
Universality of Graph-controlled Leftist
Insertion-deletion Systems with Two States

Sergiu Ivanov1 and Sergey Verlan1,2(B)

1 Laboratoire d’Algorithmique, Complexité et Logique,
Université Paris Est – Créteil Val de Marne,
61, av. gén. de Gaulle, 94010 Créteil, France

sergiu.ivanov@u-pec.fr
2 Institute of Mathematics and Computer Science,

Academy of Sciences of Moldova,
Academiei 5, Chisinau MD-2028, Moldova

verlan@u-pec.fr

Abstract. In this article, we consider leftist insertion-deletion systems,
in which all rules have contexts on the same side, and may only insert
or delete one symbol at a time. We start by introducing extended rules,
in which the contexts may be specified as regular expressions, instead of
fixed words. We then prove that leftist systems with such extended rules
and two-state graph control can simulate any arbitrary 2-tag system.
Finally, we show how our construction can be simulated in its turn by
graph-controlled leftist insertion-deletion systems with conventional rules
of sizes (1, 1, 0; 1, 2, 0) and (1, 2, 0; 1, 1, 0) (where the first three numbers
represent the maximal size of the inserted string and the maximal size
of the left and right contexts respectively, while the last three numbers
provide the same information about deletion rules), which implies that
the latter systems are universal.

1 Introduction

Abstract insertion and deletion operations are simple, yet powerful, special cases
of string rewriting rules. Intuitively, insertion is adding a substring at a site
having a specified left, right, or both contexts, while deletion is removing a
substring from a site having a specified left, right, or both contexts. The precursor
of insertion was context adjoining, first introduced by S. Marcus in the seminal
paper [19] with a linguistic motivation, and then further developed in [24,25].
The modern definition of insertion was introduced in [6] in the form of semi-
contextual grammars.

The works [7,8] defined insertion differently, by generalising Kleene’s opera-
tions of concatenation and closure [15]. Indeed, insertion can be seen as concate-
nation which is allowed to happen anywhere in the string. Following a similar
approach, the work [12] introduced the dual operation of deletion as a gener-
alised quotient operation which does not necessarily happen at the ends of the
string. The paper [14] first considers systems containing finite sets of insertion
c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 79–93, 2015.
DOI: 10.1007/978-3-319-23111-2 6



80 S. Ivanov and S. Verlan

and deletion rules working together: insertion-deletion systems. Such a system
works in generative mode: it sequentially applies insertion or deletion rules to
one of its finitely many axioms; the generated language includes all the terminal
words obtained in the process.

Exciting sources of motivation for studying insertion and deletion opera-
tions were found in biology [4,13,26,28]. A well known one is the theoretically
conceived process of mismatched annealing of DNA, which effectively results
in insertions or deletions of certain segments of the strands [26]. In the for-
mal framework of insertion and deletion operations, such modifications to DNA
strands are modelled by context-free rules, i.e. insertion and deletion rules which
can be applied anywhere in the string. The expressive power of such context-free
operations was studied in the article [20], for example, which shows that context-
free insertion-deletion operations of sizes (3, 0, 0; 2, 0, 0) and (2, 0, 0; 3, 0, 0) can
simulate arbitrary string rewriting rules and are thus computationally complete.
For a detailed overview of the computational power of context-free insertion
and deletion operations, the reader is referred to [29]. For surveys of results on
insertion-deletion systems in general, we refer to [16,30].

Another biological phenomenon which can be seen as a sequence of inser-
tions and deletions is RNA editing, which was discovered in some species of
protozoa [1,2]. RNA editing consists in inserting or deleting fragments of mes-
senger RNA, and is guided by an anchor segment always located on one side of
the edited locus. This directly motivates the study of one-sided insertion-deletion
systems, i.e. systems in which all rules must have the context on one and the same
side. The works [17,18,21] investigate the power of such systems and give several
computational completeness results as a function of the size of the rules, as well
as describe some families of one-sided systems which are not computationally
complete. For these families, additional control mechanisms can be considered
which often increase the expressive power, for example, matrix control [23], or
semi-conditional and random context control [10].

One of the most frequently discussed variant of controlled insertion and
deletion are graph-controlled insertion-deletion systems (sometimes also called
insertion-deletion P systems). The work [18] shows that five-state graph con-
trol increases the power of small one-sided insertion-deletion rules to computa-
tional completeness. In [5], this result is improved upon and four-state graph
control is shown to suffice for generating all recursively enumerable languages.
The article [11] considers insertion-deletion systems of sizes (1, 2, 0; 1, 1, 0) and
(1, 1, 0; 1, 2, 0), and proves that adding three-state graph-control to them results
in computationally complete devices.

In this paper, we focus on a special variant of one-sided insertion-deletion
systems, introduced in [9]: leftist systems. In such systems, the rules can only
insert or delete one symbol at a time, and must use contexts on the same side.
In [9], it is shown that all leftist insertion-deletion systems can be simulated
by systems of sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0), and that these systems
can generate all regular languages. Moreover, [9, Theorem 3.3] shows that leftist
systems can generate non-context-free languages.



Universality of Graph-controlled Leftist Insertion-deletion Systems 81

We continue the exploration of the expressive power of leftist systems and
show that that adding two-state graph control to insertion-deletion systems of
sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0) renders them capable of simulating any 2-
tag system (Theorems 4 and 5). That 2-tag systems are universal [3,22] implies
therefore the universality of two-state graph-controlled leftist insertion-deletion
systems. Our proofs are based on an extension to insertion and deletion rules we
introduce in Definition 1, which allows the specification of contexts as regular
expressions instead of single fixed words. We show that graph-controlled leftist
systems with such extended contexts can simulate any 2-tag system (Theorem 1).
Interestingly, in the non-controlled case, allowing extended context in leftist sys-
tems does not augment computational power, as normal leftist systems can sim-
ulate regular contexts (Theorems 2 and 3). While the same argument does not
generally work in the graph-controlled case, it does apply to the construction from
the proof of Theorem 1, which leads to the universality result mentioned above.

2 Preliminaries

We do not present here definitions concerning standard concepts of the theory
of formal languages and we refer to [27] for more details. We denote by |w| the
length of a word w, by card(A) the cardinality of the alphabet A and by REG,
CF , CS, and RE the families of regular, context-free, context-sensitive, and
recursively enumerable languages, respectively.

An m-tag system is the tuple TS = (m,A, P ), where m is a positive integer,
A = {a1, . . . , an+1} is a finite alphabet, and P contains rules of the form ai → αi,
where αi ∈ A∗, for 1 ≤ i ≤ n. The letter an+1 is called the halting symbol.

A configuration of the tag system TS is a word w ∈ A∗. The system passes
from the configuration w = ai1 . . . aimw′, 1 ≤ ij ≤ n + 1, 1 ≤ j ≤ m to the next
configuration z by applying one of the productions ai → αi: the first m symbols
of w are erased and αi is added to the end of the word: w =⇒ z, if z = w′αi.

A computation of TS over the word x ∈ V ∗ is a sequence of configurations
x =⇒ . . . =⇒ y, where either y = an+1ai1 . . . aim−1y

′, or |y| < m. In this case we
say that TS halts on x and that y is the result of the computation of TS over
x, which is denoted by y = TS(x).

Minsky proved that 2-tag systems are universal [3,22]. Moreover, according
to his proof, it is sufficient to consider only tag systems that halt only on the
halting symbol and do not have empty productions.

An insertion-deletion system is a construct ID = (V, T,A, I,D), where:

– V is an alphabet;
– T ⊆ V is the terminal alphabet (the symbols from V \ T are called non-
terminals);

– A ⊆ V ∗ is the set of axioms;
– I,D are finite sets of triples of the form (u, α, v), where u, α (α �= λ), and v

are strings over V .



82 S. Ivanov and S. Verlan

The triples in I are insertion rules, and those in D are deletion rules. An insertion
rule (u, α, v)ins ∈ I indicates that the string α can be inserted between u and
v (which corresponds to the rewriting rule uv → uαv), while a deletion rule
(u, α, v)del ∈ D indicates that α can be removed from between the contexts u
and v (which corresponds to the rewriting rule uαv → uv). By =⇒ we denote
the relation defined by the insertion or deletion rules and by =⇒∗ the reflexive
and transitive closure of =⇒.

The language generated by ID = (V, T,A, I,D) is defined by

L(ID) = {w ∈ T ∗ | x =⇒∗ w for some x ∈ A}.

The complexity of an insertion-deletion system ID = (V, T,A, I,D) is
described by the vector (n,m,m′; p, q, q′) called size, where

n = max{|α| | (u, α, v)ins ∈ I}, p = max{|α| | (u, α, v)del ∈ D},

m = max{|u| | (u, α, v)ins ∈ I}, q = max{|u| | (u, α, v)del ∈ D},

m′ = max{|v| | (u, α, v)ins ∈ I}, q′ = max{|v| | (u, α, v)del ∈ D}.

We also denote by INSm,m′
n DELq,q′

p all the languages generated by the
families of insertion-deletion systems of size (n,m,m′; p, q, q′). Moreover, we
define the total size of the system as the sum of all numbers above: ψ =
n + m + m′ + p + q + q′.

If one of the parameters n, m, m′, p, q, or q′ is not bounded, then we write
instead the symbol ∗. If one of the numbers from the pairs m, m′ and q, q′ is equal
to zero (while the other is not), then we say that the corresponding families have
a one-sided context. If the m′ = q′ = 0, and n = p = 1, the insertion-deletion
systems are called leftist.

We also recall that the family of insertion-deletion languages of size
(1, 1, 0; 1, 1, 0) is incomparable with REG: (CF \ REG) ∩ INS1,0

1 DEL0,0
0 �= ∅

and (ba)+ �∈ INS1,0
1 DEL1,0

1 [18].
A graph-controlled insertion-deletion system is a construct

Π = (V, T,A,H, i0, If , R), where

– V is a finite alphabet,
– T ⊆ V is the terminal alphabet,
– A ⊆ V ∗ is a finite set of axioms,
– H is a set of states of Π,
– i0 ⊆ H is the initial state,
– If ⊆ H is the set of final states, and
– R is a finite set of rules of the form (l, r, E), where r is an insertion or deletion

rule over V , l ∈ H, and E ⊆ H.

The relation {(i, j) | (i, r, E) ∈ R and j ∈ E} defines a graph, called the
communication graph of the system. We remark that in the literature the term
“graph control” often implies that there is a one-to-one correspondence between
the label i and the rule (i, r, E) ∈ R. This corresponds to the point of view that



Universality of Graph-controlled Leftist Insertion-deletion Systems 83

the rules are located on the edges of the communication graph. Another point of
view is to place the rules in the nodes of the communication graph. In this paper
we do not consider such restrictions, as all corresponding models are equivalent
in the computational power and have mostly identical descriptional complexity
parameters.

As is common for graph controlled systems, a configuration of Π is rep-
resented by a pair (w, i), where i ∈ H is the current state and w is the
current string. A transition (w, i) =⇒ (w′, j) is performed if there is a rule
(i, (u, α, v)t, E) in R such that w =⇒t w′ by the insertion/deletion rule (u, α, v)t,
t ∈ {ins, del}, and j ∈ E. The result of the computation consists of all terminal
strings reaching a final state from an axiom and the initial label, i.e.,

L(Π) = {w ∈ T ∗ | (w0, i0) =⇒∗ (w, if ), for some w0 ∈ A, if ∈ If}.

The family of languages generated by graph-controlled insertion-deletion sys-
tems having k states and insertion/deletion rules of size (n,m,m′; p, q, q′) is
denoted as GCkINSm,m′

n DELq,q′
p . As we deal with universality we define the

notion of the computation of a system Π on an input word w with respect to a
recursive coding φ, denoted as Π(φ(w)). This can be obtained by replacing the
set of axioms A from the definition of Π by {φ(w)} and then by evolving Π as
usual, L(Π) being considered as the result of the computation.

3 Universality Results

In this section we extend insertion and deletion rules to contexts given by regular
expressions rather than by simple strings.

Definition 1. Given an alphabet V , an extended insertion rule r is the tuple
(El, x, Er)ins, where x ∈ V ∗ and El and Er are regular expressions over V .
The rule r can be applied to the string uv to yield uxv, if u = u1u2 such that
u2 ∈ L(El) and v = v1v2 such that v1 ∈ L(Er). An extended deletion rule is
defined in a similar way.

A (graph-controlled) insertion-deletion system with regular contexts is a
(graph-controlled) insertion-deletion system in which extended insertion and
deletion rules are allowed.

We will use the same notation for families of languages generated by insertion-
deletion systems with regular contexts as for those generated by conventional
ones: INSm,m′

n DELq,q′
p , where m, m′, q, and q′ will be replaced by REG if

the corresponding contexts of insertion or deletion rules are allowed to contain
regular expressions.

We will now show that any 2-tag system can be simulated by a graph-
controlled insertion-deletion system with regular contexts. Next, we show
that regular contexts can be reduced to contexts of size (1, 1, 0; 1, 2, 0) or
(1, 2, 0; 1, 1, 0).



84 S. Ivanov and S. Verlan

Theorem 1. For every tag system TS, there exists a two-state graph-controlled
insertion-deletion system Π of size (1, REG, 0; 1, REG, 0) and a recursive coding
φ such that the following conditions hold:

– Π(φ(w)) = {TS(w)}, if TS halts on w, and
– Π(φ(w)) = ∅, if TS does not halt on w.

Proof. Consider an arbitrary tag system TS = (2,A, P ). We will now
construct the extended graph-controlled insertion-deletion system Π(β) =
(V,A, ∅, {1, 2}, 1, {1}, R) simulating the computation of TS on the word β ∈ A∗.
The alphabet V is defined as follows:

V = {B̄, B, S, F,E,E′, Z, Z ′} ∪ {Ri, R
′
i, R

′′
i , R′′′

i , Pi | ai → αi ∈ P} ∪ A.

The coding φ is defined as φ(β) = B̄B β SEE′ F .
The simulation of TS happens in several phases; accordingly, we split the

rules in R into the following logical groups:

1. generation of the control string of alternating Z and Z ′, for each a ∈ A:

r11 :
(
1, (S, Z, λ)ins, {1}),

r12 :
(
1, (S, Z ′, λ)ins, {1}),

r13 :
(
1, (a, S, λ)del, {1}),

r14 :
(
1, (a(ZZ ′)∗, E, λ)del, {1}),

r15 :
(
1, (Z ′, E′, λ)del, {2});

2. deletion of two symbols at the left end of the string and generation of the
signal Ri, for each a ∈ A:

r21 :
(
2, (B, R′

i, λ)ins, {2}),
r22 :

(
2, (R′

iai, R′′
i , λ)ins, {2}),

r23 :
(
2, (R′′

i a, R′′′
i , λ)ins, {2}),

r24 :
(
2, (R′′

i , a, λ)del, {1}),

r25 :
(
1, (R′

i, ai, λ)del, {1}),
r26 :

(
1, (R′

i, R′′
i , λ)del, {1}),

r27 :
(
1, (B, R′

i, λ)del, {1}),
r28 :

(
1, (BR′′′

i , Ri, λ)ins, {2}),

r29 :
(
2, (B, R′′′

i , λ)del, {1});
3. insertion of the right-hand side of a production of TS, for each a,b ∈ A, and

ai → αi ∈ P :
r31 :

(
1, (Ria, Ri, λ)ins, {1}),

r32 :
(
1, (a, Ri, λ)del, {1}),

r33 :
(
1, (B, Ri, λ)del, {1}),

r34 :
(
1, (BA∗RiZ, Pi, λ)ins, {1}),

r35 :
(
1, (aZPi, b, λ)ins, {1}),

r36 :
(
1, (a, Z, λ)del, {1}),

r37 :
(
1, (aPiαi, Z ′, λ)del, {1}),

r38 :
(
1, (a, Pi, λ)del, {2}),



Universality of Graph-controlled Leftist Insertion-deletion Systems 85

4. checking of the halting condition and cleanup, where an+1 is the halting
symbol of TS:

r41 :
(
2, (B̄, B, λ)del, {1}),

r42 :
(
1, (B̄an+1A∗, F, λ)del, {1}),

r43 :
(
1, (∅, B̄, ∅)del, {1}).

The simulation of the tag system TS by Π is done in 3 stages. During the first
stage a repeating sequence of words ZZ ′ is inserted, their number being equal to
the number of steps TS needs to reach the final configuration. This corresponds
to the following computation in Π: (B̄B w SEE′ F, 1) =⇒∗ (B̄Bw(ZZ ′)kF, 2).
The second stage repeatedly simulates the application of a production ai → αi

by erasing the two starting symbols and by adding the corresponding appendant
to the end: (B̄Baiajw

′(ZZ ′)kF, 2) =⇒∗ (B̄Bw′αi(ZZ ′)k−1F, 2). During the last
stage the markers B̄, B, and F are removed after checking that the first letter
of the word is an+1: (B̄Ban+1w

′F, 1) =⇒∗ (an+1w
′, 1).

Now we will discuss each stage in more details. The simulation of the tag
system TS starts with the rules of group (1). The symbol S inserts a sequence
of the form (Z|Z ′)∗ by rules r11 and r12, and is deleted by r13. Then the non-
terminal symbol E is deleted permitting to verify that S has inserted an alter-
nating sequence of the form (ZZ ′)∗. Finally, E′ is erased by rule r15, moving
the system in state 2 and starting the second stage. This sequence of actions
corresponds to the following derivation:

(B̄B waSEE′ F, 1)
r11
r12=⇒∗(B̄B waS(ZZ ′)kEE′ F, 1)

r13=⇒ (B̄B wa (ZZ ′)kEE′ F, 1) r14=⇒ (B̄B wa (ZZ ′)k−1ZZ ′E′ F, 1)
r15=⇒ (B̄B waS(ZZ ′)k F, 2),

where k ∈ N and underlining indicates the left context of the rule application
effecting the transition into the next configuration.

Remark that for the rules from state 1 and from groups (2) and (3) to be
applicable, some symbols must be present which may only be inserted in state 2,
so if S does not insert the correct alternating sequence, E and E′ cannot be
erased, and Π blocks on a string with non-terminals. The only exception is r36
which can be applied at any time after S is erased, but, as we will see later, if
this deletion happens at the incorrect moment, the system will block as well.
Rules r41 and r43, on the other hand, are also applicable at any moment, but if
they are applied too early (while B is still needed), the string will never reach
the form required for F to be deleted by r42.

Now we consider the second stage of simulation. During this stage the role
of symbols Z and Z ′ is to ensure that every deletion of the substring aia at the
beginning of the string is followed by an insertion of the corresponding αi at
the right end of the string, for ai → αi ∈ P . The string should thus contain
as many pairs ZZ ′ as there are steps in a halting computation of TS starting
with w. Remark that, after r15 is applied, the rules of group (1) can never become
applicable again as there are no more necessary symbols.



86 S. Ivanov and S. Verlan

Whenever Π is in state 2 with a string of the form B̄Baiaw (ZZ ′)kF , rules
r21 through r24 can only be applied, and necessarily in the following order (we
only show the evolution of a prefix of B̄Baia (ZZ ′)kF , because, in state 2, Π
cannot change anything outside it):

B̄Baia
r21=⇒ B̄BR′

iaia
r22=⇒ B̄BR′

iaiR
′′
i a

r23=⇒ B̄BR′
iaiR

′′
i aR

′′′
i

r24=⇒ B̄BR′
iaiR

′′
i R

′′′
i .

The application of r24 moves the system back into state 1. The rules of
group (3) are not applicable at this moment, because the string contains no
instances of Ri yet. The two rules of the second group which can be applied
are r25 and r27; remark though that applying r27 removes R′

i, so r26 cannot be
applied to erase R′′

i anymore. Given that ai must be erased in order to enable
the deletion of R′′

i and the insertion of Ri, the following evolution is the only
possible one in a terminal derivation (again, we only show the evolution of the
prefix):

B̄BR′
iaiR

′′
i R′′′

i
r25=⇒ B̄BR′

iR
′′
i R′′′

i
r26=⇒ B̄BR′

iR
′′′
i

r27=⇒ B̄BR′′′
i

r28=⇒ B̄BR′′′
i Ri,

where the application of r28 moves the system back into state 2. This time,
however, B is separated from the rest of the string by an instance of R′′′

i , so if
rule r21 is applied instead of r29, neither r24 nor r29 will ever become applicable,
and Π will block in state 2 on a string with non-terminals. Thus the system has
to apply r29 immediately after the application of r28 to arrive in state 1 with
the string B̄BRiw(ZZ ′)kF , thereby successfully completing the deletion of aia
and introducing the corresponding signal symbol Ri.

Rules r31, r32, and r33 move the signal Ri to the right end of the string.
Remark that if r32 and r33 erase all the instances of Ri before r34 is applied, Π
just blocks on a string with non-terminals. On the other hand, the context of
r34 requires that, for Pi to be inserted, there should be no extra signal symbols
in the string; this assures that exactly one insertion happens at the right end of
the string per deletion at the left end.

The correct sequence of actions triggered by a signal symbol Ri at the right
end of the string is as follows (we only show the evolution of the suffix, because all
rules modifying the left end of the string in state 1 require primed Ri symbols):

. . . aRiZZ ′ (ZZ ′)k−1F
r34=⇒ aRiZPiZ

′ (ZZ ′)k−1F
r32=⇒ aZPiZ

′ (ZZ ′)k−1F
r35=⇒∗

aZPiαiZ
′ (ZZ ′)k−1F

r36=⇒ aPiαiZ
′ (ZZ ′)k−1F

r37=⇒ aPiαi (ZZ ′)k−1F
r38=⇒ aαi (ZZ ′)k−1F,

where the last derivation step moves the system into state 2 and initiates the
next deletion at the left end of the string. Remark that r35 is only applicable
after Ri has been erased. Furthermore, even though r36 may delete Z almost at
any moment when Π is in state 1, if this does occur, then both r34 and r35 are
rendered inapplicable, and Π will end up blocking in state 1 on a string with
non-terminals. Rule r37 can only erase Z ′ when applications of r35 insert the
exact substring αi from the production ai → αi. If Z ′ is not erased, the signal
symbol Rj of the following simulation step will not be able to use r34 to initiate



Universality of Graph-controlled Leftist Insertion-deletion Systems 87

the insertion of the right-hand side αj , and Π will block. Finally, the application
of r38 moves the system into state 2, enabling the next deletion at the left end
of the string.

The last stage of the computation is assured by the rules of group (4). Rule
r41 is applied non-deterministically in order to disable any further deletions and
insertions. Then, the end marker F is erased only if the string contains no more
service symbols, no more Z or Z ′, and if the first symbol after B̄ is the halting
symbol of Π. If these conditions are not met, F will never be erased and Π will
block. If F is successfully erased, however, the rule r43 is applied removing the
last non-terminal symbol and finalizing the simulation of TS.

We now show that, in the case of one-sided systems, regular contexts do not
bring additional computational power.

Theorem 2. INSREG,0
1 DELREG,0

1 ⊆ INS2,0
1 DEL1,0

1 .

Proof. We give here only the sketch of the proof of the statement which is based
on the proof of the result REG � INS2,0

1 DEL1,0
1 from [9].

Any rule r : (E, x, λ)t, t ∈ {ins, del}, can be simulated as follows. Let FA =
(Q,T, q0, F, δ) be the finite automaton such that L(FA) = L(E). Consider the
following sets of rules:

I ={(a, Q0, λ)ins | a ∈ T} ∪ {(Qia, Qj , λ)ins | qj ∈ δ(qi, a)}
∪ {(Qf , x, λ)ins | f ∈ F, if t = ins},

D ={(a, Qi, λ)del | a ∈ T} ∪ {(Qf , x, λ)del | f ∈ F, if t = del}.

We claim that these rules faithfully simulate the action of the extended rule r.
The simulation starts by inserting the symbol Q0 that marks the guess for the
leftmost position for the recognition of context E. Then the string is decorated by
symbols Qi according to the transitions of FA. This allows to check if the string
to the right of Q0 belongs to E. In this case a symbol Qf , f ∈ F is ultimately
inserted into the string. Now this symbol can insert or delete x according to the
type t of the rule. Finally, symbols Qi are cleaned up.

The validity of the simulation is based on the observation that if the full
sequence of insertions (checking the contexts) is not performed, then the rule is
not applied. Moreover, if the clean-up phase is not completed, then the string
will contain non-terminals that will block the corresponding portion of the string
from any further evolution.

A similar theorem holds in the case of systems of size (1, 1, 0; 1, 2, 0). It could
be immediately deduced from the previous theorem and [9, Lemma 3.3]; we
would like to present a simpler construction, however.

Theorem 3. INSREG,0
1 DELREG,0

1 ⊆ INS1,0
1 DEL2,0

1 .

Proof. Like for the previous theorem, we shall only give the sketch of the proof.



88 S. Ivanov and S. Verlan

Any rule r : (E, x, λ)t, t ∈ {ins, del}, can be simulated as follows. Let FA =
(Q,T, q0, F, δ) be the finite automaton such that L(FA) = L(E). Consider the
following sets of rules:

I ={(a, Qi, λ)ins | a ∈ T} ∪ {(Qf , x, λ)ins | f ∈ F, if t = ins},

D ={(Qia, Qj , λ)del | qj ∈ δ(qi, a)} ∪ {(a, Q0, λ)del | a ∈ T}
∪{(Qf , x, λ)del | f ∈ F, if t = del}.

We claim that these rules simulate the action of r faithfully. The simulation
strategy is a bit different from the proof of Theorem 2. First, a guess about the
context is made and the string is decorated by the sequence of symbols Qi. When
the symbol Qf , f ∈ F , corresponding to final state of E is inserted, an insertion
or deletion of x can be performed. Finally, the validity of the context is checked
by the deletion rules that require a valid accepting path of FA to be present
to the left of Qf . The difference from Theorem 2 is that at first the symbols
Qi are randomly inserted into the string, and only after that the deletion rules
check that these symbols were inserted in the correct order. In particular, this
means that the insertion or deletion of x can happen even if the left context does
not satisfy E. However, in this case it will be impossible to erase the remaining
non-terminals Qi.

While insertion-deletion systems of sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0) can
simulate any extended insertion-deletion system of size (1, REG, 0; 1, REG, 0),
the same statement cannot be directly extended to the graph-controlled case.
Indeed, the simulation of extended contexts is based on inserting additional
symbols; repeating the same approach for graph-controlled systems would make
it possible to switch states right in the middle of the verification of a context
of an extended rule allowing some incorrect behavior. For example consider a
system containing the following three rules:

1 :
(
1, (ab, x, λ)ins, {2}), 2 :

(
2, (d, a, λ)ins, {1})

, 3 :
(
1, (a, a, λ)ins, {2}),

and suppose that we use the approach from the proof of Theorem 3 to simulate
rule 1 with rules of size (1, 1, 0; 1, 2, 0). We will use the following rules to insert
state symbols:

1a :
(
1, (b, Q2, λ)ins, {1}), 1b :

(
1, (a, Q1, λ)ins, {1}),

1c :
(
1, (a, Q0, λ)ins, {1}), 1d :

(
1, (Q2, x, λ)ins, {2}),

for all symbols a, and the following deletion rules to attempt to verify the context
of rule 1:

1e :
(
2, (Q1b, Q2, λ)del, {2}), 1f :

(
2, (Q0a, Q1, λ)del, {2}),

1g :
(
2, (a, Q0, λ)del, {2}),

for all symbols a. In the configuration (db, 1) of the original system, no rule
is applicable. However, in the new system with rules of size (1, 1, 0; 1, 2, 0), the
following sequence of rule applications is possible:



Universality of Graph-controlled Leftist Insertion-deletion Systems 89

(db, 1) 1a=⇒ (dbQ2, 1) 1d=⇒ (dbQ2x, 2) 2=⇒ (dabQ2x, 1) 3=⇒ (daabQ2x, 2)
2=⇒ (daaabQ2x, 1) 1b=⇒ (daaaQ1bQ2x, 1) 1c=⇒ (daaQ0aQ1bQ2x, 1)
1e=⇒ (daaQ0aQ1bx, 1)

1f
=⇒ (daaQ0abx, 1)

1g
=⇒ (daaabx, 1).

Thus, even though the initial string only partially matches the context ab, by
switching to state 2 and after that back to state 1, the missing a is inserted and
the context is successfully validated. Remark that the state switch should be
done on the insertion of x by rule 1d, because otherwise several occurrences of x
can be introduced into the string. In a more general manner, because states are
also in play, it may not be possible to reorder the derivation in such a way that
the string fully corresponds to the contexts of the simulated rule r at one given
moment, which means that a “simulation” of r may be successfully completed
even in the situations in which r itself could never be applied.

The above issue does not occur when simulating regular contexts with sys-
tems of size (1, 2, 0; 1, 1, 0), because the insertion or deletion of x is done after
all of the state symbols checking the context have been inserted, from left to
right (cf. proof of the Theorem 2). However, such systems have another prob-
lem – symbol Qf may not necessarily be deleted immediately; then the insertion
or deletion of x can happen twice, even if the left context was changed to not
match the rule anymore.

Yet, simulation of regular contexts by rules of size (1, 2, 0; 1, 1, 0) is still pos-
sible for the construction from Theorem 1, because the situation we have just
described cannot happen. Indeed, when the symbol E is erased by a simulation
of r14, for example, the system has already assured the correct form of the string
to the left of it. Since moving into state 2 is only possible by r15 at this time, we
are also sure that the string does change after the symbol-by-symbol checking
of the context of r14 verifies that S is no longer present.

A slightly more complex analysis is needed for the rules of group (3). When
the verification of the context of r34 is finished, we know that the string contained
BA∗RiZ some steps ago, but r32 and r36 might have erased Ri and Z in the
meantime, so r38 could be applied thereby allowing one more deletion of two
symbols at the end of the string. Note, however, that Z ′ would not be erased,
so the next signal symbol Rj would not be able to trigger an insertion of Pj and
the system would block. A similar argument is valid for r35: the Z to the left of
Pi should stay in the string in order for all of the symbols of αi to be inserted,
or else Z ′ will not be deleted. In the case of r37, again, if Pi is deleted before Z ′,
the system blocks.

Finally, when the context of rule r42 is completely matched, the only modifi-
cation that may happen to the string before F is erased is the deletion of O by
r43, but this behaviour does not break the simulation of the tag system. Hence,
we obtain the following statement.

Theorem 4. For every tag system TS there exists a two-state graph-controlled
insertion-deletion system Π of size (1, 2, 0; 1, 1, 0), and a recursive coding φ such
that the following conditions hold:



90 S. Ivanov and S. Verlan

– Π(φ(w)) = {TS(w)}, if TS halts on w, and
– Π(φ(w)) = ∅, if TS does not halt on w.

A symmetric statement for the case of graph-controlled insertion-deletion
systems of size (1, 1, 0; 1, 2, 0) is also true, but the simulation of the construction
from Theorem 1 is less straightforward than for systems of size (1, 2, 0; 1, 1, 0),
because, in the case of deletion rules with two-symbol contexts, the simulation
of regular rules starts by an insertion of a state symbol at the rightmost end of
the substring to be matched. It is therefore possible that the action of a rule
is produced before its context is verified, as we have seen above. We will now
analyze those rules of the construction from Theorem 1 which are not of the size
(1, 1, 0; 1, 2, 0) one by one, and describe how they can be correctly simulated.

To deal with r14, we will simulate such a finite automaton corresponding
to the expression a(ZZ ′)∗ in which the first state is only visited once, in the
initial configuration of the automaton. We will then introduce the symbol Q

(14)
0 ,

representing this state, into the axiom, before S, giving B̄BβQ
(14)
0 SEE′F . The

symbol Q
(14)
0 will be erased by the rule

(
1, (a, Q

(14)
0 , λ)del, 1

)
, for all a ∈ A. If

Q
(14)
0 is deleted before all state symbols simulating r14 are, some of these symbols

will stay stuck in the string, because Q
(14)
0 cannot be inserted. Therefore, the

only way to proceed is to erase Q
(14)
0 after the simulation of r14 is successfully

finished.
In the case of rules r22 and r23, the additional symbols introduced by the

simulation will have to be erased before the system moves into state 1, because
otherwise they will not be deleted and will block r28, which requires R′′′

i to be
immediately to the right of B. Rule r28 itself will be replaced by the following
four rules:

(
1, (R′′′

i , X
(28)
i , λ)ins, {1})

,
(
2, (B, R′′′

i , λ)del, {2}),(
1, (X(28)

i , Ri, λ)ins, {2})
,

(
2, (B, X

(28)
i , λ)del, {1}),

where X
(28)
i is a new symbol.

For the rest of the rules, usual simulation of regular contexts works correctly.
Indeed, a simulation of the rule r31 happens in the middle portion of the string,
which cannot be altered by rules other than r32 or another simulation of r31.
In the case of r34, Pi may be inserted even though the string does not have the
correct form, moving the system into state 2, and initiating another deletion
at the left end. In this situation, however, Z must have been deleted for r38 to
become applicable, so the string has the form B̄BA∗Z ′(ZZ ′)∗F . Since the next
signal symbol Rj cannot interact with Z ′, this means that the sequence Z ′(ZZ ′)∗

will never be deleted. A similar argument is true for r35: if the system switches
into state 2 before Z ′ can be erased, it eventually blocks. As to the simulation of
r37, if the system switches away from state 1 before the context is fully verified,
the next signal symbol will not be able to insert another Pj , because the state
symbols verifying the context of r37 will block it on its way to the right end of
the string.



Universality of Graph-controlled Leftist Insertion-deletion Systems 91

Finally, suppose that the simulation of r42 erases F at an early stage. Remark
that, for this simulation to start at all, F has to be preceded by a symbol from
A, which means that the system cannot switch into state 2 while the context
of r42 is being verified. Therefore, if the string still contains other non-terminals
than those simulating r24 or B̄, the system blocks. Our observations imply the
truth of the following statement.

Theorem 5. For every tag system TS, there exists a two-state graph-controlled
insertion-deletion system Π of size (1, 1, 0; 1, 2, 0) and a recursive coding φ such
that the following conditions hold:

– Π(φ(w)) = {TS(w)}, if TS halts on w, and
– Π(φ(w)) = ∅, if TS does not halt on w.

4 Conclusions

In this paper, we continued the study of leftist insertion-deletion systems intro-
duced in [9], and showed that systems of sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)
equipped with a two-state graph control mechanism can simulate any 2-tag sys-
tem, and are therefore universal. This contributes to the study of the computa-
tional power of leftist systems started in [9].

The proofs shown in the present work are based on an extension to the
conventional insertion and deletion rules, whereby specifying the contexts is done
by regular expressions instead of fixed words. We proved that two-state graph-
controlled leftist insertion-deletion systems with regular contexts can simulate
any 2-tag system.

It turned out that, in the case of leftist insertion-deletion systems without
control, considering regular contexts does not increase the expressive power:
rules of sizes (1, 2, 0; 1, 1, 0) or (1, 1, 0; 1, 2, 0) can simulate the language of any
system of size (1, REG, 0; 1, REG, 0). Even though this statement is not gen-
erally transposable to the graph-controlled case, the specific construction from
Theorem 1 can be simulated by conventional leftist rules, which yielded the main
result of this paper: two-state graph-controlled insertion-deletion systems of sizes
(1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0) can simulate any 2-tag system.

An important question left open is whether insertion-deletion systems of sizes
(1, 2, 0; 1, 1, 0) or (1, 1, 0; 1, 2, 0) are universal or even computationally complete.
We conjecture that this is not the case, because one-symbol one-sided rules can
only assure transmission of information in one direction in the string.

The second important open question, which may serve as an intermediate
step to solving the previous one, is whether two-state graph-controlled left-
ist insertion-deletion systems are computationally complete, i.e. whether they
can generate all recursively enumerable languages directly, without any coding.
Again, our conjecture is negative, because two states only provide a very lim-
ited kind of control, which does not seem sufficient for simulating an arbitrary
grammar or a Turing machine.



92 S. Ivanov and S. Verlan

Acknowledgments. The authors would like to acknowledge the support of ANR
project SynBioTIC.

References

1. Benne, R.: RNA Editing: The Alteration of Protein Coding Sequences of RNA.
Ellis Horwood, Chichester, West Sussex (1993)

2. Biegler, F., Burrell, M.J., Daley, M.: Regulated RNA rewriting: modelling RNA
editing with guided insertion. Theoret. Comput. Sci. 387(2), 103–112 (2007)

3. Cocke, J., Minsky, M.: Universality of tag systems with P = 2. J. ACM 11(1),
15–20 (1964)

4. Daley, M., Kari, L., Gloor, G., Siromoney, R.: Circular contextual insertions/
deletions with applications to biomolecular computation. In: SPIRE/CRIWG,
pp. 47–54 (1999)

5. Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-
deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings of the Twelfth
Annual Workshop on Descriptional Complexity of Formal Systems, vol. 31 of
EPTCS, pp. 88–98 (2010)

6. Galiukschov, B.: Semicontextual grammars. Matematicheskaya Logica i Matem-
aticheskaya Lingvistika, pp. 38–50. Tallin University, Russian (1981)

7. Haussler, D.: Insertion and Iterated Insertion as Operations on Formal Languages.
PhD thesis, University of Colorado at Boulder (1982)

8. Haussler, D.: Insertion languages. Inf. Sci. 31(1), 77–89 (1983)
9. Ivanov, S., Verlan, S.: On the lower bounds for leftist insertion-deletion languages.

Submitted
10. Ivanov, S., Verlan, S.: Random context and semi-conditional insertion-deletion sys-

tems. CoRR, abs/1112.5947 (2011)
11. Ivanov, S., Verlan, S.: About one-sided one-symbol insertion-deletion P systems. In:

Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa,
A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 225–237. Springer, Heidelberg (2014)

12. Kari, L.: On insertion and deletion in formal languages. PhD thesis, University of
Turku (1991)

13. Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing and
formal languages: characterizing RE using insertion-deletion systems. In: Proceed-
ings of 3rd DIMACS Workshop on DNA Based Computing, pp. 318–333. Philadel-
phia (1997)

14. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

15. Kleene, S.C.: Representation of events in nerve nets and finite automata. In:
Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton Uni-
versity Press, Princeton, NJ (1956)

16. Krassovitskiy, A.: Complexity and Modeling Power of Insertion-Deletion Systems.
PhD thesis, Departament de Filologies Romániques, Universitat Rovira and Virgili
(2011)

17. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further results on insertion-deletion
systems with one-sided contexts. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.)
LATA 2008. LNCS, vol. 5196, pp. 333–344. Springer, Heidelberg (2008)

18. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of insertion dele-
tion (P) systems with rules of size two. Nat. Comput. 10(2), 835–852 (2011)



Universality of Graph-controlled Leftist Insertion-deletion Systems 93

19. Marcus, S.: Contextual grammars. Revue Roumaine de Mathématiques Pures et
Appliquées 14, 1525–1534 (1969)

20. Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-
deletion systems. Theoret. Comput. Sci. 330(2), 339–348 (2005)

21. Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-sided
contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664,
pp. 205–217. Springer, Heidelberg (2007)

22. Minsky, M.: Computations: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffts, NJ (1967)

23. Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theoret. Comput. Sci. 456,
80–88 (2012)

24. Păun, G.: Marcus Contextual Grammars. Kluwer Academic Publishers, Norwell,
MA, USA (1997)

25. Păun, G., My, N.X.: On the inner contextual grammars. Revue Roumaine de
Mathématiques Pures et Appliquées 25, 641–651 (1980)

26. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Para-
digms. Springer, Heidelberg (1998)

27. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer-
Verlag, Berlin (1997)

28. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion
systems. In: Hagiya, M., Ohuchi, A. (eds.) DNA8 Sapporo. LNCS, vol. 2568,
pp. 269–280. Springer, Heidelberg (2002)

29. Verlan, S.: On minimal context-free insertion-deletion systems. J. Automata, Lan-
guages Comb. 12(1–2), 317–328 (2007)

30. Verlan, S.: Study of language-theoretic computational paradigms inspired by biol-
ogy. Habilitation thesis, Université Paris Est (2010)


	Universality of Graph-controlled Leftist Insertion-deletion Systems with Two States
	1 Introduction
	2 Preliminaries
	3 Universality Results
	4 Conclusions
	References


