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Abstract. Ensembles are groups of classifiers which cooperate in order
to reach a decision. Conventionally, the members of an ensemble are
trained sequentially, and typically independently, and are not brought
together until the final stages of ensemble generation. In this paper, we
discuss the potential benefits of training classifiers together, so that they
learn to interact at an early stage of their development. As a poten-
tial mechanism for achieving this, we consider the biological concept of
mutualism, whereby cooperation emerges over the course of biological
evolution. We also discuss potential mechanisms for implementing this
approach within an evolutionary algorithm context.

1 Introduction

Data mining is the process of finding meaningful patterns embedded within data.
It typically comprises several stages, including feature extraction, feature selec-
tion, classification, and knowledge extraction. Here we focus on classification,
which is the process of correctly identifying which category a previously unseen
data point belongs to, based on the values of different explanatory variables
(or features). Classification is the basis of computer-aided decision making, and
has become an important tool in many spheres of knowledge, including biomed-
ical diagnosis [9]. A classifier can be considered a function that maps features
to classes. This function may be implemented in many different ways, including
linear models, probabilistic models, decision trees, artificial neural networks, and
support vector machines, to name but a few [5].

Traditionally, classification uses a single model instance, trained on a single
sample of the data. Recently, however, there has been a shift towards ensemble
models, which train multiple model instances (or base classifiers) and then com-
bine their outputs [6]. By using a diverse selection of base classifiers, it is often
possible to reach more accurate and robust decisions than those produced by
individual classifiers. Diversity amongst the base classifiers is typically achieved
by training them on different samples of the data and/or by restricting them to
using different subsets of the features. Widely used examples include bagging,
boosting and random forests [5,6].
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A common element of ensemble generation algorithms is that the base clas-
sifiers are generated sequentially. With the notable exception of boosting, where
the performance of each classifier influences the training of the next one, base
classifiers are also typically trained independently. This is in stark opposition to
the patterns of interaction seen within biological systems, where the elements of
cooperative systems emerge in parallel and with considerable inter-dependency.
This begs the question: is there some advantage to the biological approach?
Moreover, can we learn how to build better ensembles by studying the organ-
isation and evolution of biological systems? To answer this question, we begin
by surveying some of the previous work on using models of evolution, namely
evolutionary algorithms, to generate ensembles. We also survey previous work on
introducing ideas of biological mutualism to evolutionary algorithms. We then
discuss how mutualistic models might be practically applied to the problem of
ensemble generation, outlining potentially useful research directions.

2 Evolving Ensembles

Evolutionary algorithms (EAs) are population-based optimisation algorithms
modelled upon the process of biological evolution. From an ensemble classifica-
tion perspective, an evolutionary algorithm’s population is a potentially valuable
resource. During the course of evolution it often contains multiple solutions with
diverse behaviours, which is precisely what we are looking for in an ensemble.
This has promoted interest in using EAs to train ensemble classifiers.

However, in general, an EA’s population loses diversity as evolution pro-
gresses. This means that it is often necessary to use a diversity preservation
mechanism to maintain behavioural diversity. In our work, we have been looking
at whether niching methods can be used to maintain a diverse population of
base classifiers throughout an EA run, and whether we can then form effective
classifiers from the final population [7,8,13]. Niching techniques in EAs are moti-
vated by observations from biology, notably the appearance and preservation of
ecological niches within evolving biological populations. Common examples are
crowding, fitness sharing and geographical segregation. Our results are promis-
ing, showing that the resulting ensembles are significantly more predictive than
individually trained classifiers [8]. More recently, we have applied this approach
to a medical diagnosis problem, finding that evolved ensembles can compensate
for the small differences in clinical practice that often occur between different
sites in medical studies. Because evolved ensembles comprise a relatively small
number of individually strong classifiers, rather than many weak classifiers (as
in random forests), there is also the potential to extract knowledge, which is
important for diagnostic classifiers used within a medical context [10].

In biology, niching often reflects the loss of competition between organisms
that have no need to compete, for instance because they use different energy and
nutrient sources. Species in different niches can then cooperate [16], producing
mutualistic interactions that can be beneficial to the ecosystem as a whole [5].
Interestingly, a classifier ensemble is in some ways similar to an ecosystem. It
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comprises a group of different classifiers (akin to species) that reach their deci-
sions (their behaviour) as a result of processing different data sources. In general,
it makes no sense for classifiers in different niches to compete. However, it does
make sense for them to cooperate. We might therefore expect that biological
mutualism can guide us in finding more effective ways of evolving ensembles.

3 Biological Mutualism

A mutualism is a symbiotic relationship that is beneficial to all parties [19,20].
These are very common in biology. For example, over 80 % of plant species
form mycorrhizal associations with fungi, in which the fungus absorbs sugars
from the plant’s roots and the plant receives phosphates and other hard to
absorb nutrients that the fungus scavenges from the surrounding area [21]. This
allows the plant to grow in nutrient-poor environments and the fungus to grow
in energy-poor environments. Other well known examples include mutualisms
between flowering plants and pollinating insects, and between mammals and
their colonies of gut bacteria. In many cases, evolution has driven the process to
the stage where the individual members of the mutualism can not survive without
their mutualistic partners. Mutualistic interactions can involve more than two
species [2]. Furthermore, wider interactions involving mutualistic partners lead
to the formation of mutualistic networks, which may involve hundreds of species,
and which have been described as the ‘architecture of biodiversity’ [1]. It has also
been suggested that selection inevitably pushes populations in the direction of
ever increasing cooperation and integration, so the scope and connectivity of
these mutualistic networks is likely to increase over evolutionary time [19].

An important issue, both for biology and for any system that seeks to emu-
late biology, is understanding the conditions required for mutualisms to occur.
In particular, what are the mechanisms that prevent the emergence of selfish
behaviour in a population of cooperating species—or, to put it another way,
which mechanisms support collective action? This question is also studied in
the context of economic and social interactions, where it is framed as dealing
with asymmetric or hidden information, i.e. where there is a lack of trustworthy
information regarding a potential partner’s intentions or abilities. Two broad
mechanisms for dealing with this situation are signalling and screening [20].
Signalling involves an up-front expenditure of energy or resources (a strategic
waste) in order to attract cooperation from a potential partner. Examples are
the investment in costly phenotypes (e.g. large tail feathers) in animal mating
displays, and the distribution of dividends by companies looking for investors.
Screening is similar, but is initiated by the less well-informed partner; for exam-
ple, the expectation that potential suitors should fight for mating rights in order
to demonstrate their fitness, or requiring an employee to undergo a probationary
period. In symmetric situations, where neither party has sufficient knowledge of
the other, combinations of both signalling and screening are often used.
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4 Mutualistic Evolutionary Algorithms

EAs are based upon relatively simple models of biological evolution. Ideas of
biological mutualism, which have become increasingly influential in the under-
standing of biological systems, have so far had little impact upon their devel-
opment. Nevertheless, there are notable exceptions, and several forms of EA do
exhibit behaviours that resemble those seen in biological mutualisms.

Co-evolutionary algorithms [14], in particular, model the co-evolution of mul-
tiple species within one or more populations. Although mutualistic relationships
are co-evolutionary, the two terms are not synonymous, and co-evolution can
also lead to symbiotic, predator-prey, constructive or destructive relationships
between species. Co-evolutionary algorithms are mainly restricted to two-species
systems, and model either competitive (e.g. predator-prey) or cooperative co-
evolutionary systems. The latter approach has been particularly successful in
recent years, with cooperative co-evolutionary algorithms being successfully used
to solve high-dimensional optimisation problems [22]. We have also had some suc-
cess using these within the context of ensemble classification. For instance, in
[13], this mechanism was used to evolve pattern recognisers (i.e. classifiers) in
DNA sequences, using a second population of pattern combinators (i.e. ensem-
bles) to promote the discovery of meaningful groups of patterns. This was only
possible because the base classifiers were evolved in parallel, using information
about their ensemble behaviour to focus the search towards the most useful
population of base classifiers.

Although not directly motivated by biological mutualism or co-evolution, two
other forms of EA that display behaviours akin to mutualism are Michigan-style
learning classifier systems and cultural algorithms. Learning classifier systems
(LCS) [3] evolve distributed rule sets that can be used to determine responses,
for example class predictions in classification problems. In a Michigan-style LCS,
each member of the population is a simple rule; however, the overall behaviour of
the LCS is a result of cooperation between the rules. Cultural algorithms [15] use
a shared belief space where population members can read and write information.
This provides a mechanism for population members to interact with one another,
and this in turn can be used to support mutualism, amongst many other kinds of
behaviour. Both systems use mechanisms to discourage selfish behaviour. In the
case of the LCS, rewards are divided between groups of interacting rules using
credit assignment techniques such as the bucket brigade. Selfish behaviour by a
rule will reduce the overall reward for the group, reducing the likelihood of it
being propagated to the next generation. In the case of cultural algorithms, only
the fittest population members are typically allowed to write to the belief space,
with the expectation that fitter members are more likely to be part of a beneficial
mutualism. A notable feature of LCS and certain cultural algorithms [18] is that
the population is the solution, since individual members of the population may
not have a meaningful function when separated from other population members.
In this respect, they bear significant resemblance to mutualistic biological sys-
tems. However, the mechanisms used to promote mutualisms are quite different
to those seen within biological systems.
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5 Evolving Mutualistic Ensembles

So, might biological ideas of mutualism be useful for evolving ensembles? The
combination of specialism and co-operation seen within biological populations is
precisely the behaviour we desire in classifier ensembles. We want individual base
classifiers to focus on particular sub-tasks, such as processing different subsets
of the data (comparable to different nutrient and energy sources). We then want
them to co-operate, combining their behaviours in a way that increases their
mutual fitness, i.e. we want them to be well-adapted to one another. With current
ensemble methods, the behaviours of base classifiers are combined in a variety of
simple ways, such as voting or averaging of their outputs (Exceptions include our
work on evolving non-linear output combinators [7]). In addition, the ensembles
produced are strictly hierarchical, with only the raw features delivered to the
inputs, and only the final outputs delivered to the combinator.

It would be interesting to explore forms of interaction more akin to those we
see in biology. For example, the output of one classifier could be delivered to an
intermediate decision node within another classifier. This is more comparable
to a plant/fungus mutualism, with a classifier that is specialised at process-
ing a difficult part of the decision space (analogous to sparse nutrients) feeding
into a classifier that makes broader judgements. Using suitable classifier mod-
els, we could even remove the hierarchical organisation of classifiers entirely,
allowing cyclic interactions to occur (see Fig. 1). Recurrent dynamical systems
models, such as recurrent ANNs, and artificial biochemical networks [11], would
be appropriate for this. Our work on artificial signalling networks [4] is partic-
ularly relevant, showing how complex decision making networks can be formed
from interactions between simpler recurrent pathways. However, these are just
some of the possible models of representation and interaction that could be

Fig. 1. Left — the standard form for an ensemble classifier, with information feeding
hierarchically upwards from the data set to the individual classifiers to the combinator.
Right — a mutualistic arrangement in which information flows between classifiers.
Classifier A is not able to reach a decision by itself, but generates an important sub-
decision that feeds into the rest of the system. An appropriate form of credit assignment
would then cause it to be promoted in the next generation.
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used within a mutualistic classifier ensemble, and there is considerable scope for
adventure in this area. Nevertheless, all approaches would have to address the
issue of how to promote the emergence of mutuality in classifier populations.

5.1 Promoting Mutuality

Biological organisms enter into mutualisms because it directly improves their
fitness. A similar motivation is required for classifiers, otherwise there is no
incentive for them to enter into mutualistic partnerships. In general, we expect
to achieve this by redistributing the fitness of the ensemble amongst its com-
ponent base classifiers, with the expectation that ensembles will outperform
individual classifiers and therefore exert selective pressure. Reinforcement learn-
ing techniques, such as those used in LCS, could be used for this redistribution.
However, there are potential complexities. For example, it would not be unrea-
sonable for a single classifier to be involved in multiple mutualistic ensembles. In
such a circumstance, should it receive a reward from all its partnerships, or just
the most successful one? The former might promote overly-promiscuous classi-
fiers, yet the latter might discourage wider interactions. Also, should a classifier
involved in an ensemble also receive its standalone fitness? This would promote
the propagation of individually strong classifiers, but would disadvantage a clas-
sifier that plays an important role in supporting an ensemble but which has little
standalone worth.

Credit allocation acts as a carrot for the formation of mutualistic interactions,
but a stick is also needed to prevent selfish or inefficient behaviours akin to par-
asitic or symbiotic relationships in biology. Based on biological understanding,
signalling and screening have the potential to be effective mechanisms for achiev-
ing this. For instance, classifiers could be required to pay a fitness penalty in
order to be involved in an ensemble. This form of signalling would be expected
to discourage selfish behaviour, since parasitic classifiers would lose individual
fitness at the same time as reducing the potential fitness payback from join-
ing an ensemble. There is also the potential for using such a system to study
biological hypotheses of how mutualisms are formed. Unlike many of the game
theoretic models typically used for this, an evolving ensemble has its own com-
plex behavioural outcomes. In this respect, the mutualistic evolution of classifier
ensembles can be seen as an opportunity to test, refine, and potentially even
discover biological theories of mutualism.

5.2 Identifying Partners

Biological mutualisms involve different forms of interaction. Mycorrhizal asso-
ciations between plants and fungi, for instance, usually involve direct contact,
with the fungus identifying and then invading the cells of its interacting plant
species. Other kinds of mutualism are based upon geographical proximity. For
example, a tree provides shelter for birds, birds excrete beside the tree, and the
tree absorbs the nutrients. This is also an example of using the environment (the
soil in this case) as an intermediary for sharing nutrients, energy, or information.
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The classifiers involved in an ensemble must also be able to identify one
another, and must be able to do this in a way that is robust to evolutionary
change. For instance, a classifier could reference another classifier by a pointer.
However, pointers are not robust to evolution, since the reproduction process
usually involves cloning, and often leads to multiple offspring. An alternative is
to use the environment as a go-between. LCS, for example, do this, with the
behaviour of a rule changing the environment, and this change of context then
leading to the firing of another rule. It is also the basis of interaction in cultural
algorithms, with information being transferred via the belief space environment.
However, environmental interaction can lead to unintended interactions, and can
increase the scope for selfish behaviour.

Another alternative is to use some form of functional referencing in which
the reference describes the form or behaviour of the intended partner. Assuming
that no major change in form or behaviour takes place during reproduction,
this form of referencing would also be fairly robust to evolution. An example of
a functional reference is our work on implicit context representation in genetic
programming systems [12].

6 Conclusions

Biological systems are a potentially useful source of information and motivation
for the design of computer algorithms. However, there is a danger of taking
inappropriate motivation from biology, or of unthinkingly applying bio-inspired
algorithms to inappropriate problems. This has led to a degree of criticism in
the literature [17]. In this paper, we propose that inspiration from biological
mutualisms could be applied to the design and generation of classifier ensembles.
To us, this is an example of where biological systems display a clear example of
how to achieve complex behaviour in a system of distributed decision makers,
and where useful lessons could be learnt and applied to a problem which shows
parallels to these biological systems. We have discussed some of the issues that
would be involved in doing this. However, we have not tried to suggest one
particular way of doing this, because there are many paths that could be taken.
Rather, we wish to begin a discussion of the ways in which this could be done,
and the potential benefits to which it could lead.

Whilst we have restricted our attention to the particular problem of gen-
erating classifier ensembles, it seems likely that mutualism could also provide
solutions to other kinds of problem addressed using EAs. For example, genetic
programming is concerned with evolving executable structures, such as computer
programs. In this context, mutualistic interactions could potentially be used to
address the scalability barrier associated with evolving single large programs.
Mutualisms could even develop over a series of evolutionary runs, with subse-
quent runs interacting with solutions found in earlier runs, and possibly bringing
them back into the evolutionary process. We would argue that mutualism is an
important area of biology that is often overlooked by the evolutionary compu-
tation community, but which could bring significant benefits to this community
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if modelled and used appropriately. Doing so would also provide an opportu-
nity to test, and potentially generate, biological theories of the ways in which
mutualisms evolve.
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