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Abstract. In input-driven pushdown automata (IDPDA) the input
alphabet is divided into three distinct classes and the actions on the
pushdown store (push, pop, nothing) are solely governed by the input
symbols. Here, this model is extended in such a way that the input of an
IDPDA is preprocessed by a deterministic sequential transducer. These
automata are called tinput-driven pushdown automata (TDPDA) and
it turns out that TDPDAs are more powerful than IDPDAs but still
not as powerful as real-time deterministic pushdown automata. Never-
theless, even this stronger model has still good closure and decidability
properties. In detail, it is shown that TDPDAs are closed under the
Boolean operations union, intersection, and complementation. Further-
more, decidability procedures for the inclusion problem as well as for
the questions of whether a given automaton is a TDPDA or an IDPDA
are developed. Finally, representation theorems for the context-free lan-
guages using IDPDAs and TDPDAs are established.
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1 Introduction

In order to describe and to analyze “real-life” problems it is desirable to pos-
sess theoretical models which have on the one hand a large expressive power to
model a large amount of features of the problems. On the other hand, the models
should also be manageable in the sense that the commonly studied decidability
issues such as emptiness, inclusion, or equivalence are decidable. With regard
to the Chomsky hierarchy, two extremes are the regular languages, represented
for example by deterministic or nondeterministic finite automata, and the recur-
sively enumerable languages, represented for example by Turing machines. While
the latter class is very powerful and allows to describe almost all practical prob-
lems one may think of, it is known owing to the Theorem of Rice that almost
nothing is decidable for this class. On the other hand, almost all commonly
studied problems are decidable for the former class, but the expressive power
of regular languages is often not sufficient. Thus, one has to find an agreement
in such a way that the expressive power of a model increases at the expense of
losing some decidable properties.
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One such extension are pushdown automata (PDA) which are finite automata
enlarged with the storage medium of a pushdown store. An interesting subclass
of PDAs is represented by input-driven PDAs. The essential idea here is that
for such devices the operations on the storage medium are dictated by the input
symbols. The first references of input-driven PDAs may be found in [5,14], where
input-driven PDAs are introduced as classical PDAs in which the input symbols
define whether a push operation, a pop operation, or no operation on the push-
down store has to be performed. The main results obtained there show that the
membership problem for input-driven PDAs can be solved in logarithmic space,
and that the nondeterministic model can be determinized. More on the mem-
bership problem has been shown in [8] where the problem is classified to belong
to the parallel complexity class NC1.

The investigation of input-driven PDAs has been revisited in [1,2], where such
devices are called visibly PDA or nested word automata. Some of the results are
the classification of the language family described by input-driven PDAs to lie
properly in between the regular and the deterministic context-free languages, the
investigation of closure properties and decidable questions which turn out to be
similar to those of regular languages, and descriptional complexity results for the
trade-off occurring when nondeterminism is removed from input-driven PDAs.
A recent survey with many valuable references on complexity aspects of input-
driven PDAs may be found in [16]. Further aspects such as the minimization
of input-driven PDAs and a comparison with other subclasses of deterministic
context-free languages have been studied in [6,7] while extensions of the model
with respect to multiple pushdown stores or more general auxiliary storages
are introduced in [12,13]. Recently, the computational power of input-driven
automata using the storage medium of a stack and a queue, respectively, have
been investigated in [3,11].

The edge between deterministic context-free languages that are accepted by
an IDPDA or not is very small. For example, language { an$bn | n ≥ 1 } is
accepted by an IDPDA where an a means a push-operation, b means a pop-
operation, and a $ leaves the pushdown store unchanged. On the other hand,
the very similar language { an$an | n ≥ 1 } is not accepted by any IDPDA.
Similarly, the language {w$wR | w ∈ {a, b}+ }, where wR denotes the reversal
of w, is not accepted by any IDPDA, but if wR is written down with some marked
alphabet {â, b̂}, then language {w$ŵR | w ∈ {a, b}+ } is accepted by an IDPDA.
To overcome these obstacles we consider a sequential transducer that translates
some input to some output which in turn is the input for an IDPDA. In the
above first example such a transducer translates every a before reading $ to a
and after reading $ to b. In the second example a and b are translated to a, b or
â, b̂, respectively, depending on whether or not $ has been read. We call such a
pair of a sequential transducer and an IDPDA tinput-driven PDA (TDPDA). To
implement the idea without giving the transducers too much power for the overall
computation, essentially, we will consider only deterministic injective and length-
preserving transducers. The detailed definition of a TDPDA is in Sect. 2. Results
on the computational capacity of TDPDAs are obtained in Sect. 3. It turns out
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that TDPDAs are more powerful than IDPDAs, but less powerful than real-time
deterministic pushdown automata. Thus, TDPDAs are a proper generalization
of IDPDAs. Moreover, the determinization of TDPDAs is possible for IDPDAs
as long as the corresponding sequential transducer is deterministic. IDPDAs
have nice closure properties and decidability questions. In Sects. 4 and 5, we
show similar results for TDPDAs. In detail, constructions for the closure under
the union, intersection, complementation, and inverse homomorphism are given
as well as a decidability procedure for inclusion. It should be noted that the
constructions are possible as long as the underlying automata have compatible
signatures, that is, an identical pushdown behavior on the input symbols. We
show that IDPDAs and TDPDAs are not closed under union and intersection,
and inclusion becomes undecidable in case of incompatible signatures. Finally,
we present in Sect. 6 a construction that proves that IDPDAs and TDPDAs are
sufficient to represent all context-free languages under λ-free homomorphism.

2 Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. The set of words of length at most n ≥ 0
is denoted by Σ≤n. The reversal of a word w is denoted by wR. For the length
of w we write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions.

A classical deterministic pushdown automaton is called input-driven if the
next input symbol defines the next action on the pushdown store, that is, pushing
a symbol onto the pushdown store, popping a symbol from the pushdown store,
or changing the state without modifying the pushdown store. To this end, we
assume the input alphabet Σ to be partitioned into the sets ΣN , ΣD, and ΣR,
that control the actions state change only (N), push (D), and pop (R). A formal
definition is:

Definition 1. A deterministic input-driven pushdown automaton (IDPDA) is
a system M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉, where

1. Q is the finite set of internal states,
2. Σ is the finite set of input symbols partitioned into the sets ΣD, ΣR, and

ΣN ,
3. Γ is the finite set of pushdown symbols,
4. q0 ∈ Q is the initial state,
5. F ⊆ Q is the set of accepting states,
6. ⊥ /∈ Γ is the empty pushdown symbol,
7. δD is the partial transition function mapping from Q × ΣD × (Γ ∪ {⊥}) to

Q × Γ ,
8. δR is the partial transition function mapping from Q × ΣR × (Γ ∪ {⊥}) to Q,
9. δN is the partial transition function mapping from Q×ΣN × (Γ ∪{⊥}) to Q.

A configuration of an IDPDA M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉 is a triple
(q, w, s), where q ∈ Q is the current state, w ∈ Σ∗ is the unread part of the
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input, and s ∈ Γ ∗ denotes the current pushdown content, where the leftmost
symbol is at the top of the pushdown store. The initial configuration for an
input string w is set to (q0, w, λ). During the course of its computation, M runs
through a sequence of configurations. One step from a configuration to its suc-
cessor configuration is denoted by 
. Let a ∈ Σ, w ∈ Σ∗, z, z′ ∈ Γ , and s ∈ Γ ∗.
We set

1. (q, aw, zs) 
 (q′, w, z′zs), if a ∈ ΣD and (q′, z′) ∈ δD(q, a, z),
2. (q, aw, λ) 
 (q′, w, z′), if a ∈ ΣD and (q′, z′) ∈ δD(q, a,⊥),
3. (q, aw, zs) 
 (q′, w, s), if a ∈ ΣR and q′ ∈ δR(q, a, z),
4. (q, aw, λ) 
 (q′, w, λ), if a ∈ ΣR and q′ ∈ δR(q, a,⊥),
5. (q, aw, zs) 
 (q′, w, zs), if a ∈ ΣN and q′ ∈ δN (q, a, z),
6. (q, aw, λ) 
 (q′, w, λ), if a ∈ ΣN and q′ ∈ δN (q, a,⊥).

So, whenever the pushdown store is empty, the successor configuration is com-
puted by the transition functions with the special empty pushdown symbol ⊥.
As usual, we define the reflexive and transitive closure of 
 by 
∗. The language
accepted by the IDPDA M is the set L(M) of words for which there exists some
computation beginning in the initial configuration and ending in a configuration
in which the whole input is read and an accepting state is entered. Formally:

L(M) = {w ∈ Σ∗ | (q0, w, λ) 
∗ (q, λ, s) with q ∈ F, s ∈ Γ ∗ }.

The difference between an IDPDA and a classical deterministic pushdown automa-
ton (DPDA) is that the latter makes no distinction on the types of the input sym-
bols, and may perform λ-moves. However, in all cases, there must not be more
than one choice of action for any possible configuration. So, the transition func-
tion is defined to be a (partial) mapping from Q × (Σ ∪ {λ}) × (Γ ∪ {⊥}) to
Q×(Γ ∪{pop, top}), where it is understood that popmeans removing the topmost
symbol from the pushdown store, top means letting the content of the pushdown
store unchanged, and a symbol of Γ means entering this symbol at the top of the
pushdown store. In general, the family of all languages accepted by an automaton
of some type X will be denoted by L (X).

For the definition of tinput-driven pushdown automata we need the notion of
deterministic one-way sequential transducers (DST) which are basically deter-
ministic finite automata equipped with an initially empty output tape. In every
transition a DST appends a string over the output alphabet to the output tape.
The transduction defined by a DST is the set of all pairs (w, v), where w is the
input and v is the output produced after having read w completely. Formally,
a DST is a system T = 〈Q,Σ,Δ, q0, δ〉, where Q is the finite set of internal
states, Σ is the finite set of input symbols, Δ is the finite set of output sym-
bols, q0 ∈ Q is the initial state, and δ is the partial transition function mapping
Q × Σ to Q × Δ∗. By T (w) ∈ Δ∗ we denote the output produced by T on input
w ∈ Σ∗. In the following, we will consider only injective and length-preserving
DSTs which are also known as injective Mealy machines. The general definition
is given with an eye towards possible extensions of the following model.

LetM be an IDPDAandT be an injective and length-preservingDST.Further-
more, the output alphabet of T is the input alphabet of M . Then, the pair (M,T ) is
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called a tinput-driven pushdown automaton (TDPDA) and the language accepted
by (M,T ) is defined as L(M,T ) = {w ∈ Σ∗ | T (w) ∈ L(M) }.

In order to clarify this notion we continue with an example.

Example 2. Language L1 = { an$an | n ≥ 1 } is accepted by a TDPDA. Before
reading symbol $ the transducer maps an a to an a, and after reading $ it maps
an a to a b. Thus, L1 is translated to { an$bn | n ≥ 1 } which is accepted by
some IDPDA.

Similarly, L2 = {w$wR | w ∈ {a, b}∗ } can be accepted by some TDPDA.
Here, the transducer maps any a, b to a, b before reading $ and to â, b̂ after
reading $. This gives the language {w$ŵR | w ∈ {a, b}∗ } which clearly belongs
to L (IDPDA).

Finally, consider L3 = { anb2n | n ≥ 1 }. Here, the transducer maps an a to a
and every b alternately to b and c. This gives language { an(bc)n | n ≥ 1 } which
is accepted by some IDPDA: every a implies a push-operation, every b implies
a pop, and every c leaves the pushdown store unchanged. �

3 Computational Capacity

It is known that the language class accepted by IDPDAs is a proper subset of the
deterministic context-free languages [1]. In a TDPDA, the input of the IDPDA
is preprocessed by a sequential transducer. We have already seen that TDPDAs
are strictly more powerful than IDPDAs. Now the question arises whether a
TDPDA can accept languages which are not real-time deterministic context-
free. The following theorem answers the question negatively.

Theorem 3. The family L (TDPDA) is effectively included in the family of
real-time deterministic context-free languages.

Proof. Given a TDPDA (M,T ) where M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉 is an
IDPDA and T = 〈Q′, A,Σ, q′

0, δ〉 is an injective length-preserving DST, we will
construct a deterministic pushdown automaton M ′ = 〈S′, A, Γ, s′

0, F
′,⊥, δ′〉 such

that L(M ′) = L(M,T ).
The basic idea is that M ′ first computes the output of the DST T internally

and then simulates the IDPDA M . To this end, M ′ needs to keep track of
the states of M and T . Thus, we define S′ = Q × Q′ and s′

0 = (q0, q′
0). The

automaton M ′ accepts, if the input is read completely and M would be in an
accepting state. Hence, F ′ = F ×Q′. The transition function is defined as follows
for p, p′ ∈ Q, q, q′ ∈ Q′, a ∈ A, a′ ∈ Σ, and z, z′ ∈ Γ .

δ′((p, q), a, z) =

⎧
⎪⎨

⎪⎩

((p′, q′), λ) if δ(q, a) = (q′, a′) and δR(p, a′, z) = p′,
((p′, q′), z) if δ(q, a) = (q′, a′) and δN (p, a′, z) = p′,
((p′, q′), zz′) if δ(q, a) = (q′, a′) and δD(p, a′, z) = (p′, z′).

By construction, a word w is accepted by (M,T ) if and only if w is accepted
by M ′. Inspecting δ′ shows that M ′ is indeed a deterministic PDA working in
real time. ��
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The previous theorem gives that the family of languages accepted by tinput-
driven automata is a subset of the deterministic context-free languages accepted
in real time. The next result shows that this inclusion is proper.

Lemma 4. The family L (TDPDA) is a proper subset of the real-time deter-
ministic context-free languages.

Proof. The language L = { anbn+mam | n,m ≥ 0 } is clearly accepted by a
deterministic PDA. We will show that L is not accepted by any TDPDA.

In contrast to the assertion, assume that L is accepted by a TDPDA (M,T )
with M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉 and T = 〈Q′, A,Σ, s0, δ〉, where T has n
states, that is, |Q′| = n. Let w = w′

0w
′
1w

′
2 ∈ L be a word with w′

0, w
′
2 ∈ {a}∗

and w′
1 ∈ {b}∗. Then the output of T on input w is denoted by w0w1w2 where

|wi| = |w′
i| for 0 ≤ i ≤ 2.

When T processes w′
0, it has to enter a cycle after at most n steps. The cycle

cannot be left before the first b appears in the input. Similar arguments hold
for w′

1 and w′
2. Since T is length-preserving, each wi, 0 ≤ i ≤ 2, has the form

yi,0yi,1 · · · yi,li(xi,0xi,1 · · · xi,mi
)tixi,0 · · · xi,ni

, with li,mi ≤ n, ni < mi, ti ≥ 0.

Now we turn to the computation of M on w0w1w2, where the length of each of
the three subwords is at least n, and analyze the possible pushdown heights while
processing the subwords wi. Since the lengths of the initial parts yi,0yi,1 · · · yi,li
are at most n, the pushdown height after processing it increases or decreases by
at most n symbols. In total, during one input cycle xi,0xi,1 · · · xi,mi

automaton M
may increase the height of the pushdown store, leave it as it is, or decrease it.

Subword w0: Assume that, in total, during a cycle of w0 the pushdown height
is not increased. Then the total height of the pushdown store is at most n after
processing w0. Moreover, there are two different prefixes w′

0 and ŵ′
0 so that M has

the same pushdown content and is in the same state after processing w0 = T (w′
0)

and ŵ0 = T (ŵ′
0). Now we can always choose some w′

1 ∈ {b}∗ and w′
2 ∈ {a}∗

so that w′
0w

′
1w

′
2 belongs to L and, thus, is accepted. Since then ŵ′

0w
′
1w

′
2 /∈ L is

accepted as well, we obtain a contradiction and conclude that the total pushdown
height is increased during a cycle of w0.

Subword w1: Next, we assume that during a cycle of w1 the pushdown height
is decreased. Then we can choose some w′

1 so that |T (w′
1)| > n · |T (w′

0)|. So, the
height of the pushdown store is at most n after processing T (w′

0w
′
1). Arguing

similarly as above, there must be two words w′
1 and ŵ′

1 so that M has the same
pushdown content and is in the same state after processing w0w1 = T (w′

0w
′
1)

and w0ŵ1 = T (w′
0ŵ

′
1). There is a unique w′

2 ∈ {a}∗ so that w′
0w

′
1w

′
2 belongs

to L and, thus, is accepted. Since w′
0ŵ

′
1w

′
2 /∈ L is accepted as well, we obtain

a contradiction and conclude that the total pushdown height is not decreased
during a cycle of w1.

Now, assume that a cycle of w1 leaves the total pushdown height unchanged.
Then, by providing more b’s in the input, the cycle can be passed through arbi-
trarily often. In particular, there must be two words w′

1 and ŵ′
1 so that M has
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the same pushdown content and is in the same state after processing the two
prefixes w0w1 = T (w′

0w
′
1) and w0ŵ1 = T (w′

0ŵ
′
1). Now the contradiction follows

as before. We conclude that the total pushdown height is increased during a
cycle of w1.

Subword w2: If the pushdown height is not decreased during a cycle of w2, then
its total height is never reduced by more then a constant number of symbols
while processing the subword w2 entirely. Since we know already that the same
is true for the subwords w0 and w1, the IDPDA M can be simulated by a
finite automaton that stores the finite number of accessible symbols at the top
of the pushdown store in its state. Since L is not a regular language this is a
contradiction. We conclude that the total pushdown height is decreased during
a cycle of w2.

Now we choose two long and different words w′
0 and ŵ′

0 so that M is in
the same state and has the same 2n symbols on top of the pushdown store
after processing T (w′

0) and T (ŵ′
0). The prefix w′

0 is completed by w′
1 and w′

2,
where w′

0w
′
1w

′
2 ∈ L and |w′

2| < |w′
1|/n. So, w′

2 is such short in comparison to w′
1

that the pushdown content pushed while processing T (w′
0) is untouched by the

computation on T (w′
2). It follows that ŵ′

0w
′
1w

′
2 /∈ L is accepted as well. So, we

have a contradiction and obtain that L is not accepted by any TDPDA. ��

Determinization

In the previous part we considered a tinput-driven pushdown automaton as a
pair of a deterministic sequential transducer and a deterministic input-driven
pushdown automaton. The related model of input-driven automata was also
investigated in the nondeterministic case [1]. It is shown there that every nonde-
terministic input-driven pushdown automaton can be transformed into an equiv-
alent deterministic one.

Now, the question arises whether the nondeterministic version of a tinput-
driven pushdown automaton can be determinized as well. There are four dif-
ferent working modes for a tinput-driven pushdown automaton. The sequential
transducer can be deterministic or nondeterministic and also the input-driven
pushdown automaton may be deterministic or nondeterministic. We use the
notation TDPDAx,y with x, y ∈ {d, n} where x stands for the working mode of
the transducer and y for the mode of the input-driven pushdown automaton.
For example, TDPDAn,d is a tinput-driven pushdown automaton with a non-
deterministic sequential transducer and a deterministic input-driven pushdown
automaton.

Theorem 5. The family of languages accepted by TDPDAd,d’s is properly
included in the family of languages accepted by TDPDAn,d’s.

Proof. By definition we know that every TDPDAd,d is in particular a TDPDAn,d.
It remains to be shown that there is a language accepted by a TDPDAn,d, but

not by any TDPDAd,d. We will use the language L = { anbn+mam | n,m ≥ 0 }
from Lemma 4 and prove that L is accepted by a TDPDAn,d M . This can be
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done as follows. The nondeterministic sequential transducer writes for every a
of the first a-sequence an a as output. Then it writes for every b a b as output
until it nondeterministically decides that it has already written as many b’s as
a’s. It continues and writes now for every b an a as output until the first a of the
second sequence of a’s is reached. Then, for every a a b is output. Subsequently,
an IDPDA tests whether its input is of the form anbnambm for some m,n ≥ 0.
If this is the case, then the input is accepted. Otherwise, it is rejected.

On the other hand, it has been shown in Lemma 4 that L is not accepted by
any TDPDAd,d. ��

Thus, we can conclude that it is not possible to determinize TDPDAn,d’s
as well as TDPDAn,n’s. It remains for us to consider the determinization of
TDPDAd,n’s.

Theorem 6. The family of languages accepted by TDPDAd,n’s and TDPDAd,d’s
coincide.

Proof. It has been shown in [1] that IDPDAs can be determinized. Applying
this construction to the IDPDA belonging to a TDPDAd,n, we obtain that every
TDPDAd,n can be converted to an equivalent TDPDAd,d. ��

4 Closure Properties

In this section, we investigate the closure properties of tinput-driven pushdown
automata. For input-driven pushdown automata, strong closure properties have
been derived in [1] provided that all automata involved share the same partition
of the input alphabet. Here we distinguish this important special case from
the general one. For easier writing, we call the partition of an input alphabet a
signature, and say that two signatures Σ = ΣD∪ΣR∪ΣN and Σ′ = Σ′

D∪Σ′
R∪Σ′

N

are compatible if and only if
⋃

j∈{D,R,N}
(Σj \ Σ′

j) ∩ Σ′ = ∅ and
⋃

j∈{D,R,N}
(Σ′

j \ Σj) ∩ Σ = ∅.

We consider first TDPDAs having compatible signatures and identical trans-
lations. Later, we will see that IDPDAs and TDPDAs lose some positive closure
properties if the signatures are no longer compatible.

Lemma 7. Let (M,T ) and (M ′, T ) be two TDPDAs with compatible signatures.
Then TDPDAs accepting the intersection L(M,T ) ∩ L(M ′, T ), the complement
L(M,T ), and the union L(M,T ) ∪ L(M ′, T ) can effectively be constructed.

Proof. Let us first consider the closure under intersection. Since (M,T ) and
(M ′, T ) have compatible signatures and both TDPDAs apply the sequential
transducer T , the closure under intersection follows from the standard con-
struction using the Cartesian product. In detail, we consider the two IDPDAs
M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉 and M ′ = 〈Q′, Σ′, Γ ′, q′

0, F
′,⊥, δ′

D, δ′
R, δ′

N 〉
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and define M ′′ = 〈Q × Q′, Σ ∪ Σ′, Γ × Γ ′, (q0, q′
0), F × F ′, (⊥,⊥), δ′′

D, δ′′
R, δ′′

N 〉
assuming that Σ and Σ′ are compatible. The transition functions are defined
as follows. Let q, q̂ ∈ Q, q′, q̂′ ∈ Q′, Z ∈ Γ ∪ {⊥}, Ẑ ∈ Γ , Z ′ ∈ Γ ′ ∪ {⊥}, and
Ẑ ′ ∈ Γ ′. For a ∈ ΣD ∩ Σ′

D, we define δ′′
D((q, q′), a, (Z,Z ′)) = ((q̂, q̂′), (Ẑ, Ẑ ′))

with δD(q, a, Z) = (q̂, Ẑ) and δ′
D(q′, a, Z ′) = (q̂′, Ẑ ′). For a ∈ ΣR ∩Σ′

R, we define
δ′′
R((q, q′), a, (Z,Z ′)) = ((q̂, q̂′)) with δR(q, a, Z) = q̂ and δ′

R(q′, a, Z ′) = q̂′. For
a ∈ ΣN ∩ Σ′

N , we define δ′′
N ((q, q′), a, (Z,Z ′)) = ((q̂, q̂′)) with δN (q, a, Z) = q̂

and δ′
N (q′, a, Z ′) = q̂′. For all remaining input symbols a ∈ Σ ∪ Σ′, M ′′ enters a

non-accepting sink state which can never be left once entered. Clearly, (M ′′, T )
is a TDPDA accepting L(M,T ) ∩ L(M ′, T ).

Next, we consider the closure under complementation. The classical construc-
tion for a DPDA is to interchange accepting and non-accepting states. Before
doing that two problems have to be overcome. First, the given DPDA may not
read its input completely, since some moves are undefined or an infinite λ-loop is
entered. Second, it may happen that the given DPDA performs λ-moves leading
from an accepting state to a non-accepting state and vice versa. For a TDPDA it
is clear from the definition that no λ-moves are performed. Thus, it is sufficient
to add a non-accepting state which is entered for so far undefined configurations.
This new state cannot be left. It drives the IDPDA component of the TDPDA
over the rest of the input obeying the pushdown operations. Finally, accepting
and non-accepting states are interchanged.

The effective closure under union follows from the effective closure under
intersection and complementation. ��

The next result shows that TDPDAs are closed under inverse homomorphism
which is in contrast to IDPDAs.

Lemma 8. Let (M,T ) be a TDPDA and h be a homomorphism. Then a
TDPDA accepting h−1(L(M,T )) can effectively be constructed.

Proof. For the construction we will need the following mapping which assigns
an integer value to each sequence of input symbols. Let Σ = ΣD ∪ΣR ∪ΣN and
ϕ : Σ∗ → Z be a mapping such that ϕ(λ) = 0 and ϕ(x1x2 · · · xn) =

∑n
i=1 v(xi)

setting, for x ∈ Σ, v(x) = 1 if x ∈ ΣD, v(x) = −1 if x ∈ ΣR, and v(x) = 0
otherwise.

Now, we will consider an IDPDA M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉, an injec-
tive and length-preserving DST T = 〈P,Δ,Σ, δ, p0〉, and an arbitrary homomor-
phism h : Λ∗ → Δ∗. We have to construct a TDPDA (M ′, T ′) which accepts
h−1(T (L(M)) = {w ∈ Λ∗ | h(w) ∈ T (L(M)) }. The idea of the construction is
first to define T ′ in such a way that T ′ simulates T and h in its state set and out-
puts T (h(w)) on given input w ∈ Λ∗. Since h may map one symbol to a sequence
of symbols, but T ′ has to be length-preserving, the output alphabet of T ′ will
consist of compressed symbols. In a second step we will construct an IDPDA M ′

working on an alphabet of compressed symbols and accepting all inputs which
are originally and uncompressed accepted by M . Since M ′ works on compressed
input symbols, it will have to work on compressed pushdown symbols as well.
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Let m = max{ |h(a)| | a ∈ Λ } be the maximum length of the image of h.
Each (compressed) output symbol will comprise at most m symbols from Δ and
two other components ensuring the injectivity of the translation. We now define
the DST T ′ = 〈P ′, Λ,Σ′, δ′, p′

0〉 as follows. We set ΛN = { aN | a ∈ Λ } and

P ′ = P × Σ≤m−1 × {−m + 1,−m + 2, . . . ,m − 1},

p′
0 = (p0, λ, 0),

Σ′ = ΛN ∪
⋃

X∈{D,N,R}

(
Σ≤m × Λ × Δ≤m

)

X
.

For the transition function δ′ we differentiate two cases:

Case 1: If a ∈ Λ such that h(a) = λ, then we add

δ′((p, d1d2 · · · dr, 	), a) = ((p, d1d2 · · · dr, 	), aN ),

for all p ∈ P , d1d2 · · · dr ∈ Σ≤m−1, and −m < 	 < m. In this case, we just
output a symbol aN which will be ignored by the IDPDA.

Case 2: We have a ∈ Λ such that h(a) = b1b2 · · · bn with n ≥ 1. For p ∈ P , we
compute by δ(p, b1b2 · · · bn) = (p′, c1c2 · · · cn) the state reached and the output
produced in T from p on input b1b2 · · · bn.

To compute the correct index D, R, or N for the output alphabet, we have to
check whether the (compressed) symbols c1, c2, . . . , cn eventually imply a pop-,
top-, or push-action in M . To this end, we calculate the value V = ϕ(c1c2 · · · cn).
If this value is exactly −m or m, we know that a pop- or push-action, respectively,
has to take place. If −m < V < m, then the pushdown remains unchanged,
but V is stored in the state set. If V < −m or V > m, then a pop- or push-
action, respectively, has to take place, but not all symbols to be output can be
compressed into one symbol. Thus, the remaining symbols and their value are
stored in the state set. Formally, let (p, d1d2 · · · dr, 	) be a state in P ′ with p ∈ P ,
d1d2 · · · dr ∈ Σ≤m−1, and −m < 	 < m. To compute in T ′ the next state s and
the output o on input a, that is, δ′((p, d1d2 · · · dr, 	), a) = (s, o), we distinguish
five subcases for K = 	 + ϕ(c1c2 · · · cn) as follows:

1. If K = −m, then s = (p′, λ, 0) and o = (d1d2 · · · drc1c2 · · · cn, a, h(a))R.
2. If K = m, then s = (p′, λ, 0) and o = (d1d2 · · · drc1c2 · · · cn, a, h(a))D.
3. If −m < K < m, then we define s = (p′, λ, 	 + ϕ(c1c2 · · · cn)) and o =

(d1d2 · · · drc1c2 · · · cn, a, h(a))N .
4. If K < −m, then we determine the maximal integer 1 ≤ i ≤ n such that

	 + ϕ(c1c2 · · · ci) = −m and we set s = (p′, ci+1ci+2 · · · cn, ϕ(ci+1ci+2 · · · cn))
and o = (d1d2 · · · drc1c2 · · · ci, a, h(a))R.

5. If K > m, then we determine the maximal integer 1 ≤ i ≤ n such that
	 + ϕ(c1c2 · · · ci) = m and we set s = (p′, ci+1ci+2 · · · cn, ϕ(ci+1ci+2 · · · cn))
and o = (d1d2 · · · drc1c2 · · · ci, a, h(a))D.

We observe that T ′ is injective due to the second and third component of
the output and length-preserving. On input w ∈ Λ∗, T ′ outputs a compressed
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version of T (h(w)) where up to m symbols are compressed and the index D,
R, or N determines the actions on the compressed pushdown of the following
IDPDA M ′ which is defined to work with a compressed pushdown alphabet com-
prising exactly m symbols. Additionally, the two topmost (compressed) push-
down symbols are simulated in the state set and not in the pushdown store.
To realize this, we need an additional dummy pushdown symbol ⊥D. Formally,
we define M ′ = 〈Q′, Σ′, Γ ′, (q0, λ), F ′,⊥, δ′

D, δ′
R, δ′

N 〉 with Γ ′ = Γm∪{⊥D}, state
set Q′ = Q × (Γ≤m−1 ∪ Γ≤m−1 × Γm), and F ′ = F × (Γ≤m−1 ∪ Γ≤m−1 × Γm).

Case 1: We have a ∈ ΛN .
A: Let (q, Z) with q ∈ Q and Z ∈ Γ≤m−1 be a state in Q′. Then, we set

δ′
N ((q, Z), a, Z ′) = (q, Z) for all Z ′ ∈ Γ ′ ∪ {⊥}.

B: Let (q, Z, Z ′) with q ∈ Q, Z ∈ Γ≤m−1, and Z ′ ∈ Γm be a state in Q′.
Then, we set δ′

N ((q, Z, Z ′), a, Z ′′) = (q, Z, Z ′) for all Z ′′ ∈ Γ ′ ∪ {⊥}.

Case 2: We have (a1a2 · · · an, b, d) ∈ (Σ≤m × Λ × Δ≤m)X with X ∈ {D,N,R}.
A: Let (q, c1c2 · · · cr) with q ∈ Q and c1c2 · · · cr ∈ Γ≤m−1 be a state in Q′.

Consider the computation (q, a1a2 · · · an, c1c2 · · · cr) 
n (q′, λ, Y1Y2 · · · Yk) in the
IDPDA M with q′ ∈ Q and Yi ∈ Γ for 1 ≤ i ≤ k.

1. If X = N , then we know that k ≤ m − 1 due to the definition of T ′ and we
set δ′

N ((q, c1c2 · · · cr), (a1a2 · · · an, b, d),⊥) = (q′, Y1Y2 · · · Yk).
2. If X = D, then we know that m ≤ k ≤ m + r and we set

δ′
D((q, c1c2 · · · cr), (a1a2 · · · an, b, d),⊥) =

((q′, Y1Y2 · · · Yk−m), Yk−m+1 · · · Yk),⊥D).

3. The case X = R does not occur, since the pushdown height is less than m.

B: Let (q, c1c2 · · · cr, Z1Z2 · · · Zm) with q ∈ Q, c1c2 · · · cr ∈ Γ≤m−1, and
Z1Z2 · · · Zm ∈ Γm be a state in Q′. Let us consider the following computation
in M : (q, a1a2 · · · an, c1c2 · · · crZ1Z2 · · · Zm) 
n (q′, λ, Y1Y2 · · · Yk) with q′ ∈ Q
and Yi ∈ Γ for 1 ≤ i ≤ k.

1. If X = N , then we know that m ≤ k ≤ m + r and we set, for Z ∈ Γ ′,

δ′
N ((q, c1c2 · · · cr, Z1Z2 · · · Zm), (a1a2 · · · an, b, d), Z) =

(q′, Y1Y2 · · · Yk−m, Yk−m+1 · · · Yk).

2. If X = D, then we know that 2m ≤ k ≤ 2m + r and we set, for Z ∈ Γ ′,

δ′
D((q, c1c2 · · · cr, Z1Z2 · · · Zm), (a1a2 · · · an, b, d), Z) =

((q′, Y1Y2 · · · Yk−2m, Yk−2m+1 · · · Yk−m), Yk−m+1 · · · Yk).

3. If X = R, then we know that k ≤ m − 1 and we set, for Z ∈ Γ ′ \ {⊥D},

δ′
R((q, c1c2 · · · cr, Z1Z2 · · · Zm), (a1a2 · · · an, b, d), Z) =

(q′, Y1Y2 · · · Yk, Z).

For Z = ⊥D, we set δ′
R((q, c1c2 · · · cr, Z1Z2 · · · Zm), (a1a2 · · · an, b, d),⊥D) =

(q′, Y1Y2 · · · Yk).
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For w ∈ Λ∗, M ′ accepts a compressed version of T (h(w)) if and only if T (h(w))
is accepted by M . Thus, (M ′, T ′) accepts the inverse homomorphic image of
L(M,T ). ��

Next, we turn to non-closure results for TDPDAs even if the signatures are
compatible and the transducers are identical.

Lemma 9. L (TDPDA) is not closed under concatenation, Kleene star, rever-
sal, and length-preserving homomorphism.

Proof. Let L = { anbn | n ≥ 1 } ∪ { bmam | m ≥ 1 }. Language L can easily be
accepted by a TDPDA (M,T ). The sequential transducer T first maps a to a
and then b to b if the first symbol read is an a. Otherwise, reading a b first,
the transducer maps first b to a and then a to b. In any case, the language
output by the transducer is { anbn | n ≥ 1 } which can be accepted by an
IDPDA M . Now, let us consider the concatenation of L(M,T ) and assume that
a TDPDA for L(M,T )2 can be constructed. Since a TDPDA can simulate a
deterministic finite automaton in a second component of its state set, we obtain
that L(M,T )2 ∩ a+b+a+ = { anbn+mam | n,m ≥ 1 } belongs to L (TDPDA).
This is a contradiction to the proof of Lemma 4. Thus, L (TDPDA) is not closed
under concatenation even if the TDPDAs have compatible signatures.

The non-closure under Kleene star and length-preserving homomorphism can
be shown similarly observing that L∗ ∩ a+b+a+ = { anbn+mam | n,m ≥ 1 } and
h(L′) = L for L′ = { anbncmdm | n,m ≥ 1 }, which is accepted by some IDPDA,
and homomorphism h such that h(a) = h(d) = a and h(b) = h(c) = b.

Finally, consider language { cn$1bman | n,m ≥ 0 } ∪ { dm$2bman | n,m ≥ 0 }
which is accepted by some IDPDA. On the other hand, its reversal is not even
a real-time deterministic context-free language. ��
Remark 10. We would like to remark that the language classes L (TDPDA) and
L (IDPDA) are not closed under intersection, union, and concatenation in case of
incompatible signatures. It suffices to consider the intersection of the languages
{ anbncm | n,m ≥ 1 } and { anbmcm | n,m ≥ 1 } each of which is accepted by
some IDPDA. However, the intersection leads to { anbncn | n ≥ 1 } which is
not context free. Due to the closure under complementation, both classes cannot
be closed under union. For non-closure under concatenation we consider the
languages { anbn | n ≥ 1 } and { bmam | m ≥ 1 } each of which is accepted by
an IDPDA, but their concatenation is not even accepted by any TDPDA due to
Lemma 4.

The closure properties discussed in this section are summarized in the fol-
lowing Table 1.

5 Decidability Questions

We recall (see, for example, [10]) that a decidability problem is semidecidable
(decidable) if and only if the set of all instances for which the answer is ‘yes’ is
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Table 1. Closure properties of the language classes discussed. Symbols ∪c, ∩c, and ·c
denote union, intersection, and concatenation with compatible signatures. Such oper-
ations are not defined for DPDAs and marked with ‘—’.

∪ ∩ ∪c ∩c · ·c ∗ hl.p. h
−1 REV

DFA yes yes yes yes yes yes yes yes yes yes yes

IDPDA yes no no yes yes no yes yes no no yes

TDPDA yes no no yes yes no no no no yes no

DPDA yes no no — — no — no no yes no

recursively enumerable (recursive). Clearly, any decidable problem is also semide-
cidable, while the converse does not generally hold. An immediate consequence of
the effective construction of an equivalent DPDA from a given TDPDA shown in
Theorem 3 is the decidability of the decidable problems for deterministic context-
free languages. Since an IDPDA is a DPDA by definition, the decidability carries
over to the family L (IDPDA) as well.

Lemma 11. The problems of equivalence, emptiness, universality, finiteness,
infiniteness, and regularity are decidable for TDPDAs and IDPDAs.

It is known that the inclusion problem for deterministic context-free lan-
guages is undecidable. However, for TDPDAs with compatible signatures it is
decidable.

Theorem 12. Let (M,T ) and (M ′, T ) be two TDPDAs with compatible signa-
tures. Then the inclusion of both TDPDAs is decidable.

Proof. The inclusion L(M,T ) ⊆ L(M ′, T ) can equivalently be expressed by
L(M,T ) ∩ L(M ′, T ) = ∅. Since by Lemma 7 the family L (TDPDA) is closed
under complementation, we obtain that L(M ′, T ) is accepted by some TDPDA
(M ′′, T ) having the same signature as M ′. Since L (TDPDA) is closed under
intersection with compatible signatures by Lemma 7, we obtain a TDPDA
(M ′′′, T ) which accepts L(M,T ) ∩ L(M ′, T ) and whose emptiness can be tested
by Lemma 11. We conclude that the inclusion L(M,T ) ⊆ L(M ′, T ) is decidable.

��
The role played by the compatibility of the signatures is once more empha-

sized by the following theorem which states that the inclusion problem becomes
even non-semidecidable for incompatible signatures.

The non-semidecidability of the inclusion problem is shown by reduction of
the emptiness problem of Turing machines. It is well known that emptiness for
such machines is not semidecidable (see, for example, [10]).

In [9] complex Turing machine computations have been encoded in small
grammars. Basically, we consider valid computations of Turing machines. It suf-
fices to consider deterministic Turing machines with one single tape and one
single read-write head. Without loss of generality and for technical reasons,
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we assume that the Turing machines can halt only after an odd number of
moves, accept by halting, make at least three moves, and cannot print a blank.
A valid computation is a string built from a sequence of configurations passed
through during an accepting computation.

Let Q be the state set of some Turing machine M , where q0 is the initial
state, T ∩ Q = ∅ is the tape alphabet containing the blank symbol, Σ ⊂ T
is the input alphabet, and F ⊆ Q is the set of accepting states. Then a
configuration of M can be written as a word of the form T ∗QT ∗ such that
t1 · · · tiqti+1 · · · tn is used to express that M is in state q, scanning tape symbol
ti+1, and t1 to tn is the support of the tape inscription. For our purpose the
valid computations VALC(M) of M are now defined to be the set of strings of
the form $w̄1$wR

2 $w̄3$wR
4 $ · · · $w̄2n−1$wR

2n$, where T̄ and Q̄ are disjoint copies
of T and Q, $ /∈ T ∪ Q ∪ T̄ ∪ Q̄, w2i ∈ T ∗QT ∗ and w2i−1 ∈ T̄ ∗Q̄T̄ ∗ are con-
figurations of M , 1 ≤ i ≤ n, w̄1 is an initial configuration of the form q̄0Σ̄

∗,
w2n is an accepting configuration of the form T ∗FT ∗, and wi+1 is the successor
configuration of wi, 1 ≤ i ≤ 2n − 1.

The valid computations can be decomposed into VALC1(M) which is the set
of strings of the form $w̄1$wR

2 $w̄3$wR
4 $ · · · $w̄2n−1$wR

2n$, where w̄1 is an initial
and w2n is an accepting configuration, and w̄2i+1 is the successor configuration
of w2i, 1 ≤ i ≤ n − 1, and VALC2(M) which is the set of strings of the form
$w̄1$wR

2 $w̄3$wR
4 $ · · · $w̄2n−1$wR

2n$, where w̄1 is an initial and w2n is an accept-
ing configuration, and w2i is the successor configuration of w̄2i−1, 1 ≤ i ≤ n.
Clearly, the intersection VALC1(M) ∩ VALC2(M) is exactly VALC(M). The
next lemma gives a construction of an IDPDA accepting VALC(M).

Lemma 13. Let M be a Turing machine. Then IDPDAs accepting VALC1(M)
and VALC2(M) can effectively be constructed from M .

Proof. The IDPDA M1 accepting VALC1(M) uses the input symbols ΣN = {$},
ΣD = Q̄ ∪ T̄ , ΣR = Q ∪ T . Whenever it starts to read a configuration with odd
number, it pushes all symbols read. In addition it remembers the last three
symbols read in its finite control until the state symbol of that configuration is
the middle one of these three. When the $ appears in the input, M1 changes
its mode. Now it pops a symbol for every symbol read, thus, verifying that the
current configuration is the reversal of the successor configuration of the previous
one. Both configurations differ only locally at the state symbol. But from the
information remembered in the finite control, the differences can be computed
and verified. In addition M1 checks in its finite control whether w̄1 is an initial
configuration, and whether the last configuration is an accepting one.

The IDPDA M2 accepting VALC2(M) works similarly. It uses the input
symbols ΣN = {$}, ΣD = Q ∪ T , and ΣR = Q̄ ∪ T̄ instead. In addition it just
reads w̄1 (popping from the empty pushdown). ��

Now we are prepared to prove the undecidability of the inclusion. Since it
is shown for IDPDAs, the result carries over to TDPDAs even if the associated
transducers are the same.
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Theorem 14. Let (M,T ) and (M ′, T ) be two TDPDAs. Then the inclusion
L(M,T ) ⊆ L(M ′, T ) is not semidecidable. Let M and M ′ be two IDPDAs. Then
the inclusion L(M) ⊆ L(M ′) is not semidecidable.

Proof. We have to show the assertion for IDPDAs only, since IDPDAs are par-
ticular TDPDAs. Let M be a Turing machine. From M the two IDPDAs M1

and M2 accepting VALC1(M) and VALC2(M) are constructed according to
Lemma 13. Since the family L (IDPDA) is closed under complementation, an
IDPDA M ′ accepting L(M2) can be constructed.

In contrast to the assertion, assume that the inclusion problem is semide-
cidable. Then the inclusion L(M1) ⊆ L(M ′) = L(M2) is semidecidable. This is
equivalent to semidecide L(M1) ∩ L(M2) = ∅ which implies that the emptiness
of VALC(M), and hence of L(M), is semidecidable. This is a contradiction. ��

We conclude this section with another decidability problem. Given a deter-
ministic pushdown automaton M and a sequential transducer T , is (M,T ) a
TDPDA or not? Essentially, this question reduces to the question of whether M
is an IDPDA or not. If the output alphabet of T is equal to the input alphabet
of M and T is injective and length-preserving, then (M,T ) is a TDPDA if and
only if M is an IDPDA.

First we present an algorithm which tests whether a given DPDA is an
IDPDA.

Theorem 15. Let M be a DPDA. It is decidable whether M is an IDPDA.

Proof. In order to decide whether a given deterministic pushdown automaton
M = 〈Q,Σ, Γ, q0, F,⊥, δ〉 is input driven, in general, it is not sufficient to inspect
the transition function since it may contain surplus transitions for situations
that never appear in any computation. These could be transitions with λ-moves
or transitions that perform conflicting pushdown operations on the same input
symbol.

So, essentially, it remains to be tested whether a transition is applied in some
computation or whether it is surplus. To this end, we label the transitions of δ
uniquely, say by the set of labels R = {r1, r2, . . . , rm}, for some m ≥ 0. Then
we consider words over the alphabet R. On input u ∈ R∗ a DPDA M̃ with all
states final tries to imitate a computation of M by applying in every step the
transition whose label is currently read. If M̃ accepts some input u1u2 · · · un, then
there is a computation (not necessarily accepting) of M that uses the transitions
u1u2 · · · un in this order. If conversely there is a computation of M that uses the
transitions u1u2 · · · un in this order, then u1u2 · · · un is accepted by M̃ . So, in
order to determine whether a transition with label ri of M is useful, it suffices
to decide whether M̃ accepts an input containing the letter ri. This decision
can be done by testing the emptiness of the deterministic context-free language
L(M̃) ∩ R∗riR∗.

Assume that M ′ is constructed from M by deleting all surplus transitions.
Clearly, M ′ and M are equivalent. Now, it is checked that there is no transition
with a λ-move, and for any input symbol we consider all transitions on this
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symbol and check whether the pushdown operations are identical. If and only if
this is true for all symbols, M is an IDPDA. ��

To decide the general question of whether (M,T ) is a TDPDA it is now
sufficient to polish the transducer a little bit.

Theorem 16. Let M be a DPDA and T be a DST. It is decidable whether
(M,T ) is a TDPDA.

Proof. By applying Theorem 15 it is first checked that M is an IDPDA. Second,
it has to be verified that the output alphabet of T equals the input alphabet
of M . Since after the first step all surplus transitions of M are removed, its input
alphabet can be determined by inspection of the remaining transitions. Surplus
transitions can be removed from T along the lines of the proof of Theorem 15.
It should be noted that the emptiness of the output of a DST can be tested the
same way as emptiness is tested for deterministic finite automata. After having
removed surplus transitions from T , its output alphabet and the question of
whether T is length-preserving can be determined by inspection of the remain-
ing transitions. To conclude the proof it suffices to decide the injectivity of T .
To this end, we use the result that the functionality of nondeterministic sequen-
tial transducers is decidable (see, for example, [17]). Furthermore, it is known
(see, for example, [4,18]) that nondeterministic sequential transducers are closed
under inversion. To decide the injectivity of T , we construct from T its inverse
transducer T−1 and test its functionality. Now, T is injective if and only if T−1

is functional. ��
The previous decidability problem concerns devices. For the languages rep-

resented by the devices, the decidability status is an open problem: Let M be
a deterministic pushdown automaton and T be a sequential transducer. Does
L(M,T ) belong to L (TDPDA)?

6 Representation Theorems

In [15] Myhill has proved that the regular languages are exactly the closure
of the finite languages under union, concatenation and iteration. Such results
open the possibility to characterize certain language families by, in some sense,
simpler ones and some kind of operations. Besides they shed some light on the
structure of the family itself that may be used as powerful reduction tool in
order to simplify some proofs or constructions.

Here we turn to characterize the context-free languages by the closure of the
deterministic (t)input-driven pushdown automata languages under λ-free homo-
morphism. Thus replacing the nondeterminism and free pushdown operations
on the input symbols by λ-free homomorphisms and vice versa.

Theorem 17. (a) Let L be a language belonging to L (IDPDA) and h be a
λ-free homomorphism. Then h(L) is a context-free language.
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(b) Let L be a context-free language. Then there exist a λ-free homomorphism h
and an IDPDA M so that L = h(L(M)).

Proof. (a) Since L (IDPDA) is included in the context-free languages and the
latter are closed under λ-free homomorphisms, the assertion follows immediately.

(b) Let the context-free language L be given as L(M ′) for some nonde-
terministic pushdown automaton (NPDA) M ′ = 〈Q′, Σ′, Γ ′, q′

0, F
′,⊥, δ′〉, where

the transition function maps Q′×Σ′×(Γ ′∪{⊥}) to the finite subsets of Q′×Γ ′∗.
We may assume that M ′ never pushes more than one symbol and that – except
for pop moves – it never modifies the symbol read at the top of the pushdown
store. Clearly, any NPDA can be transformed into such a normal form. Now, the
transition function δ′ can be represented as finite list of transitions of the form
Q′ × Σ′ × (Γ ′ ∪ {⊥}) → Q′ × (Γ ′ ∪ {pop, top}). We fix an arbitrary list T of
these transitions and number the elements t1, t2, . . . , tm, for some m ≥ 0.

The IDPDA M = 〈Q,Σ, Γ, q0, F,⊥, δN , δD, δR〉 is defined by Q = Q′, Γ = Γ ′,
q0 = q′

0, F = F ′. Furthermore, the input alphabet is given through

ΣN = { [a, t,N ] | a ∈ Σ′, t ∈ T },

ΣD = { [a, t,D] | a ∈ Σ′, t ∈ T }, and
ΣR = { [a, t, R] | a ∈ Σ′, t ∈ T }.

To conclude the definition of M , for a ∈ Σ′, p, q ∈ Q, z, z′ ∈ Γ , the transition
functions are set as

δN (p, [a, t,N ], z) = q if δ(p, a, z) = (q, top) is transition t in T,

δD(p, [a, t,D], z) = (q, z′) if δ(p, a, z) = (q, z′) is transition t in T, and
δR(p, [a, t, R], z) = q if δ(p, a, z) = (q, pop) is transition t in T.

The λ-free homomorphism h maps the input triples to their first component,
that is, h([a, t, S]) = a, for a ∈ Σ′, t ∈ T , and S ∈ {N,D,R}.

In order to show that h(L(M)) = L = L(M ′) we encode accepting computa-
tions of M ′ as follows. Let w = a1a2 · · · an ∈ Σ′∗ be an input from L(M ′). Then
the set ϕ(w) contains the word

[a1, t1, S1][a2, t2, S2] · · · [an, tn, Sn]

if and only if there is an accepting computation of M ′ so that, for 1 ≤ i ≤ n,

(q′
0, a1a2 · · · an, λ) 
∗ (p, aiai+1 · · · an, zγ) 
 (q, ai+1 · · · an, γ1γ)

and δ′(p, ai, z) = (q, op) is transition ti in T and Si = N , γ1 = z if op = top,
Si = D, γ1 = z′z if op = z′ ∈ Γ , Si = R, γ1 = λ if op = pop.

Next we consider the language accepted by M . The idea of the construction
is that M simulates M ′. To this end, it gets some information on the transition
chosen by M ′ as well as on the type of pushdown operation. This information is
provided as second and third component of the input symbols. So, being in some
state p on input symbol [a, t, S], automaton M tries to simulate transition t of M ′.
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If this transition fits to state p, input symbol a, and the type of the pushdown
operation S, then it is simulated by M ; otherwise the transition functions δ′ are
undefined and the simulation blocks rejecting. So, for all w ∈ L(M ′) the set ϕ(w)
is accepted by M . We conclude L(M) ⊇ ϕ(L(M ′)).

Now let w′ = [a1, t1, S1][a2, t2, S2] · · · [an, tn, Sn] ∈ L(M). By construction
this implies that M ′ accepts w = a1a2 · · · an in a computation that uses the
sequence of transitions t1t2 · · · tn. Therefore, w′ ∈ ϕ(w) and, thus, L(M) ⊆
ϕ(L(M ′)).

Together we have ϕ(L(M ′)) = L(M). Furthermore, since the homomor-
phism h simply removes the last two components of the input triple, we obtain
h(ϕ(L(M ′))) = L(M ′) and, thus, h(L(M)) = L(M ′). ��

The proof of the previous theorem reveals immediately that the homomorphic
characterization of the context-free languages is also by tinput-driven pushdown
automata.

Corollary 18. A language L is context free if and only if there is a λ-free
homomorphism h and a TDPDA M so that L = h(L(M)).

7 Conclusion

In this paper, we have introduced a generalization of input-driven automata in
such a way that the input is preprocessed by an injective and length-preserving
deterministic sequential transducer. We obtained that almost all positive clo-
sure and decidability results for IDPDAs with respect to compatible signatures
could be carried over to TDPDAs. It would be interesting to know how these
results vary when the properties of the underlying transducer are weakened or
strengthened. Possible generalizations would be, for example, non-injective or
nondeterministic sequential transducers.
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