 2). Observe that this score is multiplied
by VC , i.e., the number of occurrences of the preference relation in P. Next, we
sum the scores of a candidate over all votes (rule 3). Finally, in rules (4) and (5)
the winner(s) are determined.

It is simple to modify Encoding 1 to specify other scoring rules, such as plu-
rality, k-approval, and veto. The plurality rule can be obtained by replacing rule
(2) with posScore(P ,C ,VC ) ← p(P , 1,C ), vcnt(P ,VC ). Similarly, for veto we
replace rule (2) with posScore(P ,C ,VC ) ← p(P ,Pos,C ), cnum(M ), Pos 
= M,
vcnt(P ,VC ). Finally, for k-approval we replace rule (2) with posScore(P ,C ,VC )
← p(P ,Pos,C ), vcnt(P ,VC ), kApp(K ), Pos ≤ K ., where variable K in kApp(K )
is a parameter.

Encoding 2: Condorcet

cand(I ) ← cnum(M ), 1 ≤ I ≤ M . (1)
prefer(P ,C1,C2) ← p(P ,Pos1,C1), p(P ,Pos2,C2),Pos1 < Pos2. (2)

preferCnt(C1,C2,N ) ← cand(C1;C2),C1 �= C2, (3)
N := sum

VC
{vcnt(P ,VC ) : prefer(P ,C1,C2)}.

noWin(C ) ← preferCnt(C , ,N ), vnum(V ),N · 2 ≤ V . (4)
winner(C ) ← cand(C ),not noWin(C ). (5)
anyWinner ← winner( ). (6)

← not anyWinner. (7)

Condorcet. Determining whether a given election has a Condorcet winner is a
central subtask in several voting rules. As in the previous encoding, in rule (1) of
Encoding 2 the unary relation cand is constructed. Rules (2) and (3) are used
to compute the value of prf(P, ci, cj) for any pair of distinct candidates in C.
A candidate c cannot be a Condorcet winner if there is some other candidate c′

such that prf(P, c, c′) ≤ n
2 . This search is encoded in rule (4) where noWin(C)

is derived if such a counterexample can be found for candidate C. In case no
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counterexample exists, we have indeed found the Condorcet winner (rule 5).
Rule (6) derives the atom anyWinner if there is some winner. The constraint in
rule (7) ensures that no answer set is returned if no Condorcet winner exists.

Notice that only stratified default negation and no weak constraints are used
in the previous encodings. Hence the encodings lie in the P fragment of ASP
(data-complexity). We remark that for such programs an ASP solver can com-
pute the unique answer set (if it exists) without backtracking. We now turn to
harder voting rules, i.e., voting rules for which the problem of winner determi-
nation is ΘP

2 -complete. To capture these problems, the following encodings make
use of non-stratified default negation and weak constraints.

Kemeny. Kemeny’s rule is particularly well-suited for illustrating the guess,
check & optimize approach of ASP. In the following, we discuss three differ-
ent encodings for this voting rule. The intuitive approach is to guess a prefer-
ence relation and compute the Kemeny score. The Kemeny consensuses are then
obtained by minimizing over all guessed preference relations. The winners are
the top-ranked candidates in a Kemeny consensus.

Encoding 3: Kemeny (direct, dir)

dom(I ) ← cnum(M ), 1 ≤ I ≤ M . (1)
wrank(P ,C2,C1) ← p(P ,Pos1,C1), p(P ,Pos2,C2),Pos1 < Pos2. (2)

wrankC(C2,C1,N ) ← dom(C1;C2),N := sum
VC

{vcnt(P ,VC ) : wrank(P ,C2,C1)}. (3)

gpref(Pos,C ) ← dom(Pos;C ),not npref(Pos,C ). (4)
npref(Pos,C ) ← dom(Pos;C ),not gpref(Pos,C ). (5)

← gpref(Pos,C1), gpref(Pos,C2),C1 �= C2. (6)
← gpref(Pos1,C ), gpref(Pos2,C ),Pos1 �= Pos2. (7)

occupied(Pos) ← gpref(Pos, ). (8)
← dom(Pos),not occupied(Pos). (9)

rank(C1,C2) ← gpref(Pos1,C1), gpref(Pos2,C2),Pos1 < Pos2. (10)
�rank(C1,C2),wrankC(C1,C2,N ). [N ] (11)

winner(C ) ← gpref(1,C ). (12)

This first variant is depicted in Encoding 3. In rule (1) the unary relation dom
is obtained, which is used to identify candidates and positions in preferences. We
then determine for each preference relation the candidates C2 that are worse-
ranked than C1 (rule 2) and sum up the overall number of voters that do not
prefer C2 over C1 (rule 3). Note that rules (1–3) can be computed independently
of the guess during grounding. In rules (4–9) the preference relation is guessed
by assigning to each candidate exactly one position.1 We obtain the relation rank
whenever C1 is better-ranked than C2 in our guessed preference relation (rule
10). What remains is to select only preference relations with minimal Kemeny

1 Note that these rules can be simplified by using the so-called choice rule (see, e.g.,
[11]). Currently, this construct is, however, not supported by all ASP solvers.
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score. (rule 11). A candidate ranked first in such a Kemeny consensus is a winner
(rule 12).

Another approach to model Kemeny’s rule proceeds as follows. The prefer-
ence relation is obtained implicitly by guessing the relative order for each pair of
candidates within the relation. We call this alternative encoding Kemeny (alt),
given in Encoding 4. As we will see in Sect. 5, the representation in ASP can
influence the runtime notably. In particular, within Encoding 4 we apply the fol-
lowing optimizations: (a) Rule (4.2) combines rules (3.2–3.3) of Encoding 3. This
reduces the size of the grounding, since wrank is not derived explicitly. (b) By
the condition C1 < C2 in rule (4.2) only half of the candidates are compared.
(c) The guess in rules (4.3–4.4) directly contains the costs (N resp. U −N ) for a
candidate C1 being preferred over a candidate C2. Since the weak constraint in
rule (4.9) directly minimizes over these costs, the ASP solver is guided towards
guessing first on prefer predicates with low costs. (d) Rules (4.5–4.7) guaran-
tee that the guess forms a valid preference relation. With xpref, the transitive
closure over prefer is obtained, and relations containing a cycle are removed.
(e) Rule (4.8) is redundant but increases performance: Each candidate is either
ranked before or after each other candidate.

Encoding 4: Kemeny (alternative, alt)

cand(I ) ← cnum(M ), 1 ≤ I ≤ M . (1)
wrankC(C2,C1,N ) ← cand(C1;C2),C1 < C2,N := sum

VC
{vcnt(P ,VC ) :

p(P ,Pos1,C1) : p(P ,Pos2,C2) : Pos1 < Pos2}.
(2)

prefer(C2,C1,N ) ← wrankC(C2,C1,N ), vnum(U ),not prefer(C1,C2,U − N ). (3)
prefer(C1,C2,U − N ) ← wrankC(C2,C1,N ), vnum(U ),not prefer(C2,C1,N ). (4)

xpref(C1,C2) ← prefer(C1,C2, ). (5)
xpref(C1,C3) ← xpref(C1,C2), xpref(C2,C3). (6)

← xpref(C ,C ). (7)
← cand(C1;C2),C1 �=C2,not xpref(C1,C2),not xpref(C2,C1).(8)

�prefer( , ,N ). [N ] (9)
someBetter(C2) ← prefer(C1,C2, ). (10)

winner(C ) ← cand(C ),not someBetter(C ). (11)

Finally, we show how to encode Kemeny’s rule building upon the weighted
majority graph G = (V,A,w) of an election E = (C, V,P). Intuitively, G is a
directed, weighted graph with an arc between two candidates c and c′, whenever
c is preferred over c′ by more voters in E, and the arc is weighted with the
majority margin. For c, c′ ∈ C, let mar(P, c, c′) = prf(P, c, c′) − prf(P, c′, c).
Then, G is constructed as V = C, A = {(c, c′) | c, c′ ∈ C,mar(P, c, c′) ≥ 0} and
for (c, c′) ∈ A, we have w((c, c′)) = mar(P, c, c′). The goal is now to construct
an acyclic graph of G by inverting arcs. A Kemeny consensus has minimal total
weight over the inverted arcs, and winners are candidates without incoming arc
in a Kemeny consensus.
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In Encoding 5, rules (2–4) are used to construct the weighted majority graph
from the input. Note that this conversion of the input format is directly realized
in the encoding. With rules (5–6) we guess whether an arc is inverted. Based
on this guess, rules (7–9) remove solutions where the graph is not acyclic, and
the weak constraint in rule (10) adds the weight of each inverted arc to the
costs. Finally, rules (11–12) select the candidate without incoming arc as winner.
Observe that we can obtain also an encoding of Slater’s rule from this by setting
the weight of all arcs to one. Still, improving performance by using techniques
such as described in [17] are left for future work.

Encoding 5: Kemeny (Weighted Majority Graph, MG)

cand(I ) ← cnum(M ), 1 ≤ I ≤ M . (1)
mar(C1,C2,D) ← cand(C1;C2),C1 < C2, vnum(N ), (2)

D = 2 · S − N ,S = sum
VC

{vcnt(P ,VC ) :

p(P ,Pos1,C1) : p(P ,Pos2,C2) : Pos1 < Pos2}.
arc(C1,C2,D) ← mar(C1,C2,D),D ≥ 0. (3)

arc(C2,C1,−D) ← mar(C1,C2,D),D < 0. (4)
garc(C1,C2, 0) ← arc(C1,C2,D),not garc(C2,C1,D). (5)
garc(C2,C1,D) ← arc(C1,C2,D),not garc(C1,C2, 0). (6)
reach(C1,C2) ← garc(C1,C2, ). (7)
reach(C1,C3) ← garc(C1,C2, ), reach(C2,C3). (8)

← reach(C ,C ). (9)
�garc( , ,D). [D] (10)

incoming(C2) ← garc(C1,C2, ). (11)
winner(C ) ← cand(C ),not incoming(C ). (12)

Dodgson. For Dodgson’s rule, one could guess all (m!)n possible preference pro-
files, check whether there exists a Condorcet winner and minimize over the num-
ber of swaps. In order to avoid unnecessary guesses we impose the following
constraints (see [4, Observation 1]). It is sufficient to shift at most one candidate
per vote, i.e., one candidate is swapped successively towards the top.

To allow for a simpler presentation of this encoding, we assume that the input
is given in extensive form. In extensive form we do not make use of the vcnt
predicate to represent preferences occurring multiple times in profile P. Instead,
for a preference relation �i of the form ci1 �i ci2 �i · · · �i cim we introduce
vc(P,�i) many facts v(f(i, x), j, cij ) where 1 ≤ j ≤ m, 1 ≤ x ≤ vc(P,�i), and
f is a bijection that assigns to each pair (i, x) a distinct voter in V . Notice that
this conversion to extensive form can be easily realized during the preparation
of the input or directly in the ASP encoding.

In Encoding 6 we first obtain the voters and the domain (positions and can-
didates) as in the previous encodings (rules 1–2). In rules (3–4) we guess the
shifts in the votes. For a voter V the candidate at position Pos1 will be shifted
to Pos2 . At most one shift per voter (rules 5–6) to a better position (rule 7)
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is allowed. The preference profile is now recomputed: The candidate C1 is
moved from Pos1 to Pos2 (rule 8) and each candidate originally at Pos with
Pos2 ≤ Pos < Pos1 is shifted by one position downwards (rule 9). In the newly
computed votes nv, the shifted candidates are assigned to their new positions
(rule 10) and the remaining positions are filled with the respective candidates
of the original vote (rules 11–12). Rules (13–18) encode the computation of
the Condorcet winner, similar to Encoding 2. Finally, rule (19) minimizes over
the number of swaps. Note that one shift consists of Pos1 − Pos2 elementary
exchanges, i.e., swaps, of adjacent candidates.

Encoding 6: Dodgson

voter(I ) ← vnum(N ), 1 ≤ I ≤ N . (1)
dom(I ) ← cnum(M ), 1 ≤ I ≤ M . (2)

shift(V ,Pos1,Pos2) ← voter(V ), dom(Pos1;Pos2),not noshift(V ,Pos1,Pos2). (3)
noshift(V ,Pos1,Pos2) ← voter(V ), dom(Pos1;Pos2),not shift(V ,Pos1,Pos2). (4)

← shift(V ,Pos1, ), shift(V,Pos ′
1, ),Pos1 �= Pos ′

1. (5)
← shift(V , ,Pos2), shift(V , ,Pos ′

2),Pos2 �= Pos ′
2. (6)

← shift(V ,Pos1,Pos2),Pos1 ≤ Pos2. (7)
sv(V ,Pos2,C1) ← shift(V ,Pos1,Pos2), v(V ,Pos1,C1). (8)
sv(V ,PShift ,C ) ← shift(V ,Pos1,Pos2), v(V ,Pos,C ), (9)

Pos2 ≤ Pos,Pos < Pos1,PShift := Pos + 1.

nv(V ,PShift ,C ) ← sv(V ,PShift ,C ). (10)
occupied(V ,Pos) ← sv(V ,Pos, ). (11)

nv(V ,Pos,C1) ← v(V ,Pos,C1),not occupied(V ,Pos). (12)
prefer(V ,C1,C2) ← nv(V ,Pos1,C1), nv(V ,Pos2,C2),Pos1 < Pos2. (13)

preferCnt(C1,C2,N ) ← dom(C1;C2),C1 �= C2,N := count{prefer( ,C1,C2)}. (14)
noWin(C ) ← preferCnt(C , ,N ), vnum(V ),N · 2 ≤ V . (15)
winner(C ) ← dom(C ),not noWin(C ). (16)
anyWinner ← winner( ). (17)

← not anyWinner. (18)
�shift( ,Pos1,Pos2). [Pos1 − Pos2] (19)

Young’s rule can be encoded quite similarly to Dodgson’s rule. The basic idea
is to replace rules (3–12) by a set of rules that guess the votes to be deleted. Now,
in rules (13–19) we check whether this gives a Condorcet winner and minimize
over the number of votes to be deleted.

Combining Voting Rules. Having a plethora of voting rules at hand it is a natural
question to ask how one can combine existing voting rules. For instance, Black’s
rule is a combination of Condorcet voting and Borda’s rule. Another example is
the recent work of Narodytska et al. [29] where the properties of combinations
of rules are studied.

Our approach of using ASP encodings of voting rules readily supports the
combination of voting rules. Besides using a sequence of ASP solver calls, a much
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more elegant way is to specify a monolithic encoding. Here one has to make sure
that the predicates occurring in the heads of the rules originating from different
encodings are made disjoint and that the input relations do not occur in the
heads. Notice that the former condition can be ensured by prefixing while the
latter condition should hold in most reasonable encodings anyway. Black’s rule
is very well suited to illustrate these ideas.

Black. Black’s rule returns the Condorcet winner if it exists, and otherwise
returns the Borda winners. In Encoding 7, the winners are contained in the
relations winnerCond(C ) and winnerBorda(C ), respectively. The effort needed for
“gluing” the encodings together is minimal. We add the atom computeBorda to
the body of each rule that is exclusively used to compute the winners of Borda’s
rule. In rules (1–2) it is checked whether a Condorcet winner exists. If there is
no Condorcet winner, rule (3) fires and enables the computation of the Borda
winners (rule 4).

Encoding 7: Black

winnerCond(C ) ← · · · (1)
condorcet ← winnerCond( ). (2)

computeBorda ← not condorcet. (3)
winnerBorda(C ) ← computeBorda, . . . (4)

winner(C ) ← winnerCond(C ). (5)
winner(C ) ← winnerBorda(C ). (6)

Another case where combining voting rules is applicable, is the following:
For voting rules that measure the distance to elections with a Condorcet win-
ner (e.g., Dodgson, Young), it might be favorable to first check whether the
instance already has a Condorcet winner. Only if there is no Condorcet winner,
the grounding for the guess has to be computed. Note that such an encoding
follows the same pattern as used for Black’s rule.

4 The Democratix System

All implemented voting rules are put together in the tool Democratix. The appli-
cation handles parsing of input instances in PrefLib format [28] to ASP facts.
Internally, the ASP solver Clingo [19] is called with the input instance and the
encoding of the voting rule as input. The tool is easily extendible, thereby allow-
ing integration of further (e.g., combined) voting rules and handling of, e.g.,
incomplete preferences. Additionally, the tool is readily prepared to be used
with other ASP solvers such as further solvers from the Potassco family [19],
DLV [26] and WASP [2]. Democratix is implemented in Python, licensed as
open source under the GNU General Public License (GPLv3), and can be run
both on Unix-based and Windows systems.

We also provide easy access to Democratix via a web front-end that is avail-
able at http://democratix.dbai.tuwien.ac.at/. A screenshot is depicted in Fig. 1.

http://democratix.dbai.tuwien.ac.at/
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Fig. 1. Screenshot of the web front-end for Democratix

There, instances from PrefLib can be evaluated directly with respect to the vot-
ing rules considered in this work. In the example section of the web page, the
voting rules are presented and explained in a tutorial-like style. The front-end
features interactive evaluation and modification of the provided examples. We
believe that the web front-end is therefore particularly well-suited to make voting
theory also accessible to non-experts.

Our long-term goal is to constantly extend the Democratix system, e.g., by
including further voting rules and providing support for incomplete preferences.
We think that our declarative ASP-based approach is the right choice to provide
concise, well-readable and maintainable extensions for the system. To this end,
we would also like to invite the community to contribute to the system.

5 Evaluation

We evaluate Democratix on basis of the complete strict-order instances provided
by PrefLib [28]. This allows us to gain a detailed insight into the runtime behavior
of our tool on various kinds of instances. Additionally, to study the capabilities
and limits of our general, ASP-based approach, we run the hard voting rules
on randomly generated elections (using “PrefLibTools-0.1” under the impartial
culture model). To highlight how different implementation variants influence run-
time, we compare our three encodings for Kemeny’s rule in detail. Additionally,
we consider an Integer Linear Programming (ILP) formulation for Kemeny’s rule
that follows ideas presented in [13] and is implemented in the Pnyx system [8].
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Table 1. PrefLib instances (.soc): number of solved, timeout (TO) and memout (MO)
instances. The maximal time (over all) and the average time (over solved) instances is
given in seconds (s). In the cells the entries left (right) of “/” refer to instances with
(without) Condorcet winner (281/33 instances in total)

Name Solved TO MO Time (max,s) Time (avg,s)

Plurality 281/33 0/0 0/0 0.39/0.06 0.05/0.05

Veto 281/33 0/0 0/0 0.58/0.06 0.05/0.05

Borda 281/33 0/0 0/0 0.65/0.06 0.05/0.05

Bucklin 281/33 0/0 0/0 1.11/1.11 0.08/0.23

Maximin 281/33 0/0 0/0 1.64/1.33 0.08/0.24

Black 281/33 0/0 0/0 1.57/1.28 0.08/0.24

Copeland 281/33 0/0 0/0 1.63/1.53 0.09/0.29

Condorcet 281/33 0/0 0/0 1.71/1.23 0.09/0.23

Young (+C) 281/31 0/2 0/0 1.78/TO 0.08/1.42

Dodgson (+C) 281/22 0/11 0/0 1.60/TO 0.08/98.77

Slater (+C) 281/14 0/19 0/0 0.69/TO 0.06/4.80

Kemeny (dir+C) 281/2 0/27 0/4 1.57/TO 0.08/0.05

Kemeny (alt+C) 281/3 0/30 0/0 1.63/TO 0.08/3.83

Kemeny (MG+C) 281/14 0/19 0/0 0.69/TO 0.06/0.49

Kemeny (ILP) 274/27 7/6 0/0 TO/TO 14.87/53.64

We are not aware of any further exact and freely available (ILP) implementations
for the hard voting rules considered in this work.

We performed benchmarks on a server with two Intel Xeon E5345 @ 2.33GHz
processors and 48 GB RAM running Debian 7.8, kernel 3.2.63–2. Each run was
limited to a single core, 16GB of memory and a time limit of 10 min. Results for
Democratix were obtained using ASP solver Clingo 4.4.0. The ILP formulation
was tested with the open source solver GLPK 4.45. The evaluation of proprietary
(but potentially more efficient) ILP solvers is left as future work. Note that we
also tested voting rules not presented in detail in Sect. 3.

PrefLib (SOC). Table 1 contains the results for all 314 complete, strict-order
instances of the PrefLib library (as of April 20, 2015) [3,27,28,31]. The results
show that for all voting rules, where the problem of winner determination is in
P, our ASP-based implementation is very fast. For the problems above NP, we
tested our combined encodings that implement a Condorcet pre-check (+C). All
instances that were not solved are out of the 33 instances that have no Con-
dorcet winner. For Young’s rule, the unsolved instances contain a rather high
number of voters (n ∈ {532, 578}), in particular when considering that there
are 2n possible combinations of removed votes from the preference profile. In
general, Dodgson has (m!)n possibilities of swapping positions of candidates in
the votes, which is also observable in our results, as both the number of candi-
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Table 2. Random instances without Condorcet winner: maximum size (in terms of the
number of voters/candidates) of instances solved within 10 min and 16GB memory

Name (m = 5, n =?) (m =?, n = 5)

Young (+C) 100 1521

Dodgson (+C) 141 73

Slater (+C) ≥ 100000 22

Kemeny (MG+C) ≥ 100000 24

Kemeny (ILP) ≥ 100000 68

dates and voters strongly influences the runtime. In Slater’s and Kemeny’s rule
(MG implementation) we have O(2m2

) potential guesses on the edge direction
between candidates. For the direct and alternative implementation of Kemeny’s
rule there are m! possible preference relations to be guessed. Our results show
that the runtime is indeed mainly influenced by m.

Bounds. To give an indication of the tool’s applicability in particular settings,
we generated instances with a fixed number of candidates m = 5 (voters n =
5) and increasing n (m) up to n = 100000 (m = 2000). Due to the applied
Condorcet pre-check, all instances having a Condorcet winner were solved by
Democratix within the time and memory limits. Table 2 gives the maximum
number of voters (candidates) up to which random instances without Condorcet
winner could be solved by Democratix. All instances with a bound of n = 100000
were solved in less than one second. Note that the reported bounds are dependent
on the generated instances, the benchmark server and solver-internal heuristics.
Nevertheless, this gives some indication of whether Democratix is suitable for
evaluating a given instance. A detailed comparison between the different Kemeny
implementations is given below.

Kemeny. We study the performance of our ASP encodings for Kemeny’s rule
as well as of an ILP formulation of the rule. Our focus lies on the different
implementations for Kemeny’s rule, therefore we did not apply a Condorcet
pre-check here. Figure 2 shows the average runtime over 10 instances for each
fixed n and m. Most notably, the implementations based on the majority graph
(Kemeny (MG) and Kemeny (ILP)) perform best, and almost equally good on
instances up to m = 20. However, as m grows, Kemeny (MG) tends to have
more outliers (w.r.t. time) compared to Kemeny (ILP). One reason is that there
can be millions of solutions for larger instances, which are all computed by
Democratix. The ILP-based implementation, however, currently reports only
one solution (winner) due to restrictions of GLPK that would require multiple
solver invocations. We remark that although restricting Democratix to return a
single winner would be possible in principle, this is not favorable as our goal is
to compute all winners.
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Fig. 2. Kemeny, random instances: average runtime for direct (dash-dotted), alter-
native (dotted), election graph (solid) and ILP (dashed) implementation with m ∈
{8, 9, 10, 20} and n ∈ [10000; 100000] on the x-axis

6 Conclusion

In this work we have introduced a reduction-based approach for computing the
winners of an election. To this end, we have presented ASP-encodings for a
variety of voting rules and explored their runtime behavior. The encodings are
integrated in our tool, Democratix, that serves as a uniform and extensible sys-
tem. The tool is also provided in form of an easy-to-use web application to make
it accessible to a broader range of users.

The strengths of our approach clearly lie in the readability of the encodings
and the extensibility of the tool. Still, it performs well on instances of reasonable
size even for hard voting rules. Furthermore, any progress made in the optimiza-
tion techniques for ASP will directly improve the performance of Democratix.
Conversely, our encodings of voting rules in combination with sufficiently hard
preference data could serve as challenging problems for evaluating the perfor-
mance of ASP solvers. Taken together, we believe that this work is a starting
point for an ASP-based tool to support experimental research in the area of
voting theory and preference aggregation. In addition, the tool can be used to
obtain prototype implementations for new voting rules, which, in a next step,
can serve as a baseline when comparing the performance of other approaches.

An important direction for future work is to develop encodings for other
types of preferences such as incomplete preferences. Furthermore, we intend to
investigate how the structure of elections (e.g., “distance to Condorcet”) influ-
ences runtime and how our tool compares to further rule-tailored systems. Also,
the use of preprocessing techniques (cf. [5,34]) can be a promising way to further
increase the performance. Another interesting step is the study of an ASP-based
approach for problems beyond winner determination (e.g., manipulation, bribery
and control) and to integrate the resulting encodings into Democratix.
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Abstract. Motivated by the power allocation problem in AC (alternat-
ing current) electrical systems, we study the multi-objective (combina-
torial) optimization problem where a constant number of (nonnegative)
linear functions are simultaneously optimized over a given feasible set of
0–1 points defined by quadratic constraints. Such a problem is very hard to
solve if no specific assumptions are made on the structure of the constraint
matrices. We focus on the case when the constraint matrices are completely
positive and have fixed cp-rank. We propose a polynomial-time algorithm
which computes an ε-Pareto curve for the studied multi-objective prob-
lem when both the number of objectives and the number of constraints
are fixed, for any constant ε > 0. This result is then applied to obtain
polynomial-time approximation schemes (PTASes) for two NP-hard prob-
lems: multi-criteria power allocation and sum-of-ratios optimization.

1 Introduction

Many real-world decision-making problems can be formulated as multi-criteria
(or multi-objective) combinatorial optimization problems which take into con-
sideration optimizing not a single objective function, but two or more functions,
simultaneously, subject to a finite set of discrete points defined by constraint
functions. Over the past few decades, there has been a significant progress on
studying the solution concepts to this kind of optimization, leading to several
potential approaches for solving the problem: budget approach, goal programming
and Pareto curve (see, e.g., the textbook [18] and the survey [19] for an overview
of recent techniques in the area). In this paper we will follow the Pareto curve
approach.

An important characteristic of an optimization problem involving more than
one objective is that a feasible solution optimizing simultaneously all the objec-
tive functions unlikely exists due to the conflict between different objectives.
Therefore, in such a problem we are interested in the tradeoff between the objec-
tives instead of looking for a single optimal solution. This is captured by a Pareto
curve - a set consisting of all feasible solutions which are not dominated by any
others. Here a solution s is said to dominate a solution s′ if, for every objective
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 273–287, 2015.
DOI: 10.1007/978-3-319-23114-3 17
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fi, it holds that fi(s) ≥ fi(s′), and the strict inequality holds for at least one i.
A solution belonging to the Pareto curve is called Pareto optimal solution. Gen-
eral speaking, computing the Pareto curve is essentially an intractable task since
the number of Pareto optimal solutions is typically exponential in the input size,
even with a small number of objectives. In fact, for the bicriteria version of sev-
eral well-known problems such as spanning tree, shortest path and matching,
checking whether or not a feasible solution is Pareto optimal is NP-hard [15].
Hence, a natural goal of research in this setting is, given an instance of a multi-
objective optimization problem, to efficiently construct a good approximation of
the Pareto curve which contains only a small number of elements. For this pur-
pose, many algorithms based on heuristic approaches have been proposed in the
last decades but the major drawback of this kind of techniques is that they do
not provide any guarantee on the quality of the set of solutions found. An alter-
native way, that is of our interest in this article, is to study theoretically efficient
approximation algorithms that guarantee a specific approximation factor.

Although there is a large body of work devoted to multi-criteria combina-
torial optimization problems with or without (linear) constraints, the case with
quadratic constraints has still not been investigated. The motivation of using
quadratic constraints arose from the allocation of power in AC (alternating cur-
rent) electrical systems where the users’ power demand is often characterized by
two components active power and reactive power (see, e.g., [25] for more details).
Mathematically, these power demands (and their relevant components such as
voltage, current) can be expressed in terms of complex numbers in which, the
real and imaginary parts of complex-valued power correspond to the active and
reactive power, whereas the magnitudes express as the so-called apparent power.
In this case, a limitation on the magnitude of apparent power allocated to the
users will result in a quadratic constraint. In a bit more detail, let us consider
the power allocation problem introduced in [37]. This problem, called Complex
Demand Knapsack Problem1, can be seen as a variant of the classical Knapsack
problem [27], in which each user (or item) i has a complex demand di = ai + ibi,
rather than a real number often interpreted as the weight or size of the item,
and gives a utility (or profit) ui iff its demand di is fully satisfied. The goal is
to maximize the sum of utilities of the chosen users such that the magnitude of
the sum of satisfied demands should not exceed the capacity. In this setting, the
constraint is exactly bounding a sum of two squares of linear functions

∑n
i=1 aixi

and
∑n

i=1 bixi, assuming that there are n users.
Extending the work in [13,37] to the case with more than one objective

function is very natural since this circumstance is frequently faced especially
in the context of power allocation. Consider, for example, a scenario where a
company which manages the power consumption of a group of smart grid users.
Each user is required to report her power demand to the company who then,
based on the obtained preferences, tries to optimize the energy allocation so that
two objectives can be satisfied: the first objective is to maximize the profits (or

1 Actually, this combinatorial optimization problem was first studied by Woeginger
[35] under the name 2-weighted Knapsack, in terms of inapproximability.
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revenue) and the second one is to minimize the cost of carbon dioxide emissions
which would be generated by energy consumption of the users.

Our contribution. A main contribution of this paper is a polynomial-time algo-
rithm for computing a minimum set of solutions that approximates the Pareto
curve (to within any constant factor ε > 0) for a class of multi-objective opti-
mization problems with a fixed number of linear objective functions, and a fixed
number of quadratic constraints, assuming that all the constraint matrices have
fixed cp-rank. Our approach essentially follows the same idea used for designing
approximation scheme for multi-objective Knapsack problem [21], but here it
requires more technical details in handling the quadratic constraints.

Related work. Although, to the best of our knowledge, the multi-criteria combi-
natorial optimization with quadratic constraints has not been investigated so far,
we can mention here some related work. In the model with/without linear con-
straints, many multi-objective optimization problems have been studied inten-
sively in the literature, including: shortest path [16,34], Knapsack [4,9,21,24,29],
spanning tree [22,26], matching [7], scheduling [14], and TSP [8]. Papadimitrou
and Yannakakis [31] propose an efficient tool for designing fully polynomial-
time approximation schemes. Their technique, however, is applicable only for
the problem whose exact version can be solved in pseudo-polynomial time (for
example, multi-objective Knapsack problem).

For the (mono-criterion) complex demand Knapsack problem, Yu and Chau
[37] presented a 1/2-approximation algorithm and this was recently improved to
a PTAS in [13]. In the first paper, the authors also ruled out the existence of an
FPTAS for the problem by using a reduction from Equi-Partition2 problem.
It is noticed that a similar result was already given in an independent work by
Woeginger in [35,36]. In [20], Elbassioni and Nguyen extended the PTAS result
to a wider class of binary quadratic programming involving constraint matrices
of fixed cp-rank. They also obtained a constant factor approximation algorithm
for the case with submodular objective function.

Organization. The rest of the paper is organized as follows. In Sect. 2 we model
the multi-objective optimization problem with quadratic constraints and give
basic notions on the Pareto curve and its approximate version. Section 3 is
devoted to present the proof of our main result. In Sect. 4 we apply the main
result to obtain a PTAS for two problems: Multi-criteria Power Allocation and
Sum-Of-Ratios Optimization. Finally, we will give conclusion and mention some
open questions for future work in Sect. 5.

2 The Equi-Partition is defined as follows: Given (a1, a2, . . . , a2n) ∈ Z
2n with∑2n

i=1 ai = 2k, does exist a subset S ⊂ {1, 2, . . . , 2n}, |S| = n, such that
∑

i∈S ai =∑
i�∈S ai = k?.
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2 Preliminaries

2.1 Basic Notions and Problem Model

We consider the following binary multi-objective quadratic problem (BMOQ):

(BMOQ) {max f(x),min g(x)} (1)
subject to x ∈ X ⊆ {0, 1}n,

where f(x) = {fi(x)}p
i=1 and g(x) = {gj(x)}q

j=1 are nonempty sets of nonnega-
tive linear functions (i.e., p, q ≥ 1), and X is a set of 0–1 vectors of dimension n
belonging to the intersection of m quadratic constraints:

X =
{
x ∈ {0, 1}n|xT Akx ≤ Ck; k = 1, . . . , m

}
, (2)

where Ak is nonnegative positive semi-definite matrix (w.l.o.g we assume that Ak

is symmetric), and Ck is positive number, for all k ∈ [m] = {1, . . . , m}. We write
the linear functions fi and gj as fi(x) = aT

i x and gj(x) = bT
j x, with ai, bj ∈ R

n
+

for all i ∈ [p], j ∈ [q]. We assume that p, q,m are constant integers. If all the
matrices Ak are diagonal matrices then, by taking x2

� = x�, � ∈ [n] into account,
one can see that our problem becomes the multi-objective multi-dimensional
Knapsack problem which is known to be NP-hard but admits a PTAS [21].
Finding approximation algorithms for the BMOQ problem without any specific
assumption made on the constraint matrices Ak would be a challenge, even
with one objective. It is therefore of great interest to discover special cases for
which the problem can be efficiently solved or approximated, taking into account
the structure of the constraint matrices. In this paper we restrict our attention
to the case where every matrix Ak is completely positive matrix of fixed cp-
rank [10]. This is motivated by the application in the power allocation in AC
electric systems.

Definition 1. A positive semi-definite matrix A � 0 is said to be completely
positive if it can be decomposed as A = LLT , where L ∈ R

n×r
+ is a nonnegative

matrix. The smallest positive number r such that such a matrix L exists is called
the cp-rank of A, denoted cp-rank(A) = r, and the corresponding decomposition
is called cp-decomposition. If no such matrix L exists then cp-rank(A) = +∞.

Although computing cp-decomposition of a given matrix A is NP-hard [17], it
was proved in [20] that the problem is solvable in polynomial time if cp-rank(A) is
constant. Hence, for simplicity we will assume that for every completely positive
matrix Ak of fixed cp-rank, we know explicitly it’s cp-decomposition Ak = LLT .
Note that the quadratic constraint involved in the complex demand Knapsack
problem (or the 2-weighted Knapsack) is exactly a sum of two squares of linear
functions and thus, the cp-rank of the constraint matrix equals 2.

For convenience, we identify a vector x ∈ {0, 1}n with a subset S ⊆ [n], i.e.,
write S = {� ∈ [n] | x� = 1}. Hence, for a function defined on the power set 2[n],
f(x) ≡ f(S). In the rest of the paper, we will call � ∈ [n] the �-th item, and
for every objective fi = aT

i x =
∑n

�=1 ai�x�, we call ai� the profit of item � with
respect to fi.
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For ρ > 0, a vector x ∈ {0, 1}n (or the corresponding set S ⊆ [n]) is said to be
ρ-approximate solution for maximization problem Π if x is a feasible solution sat-
isfying v(x) ≥ ρ·Opt, where v(x) and Opt are the respective value of the solution
x and an optimal solution. A polynomial-time approximation scheme (PTAS) is
an algorithm that runs in polynomial in the size of the instance, for every fixed ε,
and outputs a (1 − ε)-optimal solution; a fully polynomial-time approximation
scheme (FPTAS) is a PTAS where the running time is polynomial in 1

ε ;

2.2 Preliminaries on Pareto Curve

Let I be an instance of a multi-objective optimization problem BMOQ. For any
pair of feasible solutions x, y ∈ X, we say that x is weakly dominated by y if
fi(y) ≥ fi(x) for all i ∈ [p], and gj(y) ≤ gj(x) for all j ∈ [q]. If at least one
of those inequalities is strict, we said that x is (strictly) dominated by y. All
the undominated solutions form a Pareto curve of the instance problem I. The
following are formal definitions taken from [29]:

Definition 2. The Pareto curve P of I is a subset of X, such that for any
solution x ∈ P there is no solution x′ ∈ X such that fi(x′) ≥ fi(x) for all i ∈ [p]
and gj(x′) ≤ gj(x) for all j ∈ [q], with strict inequality for at least one of them.

Definition 3. For ε > 0, an ε-approximate Pareto curve of I, denoted by Pε,
is a set of solutions, such that for all x ∈ X, there exists a solution x′ ∈ Pε such
that fi(x′) ≥ (1 − ε)fi(x) and gj(x′) ≤ gj(x)/(1 − ε) for all i ∈ [p], j ∈ [q].

3 Approximation Scheme for BMOQ Problem

In this section we will give the proof for the following main result:

Theorem 1. Given an instance I of the BMOQ problem, one can construct an
ε-approximate Pareto curve Pε for I in polynomial time in the size of input, for
any fixed ε > 0.

Let I = ({fi}p
i=1, {gj}q

j=1, {Ak, Ck}m
k=1}) be an instance of the BMOQ problem,

where fi(x) = aT
i x, gj(x) = bT

j x for all i ∈ [p], j ∈ [q], and p, q,m are fixed. Let
ε > 0 be a fixed constant and let ρ = ε/2. We will prove that Algorithm 1 below
produces a set Pε, which is an ε-approximate Pareto curve to the instance I, in
polynomial time in size of the instance. Our algorithm makes use of the PTAS
result given in [20] as a black box.

The basic idea behind the algorithm is to try to guess the lower bounds of the
ith objective fi for every i ∈ [p−1], and the upper bounds of the jth objective gj ,
for every j ∈ [q], and then to maximize over x ∈ X the objective fp(x) while
requiring the remaining objectives to be satisfied by these bounds. In the first
part of the algorithm, the lower and upper bounds are guessed by considering
all the possibilities in such a way that the number of alternatives is bounded
by a polynomial in the size of input. To do so, for each single objective fi, we
compute a (1−ρ)-approximate solution Ui by using the PTAS in [20], such that



278 K. Elbassioni and T.T. Nguyen

fi(Ui) ≥ (1 − ρ)Opt(fi) (3)

where Opt(fi) is the value of the optimal solution to the problem of maximizing
function fi over X. This implies that for any feasible solution S:

fi(S) ≤ Opt(fi) ≤ (1 − ρ)−1
fi(Ui).

Similarly, we obtain a (1 − ρ)-approximate solution Vj to the problem of
maximizing function gj over X such that:

gj(S) ≤ (1 − ρ)−1
gj(Vj),

for any feasible solution S.
We next define

f̄i �
⌈
log(1−ρ)−1 fi(Ui)

⌉
and ḡj �

⌈
log(1−ρ)−1 gj(Vj)

⌉
(4)

for every i ∈ [p], j ∈ [q]. For each objective fi, we consider f̄i + 2 lower bounds

αi
0 = 0, and αi

μi
= (1 − ρ)1−μi , for μi = 1, . . . , f̄i + 1 (5)

and for each objective gj , we consider ḡj + 2 upper bounds

βj
ηj

= (1 − ρ)1−ηj , for ηj = 1, . . . , ḡj + 2 (6)

From (4) it follows that f̄i and ḡj are bounded by a polynomial in the size of
input and thus so do μi and ηj . Let Γ be a subset of Z

p+q−1
+ which contains all

the tuples of the form (μ1, . . . , μp−1, η1, . . . , ηq):

Γ � {(μ1, . . . , μp−1, η1, . . . , ηq)| 0 ≤ μi ≤ f̄i + 1, 1 ≤ ηj ≤ ḡj + 2} (7)

It is easy to see that the size of Γ is bounded by O(||I||p+q−1) and thus is
polynomial in the size of the instance for any constant numbers p and q.

Now, turning to the second part of the algorithm. For each tuple t = (μ1, . . . ,
μp−1, η1, . . . , ηq), we define the corresponding lower bounds and upper bounds
αi

μi
, βj

ηj
, i ∈ [p − 1], j ∈ [q] based on (5) and (6). Given these bounds on the

objective functions fi, gj , i ∈ [p−1], j ∈ [q], the goal is to maximize the function
fp over X. For doing so, we define φ �

∑m
k=1(rk + 1), where rk = cp-rank(Ak),

and define λ as

λ �
⌈

(φ + p + q − 1)(1 + ρ)
ρ

⌉
. (8)

We extend the idea in [23], i.e., try to guess, for each of objectives fi, a set
Xi ⊂ [n] consisting of λ items of highest profit that appear in the optimal
solution. Furthermore, we denote by X̂i the set of all items that are not in the
optimal solution, provided that Xi is a subset of the optimal solution. Formally,
we have

X̂i = {� ∈ [n]\Xi|ai� > min{ai�′ |�′ ∈ Xi}}, (9)
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where ai� is the profit of the item � with respect to the objective fi. Let Σ be the
set of all the tuples (X1, . . . , Xp). Since Xi has at most λ elements, the number
of possibilities of choosing such a subset is nλ. This implies that the size of Σ
should be bounded by O(nλp) and thus is polynomial in the size of input for
every constant numbers λ and p.

Now for each tuple T = (X1, . . . , Xp) ∈ Σ such that (∪i∈[p]Xi)
⋂

(∪i∈[p]X̂i) =
∅, we define the following nonlinear (convex) program (CP[t, T ]):

(CP[t, T ]) max fp(x) (10)

subject to xT Akx ≤ Ck, k ∈ [m], (11)

aT
i x ≥ αi

μi
, i ∈ [p − 1], (12)

bT
j x ≤ βj

ηj
, j ∈ [q], (13)

xk = 1, k ∈ ∪i∈[p]Xi, (14)

xk = 0, k ∈ ∪i∈[p]X̂i, (15)

xk ∈ [0, 1], k ∈ [n]\ ∪i∈[p] (Xi ∪ X̂i). (16)

We will prove that there exists a feasible solution to (CP[t, T ]) which has only
a few number of fractional components and thus, by a simple rounding down,
we can obtain an integral solution that is a good approximation of the optimum.
Note that (CP[t, T ]) is convex as the matrix Ak is positive semi-definite for
every k ∈ [m] and thus, it can be solved efficiently (see, e.g., [30]). Let x∗ be an
(1−ρ)-optimal (rational) solution to (CP[t, T ]). Denote N = [n]\∪i∈[p] (Xi∪X̂i)
and X = ∪i∈[p]Xi. For every k ∈ [m], define

tk � LT
k [∗;N ]x∗

N , and t′k � 1T
X Ak[X ;N ]x∗

N

and for i ∈ [p − 1], j ∈ [q], define:

θi � aT
i x∗

N , and θ′
j � bT

j x∗
N .

where, vX denotes the restriction of the vector v ∈ [0, 1]n to the set of components
indexed by X , and Ak[X ;N ] denotes the restriction of the matrix Ak to the
columns and rows indexed by the sets X and N , respectively; similarly, LT

k [∗;N ]
means the restriction of LT

k to the set of columns defined by N .
Note that from the feasibility of x∗ to (CP[t, T ]), it follows that

(x∗
N )T Lk[N ; ∗]LT

k [∗;N ]x∗
N + 2 · 1T

X Ak[X ;N ]x∗
N ≤ Ck − 1T

X Ak[X ;X ]1X ,

implying that
t2k + 2t′k ≤ Ck − 1T

X Ak[X ;X ]1X , (17)

for all k ∈ [m]. Furthermore, we have:

bT
j x∗

N ≤ βj
ηj

− bT
j x∗

X , or θ′
j ≤ βj

ηj
− bT

j x∗
X . (18)
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Let Q(X ) ⊆ [0, 1]N be a polytope defined by the following system of linear
inequalities:

⎧
⎨

⎩

LT
k [∗;N ]y ≤ tk, 1T

X Ak[X ;N ]y ≤ t′k, for k ∈ [m]
aT

i y ≥ θi, for i ∈ [p − 1],
bT
j y ≤ θ′

j , for j ∈ [q].

We can find (if exists) a basic feasible solution (BFS) y in this polytope
such that aT

p y ≥ aT
p x∗

N . By rounding down this fractional solution y and setting
xk ∈ {0, 1} according to the assumption k ∈ ∪i∈[p](Xi ∪ X̂i), we obtain an
integral solution x ∈ {0, 1}n.

Fact 1. The BFS y has at most φ + p + q − 1 fractional components.

Proof. Since Q(X ) involves φ + p + q − 1 linear inequalities, one can compute in
polynomial time (see a standard textbook on linear programming, e.g., [33]) a
BFS y of at most φ + p + q − 1 fractional components.

Fact 2. The rounded solution x̄ ∈ {0, 1}n is feasible to the constraints (11) and
(13).

Proof. We need to show that x̄Akx ≤ Ck for every k ∈ [m]. Indeed, we have:

x̄T Akx̄ = x̄T
N Lk[N ; ∗]LT

k [∗;N ]x̄N + 2 · 1T
X Ak[X ;N ]x̄N + 1T

X Ak[X ;X ]1X
≤ t2k + 2t′k + 1T

X Ak[X ;X ]1X ≤ Ck,

where the last inequality follows from (17).
On the other hand,

bT
j x̄ = bT

j x̄N + bT
j x∗

X ≤ θ′ + bT
j x∗

X ≤ βj
ηj

,

where the last inequality follows from (18).

There are totally nλp tuples of the form (X1, . . . , Xp). For each such tuple
such that the condition in Step 18 is satisfied and (CP[t, T ]) is feasible, the
algorithm outputs an integral solution x. All possible integral solutions obtained
in this way are collected in the set Pε. This completes the description of the
algorithm. The polynomial running time and the correctness of the algorithm
are followed by the Lemmas 1 and 2.

Lemma 1. For a fixed number of linear objective functions and for any fixed
ε > 0, the running time of Algorithm 1 is upper bounded by a polynomial in the
size of the input.

Proof. One can see easily that the complexity of the algorithm is dominated
by the work finding approximate solution to the single objective maximization
problems in steps 3 and 7, and by the main loop for solving convex programs
as well as finding BFS to the polytopes defined in Step 16. Note that Step 3
and Step 7 can be done in polynomial time by applying the PTAS result in [20].



Approximation Schemes for Multi-objective Optimization 281

Algorithm 1. Pareto({ai, bj , Ak, Ck}i∈[p], j∈[q], k∈[m], ε)

Input: Objectives {aT
i x, bT

j x}i∈[p], j∈[q]; cp-matrix Ak ∈ R
n×n
+ of fixed cp-rank(Ak) =

rk, capacity Ck ∈ R+, for k ∈ [m]; and accuracy parameter ε
Output: (1 − ε)-approximate Pareto curve Pε

1: Pε ← ∅; ρ ← ε/2
2: for i ∈ [p] do
3: Find a (1 − ρ)-approximate solution Ui w.r.t the objective fi

4: f̄i ←
⌈
log(1−ρ)−1 fi(Ui)

⌉

5: αj0 ← 0; αi
μi

← (1 − ρ)1−μi for all μi ∈ [f̄i + 1]
6: for j ∈ [q] do
7: Find a (1 − ρ)-approximate solution Vj w.r.t the objective gj

8: ḡj ←
⌈
log(1−ρ)−1 gj(Vj)

⌉

9: βj
ηj

← (1 − ρ)1−ηj for all ηj ∈ [ḡj + 2]

10: Γ = {(μ1, . . . , μp−1, η1, . . . , ηq)| 0 ≤ μi ≤ f̄i + 1, 1 ≤ ηj ≤ ḡj + 2}
11: φ ←∑m

k=1(rk + 1); λ ←
⌈

(φ + p + q − 1)(1 + ρ)

ρ

⌉

12: Σ ← {(X1, . . . , Xp)| Xi ⊆ [n], |Xi| ≤ λ, i ∈ [p]}
13: for each (X1, . . . , Xp) ∈ Σ do
14: for j ∈ [p] do
15: X̂i ← {
 ∈ [n]\Xi|ai� > min{ai�′ |
′ ∈ Xi}}
16: for each tuple t = (μ1, . . . , μp−1, η1, . . . , ηq) ∈ Γ do
17: for each tuple T = (X1, . . . , Xp) ∈ Σ do
18: if (∪i∈[p]Xi)

⋂
(∪i∈[p]X̂i) = ∅ then

19: Find (if exists) a (1 − ρ)-optimal solution x∗ to the convex program
(CP[t, T ])

20: Define a polytope Q(X ) ⊆ [0, 1]N

21: Find an BFS y of Q(X ) such that aT
p y ≥ aT

p x∗
N

22: x̄ ← {(x̄1, . . . , xn)|x̄k = 	yk
 for k ∈ N , xk = 1, for k ∈
∪i∈[p]Xi, xk = 0, for k ∈ ∪i∈[p]X̂i} � rounding down solution y

23: Pε ← Pε ∪ x
24: return Pε

On the other hand, since there are totally ||I||p+q−1 tuples (μ1, . . . , μp−1, η1, . . . ,
ηq) considered in Loop 16, and for each such a tuple at most nλp tuples
(X1, . . . , Xp) are examined in Loop 17, the number of convex programs and
the number of polytopes need to be solved are bounded by a polynomial in the
size of the input as p, q, λ are constant numbers.

Now it remains to show the approximation factor of Algorithm 1.

Lemma 2. The output Pε of Algorithm 1 is exactly a ε-approximate Pareto
curve for the instance I, for any fixed ε > 0.

Proof. Let S be an arbitrary feasible solution to the instance I and let Pε be
the set of solution returned by Algorithm 1, we will to prove that there always
exists a solution S′ ∈ Pε such that

fi(S′) ≥ (1 − ε)fi(S) and gj(S′) ≤ gj(S)/(1 − ε),
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for every i ∈ [p] and j ∈ [q].
Let us define

μ̂i = max
0≤μi≤f̄i+1

{μi| αi
μi

≤ fi(S)}, i = 1, . . . , p − 1, (19)

and
η̂j = min

1≤ηj≤ḡj+2
{ηj | βj

ηj
≥ gj(S)}, j = 1, . . . , q. (20)

By the definition of μ̂i and of αi
μ̂i

, we must have that

αi
μ̂i

≤ fi(S) < αi
μ̂i+1 = (1 − ρ)−1αi

μ̂i
, i = 1, . . . , p − 1. (21)

Similarly, we have:

βj
η̂j

≥ gj(S) ≥ βj
η̂j−1 = (1 − ρ)βj

η̂j
, j = 1, . . . , q. (22)

Let δ = min{λ, |S|}. For each i ∈ [p], let Xi be the set that contains δ
highest-profit items in S with respect to the objective fi. From (22) and the
fact that δ ≤ λ, it follows that S must be feasible to (CP[t, T ]) with respect
to t = (μ̂1, . . . , μ̂p−1, η̂1, . . . , η̂q) and T = (X1, . . . , Xp). Let y be a BFS to the
polytope Q(X ) and let x̄ be the integral solution obtained by rounding down in
Step 22. Define S′ = {�| x̄� = 1}, we have

gj(S′) = bT
j x ≤ βj

ηj
≤ gj(S)/(1 − ρ) ≤ gj(S)/(1 − ε), (23)

for all j ∈ [q].
It remains to show that fi(S′) ≥ (1 − ε)fi(S) for all i ∈ [p]. Let x∗ be the

(1 − ρ)-optimal solution to (CP[t, T ]), then for every i ∈ [p − 1]:

aT
i x∗ ≥ αi

μi
≥ (1 − ρ)fi(S),

where the first inequality is due to the feasibility of x∗ to (CP[t, T ]) and the last
inequality follows from (21). For i = p, we have aT

i x∗ ≥ (1−ρ)opt ≥ (1−ρ)fi(S),
where opt is the value of an optimal solution to (CP[t, T ]). We consider two cases
below.

Case I: δ = |S|, this means S has at most λ items. In this case the rounded
solution S′ will contain (and thus, weakly dominates) S.

Case II: S has more than λ items. Let ai� be the smallest value among the λ
items of highest value in S with respect to objective fi, then aT

i x∗ ≥ λai�. On
the other hand, since x̄ is obtained by rounding down y, and the fact that y has
at most φ + p + q − 1 fractional components, it follows

fi(S′) = aT
i x̄ = aT

i x̄N + aT
i 1X ≥ aT

i y − ai�(φ + p + q − 1) + aT
i 1X

≥ aT
i x∗ − ai�(φ + p + q − 1)

≥ aT
i x∗ − aT

i x∗ φ + p + q − 1
λ

= aT
i x∗

(
1 − φ + p + q − 1

λ

)
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By the definition of λ as in (8), it follows that:

φ + p + q − 1
λ

≤ ρ

1 + ρ
,

and thus,

fi(S′) ≥ aT
i x∗

(
1 − ρ

1 + ρ

)
=

1
1 + ρ

aT
i x∗.

Note that for every i ∈ [p], aT
i x∗ ≥ (1 − ρ)fi(S). Hence, it follows

fi(S′) ≥ 1 − ρ

1 + ρ
fi(S) > (1 − 2ρ)fi(S) = (1 − ε)fi(S). (24)

From (23) and (24), the proof is completed.

4 Applications

This section is devoted to present two main applications of the result obtained in
the previous section for the multi-objective optimization problem with quadratic
constraints. These applications include Multi-criteria Power Allocation Problem
and Sum-of-ratios Optimization. We first model these problems under the com-
plex power setting and then explain how the PTAS can be achieved.

Multi-criteria Power Allocation (MPA): Yu and Chau [37] studied the
complex demand Knapsack problem, a variant of traditional Knapsack problem
involving a single quadratic constraint, to address a new power allocation prob-
lem raising in AC electrical systems. Their model captures a situation in power
systems in which the power is expressed as a complex number rather than a
real number. Here we consider a more general scenario with multiple objectives
and multiple constraints, where the power are allocated to users in a number
of different periods. In this model, time is assume to be uniformly divided into
discrete units ranging from 1 to T , and we refer to each integer t in the range
{1, T} as a timeslot (or period). There are a set of n users, each user i is spec-
ified by a tuple (Ii = [ri, si), di, pi, ci), where ri and si are the arrival-time and
the departure-time, respectively; di = ai + ibi is the complex demand of user i
during the interval Ii; pi and ci are respective profit and cost (of carbon dioxide
emissions) provided by the user i if her demand is fulfilled. We assume that
there is a limit on the magnitude of total power supply, say Ct, at every times-
lot t ∈ {1, . . . , T}. The goal is to find a subset of users to be allocated power
such that the total profit is maximized and the total cost is minimized while
keeping the total power consumed at each timeslot t not exceed the capacity Ct.
Formally, we can model the Multi-criteria Power Allocation problem (MPA) as
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follows:

(MPA) max
n∑

i=1

pixi, min
n∑

i=1

cixi, (25)

subject to ‖
∑

i:t∈[ri,si)

dixi‖ ≤ Ct, t ∈ [T ], (26)

xi ∈ {0, 1}, (27)

The constraints (26) can be rewritten in the following form

(
∑

i:t∈[ri,si)

aixi)2 + (
∑

i:t∈[ri,si)

bixi)2 ≤ Ct, t ∈ [T ] (28)

When the power demand di is a real number for every user i ∈ [n], the prob-
lem MPA with a single objective has been studied extensively in the literature
under the names resource allocation [5,11], bandwidth allocation [28], unsplittable
flow problem [2,3,12], temporal Knapsack problem [6]. The best known approxi-
mation result for the problem is a polynomial time (2 + ε)-approximation algo-
rithm [1]. When the number of timeslots T is constant, the problem is special case
of multi-dimensional Knapsack problem which is known to have a PTAS [23].

Obviously, BMOQ includes MPA as a special case by setting p = q = 1 and
aT
1 = (p1, . . . , pn), bT

1 = (c1, . . . , cn). Consequently, we have following result:

Corollary 1. Let I be an instance of the problem MPA and assume that T is
fixed. One can compute in polynomial time in the size of the instance a set Pε

to I for any fixed ε > 0.

Sum-of-Ratios Optimization (SOR): We consider the binary quadratically
constrained programming with a rational objective function.

(SOR) max w(x) =
∑p

i=1

ai1x1 + · · · + ainxn

bi1x1 + · · · + binxn

subject to x ∈ X ⊆ {0, 1}n,

where ai = (ai1, . . . , ain), bi = (bi1, . . . , bin) ∈ R
n
+ for all i ∈ [p]. We assume that

aT
i x > 0, bT

i x > 0 for all x ∈ X and for all i ∈ [p]. This problem belongs to
the class of fractional programming which has important applications in many
areas such as transportation, retail management, online advertising (see the
survey paper by [32] and the references therein, for more applications). Mittal
and Schulz [29] presented a FPTAS for the SOR problem under the condition
that every mono-criteria linear objective optimization can be solved in pseudo-
polynomial time. This immediately implies an FPTAS for the multi-objective
Knapsack problem, where X is defined by only one linear constraint. When X
involves quadratic constraints, their method is not applicable.

Theorem 2. Suppose that p is fixed and the feasible set X is defined as in (2),
the problem (SOR) admits a PTAS.
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Proof. Let x∗ ∈ X be an optimal solution to an instance problem (SOR) and
and let ε > 0 be any fixed constant. We will prove that one can compute in
polynomial time in the input size a solution y∗ such that w(y∗) ≥ (1−2ε)w(x∗).
To do that, let ai = (ai1, . . . , ain), bi = (bi1, . . . , bin) for all i ∈ [p], and apply
the Theorem 1 to the instance I = ({ai, bi}i∈[p], {Ak, Ck}k∈[m]), where m, p are
constant and Ak is a cp-matrix of fixed cp-rank. As a consequence, we obtain
the approximation Pε of the Pareto curve of I, which consists of a polynomial
number of elements. Then, there must be a solution y ∈ Pε such that aT

i y ≥
(1 − ε)aT

i x∗ and bT
i y ≤ bT

i x∗/(1 − ε), for all i ∈ [p]. Hence,

w(y) =
p∑

i=1

aT
i y

bT
i y

≥ (1 − ε)2
p∑

i=1

aT
i x∗

bT
i x∗ = (1 − ε)2w(x∗).

On the other hand, let y∗ = argmax{w(x)| x ∈ Pε} and note that such a
solution can be found efficiently due to the polynomial size of Pε. Finally, we
have w(y∗) ≥ w(y) ≥ (1 − ε)2w(x∗) ≥ (1 − 2ε)w(x∗).

5 Conclusion

In this paper we have presented a polynomial-time approximation scheme for
computing the ε-Pareto curve for a class of multi-criteria combinatorial opti-
mization problems involving a constant number of quadratic constraints, under
the assumption that the constraint matrices have fixed cp-rank; and this is the
best result we can achieve, unless P = NP. Finding approximation algorithms for
the case with many (non constant) number of constraints would be an interesting
specific task for future work, even with a single linear objective function. On the
other hand, computing non-trivial inapproximability bounds, parametrized by
the cp-rank of the constraints matrices is also another interesting open problem.
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Abstract. In this paper, we address the problem of comparing the
performances of two popular aggregation operators, the weighted sum
and the Choquet integral, for selecting the best alternative among a set
of alternatives, all evaluated according to different criteria. While the
weighted sum is simple to use and very popular, the Choquet integral is
still hard to use in practice but leads theoretically to better results in
terms of concordance with the preferences of a decision maker. However,
given the efforts needed to set the parameters of the Choquet integral,
it is important to measure, for a given decision problem, if it is really
worth defining the Choquet integral or if a simple weighted sum could
have been used to determine the best alternative. We will compute the
probability that a recommendation to a decision maker could only been
obtained with the Choquet integral and not with a weighted sum. When
the number of criteria increases, the results show that this probability
tends to one. However, a high value of probability can only be attained
for particular data sets.

Keywords: Choquet integral · Weighted sum · Multicriteria decision
making · Multiobjective optimization

1 Introduction

When a decision maker is confronted to a set of alternatives presenting each one
meaningful advantages and disadvantages, the temptation to use a weighted sum
to select the best alternative is high. However, it is well-known that this easy
to use and simple aggregation method presents the disadvantage that, in some
cases, alternatives cannot be elicited even if they correspond to the preferences
of the decision maker.

For example, if we consider a set of four alternatives {y1, . . . , y4} where each
alternative yi is evaluated with three criteria to maximize: y1 = (18, 10, 10),
y2 = (10, 18, 10), y3 = (10, 10, 18) and y4 = (14, 12, 11), the alternative y4 could
never be selected with a weighted sum (it is impossible to have at the same time
14λ1+12λ2+11λ3 ≥ 18λ1+10λ2+10λ3, 14λ1+12λ2+11λ3 ≥ 10λ1+18λ2+10λ3

and 14λ1 + 12λ2 + 11λ3 ≥ 10λ1 + 10λ2 + 18λ3, with λ1, λ2, λ3 ≥ 0 and λ �= 0).
However, the alternative y4 is the most balanced alternative among the different
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 288–304, 2015.
DOI: 10.1007/978-3-319-23114-3 18
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criteria and is a good candidate for a decision maker who prefers well-balanced
alternatives.

Other models could be used to handle this problem [1,2] like outranking
methods (ranking of the alternatives based on pairwise comparisons) [3], addi-
tive value function models [4] or more evolved aggregation functions like the
weighted minimum, weighted maximum, ordered weighted average operators
(OWA) [5], weighted ordered weighted averaging operator (WOWA) [6], Choquet
integral [7], etc.

In this paper, we will focus on the Choquet integral.
The Choquet integral is a powerful tool in multicriteria decision making and

decision under uncertainty [8–10]. A Choquet integral can be seen as an integral
on a non-additive measure (or capacity or fuzzy measure). It presents extremely
wide expressive capabilities and can model many specific aggregation operators,
including, but not limited to, the weighted sum, the minimum, the maximum,
all the statistic quantiles, OWA, WOWA, etc. The Choquet integral can also be
used in the additive value function model instead of the weighted sum [11]. In
this case, the performance vector is replaced by marginal utility values.

However, this high expressiveness capability has a price: while the definition
of a simple weighted sum operator with m criteria requires m − 1 parameters,
the definition of the Choquet integral with m criteria requires setting of 2m − 2
values, which can be a problem even for low values of m.

Given the effort needed to set the parameters of the Choquet integral com-
paring to the weighted sum, we will measure in this paper the interest of using
the Choquet integral instead of the weighted sum. More precisely, for differ-
ent alternatives evaluated with m criteria, we will evaluate the probability that
an alternative that optimizes a defined Choquet integral could not be obtained
with a simple weighted sum. This is particularly important in the general context
where the alternatives to compare are not explicitly given but are obtained from
a multiobjective optimization problem. In different works [12–16], the authors
define a Choquet integral and then search for an optimal solution according to
the defined Choquet integral. Two difficulties are thus introduced: the elicita-
tion of the Choquet integral and the optimization of the Choquet integral for
the particular multiobjective problem studied. Given this complexity, it is worth
studying the real strength of the Choquet integral and to see, if a simpler method
(the weighted sum) could have been used to obtain the same optimal solution.

To our knowledge, only one group of authors have performed experiments
to assess the powerfulness of the Choquet integral. In [17], Meyer and Pirlot
compare the ability of related models to represent rankings of alternatives. They
compare different aggregators, including the weighted sum, the Choquet integral
and additive value functions. To do so, they randomly generate alternatives
and define a ranking of the alternatives. Then they check if the models can
represent the ranking. They show that the Choquet integral model can represent
significantly more orders than the weighted sum and that the difference becomes
quite large when the number of criteria is high. If their work can appear similar
to our work, there are two important differences:
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– They consider rankings of alternatives while we only check the ability of an
aggregator to reach one optimal alternative.

– Given a set alternatives we will not pick up randomly a best alternative, as
they do, but we will generate randomly a Choquet integral (with a uniform
law), and check if the alternative optimizing the Choquet integral could not
have been obtained with a weighted sum too. Therefore, a probability will be
defined, according to the set of possible Choquet integrals, and not according
to the set of possible alternatives. That gives a more general way to measure
the strength of the Choquet integral since results defined independently from
the set of alternatives considered could be given.

The paper is organized as follows: we first introduce the main notions of
this paper: the multicriteria context and the two aggregation operators used
(weighted sum and Choquet integral). In Sects. 3 and 4, we present the main
contributions of the paper: we expose how we have compared the weighted sum
and the Choquet integral operators: the comparison is based on the probability to
reach an alternative optimal for a Choquet integral but not for a weighted sum. In
the results section (Sect. 5), lower and upper bounds are computed, according to
the number of criteria considered, and independently from the problem studied.
We will see that this probability tends to one according to the number of criteria
considered. We expose then some experimental results on randomly generated
data sets. We will see that some conditions have to be respected to attain high
probability values.

2 Definitions

We consider a general model with a set Y of n alternatives {y1, . . . , yn} evalu-
ated with a set M of m criteria {1, . . . , m}. The performance vector associated
to an alternative yi is denoted (yi

1, . . . , y
i
m). We will consider w.l.o.g that the

performance values are in the [0, 1] interval and that the criteria have to be
maximized.

The representation of an alternative in the criteria space is called a point and
these two notions will be considered as equivalent in the rest of the paper.

We first recall the notion of Pareto dominance.

Definition 1. The Pareto dominance relation (P -dominance for short) is
defined, for all y1, y2 ∈ R

m, by:

y1 �P y2 ⇐⇒ [∀k ∈ M, y1
k ≥ y2

k and y1 �= y2]

We will only work with sets Y of Pareto non-dominated alternatives, that is
∀y1 ∈ Y, � y2 ∈ Y | y2 �P y1.

2.1 Weighted Sum

The most popular aggregation operator is the weighted sum (WS), where positive
importance weights λi(i = 1, . . . , m) are allocated to the criteria.
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Definition 2. Given a vector y ∈ R
m and a weight set λ ∈ R

m (with λi > 0
and

∑m
i=1 λi = 1), the WS fws

λ (y) of y is equal to:

fws
λ (y) =

m∑

i=1

λiyi

In a set of Y of Pareto non-dominated alternatives, the alternatives that
optimize a WS are called WS-optimal alternatives or supported Pareto-optimal
alternatives [18] (SP alternatives). Note that there could exist alternatives that
do not optimize a WS, and they are generally called non-supported Pareto-
optimal alternatives (N-SP alternatives).

2.2 Choquet Integral

The Choquet integral has been introduced by Choquet [7] in 1953 and has been
intensively studied, especially in the field of multicriteria decision analysis, by
several authors (see [9,10,19] for a brief review). Lately, the Choquet integral
has also been used in the AI field, for classification problems [20,21], constraint
programming [22] or state space search [23].

We first define the notion of capacity, on which the Choquet integral is based.

Definition 3. A capacity is a set function v: 2M → [0, 1] such that:

– v(∅) = 0, v(M) = 1 (boundary conditions)
– ∀A,B ∈ 2M such that A ⊆ B, v(A) ≤ v(B) (monotonicity conditions)

Therefore, for each subset of criteria A ⊆ M, v(A) represents the importance
of the subset A.

Definition 4. A capacity is said additive if for each subset A,B ⊆ M, v(A ∪
B) = v(A) + v(B).

Definition 5. The Choquet integral of a vector y ∈ R
m with respect to a capacity

v is defined by:

fC
v (y) =

m∑

i=1

(
v(Y ↑

i ) − v(Y ↑
i+1)

)
y↑

i

=
m∑

i=1

(y↑
i − y↑

i−1)v(Y ↑
i )

where y↑ = (y↑
1 , . . . , y

↑
m) is a permutation of the components of y such that

0 = y↑
0 ≤ y↑

1 ≤ . . . ≤ y↑
m and Y ↑

i = {j ∈ M, yj ≥ y↑
i } = {i↑, (i + 1)↑, . . . , m↑} for

i ≤ m and Y ↑
(m+1) = ∅.

The Choquet integral is a versatile aggregation operator, as it can express
preferences to a wider set of solutions than a weighted sum, through the use
of a non-additive capacity. For example, the Choquet integral can attain N-SP
alternatives, while it is impossible with the weighted sum [24].
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Example 1. Let us consider the four alternatives exposed in the introduction
and the following capacity: v({1}) = v({2}) = v({3}) = 0.2 and v({1, 2}) =
v({1, 3}) = v({2, 3}) = 0.4. We obtain fC

v (y1) = 10+(10−10)∗v({1, 2})+(18−
10)∗v({1}) = 11.6, fC

v (y2) = 10+(10−10)∗v({2, 3})+(18−10)∗v({2}) = 11.6,
fC

v (y3) = 10 + (10 − 10) ∗ v({1, 3}) + (18 − 10) ∗ v({3}) = 11.6, fC
v (y4) =

11+ (12− 11) ∗ v({1, 2})+ (14− 12) ∗ v({1}) = 11.8. For this capacity, y4 is thus
the best alternative.

In this example, we see that the alternative y4 can optimize a Choquet inte-
gral, but cannot optimize a WS. An alternative presenting this property will be
called an exclusive Choquet optimal (C-optimal) alternative.

In the following, we will define more precisely the notion of exclusive C-
optimal alternative.

3 Exclusive C-optimal Alternatives

We first define the notion of WS-optimal set.

Definition 6. Given a set Y of alternatives, the WS-optimal set, called Yws,
is the set containing an optimal alternative, for each possible WS, that is ∀λ ∈
L,∃ yj ∈ Yws | fws

λ (yj) ≥ fws
λ (yi) ∀yi ∈ Y, where L represents the set of possible

weights defined over m criteria.

Similarly, we can define the notion of Choquet-optimal set (C-optimal set).

Definition 7. Given a set Y of alternatives, the C-optimal set, called YC , is the
set containing an optimal alternative, for each possible Choquet integral, that is
∀v ∈ V,∃ yj ∈ YC | fC

v (yj) ≥ fC
v (yi) ∀yi ∈ Y, where V represents the set of

possible capacities defined over m criteria.

The C-optimal set contains thus all potential C-optimal alternatives. A char-
acterization of the C-optimal set has been proposed in [25]. We briefly recall it
here.

Let σ be a permutation on M. Let Oσ be the subset of alternatives y ∈ R
m

such that y ∈ Oσ ⇐⇒ yσ1 ≥ yσ2 ≥ . . . ≥ yσm
.

Let aOσ
be the following application:

aOσ
: R

m → R
m, (aOσ

(y))σi
= (min(yσ1 , . . . , yσi

)),∀i ∈ M
For example, if m = 3, for the permutation (2,3,1), we have:

aOσ
(y) =

(
min(y2, y3, y1),min(y2),min(y2, y3)

)

We denote by AOσ
(Y) the set containing the alternatives obtained by apply-

ing the application aOσ
(y) to all the alternatives y ∈ Y. As (aOσ

(y))σ1 ≥
(aOσ

(y))σ2 ≥ . . . ≥ (aOσ
(y))σm

, we have AOσ
(Y) ⊆ Oσ.

In the following, we will denote Oσ as simply O for the sake of simplicity,
and we will consider, w.l.o.g., that the permutation σ is equal to (1, 2, . . . ,m),
that is y ∈ O ⇔ y1 ≥ y2 ≥ · · · ≥ ym.

In [25], Lust and Rolland show the following results in order to characterize
the C-optimal set YC of a set Y:
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Theorem 1.
YC ∩ Oσ = Y ∩ Yws(AOσ

(Y))

where Yws(AOσ
(Y)) designs the set of WS-optimal alternatives of the set

AOσ
(Y).

This theorem characterizes the alternatives that can be C-optimal in a set Y
of points as being, in each subspace of the criteria space Y where yσ1 ≥ yσ2 ≥
. . . ≥ yσm

, the WS-optimal points in AOσ
(Y).

Proof: see [25].

Property 1. Yws ⊆ YC

Proof. If the capacity v is additive, the Choquet integral of a vector y ∈ R
m

is equal to
∑m

i=1

(
v(Y ↑

i ) − v(Y ↑
i+1)

)
y↑

i =
∑m

i=1 v({i})yi. Therefore, the WS is a
particular Choquet integral for which the capacity is additive. All WS-optimal
alternatives are thus also C-optimal alternatives.

Example 2. For the four alternatives of the introduction, we have Yws =
{y1, y2, y3} and YC = {y1, y2, y3, y4}.

Definition 8. Given a set Y of alternatives, the exclusive C-optimal set YeC is
equal to {YC \ Yws}.

The set YeC is thus composed of the alternatives that optimize a Choquet
integral, without optimizing a WS.

Definition 9. Given a set Y of alternatives, let us consider the exclusive C-
optimal set YeC . For all alternatives yi ∈ YeC , let Vi the set of capacities for
which the alternative yi ∈ YeC is C-optimal in Y. Let Ve =

⋃ Vi the union of
these sets. The set Ve is called the exclusive capacity set. All exclusive C-optimal
alternatives are optimal for capacities v ∈ Ve (it does not exist an exclusive
C-optimal alternative for a capacity v /∈ Ve).

We can now define the probability p to get an exclusive C-optimal alternative
when a Choquet integral is randomly generated (that is a capacity v is randomly
generated, with a uniform law).

Definition 10. Let v ∈ V a capacity randomly generated with a uniform law.
Let F (v) = 1 if v ∈ Ve and 0 otherwise and y the best alternative for the Choquet
integral fC

v . The probability pe that y is exclusive C-optimal is equal to:

pe =
∫

V
F (v)dv

Example 3. Let m = 2 and Y = {(1, 0), (0, 1), (0.2, 0.7)}. The point (0.2, 0.7)
cannot be WS-optimal as (0.2 + 0.7 < 1). But it can be C-optimal if the capac-
ity v respects the following conditions1: 0.2 + 0.5v2 ≥ v2 and 0.2 + 0.5v2 ≥ v1,
1 In the following, a capacity associated to a set will be simply written ve1,...,en where
e1, . . . , en denotes the elements belonging to the set.
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that is v such that v1 ≤ 0.2 + 0.5v2 and v2 ≤ 0.4. Therefore we have
Yws = {(1, 0), (0, 1)},YC = Y and YeC = {(0.2, 0.7)}. If we generate randomly a
capacity v, the probability pe to get the point (0.2, 0.7) optimal for the defined
Choquet integral is thus equal to

∫ 0.4

0

∫ 0.2+0.5v2

0
1dv1 dv2 = 0.12. We see also

through this example that the probability takes a different value compared to
the probability to get an exclusive C-optimal alternative if the alternative is
randomly selected (which is equal to 1/3) , as done in the work of Meyer and
Pirlot [17].

4 Maximal Proportion of Exclusive C-optimal
Alternatives

The value of the probability pe is problem-dependent, but bounds, according to
the number of criteria (and independent from the problem studied), can however
be generated. The minimal value of pe is zero, whatever the number the criteria,
since it is always possible to generate sets composed of only WS-optimal alter-
natives. The maximal value of pe is more difficult to compute, but also more
interesting: given a problem with m criteria, what is the maximal value of pe,
that is the maximal chance to reach an exclusive C-optimal alternative with a
Choquet integral?

In the following, we will construct artificial sets of alternatives, in order to
estimate the maximal value of pe. The WS-optimal set of the artificial sets will
always have the same form and composed of only m points, in order to favor
the Choquet integral. We will use m Ij points (j ∈ M), such that Ij

i = 1 if
i = j and 0 otherwise (i ∈ M). Such a WS-optimal set will be called YI

ws. For
example, for m = 3, YI

ws = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
We first introduce some new definitions.

Definition 11. Let Y a set of alternatives. Let us consider two additional alter-
natives y1 and y2 and V1 and V2 the set of capacities for which y1 and y2 are
C-optimal in Y. We say that y1 covers y2 if V2 ⊆ V1.

Definition 12. Let Y a set of alternatives with Yws = YI
ws, YeC the exclusive

C-optimal set and Ve the exclusive capacity set. The set Ve is called a maximal
exclusive capacity set (denoted V∗

e ) if any other possible exclusive C-optimal
alternatives (not necessarily in Y) are covered by an alternative of YeC . The set
YeC associated with V∗

e is called a maximal cover set and is denoted Y∗
eC .

For a problem with m criteria, if we can generate V∗
e , we can then compute

the maximal value of pe as follows:

Definition 13. Let v ∈ V a capacity randomly generated with a uniform law.
Let G(v) = 1 if v ∈ V∗

e and 0 otherwise and y the best alternative for the Choquet
integral fC

v . The maximal probability p∗
e that y is exclusive C-optimal is equal

to:
p∗

e =
∫

V
G(v)dv
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For a problem with m criteria, we have thus to generate V∗
e to obtain p∗

e.
We will start our study with alternatives evaluated with only two criteria

and determine, in this case, the maximal value that pe can take. We will then
generalize for any number of criteria.

4.1 Two-Criteria Problems

We will try to generate Y∗
eC and V∗

e , in order to express p∗
e. We have thus to

generate a set Y of alternatives such that any other possible exclusive C-optimal
alternatives will be covered by an alternative of Y∗

eC . We first detail the results
obtained with the simple case where m = 2.

Property 2. Let m = 2 and Y a set of alternatives with Yws = YI
ws =

{(1, 0), (0, 1)}. The maximal exclusive capacity set Ve is equal to {(v1, v2) | v1 < 1
2

and v2 < 1
2} and the maximal cover set Y∗

eC is equal to � ( 12 , 1
2 ), where the

notation � (12 , 1
2 ) means that we have a point close to ( 12 , 1

2 ) (but the sum of its
component is less than 1).

Proof. With two criteria, we have V = {v1, v2} with v1 ∈ [0, 1] and v2 ∈ [0, 1].
We need at least three points to have one exclusive C-optimal alternative. Let
us consider the two points of YI

ws ((1, 0) and (0, 1)) and the point (a, b) such
that a ≥ b and a + b < 1. We have fC

v (1, 0) = v1, fC
v (0, 1) = v2 and fC

v (a, b) =
b + (a − b)v1. To have (a, b) C-optimal we need to have b + (a − b)v1 ≥ v1 and
b + (a − b)v1 ≥ v2, that is v1 ≤ b

1−a+b and v2 ≤ b + (a − b)v1.
To maximize fC

v (a, b), a + b → 1, and thus b → 1 − a. We obtain:
{

v1 < 1−a
1−a+1−a = 1

2

v2 < (1 − a) + (2a − 1)v1

Let {
G(v) = 1 if v1 < 1

2 and v2 < (1 − a) + (2a − 1)v1
= 0 otherwise.

We get:∫

V
G(v)dv =

∫ 1
2

0

∫ (1−a)+(2a−1)v1

0

1 dv2 dv1 =
3
8

− 1
4
a

As a ∈ [ 12 , 1], the maximal value is obtained when a = 1
2 and b → 1

2 .
We see that it is enough to consider only one additional point (a, b) → (12 , 1

2 ).
Indeed, if we consider another points, we will still have v1 < 1

2 and v2 < (1 −
a) + (2a − 1)v1 that is v2 < 1

2 when v1 → 1
2 . Therefore the maximal value of∫

V G(v)dv will still be bounded by 1
4 ( 12 ∗ 1

2 ); the value of p∗
e is thus equal to 1

4 .
Consequently, for two-criteria sets, V∗

e = {(v1, v2) | v1 < 1
2 and v2 < 1

2},
Y∗

eC = {� ( 12 , 1
2 )} and p∗

e = 1
4 .
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4.2 m-criteria Problems

For three criteria, we have followed the same reasoning as for two-criteria prob-
lems, by adding points (a, b, c) such that a+ b+ c < 1, in an initial set composed
of the three points of YI

ws ((1, 0, 0), (0, 1, 0) and (0, 0, 1)). We have obtained
V∗

e = {(v1, v2, v3, v12, v13, v23) | (v1 < 1
3 , v2 < 1

3 , v3 < 1
3 ) or (v1 < 1

2v12, v2 <
1
2v12, v3 < 1

2v12) or (v1 < 1
2v13, v2 < 1

2v13, v3 < 1
2v13) or (v1 < 1

2v23, v2 <
1
2v23, v3 < 1

2v23)}, Y∗
eC = {� ( 13 , 1

3 , 1
3 ),� (12 , 1

2 , 0),� ( 12 , 0, 1
2 ),� (0, 1

2 , 1
2 )}.

By solving analytically different sextuples integrals defined on V∗
e , we have

computed p∗
e and obtained a value equal to 20323

66 = 0.4356.
Generally, for m criteria, we have the following property:

Property 3. Let Y a set of alternatives with Yws = YI
ws. The maximal cover

set Y∗
eC for a number m of criteria is composed of the following points: �

( 1
m , 1

m , . . . , 1
m ), all permutations of � (0, 1

m−1 , 1
m−1 , . . . , 1

m−1 ), all permutations
of � (0, 0, 1

m−2 , 1
m−2 , . . . , 1

m−2 ), . . ., and all permutations of � (0, . . . , 0, 1
2 , 1

2 ).

Proof. We have to show that any additional exclusive C-optimal point in [0, 1]m

will be covered by a point of Y∗
eC . In Property 3, we have that Y is com-

posed of YI
ws and Y∗

eC . Let us consider an additional alternative z in O, that is
z1 ≥ z2 ≥ · · · ≥ zm. As Yws is composed of the Ij points, to be an exclusive
C-optimal point, z has to fulfill the following constraint:

∑m
i=1 zi < 1 (other-

wise that point would be a WS-optimal point). Moreover, to be C-optimal, z
has to be WS-optimal in AO(Y), where AO(Y) is obtained by applying the
application (aO(y))i = (min(y1, . . . , yi)),∀i ∈ M, to all y ∈ Y (see The-
orem 1). AO(Y) is thus equal to {� ( 1

m , 1
m , . . . , 1

m ),� ( 1
m−1 , . . . , 1

m−1 , 0),�
( 1

m−2 , . . . , 1
m−2 , 0, 0), . . . ,� ( 12 , 1

2 , 0, . . . , 0), (1, 0, . . . , 0)} (the point (0, . . . , 0)
belongs also to this set but it can be removed since this point is P -dominated in
AO(Y)). We can remark that the vertices of the polyhedron defined by the con-
straint inequalities (z1 ≥ z2 ≥ · · · ≥ zm) and (

∑m
i=1 zi ≤ 1) are the points

{( 1
m , 1

m , . . . , 1
m ), ( 1

m−1 , . . . , 1
m−1 , 0), ( 1

m−2 , . . . , 1
m−2 , 0, 0), . . . , ( 12 , 1

2 , 0, . . . , 0), (1,
0, . . . , 0)}. Therefore, if the points of AO(Y) are sufficiently close to the ver-
tices of the polyhedron, it will not possible to find a point z in AO(Y) which
is WS-optimal [26]. Any additional points that do not optimize a WS will not
be C-optimal and thus covered by a point of Y∗

eC . Therefore Y∗
eC is a maximal

cover set.

5 Results

5.1 Computation of p∗
e(m)

In this section, we estimate the probability p∗
e that some alternative might be

exclusively Choquet-optimal, as the number of criteria varies. That is, we esti-
mate p∗

e(m) for varying m. We have already analytically determined this proba-
bility for the cases of 2 and 3 criteria (p∗

e(2) = 0.25 and p∗
e(3) = 0.4356); but for

larger number of criteria we turn to numerical estimation, because analytically
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solving the integrals is exponential in the number of criteria. To do so, roughly
speaking, we randomly generate candidate Choquet integrals with a uniform dis-
tribution, and count the number of times that some alternative of the maximal
cover set Y∗

eC (see Property 3) is superior to some alternative of the initial set of
alternatives (YI

ws). Dividing that by the number of samples gives our numerical
estimate.

However, because of the monotonicity constraints, it is not trivial to generate
randomly (with a uniform distribution) capacities. One way to deal with this
problem is to generate (2m − 2) random values between 0 and 1, and to check
if the values respect the monotonicity constraints of a capacity. If it works for
three or four criteria, it is quickly unusable since the monotonicity constraints
become harder to satisfy when the number of criteria increases.

Recently, Combarro et al. [27] have proposed a way to generate randomly
capacities. They established that the random generation of capacities involves
the generation of random linear extensions of capacities (that is linear exten-
sions of the monotonocity constraints). Once a linear extension is generated, it
is enough to compute a point that respects the linear extension, which can be
easily done (see [28]). A method to generate linear extensions in a random way
appears in [29]. However, this procedure implies the generation of graphs (lat-
tice of ideals) whose the number of vertices increases according to the sequence
of numbers defined by Dedekind [30]. This procedure can only be applied to
generate capacities until m = 5 [27].

So, for greater number of criteria (m > 5), we exploit a heuristic method. We
have used the Markov chain Monte Carlo (MCMC) method introduced in [31].
The method works with iterative modifications of a starting admissible linear
extension. It has been shown that this procedure evolves in limit to a uniform
linear extension [32], no matter the initial linear extension.

The results obtained are shown in Fig. 1. We vary the number of criteria m
from 2 to 8. For m ≥ 4 we have used random generations, with 1000000 trials.

We see that if p∗
e(m) was quite low for m = 2 and m = 3, the value of p∗

e(m)
increases rapidly with m. We have p∗

e(4) = 0.659, p∗
e(5) = 0.868, p∗

e(6) = 0.977,
p∗

e(7) = 0.997 and for p = 8, we are really close to 1 (p∗
e(8) = 0.999).

These results testify of the strength of the Choquet integral and its ability to
attain alternatives that are not possible to reach with the WS, especially when
the number of criteria increases.

However these results have been obtained for the “best possible data set” for
the Choquet integral, composed of well-located exclusive C-optimal points and
presenting few WS-optimal points (the m points Ij).

We study in the next section how the probability pe to get exclusive Choquet
optimal solutions evolves when the number of WS-optimal points increases.

5.2 Influence of the Number of WS-optimal Points

We will now increase the number of WS-optimal points (or supported points)
and see how pe evolves. We have generated sets of alternatives composed of
nSP supported points and nNSP non-supported points. We first generate YI

ws
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Fig. 1. Evolution of p∗
e according to the number of criteria.

(all the m points of YI
ws are supported). We add (nSP − m) points by gener-

ating randomly different points y in [0, 1]m. We add the following constraint:∑m
i=1 y2

i < 1 (otherwise all the points will be closed to the point (1,. . . ,1)). We
check with linear programming that the point optimizes a WS. If not, we try
another point, until nSP − m points have been generated. Then, we generate
nNSP non-supported points. A point will be added in the set if it does not opti-
mize a WS (also checked with linear programming) and if it is a non-dominated
point (and if the point dominates another non-supported points, these points
are removed from the set). The procedure is repeated until nNSP non-supported
points are produced. An example of a set obtained, for two criteria, and for
nSP = 22 and nNSP = 20 is represented in Fig. 2.

The results for m = 2 to m = 6 are given in Figs. 3, 4, 5, 6 and 7. We vary
the number of nSP points and for each value of nSP , we also vary the number of
nNSP points. For each combination (nSP ,nNSP ), 100 different sets are randomly
produced and we average the probability pe over these sets.

For m = 2 and m = 3, adding SP alternatives decreases pe, but if enough N-
SP alternatives are added (about 400), the decreasing remains reasonable (from
0.25 to 0.2 for m = 2 and from 0.42 to 0.3 for m = 3). Quite surprisingly, the
decreasing of pe is higher for m = 4, m = 5 and m = 6. Adding only few more
SP alternatives reduces pe of about 50%. The results are quite impressive for
m = 6: for 6 SP alternatives and 400 N-SP alternatives, we have pe equal to
0.91. If we add only one SP alternatives, pe drops to 0.43.

This phenomenon can be explained by the fact that the Choquet integral is
attracted by particular points, that is the points that composed the set Y∗

eC .
When the number of criteria m increases, it could be more difficult to have
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Fig. 2. Example of alternatives set obtained for nSP = 22 (supported points) and
nNSP = 20 (non-supported points) (2 criteria).
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alternatives close to these points and the WS becomes a tougher opponent for
the Choquet integral.

Similar results, not reported here, have been obtained for other constraint
functions to produce sets of alternatives (

∑m
i=1 yα

i < 1 with 1 ≤ α ≤ 4) and
for alternatives representing solutions of the multiobjective knapsack problem
or the multiobjective traveling salesman problem.

Therefore, the Choquet integral should be carefully used if the set of alter-
natives present supported alternatives, at least four criteria, and not too many
non-supported alternatives.

6 Conclusion

We have proposed in this work a comparison of two successful and popular aggre-
gation operators: the weighted sum and the Choquet integral. If it is clear than
the Choquet integral is more powerful than the weighted sum, given the hard
work that the elicitation of its parameters asks, it is still relevant to compare
both operators and to measure the probability that the best alternative deter-
mined with a Choquet integral could not been obtained with a simple weighted
sum. The results show that the maximal value that this probability can take is
close to one, when the number of criteria is higher than four. However, to reach
this high probability, particular data sets have been constructed, in favor of the
Choquet integral. When the number of WS-optimal alternatives increases in a
set, the probability decreases rapidly, and especially if the number of criteria
is higher than four. This work opens many new perspectives: different opera-
tors could be compared using this framework, like WOWA and the Choquet
integral, for example. Also, we could restrict the capacities of the Choquet inte-
gral to certain families (convex capacities, k-additive capacities, etc.) and to
examine which families of capacities enable to mainly reach exclusive C-optimal
alternatives. Finally, extending this study in a combinatorial space where the
alternatives are not explicitly given would be worth studying.

References

1. Torra, V.: Aggregation operators and models. Fuzzy Sets Syst. 156(3), 407–410
(2005)

2. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practi-
tioners. Studies in Fuzziness and Soft Computing. Springer, Berlin (2007)

3. Bouyssou, D.: Outranking methods. In: Floudas, C., Pardalos, P. (eds.) Encyclo-
pedia of Optimization. Kluwer, Dordrecht (2001)

4. Fishburn, P.: Utility Theory for Decision Making. Wiley, New York (1970)
5. Yager, R.: On ordered weighted averaging aggregation operators in multicriteria

decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1998)
6. Torra, V.: The weighted OWA operator. Int. J. Intell. Syst. 12, 153–166 (1997)
7. Choquet, G.: Theory of capacities. Ann. de l’Institut Fourier 5, 131–295 (1953)
8. Chateauneuf, A.: Modeling attitudes towards uncertainty and risk through the use

of choquet integral. Ann. Oper. Res. 52(1), 1–20 (1994)



Choquet Integral Versus Weighted Sum in Multicriteria Decision Contexts 303

9. Grabisch, M., Marichal, J.C., Mesiar, R., Pap, E.: Aggregation Functions. Ency-
clopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge (2009)

10. Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno
integrals in multi-criteria decision aid. Ann. OR 175(1), 247–286 (2010)

11. Grabisch, M., Labreuche, C.: Fuzzy measures and integrals in mcda. In: Multiple
Criteria Decision Analysis: State of the Art Surveys. Volume 78 of International
Series in Operations Research and Management Science, pp. 563–604. Springer,
New York (2005)

12. Galand, L., Perny, P., Spanjaard, O.: Choquet-based optimisation in multiobjective
shortest path and spanning tree problems. Eur. J. Oper. Res. 204(2), 303–315
(2010)

13. Galand, L., Perny, P., Spanjaard, O.: A branch and bound algorithm for Choquet
optimization in multicriteria problems. Proc. Lect. Notes Econo. Math. Syst. 634,
355–365 (2011)

14. Fouchal, H., Gandibleux, X., Lehuédé, F.: Preferred solutions computed with
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Abstract. This paper deals with biobjective combinatorial optimization
problems where both objectives are required to be well-balanced. Lorenz
dominance is a refinement of the Pareto dominance that has been pro-
posed in economics to measure the inequalities in income distributions.
We consider in this work the problem of computing the Lorenz optimal
solutions to combinatorial optimization problems where solutions are
evaluated by a two-component vector. This setting can encompass fair
optimization or robust optimization. The computation of Lorenz optimal
solutions in biobjective combinatorial optimization is however challeng-
ing (it has been shown intractable and NP-hard on certain problems).
Nevertheless, to our knowledge, very few works address this problem.
We propose thus in this work new methods to generate Lorenz optimal
solutions. More precisely, we consider the adaptation of the well-known
two-phase method proposed in biobjective optimization for computing
Pareto optimal solutions to the direct computing of Lorenz optimal solu-
tions. We show that some properties of the Lorenz dominance can provide
a more efficient variant of the two-phase method. The results of the new
method are compared to state-of-the-art methods on various biobjective
combinatorial optimization problems and we show that the new method
is more efficient in a majority of cases.

Keywords: Multiobjective combinatorial optimization · Fairness ·
Lorenz dominance · Two-phase method

1 Introduction

In many decision problems, a decision (or a solution) has to be evaluated with
respect to several dimensions. In multicriteria decision making the dimensions
reflect several aspects to take into account (one aspect per criterion). In multia-
gent decision making they reflect the point of view of several agents, and they can
reflect several scenarios that can occur in robust decision making. We consider
in this paper a general framework where a solution is evaluated with respect to
c© Springer International Publishing Switzerland 2015
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a component vector, which could be a vector of criteria, a vector of scenarios
or a vector of agents’ utilities. Since there is generally not a solution that opti-
mizes all the components, one has to determine compromise solutions. In this
setting, the concept of Pareto dominance enables to focus on the subset of solu-
tions to a decision problem for which one cannot make a component better off
without worsening another component. However the number of Pareto-optimal
(P-optimal) solutions to a decision problem can be very large, which could make
a final choice of one (or a few) solution(s) among the P-optimal ones difficult
for a decision maker. The notion of Lorenz dominance has been proposed in eco-
nomics to measure the inequalities in income distributions. It refines the Pareto
dominance by selecting only the better distributed solutions. Furthermore, it
has been used for characterizing equitable solutions in multicriteria optimiza-
tion [1,2] and robust solutions in decision under uncertainty [3]. It has also
been studied within the framework of convex-cone theory [4] in multiobjective
programming [5]. The Lorenz-optimal (L-optimal) solutions can be determined
with a two-stage procedure that first generates all the P-optimal solutions and
second selects only the L-optimal ones among them. But the efficiency of the
two-stage procedure depends on the efficiency of the procedure that generates
the P-optimal solutions. Besides the number of L-optimal solutions can be very
small compared to the number of P-optimal solutions, which would make the
two-stage procedure quite inadequate. In the last decade, some procedures have
been proposed to deal with the direct determination of the L-optimal solutions
in combinatorial optimization (see e.g. the works of Perny et al. [3], Baatar and
Wiecek [5], Moghaddam et al. [6], and Endriss [7]), which is generally a difficult
problem (NP-complete and intractable [3,7]). Nevertheless, the amount of works
related to Lorenz optimization is quite small compared to the amount of works
related to Pareto optimization in combinatorial optimization. The aim of this
work is therefore to study the direct determination of L-optimal solutions in
combinatorial optimization. More precisely, we propose in this paper to adapt
one of the most famous method proposed in biobjective optimization, namely the
two-phase method [8], to Lorenz optimization. The two-phase method is a generic
approach that enables to determine the P-optimal solutions by computing first
the subset of P-optimal solutions that optimize a weighted sum, and second
the other P-optimal solutions. It has been widely applied on various problems
of biobjective combinatorial optimization (see e.g. the works of Visée et al. [9],
Ehrgott and Skriver [10], Przybylski et al. [11], and Raith and Ehrgott [12]). In
this paper, we propose two variants of the adaptation of the two-phase method
to Lorenz optimization and we study the efficiency of these procedures on two
biobjective combinatorial optimization problems: the biobjective shortest path
problem and the biobjective set covering problem.

In Sect. 2, we formally define the Lorenz dominance and we present the
problem of Lorenz optimization in multi-objective combinatorial optimization.
Section 3 is devoted to some characterizations of L-optimal solutions. In Sect. 4,
we present a straight adaptation of the two-phase method to Lorenz optimiza-
tion, and a variant that uses the characterization results of Sect. 3 to improve
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its efficiency. We present in Sect. 5 some numerical experiments, and discuss the
efficiency of the adapted two-phase method compared to some state-of-the-art
methods. We conclude in Sect. 6.

2 Multi-objective Combinatorial Optimization

2.1 Notations and Definitions

A multi-objective combinatorial optimization (MOCO) problem can be formu-
lated as follows:

“min
x

” f(x) = Cx = (f1(x), f2(x), . . . , fp(x))T

s.t. Ax ≤ b

x ∈ {0, 1}n

where A ∈ R
m×n, b ∈ R

m, C ∈ R
p×n and the quotation marks means that we

want to minimize a vector and not a single scalar value. A feasible solution x
is a binary vector of n variables that satisfies the m constraints of the problem.
Each solution x is evaluated by p objective functions fk, k = 1, . . . , p such that
fk(x) is the value of solution x for objective k. The feasible set in decision
space is given by X = {x ∈ {0, 1}n : Ax ≤ b}. One compares the solutions
according to their evaluation in R

p, called the objective space. The feasible set
in the objective space, that is the evaluation of the feasible set, is given by
Y = f(X ) = {f(x) : x ∈ X} ⊂ R

p. An element of the set Y is called a cost-
vector or a point. W.l.o.g. we consider through the paper that the p objective
functions have to be minimized.

Definition 1. The Pareto dominance relation (P-dominance for short) is
defined for all y1, y2 ∈ R

p by: y1 �P y2 ⇐⇒ [∀k ∈ {1, . . . , p}, y1
k ≤ y2

k and y1 	=
y2]

Within a feasible set X , any element x1 is said to be P-dominated when
f(x2) �P f(x1) for some x2 in X , and P-efficient (or P-optimal) when there is
no x2 in X such that f(x2) �P f(x1). The P-efficient set denoted by XP contains
all the P-efficient solutions. The image f(x) in the objective space of a P-efficient
solution x is called a Pareto-non-dominated point. The image YP = f(XP ) of
the P-efficient set XP in Y, is called the Pareto front.

The Lorenz dominance is based on the construction of particular vectors,
called generalized Lorenz vectors, that are obtained as follows:

Definition 2. For all y ∈ R
p, the generalized Lorenz vector of y is the vector

L(y) defined by: L(y) = (y(1), y(1) + y(2), . . . , y(1) + y(2) + . . . + y(p)), where
y(1) ≥ y(2) ≥ . . . ≥ y(p) represent the components of y sorted in non-increasing
order. The kth component of L(y) is Lk(y) =

∑k
i=1 y(i).

Definition 3. The Lorenz dominance relation (L-dominance for short) is
defined for all y1, y2 ∈ R

p by: y1 �L y2 ⇐⇒ [L(y1) �P L(y2)]
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The space in which the generalized Lorenz vectors of a solution x are represented
is called the Lorenz space. Within a feasible set X , any element x1 is said to be L-
dominated when f(x2) �L f(x1) for some x2 in X , and L-efficient (or L-optimal)
when there is no x2 in X such that f(x2) �L f(x1). The L-efficient set denoted
by XL contains all the L-efficient solutions. The image f(x) in the objective
space or the image L(f(x)) in the Lorenz space of a L-efficient solution x is
called a L-non-dominated point. The image YL = f(XL) of the L-efficient set in
Y is called the Lorenz front. The generalized Lorenz vectors of the Lorenz front
are given by L(YL). The Lorenz dominance is closely related to the Transfer
Principle [13], which means that for some cost-vector y ∈ R

p with yi > yj ,
slightly improving yj to the detriment of yi while preserving the mean of the
costs would produce a better distribution of the costs, and consequently a more
balanced solution. This principle enables to compare vectors with the same mean.
The generalized Lorenz extension considered here enables to compare vectors
with different means thanks to the P-monotonicity axiom [14], which means
that if a cost-vector y1 P-dominates another cost-vector y2 then y1 L-dominates
y2. Consequently L-optimal solutions are a subset of P-optimal solutions.

Following Definition 3, finding the L-efficient solutions to a MOCO problem
boils down to finding the P-efficient solutions to the same MOCO problem where
the costs are given by the generalized Lorenz vectors:

“min
x∈X

” L(f(x))

where L(f(x)) = (f(1)(x), f(1)(x) + f(2)(x), . . . , f(1)(x) + f(2)(x) + . . . + f(p)(x))
with f(1)(x) ≥ f(2)(x) ≥ . . . ≥ f(p)(x) represent the components of f(x) sorted in
non-increasing order. In the special case where p = 2, the two objective functions
to be minimized are: L1(f(x)) = max(f1(x), f2(x)) and L2(f(x)) = f1(x)+f2(x).
We thus look for solutions that establish a good compromise between the value
of the worst performance and the sum of the costs.

Example 1. Let us consider the point y = (6, 3). All the points L-dominated by
y are in the hatched area called “Lorenz worse” in the biobjective space of Fig. 1
(left part). The points that L-dominate y are in the hatched area called “Lorenz
better” in the same figure. To illustrate the L-dominance, the symmetric point
of y, the point (3,6), is also represented in the figure by a circle. The points in
the not hatched area are incomparable to y with L-dominance. The generalized
Lorenz vector of the point (6, 3), that is the point (6, 9), is represented in the
Lorenz space (right part of the figure).

2.2 Algorithmic Issues

Intractability. As there is not generally a unique optimal solution when mul-
tiple objectives are involved, the number of optimal solutions turns out to be a
crucial point to evaluate the hardness of the problem. It leads us to the notion of
intractability [15]. In our setting, a Lorenz optimization problem is intractable if
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Fig. 1. Representation of the Lorenz dominance.

the number of L-efficient solutions is exponential in the size of the instance. The
biobjective shortest path problem, the biobjective spanning tree problem and
the biagent Markov decision process problem have been proved intractable when
looking for L-efficient solutions [3,16]. As Ehrgott did in a Pareto optimization
setting [15], one can show that even the unconstrained problem is intractable
in a Lorenz optimization setting. The multi-objective unconstrained (MOUC)
problem is defined as follows:

“ min
xi∈{0,1}n

”
n∑

i=1

cikxi k = 1 . . . p

Proposition 1. Problem MOUC is intractable for Lorenz optimization.

Proof. For p = 2, by setting ci1 = 2(i−1) and ci2 = −2i, we obtain Y =
{(0, 0), (1,−2), (2,−4), . . . , (2n − 1,−2n+1 + 2)}. If we represent the generalized
Lorenz vectors of all y ∈ Y, we obtain: L(Y) = {(0, 0), (1,−1), (2,−2), . . . , (2n −
1,−2n+1)}. All the generalized Lorenz vectors have the same sum L1+L2 and a
distinct value on the first dimension L1 (and consequently on the second dimen-
sion L2 as well). Thus all the generalized Lorenz vectors are P-non-dominated in
the Lorenz space and then we have Y = YL. Furthermore, by construction, each
feasible solution has a distinct image in the objective space, i.e. |Y| = |X |. As
the number of feasible solution is |X | = 2n, we have thus |XL| = |YL| = 2n. ��

NP-completeness. The complexity of a Lorenz optimization problem is
defined by the complexity of its decision version: given a vector v = (v1, . . . , vp),
does there exist a solution to the Lorenz optimization problem that L-dominates
v? The decision version of the biobjective shortest path problem and the biob-
jective spanning tree problem has been proved NP-complete [3], and the decision
version of the multi-agent allocation problem has been proved NP-complete for
many languages [7]. Besides, one can easily show that the decision version of
problem MOUC, which is obviously in NP, is also NP-complete.
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Proposition 2. Given a vector v = (v1, . . . , vp), deciding whether there exists
a solution to problem MOUC that L-dominates v is NP-complete.

Proof. We use a reduction from the partition problem. Consider an instance of
this problem with a finite set A = {a1, . . . , an} and a size s(ai) ∈ N for each
element ai in A. We construct a biobjective MOUC instance by setting ci1 = s(ai)
and ci2 = −2s(ai), and we ask if there exists a solution that L-dominates the
vector (

∑
i s(a

i)/2 + ε,−∑
i s(a

i) + ε) for some small ε > 0. Answering this
question amounts to solving the partition problem. ��

Other Difficulties. In addition to the previous complexity results, the deter-
mination of Lorenz optimal solutions can encounter another algorithmic issue.
It has indeed been shown for some Lorenz optimization problems that one can-
not resort directly to an approach based on the Lorenz optimality of partial
solutions, like dynamic programming or greedy procedures [16,17].

2.3 State-of-the-Art

To our knowledge, only a few works address the problem of Lorenz optimization
for MOCO problems. We now briefly list the methods proposed in the literature.

Ranking Method. The ranking method has been proposed by Perny et al. [3]
in a robust optimization setting. This method works simply by computing the
solutions in nondecreasing order of their sum using a k-best algorithm (that is
an algorithm that generates the k best solutions to an optimization problem).
This enumeration can be stopped when all the L-efficient solutions have been
generated. Note that the sum of the costs of a L-dominated solution can be lower
than the sum of the costs of a L-efficient solution, thus the ranking method
actually computes a superset of the set XL. As one cannot know in advance
the number k of solutions to be enumerated, one has to define a valid stopping
criterion that ensures that all L-efficient solutions have been generated. This
method can be used with any number of objectives, but its efficiency strongly
relies on the efficiency of the k-best algorithm.

ε-Constraint based Method. This method, proposed by Baatar and Wiecek [5], is
based on the classic ε-constraint procedure for Pareto optimization [18]. It gen-
erates L-efficient solutions in the nondecreasing order of their sum. In addition,
it uses Euclidean norm optimization to ensure to determine an L-efficient solu-
tion for a given sum of the costs (and not a L-dominated one). Each solution is
computed by solving two mathematical programs with appropriate constraints
and objective functions. This method works with any number of objectives, but
solving such mathematical programs can be inefficient in practice. Besides it
generates only one L-efficient solution per Lorenz vector which implies that it
computes the set L(YL) but not the Lorenz front YL.

Dynamic Programming based method. One cannot use directly a dynamic
programming procedure to generate the L-non-dominated points to a MOCO
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problem (see Sect. 2.2). However, since dynamic programming can be used with
P-dominance, and since L-optimal solutions are also P-optimal, Perny et al. have
proposed to adapt a multi-objective dynamic programming based procedure to
Lorenz optimization by using a valid additional dominance rule [3].

3 Supported Solutions

3.1 Definitions

In multi-objective optimization, there exists an important classification of the
P-efficient solutions: supported P-efficient solutions (SP solutions) and non-
supported P-efficient solutions (NSP solutions). The images of the SP solutions
in the objective space are located on the convex hull of the Pareto front and
the images of the NSP solutions are located inside the convex hull of the Pareto
front. More precisely, we can characterize these solutions as follows [15]:
Supported P-efficient solutions: a solution x is supported P-efficient iff there
exists a vector λ (λk > 0,∀ k ∈ {1, . . . , p}) such that x is an optimal solution to
the weighted sum single-objective problem: minx∈X

∑p
k=1 λk fk(x). The set of SP

solutions is denoted by XSP and the set of supported P-non-dominated points,
called SP points, by YSP (= f(XSP )). Note that in biobjective optimization, the
set XSP can be easily computed with a dichotomic search [19,20] which gives
the different weighting vectors that allow to generate all the SP points.
Non-supported P-efficient solutions: P-efficient solutions that are not supported.
The set of NSP solutions is denoted by XNSP and the set of non-supported
P-non-dominated points, called NSP points, by YNSP (= f(XNSP )).

One can easily transpose these notions to Lorenz dominance by applying
the definitions of SP and NSP solutions in the Lorenz space. In that respect, we
define supported L-efficient solutions (SL solutions) as follows: a solution x is sup-
ported L-efficient iff there exists a vector λ (λk > 0,∀ k ∈ {1, . . . , p}) such that x
is an optimal solution to the weighted sum single-objective problem defined on
the generalized Lorenz vector of f(x): min

x∈X
∑p

k=1 λk Lk(f(x)), where f(1)(x) ≥
f(2)(x) ≥ . . . ≥ f(p)(x). Note that

∑p
k=1 λk Lk(f(x)) = (

∑p
k=1 λk)f(1)(x)+(λ2+

. . . λp)f(2)(x)+. . .+λpf(p)(x). Let w be a weight vector defined by wk =
∑p

i=k λi,
then

∑p
k=1 λk Lk(f(x)) = w1f(1)(x)+w2f(2)(x)+ . . .+wpf(p)(x). Such an aggre-

gation function is well-known in fair optimization, it corresponds to a particular
family of Ordered Weighted Averages (OWA), where the weights are strictly
decreasing. The OWA function has been introduced by Yager [21]:

Definition 4. Given a vector y ∈ R
p and a weighting vector w ∈ [0, 1]p,

the ordered weighted average (OWA) of y with respect to w is defined by:
fowa(y, w) =

∑p
k=1 wky(k) where y(1) ≥ . . . ≥ y(p).

It has been shown that any solution minimizing an OWA function endowed with
strictly decreasing and strictly positive weights is L-efficient [22]. One can then
define the SL solutions as follows:
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Definition 5. The SL solutions are the solutions that minimize an OWA func-
tion for some strictly decreasing and strictly positive weighting vector.

However, in general there exist L-efficient solutions that do not optimize any
OWA functions. We call these solutions non-supported L-efficient solutions (NSL
solutions). The set of SL (resp. NSL) solutions is denoted by XSL (resp. XNSL)
and the set of supported (resp. non-supported) L-non-dominated points, called
SL (resp. NSL) points, by YSL (resp. YNSL). Unfortunately, there are no trivial
relations between the sets XSP and XSL, or between the sets YSP and YSL, as
illustrated in the following example.

Example 2. Let us consider the following 4 solutions: x1 with f(x1) = (6, 18),
x2 with f(x2) = (9, 16), x3 with f(x3) = (12, 14) and x4 with f(x4) = (20, 2).
The generalized Lorenz vectors of the 4 solutions are all P-non-dominated:
L(f(x1)) = (18, 24), L(f(x2)) = (16, 25), L(f(x3)) = (14, 26) and L(f(x4)) =
(20, 22). It means that the 4 solutions are L-efficient. In this simple example,
we have a SP solution that is not SL (x1), a solution that is neither SP nor SL
(x2), a SL solution that is not SP (x3) and a solution that is both SP and SL
(x4).

3.2 Biobjective Case

Even though there is no trivial relation between the supported Pareto and Lorenz
efficient sets, we show in this section that, in the case of two objectives, there
are interesting properties on the location of the SL solutions with respect to
the location of some SP solutions in the objective space. Before presenting the
properties, let us introduce some notation for the biobjective case. We denote by
Oi ⊂ R

2
≥ the space in the positive orthant of the objective space where all the

points y are such that yi ≤ yj for j 	= i. The bisector is the line y1 = y2 in the
objective space. Any point in O1 (resp. O2) is said to be above (resp. below) the
bisector. Let us also denote by x∗ a L-efficient solution that minimizes the sum of
the costs (it is an optimal solution to leximin

(
f1(x)+f2(x),max(f1(x), f2(x))

)
,

where an optimal solution to leximin (y1, y2) is an optimal solution w.r.t. y1
that minimizes y2 among all the optimal solutions w.r.t. y1), and y∗ its image
in the objective space. In this section, we suppose, w.l.o.g., that y∗

2 > y∗
1 , i.e.

y∗ ∈ O1. We will also use the notion of “betweenness” in the sequel: we say that
a point y is between two points yi and yj (i 	= j) in the objective space when
yi
1 ≤ yj

1 ⇒ yi
1 ≤ y1 ≤ yj

1. Furthermore, two SP points y1 and y2 are said to be
adjacent when there is no other solution x3 in XSP such that f(x3) is between
y1 and y2.

Property 1. All SP solutions x such that f(x) ∈ O1 and f2(x) < y∗
2 are SL.

Proof. Let x1 be a solution in XSP such that x1 ∈ O1 and f2(x1) < y∗
2 . As x1

is in XSP , ∃λ s.t. λ1f1(x1) + λ2f2(x1) ≤ λ1f1(x) + λ2f2(x),∀x ∈ X . Moreover,
as f2(x1) < y∗

2 , λ2 > λ1 (otherwise x∗ would be better than x1 for the weighted
sum). This implies that for any y in O1, λ1y1 +λ2y2 = fowa(y, λ), and therefore
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for any solution x ∈ X s.t. f(x) ∈ O1, fowa(f(x1), λ) ≤ fowa(f(x), λ) (1).
Let us now consider the case where the image of a solution x ∈ X is not in
O1, which means that f1(x) > f2(x). As λ2 > λ1, we have λ2(f1(x) − f2(x)) >
λ1(f1(x)−f2(x)), that is fowa(f(x), λ) = λ2f1(x)+λ1f2(x) > λ1f1(x)+λ2f2(x).
As x1 is in XSP and in O1, we have thus fowa(f(x1), λ) = λ2f2(x1)+λ1f1(x1) <
fowa(f(x), λ) (2). From (1) and (2), we have that solution x1 is in XLS . ��

Note that all solutions x such that f(x) is in O1 and f2(x) > y∗
2 are L-

dominated by y∗ since L(y∗) = (y∗
2 , y

∗
1 +y∗

2) �P (f2(x), f1(x)+f2(x)) = L(f(x)).
The next property enables us to locate in the objective space the SL points

that are NSP according to the bisector. We say that two points are located on
opposite sides of the bisector if one is above the bisector and the other one is
below.

Property 2. The image of a solution that is SL but not SP is between the two
adjacent SP points located on opposite sides of the bisector.

Proof. Let x1 and x2 be two P-efficient solutions such that their images y1 =
f(x1) and y2 = f(x2) are two adjacent SP points such that y1

1 ≤ y2
1 (and thus

y1
2 ≥ y2

2), and y1 and y2 are both either in O1, either in O2. Let us assume for
example that they are in O1. Let x3 be a NSP solution whose image y3 = f(x3)
is between y1 and y2 in the objective space. As points y1, y2 and thus y3 are in
O1, we have fowa(yi, λ) = λ1y

i
2 + λ2y

i
1 for any i = 1, 2 or 3. Since x1 and x2 are

SP and x3 is NSP, there is always a weight λ such that fowa(y1, λ) or fowa(y2, λ)
is less than fowa(y3, λ). Thus solution x3 cannot be L-efficient. Obviously, we
come to the same conclusions when y1 and y2 are in O2. ��
Property 3. Let y2 be an SP point (image of a solution) such that y2 is in set
O2. Then all solutions x such that f1(x) > y2

1 are not L-efficient.

Proof. It is sufficient to show that all solutions x ∈ XP such that f1(x) > y2
1

are L-dominated by a solution x2 the image of which is y2. Let us consider one of
these solutions x. As x is P-efficient, f2(x) < y2

2 , which implies that f(x) ∈ O2,
then L1(f(x)) = f1(x) > y2

1 = L1(y2). To be L-efficient x must therefore satisfy
L2(f(x)) < L2(y2), that is f1(x)+f2(x) > y2

1+y2
2 (1). As solution x2 is SP, there

exists a weighting vector λ such that λ1y
2
1 + λ2y

2
2 ≤ λ1f1(x) + λ2f2(x) (2) and

λ1y
2
1 + λ2y

2
2 ≤ λ1f1(x∗) + λ2f2(x∗) (3). From (1) and (2) and since f1(x) > y2

1 ,
one obtains λ1 > λ2. And from (3) and the fact that solution x∗ minimizes the
sum of the costs, we obtain λ2 ≥ λ1, which leads to a contradiction. Therefore,
we have L2(f(x)) ≥ L2(y2). Thus, solution x2 L-dominates solution x. ��

The image in the objective space of all L-efficient solutions in O2 are thus
between y∗ and any SP point in O2. Let xmax be an SP solution such that
f(xmax) = ymax is in O2 and minimizes the cost of the first criterion among
all the P-non-dominated points in O2. Then, from the previous properties, we
can deduce that all L-non-dominated points are between y∗ and ymax. We show
in the next section how we can use these properties to compute all the L-non-
dominated points of YL, without generating the entire set YP .
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4 New Methods

4.1 Straight Adaptation of the Two-Phase Method

The two-phase method has been developed by Ulungu and Teghem [8] to find
the P-efficient solutions to MOCO problems with two objectives. We describe
only at a high level how this method can be adapted in order to generate all the
L-non-dominated points of a biobjective optimization problem. The adaptation
closely follows the original method. As the name of the method suggests it, the
method works in two distinct phases:

Phase 1: generation of all the SL solutions (XSL). This consists in applying
the first phase of the original two-phase method for Pareto optimization in the
Lorenz space instead of the objective space. This amounts to optimizing OWA
functions with different weights until all the SL solutions have been detected. The
weight sets w used in the different OWA functions are defined by wk =

∑p
i=k λi

(k ∈ {1, . . . , p}) from the weight sets λ defined in the Lorenz space and computed
by the dichotomic search (see Sect. 3.1).

Phase 2: generation of XNSL. The SL points generated at Phase 1 are used
to reduce the search space, since for biobjective problems, NSL solutions are
always located, in the Lorenz space, in the interior of the right triangle defined
by two adjacent SL points L(y1) and L(y2) and the point (L1(y2), L2(y1)) (when
L1(y1) < L1(y2)). The exploration of the triangles can be performed with a
branch and bound algorithm or with a k-best algorithm.

Even if this straight adaptation of the two-phase method is theoretically
interesting, the main drawback is in the first phase: the OWA function that
has to be optimized is non-linear and therefore even generating only the SL
solutions could be computationally expensive. We propose in the next section a
new method where the optimization of OWA functions is avoided.

4.2 Supported Pareto-Efficient Solutions Based Method

From Properties 1 and 3, we have that all L-non-dominated points are between
the points y∗ and ymax (see Sect. 3.2). We use this property to define a new
two-phase method based on the computation of some SP solutions. This new
method is called method SP in the sequel.

Phase 1. The first phase of method SP consists in generating all the SP points
located between y∗ and ymax. From Property 1, we know indeed that all these
solutions, except perhaps solution xmax, are SL. In order to do so, one first finds
a solution x1 that optimizes L2. Three cases can then occur:

1. f1(x1) = f2(x1): in this case, f(x1) is the only L-non-dominated point of the
problem since it optimizes both L2 and L1: the method SP stops and returns
solution x1.
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Fig. 2. Search zonee: in the objective space (left) and in the Lorenz space (right).

2. f1(x1) < f2(x1) (i.e. f(x1) ∈ O1): in this case, we perform a dichotomic
search between the points f(x1) and f(x2) where x2 optimizes min

x∈X
(f2(x)).

Note that we only need to compute the point ymax in O2, and consequently
the search is mainly performed in O1.

3. f1(x1) > f2(x1) (i.e. f(x1) ∈ O2): analogous to case 2.

For the cases 2 and 3, the SP point ymax is also stored. Note that at the
end of the first phase, we have generated a subset of YSL, that is the set of
points that are also in YSP . However, from Properties 2 and 3, we know that
the remaining SL points are between the two adjacent SP points of Property 2
(in fact one is ymax), which are now known.

Phase 2. Let Y be the set of the points generated at Phase 1. To each point y of
Y is associated an area in the objective space containing all the points that are
not L-dominated by y (called the L-non-dominance zone of y). The intersection
of all the non-dominance zones of the points in Y defines the search zone to be
explored at Phase 2. Two illustrations of search zone are given in Fig. 2 in the
objective space. The black squares represent the SP points generated in Phase
1. The search zone is represented by the triangles and polygon drawn between
two adjacent SP points in the figures. Suppose that the set Y = {y1, y2, . . . , yt}
is ordered w.r.t. L2, that is for any i = 1, . . . , t − 1 we have L2(yi) ≤ L2(yi+1).
By Property 1, the t − 1 points y1, . . . , yt−1 are all either above the bisector,
or below. Suppose, w.l.o.g that they are below the bisector (as in left part of
Fig. 2). The point yt is thus the only point in Y that could be above the bisector.
Besides, note that yt is also the only point in Y that may be L-dominated. Since
two points yi and yi+1 (i < t−2) in Y are adjacent, any L-non-dominated point
between these two points in the objective space relies inside the triangle defined
by the three points yi, yi+1 and pi = (L1(yi), L2(yi+1) − L1(yi)). Let Zi denote
such a triangle. When the points yt−1 and yt are on opposite sides of the bisector,
any L-non-dominated point between these two points in the objective space relies
inside a zone that could be a triangle or a particular polygon, as the polygon
in Fig. 2 (right part). Let Zt−1 denote this zone (triangle or polygon). When
the points yt−1 and yt are on the same side of the bisector, the zone Zt−1 is
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Table 1. Type A

Size CPU(s)

l × v #P #L Rkg SP DP

20 × 20 90.8 2.9 0 0.01 0.08

20 × 50 101.1 2.6 0.01 0.06 0.46

20 × 100 91.4 2.5 0.05 0.46 1.17

30 × 20 171.4 3.2 0 0.02 0.29

30 × 50 161.4 3.1 0.01 0.14 1.23

30 × 100 147.7 2.3 0.09 0.73 5.12

50 × 20 349.8 4.7 0 0.04 1.19

50 × 50 307.5 2.6 0.04 0.44 6.75

50 × 100 276.7 3.1 0.18 1.45 22.6

Table 2. Type B

Size CPU(s)

l × v #P #L Rkg SP DP

20 × 20 11.4 4.9 1.28 0.01 0

20 × 50 17.1 9.7 / 0.1 0.04

20 × 100 20 13.2 / 0.73 0.15

30 × 20 20.9 11.7 / 0.02 0.01

30 × 50 28.7 17.5 / 0.29 0.13

30 × 100 30.3 20.7 / 1.63 0.38

50 × 20 42.1 21.5 / 0.14 0.06

50 × 50 60.4 36.55 / 1.23 0.34

50 × 100 55.7 35.7 / 4.65 1.21

simply a triangle defined as the other triangles Zi (i < t − 2). The search zone
in the objective space to be explored is therefore defined by the t − 2 triangles
Zi (i < t − 2) and the polygon Zt−1.

The exploration of each of the zones Zi (i < t) consists in enumerating
solutions with respect to the weighted sum of their costs with the weighting
vector wi defined such that points yi and yi+1 have the same weighted sum. The
enumeration is performed with a k-best algorithm (for an unknown k) and can
be stopped as soon as the value of the weighted sum of a point is greater than the
following upper bound: U i = maxyj ,yj+1∈Y i wi

1p
j
1 + wi

2p
j
2 = maxyj ,yj+1∈Y i(wi

2 −
wi

1)L1(yj) + wi
1L2(yj+1), where yj and yj+1 are consecutive in the ordered set

Y i of the already detected points in Zi ordered w.r.t. L2. In the case where the
bisector crosses the zone Zt−1 to be explored, one can easily show that a valid
upper bound for Zt−1 is: U t−1 = max

{
maxyj ,yj+1∈Y1(w

t−1
2 − wt−1

1 )L1(yj) +
wt−1

1 L2(yj+1), L1(yk)
}
, where yk is the point that minimizes L1 in Y t−1. Once

all the L-non-dominance zones Zi have been explored, the method SP can stop,
all the L-non-dominated points have been detected.

5 Experimental Results

We have applied the method SP to the biobjective shortest path problem
(BOSPP) and to the biobjective set covering problem (BOSCP). The experi-
ments have been run on an Intel Xeon CPU E5-2430 at 2.20 GHz for BOSPP,
and on an Intel Core i7-3820 CPU at 3.60 GHz for BOSCP.

Biobjective Shortest Path Problem. Given a digraph G = (V,E), where V
is a set of vertices and E ⊆ V × V is a set of arcs, and two nodes s and t in V ,
one looks for the L-non-dominated points, images of feasible shortest paths from
s to t in G. The value of each arc e in E is given by a vector of two costs: (ce1, c

e
2).
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It is assumed that all the costs cei are non-negative. In our experiments, we solve
BOSPP on layered digraphs with randomly generated costs. A layered digraph is a
graph in which the set V is partitioned into l subsets, called layers, L1, L2, . . . , Ll,
such that all arcs of E are between consecutive layers. To this layered digraph we
add a vertex s and |L1| arcs from s to every vertex of L1, and a vertex t and |Lk|
arcs from every vertex of Ll to t. Therefore, any path from s to t in such a graph
is made of l + 1 arcs exactly. In our instances, all the layers have the same size
and there is an arc (v, v′) from any vertex v of a layer Li to any vertex v′ of the
layer Li+1. For each instance size, 4 different kinds of objectives, A, B, C and UN,
are defined. The costs of the instances of type A, B and C are drawn uniformly at
random from [1, 100], and the costs of type B are positively correlated and those of
type C are negatively correlated (see the instances of type A, B and C proposed
by Bazgan et al. [23]). In addition, we consider a new type UN where the first
cost is randomly generated, and the second cost is also randomly generated, but
with a normal distribution. We use the following normal distribution: the mean
is 50 and the variance is 20. We compare the running times of the method SP to
the running times of two other methods proposed by Perny et al. [3] for Lorenz
optimization for the multi-objective shortest path problem: the ranking method,
called Rkg, and an extension of dynamic programming to Lorenz optimization,
called DP (see Sect. 2.3). For method Rkg and for the Phase 2 of method SP, a k-
best algorithm is needed. We have used a modified version of Eppstein’s algorithm
[24] proposed by Jiménez and Marzal [25]. The results obtained are summarized
in Tables 1, 2, 3 and 4. At each row of the tables is given the size of the graph l×v
where l is the number of layers and v the number of vertices per layer, the aver-
age number of P-non-dominated points (#P) and L-non-dominated points (#L),
and the average CPU running times in seconds of the three tested methods on
20 instances of the same type and the same size. Note that the number of P-non-
dominated points is computed by applying a multi-objective dynamic program-
ming algorithm (see e.g. the algorithms of Stewart and White [26], and Mandow
and Pérez-de-la-Cruz [27]). The running time of this algorithm is not indicated in
the tables, but it is always greater than the running time of method DP. The sym-
bol ‘/’ in the tables means that the average running time is more than 15 min. The
results show that the efficiency of method SP compared to the two other meth-
ods depends on the number of P-non-dominated points (#P ) and on the propor-
tion of L-non-dominated points. For instances A, the costs are rather balanced
and #L is small compared to #P . Method SP is quite efficient on these instances
but method Rkg is a bit faster. It means that the ranking method has to enumer-
ate only a small number of feasible solutions. This comes from the fact that the
costs are well-balanced. Method DP is clearly less efficient on these instances. The
instances B are also balanced, but #P is significantly smaller than for instances
A. This means that a lot of feasible solutions are P-dominated, and as the costs of
all the feasible solutions are quite close, the method Rkg is particularly inefficient
on these instances, it can only solve very small instances, whereas the method SP
is quite efficient. The exploration of several zones instead of one is thus much more
appropriate on these instances. Note that the method DP is very efficient when
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Table 3. Type C

Size CPU(s)

l × v #P #L Rkg SP DP

20× 10 1053.8 3.5 0.01 0.02 2.23

20× 20 1806.5 3.75 0.03 0.01 23

20× 50 / 3114 120.84 18.65 /

30× 10 2005.1 4.6 0.05 0.01 11.52

30× 20 3930.5 5 0.2 0.05 165.75

30× 30 / 42.6 6.64 0.26 /

50× 10 5140.9 3.6 0.24 0.02 215.5

50× 20 / 7.15 1.46 0.1 /

50× 30 / 5119.7 / 137.16 /

Table 4. Type UN

Size CPU(s)

l× v #P #L Rkg SP DP

20× 20 99.8 8.6 0.47 0.02 0.1

20× 50 109.3 6.1 0.08 0.09 0.59

20× 100 106.8 6.2 0.1 0.53 1.91

30× 20 171.1 15.2 110.7 0.04 0.18

30× 50 184.9 10.4 8.27 0.19 1.41

30× 100 172.1 8.7 2.24 0.94 6.18

50× 20 376.4 28 / 0.09 1.43

50× 50 362.2 20.2 / 0.83 8.92

50× 100 346.2 13.2 108.1 2.23 28.6

#P and #L are small (even if the proportion of L-non-dominated points is high).
Instances C and UN are unbalanced, and we can observe in Tables 3 and 4 that
the method SP is clearly the most efficient on these instances. It comes from the
fact that this method explores the objective space by taking into account the form
of the convex hull of the images of the solutions, contrary to method Rkg. When
the convex hull of the images of the solutions is not symmetric with respect to
the bisector, the method SP reveals thus to be much more suitable. Besides, one
can observe that the method DP is penalized by an important number of P-non-
dominated points. It is particularly inefficient on instances C for which the number
of P-non-dominated points is large.

Biobjective Set Covering Problem. We have a set of m rows (or items),
and each row can be covered by a subset of n columns (or sets), each column
j has two costs cjl (l = 1, 2). A feasible solution to the BOSCP is a subset of
columns, among the n columns (j = 1, . . . , n) such that all the rows are covered
by at least one column. Our aim is to find the L-non-dominated points. We
have used all the instances generated by Gandibleux et al. [28], from the size
100×10 (100 columns, 10 rows) to the size 1000×200 (1000 columns, 200 rows).

Table 5. Type A

CPU(s)

# #P #L Rkg SP Pareto

11 39 1 0.019 0.15 8.64

41 107 1 0.026 0.074 18.01

42 208 4 0.072 0.085 35.83

43 46 3 0.15 0.30 12.80

61 257 6 0.76 0.81 83.66

62 98 2 0.27 0.99 58.10

81 424 4 0.20 0.57 148.66

82 132 3 0.33 0.83 116.51

101 157 1 0.59 1.25 375.84

102 83 1 0.37 1.04 104.76

201 274 2 9.20 27.15 6850

Table 6. Type B

CPU(s)

# #P #L Rkg SP Pareto

11 43 3 0.017 0.047 6.26

41 108 2 0.049 0.051 16.63

42 276 2 0.24 0.15 52.04

43 28 1 0.023 0.18 7.51

61 338 2 0.17 0.38 114.01

62 99 1 0.082 0.58 60.20

81 354 4 0.25 2.09 130.26

82 88 2 0.06 0.26 38.16

101 141 5 1.52 2.20 225.50

102 86 1 0.29 1.62 211.48

201 282 6 19.61 22.07 4278
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Table 7. Type UN-A

CPU(s)

# #L Rkg SP

11 2 0.016 0.15

41 3 0.062 0.13

42 5 0.26 0.23

43 3 0.17 0.71

61 5 2.39 0.40

62 3 1.24 0.83

81 1 0.067 0.27

82 3 3.95 1.30

101 3 7.70 6.35

102 4 2.06 3.53

201 5 209.07 9.40

Table 8. Type UN-B

CPU(s)

# #L Rkg SP

11 1 0.014 0.036

41 3 0.067 0.18

42 3 0.059 0.11

43 6 1.20 0.63

61 4 0.34 0.70

62 3 0.73 0.84

81 4 20.71 0.41

82 3 1.40 2.41

101 2 0.61 1.79

102 2 0.87 2.59

201 10 1085.22 87.7

For each size instance, two different kinds of objectives A, B are defined. In the
case of instances of type A, the costs of each objective are randomly generated
with a uniform distribution. For the type B, the costs of the first objective is
also randomly generated with a uniform distribution and the ones of the second
objective are made dependent in the following way: cj2 = cn−j+1

1 ,∀j = 1, . . . , n.
As done with BOSPP, we also consider the new type UN with the following
normal distribution: the mean is equal to the mean value of the first cost and
the variance is equal to half the mean. Two types of instance are considered: type
UN-A (first cost corresponds to the first cost of type A instance) and type UN-B
(first cost corresponds to the first cost of type B instance). We compare the
running times of the method SP with the running times of the ranking method
Rkg. We also give, for the type A and type B instances, the number of P-non-
dominated points (#P ) and the CPU time needed for generating these points.
The results are from the method of Florios and Mavrotas [29], based on the ε-
constraint method (on an Intel core 2 quad CPU at 3.00 GHz). In both methods,
a k-best algorithm is necessary to enumerate the k-best solutions. Contrary to
the shortest path problem, to our knowledge, no k-best algorithm has been
previously developed. We have thus used the commercial CPLEX solver and
implemented a procedure based on incumbent callback with solution injection
(we inject in the search tree the current best solutions generated to get the next
best solution), in order to enumerate the k-best solutions. The results are given
in Tables 5, 6, 7 and 8. For each type of instance, we report the name of the
instance (same name as used by Gandibleux et al.), #P (when available), #L,
and the CPU times in seconds of the tested methods. From Tables 5 and 6, we
see that the #L represent only a small part of #P : there are only between 1
and 6 L-non-dominated points. The running time of both methods are small and
quite lower than the running time of the Pareto generation. For these instances,
it is thus particularly interesting to apply a method dedicated to the generation
of L-non-dominated points. However, the running time of the method Rkg is
almost always slightly lower than the new method SP.
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From Tables 7 and 8, the running times of both methods Rkg and SP are
comparable for most of the instances, except for the last instance 201 (with 1000
columns and 200 rows). For the type UN-A (resp. UN-B), Rkg needs 209.07s
(resp. 1085.22s) while SP only needs 9.40s (resp. 87.7s). We see thus that, as
soon as the two objectives are unbalanced, the CPU time needed by method
Rkg can be very high compared to method SP.

6 Conclusion

We have proposed new properties and new generic methods to generate Lorenz-
optimal solutions to biobjective combinatorial optimization problems. The
method has been evaluated experimentally on the biobjective shortest path prob-
lem and the biobjective set covering problem and showed good results compared
to state-of-the-art methods, especially for “unbalanced instances”. This work is
dedicated to the efficient adaptation of the classic two-phase method to Lorenz
optimization. Future work could be to efficiently adapt other classic methods
proposed for Pareto optimization to Lorenz optimization. Besides, studying the
location of the optimal points in the objective space is also a good starting point
for developing efficient methods to generate the L-efficient solutions to MOCO
problems, where the number of objectives is not limited to 2.

References

1. Kostreva, M.M., Ogryczak, W.: Linear optimization with multiple equitable crite-
ria. RAIRO - Operations Research 33 (7 1999) 275–297

2. Kostreva, M., Ogryczak, W., Wierzbicki, A.: Equitable aggregations and multiple
criteria analysis. Eur. J. Oper. Res. 158(2), 362–377 (2004)

3. Perny, P., Spanjaard, O., Storme, L.X.: A decision-theoretic approach to robust
optimization in multivalued graphs. Annals OR 147(1), 317–341 (2006)

4. Yu, P.: Cone convexity, cone extreme points, and nondominated solutions in deci-
sion problems with multiobjectives. J. Optim. Theory Appl. 14(3), 319–377 (1974)

5. Baatar, D., Wiecek, M.: Advancing equitability in multiobjective programming.
Computational &. Applied Mathematics 52(1–2), 225–234 (2006)

6. Moghaddam, A., Yalaoui, F., Amodeo, L.: Lorenz versus Pareto dominance in
a single machine scheduling problem with rejection. In: Takahashi, R., Deb, K.,
Wanner, E., Greco, S. (eds.) Evolutionary Multi-Criterion Optimization. Lecture
Notes in Computer Science, vol. 6576, pp. 520–534. Springer, Berlin Heidelberg
(2011)

7. Endriss, U.: Reduction of economic inequality in combinatorial domains. In:
AAMAS. (2013) 175–182

8. Ulungu, E., Teghem, J.: The two-phases method: An efficient procedure to solve
biobjective combinatorial optimization problems. Foundation of Computing and
Decision Science 20, 149–156 (1995)

9. Visée, M., Teghem, J., Pirlot, M., Ulungu, E.: Two-phases method and branch and
bound procedures to solve the bi-objective knapsack problem. J. Global Optim.
12, 139–155 (1998)



Exact Methods for Computing All Lorenz Optimal Solutions 321

10. Ehrgott, M., Skriver, A.: Solving biobjective combinatorial max-ordering problems
by ranking methods and a two-phases approach. Eur. J. Oper. Res. 147(3), 657–
664 (2003)

11. Przybylski, A., Gandibleux, X., Ehrgott, M.: Two-phase algorithms for the biob-
jective assignement problem. Eur. J. Oper. Res. 185(2), 509–533 (2008)

12. Raith, A., Ehrgott, M.: A two-phase algorithm for the biobjective integer minimum
cost flow problem. Computers &. Oper. Res. 36(6), 1945–1954 (2009)
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Abstract. In this paper, we propose an interactive approach to deter-
mine a compromise solution in the multicriteria spanning tree problem.
We assume that the Decision Maker’s preferences over spanning trees
can be represented by a weighted sum of criteria but that weights are
imprecisely known. In the first part of the paper, we propose a gener-
alization of Prim’s algorithm to determine the set of possibly optimal
tradeoffs. In the second part, we propose an incremental weight elici-
tation method to reduce the set of feasible weights so as to identify a
necessary optimal tradeoff. Numerical tests are given to demonstrate the
practical feasibility of the approach.

Keywords: Multicriteria optimization · Spanning tree problem · Cri-
teria weight elicitation · Minimax regret · Possibly optimal solutions

1 Introduction

The multicriteria spanning tree (MCST) problem is an unexpectedly difficult
problem investigated in the field of multicriteria optimization. It appears natu-
rally in various situations, for example, when a set of clients must be connected
through a communication or transportation network. In such a case one may
look for a minimum spanning tree, minimum referring simultaneously to differ-
ent aspects such as prices, construction time or distance. In the single objective
case, the minimum spanning tree problem is known as an easy problem that can
be solved in polynomial time using standard greedy algorithms due to Kruskal
[14] and Prim [17]. The usual generalization of this problem in the setting of
multicriteria optimization concerns graph instances whose edges are valued by
cost vectors in R

n, n being the number of criteria (cost functions) to be mini-
mized. The MCST problem consists in determining all Pareto-optimal tradeoffs
(cost vectors), and for each of them, one associated spanning tree.

Unfortunately, as soon as n ≥ 2, the problem becomes intractable: the num-
ber of Pareto-optimal cost vectors associated to spanning trees is in the worst
case exponential in the number nodes. There exists indeed instances of graphs
in which all spanning trees lead to a distinct Pareto-optimal cost vector [12].
Since a complete graph with v vertices includes vv−2 distinct spanning trees
[7], it is clearly not possible to list them all in polynomial time. No efficient
algorithm is known to solve standard instances of the MCST problem except
c© Springer International Publishing Switzerland 2015
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perhaps in the bi-objective case where some specificities can be exploited to pro-
pose practically efficient procedures [22] (see also [20] for a survey). This suggests
resorting to more discriminating models than Pareto-dominance, so as to better
discriminate between feasible spanning trees. In this paper, assuming that Deci-
sion Maker’s preferences can be represented by a weighted sum of criteria, we
study the interactive elicitation of criteria weights, so as to progressively enrich
the initial Pareto-dominance relation and to allow a fast determination of the
most attractive feasible tradeoffs for the Decision Maker. Although the weighted
sum is a quite simple model, it remains indeed difficult to define a priori the
weights of criteria, especially when criterion values are expressed on different
scales such as time, distances or money. This explains the interest for weight
elicitation methods in the context of multiobjective optimization.

Incremental elicitation methods are now standardly used in various deci-
sion problems, for example to elicit von Neumann-Morgenstern utilities [4,8,23],
multiattribute utilities [3,5,18], and individual preferences in voting [13,15,16].
They allow a fast identification of an optimal or near-optimal solution without
requiring a full elicitation of the decision model. Incremental elicitation is often
seen as a problem of robust decision making under preference uncertainty. Some
preference information is lacking, uncertain or not known precisely, and we want
to find a solution that is likely to remain attractive after any further specification
of preference information.

An even more challenging issue is to implement preference elicitation mech-
anisms on combinatorial optimization problems. In such problems, the set of
feasible solutions is not given explicitly and we have to elicit preferences over
elementary components of solutions so as to efficiently determine the possibly
optimal solutions or, if possible, identify a necessary optimal solution. Several
recent studies investigate this line, let us mention, for example, the elicitation
strategies proposed for soft constraint satisfaction problems with missing pref-
erences [11], the incremental elicitation of preferences over policies in Markov
Decision Processes [19,24], the incremental elicitation of agent preferences in
stable matching problems [9], and the incremental elicitation of criteria weights
in multobjective state-space search [1,2]. To go further in this direction, we
address here the weight elicitation problem in multicriteria spanning tree prob-
lems. Instead of trying to enumerate all Pareto-optimal tradeoffs corresponding
to spanning trees, we want to design an interactive search procedure collecting
preference information so as to progressively narrow the set of possibly optimal
spanning trees until a recommendation can be made with some guarantee. To
this end, we propose to interweave an incremental weight elictation procedure
and a multiobjective greedy search algorithm.

The paper is organized as follows: Sect. 2 recalls some background and nota-
tions concerning the MCST problem. Then assuming the set of admissible criteria
weights is characterized by a convex polyhedron, we propose an exact algorithm
to determine the set of possibly optimal spanning trees in a MCST problem in
Sect. 3. In Sect. 4, a new interactive approach combining an incremental weight
elicitation procedure and a greedy search is proposed for the fast determination
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of a spanning tree achieving an optimal tradeoff. Finally numerical tests are
presented in Sect. 5 to illustrate the efficiency of the proposed approach.

2 Background and Notations

We consider a connected graph G = (V,E) where each edge e ∈ E is valued
by a cost vector xe ∈ R

n
+ giving the cost of e with respect to different criteria.

The set of criteria is denoted N = {1, . . . , n}, and every criterion is assumed
to be additive over the edges. Thus, to any set of edges E′ ⊆ E is associated
a cost vector xE′ =

∑
e∈E′ xe. A spanning tree of G is a connected subgraph

of G which contains no cycle while including every node of G. For the sake of
simplicity, since a spanning tree T of G is completely characterized by its set of
edges, then T will indifferently denote the tree or its set of edges. The set of cost
vectors associated with the spanning trees of G is denoted XG and represents
the image of all solutions in the space of criteria. Throughout the paper, we will
use the following dominance relations:

– Weak Pareto dominance: y � x ⇔ ∀i ∈ N, yi ≤ xi

– Pareto dominance: y ≺ x ⇔ [∀i ∈ N, yi ≤ xi] and [∃k ∈ N, yk < xk]

The MCST problem consists in determining the set ND(XG) = {x ∈ XG :
∀y ∈ XG, not(y ≺ x)} of non-dominated vectors in XG, also known as the Pareto
set. In this paper, we assume that the DM’s preferences can be represented by
a linear function fω(x) =

∑
i∈N ωixi measuring the overall cost of spanning

trees. Initially, parameter ω is not known. Instead we consider a set Ω, named
uncertainty set, containing all admissible normalized weighting vectors. The set
Ω is initially defined as the simplex Ω0 = {ω ∈ int(Rn

+) :
∑n

i=1 ωi = 1} where
int represents the interior of the cone. Whenever some preference statements of
type “x is at least as good as y” are expressed by the DM, they induce linear
constraints of type

∑
i∈N ωi(xi − yi) ≤ 0 over the set Ω of admissible weights.

Hence, throughout the paper, we assume without loss of generality that Ω is a
convex polyhedron. Given the uncertainty set Ω, we first consider the problem
of determining the set POΩ(XG) of possibly fω-optimal cost vectors in XG, i.e.
the set of cost vectors x ∈ XG that minimize fω for some ω ∈ Ω. Formally:

POΩ(XG) =
⋃

ω∈Ω

arg min
x∈XG

fω(x)

Since ω has strictly positive components, POΩ0(XG) is included in ND(XG).
Moreover, POΩ′(XG) ⊆ POΩ(XG) for any Ω′ ⊆ Ω. Therefore, any new prefer-
ence statement reduces the set of possibly optimal spanning trees.

3 Determination of Possibly Optimal Spanning Trees

In this section, we propose a multiobjective extension of Prim’s algorithm [17]
enabling to compute the set POΩ(XG) for a given convex polyhedron Ω. Recall
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that Prim’s algorithm is a greedy search. Starting from an initial node v0, we
first select an adjacent edge of minimum cost. Then, Prim’s algorithm iteratively
selects a min-cost edge in the cocycle C(V ′), where V ′ is the set of nodes covered
so far. Recall that the cocycle of a set V ′ is the set of all edges adjacent to V ′,
i.e., C(V ′) = {(v1, v2) ∈ E : v1 ∈ V ′, v2 ∈ V \V ′}. Similarly, we propose here a
greedy search that determines, at any step, the set of possibly optimal edges in
the current cocycle C(V ′) and, for each edge, the associated set of weights. The
determination of possibly optimal elements can be performed by a polynomial
algorithm named Ω-Filter (see Algorithm 1), enabling to computing possibly
optimal vectors on explicit sets [2]. Note that in Algorithm 1 the test appearing
in line 3 can easily be performed using a LP-solver. It is indeed sufficient to solve
a LP with n+1 variables and m+ q constraints, where m is the size of the input
set and q is the number of available preference statements.

Algorithm 1. Ω-Filter(Y )
Input: Ω; Y = {y1, . . . , ym};
Output: Ym: the set POΩ(Y )

1 Y0 ← Y
2 for i = 1 . . . m do
3 if max

ω∈Ω
min

y∈Yi−1
[fω(y) − fω(yi)] < 0 then

4 Yi ← Yi−1\{yi}
5 else
6 Yi ← Yi−1

7 end

8 end
9 return Ym

Now, we propose Algorithm 2 to compute the set of possibly optimal trade-
offs. The result is obtained by recursive calls to Ω-Prim, from the initial call
Ω-Prim({v0}, ∅, Ω) where v0 ∈ V is an arbitrary starting node. In this recursive
procedure, the set POE (line 5) represents the set of possibly optimal edges in
the cocycle C(V ′) and SELECT is a procedure that returns one edge per vector.
The set SOL consists of ordered pairs (E′, Ω′), where E′ is a spanning tree of G
and Ω′ is the associated set of weights. Note that the depth of the search tree
associated to recursive calls is |V |−1 since one edge is added to E′ at every call.

Let us first prove that the output set SOL obtained by the call to Ω-Prim
with the input ({v0}, ∅, Ω) includes at least one ordered pair for every possibly
optimal tradeoff.

Theorem 1. For all possibly optimal tradeoff x ∈ POΩ(XG), there exists an
ordered pair (E′, Ω′) in the output set SOL such that xE′ = x.

Proof. Let x be a possibly optimal tradeoff. By definition, there exists ω ∈ Ω
such that x ∈ arg minx′∈XG

fω(x′). Therefore, there exists an execution of Prim’s
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Algorithm 2. Ω-Prim(V ′, E′, Ω′)
1 if V ′ = V then
2 SOL ← {(E′, Ω′)};
3 else
4 SOL ← ∅
5 POE ← SELECT(Ω-Filter(ND({xe′ : e′ ∈ C(V ′)})))
6 for e ∈ POE do
7 E′′ ← E′ ∪ {e}
8 V ′′ ← V ′ ∪ {ve}, ve being the endpoint of e such that ve �∈ V ′

9 Ω′′ ← {ω ∈ Ω′ : ∀e′ ∈ POE, fω(xe) ≤ fω(xe′)}
10 SOL ← SOL ∪ Ω-Prim(V ′′, E′′, Ω′′)
11 end

12 end
13 return SOL

algorithm over the graph G = (V,E) endowed with the scalar valuation fω(xe),
e ∈ E, that leads to tradeoff x. Let xi, i ∈ {1, . . . , |V | − 1}, be the sequence of
cost vectors that would be selected by Prim’s algorithm to obtain x from the
initial node v0. We want to prove that Algorithm2 returns the tradeoff x.

At the first recursive call, the tuple ({v0}, ∅, Ω) is considered. According
to line 5, one edge per possibly optimal cost vector in the cocycle C({v0}) is
selected to grow the tree (which is empty at that point). Note that there exists
an edge of cost x1 in the cocycle C({v0}) since x1 would be selected by Prim’s
algorithm from the initial node v0. Moreover, since ω ∈ Ω and x1 minimizes
fω over {xe : e ∈ C({v0})} by definition, we know that x1 is possibly optimal
in the cocycle C({v0}). Therefore, there exists an edge e1 of cost x1 that is
selected to grow the tree and, according to line 10, Ω-Prim is then called on
the input (V ′′, E′′, Ω′′) where E′′ = ∅ ∪ {e1} = {e1} (line 7). Note that we
necessarily have ω ∈ Ω′′ according to line 9. Therefore, we can similarly prove
that, during the latter call to Ω-Prim, an edge e2 of cost x2 is selected to grow the
tree {e1}. Hence, by iterating, we obtain a sequence of calls to Ω-Prim leading
to the construction of a tree T = {e1, . . . , e|V |−1} such that xei = xi for all
i ∈ {1, . . . , |V | − 1}, and so we have xT =

∑|V |−1
i=1 xi = x. Finally, tree T and

the associated set of weights are returned at the end of the last call (according
to line 2). �

Conversely, we prove now that all ordered pairs returned by Ω-
Prim({v0}, ∅, Ω) correspond to possibly optimal cost vectors in graph G.

Theorem 2. For all ordered pairs (E′, Ω′) in the output set SOL, the spanning
tree E′ is such that xE′ ∈ POΩ(XG).

Proof. Let (E′, Ω′) be in the output set SOL. We want to prove that xE′ ∈
POΩ(XG). Let Ω-Prim(Vi, Ei, Ωi), i ∈ {0, . . . , |V | − 1}, be the sequence of
calls leading to (E′, Ω′). Note that we have (V0, E0, Ω0) = ({v0}, ∅, Ω) and
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(V|V |−1, E|V |−1, Ω|V |−1) = (V ′, E′, Ω′). For all i ∈ {1, . . . , |V | − 1}, let ei

denote the edge of E′ such that Ei = Ei−1 ∪ {ei} (line 7). Then, we have
Ωi = {ω ∈ Ωi−1 : ei ∈ arg mine∈C(Vi−1) fω(xe)} (line 9). Therefore, for all
i ∈ {0, . . . , |V | − 2}, we have Ωi ⊇ Ωi+1, and so Ωi ⊇ Ω|V |−1. Moreover, since
Ω-Prim has been called with the input (Vi, Ei, Ωi), we know that ei is possibly
optimal in C(Vi−1) given the uncertainty set Ωi−1. Therefore, Ωi �= ∅ for all
i ∈ {1, . . . , |V | − 1}, and in particular Ω|V |−1 �= ∅. Let ω ∈ Ω|V |−1 ⊆ Ωi for
all i ∈ {1, . . . , |V | − 1}. Then, for all i ∈ {1, . . . , |V | − 1}, edge ei minimizes
the function fω over C(Vi−1). Therefore, considering the graph G endowed with
the valuation fω(xe) for all edges e ∈ E, there exists an execution of Prim’s
algorithm that yealds the spanning tree E′. Hence xE′ ∈ arg minx∈XG

fω(x). �
The two previous results show that the set of tradeoffs present in the ordered

pairs returned by Ω-Prim({v0}, ∅, Ω) corresponds exactly to the set of POΩ(XG).
Moreover, the first components of these ordered pairs provide one spanning tree
for every possibly optimal tradeoff. Finally, the sets Ω′ appearing in the ordered
pairs define the optimality regions of the returned spanning trees, and by con-
truction, their union covers the entire uncertainty set Ω.

For the sake of illustration, we present the result of Ω-Prim({v0}, ∅, Ω) on
a randomly generated instance of bi-criteria MCST problem with 10 nodes and
cost vectors in [[0, 1000]]2.

Fig. 1. XG and POΩ(XG) for Ω = [0, 1]

Here, for any tradeoff x ∈ XG ⊂ R
2, fω(x) = ωx1 + (1 − ω)x2, ω ∈ [0, 1].

The elements of XG are represented by points in Fig. 1 and the output of
Ω-Prim({v0}, ∅, Ω) for Ω = [0, 1] is represented by triangles. We obtained
10 distinct elements in POΩ(XG). Then, Fig. 2 represents the output of Ω-
Prim({v0}, ∅, Ω) for Ω = [0.5, 0.7]. We can see that the set of possibly optimal
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Fig. 2. XG and POΩ(XG) for Ω = [0.5, 0.7]

tradeoffs is reduced to four elements. To obtain a single possibly optimal tradeoff,
further restrictions of Ω are needed.

Let us recall that, when Ω is the entire simplex, there exist complete bi-
valued graphs G of any size such that POΩ(XG) = XG, XG being the set
of all feasible tradeoffs obtained from all spanning trees of G [12]. For such
instances, the output set of Algorithm 2 is exponential in the number of vertices
and Algorithm 2 has exponential running times. This shows the potential interest
of reducing Ω during the search, using preference elicitation methods, so as to
progressively narrow the set of possibly optimal tradeoffs.

4 Incremental Weight Elicitation

For any given uncertainty set Ω, Algorithm 2 introduced in the previous section
enables the determination of POΩ(XG), the set of possibly optimal tradeoffs
for functions fω(x) =

∑
i∈N ωixi with ω ∈ Ω. Whenever Algorithm 2 returns a

single tradeoff (the unique optimal cost vector), the associated spanning tree is
a necessary optimal solution to the problem, even if other trees having the same
cost vector may exist. Necessary means here that this is the optimal tradeoff for
all functions fω, ω ∈ Ω. Alternatively, when the set POΩ(XG) includes several
tradeoffs, one may be interested in collecting additional preference statements
so as to reduce Ω and therefore POΩ(XG). This suggests to interleave calls to
Algorithm 2 and preference queries restricting Ω so as to repeatedly compute
POΩ(XG) for a nested sequence of Ω until obtaining a singleton. Such a pro-
cedure would not be efficient because some parts of the job would be made
several times. To implement this idea more efficiently, we propose in this section
a more integrated approach interweaving a preference elicitation procedure with
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the greedy search presented in Sect. 3, so as to allow a faster determination of
an optimal or near-optimal spanning tree.

We consider here a standard incremental elicitation procedure, where pref-
erence queries are asked one at a time to be as informative as possible. The
strategy for the selection of the most appropriate query is based on the Mini-
max Regret criterion, as proposed in [4,23]. According to this decision criterion,
the most promising cost vector is characterized by the following definitions of
regrets, for all x, y ∈ XG:

Definition 1. Pairwise Max Regret: PMR(x, y,Ω) = max
ω∈Ω

{fω(x) − fω(y)}
Max Regret: MR(x,XG, Ω) = max

y∈XG

PMR(x, y,Ω)

Minimax Regret: MMR(XG, Ω) = min
x∈XG

MR(x,XG, Ω)

MR(x,XG, Ω) is the worst-case regret of choosing tradeoff x instead of any y
in XG. According to the minimax regret criterion, the optimal cost vectors are
those minimizing MR, i.e. those achieving the MMR value. Choosing a MR-
optimal vector allows one to guarantee that the worst-case loss is minimized.
Given the uncertainty set Ω, the worst-case loss measured by MMR might still
be too large for certifying the quality of the solution. Therefore, the Minimax
Regret criterion can be used to select the most effective queries to reduce the
MMR-value (the answers will further restrict the set Ω). Ideally, we would like
to obtain MMR = 0, which corresponds to the identification of a necessarily
optimal tradeoff. However, to reduce the elicitation burden, it is more efficient
to use an admissibility threshold λ > 0 representing the maximum admissible
gap to optimality and to stop asking queries as soon as MMR drops below λ.

Hence, the Current Solution Strategy [4,23] consists in generating the follow-
ing preference query: the DM is asked to compare two potentially good cost
vectors in XG: an MR-optimal vector x∗ ∈ arg minx∈XG

MR(x,XG, Ω) and
another vector y∗ in arg maxy∈XG

PMR(x∗, y, Ω). The set Ω is then reduced
by inserting the linear constraint induced by the answer (fω(x∗)− fω(y∗) ≥ 0 or
fω(x∗)−fω(y∗) ≤ 0 ), so as to keep consistency with DM’s preferences. The CSS
is based on the repeated computation of PMR(x, y,Ω) for many pairs (x, y) of
feasible solutions (all in the worst-case), which may induce prohibitive computa-
tion times in our context due to the size of XG. Therefore, instead of computing
XG and then applying this elicitation scheme, we propose to integrate the CSS
to Algorithm 2. Within Algorithm2, we suggest collecting preference informa-
tion to discriminate between the edges of the current cocycle and to reduce the
set Ω accordingly. We implement this idea by computing minimax regrets on
cocycles and asking preference queries according to the CSS. More precisely, at
step i (selection of ith edge), preference queries are generated until the MMR
drops under a threshold λi, where λi is a fraction of the admissibility threshold
λ such that

∑
i∈N λi = λ. More precisely, we propose the following algorithm:

Note that the number of iterations of the while loop (line 6) is bounded
above by |C(V ′)| ≤ n2, n being the number of criteria, which garantees the
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Algorithm 3
1 V ′ ← {v0}
2 E′ ← ∅
3 for i = 1 . . . |V | − 1 do
4 ND ← {e ∈ C(V ′) : ∀e′ ∈ C(V ′), not(xe′ ≺ xe)}
5 X ← {xe : e ∈ ND}
6 while MMR(X, Ω) > λi do
7 Ask one preference query to the DM according to the CSS
8 Update Ω by inserting the linear constraint associated to the answer

9 end
10 Select e ∈ ND such that xe ∈ arg minx∈X MR(x, X, Ω)
11 E′ ← E′ ∪ {e}
12 V ′ ← V ′ ∪ {ve}, where ve is the endpoint of e that is not in V ′

13 end
14 return E′

termination of the algorithm after a finite number of steps. Hence the following
theorem shows that Algorithm 3 returns a spanning tree T with a MR value
smaller or equal to λ.

Theorem 3. Let Ωf be the final set Ω when Algorithm3 stops. The returned
spanning tree T is such that MR(xT ,XG, Ωf )≤ λ.

Proof. Let T be the spanning tree returned by Algorithm3 and Ωf be the final
set Ω when Algorithm 3 stops. We want to prove that MR(xT ,XG, Ωf ) ≤ λ.
This amounts to proving that, for any spanning tree T0 of graph G, we have
PMR(xT , xT0 , Ωf ) ≤ λ.

Let ei, i ∈ {1, . . . , |V | − 1} denote the ith edge inserted in T and let Ωi

denote the uncertainty set Ω at the end of ith iteration step. Let j be the first
iteration step such that ej �∈ T0. Since T0 is a spanning tree of G, then there
exists a chain c in T0 linking the two endpoints of ej . Since edge ej links one
node in Vj−1 to one node in V \Vj−1, then there exists an edge e′

j in the chain
c that links one node in Vj−1 to one node in V \Vj−1. Therefore e′

j ∈ C(Vj−1).
Two cases may occur: either e′

j ∈ NDj or e′
j �∈ NDj where NDj is the set non-

dominated edges in the cocycle C(Vj−1) (line 4). Let us prove that, in both
cases, we have PMR(xej

, xe′
j
, Ωf ) ≤ λj . Assume first that e′

j ∈ NDj . In that
case, since edge ej has been selected to build the spanning tree T , then we know
that xej

∈ arg minx∈Xj
MR(x,Xj ,Pj) (line 10) where Xj = {xe : e ∈ NDj}.

Moreover, since MMR(Xj , Ωj) ≤ λj at the end of the while loop (line 6), then we
necessarily have PMR(xej

, xe′
j
, Ωj) ≤ λj . Since Ωj ⊆ Ωf by construction (line

8), then we have PMR(xej
, xe′

j
, Ωf ) ≤ λj . Assume now that e′

j �∈ NDj . In that
case, there exists e ∈ NDj such that xe ≺ xe′

j
by construction of NDj . Since the

function fω is increasing with the Pareto-dominance, then fω(xe) ≤ fω(xe′
j
) for

any set of weights ω. Therefore PMR(xej
, xe, Ωf ) ≥ PMR(xej

, xe′
j
, Ωf ). Then,
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similarly to the first case, we can prove that we have PMR(xej
, xe, Ωf ) ≤ λj

since xe ∈ NDj , and so we have PMR(xej
, xe′

j
, Ωf ) ≤ λj .

Now, consider the spanning tree T1 obtained from T0 by replacing edge e′
j

by edge ej . Let ek be the first edge inserted in T that is not in T1. Then, sim-
ilarly to T0, we can prove that we have PMR(xek

, xe′
k
, Ωf ) ≤ λk. Therefore,

by iterating, we have PMR(xel
, xe′

l
, Ωf ) ≤ λl for all l ∈ {1, . . . , |V | − 1} such

that el �∈ T0. Moreover, for all l ∈ {1, . . . , |V | − 1} such that el ∈ T0, we have
PMR(xel

, xel
, Ωf ) = 0 ≤ λl. Consider π : T → T0 the one-to-one correspon-

dence such that π(el) = e′
l if el �∈ T0 and π(el) = el otherwise. Hence we have

PMR(xel
, xπ(el), Ωf ) ≤ λl for all l ∈ L = {1, . . . , |V | − 1}. Finally:

PMR(xT , xT0 , Ωf ) = max
ω∈Ωf

{fω(xT ) − fω(xT0)}
= max

ω∈Ωf

{fω(
∑
l∈L

xel
) − fω(

∑
l∈L

xπ(el))}
= max

ω∈Ωf

∑
l∈L

[fω(xel
) − fω(xπ(el))] by linearity of fω

≤ ∑
l∈L

max
ω∈Ωf

[fω(xel
) − fω(xπ(el))]

=
∑
l∈L

PMR(xel
, xπ(el), Ωf )

≤ ∑
l∈L

λl

= λ

Hence PMR(xT , xT0 , Ωf ) ≤ λ which establishes the result. �
The following example presents an execution of Algorithm3 on a small

instance of G = (V,E).

Example 1. Consider the randomly generated instance of G = (V,E) with four
nodes and three criteria, given in Fig. 3, and assume that the DM’s preferences
are represented by a weighted sum with the hidden weight ω = (0.2, 0.5, 0.3).
Initially, Ω is set to the simplex represented by the triangle ABC in the space
(ω1, ω2), ω3 being implicitly defined by 1−ω1−ω2 (see Fig. 4). The list of selected
edges E′ is initialized to the empty set.

We start with node v0 = 0 and λ = 0. At the first iteration step, the cocycle
consists of the edges (0, 1), (0, 2) and (0, 3). The non-dominated edges are (0, 2)
and (0, 3) with cost vectors (1, 4, 8) and (9, 1, 2) respectively. At this step, the
procedure asks the DM to compare these two vectors, and the DM declares that
she prefers (9, 1, 2) to (1, 4, 8) (since fω((9, 1, 2)) = 2.9 whereas fω((1, 4, 8)) =
4.6). Then, the algorithm updates the uncertainty set Ω by inserting the linear
constraint represented by the (EH) line in Fig. 4, the admissible area being at
the left of this line. Finally, the edge (0, 3) is inserted in E′.

At the second iteration step, the cocycle contains the edges (0, 1), (0, 2), (3, 1)
and (3, 2). The non-dominated edges are (0, 2) and (3, 1) with cost vectors (1, 4, 8)
and (4, 3, 6) respectively. No question is needed here since the minimax regret over
X = {(1, 4, 8), (4, 3, 6)} does not exceed λ2 = 0. The edge (3, 1) with cost (4, 3, 6)
is inserted in E′.
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Fig. 3. An instance with 3 criteria.

Fig. 4. Ω seen in the space (ω1, ω2).

At the third iteration step, the cocycle contains (0, 2), (1, 2) and (3, 2). The
non-dominated edges are (0, 2) and (3, 2) with cost vectors (1, 4, 8) and (4, 5, 6)
respectively. The procedure asks the DM to compare these two vectors, and the
DM declares that she prefers (1, 4, 8) to (4, 5, 6) (since fω((4, 5, 6)) = 5.1 whereas
fω((1, 4, 8)) = 4.6). Then, the algorithm updates the uncertainty set Ω by insert-
ing the linear constraint represented by the (FG) line in Fig. 4, the admissible
area being at the right of this line. Finally, the edge (0, 2) is inserted in E′.

Then the algorithm stops with the optimal tree E′ = {(0, 3), (3, 1), (0, 2)}. It
can easily be checked on Fig. 4 that the final Ω set defined by the polygon EFGBH
contains the point (0.2, 0.5) corresponding to the hidden vector ω = (0.2, 0.5, 0.3).
No weighting vector in the polygon can induce a regret greater than λ.
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In Example 1, the algorithms terminates with the tradeoff (14, 8, 16) asso-
ciated to the tree {(0, 3), (3, 1), (0, 2)}. This solution is on the boundary of the
convex hull of the set of feasible tradeoffs since it minimizes the weighted sum of
criteria for ω = (0.2, 0.5, 0.3). This is always the case when λ = 0. When λ > 0
Algorithm 3 may produce an unsupported tradeoff, i.e. a Pareto-optimal tradeoff
belonging to the interior of the convex hull of the feasible set. This is due to the
use of the minimax regret, as shown in the following:

Example 2. Let G be a graph with 3 vertices {a, b, c} and 3 arcs (a, b), (a, c), (b, c)
of cost (1, 5), (5, 1), (2, 2) respectively. We have 3 spanning trees leading to the 3
following tradeoffs: (3, 7), (7, 3), (6, 6). If Ω is the entire simplex, we see that the
optimal solution according ot the MMR criterion is (6, 6) with a max regret equal
to 3 while (3, 7) and (7, 3) have a max regret equal to 4. Note that (6, 6) is an
unsupported solution. It can indeed be easily checked that there exists no positive
weighting vector such that (6, 6) is simultaneously better than (3, 7) and (7, 3)
with respect to a weighted sum (to be minimized). Nevertheless, vector (6, 6) is
a good compromise solution that may be well justified considering the weight
uncertainty.

It is worth noting that the use of linear aggregation functions with impre-
cise weights may lead to recommend unsupported Pareto-optimal tradeoffs (see
Example 2). This enhances the recommendation possibilities offered by the
weighted sum. Moreover, when a supported solution is wanted, the elicitation
process can be continued until a necessary winner is identified (as in Example 1).

5 Numerical Tests

We performed numerical experiments of Algorithms 2 and 3 on random instances
of the MCST problem. The numerical tests were performed on a Intel Core i7-
4770 CPU with 15 GB de RAM.

For Algorithm 2, we considered graphs with 10 nodes and edge densities rang-
ing from 50 % to 100 %. Recall that a complete graph with 10 nodes includes
108 spanning trees. In our experiments, the number of criteria n varies from 2
to 5 and the costs are drawn within {1, 1000}. Moreover, in order to study the
impact of the size of the uncertainty set Ω, we ran Algorithm 2 with different
sets Ω obtained as follows: we first consider that Ω is the entire simplex. Then,
a second series of tests is performed after inserting a preference statement and
the associated linear constraint to restrict Ω. Finally, a third series of tests is
performed after adding a second preference statement. We will denote q the
number of preference statements used to restrict the set Ω. Linear optimizations
required by Ω-Filter are performed using the Gurobi library of Java. The results
are reported in Table 1 resulting from an average over 30 runs.

We observe that the computation times decrease with the size of Ω but increase
with the number of criteria. The algorithm runs in less than 12 min for all instances
including complete graphs with 5 criteria. Notice that, when Ω is the entire sim-
plex, our algorithm computes quite efficiently the set of all supported solutions, i.e.
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those Pareto-optimal solutions that belong to the boundary of the convex hull of
the feasible tradeoffs. They are often considered as a useful basis to further explo-
ration of the Pareto set in the so-called two-phase methods (see e.g. [10]).

Table 1. Computation times (in seconds) for Algorithm 2 with |N | = 10.

n Density q = 0 q = 1 q = 2

2 50 % 0.15 0.12 0.09

3 50 % 0.89 0.78 0.75

4 50 % 10.70 9.82 8.03

5 50 % 17.79 17.40 15.73

2 75 % 0.42 0.36 0.27

3 75 % 8.60 5.41 3.16

4 75 % 17.40 16.23 14.41

5 75 % 267.93 219.25 168.83

2 100 % 0.54 0.46 0.28

3 100 % 12.95 10.35 9.34

4 100 % 91.48 75.45 69.55

5 100 % 668.21 634.26 621.46

In a second series of experiments, we have simulated preference elicitation
sessions using Algorithm 3. Simulated DMs answer to queries according to a
linear scalarizing function fω where ω is randomly chosen in Ω0 = {int(Rn

+) :∑
i∈N ωi = 1}. The use of preference information significantly improves compu-

tation times compared to Algorithm 2, which makes it possible to solve larger
instances. Hence, to test Algorithm 3, we consider graphs with a number of nodes
ranging from 25 to 100, a number of criteria n ranging from 2 to 8 and an edge
density of 50 %.

To study the impact of threshold λ on the number of queries and the com-
putation time, we ran tests with two distinct values: λ = 0.05 and λ = 0.1. The
values λi required at every step of the algorithm are set to λi = λ/(|V | − 1) for
all i ∈ {1, . . . , |V | − 1}. Here also we used the Gurobi-solver to compute PMR
values at every step. Moreover, we used standard pruning rules for min aggrega-
tors to compute the MMR more efficiently [6]. We observed empirically that, due
to these pruning rules, the number of PMR computations performed is linear
instead of quadratic in the size of the input set. Results have been obtained by
averaging over 30 runs and are summarized in Table 2.

We observe that our interactive procedure is quite efficient considering the
highly combinatorial nature of the spanning tree problem and the number of
criteria under consideration (recall that the state of the art literature on the
computation of Pareto-optimal spanning trees considers no more than two or
three criteria). The relative efficiency of our procedure is due to the possibility of
collecting some preference information during the search. It considerably speeds
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Table 2. Performance of Algorithm 3 (times in seconds, queries).

λ = 0.05 λ = 0.1

n |V | Time Queries Time Queries

2 25 0.9 3.8 1.1 3.4

2 50 2.0 3.6 2.9 2.8

2 75 5.4 4.4 7.0 3.4

2 100 8.3 4.2 10.7 2.8

4 25 4.6 16.2 7.2 11.8

4 50 23.5 17.0 42.6 12.6

4 75 75.8 19.8 116.5 12.2

4 100 127.1 20.4 227.7 12.1

6 25 12.9 29.2 13.6 15.4

6 50 81.1 32.0 123.2 22.8

6 75 256.8 30.8 498.1 25.0

6 100 750.3 33.0 1182.4 25.4

8 25 32.2 49.2 40.3 34.6

8 50 234.6 62.0 370.8 35.2

8 75 731.0 65.6 1105.8 35.8

8 100 2518.9 71.4 3389.0 40.8

up the determination of a relevant Pareto-optimal tradeoff. For example, we need
only twelve preference queries on average to determine the optimal tradeoff and
a corresponding spanning tree on instances with 100 nodes and 4 criteria (with
λ = 0.1).

We also observe that as the value of λ increases (from 0.5 to 0.1), the require-
ment on the performance guarantee is weakened and consequently the number
of queries is reduced. However, reducing the number of queries tends to keep a
larger uncertainty set during the execution which impacts negatively on compu-
tation times, as can be observed in the table.

6 Conclusion

We have proposed and experimented a procedure (Algorithm2) to determine
possibly optimal spanning trees when preferences are assumed to be repre-
sentable by a linear aggregation of criteria but weights are imprecisely known.
This procedure which is a generalization of Prim’s algorithm uses cocycles of
partial trees to decompose the set of admissible weights into regions character-
izing all possibly optimal tradeoffs. It can be used in particular to determine
the set of supported Pareto-optimal tradeoffs but also some subset of it when
some preference information is available. Note that Algorithm2 yields all possi-
bly optimal tradeoffs. Another line could be to focus only on extreme points of
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the convex hull of feasible tradeoffs. A recent work on the multiobjective span-
ning tree problem establishes that there are only polynomially many of these
extreme points [21]1. This result could probably be used to design new efficient
weight elicitation procedures.

In the second part of the paper, Algorithm2 has been sophisticated to obtain
an interactive greedy search procedure for the MCST problem (Algorithm3).
This approach interweaves incremental elicitation and search and enables a fast
determination of an optimal solution or near-optimal (with performance guaran-
tee). This combination of elicitation and combinatorial optimization algorithms
could be compared to the approach proposed in [2] for multiobjective state space
search. There is however a significant difference since the state space search pro-
posed in [2] relies on dynamic programming algorithms whereas the procedure
proposed here relies on a greedy approach. An interesting extension of this work
would be to relax the assumption of linearity for fω. The use of a non-linear
scalarizing function may indeed offer the possibility to determine new possibly
optimal tradeoffs in the Pareto set. This seems to be a challenging issue because
our multiobjective greedy search is no longer valid for non-linear aggregation
functions.

Acknowledgments. This work is part of the ELICIT project supported by the French
National Research Agency through the Idex Sorbonne Universités under grant ANR-
11-IDEX-0004-02.
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Abstract. We tackle the problem of expressing incomplete knowledge
about the attack relation in abstract argumentation frameworks. In
applications, incomplete argumentation frameworks may arise as inter-
mediate states in an elicitation process, when merging different beliefs
about an argumentation framework’s state, or in cases where the com-
plete information cannot be fully obtained. To this end, we employ a
model introduced by Cayrol et al. [10] and analyze the question of
whether certain justification criteria are possibly (or necessarily) ful-
filled, i.e., whether they are fulfilled in some (or in every) completion of
the incomplete argumentation framework. We formally extend the defi-
nition of existing criteria to these incomplete argumentation frameworks
and provide characterization and complexity results for variants of the
verification problem.

1 Introduction

Argumentation frameworks are used to model discussions and deliberations
among agents, be it human beings or software agents. The aim is to find sets of
arguments that can be considered “justified” by satisfying certain properties. In
a pathbreaking paper, Dung [17] introduced a formal model to describe argu-
mentation frameworks and their semantics, which abstracts from the content
of arguments and regards their interaction only. More background on abstract
argumentation in artificial intelligence can be found in the book by Rahwan and
Simari [30].

We revisit a generalized model for abstract argumentation frameworks origi-
nally proposed by Cayrol et al. [10] who extend the classical model to an attack-
incomplete setting. In attack-incomplete argumentation frameworks, all argu-
ments are known, but the set of all possible attacks between them is partitioned
into attacks that are either known to definitely exist, or known to definitely
never exist, or currently unknown to exist but that may potentially arise in the
future. We study central properties and semantics of argumentation frameworks,
such as conflict-freeness, admissibility, stability, preferredness, completeness, and
groundedness [17], which we extend to the attack-incomplete setting by asking
whether they are possibly or necessarily fulfilled. As our technical contribution,
we provide characterization and complexity results for variants of the standard
verification problem in attack-incomplete argumentation frameworks.
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 341–358, 2015.
DOI: 10.1007/978-3-319-23114-3 21
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Related Work and Motivation: Our work is motivated by the “Online Partic-
ipation” project, an interdisciplinary graduate college of HHU Düsseldorf and
other institutions1 in which researchers from economics, communication theory,
political sciences, social sciences, law, and computer science are participating.
A central goal in this project is to build an internet platform that can be used
for online discussions and deliberations. While these—as mentioned above—can
be modeled abstractly by argumentation frameworks, a major drawback of the
classical model due to Dung [17] is that it assumes complete knowledge of the
arguments and the attack relation, that is, the process of arguing is assumed
to have been completed already. However, such complete information is rarely
available in practical applications; rather, one would like to model such an online
discussion dynamically, evolving over time.

First ideas regarding dynamic changes in argumentation frameworks apply-
ing the theory of belief revision are due to Cayrol et al. [11], who also survey
the literature on the dynamics of abstract argumentation frameworks [12]. They
limit themselves to the addition or deletion of one argument, together with a
respective change in the attack relation. Their work focuses on a classification of
how and why those changes can alter the set of extensions of the given argumen-
tation framework. Boella et al. [6] define general principles for the abstraction
of arguments and attacks for the grounded semantics mainly. Liao et al. [26]
investigate the question of how one can efficiently compute the status of an
argument (i.e., whether it is accepted, rejected, or undecided) upon changing
the arguments and attacks. Coste-Marquis et al. [14] study how belief revision
postulates can be applied to argumentation systems.

Also, the concept of incomplete knowledge in abstract argumentation has
recently received some attention. In probabilistic argumentation frameworks (see,
for example, the work of Li et al. [25], Rienstra [31], Fazzinga et al. [19,20],
Hunter [22], and Doder and Woltran [16]), arguments and/or attacks have an
associated probability, which represents an agent’s degree of belief that the argu-
ment or attack is in force, or their reluctance to disregard the argument or attack.
This can be considered as a quantified model of uncertainty that allows to derive
the probability of certain criteria to hold. Baumeister et al. [5] study a model of
argument-incomplete argumentation frameworks.

Cayrol et al. [10] propose argumentation frameworks with an additional
“ignorance relation” among arguments that contains the attacks for which there
is uncertainty. We adopt their extended framework model, but take a differ-
ent perspective: In their work [10], new semantics for attack-incomplete argu-
mentation frameworks are defined, which puts a lot of focus on the incomplete
framework itself, rather than on its completions. Opposed to that, we analyze
whether standard semantics apply in some (or all) completions of an incomplete
framework. This is a natural question arising when dealing with incomplete

1 Besides four faculties of HHU Düsseldorf and the Fachhochschule für öffentliche Ver-
waltung NRW, the practice partners of this project include registered societies, limited
liability companies, and the municipal councils of Köln, Bonn, and Münster, among
others. We refer to the website http://www.fortschrittskolleg.de for more details.

http://www.fortschrittskolleg.de
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knowledge and has already been considered for similar notions of uncertainty in
various areas. In the related field of computational social choice (see, e.g., the
book chapter by Brandt et al. [9]), and especially so in voting, classical complete-
information settings have been extended to allow for incomplete information as
well. The book chapters by Boutilier and Rosenschein [7] and Baumeister and
Rothe [1] survey the known results on incomplete information and communi-
cation in voting, in particular covering the concepts of possible and necessary
winners in elections that have been introduced by Konczak and Lang [23] and
studied in terms of computational complexity both for the original problems
(see, e.g., [23,34]) and for a number of variants, such as possible winners when
new alternatives are added [13], when there is uncertainty about which vot-
ing rule is used [2], and when there is uncertainty about the voters’ weights in
weighted elections [3].2 The notions of possible and necessary winners have also
been transferred to other fields where information may be incomplete, including
fair division [8], algorithmic game theory [24], and judgment aggregation [4].

In Sect. 2, we describe the classical model of abstract argumentation frame-
works, and we provide the needed notions from complexity theory. In Sect. 3, we
introduce attack-incomplete argumentation frameworks and in Sect. 4 we present
our results. In Sect. 5, we give our conclusions and state some open questions.

2 Preliminaries

In this section, we introduce the classical argumentation framework model and
the notation used in this paper and provide some basic notions of complexity
theory. Our models are based on the seminal work of Dung [17] who intro-
duced an abstract model for argumentation frameworks; while using his notions
and concepts, we adopt some notation from the book chapter by Dunne and
Wooldridge [18].

An argumentation framework is a pair AF = 〈A ,R〉 that contains a set A
of n arguments and a binary attack relation R ⊆ A × A of up to n2 pairs
of arguments. We say that a attacks b if (a, b) ∈ R. Given an argumentation
framework AF = 〈A ,R〉, the set of attackers of a set B of arguments is {a ∈
A | ∃b ∈ B : (a, b) ∈ R}. We say that a set D of arguments defends a set
B of arguments if for each attacker a of B, there is an argument d ∈ D with
(d, a) ∈ R. Accordingly, D does not defend B if there is an attacker of B that
is not attacked by any d ∈ D.

Every argumentation framework can be illustrated as a directed graph G =
(V,E) by identifying V = A and E = R (see Example 1 and Fig. 1).

Example 1. A very basic argumentation framework is AF = 〈A ,R〉
with the argument set A = {a, b, c, d} and the attacks R =
{(a, b), (a, c), (a, d), (b, d), (c, c), (d, a), (d, b)} (see Fig. 1 for its graph represen-
tation).
2 Other models of incomplete-information settings in voting include dynamic social

choice with evolving preferences [29] and online manipulation in sequential elec-
tions [21].
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a b

cd

Fig. 1. Graph representation of the argumentation framework in Example 1

We now formally define the properties of sets of arguments in argumentation
frameworks that were introduced in Dung’s initial work and that are central to
this paper:

1. The most basic property is conflict-freeness, which simply forbids attacks
within a subset of the arguments. Formally, a subset S ⊆ A is conflict-free if
there are no arguments a and b in S such that (a, b) ∈ R.

2. An argument a ∈ A is acceptable with respect to S ⊆ A if S defends a, i.e.,
if for all b ∈ A with (b, a) ∈ R, there is at least one c ∈ S with (c, b) ∈ R.

3. Further, a conflict-free set S of arguments is called admissible if every argu-
ment a ∈ S is acceptable with respect to S.

Dung defines several semantics based on these properties in his original
work, namely the preferred, stable, complete, and grounded semantics. Subse-
quent papers on argumentation frameworks proposed a variety of further seman-
tics, but we will only be concerned with the semantics mentioned above.3

1. A set S ⊆ A is preferred if S is a maximal (with respect to set inclusion)
admissible set.

2. A conflict-free set S ⊆ A is stable if it attacks all other arguments, i.e., if for
every argument b ∈ A �S, there exists an a ∈ S with (a, b) ∈ R.

3. The complete semantics is defined via the characteristic function of an argu-
mentation framework AF , which is FAF : 2A → 2A with

FAF (S) = {a ∈ A | a is acceptable with respect to S}.

The characteristic function is monotonic with respect to set inclusion and
there is always an i ∈ N for which the i-fold composition of FAF has a fixed
point. A set S ⊆ A is complete if it is a fixed point of FAF , or equivalently,
if every a ∈ A that is acceptable with respect to S is contained in S.

4. The (unique) grounded set of an argumentation framework AF is the least
(with respect to set inclusion) fixed point of FAF , i.e., the complete set
obtained when starting with the empty set.

3 In addition to these semantics we also use conflict-freeness and admissibility as criteria.
While these are generally not considered to be semantics, we will not always explicitly
distinguish between semantics and basic properties for the sake of conciseness.
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stable

preferred

grounded

complete

admissible

conflict-free

Fig. 2. Relations among the various criteria and semantics for sets of arguments

Dung investigates how these properties are correlated, and provides many
results for this that we can make use of. Figure 2 displays all relations among
the various criteria and semantics that we use. If an area labeled with criterion
s is fully included in an area labeled with criterion s′, this indicates that in
all argumentation frameworks all sets of arguments that fulfill s also fulfill s′.
The converse is not necessarily true, i.e., all displayed set inclusions are strict.
Further, none of the areas are disjoint, so one and the same set of arguments
might fulfill all criteria/semantics simultaneously.

Given an argumentation framework AF and a semantics s, a set S of argu-
ments that fulfills the conditions imposed by s in AF is also called an s extension
of AF . If it is clear from the context, we omit stating explicitly the argumenta-
tion framework that the subset is an extension of.

Dunne and Wooldridge [18] give an overview of a number of decision prob-
lems, each defined for various semantics. We will focus on only one of them,
namely, the verification problem.

s-Verification

Given: An argumentation framework 〈A ,R〉 and a subset S ⊆ A .

Question: Is S an s extension?

Here, the letter s is a placeholder for a specific semantics. For better read-
ability, we will sometimes use cf as a shorthand for conflict-freeness, ad for
admissibility, pr for preferredness, st for stability, cp for completeness, and gr
for groundedness.

Other previously considered decision problems are, for example, s-
Existence, s-Credulous-Acceptance, and s-Skeptical-Acceptance (for
a definition, see, for example, [18]). Many of these problems are hard to decide:
They are complete for the complexity classes NP, coNP, or even Πp

2 . By con-
trast, s-Verification is easy for most semantics s studied here, which follows
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immediately from the work of Dung [17], with the only exception being pr-
Verification, which is known to be coNP-complete [15].

We assume the reader to be familiar with the basic notions of complexity
theory, such as the complexity classes P, NP, and coNP mentioned above and
with the notions of hardness and completeness (based on the polynomial-time
many-one reducibility, ≤p

m). Σp
2 = NPNP and Πp

2 = coNPNP are the second
level of the polynomial hierarchy, which has been introduced by Meyer and
Stockmeyer [27,33]. It holds that P ⊆ NP ⊆ Σp

2 ∪Πp
2 and P ⊆ coNP ⊆ Σp

2 ∪Πp
2 ,

and none of these inclusions is known to be strict. For further details, see, e.g.,
[28,32].

3 Attack-Incomplete Argumentation Frameworks

We will now consider argumentation frameworks with incomplete knowledge
about the attack relation, where a set of n arguments is fixed and only a subset
of all n2 possible attacks is known to either definitely exist or to definitely not
exist—the state of the remaining attacks is currently unknown. We call this an
attack-incomplete argumentation framework.

3.1 Model and Formal Definitions

An extension of standard argumentation frameworks to attack-incomplete argu-
mentation frameworks was proposed by Cayrol et al. [10], which allows to dis-
tinguish between definite attacks, impossible attacks, and possible attacks. We
apply their extended model using a slightly different notation.

Definition 1. An attack-incomplete argumentation framework is a triple
〈A ,R+,R−〉, where A is a nonempty set of arguments and R+ and R− are
disjoint subsets of A ×A . R+ denotes the set of all ordered pairs of arguments
between which an attack is known to definitely exist, while R− denotes the set
of all ordered pairs of arguments between which an attack is known to never
exist. The set of possible attacks (A ×A )�(R+ ∪R−), which is implicitly given
through R+ and R−, is denoted as R?.

Let AF = 〈A ,R+,R−〉 be a given attack-incomplete argumentation frame-
work. An argumentation framework AF ∗ = 〈A ,R∗〉 with R+ ⊆ R∗ ⊆ R+ ∪R?

is called a completion of AF . Every attack-incomplete argumentation framework
obviously has 2‖R?‖ different completions. In particular, we call the completion
that discards all possible attacks (R∗ = R+) the minimal completion of AF ,
and the completion that includes all possible attacks (R∗ = R+ ∪ R?) is called
the maximal completion of AF .

We now extend the notions for classical argumentation frameworks that we
described in Sect. 2 to attack-incomplete argumentation frameworks, distinguish-
ing between properties holding either possibly or necessarily. Generally, a prop-
erty holds possibly for an attack-incomplete argumentation framework AF if
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a b

cd

Fig. 3. An attack-incomplete argumentation framework

there exists a completion AF ∗ of AF for which the property holds, and a prop-
erty holds necessarily if it holds for all completions of AF .4 Note that if a
property holds necessarily, it also holds possibly; even if R? = ∅, there exists
20 = 1 completion, which happens to be both minimal and maximal in this case.

Example 2. Figure 3 gives the graph representation of an attack-incomplete
argumentation framework AF = 〈A ,R+,R−〉 with the set A = {a, b, c, d}
of arguments, where definite attacks R+ = {(b, d), (c, c), (d, a)} are drawn
as solid arcs, possible attacks R? = {(a, a), (a, b), (a, c), (d, b), (d, c)} as
dotted arcs, and attacks that are known to never exist (i.e., R− =
{(a, d), (b, a), (b, b), (b, c), (c, a), (c, b), (c, d), (d, d)}) are not displayed.

For this example, it holds that the sets ∅, {b}, and {d} are the only necessarily
conflict-free extensions of AF , while the sets ∅, {a}, {b}, {d}, and {a, b} are the
only possibly conflict-free extensions of AF .

Deciding whether a given property holds possibly (respectively, necessarily)
adds an existential (respectively, universal) quantifier over an exponential space
to the standard problem, potentially making it intractable or increasing its level
of intractability. However, some problems remain easy to solve. This is obvious,
for example, for the possible and necessary attack between two given arguments:
An argument a ∈ A is possibly attacked (respectively, necessarily attacked) by
an argument b ∈ A if and only if (b, a) �∈ R− (respectively, (b, a) ∈ R+),
which can clearly be verified in polynomial time. In Sect. 4, we will present our
results on the complexity of deciding whether a set of arguments is a possible or
necessary s-extension for all considered semantics s.

3.2 Comparison with the Model of Cayrol et al. [10]

Although we use the notion of attack-incomplete argumentation framework due
to Cayrol et al. [10] (called Partial Argumentation Framework (PAF) in their

4 Unlike the concepts of credulous and skeptical acceptance in the related literature,
which denote membership of arguments in, respectively, some and all extensions of a
specific argumentation framework, our notions of properties holding possibly and nec-
essarily describe criteria holding in, respectively, some and all argumentation frame-
works (i.e., completions), and are therefore settled one level of abstraction higher.
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Table 1. Comparison of properties of sets of arguments

Property from [10] Our property

S is R-conflict-free ⇐⇒ S is possibly conflict-free

S is RI -conflict-free ⇐⇒ S is necessarily conflict-free

a is R-acceptable w.r.t. S �⇐⇒ a is possibly acceptable w.r.t. S

a is RI -acceptable w.r.t. S ⇐⇒ a is necessarily acceptable w.r.t. S

S is R-admissible �⇐⇒ S is possibly admissible

S is RI -admissible ⇐⇒ S is necessarily admissible

S is R-preferred �⇐⇒ S is possibly preferred

S is RI -preferred �⇐⇒ S is possibly preferred

work), we do not take the same perspective on properties and semantics: While
they define new semantics for the PAFs themselves, we will analyze whether
the conditions of standard semantics are fulfilled in some or all completions of
it. This avoids the strange case where an incomplete framework satisfies some
property, despite none of its completions satisfying this property; for example, in
the model by Cayrol et al. it may be the case that a set S of arguments is the only
RI -preferred extension5 of an attack-incomplete argumentation framework, even
though it is not a preferred extension for any of the framework’s completions.

While the formal conditions imposed by both approaches coincide in some
cases, they are generally different. Table 1 gives an overview of all criteria and
semantics introduced by Cayrol et al.6 and their counterparts in our model, and
indicates whether or not they are equivalent. A formal proof of why equivalence
does or does not hold in each individual case is omitted due to space constraints.

4 Possible and Necessary Verification

The problem s-Verification for standard argumentation frameworks natu-
rally yields two problems for attack-incomplete argumentation frameworks, s-
Att-Inc-Possible-Verification and s-Att-Inc-Necessary-Verification,
for each semantics s.

s-Att-Inc-Possible-Verification (s-AttIncPV)

Given: An attack-incomplete argumentation framework AF = 〈A ,R+,R−〉
and a set S ⊆ A .

Question: Is there a completion AF ∗ of AF such that S is an s extension in AF ∗?

5 A set of arguments is RI -preferred if it is maximal among all necessarily admissible
sets, where R=̂R+ and I =̂R? in our notation.

6 For formal definitions of these criteria, see their work [10].



Verification in Attack-Incomplete Argumentation Frameworks 349

s-Att-Inc-Necessary-Verification (s-AttIncNV)

Given: An attack-incomplete argumentation framework AF = 〈A ,R+,R−〉
and a set S ⊆ A .

Question: For all completions AF ∗ of AF , is S an s extension in AF ∗?

As already mentioned, the original problem can be solved efficiently for the
admissible, stable, complete, and grounded semantics. We prove that both new
problems can still be solved efficiently for these semantics, even though the
number of completions is exponential in the number of possible attacks. We
define best-case and worst-case completions for the different semantics, a given
attack-incomplete argumentation framework AF , and a given set S of argu-
ments. Intuitively, a best-case completion includes all attacks that are beneficial
for S with respect to the considered semantics, whereas a worst-case comple-
tion includes those attacks that harm the conditions imposed by the semantics.
We prove that these completions are critical completions for the respective deci-
sion problem, i.e., the answer to the Verification variant corresponding to
the attack-incomplete framework is the same as that to Verification for the
respective completion.

4.1 Verifying Conflict-Freeness, Admissibility, and Stability

For conflict-freeness, admissibility, or stability of a set S of arguments, all
attacks against elements of S are never beneficial and possibly harmful, and all
attacks against arguments outside of S are never harmful and possibly beneficial.
Thus the simple and straightforward “optimistic” and “pessimistic” completions,
defined as follows, can serve as critical completions for these three criteria.

Definition 2. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework and let S ⊆ A . The optimistic completion of AF for S is AF opt

S =
〈A ,Ropt

S 〉 with Ropt
S = R+ ∪ {(a, b) ∈ R? | b �∈ S}. The pessimistic completion

of AF for S is AF pes
S = 〈A ,Rpes

S 〉 with Rpes
S = R+ ∪ {(a, b) ∈ R? | b ∈ S}.

Example 3. Figure 4 displays the optimistic and the pessimistic completion for
S = {a, b} in the argumentation framework from Example 2: Possible attacks
that are added to the set of definite attacks in the respective completion are
drawn as boldfaced arcs, possible attacks that are not added to the set of definite
attacks in the respective completion are omitted in Fig. 4(b) and (c), and the
arguments in S are displayed by boldfaced circles.

Lemma 1. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework, let S ⊆ A , and let AF opt

S be the optimistic completion of AF for S.

1. S is possibly conflict-free in AF if and only if S is a conflict-free extension
of AF opt

S .



350 D. Baumeister et al.

a b

cd

(a) Attack-incomplete AF

a b

cd

(b) Optimistic completion

a b

cd

(c) Pessimistic completion

Fig. 4. Optimistic and pessimistic completions for S = {a, b}

2. a ∈ S is possibly acceptable with respect to S in AF if and only if a is
acceptable with respect to S in AF opt

S .
3. S is possibly admissible in AF if and only if S is an admissible extension of

AF opt
S .

4. S is possibly stable in AF if and only if S is a stable extension of AF opt
S .

Proof. The converse is trivial in all cases: If S fulfills a given criterion in AF opt
S ,

this immediately yields that S possibly fulfills the criterion in AF . We now prove
the other direction of the equivalence individually for each criterion:

1. If a set S of arguments is not conflict-free in AF opt
S , then there must be an

attack between elements of S in Ropt
S , which must be already in R+ due to

how Ropt
S is constructed, and which therefore exists in every completion of

AF . Thus S is not a possibly conflict-free set in AF .
2. If there is some a ∈ S that is not acceptable with respect to S in AF opt

S ,
then it is attacked by some b ∈ A in Ropt

S and there is no attack from an
element of S against b in Ropt

S . By construction, Ropt
S does not contain any

possible attacks (members of R?) that attack elements of S, and it contains
all possible attacks that can defend S. Therefore, all attacks in Ropt

S against
elements of S are already in R+, so the undefended attack from b against a is
in every completion of AF . Since a cannot be acceptable with respect to S in
any completion of AF , a is not possibly acceptable with respect to S in AF .

3. Assume that S is not an admissible extension in AF opt
S , i.e., S is not conflict-

free in AF opt
S or there is some a ∈ S that is not acceptable with respect to S

in AF opt
S . In either case, the previous results imply that S is not conflict-free

in any completion of AF or a is not acceptable with respect to S in any
completion of AF . Thus S is not a possibly admissible extension in AF .

4. If a set S of arguments is not stable in AF opt
S , S is necessarily not conflict-

free in AF or there is an a ∈ A �S that is not attacked by S in AF opt
S ,

and therefore—by construction of AF opt
S —a cannot be attacked by S in any

completion of AF . In both cases, there is no completion of AF for which S
is stable, so S is not a possibly stable extension of AF .

This completes the proof. �
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An analogous result holds for the pessimistic completion and the same prop-
erties holding necessarily. The proof of Lemma 2 is omitted due to space con-
straints.

Lemma 2. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework, S ⊆ A , and let AF pes

S be the pessimistic completion of AF for S.

1. S is necessarily conflict-free in AF if and only if S is a conflict-free extension
of AF pes

S .
2. a ∈ S is necessarily acceptable with respect to S in AF if and only if a is

acceptable with respect to S in AF pes
S .

3. S is necessarily admissible in AF if and only if S is an admissible extension
of AF pes

S .
4. S is necessarily stable in AF if and only if S is a stable extension of AF pes

S .

Note that in the second part of Lemmas 1 and 2 it is required that a ∈ S;
the properties do not hold for the general case where a ∈ A .

Finally, we can conclude that s-AttIncPV and s-AttIncNV are in P for
conflict-freeness, admissibility, and stability.

Theorem 1. For s ∈ {cf,ad, st}, both s-AttIncPV and s-AttIncNV are
in P.

Proof. The optimistic and pessimistic completions can obviously be constructed
in polynomial time. As already mentioned, the problem s-Verification can be
solved in polynomial time for a given completion. Lemmas 1 and 2 then provide
that the answer to, respectively, s-AttIncPV and s-AttIncNV is the same as
that to s-Verification for the respective completion. �

4.2 Verifying Groundedness and Completeness

Recall that, for a given argumentation framework AF , the set of complete exten-
sions is the set of fixed points of the characteristic function FAF , and the (unique)
grounded extension is the fixed point of the characteristic function FAF when
starting with the empty set. For the complete and the grounded semantics, a
critical completion of an attack-incomplete argumentation framework for a given
set S of arguments can be constructed by choosing attacks in a way that makes
it most likely (respectively, most unlikely) for S to be a fixed point of FAF . We
call a completion in which S is most likely to be a fixed point of FAF a “fixed
completion,” and a completion in which it is most unlikely to be a fixed point
an “unfixed completion.”

Definition 3. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework and S ⊆ A . The fixed completion AF fix

S of AF is the completion that
is obtained by the following algorithm. The algorithm defines a finite sequence
(AFi)i≥0 of attack-incomplete argumentation frameworks, with the fixed comple-
tion being the minimal completion of the sequence’s last element.
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1. Include definite attacks: Let AF0 = AF .
2. Include external conflicts: Let AF1 = 〈A ,R+

1 ,R−〉 with R+
1 = R+∪{(a, b) ∈

R? | a �∈ S and b �∈ S}.
3. Include defending attacks: Let T = {t ∈ A �S | ∃s ∈ S : (t, s) ∈ R+

1 } (i.e.,
each argument in T necessarily attacks S) and let AF2 = 〈A ,R+

2 ,R−〉 with
R+

2 = R+
1 ∪ {(a, b) ∈ R?

1 | a ∈ S and b ∈ T}.
4. Avoid arguments outside of S to be acceptable with respect to S: For the

current i (initially, i = 2), let AFmin
i be the minimal completion of AFi and

Ti = FAFmin
i

(S)�S (i.e., Ti is the set of arguments that are not in S, but
that are acceptable with respect to S in the current minimal completion). Let
AFi+1 = 〈A ,R+

i+1,R
−〉 with R+

i+1 = R+
i ∪{(a, b) ∈ R?

i | a ∈ S and b ∈ Ti},
and set i ← i + 1.

5. Repeat Step 4 until no more attacks are added.
6. The fixed completion of AF is AF fix

S = 〈A ,Rfix
S 〉 with Rfix

S = R+
i .

Definition 4. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework and S ⊆ A . The unfixed completion AF unf

S of AF is the com-
pletion that is obtained by the following algorithm. The algorithm defines a
finite sequence (AFi)i≥0 of attack-incomplete argumentation frameworks, with
the unfixed completion being the minimal completion of the sequence’s last ele-
ment.

1. Include definite attacks: Let AF0 = AF .
2. Include attacks against S: Let AF1 = 〈A ,R+

1 ,R−
1 〉 with R+

1 = R+∪{(a, b) ∈
R? | b ∈ S} and R−

1 = R−.
3. Exclude external conflicts: Let AF2 = 〈A ,R+

2 ,R−
2 〉 with R+

2 = R+
1 and

R−
2 = R−

1 ∪ {(a, b) ∈ R?
1 | a �∈ S and b �∈ S}.

4. Exclude defending attacks: Let T = {t ∈ A �S | ∃s ∈ S : (t, s) ∈ R+
2 } (i.e.,

each argument in T necessarily attacks S) and let AF3 = 〈A ,R+
3 ,R−

3 〉 with
R+

3 = R+
2 and R−

3 = R−
2 ∪ {(a, b) ∈ R?

2 | a ∈ S and b ∈ T}.
5. Try to let arguments outside of S be acceptable with respect to S: Let T =

A �S = {t1, . . . , tk}. For the current i (initially, i = 3) and for each tj ∈ T ,
do:
(a) For S′ = S ∪ {tj}, let AF opt

i,S′ be the optimistic completion of AFi for S′

and let AFmin
i be the minimal completion of AFi.

(b) If tj is acceptable with respect to S in AF opt
i,S′ , but not acceptable with

respect to S in AFmin
i , let AFi+1 = 〈A ,R+

i+1,R
−
i+1〉 with R+

i+1 = R+
i ∪

{(a, b) ∈ R?
i | a ∈ S and (b, tj) ∈ R+

i } and R−
i+1 = R−

i , and set i ← i+1.
(To accept an argument tj that is not currently accepted by S but possibly
accepted by S, include all possible attacks by S against tj’s attackers.)

6. Repeat Step 5 until no more attacks are added.
7. The unfixed completion of AF is AF unf

S = 〈A ,Runf
S 〉 with Runf

S = R+
i .

Lemma 3. For an attack-incomplete argumentation framework AF =
〈A ,R+,R−〉 and a set S ⊆ A of arguments, the fixed completion AF fix

S and
the unfixed completion AF unf

S can be constructed in polynomial time.
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Proof. All individual steps in both constructions can obviously be carried out in
time polynomial in the number of arguments. It remains to prove that the loops
in, respectively, Step 4 and Step 5 run at most a polynomial number of times.
For the fixed completion, in each execution of a loop there is either (at least) one
possible attack that is added to R+

i+1, or no action is taken in which case the loop
terminates. Therefore, the number of times a loop is executed is bounded by the
number of possible attacks in the attack-incomplete argumentation framework
AF , which is at most n2, where n is the number of arguments. For the unfixed
completion, the only difference is the sub-loop in Step 5, which however has a
predefined number of iterations that is bounded by the number n of arguments.
Therefore, the total number of loop iterations in the construction of the unfixed
completion is bounded by n3. This completes the proof. �

Now we prove that the fixed completion indeed is a critical completion for
the complete and the grounded semantics.

Lemma 4. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework, S ⊆ A , and let AF fix

S be the fixed completion of AF for S. (1) S
is a possibly complete extension of AF if and only if S is a complete extension
of AF fix

S . (2) S is a possibly grounded extension of AF if and only if S is the
grounded extension of AF fix

S .

Proof. Again, the converse is trivial in both cases. Further, if S is not an admis-
sible extension in AF fix

S , then S is not admissible in any completion of AF , due
to the same arguments that we used for the optimistic completion and, therefore,
neither possibly complete nor possibly grounded in AF . So, we may assume that
S is admissible in AF fix

S .
(1) Assume that S is not a complete extension of AF fix

S , i.e., S is not a fixed
point of FAF fix

S
. We will show that this implies that S is not possibly complete

in AF . Since S is not a fixed point of FAF fix
S

, there is an argument b �∈ S which
is acceptable with respect to S in AF fix

S .
We prove that, then, there must be some c �∈ S for which all attackers of c

are attacked by S in AF ∗ (c = b may or may not be the case) by individually
covering all cases in which attacks are added to Rfix

S :
All attacks from R? between arguments outside of S, which are added to

Rfix
S in Step 2, cannot make an argument b �∈ S acceptable with respect to S: If

S did not attack all attackers of an argument before, it cannot do so after more
attackers are added.

All attacks that are added in Step 3 are crucial for S to be admissible, and
must therefore also be included in R∗. In a case where multiple arguments in
S attack a single attacker of S, it would be sufficient to include one of these
defending attacks, but including all of them does not make a difference, since
the criterion of being acceptable with respect to S does not distinguish between
different elements of S.

All attacks that are added in Step 4 are attacks by S against arguments
that are currently acceptable with respect to S. Since all possible attacks among
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arguments outside of S were already included in Step 2, the only way to destroy
acceptability of these arguments is by S directly attacking them. Therefore, none
of the attacks added in Step 4 can be omitted without making the respective
argument acceptable with respect to S (again, it is not necessary to distinguish
between multiple attacks by different arguments in S against the same argu-
ment). It is possible for a given b �∈ S to be acceptable with respect to S in
AF fix

S and not in AF ∗, but this happens only if S attacks an attacker (or several
attackers) of b in AF fix

S that would otherwise be acceptable with respect to S,
and which therefore must be acceptable with respect to S in AF ∗. In either case,
if an argument outside of S is acceptable with respect to S in AF fix

S , then some
argument outside of S must be acceptable with respect to S in each completion
AF ∗ of AF in which S is admissible. Therefore, if S is not a complete exten-
sion of AF fix

S , it is not a complete extension of any completion AF ∗ of AF , and
therefore not a possibly complete extension of AF .

(2) Let AF ∗ be an arbitrary completion of AF and assume that S is its
grounded extension. We prove that, then, S is also the grounded extension of
AF fix

S . Let Ai = F i
AF∗(∅) and Bi = F i

AF fix
S

(∅), where F i is the i-fold composition
of the respective characteristic function F . Since S is grounded in AF ∗, it is
complete in AF fix

S due to our previous result, and it holds that Ai ⊆ S for all
i ≥ 0 and there exists a j ≥ 0 such that for all i ≥ j, it holds that Ai = S.
We will prove that Ai ⊆ Bi ⊆ S for all i ≥ 0. Combined, these statements show
that there exists some j such that Bi = S for all i ≥ j, which is equivalent to S
being the grounded extension of AF fix

S .
First, we prove that Ai ⊆ Bi for all i ≥ 0. For i = 0, we have Ai = Bi = ∅.

For i = 1, Ai (respectively, Bi) is the set of all unattacked arguments in AF ∗

(respectively, in AF fix
S ). We know that A1 ⊆ S. Since the fixed completion

does not include any possible attacks against elements of S, all a ∈ S that are
unattacked in AF ∗ are unattacked in AF fix

S , too, which proves A1 ⊆ B1. If we
now have Ak ⊆ Bk for some k ≥ 1, this implies Ak+1 ⊆ Bk+1: Assume that
this were not true, i.e., that Ak ⊆ Bk, but there is an argument a ∈ Ak+1 with
a �∈ Bk+1. Then, a is acceptable with respect to Ak in AF ∗, but not acceptable
with respect to Bk in AF fix

S . We know that—since Ak+1 ⊆ S—no possible attacks
against Ak+1 (and in particular, against a) are included in AF fix

S and all possible
defending attacks by arguments in Ak+1 against arguments outside of S are
included in AF fix

S . Further, no element of S attacks a in AF fix
S , since a ∈ S

and S is complete in AF fix
S . Therefore, a is acceptable with respect to Ak in

AF fix
S ; otherwise it could not be acceptable with respect to Ak in AF ∗. Now,

the only way for a to not be acceptable with respect to Bk in AF fix
S is if there

were some b ∈ Bk�Ak that necessarily attacks a. Then there would have to be a
defending attack by an argument d ∈ Ak against b in AF ∗, since a is acceptable
with respect to Ak in AF ∗. This implies that b �∈ S, since S is conflict-free in
AF ∗. Finally, since (d, b) is a possible (or even a necessary) defending attack by
an element of S against b �∈ S, (d, b) ∈ Rfix

S holds by construction of the fixed
completion, which contradicts that Bk is admissible in AF fix

S . Therefore, a must
be acceptable with respect to Bk in AF fix

S , which proves that Ak+1 ⊆ Bk+1.
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Now we prove that Bi ⊆ S for all i ≥ 0: Assume that Bi �⊆ S for some
i ≥ 0. Then it also holds that Gfix

S �⊆ S for the grounded extension Gfix
S of AF fix

S .
It further holds that S ⊂ Gfix

S , since there exists a j ≥ 0 such that S ⊆ Bi

for all i ≥ j, as established before. However, this contradicts the fact that S
is complete in AF fix

S , since the grounded extension Gfix
S of AF fix

S is its least
complete extension with respect to set inclusion and the complete set S cannot
be a strict subset of Gfix

S . This completes the proof. �
Analogously, the unfixed completion is a critical completion for the complete

and the grounded semantics. Due to limitation of space, the proof of Lemma 5
is omitted.

Lemma 5. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework, S ⊆ A , and let AF unf

S be the unfixed completion of AF for S.
(1) S is a necessarily complete extension of AF if and only if S is a complete
extension of AF unf

S . (2) S is a necessarily grounded extension of AF if and only
if S is the grounded extension of AF unf

S .

Finally, our results allow us to establish that s-AttIncPV and s-AttIncNV
are in P for the complete and grounded semantics.

Theorem 2. For s ∈ {cp,gr}, both s-AttIncPV and s-AttIncNV are in P.

Proof. Lemma 3 provides polynomial-time constructability for the fixed and
unfixed completion. Given a completion, s-Verification can be solved in poly-
nomial time, and Lemmas 4 and 5 imply that the answer to, respectively,
s-AttIncPV and s-AttIncNV is the same as that to s-Verification for the
respective completion. �

4.3 Verifying Preferredness

As mentioned above, the Verification problem for the preferred semantics is
coNP-complete. For pr-AttIncPV and pr-AttIncNV, we have the following
results.

Theorem 3. The problem pr-AttIncPV is in Σp
2 and coNP-hard, and

pr-AttIncNV is coNP-complete.

Proof. In pr-AttIncPV one has to check whether, given an attack-incomplete
argumentation framework AF = 〈A ,R+,R−〉 and a set S ⊆ A, there is a
completion AF ∗ = 〈A,R∗〉 such that S is preferred in AF ∗. To check whether
S is preferred in AF ∗, one has to check whether for all sets S′ ⊆ A with S ⊂ S′

it holds that S is an admissible extension and S′ is not an admissible extension.
Thus this problem is in Σp

2 .
To see that pr-AttIncNV is in coNP, consider the complementary problem.

Here one has to check whether there is a completion AF ∗ of the given attack-
incomplete AF such that the given set S is not preferred. To see this, it is enough
to check whether there is a strict superset of S that is admissible or whether S
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Table 2. Overview of complexity results both in the standard model (s-Verification)
and in the attack-incomplete model of this paper (s-AttIncPV and s-AttIncNV)

s Verification AttIncPV AttIncNV

cf in P in P [10] in P [10]

ad in P in P (Theorem 1) in P [10]

st in P in P (Theorem 1) in P (Theorem 1)

cp in P in P (Theorem 2) in P (Theorem 2)

gr in P in P (Theorem 2) in P (Theorem 2)

pr coNP-complete coNP-hard, in Σp
2 (Theorem 3) coNP-complete (Theorem 3)

itself is not admissible. Since admissibility can be checked in polynomial time, the
complement of pr-AttIncNV is in NP and hence pr-AttIncNV is in coNP.

On the other hand, coNP-hardness for both problems follows by a
direct reduction from the original pr-Verification problem, which is coNP-
complete [15]. For a given instance (〈A ,R〉, S) of pr-Verification, the con-
structed instance of both pr-AttIncPV and pr-AttIncNV is (〈A ,R, (A ×
A )�R〉, S). The only completion of 〈A ,R, (A ×A )�R〉 is 〈A ,R〉. Now, it is
easy to see that (〈A ,R〉, S) ∈ pr-Verification if and only if (〈A ,R, (A ×
A )�R〉, S) ∈ pr-AttIncPV, which in turn is equivalent to (〈A ,R, (A ×
A )�R〉, S) ∈ pr-AttIncNV. �

5 Conclusions and Open Questions

We have investigated argumentation frameworks in a setting where we don’t
have full knowledge of the attacks. We adapted the s-Verification decision
problems with respect to notions of possibility and necessity to fit the model of
Cayrol et al. [10], and we analyzed their complexity for the fundamental seman-
tics admissibility, stability, completeness, groundedness, and preferredness. This
may be useful to predict those sets of arguments that will be “good” solutions
once all attacks are known eventually.

Table 2 summarizes our results, and also gives the previously known results
for argumentation frameworks without uncertainty that are due to Dimopoulos
and Torres [15], Dung [17], and Dunne and Wooldridge [18], as well as the results
for incomplete argumentation frameworks provided by Cayrol et al. [10]. We have
shown positive results (characterizations) for all considered semantics except
preferredness, for which the exact complexity in the case of possible verification
remains open. As a task for future work, we propose to generalize other deci-
sion problems like s-Credulous-Acceptance, s-Skeptical-Acceptance, s-
Existence, and s-Nonemptiness to fit the model of attack-incompleteness
and analyze their complexity. Additionally, one could have a closer look at other
semantics like semi-stable, ideal, or prudent semantics (see [18] for the definition
of these decision problems and semantics).
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Abstract. Incomplete knowledge in argumentation frameworks may
occur during the single steps of an elicitation process, when merging
different beliefs about the current state of an argumentation framework,
or when it is simply not possible to obtain complete information. The
semantics of argumentation frameworks with such incomplete knowledge
have previously been modeled in terms of an inco mplete attack relation
among the given arguments by Cayrol et al. [12] or when adding an argu-
ment that interacts with already present arguments [14]. We propose a
more general model of argument-incomplete argumentation frameworks
with a variable set of arguments, and we study the related verification
problems for various semantics in terms of their computational complex-
ity.

1 Introduction

A discussion between human beings is a form of communicating opinions and
thoughts about a given subject. These opinions and their interactions are often
highly complex and thus hard to formalize mathematically. The goal of abstract
argumentation is to model discussions between (human or software) agents by
abstracting from the actual content of arguments and from the reasons of why
they attack each other, and instead to consider a given set of arguments along
with an attack relation on it and to find certain subsets of the arguments that
fulfill certain justification criteria. In 1995, Dung [18] introduced a formal model
to describe discussions abstractly. His model uses a graph structure where the
nodes represent arguments, and the attacks between arguments are modeled
through directed edges. He also introduced various semantics, i.e., criteria that
can express different kinds and levels of justification for certain subsets of the
arguments. His highly influential model has been used by many researchers, who
developed additional ideas of how to extend it so as to make it an elegant, rich,
and attractive model for abstract group argumentation. We refer the reader to
the book by Rahwan and Simari [30] for more background on abstract argumen-
tation in artificial intelligence.

In this paper, we develop a new model for argumentation frameworks on the
basis of Dung’s work [18], namely, argument-incomplete argumentation frame-
works. Our goal is to extend the standard model by allowing uncertainty over
the set of arguments. In our model, we have a set of arguments that already
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 359–376, 2015.
DOI: 10.1007/978-3-319-23114-3 22
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are known to exist, and another set of arguments that in addition contains
those arguments which might become relevant in a later state of the discussion.
We study properties and semantics, namely conflict-freeness, admissibility, pre-
ferredness, stability, completeness, and groundedness, suitably adapted to the
argument-incomplete setting, where we distinguish between properties holding
possibly and necessarily. Besides the formal model, the main contribution of this
work are complexity results of appropriately extended variants of the verifica-
tion problem [19], asking whether or not a given set of arguments will fulfill a
previously specified property either possibly or necessarily.

Related Work and Motivation: In real-world discussions we cannot assume to
know all arguments or attacks in advance, or how important they are for the
discussion, or to fully capture the dynamics of a discussion. Therefore, we are
trying to take an early step to model situations in which complete information is
not available by allowing the set of arguments to be uncertain. This can happen,
for example, in a well developed discussion in which many, or even all, possible
arguments are known already but where certain external limitations can change,
which may have an impact on the validity or importance of the arguments. It may
be safe to assume that some of the arguments are always valid, but which of the
uncertain arguments are valid may depend on the circumstances. For example, if
the citizens of a town discuss whether a public swimming pool, an opera house,
or a library are to be built, it will have an impact on some of the arguments
if it suddenly turns out that the budget deficit is higher than expected—some
arguments may then be invalid or less important, while others remain valid and
crucial. It would be interesting to know which sets of arguments (possibly also
containing uncertain arguments) are justified for different limitations.

As another example, consider the case of different knowledge bases of agents.
All the agents share the same set of possible arguments, but they disagree on
their importance. Hence, every agent has her own “belief stage” resulting in
different individual views on the argumentation framework. Such belief-staged
argumentation frameworks can be modeled by an argument-incomplete argu-
mentation framework, and so can the aggregated opinion of the agents, obtained
by agreeing on some arguments to be important, leaving the others as uncertain.

Modeling discussions via argument-incomplete argumentation frameworks
may help to answer the question of whether it is possible to make early decisions
about which sets of arguments will fulfill certain criteria possibly (i.e., in at least
one way regarding currently uncertain arguments that may arise—or turn out to
be important—in the future) or necessarily (i.e., in any way regarding currently
uncertain arguments that may arise—or turn out to be important—in the future).

The need for a model that is capable of capturing these ideas is also moti-
vated by the interdisciplinary graduate school “Online Participation”1 run by
Heinrich-Heine-Universität Düsseldorf in cooperation with Fachhochschule für
öffentliche Verwaltung and with a number of practice partners and municipal coun-
cils. Researchers from the social sciences, political science, communication science,

1 We refer to the website http://www.fortschrittskolleg.de for further details.

http://www.fortschrittskolleg.de
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and computer science are involved in creating a broad knowledge base about how
to discuss in online platforms, as well as in designing a software tool for performing
this in practice. This work aims to provide a solid theoretical foundation.

Incomplete argumentation frameworks have been introduced by Cayrol
et al. [12], who define so-called “partial argumentation frameworks” by distin-
guishing the attacks into those that are definitely part of the argumentation
framework, those that are definitely not part of the argumentation framework,
and those that are not certain—but possible—to occur. They further define a
completion of such a partial argumentation framework as a standard argumen-
tation framework that contains all the arguments of the partial argumentation
framework, at least the attacks definitely contained, and maybe also some of
the possible attacks. We use a similar idea in our model of argument-incomplete
argumentation frameworks.

The model of Cayrol et al. [13,14] to study changes in the argument set has
a different goal than our model. They introduce change operations that allow
for the addition or deletion of one attack, or one argument together with a set
of attacks regarding this argument. Their work focuses on a classification of how
such changes can possibly alter the outcome.

Other approaches regarding changes in the argument set are due to Boella
et al. [7], who define general principles for the abstraction of arguments and
attacks, mainly for the grounded semantics. They address the question of which
arguments or attacks can be removed such that the extensions remain unchanged.

In so-called “probabilistic argumentation frameworks” (introduced by Li
et al. [26]; for more information, see the work of Doder and Woltran [17]), every
argument and attack has an associated probability that yields the likelihood of
that argument or attack to be part of an induced argumentation framework. This
can be seen as an intermediate state between complete knowledge and incom-
plete information. Li et al. [26] show that computing the probability of a set of
arguments being justified regarding a semantics can be intractable. Therefore,
the authors approximate it by means of a Monte-Carlo simulation. Fazzinga
et al. [20] show that this computation indeed is hard for, e.g., the complete,
grounded, and preferred semantics, but is easy for stability and admissibility.
They further discuss approximation algorithms [21].

Baumeister et al. [6] describe a model of attack -incomplete argumentation
frameworks.

The idea of extending models of complete information to allow for incomplete
information is not new; it has been applied, e.g., in the field of computational
social choice, especially in voting theory (see, e.g., the book chapters by Boutilier
and Rosenschein [8] and Baumeister and Rothe [1]). Konczak and Lang [23]
introduced the notions of possible and necessary winners in elections, which
then were studied in different variants (see, e.g., Konczak and Lang [23], Xia
and Conitzer [33], Lang et al. [24], and Chevaleyre et al. [15]) and for different
settings (see, e.g., the work of Baumeister et al. [2,3]). Other fields in which the
notions of possibility and necessity are used include judgment aggregation [4],
fair division [5,9–11], and algorithmic game theory [25].
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This paper is structured as follows. In Sect. 2, we introduce the known model
of abstract argumentation frameworks, and we provide the needed notions from
complexity theory. In Sect. 3, we describe our model for attack-incomplete argu-
mentation frameworks and present our results. Section 4, finally, gives our con-
clusions and comments on some open questions.

2 Preliminaries

In this section, we introduce formal definitions of the central notions related to
(classical) argumentation frameworks. The basic ideas are due to Dung [18],
and we will be using some notation from the book chapter by Dunne and
Wooldridge [19].

An argumentation framework AF is a pair 〈A ,R〉, where A denotes a set
of arguments, and R ⊆ A ×A the attack relation. For every pair (a, b) ∈ R we
say a attacks b, and for simplicity we often write a → b. If a → b and b → a, we
simply write a ↔ b. Every argumentation framework AF = 〈A ,R〉 can be seen
as a directed Graph GAF = (V,E) by using the arguments as vertices and the
attacks as edges, i.e., V = A and E = R.

Before going into further detail of the abstract argumentation scheme by
Dung, we will present an easy example, which will be used again later on.

Example 1. Assume we have seven arguments, {a, b, c, d, e, f, g}, and nine
attacks: a → b, a → c, b → d, c → d, e → d, e ↔ f, e → g, and g → g. Then
the appropriate argumentation framework is

AF = 〈A ,R〉 =〈{a, b, c, d, e, f, g, },

{(a, b), (a, c), (b, d), (c, d), (e, d), (e, f), (e, g), (f, e), (g, g)}〉.

The graph representation GAF of this argumentation framework is shown in
Fig. 1.

We now define properties in argumentation frameworks, mainly for sets
of arguments. All of them were introduced by Dung [18]. We start with the
three most basic properties: conflict-freeness, acceptability, and admissibility.
Let AF = 〈A ,R〉 be an argumentation framework.

– A set S ⊆ A is called conflict-free if there are no arguments a, b ∈ S such
that a → b.

– An argument a ∈ A is called acceptable with respect to S ⊆ A if for all
arguments b ∈ A with b → a, we have at least one argument c ∈ S such that
c → b.

– A conflict-free set S ⊆ A is called admissible if every argument a ∈ S is
acceptable with respect to S.

More advanced properties are preferredness, stability, completeness, and
groundedness, and Dung calls them semantics in his work [18].
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Fig. 1. The graph GAF = (A ,R) for the argumentation framework AF = 〈A ,R〉
from Example 1

– A set S ⊆ A is called preferred if S is a maximal (with respect to set
inclusion) admissible set.

– A set S ⊆ A is called stable if S is conflict-free and for all arguments
b ∈ A �S, there is at least on argument a ∈ S with a → b.

– A set S ⊆ A is called complete if S is admissible and contains all arguments
a ∈ A that are acceptable with respect to S.

– A set S ⊆ A is called grounded if S is the least (with respect to set inclusion)
fixed point of the characteristic function of the argumentation framework.
The characteristic function FAF of the argumentation framework AF is a
function FAF : 2A → 2A defined by

FAF (S) = {a ∈ A | a is acceptable with respect to S}.

The characteristic function is monotonic with respect to set inclusion, and
there always is exactly one least fixed point. Hence, there always is exactly one
grounded set for a given argumentation framework. Additionally, starting with
an arbitrary subset of the arguments, there always is an i ∈ N such that the i-
fold composition of the characteristic function has a fixed point. All those fixed
points are exactly the complete sets of the given argumentation framework.

Dung [18] shows how those above defined properties are related to each other.
In particular, he proved that there always is a preferred set, and that every admis-
sible set is a subset of a preferred set, every stable set is preferred, and every
preferred set is complete. As already mentioned, there is exactly one grounded
set in a given argumentation framework, and it is obviously complete. It is easy
to see that a stable or a preferred set can be the grounded set, but there are argu-
mentation frameworks in which the grounded set is neither preferred nor stable.
Finally, every complete set is admissible and every admissible set is conflict-free,
due to their definitions. Figure 2 summarizes these results.

In this work, we will focus on the six properties for sets of arguments intro-
duced above. In the literature, conflict-freeness and admissibility are not called
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stable

preferred

grounded

complete

admissible

conflict-free

Fig. 2. A summary over how the different properties for sets of arguments used in this
paper are correlated

semantics, as they are often considered to be basic conditions. However, for the
sake of simplicity, we will call all these properties semantics.

Dung [18] also introduced the term “extension”. For a given argumentation
framework AF and a semantics s, a subset S of the arguments is called s exten-
sion of AF if S fulfills the conditions of semantics s.

We will now illustrate the above semantics in an example.

Example 2. Consider again the argumentation framework from Example 1, illus-
trated in Fig. 1. The only stable extension in this argumentation framework is
{a, e}. Besides this, there is another preferred extension, namely {a, d, f}. There
are no more preferred extensions. The unique grounded extension is {a}, but it
is neither preferred nor stable. Besides those three extensions, there are no fur-
ther sets that are complete. The only other admissible sets are ∅, {e}, {f}, and
{a, f}. g is not part of any extension, as the self-attack always yields a conflict,
and b or c is never part of any admissible set, because argument a which attacks
them is never attacked itself.

We will now briefly mention the notions from complexity theory that we
use in this paper. We assume the reader to be familiar with the basic notions,
like the complexity classes P, NP, and coNP, as well as hardness, complete-
ness, polynomial-time many-one-reducibility, ≤p

m, and the notion of (oracle) Tur-
ing machines. The complexity class DP was introduced by Papadimitriou and
Yannakakis [29] as the class of the differences of two NP problems. DP is also
the second level of the boolean hierarchy over NP. Σp

2 = NPNP contains those
problems that are solvable by a nondeterministic oracle Turing machine with
access to an NP oracle, and was introduced, together with Πp

2 = coNPNP, by
Meyer and Stockmeyer [27,31] as the second level of the polynomial hierarchy.
It is known that P ⊆ NP ⊆ DP ⊆ Σp

2, but it is not known whether any of these
inclusion is strict. For further details, see [28].

Dunne and Wooldridge [19] give an overview over decision problems defined
for argumentation frameworks. Among others, they investigate Verification,
Credulous-Acceptance, Skeptical-Acceptance, Existence, and Non-
emptiness for several semantics. Many of those decision problems are hard to
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decide, as they are complete for NP, coNP, DP, or even Πp
2 . We will focus on

Verification (while we are going to change their notation slightly), which is
easy to decide for all semantics studied here, except for preferredness for which
it is known to be coNP-complete [16]. All easiness results follow immediately
from the work of Dung [18].

s-Verification

Given: An argumentation framework 〈A ,R〉 and a subset S ⊆ A .

Question: Is S an s extension of AF?

The boldfaced letter s is a placeholder for any of the six semantics defined
above. For better readability, we will use cf for conflict-freeness, ad for admis-
sibility, pr for preferredness, st for stability, cp for completeness, and gr for
groundedness.

3 Argument-Incomplete Argumentation Frameworks

We now turn to our model extending classical argumentation frameworks:
argument-incomplete argumentation frameworks. Cayrol et al. [12] introduced
a model of incomplete argumentation framework in which the exact attacks are
unknown. Cayrol et al. [14] discuss a model that allows for one of the following
four so-called change operations: The addition (1) or deletion (2) of one attack,
the addition of one argument together with at least one attack regarding this
argument (3), and the deletion of one argument together with all correspond-
ing attacks (4). Their goal is to find different classifications for how the set of
all extensions (of a given semantics and argumentation framework) alter after
applying one change. In contrast, we want to verify those sets of arguments
(of a given semantics and argumentation framework) that can become once or
remain always extensions for arbitrarily many changes in the argument set. After
describing our model, we will study the computational complexity of the ver-
ification problem for various semantics in argument-incomplete argumentation
frameworks.

3.1 Model

In our setting we do not know exactly which arguments will be part of the final
discussion, but we know a set of arguments that are important already, and have
a vague idea of which arguments may be important in the future. Formally, our
model is defined as follows.

Definition 1. An argument-incomplete argumentation framework is a triple
〈A ′,A ,R〉, where A′ and A with A′ ⊆ A are sets of arguments, and R ⊆ A×A
is an attack relation.

The arguments in A ′ are those arguments that definitely are already part
of the discussion. A contains, additionally to the arguments in A ′, also those
arguments that could possibly join the discussion in the future.
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Definition 2. Let IAF = 〈A ′,A ,R〉 be an argument-incomplete argumenta-
tion framework. For a set A ∗ of arguments with A ′ ⊆ A ∗ ⊆ A , define the
restriction of R to A ∗ by

R|A ∗ = {(a, b) ∈ R | a, b ∈ A ∗}.

AF ∗ = 〈A ∗,R|A ∗〉 is called a completion of IAF .

Why is it plausible to assume that the number of possible arguments is finite?
An answer to this question is that in real-world applications it is relatively safe to
assume that the number of participants that are part of an discussion is limited,
and that no individual has an infinite number of ideas to propose as arguments.
In such scenarios, the total number of arguments must be finite. Also, why
is it plausible to assume that all arguments are known in advance? Because
in real-world applications arguments that do not have enough support by the
participants are not important for the discussion. As soon as a new argument
is introduced, however, we can ask how this argument is related to the existing
arguments, and thus learn step by step new arguments and attacks once they
come to life and then maybe become significant.

We now extend the definitions for classical argumentation frameworks to
argument-incomplete ones, distinguishing between properties holding either pos-
sibly or necessarily.

Definition 3. Let IAF = 〈A ′,A ,R〉 be an argument-incomplete argumenta-
tion framework. For a property s, call a subset S ⊆ A of arguments

– possibly s in IAF if there is a completion AF ∗ = 〈A ∗,R|A ∗〉 of IAF such
that S|A ∗ = S ∩ A ∗ is s in AF ∗ and

– necessarily s in IAF if for all completions AF ∗ = 〈A ∗,R|A ∗〉 of IAF ,
S|A ∗ = S ∩ A ∗ is s in AF ∗.

We call a set S a possibly (respectively necessarily) s extension of IAF if S
is possibly (respectively necessarily) s in IAF .

Remark 1. The following concluding remarks hold for all argument-incomplete
argumentation frameworks.

– The possible and necessary semantics inherit the correlations of the proper-
ties from Dung’s model, i.e., for example, possible stability implies possible
preferredness.

– There always is a possibly preferred extension and a possibly grounded exten-
sion.

– A possibly grounded extension is not unique, but there is at most one neces-
sarily grounded extension.

– Let S be a possibly s extension of 〈A ′,A ,R〉, 〈A ∗,R|A ∗〉 a completion such
that S is an s extension of 〈A ∗,R|A ∗〉, and a ∈ A �A ∗. Then S ∪ {a} is a
possibly s extension of 〈A ′,A ,R〉 as well. We call those possibly s extensions
trivial supersets (of S).
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Example 3. Consider again the argumentation framework from Example 1 but
assume that some arguments, namely b, e, and g, are not certain yet. Then we
have the argument-incomplete argumentation framework

IAF = 〈A ′,A ,R〉 =〈{a, c, d, f}, {a, b, c, d, e, f, g},

{(a, b), (a, c), (b, d), (c, d), (e, d), (e, f), (e, g), (f, e), (g, g)}〉.

Figure 3 illustrates this argument-incomplete argumentation framework. Solid
vertices represent members of A ′, while dotted vertices stand for elements of
A �A ′. Dashed arcs symbolize the incoming and outgoing attacks of the ele-
ments A �A ′. Note that the attacks drawn as black arcs will always be in any
completion, while those attacks (x, y) drawn as dashed arcs are part of a com-
pletion if and only if x and y both are arguments in that completion.

a

b

c

d

efg

Fig. 3. The representation of the argument-incomplete argumentation framework
IAF = 〈A ′,A ,R〉 from Example 3

First, let us consider possibly s extensions of IAF . Obviously, all s exten-
sions of the original argumentation framework AF are possibly s extensions of
IAF . Hence, {a, e} is possibly stable (and also possibly preferred, possibly com-
plete, and possibly admissible). However, {a, d, f} is also possibly stable, as it is
stable in the completion 〈A ′,R|A ′〉, and there are no other possibly stable nor
possibly preferred sets, except for trivial supersets. {a} is the grounded exten-
sion of AF , and it remains to be a possibly grounded extension of IAF , but
additionally {a, d, f} is possibly grounded, as it is the unique grounded exten-
sion of 〈A ′,R|A ′〉. It is easy to see that there are no more possibly grounded
extensions, and that the only possibly complete sets are {a}, {a, e}, and {a, d, f}
(both except for trivial supersets). Besides the admissible sets of AF , there is
one more possibly admissible set of IAF (except for trivial supersets), namely
{a, d}, which is admissible in, e.g., the completion 〈A ′,R|A ′〉.

To find all necessarily s extensions of IAF , it is sufficient to check whether
the possibly s extensions mentioned above, except for trivial supersets, are s
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extensions of all completions. Hence, there is no necessarily stable extension, as
{a, e} ∩ A ′ is not stable in 〈A ′,R|A ′〉 and {a, d, f} is not stable in 〈A ,R〉,
and the same completions also prevent {a} and {a, d, f} from being necessarily
grounded. The only necessarily preferred extension is {a, d, f}, because {a, e} ∩
A ′ is not preferred in 〈A ′,R|A ′〉. {a} and {a, e} are not necessarily complete
because of the completion 〈A ′,R|A ′〉. Lastly, all possibly admissible sets except
for {a, d} are also necessarily admissible.

3.2 Possible and Necessary Verification

Using s-Verification as a starting point, we define two decision problems for
argument-incomplete argumentation frameworks.

s-Arg-Inc-Possible-Verification (s-ArgIncPV)

Given: An argument-incomplete argumentation framework IAF =
〈A ′,A ,R〉 and a set S ⊆ A .

Question: Is S a possibly s extension of IAF?

s-Arg-Inc-Necessary-Verification (s-ArgIncNV)

Given: An argument-incomplete argumentation framework IAF =
〈A ′,A ,R〉 and a set S ⊆ A .

Question: Is S a necessarily s extension of IAF?

Note that we do not make any restrictions on the choice of the set S in the
problem instance, but restrict it to the arguments that occur in the completion
when asking whether it is an extension. This captures the setting where all
elements in S ∩ A′ must be contained in our final restriction of S, whereas
this is not decided yet for the elements in S ∩ (A �A ′). Furthermore, it is
not a restriction that only elements from A′ are sure to be in our final set,
since other elements that should definitely be in the final set may be added to
our argumentation framework in advance. Hence, this is a reasonable choice in
argument-incomplete argumentation frameworks.

We will start the discussion of argument-incomplete argumentation frame-
works with an easy result for conflict-freeness.

Proposition 1. cf-ArgIncPV and cf-ArgIncNV both are in P.

Proof. First, it holds that (〈A ′,A ,R〉, S) ∈ cf-ArgIncPV if and only if
S|A ′ is conflict-free in 〈A ′,R|A ′〉, because any conflict in 〈A ′,R|A ′〉 can also
be found in any other completion. Second, it holds that (〈A ′,A ,R〉, S) ∈
cf-ArgIncNV if and only if S is conflict-free in 〈A ,R〉, because if there is
no conflict in 〈A ,R〉, there is no other completion that can possibly have con-
flicts. �

Now, we will turn to the other semantics. By definition of the decision prob-
lems, it is obvious that for s ∈ {ad, st, cp, gr}, s-ArgIncPV is in NP and s-
ArgIncNV is in coNP, as those four properties are easy to check. However, no
polynomial-time algorithm is known to check for preferredness.
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A trivial upper bound for PR-ArgIncPV can be obtained by the following—
perhaps somewhat naive—approach: Check all supersets of the given set S as
to whether they are admissible, and output “yes” if and only if the answer is
always “no.” Each of these checks is possible in polynomial time, and hence PR-
ArgIncPV is in Σp

2 . However, the problem PR-AttIncNV also is in coNP. As
in the corresponding problem PR-ArgIncNV for attack-incomplete argumen-
tation frameworks, the complement of PR-ArgIncNV is in NP. It is possible to
check in polynomial time whether, given a completion 〈A ∗,R|A ∗〉 of IAF and
a set S∗ ⊆ A ∗ : S|A∗ ⊂ S∗, either S∗ is admissible or S is not admissible. All
these trivial upper bounds are summarized in the following lemma.

Lemma 1. 1. pr-ArgIncPV is in Σp
2 .

2. For s ∈ { ad, st, cp, gr}, s-ArgIncPV is in NP.
3. For s ∈ { ad, st, cp, gr, pr}, s-ArgIncNV is in coNP.

We will now turn to showing lower bounds of these problems. We start with
a straightforward reduction from PR-Verification to show coNP-hardness of
the problems pr-ArgIncPV and pr-ArgIncNV.

Proposition 2. pr-ArgIncPV is coNP-hard and the problem pr-ArgIncNV
is coNP-complete.

Proof. We show coNP-hardness by a reduction from the coNP-complete
problem pr-Verification. Let (〈A ,R〉, S) be a given instance of pr-
Verification, and construct from it (〈A ,A ,R〉, S), considered as an instance
of both pr-ArgIncPV and pr-ArgIncNV. In the argument-incomplete argu-
mentation framework, there are no arguments that can possibly join the discus-
sion. Hence, the only completion in both cases is the argumentation framework
〈A ,R〉. Now, it is easy to see that

(〈A ,R〉, S) ∈ pr-Verification

⇐⇒ (〈A ,A ,R〉, S) ∈ pr-ArgIncPV

⇐⇒ (〈A ,A ,R〉, S) ∈ pr-ArgIncNV.

This completes the proof. �
Theorem 1. ad-ArgIncPV is NP-complete.

Proof. As already mentioned, we only need to show NP-hardness. To this end,
we reduce from the following NP-complete problem (see the book by Garey and
Johnson [22]):

Exact-Cover-By-3-Sets (X3C)

Given: A set B = {b1, . . . , b3k} and a family S of subsets of B,
with ‖Sj‖ = 3 for all Sj ∈ S .

Question: Does there exist a subfamily S ′ ⊆ S of size k that exactly
covers B, i.e.,

⋃
Sj∈S′ Sj = B?
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Given an instance (B,S ) = ({b1, . . . , b3k}, {S1, . . . , Sm}) of X3C, we con-
struct an instance (〈A ′,A ,R〉, S) of ad-ArgIncPV as follows:2

A ′ = {x} ∪ B,

A = {x} ∪ B ∪ S ,

R = {(bi, x) | bi ∈ B} ∪
{(Sj , bj1), (Sj , bj2), (Sj , bj3) | Sj = {bj1 , bj2 , bj3} ∈ S } ∪
{(Si, Sj), (Sj , Si) | Si, Sj ∈ S and Si ∩ Sj �= ∅},

S = {x} ∪ S .

In particular, A contains one argument bi for every element bi ∈ B, 1 ≤
i ≤ 3k, one argument Sj for every set Sj in S , 1 ≤ j ≤ m, and one additional
argument x. All arguments corresponding to elements of B attack x, and each
argument Sj attacks the three arguments corresponding to those elements of B
that belong to Sj in S . Additionally, there are attacks between Si and Sj if the
corresponding sets in S are not disjoint. Finally, A ′ and S act as opponents: x
belongs to both, but the arguments corresponding to elements in B belong to A ′

only, whereas the arguments corresponding to the sets in S belong to S only.
See Fig. 4 for two examples of this construction: Fig. 4a shows a yes-instance
of ad-ArgIncPV created from a yes-instance of X3C, and Fig. 4b shows a
no-instance of ad-ArgIncPV created from a no-instance of X3C.

We claim that (B,S ) ∈ X3C if and only if (〈A ′,A ,R〉, S) ∈
ad-ArgIncPV.

(=⇒) Clearly, if (B,S ) is a yes-instance of X3C, we can add exactly those
arguments Si to A ′ that correspond to an exact cover of B. Let A ∗ be the
argument set of this completion. In A ∗, every bi, 1 ≤ i ≤ 3k, is attacked by
exactly one argument Sj , 1 ≤ j ≤ m, as of the exact cover. Hence, x ∈ S|A ∗

is defended against every attack. Additionally, the arguments Sj in A ∗ have
no attacks between them, because the corresponding sets are pairwise disjoint,
which implies that no new attacks on the elements of S|A ∗ are introduced. But
this means that S|A ∗ is admissible in 〈A ∗,R|A ∗〉.

(⇐=) If there is a completion with the argument set A ∗, this completion
must defend x against every bi, 1 ≤ i ≤ 3k. This means that there must exist a
cover of the elements of B by the sets of S . But because the arguments Sj attack
each other whenever they are not disjoint, this cover must be exact; otherwise,
the set S|A ∗ would not be conflict-free. Hence, there exists an exact cover of B. �

We now try to tighten the bounds of s-ArgIncPV for each s ∈ {st, cp, gr,
pr}. The first step is proving NP-hardness in all four cases. By Lemma 1, this
gives NP-completeness for s ∈ {st, cp, gr}. Later on, we will use this results
for s = pr, as well as the result for coNP-hardness, to show DP-hardness.

Theorem 2. For s∈ {st, cp, gr}, s-ArgIncPV is NP-complete, and pr-
ArgIncPV is NP-hard.
2 We slightly abuse notation and use the same identifiers for both instances; it will

always be clear from the context, though, which instance an element belongs to.
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x

b1 b2 b3 b4 b5 b6

S1 S2 S3

(a)S = {{b1,b2,b3},{b3,b5,b6},{b4,b5,b6}}.
(B,S ) is a yes-instance of X3C that yields a
yes-instance of AD-ARGINCPV.

x

b1 b2 b3 b4 b5 b6

S1 S2 S3

(b)S = {{b1,b2,b3},{b3,b5,b6},{b2,b4,b6}}.
(B,S ) is a no-instance of X3C that yields a
no-instance of AD-ARGINCPV.

Fig. 4. Two examples of the reduction from X3C to ad-ArgIncPV. Both X3C
instances have B = {b1, . . . , b6}. All the arguments belong to A , A ′ contains the
solid arguments only, and the thick arguments are part of S.

Proof. Again, membership of the three former problems in NP is clear. It
remains to show hardness for all four problems. We do this by showing that
the reduction used in Theorem 1 also works for those four problems. To this
end, we will prove that

(〈A ′,A ,R〉, S) ∈ ad-ArgIncPV

⇐⇒ (〈A ′,A ,R〉, S) ∈ st-ArgIncPV

⇐⇒ (〈A ′,A ,R〉, S) ∈ pr-ArgIncPV

⇐⇒ (〈A ′,A ,R〉, S) ∈ gr-ArgIncPV

⇐⇒ (〈A ′,A ,R〉, S) ∈ cp-ArgIncPV

holds for the instance (〈A ′,A ,R〉, S) constructed in the proof of Theorem 1.
((〈A ′,A ,R〉, S) ∈ ad-ArgIncPV implies (〈A ′,A ,R〉, S) ∈

st-ArgIncPV): If S|A∗ is admissible for a completion 〈A ∗,R|A ∗〉, it in partic-
ular is conflict-free. We know from the reduction that 〈A ∗,R|A ∗〉 only contains
arguments Sj that do not attack each other, and all these arguments belong to
S|A∗ . Hence, the only arguments outside of S|A∗ are the bi’s. But all of them
are attacked, as explained in the proof of Theorem 1. Therefore, S|A∗ is a stable
extension of 〈A ∗,R|A ∗〉.

((〈A ′,A ,R〉, S) ∈ pr-ArgIncPV implies (〈A ′,A ,R〉, S) ∈
gr-ArgIncPV): If S|A∗ is preferred for a completion 〈A ∗,R|A ∗〉, it is admis-
sible, and thus the only arguments that are not attacked by any other argument
are those Sj that correspond to an exact cover. This means for the character-
istic function of this completion 〈A ∗,R|A ∗〉 that the output of the first step is
the set that contains exactly those Sj . In the second step, we add argument x,
because all those Sj defend x against all attacks from the arguments bi. No new
arguments are added in step three.
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Therefore, this set is the grounded extension of the argumentation framework
〈A ∗,R|A ∗〉. But this set is exactly the set S|A∗ . Hence, S|A∗ is the grounded
extension of 〈A ∗,R|A ∗〉.

It is easy to see the three remaining implications needed to prove these five
statements equivalent: Every stable set is preferred, every grounded set is com-
plete, and every complete set is admissible. This completes the proof. �

We now strengthen the NP-hardness lower bound for pr-ArgIncPV given
in Theorem 2 to DP-hardness. The following lemma due to Wagner [32] gives a
sufficient condition for proving hardness for DP.

Lemma 2 (Wagner [32]). Let A be some NP-hard problem, and let B be any
set. If there exists a polynomial-time computable function f such that, for any
two instances z1 and z2 of A for which z2 ∈ A implies z1 ∈ A, we have

(z1 ∈ A and z2 /∈ A) ⇐⇒ f(z1, z2) ∈ B,

then B is DP-hard.

Theorem 3. pr-ArgIncPV is DP-hard.

Proof. We will use Wagner’s lemma to show DP-hardness: Let pr-ArgIncPV
be the set B from Wagner’s lemma, and let X3C be the NP-complete problem
A in that lemma. Let z1 and z2 be two instances of X3C such that z2 ∈ X3C
implies z1 ∈ X3C. We construct an instance (〈A ′,A ,R〉, S) of pr-ArgIncPV
as follows:

– Construct an instance (〈A ′
1 ,A1,R1〉, S1) from the X3C instance z1 exactly

as in the proof of Theorem 1.
– The construction of an instance (〈A ′

2 ,A2,R2〉, S2) from the X3C instance
z2, however, is obtained as the composition of two reductions: Since pr-
Verification is coNP-complete and X3C is NP-complete, there exists a
reduction f such that z2 /∈ X3C if and only if f(z2) ∈ pr-Verification.
Now, letting g be the reduction from Proposition 2, we have z2 /∈ X3C if and
only if g(f(z2)) ∈ pr-ArgIncPV.

– Given two instances of pr-ArgIncPV, (〈A ′
1 ,A1,R1〉, S1) and

(〈A ′
2 ,A2,R2〉, S2), let (〈A ′,A ,R〉, S) = (〈A ′

1∪A ′
2 ,A1∪A2,R1∪R2〉, S1∪S2)

if A1∩A2 = ∅ (otherwise, simply rename the elements in one instance). Hence,
this new instance consists of two disconnected argument-incomplete argumen-
tation frameworks.

This completes the reduction. We claim that (z1 ∈ X3C and z2 /∈ X3C) if
and only if (〈A ′,A ,R〉, S) ∈ pr-ArgIncPV.

(=⇒) If z1 ∈ X3C and z2 /∈ X3C, then (〈A ′
1 ,A1,R1〉, S1) and

(〈A ′
2 ,A2,R2〉, S2) both are yes-instances of pr-ArgIncPV. Thus we must have

a completion for the first and a completion for the second argument-incomplete
argumentation framework such that S1 restricted to the arguments in this first
completion and S2 restricted to the arguments in the second completion are pre-
ferred in their respective completion. But then, using the same completions for
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each part of 〈A ′,A ,R〉, we have that S restricted to those arguments must be
preferred in this argumentation framework. This is true because no new attacks
are introduced in 〈A ′,A ,R〉 and, therefore, neither are any new conflicts added
nor do the elements of S have to be defended by any other arguments than
before. Hence, (〈A ′,A ,R〉, S) is a yes-instance of pr-ArgIncPV.

(⇐=) Conversely, assume that (〈A ′,A ,R〉, S) is a yes-instance of pr-
ArgIncPV, and assume further that (〈A ′

i ,Ai,Ri〉, Si) is a no-instance of pr-
ArgIncPV for some i ∈ {1, 2}. Then there is no completion 〈A ∗

i ,Ri|A ∗
i
〉 of

〈A ′
i ,Ai,Ri〉 such that Si|A ∗

i
is preferred in it. That means that for every com-

pletion 〈A ∗
i ,Ri|A ∗

i
〉, Si|A ∗

i
either is not conflict-free, or is not admissible, or that

there exists a superset of Si|A ∗
i

in 〈A ∗
i ,Ri|A ∗

i
〉 that is admissible. We consider

these cases separately:

1. If Si|A ∗
i

is not conflict-free in 〈A ∗
i ,Ri|A ∗

i
〉, this conflict also exists in S|A ∗

for any completion 〈A ∗,R|A ∗〉 of 〈A ′,A ,R〉 with A ∗ ∩ Ai = A ∗
i .

2. If Si|A ∗
i

is not admissible in 〈A ∗
i ,Ri|A ∗

i
〉, there must be an undefended

attack. However, by the same argument as above, this attack is still unde-
fended in any completion 〈A ∗,R|A ∗〉 of 〈A ′,A ,R〉 with A ∗ ∩ Ai = A ∗

i .
3. If there is a superset of Si|A ∗

i
preventing it from being preferred in

〈A ∗
i ,Ri|A ∗

i
〉, this superset translates into a superset of S|A ∗ for any com-

pletion 〈A ∗,R|A ∗〉 of 〈A ′,A ,R〉 with A ∗ ∩Ai = A ∗
i , thus also preventing

S|A ∗ from being preferred in 〈A ∗,R|A ∗〉.
Hence, none of these cases can happen, because (〈A ′,A ,R〉, S) is a yes-

instance of pr-ArgIncPV. But this means that Si|A ∗
i

is a preferred extension
of a completion 〈A ∗

i ,Ri|A ∗
i
〉 of 〈A ′

i ,Ai,Ri〉, a contradiction. �

4 Conclusions and Open Questions

We have analyzed a setting for argumentation frameworks in which only a sub-
set of all arguments is currently known to be part of the discussion. To this
end, we have introduced a formal model for argument-incomplete argumentation
frameworks including adaptions of the criteria of conflict-freeness, admissibility,
preferredness, stability, completeness, and groundedness. These adaptions were
defined by means of the notions of possibility and necessity. On this basis, we
adapted the decision problem s-Verification and defined two variants, namely
s-ArgIncPV and s-sArgIncNV, that fit our model.

Table 1 summarizes already known results for the s-Verification prob-
lem due to Dung [18], Dunne and Wooldridge [19], and Dimopoulos and
Torres [16], as well as our results. In contrast to the results of s-Verification,
s-ArgIncPV is hard to decide in all cases, except for the trivial property
conflict-freeness. Besides the straightforward results for conflict-freeness and pre-
ferredness, the exact complexity of s-ArgIncNV remains open, as well as that
of pr-ArgIncPV.

As a future task, we propose to investigate other decision problems, e.g.,
Credulous-Acceptance, Skeptical-Acceptance, Existence, and Non-
emptiness, adapt their notion to fit our model, and analyze their complexity.
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Table 1. Overview of complexity results both in the standard model (s-Verification)
and in the argument-incomplete model of this paper (s-ArgIncPV and s-ArgIncNV)

s Verification ArgIncPV ArgIncNV

cf in P in P (Lemma 1) in P (Lemma 1)

ad in P NP-complete (Theorem 1) in coNP (Lemma 1)

st in P NP-complete (Theorem 2) in coNP (Lemma 1)

cp in P NP-complete (Theorem 2) in coNP (Lemma 1)

gr in P NP-complete (Theorem 2) in coNP (Lemma 1)

pr coNP-complete DP-hard (Theorem 3), in Σp
2

(Lemma 1)
coNP-complete

(Lemma 2)

On the other hand, it would be interesting to generalize other semantics (e.g.,
the ideal, semi-stable, or prudent semantics [19]) in the context of argument-in-
complete argumentation frameworks.
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Abstract. This work studies the computational complexity of Optimal
Lobbying under Threshold Aggregation. Optimal Lobbying is the prob-
lem a lobbyist or a campaign manager faces in a voting scenario of a
multi-issue referendum when trying to influence the result. The Lobby is
faced with a profile that specifies for each voter and each issue whether
the voter approves or rejects the issue, and seeks to find the smallest
set of voters it can influence to change their vote, for a desired outcome
to be obtained. This problem also describes problems arising in other
scenarios of aggregation, such as principal-agents incentives scheme in a
complex combinatorial problem, and bribery in Truth-Functional Judge-
ment Aggregation. We study cases when the issues are aggregated by a
threshold aggregator, that is, an anonymous monotone function, and the
desired outcomes set is upward-closed. We analyze this problem with
regard to two parameters: the minimal number of supporters needed
to pass an issue, and the size of the maximal minterm of the desired
set. For these parameters we separate tractable cases from untractable
cases and in that generalize the NP-complete result of Christian
et al. [8]. We show that for the extreme values of the parameters, the
problem is solvable in polynomial time, and provide algorithms. On the
other hand, we prove the problem is not solvable in polynomial time for
the non-extremal values, which are common values for the parameters.

Keywords: Optimal Lobbying · Threshold function · Time complexity

1 Introduction

This paper studies the problem of Optimal Lobbying in Multi-Issue Elections.
In multi-issue elections n voters are voting on m issues; Each voter i declares
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his Boolean position on each issue j: xj
i ; And the outcome on each issue j, oj ,

is decided by aggregating the votes on the issue using some aggregation function
ϕ: oj = ϕ(xj

1, . . . , x
j
n). The Optimal Lobbying problem formalizes the challenge

that faces an outside entity (the Lobby) that desires to affect the outcome of the
vote and can do so by changing the votes of some of the voters, but at a cost.
Formally, given the profile (xj

i ) stating for each voter his vote for each of the
issues, the Lobby’s goal is to find the minimal set K of voters such that changing
the votes (x1

i · · · xm
i ) of voters i ∈ K results in some desired outcome, where the

desired outcomes set is captured by its indicator function ψ(o1, . . . , om).
This model captures many voting scenarios, e.g., voting on a series of clauses

of a bill in the parliament or elections using one ballot for several positions
and decisions. The budget constraint on the number of voters (|K|) captures
that the Lobby may need to compensate voters for the change or the need to
invest time and money in personalized advertising. As we discuss in Sect. 2.1,
Optimal Lobbying also models other problems in scenarios of aggregating
complex opinions.

Clearly the difficulty of lobbying depends on both the aggregation function ϕ
and on the desired outcomes function ψ. A natural example is where aggregation
is done by simple majority vote and the desired outcome is defined by unanimity
(i.e., the Lobby wants to achieve a majority on all issues). This scenario was
studied by Christian et al. [8] who showed that the problem is NP-hard. This
was generalized by Bredereck et al. [6] who showed this problem is NP-hard
even under some (extreme) input constraints.1 On the other hand, it is easy to
verify that for some aggregation rules and desired outcomes sets the problem is
easy. For example, if we use unanimity for aggregation and the desired outcomes
set is also defined by unanimity, then it is easy to find (by a greedy algorithm)
the minimal set of voters to influence. The problem is also easy when issues are
aggregated using majority and the Lobby wants at least one issue to pass (i.e.,
the Lobby wants to achieve a majority on any issue). In many real-life situations
one finds non-majority issue-aggregation functions (e.g., when approval of two-
thirds of the voters is needed to rule against the status quo) or desired outcomes
sets consisting of more than one outcome (e.g., when there is a trade-off in the
eyes of the Lobby between several issues or issues combinations), hence there is
a place to extend the study of Optimal Lobbying to these cases as well.

In this paper, we mainly study the computational complexity of Optimal
Lobbying for the following natural families of aggregation functions and of
desired outcomes sets: The aggregation function is an anonymous and monotone
function, that is, an issue passes if at least t voters approve it, for a predefined
threshold t;2 And the desired outcomes set is an upward-closed set, i.e., if x is
a desired outcome, and all the issues that pass in x, also pass in y, then y is
a desired outcome too. In the full version we show a more general analysis for
1 When each voter approves at most three issues and the budget is

(⌈
n+1
2

⌉− 1
)
, one

less than the required majority threshold.
2 In the Judgement Aggregation literature, such voting method is also called Uniform
Quota Rule [10].
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cases in which the assumptions do not hold. We present a systematic study of
which combinations of an aggregation method and a desired outcomes set allow
efficient lobbying, and which give rise to a computationally hard problem. This
study generalizes all previously known computational complexity results in this
setting. It turns out that the complexity of the lobbying problem hinges mainly
on two parameters:

1. t - The Threshold of Aggregation – the minimal number of votes that is needed
to pass an issue.

2. z - The Maximal minterm size of the desired outcomes set – that is, the
maximal size of a minimal inclusion-wise desired issues set. Equivalently, the
minterms are the terms in the minimal DNF form of the function ψ.3

We essentially show that the problem is tractable if and only if either of these two
parameters is bounded by a constant. When both of them are at least polynomial
in the input size (i.e., (mn)c for some 0 < c < 1) then the problem becomes
NP-hard. This is true for both the decision and search variants of the Optimal
Lobbying problem.

We show two dichotomy theorems. One for the unanimity case in which the
issues are aggregated using the unanimity function (that is, an issue passes if
and only if all voters support it), and the second for the non-unanimity case.
It is especially interesting to note the sharp threshold phenomenon between the
unanimity case and the almost-unanimity. For instance, if the Lobby allows at
most one issue to fail, if the issues are aggregated using unanimity we show the
problem to be solvable in polynomial time, but if the issues are aggregated using
almost-unanimity (even in the extreme case in which at most one voter is allowed
to vote against without causing the issue to be rejected) we show the problem
to be NP-complete.

Throughout this paper we use asymptotic notions for boundaries on the
parameters t and z. E.g., we say they are bounded when there is a constant
independent of n and m bounding them from above, super-constant when there
is no such constant, and we say they are polynomial when there is a polynomial
in n and m bounding them (either from above or below). In cases where the
notion is not clear enough, we add a formal definition of the bounds.

Theorem 1 (For the full formal statement see Theorems 5 and 11). Let
the aggregation function be unanimity and the desired outcomes be the outcomes
in which at least z issues pass.

– If z or (m − z) is bounded, Optimal Lobbying can be solved in polynomial
time.

– If both z and (m − z) are polynomial (i.e., z ∈ [mε, m − mε] for some ε > 0),
then Optimal Lobbying is NP-complete.

3 For example, the minterms of the set represented by ψ =
(
x1 ∧ x2

)∨ (x2 ∧ x3 ∧ x4
)

are 1100 and 0111, and the minterms of the set of majorities for 2k − 1 issues are all
the issues sets of size k.
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– There exists a constant α� > 1 s.t. if both z and (m − z) are poly-logarithmic
of degree α� (z ∈

[
(log m)α�

, m − (log m) α�
]
), then Optimal Lobbying is

not in P, assuming ETH.4

Theorem 2 (For the full formal statement see Theorems 3, 4 and 6).
Let the aggregation function be the threshold function with threshold t < n and
let z be the maximal size of a minimal desired outcome (inclusion-wise).

– If t or z is bounded, Optimal Lobbying can be solved in polynomial time.
– If both t and z are polynomial (i.e., t � nε and z � mε for some ε > 0), then

Optimal Lobbying is NP-complete.
– There exists a constant α� > 1 s.t. if both t and z are poly-logarithmic of

degree α� (i.e., t � (log n)α�

and z � (log m)α�

), then Optimal Lobbying
is not in P, assuming ETH (see Footnote 4).

2 The Optimal Lobbying Problem

The problem Optimal Lobbying models a society of n voters – [n] =
{1, 2, . . . , n} – that decides on m Boolean issues using a voting method, and
a lobbyist that desires to influence the decision to be in a set desired by it. It
consists of a profile, a voting method, and a desired outcomes set.

Profile: The profile defines the vote of each of the voters on each of the issues.
We model it by a Boolean matrix X ∈ {0, 1}n×m, where n is the number of
voters and m is the number of issues. That is, an entry Xj

i denotes the vote
of the ith voter for the jth issue and we consider 1 as an acceptance vote and
0 as a rejection vote. Throughout this paper, we use superscript notation when
indexing issues and subscript notation when indexing voters.

Voting Method: The voting method used to aggregate the votes for a spe-
cific issue into an aggregated accept/reject opinion. It is defined by a func-
tion ϕ : {0, 1}n → {0, 1} (applied on each of the issues – the columns of the
matrix X).

Desired Outcomes: We model the Lobby as having a dichotomous preferences,
that is, each outcome is either desired or undesired. We model the preference
using a Boolean function ψ : {0, 1}m → {0, 1} returning for each outcome (a
vector of length m), whether it is desired. We use propositional formulas over
x1, . . . , xm to describe ψ, e.g., the desired outcomes set defined by ψ = x1 ∨(
x2 ∧ x4

)
is all the outcomes in which either the first issue passes or both the

second and forth issues pass.
Formally, the problem the Lobby is facing, while knowing the voting method

ϕ and the desired outcomes set ψ, is modeled by the following optimization
problem:
4 Exponential Time Hypothesis (ETH) [21]: 3-SAT cannot be solved in time less than

2δn for some δ > 0.
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Problem (OL(ϕ,ψ) – Optimal Lobbying with voting method ϕ and
desired outcomes set ψ).

INSTANCE: A voting profile X ∈ {0, 1}n×m.
TASK: Find a coalition of voters C of minimal size and a vot-

ing profile Y ∈ {0, 1}n×m
that differs from X only for

the rows (voters) in C s.t. ψ
(
ϕ

(
Y 1

)
, . . . , ϕ (Y m)

)
= 1 (Y j

being the jth column of Y ).

We define the corresponding decision problem to be:

Problem (OLD(ϕ,ψ) – Optimal Lobbying Decision Problem).
INSTANCE: A voting profile X ∈ {0, 1}n×m.

A budget k � n.
QUESTION: Can the Lobby change the votes of at most k

voters to get a voting profile Y ∈ {0, 1}n×m
s.t.

ψ
(
ϕ

(
Y 1

)
, . . . , ϕ (Y m)

)
= 1?

ϕ and ψ are not part of the input but are parameters of the problem, assuming
oracle access to them. This way we circumvent the question of representation
compactness of these parameters. For instance, in the characterization theorems
and in the proofs, we refer to the DNF representation of ψ and in particular to
the maximal minterm in it, while not assuming that ψ is given in DNF form,
that this form is compact, or that it is easy to compute the maximal minterm.
The common cases of Optimal Lobbying usually consists of functions that are
polynomially computable and representable, so results of similar flavor to the
ones we show are generated naturally from this paper. In the full version we
discuss the reasons we think this is the right way to model and analyze the
problem.

In this paper, we study the computational complexity of OLD(ϕ,ψ) when
ψ is an upward-closed desired outcomes set and ϕ is an anonymous monotone
function. A family of sets is upward-closed if for any two sets of issues A ⊆ B,
if A is in the family then so is B. Note that upward-closedness of the desired
outcomes set is equivalent to monotonicity of its indicator function. We note that
an anonymous monotone function ϕ can be equivalently defined by the threshold
t defined by: ϕ returns 1 if and only if at least t out of the n voters approved
the issue.5 Two special cases are the unanimity functions, Unann, which are
the threshold aggregation functions with threshold that is equal to the number
of voters (t = n), and the majority functions, Majn, which are the threshold
aggregation functions with threshold that is equal to a majority

(
t =

⌈
n
2

⌉)
.

5 As a referee commented, t might also be a subjective threshold of the Lobby and
not the objective threshold of the voting method. E.g., in a scenario in which there
are several competing lobbyists, the Lobby will want to put together a non-minimal
coalition of voters so that it is tougher for the competing lobbyist to break this
coalition. In such case, t would be the subjective threshold that includes also this
safety margins.
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2.1 Motivation

We find the motivation for analyzing OLD(ϕ,ψ) in several fields.

Optimal Lobbying: As shown in the introduction, this is a generalization of
the Optimal Lobbying problem defined by Christian et al. [8]. This problem
models a variety of situations in which the opinions of several voters are aggre-
gated and we wish to analyze the complexity of the problem a lobbyist or a
campaign manager faces. For the ease of the story, we have in mind a human
Lobby, but it is reasonable to imagine in a complex voting procedure that the
lobbying task is delegated to a computerized agent needing to find the best way
to get a desired result while the budget is a cost of negotiating with the different
agents/voters.

Incentivizing in a Complex Combinatorial Project: The Optimal Lob-
bying problem can also be interpreted as the problem of a principal to incentivize
the minimal number of workers in a complex project. A principal is interested
in the success of a meta-project that is composed of m independent projects.
The success of each of the projects depends on the effort exerted by a group
of workers; i.e., there is a known technology function ϕ that, given the set of
workers who exerted effort, returns whether the project succeeds. In addition,
there is a production function ψ that, given the projects that succeeded, returns
whether the meta-project succeeds.

For each of the workers, the principal knows in which projects he will exert
effort “naturally” (for example, the projects that are close to him, are easy for
him, or in which his effort is monitored). The principal can choose to incentivize
a worker to exert effort (in some or all projects) in a costly way (e.g., offer a
monetary payment to the worker or use a device to monitor his effort). Therefore,
the principal faces a trade-off between the success of the meta-project and the
cost of incentivizing the workers.

Finding the minimal set of workers that will cause the meta-project to suc-
ceed by exerting effort is equivalent to OL(ϕ,ψ). The problem of finding an
incentives scheme in simple projects was presented and studied by (among oth-
ers) Holmstrom [20] and Babaioff et al. [1] so this work is a generalization of
these works. In this day and age, when huge complex projects can be run on the
network in a distributed manner, e.g., on Mechanical Turk, the coordination is
done by an agent that seeks to find the best incentivization scheme in order to
maximize the probability of success.

Bribery: Bribery problems in Judgement Aggregation framework deal with the
problem of finding the best group of voters whom one should cause to change
their vote towards a preferred outcome, given an aggregation method and a
restriction on the votes, e.g., preference aggregation.6 The time complexity of
bribery has been studied extensively in the framework of voting (e.g., [11,13,14]),
which is a variant of preference aggregation. Optimal Lobbying can be defined
6 For introduction to the field of Judgement Aggregation, one can read [22–24].
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as Bribery for Truth-Functional Agendas7 [23] where the preference of the briber
is on one of the conclusions issues. Optimal Lobbying and Preference aggregation
are the only two agenda families for which the bribery problem was defined
(Baumeister et al. [5] define a problem of bribery for judgement aggregation,
but in their definition the agenda is part of the input and they don’t show
which agendas are hard to bribe). We see Optimal Lobbying as a step toward
studying bribery in the more general framework of Judgement Aggregation.

Computational Complexity Theory: The definition of Optimal Lobby-
ing seems to be a minor tweak of classic NP-complete problems like Hitting
Set (Problem 3), Set Cover [18, Problem SP5], and Set Multi-Cover [27,
p. 112], and vice versa. Yet, we did not find an embedding between Optimal

Lobbying and neither of them (the complexity of OLD
(
Majn,

∧m
j=1 xj

)
is not

derived trivially, as far as we found, from the complexity of these problems). We
think that the tweak of majority constraints (the constraints being to cover a
majority of the items), albeit it looks small, changes the problem dramatically.
To the best of our knowledge, the literature of computational complexity did
not deal with such majoritized versions of the classic problems. Hence, we think
that these results might be of independent interest, and that such majoritized
variants of classic problems should be explored further, studying the impact of
this change on the complexity. We hope it will add a new trait of interesting
problems and contribute to the study of complexity theory.

Why Analyze Computational Complexity of Social Choice Problems?
There is a long strand of works analyzing the computational hardness of problems
in Social Choice, specifically of possible attacks (manipulation, bribery, control,
etc.), and this work joins this strand. Yet, we thought there is place to detail the
value we find in such works, both as a practical barrier for a possible attacker
(the Lobby in our case) and as results showing what cannot be proved (barrier
to the theoretician).

The literature on computation hardness as a barrier for manipulation
in elections started in the late 80s and early 90s by Bartholdi, Tovey and
Trick [3,4] and Bartholdi and Orlin [2]. They defined the property of a voting
rule being computationally resistant as the NP -hardness of the problem a manip-
ulator is facing. The intuition behind this definition is that a manipulator, when
faced with this NP -hard problem, will prefer not to manipulate but to submit
his true vote. This line of thought was continued for other forms of attacks (e.g.,
bribery and group manipulation) and voting scenarios (e.g., multi-winner elec-
tions); For a survey on these works, see [15,16]. This intuition is also supported
by experiments like the ones done by Harrison et al. [19]. They showed that, in

7 In a truth-functional agenda, in addition to the unconstrained issues (the premises),
there are conclusion issues. Each conclusion j is characterized by a Boolean function
αj over the premises and a vote is legitimate if the vote on a conclusion issue is
consistent with applying the function αj on the vote on the premise issues. I.e.,
{x ∈ {0, 1}m | xj = αj(premises) for every conclusion issue j}.
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an actual survey, participants might give up strategic voting and answer survey
questions truthfully while the questions are not incentive compatible, due to
computational complexity to figure out the optimal strategy. In that they par-
tially answer the common critique on this approach that it relies on NP -hardness
as a measure of computational difficulty while it is a worst-case and asymptotic
notion.

From the researchers or designers point of view, we would like to have
a “nice” characterization of the profiles and of the desired outcomes sets that
are vulnerable to bribery. While there is no clear formal definition of “nice”
characterizations or of “useful” ones, it seems that a necessary condition for
such a characterization should be that it can be transformed to a polynomial (or
an almost polynomial) algorithm. Indeed, most of the characterizations in the
literature satisfy this property. In that sense, proving that there is no polynomial
(or sub exponential) algorithm for the bribery problem shows that there is no
hope to find a nice characterization as well.

3 Results

We analyze the computational complexity of OLD(ϕ,ψ) for a threshold function
ϕ and a monotone function ψ. We find that the two parameters that character-
ize (nearly-fully) the complexity of the problem are t (the threshold of ϕ) and z
(the size of the maximal minterm of ψ). For all the cases in which we prove the
decision problem is solvable in polynomial time, we provide also direct polyno-
mial algorithms for the search problem as well, showing no discrepancy between
the two.

For the non-unanimity case t < n, we characterize the complexity of the
problem as a function of t and z. In this case, the problem is tractable if either
the threshold of the issue-aggregation function is bounded by a constant (which
does not grow with the input size), or if the size of all minterms of the desired
outcomes set are bounded by a constant. On the other hand, we show that
when these parameters are polynomially large, the problem is NP-complete, and
under mild computation assumptions it is not tractable even for poly-logarithmic
values, and by that we get as specific cases the results shown by Christian et
al. [8] and Bredereck et al. [7, (Partial Lobbying)]. There remains a small gap
between the two ranges we deal with, when the values are super-constant (i.e.,
not bounded from above by a constant) or poly-logarithmic with a small degree,
and in that sense this is only an almost-full characterization.

On the other hand, for the cases involving issue-aggregation using the una-
nimity function (t = n), we show that the complexity cannot be character-
ized solely by the size of the maximal minterm. We show that the problem is
tractable when the desired outcomes set is simple (can be described using a
polynomial number of minterms). While we conjecture the number of minterms
characterize the intractability results as well, we characterize the complexity of
OLD(Unan, ψ) only for desired outcomes sets defined by a threshold, that is, the
Lobby is indifferent between the issues but has a quota of desired issues to pass.
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In this case we show that, unlike the non-unanimity case, the behaviour is sym-
metric in the sense that the complexity is characterized by z′ = min (z,m − z) -
the minimum between the number of issues needed to pass in order to guarantee
success of the Lobby, and the number of issues needed to fail in order to guaran-
tee failure of the Lobby. Similar to the non-unanimity case, when this parameter
z′ is bounded by a constant, the problem is tractable, and when it is super-
constant, we show that the problem is intractable. Specifically, we show that
when it is polynomially large, the problem is NP-complete, and under mild com-
putation assumptions it is not tractable even for poly-logarithmic values. In this
case too, the intermediate small range between constant and poly-logarithmic
remains open.

Tractability Results

When the parameters are very small or large, we find polynomial algorithms to
find the optimization problem. Due to space constraints we omit the algorithms
and only describe the main idea behind them. The full description can be found
in the full version of the paper.

The first algorithm is a simple brute-force enumeration of all “cheap” coali-
tions and when the threshold is small enough, we get a polynomial algorithm.

Theorem 3. OL (ϕ,ψ) can be solved in time O (m · tnt). In particular, when the
threshold t is bounded by a constant not dependent on m and n, then OL (ϕ,ψ)
can be solved in polynomial time.

Our second algorithm uses the anonymity of threshold functions, and solves
the problem by iterating over all “representative coalitions.”8

Theorem 4. If ψ can be written as the disjunction of r minterms, each of which
is a conjunction of at most z variables, then OL (ϕ,ψ) can be solved in time
O

(
r · n2z)

. In particular, when all minterms of ψ are bounded by a constant not
dependent on m and n, then OL (ϕ,ψ) can be solved in polynomial time.

The third algorithm solves the case in which the issue-aggregation function
ϕ is the unanimity function (t = n). In utilizes the fact that the only way for
the Lobby to get a desired result is to choose a minterm ∨j∈Mxj and convince
all the voters that reject an issue in M to change their vote.

Theorem 5. If ψ can be written as the disjunction of r minterms, each of which
is a conjunction of at most z variables, then OL (Unan, ψ) can be solved in time
O (r · zn). In particular, when ψ can be written as the disjunction of poly (m)
minterms, then OL (Unan, ψ) can be solved in polynomial time.

Intractability Results

We prove separately and using different reductions intractability results for the
cases where “the threshold is smaller than n (non-unanimity)” and the cases
where “t = n (unanimity).”
8 Note that bounding all the minterms is equivalent to bounding the maximal minterm.



388 I. Nehama

Non-Unanimity Issue-Aggregation t < n. For the case t < n we prove the
following intractability result.

Theorem 6. Let ϕ be a threshold function with threshold t < n, and ψ a
monotone function with maximal minterm of size z.

1. If t is polynomial (∃ε > 0 t � nε), and z is polynomial (∃ε > 0 z � mε),
then OLD (ϕ,ψ) is NP-complete.

2. For any problem A ∈ NP and any β ∈ (0, 1), there exists α > 1 s.t. if
OLD (ϕ,ψ) is solvable in polynomial time and if t and z are poly-logarithmic
of degree α (t � (log n)α

, z � (log m)α), then A is solvable in time 2O(nβ).

As a corollary we get the following,

Corollary 7

1. (Christian et al. [8]) OLD (ϕ,ψ) is NP-complete for ϕ the simple majority
function and ψ = ∧m

j=1x
j, i.e., requiring all issues to pass.

2. Assuming ETH, there exists α� > 1 s.t. if t and z are poly-logarithmic of
degree α� (t � (log n)α�

, z � (log m)α�

), then OLD (ϕ,ψ) is not in P.
3. Assuming NP � SUBEXP,9 if t and z are super-poly-logarithmic (there is no

α > 1 s.t. t � (log n)α and z � (log m)α for all large enough n and m), then
OLD (ϕ,ψ) is not in P.

We prove Theorem 6 by constructing the three reductions described below.
The first two (Lemmas 8 and 9) are reductions from Hitting Set and Vertex
Cover, respectively, to OLD

(
ϕ,∧m

j=1x
j
)

and the third reduction (Lemma 10)
finishes the proof by reducing OLD

(
ϕ,∧m

j=1x
j
)

to the general case OLD(ϕ,ψ).
The first two reductions are different and aim at different ranges of the threshold
t. Although any reduction from Hitting Set is also a reduction from Vertex
Cover, we prefer constructing a reduction from the former to get a stronger
result (wider range of the parameters).

Problem (Hitting Set).
INSTANCE: Collection C =

{
Cj

}
of |C| subsets of a universe S.

A positive integer k � |S|.
QUESTION: Is there a hitting set H ⊆ S of size k, i.e., a set H ⊆ S

s.t. ∀j Cj ∩ H 
= ∅?
Reference: The problem is NP-complete – [18, Problem SP8].

Lemma 8. Given a family of threshold functions ϕ over n voters with thresh-
old t that satisfies “t and (n − t) diverge to infinity,” there exists a reduction

9 SUBEXP = ∩ε>0 DTIME
(
2sε
)

is the class of problems solvable in sub-

exponential time. The assumption NP � SUBEXP means assuming that there exists

at least one NP problem that cannot be solved in time less than 2nΩ(1)
.
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that runs in time linear in the output size;10 and given an instance of Hit-
ting Set –

(
S, C =

{
Cj

}
, k

)
, it produces an instance of OLD

(
ϕ,∧m

j=1x
j
)

–(
X ∈ {0, 1}n×m

, k′
)

– s.t. the following is satisfied:

• m = n + |C|, • k′ = k, • min (t, n − t) = max
(

|S| , max
j

∣∣Cj
∣∣
)

, • and

(S,C, k) is satisfiable iff (X, k′) is satisfiable.
• In addition the reduction’s output satisfies that each issue is supported by

either t − 1 or t − k supporters.

Proof Sketch of Lemma 8. Given an instance of Hitting Set –(
S, C =

{
Cj

}
, k

)
, we construct the instance of OLD

(
ϕ,∧m

j=1x
j
)

– (X, k) by
using the same threshold k and defining the profile X to be:

����������Voters
Issues |C| issues m − |C| issues

|S| voters A 0

n − |S| voters
In the jth column there are
t − 1 − |S| − ∣∣Cj

∣∣) ones

- In each column there
are t − k ones

- No all zeroes line
Total (out of n voters) t − 1 t − k

when entries of the matrix A ∈ {0, 1}|S|×|C|, Ai,j , are 1 if i /∈ Cj and 0
otherwise.

Due to the way we defined the bottom-right sub-profile, the Lobby can con-
vince at most k voters in order to pass all issues, if and only if it can do so by
convincing k voters from the top |S| voters. Due to the definition of the top-left
sub-profile, it can achieve that only by finding a hitting set of size k. �

The reduction from Vertex Cover is similar to the above but differs in
the gadgets used for embedding of the incidence matrix in the profile. The full
reductions can be found in the full version.

Problem (Vertex Cover).
INSTANCE: An undirected graph G = (V,E).

A positive integer k � |V |.
QUESTION: Is there a cover C ⊆ V of size k in G, i.e., a set C ⊆ V

s.t. for each edge e = {u, v}, u or v belongs to C?
Reference: The problem is NP-complete – [18, Problem GT1].

Lemma 9. Given a family of threshold functions ϕ over n voters with threshold
t that satisfies “t � n − 1 and t

n converges to one,” there exists a reduction

10 In cases in which the output size is polynomial in the input size, which are the ones
in which we apply this reduction, we get that the running time is polynomial in the
regular sense, i.e., in the input size.
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that runs in time linear in the output size; and given an instance of Ver-
tex Cover – (G = (V,E) , k), it produces an instance of OLD

(
ϕ,∧m

j=1x
j
)

–(
X ∈ {0, 1}n×m

, k′
)

– s.t. the following is satisfied:

• n
n−t = |V |2, • m = |E|, • k′ = k, • and (G, k) is satisfiable iff (X, k′)

is satisfiable.

The third reduction is from OLD
(
ϕ,∧m

j=1x
j
)

to the general case OLD(ϕ,ψ).

Lemma 10. Given a family of threshold functions ϕ over n voters with thresh-
old t and a family of monotone functions ψ over m variables (issues) with
a minterm of size z that diverges to infinity with m, there exists a reduc-
tion that runs in time linear in the output size; and given an instance
of OLD

(
ϕ,∧m′

j=1x
j
)

–
(
Y ∈ {0, 1}n′×m′

, k′
)
, it produces an instance of

OLD (ϕ,ψ)
(
X ∈ {0, 1}n×m

, k
)

s.t. the following is satisfied:
• n = n′, • z = m′ (and m is set according to z), • k = k′, • and (Y, k′)

is satisfiable if and only if (X, k) is satisfiable.
In addition, each issue in X either corresponds to one of the issues in Y or

is not approved by any of the voters. That is, if the maximal minterm is ∧z
j=1x

j,
then ∀j � z Xj = Y j and ∀j > z Xj = 0 (the all zeroes vector).

Proof Sketch of Lemma 10. W.l.o.g., we assume that ∧z
j=1x

j is a minterm of

ψ. Given an instance of OLD
(
ϕ,∧m′

j=1x
j
)

–
(
Y ∈ {0, 1}n′×m′

, k′
)
, we construct

the instance of OLD(ϕ,ψ) –
(
X ∈ {0, 1}n×m

, k′
)

by defining the threshold k′ =
k and defining the profile X to be:

����������Voters
Issues

first z issues (m − z) issues

n voters Y 0
,

for n = n′, z = m′, and k = k′.
Due to the way we define the profile, the only way for the lobby to satisfy ψ

is by satisfying the first z issues and this can be done only by solving the original
problem

(
Y ∈ {0, 1}n′×m′

, k′
)
. �

We prove the intractability theorem using the above reductions.

Proof Sketch of Theorem 6. Combining the reductions of Lemmas 8 and 10,
we get a reduction from Hitting Set to OLD(ϕ,ψ). This reduction satisfies
the desired properties:

– If z � mε and t, (n − t) � nε (for some ε > 0), we get a polynomial reduc-
tion from the NP-complete problem Hitting Set to OLD(ϕ,ψ), and by that
proving the NP -hardness of OLD(ϕ,ψ).

– Similarly, if z � (log m)α and t, (n − t) � (log n)α (for some α > 1), we get a
reduction from Hitting Set with a blowup smaller than 2x1/α

. Hence, since
Hitting Set is NP-complete, we get that for any problem A ∈ NP if z �
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(log m)α and t, (n − t) � (log n)α, there is a reduction from A to OLD(ϕ,ψ)
with a blowup smaller than 2xC/α

, for a constant C that depends on A. Given
that, for any β ∈ (0, 1), there exists a large enough α > 1 s.t. if OLD(ϕ,ψ) is
solvable in polynomial time, z � (log m)α, and t, (n − t) � (log n)α, then A is
solvable in time 2O(nβ).

We prove the intractability results for the complementary domain t ∈
[n − nε, n − 1], using the reduction from Vertex Cover (Lemma 9) in a simi-
lar way.

Unanimity Issue-Aggregation t = n. For the case t = n, we prove the
following intractability result.

Theorem 11. Let ψ be a threshold function with threshold z, i.e., the Lobby
would like at least z issues to pass.

1. If both z and (m − z) are polynomial (∃ε > 0 z ∈ [mε, m − mε]), then
OLD (Unan, ψ) is NP-complete (under Turing reductions; See Footnote 11).

2. For any problem A ∈ NP and any β ∈ (0, 1), there exists α > 1 s.t. if
OLD (Unan, ψ) is solvable in polynomial time and if z and (m − z) are poly-
logarithmic of degree α (z ∈ [(log m)α

, m − (log m)α]), then A is solvable in
time 2O(nβ).

3. Assuming ETH, there exists α� > 1 s.t. if z and (m − z) are poly-logarithmic
of degree α� (z ∈

[
(log m)α�

, m − (log m)α�
]
), then OLD (Unan, ψ) is not

in P.
4. Assuming NP � SUBEXP, if z and (m − z) are super-poly-logarithmic (there

is no α > 1 s.t. z � (log m)α and (m − z) � (log m)α for all large enough
m), then OLD (Unan, ψ) is not in P.

We prove this theorem by constructing a reduction from the following problem:

Problem (EBNCD – Exact Balanced Node Cardinality Decision prob-
lem).

INSTANCE: A bipartite graph G = (L,R,E).
A positive integer k � min (|L| , |R|).

QUESTION: Does there exist a biclique of size (k, k) in G, i.e., two
sets A ⊆ L and B ⊆ R, both of size k, s.t. ∀l ∈ A, r ∈
B : (l, r) ∈ E?

Reference: The problem is NP-complete (Under Turing reduc-
tions) – [9].11

11 The reduction presented by Dawande et al. [9] is a Turing reduction from an
NP-complete problem. Hence, they show that EBNCD is an NP-complete prob-
lem in a weaker sense, and the same weakness is shared by our result regarding
OLD(Unan, ψ). Notice that nevertheless, this weaker notion still proves that a poly-
nomial algorithm to OLD(Unan, ψ) implies that NP=P .
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Lemma 12. Given a family of threshold functions ψ over m issues with thresh-
old z that satisfies “(m − z) and z diverges to infinity,” there exists a reduc-
tion that runs in time linear in the output size; and given an instance of
EBNCD – (G = (L,R,E) , k), it produces an instance of OLD (Unan, ψ) –(
X ∈ {0, 1}n×m

, k′
)

– s.t. the following is satisfied:
• n = |L|, • min (z,m − z) = max (k, |R| − k), • and k′ = n − k, • and

(G, k) is satisfiable if and only if (X, k′) is satisfiable.

Proof Sketch of Lemma 12. Given an instance of EBNCD –
(G = (L,R,E) , k), represented by an incidence matrix A ∈ {0, 1}|L|×|R| and a
function ψ defined by a threshold k, we construct the instance of OLD(Unan, ψ)
– (X, k′) by defining the threshold k′ = |L| − k and defining the profile X to be:

��������Voters
Issues |R| issues z − k issues m − |R| − (z − k) issues

|L| voters A 1 strictly more than k′ zeroes
in each column

Due to the way we define the right sub-profile, the only way for the lobby
to satisfy ψ is by satisfying at least k of the left issues. This can be done only
by finding a (k, k)-biclique in G; that is, k issues, all supported by k voters; and
convincing the voters not corresponding to L-vertices of the clique to support
the issues corresponding to the R-vertices of the clique. �

4 Related Work

The Optimal Lobbying problem was first addressed by Christian et al. [8]
who (essentially) showed that OLD

(
Majn,

∧m
j=1 xj

)
is NP-complete and

W [2] − complete with respect to the budget k.12

This problem was studied further by Bredereck et al. [7] in terms of its
parameterized computational complexity with regard to other parameters. In
addition they presented two generalizations of this problem: Restricted Lob-
bying, in which the input includes (in addition to the profile and the budget)
a parameter o′ of the number of issue-votes an influenced voter is allowed to
change; and Partial Lobbying, in which the desired outcomes are the out-
comes in which at least a certain number of issues (r) pass instead of all issues
(in our terms this is OLD

(
Majn,

∨
M∈([m]

r )
∧

j∈M xj
)
, when r is part of the input

and
(
[m]
r

)
denotes the set of all the subsets of size r of {1, 2, . . . ,m}). Compared

to their model, we deal with these desired outcomes sets but we analyze the prob-
lem when r is exogenous as well as for more general issue-aggregation functions,
and we analyze fully which are the hard values of r.
12 For background on the theory of parameterized complexity and in particular for the

definition of W [2], see Downey and Fellows [12], Niedermeier [26], and Flum and
Grohe [17].
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Another extension of the model of Christian et al. [8] was presented by
Baumeister et al. [5]. They define several variants of related problems – Bribery
and Manipulation of Premise Based Agendas. The question of bribery they
describe is equivalent to the Optimal Lobbying. They prove hardness of the
problem when ϕ = Majn and ψ is part of the input and consisting of a single
minterm, i.e., a unique desired outcome for a partial list of the issues. This result
is obtained as a corollary of the work by Christian et al. [8] that showed hard-
ness for a specific ψ, ψ = ∧m

j=1x
j , and it can be also be proved as a corollary of

more general results that we prove here. The contribution of our work over this
result is that in our work the function ψ is not part of the input but exogenous
to the problem and hence we characterize the hard ψ-slices of the problem (the
functions ψ for which the problem is tractable and those for which it is not).

5 Conclusions

In this paper we defined the Optimal Lobbying decision and optimization
problems (in their general forms) and characterized their computational com-
plexity when (a) all issues are Boolean, (b) all issues are aggregated using the
same monotone anonymous function ϕ, and (c) the desired outcomes set ψ is
upward-closed.13

There are still some gaps in our characterization that we intend to fill. First,
our characterization of the case of aggregating using unanimity characterizes
mostly the case of desired outcomes set defined by a threshold. We conjecture
that the real parameter that controls the complexity is the number of minterms
(when the number of minterms is large, ψ is “close enough” to a threshold
function).

Conjecture. Let the aggregation function be unanimity and let the desired out-
comes set be described using r minterms.

– If r is polynomial in m, Optimal Lobbying can be solved in polynomial time
(We already proved this part in Theorem5).

– If r is exponential in m (r � 2mα

for some α > 0), then Optimal Lobbying
is NP-complete.

A smaller gap in our characterization is the gap between bounded values, for
which we proved tractability, to poly-logarithmic values, for which we proved
intractability. We conjecture that the tractability results can be extended by
smarter algorithms.

In a subsequent work, we extend this paper to studying the parameterized
computational complexity of Optimal Lobbying. We describe the parameters
that we think capture the complexity of an instance and by finer analysis of
the reductions, analyze the parameterized complexity with regard to them. A
natural extension of both works would be extension of the analysis to other
issue-aggregating functions (ϕ) and other desired outcomes families (ψ), both
monotone and non-monotone.
13 In the full version we show that these constraints can be relaxed to get characteri-

zation results for a larger set of Optimal Lobbying problems.
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Abstract. “Control” studies attempts to set the outcome of elections
through the addition, deletion, or partition of voters or candidates. The
set of benchmark control types was largely set in the 1992 paper by
Bartholdi, Tovey, and Trick that introduced control, and there now is a
large literature studying how many of the benchmark types various elec-
tion systems are vulnerable to, i.e., have polynomial-time attack algo-
rithms for.

However, although the longstanding benchmark models of addition
and deletion model relatively well the real-world settings that inspire
them, the longstanding benchmark models of partition model settings
that are arguably quite distant from those they seek to capture.

In this paper, we introduce—and for some important cases analyze
the complexity of—new partition models that seek to better capture
many real-world partition settings. In particular, in many partition set-
tings one wants the two parts of the partition to be of (almost) equal
size, or is partitioning into more than two parts, or has groups of actors
who must be placed in the same part of the partition. Our hope is that
having these new partition types will allow studies of control attacks to
include such models that more realistically capture many settings.

1 Introduction, Motivation, and Discussion

Introduction. Elections are an important framework for decision-making, both
in human settings and in multiagent systems settings as varied as recommender
systems [15], rank aggregation and web-spam filtering [6], similarity search and
classification [10], and planning [7].

Given elections’ importance, it is natural that people and other agents should
attempt manipulative attacks on such systems, and that computational social
choice researchers should investigate the computational complexity of conducting
such attacks. Such studies have focused primarily on three broad streams of
manipulative attacks, known as manipulation, bribery, and control.

Among the three attack streams, control is by far the most troubled as to
naturalness. This paper’s focus is on control, which studies whether by chang-
ing the structure of an election—adding or deleting or partitioning voters or
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 396–413, 2015.
DOI: 10.1007/978-3-319-23114-3 24
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candidates—an actor can ensure that a given candidate wins. A set of 11 bench-
mark attacks—“control by adding voters,” “control by deleting candidates,”
etc.—are often studied to seek to understand which types of attacks a given
election system computationally resists. The 11 benchmark attacks already were
present in the seminal Bartholdi, Tovey, and Trick [1] paper on control, at least
as refined in subsequent papers that made the partition tie-breaking options
explicit [18] and addressed the one asymmetry in the Bartholdi, Tovey, and
Trick paper’s definitions [12].

With these benchmark types in hand, many election systems have been eval-
uated as to how many of these types of attacks they computationally resist, with
the goal of identifying natural election systems that resist as many as possible
of the 11 benchmark types—or the 22 (or 21, due to a collapse of types recently
noticed by Hemaspaandra, Hemaspaandra, and Menton [16]) such types, if one
also looks at the “destructive” cases where the goal is instead to prevent a given
candidate from winning.

For example, among the papers that do excellent, detailed analyses tallying
how many resistances to control attacks are possessed by such broadly-control-
resistant election systems as Bucklin, fallback, ranked pairs, Schulze, sincere-
strategy preference-based approval, and normalized range voting are [8,9,22–24].

However, although the benchmark control models regarding addition/
deletion of candidates/voters are relatively natural, the benchmark models of
partitioning have always been far less so. For many natural, real-world (i.e.,
human or electronic-agent) settings, the longstanding benchmark partition mod-
els simply don’t come close to capturing the settings that are routinely used to
motivate them. And so, despite the fact that an enormous amount of effort—in
most of the above papers and very many others—has been focused on the stan-
dard partition models over the more than two decades since they were created,
we feel that it is valuable to revisit the issue of how to best frame models of
partition. Perhaps such a revisitation should have occurred ten or fifteen years
ago, but the best we can at this point do is to approach the issue now, and in
this paper we do so.

In truth, the appropriateness of a model of partition will depend heavily
on the setting one is trying to model, and there indeed are some settings that
are well-modeled by the benchmark partition types. Still, there are numerous
settings that are not well-modeled by them, and so in this paper we present,
and give some initial results regarding, new types of partitioning that we feel
are worth studying as capturing naturally important notions of partitioning. In
particular, we define three new general flavors of partitioning.

The Classic Version of Control by Partition. Before discussing the three
new flavors, we should briefly describe control by partition. In the classic version
of control by partition of voters, one is given the votes of each voter (most typ-
ically as a linear ordering, e.g., “Bob>Carol>Ted>Alice”) and a distinguished
candidate one is interested in, and one asks whether there is a way of partitioning
the voters into V1 and V2 such that if one has subelections among the candidates
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by V1 and V2, and then a final election by all the voters with the candidates being
the winners of those subelections, the distinguished candidate is the winner. An
example of this would be if on a faculty hiring committee the chair partitioned
the committee’s members into two subgroups, charging one with evaluating and
selecting which candidate(s) would be best at teaching and charging the other
with evaluating and selecting which candidate(s) would be best at research (or,
if one is cynical, perhaps the charge might be to evaluate grant funding poten-
tial), followed by a vote of the full committee on all candidates selected in that
first round. In the classic version of candidate partitioning (known as “runoff
partition of candidates”), the input is the same, but the question is whether
there is a partition of the candidates into C1 and C2 such that if all the voters
have subelections regarding C1 and regarding C2, and then a final election by all
voters over just the winners of those subelections, the distinguished candidate is
the winner. An example of this would be if in an academic department’s faculty
hiring process the chair split the candidate pool into two groups (using some
explanation that might be a pretext, such as that he or she was distinguishing
those who were more likely to excel in research and those who were more likely
to excel in teaching), and had the entire faculty vote separately on each group,
and then the entire faculty would conduct a vote between the winners of these
two initial elections.

Our Variants of Control by Partition. The three variants we suggest and
study, in order to create models that are often closer to the real-world settings
that partition seeks to capture, are equipartition, multipartition, and partition
by groups. In equipartition, the two parts of partitions must be of the same
size (or within one if the things being partitioned are odd in cardinality). The
motivation for this is that in real-world settings, such as apportioning people or
agents into groups, it is very common to want the groups to be of essentially
equal size. In our above voter-partition example, the committee members might
for example feel that the work load was unfair if the subcommittees weren’t
essentially equal in size. Even when breaking candidates into two groups, it is
often natural to keep the playing field somewhat level by expecting the groups
to be of essentially equal sizes. In our above candidate-partition example, if the
two groups were different in size, that might be considered unfair to those in
the larger group. One can think of having balanced group sizes as a fairness
condition, and to the best of our knowledge our equipartition model is the first
and only step toward fairness of partition size ever taken with regard to the
Bartholdi, Tovey, and Trick model in the 23 years since it was introduced. Indeed,
the classic models of partition have no constraint on the sizes of the parts of
the partition; although it might in reality outrage people were this to happen,
in the classic candidate-partition model it is completely legal to partition the
candidates into c and C − {c}, so that candidate c gets a free pass into the
final election, and it is completely legal in the classic voter-partition model to
divide a size 100,000,000 voter set into one group having three voters and another
group having all the rest of the voters. One can even imagine settings where that
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lopsided partitioning is natural, and arguably not unfair to those in the huge
group. But in many settings, size-balanced partitioning is the natural and indeed
compelling expectation. The tricky thing regarding discussing what is natural
and what model is best to capture a given real-world setting is that these issues
are highly contextual—the richness of the real world means that no single model
will capture all cases. Our goal in this paper, thus, is not to give a new model
that we claim will capture all cases, but rather to give new models that in many
settings are natural and attractive, and whose addition as models significantly
broadens the class of cases one has good models for.

If one is dividing a voter set up into groups, it may well be the case that
having just two groups is simply not appropriate. In our above voter-partition
example, perhaps the department has a longstanding tradition of first vetting
candidates by three committees, one each for research, teaching, and service.
Then three would be the number of subcommittees the committee would natu-
rally be divided into. Similarly, in our above candidate-partitioning example, it is
easy to imagine the chair framing the division of candidates into four parts, with
each candidate being assigned to whichever of the school’s four institution-wide
strategic hiring themes—for example, “accessibility and inclusion,” “advanced
design and manufacturing,” “digital media and imaging science,” and “global
resilience”—the chair claims he or she fits best with. Thus our second new model
for the study of partition-control is multipartition, that is, partitioning not into
two parts but into k parts.

Our third new model is partition by groups. In partition by groups, each actor
has a color, and all actors having the same color must be put in the same part
of the partition as each other. For example, regarding candidate partitioning, if
in a department the chair is splitting an area-diverse group of hiring candidates
into two groups for a culling vote, it might be natural to want candidates from
the same subfield to be put in the same culling vote as each other, and so each
subarea would have a color. Control by groups is so natural that one might
wish to study it not just for partition cases but also for addition/deletion of
voters/candidates, and so we provide a result for adding and deleting voters by
groups in this paper’s section on groups. We mention that group-based (in a
somewhat different framing) control by addition of voters has been previously
introduced by Bulteau et al. [4], and in this paper’s section on groups we discuss
that interesting work and its relationship to the present work.

In this paper, we look at these three new models for partitioning, but due to
space limitations and for simplicity, we don’t seek to prove results about simul-
taneous combinations of them. However, certainly some (human or electronic)
real-world settings will draw on combinations and so that might in the future
be a potential area for study.

Although in this paper the new models themselves are very important, we
also, for each of them, provide one or more results as to the complexity of control
within that model, especially for the most important election system, plurality. In
some cases, our versions of control leave the classic control problem’s complexity
unchanged (although for P cases it often takes far more complicated algorithms
to handle the new cases while remaining in P), in some cases our versions increase
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the complexity from P to NP-complete, and we have even built a system where
our version lowers the complexity from NP-complete to P.

For example, regarding equipartition, we show that for plurality, approval, and
Condorcet voting, every existing P result can be reestablished even for equiparti-
tion. However, we show that for weakCondorcet elections, equipartitioning turns
the P classic case into NP-completeness. We prove that control by groups often
jumps P classic cases up to NP-completeness. And regarding multipartition and
plurality, we build a P algorithm for the most important case.

Meaning of Increasing or Lowering Complexity. Given that our results
focus on what happens to the complexity of problems in our variants, it is natural
to wonder: Is it good if, for a given problem, our equipartition variant is harder
than the classic partition version of the problem? Is it good if our version keeps
the complexity the same? Is it good if our version lowers the complexity? The
simple answer is that there is no simple answer, and indeed the questions are
themselves simplistic. If one views complexity as trying to “shield” elections
from undesirable attacks, then having high levels of complexity for a control
problem is a good thing. If one is an attacker such as a campaign strategist—or
if one is using an election-attack problem to model a real-world problem that
one wants to solve (as for example the election problem “bribery” can be used to
model resource-allocation problems)—then having polynomial-time algorithms
is a good thing. What computational social choice theorists can do, however, is
make clear what the control complexity levels are for the most important control
types and the most important election systems. Having that knowledge in hand
will allow social choice theorists, election-system choosers, campaign strategists,
and others to all openly see the lay of the land.

The remainder of the paper is organized as follows. A brief definitions section
comes next. In the three sections after that, we cover each of our three new
models, giving formal definitions of each as well as results on their behavior.
The conclusions and open problems section ends the paper proper.

2 Definitions

An election system is a mapping that, given the candidates and the votes, out-
puts a subset of the candidates, who are said to be the winners under that elec-
tion system. We will often use the symbol E to denote an election system. For
approval elections, voters give a 0 or 1 to each candidate, and the candidate(s)
having the largest number of 1 votes is the winner(s). For the other election sys-
tems that we will study, votes are linear orderings, e.g., “Alice>Bob>Carol.” In
plurality elections, whichever candidate(s) is in the top spot on the most votes
is the winner(s). In Condorcet (resp., weakCondorcet) elections, each candidate
who is preferred to each of other candidate d in strictly more than half (resp.,
greater than or equal to half) the votes is a winner.
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For conciseness, we sometimes use bracket notation (borrowed from linguis-

tics) for independent choices, e.g., “The
[

ball
book
car

]
is

[
red

heavy

]
” is shorthand for the

natural six claims obtained by making each possible choice.

3 Equipartition

Let us now define our equipartition notion and the classic partition problems.
(In all our problem definitions, we include “represented via preference lists over
C.” But in fact the voters are always represented by whatever vote type is that
of the election system; throughout this paper that is always linear orders, except
that for approval voting and the system of Theorem3 the votes are instead 0/1-
vectors.) Recall that partitioning a set into two (or more) parts means that every
element of the set must appear in exactly one of the parts.

E -CCREPC (Control by Runoff Equipartition of Candidates)

Given: A set C of candidates, a collection V of voters represented via preference lists over
C, and a distinguished candidate p ∈ C.

Quest.: Is there a partition of C into C1 and C2 such that | ‖C1‖ − ‖C2‖ | ≤ 1 and p is the
sole winner of the two-stage election where the winners of subelection (C1, V ) that
survive the tie-handling rule compete against the winners of subelection (C2, V ) that
survive the tie-handling rule? Each subelection (in both stages) is conducted using
election system E .

E -CCEPV (Control by Equipartition of Voters)

Given: A set C of candidates, a collection V of voters represented via preference lists over
C, and a distinguished candidate p ∈ C.

Quest.: Is there a partition of V into V1 and V2 such that | ‖V1‖−‖V2‖ | ≤ 1 and p is the sole
winner of the two-stage election where the winners of election (C, V1) that survive the
tie-handling rule compete against the winners of (C, V2) that survive the tie-handling
rule? Each subelection (in both stages) is conducted using election system E .

The classic cases, E -CCRPC and E -CCPV, are defined identically, except with-
out the clause forcing the partition parts to be equal in size (or off-by-one if the
set being partitioned is of odd cardinality).

For all of the above problems there is the issue of whether, if there are multiple
winners of a subelection, all of those winners move on to the final election (called
ties-promote, notated TP) or none of them move on to the final election (called
ties-eliminate, notated TE; in this model, to move on to the final election one
must be the unique winner of a subelection). Thus each problem will always
appear with a TE or TP to specify the tie-handling approach that controls the
first-round elections, e.g., E -CCPV-TE or E -CCPV-TP.

The literature also contains a “bye” version of partitioning candidates, in
which any number of candidates can be assigned to skip (“bye”) the first round
and the rest compete to get into the second round. Since equipartition is not
natural for that “bye” version (because the number of candidates skipping a first
round is usually driven by such things as excesses relative to powers of two in the
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number of candidates), we have not defined here either the classic or an “equi”
version of “bye” partition; our full version of this paper, however, will note that
many of our results hold for the “equi” version of “bye” partition, and more
importantly will give, and prove results about, a model in which one specifies as
part of the input how many candidates get a “bye,” since that model provides the
natural partition-size-sensitive variant of the “bye” candidate-partition problem.

Our definition of “equi” makes the two partition parts be equal in size if the
total size is even and be off-by-at-most-one if the total size is odd. In terms of
fairness this is as satisfying as one could wish and is as balanced as one can
possibly get. And if one were to instead allow the two parts just to be “close” to
balanced, then one would have to discuss just how close remains “fair” and/or
“close”: Larger fixed-constant differences? Proportional differences (e.g., no part
contains more than 75 %)? Should the amount of closeness be a fixed part of the
problem, or should the problem be parameterized to take the required closeness
as being part of the input? We think that these are doors that should be opened.
Certainly, one can easily imagine cases where merely ensuring that each of the
parts of a partition has at least 1/4 of the overall size would be considered
acceptable balancing. However, we leave the study of such models for the future,
and hope to include that in a future full version. In this conference version, we
focus just on the case of the parts being as closely balanced as possible. This is
certainly the fairest notion of balance, and—as long as one keeps in mind that it
indeed is simply a model and admittedly a very demanding one—this is a good
starting point for understanding what effects balancing may or may not have.

As a final comment about model details, all of the partition problems dis-
cussed above are in what is called the unique-winner model, i.e., the goal is to
make a given candidate the one and only overall winner. That is the model of the
seminal control paper of Bartholdi, Tovey, and Trick [1] and all the immediately
subsequent control papers, and probably even today is the most common model
when studying control (although we ourselves prefer the alternate model known
as the nonunique-winner model or the co-winner model, where one merely needs
to make a given candidate become a winner). And so throughout all parts of this
conference version, we focus solely on the unique-winner model, since doing so
creates apples-to-apples contrasts for those cases where our models change the
existing complexity from those found in that seminal paper and various other
papers. (We have checked the vast majority of our results in both models, and
the full version of this paper will cover both models. This is not an issue one
can safely take for granted, since there are examples in the literature where the
complexity or behavior of the two models differs sharply, e.g., [13,16]).

Let us turn to our results, which give a sense of what holds when one parti-
tions while required to have the parts be “equi.” We show that for many impor-
tant systems, including approval, Condorcet, and plurality, partition problems
remain in P even for equipartitioning, albeit typically with substantially more
difficult algorithms and new tricks relative to what the non-“equi” cases required.
However, in contrast to its sibling, the Condorcet case, we prove that for weak-
Condorcet an increase from P to NP-completeness occurs. We also construct
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an (admittedly artificial) election system having its winner problem in P, such
that going from partition to equipartition lowers the control complexity from
NP-completeness to P.

For approval, Condorcet, and plurality, each P case of CC
[
RPC
PV

]
-
[
TE
TP

]
[1,18]

remains in P for equipartition.

Theorem 1. Each of the problems plurality-CCEPV-TE and
[
Condorcet
approval

]
-

CCREPC-
[
TE
TP

]
belongs to P.

We now give a proof of plurality-CCEPV-TE ∈ P. The proof of this has two
interesting issues that do not occur in the standard partition case.

First, even for those inputs where p is at the top of no more than �‖V ‖/2� of
the votes, one cannot assume within the proof that if candidate p can be made
to win, it can be made to win with some partition that puts all votes with p
at their top in the same partition part. Here is an example showing that that
assumption, which works in the general case, fails here. If we have 3 votes for b
each having a in second place, 5 votes for p, and 6 votes for a, we can make p a
sole overall winner by letting V1 consist of 4 votes for p and 3 votes for a. Then
p is the unique winner in V1, and V2 consists of 3 votes for a, 3 votes for b, and
1 vote for p, so no candidate from the second election makes it through to the
runoff, and p is the overall unique winner. However, if we put all 5 votes for p
in V1, then since there are 7 votes in V1, at least 4 votes for a are in V2 and a is
the unique winner of the second subelection, and so also of the overall election.

The second twist is that we need to find a “safe” way to legally distribute in
an “equi” overall fashion certain “remaining” votes; and our proof does this by
pushing them all to one side (violating “equi,” typically), and then correcting
this in a way that is guaranteed to succeed if success is possible.

Proof (of the Plurality Part of Theorem 1). We now prove the claim that
plurality-CCEPV-TE belongs to P. The example given as the “first” interesting
issue just above shows that we have to be very careful about what assumptions
we make in our proof. However, we indeed can show that our control problem is
in P. First of all, note that p can be made a unique winner by EPV-TE if and
only if there exists an equipartition (V1, V2) such that p is the unique winner of
(C, V1) and

1. (C, V2) has a unique winner, call it c, and p defeats c, or
2. (C, V2) has p as a winner, or
3. (C, V2) has more than one winner.

These three conditions can be checked as follows in polynomial time.
(scoreV (p) here is the plurality score of p in V , i.e., the number of voters in
V having p as their top choice).
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1. For every (c, kp, kc) such that c ∈ C − {p}, p defeats c, kp ≤ scoreV (p), and
kc ≤ scoreV (c), do:
Put kp votes for p in V1 and the remaining votes for p in V2 and put kc votes
for c in V2 and the remaining votes for c in V1. We will now check whether
(V1, V2) can be extended to a desired equipartition. If p is not the unique
winner in V1 or c is not the unique winner in V2, then this is not possible and
we move on to the next loop iteration. Otherwise, for each d ∈ C −{p, c} put
as many votes for d as possible into V1 while keeping p the unique winner in
V1 (i.e., min(scoreV (d), kp − 1) votes). If ‖V1‖ < �‖V ‖/2�, then there are not
enough votes in V1 and we move on to the next loop iteration. Otherwise,
move votes for candidates in C − {p, c} from V1 to V2 if this is possible while
keeping c the unique winner in V2 until (V1, V2) becomes an equipartition.
If this is possible, we have found a successful equipartition. If this is not
possible, we move on to the next loop iteration.

2. This is similar to the previous case.
For every kp such that 0 < kp ≤ scoreV (p), do:
Put kp votes for p in V1 and the remaining votes for p in V2. We now will
check whether (V1, V2) can be extended to a desired equipartition. For each
d ∈ C − {p}, put as many votes for d as possible into V1 while keeping p the
unique winner in V1 (i.e., min(scoreV (d), kp − 1) votes). If ‖V1‖ < �‖V ‖/2�,
there are not enough votes in V1 and we move on to the next loop iteration.
Otherwise, move votes for candidates in C−{p} from V1 to V2 if this is possible
while keeping p a winner in V2 until (V1, V2) becomes an equipartition. If this
is possible, we have found a successful equipartition. If this is not possible,
we move on to the next loop iteration.

3. The case that p is one of the winners of (C, V2) has been handled in the
previous case, so it suffices to handle the case where (C, V2) has at least two
winners in C − {p}.
For every (c, c′, kp, kc) such that c, c′ ∈ C − {p}, c 	= c′, kp ≤ scoreV (p), and
kc ≤ min(scoreV (c), scoreV (c′)), do:

Put kp votes for p in V1 and the remaining votes for p in V2, put kc votes
for c in V2 and the remaining votes for c in V1, and put kc votes for c′ in V2

and the remaining votes for c′ in V1. We now will check whether (V1, V2) can
be extended to a desired equipartition. If p is not the unique winner in V1 or
c and c′ are not winners in V2, then this is not possible and we move on to
the next loop iteration. Otherwise, for each d ∈ C − {p, c, c′}, put as many
votes for d as possible into V1 while keeping p the unique winner in V1 (i.e.,
min(scoreV (d), kp − 1) votes). If ‖V1‖ < �‖V ‖/2�, there are not enough votes
in V1 and we move on to the next loop iteration. Otherwise, move votes for
candidates in C −{p, c, c′} from V1 to V2 if this is possible while keeping c and
c′ winners in V2 until (V1, V2) becomes an equipartition. If this is possible, we
have found a successful equipartition. If this is not possible, we move on to
the next loop iteration. 
�
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We have also shown that the NP-complete cases still hold for our systems of
interest.1

Theorem 2. For approval, Condorcet, and plurality, each NP-complete case of
CC

[
RPC
PV

]
-
[
TE
TP

]
—these can be found in Table 1 of Hemaspaandra, Hemaspaan-

dra and Rothe [18] and are variously due to that paper and Bartholdi, Tovey,
and Trick [1]—remains NP-complete for the one among CC

[
REPC
EPV

]
-
[
TE
TP

]
that

is its equipartition analogue.

Now, it might be natural to wonder: Is there a meta-theorem showing that
NP-completeness always inherits from partition cases to equipartition cases? If
so Theorem 2 would become a freebie consequence of the meta-theorem. How-
ever, although we do not have any example of a natural election system where
the “equi” case drops the complexity from NP-completeness to P, we have
constructed an election system displaying precisely that behavior. And so NP-
completeness does not always inherit from the standard case to the “equi” case.

Theorem 3. There exists an election system E , whose winner problem is in P,
such that E -CCPV-TP is NP-complete, yet E -CCEPV-TP belongs to P.

Proof. We define E as follows. The votes here are length ‖C‖ 0/1 vectors (i.e.,
approval ballots). When speaking of candidates we’ll use 0/1/2/3 as shorthands
for “0”/“1”/“2”/“3.” On input (C, V ):

– If ‖C‖ ≤ 4 and (C ∩ {0, 1, 2, 3} = {0, 2} or C ∩ {0, 1, 2, 3} = {1, 3}), then the
winners are the approval winners of (C − {0, 1, 2, 3}, V ).

– If ‖C‖ ≤ 4 and C ∩ {0, 1, 2, 3} 	= {0, 2} and C ∩ {0, 1, 2, 3} 	= {1, 3}, there are
no winners.

– If ‖C‖ > 4 and {0, 1, 2, 3} ⊆ C, then ‖V ‖ mod 4 is a winner and if (C −
{0, 1, 2, 3}, V ) has a unique approval winner, then that candidate is also a
winner. There are no other winners.

– If ‖C‖ > 4 and {0, 1, 2, 3} 	⊆ C, there are no winners.

We first show that E -CCEPV-TP is in P. This is easy. If ‖C‖ ≤ 4, there
are no winners in the runoff, since 0, 1, 2, and 3 do not participate in the
runoff. If ‖C‖ > 4 and {0, 1, 2, 3} 	⊆ C, there are no candidates in the runoff. If
‖C‖ > 4 and {0, 1, 2, 3} ⊆ C, there are at most four candidates in the runoff. The
candidates in {0, 1, 2, 3} that participate in the runoff are exactly ‖V1‖ mod 4
and ‖V2‖ mod 4 for partition (V1, V2). But if (V1, V2) is an equipartition, it is

1 This paper contains some NP-completeness results, the first of which is Theorem 2.
NP-completeness is a worst-case theory, and so for our paper’s NP-hard cases, seeking
results for other notions of hardness would be interesting. See [25,26] for successes
of and [19] for limitations of heuristic approaches to election (and other) problems.
However, the majority of the present paper’s results are about showing that, even
for partition-control variants that might seem likely to increase control complexity,
polynomial-time control algorithms do exist.
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never the case that {‖V1‖ mod 4, ‖V2‖ mod 4} = {0, 2} or {‖V1‖ mod 4, ‖V2‖
mod 4} = {1, 3} and so there are no winners in the runoff.

To show that E -CCPV-TP is NP-complete, we reduce from approval-CCPV-
TE, which is NP-complete [18]. Let (C, V ) be an election and let p be the pre-
ferred candidate. Assume that C ∩ {0, 1, 2, 3} = ∅. Let Ĉ = C ∪ {0, 1, 2, 3} and
let V̂ consist of the voters in V (extended to Ĉ by not approving of candidates
in {0, 1, 2, 3}) plus two additional voters that don’t approve of any candidate if
‖V ‖ is even and one additional voter that doesn’t approve of any candidate if
‖V ‖ is odd. We claim that p can be made the unique approval winner in (C, V )
by PV-TE if and only if p can be made the unique E winner in (Ĉ, V̂ ) by PV-TP.

First suppose that (V1, V2) is a partition of V that makes p the unique
approval winner by PV-TE. If ‖V ‖ is odd, add the one additional voter
that doesn’t approve of any candidate to V1 or V2 in such a way that ‖V1‖
mod 4 	= ‖V2‖ mod 4. If ‖V ‖ is even and ‖V1‖ mod 4 = ‖V2‖ mod 4, add the
two additional voters to V1. If ‖V ‖ is even and ‖V1‖ mod 4 	= ‖V2‖ mod 4,
add one additional voter to V1 and one additional voter to V2. In all cases, we
now have a partition (V̂1, V̂2) of V̂ with the same unique approval winners as
before (when restricting the candidates to C) and such that {‖V1‖ mod 4, ‖V2‖
mod 4} = {0, 2} or {‖V1‖ mod 4, ‖V2‖ mod 4} = {1, 3}. This immediately
implies that this partition makes p the unique winner in E -CCPV-TP.

For the converse, suppose that (V̂1, V̂2) is a partition of V̂ that makes p the
unique E winner by PV-TP. Then (V̂1, V̂2) makes p the unique approval winner in
(C, V̂ ) by PV-TE. Now simply delete the additional voters that don’t approve of
any candidate to obtain partition (V1, V2) of V that makes p the unique approval
winner in (C, V ) by PV-TE. 
�

In contrast to its close relative, Condorcet elections, weakCondorcet elections
increase complexity from the partition case to the equipartition case for the
RPC-TP case. (This complexity increase is not precluded by the general fact that
subcases of problems cannot be harder than the original problem. Although each
equipartition of a set is indeed a partition of that set, we are not dealing here
with a subcase of a problem, but rather with a control problem whose allowed
internal actions are a subset of those of a different control problem, and so there
is no automatic prohibition on the complexity increasing.) We do not yet have
a complexity classification for weakCondorcet-CCREPC-TE, and consider that
an interesting open problem.

Theorem 4. weakCondorcet-CCRPC-
[
TE
TP

]
are in P, but weakCondorcet-

CCREPC-TP is NP-complete.

We include a proof of the TP cases of the above theorem. Briefly, what is
behind the change in complexity here is that we can make one of the subelections
represent a vertex cover and we use equipartition to limit the size of that vertex
cover. The reason the same approach does not work also for Condorcet elections
is that we crucially need that we can have multiple winners.
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Proof (of the TP Parts of Theorem 4). To show that weakCondorcet-
CCRPC-TP is in P, it suffices to note that for all p ∈ C, if p can be made the
unique weakCondorcet winner in (C, V ) by RPC-TP, then this is established by
candidate partition ({p}, C−{p}). To see this, suppose p is not the unique weak-
Condorcet winner in partition ({p}, C − {p}). Then there is a candidate c 	= p
such that c is a weakCondorcet winner in (C − {p}, V ) and c ties-or-defeats p in
their head-to-head contest. But then c is a weakCondorcet winner in (C, V ) and
so in any (C ′, V ) with C ′ ⊆ C and c ∈ C ′. It follows that c is always a winner
by RPC-TP, and so p will never be the unique winner.

However, ({p}, C−{p}) is clearly not an equipartition. We will now show that
weakCondorcet-CCREPC-TP is NP-complete. We will prove this by a reduction
from Cubic Vertex Cover: Given a graph G = (V,E) that is cubic, i.e., where
every vertex has degree three, and a positive integer k ≤ ‖V ‖, we ask whether
G has a vertex cover of size k, i.e., a set of vertices V ′ ⊆ V of size k such that
every edge in E is incident with at least one vertex in V ′. Let ‖V ‖ = n. Since G
is cubic, ‖E‖ = 3n/2.

Using McGarvey’s construction [21], we construct, in polynomial time, an
election (C, V̂ ) with the following properties:

– C = {p} ∪ V ∪ E ∪ D, where D = {d1, . . . , dn/2+2k−1}.
– The set of voters, V̂ , is such that we have the following head-to-head contest

results:
• for every e ∈ E, e defeats p,
• for every c ∈ V ∪ D, p defeats c,
• for every e = {v, v′} ∈ E, v defeats e and v′ defeats e,
• all other head-to-head contests are ties.

Suppose V ′ is a vertex cover of size k of G. Then p can be made the unique
weakCondorcet winner by REPC, using partition ({p} ∪ D ∪ V − V ′, E ∪ V ′).
Note that ‖{p}∪D ∪V −V ′‖ = 1+n/2+2k −1+n−k = 3n/2+k = ‖E ∪V ′‖.
p is the Condorcet winner in ({p} ∪ D ∪ V − V ′, V̂ ), and thus participates in the
runoff. Since V ′ is a vertex cover, for every candidate e ∈ E, there is a candidate
v ∈ V ′ such that v defeats e in their head-to-head contest. So no candidate in
E makes it to the runoff. So p is the Condorcet winner in the runoff, and thus
certainly the unique weakCondorcet winner.

For the converse, suppose p can be made the unique weakCondorcet winner by
REPC-TP. Let (C1, C2) be an equipartition of C with p ∈ C1 that witnesses this.
Then p is a weakCondorcet winner in (C1, V̂ ). This implies that E ⊆ C2. Since
p is a weakCondorcet winner in the runoff, no candidate from E participates in
the runoff. So for every e ∈ E, there is a c ∈ C2 such that c defeats e in their
head-to-head contest. The only candidates that defeat e = {v, v′} are v and v′.
It follows that C2 ∩ V is a vertex cover of G. Since (C1, C2) is an equipartition,
‖C2 ∩ V ‖ ≤ k. So G has a vertex cover of size k. 
�
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4 Multipartition

In many settings two simply is not the number of parts into which one’s voter set
must be divided. For example, the Dean may wish to have three study sections
each passing forward a best choice on some issue. Multipartition, which we’ll
define here just for PV but it can just as well be defined for RPC, generalizes the
2-partition PV problem used in the seminal Bartholdi, Tovey, and Trick paper to
each k-partitioning. (In the study of judgment aggregation, controlling elections
by breaking so-called judges into k groups—in a complicated, quite different
framework in which the problem as part of its input already had separated the
so-called premises into k groups—has been interestingly studied by Baumeister
et al. [2].) For each integer k ≥ 2, define the following problem.

E -CCPkV (Control by k-partition of Voters)

Given: A set C of candidates, a collection V of voters represented via preference lists over C, and

a distinguished candidate p ∈ C.

Quest.: Is there a partition of V into k parts, V1, V2, . . . , Vk, such that p is the sole winner of the

two-stage election where the winners of each of the k elections (C, Vi) that survive the

tie-handling rule compete against each other in a final election? Each subelection (in both

stages) is conducted using election system E .

Plurality-CCP2V-TE is in P [18]. As Theorem 5 states, we in fact have that
P membership still holds for each k-partition version.

Theorem 5. For each k ≥ 2, plurality-CCPkV-TE ∈ P.

The proof is omitted due to space, but is based on extensively employing
Lenstra’s [20] powerful method for handling integer linear programming fea-
sibility problems when the number of constraints is bounded.

It would be interesting to study multipartition for other election systems, and
also to study multipartition varied to allow the number of partitions to itself not
be fixed but rather to be specified as part of the input.

5 Voter Control by Groups

In voter partition by groups, each vote has a color (i.e., a label), and all votes with
the same label must be placed into the same partition part. We also define group
voter-control problems for deleting voters (where all votes of a given color must
be jointly deleted or kept) and for adding voters (where in the pool of potential
additional voters each one has a color, and each color group must be added or not
added as a block). As discussed in the introduction, these models capture cases
where groups cannot be separated. One example might be due to living at the
same address in a redistricting problem, and another might be a departmental
study group process in which each of the department’s area subfaculties must
be placed within the same study group. We below define just the voter cases
for control by groups, but one could completely analogously define candidate
control by groups.
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E -CCPVG (Control by Partition of Voter Groups)

Given: A set C of candidates, a collection V of voters represented via preference lists over C,

a partition of V into any number of groups G1, . . . , Gk, and a distinguished candidate

p ∈ C.

Quest.: Is there a partition of V into V1 and V2 such that for each i either Gi ⊆ V1 or Gi ⊆ V2

holds and p is the sole winner of the two-stage election where the winners of election (C, V1)

that survive the tie-handling rule compete against the winners of (C, V2) that survive the

tie-handling rule? Each subelection (in both stages) is conducted using election system E .

E -CCDVG (Control by Deleting Voter Groups)

Given: A set C of candidates, a collection V of voters represented via preference lists over C,

a partition of V into any number of groups G1, . . . , Gk, a nonnegative integer �, and a

distinguished candidate p ∈ C.

Quest.: Is there a set S ⊆ V , ‖S‖ ≤ �, such that p is the sole winner of the E election over C with

the vote collection set being V with S (multiset) removed, and for each i either Gi ⊆ S

or Gi ∩ S = ∅?

E -CCAVG (Control by Adding Voter Groups)

Given: A set C of candidates, a collection V of voters represented via preference lists over C,

a collection W of potential additional voters represented via preference lists over C, a

partition of W into any number of groups G1, . . . , Gk, a nonnegative integer �, and a

distinguished candidate p ∈ C.

Quest.: Is there a collection S ⊆ W , ‖S‖ ≤ �, such that p is the sole winner of the E election over

C with the vote set being V (multiset) unioned with S, and for each i either Gi ⊆ S or

Gi ∩ S = ∅?

Before stating results for this model, let us quickly discuss whether these
notions are in overlap with models in the literature. After all, votes are coming
and going in blocks, and so one might wonder if this is related to for example
the notion of weighted control introduced by Faliszewski, Hemaspaandra, and
Hemaspaandra [11]. Briefly, the notions are different to their core in that a
weighted vote puts a lot of weight on that vote, but in contrast, a vote group may
consist of votes that have vastly different preferences from each other. It is true
that if one took the Faliszewski, Hemaspaandra, and Hemaspaandra [11] notion
of weighted control, and restricted the weights to being input in unary, and for
the adding/deleting voters cases shifted from that paper’s model of counting as
one’s limit the number votes and instead adopted the model (mentioned but not
adopted in that paper) of limiting by the total weight of votes added/deleted,
then those weighted control problems would each indeed many-one polynomial-
time reduce to our analogous voter control by groups problem; but that seems
to be as far as the connection goes between the two papers.

A closer connection is to the work of Bulteau et al. [4], who define and study
a very general notion of “combinatorial voter control” for addition of voters.
(Their paper is not concerned with partition problems, the main focus of the
present paper.) Loosely put, for each voter they have a group of voters who in
some sense follow that voter, so that if one takes an action on a voter, the group
of the voter follows also. Note that this is a very flexible, general scheme, and
for example does not require that the follower function breaks the voters into
equivalence classes, as does our coloring scheme. Of course, when proving NP-
hardness results, such flexibility weakens the results. So in their paper (which
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is in the nonunique-winner model) they define and study a number of restricted
models of the follower function. However, even the most restrictive models of
follower functions that they study are incomparable to our model (even when
they add nice symmetry-like properties, they focus those on voters with the
same preferences, and so are not focused on what we are focused on, which is, in
effect, coloring voters, i.e., breaking voters into equivalence classes in whatever
arbitrary way is specified by the coloring), and so our NP-hardness result for
plurality-CCAVG is incomparable with their NP-hardness results for their model
of combinatorial control by adding voters. See also the more recent work in the
line of [4] done in [3,5].

Turning to our results for our model, unlike our earlier two models, the addi-
tion of groups very broadly increases P complexity levels to NP-completeness.
For the three cases covered by the following theorem, the analogous result with-
out groups is well known to be in P [1,18]. And the NP-completeness claims of
Theorem 6 are each proved by building an appropriate reduction from an NP-
complete problem, in particular X3C (i.e., Exact Cover by 3-Sets, see [14]).
Plurality-CCPVG-TP is also NP-complete, but we do not state that in the
theorem since this follows immediately from the known result (see [18]) that
plurality-CCPV-TP is NP-complete.

Theorem 6. Each of plurality-CC
[
PVG-TE

AVG
DVG

]
is NP-complete.

We provide here the proof of the PVG-TE part of Theorem6.

Proof (of the PVG-TE Part of Theorem 6). We reduce from X3C. We are
given a set B = {b1, . . . , b3m}, m > 1, and a collection S = {S1, . . . , Sn} of
subsets Si = {bi,1, bi,2, bi,3} ⊆ B with ‖Si‖ = 3 for each i, 1 ≤ i ≤ n.

We assume n > m + 1. We may safely make this assumption, as X3C still
remains NP-complete under this restriction. n < m is automatically a no instance
and the two cases n = m and n = m + 1 are solvable in polynomial time. Thus
the problem is still NP-complete under the restriction n > m + 1.

Define the election (C, V ), where C = {p, c, d} ∪ B is the set of candidates,
p is the distinguished candidate, and V consists of the following n + 3 groups of
voters. As a shorthand, when specifying votes we will sometimes include a set of
candidates, when resolving those as any linear ordering among those voters (e.g.,
lexicographic) will be fine for the vote’s role in the proof. For example, p > S > b,
where S = {z, a, w}, may be taken as a shorthand for p > a > w > z > b.

– For each i, 1 ≤ i ≤ n, there is a group, Gi, with seven voters of the form:

•p > C − {p}, •bi,1 > C − {bi,1, p} > p, • d > C − {d, p} > p, and
•p > C − {p}, •bi,2 > C − {bi,2, p} > p, •d > C − {d, p} > p.

• bi,3 > C − {bi,3, p} > p,
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– There is a group GB consisting of the following voters:
• Let �j = ‖{Si ∈ S | bj ∈ Si}‖ for all j, 1 ≤ j ≤ 3m. For each j,

1 ≤ j ≤ 3m, there are 2n − �j voters of the form bj > C − {bj , p} > p.
• There are 2m voters of the form p > C − {p}.

– There is a group Gc containing 2(n + m) + 1 voters of the form
c > C − {c, p} > p.

– There is a group Gd containing 2n + 1 voters of the form d > C − {d, p} > p.

In this election, each bj ∈ B has a score of 2n, candidate c has a score of
2(n+m)+ 1, candidate d has a score of 4n+1, and the distinguished candidate
p has a score of 2(n + m). We claim that S contains an exact cover of B if and
only if p can be made the unique winner of the election by control by partition
of voter groups in the TE model.

Suppose S contains an exact cover S ′ of B. Partition the set of voters as
follows. Let V2 contain the m groups corresponding to S ′ and the groups Gc and
Gd. Let V1 = V − V2. Candidate p is the unique winner of subelection (C, V1),
since p has a score of 2n, each bj ∈ B has a score of 2n − 1, candidate c has a
score of 0, and candidate d has a score of 2n− 2m. There is no unique winner in
subelection (C, V2), since candidates c and d tie for first place, eliminating each
other. Thus only candidate p moves to the final round of the election, and p is
the unique winner of the final round.

For the converse direction, suppose p can be made the unique winner of the
election by partition of voter groups in the TE model. Since p participates in the
final round and we are in the TE model, p is the unique winner of at least one
of the subelections, without loss of generality say of (C, V1). Then voter groups
Gc and Gd have to be in subelection (C, V2). Both candidate c and candidate d
would beat p in the final round, and so should not participate in the final round.
Since candidates c and d have a higher score than any other candidate and c
accumulates all of her 2(n+m)+1 points in group Gc, they have to eliminate each
other in subelection (C, V2). To this end, exactly m of the Gi groups have to be
in subelection (C, V2). All other Gi groups are in subelection (C, V1). Right now,
regardless of which of the Gi groups are in subelection (C, V1), candidates p and d
are tied in subelection (C, V1), since for every group Gi, scoreGi

(p) = scoreGi
(d).

Since we assume that p is the unique winner of subelection (C, V1), the only
remaining voter group GB has to be in subelection (C, V1). According to this,
candidate p has a score of 2n and each candidate in B can have at most 2n − 1
points in subelection (C, V1). However, this is only possible if the m Gi groups
in subelection (C, V2) correspond to an exact cover of B, since otherwise there
would exist a candidate in B with a score of 2n in subelection (C, V1). 
�

6 Conclusions and Open Directions

We introduced three models of partition control—equipartition, multipartition,
and partition by groups—that seek to for many cases more closely model (both
human and electronic-agent) real-world situations than the twenty-year-old stan-
dard benchmark set and, for the case of equipartition, to incorporate a “fairness”-
focused balance condition.



412 G. Erdélyi et al.

We obtained a number of results on the complexity of our new models with
respect to important election systems, especially plurality, the most prevalent
of election systems. We established many natural examples where the variants
are of the same complexity as their analogous standard benchmark model, and
also established many natural examples where the variants’ complexity increases
relative to the analogous standard benchmark model.

This conference version of the paper focused on the unique-winner model
and so-called constructive control, but the full version will cover the nonunique-
winner model (in which our results broadly still hold) and so-called destructive
control.

Open directions include studying combinations of our new models, seek-
ing additional models to better capture real-world settings, investigating how
well various models capture real-world settings, extending the present study to
partial-information models, seeking typical-case hardness results, pursuing the
additional multipartition studies mentioned at the end of the multipartition
section, and resolving the complexity of weakCondorcet-CCREPC-TE to see
whether it provides an additional natural example of an increasing complexity
level (see Theorem 4 and the comments preceding it). Perhaps most important
will be to explore notions of nearly balanced partitions, and we plan to do that
in the near future.
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9. Erdélyi, G., Nowak, M., Rothe, J.: Sincere-strategy preference-based approval vot-
ing fully resists constructive control and broadly resists destructive control. Math.
Logic Q. 55(4), 425–443 (2009)

10. Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification
via rank aggregation. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pp. 301–312. ACM Press, June 2003

11. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Weighted electoral control.
J. Artif. Intell. Res. 52, 507–542 (2015)

12. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Llull and
Copeland voting computationally resist bribery and constructive control. J. Artif.
Intell. Res. 35, 275–341 (2009)

13. Faliszewski, P., Hemaspaandra, E., Schnoor, H.: Copeland voting: ties matter. In:
Proceedings of the 7th International Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 983–990. International Foundation for Autonomous Agents
and Multiagent Systems, May 2008

14. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H Freeman and Company, New York (1979)

15. Ghosh, S., Mundhe, M., Hernandez, K., Sen, S.: Voting for movies: the anatomy
of recommender systems. In: Proceedings of the 3rd Annual Conference on
Autonomous Agents, pp. 434–435. ACM Press, May 1999

16. Hemaspaandra, E., Hemaspaandra, L., Menton, C.: Search versus decision for elec-
tion manipulation problems. Technical Report arXiv:1202.6641 [cs.GT], Comput-
ing Research Repository, arXiv.org/corr/, Febuary 2012. Accessed March 2012.
Conference Version available as [17]

17. Hemaspaandra, E., Hemaspaandra, L., Menton, C.: Search versus decision for elec-
tion manipulation problems. In: Proceedings of the 30th Annual Symposium on
Theoretical Aspects of Computer Science, pp. 377–388. Leibniz International Pro-
ceedings in Informatics (LIPIcs), Febuary/March 2013

18. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: the complexity
of precluding an alternative. Artif. Intell. 171(5–6), 255–285 (2007)

19. Hemaspaandra, L., Williams, R.: An atypical survey of typical-case heuristic algo-
rithms. SIGACT News 43(4), 71–89 (2012)

20. Lenstra Jr., H.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

21. McGarvey, D.: A theorem on the construction of voting paradoxes. Econometrica
21(4), 608–610 (1953)

22. Menton, C.: Normalized range voting broadly resists control. Theory Comput. Syst.
53(4), 507–531 (2013)

23. Menton, C., Singh, P.: Control complexity of Schulze voting. In: Proceedings of the
23rd International Joint Conference on Artificial Intelligence, pp. 286–292. AAAI
Press, August 2013

24. Parkes, D., Xia, L.: A complexity-of-strategic-behavior comparison between
Schulze’s rule and ranked pairs. In: Proceedings of the 26th AAAI Conference
on Artificial Intelligence, pp. 1429–1435. AAAI Press, August 2012

25. Rothe, J., Schend, L.: Challenges to complexity shields that are supposed to protect
elections against manipulation and control: a survey. Ann. Math. Artif. Intell.
68(1–3), 161–193 (2013)

26. Walsh, T.: Where are the hard manipulation problems? J. Artif. Intell. Res. 42,
1–29 (2011)

http://arxiv.org/abs/1202.6641


Elections with Few Candidates: Prices, Weights,
and Covering Problems

Robert Bredereck1, Piotr Faliszewski2, Rolf Niedermeier1, Piotr Skowron3,
and Nimrod Talmon1(B)

1 Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, Berlin, Germany

{robert.bredereck,rolf.niedermeier}@tu-berlin.de,
nimrodtalmon77@gmail.com

2 AGH University of Science and Technology, Krakow, Poland
faliszew@agh.edu.pl

3 University of Warsaw, Warsaw, Poland
p.skowron@mimuw.edu.pl

Abstract. We show that a number of election-related problems with
prices (such as, for example, bribery) are fixed-parameter tractable (in
FPT) when parameterized by the number of candidates. For bribery,
this resolves a nearly 10-year old family of open problems. Our results
follow by a general technique that formulates voting problems as cov-
ering problems and extends the classic approach of using integer linear
programming and the algorithm of Lenstra [19]. In this context, our cen-
tral result is that Weighted Set Multicover parameterized by the
universe size is fixed-parameter tractable. Our approach is also applica-
ble to weighted electoral control for Approval voting. We improve pre-
viously known XP-memberships to FPT-memberships. Our preliminary
experiments on real-world-based data show the practical usefulness of
our approach for instances with few candidates.

1 Introduction

We resolve the computational complexity status of a number of election prob-
lems parameterized by the number of candidates, for the case where voters are
unweighted but have prices. These include, for example, various bribery prob-
lems [10,12] and priced control problems [21] that were known to be in XP since
nearly 10 years ago, but were neither known to be fixed-parameter tractable (in
FPT), nor to be W[1]-hard. We develop a general technique for showing their
membership in FPT, which also applies to weighted voter control for Approval
voting, improving results of Faliszewski et al. [14]. We test the running times of
our algorithms empirically.
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Algorithmic problems that model the manipulation of elections include,
among others, strategic voting problems [1,6] (where we are given an election
with honest voters and we ask whether a group of manipulators can cast votes
to ensure their preferred candidate’s victory), election control problems [2,17]
(where we are given an election and ask if we can ensure a given candidate’s vic-
tory by adding/deleting candidates/voters), or bribery [10,12,24] and campaign
management problems [3,5,8,23] (where we want to ensure a given candidate’s
victory by changing some of the votes, but where each vote change comes at a
price and we are bound by a budget). We focus on the case where we have a few
candidates but (possibly) many voters. As pointed out by Conitzer et al. [6], this
is a very natural setting and it models many real-life scenarios such as political
elections or elections among company stockholders.

The complexity of manipulating elections with few candidates is, by now,
very well understood. On the one hand, if the elections are weighted (as is
the case for the elections held by company stockholders), then our problems
are typically NP-hard even if the number of candidates is a small fixed con-
stant [6,12,14]; these results typically follow by reductions from the well-known
NP-hard problem Partition. One particular example where we do not have
NP-hardness is control by adding/deleting voters under the Approval and k-
Approval voting rules. Faliszewski et al. [14] have shown that these problems
are in XP, that is, that they can be solved in polynomial time if the number
of candidates is assumed to be a constant. On the other hand, if the elections
are unweighted (as is the case for political elections) and no prices are involved,
then we typically get FPT results. These results are often obtained by expressing
the respective problems as integer linear programs (ILPs) and by applying the
famous algorithm of Lenstra [19] (Lenstra’s algorithm solves ILPs in FPT time
with respect to the number of integer variables). For example, for control by
adding voters we can have a program with a separate integer variable for each
possible preference, counting how many voters with each preference we add [13]
(the constraints ensure that we do not add more voters with a given preference
than are available and that the desired candidate becomes a winner). Since the
number of different preferences is a function depending only on the number of
candidates, we can solve such an ILP using Lenstra’s algorithm in FPT time.
Typically, this approach does not work for weighted elections as weights give
voters a form of “identity.” In the control example, it no longer suffices to spec-
ify how many voters to add; we need to know exactly which ones to add (the
trick in showing XP-membership for weighted voter control under Approval is to
see that for each possible voter preference, we add only the heaviest voters with
this preference [14]).

The main missing piece in our understanding of the complexity of manipu-
lating elections with few candidates regards those unweighted-election problems
where each voter has some sort of price (for example, as in the bribery problems).
In this paper we almost completely fill this gap by showing a general approach
for proving FPT membership for a class of bribery-like problems parameterized
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by the number of candidates, for unweighted elections1 (as a side effect, we also
get FPT membership for weighted control under the Approval and k-Approval
rules). The main idea of our solution is to use mixed integer linear program-
ming (MILP) formulations of our problems, divided into two parts. The first
part is the same as in the standard ILP solutions for the non-priced variants
of our problems, modeling how many voters with each possible preferences are
“affected” (“bought” or “convinced” for bribery and campaign managements,
“added” or “deleted” for control problems). The second part, and a contribu-
tion of this paper, uses non-integer variables to compute the cost of the solution
from the first part. The critical insight of our approach is to use the fact that
we “affect” the voters in the order of their increasing prices to force all our vari-
ables to be integer-valued in the optimal solutions. This way we can compute
the cost of each of our solutions using rational-valued variables and solve our
MILPs using Lenstra’s algorithm (it maintains its FPT running time for MILPs
parameterized by the number of integer variables).

Unfortunately, while Lenstra’s algorithm is a very powerful tool for proving
FPT membership, it might be too slow in practice. Further, as pointed out by
Bredereck et al. [4], each time an FPT result is achieved through an applica-
tion of Lenstra’s result, it is natural to ask whether one can derive the same
result through a direct, combinatorial algorithm. Coming up with such a direct
algorithm seems very difficult. Thus, instead, for our problems we show a com-
binatorial algorithm obtaining solutions arbitrarily close to the optimal ones in
FPT time (formally, we show an FPT approximation scheme). Nonetheless, in
practice, one would probably not use Lenstra’s algorithm for solving MILPs,
but instead, one would use an off-the-shelf optimized heuristic. We provide a
preliminary empirical comparison of the running times of the MILP-based algo-
rithm (using an off-the-shelf MILP solver instead of Lenstra’s algorithm) and an
ILP-based algorithm that reduces our problems directly to integer linear pro-
gramming (basically without “exploiting” the parameter number of candidates).
Our results suggest that FPT algorithms based on solving MILPs can be very
efficient in practice.

Our results can be applied to a large class of voting rules and to many election
problems. Thus, to better illustrate technical details, we focus on the simplest
setting possible. Specifically, we present most of our techniques through a family
of classic covering problems. The motivation is threefold: (a) this focus allows us
to present our results most clearly, (b) our variants of the covering problem apply
directly to a number of election problems for the Approval rule, and (c) various
covering problems appear in the analysis of various voting problems, thus our
results should translate (more or less directly) to those problems as well. Due to
lack of space, we omit some proof details.

1 One problem for which our technique does not apply is Swap Bribery [10]; even
though Dorn and Schlotter [8] claim that it is in FPT when parameterized by the
number of candidates, their proof applies only to a restricted setting. The complexity
of Swap Bribery parameterized by the number of candidates remains open.
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2 Preliminaries

We model an election as a pair E = (C, V ), where C = {c1, . . . , cm} is the set
of candidates and V = (v1, . . . , vn) is a collection of voters. Each voter is rep-
resented through his or her preferences. For the case of Approval voting, each
voter’s preferences take the form of a set of candidates approved by this voter.
The candidate(s) receiving the most approvals are the winner(s), that is, we
assume the nonunique-winner model (if several candidates have the same num-
ber of approvals then we view each of them as winning). We write scoreE(ci)
to denote the number of voters approving ci in election E. We refer to elections
that use Approval voting and represent voter preferences in this way as approval
elections. In a weighted election, in addition to their preferences, voters also
have integer weights. A voter v with weight ω(v) counts as ω(v) copies of an
unweighted voter. A parameterized problem is a problem with a certain feature
of the input distinguished as the parameter. For example, for our election prob-
lems, the parameter will always be the number m of candidates in the election.
A problem is fixed-parameter tractable (in FPT) if there exists an algorithm
that, given an instance I with parameter k, can compute the answer to this
problem in time f(k) · |I|O(1), where f is a computable function and |I| is the
length of the encoding of I. A parameterized problem is in XP if there exists an
algorithm that, given an instance I with parameter k, can compute the answer
to this problem in time |I|f(k), where f is some computable function. In other
words, XP is the class of those problems that can be solved in polynomial time
under the assumption that the parameter is a constant. In contrast, problems
which are NP-hard even for constant values of the parameter are said to be
Para-NP-hard with respect to the parameter. For further information, we point
the readers to textbooks on parameterized complexity theory [9,15,22].

3 Covering and Voting: Technique Showcase

In this section we present our main results and techniques. We start by showing
a relation between election problems for the Approval rule and several cover-
ing problems. Then we present a technique for obtaining FPT results for these
problems, and finally we evaluate our algorithms empirically.

3.1 From Approval Voting to Covering Problems

We are interested in the following three problems.

Definition 1 (Bartholdi et al. [2], Faliszewski et al. [12,21]). In each of
the problems Approval-$Bribery (priced bribery), Approval-$CCAV (priced
control by adding voters), and Approval-$CCDV (priced control by deleting
voters), we are given an approval election E = (C, V ) with C = {p, c1, . . . , cm}
and V = (v1, . . . , vn), and an integer budget B. In each of the problems the
goal is to decide whether it is possible to ensure that p is a winner, at a cost
of at most B. The problems differ in the allowed actions and possibly in some
additional parts of the input:
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1. In Approval-$Bribery, for each voter vi, 1 ≤ i ≤ n, we are given a nonneg-
ative integer price πi; for this price we can change the voter’s approval set in
any way we choose.

2. In Approval-$CCAV (CCAV stands for “Constructive Control by Adding
Voters”) we are given a collection W = (w1, . . . , wn′) of additional voters.
For each additional voter wi, 1 ≤ i ≤ n′, we also have a nonnegative integer
price πi for adding wi to the original election.

3. In Approval-$CCDV (CCDV stands for “Constructive Control by Deleting
Voters”), we have a nonnegative integer price πi for removing each voter vi

from the election.

In the weighted variants of these problems (which we denote by putting
“Weighted” after “Approval”), the input elections (and all the voters) are
weighted; in particular, each voter v has an integer weight ω(v).

The unpriced variants of these problems (denoted by omitting the dollar sign
from their names) are defined identically, except that all prices have the same
unit value.

The above problems are, in essence, equivalent to certain covering problems,
thus in this paper we focus on the complexity of these covering problems. As
many of these covering problems consider multisets, the following notation will
be useful. If A is a multiset and x is some element, then we write A(x) to denote
the number of times x occurs in A (that is, A(x) is x’s multiplicity in A). If x is
not a member of A, then A(x) = 0.

Definition 2. In the Weighted Multiset Multicover (WMM) problem
we are given a multiset S = {S1, . . . , Sn} of multisets over the universe U =
{x1, . . . , xm}, integer weights w1, . . . , wn for the multisets2, integer covering
requirements r1, . . . , rm for the elements of the universe, and an integer budget
B. We ask whether there is a subfamily S ′ ⊆ S of multisets from S such that:
(a) for each xi ∈ U it holds that

∑
Sj∈S′ Sj(xi) ≥ ri (that is, each element xi is

covered by at least the required number of times), and (b)
∑

Sj∈S′ wj ≤ B (the
budget is not exceeded).

Briefly put, the relation between WMM and various election problems (as
those defined above) is that the universe corresponds to the candidates in the
election, the multisets correspond to the voters, and the covering requirements
depend on particular actions that we are allowed to perform.

Example 1. Consider an instance of Approval-$CCDV with election E = (C, V ),
where C = {p, c1, . . . , cm} and V = (v1, . . . , vn), with prices π1, . . . , πn for
voters not to participate in the election, and with budget B. We can express
this instance as an instance of Weighted Multiset Multicover as follows.
2 There is a name clash between the literature on covering problems and that on

elections. In the former, “weights” refer to what voting literature would call “prices.”
Weights of the voters are modeled as multiplicities of the elements in the multisets.
We kept the naming conventions from respective parts of the literature to make our
results more accessible to researchers from both communities.
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For each voter vi not approving p, we form a multiset Si with weight πi that
includes exactly the candidates approved by vi, each with multiplicity exactly
one. For each candidate ci, 1 ≤ i ≤ m, we set its covering requirement to be
max(scoreE(ci) − scoreE(p), 0). It is easy to see that there is a way to ensure
p’s victory by deleting voters of total cost at most B if and only if it is possi-
ble to solve the presented instance of Weighted Multiset Multicover with
budget B.

It is clear that we do not need the full flexibility of WMM in Example 1;
it suffices to use Weighted Set Multicover where each input multiset has
multiplicities from the set {0, 1} (in other words, the family S contains sets
without multiplicities, but the union operation takes multiplicities into account).
This is quite important since unrestricted WMM is NP-hard even for the case
of a single-element universe, by a polynomial-time reduction from Partition.

Proposition 1. WMM is NP-hard even for the case of a single element in the
universe.

Another variant of WMM is Multiset Multicover, where we assume each
set to have unit weight. By generalizing the proof for Proposition 1, we show
that this problem is NP-hard already for two-element universes.

Proposition 2. Multiset Multicover is NP-hard even for universes of
size two.

From the viewpoint of voting theory, it is more interesting to consider an even
more restricted variant of Multiset Multicover, where for each multiset Si

in the input instance there is a number ti such that for each element x we have
Si(x) ∈ {0, ti} (in other words, elements within a single multiset have the same
multiplicity). We refer to this variant of the problem as Uniform Multiset
Multicover. Using an argument similar to that used in Example 1, it is easy
to show that Uniform Multiset Multicover is, in essence, equivalent to
Approval-Weighted-CCDV.

In Example 1 we have considered Approval-$CCDV because, among our
problems, it is the most straightforward one to model via a covering problem.
Nonetheless, constructions with similar flavor are possible both for Approval-
$CCAC (by, in effect, counting how many times each candidate is not approved)
and for Approval-$Bribery (by slightly more complicated tricks). Formally, we
have the following result.

Proposition 3. If, parameterized by the universe size, Weighted Set Multi-
cover and UniformMultisetMulticover are in FPT, then, parameterized by
the number of candidates, each ofApproval-$CCAV, Approval-$CCDV, Approval-
$Bribery,Approval-Weighted-CCAV, and Approval-Weighted-CCDV
textitis in FPT.
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3.2 The Main Theoretical Results

Our main theoretical results areFPT algorithms forWeightedSetMulticover
and Uniform Multiset Multicover parameterized by the universe size.3

The mixed integer linear program that we will construct has two main parts.
Part 1 simply specifies what it means to solve the problem at hand, without
worrying about the budget. Part 2 uses the fact that we pick the sets that
implement the solution expressed in Part 1 in the increasing order of weights,
to compute the total cost of the solution through rational-valued variables. The
key observation is that there is a solution with the optimal budget B where all
rational variables are integer.

Theorem 1. Weighted Set Multicover is in FPT when parameterized by
the universe size.

Proof. Consider an instance of Weighted Set Multicover with universe
U = {x1, . . . , xm}, family S = {S1, . . . , Sn} of subsets, weights w1, . . . , wn for
the sets, covering requirements r1, . . . , rm for the elements, and budget B. Our
algorithm proceeds by solving an appropriate mixed integer linear program.

First, we form a family U1, . . . , U2m of all subsets of U . For each i, 1 ≤ i ≤ 2m,
let S(Ui) := {Sj ∈ S | Sj = Ui}. For each i and j, 1 ≤ i ≤ 2m and 1 ≤ j ≤
|S(Ui)|, we write S(Ui, j) to denote the set from S(Ui) with the jth lowest weight
(breaking ties in a fixed arbitrary way). Similarly, we write w(Ui, j) to mean the
weight of S(Ui, j) and we define w(Ui, 0) = 0 (in other words, we group the
sets from S based on their content and sort them with respect to their weights).
Given this setup, we form our mixed integer linear program.

We have 2m integer variables zi, 1 ≤ i ≤ 2m. Intuitively, these variables
describe how many sets we take from each type. We also have 2mn regular
(rational) variables yi,j , 1 ≤ i ≤ 2m, 0 ≤ j ≤ n − 1, which are used to model the
total weight of the selected sets. We introduce the following constraints:

Part 1 Constraints. For each i, 1 ≤ i ≤ 2m, we have constraints zi ≥ 0
and zi ≤ |S(Ui)|. For each element x� of the universe, we also have constraint∑

Ui : x�∈Ui
zi ≥ r�. These constraints ensure that the variables zi describe a

possible solution for the problem (disregarding the budget).

Part 2 Constraints. For each i and j, 1 ≤ i ≤ 2m, 0 ≤ j ≤ n − 1, we have
constraints: yi,j ≥ 0 and yi,j ≥ zi − j. The intended meaning of variable yi,j is
as follows. If the solution described by variables z1, . . . , z2m includes fewer than
j sets from S(Ui), then yi,j = 0; otherwise, yi,j says that after we added the j
lowest-weight sets from family S(Ui), we still need to add yi,j more sets from
this family (however, note that these variables are not required to be integers,
thus the following constraint is designed in such a way that inaccurate—too
large—values of these variables do not affect correctness).
3 Remarkably, under reasonable complexity-theoretic assumptions, Dom et al. [7] have

shown that no polynomial-size kernels exist for Set Cover (which is a special case
of Weighted Set Multicover and Uniform Multiset Multicover), parame-
terized by the universe size and the solution size.
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Our final constraint uses variables yi,j to express the requirement that the
solution has cost at most B:

∑2m

i=1

∑n−1
j=0 yi,j(w(Ui, j + 1) − w(Ui, j)) ≤ B.

To understand this constraint, let us first replace each yi,j with max(0, zi − j).
Now, note that for each fixed value of i, the “internal sum” over j gives the
weight of the cheapest zi sets from S(Ui) (specifically, we first take zi times
w(Ui, 1) because we know that each set costs at least this much, then to that we
add zi − 1 times w(Ui, 2) − w(Ui, 1), because short of the first set from U(Si),
each set costs at least w(Ui, 2), and so on). To see that the constraint is correct,
note that, for each yi,j , we have that yi,j ≥ max(0, zi − j) and the smaller the
values yi,j , the smaller the sum computed in this constraint.

Finally, to solve this mixed integer linear program we invoke Lenstra’s famous
result in its variant for mixed integer programming (see [19, Section 5]). ��
Using the same technique we can show that Uniform Multiset Multicover
is in FPT (Part 2 of our program is slightly different in this case to account for
the fact that now we pick sets with particular content in the order of decreasing
multiplicities).

Theorem 2. Uniform Multiset Multicover is in FPT when parameterized
by the universe size.

Unfortunately, it is impossible to apply our approach to the more general
Multiset Multicover problem; by Proposition 2, the problem is already NP-
hard for two-element universes. It is, however, possible to obtain a certain form
of an FPT approximation scheme.4

Definition 3. Let ε be a real number, ε > 0. We say that algorithm A is an
ε-almost-cover algorithm for Multiset Multicover if, given an input instance
I with universe U = {x1, . . . , xm} and covering requirements r1, . . . , rm, it
outputs a solution that covers each element xi with multiplicity r′

i such that∑
i max(0, ri − r′

i) < ε
∑

i ri.

In other words, on the average an ε-almost-cover algorithm can miss each
element of the universe by an ε-fraction of its covering requirement. For the case
where we really need to cover all the elements perfectly, we might first run an
ε-almost-cover algorithm and then complement its solution, for example, in some
greedy way. Indeed, the remaining instance might be much easier to solve.

The key idea regarding computing an ε-almost-cover is that it suffices to
replace each input multiset by several submultisets, each with a particular “pre-
cision level,” so that multiplicities of the elements in each submultiset are of a
similar order of magnitude.

4 While this result does not, as of yet, have direct application to voting, we believe it
is quite interesting in itself.
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Theorem 3. For every rational ε > 0, there is an FPT ε-almost-cover algorithm
for Multiset Multicover parameterized by the universe size.

Proof. Throughout this proof we describe our ε-almost-cover algorithm for
Multiset Multicover. We consider an instance I of Multiset Multicover
with a family S = {S1, . . . , Sn} of multisets over the universe U = {x1, . . . , xm},
where the covering requirements for the elements of the universe are r1, . . . , rm.
We associate each set S from the family S with the vector vS = 〈S(x1), S(x2), . . . ,
S(xm)〉 of element multiplicities.

Let ε > 0 be the desired approximation ratio. We fix Z = 
 4m
ε � and Y =

Z + 
 4Zm3

ε �. Notice that m
Z ≤ ε

4 and Zm3

Y −Z ≤ ε
4 . Let X =

(
2Y m

ε + 1
)m

and
let V1, . . . , VX be a sequence of all m-dimensional vectors whose entries come
from the

(
2Y m

ε + 1
)
-element set {0, ε

2 , ε, 3ε
2 , 2ε, . . . , Y m}. For each j, 1 ≤ j ≤ X,

we write Vj = 〈Vj(x1), Vj(x2), . . . , Vj(xm)〉. Intuitively, these vectors describe
some subset of “shapes” of all possible multisets—interpreted as vectors of
multiplicities—over our m-element universe. For each number β, we write βVi

to mean the vector 〈�βVi,1, �βVi,2, . . . , �βVi,m〉.
Intuitively, vectors of the form βVi are approximations of those multisets for

which the positive multiplicities of the elements do not differ too much (formally,
for those multisets for which the positive multiplicities differ by at most a factor
of 2Y m

ε ). Indeed, for each such set S, we can find a value β and a vector Vj such
that for each element xi it holds that S(xi) ≥ βVj(xi) ≥ (

1 − ε
2

)
S(xi). However,

this way we cannot easily approximate those sets for which multiplicities differ
by a large factor. For example, consider a set S represented through the vector
〈0, . . . , 0, 1, Q〉, where Q � 2Y m

ε . For each value β and each vector Vj , the
vector βVj will be inaccurate with respect to the multiplicity of element xm−1

or inaccurate with respect to the multiplicity of element xm (or inaccurate with
respect to both these multiplicities).

The main step of our algorithm is to modify the instance I so that we replace
each set S from the family S with a sequence of vectors of the form βVj that
altogether add to at most the set S (each such sequence can contain multiple
vectors of different “shapes” Vj and of different scaling factors β). The goal
is to obtain an instance that on the one hand consists of “nicely-structured”
sets (vectors) only, and on the other hand has the following property: If in
the initial instance I there exist K sets that cover elements x1, . . . xm with
multiplicities r1, . . . , rm, then in the new instance there exist K sets that cover
elements x1, . . . , xm with multiplicities r′

1, . . . , r
′
m, such that

∑
i max(0, ri−r′

i) <
ε
∑

i ri. We refer to this as the almost-cover approximation property.
The procedure for replacing a given set S is presented as Algorithm 1. This

algorithm calls the Emit function with arguments (β, V ) for each vector βV
that it wants to output (V is always one of the vectors V1, . . . , VX). The emit-
ted sets replace the set S from the input. Below we show that if we apply
Algorithm 1 to each set from S, then the resulting instance I ′ has our almost-
cover approximation property.
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Let us consider how Algorithm 1 proceeds on a given set S. For the sake of
clarity, let us assume there is no rounding performed by Algorithm 1 in function
Round And Emit (the loop in line 29). We will go back to this issue later.

The algorithm considers the elements of the universe—indexed by variable i
throughout the algorithm—in the order given by the vector “sorted” (formed in
line 3 of Algorithm 1). Let ≺ be the order in which Algorithm 1 considers the
elements (so xi′ ≺ xi′′ means that xi′ is considered before xi′′), and let x′

1, . . . , x
′
m

be the elements from the universe renamed so that x′
1 ≺ x′

2 ≺ · · · ≺ x′
m. Let r be

the number of sets that Algorithm 1 emits on our input set S and let these sets
be S1, S2, . . . , Sr. (This is depicted on Fig. 1, where for the sake of the example
we take m = 6 and r = 3).

Consider the situation where the algorithm emits the k’th set, Sk, and let ik
be the value of variable i right before the call to Round And Emit that caused
Sk to be emitted. Note that each element x from the universe such that xik

≺ x
has the same multiplicity in Sk as element xik

(line 19 of Algorithm 1). Let
tk =

∑
j Sk(x′

j) be the sum of the multiplicities of the elements from Sk. We
make the following observations:

Observation 1: Sk(x′
ik

) = Z · Sk(x′
ik−1

).
Observation 2: It holds that Sk+1(x′

ik
) ≥ Y · Sk(x′

ik−1) − Z · Sk(x′
ik−1) =

(Y − Z)Sk(x′
ik−1) = (Y −Z)

Z Sk(x′
ik

).
Observation 3: We have that Sk+1(x′

ik
) ≥ (Y −Z)

Z Sk(x′
ik

) ≥ (Y −Z)
Zm tk. Further,

we have that Sk+1(x′
ik+1

) ≥ Sk+1(x′
ik

) ≥ (Y −Z)
Zm2

∑
j≤k tj .

Observation 4: For i < ik it holds that
∑

q≤k Sq(x′
i) = S(x′

i).

Now let us consider some solution for instance I that consists of K sets,
Sopt = {Sopt

1 , Sopt
2 , . . . , Sopt

K } ⊆ S. These sets, altogether, cover all the elements
from the universe with required multiplicities, that is, it holds that for each i we
have

∑
S∈Sopt S(xi) ≥ ri. For each set S ∈ Sopt and for each element xi from

the universe, we pick an arbitrary number yS,i so that altogether the following
conditions hold:

1. For every set S ∈ Sopt and every xi, yS,i ≤ S(xi).
2. For every xi,

∑
S∈Sopt yS,i = ri.

Intuitively, for a given set S, the values yS,1, yS,2, . . . , yS,m describe the multi-
plicities of the elements from S that are actually used to covers the elements.
Based on these numbers, we will show how to replace each set from Sopt with one
of the sets emitted for it, so that the resulting family of sets has the almost-cover
approximation property.

Consider a set S ∈ Sopt for which Algorithm 1 emits r sets, S1, S2, . . . , Sr.
As in the discussion of Algorithm 1, let x′

1, . . . , x
′
m be the elements from the

universe in which Algorithm 1 considers them (when emitting sets for S). We
write y′

S,i to mean the value yS,j such that xj = x′
i. Let R = {S1, S2, . . . , Sr},

let imax = argmaxiy
′
S,i, and let Srepl be the set from R defined in the following

way:
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Algorithm 1. The transformation algorithm used in the proof of Theo-
rem 3—the algorithm replaces a given set S with a sequence of vectors of
the form βVj .

1 Main(S):
2 multip ← 〈(1, S(x1)), (2, S(x2)), . . . , (m, S(xm))〉;
3 sorted ← sort(multip) ; // sort in ascending order of multiplicities
4 i ← 0 ;

// sorted [i ].first refers to the i’th item’s number
// sorted [i ].second refers to its multiplicity

5 while sorted[i].second = 0 do
6 i ← i + 1 ;
7 Main Rec(i, sorted) ;

8

9 Main Rec(i, multip):
10 V ← 〈0, 0, . . . , 0〉 (vector of m zeros). ;
11 β ← multip[i].second ;
12 V [multip[i].first] ← 1 ;
13 i ← i + 1 ;
14 while i ≤ m do
15 if multip[i].second < Y · multip[i−1].second then

16 V [multip[i].first] ← multip[i].second
β

;

17 i ← i + 1 ;

18 else
19 for j ← i to m do

20 V [multip[j].first] ← Z·multip[i−1].second
β

;

21 Round And Emit(β, V ) ;
22 for j ← 1 to m do
23 multip[i].second ← multip[i].second − βV [multip[i].first] ;
24 Main Rec(i, multip) ;
25 return

26 Round And Emit(β, V );

27

28 Round And Emit(β, V ):
29 for � ← 1 to m do

30 V [�] ← � 2V [�]
ε

�/ ε
2
;

31 Emit(β, V );

1. If for every set Sk ∈ R we have Sk(x′
imax

) < y′
S,imax

, then Srepl is the set
Sk ∈ R with the greatest value Sk(x′

imax
) (the set that covers element x′

imax

with the greatest multiplicity). This is the case denoted as “Case (c)” in
Fig. 2.

2. Otherwise Srepl is the set Sk ∈ R that has the lowest value Sk(x′
imax

), yet
no-lower than y′

S,imax
. This is the case denoted as either “Case (a)” or “Case

(b)” in Fig. 2.
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Fig. 1. An example for Algorithm 1: The algorithm replaces S with sets S1, S2, and S3.

Fig. 2. The cases in the proof of Theorem 3. The bullets represent values y′
S,1, . . . , y

′
S,m.

We now show that Srepl is a good candidate for replacing S, that is, that∑
i max(0, y′

S,i − Srepl(x′
i)) < ε

∑
i y′

S,i. To this end, we consider the three cases
depicted in Fig. 2:

Case (a). It holds that y′
S,imax

< S1(x′
imax

) (that is, S1 already covers the most
demanding element of the universe to the same extent as S does). This means
that we have

∑
� max(0, y′

S,� − S1(x′
�)) = 0. By the criterion for choosing set

Srepl, we have that Srepl = S1.
Case (b). There exist sets Sk−1, Sk ∈ R such that Sk(x′

imax
) ≥ y′

S,imax
>

Sk−1(x′
imax

) (and thus, Srepl = Sk). Let x′
j = x′

ik−1
(recall from the discussion

of Algorithm 1 that ik−1 is the index of the universe element which caused
emitting Sk−1). Let us consider two subcases:
(i) y′

S,imax
≤ Sk(x′

j): We first note that for each i ≥ j it holds that y′
S,i ≤

Sk(x′
i). Further, for each i < j, we have y′

S,i ≤ ∑
�≤k−1 S�(x′

i) (this
follows from Observation 4 and the fact that y′

S,i ≤ S(x′
i)). Based on
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this inequality, we get:
∑

i<j

y′
S,i ≤

∑

i<j

∑

�≤k−1

S�(x′
i) ≤

∑

�≤k−2

t� +
∑

i<j

Sk−1(x′
i)

≤ Zm2

(Y − Z)
Sk−1(x′

j) +
m

Z
Sk−1(x′

j) (Observations 3 and 1)

≤ ε

2
Sk−1(x′

j) ≤ ε

2
yS,imax .

In consequence, it holds that
∑

� max(0, y′
S,� − Sk(x′

�)) < ε
2

∑
� y′

S,�.

(ii) y′
S,imax

> Sk(x′
j): We omit the proof that in this case it also holds that∑

� max(0, y′
S,� − Sk(x′

�)) ≤ ε
2

∑
� y′

S,�.
Case (c). Every set Sk ∈ R has Sk(x′

imax
) < y′

S,imax
. We omit the proof that in

this case it holds that
∑

� max(0, yS,� − Sk(x′
�)) ≤ ε

2

∑
� y′

S,�.

The above case analysis almost shows that we indeed have the almost-cover
approximation property. It remains to consider the issue of rounding (Line 29 of
Algorithm 1). This rounding introduces inaccuracy that is bounded by factor ε

2
and thus, indeed, we do have the almost-cover approximation property.

Now, given the new instance I ′, it suffices to find a solution for I ′ that satisfies
the desired approximation guarantee (that is, a collection S ′ of at most K sets
that form an ε-almost-cover). It is possible to do so through a mixed integer
linear program (and an application of the Lenstra’s algorithm [19]). We omit
the details due to space (we mention that since in I ′ all the sets are represented
through vectors of the form βVj , we can bound the number of integer variables
by a function of the size of the universe). The final output of our algorithm is
as follows: For each set S from the original family S, we output S if S ′ contains
at least one set emitted for S. ��

For the case of Weighted Set Multicover we show a more standard
variant of an FPT approximation scheme.

Definition 4. Let ε, 0 < ε < 1, be a real number. A (1+ε)-approximation algo-
rithm for Weighted Set Multicover is an algorithm that, given an instance
of the problem, outputs a solution satisfying all covering requirements, but whose
weight is at most 1 + ε times the weight of the optimal one.

As opposed to all the previously presented algorithms (including the one from
Theorem 3), the next algorithm does not rely on solving (M)ILP instances. The
main idea is to use a refined variant of brute-force search which considers for
each type of sets only a set of promising numbers of occurrences in the solution
instead of considering every possible number of occurrences.

Theorem 4. For each ε, 0 < ε < 1, there is a (1 + ε)-approximation algorithm
for Weighted Set Multicover that runs in time O(
2m/ε + 1�2m

n2m).

We conclude this section by translating the results from the world of covering
problems to the world of approval elections. We obtain the following corollary.
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Fig. 3. Running time depending on the number of candidates. Left: plain test series,
right: duplicated voters.

Corollary 1. Approval-$CCAV,Approval-$CCDV,Approval-$Bribery,
as well as Approval-Weighted-CCAV and Approval-Weighted-CCDV,
are in FPT, when parameterized by the number of candidates.

Contrarily, it is either shown explicitly by Faliszewski et al. [12], or follows triv-
ially, that these problems with both prices and weights are NP-hard already for
two candidates (that is, Para-NP-hard with respect to the number of candidates).

3.3 Preliminary Empirical Evaluation

In this section we evaluate our algorithms empirically. Specifically, we focus on
the MILP-based algorithm from subsection 3.2, as applied to Approval-$CCDV,
and on the standard ILP algorithm for this problem (see below). In both cases,
instead of using the very slow algorithm of Lenstra (with running time being
roughly (2m)(2

m) [16,18,19]), we chose an off-the-shelf solver (CPLEX). The
main purpose of the experiments is to explore whether our (M)ILP-based FPT
algorithms are practical to use. Thus, we focus on evaluating the running time.
(We point the reader, for example, to the work of Erdélyi et al. [11] for an
example of a much more detailed experimental analysis of control problems in
elections for several voting rules).

Test Data. We use Preflib [20] as a well-known source for real-world elections.
Since Preflib contains only few elections with approval preferences (provided
through linear orderings with ties containing exactly two groups of tied candi-
dates each), we used elections with strict linear-order preferences and for each
voter we uniformly at random chose how many of the top candidates this voter
approves of.

Test Series. We focus on Approval-$CCDV since, among our problems, it
requires the least amount of information to be added to the elections to obtain
full instances. Specifically, we only need to choose the preferred candidate p and
the prices for deleting the voters. We performed two test series, duplicated voters
and plain. In the duplicated voters test series we interpret the Preflib elections
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as random samples of larger elections and, for each election from PrefLib, dupli-
cate each voter between 1 and 500 times (the multiplication factor was chosen
uniformly at random for each voter separately). In the plain test series, the set of
voters remains unchanged. For each voter (after the duplication) we set the price
for its deletion uniformly at random to be an integer between 1 and 500. Finally,
we uniformly at random select one candidate to be the preferred one and create
for each Preflib election and each m ∈ {10, 12, . . . , 40}, ten instances with m
candidates (by first creating the full instance and removing all but m randomly
chosen candidates). All in all, we obtained more than 8000 test instances for
each test series.

We stress that our focus is on the running times of our algorithms, and not—
for example—on modeling how frequent control might be in real-life settings.
The purpose of the experiments is to be a proof-of-concept of the algorithms
suggested herein.

Algorithms. We tested two algorithms, both of which transfer the Approval-
$CCDV instance into a Weighted Set Multicover instance and apply
CPLEX to solve a (mixed) integer program. The first algorithm (referred to as
ILP) uses a straightforward integer linear programming formulation with one
binary variable for each set (representing presence in the solution), constraints
ensuring that each element is appropriately covered by the selected sets, and an
objective function minimizing the total costs. The second algorithm (referred to as
MILP) uses the mixed integer linear programming formulation from Theorem 1.
We did not consider brute-force or approximation approaches since both (M)ILP-
based algorithms turned out to be extremely fast for the Preflib data set (and
always return optimal solutions).

Results. Surprisingly, both algorithms solved all instances very fast (using at
most a few seconds). For the plain test series the running time slightly increases
as the number of candidates increases, for both algorithms. A possible expla-
nation is that the program description as well as the number of variables5 also
slightly increases. The ILP is faster by roughly a constant factor which might be
caused by its much simpler formulation and the usage of binary variables instead
of integer ones. For the duplicated voters test series, the situation changes: the
running time increases only slightly with the increase of the number of candidates
for the MILP, but it increases significantly for the ILP. A possible explanation is
that the ILP has one variable for each voter whereas the MILP has one variable
for each class of duplicated voters. See Fig. 3 for an illustration.

4 Generalizations

We now consider the ordinal model of elections, where each voter’s preferences
are represented as an order, ranking the candidates from the most preferred one

5 By removing candidates during instance generation one also removes voters only
approving removed candidates.
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to the least preferred one. For example, for C = {c1, c2, c3}, vote c1 � c3 � c2
means that the voter likes c1 best, then c3, and then c2.

There are many different voting rules for the ordinal election model. Here we
concentrate only on scoring rules. A scoring rule for m candidates is a nonde-
creasing vector α = (α1, . . . , αm) of integers. Each voter gives α1 points to his or
her most preferred candidate, α2 points to the second most preferred candidate,
and so on. Examples of scoring rules include the Plurality rule, defined through
vectors of the form (1, 0, . . . , 0), k-Approval, defined through vectors with k ones
followed by m − k zeroes, and Borda count, defined through vectors of the form
(m − 1,m − 2, . . . , 0).

For each voting rule R in the ordinal model, it is straightforward to define R-
$CCAV, R-$CCDV, and R-$Bribery. Using our MILP technique, we obtain
the following result.

Theorem 5. For every voting rule R for which winner determination can be
expressed through a set of integer linear inequalities over variables that indicate
how many voters with each given preference order are in the election, R-$CCAV,
R-$CCDV, and R-$Bribery are in FPT when parameterized by the number of
candidates.

For a description of what we mean by “expressing the winner determination
problem through integer linear inequalities,” we point to the discussions by Dorn
and Schlotter [8] or by Faliszewski et al. [14]. For example, the result applies to
all scoring rules.

We also partially resolve an open problem posed by Bredereck et al. [5]
regarding Shift Bribery. In this problem we are given an election and a pre-
ferred candidate p, and the goal is to ensure p’s victory by shifting p forward in
some of the votes (the cost of each shift depends on the number of positions by
which we shift p). Under the sortable prices assumption, voters with the same
preference orders can be sorted so that if voter v′ precedes voter v′′, then we
know that shifting p by each given number of positions i in the vote of v′ costs
at most as much as doing the same in the vote of v′′. Using this assumption, we
obtain the following result (all-or-nothing prices are a special case of sortable
prices where we always shift p to the top of a given vote or we leave the vote
unchanged).

Theorem 6. For Borda (and for Maximin and Copeland voting rules), Shift
Bribery for sortable price functions and for all-or-nothing price functions is in
FPT when parameterized by the number of candidates.

Bredereck et al. [5] gave an FPT approximation scheme for the the problems
from Theorem 6; we use part of their algorithm and apply our MILP technique.

5 Conclusions

We have studied election control and bribery for the case of few voters with
prices. We also considered weighted Approval elections with few voters. By
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developing a very general proof technique, in these settings we have improved
known XP-membership results to FPT-membership results. We have also tested
our algorithms empirically and found them to be extremely fast. Our empirical
results provide some evidence for the correlation between running time and num-
ber of candidates, as given by the FPT-classification, at least for Preflib-based
Approval-$CCDV test instances.

Our paper leads to several possible directions for future work. First, the
experiments we have presented are only preliminary and they should be extended
in a number of ways. Second, it would be very interesting to further explore the
relevance of FPT approximation algorithms to other voting scenarios.
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Abstract. Manipulation of judgment aggregation procedures has first
been studied by List [14] and Dietrich and List [8], and Endriss et al. [9]
were the first to study it from a computational perspective. Baumeister
et al. [2,3,6] introduced the concepts of bribery and control in judg-
ment aggregation and studied their algorithmic and complexity-theoretic
properties. However, their results are restricted to Hamming-distance-
respecting preferences and their results on bribery apply to the
premise-based procedure only. We extend these results to more gen-
eral preference notions, including closeness-respecting and top-respecting
preferences that are due to Dietrich and List and have been applied
to manipulation in judgment aggregation by Baumeister et al. [4,5]. In
addition, our results apply to uniform premise-based quota rules that
generalize the premise-based procedure.

Keywords: Bribery · Control · Judgment aggregation · Computational
complexity

1 Introduction

Judgment aggregation refers to methods of collective decision making where the
judgments of a number of judges are aggregated so as to arrive at a collective
judgment set. Endriss et al. [9] were the first to study manipulation in judgment
aggregation from a computational point of view. We study the complexity of
problems related to bribery and control in judgment aggregation, notions that
were introduced and applied to voting problems in computational social choice by
Bartholdi et al. [1] (see also the work of Hemaspaandra et al. [13]) for control and
by Faliszewski et al. [10,11] for bribery (see also the book chapter by Faliszewski
and Rothe [12] for many more references). These notions have been transferred
to (a computational study of) judgment aggregation by Baumeister et al. [2,3,
5,6]. However, their results apply to Hamming-distance-respecting preferences
only, and in the case of bribery they have only investigated the premise-based
procedure. The main contribution of this paper is to extend their study for
three types of control (control by adding, by deleting, and by replacing judges)
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 432–448, 2015.
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and for bribery and microbribery to more general preference notions, including
closeness-respecting and top-respecting preferences. We also extend the study
of bribery to uniform premise-based quota rules, which generalize the premise-
based procedure.

Closeness-respecting and top-respecting preferences have been introduced by
Dietrich and List [8] and have been applied to manipulation in judgment aggre-
gation by them and by Baumeister et al. [4,5]. Intuitively, for top-respecting
preferences all we know is that the attacker prefers her desired set to any other
judgment set, while in closeness-respecting preferences we also know that judg-
ment sets with additional agreements are preferred.

In Sect. 2, we provide the needed notions from judgment aggregation. We
study the complexity of control problems in Sect. 3 and that of bribery problems
in Sect. 4. In Sect. 5, we summarize our results and propose some open questions
for future work.

2 Definitions and Notations

Throughout this paper, we will utilize the judgment aggregation framework due
to Endriss et al. [9]. Let LPS be the set of all propositional formulas that can
be built from a set of propositional variables, PS, using the common boolean
connectives, i.e., disjunction (∨), conjunction (∧), implication (→), and equiv-
alence (↔) as well as the constants 1 (true) and 0 (false). We use α to refer
to the complement of α, that is, α = ¬α if α is not negated, and α = β if
α = ¬β. A set Φ ⊆ LPS is said to be closed under complementation if α ∈ Φ
for all α ∈ Φ, and to be closed under propositional variables if PS ⊆ Φ. We
call a finite nonempty set Φ ⊆ LPS without doubly negated formulas that is
closed under complementation an agenda, and a subset J ⊆ Φ a judgment set
for Φ. J is an individual judgment set if it is the set of propositions accepted
by some judge. Furthermore, J is called complete if α ∈ J or α ∈ J for all
α ∈ Φ, and J is said to be consistent if there exists an assignment such that all
formulas in J are satisfied. Let J (Φ) be the set of all complete and consistent
judgment sets of an agenda Φ and let N = {1, . . . , n} be the set of judges. We
call J = (J1, . . . , Jn) ∈ J (Φ)n the profile of the judges’ individual judgment
sets. A resolute1 (judgment aggregation) procedure for an agenda Φ and a set of
judges N of size n is a function F : J (Φ)n → 2Φ, where 2Φ denotes the power
set of Φ. That means that a procedure maps a profile to a collective judgment
set or (collective) outcome.

Let ‖S‖ be the cardinality of the set S and let |= denote the satisfaction
relation. Dietrich and List [7] introduced the class of premise-based quota rules.
We will consider only a special case, the uniform premise-based quota rules.

1 There are also irresolute judgment aggregation procedures (i.e., procedures that may
output more than one collective judgment set), such as the distance-based procedures
introduced by Pigozzi [17] and Miller and Osherson [15], which we won’t consider
here, though.
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Definition 1 (Uniform Premise-based Quota Rule). Let the agenda Φ be
closed under propositional variables. Subdivide Φ into the two disjoint subsets
Φp (the set of premises) containing exactly all literals, and Φc (the set of con-
clusions), both closed under complementation. Furthermore, subdivide Φp into
two disjoint subsets, Φ1 and Φ2, satisfying that ϕ ∈ Φ1 if and only if ϕ ∈ Φ2.
Assign to each literal ϕ ∈ Φ1 a rational quota q, 0 ≤ q < 1, and to each lit-
eral ϕ ∈ Φ2 the associated quota q′ = 1 − q. The uniform premise-based quota
rule with quota q (denoted by UPQRq) is the procedure mapping each profile
J = (J1, . . . , Jn) of individual judgment sets for Φ to the collective outcome
UPQRq(J) = 
 ∪ {ψ ∈ Φc | 
 |= ψ}, where 
 = {ϕ ∈ Φ1 | ‖{i | ϕ ∈ Ji}‖ >
nq} ∪ {ϕ ∈ Φ2 | ‖{i | ϕ ∈ Ji}‖ ≥ nq′}.

Throughout the paper, we will assume that all literals in Φ1 are not negated.
Since Φ is closed under propositional variables and Φp contains exactly all literals,
the outcomes of UPQRq are complete and consistent. The threshold for a literal
ϕ ∈ Φ1 to be accepted is nq+1�, i.e., ϕ is contained in the collective outcome if
and only if it is contained in at least nq + 1� individual judgment sets, whereas
literals ϕ ∈ Φ2 need at least �nq′� affirmations. It is possible to determine in
polynomial time whether a given formula is an element of the collective outcome
of a uniform premise-based quota rule. The special case of UPQR1/2 for an odd
number of judges is also known as the premise-based procedure (PBP).

We will study judgment aggregation problems where some external agent
tries to influence a judgment aggregation process in order to obtain a better
outcome. In order to compare two outcomes, we will use various notions of pref-
erence types induced by an external agent’s desired set. These notions have been
introduced by Dietrich and List [8] and have later been refined by Baumeister
et al. [5]. Formally, this desired set is a subset of a complete and consistent
judgment set.

Let Φ be an agenda, X,Y ∈ J (Φ), and let � be a weak order over J (Φ), i.e.,
a transitive and total binary relation over complete and consistent judgment sets.
We say that X is weakly preferred to Y whenever X � Y , and we say that X is
preferred to Y , denoted by X � Y , whenever X � Y and Y �� X. Furthermore,
we define X ∼ Y by X � Y and Y � X.

Definition 2. Let Φ be an agenda, let U be the set of all weak orders over J (Φ),
and let J be a possibly incomplete judgment set. Define

1. the set UJ ⊆ U of unrestricted J-induced (weak) preferences by

UJ = {� ∈ U | for allX,Y ∈ J (Φ), X ∼ Y wheneverX ∩ J = Y ∩ J};

2. the set TRJ ⊆ UJ of top-respecting J-induced (weak) preferences by

TRJ =
{

� ∈ UJ
for allX,Y ∈ J (Φ), X � Y
wheneverX ∩ J = J andY ∩ J �= J

}
;

3. the set CRJ ⊆ UJ of closeness-respecting J-induced (weak) preferences by

CRJ = {� ∈ UJ | for allX,Y ∈ J (Φ), if Y ∩ J ⊆ X ∩ J thenX � Y }.
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Definition 3. Let Φ be an agenda, let X and Y be complete and consis-
tent judgment sets for Φ, let J be an external agent’s desired set, and let
TJ ∈ {UJ , TRJ , CRJ} be a type of J-induced (weak) preferences. We say that

1. the external agent necessarily/possibly weakly prefers X to Y for type TJ if
X � Y for all/some � ∈ TJ .

2. the external agent necessarily/possibly prefers X to Y for type TJ if X � Y
for all/some � ∈ TJ .

Let J be the desired set of the external agent. In the case of closeness-
respecting preferences, the external agent necessarily prefers a new outcome Y
to the actual outcome X if and only if she achieves a new agreement with J while
preserving the existing agreements. On the other hand, she possibly prefers Y
to X if and only if she achieves a new agreement with J regardless of new
differences.

Example 4. Let Φ = {a, b, c, a∧ b, ¬a∨ c, ¬a, ¬b, ¬c, ¬(a∧ b), ¬(¬a∨ c)} be
an agenda and let J = (J1, J2, J3) be a profile. Table 1 shows the individual judg-
ment sets of the three judges as well as the collective outcome UPQR1/2(J) and
the external agent’s incomplete desired set J . Here a 1 indicates that the formula
is contained in the judgment set, whereas a 0 means that the formula’s comple-
ment is in the set. Assume the external agent changes the profile to some (not
further specified) profile J′ with UPQR1/2(J′) = {¬a,¬b, c,¬(a ∧ b),¬a ∨ c} and
consider closeness-respecting preferences. Since it holds that {¬(a∧b),¬a∨c} =
J ∩ UPQR1/2(J′) ⊃ J ∩ UPQR1/2(J) = {¬a ∨ c}, the external agent necessarily
prefers UPQR1/2(J′) to UPQR1/2(J).

Table 1. Example for closeness-respecting preferences

Judgment set a b c a ∧ b ¬a ∨ c

J1 1 1 0 1 0

J2 1 0 1 0 1

J3 0 1 1 0 1

UPQR1/2 1 1 1 1 1

J 0 0 1

We assume that the reader is familiar with the complexity classes P and NP
as well as with the concept of polynomial-time many-one reducibility (denoted
by ≤p

m; see, for example, the textbooks by Papadimitriou [16] and Rothe [18]).
We will use the following three NP-complete decision problems in our reduc-

tions. Given a propositional formula ϕ in conjunctive normal form (CNF) so
that neither setting all variables to true nor setting all variables to false will
satisfy the formula, the problem Restricted-SAT asks whether there is a sat-
isfying assignment for ϕ. The problem Dominating-Set asks, given a graph
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G = (V,E) and a positive integer k, if G has a dominating set of size at most k,
i.e., a subset V ′ ⊆ V where ‖V ′‖ ≤ k such that every vertex v ∈ V belongs to
the closed neighborhood of some v′ ∈ V ′. Finally, given a set X and a collection
C containing 3-element subsets of X, the problem Exact-Cover-by-3-Sets
(X3C) asks if there is an exact cover for X, i.e., a subcollection C ′ ⊆ C such
that each element of X is a member of exactly one element of C ′.

3 Control

In this section, we study the complexity of control problems related to the types
of preferences defined in the previous section. These types of control in judgment
aggregation have been introduced by Baumeister et al. [2,3], but their results are
restricted to Hamming-distance-respecting preferences only. Hamming-distance-
respecting preferences induce a weak order over all complete and consistent judg-
ment sets for a given agenda, by counting the number of positive formulas on
which two judgment sets differ.

3.1 Preliminaries

We now formally define the relevant control problems for the uniform premise-
based quota rule with quota q and for some given preference type T , starting
with (possible and necessary) control by adding and by deleting judges.

UPQRq-T -Possible-Control-by-Adding-Judges

Given: An agenda Φ, two profiles J ∈ J (Φ)n and K ∈ J (Φ)m, a desired set J ,

and a positive integer k.

Question: Is there a subprofile K′ ⊆ K of size at most k such that for the new profile

J′ = J ∪ K′, it holds that UPQRq(J
′) � UPQRq(J) for some � ∈ TJ?

UPQRq-T -Possible-Control-by-Deleting-Judges

Given: An agenda Φ, a profile J ∈ J (Φ)n, a desired set J , and a positive integer k.

Question: Is there a subprofile J′ ⊆ J of size at most k such that UPQRq(J �J′) �
UPQRq(J) for some � ∈ TJ?

The next control type, control by replacing judges, combines the previous two
types. To motivate this control type, Baumeister et al. [2,3] provide real-world
examples taken from the regulations on implementing powers in the Council of
the European Union or the European Commission.

Concerning the problems UPQRq-T -Necessary-Control-by-C for any
one of these control types C , the respective condition must hold for all � in TJ ,
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UPQRq-T -Possible-Control-by-Replacing-Judges

Given: An agenda Φ, two profiles J ∈ J (Φ)n and K ∈ J (Φ)m, a desired set J ,

and a positive integer k.

Question: Are there subprofiles J′ ⊆ J and K′ ⊆ K of size ‖J′‖ = ‖K′‖ ≤ k such that

for the new profile S = (J �J′) ∪ K′, it holds that UPQRq(S) � UPQRq(J)

for some � ∈ TJ?

whereas in UPQRq-Exact-Control-by-C we ask whether the desired set J
is contained in the collective outcome after the external agent (called the chair)
has exerted control of type C .

A complete desired set J is a special case of an incomplete one. That means
that every NP-hardness result for problems with a complete J automatically
shows NP-hardness for the problems with incomplete J . It is easy to see that all
decision problems in this section are in NP.

Definition 5. Let Φ be an agenda and let C be a given control type. A resolute
judgment aggregation procedure F is necessarily/possibly immune to control by C
for induced preferences of type T ∈ {U, TR,CR} if for all profiles J and for each
desired set J , the chair necessarily/possibly weakly prefers the outcome F (J) to
the outcome F (J′) for type TJ , where J′ denotes the new profile after exerting
control of type C .

3.2 Results for Control

For uniform premise-based quota rules, Baumeister et al. [3] show NP-
completeness of exact control by adding and by deleting judges for complete
desired sets and for the quota q = 1/2, and NP-completeness of exact control by
replacing judges for any quota. The proof of the latter result can be modified so
as to use a complete desired set.

Our first result gives a link between the exact control problem of a given type
and the corresponding possible and necessary control problem with respect to
various preference types induced by the chair’s desired set.

Proposition 6. Let C be a control type and let q, 0 ≤ q < 1, be a rational
quota.

1. UPQRq-Exact-Control-by-C ≤p
m UPQRq-T -Possible-Control-by-C

for each preference type T ∈ {U,TR,CR}.
2. UPQRq-Exact-Control-by-C ≤p

m UPQRq-T -Necessary-Control-
by-C for each preference type T ∈ {TR,CR}.
The simple proof is an adaption of the proof of the corresponding reductions

between certain manipulation problems due to Baumeister et al. [5, Thm. 7]. In
the construction we use the conjunction of all formulas in the desired set of the
Exact-Control-by-C instance as the single element of the desired set in the
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corresponding preference-based instance. Since the latter set is incomplete, the
case of complete desired sets has to be considered separately.

Assuming a complete desired set inducing top-respecting preferences, the
chair necessarily prefers only her desired set to any other possible outcome.
Thus, in this case, NP-completeness of UPQRq-TR-Necessary-Control-by-
C follows from NP-completeness of the exact control problem of type C for a
complete desired set.

We now consider closeness-respecting preferences.

Theorem 7. UPQR1/2-CR-Possible-Control-by-Adding-Judges and
UPQR1/2-CR-Necessary-Control-by-Adding-Judges both are NP-comple-
te, even for a complete desired set.

Table 2. Construction for the proof of Theorem 7

Judgment set α0 α1 · · · α3m β ϕ ∨ β

J1 1 1 · · · 1 0 1

J2, . . . , Jm 0 1 · · · 1 0 0

Jm+1 0 0 · · · 0 0 0

UPQR1/2 0 1 · · · 1 0 0

J 0 1 · · · 1 1 1

Proof. The proof works by a reduction from X3C and uses a construction simi-
lar to the one employed by Baumeister et al. [3]. Let (X,C) be an X3C instance,
where X = {x1, . . . , x3m} and C = {C1, . . . , Cn}. For the first part of the
theorem, let the agenda Φ contain the literals α0, α1, . . . , α3m, β, the formula
ϕ ∨ β with ϕ = α0 ∧ · · · ∧ α3m, and the corresponding negations. The profile
J = (J1, . . . , Jm+1), the collective judgment set UPQR1/2(J), and the desired set
J can be seen in Table 2.

Let K = (K1, . . . , Kn) be the profile containing the individual judgment sets
to be added, where Ki = {¬β, α0, αj ,¬αl | xj ∈ Ci, xl /∈ Ci, 1 ≤ j, l ≤ 3m}. The
chair is allowed to add m judgment sets from K.

Since no judge accepts β, the additional agreement of the new outcome with
J can only occur for the formula ϕ ∨ β. To add α0, the chair has to add at
least m judges for a total of 2m + 1 judges. But then every αi, 1 ≤ i ≤ 3m,
needs exactly one additional affirmation. Therefore, there is a successful control
if and only if there is an exact cover of the given X3C instance. This shows that
UPQR1/2-CR-Possible-Control-by-Adding-Judges is NP-complete.

Concerning the proof of the second part, let the agenda Φ′ contain only α0,
α1, . . . , α3m and the corresponding negations. Let J′ and K′ be the correspond-
ing profiles restricted to Φ′ and let J ′ = {α0, α1, . . . , α3m} be the chair’s desired
set. Since the chair has to preserve the initial agreements with J , by a sim-
ilar argumentation as above, there is a successful control if and only if there
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is an exact cover for the given X3C instance. Thus UPQR1/2-CR-Necessary-
Control-by-Adding-Judges is NP-complete. ��
Theorem 8. UPQR1/2-CR-Possible-Control-by-Deleting-Judges and
UPQR1/2-CR-Necessary-Control-by-Deleting-Judges both are NP-com-
plete, even for a complete desired set.

Proof. We adapt a construction used by Baumeister et al. [3]. Let (X,C) be an
X3C instance, where X = {x1, . . . , x3m} and C = {C1, . . . , Cn}. If there exists
an element of X that is not contained in any element of C, we construct an
arbitrary no-instance for the respective control problem.

For the first part, let Φ be the agenda containing the literals α0, α1, . . . , α3m,
β, γ, the formula ϕ ∨ β where ϕ = α0 ∧ · · · ∧ α3m ∧ ¬γ, and all corresponding
negations. Let T = T1 ∪ T2 be a profile where T1 = (J1, . . . , Jn+m) and T2 =
(L1, . . . , Ln) for a total of 2n + m judges. We denote by dk the number of sets
Ci that contain xk. For each i, 1 ≤ i ≤ n + m, Ji is the union of the set
{¬β, αj ,¬αl | m + dj ≥ i,m + dl < i, 1 ≤ j, l ≤ 3m} with {α0} if i ≤ n + 1
(and with {¬α0} otherwise), and with {γ} if i ≤ m (and with {¬γ} otherwise),
and with the corresponding conclusion {ϕ ∨ β} (respectively, with {¬(ϕ ∨ β)}).
Furthermore, for 1 ≤ i ≤ n, define

Li = {¬β, γ,¬α0, αj ,¬αl,¬(ϕ ∨ β) | xj /∈ Ci, xl ∈ Ci, 1 ≤ j, l ≤ 3m}.

Since β has no affirmation, γ and every ak, 1 ≤ k ≤ 3m, each have n + m
affirmations, and since α0 has n + 1 affirmations, it follows that

UPQR1/2(T) = {¬α0, α1, . . . , α3m,¬β, γ,¬(ϕ ∨ β)}.

Let the chair’s desired set be J = {¬α0, α1, . . . , α3m, β, γ, ϕ ∨ β}. He is able to
delete m individual judgment sets from the profile T.

Since no judge accepts β, it will never be in the collective outcome. Therefore,
the new agreement of the desired set with the new outcome has to occur in the
conclusion. To include α0, the chair has to delete m judges to lower the acception
threshold to n + 1. These judges’ individual judgment sets have to be deleted
from T2 so that γ loses m affirmations and is not contained in the collective
outcome anymore. If some xi is not contained in one of the sets Cj that match
the individual judgment sets of the deleted judges, the corresponding αi loses too
many affirmations and is therefore rejected in the new collective outcome. The
control action is successful (i.e., ϕ∨β is contained in the new collective outcome)
if and only if the sets Cj corresponding to the deleted individual judgment sets
form an exact cover of X. This shows that UPQR1/2-CR-Possible-Control-
by-Deleting-Judges is NP-complete.

To prove the second part, we create a new agenda Φ′ from Φ by removing β,
ϕ ∨ β, and the corresponding negations, and by adding the formula ψ = (¬α0 ∧
γ) ∨ (α0 ∧ ¬γ) and its negation. Let T′ = T′

1 ∪ T′
2 be the resulting profile that

is obtained by restricting T1 and T2 to Φ′ and by adding the corresponding
conclusions to all Ji and Lj . Then it holds that

UPQR1/2(T′) = {¬α0, α1, . . . , α3m, γ, ψ}.
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Let J ′ = {α0, α1, . . . , α3m,¬γ, ψ} and let the chair be able to delete m judgment
sets. To preserve the agreement on the conclusion, the chair has to change the
collective outcome in regard to α0 as well as γ. Following the argumentation
above, the chair has to delete exactly m judgment sets, can only delete judgment
sets from T2 and therefore only preserves the agreements concerning the αi if and
only if the sets Cj corresponding to the deleted individual judgment sets form
an exact cover of X. Thus UPQR1/2-CR-Necessary-Control-by-Deleting-
Judges is NP-complete. ��

We now turn to control by replacing judges.

Theorem 9. UPQRq-CR-Possible-Control-by-Replacing-Judges and
UPQRq-CR-Necessary-Control-by-Replacing-Judges both are NP-com-
plete for each rational quota q, 0 ≤ q < 1, even for a complete desired set.

Proof. The proof works by a reduction from the problem Dominating-Set. Let
(G, k) with G = (V,E) and V = {v1, . . . , vn} be a Dominating-Set instance.
The neighbors of vertex vi (including vi itself) will be denoted by v1

i , v2
i , . . . , vji

i

for some ji.
For the first part of the theorem (i.e., for showing NP-completeness of

UPQRq-CR-Possible-Control-by-Replacing-Judges), first assume that
the quota q is lower than 1/2. We construct an instance of the control prob-
lem as follows. The agenda Φ contains the literals v1, . . . , vn, β, γ, the formula
ψ ∨ β, where ψ = ϕ1 ∧ · · · ∧ ϕn ∧ γ and ϕi = v1

i ∨ · · · ∨ vji
i , and all corresponding

negations. The profile J = (J1, . . . , Jm) with m = 2k + 1 judges, the outcome,
and the chair’s desired set J can be seen in Table 3(a).

The chair can choose at most k judgment sets from the profile K =
(K1, . . . , Kn) with Ki = {¬β,¬γ, vi,¬vj ,¬(ψ ∨ β) | 1 ≤ j ≤ n, i �= j} to
replace judgment sets in J. The formula β will never be contained in the out-
come because no judge accepts it. In order to achieve the desired additional
agreement between the new outcome and J , the chair has to get the conclusion
and therefore ψ accepted. Each vi needs exactly one additional affirmation to be
contained in the new outcome. Note that only judgment sets in the third block
can be replaced (or else γ would lose an affirmation, would not be contained
in the collective outcome anymore, and thus ψ cannot be evaluated to true).
Since ψ ∨ β is contained in the new outcome if and only if the accepted vi form
a dominating set, and since only k judgment sets can be replaced, the control
action is successful under closeness-respecting preferences if and only if G has a
dominating set of size k.

In the case of a quota q greater than or equal to 1/2, the agenda changes
slightly. Instead of the formula ψ∨β and its negation the new agenda Φ′ contains
the formula ψ′ ∨ ¬β with ψ′ = ϕ′

1 ∧ · · · ∧ ϕ′
n ∧ ¬γ and ϕ′

i = ¬v1
i ∨ · · · ∨ ¬vji

i , and
its negation, ¬(ψ′ ∨ ¬β). The profile J′ = (J ′

1, . . . J
′
m) with m = 2k + 1 judges,

the outcome, and the chair’s desired set J ′ can be seen in Table 3(b).
Let K′ = (K ′

1, . . . , K
′
n) be a profile, where

K ′
i = {β, γ,¬vi, vj ,¬(ψ′ ∨ ¬β) | 1 ≤ j ≤ n, i �= j}
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Table 3. Construction for the first part of the proof of Theorem 9

for 1 ≤ i ≤ n. Again, the chair is able to replace k judgment sets from J′ with k
judgment sets from K′. A formula needs at least �m(1−q)� rejections in order to
not be accepted. Since every judge accepts β, its negation will never be contained
in the collective outcome. Thus the chair has to get ψ′ accepted so as to achieve
the desired additional agreement of the new outcome with J ′. The argumentation
then follows the first case: Since ψ′ is true if and only if the rejected vi form a
dominating set and since the k replaceable judgment sets must be from the third
block, the control action is successful under closeness-respecting preferences if
and only if G has a dominating set of size k.

We prove the second part of the theorem (i.e., NP-completeness of UPQRq-
CR-Necessary-Control-by-Replacing-Judges) in a similar way. Unlike in
the first part of the proof, the chair now has to necessarily prefer the new out-
come to the actual one. That means that all existing agreements have to be
preserved. Remove β from the former agenda Φ (respectively, Φ′) and replace all
appearances of ψ (respectively, ψ′) with the formula Ψ = ψ ∨ (¬v1 ∧ · · · ∧ ¬vn)
(respectively, Ψ′ = ψ′ ∨ (v1 ∧ · · · ∧ vn)). All required changes in the profiles J∗

(respectively, J′∗), the outcomes, and the desired sets J∗ (respectively, J ′∗) can
be seen in Table 4(a) (respectively, in Table 4(b)).

To obtain the profiles K∗ (respectively, K′∗) of judgment sets to choose
from, the premises of the judgment sets in K (respectively, K′) restricted to
the corresponding new agenda remain unchanged and the new conclusion is
evaluated accordingly. As above the chair is allowed to replace k judgment sets.
The chair has to change some premise different from γ in order to achieve a new



442 D. Baumeister et al.

Table 4. Construction for the second part of the proof of Theorem 9

agreement. But after this action the second part of Ψ (respectively, Ψ′) is not
satisfied anymore. In order to preserve the agreement of the outcome with her
desired set regarding the conclusion, the chair has to replace the judgment sets
from the third block with the judgment sets from K∗ (respectively, K′∗) that
correspond to the vertices in a dominating set of G. It follows that the control
action is successful if and only if G has a dominating set of size k. ��

Finally, we turn to unrestricted and top-respecting preferences.

Proposition 10. Let C be one of the control types Adding-Judges,
Deleting-Judges, and Replacing-Judges, let T ∈ {U, TR} be a preference
type, and let the desired set be complete. For each rational quota q, 0 ≤ q < 1,
UPQRq-T -Possible-Control-by-C is in P.

Proof. In the case of unrestricted preferences, the chair possibly prefers every
new outcome to the actual outcome. Since her desired set is complete, she only
has to check if she can change a premise so as to change the collective judgment
set. This is possible in polynomial time for every C .

In the case of top-induced preferences, the chair possibly prefers every new
outcome to the actual outcome as long as the latter is not identical to her desired
set. Therefore, it also suffices to change some premise if possible. ��
Proposition 11. Let C be a control type. For each rational quota q, 0 ≤ q <
1, UPQRq-U - Necessary-Control-by- C is possibly immune.

Proof. In the case of unrestricted preferences, the collective judgment set is
always possibly preferred to every other judgment set that can occur as a new
outcome after the control action. ��

4 Bribery

In this section, we study the complexity of bribery problems related to the
types of preferences defined in Sect. 2. Bribery in judgment aggregation has been
introduced by Baumeister et al. [5,6]; however, their results are restricted to
Hamming-distance-respecting preferences and to the premise-based procedure
only.
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4.1 Preliminaries

We now formally define the relevant bribery problems for the uniform premise-
based quota rule with quota q and for some given preference type T .

UPQRq-T -Possible-Bribery

Given: An agenda Φ, a profile J ∈ J (Φ)n, a desired set J , and a positive integer k

(the budget).

Question: Is there a new profile J′ ∈ J (Φ)n with at most k changed individual judgment

sets so that UPQRq(J
′) � UPQRq(J) for some � ∈ TJ?

Concerning the analogous problem UPQRq-T -Necessary-Bribery, the
condition UPQRq(J′) � UPQRq(J) is required to hold for all � ∈ TJ . In the
two corresponding microbribery problems (also introduced by Baumeister et al.
[5,6]), the briber is allowed to change k premises instead of k whole judgment
sets.

Given an agenda Φ, a profile J ∈ J (Φ)n, a desired set J , and a positive inte-
ger k, in the exact variant of the bribery (respectively, microbribery) problem
we ask whether the briber can change up to k individual judgment sets (respec-
tively, premises) such that J ⊆ UPQRq(J′), where J′ denotes the modified
profile. We denote these problems by UPQRq-Exact-Bribery and UPQRq-
Exact-Microbribery. Again, it is easy to see that all decision problems in
this section are in NP.

Definition 12. Let Φ be an agenda and let B be a given bribery type. A res-
olute judgment aggregation procedure F is necessarily/possibly immune to B for
induced preferences of type T ∈ {U, TR,CR} if for all profiles J and for each
desired set J , the briber necessarily/possibly weakly prefers the outcome F (J) to
the outcome F (J′) for type TJ , where J′ denotes the new profile after bribery of
type B has been exerted.

4.2 Results for Bribery

We now present our results for bribery in judgment aggregation.

Theorem 13. For each rational quota q, 0 ≤ q < 1,

1. UPQRq-Exact-Bribery ≤p
m UPQRq-T -Possible-Bribery for each pref-

erence type T ∈ {U, TR,CR};
2. UPQRq-Exact-Microbribery ≤p

m UPQRq-T -Possible-Microbribery
for each preference type T ∈ {U, TR,CR}.
The simple proof (an adaption of the proof of Proposition 6) uses an incom-

plete desired set, so we again have to consider the case of complete desired sets
separately.
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Baumeister et al. [5] show NP-completeness of exact bribery (respectively,
microbribery) with an incomplete desired set for the premise-based procedure
(PBP), which—recall—is a special case of UPQR1/2 for an odd number of judges.
Their proofs can be modified so as to work for every rational quota q with
0 ≤ q < 1 and for every number of judges. For a complete desired set and PBP ,
Baumeister et al. [5] prove that the exact bribery problem remains NP-complete
and provide a P algorithm that solves the exact microbribery problem. The P
algorithm for exact microbribery can also easily be adapted to work for every
rational quota q with 0 ≤ q < 1 and for every number of judges. Since under top-
respecting preferences the briber necessarily prefers only her desired set to any
other possible outcome and assuming that the briber’s desired set is complete,
we thus have that UPQR1/2-TR-Necessary-Bribery is NP-complete, but for
each rational quota q, 0 ≤ q < 1, UPQRq-TR-Necessary-Microbribery is
in P.

Next we consider closeness-respecting preferences for bribery problems.

Theorem 14. For each rational quota q, 0 ≤ q < 1, UPQRq-CR-Necessary-
Bribery and UPQRq-CR-Possible-Bribery both are NP-complete, even for
a complete desired set.

Proof. The proof works by a reduction from the problem Restricted-SAT
(defined in Sect. 2) and adapts an idea of Endriss et al. [9]. We first
show that UPQRq-CR-Necessary-Bribery is NP-complete. Let ϕ be a
Restricted-SAT instance. For a quota q equal to or greater than 1/2, the
agenda Φ contains the variables of ϕ (i.e., α1, . . . , αm), a literal β, the formula
ψ ∨ β with ψ = ϕ ∨ (¬α1 ∧ · · · ∧ ¬αm) and all corresponding negations. Let
m be the briber’s budget, let n = 2m + 1 be the number of judges, and let
J = {α1, . . . , αm, β, ψ ∨ β} be the briber’s desired set. The profile J is shown in
Table 5(b).

Even by changing m judgments β will never be in the collective judgment
set. Therefore, at least one αi has to be set to 1 to obtain the required additional
agreement with J . This is possible because every αi can be included in the new
outcome by changing exactly m judgment sets in the second block of judges.
Since the agreement with ψ∨β has to be preserved, the bribery is successful under
closeness-respecting preferences if and only if ϕ has a satisfying assignment.

In the case of 0 ≤ q < 1/2, the agenda has to be slightly changed. The
formula ψ ∨ β and its negation are replaced by the formula ψ ∨ ¬β and its
negation. The corresponding profile J′ = (J ′

1, . . . , J
′
n) is shown in Table 5(a).

Since it is impossible for the briber to reject β and since all agreements of the
collective outcome with J ′ have to be preserved, the bribery is successful under
closeness-respecting preferences if and only if ϕ has a satisfying assignment.

We now turn to the second part of the theorem (i.e., to NP-completeness of
UPQRq-CR-Possible-Bribery). This can be shown in a similar way. Change
the agenda described above by replacing the formula ψ ∨ β with ϕ ∨ β in the
first case (respectively, ψ ∨ ¬β with ϕ ∨ ¬β in the second case) including all
corresponding negations. Let J∗ (respectively, J′∗) be the profile concerning the
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Table 5. Construction for the proof of Theorem 14

corresponding new agenda with the premises of the individual judgment sets as
seen in the corresponding part of Table 5 and the conclusions evaluated accord-
ingly. Note that the collective outcomes only differ in the conclusion, which is
rejected in both cases. Further, let J∗ = {¬α1, . . . ,¬αm, β, ϕ ∨ β} (respectively,
J ′∗ = {¬α1, . . . ,¬αm,¬β, ϕ ∨ ¬β}) be the briber’s desired set. Since the only
additional agreement the briber can achieve is the conclusion, similar arguments
as above complete the proof. ��

We now handle the case of microbribery for closeness-respecting preferences.

Theorem 15. For each rational quota q, 0 ≤ q < 1, UPQRq-CR-Necessary-
Microbribery and UPQRq-CR-Possible-Microbribery both are NP-
complete, even for a complete desired set.

Proof. This proof works similarly to the proof of Theorem 14. For proving
the first part (NP-completeness of UPQRq-CR-Necessary-Microbribery),
the only change is the number of judges in the different blocks of judges: Judges
1, . . . , n·q� form the first block, while the second block consists of judges n·q�+
1, . . . , n. Then a similar argumentation as in the proof of Theorem 14 applies.
Note that the briber is only allowed to change k premises instead of k whole
individual judgment sets.

For the proof of the second part (i.e., for showing NP-completeness of
UPQRq-CR-Possible-Microbribery), we use the agendas from the corre-
sponding parts of the proof of Theorem 14. In the first case, judges 1, . . . , n · q�
accept all premises but β and reject the conclusion, judges n · q� + 1, . . . , n
reject all formulas, the collective outcome contains all negated formulas, and the
briber accepts only β and ϕ ∨ β and rejects the remaining propositions. In the
second case, each appearance of β or ¬β in the first case is replaced with its
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Table 6. Overview of results for UPQR1/2-T -Possible/Necessary-Control-By-
C for C ∈ {Adding-Judges, Deleting-Judges, Replacing-Judges} and T ∈
{U, TR, CR}

U TR CR

Incomplete DS Possible NP-complete NP-complete NP-complete

Necessary possibly immune NP-complete NP-complete

Complete DS Possible P P NP-complete

Necessary possibly immune NP-complete NP-complete

Table 7. Overview of results for UPQRq -T -Possible/Necessary-Bribery/ Micro-
bribery for T ∈ {U, TR, CR}

U TR CR

Incomplete DS Possible NP-complete NP-complete NP-complete

Necessary possibly immune NP-complete NP-complete

Complete DS Possible P P NP-complete

Necessary possibly immune NP-complete2/P NP-complete

complement. Once again, the bribery action is successful if and only if ϕ has a
satisfying assignment. ��

The following propositions can be proven in the same way as Propositions 10
and 11.

Proposition 16. Let T ∈ {U, TR} be a preference type, and let the briber’s
desired set be complete. For each rational quota q, 0 ≤ q < 1, UPQRq-T -
Possible-Bribery and UPQRq-T -Possible-Microbribery both are in P.

Proposition 17. For each rational quota q, 0 ≤ q < 1, UPQRq-U -Necessary-
Bribery and UPQRq-U -Necessary-Microbribery both are possibly immune.

5 Conclusions and Future Work

We have studied bribery and microbribery as well as three types of control in
judgment aggregation. While these problems were introduced in previous work
by Baumeister et al. [3,5,6], they have been studied only for Hamming-distance-
respecting preferences so far. Our contribution is to extend this study to the
case of more general preference notions, including closeness-respecting and top-
respecting preferences that are due to Dietrich and List [8] and have been applied
to manipulation in judgment aggregation by Baumeister et al. [4,5]. Further-
more, our results for bribery and microbribery apply to uniform premise-based
quota rules that generalize the premise-based procedure. An overview of our
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complexity results is given in Table 6 for control and in Table 7 for bribery and
microbribery. Here, DS stands for “desired set.” For control by replacing judges,
Necessary-Control-By-Adding/Deleting-Judges for unrestricted prefer-
ences, and Possible-Control-By-Adding/Deleting-Judges for a complete
desired set inducing unrestricted and top-respecting preferences, the results are
shown for a general rational quota q, 0 ≤ q < 1. The results for bribery and
microbribery are identical, except for the Necessary-Bribery/Microbribery
problem where we have a complete desired set inducing top-respecting prefer-
ences. The entry NP-complete/P here means that this problem is NP-complete
for bribery2 but in P for microbribery.

Regarding Hamming-distance-respecting preferences, note that Baumeister
et al. [2,6] have already studied the complexity of bribery and microbribery
with incomplete desired sets and for the premise-based procedure only. However,
their proofs can easily be adapted to also apply to complete desired sets and to
uniform premise-based quota rules. Similarly, some of the results of Baumeister
et al. [2,3] for exact control and for control problems under Hamming-distance-
respecting preferences apply to incomplete desired sets only, but the proofs only
have to be slightly adapted to work for the case of complete desired sets, too.

Regarding future work, we propose to study the complexity of these problems
for different families of judgment aggregation procedures, to study other prefer-
ences for the attacker (e.g., by using other distance measures), and to study the
complexity of control by bundling judges introduced by Baumeister et al. [4].
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Abstract. It is well known that standard game-theoretic approaches to
voting mechanisms lead to a multitude of Nash Equilibria (NE), many
of which are counter-intuitive. We focus on truth-biased voters, a model
recently proposed to avoid such issues. The model introduces an incen-
tive for voters to be truthful when their vote is not pivotal. This is a
powerful refinement, and recent simulations reveal that the surviving
equilibria tend to have desirable properties.

However, truth-bias has been studied only within the context of plu-
rality, which is an extreme example of k-approval rules with k = 1. We
undertake an equilibrium analysis of the complete range of k-approval.
Our analysis begins with the veto rule, the other extreme point of k-
approval, where each ballot approves all candidates but one. We identify
several crucial properties of pure NE for truth-biased veto. These prop-
erties show a clear distinction from the setting of truth-biased plurality.
We proceed by establishing that deciding on the existence of NE in truth-
biased veto is an NP-hard problem. We also characterise a tight (in a
certain sense) subclass of instances for which the existence of a NE can be
decided in poly-time. Finally, we study analogous questions for general
k-approval rules.

1 Introduction

Voting mechanisms are processes by which preferences can be aggregated, and
collective decisions can be made, in various multi-agent contexts. Under most
voting rules, potentially beneficial strategic behavior is essentially inherent, as
the Gibbard-Satterthwaite theorem famously states [7,16]. Hence, under mild
assumptions, voters may have incentives to misreport their preferences. Given
this negative result, a natural approach, initiated by Farquharson [5], is to under-
take a game-theoretic analysis of voting, viewing voters as strategic agents, and
examining the set of Nash equilibria of the underlying game.
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 451–468, 2015.
DOI: 10.1007/978-3-319-23114-3 27
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However, most voting games contain an enormous amount of Nash equilibria,
with even small games reaching hundreds of thousands of equilibria. Further-
more, many of the equilibria are votes which will not occur in the real world
(e.g., for most voting rules, if all voters rank the same candidate last, the case
where all voters vote for this least favorite option is a Nash equilibrium). There-
fore, there has been very little analysis regarding the structure of the different
equilibria—such an analysis would not be informative about the voting proce-
dure and its quality. Moreover, without an understanding of strategic effects on
voting, the ability to compare voting rules and choose an appropriate one for
each setting is very limited.

In the past few years, several ideas have been raised regarding sensible limi-
tations on the structure of games or equilibria, in order to provide a better game-
theoretic analysis of voting scenarios. One of the most popular ideas, raised both
in the social choice literature [3] and in the computer-science literature [11,17]
is truth-bias. Truth bias means that in scenarios in which the voter has no way
to manipulate via an insincere vote, in order to improve the result, the voter
prefers to stick to its actual preferences and vote truthfully. Such a behavior
indeed eliminates many nonsensical equilibria, and generally reduces the num-
ber of equilibria in voting games [17].

Contribution: While truth-bias has been analyzed and explored for plurality,
it has yet to be extended to other voting rules, and this paper advances our
understanding of the effect of truth-bias on other rules. It is not clear a priori
that the same structural properties that were identified for plurality under truth
bias will hold for different rules (in fact, as we show, they generally do not).
Consequently, we embark on handling the voting rules most closely related to
plurality—the veto rule and the more general family of k-approval voting. These
rules, together with plurality, are those that contain only two possible values
that voters can give to candidates (approve or disapprove, veto or not veto).
We focus on analyzing the pure Nash equilibria under truth bias and we exam-
ine and identify a variety of their key properties. One of the crucial features
in these schemes is the performance of winners and runner-up candidates at
non-truthful equilibria, i.e., their score compared against the score of the winner
under truthful voting. These scores can vary in different ways, resulting in differ-
ent equilibrium configurations in each rule. Such comparisons with the existing
work on plurality [14,17] are summarized in Table 2 of Sect. 4.

We begin by focusing on the veto voting rule, where each voter chooses
a single candidate from whom to withhold a point. We first characterize its
truth-biased equilibria. We then further our results to describe an algorithm
that—using max-flow considerations—is able to discern, under certain condi-
tions, whether there exists an equilibrium or not.1 Moreover, we are able to
show that our result is tight to an extent, as removing even one of the identified
conditions results in an NP-complete problem.
1 Unlike regular, non-truth-biased voting games, with truth-bias there are scenarios

where there is no Nash equilibrium at all. This has also been shown for plurality.
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Following that, we consider the k-approval rule, where we examine the same
set of questions; we demonstrate that the landscape is more complex for k-
approval. Our results move us towards a better understanding of the effects of
truth bias on each of these voting rules. As we show, we obtain quite different
properties under each rule, and we elaborate more on this in Sect. 5.

1.1 Related Work

There have been many modeling approaches towards eliminating the multitude
of Nash equilibria in voting games. Some are based on introducing uncertainty,
either regarding the support of each candidate [13], or about the reliability
of counting procedures [12]. Other research suggests changing the temporal
structure of the game; for example, Xia and Conitzer [18] and Desmedt and
Elkind [2] consider the case where agents vote publicly and one-at-a-time, and
study subgame-perfect equilibria of these extensive-form games. A different app-
roach is the notion of lazy voting [2], where the utility function is changed so
that non-pivotal voters have a slight preference to abstain.

Another way to refine the equilibria set is to stick to the basic game theoretic
models, but study NEs that are reachable by iterative voting procedures. The
iterative voting model was introduced by Meir et al. [11] and later expanded by
Lev and Rosenschein [10] and Branzei et al. [1]; this work followed the research
into iterative and dynamic mechanisms, chiefly summarised by Laffont [8]. Inter-
estingly, Branzei et al. [1] show that under plurality, the reachable equilibria of
this process are of relatively “good” quality.

We focus on a different model than the approaches above for refining the set
of equilibria in a voting game, that of truth bias. The notion of adding a truth
bias has been introduced into multiple game theoretic models before, albeit for
specialised cases. E.g. by Dutta and Sen [4] for a mechanism design model, and by
Laslier and Weibull [9] and by Dutta and Laslier [3] for limited voting scenarios.
A more robust model was suggested by Thompson et al. [17], which introduced
the general framework, and contained various empirical results for the plurality
rule in truth-biased games. The theoretical side of that work was enhanced by
Obraztsova et al. [14]. More recent work has also attempted to relate this line
of work to iterative voting [15], but this again is solely with respect to plurality.

2 Definitions and Notation

We consider a set of m candidates C = {c1, . . . , cm} and a set of n voters
V = {1, . . . , n}. Each voter i has a preference order (i.e., a ranking) over C,
which we denote by ai. For notational convenience in comparing candidates, we
will often use �i instead of ai. When ck �i cj for some ck, cj ∈ C, we say that
voter i prefers ck to cj .

At an election, each voter submits a preference order bi, which does not
necessarily coincide with ai. We refer to bi as the vote or ballot of voter i. The
vector of submitted ballots b = (b1, ..., bn) is called a preference profile. At a
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profile b, voter i has voted truthfully if bi = ai. Any other vote from i will be
referred to as a non-truthful vote. Similarly the vector a = (a1, . . . , an) is the
truthful preference profile, whereas any other profile is a non-truthful one.

A voting rule F is a mapping that, given a preference profile b over C, outputs
a candidate c ∈ C, the election’s winner; we write c = F(b). In this paper we
will consider the veto rule, as well as the more general family of k-approval
rules. This is a family of voting rules that let each voter divide candidates into
two groups: the first one is the approved group, of size k (the top k candidates
ranked by the voter), and each candidate within the group gets a point from
this voter. The rest of the candidates compose the second group, and receive no
points. The ranking within each group in the submitted ballot does not matter.
The candidate with the most points is the winner of the election, and we resolve
ties using lexicographic tie-breaking. The veto rule, in which all candidates but
one are given a point is an extreme member of this family. The other extreme
is plurality, for which many of the issues dealt with in this paper have been
resolved by Obraztsova et al. [14]. We denote by sc(c,b) the score of candidate
c ∈ C in a voting profile b.

In this work, we view elections as a non-cooperative game, in which a util-
ity function ui is associated with every voter i, that is consistent with its true
preference order. That is, we require that ui(ck) �= ui(cj) for every i ∈ V ,
cj , ck ∈ C, and also that ui(ck) > ui(cj), if and only if ck �i cj . We let
pi(ai,b,F) denote the utility of voter i, when ai is its true preference rank-
ing, b is the submitted profile by all voters, and F is the voting rule under
consideration, and the utility function of voter i can be constructed from its pi
function. In the common model of election, this means pi(ai,b,F) = ui(F(b)).
A Nash equilibrium in these games is a profile bNE , where no voter has an
incentive to unilaterally deviate, i.e., for every i and for every vote b′

i, we have
pi(ai,bNE ,F) ≥ pi(ai, (b′

i,b
NE
−i ),F), where bNE

−i is the vector bNE without
player i’s vote.

However, such a model is known to result in multiple equilibria, including
nonsensical ones. Assume, for example, that all voters have the same preferences,
which coincide with the tie-breaking order; then the profile where all of them
veto their favourite candidate is an equilibrium. We can construct many other
undesirable equilibria. Hence, we instead focus on the more promising truth-
biased model [17]. In this model, we suppose that voters have a slight preference
for voting truthfully when they cannot unilaterally affect the outcome of the
election. This bias is captured by inserting a small extra payoff when the voter
votes truthfully. This extra gain is small enough so that voters may still prefer
to be non-truthful in cases where they can affect the outcome. If a is the real
profile, b is the submitted one, and ε a very small value, the payoff function of
voter i is given by:

pi(ai,b,F) =
{

ui(F(b)), if ai �= bi,
ui(F(b)) + ε, if ai = bi.
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As already described in Sect. 1.1, this model has recently gained popularity, since
it achieves a significant refinement of the set of Nash equilibria, and it has been
analyzed in previous work under the plurality voting rule.

Now, the following two equilibrium-related problem classes are of interest.
The first deals with determining the existence of equilibria in such a voting
game, whereas the second asks about the existence of equilibria with a given
candidate as a winner.

Definition 1 (∃NE). An instance of the ∃NE problem is determined by a pref-
erence profile a, and will be denoted by ∃NE(a). The profile a indicates the true
preferences of the voters. Given a, ∃NE(a) is a “yes” instance ⇐⇒ the cor-
responding election game, with truth-biased voters, admits at least one Nash
equilibrium.

Definition 2 (WinNE). An instance of the WinNE problem is determined by
a preference profile a, and a candidate w ∈ C, denoted by WinNE(w,a). It is a
“yes” instance ⇐⇒ the corresponding election game, with truth-biased voters,
admits at least one Nash equilibrium with w as the winner.

3 Truth-Bias Under the Veto Voting Rule

In this section we provide an analysis of pure Nash equilibria, under the assump-
tion that voters are truth-biased and use the veto voting rule. Our main focus is
on how non-truthful equilibrium profiles b �= a can arise. Whether the truthful
profile itself is a Nash equilibrium can be decided easily. Some proofs are omitted
due to space limitations.

3.1 Properties of Nash Equilibria Under Truth-Bias

We begin by defining a class of candidates, which will become useful further on:

Definition 3. In a profile b, where the winner is F(b), a runner-up candidate
is a candidate c ∈ C, for which one of the following conditions hold:

– sc(c,b) = sc(F(b),b), and F(b) � c in the tie-breaking rule,
– sc(c,b) = sc(F(b),b) − 1, and c � F(b) in the tie-breaking rule.

Essentially, a runner-up candidate is a candidate that could become a winner
by gaining one extra point. We will denote the set of runner-up candidates that
satisfy the first (respectively, second) condition of the definition above by R1

(respectively, R2). Similarly to the analysis of the truth-biased plurality rule
in [14], we define here a notion of a threshold candidate. Our definition, however,
is different, and tailored to our veto rule analysis. Intuitively, the threshold
candidate is the candidate that would become a winner if the current winner,
F(b), lost a point, as can be seen from the definition below.

Definition 4. Given a voting profile b, a threshold candidate c is a runner-up
candidate for which one of the following holds:
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– c is the maximal element of R1 w.r.t. the tie-breaking order, if R1 �= ∅,
– c is the maximal element of R2 w.r.t. the tie-breaking order, if R1 = ∅.

The next important lemma considers the score of a winner at an equilibrium.

Lemma 1. Let bNE �= a be a non-truthful Nash equilibrium, with w = F(bNE).
The score of the winner, w, in bNE, is the same as its score at the truthful profile,
i.e., sc(w,a) = sc(w,bNE).

Proof. Suppose sc(w,bNE) > sc(w,a). This means that there is a voter i ∈ V ,
that gives w a point which it would not give under the truthful profile. That
is, it is giving a point to its least-favorite candidate. Such a voter can certainly
gain by switching back to its truthful vote. In that case, either a new winner
emerges, which would be above w in the preference ranking of i, or w remains
the winner, but i gets a higher utility by ε, due to voting truthfully.

Now suppose sc(w,bNE) < sc(w,a), i.e., a voter i ∈ V is vetoing w in bNE ,
but not in the truthful a. Yet, returning to its truthful vote, ai, w will still remain
the winner, and this will increase player i’s utility by ε, due to the truth-bias. 
�

In fact, we can further show that not only the winner’s score does not change
at a non-truthful equilibrium, but the set of voters which support the winner
are the same as in the truthful profile. Hence, we obtain the following:

Corollary 1. Let bNE �= a be a non-truthful Nash equilibrium, with w =
F(bNE). The set of voters that veto w in a is the same set that vetoes w in bNE.

The next properties that we identify are simple to prove but crucial in under-
standing what equilibria look like under the veto rule.

Lemma 2. For any non-truthful equilibrium profile bNE �= a, there always
exists a threshold candidate in bNE.

Proof. It suffices to show that there always exist runner-up candidates; hence,
there is a threshold runner-up as well. Let bNE �= a be an equilibrium with
w = F(bNE). Suppose we have a non-truthful equilibrium and that there is no
runner-up candidate. Consider a voter i that voted non-truthfully. By Corol-
lary 1, the non-truthful voters in bNE do not veto w (and they do not veto w
in a either). Hence i has vetoed some other candidate. By switching back to its
truthful vote, the outcome is not going to change, since there is no runner-up
candidate and since w is not going to lose any points. Hence i is better off by ε
to vote truthfully, a contradiction. Thus there are always runner-up candidates
at a non-truthful equilibrium. 
�
Observation 1. All voters that do not veto the winner or the runner-ups in
an equilibrium profile prefer the winner over the threshold candidate (otherwise,
they could just veto the winner and make the threshold candidate win).
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Example 1. There are cases where the threshold candidate in an equilibrium
may have fewer points than in the truthful state (note that this is not true for
plurality, as shown in Lemma 2 of Obraztsova et al. [14]); we show it here with
an example of 4 candidates. Suppose the tie-breaking rule is c � b � d � w, and
the truthful profile is:
• 3 voters with ranking: w � b � c � d • 2 voters with ranking: w � d � c � b
• 1 voter with ranking: w � b � d � c • 1 voter with ranking: b � c � d � w

Then c is the winner of the truthful profile. In turn, in the following profile,
w is the winner and the threshold candidate is c, which has fewer points than in
the truthful state. Notice that the profile is an equilibrium, and just one voter
has moved from the first group to the 3rd one:

• 2 voters with: w � b � c � d • 2 voters with: w � d � c � b
• 2 voter with: w � b � d � c • 1 voter with: b � c � d � w

Finally, to facilitate our discussion in the next subsections, we define the
concept of “voting against” a candidate, and a simple companion lemma.

Definition 5. We will say that a voter j votes against candidate ci in a profile
b, if bj �= aj and ci is vetoed in bj.

Lemma 3. In every non-truthful NE, all non-truthful voters vote against some
runner-up candidate in the NE (not necessarily the same one).

3.2 Existence of Nash Equilibria

Having identified the properties above, we are now ready to prove our first set of
results regarding the complexity of the problems WinNE and ∃NE, as defined
in Sect. 2. We start with the following negative result.

Theorem 1. Under the veto rule andwith truth-biased voters the problemWinNE
is NP-complete.

Proof. While membership in NP is trivial, completeness requires several steps.
We will construct a reduction from exact-cover by 3-sets (X3C).

Definition 6. Exact cover by 3 sets (X3C) is a problem in which we have a set
of 3m elements U = {u1, . . . , u3m} and a set of sets S = {S1, . . . , Sn} such that
for 1 ≤ i ≤ n: Si ⊆ U , |Si| = 3. We wish to know if there is a set T ⊆ S such
that |T | = m and ∪S∈TS = U (NP-completeness shown in [6])

Taking an X3C instance, we construct an instance of our problem. Our can-
didates will be the members of S and U , to which we add two new candidates w
and t. To construct our voters, we introduce some markings to aid us: Si’s ele-
ments are {ui1 , ui2 , ui3}, and we denote by S the members of S ordered as usual
— S1 � S2 � . . . � Sn; similarly we use U for the ordering of U . S̄ marks the
opposite direction — Sn � Sn−1 � . . . � S1, and ditto for Ū . Our tie-breaking
rule is w � t � S � U . We now describe the set of voters, which consists of the
two blocks of voters described in Table 1, along with 3 more blocks described
below:
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– Block 3: For every ui ∈ U , we have:
• m votes of the form: U \ {ui} � S � w � t � ui;
• n − 2m − 1 votes of the form: S̄ � Ū \ {ui} � w � t � ui.

– Block 4: For every Si ∈ S, we have:
• m votes of the form: S \ {Si} � U � w � t � Si;
• n − 2m − 1 votes of the form: Ū � S̄ \ {Si} � w � t � Si.

– Block 5: n − m votes of the form: t � S � U � w.

Table 1. NP-Completeness proof profiles.

Block 1

S \ {S1}, Ū , ... S \ {Sn}
U , S̄ \ {S2}, ... U
w, w, ... w
S1, S2, ... Sn

t, t ... t

Block 2

... U \ {ui1}, U \ {ui2}, U \ {ui3}, ...

... S \ {Si}, S \ {Si}, S \ {Si}, ...

... w, w, w, ...

... t, t, t, ...

... ui1 , ui2 , ui3 , ...

... Si, Si, Si, ...

In the truthful profile, w is not the winner (u1 is). We claim that there is an
equilibrium in which w is the winner if and only if there is a solution to the X3C
problem.

Lemma 4. Given the constructed truthful profile, if a NE profile bNE exists
with w as a winner, t is the threshold candidate in bNE.

Proof. Consider an equilibrium bNE , and let us assume the opposite: t is not a
threshold candidate. Consider the possibility that Si is the threshold candidate
of bNE . Let us take a closer look at a voter from Block 4 of the form S \ {Sj} �
U � w � t � Sj , for some j �= i so that Sj is not a runner-up. In the equilibrium
bNE , this voter can veto only either Sj or t. Furthermore, since t beats all
candidates except w in tie breaking, if t is not the threshold candidate then it
cannot be a runner-up candidate at all. As a result, the inspected voter cannot
veto t, according to Lemma 3. Thus, we have found a voter that votes truthfully
in the NE profile bNE and prefers Si to w, contradicting Observation 1.

Consider now the case where all Si’s are runner-up candidates. In this case,
each Si has gained two more points relatively to their respective scores in the
truthful profile a. Only voters in Block 2 are capable of deviating to accomplish
this (the reasoning in the paragraph above is why Block 4 votes will not deviate).
In particular, for each Si there are at least two such voters that deviate to veto
uil and uik for some l �= k ∈ {1, 2, 3}. As a result there are at least 2 additional
voters (in comparison to the truthful profile) that veto candidates from U . The
Pigeonhole Principle dictates that there is at least one uil that has received two
more veto votes in comparison to the truthful profile. In addition, notice that
there can be no voter in the NE profile bNE that deviates in favor of uil . As
a result, uil cannot be a runner-up candidate, yet has voters that deviate to
veto it, in contradiction to Lemma 3. Hence, it is impossible for all Si’s to be
runner-up candidates simultaneously.

Similarly, we will obtain a contradiction for the case where we assume that
ui is the threshold candidate, and, therefore, none of the Si’s are runner-ups. 
�
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We conclude that in a NE profile bNE , t must be the threshold candidate
and it will have (n − m) points. Let us now proceed with the remainder of the
proof of Theorem 1.

If there is T = {S′
1, . . . , S

′
m} ⊆ S which is a solution to the X3C problem,

we have an equilibrium in which w is the winner: the voters from Block 1 whose
penultimate candidate is S′

i ∈ T will veto S′
i. The voters in Block 2 who veto

S′
i ∈ T instead veto their penultimate candidates ui1/2/3 . In such a situation all

candidates are vetoed by n − m voters (apart from those in S \ T , which are
vetoed by n−m+2 voters), and therefore w is the winner. All voters are vetoing
runner-ups which they prefer less than w or t. Hence, changing their vote will
make the candidate they currently veto the winner, and as they would rather
have w win, they do not change their vote. Furthermore, all voters from Blocks
1 through 4 that do not veto a runner-up candidate, can only deviate so that
t becomes a winner. Since they prefer w to t, none of them will actually have
an incentive to deviate. Finally, none of the voters in Block 5 can change the
election outcome and will remain truthful.

Now, assume that there is no solution to the X3C problem. At least m voters
from Block 1 will veto the Si’s (the only candidates less-preferred than w).
However, in order for them not to revert to their truthful vote, those Si’s need
to be runner-up candidates, so all votes in Block 2 who would truthfully veto
those Si’s, need to veto their respective ui’s instead. In addition, those ui’s need
to be runner-ups as well (or those Block 2 votes will revert to the truthful vote),
and as they are ranked below S in the tie-breaking rule, they need to have m−n
vetoes in order to be runner-ups. This means that each ui is vetoed only once
in Block 2. So we have m (or more) Si’s containing exactly one copy of each ui;
i.e., we found an exact cover of U , contradicting the assumption that X3C has
no solution. 
�

The above proof also implies Corollary 2. Furthermore, its variant can also
be used to prove a more general theorem (due to lack of space, the proof is not
presented here).

Theorem 2. Consider the veto rule and truth-biased voters. Then the problem
∃NE is NP-complete.

It is possible to further expand upon the result of Theorem 1. To this end, we
identify two conditions that help us characterize the set of computationally hard
instances. In particular, consider an instance WinNE(w,a), determined by a
candidate w ∈ C and a truthful profile a. We consider the following conditions:

C1: Let t ∈ C be the candidate right below w in the tie-breaking order (i.e., the
tie-breaking order is in the form · · · � w � t � · · · ). Then sc(t,a) ≥ sc(w,a).

C2: Let t be as in C1. Then, for every voter i that does not veto w in the truthful
profile a, it holds that w �i t.

Corollary 2. Under the veto voting rule, the problem WinNE is NP-complete,
even for the family of instances that satisfy condition C2 and do not satisfy
condition C1.
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In fact, together with Theorem 3, the picture becomes more clear regarding
hardness results: violating either one of the conditions C1, C2 makes the problem
WinNE hard.

Theorem 3. Under the veto voting rule, the problem WinNE is NP-complete,
even for the family of instances where C1 holds but C2 does not.

Proof. As with Theorem 1, we will construct a reduction from X3C. We will use
the same notation, where S is the set of sets and U is the set of elements in an
instance of X3C, and convert the members of these sets into distinct candidates.
However, unlike the previous proof, in addition to the candidates from S and U ,
we will introduce four special candidates w, t, p1 and p2.

Based on the candidate set defined above, we will construct a set of voters
and their truthful preference profile a, so that a solution to WinNE(w,a) would
entail a solution to the X3C instance.

We will order the candidates to form the following tie-breaking preference
order: w � t � p1 � p2 � S � U , where candidates from S and U appear in
their natural lexicographic order.

We now construct a set of voters, grouped into five distinct blocks, according
to their truthful preference profile. In each block we only explicitly describe the
order of a few least-preferred candidates. All candidates that are not explicitly
mentioned in a profile, appear in an arbitrary order, and are marked by . . . .
• Block 1: A set of n voters, one for each candidate in S, with preference profile
of the form · · · � t � w � Si � p1;
• Block 2: A set of n − m voters with preference profile of the form · · · � t �
w � p2 and one additional voter with profile of the form · · · � w � t � p2;
• Block 3: For each {ui1 , ui2 , ui3} = Si ∈ S a set of n − m + 2 voters. Three
with profiles of the form · · · � w � t � uij � Si, where j ∈ {1, 2, 3}, and all
others of the form · · · � w � t � Si;
• Block 4: For each uk ∈ U a set of n − m − 1 voters with profiles of the form
· · · � w � t � uk;
• Block 5: A set of n − m − 1 voters with profiles of the form · · · � w � t
• Block 6: A set of n − m voters with profiles of the form · · · � t � w.

Let us now show why the existence of an equilibrium profile that solves
WinNE(w,a), where a is as described above, entails a solution to the X3C
instance. To this end, consider the voters’ behaviour in a NE profile b, where w
is the winner.

According to Lemma 1, sc(w,b) = sc(w,a), yet by our construction sc(t,a) =
sc(w,a) + 1. Hence, for w to become a winner in b, t has to receive at least one
additional veto and will also be the threshold candidate (if t is not a runner-up, it
means several are no longer vetoing it, but as they are vetoing some non-winner
instead, they can revert to being truthful and gain ε utility. Due to its loss to w
in tie-breaking, it means t is the threshold candidate). According to Lemma 3
and the truth bias assumption, none of those who vetoed t in a would switch
to veto another candidate. In fact, there is only one voter that needs to deviate
from its truthful profile and veto t.



Beyond Plurality: Truth-Bias in Binary Scoring Rules 461

Consider the voters of Block 2. (n−m) of them prefer t to w, and would not
veto the former. Yet, if they lie in b, they have to veto a runner up. As a result,
none of them can deviate from their truthful profile in equilibrium. On the other
hand, the last voter of the block can (and should) deviate, and veto t.

Similarly, consider the score of p1 in the truthful profile a and compare it to
that of sc(w,a). For w to be the winner of the equilibrium profile b, m voters
from Block 1 need to deviate in the equilibrium and stop vetoing p1. These newly
vetoed candidates have to be less preferred than w by the deviating voters. For
voters of Block 1, this means vetoing a candidate from the set S. As a result,
there are m candidates Si ∈ S that are being vetoed by the voters from Block
1 in the equilibrium profile b.

These chosen Si’s, however, need to be runner-up candidates. To achieve that,
exactly 3 candidates that veto Si’s in Block 3 must deviate in the equilibrium
profile b. These can only be the voters with preference profiles of the form
· · · � w � t � uij � Si, where j ∈ {1, 2, 3}.

Since no voter in Block 4 can deviate, those voters from Block 3 that deviate
to veto uij s can only do so consistently with Lemma 3, if the total number of
times that uij is being vetoed is equal to (n − m). This can happen only if each
uij ∈ U is vetoed exactly once by voters from Block 3.

As a result, the sub-set Si’s that are vetoed by voters in Block 1 constitutes a
solution to the given X3C instance. The opposite direction, that is, constructing
a NE profile given a solution to the X3C instance, is trivial. 
�

The results of this subsection show that there are critical properties of the
truthful profile a that make the existence of an equilibrium with a given winner
a hard problem. However, as we show in the next subsection, combining these
properties, namely condition C1 and C2, creates a polynomial-time decidable
sub-class.

3.3 A Polynomially Solvable Subclass

In the previous subsection, we demonstrated two conditions on a candidate and
the truthful profile that, if violated, make WinNE, under truth-biased voters,
NP-hard. In this subsection, we complete our treatment on this categorization
of profiles by considering the subset where both aforementioned conditions hold.
In fact, we provide a constructive proof, via a reduction to a max-flow problem,
showing that in this sub-class of truthful profiles, WinNE(w,a) can be decided
in polynomial time.

Theorem 4. Consider a candidate w ∈ C and a truthful profile a for which
conditions C1 and C2 hold. Then WinNE(w,a), i.e., the existence of a NE
profile bNE, where F(bNE) = w, is decidable in polynomial time.

The statement of the above theorem is tight, given Theorems 1 and 3. Namely,
should either one of the conditions C1 or C2 be violated, determining the exis-
tence of a NE with w as the winner becomes NP-hard. The conditions C1 and C2
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ensure that we can focus on a particular threshold candidate (namely candidate
t) for constructing a Nash equilibrium profile. While C1 ensures some manipu-
lation will be necessary (and the preference order ensures it will be a threshold),
it is C2 that ensures that t can be a valid threshold candidate, since without it,
as Observation 1 noted, this is not possible.

Proof. Consider an instance of the problem specified by a potential winner w ∈ C
and the real profile a. Let t also be the candidate right next to w, as specified by
conditions C1 and C2. The proof is based on a polynomial reduction to the max-
flow problem in a graph. We will construct a graph (and later correct the flow)
in such a way that the set of flow-saturated edges will indicate the feasibility of
obtaining a Nash equilibrium. Furthermore, positive flow at certain nodes in the
graph will indicate a switch in the voters’ equilibrium ballots from their truthful
profile.

Given a truthful voting profile a, we will construct the graph as follows. Ver-
tices will be associated with each candidate and each voter; we also add a source
and a sink node. The set of graph vertices will therefore be {source, sink} ∪C∪V .

The set of edges, E, in the graph will consist of three subsets.

• Potential deviators. Edges that link voters and potentially vetoed candi-
dates.

For a voter i where the last candidate in its real preference order is some
r ∈ C, i.e., the preference order is in the form . . . � w � c1 � . . . � cl � r, add
the following directed edges with unit flow capacity: (r, vi), (vi, c1), . . . , (vi, cl).

The resulting palm-leaf sub-structure is depicted in Fig. 1. It essentially cap-
tures the ability of the voter to change its veto in a manner that will benefit
w without deteriorating the voter’s utility (note, of course, that there are mul-
tiple such sub-graphs in the graph, and vertices may be part of several such
structures).

Fig. 1. Polytime special veto subclass. Palm sub-structure for Theorem 4.

• Sustainable deviations. Edges from the source node. These edges and capac-
ities reflect the number of additional points a candidate may absorb until it
becomes a runner-up candidate w.r.t. w. Hence (recall that t is the candidate
next to w in the tie-breaking order, as specified by conditions C1 and C2):

For each candidate c so that t � c in tie-breaking and sc(w,a)− sc(c,a) > 0,
a directed edge (source, c) is added with capacity sc(w,a) − sc(c,a).



Beyond Plurality: Truth-Bias in Binary Scoring Rules 463

For each candidate c so that c � w in tie-breaking and sc(w,a)−sc(c,a) > 1,
a directed edge (source, c) is added with capacity sc(w,a) − sc(c,a) − 1.

• Necessary deviations. Edges to the sink node. These edges and capacities
reflect the number of additional veto votes a candidate needs to sustain to make
its score less than that of w. Otherwise, w would not be able to become the
winner.

For each candidate c so that t � c in tie-breaking and sc(w,a)− sc(c,a) < 0,
a directed edge (c, sink) is added with capacity sc(c,a) − sc(w,a).

For each candidate c so that c � w in tie-breaking and sc(w,a)−sc(c,a) < 1,
a directed edge (c, sink) is added with capacity 1 − (sc(w,a) − sc(c,a)).

Given Corollary 1, the non-truthful votes at an equilibrium profile come from
voters that were not vetoing w in a, and they now lie by vetoing some candidate
other than their truthful vetoed candidate, which is less-preferred than w. From
the construction of the graph, it is easy to see that if the maximal flow through
the above graph is less than the sum of all incoming capacities to the sink node,
then there can be no equilibrium profile that makes w a winner. To see this,
observe that only candidate vertices connect directly to the sink, and these are
precisely candidates that have higher scores than w. Total capacity of all these
edges equals the number of voters that necessarily have to change their vote.
Furthermore, the flow has to go through voter vertices, connected to candidates
that are less-preferred to w (and hence indicate a switch from the truthful vote to
a non-truthful one). Finally, if all edges to the sink are saturated in a maximum
flow, we will show that a Nash equilibrium profile bNE , with F(bNE) = w, can
be recovered from the flow. In what follows we will demonstrate this formally.

Let f : E → R be a maximal acyclic, integer flow through the constructed
graph. Such a flow can be obtained in time polynomial in the number of voters
and candidates. Furthermore, all edges from a candidate node to a voter node
that have positive flow on them will be saturated (as their capacity is 1).

We will now modify the flow, while maintaining its total capacity, to maxi-
mize the flow through the source outgoing edges, and minimize the flow through
voter nodes. Since we will later associate a flow through a voter node with the
voter deviating from the truthful vote, minimizing the flow through voter nodes
will reflect and ensure that the voting profile recovered from it will be truth
biased (i.e., no unnecessary lying takes place, otherwise some voter would have
an incentive to switch back to the truthful vote).

Let D = {c| ∃e = (source, c) ∈ E} be the set of all nodes directly connected
to the source. Notice that D is a subset of candidate nodes. Let q ∈ D be a node
for which: (i) there is a voter v so that (v, q) ∈ E; (ii) f((v, q)) > 0; and (iii) the
edge (source, q) is not saturated. We will repeat the following flow modification
until no such q exists.

Consider a flow path to q through voter nodes. In particular, let π = (source =
n0, n1, . . ., nl = q) be an acyclic path from the source to q, so that ek =
(nk−1, nk) ∈ E for all k ∈ [l] and f(ek) > 0. Notice that since f is an integer flow
and all edges between candidate nodes and voter nodes have unit capacity, all
the edges of the path have a unit flow apart from the initial edge from the source
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to n1. We will modify the flow f and construct an augmented flow f̂ by canceling
the flow through π, and replacing it with an additional unit flow from the source

to q. More formally, let f̂ = f . We then set f̂(ek) = 0 for all k ∈ [1 : l − 1],
f̂((source, n1)) = f((source, n1)) − 1 and f̂((source, q)) = f((source, q)) + 1.
We then repeat the modification procedure, if necessary, for f̂ . Notice that the
flow modification procedure does not change the total flow from the source to
the sink node.

Assume now that the flow is such that for all nodes q ∈ D, either the edge
(source, q) is saturated, or q has no positive incoming flow from the voter nodes.
Then for every voter vi ∈ V , if there is an edge (vi, cj) for some cj ∈ C, so that
f(vi, cj) > 0, i.e., saturated, we let vi change its vote to veto cj . Otherwise, vi
votes truthfully. Let bNE be the resulting strategy profile. It is easy to see that
bNE is indeed an equilibrium.

Notice that the equilibrium profile, bNE , was constructed in poly-time. Recall,
the steps consisted of: (a) constructing the graph, which takes time polynomial
in the number of candidates, m, and voters, n; (b) finding a maximal acyclic
integer flow (poly-time algorithms exist, and any one is suitable); (c) a set of
flow modifications. Finding the path π necessary for the flow modification takes
polynomial time in m and n, e.g., by following the flow f back through the
saturated edges. Furthermore, the number of repetitions of the flow modification
process is polynomial in the number of candidates and voters as well. This is
because the flow through any candidate node from voter nodes is bounded from
above by the number of voters, and is reduced by one in every modification. As
a result, the running time of the whole algorithm is polynomial. 
�

Note that we cannot have an analogous separation for the problem ∃NE,
since the conditions C1 and C2 depend on the winner under consideration. Hence,
we can clearly have a polynomial time algorithm for ∃NE, if C1 and C2 hold
for every w ∈ C (running the algorithm for WinNE(w,a) for every w), but we
cannot conclude anything if these conditions do not hold across all candidates.

4 Truth-Bias Under k-approval

The veto rule and the plurality rule are two extreme points of the general family
of k-approval voting. For k-approval with k ≥ 1, voters “approve” of the first
k candidates in their submitted ballot, hence each such candidate receives one
point from that voter. In this section, we briefly show that we cannot hope to
have analogous results as in Sect. 3. Clearly the NP-hardness results continue
to hold, since veto is included in k-approval, but the rest of the properties that
we identified in the previous section do not hold for the more general class of
k-approval rules.

For the analysis, we will adopt the general terminology of Sect. 3. In more
detail, we will use the same definition of a runner-up candidate (as well as the
definitions for the sets R1, R2, and for threshold candidates), as the ones used
for the veto case. Additionally, we will denote the set of approved candidates in a
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profile ai (respectively, bi) by Ai (respectively, Bi). Finally we will use the terms
“votes in favor” and “votes against” in the sense of the following definition.

Definition 7. Let a be the truthful profile, and let b be the submitted profile. A
voter i votes in favor of a candidate cj, if cj /∈ Ai and cj ∈ Bi. Similarly, i
votes against cj, if cj ∈ Ai and cj /∈ Bi.

Lemma 5. Given a Nash equilibrium profile bNE �= a, for every non-truthful
voter, exactly one, but never both, of the following conditions hold: (a) the voter
votes in favor of the winner, (b) the voter votes against some r ∈ R1 ∪ R2.

The lemma above already shows some differentiation from what holds for
veto. Now, note that for veto, it is always case (b) from Lemma 5 that holds,
and never case (a). For plurality, on the contrary, it was established in [14] that
it is case (a) that holds, and never case (b). For k-approval, with arbitrary k, it
can be either of the two cases.

Next, we establish that a threshold candidate always exists as in the previous
section.

Proposition 1. For every equilibrium bNE �= a, a threshold candidate always
exists.

Unlike the case of veto or plurality, in the k-approval case, it is possible that
in a non-truthful equilibrium, neither the winner nor the threshold candidate
will maintain the same score as in the truthful profile. This is demonstrated in
the following examples.

Example 2. Consider the following two profiles using 2-approval, with the tie-
breaking order given by the sequence a � b � c � d � e. The truthful profile (of
7 voters) is:

• a � b � c � d � e • 2 voters with preference d � b � a � c � e
• e � d � a � c � b • 2 voters with preference a � d � b � c � e
• e � c � a � b � d

The equilibrium profile changes the last but one voter (i.e., one out of the
two identical voters with preference a � d � b � c � e), as well as the other one
of that type and the last voter to a � e � b � c � d and e � a � c � b � d

In this example, the score of the winning candidate (more specifically, can-
didate a) in the equilibrium profile is higher than in the truthful profile. On
the other hand, the score of the threshold candidate in the equilibrium (in this
example d) decreases in the equilibrium compared to the truthful profile score.

Example 3. The score of the threshold candidate does not necessarily decrease at
an equilibrium. A further example demonstrates that its score can also become
larger in an equilibrium than it is in the truthful profile. Using again 2-approval,
and the tie-breaking order d � a � b � c, this example consists of the following
true preferences:
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a � b � c � d a � c � b � d
c � d � a � b d � b � a � c

a � d � b � c

A NE can be constructed by making only one change — the last voter changes
to a � b � d � c. The threshold candidate score in the equilibrium (here of
candidate b) increases.

Finally, regarding the winner’s score in a Nash equilibrium, we prove that it
cannot fluctuate and go up or down as the score of the threshold candidate, but
instead it is bounded, according to the following proposition.

Proposition 2. Let w = F(bNE) for a NE bNE �= a. Then sc(w,bNE) ≥
sc(w,a).

Our results along with a comparison to the plurality rule are summarised in
Table 2. One of the main conclusions drawn from Table 2 is the following: the
analysis of the plurality rule by Obraztsova et al. [14] established that the score
of the threshold candidate in a non-truthful equilibrium remains the same as
in the truthful profile. This property was exploited in that work for character-
ising the set of equilibria. Regarding the veto rule, the score of the threshold
candidate may change, but the score of the winner remains unchanged among
equilibria. This is a property that we exploited in Sect. 3 in our positive result.
In contrast, when it comes to the general family of k-approval, the examples in
this section show that the score of both the winner and the threshold candidate
may change. The threshold candidate in particular is far less constrained, and
can either lose or gain points in the equilibrium compared to the truthful profile.
Hence, equilibrium profiles are not as well-structured in this case, and therefore
we cannot hope to use the ideas from Sect. 3 or from the plurality analysis of
Obraztsova et al. [14] to come up with more positive algorithmic results. Our
analysis suggests that one may have to look at special cases of k-approval to
obtain structural properties that can yield characterizations, or can be exploited
algorithmically.

Table 2. Summary of our complexity results and other properties.

Conditions Veto Plurality k-approval

¬C1 and C2 C1 and ¬C2 C1 and C2

WinNE(w, a) NP-hard P NP-hard NP-hard

Winner score may grow in NE No Yes Yes

Winner score may drop in NE No No No

Runner-up score may grow in NE Yes No Yes

Runner-up score may drop in NE Yes No Yes

5 Discussion and Future Work

In this paper we initiated the investigation of truth-biased voters in voting sys-
tems that do not use plurality. We focused on the spectrum of voting rules
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ranging from plurality to veto, encompassing all scoring rules that allow only
two values. In these cases, we have seen that plurality, veto, and k-approval
have their own distinct properties. For example, both plurality and k-approval
share the property that the score of an equilibrium winner might be higher than
the truthful score of that candidate (which cannot happen in veto). However,
in k-approval, unlike plurality, equilibria exist where runner-up candidates also
change their scores.

While the problems we studied are NP-complete for both veto and k-approval,
we showed a tight subset of cases for veto where there is a polynomial time algo-
rithm for knowing (and finding, as the algorithm is constructive) if there is a
Nash equilibrium with a winner of our choice.

There are several further research areas to pursue. First, we can combine
this research with other voting approaches. For example, while there has been
research on iterative voting with truth-bias, it has only focused on plurality.

A different approach remains strictly within the framework of truth-bias, and
tries to further enhance our understanding of truth-biased voters, and expand the
research of it to more voting rules (most interesting, to non-scoring rules, such as
maximin), allowing us to further understand the effects of truth-bias. However,
this approach presents unique challenges, as while truth-bias in binary scoring
effectively eliminates the most egregious of nonsensical equilibria, expanding it
to other voting rules requires a wider net, in a sense, to eliminate such equilibria.
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biased agents. In: Vöcking, B. (ed.) SAGT 2013. LNCS, vol. 8146, pp. 26–37.
Springer, Heidelberg (2013)

15. Rabinovich, Z., Obraztsova, S., Lev, O., Markakis, E., Rosenschein, J.S.: Analysis of
equilibria in iterative voting schemes. In: Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI), pp. 1007–1013. Austin, Texas January 2015

16. Satterthwaite, M.A.: Strategy-proofness and arrow’s conditions: existence and cor-
respondence theorems for voting procedures and social welfare functions. J. Econ.
Theor. 10(2), 187–217 (1975)

17. Thompson, D.R.M., Lev, O., Leyton-Brown, K., Rosenschein, J.S.: Empirical
aspects of plurality election equilibria. In: AAMAS (2013)

18. Xia, L., Conitzer, V.: Stackelberg voting games: computational aspects and para-
doxes. In: AAAI, pp. 805–810 (2010)



Winner Determination and Manipulation
in Minisum and Minimax Committee Elections

Dorothea Baumeister1, Sophie Dennisen2, and Lisa Rey1(B)

1 Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,
40225 Düsseldorf, Germany

lrey@cs.uni-duesseldorf.de
2 Institut für Informatik, Technische Universität Clausthal,

38678 Clausthal-Zellerfeld, Germany

Abstract. In a committee election, a set of candidates has to be deter-
mined as winner of the election. Baumeister and Dennisen [2] proposed to
extend the minisum and minimax approach, initially defined for approval
votes, to other forms of votes. They define minisum and minimax com-
mittee election rules for trichotomous votes, incomplete linear orders and
complete linear orders, by choosing a winning committee that minimizes
the dissatisfaction of the voters. Minisum election rules minimize the
voter dissatisfaction by choosing a winning committee with minimum
sum of the disagreement values for all individual votes, whereas in a
minimax winning committee the maximum disagreement value for an
individual vote is minimized. In this paper, we investigate the computa-
tional complexity of winner determination in these voting rules. We show
that winner determination is possible in polynomial time for all minisum
rules we consider, whereas it is NP-complete for three of the minimax
rules. Furthermore, we study different forms of manipulation for these
committee election rules.

Keywords: Computational social choice · Committee elections · Win-
ner determination · Manipulation · Complexity

1 Introduction

There are diverse situations where the preferences of different people have to be
aggregated, in order to decide upon a given set of alternatives. In such a situation
a voting rule is used. Such voting rules may also be employed in systems of
artificial intelligence, where different agents have to make a joint decision on some
set of alternatives. The study of voting rules from an axiomatic and algorithmic
point of view is actively pursued in the field of computational social choice
(see e.g., the bookchapters by Zwicker [36], Caragiannis et al. [11], Conitzer
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and Walsh [15], Faliszewski and Rothe [16], Lang and Xia [22], Boutilier and
Rosenschein [6]). Most of this work studies the case where the winner of the
election is a single candidate, but voting is also used to elect a set of candidates,
like in the election of a council or a committee. Consider for example the situation
where three friends give a joint party and want to decide what there will be on
the buffet. They know that there is only place for a certain number of things on
the table, and the three friends will probably have different preferences over the
possible choices. In this case a committee election rule may be used. Another
application is the design of recommender systems (see [25]), where the task is
to choose a number of products for recommendation to a buyer on an online
platform.

A widely used rule for committee elections is the minisum approach. Here, the
voters decide for each candidate whether they approve or disapprove of her, and
the winning committee has a minimum sum of distances to the individual votes,
where the distance is measured by the Hamming distance. This corresponds to
a utilitarian approach. Another variant of minimizing the voters’ dissatisfaction
is the minimax approach suggested by Brams et al. [7–9,21]. Here, the maxi-
mum distance to an individual vote is minimized using the Hamming distance.
Baumeister and Dennisen [2] proposed minisum and minimax committee elec-
tion rules for trichotomous votes, incomplete linear orders, and complete linear
orders. We will study winner determination and manipulation for these newly
defined committee election rules.

Closely related to committee elections that minimize the voters’ dissatisfac-
tion are systems of proportional representation (see the work of Chamberlin and
Courant [13] and Monroe [27]). In these systems the dissatisfaction of a voter
is not computed for the whole committee, but only for that candidate from the
committee that represents this voter. Computational aspects for problems of
proportional representation have been studied in [4,32,34].

2 Definitions and Notations

In this section we introduce the definitions and notations for the voting rules that
we analyze in the following sections. A committee election is a triple (C, V, k),
where C = {c1, . . . , cm} is the set of candidates, V = (v1, . . . , vn) is a list of
voters represented by their votes, and k is the size of the committee. We will
consider four different types of votes. An approval vote is a {0, 1}m vector, for
a fixed order of the candidates. A 1 in the vector stands for an approval of the
corresponding candidate, whereas a 0 stands for a disapproval. The second type
of votes are trichotomous votes (see Felsenthal [17]). Here, the votes can equally
express an approval or disapproval for each candidate, but the voters can also
decide to abstain for a candidate. This is realized through {−1, 0, 1}m vectors
for a fixed order of the candidates, where again a 1 stands for approval, but
now a −1 stands for disapproval, and a 0 stands for an abstention. The last two
types of votes we consider are complete and incomplete linear orders. A complete
linear order is a total, transitive, and asymmetric binary relation over the set of
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candidates. We will denote the vote of voter v by >v, where c >v d means that
candidate c is preferred to candidate d by voter v, and c �>v d means that voter
v does not prefer candidate c to candidate d. Incomplete linear orders are also
transitive and asymmetric, but not necessarily a total binary relation over the
set of candidates. Note that this allows for general incomplete linear orders and
not only linear orders with indifferences. To distinguish between complete and
incomplete linear orders, we will denote an incomplete linear order for voter v
by �v. We will write a ∼v b, if the relation between two candidates a and b is
unknown in v, i.e., neither a �v b nor b �v a holds.

To define minisum and minimax voting rules, we need a measure of distance
for a single vote with a potential committee. For the sake of readability, we
will denote an approval committee as a {0, 1}m vector having exactly k ones,
or as a set K ⊆ C of candidates. In case of trichotomous votes, we will also
denote a committee as a {−1, 1}m vector having exactly k ones. And we will
say that weight(v) denotes the number of ones in a vector v from {0, 1}m or
{−1, 0, 1}m. For approval votes we adopt the obvious approach of using the
Hamming distance, as proposed by Brams, Kilgour and Sanver [7]. The distance
between a vote v ∈ {0, 1}m and a committee w ∈ {0, 1}m is defined through
HD(w, v) =

∑
1≤i≤m |w(i) − v(i)|.

In the case of trichotomous votes, we slightly adapt the Hamming distance,
such that a complete disagreement between vote and committee adds two points,
and an abstention in the vote and an approval or disapproval in the committee
adds only one point. The distance between a vote v ∈ {−1, 0, 1}m and a com-
mittee w ∈ {−1, 1}m is defined through δ(w, v) =

∑
1≤i≤m |v(i) − w(i)|. This

distance can be similarly defined for two vectors v, w ∈ {−1, 0, 1}m.
For complete linear orders, Baumeister and Dennisen [2] use the sum of the

ranks of the committee members in a vote to measure the dissatisfaction. This
goes back to the Wilcoxon rank-sum test [35]. The normalized ranksum between
a vote v and a committee K ⊆ C is RS(K, v) =

∑
c∈K pos(c, v)−k(k+1)/2, where

pos(c, v) denotes the position of candidate c in vote v.
The last type of votes are incomplete linear orders, for which we will use the

modified Kemeny distance, as suggested by Baumeister and Dennisen [2]. The
distance between a vote v and a committee K ⊆ C, is defined as Dist(K, v) =∑

a,b∈C dK,v(a, b), where the distance between two candidates a and b regarding
a committee K and a vote v is defined through

dK,v(a, b) =

⎧
⎪⎨

⎪⎩

1 if (a ∈ K, b �∈ K ∧ a ∼v b) or (a �∈ K, b ∈ K ∧ a ∼v b),
2 if (a ∈ K, b �∈ K ∧ b �v a) or (a �∈ K, b ∈ K ∧ a �v b),
0 otherwise.

Note that for an increase of dissatisfaction in the definition of dK,v(a, b) it
is important to require that one of the candidates a or b is not in the com-
mittee. Otherwise the dissatisfaction would already increase if for two candi-
dates from the committee (or outside the committee) the vote specifies an order
over them, which may result in different winning committees. Transferring the
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minisum and minimax approach, that will be defined formally in Sect. 3, to tri-
chotomous votes leads to minisum-CAV and minimax-CAV, for complete linear
orders to minisum-ranksum and minimax-ranksum, and to minisum-Kemeny
and minimax-Kemeny for incomplete linear orders. In the following sections we
will study winner determination and manipulation for these voting rules from
a computational point of view. We assume that the reader is familiar with the
basic concepts of computational complexity, such as many-one reducibility and
the complexity classes P and NP; details and definitions can be found in the text-
book by Papadimitriou [30]. Intuitively, the tractable problems are those, which
can be solved in polynomial time, whereas problems which are NP-complete can
be seen as intractable. Table 1 summarizes the above introduced voting rules
and the results concerning winner determination that will be obtained in the
following section.

Table 1. Winner determination in minisum and minimax voting rules for different
forms of votes.

Votes Voting rule Measure Minisum Minimax

winner winner

Approval votes Minisum/minimax-
approval

Hamming distance
(HD)

In P see [8] NP-hard
see [23]

Trichotomous
votes

Minisum/minimax-
CAV

Mod. Hamming
distance (δ)

In P trivial NP-hard see
Theorem 4

Complete linear
orders

Minisum/minimax-
ranksum

Ranksum (RS) In P see
Theorem 2

Incomplete
linear orders

Minisum/minimax-
Kemeny

Mod. Kemeny
distance (Dist)

In P see
Theorem 3

NP-hard see
Theorem 7

3 Winner Determination

In a single winner election, the winner is a single winning candidate, whereas
in a committee election, the winner is one committee (or several committees)
consisting of a fixed number of candidates. Let Fk(C) denote all committees of
size k from the set C, where the representation (i.e., approval vote, trichotomous
vote, or a set of candidates) will be clear from the context. The number of pos-
sible winning committees |Fk(C)| is exponential in the number of participating
candidates. Since committee elections may have a huge number of voters and/or
candidates, it is desirable that the winning committees may still be determined
in a reasonable amount of time. In the following we will present the minisum
and minimax approach that can be combined with the above defined measures
of disagreement to define committee election rules. These rules will not always
return a single winning committee, hence some tie-breaking rule has to be used
in order to obtain a single winning committee.
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In a minisum rule, the sum of the disagreement values for all individual votes
regarding the winning committee is to be minimized. Formally, the set of win-
ning committees in the minisum rule is arg minK∈Fk(C)

∑
v∈V �(K, v), where

� ∈ {HD, δ,RS,Dist} for approval votes, trichotomous votes, complete linear
orders, or incomplete linear orders. In contrast in a minimax rule, the maximum
disagreement value for an individual vote is to be minimized. Hence, the set
of winning committees in the minimax rule is arg minK∈Fk(C) maxv∈V �(K, v),
where � ∈ {HD, δ,RS,Dist} for approval votes, trichotomous votes, complete
linear orders, or incomplete linear orders. We will make use of the following
theorem from Baumeister and Dennisen [2], which shows that for the case of
complete linear orders, the winning committees in a minisum/minimax-Kemeny
election and in a minisum/minimax-ranksum election are always equal.

Theorem 1 (Baumeister and Dennisen [2]). The set of winning committees
in a minisum/minimax-Kemeny election with complete linear orders and in the
corresponding minisum/minimax-ranksum election are always equal, i.e.,

arg min
K∈Fk(C)

∑

v∈V

Dist(K, v) = arg min
K∈Fk(C)

∑

v∈V

RS(K, v), and

arg min
K∈Fk(C)

max
v∈V

Dist(K, v) = arg min
K∈Fk(C)

max
v∈V

RS(K, v).

We want to study the complexity of determining a winning committee indepen-
dently of any tie-breaking rule. Since the number of winners may be exponential,
determining all winning committees is obviously not possible in polynomial time,
hence we focus on the question whether it is possible to obtain one winning com-
mittee. We will see that in the case of minisum elections, this is always possible in
polynomial time. For the minimax elections, we show NP-hardness of the corre-
sponding decision problem for trichotomous votes and incomplete linear orders,
and present an approximation algorithm for the case of trichotomous votes.

3.1 Minisum Elections

In minisum-approval the total dissatisfaction is minimum if the committee con-
tains k candidates having the highest number of approvals in all votes. Hence,
as shown by Brams, Kilgour, and Sanver [8], it is possible to determine a win-
ner in polynomial time. Similar to minisum-approval in minisum-CAV, the total
dissatisfaction is minimum if the committee consists of k candidates that have
the highest combined approval scores, i.e., the sum of the corresponding values
from the votes. Again a winner can obviously be determined in polynomial time.

Theorem 2. A minisum-ranksum winner can be determined in polynomial
time.

This holds, since a minisum-ranksum winner consists of k candidates with
the highest Borda score1. The detailed proof is omitted due to space.
1 In an m-candidate Borda election (see [5]) each candidate gets points according to

her position in the votes, where a first position gives m − 1 points, a second m − 2,
and so on.
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The corresponding single-winner problem for Kemeny elections, i.e., whether
there exists a linear order for which the sum of the distances to the votes does
not exceed a given bound, was shown to be NP-hard by Bartholdi et al. [20]. In
contrast, we show that a winning committee for minisum-Kemeny can be deter-
mined in polynomial time, by reducing the determination of a winner committee
for an election with incomplete linear orders to an election in which all votes are
complete linear orders.

Lemma 1. For each minisum-Kemeny election (C, V, k) with incomplete lin-
ear orders, there is a minisum-Kemeny election (C, V ′, k) with complete linear
orders, so that

∑
v∈V ′ Dist(K, v) = 2

∑
v∈V Dist(K, v) holds for all committees

K ∈ Fk(C) and V ′ can be constructed in polynomial time.

Proof. Given a committee election (C, V, k), we will construct a set of voters
V ′ with the following properties: For each vote v ∈ V there will be two votes v′

1

and v′
2 in V ′, such that ∀c, d ∈ C

1. if c �v d, then c >v′
1

d and c >v′
2

d,
2. if c ∼v d, either c >v′

1
d and d >v′

2
c, or c >v′

2
d and d >v′

1
c holds.

In general, for a committee K and a voter list U , we have:
∑

v∈U Dist(K, v) =∑
c∈K

∑
d/∈K (|{v ∈ U |c ∼v d}| + 2 · |{v ∈ U |d �v c}|). With the above defined

properties, it holds |{v ∈ V ′|d > c in v}| = |{v ∈ V |c ∼v d}|+2·|{v ∈ V |d �v c}|
for all c, d ∈ C, and thus
∑

v∈V ′
Dist(K, v) =

∑

c∈K

∑

d/∈K

(|{v ∈ V ′|c ∼v d}| + 2 · |{v ∈ V ′|d >v c}|)

= 2 ·
∑

c∈K

∑

d/∈K

(|{v ∈ V |c ∼v d}| + 2 · |{v ∈ V |d �v c}|) = 2 ·
∑

v∈V

Dist(K, v).

We now describe how V ′ can be constructed: For each vote w ∈ V create two
directed graphs G1 = (V1, E1) and G2 = (V2, E2).

1. G1 and G2 are constructed as follows: There is a node for each candidate
c ∈ C, and an edge (c, d) if c �w d holds.

2. Find two nodes u, v ∈ V1, so that neither (u, v) ∈ E1 nor (v, u) ∈ E1 holds.
Add (u, v) to E1. If there is no such pair, go to step 7.

3. Build the transitive closure of G1.
4. Add for each edge (u, v) which was added in steps 2 and 3 to E1, the edge

(v, u) to E2.
5. Build the transitive closure of G2.
6. If in step 5 new edges were added to E2, add for each edge (u, v) which was

added to E2, the edge (v, u) to E1 and go to step 3. Otherwise, go to step 2.
7. Determine the complete orders on basis of the indegree of the nodes of G1

and G2 and halt. If a node in Gi has indegree j, the corresponding candidate
is at position (j + 1) in v′

i.
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According to the definition of incomplete linear orders, the original graph in
step 1 is acyclic and transitively closed. If we add an edge (u, v) to E1 in step
2, this cannot create a cycle since there was no path from v to u: If there had
been a path from v to u, the edge (v, u) would have been in E1 because of the
transitive closure. This holds analogously for adding an edge (v, u) to E2 in step
4. If we compute the transitive closure, no cycle can be created if the original
graph was acyclic.

If we “mirror” an edge (u, v) from G1 to G2, it holds that neither edge (u, v)
nor (v, u) existed in G2 before. Analogously, it holds that neither edge (u, v) nor
edge (v, u) existed in G1 if we “mirror” an edge (u, v) from G2 to G1.

A directed graph G = (V ′, E′), which contains for each node pair u, v ∈ V ′

either edge (u, v) or edge (v, u), contains exactly ((|V ′| − 1) · |V ′|) · 1
2 edges. The

algorithm runs until both graphs contain ((|V1|−1) · |V1|) · 12 = ((|V2|−1) · |V2|) · 12
edges. Step 2 guarantees that this edge number is attained in G1. As for each
edge (u, v) which is added to G1 in step 2, edge (v, u) is added in step 4 to G2,
this edge number is attained in G2, too. So, the algorithm terminates, and the
properties stated at the beginning of this proof hold.

The initialization of the graphs and the translation of the resulting graphs
into two complete linear orders v′

1, v′
2 for a vote v ∈ V is possible in polynomial

time. The transitive closure of a graph G can be computed in O(|V ′|3). For a
vote v, the transitive closure has be to computed maximally as often as edges are
added to G1 or G2. The number of edges is smaller than |V1|2, i.e., the runtime
for the computation of transitive closures for a vote v is in O(|V1|3 · |V1|2) =
O(m5). So, V ′ can be constructed in time O(m5 · n). This completes the proof.


�
Now, we are ready to state our result for winner determination in minisum-

Kemeny elections. The proof follows directly from Lemma 1, Theorems 2 and 1.

Theorem 3. A minisum-Kemeny winning committee can be determined in poly-
nomial time.

3.2 Minimax Elections

In contrast to the minisum elections, in minimax-approval, minimax-CAV, and
minimax Kemeny elections, it is not always possible to determine a winning
committee in polynomial time, unless P = NP. This holds, since we show NP-
hardness of the following decision problem.

�-Minimax-Score

Given: A committee election (C, V, k) and a positive integer d.

Question: Is there a committee K ∈ Fk(C) with maxv∈V �(K, v) ≤ d?

where � ∈ {HD, δ,RS,Dist} for approval votes, trichotomous votes, complete
or incomplete linear orders. Since there is a natural upper bound for �(K, v)
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for every � ∈ {HD, δ,RS,Dist}, it is possible to compute a winning com-
mittee in polynomial time, if this decision problem is solvable in polynomial
time. LeGrand [23] showed that HD-Minimax-Score is NP-complete. How-
ever, LeGrand et al. [24] showed that the search variant of this problem, where
we actually seek a winning committee, can be approximated with a factor of
3, and Caragiannis et al. [12] proposed an LP-based algorithm for this problem
where the distance to the optimal solution is at most 2. Recently, Byrka and
Sornat [10] provided a PTAS for minimax approval voting.

The above defined score problem for trichotomous votes is also NP-complete.

Theorem 4. δ-Minimax-Score is NP-complete.

Proof. Membership in NP is obvious, and to see that δ-Minimax-Score is NP-
hard, it suffices to transform every approval vote v into a trichotomous vote v′ by
replacing every 0 in v by a −1 in v′. To obtain a committee K ′ for trichotomous
votes, we need to replace every 0 by a −1 in the resulting approval committee
K. Then we have HD(K, v) ≤ d ⇔ δ(K ′, v′) ≤ 2d. 
�

Similarly to the approximation algorithm for the search variant of HD-
minimax-score by LeGrand et al. [24], one can give an approximation algorithm
with a factor 3 for the search variant of δ-minimax-score.

The search variant of will be denoted by Minimax-CAV, where the input is
also a committee election (C, V, k) with votes represented as {−1, 0, 1}m vectors,
and the aim is to find a committee K∗ ∈ arg minK∈Fk(C) maxu∈V δ(K,u).

Theorem 5. There is an approximation algorithm which finds a solution K ′

in polynomial time, so that for each optimal solution K of the search problem
Minimax-CAV it holds δ(K ′, u) ≤ 3 · Maxδ(V,K) for all votes u ∈ V , where
Maxδ(V,K) = maxu∈V δ(K,u) denotes the maximum distance between K and
the votes in V .

Proof. Denote for a vector v ∈ {−1, 0, 1}m by z(v) the number of zeros in v,
and by n(v) the number of −1 in v. A k-completion of v is a vector v′ in {−1, 1}m
constructed as follows.

1. If weight(v) ≤ k and z(v) + weight(v) < k, transform all zeros into ones and
transform −1 into ones until weight(v′) = k.

2. If weight(v) ≤ k and z(v) + weight(v) ≥ k, transform zeros into ones until
weight(v′) = k, and transform the remaining zeros into −1.

3. If weight(v) > k, transform ones into −1 until weight(v′) = k, and transform
all zeros into −1.

Obviously, each k-completion v′ for v contains exactly k ones. We will first
show, that for an optimal solution K, an initial vector v and a k-completion K ′

of v, it holds δ(K ′, v) ≤ δ(K, v). Fix an optimal solution K, an initial vector v
and a k-completion K ′ of v. Consider the possibilities for the i-th position in the
vectors, where we can have a −1, a 0, or a 1. For the first case (weight(v) ≤ k
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Table 2. Possibilities for the first case

v 1 1 0 0 - 1 - 1 -1 -1

K′ 1 1 1 1 1 1 -1 -1

K 1 - 1 1 -1 1 -1 1 -1

k1 k2 k3 k4 k5 k6 k7 k8

and z(v) + weight(v) < k), we have the following 8 possibilities. For 1 ≤ i ≤ 8,
ki denotes the number of occurrences of the corresponding possibility (Table 2).

We have weight(K ′) = k1 + k2 + k3 + k4 + k5 + k6 = k, and weight(K) =
k1 + k3 + k5 + k7 = k. Hence k2 + k4 + k6 = k7, and we have δ(K, v) = 2k2 +
k3 + k4 + 2k5 + 2k7, and δ(K ′, v) = k3 + k4 + 2k5 + 2k6. Now it is easy to verify,
that δ(K, v) ≥ δ(K ′, v). The other two cases can be handled analogously.

The approximation algorithm Approx-Minimax-CAV proceeds as follows:

1. Select a vote v ∈ V arbitrarily.
2. Compute a k-completion v′ of v.
3. Return K ′ = v′ as solution.

Obviously, this algorithm runs in polynomial time. To estimate the approx-
imation rate of the algorithm, consider the vote v ∈ V which was chosen, the
k-completion K ′ of v which is returned as solution, and an optimal solution K
for Minimax-CAV, i.e., a vector K in {−1, 1}m containing exactly k ones so
that Maxδ(V,K) is minimum for all vectors in {−1, 1}m with weight k.

We need to show that δ(K ′, u) ≤ 3 · Maxδ(V,K) holds for all u ∈ V . Since
the triangle inequality applies to δ, we have for all u ∈ V : δ(K ′, u) ≤ δ(K ′, v) +
δ(v, u). Repeated application of the triangle inequality leads to:

δ(K ′, u) ≤ δ(K ′, v) + δ(K, v) + δ(K,u). (1)

Since K is an optimal solution, we have δ(K,u) ≤ Maxδ(V,K) for all u ∈ V .
Similarly, we have δ(K, v) ≤ Maxδ(V,K). Since K ′ is a k-completion of v,
it also holds that δ(K ′, v) ≤ δ(K, v). The three terms on the right hand of
inequality (1) are ≤ Maxδ(V,K), and we get the desired property: δ(K ′, u) ≤
3 · Maxδ(V,K) for all u ∈ V. 
�

We now turn to the study of the Dist-Minimax-Score for incomplete lin-
ear votes. To show that this problem is also NP-hard, we first need to show
NP-hardness of Restricted-HD-Minimax-Score, which corresponds to HD-
Minimax-Score for the case where the number m of candidates is even and the
size of the committee is exactly m/2.

Theorem 6. Restricted-HD-Minimax-Score is NP-complete.

Proof. The NP-hardness of Restricted-HD-Minimax-Score can be shown
via a reduction from HD-Minimax-Score. Consider a HD-Minimax-
Score instance (C, V, k, d), and construct a Restricted-HD-Minimax-Score
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instance (C ′, V ′, k′, d). The set of candidates is C ′ = C ∪ D with the set of
dummy candidates D = {d1, ..., dm}, and the list V ′ = {v′

1, ..., v
′
n} of votes is

constructed as follows: v′
i has the form (vi, w) where w is a vector that has a 1 at

the first m − k positions, and a 0 on the remaining k positions. Denote the set of
the m−k candidates from D who receive a 1 in all votes by W . Let the size of the
committee be k′ = m. Now, we show that (C, V, k, d) ∈ HD-Minimax-Score ⇔
(C ′, V ′, k′, d) ∈ Restricted-HD-Minimax-Score.

(⇒) Assume that (C, V, k, d) is a yes-instance for HD-Minimax-Score, i.e.,
there is a committee K ∈ Fk(C) so that the Hamming distance to all votes in
V is at most d. Then, there also exists a committee K ′ ∈ Fk′(C ′) = Fm(C ′) so
that the Hamming distance to all votes in V ′ is at most d, namely the committee
K ∪ W , since for all i ∈ {1, ..., n}, it holds that HD(K ′, v′

i) = HD(K ∪ W, v′
i) =

HD(K, vi) + HD(W,w) = HD(K, vi) ≤ d.
(⇐) Assume that (C ′, V ′, k′, d) is a yes-instance for Restricted-HD-Mini-

max-Score. Then, there is a committee K∗ ∈ Fk′(C ′) = Fm(C ′), so that the
Hamming distance to all votes in V ′ is at most d. We will now consider all
possible choices of K∗ and show that there is always a winning committee with
exactly k candidates from C and m − k candidates from D.

Case 1: K∗ = K ∪ W for a committee K ∈ Fk(C). If K∗ has the form
K ∪ W for a committee K ∈ Fk(C), we have with K = K∗ − D a committee
in Fk(C) so that the Hamming distance to all votes in V is at most d: for all
i ∈ {1, ..., n}, it holds that HD(K, vi) = HD(K∗, v′

i) ≤ d.
Case 2: K∗ �= K ∪ W for a committee K ∈ Fk(C). If K∗ does not have

the form K ∪ W for a committee K ∈ Fk(C), we can transform K∗ into a
committee K ′ = K ∪ W so that K ∈ Fk(C), as follows. If a candidate in W is
not elected, “shift” in the vector representation of the committee, if possible, a
1 from a candidate in D − W to this candidate in W . This action reduces the
Hamming distance of the committee regarding all votes. Since in all votes the
candidates in W are accepted and the candidates in D − W are rejected, the
Hamming distance regarding D decreases by 2 via such a shift. Suppose that
q such shifts are required and let K+ denote the resulting committee. Then it
holds that HD(K+, v′

i) = HD(K∗, v′
i) − 2q ≤ HD(K∗, v′

i).
Case 2.1: In K+ more than m−k candidates from D are elected. If in

K+ more than m−k candidates from D are elected, “shift” the surplus ones from
candidates in D − W to the candidates in C. Overall, exactly m candidates are
elected, i.e., if exactly m−k candidates from D are elected, exactly k candidates
from C are elected. The resulting committee K ′ is a committee of the form
K ∪ W with K ∈ Fk(C). If we shift a 1 from D − W to C, the Hamming
distance regarding the candidates in D decreases by value 1 since in all votes
the candidates in D − W are rejected. The Hamming distance regarding the
candidates in C increases at most by 1 in a shift. So, the Hamming distance
either decreases or stays the same.

Case 2.2: In K+ less than m − k candidates from D are elected.
We can analogously “shift” the missing ones from C to the candidates in W .
With K = K ′ − D, we have a committee from Fk(C), where the Hamming
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distance regarding all votes in V is at most d. So, we have for all i ∈ {1, ..., n}
HD(K, vi) = HD(K ′ − D, vi) = HD(K ′, vi) ≤ HD(K+, v′

i) ≤ HD(K∗, v′
i) ≤ d.


�
With the NP-hardness of Restricted-HD-Minimax-Score, we can now

show NP-hardness of Dist-Minimax-Score for incomplete linear orders.

Theorem 7. Dist-Minimax-Score is NP-complete.

Proof. The NP-hardness of Dist-Minimax-Score can be shown via a reduc-
tion from Restricted-HD-Minimax-Score. Consider a Restricted-HD-
Minimax-Score instance (C, V, k, d) and construct a Dist-Minimax-Score
instance (C, V ′, k, d′), The set of votes V ′ = {v′

1, ..., v
′
n} is constructed as fol-

lows: Let Wi denote the set of candidates who received a 1 in vi, and Li the
set of candidates who received a 0 in vi. The candidates from Wi and Li are
ordered in v′

i so that w �v′
i

l holds for all w ∈ Wi and all l ∈ Li. The bound
on the distance is d′ = d · k. We now show that due to the property k = m

2 ,
Dist(v′

i,K) = HD(K, vi) ·k holds for the given construction for all i ∈ {1, ..., n}
and for all committees K ∈ Fk(C). For a vote v′

i ∈ V ′ and a committee K define
the following sets of candidates:

– KW
i = K ∩ Wi,

– KL
i = K ∩ Li,

– K̄W
i = (C \ K) ∩ Wi, and

– K̄L
i = (C \ K) ∩ Li.

The computation of the modified Kemeny distance can then be carried out
based on the quantities |KW

i |, |KL
i |, |K̄W

i |, and |K̄L
i |. It suffices to compare all

candidates in the committee with the candidates outside of the committee, i.e.,
we only need to consider the candidate pairs (a, b) with a ∈ K and b ∈ (C \ K).
We have:

– For each pair of candidates (a, b) ∈ KW
i × K̄W

i , the relation between a and
b is unknown in vi, since both of them are contained in Wi. So, we have a
distance of 1.

– For each pair of candidates (a, b) ∈ KW
i × K̄L

i , it holds also a �vi
b, since a is

contained in Wi and b in Li. So, we have a distance of 0.
– For each pair of candidates (a, b) ∈ KL

i × K̄W
i , it holds b �vi

a since a is
contained in Li and b in Wi. So, we have a distance of 2.

– For each pair of candidates (a, b) ∈ KL
i × K̄L

i , the relation between a and b is
unknown in vi, since both of them are contained in Li. So, we have a distance
of 1.

Thus, we have:

Dist(v′
i,K) = |KW

i | · |K̄W
i | + 2 · |KL

i | · |K̄W
i | + |KL

i | · |K̄L
i | (2)

If we determine the Hamming distance between a committee K and a vote vi,
we count the positions where a candidate who is elected in the committee is not



480 D. Baumeister et al.

accepted in vi and the positions where a candidate not elected in the committee
is accepted in vi, i.e., we have:

HD(K, vi) = |KL
i | + |K̄W

i | (3)

For all i ∈ {1, ..., n} and for all committees K ∈ Fk(C), we have:

Dist(v′
i,K)

(2)
= |KW

i | · |K̄W
i | + 2 · |KL

i | · |K̄W
i | + |KL

i | · |K̄L
i |

= |K̄W
i | · (|KW

i | + |KL
i |) + |KL

i | · (|K̄W
i | + |K̄L

i |)
= |K̄W

i | · k + |KL
i | · (m − k) = (|K̄W

i | + |KL
i |) · k + |KL

i | · (m − 2k)
(3)
= HD(K, vi) · k + |KL

i | · (m − 2k).

With k = m
2 it holds for all i ∈ {1, ..., n} and for all committees K ∈ Fk(C)

Dist(v′
i,K) = HD(K, vi) · k + |KL

i | · 0 = HD(K, vi) · k. Hence, we have that
there is a committee for which the Hamming distance to all votes in V is at most
d, if and only if there is a committee for which the modified Kemeny distance
to all votes in V ′ is at most dk. This completes the proof. 
�

The complexity of the corresponding problem for complete linear orders,
RS-Minimax-Score, remains open.

4 Manipulation

The famous Gibbard and Satterthwaite Theorem [18,33] says that, in principle,
every preference-based voting rule is manipulable. Bartholdi et al. [1] introduced
a decision problem that captures manipulation in elections. They ask whether for
a given election and some distinguished candidate, there is a vote of the manip-
ulator that makes this candidate win. Based on manipulation for single winner
elections, Meir et al. [26] propose manipulation problems for committee elections.
Their definition includes a utility function and its most general form is as follows.

E-Utility-Committee-Manipulation

Given: A committee election (C, V, k) with honest voters, a utility function
u : C → Z, and an integer t.

Question: Does there exist a vote s over C, such that in the resulting election
with additional vote s under voting rule E it holds that

∑
c∈K u(c) ≥ t,

where K is the winning committee with |K| = k?

They consider an adversarial tie-breaking (see [14]), where from several
equally performing candidates those with the lower utility for the manipula-
tor win the election. Procaccia et al. [31] state that Utility-Committee-
Manipulation is in P for committee elections under Approval voting. The
proof is given by Meir et al. [26], who also show that if the utility function is
mapping to {0, 1} rather than Z, Utility-Committee-Manipulation is in P
for all committee elections held under scoring rules. Since in a minisum-ranksum
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election the winning committee contains the k candidates with the highest Borda
scores (see the remark after Theorem 2), the fact that Utility-Committee-
Manipulation for minisum-ranksum is in P follows immediately.

Obraztsova et al. [29] follow the approach of Meir et al. [26] by defining
manipulation in committee elections through a utility function of the manipula-
tor. They study the complexity of manipulation in committee elections, with a
particular focus on the role of tie-breaking. They focus on the case where ties are
broken according to a fixed predefined order or by a natural randomized rule.

We will also follow the approach of Meir et al. [26], but here we consider non-
unique winners and therefore have to change the definition by asking whether
the condition holds for at least one winning committee. Furthermore, we will
focus only on the case where the utility function is boolean-valued, and state
two special variants of it, that we find most natural. In the first variant, we
simply ask whether it is possible for the manipulator to vote such that a given
subset of the candidates is in at least one winning committee. In analogy to
the manipulation problems in single winner elections, we call this problem E-
Committee-Manipulation.

E-Committee-Manipulation (CM)

Given: A committee election (C, V, k) with honest voters and a distinguished
set of candidates L ⊆ C with |L| ≤ k.

Question: Does there exist a vote s over C, such thats L ⊆ K holds for a win-
ning committee K ∈ Fk(C) in the resulting committee election with
additional vote s held under the rule E?

While CM asks whether all candidates in L can become part of the winning
committee, one can also ask whether it is possible to make at least t candidates
in L part of a winning committee.

E-Threshold-Committee-Manipulation (TCM)

Given: A committee election (C, V, k) with honest voters, a distinguished set
of candidates L ⊆ C with |L| ≤ m, and a non-negative integer t ≤ k.

Question: Does there exist a vote s over C, such that at least t candidates in L
belong to a winning committee K ∈ Fk(C) in the resulting committee
election with additional vote s held under the rule E?

Note that in the case of a committee election rule that always returns a
single winner, CM is a special case of Utility-Committee-Manipulation
with t = |L| and in which the utility function maps all candidates in L to the
value 1 and all candidates in C \ L to 0. Furthermore, CM is the special case of
TCM with t = |L| ≤ k

Even though we consider a different model regarding tie-breaking, the above
mentioned results by Meir et al. [26] can be adapted to CM and TCM.

Theorem 8. CM and TCM for minisum-approval are in P.

Following Meir et al. [26] it holds that if the manipulators’ strategy to approve
all candidates in L and to disapprove all candidates in C \ L does not succeed,
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no other does. Thus, both CM and TCM for minisum-approval can be decided
in polynomial time. A similar result holds for minisum-CAV.

Theorem 9. CM and TCM for minisum-CAV are in P.

Similar to minisum-approval we have that if the strategy to give all candidates
in L a 1 and all candidates in C \L a −1 does not succeed, no other one does. In
the case of complete linear orders, we show, that both manipulation problems
can also be solved efficiently.

Theorem 10. CM and TCM for minisum-ranksum are in P.

Proof. As CM is the special case of TCM where t equals the number of candi-
dates in L, it suffices to give the proof for TCM. Similar to the proofs by Meir
et al. [26] and Bartholdi et al. [20] (see also Obraztsova et al. [28]) we show
how to decide in polynomial time whether it is possible that at least t members
in L belong to a winning committee. We denote the number of candidates in L
by l. We define four lists in which the candidates are given in ascending order
regarding their Borda scores. List T = (t1, . . . , tt) contains the t candidates in
L with the highest Borda scores, list F = (f1, . . . , fl−t) all other candidates in
L, list G = (g1, . . . , gmin(k−t,m−l)) the min(k − t,m − l) candidates in C \ L

with the highest Borda scores and Ĉ = (ĉ1, . . . , ĉm−l−min(k−t,m−l)) the remain-
ing candidates. The manipulator’s vote is given by t1 > · · · > tt > f1 > · · · >
fl−t > g1 > · · · > gmin(k−t,m−l) > ĉ1 > ĉm−l−min(k−t,m−l). If at least t members
in L are part of a winning committee in the election (C, (v1, . . . , vn, s), k) the
manipulation was successful, otherwise it is not possible. 
�

The next theorem shows that for the case of incomplete linear orders, CM
and TCM are solvable in polynomial time as well.

Theorem 11. CM and TCM for minisum-Kemeny are in P.

Proof. It again suffices to give the proof for TCM. Given a committee election
(C, V, k) with V = (v1, . . . , vn), we construct a set of voters V ′ = (v′

1, . . . , v
′
2n)

according to Lemma 1.
We introduce a problem 2-TCM which equals TCM with the exception

that we ask for the existence of a single vote s over C, such that at least t
candidates in L belong to a winning committee K in the committee election
(C, (v′

1, . . . , v
′
n, s, s), k). As V ′ is a list of complete linear orders and according

to Theorem 1, the winning committees in the corresponding minisum-Kemeny
election with complete linear orders equal the winning committees in a minisum-
ranksum-election. The proof that 2-TCM for minisum-ranksum is in P is analo-
gous to the proof of Theorem 102. We now show that it is possible to manipulate
(C, V ′, k) with two manipulators with identical votes if and only if it is possible

2 Note, that this problem does not equal coalitional manipulation which is proved to
be NP-hard even for two manipulators and three voters by Betzler et al. [3].
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to manipulate (C, V, k) with a single manipulator. It is possible to manipulate the
election (C, V, k) according to TCM, i. e. there exists an s such that L ⊆ K∗ for a

K∗ ∈arg min
K∈Fk(C)

(
∑

v∈V

Dist(K, v) + Dist(K, s))

= arg min
K∈Fk(C)

(2(
∑

v∈V

Dist(K, v) + Dist(K, s)))

Lemma 1= arg min
K∈Fk(C)

(
∑

v∈V ′
Dist(K, v) + 2 · Dist(K, s)).

Therefore, K∗ is a winning committee in (C, (v′
1, . . . , v

′
2n, s, s), k). The other

direction can be shown similarly. 
�

5 Conclusions

We showed that a winning committee under all minisum rules can be determined
in polynomial time, whereas the corresponding decision problem for minimax
rules is NP-hard for trichotomous votes and incomplete linear orders. In the case
of approval votes, NP-hardness was already shown by [23], and the complexity of
winner determination for minimax-ranksum remains open. Our analysis focuses
on the case where the size of the committee is known in advance. For the case
where the size of the committee is not fixed in advance, we can still measure
the disagreement of a voter with several committees of different sizes with the
Hamming distance in the case of approval or trichotomous votes. Hence for
minisum-approval and minisum-CAV it is still possible to determine a winner in
polynomial time, since it is enough to compare the disagreement for all possible
sizes of the committee. LeGrand [23] argued that the corresponding decision
problem for minimax-approval also remains NP-complete. However in the case of
complete or incomplete linear orders it is not directly clear how the disagreement
of committees of different sizes can be compared with each other. Note that in
particular the disagreement of a voter measured by the ranksum or the modified
Kemeny distance is always zero for the committee that consists of all candidates
and for the empty committee. One task for future research is to compare these
rules in terms of their axiomatic properties. Besides winner determination we
also studied manipulation in minisum elections, and obtained polynomial-time
solvability results in all cases. Another interesting question for future research
is the problem of coalitional manipulation, where not a single manipulator, but
several voters try to take influence on the outcome of the election.
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Abstract. Given a set of voters V , a set of candidates C, and vot-
ers’ preferences over the candidates, multiwinner voting rules output
a fixed-size subset of candidates (committee). Under the Chamberlin–
Courant multiwinner voting rule, one fixes a scoring vector of length
|C|, and each voter’s ‘utility’ for a given committee is defined to be the
score that she assigns to her most preferred candidate in that commit-
tee; the goal is then to find a committee that maximizes the joint util-
ity of all voters. The joint utility is typically identified either with the
sum of all voters’ utilities or with the utility of the least satisfied voter,
resulting in, respectively, the utilitarian and the egalitarian variant of
the Chamberlin–Courant’s rule. For both of these cases, the problem
of computing an optimal committee is NP-hard for general preferences,
but becomes polynomial-time solvable if voters’ preferences are single-
peaked or single-crossing. In this paper, we propose a family of multi-
winner voting rules that are based on the concept of ordered weighted
average (OWA) and smoothly interpolate between the egalitarian and
the utilitarian variants of the Chamberlin–Courant rule. We show that
under moderate constraints on the weight vector we can recover many
of the algorithmic results known for the egalitarian and the utilitarian
version of Chamberlin–Courant’s rule in this more general setting.

1 Introduction

Local organizers of a conference have to make an important decision: the cater-
ing company that was contracted to provide snacks for the coffee break has a
menu consisting on 30+ items, but for each coffee break one is allowed to pick at
most 6 item types (cookies, pastries, finger sandwiches, etc.). If the organizers
have a good estimate of the participants’ preferences, they may want to ensure
that each participant likes at least one of the items that are served in the coffee
break. Note that participants’ preferences over items other than their top item
(among the ones ordered) are not important here: if Alice likes chocolate cook-
ies, but hates cucumber sandwiches, the organizers can order both, and Alice
can simply ignore the sandwiches. However, if the participants’ preferences are
very diverse, it may be impossible to ensure that everyone’s favorite items are
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 486–502, 2015.
DOI: 10.1007/978-3-319-23114-3 29
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ordered; the organizers may then have to choose between providing 95 % of the
attendants with items they rank highly and making alternative arrangements
for the remaining picky eaters, or ordering items that noone really likes, but
everyone considers acceptable.

A similar issue arises when selecting the board of a large organization, such
as, e.g., IFAAMAS (the non-profit foundation that runs the AAMAS conference):
it is desirable to ensure that most members of the organization feel that they
are represented by the board, but it may be difficult to ensure that this criterion
is satisfied for very small minorities.

In their pioneering work, Chamberlin and Courant [10] described a voting
procedure for selecting a committee, which is driven by such considerations.
Their primary motivation was to provide a method for selecting a representa-
tive parliament, but, as illustrated above, this approach has a wider application
domain (see, e.g., the recent papers of Elkind et al. [13] and Skowron et al. [25],
which discuss a variety of scenarios where the Chamberlin–Courant rule and its
variants may be useful). In more detail, Chamberlin and Courant consider the
setting where a group of voters has to select a fixed-size committee from the
available candidates, and each voter ranks all candidates from best to worst. A
voter’s satisfaction (utility) from a given committee is determined by the rank of
her most preferred candidate in that committee within her preference order, and
the goal is to select a committee that maximizes the sum of voters’ satisfactions
(we provide a formal definition in Sect. 2). A Rawlsian variant of this method was
later proposed by Betzler et al. [3]: instead of maximizing the sum of voters’ sat-
isfactions, they focus on maximizing the satisfaction of the least happy voter; the
subsequent literature refers to the original variant of the Chamberlin–Courant
rule as the utilitarian Chamberlin–Courant rule (U-CC), and the Betzler et al.’s
variant as the egalitarian Chamberlin–Courant rule (E-CC).

In this paper, we propose a family of committee selection rules that smoothly
interpolate between U-CC and E-CC by using the concept of ordered weighted
averages (OWA). A rule in this family is determined by a weight vector
w = (w1, . . . , wn) where n is the number of voters; the entries of this vector are
non-negative reals that sum up to 1. These weights are used when aggregating
the voters’ satisfaction: the total satisfaction is a weighted sum, where the sat-
isfaction of the least happy voter is taken with weight w1, the satisfaction of the
second least happy voter is taken with weight w2, etc. This framework captures
both U-CC (by setting w = ( 1

n , . . . , 1
n )) and E-CC (by setting w = (1, 0, . . . , 0)),

and allows us to trade off the utilitarian welfare and egalitarian objectives in a
variety of ways. We describe a few such tradeoffs below.

– We can choose to ignore d most unhappy voters (e.g., because we can make
alternative provisions for them) and maximize the minimum utility among the
remaining voters, by setting the weight vector to be w = (0, . . . , 0, 1, 0, . . . , 0),
where the only 1 appears in position d + 1. We denote this rule by E−d-CC.

– As in the previous case, we can ignore d most unhappy voters and maximize
the sum of utilities of the remaining voters; this corresponds to the weight
vector w = (0, . . . , 0, 1

n−d , . . . , 1
n−d ), where 0s appear in the first d positions.

We denote this rule by U−d-CC.



488 E. Elkind and A. Ismaili

– We can take the opposite approach and focus on d least happy voters, aiming
to maximize the sum of their utilities. We denote the resulting rule, which
corresponds to the weight vector w = ( 1d , . . . , 1

d , 0, . . . , 0), by Ud-CC. Note
that U1-CC is simply E-CC, and Un-CC is U-CC.

– We can consider a refinement of E-CC, where we first maximize the utility
of the least happy voter, then, among all committees that accomplish this,
we select the ones that maximize the utility of the second least happy voter,
etc.; if voters’ utilities take values in the range [0,K], this rule, which we call
Lex-E-CC, can be implemented by setting

w =
(
α(K + 1)n−1, α(K + 1)n−2, . . . , α

)
,

where α = K
(K+1)n−1 is the normalization factor. The appeal of the resulting

rule is that it provides a principled refinement of E-CC, which can easily be
seen to be rather indecisive.

– An alternative refinement of E-CC is to break ties based on the utilitarian
social welfare, i.e., choose a committee that maximizes the sum of voters’
utilities among all committees that maximize the utility of the least satisfied
voter. We denote this rule by EU-CC. It is captured by the weight vector

w =
(

nK + 1
n(K + 1)

,
1

n(K + 1)
, . . . ,

1
n(K + 1)

)
;

again, we assume that the voters’ utilities lie in the range [0;K].

Having defined this family of committee selection rules, we then focus on their
computational complexity. Both E-CC and U-CC are known to be computation-
ally hard for general preferences, but admit efficient algorithms for restricted
preference domains (see Sect. 1.1 for an overview of the related literature) or
if the number of voters/candidates is small. We show that most of these posi-
tive results extend to many families of weight vectors, including, in particular,
EU-CC, U−d-CC, E−d-CC, and Ud-CC (for some of these results, we also need
a mild restriction on the voters’ score functions). This means that the addi-
tional flexibility obtained by varying the weights does not necessarily imply a
substantial penalty in terms of computation time. However, there are families of
weight vectors (including, notably, Lex-E-CC) that cannot be captured by our
approach. We conclude the paper by discussing the limitations of our techniques
and outlining directions for future work.

1.1 Related Work

The committee selection rules considered in this paper build on the original
model of Chamberlin and Courant [10], who put forward what we call the utili-
tarian version of this rule; its egalitarian version was subsequently proposed by
Betzler et al. [3]. A modification of the original Chamberlin–Courant rule where
each member of the selected committee represents approximately the same num-
ber of voters was subsequently suggested by Monroe [21]. Our general framework
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extends to the Monroe rule; however, this rule appears to be more challenging
from the computational perspective [3,27], and therefore we leave the algorithmic
analysis of its OWA-based extensions as a topic for future work.

The study of computational aspects of the Chamberlin–Courant rule was
initiated by Procaccia et al. [24], who showed that computing U-CC is NP-
hard for approval-like utility functions; Lu and Boutilier [20] extend this result
to Borda-like utility functions. Betzler et al. [3] demonstrate NP-hardness of
E-CC and study fixed-parameter complexity of both E-CC and U-CC; they
demonstrate that both of these rules become polynomial-time computable when
voters’ preferences are single-peaked. Cornaz et al. [11] extend these results to
elections with bounded single-peaked width. Skowron et al. [27] show that both
E-CC and U-CC remain easy when voters’ preferences are single-crossing, or have
bounded single-crossing width. Yu et al. [32] analyze the complexity of E-CC and
U-CC when voters’ preferences are single-peaked on a tree. Lu and Boutilier [20]
and Skowron et al. [26] propose approximation algorithms for U-CC and E-CC.

Another extension of the Chamberlin–Courant rule that is based on OWAs
was proposed by Skowron et al. [25]. However, their approach is orthogonal to
ours: Skowron et al. consider the possibility that the voter cares not just about
her most preferred candidate in the committee, but also derives additional utility
from her second most preferred committee member, etc. (in our coffee break
example, a conference participant may want to try several different snacks).
Thus, while we consider weight vectors that have an entry for each voter, the
weight vectors in the work of Skowron et al. have m entries, where m is the
number of candidates.

Amanatidis et al. [1] also define a family of voting rules that use OWAs to
aggregate voters’ preferences; however, in contrast with our work, they consider
the setting where voters’ preferences are dichotomous. That is, the rules in this
family interpolate between Minisum approval voting and Minimax approval vot-
ing (see [6,9,19] for the definitions and a discussion of these rules). They prove
that most of the rules constructed in this manner are NP-hard, but identify a
number of tractable/approximable special cases.

The ordered weighted averaging aggregation operators were introduced in
multicriteria decision making by [29] and applied in multiple contexts [23,30,31].
Goldsmith et al. [17] recently proposed using OWAs in the context of voting;
however, in contrast with our work, they focus on single-winner settings. OWAs
are typically used to accomplish fairness. In the context of multiagent assign-
ment, fairness is formalized as monotonicity with Pareto dominance and Pigou–
Dalton transfers [16], and is therefore associated with weight vectors that satisfy
wi > wi+1. However, as argued above, in the context of committee elections,
weight vectors that do not satisfy these inequalities (such as the ones used by
U−d-CC and E−d-CC) may still be useful.

2 Preliminaries

For a, b ∈ N, let [[a, b]] = {u ∈ N | a ≤ u ≤ b}; [[a, b]] = ∅ if b < a. Similarly, let
]]a, b[[ = [[a, b]] \ {a, b}. The shorthand for [[1, b]] is [[b]].
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An election E = (C, V ) is defined by a set of candidates C = {c1, . . . , cm}
and a set of voters V = [[1, n]]. Each voter i ∈ V is associated with a preference
order �i, which is a linear order over the candidates. Given c, c′ ∈ C, we write
c �i c′ to denote that voter i prefers c to c′. For succinctness, we may sometimes
describe the preference order of voter i by listing all candidates from her most
preferred one to her least preferred one and suppressing �i; for instance abc is
an abbreviation for a �i b �i c. Let top(i) ∈ C denote voter i’s most preferred
candidate: top(i) �i c for all c ∈ C \ {top(i)}. The individual score, or utility, of
voter i is a function si : C → N such that

for all c, c′ ∈ C c �i c′ implies si(c) ≥ si(c′).

We let ScrC,V = {si(c) | i ∈ V, c ∈ C}, and set RC,V = maxs∈ScrC ,V
s; we omit

(C, V ) from the notation when these sets are clear from the context.
We consider the setting where the goal is to select a committee of size κ.

Following the ideas of Chamberlin and Courant [10], we assume that the sat-
isfaction that a voter derives from a committee is determined by her score for
her most preferred candidate in that committee. Thus, we extend the individual
score function to committees by setting

si(S) = max
c∈S

{si(c)} for each S ⊆ C with |S| = κ.

Existing work considers two methods of extending individual scores to group
scores: the utilitarian score, which was proposed in the original work of Cham-
berlin and Courant [10], and the egalitarian score, suggested by Betzler et al. [3].
The utilitarian and egalitarian scores sU and sE of a committee S ⊆ C, |S| = κ,
are defined by, respectively,

sU (S) =
∑

i∈V

si(S) and sE(S) = min
i∈V

{si(S)}.

The utilitarian CC rule (U-CC) and the egalitarian CC rule (E-CC) output a
κ-sized committee that maximizes the corresponding score (breaking ties arbi-
trarily).

3 Our Model

We put forward a family of voting rules that aggregate individual scores using
ordered weighted averages. A rule in this family is associated with a weight vector
w = (w1, . . . , wn) ∈ R

n such that wi ≥ 0 for all i ∈ V and
∑

i∈V wi = 1. Given
a committee S ⊆ C, let σ be a permutation of V that satisfies

sσ(1)(S) ≤ . . . ≤ sσ(i)(S) ≤ . . . ≤ sσ(n)(S),

i.e., σ orders the voters according to their score in non-decreasing order. Given an
election E = (C, V ) and a committee size κ, the rule w-CC outputs a committee
of size κ with the highest w-CC score, which is computed as

sw(S) =
∑

i∈V

wisσ(i)(S).
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Note that for w = ( 1
n , . . . , 1

n ) we obtain the U-CC rule and for w = (1, 0, . . . , 0)
we obtain the E-CC rule.

Example 1. Suppose that κ = 2, and consider an election over the set of candi-
dates C = {a, b, c, d, e, f} and 6 voters with the following preferences:

acebdf : 3 voters bdface : 2 voters efdbca : 1 voter.

Suppose that each voter uses the Borda score function, i.e., assigns m − i points
to the candidate she ranks in position i (m = 6 in this example).

It is easy to verify that the only optimal committee with respect to U-CC is
{a, b}, with a total score of 27. Let us now consider E-CC. As no candidate is
ranked in top two positions by two different groups of voters, for every committee
there is at least one voter who ranks her most preferred committee member in
position 3 or lower. On the other hand, there are several committees that ensure
a utility of 3 to each voter: some examples are {a, f}, {a, d}, {e, b}, and {e, f}.
E-CC can output any of these committees. In contrast, under EU-CC there is
a single optimal committee, namely, {a, d}. Indeed, {a, d} accomplishes a total
score of 15 + 8 + 3 = 26, while providing a utility of at least 3 to each voter.
This is also the unique output of Lex-E-CC: there is one voter whose utility is
3, two voters whose utility is 4, and three voters whose utility is 5, and this can
easily be seen to be the best possible. The rules E−1-CC and U−1-CC necessarily
output {a, b}, as this is the only committee that ensures the maximum utility to
5 voters; in contrast, E−2-CC and U−2-CC may output either {a, b} or {a, e},
and for E−3-CC and U−3-CC any of the committees {a, b}, {a, c}, {a, d}, {a, e},
{a, f}, and {b, e} is an acceptable answer.

4 General Observations

We start our algorithmic analysis of w-CC rules by formalizing the respective
computational problem and making a few observations about its complexity for
general preferences.

To avoid dealing with representation issues for real numbers, from now on we
assume that the entries of the weight vector w are non-negative rational num-
bers. For readability, we also make the simplifying assumption that arithmetic
operations involving weights and scores can be performed in time O(1); however,
this assumption is not essential, and, in particular, all algorithms described in
this paper still run in polynomial time if we assume that the running time of
arithmetic operations is polynomial in the number of bits in the input.

We observe that, in this model, for any given weight vector w, the w-CC
score of a given committee can be computed in polynomial time. We therefore
focus on the problem of finding a winning committee, which can be formalized
as follows:

Weighted-CC-Winner:
Input: an election E = (C, V ) with |C| = m, |V | = n, voters’ preferences
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(�i)i∈V and score functions (si)i∈V (where each si is described by a list
of m integers), a weight vector w = (w1, . . . , wn), and a committee size κ.
Output: Some committee S ⊆ C of size κ with the maximum w-CC
score.

Clearly, this problem is NP-hard; this follows from the fact that it generalizes the
problem of finding a U-CC winning committee, which is known to be NP-hard
[20,24]. Thus, from now on we focus on identifying tractable special cases of this
problem by making additional assumption on the properties of the weight vector
and/or the voters’ preferences.

Few Candidates or Voters We first observe that Weighted-CC-Winner
is easy if the number of candidates m is small: this problem admits an algorithm
whose running time is poly(n,m)2m. The argument is similar to the one in [3]: we
can go over all

(
m
κ

) ≤ 2m potential committees, evaluate the w-CC score of each
committee, and pick a committee with the highest score. This observation implies
the following proposition (see, e.g., [22] for an introduction to fixed-parameter
tractability).

Proposition 1. Weighted-CC-Winner is fixed-parameter tractable with
respect to m.

Betzler et al. [3] also describe an algorithm that finds a U-CC winner in time
poly(n,m)nn, and therefore is useful when the number of voters is small. This
algorithm proceeds by considering all ways of partitioning the n voters into at
most κ groups. For each partition, it constructs a bipartite graph where the left-
hand side corresponds to groups of voters, the right-hand side corresponds to
candidates, and the value of an edge is the total utility that the respective group
of voters derives from the respective candidate. It then finds a maximum-value
matching of size κ in this graph. However, it seems to be difficult to extend this
idea to arbitrary weights: the following example illustrates that it is not clear
how to define edge values in a meaningful way.

Example 2. Suppose that κ = 2, and consider an election over the set of candi-
dates C = {a, b, c, d} and 4 voters with the following preferences:

abdc : 2 voters cdba : 1 voter badc : 1 voter

Let w = (.4, .3, .2, .1), and suppose that the score function of each voter is the
Borda score function (see Example 1).

Suppose we consider a partition where the voters with preferences abdc form
one group, and the other two voters form another group, and we would like to
evaluate the contribution of the second group of voters to the total utility if we
were to match it to candidate d. However, to do so, we would have to know
which candidate is matched to the first group: if it is a, then the contribution of
the second group is .4 · 2+ .3 · 1, whereas if it is c, the contribution of the second
group is .2 · 2 + .1 · 1.



OWA-Based Extensions of the Chamberlin–Courant Rule 493

EU-CC rule and Generalizations. We have argued that the EU-CC rule
offers a useful balance between egalitarian and utilitarian welfare. We will now
show that it also has computational advantages: computing EU-CC winners is
no harder than computing U-CC winners.

Specifically, observe that the E-CC score of any committee is an element of
Scr , and note that |Scr | ≤ nm. Let Δ = nR, where R = maxs∈Scr s. We can
now consider all elements z ∈ Scr in decreasing order. For a given value of z, we
modify the score functions si(c) so that s′

i(c) = si(c)+Δ if si(c) ≥ z and s′
i(c) = 0

otherwise. Note that the modified score functions remain consistent with voters’
preferences. If we call an algorithm for U-CC on the resulting instance, we obtain
a committee whose U-CC score is at least Δκ if and only if the original instance
admits a committee where the utility of each voter is at least z. Moreover, if the
U-CC score of a committee with the highest U-CC score is at least Δκ, then
any such committee has the highest U-CC score in the original election among
all committees that guarantee a utility of z to each voter.

Thus, by finding the largest value of z for which the modified instance admits
a committee with U-CC score of at least Δκ and outputting a committee with the
maximum U-CC score for this instance, we obtain a winning committee under
EU-CC for the original instance. As voters’ preferences in the modified instance
are the same as in the original instance (only the scores change), this implies
that EU-CC admits a polynomial-time algorithm when the voters preferences
are single-crossing or single-peaked on a line or, more broadly, on a tree with a
constant number of leaves, and is fixed-parameter tractable with respect to the
number of voters; this follows from the respective results of [3,27,32] for U-CC.

More generally, by considering all values of z ∈ Scr , we obtain the Pareto
boundary of the associated bicriteria optimization problem (where the criteria
are the egalitarian and the utilitarian social welfare).

Observe that a committee that is optimal with respect to EU-CC is by defin-
ition optimal with respect to E-CC (as the former is a refinement of the latter),
so in particular the argument above shows that E-CC is tractable whenever U-
CC is; however, special-purpose algorithms for E-CC may be considerably faster
than the algorithm provided by our reduction (as illustrated by the results of [3]).

5 Algorithms for Single-Peaked Preferences

An election (C, V ) described by a collection of preference orders (�i)i∈V is said
to be single-peaked if there exists an ordering � of the candidates (the left-right
axis) such that for each voter i ∈ V her preference �i increases from the left of
the axis to top(i) and decreases from top(i) to the right of the axis: formally,

for all a, b ∈ C s.t. a � b 	 top(i) or top(i) 	 b � a it holds that b �i a.

Equivalently, for each voter i ∈ V and each k ≤ m the set of candidates that i
ranks in top k positions forms a contiguous interval with respect to �.
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Single-peaked elections were introduced by Black [4], and are known to have
a number of desirable social-choice properties as well as to admit efficient algo-
rithms for many computational social choice problems (see, e.g., [7,15,28]). Intu-
itively, such elections arise when the society is aligned along a single axis, and
voters rank the candidates according to their position on this axis.

In the rest of this section, we consider two classes of weight vectors, and
show how to compute the output of w-CC for weight vectors in these classes,
assuming that voters’ preferences are single-peaked. It will be convenient to
assume that the left-right axis is given explicitly, and, moreover, that this axis is
c1 � · · · � cm. This assumption is without loss of generality: given a collection of
preferences, we can decide if it is single-peaked, and, if so, find an axis witnessing
this, in polynomial time [2,12].

5.1 The U−d-CC rule

In this section, we provide a polynomial-time algorithm for U−d-CC—the rule
that maximizes the sum of utilities of all but d voters (and therefore ignores
the d least happy voters entirely)—under single-peaked preferences. In contrast
with the result of Sect. 5.2, which deals with a larger class of weight vectors, this
algorithm works for arbitrary score functions.

Let θ = n − d; recall that the weight vector w−d associated with U−d-CC
satisfies

w−d
i =

{
0 if i ≤ d
1
θ if i > d

The key observation is that it is sufficient to maximize the sum of the scores
of some θ voters, without fixing in advance the voters whose score is taken into
account. Indeed, this maximization process naturally selects the θ most happy
voters.

Theorem 1. For single-peaked preferences, Algorithm 1 computes a winning
committee under U−d-CC in time O(κm2θ2n log2 n) = O(m3n3 log2 n).

Proof. We assume without loss of generality that voters’ preferences are single-
peaked with respect to the axis c1 � . . . � cm. It will be convenient to introduce
an additional candidate cm+1 who is ranked last by each voter and such that
si(cm+1) = 0 for each i ∈ V ; we place this candidate to the right of cm on the
axis so that the election remains single-peaked.

Let V �,j = {i ∈ V | top(i) ∈ {c�, . . . , cj}}, and define

s�,j
(t)(S) = max

{
∑

i∈W

si(S) | W ⊆ V �,j , |W | = t

}
,

with the convention that max ∅ = −∞. When the set {W | W ⊆ V �,j , |W | = t},
is not empty, the quantity s�,j

(t)(S) can be computed by ordering the voters in
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Algorithm 1. Dynamic program for w−d-CC under single-peaked prefer-
ences
Input: set of voters {1, . . . , n}; set of candidates {c1, . . . , cm}, voters’

preferences (�i)i∈V , which are single-peaked with respect to
c1 � . . . � cm; score functions (si)i∈V ; target committee size κ; number
of represented voters θ = n − d

Output: max{sw−d(S) | S ⊆ C, |S| = κ}
1. INITIALIZATION
for j = 1, . . . , m + 1 and t = 0, . . . , θ do

z1(j, t) ← s1,j
(t) ({cj})

for k = 1, . . . , κ do
zk+1(j, t) = −∞

end

end
2. MAIN LOOP
for k = 1, . . . , κ do

//Predecessors loop:
for p = 1, . . . , m and u = 0, . . . , θ
if zk(p, u) �= −∞ do

//Successors sub-loop:
for j = p + 1, . . . , m + 1 and t = u, . . . , θ do

zk+1(j, t) ←− max{zk+1(j, t), zk(p, u) + sp+1,j
(t−u)({cp, cj})}

end

end

end
return zκ+1(m + 1, θ)

V �,j according to the score they assign to S (from the highest to the lowest),
picking the first t voters in this order, and summing their scores for S.

Now, for each t ∈ {0, . . . , θ}, k ∈ {1, . . . , κ + 1}, and j ∈ {k, . . . , m + 1}, let

zk(j, t) = max
{

s1,j
(t) (S) | S ⊆ {c1, . . . , cj}, cj ∈ S, |S| = k

}

The quantity zk(j, t) is the highest total utility that a group of t voters in V 1,j

can derive from a size-k subset of {c1, . . . , cj} that contains cj . We claim that
it can be computed by dynamic programming as follows: for k = 1 we have
z1(j, t) = s1,j

(t) ({cj}) for all t ∈ {0, . . . , θ}, j ∈ {1, . . . , m + 1}, and for k > 1

zk(j, t) = max
p∈]]k,j[[

max
u∈[[0,t]]

{
zk−1(p, u) + sp+1,j

(t−u)({cp, cj})
}

. (1)

Indeed, to find the score of an optimal pair (S,W ), where S ⊆ {c1, . . . , cj},
cj ∈ S, |S| = k, W ⊆ V 1,j , and |W | = t, we guess the last candidate in
S′ = S ∩ {c1, . . . , cj−1} (let this candidate be cp) and the number of voters in
W ′ = W ∩ V 1,p (let this number be u). We then observe that all voters in W ′
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have their peak at or to the left of cp and therefore their most preferred candidate
in S is not cj , whereas for each voter i ∈ W \ W ′ we have top(i) ∈ {cp, cj}.

Algorithm 1 implements the calculation in (1) in a forward manner to increase
efficiency.

It is easy to see that the U−d-CC score of a winning committee is zκ+1(m, θ);
a committee with this score can be found using standard dynamic programming
techniques.

The number of variables in our dynamic program is O(κmθ). To compute the
value of variable zk+1(j, t), we need to consider O(mθ) possibilities for p and u,
and, for each of them, compute sp+1,j

(t−u)({cp, cj}); the latter step involves sorting
the voters in V p+1,j according to their score for {cp, cj}, and can therefore be
implemented in time O(n log n). This implies our bound on the running time. �

5.2 w-CC for a Bounded Number of Weights

In this section, we show that w-CC admits a polynomial-time algorithm if voters’
preferences are single-peaked, their score functions are polynomially bounded
(i.e. R = poly(m,n)), and the number of distinct entries in w is small. That is,
we consider weight vectors of the form

w = (ω1, . . . , ω1, ω2, . . . , ω2, . . . , ωB , . . . , ωB), (2)

where B is assumed to be a constant. Let α(b) and β(b) be, respectively, the
indices of the first and the last occurrence of ωb in w, and let γ(b) = β(b) −
α(b) + 1. Setting yb(S) =

∑β(b)
i=α(b) sσ(i)(S), we can rewrite the w-CC score of a

committee S as

sw(S) =
B∑

b=1

ωb

β(b)∑

i=α(b)

sσ(i)(S) =
B∑

b=1

wbyb(S). (3)

The main idea of our algorithm is that when B is a constant, we can try
to guess the range of scores that will be counted with weight ωb, for each b =
1, . . . , B; for a given guess, we can use dynamic programming.

Theorem 2. When voters’ preferences are single-peaked and the weight vector
w is given by expression (2), a winning committee under w-CC can be computed
in time poly(n,m, (nm)B , RB), where R = maxi∈V,c∈C si(c).

Proof. By adding or subtracting a constant to all score functions, we can assume
that minr∈Scr r = 1. Let R be the set of all vectors (r0, . . . , rB) in ScrB+1 that
satisfy 1 = r0 ≤ r1 ≤ · · · ≤ rB = R. Note that |R| ≤ |Scr |B−1 ≤ (nm)B−1; if B
is a constant, this quantity is polynomial in the input size.

Each vector r ∈ R induces a partition Πr of Scr into 2B − 1 sub-ranges,
some of which may be empty:

Πr = { [[0, r1[[, {r1}, ]]r1, r2[[, {r2}, . . . , {rB−1}, ]]rB−1, r
∗]] } .
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We say that a committee S is r-compatible if, when we order the voters according
to their score for this committee from lowest to highest, then for each b =
1, . . . , B − 1 it holds that the score of the voter in position βb is rb.

Given an instance of Weighted-CC-Winner where the weight vector w has
B distinct entries, our algorithm considers all vectors in R. For each such vector
r, it calls the subroutine described in Algorithm 2. It then outputs the maximum
of the |R| ≤ (nm)B numbers obtained in this manner. We will now argue that
for a given r, Algorithm 2 returns the maximum w-CC score of an r-compatible
committee of size κ. Since an optimal committee of size κ is compatible with
some r ∈ R, this proves that our algorithm computes the maximum w-CC score
over all committees of size κ; a committee with this score can then be found
using standard techniques.

As in the proof of Theorem 1, we add a dummy candidate cm+1 that appears
to the right of cm on the axis and is ranked last by all voters. Also, as in that
proof, we denote by V �,j the set of voters whose top candidate is in {c�, . . . , cj}.

Fix a vector r ∈ R and the respective partition Πr = {ρ1, . . . , ρ2B−1}. For
a given committee S, let V (S, j, d) be the set of all voters in V 1,j whose score
for S lies in ρd: V (S, j, d) = {i ∈ V 1,j | si(S) ∈ ρd}.

We are now ready to define the variables of our dynamic program. For each
r ∈ R, each k = 1, . . . , κ + 1, each j = k, . . . , m + 1, and each t ∈ [[0, n]]2B−1,
we define a variable Y r

k (j, t). This is a collection of vectors of length 2B − 1
with entries in [[nR]]; the vectors in Y r

k (j, t) are ‘realizable’ combinations of
scores. That is, a vector y ∈ [[nR]]2B−1 is in Y r

k (j, t) if and only if there exists a
committee S ⊆ {c1, . . . , cj} with cj ∈ S, |S| = k, such that for each ρd ∈ Πr we
have

|V (S, j, d)| = td,
∑

i∈V (S,j,d)

si(S) = yd.

We will now explain how our algorithm computes the sets Y r
k (j, t). For k = 1

and a fixed value of j, we simply compute si(j) for all voters in V 1,j . This score
maps each voter in V 1,j to some range in Πr; the number of voters assigned to
ρd (which is exactly |V ({cj}, j, d)|) determines td, and the sum of their scores
for {cj} determines yd. We obtain a pair of vectors (t,y) in this manner. We
then set Y r

1 (j, t) = {y}; for other values of t′ the set Y r
1 (j, t′) remains empty.

For k > 1, just as in the proof of Theorem 1, we consider all possibilities for
the predecessor-candidate cp, p ∈ [[k−1, j −1]]. All voters in V 1,p prefer cp to cj ,
so we need to focus on voters in V p+1,j . Since their preferences are single-peaked
with respect to �, their score for any committee S with S∩{cp, . . . , cj} = {cp, cj}
is equal to their score for {cp, cj}. We compute this score, which maps every
such voter to some range in Πr; the number of voters mapped to ρd is given
by |V ({cp, cj}, j, d) \ V ({cp, cj}, p, d)|. As the overall number of voters in each
range is given by t, we let t′d = td − |V ({cp, cj}, j, d) \ V ({cp, cj}, p, d)| for each
ρd ∈ Πr, and consider the set Y r

k−1(p, t′). The elements of this set are realizable
combinations of scores for p and t′; by adding the scores of voters in V p+1,j in
each range, we obtain a realizable combination of scores for j and t. We add the
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resulting score vector to Y r
k (j, t). Algorithm 2 performs this computation in a

forward manner for added efficiency.
It remains to explain how to use Y r

k (j, t) to compute the maximum w-CC
score of an r-compatible committee of size κ. Recall that γb is the number of
occurrences of ωb in w. We say that a vector t in [[0, n]]2B−1 is valid if

∑2B−1
d=1 td =

n and for each b = 1, . . . , B − 1 there exists a non-negative integer ξb ≤ t2b

such that γ(1) = t1 + ξ1, γ(b) = t2b−2 − ξb−1 + t2b−1 + ξb for b > 1, γ(B) =
t2B−2 − ξB−1 + t2B−1. Intuitively, we have to ‘distribute’ the voters whose score
is rb so that ξb of them are counted with weight ωb and the remaining ones are
counted with weight ωb+1. Clearly, one can decide in time O(B) whether a given
vector is valid and find the respective integers (ξb)b∈[[1,B−1]].

Suppose that t is a valid vector, as witnessed by a collection of integers
{ξb}b∈[[1,B−1]]. Then, given a vector y ∈ Y r

κ+1(m + 1, t), let z1 = y1 + ξ1r1,
zb = (t2b−2 − ξb−1)rb−1 + y2b−1 + ξbrb for b = 2, . . . , B − 1, zB = (t2B−2 −
ξB−1)rB−1 + y2B−1, and set T (t,y) =

∑B
b=1 ωbzb. It is not hard to see that for

a fixed vector r the maximum w-score of an r-compatible committee of size κ
is given by

max{T (t,y) | t is valid and y ∈ Y r
κ+1(m + 1, t)},

which is exactly the quantity output by our algorithm for that choice of r.
There are at most (nm)B−1(κ + 1)(m + 1)(n + 1)2B−1 = O(κm(n3m)B−1)

variables Y r
k (j, t): at most (nm)B−1 choices for r, κ + 1 choices for k, m + 1

choices for j, and at most (n + 1)2B−1 choices for t. Moreover, the size of each
set Y r

k (j, t) can be bounded by (nR)2B−1; we can improve this bound to (nR)B

by observing that if d = 2b is even, then ρd is the singleton {rb}, so we have
yd = rb · td. This establishes our bound on the running time. �
Remark 1. Theorem 3 relies on the assumption that the ranges of all score func-
tions are polynomially bounded in n and m. This assumption holds for many
important score functions, such as the Borda score function; however, it is not
without loss of generality. We can exhibit another class of score functions for
which w-CC is easy when the number of weights is bounded and the voters’
preferences are single-peaked: these are score functions that can only take a con-
stant number of values, i.e., the size of the set Scr is bounded by a constant.
The algorithm for this setting can be obtained by adapting the algorithm in the
proof of Theorem 3; we omit the details due to space constraints.

6 Algorithms for Single-Crossing Preferences

In this section, we focus on elections where voters’ preferences are single-crossing
[18]. This is another well-known restricted preference domain that models sce-
narios where voters’ preferences are essentially one-dimensional; however, in con-
trast with single-peaked preferences, which are defined in terms of an ordering
of the candidates, single-crossing preferences are defined in terms of an ordering
of the voters.

We start by providing a formal definition of this domain.
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Algorithm 2. Subroutine for finding an optimal r-compatible committee
Input: set of voters {1, . . . , n}; set of candidates {c1, . . . , cm}, voters’

preferences (�i)i∈V , which are single-peaked with respect to
c1 � . . . � cm; score functions (si)i∈V ; target committee size κ;
partitioning vector r

Output: The maximum score of an r-compatible committee.
1. INITIALIZATION (k = 1)
for j = 1, . . . , m do

for ρd ∈ Πr do
td ← |V ({cj}, j, d)|
yd ←∑i∈V ({cj},j,d) si({cj})

end
Y r
1 (j, t) = {y}

end
2. MAIN LOOP
for k = 2, . . . , κ + 1 do

//Predecessors’ loop:
for p = 1, . . . , m and all t′ such that Y r

k−1(p, t′) �= ∅ do
//Successors sub-loop:
for j = p + 1, . . . , m + 1 do

for ρd ∈ Πr do
td ← t′

d + |V ({cp, cj}, j, d) \ V ({cp, cj}, p, d)|
zd ←∑i∈V ({cp,cj},j,d)\V ({cp,cj},p,d) si({cp, cj})

end
Y r

k (j, t) ←− Y r
k (j, t) ∪ {y + z | y ∈ Y r

k−1(p, t′)}
end

end

end
return max{T (t,y) | t is valid and y ∈ Y r

κ+1(m + 1, t)}

An election (C, V ) described by a collection of preference orders (�i)i∈V is
said to be single-crossing if there exists an ordering � of the voters such that
for each pair of candidates a, b ∈ C such that the first voter in � prefers a to b
there exists a unique v ∈ V such that all voters that precede v in � prefer a to
b, whereas all voters that appear after v in � prefer b to a.

In other words, both the set of voters who prefer a to b and the set of voters
who prefer b to a are contiguous with respect to �, i.e., if we graph the positions
of a and b in voters’ preference orders, the resulting curves intersect at most once.
As observed by Bredereck et al. [8], this characterization immediately suggests a
polynomial-time algorithm for detecting single-crossing preferences, by reducing
this question to the classic consecutive 1 s problem [5] (see also [12,14]). As a
consequence, we can assume without loss of generality that an ordering of voters
witnessing that a given election is single-crossing is given to us as a part of the
input; in fact, it will be convenient to assume that this ordering is 1 � · · · � n.

Skowron et al. [27] have recently shown that given an election with single-
crossing preferences, one can solve U-CC and E-CC in polynomial time (specifi-
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cally, O(κmn2)). The main result of this section is that the algorithm of Skowron
et al. extends to w-CC as long as the number of distinct weights in w is bounded
by a constant and the score functions are polynomially bounded (these are the
same conditions that are used to establish tractability under single-peaked pref-
erences in Sect. 5).

First of all, we observe that a key structural property of optimal solutions
established by Skowron et al. for U-CC holds for arbitrary weight vectors.

Given the set of voters V = [[n]] and a committee S ⊆ C, let ΦS : V → S
be the function that assigns each voter i to her most preferred candidate in S:
ΦS(i) �i cj for all cj ∈ S \ {ΦS(i)}. Hence, for a candidate c ∈ S, the set of
voters she represents is Φ−1

S (c).

Lemma 1. Let E = (C, V ) be an election with single-crossing preferences, as
witnessed by the voter order 1 � . . . � n, where the first voter’s preferences
are given by c1 �1 c2 �1 . . . �1 cm. Then for any weight vector w and any
committee size κ there exists a committee S of size κ that is optimal with respect
to w-CC and has the following property: for each cj ∈ S the set of voters Φ−1

S (cj)
is contiguous with respect to �, and if cj , c� ∈ S, Φ−1

S (cj) �= ∅, Φ−1
S (c�) �= ∅ and

j < � then Φ−1
S (cj) precedes Φ−1

S (c�) in �.

Proof. The proof is a simple generalization of the proof of a similar statement
in [27], and is omitted due to space constraints.

Using this lemma and a dynamic programming approach similar to the one in
the proof of Theorem 3, we obtain the following result (we omit the proof due
to space constraints).

Theorem 3. When voters’ preferences are single-crossing and the weight vector
w has at most B distinct entries, we can find a winning committee under w-CC
in time poly(n,m, (nm)B , RB), where R = maxi∈V,c∈C si(c).

7 Conclusion

We have described a family of voting rules for committee selection that explores
a variety of ways to trade off utilitarian and egalitarian objectives. We have
developed algorithms for computing the winning committees under these rules
for instances where voters’ preferences belong to well-known restricted domains,
under mild restrictions on the weight vectors and score functions. While in this
work we focused on single-peaked and single-crossing preferences, it seems plau-
sible that similar results can be obtained for other domains where U-CC and
E-CC are known to be tractable, such as preferences that are single-peaked on
trees with a bounded number of leaves, or have bounded single-peaked or single-
crossing width.

However, it is not clear if our results can be extended to arbitrary weight
vectors. In particular, the complexity of Lex-E-CC for single-peaked or single-
crossing preferences remains an intriguing open question, and it appears that
obtaining positive results for this rule would require novel algorithmic techniques.



OWA-Based Extensions of the Chamberlin–Courant Rule 501

Besides this open problem, our work suggests several other interesting
research directions. One of them is considering OWA-based extensions of the
Monroe rule and exploring the complexity of finding winning committees under
the resulting family of rules. Another one is developing approximation algorithms
for Weighted-CC-Winner for arbitrary weights and voters’ preferences; here
the work of Skowron et al. [26] provides a useful starting point.
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the COST Action IC1205. The authors are grateful to the anonymous ADT referees
for their useful suggestions.
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Abstract. We address optimal group manipulation in multi-
dimensional, multi-facility location problems. We focus on two families
of mechanisms, generalized median and quantile mechanisms, evaluating
the difficulty of group manipulation of these mechanisms. We show that,
in the case of single-facility problems, optimal group manipulation can
be formulated as a linear or second-order cone program, under the L1-
and L2-norms, respectively, and hence can be solved in polynomial time.
For multiple facilities, we show that optimal manipulation is NP-hard,
but can be formulated as a mixed integer linear or second-order cone
program, under the L1- and L2-norms, respectively. Despite this hard-
ness result, empirical evaluation shows that multi-facility manipulation
can be computed in reasonable time with our formulations.

1 Introduction

Mechanism design deals with the design of protocols to elicit the preferences of
self-interested agents to achieve some social objective [22]. An important prop-
erty in mechanism design is strategy-proofness, which requires that there is no
incentive for an individual agent to misreport their preferences. While much work
in mechanism design deals with settings where monetary transfers can be used
to facilitate strategy-proofness [6,18,31], many problems do not admit payments
for a variety of reasons [28].

The Gibbard-Satterthwaite theorem [16,27] shows that under fairly broad
conditions, one cannot construct mechanisms that achieve strategy-proofness in
general. However, one can impose restrictions on the preference domain to escape
this impossibility result. A widely used restriction is single-peakedness [4]. In
single-peaked domains, each agent has a single, most-preferred ideal point in
the outcome space, and (loosely) her preference for outcomes decreases with as
the distance of that outcome from the ideal increases. In such settings, strategy-
proofness is guaranteed by the classic median mechanism and its generalizations
for single outcomes [2,24], or quantile mechanisms [29] for multiple outcomes.
Applications of such models include facility location, voting, product design,
customer segmentation, and many others.

While these mechanisms are individual strategy-proof, they are not group
strategy-proof —a group of agents may jointly misreport their preferences to
induce a more preferred outcome that makes some group members better off
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 505–520, 2015.
DOI: 10.1007/978-3-319-23114-3 30
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without harming others. In this paper, we consider the group manipulation
problem for facility location problems (FLPs) with multiple facilities in multi-
dimensional spaces, with a focus on quantile mechanisms (QMs) (and to some
extent generalized median mechanisms (GMMs)). Since these mechanisms are
both transparent and (individual) strategy-proof for general multi-dimensional,
multi-FLPs, we seek to understand the difficulty of their group manipulation
problems.

Our primary contribution is to formulate the group manipulation problem—
for both single- and multi-FLPs under both the L1- and L2-norms (where these
metrics measure distance/cost between ideal points and facilities)—as convex
optimization problems, and study their computational complexity. We show that
single-FLPs with L1 and L2 costs can be specified as linear programs (LPs) and
second-order cone programs (SOCPs), respectively. This means both can be
solved in polynomial time (using interior point methods [5]). By contrast, we
show that multi-FLPs are NP-hard by reduction from the geometric p-median
problem [23] under both norms. Despite this, we provide formulations of prob-
lems as mixed integer linear (MILPs) and mixed integer SOCPs (MISOCPs)
for L1 and L2 costs, respectively. We also test these formulations empirically,
with results that suggest commercial solvers can compute group manipulations
(or prove that none exists) for multi-FLPs of reasonable size rather effectively,
despite the theoretical NP-hardness of the problem.

2 Background and Notation

We begin by defining FLPs, the quantile mechanism, the group manipulation
problem we consider, and provide a brief discussion of related work.

2.1 Facility Location and Group Manipulation

A d-dimensional, m-facility facility location problem (FLP) involves selecting
m facilities in some d-dimensional subspace S ⊆ R

d (we omit mention of
S subsequently, assuming all locations fall in S). We assume a set of agents
N = {1, . . . , n}, each with an ideal location or type ti ∈ R

d, which determines her
cost si(x, ti) for using a facility located at x (we sometimes refer to this as facility
x). Given a location vector x = (x1, . . . , xm), xj ∈ R

d, of m facilities, we assume
each agent uses her most preferred facility, defining si(x, ti) = minj≤m si(xj , ti).
Given the ideal points of all agents, our goal is to select an outcome that imple-
ments some social choice function (e.g., minimize social cost, ensure Pareto effi-
ciency, etc.). Below we equate cost with L1 or L2 distance. A mechanism for
an FLP is a function f that accepts as input the reported ideal points of the n
agents and returns a location vector x.

FLPs can be interpreted literally, naturally modeling the placement of homo-
geneous facilities (e.g., warehouses, public projects) in a geographic space, where
agents use the least cost or closest facility. Voting is often modeled this way,
where candidates are ordered along each of several dimensions (e.g., stance on
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environment, fiscal policy, etc.), voters have ideal points in this space, and one
elects one or more candidates to a legislative body. Product design, customer
segmentation, and other problems can be modeled as FLPs.

Even without explicit distance functions, it is often natural to assume agent
(ordinal) preferences are single-peaked : an agent’s preferences are constrained
so that outcomes become less preferred as they are “moved away” from her
ideal point (or peak). When preferences are single-peaked, the classic median
mechanism and its generalizations [2,24] guarantee strategy-proofness. Sui et al.
[29] develop quantile mechanisms (QMs) which extend these mechanisms to the
multi-facility, multi-dimensional case. We focus here on QMs.

Definition 1. [29] Let q = 〈q1; . . . ;qm〉 be a m × d matrix, where each qj =
{q1j , . . . , qd

j } is a d-vector in the unit cube. A q-quantile mechanism fq asks each
agent i to report her ideal location (or peak) ti. The mechanism locates each
facility j at the qk

j th quantile among the n reported peaks in each dimension k
independently.

Example 1. Consider the two-dimensional quantile mechanism in which q =
〈0.25, 0.75; 1.0, 0.5〉. Given a peak profile of 5 agents t = ((1, 4), (2, 7), (4, 2),
(7, 9), (8, 3)), the q-quantile mechanism will locate the first facility at the inter-
section of quantile 0.25 in the first dimension and quantile 0.75 in the second
dimension, i.e., (2, 7) in this example; and the second facility at (8, 4).

We note that quantile mechanisms are special case of generalized median
mechanisms (GMMs) [2,24] when applied to single-FLPs, and can be interpreted
as applying a specific form of GMM to the selection of each of the m facilities.
As such, QMs are (individual) strategy-proof [29]. However, the characteriza-
tion of Barberà et al. [2] shows that no (anonymous) mechanism can offer group
strategy-proofness for multi-dimensional, multi-FLPs in general.1 The main rea-
son that group manipulation is possible is that a group of manipulators can
submit a joint misreport of their ideal locations in which each of them increases
her cost in some dimensions but decreases it in others, thereby achieving a lower
total cost.

In this paper, we investigate the computational problem of finding just such a
group manipulation. Specifically, we consider: (a) the formulation of the optimal
group manipulation problem as mathematical programs of various types; (b)
the computational complexity of this problem; and (c) how much manipulators
might gain given optimal manipulations, under different cost functions, when
GMMs/QMs are used.2

1 Anonymity is critical, as dictatorial mechanisms belong to the class of GMMs and
are group strategy-proof.

2 Barberà et al.’s [2] characterizations do not preclude the existence of group strategy-
proof mechanisms when specific cost functions are used. However, it is still meaning-
ful to study the group manipulation of GMMs and QMs due to their simplicity and
intuitive nature, their (individual) strategy proofness, and their flexibility. Indeed,
these are the only “natural” such mechanisms for multi-dimensional, multi-FLPs of
which we are aware.
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Informally, the optimal group manipulation problem is that of finding a joint
misreport for a group of manipulators such that the outcome induced by this
misreport is such that: (a) the sum of costs of the manipulators is minimized; and
(b) relative to the outcome that would have been induced by truthful reporting,
no manipulator is worse-off and at least one is strictly better-off. Our objective
of minimizing the sum of costs is the natural one, which represents the social
welfare of the manipulators. While one general problem is whether there exists a
joint misreport such that no one is worse-off, our optimization version subsumes
the former problem.3 We formalize this as follows:

Definition 2. Let N = S∪M , where S is a set of sincere agents and M is a set
of manipulators with type vectors tS and tM . Let fq be a QM with quantile matrix
q. Let xq = fq(tM , tS) be the location vector chosen by fq if all agents report
their peaks truthfully, and x′

q = fq(t′M , tS) be the location vector chosen given
some misreport t′M by the manipulators M . The optimal group manipulation
problem is to find a joint misreport t′M for the agents in M satisfying:

t′M = arg min
∑

i∈M
si

(
x′

q, ti
)

(1)

s.t. si

(
x′

q, ti
) ≤ si (xq, ti) , ∀i ∈ M

si

(
x′

q, ti
)
< si (xq, ti) , for some i ∈ M

Given a group of manipulators M , we generally refer to the remaining agents
S = N\M as “sincere,” though we need not presume that their reports are
truthful in general, only that M knows (or can anticipate) their reports.

2.2 Related Work

There has been extensive study of the manipulation problem in other social
choice, especially in the contect of voting. While the Gibbard-Satterthwaite the-
orem shows that strategy-proof mechanisms do not exist in general, Bartholdi et
al. [3] demonstrated that manipulation of certain voting rules can be computa-
tionally difficult. This spawned an important line of research into the complexity
of manipulation for many voting rules—collectively this can be viewed as propos-
ing the use of computational complexity as a barrier to practical manipulation;
see, for example, [8,13] for an excellent survey. Recent work has shown that
when preferences are single-peaked, the constructive manipulation problem—in
which a set of manipulators try to find a set of preference rankings (reports)
that would make a specific candidate win—becomes polynomial time solvable
for many voting rules [12]. Our work is similar in its objective to this approach,
with a key difference being that in voting outcomes are discrete and atomic,
whereas we deal with a continuous, multi-dimensional space.
3 NP-hardness refers to the corresponding decision problem (as is colloquially under-

stood for optimization problems): is there a misreport that gives the manipulators
total cost less than epsilon (for any fixed epsilon). This implies NP-hardness of exis-
tence (set cost to truthful cost).
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Exploiting computational complexity to prevent (or reduce the odds of)
manipulation is somewhat problematic in that it focuses on worst-case scenar-
ios, and usually assumes full knowledge of agent preferences. Recent work has
studied average case manipulability (i.e., the probability that a preference profile
is “easily” manipulable, assuming some distribution over preferences or prefer-
ence profiles), and shows that manipulation is often feasible both theoretically
and empirically [7,14,19,26,32,33]. The complete information assumption has
also been challenged, and manipulation given probabilistic knowledge of other
agent’s preferences has been studied in equilibrium [1,21] and from an optimiza-
tion perspective [20].

3 Group Manipulation for Single-FLPs

In this section, we address the problem of group manipulation for single-facility
location problems, first describing its general form, then describing a linear pro-
gramming formulation under the L1-norm, and finally describing a second-order
cone programming formulation under the L2-norm.

3.1 Group Manipulation Specification

Recall from Definition 2 that a group manipulation is a set of misreports by the
manipulating coalition M such that no manipulators is worse off and at least one
is better off. The optimization formulation of this problem in Eq. (1) requires
that one find the misreport that provides the greatest total benefit to the coali-
tion. This explicit, straightforward formulation considers all possible misreports
(i.e., the vector of purported “preferred” locations of each manipulator), which
in principle induces a large search space. Fortunately, we can decrease the search
space dramatically by only considering viable locations for manipulator misre-
ports. We first define viability :

Definition 3. Let fq be a QM with quantile matrix q. A location x ∈ R
d is

viable for a manipulating coalition M if there exists a joint misreport t′M s.t.
x = fq(t′M , tS), where tS is the report from the sincere agents S = N\M . We
say t′M implements x in this case.

The following critical proposition shows that, in single-FLPs, if a mechanism
fq selects a location x′

q = fq(tS , t′M ) under a group manipulation t′M , then it
also selects x′

q if each manipulator misreports x′
q as her peak.

Proposition 1. For single-FLPs, let t′M be a group manipulation and x′
q be a

viable location implemented by t′M under mechanism fq. Then x′
q is also imple-

mented by the group manipulation t∗M = {x′
q, . . . , x′

q}.
Proof (Sketch). We provide a sketch of proof for d = 2, but the analysis can be
easily generalized. Consider an arbitrary group manipulation t′M , which imple-
ments location x′

q = fq(t′M , tS) ∈ R
2 (as shown in Fig. 1). Let us denote the
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i

Fig. 1. Each manipulator can move her misreport to x′
q without changing the outcome.

misreport of each manipulator by t′i = (t
′1
i , t

′2
i ),∀i ∈ M and the location by

x′
q = (x

′1
q , x

′2
q ).

Pick an arbitrary manipulator i ∈ M , and assume w.l.o.g. that t
′1
i ≤ x

′1
q

and t
′2
i ≥ x

′2
q . We construct another group manipulation t

′′
M by changing the

misreport of manipulator i to x′
q. Recall that the mechanism fq locates the

facility at a specified quantile, so we have:

fq(t′M , tS) = fq((t′i, t
′
M\i), tS)

= fq(((t
′1
i , x

′2
q ), t′M\i), tS)

= fq(((x
′1
q , x

′2
q ), t′M\i), tS)

= fq((x′
q, t′M\i), tS) = fq(t

′′
M , tS)

Repeating this procedure over all manipulators completes our proof.

Proposition 1 demonstrates that we can limit our attention to the “unani-
mous” reporting of viable locations when searching for optimal misreports, with-
out considering misreports that reveal locations that cannot be implemented or
realized by the manipulators. Therefore, we can reformulate the optimal group
manipulation problem (Definition 2) as follows:

Definition 4. Let fq be a QM with quantile matrix q. Let xq = fq(tM , tS) and
x′
q = fq(t′M , tS) be the location chosen by fq under truthful reports and misreport

t′M , resp. Optimal group manipulation can be reformulated as:
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min
x∈Rd

∑

i∈M
si (x, ti) (2)

s.t. si (x, ti) ≤ si (xq, ti) , ∀i ∈ M (3)
si (x, ti) < si (xq, ti) , for some i ∈ M (4)
x is a viable location under fq (5)

In the sequel, our specific formulations of the problem will rely on Definition 4.
We can also safely omit the constraints in Eq. 4, as they can easily be checked
after the fact given the optimized location vector—if no manipulator is strictly
better off, then a group manipulation obviously cannot exist.

3.2 LP Formulation Under the L1-norm

We now consider the formulation of optimal manipulation when the L1-norm is
used as the cost function, i.e., si(x, ti) =

∑
k≤d |xk − tki | for any location x ∈ R

d.
Let x = (x1, . . . , xd) represent the location to be optimized (i.e., the location
induced by the manipulation) in single-FLPs, where each xk is a continuous
variable. Let ci be a continuous variable denoting the cost of manipulator i given
outcome x. We can formulate the objective function Eq. (2), and the constraints
Eq. (3), as follows:

min
x

∑

i∈M
ci (6)

s.t. ci =
∑

k≤d
|xk − tki |, ∀i ∈ M (7)

0 ≤ ci ≤ ui, ∀i ∈ M (8)

where ui = si(xq, ti) is the cost of manipulator i under a truthful report tM by
the manipulators.

This formulation contains absolute values in the nonlinear constraints (7). We
introduce an additional set of variables to linearize these constraints. Letting Dk

i
be an upper bound on the distance between ti and x in the kth dimension, we
linearize the constraints (7) as follows:

−Dk
i ≤ tki − xk ≤ Dk

i , ∀i ∈ M, ∀k ≤ d (9)

Dk
i ≥ 0, ∀i ∈ M, ∀k ≤ d (10)

ci =
∑

k≤d
Dk

i , ∀i ∈ M (11)

Finally, we need constraints that guarantee the new location x is viable.
Recall that a QM locates the facility at a specified quantile of reported peaks in
each dimension independently, and by Proposition 1 we can assume w.l.o.g. that
all manipulators use the same misreport. This implies that a viable location for
the facility is bounded by the reported coordinates of two sincere agents in each
dimension. Formally, let q = (q1, . . . , qd) be the quantile vector (for single-FLPs,
we have a single vector rather than a full matrix), and let

⊥k = min{z ∈ Z
+ : z + |M | ≥ qk · n} and

�k = max{z ∈ Z
+ : |S| + |M | − z ≥ (1 − qk) · n}.

If we let x̄k
S = {x̄k

1 , . . . , x̄
k
|S|} denote the ordered coordinates of the reports of

agents S in the kth dimension, we have:



512 X. Sui and C. Boutilier

Lemma 1. For single-FLPs, a location x = (x1, . . . , xd) ∈ R
d is viable if and

only if x̄k
⊥k ≤ xk ≤ x̄k

�k ,∀k ≤ d.

This lemma ensures that we can use the following boundary constraints as to
enforce viability (see Eq. (5)):

x̄k
⊥k ≤ xk ≤ x̄k

�k , ∀k ≤ d (12)

To summarize, we can formulate the optimal group manipulation under
the L1-norm as an LP. The objective function (6) minimizes the sum of costs
over all manipulators. Constraints (8)–(11) guarantee that no manipulators is
worse-off, and constraints (12) ensure that the optimized location induced by the
misreport is viable. The LP has O(d|M |) variables. We state this result formally
in the following theorem:

Theorem 1. The optimal group manipulation problem for single facility loca-
tion under the L1-norm can be formulated as a linear program (LP), with objec-
tive function (6) and constraints (8)–(12).

As such, the optimal manipulation problem can be solved in polynomial time.

3.3 SOCP Formulation Under the L2-norm

The optimization formulation for the L1-norm above can be easily modified
to account for L2-costs. Specifically, we need only a minor modification of the
constraints (11) to incorporate Euclidean distances as follows:

(ci)
2 ≥
∑

k≤d

(
Dk

i

)2
, ∀i ∈ M (13)

Constraint (13), combined with the objective function (6) and con-
straints (8)–(10) and (12), constitutes a second-order cone program (SOCP)
under the L2-norm:

Theorem 2. The optimal group manipulation problem for the single facility
location under the L2-norm can be formulated as a second-order cone program
(SOCP), with objective function (6) and constraints (8)–(10) and (12)–(13).

Since SOCPs can be solved in polynomial time, we have:

Remark 1. The optimal group manipulation problem for single-facility location
under both the L1- and L2-norms can be solved in polynomial time.

4 Group Manipulation for Multi-FLPs

In this section, we extend our analysis of group manipulation to multi-facility
location problems. Unlike single-FLPs, we show that problem in computation-
ally intractable for multi-FLPs, under both the L1- and L2-norms. However,
we provide mathematical programming models that are often quite efficient in
practice.
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4.1 The Complexity of Group Manipulation

We first show group manipulation is NP-hard for multi-FLPs.

Theorem 3. Optimal group manipulation for multi-facility location under
either the L1- or L2-norms is NP-hard.

This hardness result is proved using a reduction from the geometric p-median
problem, which is known to be NP-hard under both L1- and L2-distance [23].
Given a set of points in the d-dimensional space (d ≥ 2), the geometric p-median
is a set P of p points that minimizes the sum of distances between each given
point and its closest point in P . A complete proof is provided in a longer version
of this paper. The rough intuition is as follows. Considering the optimal group
manipulation problem for (p + 1) facilities, our proof assumes no sincere agents,
and constructs a manipulator location profile and QM fq such that all (p + 1)
facilities are located at a single extreme position by fq given truthful reports.
However, the optimal group manipulation induces the mechanism to “spread
out” p of the facilities to the benefit of a subset of the manipulators, without
harming those who would use the original position. This constitutes an optimal
solution to the p-median problem for the p non-extreme locations. As such, an
algorithm for optimal group manipulation can be used to solve the p-median
problem.

While this implies that worst-case instances may be difficult to solve, it does
not mean that instances arising in practice can’t be solved efficiently. We now
describe formulations of optimal group manipulation for multi-FLPs as integer
programs that may support practical solution. Our formulations are quite com-
pact, and combined with the empirical evaluation in Sect. 5, suggest that optimal
group manipulations can be found reasonably quickly.

4.2 MILP Formulation Under the L1-norm

We first describe our mixed integer linear programming (MILP) formulation of
optimal group manipulation under the L1-norm. Due to space limitations, we
defer certain technical details and proofs to a longer version of this paper. The
following result is analogous to Proposition 1 for single-FLPs.

Proposition 2. Let t′M be a group manipulation and x = {(x1
1, . . . , x

d
1), . . . ,

(x1
m, . . . , xd

m)} be a viable location vector implemented by t′M . Let Xk =
{xk

1 , . . . , x
k
m} denote the set of coordinates of these facilities in the kth dimen-

sion. Then there exists a group manipulation t∗M that implements x, where
t∗i ∈ ∏

k≤d X
k,∀i ∈ M .

In other words, we can assume w.l.o.g. that manipulators misreports are drawn
from the “intersection positions” in different dimensions induced by the different
facilities. The precise misreports at these intersection positions must be coordi-
nated to guarantee a viable location vector (see below).

Let x = {(x1
1, . . . , x

d
1), . . . , (x

1
m, . . . , xd

m)} represent the location vector to be
optimized. Let ci be the cost of manipulator i given outcome x, cij be the cost
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of manipulator i w.r.t. facility j, and Iij be an indicator variable whose value is
1 iff the closest facility for manipulator i is j. We can formulate the objective
Eq. (2), and the constraints Eq. (3), as follows:

minx∈(Rd)m
∑

i∈M
ci (14)

s.t. ci =
∑

j≤m
Iij · cij , ∀i ∈ M (15)

∑

j≤m
Iij = 1, ∀i ∈ M (16)

Iij ∈ {0, 1}, ∀i ∈ M, ∀j ≤ m (17)
0 ≤ ci ≤ ui, ∀i ∈ M, ∀j ≤ m (18)

cij ≥ 0, ∀i ∈ M, ∀j ≤ m (19)

where ui = si(xq, ti) is the cost of manipulator i under a truthful report tM by
the manipulators.

Since both Iij and cij are variables in constraint (15), we must linearize
these quadratic terms by introducing additional variables. Let Oij be some upper
bound on the product of Iij and cij . We can then replace the constraint (15) by

ci =
∑

j≤m
Oij , ∀i ∈ M (20)

Oij ≥ cij + (Iij − 1)U, ∀i ∈ M, ∀j ≤ m (21)
Oij ≥ 0, ∀i ∈ M, ∀j ≤ m (22)

where U is any upper bound on manipulator cost.
Let Dk

ij be an upper bound on the distance between manipulator i and facility
j in the kth dimension. We have:

−Dk
ij ≤ tki − xk

j ≤ Dk
ij , ∀i ∈ M, ∀j ≤ m, ∀k ≤ d (23)

Dk
ij ≥ 0, ∀i ∈ M, ∀j ≤ m, ∀k ≤ d (24)

cij =
∑

k≤d
Dk

ij , ∀i ∈ M, ∀j ≤ m (25)

Finally, we must ensure that x is viable. Let

⊥k
j = min{z ∈ Z

+ : z + |M | ≥ qk
j · n} and

�k
j = max{z ∈ Z

+ : |S| + |M | − z ≥ (1 − qk
j ) · n}

and x̄k
S = {x̄1, . . . , x̄|S|} be the ordered coordinates of the reports of sincere agents

in S in the kth dimension. We break [x̄k
⊥k

j
, x̄k

�k
j
] into several (ordered) close and

open intervals: [x̄k
⊥k

j
, x̄k

⊥k
j
], (x̄k

⊥k
j
, x̄k

⊥k
j+1

), . . . , (x̄k
�k

j −1
, x̄k

�k
j
), [x̄k

�k
j
, x̄k

�k
j
] (see Fig. 2

for an illustration). Let Δk
j index these intervals (0 ≤ Δk

j < 2|M | + 1), and let
IΔk

j
be an indicator variable whose value is 1 iff the coordinate of facility j is

contained in the Δk
j th interval in the kth dimension. We then have:
∑

Δk
j

IΔk
j

= 1, ∀j ≤ m, ∀k ≤ d (26)
∑

Δk
j

IΔk
j
x̄k

l ≤ xk
j ≤
∑

Δk
j

IΔk
j
x̄k

r , ∀j ≤ m, ∀k ≤ d (27)

IΔk
j

∈ {0, 1}, ∀j ≤ m, ∀k ≤ d (28)
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Fig. 2. For each facility in each dimension, the boundaries are split into small intervals,
each bounded by one/two sincere agents.

where l = ⊥k
j + �Δk

j /2� and r = ⊥k
j + �(Δk

j + 1)/2�.
For each interval, we pre-compute the number of sincere agents that lie to the

left of and right of it (including equality) in each dimension k, which we denote
by LΔk

j
and RΔk

j
, respectively. We also introduce another indicator variable T k

ij

whose value is 1 iff manipulator i misreports the location of facility j in the kth
dimension (this binary variable can be relaxed, since all terms in (29) and (30)
are integral). Given a quantile matrix q, the location vector x to be optimized
is viable if the following constraints are satisfied:

∑

Δk
j

IΔk
j
LΔk

j
+
∑

j′≤qj

∑

i∈M
T k

ij′ ≥ nqk
j , ∀j, ∀k (29)

∑

Δk
j

IΔk
j
RΔk

j
+
∑

j′≥qj

∑

i
T k

ij′ ≥ n(1 − qk
j ), ∀j, ∀k (30)

∑

j≤m
T k

ij = 1, ∀i ∈ M, ∀k ≤ d (31)

T k
ij ∈ [0, 1], ∀i ∈ M, ∀j ≤ m, ∀k ≤ d (32)

The LHS of constraint (29) indicates the total number of sincere agents (the
first term) and manipulators (the second term) to the left of (or at) facility j in
the kth dimension, where j′ ≤q j denotes the facility j′ to the left of j in the kth
dimension, (i.e., qk

j′ ≤ qk
j ). According to fq, this number should be greater than

or equal to nqk
j . Constraints (30) are similar, but used to count from the right.

Constraints (31) and (32) ensure that each manipulator reports the location of
one facility on each dimension.

To summarize, we can formulate optimal group manipulation for multi-FLPs
under the L1-norm as a MILP with O(dm|M |) binary and continuous variables:
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Theorem 4. The optimal group manipulation problem for multi-facility location
under the L1-norm can be formulated as a mixed integer linear program with
objective function (14) and constraints (16)–(32).

The final step is to construct a misreport profile t′M that implements the
location vector optimized above. By Proposition 2, we can arbitrarily choose
a set of manipulators of size exactly

∑
i T k

ij for each target facility j in each
dimension k.

4.3 MISOCP Formulation Under the L2-norm

When optimizing misreports for multi-FLPs under the L2-norm, we can use an
approach similar to that used in the single-facility case, and formulate the opti-
mal manipulation as an mixed-integer SOCP (MISOCP). We need only modify
constraints (25) as follows:

(cij)
2 ≥
∑

k≤d

(
Dk

ij

)2
, ∀i ∈ M, ∀j ≤ m (33)

Using this we obtain the following result:

Theorem 5. The optimal group manipulation problem for multi-FLPs under
the L2-norm can be formulated as a mixed integer second-order cone program,
with objective function (14), and constraints (16)–(24) and (26)–(33).

5 Empirical Evaluation

In this section, we evaluate the efficiency of the formulations outlined above.
We provide empirical results only for multi-facility problems here (since the
optimal manipulation problem for single-FLPs is poly-time solvable), testing
the efficiency of the MILP/ MISOCP described in Sect. 4.

We test two problems. The first is a two-dimensional, two-facility loca-
tion problem under the L2-norm, where the quantile matrix used is q =
{0.3, 0.4; 0.8, 0.7}. The second is a four-dimensional, three-facility location
problem under the L1-norm, where the quantile matrix used is q =
{0.1, 0.6, 0.4, 0.9; 0.4, 0.2, 0.8, 0.6; 0.7, 0.8, 0.3, 0.4}. For both problems, we vary
the number of sincere agents |S| ∈ {100, 200, 500}, and the number of manip-
ulators |M | ∈ {5, 10, 20, 50, 100, 200}. We randomly generated 100 problems
instances for each parameter setting in which the peaks of both the sincere
agents and the manipulators are randomly drawn from the same data set (data
sets are explained in detail below). We compute the average execution time of our
MILP/MISOCP models, and the probability of manipulation (i.e., the propor-
tion of the 100 instances in which a viable manipulation exists for the randomly
chosen manipulators).

For the two-dimensional problem, we use preference data from the Dublin
west constituency in the 2002 Irish General Election. Since the data includes
only voter rankings over the set of candidates, the ideal location of each voter is
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Fig. 3. Time to compute an optimal manipulation (y-axis is log-scale, x-axis is approx.
log-scale). Error bars show sample st. dev.

Fig. 4. Probability of a manipulation existing (y-axis is log-scale, x-axis is approx.
log-scale).

unknown. Fortunately, recent analysis suggests that this data is approximately
single-peaked in two-dimensions [30], and a spatial model using L2 distance can
be used to explain voter preferences [17]. We fit this data to a two-dimensional
spatial model, and estimate the voter peaks and candidate positions in the under-
lying latent space so constructed (Details are provided in a longer version of this
paper.) For the four-dimensional problem, we use a synthetic data set in which
the peaks of both sincere agents and manipulators are randomly generated from
a uniform distribution on the unit cube.

For each instance, the MILP/MISOCP is solved using CPLEX 12.51, on a
2.9GHz, quad-core machine with 8GB memory. Figure 3 shows the average com-
putation time required to find the optimal group manipulation (or show that
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no group manipulation exists) for both models. We see that our formulations
admit very effective solution—for small problems, the optimal group manipu-
lation is found in less than 1 second; even for reasonably large problems, such
as the four-dimensional, three-facility problem with 100 sincere agents and 200
manipulators, the optimal manipulation is found in 35.47 s (on average). The
performance of our formulations is also very stable (see error bars in the figure).

We illustrate the probability of manipulation for both problems in Fig. 4. For
2D problems, the probability of manipulation decreases from around 80 % to 0
quickly, indicating that it is very hard for a randomly selected set of manipula-
tors to find a viable manipulation; for 4D problems, the probability remains high
(close to 1) even with 20 manipulators then decreases with larger sets of manip-
ulator. This is not surprising since, as the number of manipulator get larger, it is
harder for them to find a mutually beneficial misreport. The higher probability
for 4D problems is due to the fact that we are placing three facilities rather than
two, increasing the potential of viable manipulations.

6 Conclusion

In this paper, we addressed the optimal group manipulation problem in multi-
dimensional, multi-facility location problems. Specifically, we analyzed the com-
putational problems of manipulating quantile mechanisms. We showed that opti-
mal manipulation for single-facility problems can be formulated as an LP or
SOCP, under the L1- and L2-norm, respectively, and thus can be solved in
polynomial time. By contrast, the optimal manipulation problem for multi-
facility problems is NP-hard, but can be formulated as an ILP or MISOCP
under the L1- and L2-norm, respectively. Our empirical evaluation shows that
our MILPs/MISOCPs formulation for multi-FLPs scales well, despite the NP-
hardness result.

Our work suggests a number of interesting future directions. First, more
empirical results would be helpful in understanding the practical ease or difficulty
of group manipulation, as well as the probability of manipulation, the potential
gain of manipulators, and the impact on social welfare. Second, other objec-
tives for the manipulating coalition (e.g., minimizing the maximum cost), and
mechanisms with other cost functions are also of interest. Finally, some research
[17,25,30] has shown that agent preferences are often not exactly single-peaked,
but may be approximately so under some forms of approximation [9–11,15].
The theoretical and empirical evaluation of group manipulation in such settings
would be extremely valuable.
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Abstract. In multiagent resource allocation with indivisible goods,
boolean fairness criteria and optimization of inequality-reducing collec-
tive utility functions (CUFs) are orthogonal approaches to fairness. We
investigate the question of whether the proposed scale of criteria by Bou-
veret and Lemâıtre [5] applies to nonadditive utility functions and find
that only the more demanding part of the scale remains intact for k-
additive utility functions. In addition, we show that the min-max fair-
share allocation existence problem is NP-hard and that under strict pref-
erences competitive equilibrium from equal incomes does not coincide
with envy-freeness and Pareto-optimality. Then we study the approx-
imability of rank-weighted utilitarianism problems. In the special case of
rank dictator functions the approximation problem is closely related to
the MaxMin-Fairness problem: Approximation and/or hardness results
would immediately transfer to the MaxMin-Fairness problem. For gen-
eral inequality-reducing rank-weighted utilitarianism we show (strong)
NP-completeness. Experimentally, we answer the question of how often
maximizers of rank-weighted utilitarianism satisfy the max-min fair-
share criterion, the weakest fairness criterion according to Bouveret and
Lemâıtre’s scale. For inequality-reducing weight vectors there is high
compatibility. But even for weight vectors that do not imply inequality-
reducing CUFs, the Hurwicz weight vectors, we find a high compatibility
that decreases as the Hurwicz parameter decreases.

Keywords: Fair division · Indivisible goods · Fairness · Inequality
reduction · Computational complexity

1 Introduction

Resource allocation deals with the distribution of goods to agents. We study
the case of indivisible goods and cardinal preferences. The quality of allocations
can be judged in terms of, e.g., efficiency or fairness. Bouveret and Lemâıtre [5]
proposed a scale (hierarchy) of criteria for fairness. Starting with the weakest,
the max-min fair-share criterion, to the strongest, competitive equilibrium from
equal incomes, each criterion becomes more demanding towards an allocation.

The approach of optimizing social welfare (see, e.g., the work of Nguyen
et al. [19,20]) is orthogonal to the idea of applying fairness criteria, especially
c© Springer International Publishing Switzerland 2015
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rank-weighted utilitarianism (see, e.g., the book by Moulin [18] and the book
chapter by d’Aspremont and Gevers [11]). A collective utility function maps allo-
cations to numerical values. A rank-weighted utilitarian collective utility function
is a weighted utilitarian collective utility function, where the weight depends on
the sorted rank of utilities. If the weight decreases for agents with more utility,
we have an inequality-reducing collective utility function (e.g., [12,16]). Thus
maximizers of rank-weighted utilitarianism can also be considered fair alloca-
tions. Rank-weighted utilitarianism is also known as ordered weighted averaging
[22] and is closely related to so-called Pigou-Dalton transfers (see, e.g., again the
book by Moulin [18]).

In our model we make the common assumptions that goods are indivisi-
ble, preferences are represented numerically via utility functions, allocations are
determined centrally, and agents can trade neither goods nor money. We extend
the study of Bouveret and Lemâıtre [5] by answering the question of whether
their proposed scale of criteria holds for nonadditive utility functions. More
specifically, by lifting the utility functions to k-additive domains for k ≥ 2, we
find that only the more demanding part of the scale remains intact. The domain
of k-additive utility functions is more realistic because substitutabilities can now
be expressed (depending on the choice of k). They were first introduced by Gra-
bisch [15] and later by Chevaleyre et al. [10] in resource allocation. In fact, for
large enough k we can express any utility function defined over bundles. In addi-
tion, we (partially) close two problems left open by Bouveret and Lemâıtre [5]:
We show that it is NP-hard to decide whether a min-max fair-share allocation
exists, and we answer (in the negative) the question of whether every envy-
free and Pareto-optimal allocation forms a competitive equilibrium from equal
incomes under strict preferences.

After that we study the approximability problem of rank-weighted utilitarian
CUFs. We explore the relationship between rank dictator functions (that is,
rank-weighted utilitarian CUFs where exactly one agent has unit weight) and
give first answers to the approximability of rank-weighted utilitarianism.

Then we report on computational experiments that we performed to see
how often rank-weighted utilitarianism coincides with the max-min fair-share
criterion, the weakest criterion with respect to Bouveret and Lemâıtre’s scale.
We find that weakly inequality-reducing rank-weighted utilitarian CUFs are
highly compatible with max-min fair-share. For Hurwicz weight vectors, where
the worst-off and best-off agents only are assigned positive weights, the num-
ber of maximizing allocations that also satisfy the max-min fair-share criterion
decreases as the weight distribution is shifted towards the best-off agent. This
should be contrasted to Amanatidis et al.’s [1] statement that MaxMin-fairness
(egalitarian social welfare) and max-min fair-share “exhibit very different behav-
ior” beyond identical agents. Experiments in a similar spirit were performed by
Brams and King [6] on maximin and Borda maximin allocations with respect
to envy and by Bouveret and Lemâıtre [5] with respect to MaxMin-fairness
and max-min fair-share, where they find that “approximately only one instance
over 3500 is a counter-example,” and with respect to their proposed scale.
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In addition, Bouveret and Lemâıtre show that for identical preferences MaxMin-
fairness and max-min fair-share coincide, and, similarly, for normalized utilities,
if there is an allocation that satisfies proportional fair-share, then every maxi-
mizer of MaxMin-fairness satisfies it as well.

In Sect. 2 we introduce the model formally and study the various fairness
criteria, continuing in Sect. 3 with approximability results for rank-weighted
utilitarianism. In Sect. 4 we study both fairness approaches simultaneously and
report on our experimental results. Lastly, we conclude in Sect. 5.

2 Model and Fairness Criteria

Let A = {a1, . . . , an} be the set of agents, and let G = {g1, . . . , gm} be the
set of goods. Each agent ai has a utility function ui : 2G → Q that maps
a bundle of goods to a utility value. We assume that utility functions are k-
additive. A utility function u is k-additive if for each H ⊆ G, there is a coefficient
w(H) with w(H) = 0 if ‖H‖ > k such that u(H) =

∑
F⊆H,‖F‖≤k w(F ). We

denote the utility value for singletons g ∈ G by u(g). A tuple (A,G, {ui}ai∈A)
is called an allocation setting. Given such a setting, an allocation is a partition
π = (π1, . . . , πn) of the set of goods, where πi denotes the bundle that agent ai

receives. The utility that agent ai realizes under π is given by ui(π) = ui(πi).
Bouveret and Lemâıtre [5] introduced a scale of criteria for 1-additive utility

functions and showed the following chain of implications for an allocation π:

π |= CEEI =⇒ π |= EF =⇒ π |= mFS =⇒ π |= PFS =⇒ π |= MFS,

where “π |= X” indicates that allocation π satisfies criterion X, CEEI stands for
“competitive equilibrium from equal incomes,” EF for “envy-freeness,” mFS for
“min-max fair-share,” PFS for “proportional fair-share,” and MFS for “max-min
fair-share.”

We start with the two weakest criteria, max-min and proportional fair-share.

Definition 1. Let (A,G, {ui}ai∈A) be an allocation setting. The max-min fair-
share (MFS) of agent ai is

uMFS
i = max

π
min
aj∈A

ui(πj).

An allocation π satisfies the max-min fair-share criterion if for every agent ai,
we have ui(π) ≥ uMFS

i .

Intuitively, this criterion corresponds to a game where agent ai chooses an
allocation first but picks a bundle of the chosen allocation last, thus maximizing
her worst utility over all allocations.

Definition 2. Let (A,G, {ui}ai∈A) be an allocation setting. The proportional
fair-share (PFS) of agent ai is

uPFS
i =

1
‖A‖ui(G).
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An allocation π satisfies the proportional fair-share criterion if for every agent ai,
we have ui(π) ≥ uPFS

i .

Intuitively, the proportional fair-share criterion can be explained by pretend-
ing that the whole set G of goods were infinitely divisible and allocating to each
agent a proportional share of G, from this agent’s perspective.

Every allocation that satisfies PFS also satisfies MFS under 1-additive util-
ity functions. If we switch to k-additive utility functions for k > 1, though, it
becomes obvious that we need additional information. As long as wi(G′) ≥ 0 for
all G′ ⊆ G with ‖G′‖ ≥ 2, we have

min
aj∈A

ui(πj) ≤ 1
n

∑

aj∈A

ui(πj) ≤ 1
n

ui(G) = uPFS
i .

and PFS still implies MFS. Without any restrictions on the utilities, however, it
is easy to construct counterexamples:

Example 1. Let A = {a1, a2} and G = {g1, g2, g3, g4}. We have utility functions
defined by wi(gj) = 1 for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4, and wi({g1, g2}) =
wi({g3, g4}) = wi({g1, g3}) = wi({g2, g4}) = −1 for 1 ≤ i ≤ 2.

Then uPFS
i = 0, so every allocation π satisfies PFS. However, uMFS

i = 2, thus
allocation (G, ∅) does not satisfy MFS.

Hence, we can state

Proposition 1. Under k-additive utility functions with k ≥ 2,

1. for nonnegative weights, every allocation π that satisfies PFS also satisfies
MFS;

2. for possibly negative weights, there is an allocation setting where an allocation
that satisfies PFS does not satisfy MFS.

Now we look at min-max fair-share in terms of its relationship to the pro-
portional fair-share criterion and its complexity.

Definition 3. Let (A,G, {ui}ai∈A) be an allocation setting. The min-max fair-
share (mFS) of agent ai is

umFS
i = min

π
max
aj∈A

ui(πj).

An allocation π satisfies the min-max fair-share criterion if for every agent ai,
we have ui(π) ≥ umFS

i .

Intuitively, this criterion corresponds to a game where agent ai picks her
bundle first but does not choose the allocation; thus getting her best bundle in
a worst (for her) allocation. Once again, it is easy to see that the implication
for 1-additive utility functions that every min-max fair-share allocation satisfies
proportional fair-share does not hold for larger k.
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Example 2. Let A = {a1, a2} and G = {g1, g2, g3, g4}. We have utility functions
defined by wi({g1, g2}) = wi({g3, g4}) = wi({g1, g3}) = wi({g2, g4}) = 1 for
1 ≤ i ≤ 2.

Note that uPFS
i = 2 for i ∈ {1, 2} and that allocation π = ({g1, g4}, {g2, g3})

does not satisfy PFS. However, it does satisfy mFS:

ui(πj) = 0, 1 ≤ i, j ≤ 2 =⇒ umFS
i = min

π′
max
aj∈A

ui(π′
j) ≤ 0 =⇒ umFS

i = 0

because all coefficients are nonnegative.

Thus we have

Proposition 2. Under k-additive utility functions with k ≥ 2, there is an allo-
cation setting where an allocation that satisfies mFS does not satisfy PFS.

Next, we consider the complexity of deciding whether for a given allocation
setting there is an allocation satisfying the min-max fair-share criterion. More
precisely, we consider the following decision problem:

mFS-Exist

Given: An allocation setting (A, G, {ui}ai∈A).

Question: Is there an allocation π that satisfies mFS?

Bouveret and Lemâıtre [5] only state an upper bound by showing that this
problem is in Σp

2. We now provide a nontrivial lower bound by showing that it
is NP-hard.

Proposition 3. mFS-Exist is NP-hard whenever there are at least three
agents.

Proof. We reduce from the well-known NP-complete problem Partition:
Given a list B = (b1, b2, . . . , bm) of positive integer weights that sum up to
an even integer, does there a exist a partition of {1, 2, . . . ,m} into two sets
X ⊆ {1, 2, . . . ,m} and X = {1, 2, . . . ,m} � X such that

∑
j∈X bj =

∑
j∈X bj?

From a given instance B = (b1, b2, . . . , bm) of Partition with 2L =
∑

1≤i≤m bi,
we create the following instance with three agents and m + 1 goods:

– A = {a1, a2, a3} and G = {g1, . . . , gm+1}.
– ui(gj) = bj for 1 ≤ j ≤ m and ai ∈ A.
– ui(gm+1) = L for ai ∈ A.

Let π be an allocation. Notice that maxaj∈A u1(πj) ≥ L because some agent
has to receive the good gm+1. Because of identical preferences, we have umFS

1 =
umFS
2 = umFS

3 ≥ L. It is easy to see that if π satisfies mFS, one of the shares—say,
without loss of generality, π1—is equal to {gm+1} (otherwise, there is an agent
aj ∈ {a2, a3} such that uj(πj) < L ≤ umFS

j ). Hence if umFS
i > L, there cannot

be an allocation satisfying the min-max fair-share criterion.
Suppose there is no equal-sized partition of {b1, ..., bm}. Two cases are pos-

sible:
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(i) There is a share πi such that πi ⊇ {gm+1, gi}, with bi ∈ B. Then ui(πi) > L.
(ii) One of the shares equals {gm+1}. Because we cannot split the remaining

goods into two subsets of equal utility, there has to be one share such that
ui(πi) > L.

In both of these two cases, maxaj∈A ui(πj) > L and, therefore, umFS
i > L, so

there is no allocation satisfying the min-max fair-share criterion.
Conversely, let (B1, B2) be an equal-sized partition. Consider the allocation

π = ({gm+1}, B1, B2). Then ui(πi) = L for all ai ∈ A and thus umFS
i = L.

Hence, π satisfies mFS. �

The next criterion we consider is envy-freeness. Intuitively, this means that
none of the agents would like to swap her share with any of the other agents.

Definition 4. Let (A,G, {ui}ai∈A) be an allocation setting. An allocation π is
envy-free if for all i, j, 1 ≤ i, j ≤ ‖A‖, we have ui(πi) ≥ ui(πj).

Since the proof by Bouveret and Lemâıtre [5] that an envy-free allocation
satisfies the min-max fair-share criterion does not use any information about the
utility functions, it is directly applicable to k-additive utility functions. However,
extending the scope of this implication turns out to be difficult:

Example 3. Let A = {a1, a2} and G = {g1, g2}. We have utility functions defined
by wi({g1}) = wi({g2}) = wi({g1, g2}) = 2 for ai ∈ A.

Allocation π = ({g1}, {g2}) is envy-free, but there is no allocation which
gives to each agent her proportional fair-share uPFS

i = 3.

The scale breaks, even if we do not consider the proportional fair-share.1

Example 4. Let A = {a1, a2} and G = {g1, g2, g3, g4}. We have utility functions
defined by wi({g}) = 2, for ai ∈ A and g ∈ G, and w1({g1, g2}) = w1({g3, g4}) =
w2({g2, g3}) = w2({g1, g4}) = 2.

By evaluating the utilities granted by the allocations π = ({g1, g2}, {g3, g4})
and π′ = ({g1, g4}, {g2, g3}) we see that uMFS

i ≥ 6. As a consequence, there
cannot be an allocation satisfying max-min fair-share. Yet π and π′ are both
envy-free.

We summarize this in

Proposition 4. Under k-additive utility functions with k ≥ 2,

1. every envy-free allocation π satisfies mFS;
2. there is an allocation setting where an envy-free allocation does not satisfy

PFS;
3. there is an allocation setting where an envy-free allocation does not satisfy

MFS.

1 Note that proportional fair-share can also be defined differently under k-additive
utility functions.



Fairness and Rank-Weighted Utilitarianism in Resource Allocation 527

We now consider the last criterion: competitive equilibrium from equal
incomes.

Definition 5. Let (A,G, {ui}ai∈A) be an allocation setting. For a price vector
p ∈ [0, 1]m and an allocation π, the pair (π, p) forms a competitive equilibrium
from equal incomes (CEEI) if for every ai ∈ A, we have

πi ∈ arg max
G′⊆G

{
ui(G′) | ∑

gi∈G′pi ≤ 1
}

.

An allocation π satisfies the competitive equilibrium from equal incomes cri-
terion if there is a price vector p such that (π, p) forms a CEEI.

CEEI can be considered a fairness criterion because prices and budgets are
the same for every agent.

Again, proving that an allocation that forms a CEEI is envy-free can be done
independently of the utility representation [5]. Thus the implication also holds
for k-additive utility functions.

Brânzei et al. [7] prove various hardness results regarding CEEI, such as
checking whether a given allocation and price vector form a CEEI. Aziz [2]
proves strong NP-hardness for computing an allocation that satisfies CEEI and
focuses on a fractional variant of CEEI.

Bouveret and Lemâıtre asked whether every envy-free and Pareto-optimal
allocation is CEEI under strict2 and 1-additive utility functions. We answer this
question in the negative.

Proposition 5. Under strict and 1-additive utility functions there is an allo-
cation setting that allows for an envy-free, Pareto-optimal allocation that is not
CEEI.

Proof. Let A = {a1, a2, a3} and G = {g1, . . . , g5}. Let the utility matrix where
entry ai,j denotes ui(gj) = ai,j be as follows:

⎛

⎝
88 64 98 4 18
89 88 70 98 51
3 19 47 46 58

⎞

⎠

These utilities are strict. The allocation π = ({g3}, {g1, g4}, {g2, g5}) is the
unique allocation that is envy-free and Pareto-optimal. A CEEI price vector p
has to satisfy the following inequalities:

p1 + p4 ≤ 1 (1)
p2 + p5 ≤ 1 (2)
p1 + p2 > 1 (3)
p4 + p5 > 1 (4)

2 A utility function u is strict if u(G) = u(H) implies G = H.
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Allocation π implies inqualities (1) and (2). Agent a1 realizes a utility of 98,
whereas bundle {g1, g2} would give a utility of 152. Similarly, agent a3 must not
receive bundle {g4, g5}. However, the above inequalities lead to a contradiction.
Hence, for every price vector p, the pair (π, p) does not form a CEEI. �

3 Approximability of Rank-Weighted Utilitarianism

In this section, we consider approximation problems of rank-weighted utilitari-
anism under nonnegative 1-additive utility functions. This approach to fairness
is orthogonal to the one in Sect. 2. We first need some additional definitions.
Each partition π induces a utility vector v(π) = (ui(πi))1≤i≤n. We denote by
v∗(π) the vector that results from v(π) by sorting all entries nondecreasingly.
Thus v∗

1(π) gives the utility of a worst-off agent (i.e., egalitarian social welfare),
v∗

	n/2
(π) the utility of a median-off agent3, and v∗
n(π) the utility of a best-off

agent (i.e., elitist social welfare). Given a set A of agents, a set G of goods, and
for each agent ai ∈ A a utility function ui, we can search for allocations that
maximize the j-rank dictator function v∗

j . More generally, we have

Definition 6. Let (A,G, {ui}ai∈A) be an allocation setting. Let w =
(w1, . . . , wn) be a normalized weight vector, i.e.,

∑n
1 wi = 1. Define the rank-

weighted utilitarian social welfare of an allocation π as

sw(π) =
n∑

i=1

wiv
∗
i (π).

We say a rank-weighted utilitarian CUF with weight vector w is weakly
inequality-reducing (inequality reducing) if w is weakly (strictly) decreasing. Note
that, in general, the set of maximizing allocations stays invariant under multi-
plication of weight vector w by a constant. However, shifting w may change this
set. Clearly, the weight vector that has a 1 at position j and a 0 at all remaining
positions corresponds to the j-rank dictator function. We define the following
decision problem:

j-Rank Dictator

Given: An allocation setting (A, G, {ui}ai∈A) and a value k ∈ Q.

Question: Is there an allocation π such that v∗
j (π) ≥ k?

1-Rank Dictator is NP-complete for at least two agents by a reduction
from Partition. This problem is also known as, respectively, the MaxMin-
Fairness problem, the Maximum Egalitarian Social Welfare prob-
lem [19], and (some variant of) the Santa Claus problem [3]. Because (n − 1)-
Rank Dictator and �n/2�-Rank Dictator are equivalent to 1-Rank Dic-
tator for two agents, they are also NP-complete. For intermediate values j,
3 Alternatively, one could define the median for an even number of agents as

v∗
n/2(π)+v∗

n/2+1(π)

2
. However, we follow the definition due to Chevaleyre et al. [9].
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1 < j < n− 1, j-Rank Dictator is NP-complete as well (see below). However,
n-Rank Dictator is decidable in polynomial time: For each agent, determine
the bundle that maximizes this agent’s utility. Assign the required bundle to
the agent ai with maximum utility. If there are at least two agents, all goods
with negative utility values for agent ai are assigned to the other agent. Since
for almost all values j (except for j = n) j-Rank Dictator is NP-complete,
we study the approximability of the corresponding optimization problems:

Optimal Value j-Rank Dictator

Input: An allocation setting (A, G, {ui}ai∈A) with at least j agents.

Output: maxπ v∗
j (π).

Define the decision problem w-Rank-Weighted Utilitarianism analo-
gously, where the weight vector family w is not part of the input, as otherwise
we would implicitly study the NP-hard MaxMin-Fairness problem under a
different name.

3.1 Rank Dictator

We first consider j-Rank Dictator with constant values j. This case is inter-
esting because of the MaxMin-Fairness problem.

Proposition 6. Let i ∈ N be a constant. Given an f(n,m)-approximation algo-
rithm for Optimal Value (i + 1)-Rank Dictator, there is an f(n + 1,m)-
approximation algorithm for Optimal Value i-Rank Dictator.

Proof. Given an allocation setting P = (A,G, {ui}ai∈A) where the ith rank
dictator is to be optimized, add a dummy agent d with a utility function
that assigns to each good utility 0. Since i is constant, this dummy agent
will “shift” the index that is maximized to the left. In more detail, we show
OPTi+1(P+) = OPTi(P ), where OPTj(Q) denotes the optimal value of the
jth rank dictator problem under allocation setting Q and P+ is allocation set-
ting P extended by the dummy agent. Suppose OPTi+1(P+) > OPTi(P ) where
OPTi+1(P+) is achieved under allocation π. If πd = ∅, because the dummy agent
is among the worst-off agents, we have v∗

i+1(π) = v∗
i (π′), where π′ denotes the

restriction of π to A. If πd = ∅, reassign the goods in πd arbitrarily to agents
in A. Call the resulting allocation π′′. Because utilities are nonnegative, it holds
that v∗

i+1(π) ≤ v∗
i (π′′) (contradiction). Thus we have OPTi+1(P+) ≤ OPTi(P ).

Suppose OPTi+1(P+) < OPTi(P ), where OPTi(P ) is achieved under alloca-
tion π. Then consider the extension π̂ of π to A ∪ {d} by assigning the empty
bundle to d. Since utilities are nonnegative, the dummy agent is among the
worst-off agents. Thus v∗

i+1(π̂) = v∗
i (π) (contradiction). To summarize, we have

OPTi+1(P+) = OPTi(P ). �
This result shows that a good approximation algorithm for Optimal Value

j-Rank Dictator for constant j would imply a good approximation for the
MaxMin-Fairness problem. Thus we cannot hope for a good approximation
algorithm for, e.g., Optimal Value 2-Rank Dictator without new ideas.
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Corollary 1. For each constant i ∈ N, i ≥ 2, i-Rank Dictator is NP-
complete.

Proof. Membership in NP is clear. Given i and an instance of 1-Rank Dic-
tator, add i − 1 dummy agents as in the proof of Proposition 6. Because
OPTi+1(P+) = OPTi(P ) for each constant i ∈ N, the result follows. �

Proposition 7. Let i ∈ N be a constant. Given an f(n,m)-approximation algo-
rithm for Optimal Value (n−i)-Rank Dictator, there is an f(n+1,m+1)-
approximation algorithm for Optimal Value (n − i + 1)-Rank Dictator.

Proof. The proof is analogous to the proof of Proposition 6: Add a dummy
agent that values every good zero except for a new good that is valued at least
OPT (e.g., m maxas∈A,gt∈G us(gt)) only by this dummy agent. �

Corollary 2. For each constant i ∈ N, i ≥ 1, (n − i)-Rank Dictator is NP-
complete.

Corollary 3. Let i ∈ N be a constant with i < �n/2�. Given an f(n,m)-
approximation algorithm for Optimal Value �n/2�-Rank Dictator, there is
an f(2n − 2i,m)-approximation algorithm for Optimal Value i-Rank Dic-
tator.

Proof. Let � be the smallest number such that �n+�
2 � = � + i. Apply the proof

of Proposition 6 � times. �

Similarly, Corollary 3 says that a good approximation algorithm for the
median rank dictator problem would yield an approximation algorithm for the
MaxMin-Fairness problem where the approximation guarantee is worse by a
factor of 2.

Proposition 8. Let i ∈ N be a constant. Given an f(n,m)-approximation
algorithm for Optimal Value 1-Rank Dictator, there is an f(n,m)-
approximation algorithm for Optimal Value i-Rank Dictator.

Proof. Let I be an instance of Optimal Value i-Rank Dictator. All agents
aj that get less than v∗

i (π) utility realize in fact zero utility. Consider all sub-
sets of the agents of size n − i + 1 and the corresponding restriction of I to
this subset of agents. We have restrictions I1, . . . , I( n

n−i+1). Denote by OPT
the maximum value of I with respect to Optimal Value i-Rank Dicta-
tor and denote by OPTk the maximum value of Ik with respect to Opti-
mal Value 1-Rank Dictator. Then we have OPT = maxk OPTk (other-
wise, OPT cannot be optimal). There are

(
n

n−i+1

)
=

(
n

i−1

) ≤ ni−1 such subsets,
i.e., polynomially many in n. Choose the maximum value that the approxima-
tion algorithm returns when applying it to each restricted instance. This gives
an f(n,m)-approximation for Optimal Value i-Rank Dictator because we
have OPTk > OPT� ⇐⇒ f(n,m)OPTk > f(n,m)OPT�. �
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Thus hardness results for, e.g., Optimal Value 2-Rank Dictator trans-
late to hardness results for the MaxMin-Fairness problem. On the other hand,
from [8] we get the following approximation algorithm for Optimal Value j-
Rank Dictator, j ∈ N.

Corollary 4. For any j ∈ N, there is an Õ(1/mε)- approximation algorithm in
time mO(1/ε) for ε ∈ Ω( log log m

log m ) for Optimal Value j-Rank Dictator.

For superconstant f , the f(n)-Rank Dictator is at least as hard as the
MaxMin-Fairness problem.

Proposition 9. Let f be function over the natural numbers with f(n) < n.
f(n)-Rank Dictator is NP-complete.

Proof. For n = 2, we have f(2) = 1. Hence, f(n)-Rank Dictator is equivalent
to 1-Rank Dictator for two agents. �

Corollary 5. For every ε > 0, there is no (1/2 + ε)-approximation algorithm for
Optimal Value �n/2�-Rank Dictator, unless P = NP.

Proof. It is NP-hard to approximate Optimal Value 1-Rank Dictator bet-
ter than 1/2 (see [4]). �

3.2 Rank-Weighted Utilitarianism

Now we turn to general inequality-reducing weight vectors and study the com-
putational hardness with regard to rank-weighted utilitarianism. Note that even
for two agents maximizing rank-weighted utilitarianism is NP-complete. This
follows from a proof by Golden and Perny [13].

Proposition 10. w-Rank-Weighted Utilitarianism is NP-complete, even
for two agents with identical utility functions.

If the number of agents is not fixed, there is no FPTAS unless P = NP.
To prove this, we use basic notions from the theory of majorization (see, e.g.,
the book by Marshall et al. [17]). Given two vectors x, y ∈ R

n, x is said to be
majorized by y if

k∑

i=1

x(i) ≥
k∑

i=1

y(i), 1 ≤ k ≤ n − 1, and

n∑

i=1

x(i) =
n∑

i=1

y(i)

hold, where v(i) denotes the ith smallest entry of a vector v. A real-valued
function f over R

n is strictly Schur-concave if x being majorized by y implies
f(x) > f(y), unless x is a permutation of y. Note that the rank-weighted utili-
tarian CUF with a strictly decreasing weight vector is a strictly Schur-concave
function.
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Proposition 11. If the number of agents is not fixed, w-Rank-Weighted
Utilitarianism is strongly NP-complete, even for identical utility functions.

Proof. Membership in NP follows from the fact that guessing and checking can
be done in polynomial time. For proving hardness, we reduce from 3-Partition,
which is defined as follows: Given 3m numbers b1, . . . , b3m with cumulative sum
mB and B/4 < bi < B/2 for 1 ≤ i ≤ 3m, is it possible to partition them
into m subsets such that each subset sums up to B? Given such an instance
of 3-Partition, we generate m agents and 3m goods. All utility functions are
identical, with u(gi) = bi, 1 ≤ i ≤ 3m. Set the bound to (

∑
i wi) B. For proving

completeness, a partition gives each agent B utility. Hence, social welfare is
(
∑

i wi) B. For proving soundness, we use the fact that the CUF is strictly Schur-
concave. If utility vector x is majorized by y, then the social welfare with utility
vector x is strictly greater than the social welfare with utility vector y. Let π
be an allocation and let y be the utility vector that is induced by π. We denote
by x the utility vector for which every agent gets B utility. We show that x is
majorized by y, and hence the social welfare induced by vector y is strictly less
than B. Let y(k) be the utility of the k-poorest agent. We perform an induction
over k. For k = 1, we have B ≥ y(1) because for every allocation π′, there is
an agent i with ui(π′) < B; otherwise, it would not be a no-instance. For the
inductive step, assume for the sake of contradiction that we have

∑k
i=1 y(i) +

y(k+1) > (k+1)B. Thus y(k+1) > B by the inductive hypothesis
∑k

i=1 y(i) ≤ kB.
Then all agents after the (k + 1)st agent get more than B utility:

k∑

i=1

y(i) +
m−1∑

i=k+1

y(i) > kB + (m − 1 − k − 1 + 1)B

= kB + mB − 2B − kB + B

= (m − 1)B

=
m∑

i=1

y(i) − B.

This gives the desired contradiction y(m) < B. �

4 Computational Experiments

We start this section with a result that states that a maximizing allocation of
a rank-weighted utilitarian CUF with a weight vector whose first entry is not
positive never satisfies the max-min fair-share criterion. Hence, k-rank dictator
functions for k > 1 are less interesting.

Proposition 12. Let m ≥ n, let utility values be positive and w = (w1, . . . , wn)
be a weight vector with w1 ≤ 0. Then every allocation π that maximizes the
rank-weighted utilitarian social welfare with respect to w does not satisfy MFS.
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Proof. Since all utilities are positive, π assigns no goods to a worst-off agent.
Because of m ≥ n there exists an allocation that assigns a good with positive
value to every agent. Hence, MFS is positive for every agent, whereas the worst-
off agent realizes zero utility under π. �

Before explaining our experimental setup we introduce a set of weight vector
families (see [14,21]):

– k-worst: The first k entries are ones and we have a zero everywhere else. The
weight vector has an egalitarian flavor. We only care about the utilities of the
k worst agents.

– Borda: Position i has weight n−i+1. Hence, every agent’s utility is accounted
for with decreasing priority.

– Gini: This is a well-known weight vector (neglecting normalization) that is
similar to Borda. Position i has weight 2(n− i)+1. Every agent has a positive
weight, but agents with less utility have more weight (see, e.g., the papers
by Endriss [12] and Lesca and Perny [16] for more information on Gini social
welfare and the Gini index in the context of indivisible goods).

– Lex: Position i has weight 2n−i. The weights decrease exponentially: Poor
agents get the most attention but the best-off agent is not neglected.

– Reverse-Borda: Position i has weight i (the reverse of the Borda weight
vector).

– λ-Hurwicz: Position 1 has weight λ, position n has weight 1−λ, and we have
zero weight everywhere else. This weight vector bridges both extreme ends of
the utility vector.

Recall that the set of maximizing allocations is invariant under multiplication
of the weight vector by a constant. Hence we do not normalize weight vectors
for our experiments. This also holds for max-min fair-share [5].

We conducted experiments to determine to what extent rank-weighted utili-
tarianism coincides with the weakest fairness criterion, max-min fair-share. We
tested for the number of agents being n = 2, . . . , 5 and the number of goods being
m = n, . . . , 10. For m < n, every allocation satisfies MFS for nonnegative utility
functions. Utility functions were drawn uniformly (similarly to the impartial cul-
ture assumption in voting theory) from [0, 1) by uniformly drawing utility values
for each good. For each data point we performed 1000 iterations. We checked
whether all maximizing allocations satisfied the max-min fair-share criterion,
under the condition that there is an allocation that satisfies MFS (which was
the case for all 490,000 sampled profiles). The number of profiles where not all
maximizing allocations but at least one maximizer satisfied MFS were negligible.

The figures depict the relation between number of goods and the number of
profiles where all maximizing allocations satisfy MFS. For (weakly) decreasing
weight vectors (Fig. 1(a)–(g)), we see a very high compatibility between max-
imizing allocations of weakly inequality-reducing rank-weighted utilitarianism
and the max-min fair-share criterion. On the other hand, Fig. 1(h) shows that
the Reverse-Borda-based social welfare function is highly unfair (with respect to
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Fig. 1. Results of the computational experiments
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max-min fair-share). Hurwicz weight vectors (Fig. 1(i)–(m)) show a more inter-
esting behavior. Although they are not decreasing weight vectors, maximizing
allocations also satisfy MFS for high values of λ. In addition, as λ decreases, the
number of profiles that admit maximizers that satisfy MFS decreases as well.

5 Conclusions and Open Questions

Continuing the work of Bouveret and Lemâıtre [5] we have investigated the ques-
tion of whether their scale of fairness criteria extends also to nonadditive utility
functions. For k-additive utility functions, we have seen that this scale remains
intact only for the more restrictive criteria. We have also shown that the min-
max fair-share allocation existence problem is NP-hard and that under strict
preferences competitive equilibrium from equal incomes does not coincide with
envy-freeness and Pareto-optimality. Then, we have proved that k-rank dictator
functions are closely connected to MaxMin fairness with respect to approximabil-
ity. We have studied the computational hardness of general inequality-reducing
rank-weighted utilitarianism problems. Finally, we have presented computational
experiments that answer the question how often maximizers of weakly inequality-
reducing rank-weighted utilitarianism satisfy the max-min fair-share criterion,
the weakest among the fairness criteria due to Bouveret and Lemâıtre [5]. We
have seen that rank-weighted utilitarianism with weakly inequality-reducing
weight vectors and the Hurwicz weight vectors for larger values of λ are highly
compatible with MFS.

As open problems we propose resolving the (exact) complexity of the max-
min fair-share and min-max fair-share existence problems. In terms of approx-
imability, we conjecture that there is a PTAS for decreasing weight vectors and
identical utilities.
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Abstract. We study fairness and efficiency properties of randomized
algorithms for barter exchanges with direct applications to kidney
exchange problems. It is well documented that randomization can serve
as a tool to ensure fairness among participants. However, in many appli-
cations, practical constraints often restrict the maximum allowed cycle-
length of the exchange and for randomized algorithms, this imposes con-
straints of the cycle-length of every realized exchange in their decompo-
sition. We prove that standard fairness properties such as envy-freeness
or symmetry are incompatible with even the weakest notion of economic
efficiency in this setting. On the plus side, we adapt some well-known
matching mechanisms to incorporate the restricted cycle constraint and
evaluate their performance experimentally on instances of the kidney
exchange problem, showing tradeoffs between fairness and efficiency.

1 Introduction

Over the past years, barter exchanges, with kidney exchange as a representa-
tive example, have become a topic of intensive research at the intersection of AI
and economics. In a barter exchange, participants enter the system with some
endowment and then exchange their endowments in order to obtain better allo-
cations. Such exchanges are very popular in settings such as exchanges of used
books or DVDs where agents do not have very high values for their endowments
and would rather trade them with others.
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The current literature on barter exchanges presents two major challenges,
fairness and implementability [2,3,6–9,13]. Most would agree that a fair proce-
dure should guarantee at least properties like symmetry and envy-freeness. In
practical applications, barter exchanges tend to be carried out deterministically ;
on the other hand as argued in a number of papers [5,11,14], central economic
notions of fairness such as the ones stated above, require randomization.

Implementability has to do with whether the designed exchanges can be
carried out in practice. The simplest exchanges are pairwise exchanges, involving
only two agents [12,14]. Exchanges can also be more complicated, involving
multiple participants, exchanging endowments in a cycle. A vital constraint of
most such exchange systems (kidney exchanges, room exchanges1) is that the
number of agents involved in a cycle must be bounded [2,14]. Such constraints
may be imposed for a number of reasons; a real-life motivating example comes
from perhaps the most widespread applications of barter exchanges, the kidney
exchange problem.

In a kidney exchange market, pairs consisting of incompatible donors and
patients enter the market, in search for other pairs to exchange kidneys with. In
case of inter-pair compatibility, i.e. when the donor of the first pair is compatible
with the patient of the second pair and vice-versa, an exchange is carried out.
In many countries, such exchange systems have been in effect for several years.

There are several constraints on the length of such exchanges however,
imposed for both practical and ethical reasons. First of all, participants involved
in an exchange cycle must conduct surgery simultaneously at the same hospital2,
making it logistically infeasible for any hospital to host a large cycle. Secondly,
donors can not be contractually obligated to donate their kidneys, since it is
illegal in most countries. If an “offline” exchange were to take place, there is no
guarantee that donors would not opt out after their counterparts receive their
transplants [8].

For this reason, the length of the exchange cycles is constrained to be a small
number (three in most cases). This however, makes the problem much more
challenging. It is known that, under such constraints on the cycle-length, the
problem of finding an efficient exchange is NP-hard [2]. Despite the theoretical
hardness results, Abraham et al. [2] designed an algorithm that through several
optimization techniques produces an optimal exchange on typical instances of
the problem in reasonable running time. The algorithm, while efficient, is deter-
ministic and not tailored to incorporate fairness criteria. On the other hand,
fairness is a key property here; between patients with similar compatibility char-
acteristics and similar needs, no deterministic choice can be justified, especially
if it results in loss of human life. In fact, Dickerson et. al. [8] observe that, among
the exchanges in the major organ exchange system in the United States, UNOS,3

1 http://reslife.umd.edu/housing/reassignments/roomexchange/.
2 In this paper, we do not consider the use of altruistic chains, which may circumvent

this requirement.
3 www.unos.org.

http://reslife.umd.edu/housing/reassignments/roomexchange/
www.unos.org
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only 7 percent of them finally make it to surgery. The lack of fairness guarantees
might be a possible explanation for this phenomenon.

As mentioned earlier, randomization can be used as a way of achieving fairness
and there are many candidate mechanisms in matching and exchange literature to
choose from. Perhaps the two best-studied are the Probabilistic Serial mechanism
[5] and Random Serial Dictatorship [1]. Both achieve fairness in the sense of sym-
metry but the former is also envy-free. However, the implementability constraint
introduces complications to the use of randomized mechanisms as well. Given the
natural interpretation of a randomized exchange as a probability mixture over
deterministic exchanges, the constraint requires that every such exchange does
not contain long cycles. If we restrict the possible outcomes to those assignments
only, it is unclear whether the mechanisms maintain any of their fairness proper-
ties. This is one of the questions that we address in this paper.

We investigate the problem of designing barter exchanges that meet the two
desiderata above. In particular, we explore the use of randomized mechanisms for
achieving tradeoffs between efficiency and fairness, under the added constraint
of restricted cycle-length in their decomposition. We make the following two-fold
contribution.

– First, we consider the tradeoffs between economic efficiency and fairness from
a theoretical point of view and prove that even the weakest form of eco-
nomic efficiency (a relaxation of ex-post Pareto efficiency that is suitable for
the problem) is incompatible with both envy-freeness and symmetry. On the
other hand, we show that it is possible to satisfy each property independently,
together with the restricted cycle-length.

– Next, we adapt two well-known mechanisms, Random Serial Dictatorship and
Probabilistic Serial to incorporate the cycle-length constraint and evaluate
their performance on instances of the kidney exchange problem. We show
tradeoffs between the efficiency (in the sense of social welfare) and quantified
envy-freeness of the exchange for those adaptations of the mechanisms and
compare them to the mechanism that produces an optimal assignment.

Most relevant to the current paper is the work by Balbuzanov [4], where the
author considers deterministic and randomized mechanisms for barter exchanges,
under the restriction of the cycle length in the components of the decomposition,
very similarly to what we do here. Interestingly, he presents an adaptation of the
Probabilistic Serial mechanism (named the “2-cycle Probabilistic Serial”) that
always produces components with cycles of length two and satisfies two desired
properties: ordinal efficiency (a stronger notion of efficiency than the one we
consider here) and anonymity, i.e. a guarantee that the outcome is imprevious
to renaming agent/item pairs. It is well-known that ordinal efficiency implies ex-
post Pareto efficiency; in particular this is also true for the relaxed versions of
efficiency that we consider in this paper. Furthermore, anonymity (together with
neutrality) is known to imply symmetry. The existence of 2-cycle Probabilistic
Serial however does not contradict our negative result on compatibility between
ex-post efficiency and symmetry; crucially, the anonymity notion used in [4] does
not imply symmetry in our setting.
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2 Background

Let N = {1, . . . , n} be a set of agents and let M = {1, . . . , n} be a set of items.
We assume that each agent is associated with exactly one item and without loss
of generality, let agent i be associated with item i. Let item i be the endowment
of agent i. Each agent has valuations over the items., i.e. numerical values that
denote her levels of satisfaction. Let vi = (vi1, . . . , vin) be the valuation vector
of agent i and let V = (v1 . . .vn) be a valuation matrix.

An assignment D is a matching of agents to items, such that each agent
receives exactly one item. This is precisely a permutation matrix, where entry
dij = 1 if agent i receives item j and 0 otherwise. Alternatively, one can view
D as a directed graph D = (N,E), where a vertex vi corresponds to both agent
and item i and an edge (i, j) means that agent i is matched with item j in D.
Given this interpretation, an assignment is a set of disjoint cycles, where agents
exchange endowments along a cycle. If the maximum length of any cycle in such
an assignment is k, we will say that the assignment is k-restricted.4

Since each agent receives exactly one item in expectation, a probabilistic or
randomized assignment is a bistochastic matrix P where entry pij denotes the
probability that agent i is matched with item j. We will call pi = (pi1, . . . , pin) an
assignment vector. A mechanism is a function that on input a valuation matrix
V outputs an assignment P .

A probabilistic assignment P can be viewed as a probability mixture over
deterministic assignments. This is due to the Birkhoff-von Neumann theorem
that states that each bistochastic matrix of size n can be written as a convex
combination of at most n2 permutation matrices. Since it is particularly relevant
to the design of our mechanisms, we will describe the decomposition process
in more detail in Sect. 4. We will say that a randomized assignment P is k-
restricted if it can be written as a probability mixture of k-restricted determnistic
assignments.

The two standard notions of fairness that we consider in this paper are
envy-freeness and symmetry. An assignment is (ex-ante) envy-free if no agent
would prefer to swap assignment vectors with any other agent. An assignment
is symmetric if all agents that have identical valuation vectors receive identi-
cal assignment vectors. Note that envy-freeness does not imply symmetry; two
agents with identical valuations could be equally satisfied with an assignment
without having the same probabilities of receiving each item5.

A deterministic assignment D is Pareto efficient if there is no other assign-
ment D′ that is not less preferable for any agent and strictly more preferable for
at least one agent. If such an assignment D′ exists, we will say that D′ Pareto
dominates D.

It is not hard to see that standard efficiency is not compatible with k-
restricted assignments. To see this, let n > k and let V be such that for
4 Balbuzanov [4] uses the term k-constrained to describe such assignments.
5 This is true in particular because we consider all mechanisms, including cardinal

mechanisms, i.e. mechanisms that can use the numerical values when outputting
assignments.
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i = 1, . . . , n − 1, maxj∈M vij = i + 1 and maxj∈M vnj = 1. Any ex-post Pareto
efficient assignment must consist single permutation matrix D consisting of only
one cycle of length n, which is of course not a k-restricted assignment. For that
reason, it makes sense to only define Pareto efficiency in terms of k-restricted
assignments.

Definition 1. A deterministic assignment D is Pareto efficient if there does
not exist any k-restricted assignment that Pareto dominates it.

Remark 1. Note that this is the same definition of k-constrained Pareto effi-
ciency used in [4]. For simplicity and since the only notion of efficiency in this
paper is with respect to k-restricted assignments, we simply use the term Pareto-
efficiency.

For randomized mechanisms, an assignment is ex-ante Pareto efficient, if
there is no other assignment that satisfies the condition above in expectation. An
assignment is ex-post Pareto efficient if for every realization of randomness, there
is no other assignment that Pareto dominates it. In other words, a randomized
assignment is ex-post Pareto efficient if it can be written as a probability mixture
of Pareto efficient deterministic assignments. Note that ex-post Pareto efficiency
is the weakest efficiency notion for randomized mechanisms in literature.

3 Fairness and Economic Efficiency

In this section, we explore the compatibility and incompatibility between fairness
and efficiency properties given the constraint of small cycles. We show that
even the weakest form of efficiency is incompatible with two well-known fairness
criteria, even in the case when k = 3. Note that k = 3 is the common choice
for the maximum allowed cycle length in the most important applications of the
problem, that of kidney exchange that we discuss in Sect. 5.

Theorem 1. There is no mechanism that always outputs an assignment which
is envy-free, ex-post Pareto efficient and 3-restricted.

Proof. First, we prove the theorem for n = 4. First we construct the valuation
profile v with v1 = (22, 27, 81, 79), v2 = (14, 67, 36, 16), v3 = (48, 6, 33, 88) and
v4 = (36, 87, 91, 90). Next, we generate all possible permutation matrices with
four elements and eliminate those that contain cycles of length more than 3.
Then also remove those that are not Pareto efficient according to the preference
orderings profile induced by v. Let D = {D1,D2, . . . , D|D|} be the resulting
set of permutation matrices. Then, we need to solve the following constraint
satisfaction problem:

Find P, α1, . . . , α|D| such that

(i)
∑

j

pkjvkj ≥
∑

j

pljvkj ∀k, l, (envy-freeness)
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(ii) P =
|D|∑

i=1

αiDi, (decomposition)

(iii)
n∑

i=1

pij =
n∑

j=1

pij = 1, (valid assignment)

(iv) αi ≥ 0 ∀i, (valid coefficients)

(v) 0 ≤ pij ≤ 1 ∀i, j. (valid probabilities)

For the valuation profile that we created, the constraint satisfaction problem
is infeasible. This proves the theorem for n = 4. We will use that as the base
case to prove that the theorem is true for any n using induction on the size of
the valuation matrix.

For size k − 1, there is no envy-free, ex-post Pareto efficient mechanism that
produces a 3-restricted assignment by the induction hypothesis. Let Vk−1 be the
valuation matrix for size k − 1 and let Uk be the matrix obtained by Vk−1 by
adding agent k and item k such that for all agents i �= k, vij > vik for all items
j �= k and vkk > vjk for all items j �= k. Then, any ex-post Pareto efficient
mechanism on input Vk must allocate item k to agent k with probability 1,
otherwise there would be some Pareto-dominated permutation matrix in the
decomposition. If such a mechanism existed, the assignment of the remaining
k − 1 items to the remaining k − 1 agents would imply the existence of an
envy free, ex-post Pareto efficient mechanism for input Vk−1, contradicting the
induction hypothesis. �

Next, we prove a similar impossibility theorem for the case when the notions
of fairness is symmetry.

Theorem 2. There is no mechanism that always outputs an assignment which
is symmetric, ex-post Pareto efficient and 3-restricted.

Proof. The proof idea is similar to that of the proof of Theorem 1, the main
difference being that in the constraint satisfaction problem, the constraint for
envy-freeness is replaced by:

Pik = Pjk,∀k ∈ M,∀i, j ∈ N such that vil = vjl ∀l ∈ M,

which is the constraint for symmetry. For the new constraint satisfaction prob-
lem, for n = 5, if we let v1 = v2 = (4, 3, 5, 1, 2), v3 = v4 = v5 = (2, 5, 1, 4, 3),
then the problem is infeasible. To extend the theorem for any n, we can use
exactly the same inductive argument we use in the proof of Theorem 1. �

Remark 2. As we mention in the introduction, Balbuzanov proposes the 2-cycle
Probabilistic Serial mechanism, which is ex-ante Pareto efficient and anonymous.



Randomized Assignments for Barter Exchanges: Fairness vs. Efficiency 543

This does not contradict Theorem 2 because his definition of anonymity is with
respect to pairs of agents and endowed items and does not imply symmetry.6

Next, we prove that both ex-post Pareto efficiency and envy-freeness or sym-
metry are needed for the impossibilities. If we remove ex-post efficiency, the
simple mechanism that allocates all items uniformly at random, which is triv-
ially both envy-free and symmetric, also produces k-restricted assignments.

Theorem 3. The mechanism Un that always outputs a uniform random assign-
ment always produces a k-restricted assignment for k ≥ 2. Furthermore, if n is
odd, then the decomposition of the assignment consists of n permutation matri-
ces, each one of which contains a self-loop and n−1

2 pairs. If n is even, then the
decomposition consists of n permutation matrices, n−1 of which contain n

2 pairs
and one which contains n self-loops.

Proof. We will consider the cases when n is odd and n is even separately. Since all
entries pij of the assignment matrix are 1/n, the coefficients of the decomposition
will be 1/n and for any i and j, dij will be 1 in exactly one component D and
0 in all others. Assume first that n is odd. Recall the graph interpretation of D
and observe that D is a regular n − 1-sided polygon. For vertex i, let ei be the
opposite side of G to vertex i and let Di be the permutation matrix consisting of
the self-loop (i) and pairs (kl) where k and l are adjacent to ei or adjacent to a
diagonal parallel to ei. To get the decomposition, we iterate over all i = 1, . . . , n
and obtain the permutation matrices Di. Note that each permutation matrix
consists of one self-loop and n−1

2 pairs. Next, assume that n is even, which
means that n−1 is odd. Let Un−1 be the assignment matrix of size n−1 and Un

be the assignment matrix after we add agent n and item n. Since n − 1 is odd,
Un−1 can be decomposed into permutation matrices that contain one self-loop
and n−2

2 pairs. The decomposition of Un will be exactly the same, except that
for each self-loop of each permutation matrix, we create a pair with item n, and
we add an additional permutation matrix consisting only of self-loops. Again,
it is not hard to see that the decomposition consists of n components, n − 1 of
which contain n

2 pairs and one that contains n self-loops. �

Finally, if we only require Pareto efficiency without any regard to fairness, it
is trivial to obtain a deterministic Pareto efficient mechanism. The mechanism
is the following simple one. Given an input valuation matrix V , generate all
possible permutation matrices and find a feasible one that is Pareto efficient
(with respect to the set of k-restricted components).

4 Randomized Mechanisms

In this section, we design mechanisms that output k-restricted assignments.
Recall that a randomized mechanism inputs a valuation profile (or a prefer-
ence profile) for n agents and outputs a bistochastic assignment matrix P . The
6 A simple example with two agents 1, 2 that have the same preference over items 1, 2

is sufficient to see this.
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assignment P can then be decomposed into at most n2 permutation matrices
using the Birkhoff-von Neumann decomposition.

The Birkhoff-von Neumann Decomposition

The decomposition works as follows. First, from P , construct a binary matrix
P bin by setting pbinij = 1 if pij > 0 and 0 otherwise. From P bin, construct a
bipartite graph G with vertices corresponding to the rows and the columns of
P bin and with edges corresponding to the non-zero entries of P bin. In other
words, edge (i, j) exists in G if and only if pbinij = 1. Using Hall’s theorem,
one can easily prove that G has a perfect matching. Note that this matching
corresponds to some permutation matrix Π. Find such a D in G and find the
smallest entry (i, j) in P such that Πij = 1 and let a be the value of that entry.
For every entry (i, j) in P such that Πij = 1, subtract a from (i, j) to obtain
a substochastic matrix P ′. Then apply the same procedure again on P ′. Note
that a will be the coefficient of the first component of the decomposition and D
will be that component. Also note that since P ′ has at least one more zero entry
than P , the procedure will terminate in at most n2 steps.

In our case, we are interested only in k-restricted components of the decompo-
sition. One way to handle components with longer cycles is to remove them from
the decomposition and redistribute their probabilities (given by their coefficients)
to k-restricted components. It is conceivable that some of the properties of the
assignment that are satisfied in expectation might be lost during the process;
on the other hand, properties satisfied ex-post are preserved. To evaluate the
ex-ante properties of the new assignment, we can re-construct the bistochastic
matrix based on the components that survived the previous step. We will call
this process the recomposition of the assignment matrix.

The process described above can be used to transform any mechanism to one
that produces k-restricted assignments, assuming that the original decomposi-
tion had at least one k-restricted component. In general, this is not always the
case however; it could be that some other decomposition (with possibly more
than n2 components) is needed in order to find such a component. Even worse,
it could be the case that such a decomposition does not exist. We observe that
in general, it is hard to decide whether this is the case or not.

Theorem 4. Let P be an assignment. Deciding whether any decomposition of
P has a 3-restricted component is NP -hard.

Proof. Abraham et al. [2] proved that finding a cycle-cover consisting of cycles
of length at most 3 is NP-hard. In their reduction, they use the gadget shown
in Fig. 1, also known as a clamp. They construct a graph where clamps only
intersect with other clamps on vertices, xa, yb and zc. To get some intuition
about the construction, one can think as xa, yb and zc as elements in sets X,Y
and Z respectively. Let T ⊆ X ∪ Y ∪ Z be a set of triples. Two clamps intersect
at a vertex xa if xa is part of two different triples (xa, yb, zc) and (xa, y

′
b, z

′
c)

7.
7 This interpretation is very natural given that the proof in [2] uses a reduction from

3D-Matching.
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We will refer to the subgraph consisting of vertices xa, 1, . . . , L − 1 (on the left
in Fig. 1), xi

a and the edges indicident to them as “the x part of the clamp”.
Recall the definition of graph D corresponding to the binary matrix P bin at

the Birkhoff-von Neumann decomposition described earlier; the graph has edges
(i, j) only between vertices satisfying P bin

ij = 1. We claim that there exists a
decomposition of P with at least one 3-restricted component if and only if graph
D has a cycle cover consisting of cycles of length at most 3. It is not hard to see
that there exists a decomposition of P with at least one 3-restricted component
if and only if Graph D has a cycle cover consisting of cycles of length at most 3.
It then suffices to prove that the graph used in [2] corresponds to some binary
matrix P bin associated with a bistochastic matrix P .

To find such a matrix, it is enough to find an assignment of weights
p1, . . . , p|E| to the edges of the graph, such that for every vertex, the total
weight of incoming edges and the total weight of outgoing edges is 1; such a
weight assignment corresponds directly to a bistochastic matrix. We will only
specify the weights for edges in the x part of the clamp; the rest are defined
symmetrically. Let s be the in-degree of xa.

First, for edges e = (1, 2), . . . , (L − 2, L − 1), let pe = 1.

Then let:

p(L−1,xa) =
1
s
, p(L−1,xi

a)
=

s − 1
s

,

p(xa,1) =
1
s
, p(zi

c,x
i
a)

=
1
s
,

p(xi
a,1)

=
s − 1

s
, p(xi

a,y
i
b)

=
s − 1

s
.

It is not hard to see that the assigned weights satisfy the constraint above
and hence correspond to some bistochastic matrix P . �

In the following, we describe a general method to generate k-restricted assign-
ments based on some original assignment P . We will call this method small-
cycle projection. Note that the decomposition-recomposition procedure that we
described earlier can be viewed as such a projection.

Fig. 1. The gadget used in the proof of Theorem 4 as it appears in Abraham et al. [2].
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Small-cycle Projection: Given a bistochastic matrix P and a “distance”
measure d, the small-cycle projection P ∗ of P with respect to d is the solution
of the following program,

minimize d(P ∗, P ) (1)
subject to P ∗ ∈ Conv(Dk)

where Dk is the set of all k-restricted deterministic assignments and Conv(Dk)
is the convex hull of Dk.

A key observation here is that if d is a linear function, Program (1) is a linear
program. Unfortunately, even if k is chosen to be 3, the set Dk is exponentially
large in n. For this reason, we present two ways to approximate Conv(Dk) via a
small subset of Dk.

Small-Cycle Projection via Randomized Birkhoff-von Neumann
Decomposition

Recall that the Birkhoff-von Neumann decomposition operates by finding a
perfect matching on a bipartite graph in each step. Using the decomposition-
recomposition procedure, we can approximate P by the matrix composed of the
k-restricted components of the decomposition. It is conceivable however that dif-
ferent decompositions yield different k-restricted components and the choice of
decomposition plays a central role to the quality of the approximation. For this
reason, we need to have some freedom to choose between decompositions. On
the other hand, iterating over all decompositions is computationally intractable.
To balance the need for flexibility and the computational burdens, we employ
the algorithm proposed by Goel, Kapralov, and Khanna [10]. Their algorithm
computes random perfect matchings which can then be used to obtain random
decompositions. The mechanism is then simply:

(i) decompose P as
∑

i λiDi;
(ii) recompose P ∗ =

∑
Di∈Dk

λ∗
i Di.

The redistribution of probabilities can be done in various ways; the simplest
being equally among k-restricted components.

Small Cycle Projection via Sequential Randomized Small-Cycle
Cover

The second approach generates a set of random k-restricted permutations to
approximate Dk in program (1). Particularly, these k-restricted permutations are
generated by an algorithm that finds a maximum weight cycle cover consisting
of cycles of length at most k, on Graph G corresponding to assignment P . For
example, when k = 3, the algorithm by [2] can be used, where the weights are
randomly assigned to the edges induced by the fractional allocation P . Formally,
we describe our generating method in Algorithm 1.
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Algorithm 1. Generating Small-Cycle Permutations.
input : P
output: D̂k

D̂k ← ∅;

while |D̂k| < α(n) do
for i, j in [n] do

if Pij = 0 then
Gij ← 0;

else
Gij ← rand();

D̂k ← D̂k ∪ {MaxWeightSmallCycleCover(G, k)};

return Ŝk

In the algorithm, α(n) is the desired size of set D̂k, rand() generates a random
number in [1, 1 + ε], and finally MaxWeightSmallCycleCover(G, k) returns the
maximum weighted cycle cover of length at most k in graph G.

Unlike the randomized Birkhoff-von Neumann decomposition, the k-
restricted permutations generated here are not a decomposition of the input
P . Hence we need to solve Program (1) with some properly chosen “distance
measure” d to approximate the assignment P . For linear distance measures, the
program can be easily solved.

In the remainder of the section, we adapt two well-known mechanisms, Prob-
abilistic Serial and Random Serial Dictatorship to make them compatible with
3-restricted allocations, in order to use them in our experiments in Sect. 5. As
mentioned earlier, the reason for the choice of k = 3 is because this is the stan-
dard maximum allowed cycle length in kidney exchange operations. For Prob-
abilistic Serial, we apply the small-cycle projection method; for Random Serial
Dictatorship, we apply a different construction that always admits a decompo-
sition with small cycles.

4.1 Probabilistic Serial with Restricted Cycles

The Probabilistic Serial mechanism works as follows. Each item is interpreted
as an infinitely divisible good that the agents consume over the unit interval
[0, 1] at the same fixed speed. Each agent starts consuming her favorite item
until the item is entirely consumed. Then, she moves to the next item on her
preference list that has not been entirely consumed and starts consuming it. The
procedure terminates when all items are entirely consumed. The fraction pij of
item j consumed by agent i is then interpreted as the probability of assigning
item j to agent i.

Using the small-cycle projection methods described above, we can construct
two variants of the mechanism. For the variants generated using the randomized
small-cycle cover method, we choose two appropriate distance metrics as follows
to generate the approximate assignment P ∗.
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– Social welfare distance: dwelfare(P, P ∗) = 〈V, P −P ∗〉 measuring the difference
of social welfares induced by P and P ∗, where 〈·, ·〉 is the pointwise product
of matrices.

– l∞ distance: dnorm(P, P ∗) = maxi,j |Pij − P ∗
ij | measuring the l∞ error of P ∗

approaching P .

4.2 Random Serial Cycle

Random Serial Cycle, or RSC for short is a straightforward adaptation of Ran-
dom Serial Dictatorship to incorporate the short cycle constraint. Specifically,
the mechanism first uniformly at random fixes an ordering of agents and then
matches them serially with their favorite items from the set of available items,
just like Random Serial Dictatorship does. The difference is that whenever the
length of an exchange is k − 1 and the exchange is not a cycle, the next agent
to be picked is matched with the item that “closes” the cycle, regardless of her
preferences. For example, for k = 3, if some agent i is matched with item j and
agent j is matched with item l and agent l is next to pick an item, she will be
matched with item i.

By construction, any run of the mechanism outputs a k-restricted assignment.
To evaluate its properties however, we need to compose the assignment matrix
from the probability mixture of the outcomes, which if done naively would require
us to generate all possible n! orderings of agents. In fact, it has been shown [15]
that it is #P -hard to compute the assignment matrix of RSD given an input
valuation matrix.

To sidestep this complication, we modify the mechanism to instead generate
n2 orderings at random using a Monte-Carlo process. The details follow. First
we explain how to generate the orderings that we use and then we describe the
mechanism.

Orderings Generation

– Fix a permutation π of {1, . . . , n} uniformly at random from the set of all
permutations with n elements. Initialize position i of order π to be 1.

– For each position i, swap the agent in position i, denoted by πi, with randomly
chosen from πi to πn (could be agent πi as well). Increase i by 1 at each
iteration.

– Repeat until i = n.

Random Serial Cycle Mechanism

– Generate n2 orders uniformly at random by Monte-Carlo process. Initialize
the assignment matrix to be n-by-n zero matrix.

– For each order π, Initialize position i of order π to be 1. Agent πi tries to
be matched with the most preferred available item, denoted by μ(πi), until
reaches one of the following conditions:
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• Agent μ(πi) ranks item πi on top of her preference list and πi, μ(πi) are
matched together.

• Agent μ(πi) finds an item j such that agent j has positive value for πi

after searching for the most preferred available item. Then the exchange
cycle is completed.

Remove these matched pairs from the ordering. If agent πi does not find a
qualified item μ(πi), then she is matched to item πi. Increase i by 1 at each
iteration.

– When position i is bigger than n, the k-restricted permutation matrix for
ordering π can be produced. Multiply it by 1/n2 and add it to allocation
matrix.

– After processing all the orderings, the assignment matrix P is produced.

5 Experimental Results

In this section, we design experiments to evaluate the performance of our mech-
anisms in terms of efficiency and fairness. Our experiments are conducted on the
kidney exchange domain with input from realistic data. Our data generator is
carefully designed based on statistics of the population in the United States. The
generator incorporates patients and donors’ physiological characteristics such as
age, gender, blood type, HLA antigen, panel reactive antibodies (PRA) and
number of waiting years prior to transplantation. It then produces a matching
score for each patient-donor pair to quantify the transplantation quality. The
input is then a weighted, directed, bipartite graph where the weight of an edge
(i, j) is the utility (transplantation quality) of the patient of a donor-patient pair
i when being matched with the donor of pair j. The transplantation quality can
be interpreted as the probability that an exchange between the two participating
pairs will be successful. For all of the experiments, k will be equal to 3.

Our measure of efficiency will be the social welfare, i.e. the sum of the trans-
plantation qualities of the expected matching over all participating pairs. For
fairness, we will try to minimize the fraction of envious agents, where the envy
is calculated in expectation, i.e. an agent is envious if she would prefer another
agents expected assignment to hers. We run experiments for different input sizes,
ranging from a few agents to a hundred agents. Real-life input sizes can be larger
but exchanges involving no more than a hundred agents are often carried out as
well in practice. The bottleneck for the running time is the decomposition; as
the number of agents grows larger, the harder it gets to achieve a decomposition
with 3-restricted components.

We compare three mechanisms in terms of their social welfare and fraction
of envy. The first one is the modification of Probabilistic Serial (PS) that we
obtain by applying the randomized small-cycle cover method for small-cycle
projection. We implement two variants of modified Probabilistic Serial, namely
PS-welfare and PS-norm, based on the social welfare distance and the l∞ dis-
tance respectively. The second mechanism that we use is Random Serial Cycle
(RSC) with Monte-Carlo random generation of n2 orderings of agents. Finally,
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we consider the optimal mechanism (denoted OPT in Figs. 2 and 3) that com-
putes the optimal social welfare of the exchange, by Abraham et al. [2]. The
variant of Probabilistic Serial that we obtain from applying the randomized
Birkhoff-von Neumann small-cycle projection turned out to be ineffective for
our goals, the problem being that k-restricted components were not present in
most decompositions, but it is conceivable that it could be effective using some
other mechanism as the “basis” of the decomposition.

Fig. 2. Social welfare comparison
(Color figure online).

Fig. 3. Envy comparison (Color figure
online).

5.1 Fairness/Efficiency Tradeoffs

In Figs. 2 and 3, we show the results of the experiments for data from the U.S.
population. As expected, the optimal mechanism performs better in terms of
social welfare. The performance of our mechanisms (the two variants of PS and
RSC) is very similar and not too far from the performance of the optimal mech-
anism, at least for smaller input sizes. Among the three, the best social welfare
is achieved PS-welfare, since it was designed to extract higher levels of welfare.

In terms of fairness, the optimal mechanism fairs worse in comparison to
our mechanisms. From the two versions of PS, PS-welfare is also slightly more
fair, which suggests that it is a better choice than its norm-counterpart for this
particular problem. Interestingly, RSC outperforms all mechanisms in terms of
fairness by a big margin. In fact, for some input sizes, the proportion of envious
agents is less than 40 % whereas for the optimal mechanism it is close to 80 %.
This suggests that among the mechanisms we consider, RSC is the one that
achieves the best fairness/efficiency guarantees.

The final result seems to be in contrast to the theoretical superiority of
Probabilistic Serial over Random Serial Dictatorship in terms of fairness but it
can be attributed to two factors: the inputs are not worst-case inputs and more
importantly, it seems that the assignment produced by RSC is “closer” to the
one outputted by Random Serial dictatorship, when compared to the outputs of
Probabilistic Serial and its 3-restricted counterparts.
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6 Conclusion

We considered the problem of random assignments in barter exchanges under the
additional constraint on the cycle-length of the decomposition. We proposed two
new mechanisms for the problem and a general method for designing mechanisms
that produce assignments with small cycles. We evaluated our mechanisms on
instances of the kidney exchange problem and found that they are better in terms
of fairness and not much worse in terms of efficiency, when compared with the
optimal exchange. An interesting future direction is to consider other notions of
fairness and design different mechanisms for achieving better tradeoffs between
fairness and efficiency. The 2-cycle Probabilistic Serial mechanism of Balbuzanov
[4] seems like an obvious choice, given that it is designed to produce 3-restricted
assignments.
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1 Introduction

Consider the problem of buying an automobile. The vehicle that a customer
prefers may depend on many factors including the customer’s life commitments,
hobbies, income level, concern about the environment, and so on. For example, a
customer may prefer a minivan to a sports car if he has young children. Another
customer may prefer a pick-up truck with a towing package to one that lacks
such a feature if she enjoys hiking and kayaking. Numerous other factors, such
as whether the paint shows pollen or whether the spare tire is accessible could
also prove important.

Many decision domains, like this one, have a combinatorial structure. If I
am asked to choose from a very small set of alternatives O = {O1, . . . , O4}, I
can usually provide at least a partial ordering. I may be unsure how to compare
alternatives O1 and O3, but know that I like O4 better than both, and O2

less than O1 and O3. However, if the preference involves a large number of
features (e.g., make, model, dealership, warranty, color, etc.), then this approach
is no longer practical, or even possible, given time constraints. Indeed, the best
alternative may not yet exist in the physical world. Perhaps I could describe my
most preferred alternative in terms of its features, but it does not exist unless I
have it built to my custom specifications.

Formally, a preference relation � is a partial preorder on a set of alternatives
(or outcomes) O. The expression o � o′ means that o is preferred to o′. If
neither outcome is preferred to the other, they are said to be incomparable,
written o �� o′. In this case, O4 � O1, O4 � O3, O1 � O2, and O3 � O2.
Since the relationship is assumed to be transitive, one can further reason that
O4 � O2. However, since the relationship between O1 and O3 is left unspecified,
we say that these alternatives are incomparable (O1 �� O3). In the discussion that
follows, let us assume that O is finite and can be factored into features (variables)
V = {X1, . . . , Xn} with associated domains, s.t. O = X1×· · ·×Xn. For example,
the binary valued feature brakes = {antilock, conventional} would be one
of many features that collectively model all conceivable alternatives in the set
Automobiles.

Conditional preference networks (CP-nets) have been proposed for such prob-
lems [4]. Rather than comparing alternatives as atoms, the decision maker con-
siders the interplay of the features—how the preference over one feature depends
on the values of others in the decision domain. For example, if I am purchasing
a vintage sports car, I may be willing to forgo modern safety features such as
c© Springer International Publishing Switzerland 2015
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anti-lock brakes, but if I am purchasing a new minivan, then I definitely prefer
anti-lock brakes. One can formalize this as

minivan ∧ new : antilock � conventional.

Such statements are known as ceteris paribus rules, from the Latin “as long as
everything else stays the same.” That is, if I am comparing two new minivans,
one with anti-lock brakes and one with conventional brakes, I will always prefer
the alternative with antilock brakes, provided the values of other features (price,
color, make, model, etc.) are the same for both alternatives. The relationship
among the features is further specified through a dependency graph, a directed
graph in which the nodes represent the relevant features and a directed edge from
one feature to another indicates that the latter (known as the child) depends on
the former (the parent). The rules themselves are stored in conditional preference
tables of the feature to which they apply (Fig. 1).

Definition 1. A CP-net N is a directed graph. Each node represents a variable
Xi ∈ V and is annotated with a conditional preference table (CPT) describ-
ing the subject’s preferences over the domain of Xi given its dependencies. An
edge (Xh,Xi) indicates that the preferences over Xi depend directly on the value
of Xh.

Alternatives that differ in just one feature (e.g., two Automobiles that are
identical except for their age) can be compared directly, provided CPT(age)
contains an applicable rule. Alternatives that differ in more than one feature can
be compared only if a transitive sequence of rules exists between the two alter-
natives. For example, 〈children, sportscar, vintage, conventional〉 ≺ 〈children,
minivan, vintage, conventional〉 ≺ 〈children,minivan, new, conventional〉 ≺
〈children,minivan, new, antilock〉. Such sequences are known as (improving)
flipping sequences, since each rule “flips” the value of just one variable.

Fig. 1. A simple CP-net
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There is much to like about CP-nets. They let us model preferences over
factored domains with exponentially many conceivable alternatives. They cap-
ture visually the if-then rules that many of us think we employ when we reason
about such alternatives. They are qualitative; that is, they only ask us to specify
whether one thing is better than another, without assigning a numeric weight
as to precisely how much we prefer it. Finally, the problem of determining the
optimal (most preferred) outcome with respect to a CP-net can be answered in
linear time in the number of features if CPTs are complete.

On the other hand, while many academic papers discuss CP-nets (at last
count, the seminal journal paper had over 750 citations, according to Google
Scholar) and many applications have been proposed, we are not yet aware of
their use in real-world applications. There are several reasons for this. First,
determining dominance—whether one arbitrary outcome is better than another
with respect to a CP-net—is known to be very hard (PSPACE-complete) in
the general case [5]. An application for automobile shoppers, to continue our
example, is not particularly useful if it requires several days in the worst case
to determine whether one vehicle is better than some other vehicle that I am
considering! Additionally, much of the research on CP-nets makes strong, often
unrealistic assumptions, such as that the features must be binary, CPTs must
be complete (contain a rule for every combination of parent features), that indif-
ference is not allowed, or that the graph must conform to a particular structure
(e.g., rooted tree, acyclic digraph, etc.). My research involves addressing these
issues to make CP-nets more useful for complex engineering applications.

In the sections that follow, I briefly discuss three areas of ongoing research:
how to generate CP-nets i.i.d., practical approaches to the problem of dominance
testing (DT), and new methods for learning CP-nets.

2 Generating CP-nets

Often, one needs to generate CP-nets in an i.i.d. manner. For example, con-
sider that we wish to compare the expected running time of two algorithms that
perform dominance testing. Both algorithms are designed for the same sort of
input—e.g., binary valued features and complete, acyclic CPTs with an assumed
bound on in-degree (number of parents). To compare the two algorithms, we wish
to generate a set of dominance testing problems that are representative of the
DT problems in this set. We are not aware of real-world datasets of DT problems;
moreover, even if such datasets were readily available, one would like to compare
the algorithms’ expected performance on any allowable input. Generating the
outcome pairs for such an experiment is easy since one can just assign the value
of each feature as an independent coin-flip. However, it is not so clear how to
generate the CP-nets such that each instance is valid and equally likely with
respect to the set of all CP-nets under consideration. Often researchers simply
permute the nodes and insert edges at random so as to avoid cycles and then
randomly assign CPT entries. However, it is easy to show that this approach
leads to statistical bias, with high-indegree CP-nets grossly undersampled at the
expense of low-indegree CP-nets.
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Other motivations for generating CP-nets i.i.d. include Monte Carlo algo-
rithms (e.g., for learning, reasoning with, or aggregating CP-nets), statistical
analyses of the properties of CP-nets (such as how expected flipping sequence
length varies as the number of edges in the dependency graph increases), voting
profiles for social choice experiments, black-box testing of algorithms for correct-
ness, and finding hard problem instances. In each case, an unbiased generation
algorithm is needed.

Many asymptotic results are known for problems that involve learning or rea-
soning with CP-nets. However, the combinatoric properties of CP-nets are less
understood. Since these properties are central to understanding how to generate
unbiased random instances, I began by studying how to count the number of
CP-nets for various types of graphs (directed trees, polytrees, directed acyclic
graphs with bounded indegree, etc.) [2]. For this I built upon results such as
Prüfer codes, which can be used to represent and generate labeled trees [8], and
the so-called DAG codes for directed acyclic graphs [11], introducing novel recur-
rences for counting and generating CP-nets efficiently. As part of this process,
I studied the problem of assuring that a CPT generated at random was consis-
tent with the graph, showing that this is equivalent to the set of nondegenerate
functions of k Boolean inputs where k is the node’s indegree. I have also devel-
oped and implemented (in C++ and x86 assembly language) a novel method for
generating random binary, complete CP-nets i.i.d. for various graphs, including
directed trees, polytrees, DAGs with bounded indegree, and unbounded DAGs.
My implementation can generate thousands of CP-nets with up to 100 features
uniformly at random in just a few seconds. I am presently extending this method
to accommodate more general classes of CP-nets, such as those with multi-valued
variables, incomplete CPTs, CP-nets that can model indifference as well as strict
preferences, and CP-nets that are compatible with a partially specified (incom-
plete) CP-net.

3 Reasoning with CP-nets

While the problem of finding the most preferred outcome can be conducted in
linear time in the number of nodes, the problem of dominance testing is known
to be hard in general, requiring worst-case exponential time in practice. A sig-
nificant aspect of this complexity is the possibility of exponentially long flipping
sequences [4]. In earlier work, I observed that long sequences appeared to be
rare [1]. I also reasoned that very long transitive sequences were unlikely to pro-
vide useful information about human preferences if the possibility of noise was
taken into account. That is, if even some small percentage of the rules could
be represented incorrectly—for example, due to an entry error during the elic-
itation process, then the probability that a given sequence correctly represents
the decision maker’s preferences diminishes to what would be expected from
chance as the length of the transitive sequence increases. However, my earlier
experiments relied on generation methods that did not provide i.i.d. guarantees.
More recently, I have been performing additional experiments using the method
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of i.i.d. generation discussed above. These show that in most cases the expected
flipping length is relatively close to the Hamming distance, the number of fea-
tures in which the two alternatives differ. I have also shown that the average
path length of the dependency graph is a good predictor of flipping sequence
length.

I have also shown how to reduce general dominance testing problems to one
of Boolean satisfiability so that the heuristic methods employed by modern SAT
solver can be leveraged. Others have elsewhere shown how to reduce the problem
to one of planning [4], model checking [10], or (indirectly) constraint satisfaction
[9]. In more recent work, I have suggested the possibility of limiting search depth
based on the expected length of flipping sequence given parameters that are easy
to compute.

In future work, I hope to show the effect of indifference and incomparability
on flipping sequence lengths. I am also comparing the performance of differ-
ent algorithms that have been proposed and considering how to combine such
algorithms into a portfolio for dominance testing. Finally, I am interested in
discovering better heuristic methods for dominance testing.

4 Eliciting and Learning CP-nets

CP-nets can be elicited directly or indirectly from a user or learned from obser-
vational data. Direct elicitation assumes human subjects can introspect on the
cause-and-effect processes that underlie their preferences. This is a particularly
strong assumption that seems unrealistic in many settings [3].

Indirect elicitation relies on the weaker assumption that subjects can answer
whether one alternative is preferred to another (“I prefer the blue minivan to the
red one”) without providing explanations for such preferences. At the ADT-2013
conference [7], I presented a heuristic algorithm, earlier proposed by Guerin [6],
for indirectly eliciting CP-nets through user queries. In that paper we assumed
strict, complete preferences over binary variables and that the user could answer
queries consistently.

In later work [1], I considered the problem of learning CP-nets from choice
data. There I relaxed some of the customary modeling assumptions in favor of
models with multi-valued variables over which the subject may be indifferent
and/or inconsistent. I presented the case that such CP-nets are necessary for
many simple, real-world problems. I then showed how to leverage the power
of SAT solvers to learn such CP-nets from choice data. More recently, I have
proposed a novel encoding for tree-shaped CP-nets that enables local search. This
method allows searching for a suitable tree-shaped CP-net even if the comparison
set is inconsistent due to noise. Moreover, since it is a learning- rather than
an elicitation-based method, it does not depend on the subject’s capacity to
introspect or to respond or choose consistently. In future work, I hope to improve
on this method and extend it to a richer class of CP-nets.
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Decision support systems often rely on a mathematical decision model allow-
ing the comparison of alternatives and the selection of a proper solution. In
the field of Multicriteria Decision Making, an aggregation function is often used
to synthesize the different evaluations of each alternative into an aggregated
value representing its overall utility. The aggregation function must be suffi-
ciently expressive to efficiently approximate the decision maker’s preferences in
human decision support, or simulate a prescribed decision behavior in automated
decision systems. This explains the diversity of decision models available in the
literature but also the increasing interest for sophisticated parameterized models
such as the Choquet integral [14,32] which enables the representation of complex
preferences and includes many other models as special cases (e.g. leximin and
lexicographic aggregators [11], the Ordered Weighted Average operator [38], and
Weighted Ordered Weighted Average [34]).

To make use of such models, one needs to assess the model parameters in
order to fit to the decision maker’s preferences. Most of the previous work on
the elicitation of Choquet integral parameters consider a static database of pref-
erence statements, and focus on the determination of the parameters that best
fit to the available database (e.g. [13,15,16,26,27]) for instance by minimizing a
quadratic error. However, these approaches require a relatively large number of
preference statements to model the decision maker’s behaviour accurately which
are not always possible to obtain. Preference elicitation with limited available
information is a crucial task in many application domains, including recom-
mender systems and interface customization [28]. Departing from these standard
approaches, we consider incremental elicitation methods based on the minimax
regret which is a decision criterion that has been advocated as a means for
robust optimization in the presence of data uncertainty [21] and has been used
for decision making with utility function uncertainty [5,6,31]. The general prin-
ciple of this approach is to iteratively ask questions to the decision maker so as
to reduce the set of possible parameters until the preferred alternative can be
detected with some guarantees (as given by the minimax regret). This elicitation
approach enables limiting the decision maker’s burden as preference information
is only required to discriminate between alternatives (not to assess the model
parameters). Incremental elicitation methods have been proposed for the simple
case of linear utilities but have never been studied for Choquet Integrals. This
constitutes the first challenging issue considered during my Ph.D.
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Incremental Elicitation of Choquet Integrals. Adapting the incremental
elicitation approach used for linear functions to the case of Choquet integrals is
not straightforward. In the linear case, the selection of new preference queries
requires multiple linear programs to be solved, but these problems become sig-
nificantly more difficult when considering a Choquet integral. More precisely,
the Choquet integral’s parameters take the form of a capacity, i.e. a monotonic
function defined on the power set of criteria which enables the control of the
importance attached to all subsets of criteria, and possibly positive or negative
synergies between criteria. Thus the number of parameters to assess is exponen-
tial in the number of criteria. As a consequence, the nature of the Choquet inte-
gral’s parameters induces an exponential number of optimization variables and
an exponential number of constraints over these variables in the linear programs
considered in this elicitation scheme. First, we have proved that, by focusing on
a specific type of queries involving binary profiles versus constant profiles, the
optimization problems to be solved can be simplified to problems admitting only
a linear number of variables and constraints. Then, using the constraint graph
associated with these simplified linear programs, we have proposed an iterative
procedure to solve these optimization problems in polynomial time (instead of
using linear programming); our iterative procedure reduces computation times
by around five orders of magnitude. Finally, we tested “the query selection strat-
egy” which consists of selecting the question that is the most informative in the
worst-case scenario of answers and we observed that it enables the detection of
the preferred option without asking too many questions. This work has been
accepted for publication in the last European Conference on Artificial Intelli-
gence and honored to receive the ECAI’14 Best Student Paper award [4].

The next step was to consider decision situations where the decision space
is very large, which is often the case in recommender systems where the pos-
sible alternatives can be thousands. Elicitation on combinatorial domains is a
challenging issue that recently motivated several contributions in various con-
texts, e.g. in constraint satisfaction problems [6], in Markov Decision Processes
[30,36], in stable matching problems [10] and in multiattribute spaces [7,12,20].
We consider decision spaces defined implicitly as the set of possible solutions
of a multiobjective combinatorial optimization problem. In standard interactive
methods for multicriteria decision support, preference elicitation methods con-
sists in iterating the generation of a feasible instance of the parameters and the
computation of the corresponding optimal solution, until the decision maker is
satisfied with the latter solution (e.g. [35,39]). However, this elicitation approach
does not guarantee that the final solution is actually the best alternative for the
decision maker since the final instance of the model parameters does not neces-
sarily fit to the decision maker’s preferences. We proposed instead to combine
search for possibly optimal solutions and elicitation in order to reduce the uncer-
tainty over the model parameters during the resolution so as to more focus the
search while determining a necessary optimal solution. A possibly (resp. neces-
sary) optimal solution is an option that is optimal for some (resp. all) parameters
compatible with our knowledge about the decision maker’s preferences. We need



Possible Optimality and Preference Elicitation for Decision Making 563

first to propose efficient search procedures for the determination of all possibly
optimal solutions given a set of feasible parameters, and then to design elici-
tation methods reducing the set of feasible parameters during the search while
ensuring the determination of a necessary optimal alternative at the end of the
resolution. So far, we have considered the two following multiobjective combina-
torial optimization problems: multiobjective state space search and multicriteria
spanning tree problem. In order to address one difficulty at a time, we have first
considered the case of linear utilities and then Choquet Integrals.

Multiobjective State Space Search. Consider a state space graph endowed
with q evaluation criteria, i.e. q cost functions to be minimized (e.g. time, dis-
tance, energy, risk). Each path is therefore valued by a cost vector and preferences
over paths are inherited from the preference over their cost vectors. Preference
over cost vectors are defined using a linear aggregation function fω defining the
overall cost (or disutility) fω(x) attached to any cost vector x, where ω is a
vector of preference parameters representing the relative importance of criteria.
We want to find a path from an initial node to a goal node that minimizes the
overall cost function fω that represents the DM’s preferences, but the vector of
weights ω is imprecisely known. Since all preference models considered in multi-
criteria analysis are compatible with Pareto dominance, preference-based search
methods in multiobjective optimization are often based on the exploration of the
set of Pareto-optimal solutions. The so-called MOA∗ algorithm [25,33] is a mul-
tiobjective extension of A∗ [17] that determines the set of Pareto non-dominated
cost vectors attached to solution paths and returns one path for each element.
In the multiobjective case, there possibly exists several optimal paths with dif-
ferent cost vectors to reach a given node. Therefore, the basic graph exploration
procedure consists in iteratively expanding subpaths rather than nodes. In order
to compute the set of possibly optimal solution paths, we need to define new
pruning rules that use sharper conditions than those based on Pareto-dominance
tests. In other words, we need to be able to detect subpaths that cannot lead to
possibly optimal solution given our knowledge about the decision maker’s prefer-
ences. To do so, we introduced a dominance relation between sets of cost vectors
and given a set of cost vectors, we proved that it enables to detect vectors that
cannot be possibly optimal. Then, we proposed a filtering algorithm based on
this dominance relation, enabling us to compute the set of possibly optimal cost
vectors in a polynomial time. Finally, we proposed two pruning rules based on
this filtering algorithm which enable us to discard subpaths that cannot lead to
a possibly optimal solution path and we proved that the corresponding graph
exploration procedure returns exactly the set of possibly optimal solution paths.
Finally, to detect a necessary optimal solution paths, we proposed two incremen-
tal elicitation strategies based on the minimax regret criterion so as to reduce
the uncertainty during the search. This work has been accepted for publication
in the last AAAI Conference on Artificial Intelligence [2]. The next step was to
extend our approach to work with a non-linear fω function such as a Choquet
integral so as to obtain better fitting capacities to the decision maker’s pref-
erences. However, this extension raises challenging algorithmic questions since
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the use of a Choquet integral complicates the definition of pruning rules by not
satisfying the Bellman principle (i.e. discarding supbaths by comparison with
other subpaths is no longer possible). In order to design an efficient algorithm,
we proposed to work on near optimal cost vectors using an approximate version
of minimax regret. This work has been accepted for publication in the last IJCAI
conference [1].

Multicriteria Spanning Tree Problem. Consider a connected graph G where
each edge is valued by a cost vector corresponding to its evalutation with respect
to different criteria. Every criterion is assumed to be additive over the edges;
therefore the cost of any subgraph is the sum of the cost of its constituent edges.
A spanning tree of G is a connected subgraph of G which contains no cycle
while including every node of G. We assume that preferences over cost vectors
are defined using a linear aggregation function fω but the weighting vector ω is
imprecisely known. Here again, given a feasible set of weights, we first consider
the problem of determining all possibly optimal spanning trees. In the single
objective case, the minimum spanning tree problem can be solved in polyno-
mial time using standard greedy algorithms due to Kruskal [22] and Prim [29].
Unfortunately, as soon as the number of criteria is greater than 2, the problem
becomes intractable because the number of Pareto-optimal cost vectors associ-
ated to spanning trees is, in the worst case, exponential in the number nodes.
In the paper “On Possibly Optimal Tradeoffs in Multicriteria Spanning Tree
Problems” that has been accepted for publication in ADT 2015 [3], we proposed
a multiobjective extension of Prim’s algorithm which can compute the exact set
of possibly optimal cost vectors associated to spanning trees; this algorithm is a
greedy search based on a specific decomposition of the feasible set of parameters.
Then, we proposed to interweave incremental elicitation and search to determine
a necessary optimal spanning tree. This algorithm consists in selecting, at each
iteration step, an edge in the cocycle of the current subgraph that is necessarily
(or almost) optimal in the cocycle; if no such edge exists, the procedure asks
questions to the decision maker to reduce the set of feasible weights until such
edge can be detected. We are now studying the case of non-linear utility func-
tions, which seems to be a challenging issue because our multiobjective greedy
search is no longer valid.

Perspectives. As future work, we plan to study combinatorial voting with par-
tial preference profiles. When individual preferences are incomplete, one can
indeed study possible and necessary winners (e.g., [9,19,23,37]). In this setting,
incremental elicitation methods are used to progressively reduce the set of pos-
sible winners until a winner can be determined with some guarantee [8,18,24]).
As a next step, we can study the potential of incremental elicitation methods
in combinatorial voting (i.e. the set of alternatives has a combinatorial struc-
ture) with partial preference profiles. We also plan to adapt these approaches
for utility elicitation in the context of decision making under risk, not only for
expected utility models but also for rank-dependent utility model (elicitation of
the probability distortion combined with the elicitation of utilities).
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1 Research Problem

Decision making is an integral part of artificial intelligence. Humans often make
sub-optimal decisions in a bounded rational environment. This raises the issue
of getting a measure of the quality of decisions made by the person. Most of the
time, the evaluation of decisions, considers only a few parameters. For example,
in test-taking one might consider only the final score; for a competition, the
results of the game; for the stock market, profit and loss, as the only parameters
used when evaluating the quality of the decision. We regard these as extrinsic
factors. If an artificial intelligent agent is available which is superior than any
human for any domain, it is possible to evaluate the quality of the decision by
analyzing the decisions made with such entities and thus move from bounded
toward strict rationality. This approach gives a measure of the intrinsic quality
of the decision taken. Ideally, this removes all dependence on factors beyond the
agent’s control, such as, performance by other agents (on tests or in games) or
accidental circumstances (which may affect profit or loss). Decisions taken by
humans are often effectively governed by satisficing, a cognitive heuristic that
looks for an acceptable sub-optimal solution among possible alternatives. We aim
to measure the loss in quality and opportunity from satisficing and express the
bounded-rational issues in terms of depth of thinking. Any aptitude test allows
multiple participants to answer the same problem, and based on their responses,
the difficulty of the problem is measured. The desired measure of difficulty is
used when calculating the relative importance of the question on their overall
scores. The first issue is how to distinguish the intrinsic difficulty of a question,
problem or chess position from a simple poor performance by respondents? A
second issue is how to judge whether the problem is hard because it requires
specialized knowledge, requires deep reasoning, or is “tricky”—with plausible
wrong answers. Classical test theory approaches are less able to address these
issues owing to design limitations such as in test questions, with only one answer
receiving credit. Our work aims to address these issues.

2 Outline of Objectives

We have identified three research goals:

1. Find an intrinsic way to judge the difficulty of decision problems, such as test
questions,

c© Springer International Publishing Switzerland 2015
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2. Quantify level-k thinking [8] by which to identify satisficing and measure the
degree of boundedness in rational behavior.

3. Use an application context (namely, chess) in which data is large and stan-
dards are well known so as to calibrate extrinsic measures of performance
reflecting difficulty and depth. Then transfer the results to validate goals 1
and 2 in applications where conditions are less regular.

Putting together all these aspects, we have developed a model that can seg-
regate agents by their skill level via rankings based on their decisions and the
difficulty of the problems faced, rather than being based only on total test scores
and/or outcomes of games. Moreover, it is possible to predict an actor’s future
performance based on the past decisions made by similar agents. In our set-
ting, we have chosen chess games played by thousands of players spanning a
wide range of ranking. The moves played in the games are analyzed with chess
programs, called engines, which are known to play stronger than any human
player.

This approach can be extended to other fields of bounded rationality, for
example stock market trading and multiple choice questions, for several reasons,
one being that the model itself does not depend on any game-specific properties.
The only inputs are numerical values for each option, values that have author-
itative hindsight and/or depth beyond a human actor’s immediate perception.
Another is the simplicity and generality of the mathematical components gov-
erning its operation, which are used in other areas.

3 State of the Art

Various descriptive theories of decision models have been proposed to date.
Prospect theory, handles a few fundamental requirements for dealing with deci-
sion measures, such as eliminating clearly inferior choices and simplifying and
ordering outcomes. Sequential sampling/accumulation based models are the most
influential type of decision models to date. Decision field theory (DFT) applies
sequential sampling for decision making under risk and uncertainty [4]. One
important feature of DFT is ‘deliberation’, i.e., the time taken to reach a
decision.

Although item response theory (IRT) models do not involve any decision
making models directly, they provide tools to measure the skill of a decision-
maker. IRT models are used extensively in designing questionnaires which judge
the ability or knowledge of the respondent. Morris and Branum et al. have
demonstrated the application of IRT models to verify the ability of the respon-
dents with a particular test case [10].

On the chess side, a reference chess engine E ≡ E(d,mv) was postulated by
DiFatta, Haworth, and Regan [6]. The parameter d indicates the maximum depth
the engine can compute, where mv represents the number of alternative variants
the engine used. In their model, the fallibility of human players is associated to
a likelihood function L with engine E to generate a stochastic chess engine E(c),
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where E(c) can choose any move among at max mv alternatives with non zero
probability defined by the likelihood function L.

In relation to test-taking and related item-response theories [16], our work
is an extension of Rasch modeling [1,11] for polytomous items, and has similar
mathematical ingredients (cf. [9]). Rasch models have two main kinds of para-
meters, person and item parameters. These are often abstracted into the single
parameters of actor location (or “ability”) and item difficulty. It is desirable and
standard to map them onto the same scale in such a way that ‘location > dif-
ficulty ’ is equivalent to the actor having a greater than even chance of getting
the right answer, or of scoring a prescribed norm in an item with partial credit.
For instance, the familiar 4.0 to 0.0 (A to F) grading scale may be employed to
say that a question has exactly B level difficulty if half of the B-level students
get it right. The formulas in Rasch modeling enable predicting distributions of
responses to items based on differences in these parameters.

4 Methodology

Our work builds on the original model of Regan and Haworth [13], which has
two person parameters called s for sensitivity and c for consistency. The main
schematic function E(s, c) is determined by regression from training data to yield
an estimation of Elo rating, which is the standard measure of player quality
or strength in the chess world. Our main departure from Rasch modeling is
that the engine’s “authoritative” utility values are used to infer probabilities
for each available response, without recourse to a measure of difficulty on the
Elo scale itself. That is, we have no prior notion of “a position of Grandmaster-
level difficulty”, or “expert difficulty”, or “beginning difficulty” per-se. Chess
problems, such as White to checkmate in two moves or Black to move and win,
are commonly rated for difficulty of solution, but the criteria for these do not
extend to the vast majority of positions faced in games, let alone their reference
to chess-specific notions (such as “sacrifices are harder to see”). Instead, we aim
to infer difficulty from the expected loss of utility from that of the optimal move,
and separately from other features of the computer-analysis data itself.

5 Research Accomplished

We have demonstrated the connection between game play and psychometric
modeling in other decision making domain, such as test taking [15]. Later we
have shown how humans act and play differently than computers [12]. The main
observations found in the paper can be listed as:

– Humans often are prone to blunder. For any position, for humans, it is often
beneficial to play as an opponent and let the player make the first blunder.
This phenomenon is absent in computer games.

– Humans perceive differences in value in proportion to the total value involved.
– When humans are assisted with computer to play they often play more forcing

moves than computer’s tendency to ‘wait-and-see’ and play more defensively.
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These findings are important in cheating detection where players illegally use
computers to consult their moves and also in player modeling. We revisited
the fundamentals of skill assessment and have done a survey of existing models
and assessed their performance, prediction and/or profiling of players [7]. I have
shown how an intelligent agent can be designed which can act as a judge for
decisions made by human [2]. The input to the system is the move played at any
particular position and the intelligent agent applies chess engine to analyze the
move to find its difficulty and discriminatory power and finally gives its verdict
regarding the quality of the decision made. We have quantified the notion of
depth of thinking, swing, difficulty and complexity of positions and how these
metrics behave across players of various rankings [3]. We found swing moves are
often tricky, even for the best chess player to find.

6 Research Plan

In our yet unpublished work, we have proposed the concept of satisficing depth
and found a measure of satisficing depth which increases linearly with respect
to the rating of the respective player. We also have found the impact of time
pressure on satisficing depth. Currently we are working on finding the notion
of ‘gamble’, i.e., a sub optimal decision which produces better outcomes than
the optimal decision if the opponent falls into the trap of the decision. In some
applications, such as multiple-choice tests, we would like to establish an isomor-
phism of the underlying mathematical quantities, which induces a correspon-
dence between various measurement theories and the chess model. We are trying
to find results toward the objective of applying the correspondence in reverse to
obtain and quantify the measure of depth and difficulty for multiple-choice tests,
stock market trading, and other real-world applications and utilizing this knowl-
edge to design intelligent and automated systems to judge the quality of human
or artificial agents. The two central contributions of the proposed work are the
marriage of IRT models to traditional decision making processes, as quantified
in chess, and the integration of depth as a concept.

7 Expected Outcome

Our model can be used for predictive analysis and data mining. This model also
gives an insight about performances of an agent in time constrained environ-
ments. The result can be used in the following domains.

7.1 Speed-Accuracy Trade-Off

The model can be applied to verify the impact on accuracy if faster decisions
are taken. The effect is well known in chess tournaments [5], almost all of which
use a time control at move 40. Players often use up almost all of the allotted
time before move 30 or so, thus incurring ‘time pressure’ for 10 or more moves.
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Regan, Macieja, and Haworth [14] show a steep monotonic increase in errors by
move number up to 40, then a sudden drop off as players have more time. Our
yet-unpublished work has quantified the drop of intrinsic rating at ‘rapid’ and
‘blitz’ chess played at faster controls.

7.2 Agent Modeling

This model can be extended to model decision-makers, which would be advanta-
geous to plan strategy for or against him/her. For player modeling, we need to
find various characteristics unique to the player. The performance rating from
our model is a strong indicator of the aptitude level. It can be used to find
out any specific trend followed by the player while taking decisions. Measures
of blunders and the proclivity for procrastination also could contribute in the
player modeling. This may be relevant for player profiling in other online battle
games.

7.3 Cheating Detection and Verification

Proved and alleged instances of cheating with computers at chess have increased
many-fold in recent years. If a successful technique for detection of cheating is
possible, the same idea can be applied to other fields of online gaming or online
test-taking. We aim to compare this model with other predictive analytic models
used in fraud detection.

7.4 Multiple-Criteria Decision Analysis

Our model can be applied for multiple-criteria decision analysis and verifying the
rationality of the intrinsic quality measured with respect to multi-criteria deci-
sion rules. In a setting, where an examinee cannot return to previous questions,
he often needs to split his time for each question keeping in mind the difficulty
of future questions. Prior articulation of preferences in multiple-criteria decision
problems plays a key role in agent modeling.

7.5 Decision Making in Multi-agent Environment

Does the quality of the decisions of any agent get affected based on the presence
of other agents? How does a player play against a weaker versus a stronger
opponent? How does an examinee response when he knows the other examinees
are either far superior or far inferior than him? Our model tries to answer these
questions and measures the displacement from the mean in these either extreme
cases.
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1 Introduction

The research work undertaken in my thesis aims at facilitating the conception
of autonomous agents able to solve complex problems in sequential decision
problems (e.g., planning problems in robotics). In such problems, an agent has
to choose autonomously the actions to perform according to the state of the
world in order to accomplish a task. Yet, for a given task, describing and mod-
eling appropriate behaviors reveal to be a major difficulty in the conception
of autonomous agents. Standard approaches (e.g., Markov Decision Processes
[11], reinforcement learning [13]) require a precise numeric evaluation of action
values (e.g., rewards, utilities) to compute preferred behaviors. In practice, it is
observed that those values are not always available. Indeed, for real life problems,
thousands or millions of values may have to be specified manually.

Thus, even when simplifying assumptions are made, setting those parame-
ters is hard, and even impossible to realize when dealing with most large size
problems. Moreover, in some situations, even the precise evaluation of an action
can be problematic and costly to determine. For instance, in a medical treatment
problem, how can one evaluate the value of a patient’s life or well-being? To make
conventional algorithms applicable, those unknown values are often arbitrarily
set. Employing such a method amounts to adding some preference information
that was not present in the original problem. As the optimal policies (prescrip-
tion of actions to execute) can be highly sensitive to those values, we observe
that a slight change in the setting could lead to completely different solutions as
shown by Example 1 [14].

We recall that a Markov Decision Problem (MDP) is defined by a tuple
M = (S,A, P,R, γ) where S is a finite set of states, A is a finite set of actions,
P : S ×A → P(S) is a transition function with P(S) being the set of probability
distributions over states, R : S × A → R is a reward function and γ ∈ [0, 1]
is a discount factor. A solution to an MDP is a policy π∗ (that prescribes the
action to be used according to the current state) which is optimal according
to a decision criterion. For instance, one of the most classic decision criterion
is to maximize the expectation of discounted future cumulated rewards (π∗ =
maxπ E

π(
∑∞

t=0 γtR(st, at))).

Example 1. Consider an MDP consisting of two states {s1, s2} and where the
available actions are a and b. In s1 both actions are available while in s2 only a

c© Springer International Publishing Switzerland 2015
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is. A discount factor is set at β = 0.5. The transition function P (st|at−1, st−1)
(giving the probability of the new state st resulting from the previous state-action
pair (st−1, at−1)) is defined as follows:

P (s1|a, s1) = 1 P (s1|b, s1) = 0.5 P (s1|a, s2) = 1

In this case, there are only two possible policies depending on the choice of the
action in state s1. Let R denote the reward function where R(s1, a) is the value
of the immediate reward obtained when performing action a in state s1. Assume
that we only know the following constraints:

R(s1, b) > R(s1, a) > R(s2, a)

R(s2, a) represents no reward, R(s1, a) a “small”reward and R(s1, b) a “big”
reward. If the reward function is arbitrarily defined as follows:

R(s1, b) = 2 R(s1, a) = 1 R(s2, a) = 0

then we can easily check that the best policy (using the expectation of discounted
future cumulated rewards as criterion) choses action b in s1. Now, if the reward
function were defined as follows:

R(s1, b) = 10 R(s1, a) = 9 R(s2, a) = 0

the best policy would have been the one choosing action a.
Although the two functions respect the order imposed on rewards, we observe

a preference reversal.

Thus, this method is highly questionable and the objective of this thesis is
to construct a theoretically grounded framework to solve this problem.

2 Related Works

A first alternative, when a reward function is hard to specify, is to proceed by
letting an expert demonstrate quasi-optimal behaviors. The agent must then try
to reproduce the behavior of the expert either by finding a policy that mimics
the observed demonstrations (behavioral cloning [3]) or by finding a reward
function that explains the behavior of the expert as much as possible (inverse
reinforcement learning [1]).

However, these solutions are not always adapted either because the expert
can be unable to perform an optimal behavior [2] or because in some cases,
experts do not provide any objective guidance, for the concepts to be learnt are
subjective. Another solution, called robust MDPs [9], represents imperfectly the
reward function (e.g., unknown parameters represented by intervals). However,
as this approach often considers the worst scenario, it often yields overly pes-
simistic behaviors. Furthermore, finding an optimal robust policy can be very
computationally cumbersome.
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3 Preference-Based Framework

The approach I consider in my thesis consists in working in a less demanding
framework using preferential pieces of information such as “this element is pre-
ferred to this other element”. The elements to be qualitatively compared are
numerous: states, actions, histories, policies, etc. and the designed processes can
be interactive or not.

Preferences over bags of rewards. Weng and Zanuttini [16] developed an algo-
rithm called interactive value iteration that interleaves the elicitation and reso-
lution processes necessary to solve an MDP. At the beginning of the algorithm,
only an order is assumed to be known on the different rewards. The algorithm
performs a value iteration like procedure and queries an expert when needed
about his preference over two bags of rewards. Not only does the acquired ordi-
nal information enable to continue the solving procedure but it also increases the
knowledge about the underlying reward function reducing the number of future
queries necessary to find the optimal policy. A similar procedure was defined by
Weng et al. [15] to adapt the q-learning algorithm to this framework in the more
general context of reinforcement learning.

The authors proved that the number of queries issued by interactive value
iteration before finding an optimal policy is upper-bounded by a polynomial
in the size of the problem. However, the original procedure as presented by
Weng and Zanuttini does not explicitly attempt to minimize the number of
queries issued by the algorithm and a lot of work remains to be done in order
to increase the efficiency of this approach. Moreover the question of the form of
queries that can reasonably be asked to the expert (for cognitive reasons) needs
to be investigated.

Preferences over histories. In this framework, specifying a problem becomes a
much simpler task as illustrated by the cancer treatment problem from
Cheng et al [5]. In this problem, a state is a pair consisting of the tumor size and
toxicity resulting from the treatment (representing the health and well-being of a
patient with cancer). The agent should learn how to control the treatment dosage
for different time steps in order to cure the patient. In the authors’ framework,
two behaviors are compared in the following way. A behavior where the patient
stays alive is always preferred to a behavior where the patient dies. If a behavior
yields both lower tumor size and toxicity level versus a different behavior, it will
be preferred to that other behavior. Not only is this model simple but it does
not add any fictive numerical information.

However, current models, criteria and algorithms need to be radically modi-
fied to cope with ordinal feedbacks. Indeed, in the standard framework, expec-
tation of cumulative rewards is used as criterion to maximize. This criterion
can not be used in a qualitative framework and alternative models from deci-
sion theory must be considered to tackle this issue. Some criteria that suits this
qualitative framework are for instance: the probability threshold criterion [17]
(where one tries to maximise the probability of exceeding a given threshold),
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reference point criterion [14] (where one tries to maximise the probability of
doing better than a given probability distribution over possible outcomes), and
quantile criteria [12]. The development of new algorithmic tools is required to
optimize such criteria.

Preferential-based approaches belong to this stream of research, building
bridges between several fields such as reinforcement learning, preference learn-
ing, elicitation, etc. This topic is becoming a very active research field with
researchers developing methods for ordinal MDPs [14], preference-based rein-
forcement learning problems [2,4,5], preferential-based multi-armed bandit prob-
lems [18], preferential-based case-based reasoning problems [10], etc.

4 Contributions, Current Advances and Perspectives

During the first year of my PhD, we considered both the framework with ordinal
preferences over bags of rewards and the framework with ordinal preferences over
histories.

In the former, a modified version of interactive value iteration was designed [7],
using several strategies in order to reduce as much as possible the number of
queries issued to the expert. The key insights are that, in interactive value iter-
ation, (1) the queries should be delayed as much as possible, avoiding asking
queries that might not be necessary to find the optimal policy, (2) queries should
be asked following a priority order because the answers to some queries can
enable to resolve some other queries, (3) queries can be avoided using heuris-
tique information to guide the process.

In the latter, an automated decision algorithm was designed [8] to handle a
non-linear model for decision under uncertainty [6] in a sequential setting. The
family of utility functions induced by this model encompasses many decision
criteria, among which expected utility, threshold criterion, and likely dominance.
Those criteria are particularly well-suited for our preference-based framework as
it proceeds by comparing pairs of alternatives.

We are currently undertaking a study of reinforcement learning with such
non-classic criteria; we are also investigating the problem tackled by interactive
value iteration in order to design a similar algorithm but with stronger theoretical
guarantees on the number of queries issued; another interesting research direction
is the study of direct elicitation protocols that interactively elicit the reward
function during the solution procedure (as in Akrour [2], but with non-classic
criteria). Finally a topic of interest is the design of scalable algorithms for real
problems with very large state/action spaces, as for instance robot navigation.
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15. Weng, P., Busa-Fekete, R., Hüllermeier, E.: Interactive Q-learning with ordinal
rewards and unreliable tutor. In: ECML/PKDD Workshop Reinforcement Learn-
ing with Generalized Feedback (September 2013). http://www-desir.lip6.fr/weng/
pub/ecml2013-ws.pdf

16. Weng, P., Zanuttini, B.: Interactive Value Iteration for Markov Decision Processes
with Unknown Rewards. In: Rossi, F. (ed.) IJCAI. IJCAI/AAAI (2013)

17. Yu, S., Lin, Y., Yan, P.: Optimization models for the first arrival target distri-
bution function in discrete time. J. Math. Anal. Appl. 225(1), 193–223 (1998).
http://www.sciencedirect.com/science/article/pii/S0022247X98960152

18. Yue, Y., Broder, J., Kleinberg, R., Joachims, T.: The K-armed Dueling Bandits
Problem. Journal of Computer and System Sciences (2012). (in press)

http://arxiv.org/abs/1208.0984
http://www-desir.lip6.fr/weng/pub/ecml2013-ws.pdf
http://www-desir.lip6.fr/weng/pub/ecml2013-ws.pdf
http://www.sciencedirect.com/science/article/pii/S0022247X98960152


Efficiency in Multi-objective Games

Anisse Ismaili(B)
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Abstract. In a multi-objective game, each agent individually evaluates
each overall action-profile by a vector. I generalize the price of anarchy
to multi-objective games and provide a polynomial-time algorithm to
assess this new generalization. A working paper is on: http://arxiv.org/
abs/1506.04251.

1 Introduction

In multi-agent economic systems, for each individual decision, there are multi-
ple objectives hanging in the balance, like costs, resources, commodities, goods,
financial income, sustainability, happiness and life expectancy, motivating the
introduction of a super-class of normal form games: multi-objective (MO) games
[5,22], where each agent evaluates each overall action profile by a vector. Each
agent’s individual preference is modelled by the Pareto-dominance (to introduce
a bit of rationality), inducing Pareto-equilibria (PE) as the concept of over-
all selfish stability. Concerning game-theoretic and economic models, vectorial
evaluations can be seen as a humble backtrack from the intrinsic and subjec-
tive theories of value, towards a non-theory of value where the evaluations are
maintained vectorial, in order to enable partial (or bounded) rationalities and to
avoid critical losses of information. Therefore, in this more realistic framework,
thoroughly measuring efficiency is a tremendous necessity.

Let N = {1, . . . , n} denote the set of agents. Let Ai denote each agent i’s
action-set (discrete, finite). Each agent i decides an action ai ∈ Ai. Given a
subset of agents M ⊆ N , let AM denote ×i∈MAi and let A = AN denote the set
of overall action-profiles. Let O = {1, , . . . , d} denote the set of all the objectives,
with d fixed. Let vi : A → R

d
+ denote an agent i’s individual MO evaluation

function, which maps each overall action-profile a = (a1, . . . , an) ∈ A to a MO
evaluation vi(a) ∈ R

d
+. Hence, agent i’s evaluation for objective k is vi

k(a) ∈ R+.

Definition 1. A Multi-objective Game (MOG) is a tuple(
N, {Ai}i∈N ,O, {vi}i∈N

)
.

MO games encompass single-objective (discrete) optimization problems, MO
optimization problems and non-cooperative games. Let us assume α = |Ai| ∈ N,
for each agent. Then, the representation of an MOG requires nαn d-dimensional
vectors and the complexity of an algorithm taking an MOG as an input, must be
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 578–586, 2015.
DOI: 10.1007/978-3-319-23114-3 37
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established with respect to the length L = nαnd. Let us now supply the vectors
with a preference relation. Assuming a maximization setting, given x, y ∈ R

d
+,

the following relations state respectively that y (1) weakly-Pareto-dominates and
(2) Pareto-dominates x:

y � x ⇔ ∀k ∈ O, yk ≥ xk (1)
y � x ⇔ ∀k ∈ O, yk ≥ xk and ∃k ∈ O, yk > xk (2)

The Pareto-dominance is a partial order, inducing a multiplicity of Pareto-
efficient outcomes. Formally, the set of efficient vectors is defined as follows:

Definition 2 (Pareto-efficiency). For Y ⊆ R
d
+, the efficient vectors

EFF[Y ] ⊆ Y are:

EFF[Y ] = {y∗ ∈ Y | ∀y ∈ Y, not (y � y∗)}

The Pareto-dominance enables to define as efficient all the trade-offs that cannot
be improved on one objective without being downgraded on another one, that
is: the best compromises between objectives. At the individual scale, Pareto-
efficiency defines a partial rationality, enabling to model behaviours that single-
objective (SO) games would not model consistently. Similarly, I denote the subset
of worst vectors by WST[Y ] = {y− ∈ Y s.t. ∀y ∈ Y, not (y− � y)}. Given an
overall action-profile a ∈ A, aM is the restriction of a to AM , and a−i to AN\{i}.

Definition 3 (Pareto-equilibrium [22]). Given an MOG, an action-profile
a ∈ A is a Pareto equilibrium (denoted by a ∈ PE), if and only if, for each agent
i ∈ N , we have:

vi(ai, a−i) ∈ EFF
[{vi(bi, a−i) | bi ∈ Ai}]

Pareto-equilibria encompass many behaviourally relevant action-profiles. For
instance, whatever the subjective positive weighted combination of the objec-
tives applied by an agent, the decision is included in Pareto-efficiency. I will
distinguish the objectives on which I focus the efficiency study and the purely
behavioural ones.

Equilibrium Existence. In many sound probabilistic settings, Pareto-efficiency is
not demanding on the conditions of individual rationality, and there are multiple
Pareto-efficient responses. Consequently, I strongly suspect the number of pure
PE to be numerous in average: |PE| ∼ α

d−1
d n, justifying their existence in a

probabilistic manner. Furthermore, in MO games with MO potentials [16,18,19],
the existence is guaranteed.

Example 1 (A didactic toy-example in Ocean Shores). Five shops in Ocean
Shores (the nodes) can decide upon two activities: renting bikes or buggies, sell-
ing clams or fruits, etc. Each agent evaluates his local action-profile depending
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on the actions of his inner-neighbours and according to two objectives: financial
revenue and sustainability.

For instance, we have (b1, b2, a3, b4, b5) ∈ PE, since each of these individ-
ual actions, given the adversary local action profile (column), is Pareto-efficient
among the two actions of the agent (row). Even if the relative values of the
objectives cannot be certainly ascertained, all the subjectively efficient vectors
are encompassed by Pareto-efficiency. In this MO game, there are 13 such Pareto-
equilibria. Their utilitarian evaluations are in Fig. 1 (Sect. 2).

v1

v2

v3

v4 v5

v2 a1 b1

a2 (9, 1) (11, 5)
b2 (12, 12) (8, 15)

v3 a1 b1

a3 (14, 18) (5, 12)
b3 (1, 8) (7, 11)

v5 a4 b4

a5 (10, 8) (12, 7)
b5 (16, 4) (2, 10)

a2 b2

v1 a3 b3 a3 b3

a4 b4 a4 b4 a4 b4 a4 b4

a1 (14, 4) (3, 15) (4, 10) (10, 12) (5, 10) (1, 3) (11, 13) (12, 15)
b1 (7, 14) (10, 6) (6, 13) (1, 8) (6, 15) (3, 11) (1, 5) (15, 14)

a1 b1

v4 a5 b5 a5 b5

a4 (9, 16) (16, 14) (15, 8) (11, 15)
b4 (12, 16) (6, 1) (13, 10) (12, 5)

2 The Multi-objective Price of Anarchy

It is well known in game theory that an equilibrium can be overall inefficient with
regard to the sum of the individual evaluations. This loss of efficiency is mea-
sured by the price of anarchy [3,4,6,9,12,20,21] (PoA) min[u(PE)]/max[u(A)].
Regrettably, when focusing on one sole objective (e.g. making money or a higher
GDP), there are losses of efficiency that are not observed: non-sustainability
of productions, poor quality of life for workers abroad, production of carcino-
gens, and others caused by bounded rationality. This appeals for a more thor-
ough analysis of the loss of efficiency at equilibrium and the definition of a
multi-objective price of anarchy. The higher generality of our model makes it fall
outside of the dogma of Smoothness-analysis [20], on which most known PoA
results rely [3,4,6,9]. Indeed, with Pareto-equilibria, regardless of the efficiency
measurement chosen, best-response inequalities cannot but summed. Instead of
analytical results, I will rather show that this MO-PoA can be computed.

The utilitarian social welfare u : A → R
d
+ is a vector-valued function mea-

suring social welfare with respect to the d objectives: u(a) =
∑

i∈N vi(a). Given
a function f : A → Z, the image set f(E) of a subset E ⊆ A is defined by
f(E) = {f(a)|a ∈ E} ⊆ Z. Given ρ, y, z ∈ R

d
+, the vector ρ � y ∈ R

d
+ is

defined by ∀k ∈ O, (ρ � y)k = ρkyk and the vector y/z ∈ R
d
+ is defined by

∀k ∈ O, (y/z)k = yk/zk. For x ∈ R
d
+, I denote x � Y = {x � y ∈ R

d
+ | y ∈ Y }.

Given x ∈ R
d
+, I denote C(x) = {y ∈ R

d
+ | x � y}.

I also introduce the notations E and F , illustrated in Figs. 1 and 2:

– E = u(PE) the set of equilibria outcomes.
– F = EFF[u(A)] the set of efficient outcomes.
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u1

u2

• u(A)
E = u(PE)

× F = EFF[u(A)]

Fig. 1. The utilitarian vectors of
Ocean Shores

For SO games, the worst-case efficiency of equi-
libria is measured by the PoA min[u(PE)]/
max[u(A)]. However, for MO games, there are
many equilibria and optima, and a ratio of the
(green) set E over the (red) set F is not defined
yet and ought to maintain each critical informa-
tion without introducing arbitrary choices.

Firstly, the efficiency of one equilibrium y ∈
E is quantified without taking side with any effi-
cient outcome, by defining with flexibility and
no dictatorship, a d isjunctive set of guaranteed
ratios of efficiency R[y,F ] =

⋃
z∈F C(y/z).

Secondly, in MOGs, in average, there are
many Pareto-equilibria. An efficiency guarantee
ρ ∈ R

d
+, must hold f or each equilibrium-

outcome, inducing the conjunctive definition
of the set of guaranteed ratios R[E ,F ] =⋂

y∈E R[y,F ].
Technically, R[E ,F ] only depends on WST[E ]

and F . Moreover, if two bounds on the efficiency ρ and ρ′ are such that ρ � ρ′,
then ρ′ brings no more information. Consequently, MO-PoA is defined by using
EFF on the guaranteed efficiency ratios.

Definition 4 (MO Price of Anarchy). Given a MOG, a vector ρ ∈ R
d
+

bounds the MOG’s inefficiency if and only if it holds that: ∀y ∈ E , ∃z ∈
F , y � ρ � z. Consequently, the set of guaranteed ratios is defined by:

R[E ,F ] =
⋂

y∈E

⋃

z∈F
C(y/z) = R[WST[E ],F ]

and the MO-PoA is defined by: MO-PoA = EFF[R[WST[E ],F ]]

Fig. 2. ρ ∈ MO-PoA bounds below
E ’s inefficiency: E ⊆ (ρ � F) +R

d
+

Having ρ in MO-PoA means that for
each y ∈ E , there is an efficient outcome
z(y) ∈ F such that y dominates ρ � z(y).
In other words, if ρ ∈ R[E ,F ], then each
equilibrium satisfies the ratio of efficiency
ρ. This means that equilibria-outcomes are
at least as good as ρ � F . That is: E ⊆
(ρ �F)+R

d
+ (see Fig. 2). Moreover, since ρ

is tight, E sticks to ρ � F .



582 A. Ismaili

Example 2 (The Efficiency ratios of Exam-
ple 1). I depict the efficiency ratios of Ocean
Shores (intersected with [0, 1]d) which only
depend of WST[E ] = {(30, 53), (40, 38)}
and F = {(46, 61), . . . , (69, 31)}. The
part below the red line corresponds to
R[(30, 53),F ], the part below the blue line
to R[(40, 38),F ] and the yellow part below
both lines is the conjunction on both equi-
libria R[WST[E ],F ]. The freedom degree of
deciding what the overall efficiency should
be is left free which results in several
ratios in the MO-PoA. Firstly, for each
ρ ∈ R[E ,F ], we have ρ1 ≤ 65%. Hence,
whatever the choices of overall efficiency, one cannot guarantee more than 65 %
of efficiency on objective 1. Secondly, for each equilibrium, there will always exist
some subjectivities for which the efficiency on objective 2 is already total (100 %,
if not more) while only 50 % can be obtained on objective 1. Thirdly, from 50 %
to 65 % of guaranteed efficiency on objective 1, the various subjectivities trade
the guaranteed efficiency on objective 2 from 100 % to 75 % (Fig. 3).

3 Application to the Tobacco Economy

Fig. 3. The MO-PoA of Ocean Shores

According to the World Health Organisation [24], 17.000 humans die each day
of smoking related diseases, but meanwhile, the financial revenue of this indus-
try fosters the politics of tobacco businesses and industries. Let us issue the
thorough economic value of a cigarette. According to the intrinsic theory of
value [2,14], the value of a cigarette amounts to the quantities of raw mate-
rials used for its production, or is the combination of the labour times put
into it. However, each economic agent needs to keep the freedom to evalu-
ate and act how he pleases, in order to keep his good will.. According to the
subjective theory of value [2,15,23], the value of a cigarette amounts to the
price an agent is willing to pay for it, but disregarding what the disastrous
consequence is on his life expectancy. This emphasizes the bounded rationality
of behaviours: Agents behave according to objectives (e.g. addictive satisfac-
tion) that they would avoid if they had the full experience of their lifetime
(e.g. a lung cancer) and a strong will (e.g. quit smoking). Based on a non-
theory of value, the theory of MO games maintains vectorial evaluations, which
is a backtrack from both the intrinsic and subjective value theories. I mod-
elled the tobacco industry and its consumers [1,13] by a succinct MOG, with
the help of (..) the association “Alliance contre le tabac”. The set of agents
is N = {industry, ν consumers}, where there are about ν = 6.109 prospective
consumers. Each consumer decides in Aconsumer = {not-smoking, smoking} and
cares about money, his addictive satisfaction, and living. The industry only cares
about money and decides in Aindustry = {not-active, active, advertise & active}.
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We have O = {money, reward, life-expectancy}. The tables below depict the eval-
uation vectors (over a life-time and ordered as in O) of one prospective consumer
and the evaluations of the industry with respect to the number θ ∈ {0, . . . , ν} of
consumers who decide to smoke. Money (already an aggregation) is expressed in
kilo-dollars; the addictive reward is on an ordinal scale {1, 2, 3, 4}; life-expectancy
is in years.

vconsumer Not-active Active Advertise&active

not-smoking (48, 1, 75) (48, 1, 75) (48, 1, 75)

smoking (48, 1, 75) (12, 3, 65) (0, 4, 55)

vindustry(θ) Not-active Active Advertise&active

(ν − θ)× (0, −, −) (0, −, −) (0, −, −)

+ θ × (0, −, −) (26, −, −) (36, −, −)

Pareto Equilibria. If the industry is active, then for the consumer, decid-
ing to smoke or not depends on how the consumer subjectively values/weighs
money, addictive satisfaction and life expectancy: both decisions are encom-
passed by Pareto-efficiency. For the industry, advertise&active is a dominant
strategy. Consequently, Pareto-equilibria are all the action-profiles in which the
industry decides advertise&active.

Efficiency. I focus on money and life-expectancy, since addiction is only a behav-
ioural objective. We have E = {θ · (36,−, 55) + (ν − θ) · (48,−, 75) | 0 ≤ θ ≤ ν}
and F = {ν · (48,−, 75)}, where ν is the world’s population, and θ the num-
ber of smokers. Since WST[E ] = {(36,−, 55)}, the MO-PoA is the singleton
{(75%,−, 73%)}: we can lose up to 12k$ and 20 years of life-expectancy per-
consumer. Some economists would say: “Since consumers value the product,
then the industry creates value.” However, these Pareto-equilibria are the worst
action-profiles for money and life-expectancy. This critical information was not
lost by the MO-PoA.

Lessons. Advertising tobacco fosters consumption. Independently from this
work, the association “Alliance contre le tabac” passed a law for standardized
neutral packets (April 3rd 2015), in order to annihilate the benefits of branding,
but only in France. My model says that this law will promote a higher efficiency.

4 Computation of the MO-PoA

In this section, I provide a polynomial-time algorithm for the computation of
MO-PoA, for MOGs given in MO normal form, which representation length is
L = nαnd.
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Theorem 1 (PTIME Computation of the MO-PoA). Given a MO normal
form, one can compute the MO-PoA in time O(L4d−2). If d = 2, it lowers to
O(L4 log2(L)).

The proof of Theorem 1 relies on a very general procedure based on two phases:

1. Given a MOG, compute the worst equilibria WST[E ] and the efficient out-
comes F .

2. Given WST[E ] and F , compute MO-PoA = EFF[ R[ WST[E ] , F ] ].

Phase 1 is easy, if the MOG is given in normal form. For Phase 2, using the short-
hand q = |WST[E ]| and m = |F|, at first glance, the development of the intersec-
tion of unions R[WST[E ],F ] = ∩y∈WST[E]∪z∈F C(y/z) causes an exponential mq.
But fortunately, one can compute the MO-PoA in polynomial time. Below, Dt is
a set of vectors. Given two vectors x, y ∈ R

d
+, let x∧ y denote the vector defined

by ∀k ∈ O, (x ∧ y)k = min{xk, yk} and recall that ∀k ∈ O, (x/y)k = xk/yk.
Algorithm 1 is the development of ∩y∈WST[E] ∪z∈F C(y/z), on a set-algebra of
cone-unions.

Algorithm 1. Computing MO-PoA in polynomial-time
Input: WST[E ] = {y1, . . . , yq} and F = {z1, . . . , zm}
Output: MO-PoA = EFF[R[WST[E ], F ]]

create D1 ← {y1/z ∈ R
d
+ | z ∈ F}

for t = 2, . . . , q do
Dt ← EFF[{ρ ∧ (yt/z) | ρ ∈ Dt−1, z ∈ F}]

end
return Dq

For compact representations of massively multi-agent games, one can approx-
imate:

Theorem 2 (Approximation for MO-PoA in Compact MOGs). Given
approximates E of E and F of F , Algorithm 1 outputs a covering R of MO-PoA
in the sense that:

if ∀y ∈ E , ∃y′ ∈ E, y � y′ and ∀y′ ∈ E, ∃y ∈ E , (1 + ε1)y
′ � y

and ∀z′ ∈ F, ∃z ∈ F , z′ � z and ∀z ∈ F , ∃z′ ∈ F, (1 + ε2)z � z′

then ∀ρ ∈ MO-PoA, ∃ρ′ ∈ R, (1 + ε1)(1 + ε2)ρ
′ � ρ

5 Prospects

This algorithmic work could be extended to massively multi-agent compact game
representations, like for instance MO extensions of graphical games [8] or action-
graph games [7,11]. Studying the efficiency of MO generalization of auctions
or Cournot-competitions [9,10,17] could provide insights on critical economic
malfunctions.
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1 Research Overview

My research is focused on knowledge representation and reasoning, especially,
preference modeling, learning and reasoning, and computational social choice.
Preference modeling, learning and reasoning is a major research area in arti-
ficial intelligence (AI) and decision theory, and is closely related to the social
choice theory considered by economists and political scientists. In my research I
explore emerging connections between preferences in AI and social choice theory.
My main focus is on qualitative preference representation languages extending
and combining formalisms such as lexicographic preference trees (LP-trees) [1],
answer-set optimization theories (ASO-theories) [3], possibilistic logic [4]; and
conditional preference networks (CP-nets) [2], on learning problems that aim at
discovering qualitative preference models and predictive preference information
from empirical data; and on qualitative preference reasoning problems centered
around preference optimization and strategy-proofness of preference aggrega-
tion methods. Applications of my research include recommendation systems,
decision support tools, multi-agent systems, and Internet trading and marketing
platforms.

2 Preliminaries

My research focuses on problems involving qualitative preferences, that is, simple
and intuitive qualitative statements about preferred properties of alternatives.
These alternatives are described in terms of attributes or issues, each assuming
values from some finite domain. For instance, vacations can be described in terms
of issues such as activity (A), destination (D), time (T ), and transportation (R),
where activity has values water-sports (ws) and hiking (h), destination has values
Florida (fl) and Colorado (co), time has values summer (s) and winter (w), and
transportation has values car (c) and plane (p). Thus, a sequence of attribute
values, for example, 〈ws, fl, s, c〉 describes a specific summer vacation involving
water-sports in Florida to which we travel by car. Spaces of alternatives of this
type are referred to as combinatorial domains.

The exponential size of the combinatorial domain leads to the infeasibility of
correctly putting precise numbers on the utility of specific choices; thus, we turn
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Fig. 1. P-trees and PLP-trees on vacations

to languages specifying preferences qualitatively. The sheer number of alterna-
tives in the combinatorial domain also makes it impossible to enumerate from
the most preferred to the least. Consequently, my research focuses on designing
concise formalisms in which qualitative preferences over such domains could be
expressed compactly and intuitively, and solving problems in preference learning
and reasoning in the context of these formalisms.

One of such preference systems, preference trees (P-trees), was introduced by
Fraser [5,6], and further discussed in my work [9]. Let us illustrate the formalism
with preferences over the vacation domain. The most important property for
our agent involves activity and destination. She prefers vacations with water
sports in Florida or hiking in Colorado over the other options. This preference
is described as an equivalence formula ws ≡ fl. Within each of the two groups
of vacations (satisfying the formula and not satisfying the formula), driving (c)
is the preferred transportation mode. These preference statements are described
in Fig. 1a. Clearly, the P-tree partitions the vacations into four clusters, denoted
by the leaves, with the leftmost representing the set of most preferred vacations
satisfying the formulas ws ≡ fl and c. Thus, the alternative 〈h, co, s, c〉 is better
than vacation 〈ws, fl, s, p〉, because the former descends to leaf l1 and the latter
l2, and l1 precedes l2 in the order of leaves. Since the subtrees of the root are
the same and leaves can be omitted in Fig. 1a, we can collapse the full tree to
its compact version in Fig. 1b. Compactness of preference models is crucial in
studying problems in preference learning and reasoning.

I introduced the preference formalism of partial lexicographic preference trees,
or PLP-trees [10], where nodes in the tree are labeled not by a formula but
by an attribute and a total ordering of the values of the attribute. To illus-
trate PLP-trees, let us consider again preferences over vacations. As shown in
Fig. 1c, our agent puts destination as the most important attribute on which
she prefers Florida. Similarly as before, she next considers activity and prefers
hiking for both Florida and Colorado vacations. Like the above P-tree, this
full PLP-tree induces a total preorder of four clusters of equivalent alternatives
as the box-labeled leaves, and it is collapsed to a much more compact one in
Fig. 1d, where preferences on all attributes are unconditional. I have shown that
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PLP-trees are special cases of P-trees but more general than the restrictive LP-
trees. Studying learning and reasoning problems for PLP-trees will contribute
to the most general setting of P-trees.

3 Research Experience

Working on my research I collaborated with professors and colleagues in our
department. My work on preferences has led to publications on preference mod-
eling [9], learning [10] and reasoning [7,8,12].

3.1 Preference Modeling

In joint work with my Ph.D. advisor Dr. Miroslaw Truszczynski, we focused
on the language of P-trees, studied the relationship between P-trees and other
existing preference languages, and showed that P-trees extend possibilistic logic,
LP-trees and ASO-rules [9]. Moreover, we established computational complexity
results of commonly considered decision problems in the setting of P-trees, such
as dominance testing (asking if an alternative is preferred to another given the
preferences), optimality testing (deciding if an alternative is optimal given the
preferences), and optimality testing w.r.t a property (determining if there exists
an optimal alternative satisfying a given property).

3.2 Preference Learning

Another joint work with my Ph.D. advisor introduced the formalism of PLP-
trees, a novel formalism for lexicographic preference models, also a subclass
of P-trees, over combinatorial domains of alternatives [10]. For PLP-trees we
investigated the problem of passive learning, that is, the problem of learning
preference models given a set of pairwise preferences between alternatives, called
training examples, provided by the user upfront. Specifically, for several classes
of PLP-trees, we studied how to learn (i) a PLP-tree, preferably of a small size,
consistent with a dataset of examples, and (ii) a PLP-tree correctly ordering
as many of the examples as possible in case of inconsistency. We established
complexity results of these problems and, in each case where the problem is in
the class P, proposed a polynomial time algorithm.

3.3 Preference Reasoning

In the work with Dr. Truszczynski [8,11], we investigated two preference-
aggregation problems, the winner problem, computing the winning alternative
in an election, and the evaluation problem, computing an alternative scoring
at least above some threshold in an election, based on positional scoring rules
(such as k-approval and Borda) when preferences are represented as LP-trees. We
obtained new computational complexity results of these two problems and pro-
vided computational methods to model and solve the problems in two program-
ming formalisms, answer set programming (ASP) and weighted partial maximum
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satisfiability (WPM). To support experimentation, we designed methods to gen-
erate LP-tree votes randomly and presented experimental results with ASP and
WPM solvers. In a joint work [12] with Dr. Judy Goldsmith and other fellow
graduate students, we introduced a new variant of hedonic coalition formation
games in which agents have two levels of preference on their own coalitions: pref-
erence on the set of “roles” that make up the coalition, and preference on their
own role within the coalition. We defined and studied several stability notions
and optimization problems for this model.

4 Current and Future Research

Moving forward I plan to continue working on problems on preferences in AI
and social choice theory, particularly when the preferences concern alternatives
ranging over combinatorial domains.

4.1 Preference Learning and Approximation

I will generalize my results on learning PLP-trees to the case of P-trees. I will also
design and implement algorithms to learn, from both synthetic and real-world
datasets, preferences described in formalisms of LP-trees, PLP-trees and P-trees
for both passive learning and active learning, where, unlike passive learning,
training examples are elicited from the user interactively. To support evaluation
of these learning algorithms, I will design and implement algorithms to randomly
generate instances of LP-trees, PLP-trees and P-trees. To facilitate the prefer-
ence learning process, I will develop datasets of examples from existing learning
datasets, and apply machine learning methods to obtain preferences from these
developed datasets.

Some models of preference orders do not support effective reasoning. For
instance, if a preference order is represented by a CP-net, the dominance testing
problem is known to be NP-hard even for the simple case where the dependency
among the nodes is acyclic, and it is PSPACE-complete in general. Learning
can provide a way to circumvent the difficulty. Compared to the formalism of
CP-nets, P-trees are more practical, more intuitive and more transparent for
representing preferences over combinatorial domains. Since reasoning with P-
trees is easier (e.g., dominance is straightforward), approximating (or exactly
representing) CP-nets using P-trees learned from examples consistent with the
CP-net might open a way to more effective approximate, or even exact, reasoning
with CP-nets. I plan to design algorithms to find a small set of P-trees that can
best approximate the given CP-net.

4.2 Preference Aggregation

Provided that we have obtained preferences from the agents as P-trees, I will
apply two approaches to aggregate P-trees to compute the collective decision: the
Pareto method and voting rules. Using the Pareto method is similar to a previous
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work on ASO. As for the voting rules that could be applied, I will investigate posi-
tional scoring rules (e.g., Plurality, k-Approval and Borda), comparison-based
rules (e.g., the Copeland, Simpsons and Maximin rules), and distance-based
rules (e.g., the Kemeny and Dodgson rules). To compare the two approaches
of aggregating P-trees, I will perform experiments on both randomly generated
and learned P-trees using the two methods separately, and analyze the winning
alternatives computed by both of them.

4.3 Misrepresentation of Preferences

I will study problems relating to vulnerability of collective decisions under mis-
representation of preferences specified over combinatorial domains. Take the
coalitional manipulation problem as an example. This problem asks to decide
if the small coalition set of manipulative voters can make some candidate a win-
ner. I have already obtained preliminary complexity results for LP-trees when
the voting rules are Plurality and half-Approval where each voter approves her
top half candidates. I will examine other positional scoring rules, as well as some
comparison-based and distance-based voting systems, for LP-trees, and extend
these results to elections over complicated domains when votes are specified as
P-trees.

5 Conclusion

My research concerns problems in the fields pertaining to preferences and social
choice, and exploits emerging connections between preferences in AI and social
choice theory. My main focus is on qualitative preference representation lan-
guages extending and combining existing formalisms such as lexicographic pref-
erence trees (LP-trees) and answer-set optimization theories (ASO-theories), on
learning problems that aim at discovering predictive preference models from
empirical data, and on qualitative preference reasoning problems centered around
preference optimization and strategy-proofness of preference aggregation
methods.
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