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Preface

Celebrating the 20th anniversary of the IPCAT series, the 10th International Conference
on Information Processing in Cells and Tissues took place during September 14–16,
2015, at the Embassy Suites, downtown San Diego, CA. The IPCAT series of confer-
ences began in Liverpool in 1995 as a venue to bring together multidisciplinary sci-
entists interested in modelling the processes that take place within biological cells and
tissues. This was followed by events held in Sheffield, Indianapolis, Brussels, Lausanne,
York, Oxford, Ascona, and Cambridge. Over the years, the conference has been
organized by biologists, mathematicians, computer scientists, and electronic engineers,
but has always aimed to attract a diverse and multidisciplinary group of delegates. As
noted by Ray Paton and Mike Holcombe in the foreword to the first IPCAT workshop,
“One of the key motivations underlying the first IPCAT Workshop was to attempt to
provide a common ground for dialogue and reporting research without emphasising one
particular research constituency or way of modelling or singular issue in this area.”

For IPCAT 2015, we addressed the diversity of the IPCAT audience by assembling
Organizing and Program Committees comprising people with backgrounds in biology,
medicine, mathematics, computer science, the natural sciences, and engineering. To
reflect the differing publication norms in diverse fields, we gave authors the option of
submitting either an extended abstract or a full paper, treating these equally during the
review and ranking process. To complement the technical program, we invited four
renowned scientists to give keynote presentations. These each addressed particular
aspects of information processing in biological cells and tissues:

– Lee Altenberg (Konrad Lorenz Institute, Austria), “How Might Evolutionary
Theory Inform Research on Information Processing in Cells and Tissues?”

– Kwang-Hyun Cho (KAIST, South Korea), “Unraveling the Information Processing
Machinery Within a Living Cell”

– Terry Gaasterland (UCSD, USA), “Genome Variation in Regulatory Regions and
Impact on Human Diseases”

– Marco Salemi (University of Florida, USA), “Phylodynamic Analysis of Viral and
Bacterial Pathogens in the Genomics Era”

We would like to thank all the people involved in the organization and realization of
IPCAT 2015, especially the authors, the invited speakers, and the members of the
Program Committee, whose time and effort were central to the conference’s success.
We would also like to take this opportunity to remember Ray Paton, whose dedication
and enthusiasm were central to the success of the IPCAT series.

September 2015 Michael Lones
Andy Tyrrell

Stephen Smith
Gary Fogel
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Surface-Immobilised DNA Molecular Machines
for Information Processing

Katherine E. Dunn(B), Tamara L. Morgan, Martin A. Trefzer,
Steven D. Johnson, and Andy M. Tyrrell

Department of Electronics, University of York, York, UK
katherine.dunn@york.ac.uk

Abstract. The microscopic information processing machinery of bio-
logical cells provides inspiration for the field of molecular computation,
and for the use of synthetic DNA to store and process information and
instructions. A single microlitre of solution can contain billions of distinct
DNA sequences and consequently DNA computation offers huge poten-
tial for parallel processing. However, conventional data readout systems
are complex, and the methods used are not well-suited for combination
with mainstream computer circuits. Immobilisation of DNA machines
on surfaces may allow integration of molecular devices with traditional
electronics, facilitating data readout and enabling low-power massively
parallel processing. Here we outline a general framework for hybrid bio-
electronic systems and proceed to describe the results of our prelimi-
nary experiments on dynamic DNA structures immobilised on a surface,
performed using QCM-D (quartz crystal microbalance with dissipation
monitoring), which involves the use of acoustic waves to probe a molec-
ular layer on a gold-coated quartz sensor.

Keywords: DNA computation · Surface-immobilisation · Quartz
crystal microbalance with dissipation monitoring · DNA strand
displacement

1 Information Processing with Bioelectronic Systems

The Central Dogma of molecular biology [4] describes how information is stored
and processed in living cells. According to this scheme, data is encoded in bio-
logical polymers (nucleic acids and proteins) and processed by specialised mole-
cular machines, and the Dogma can provide inspiration for the development of
a framework for hybrid bioelectronic computational systems. We present such a
framework in Fig. 1. In our scheme there are three nodes for information process-
ing, which we can regard as phases.

In our framework, each phase contains machinery which can act as memory
for storage of data or instructions, or as processors which can execute programs
in response to inputs received from the other phases or externally. Information
can be transmitted between the three phases or exported from the system as
readout. Our framework does not exclude any conceivable links between phases,
c© Springer International Publishing Switzerland 2015
M. Lones et al. (Eds.): IPCAT 2015, LNCS 9303, pp. 3–12, 2015.
DOI: 10.1007/978-3-319-23108-2 1



4 K.E. Dunn et al.

although some connections would be easier than others to implement in a real-
world system. Information can also be exchanged between different machines
contained within the same phase. It is important to note that our framework is
not prescriptive and could readily be expanded to accommodate technological
developments, while phenomena not explicitly mentioned here could be har-
nessed for information processing within this scheme.

Information transfer between any two phases in the framework is symmetrical
- each link between phases is bidirectional, although the mechanism, energetics
and kinetics for information transfer is not generally the same when the direc-
tion is reversed. Transmission of information from one phase to another is a
read/write process, in which one phase writes information to the next or the
downstream phase reads information from the previous one. Within each phase,
information is processed through a standard cycle of fetch, decode and execute
(not shown explicitly in the diagram).

The solid state phase (Fig. 1) represents systems based on conventional semi-
conductor technology or other solid state devices. This could include photonic
components, which have considerable potential for computation [12] but are
presently at an early stage of development. Light may also be used for informa-
tion transfer processes. For instance, many chemical reactions can be activated
by light [13] and optical fibres can be used for high-speed data transfer. Initially,
the solid state phase of hybrid bioelectronic systems is likely to comprise conven-
tional silicon-based devices due to the rapidity of operations, coupled with the
extreme maturity of the underlying technology and manufacturing techniques.

As we envisage it, the surface phase comprises discrete surface-immobilised
molecular machines, which encode and store information in the primary sequence
of the biological polymers from which they are made. These molecular machines
execute programs by undergoing a change in state (e.g. through change in
exposed DNA sequence) or conformation. In our scheme, the solution phase
contains similar molecular machines [2] which float freely in an aqueous envi-
ronment. They perform operations and store information in the same way as
their surface-immobilised counterparts, but their behavior may differ due to the
absence of surface-specific effects such as localised electric fields or molecular
crowding.

In both the surface and solution phases, exchange of data and instructions
between different machines in the same phase is accomplished by means of
the intermolecular interactions that regulate self-assembly of DNA and protein
macromolecules, i.e. van der Waals interactions, electrostatic forces, entropic
or steric effects, and covalent bonding. Similarly, information is conveyed from
solution to surface or vice versa by means of molecular interactions which drive
binding or dissociation of specific components within a molecular machine. For
instance, a molecular species released as the output from a solution phase process
could be programmed to bind to a surface-immobilised molecular machine as an
input. Information transfer to the solid phase from surface-immobilised machines
or their solution-phase equivalents would typically be accomplished by charge
transfer, for example the direct transport of electrons between redox-active
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Fig. 1. General framework for a hybrid bioelectronic system in which molecular devices
are integrated with solid-state electronics. There are three phases, between which infor-
mation can be exchanged. In each phase, programs can be executed and information
stored in memory. The solid-state phase may be represented by conventional silicon
technology or any suitable alternative. The surface phase consists of immobilised mole-
cular machines, and the solution phase contains all relevant molecules which are not
bound to the surface. Arrows indicate transfer of information between phases, or the
operations of reading/writing data. Outputs and inputs are represented by the indi-
cated symbols.

molecules (such as methylene blue, ferrocene or Nile Blue) and the underly-
ing substrate. This approach to electronic transduction of molecular binding
is well-established following recent advances in hybrid DNA-electronic clinical
sensors [11].
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Communication with the solid phase could also occur through processes such
as mass transfer but a change in charge distribution or dynamics is most appro-
priate in a hybrid bioelectronic system where semiconductor devices are used.

Transfer of information from the solution phase to the solid state must by
definition proceed through the surface, but this is to be regarded as a direct and
passive link if the solution-solid interface merely transduces the information,
rather than modifying or processing it en route. As a general rule, information
can be transferred from the solid phase to the solution or surface phases via
control systems which can regulate the molecular interactions that underpin the
molecular machines. This can be achieved either by selective release of molecular
components to drive binding or dissociation within the machinery or via changes
of the local environment. Factors which can be modulated in this way include
the local electrochemical potential (via an electrode, which may be the surface
used for immobilisation of the molecular machines), the local solution pH (either
by changing the buffer with microfluidics or electrochemically [7]), the local ion
concentration or the temperature. A change in any of these parameters could
constitute an input to one of the molecular phases.

If a generic framework for computation is to have meaning, there must be an
interface between its components and the external world. Conceivably, informa-
tion could be read from any of the three phases. For straightforward computa-
tion, it would be most convenient to use outputs from the solid phase for data
readout because they are best suited to user-friendly presentation, perhaps with
a standard PC monitor. However, it is also possible to imagine a system for use
in a biomedical context in which an inactive drug present in solution is activated
as result of a computation carried out jointly by all three phases, and the out-
put would then consist of the activated drug, as released into the bloodstream.
Alternatively, for some applications the desired output might be a visible change
on the surface, such as a change of color or regulation of fluorescence intensity.
Information could be supplied as input to any phase by programming the solid
state phase, by pumping a new species of molecule into the solution, or by chang-
ing the properties of the surface. Significantly, bioelectronic computers could be
interfaced with systems which would not be accessible to conventional devices.

With the hybrid bioelectronic systems described by our framework, we can
easily move away from the paradigm of binary logic. While analogue electronic
computation does exist, most conventional computer systems are based on digital
logic. In contrast, the behavior and response of a molecule or molecular ensemble
is inherently not binary. In a hybrid bioelectronic system it would therefore be
possible to express information through the amplitude and temporal response of
a signal rather than using a simple binary encoding. Furthermore, the intrinsic
properties of molecular machines make them extremely well-suited for parallel
processing due to the enormous potential diversity of molecular species present
in the reaction mixture or on the surface. It is, however, important to note
that not all possible species are usable in practice, because the conformation of
some individuals may be restrictive or interactions between some species may be
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undesirable. Parallel processing can also be implemented in silico using spe-
cialised architectures and algorithms.

The framework we have developed suggests that surface immobilisation of
molecular devices is critical if they are to be integrated with conventional solid
state electronic systems for information processing purposes. For such applica-
tions, information must be encoded within the structure of the molecule, and if
the approach is to be scalable the structure must permit expression of a range of
variants, to represent different instructions or items of data. The molecule must
also be able to switch from one configuration to another in order to execute
an instruction, and for practicality it must be relatively stable and economi-
cal to synthesise. DNA meets all of these criteria, and its attributes make it a
particularly attractive candidate for synthesis of integrated systems.

It is possible to design and synthesise DNA strands which will interact in a
highly predictable manner, and the density of information stored in DNA is huge -
approximately 2.5×1026 bytes m−3, in comparison to around 1.6×1016 bytes m−3

for a typical magnetic hard disk drive1. DNA could be used for data storage,
either for long term memory [8], as in living organisms, or for recording temporary
instructions. DNA devices can switch from one state to another in response to
a supplied input, which effectively corresponds to processing an instruction -
the information encoded in the sequence of the toehold specifies how the incom-
ing strand should interact with the constructs on the surface, and hence deter-
mines the response of the molecular machinery. Manipulation of the dynamics of
this process will allow the molecular switching process to be controlled precisely,
enabling implementation of molecular circuits which absorb and process inputs
according to a designed scheme, in order to perform logical operations and poten-
tially complex computations.

The use of DNA for computation was pioneered by Adleman, who demon-
strated in 1994 that the standard tools of molecular biology could be used to
solve an instance of the travelling salesman problem [1]. More recently, DNA has
been used to build a finite state machine [3], a neural network [10] and logic-gated
nanorobots [6], among other systems. Most of these devices rely for their opera-
tion on the phenomenon of toehold-mediated strand displacement [14]. This is the
process whereby an incumbent DNA strand is displaced from a double-stranded
molecule by an invading strand, which binds transiently to a single-stranded toe-
hold, as shown in Fig. 2a. Most previously reported DNA nanodevices operate
in solution, but immobilising such machines on a surface will ultimately provide
opportunities to create an interface between the solid state and biomolecules in
solution. It will also be possible to create cascades of devices, consisting of multiple
machines which operate sequentially, enabling construction of complex molecular
logic circuitry.

1 In DNA, a single base pair occupies 1 nm3 and stores 2 bits of information; for the
magnetic hard disk, capacity is assumed to be 1 TB, radius 4.5 cm and depth 1 cm.
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2 Experimental Studies of DNA Machines on Surfaces

Surface-immobilised DNA devices may be studied with the technique of QCM-D
(quartz crystal microbalance with dissipation monitoring) [5]. This involves the
use of a thin circular sensor consisting of a quartz crystal with a gold electrode on
each side (Fig. 2b). A voltage is applied across the crystal, causing it to oscillate
at its resonant frequency. The resonant frequencies shift when molecules are
deposited on the sensor, and the size of the shift (Δf) depends on the mass
adsorbed, which means that the crystal acts as a microbalance or mass sensor.

When the voltage is switched off the oscillation decays, at a rate which
depends on the viscoelasticity of the molecular layer and the conformation of
its constituent molecules [9]. This is quantified by the dissipation, D, which is
defined mathematically as the inverse of the quality factor of the oscillator. If
the molecular layer is highly viscoelastic, D will be large because the energy will
be transferred easily from the crystal to the surrounding solution.

As the acoustic wave propagates into the solution from the crystal, the size of
the oscillation decreases. The amplitude decays exponentially with distance from
the surface, and for the sensors used here the penetration depth in pure water is
approximately 250 nm for the fundamental frequency (5 MHz). The higher res-
onant frequencies probe an even smaller region, and QCM-D is therefore very
sensitive to processes occurring at or near surfaces. The combination of its sensi-
tivity with its capacity to monitor dynamic processes in real-time and its ability
to directly probe molecular conformations makes it ideally suited for our studies
of surface-immobilised DNA molecular machines for information processing.

2.1 Materials and Methods

QCM-D experiments were performed using a Q-Sense E4 system with gold-
coated QSX 301 quartz sensors, where the apparatus and sensors were supplied
by Biolin Scientific. According to the manufacturers, the maximum mass sensi-
tivity of the system is ∼ 0.5 ng cm−2 in liquid, and a more typical value would
be ∼ 1.8 ng cm−2. The area of a sensor is approximately 1.5 cm2.

Sensors were cleaned before use as follows: 10 min UV-ozone treatment; son-
ication for 10 min in (1) a 2 % solution of Hellmanex III, (2) ultrapure (MilliQ)
water (twice); drying with N2 gas; 30 min UV-ozone treatment; soaking in 100 %
ethanol for at least 30 min; drying with N2 gas. The concentration of DNA used
for immobilisation was typically 300 nM and for backfilling the concentration of
mercaptohexanol was 1 mM.

The sequence of the thiolated DNA strand was 5’-ACACGCATACACCCAT-
(thiol)-3’ and the sequence of the extended strand which bound to it was 5’-
ATGGGTGTATGCGTGTTTAAAGACCCTAAGCT-3’. The thiol was pro-
vided in oxidised form as a disulphide with a short alkyl chain on each side.
Chemicals were acquired from Sigma Aldrich and DNA was purchased from
Integrated DNA Technologies (IDT), with HPLC purification for thiol-modified
strands. Oligos were stored at 4◦C in 1×TE.



Surface-Immobilised DNA Molecular Machines for Information Processing 9

Molecular layer
Gold electrode

Gold electrode

Quartz disc

Solution

V

Toehold

Invading strand

Displaced strand

a b

Fig. 2. (a) The process of toehold-mediated DNA strand displacement. The invading
strand binds to the single-stranded overhang (‘toehold’) of the original duplex and
stochastically displaces the incumbent strand from the complex via branch migration.
It is possible for the invading strand to dissociate before branch migration occurs, and
the most stable configuration of strands is that with the greatest number of base pairs.
(b) The principle of QCM-D. The voltage applied causes the piezoelectric quartz disc
to oscillate, and acoustic waves propagate from the sensor into solution, decaying expo-
nentially with distance from the surface. The resonant frequencies of the crystal and
the dissipation of energy from the acoustic waves depend on the mass and conformation
of the molecules adsorbed on the sensor.

2.2 Experimental Results

Figure 3 shows the frequency and dissipation changes observed during immo-
bilisation of a single-stranded DNA oligonucleotide with a thiol modification.
As molecules bound to the surface, the mass of the layer on the sensor increased,
and the frequency decreased. At each stage, the dissipation increased, which indi-
cates that energy was transferred more easily from sensor to solution as more
molecules adsorbed. Immobilisation was a comparatively slow process, occurring
over a timescale of approximately 30–40 min. After immobilisation, we applied
a backfilling agent (mercaptohexanol, MCH) to reduce non-specific adsorption
and improve the quality of the DNA layer. In the final stage of the experiment
we added the reverse complement of the immobilised strand and we observed
that hybridisation occurred rapidly, within a few minutes (Fig. 3).

We examined a range of immobilisation conditions, and we found that the
concentration of thiolated DNA only weakly affects the amount of DNA which
binds to the surface. We established that the presence of salt is essential for
immobilisation, for charge screening, and confirmed that it is essential in all
experiments to establish baseline measurements for frequency and dissipation in
the correct buffer because these are strongly affected by salt and other buffer
components. We observed that immobilisation of DNA duplexes tends to proceed
more rapidly than that of single-stranded oligonucleotides, presumably because
double-stranded molecules are more rigid and thus self-organise more easily.
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Fig. 3. (a) Frequency and dissipation changes measured using QCM-D during immo-
bilisation of single-stranded DNA oligonucleotides, backfilling with mercaptohexanol,
and hybridisation with the reverse complement of the immobilised strand.

Fig. 4. Sketch of experimental setup for strand displacement measurements, and fre-
quency changes associated with strand displacement for toeholds of length 2 (black) or
16 (grey) nucleotides. The concentration of the displacing strand was 600 nM in each
case. DNA was immobilised on the electrode via a single thiol-gold bond and experi-
ments were performed at or slightly below room temperature, in TE buffer with 1M
NaCl, at a flow rate of 20µL min−1. Data is shown for the 13th resonance; this has the
shortest penetration depth and is therefore the most sensitive to the surface.

For our investigations into strand displacement we used a pre-formed duplex,
consisting of a 16 base-pair double-stranded region and a 16 nucleotide single-
stranded overhang at the end furthest from the surface, as sketched in Fig. 4.
The process of strand displacement generated a double-stranded waste product
which remained in solution, while the single-stranded molecule continued to be
attached to the surface. The mass of the molecular layer on the surface therefore
decreased as displacement proceeded, and the frequency increased (Fig. 4).
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Our data (Fig. 4) shows that toehold-mediated DNA strand displacement
occurs more slowly at the surface than in solution. In our experiments, the
fastest reactions occurred within minutes, with a rate constant of the order of
k = 103 M−1s−1. In contrast, reactions in solution may have rate constants of
around k = 106 M−1s−1, giving a characteristic timescale of the order of seconds.
This huge difference arises because an immobilised duplex has fewer degrees of
freedom than a molecule which floats freely in solution, and the availability of
the toehold is effectively restricted, such that only the invading strands which
approach the surface have the opportunity to initiate displacement. Interactions
between duplexes within the surface-assembled monolayer may also hinder access
to the toeholds. We observed minimal strand displacement for the shortest toe-
holds (2–3 nucleotides), and we found that displacement occurred rapidly for
longer toeholds, as in solution [14].

3 Conclusion

In order to fully harness the information processing power of DNA molecular
machines on surfaces, a full understanding of the dynamics of surface-immobilised
DNA machines is required, and our investigations show that QCM-D has great
potential in this area. The results of our experiments reveal that DNA toehold-
mediated strand displacement on surfaces follows some of the same trends as in
solution, but some features of the process are different. Displacement occurs com-
paratively slowly in immobilised constructs, and this will need to be taken into
account if processes carried out by surface-based machinery are to be co-ordinated
with those occurring in other phases of a hybrid system (Fig. 1). Most dynamic
DNA machines rely on the phenomenon of strand displacement and it will there-
fore be necessary to understand how to control the dynamics of this process in
order to maximise the performance of the immobilised machines comprising the
surface phase of our framework.

Further work will shed light on other aspects of the behavior of surface-
immobilised DNA machinery, and may demonstrate whether other DNA struc-
tures and alternative molecules have potential for information processing. For
instance, the use of DNA constructs with secondary structure motifs may allow
the availability of selected domains to be controlled, which could facilitate the
design of logic circuits. In addition, incorporation of DNA structures with alter-
native geometries (i−motif, G-quadruplex etc.) could enable switching events to
be defined by a conformational change, occurring in response to a shift in envi-
ronmental properties, which would enable sensing of external conditions and
processing of different forms of information. In principle, RNA strands could be
designed and used in the same way as those of DNA, but RNA is more difficult to
work with and considerably more expensive. Peptides and proteins would present
more complex behavior than nucleic acids and might therefore be more versa-
tile, but it would be more difficult to predict the nature of the intermolecular
interactions, which would complicate efforts to design reliable systems.

In conclusion, the results obtained in the experiments described here will
underpin efforts to design surface-immobilised DNA machinery, thus opening
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the door to integration of such molecular devices with more conventional com-
putational systems for information processing applications, in accordance with
the general framework we presented in Fig. 1.
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Abstract. As spatial locality leads to advantages of computation speed-
up and sequence reuse in molecular computing, molecular walkers that
exhibit localized reactions are of interest for implementing logic compu-
tations. We use molecular spiders, which are a type of molecular walk-
ers, to implement logic circuits. We develop an extended multi-spider
model with a dynamic environment where signal transmission is trig-
gered locally, and use this model to implement three basic gates (AND,
OR, NOT) and a mechanism to cascade the gates. We use a kinetic
Monte Carlo algorithm to simulate gate computations, and we analyze
circuit complexity: our design scales linearly with formula size and has
a logarithmic time complexity.

Keywords: Molecular spiders · Logic circuits · Parallel evaluation ·
Localized signal transmission

1 Introduction

Molecular walkers are synthetic molecular machines inspired by natural biolog-
ical motors. Previous studies [4,7,9,11,13] have shown that walkers can move
directionally and autonomously on a pre-programmed track via localized reac-
tions. Spatial locality can overcome the challenges of computation speed-up and
sequence reuse in molecular computing where all the reactants diffuse freely in
a mixed solution [2,5]. Hence, a walker system with inherent spatial locality has
potential to perform more complex computational tasks. We investigate the com-
putational power of a walker system by using it to implement scalable logic cir-
cuits.

We consider a molecular spider system, where a spider is a type of molecular
walker. Molecular spiders [1,11,12] with varying number of legs move stochasti-
cally on a surface formed by sites containing DNA segments, and present biased
behaviors due to different reactions with fresh sites (catalytic cleavage) and
visited sites (dissociation). We extend previous models [1,11,12] to implement
three basic logic gates (AND, OR, NOT), and cascade the gates to construct
c© Springer International Publishing Switzerland 2015
M. Lones et al. (Eds.): IPCAT 2015, LNCS 9303, pp. 13–28, 2015.
DOI: 10.1007/978-3-319-23108-2 2
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logic circuits. We use multiple spiders in the model, and we assume spiders
behave unbiasedly with equal transition rates to all sites. Sites are divided into
normal sites that are non-alterable and functional sites that can be altered via
catalytic cleavage and/or strand displacement. We can encode signals into func-
tional sites. Signal transmission [5,6] is triggered locally when a spider interacts
with a signal-carrying site, which dynamically changes the state of the spider
or of the environment. We call this extended system an active molecular spider
system.

In our design, each variable is represented by a moving spider that has two
legs and one arm. The arm has two possible states, 0 or 1, representing the
boolean value of the spider. Each gate is represented by a layout of different
sites on a 2D lattice. In a single gate, spiders with different values will take
different paths from their input locations. We arrange different functional sites on
different paths, such that only the spider with the correct computation result will
be directed to the output location via interactions between spiders and functional
sites. On reaching the output location, a spider reports the computation result,
and we call this spider the reporting spider. We cascade logic gates by connecting
them such that only the reporting spider leaves the upstream gate and enters
the downstream gate. We design a mechanism for exit from gates to implement
gate cascades that allow parallel evaluation. As an example, Fig. 7 shows a logic
circuit where input spiders X and Y are initially placed at the input locations
of two NOT gates, and the NOT gates are connected to the same AND gate via
exit mechanisms. Spiders move within the circuit, and the spider reaching the
output location reports the computation result.

Molecular circuits using DNA Strand Displacement [8] in a well-mixed solu-
tion use relatively high and low concentration of a species to represent Boolean
values 1 and 0, or use two separate species in a dual-rail encoding. Here, we
use spiders with arm state 1 or 0 to represent Boolean values, thus we remove
potential ambiguity from result reporting. Since Boolean values are carried by
spiders moving from an upstream gate to a connected downstream gate, all gates
are designed individually, thus, modularity is ensured. Previous work on teth-
ered circuits [2,5] also ensures modularity and unambiguity, but takes a different
approach where Boolean values are represented by the existence of a sequence.
Modularity is ensured by spatially isolating different gates on a surface, e.g.,
a DNA origami tile such that only gates in close proximity can interact with
each other.

Previous work [3] has used a walker system to construct logic circuits with
spatial locality, but it lacks modularity and is limited to sequential evaluation
due to its design where the circuit constructed is in the form of a Binary Decision
Diagram (BDD). A walker initially placed at the root node walks along a path
unblocked by externally-added strands to reach a leaf node representing True
or False, causing a fluorophore change to report the computation result. For
practical reasons, this reporting strategy needs two parallel circuits that detect
fluorophore change at the True nodes and False nodes respectively to avoid
ambiguity. Our design uses the reporting spider to avoid reporting problems [3],
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and we support parallel evaluation. As a result, to evaluate an m-clause 3-CNF
circuit, we need time O(log m) while the circuit [3] needs time O(m). We use
the same linear space complexity O(m) as in the circuit [3], and it is easier to
construct large circuits using our design because of its modularity.

Using an extended active multi-spider system, while keeping the advantages
related to spatial locality, our design ensures modularity, unambiguity, and scal-
ability. We will describe the model in Sect. 2, and introduce how to construct
the logic circuits in Sect. 3 with simulation results and complexity analysis.
A formal definition of the model is given in Sect. 4. We give conclusions and
discuss current challenges and future work in Sect. 5.

2 Model Description

Our long-term goal is to realize the circuits we describe here with a physical
implementation based on molecular spiders [4,7]. Therefore, our model draws
from the existing models of molecular spiders [9,11] and extends them to describe
the richer functionalities of the walkers we hope to build. In spite of these exten-
sions, we will use the evocative term “spider” throughout the paper.

A molecular spider has a body and three limbs, two legs and an “arm”, which
it can use to attach to chemical sites on a surface. There is exclusion: at most
one limb can be attached to a given site at a time. Different types of sites are
laid out on a square lattice, Z2. A set of contiguous sites can form a track on
which the spiders can move.

We model a spider’s body as a single point, and the limbs as having equal
length. This leads to the following postulated “hand-over-hand” gait [9]: at any
given time, exactly two limbs are attached to the surface, and they are attached
to nearest-neighbor sites. We call the sites a limb has bound to the attachment
points. There are always two attachment points for each spider, and they are
adjacent to each other. A moving step occurs when a spider detaches one of
its limbs from an attachment point p ∈ Z

2, and attaches to a site p′ ∈ Z
2.

Figure 1 shows a transition step of a spider where there are four reachable sites
that the spider can potentially transit to. However, a spider might not attach
to a reachable site because whether a reachable site is available depends on the
state of the site and of the limb, which will be discussed in Sects. 3 and 4. When
multiple spiders are moving on the track, one spider cannot attach to a site
occupied by another spider.

Spiders move stochastically on the track, interacting with the normal sites.
If they attach to functional sites, signal transmission is triggered locally between
two adjacent sites, or between a site and the spider attached to it. Changes to the
sites and spiders may happen during a step, which is crucial in the construction
of a logic circuit. In the next section, we will explain how to use different sites
to construct three basic gates (AND, OR, NOT) and cascade them to construct
a logic circuit.
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limb      is not on 
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Fig. 1. A spider has limb l1 and limb l2 attached to the surface. When limb l1 detaches
from the left attachment point, four sites represented by the black dots are reachable
for limbs l1 and l3. The arrows show the transitions of a spider to other sites via
hand-over-hand movement.

3 Logic Circuit Construction

Each spider represents a Boolean variable. The value of the spider is indicated
by its arm state, which is either 0 or 1. A logic circuit is formed by cascades
comprising the basic logic gates (AND, OR, NOT). This combination of logic
gates is complete for Boolean logic. A logic gate is an arrangement of different
sites on a square lattice, including an output location and input locations. When
spiders begin moving from the input locations, their interactions with the sites
lead to changes to the sites and the spider values, which ends with one spider
reaching the output location, and the value of this spider represents the com-
putation result of the logic circuit. In this paper we do not concern ourselves
with the issues of placement and routing of circuits in the plane, which are well
studied in electronic circuit design.

3.1 Normal Sites and Functional Sites

We define the set of site types as S = Snorm ∪ Sfun, where the normal sites
Snorm = {sl, s1, s0} are non-alterable and the functional sites in Sfun are alter-
able. A normal site of type sl binds to a spider’s leg, and is used for the “wires”
of a logic circuit. Sites of type s0 and s1 bind to the spider’s arm if it has type
0 or 1, respectively. Sites of type s0 and s1 are placed at the beginning of two
separate paths that branch out from a junction, directing a spider with different
values to different paths (Fig. 2).

The junction design is used in the constructions for all gate types. Each
logic gate has a set of functional sites placed on the paths branching out from
the junction. After the spiders take their own paths at the junction according
to their values, they will encounter different functional sites. The interactions
between the spiders and the functional sites cause changes to the spider and the
sites, directing one spider to the output location, reporting the result of the gate
computation.

Before going to the details of each gate, we first introduce some important fea-
tures of functional sites. (1) A functional site has a state among {on, off, trapped}.
The spider can bind to an “on”-state site, cannot bind to an “off”-state site, and
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Fig. 2. If a spider has an arm type of 1, it binds to site s1 at a junction. If a spider
has an arm type of 0, it binds to site s0 at a junction. Here a spider X = 1 follows the
upper path by attaching to site s1. It cannot follow the lower path.

cannot leave a “trapped”-state site by itself. (2) A functional site may or may not
trap a spider. When it traps a spider, the site’s state becomes “trapped”. (3) A
functional site may contain a signal of “turning on/off” or “switching to 1 or 0”.
The signal held in a functional site is sent out once it is attached by a spider. When
a spider attaches to a site holding a signal, the signal “turning on/off” is sent to
another site, setting its state “on” or “off”; the signal “switching to 1 or 0” is sent
to the spider, changing its value to 1 or 0. When a functional site sends out its
signal, it has no signal remaining. Signal transmission is allowed between a site
and a spider that is attached to the site, or between two sites that are adjacent to
each other. These features could be implemented via DNA strand displacement.
We will discuss the AND and OR gate designs in Sect. 3.2 and the NOT gate design
in Sect. 3.3.

3.2 Designs of the AND and OR Gates

We use three types of functional sites st, sp, and su in the designs of the AND
gate and OR gate. Site st can trap the spider attaching to it, so we place a
site st at the output location of the gate. The AND gate and OR gate each
has two input spiders initially located at the two input locations, which are
two junctions as shown in Fig. 2. Each input spider selects one of two possible
paths when computation begins, where one path leads to the output location
without any functional sites and the other path is merged into a crossroad in
the middle of the lattice. We place an initially “off”-state site sp at the heart of
the crossroad, which blocks the central path from the crossroad to the output
location. We place a site su adjacent to site sp, which will send a “turning-on”
signal to unblock site sp when a spider attaches to it, and trap that spider at
the same time. The cooperation between sites su and sp guarantees that only
when both spiders meet at the crossroad can a spider take the central path to
the output location.

Figure 3 shows the layout of the AND gate and OR gate. We explain how the
AND gate works under four possible input assignments, and the OR gate follows
a similar design. In the AND gate, the two input spiders X and Y are initially
placed at two junctions as their input locations. When spiders X and Y are
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both 0, they both take the path starting with site s0, which leads to the output
location without any functional sites. In this case, whichever spider reaching the
output location has value 0, reporting the result of 0∧0 is 0. When spider X = 0
and spider Y = 1, spider Y takes the path starting with site s1, and gets stuck
at the crossroad because site sp is “off”. Spider X takes the path starting with
site s0, and will eventually reach the output location, reporting the result of 0∧1
is 0. When spider X = 1 and spider Y = 0, spider X gets to the crossroad via
the path starting with site s1, and gets trapped at the crossroad due to the sites
st and su placed on that path. Spider Y is the only spider that can reach the
output location in this case, reporting the result of 1∧0 is 0. When both spiders
are 1, they meet at the crossroad. Site sp is turned on by the signal sent from
site su, so spider Y can take the central path leading to the output location.
Since spider X is trapped at the crossroad, only spider Y can reach the output
location, reporting the result of 1 ∧ 1 is 1.

Following a similar design, the layout of the OR gate is shown in Fig. 3. When
both spiders are 0, they meet at the crossroad. Spider X is trapped on sites st
and su, and spider Y takes the unblocked central path to the output location,
reporting the result of 0 ∨ 0 is 0. Under other input assignments, the 0-valued
spider takes the path to the crossroad and gets stuck there, only the 1-valued
spider can reach the output location, reporting the result of 1 ∨ 0, 0 ∨ 1, and
1 ∨ 1 is 1.

The movement of the spiders can be modeled as a continuous-time Markov
process. We used a kinetic Monte Carlo algorithm to simulate gate computations.
For each gate, under different assignments, we investigate the computation time
using 10, 000 iterations in each simulation. We assume the transition rate (the
rate that a spider limb transits from one site to another) of each spiders is 1.
Simulation results for the AND gate and OR gate are shown in Fig. 4. In the AND
gate or OR gate, under a certain input assignment, the computation time follows
a long-tailed distribution because spiders move stochastically. The computation
time is the time spent on traversing the path taken by the reporting spider that
reaches the output location; it is influenced by factors such as the transition rate
or the length of the path. These factors have been discussed in previous work
[10,11], so we do not focus on them in this paper.

3.3 Design of the NOT Gate

We use five types of functional sites in the NOT gate design. As is shown in the
layout of the NOT gate in Fig. 5, site st which can trap a spider that attaches
to it is placed on the output location. Sites s1→0, s

I
r , s

II
r and sites s0→1, s

I
r , s

II
r

form two different switch mechanisms SW1→0 and SW0→1 that are laid on two
separate paths. The NOT gate has one input spider which is initially placed
at a junction as the input location. Two separate paths branch out from the
junction: one is taken by the 1-valued spider and contains mechanism SW1→0

that can change the spider value to 0, the other is taken by the 0-valued spider
and contains mechanism SW0→1 that can change the spider value to 1. When a
spider moves through a switch mechanism, its value is switched and its backward
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Fig. 3. The layout of the AND gate and OR gate. Three functional sites st, sp, and
su used in the designs of these two gates are listed in the middle column. Normal site
s1 can only bind to an 1-valued spider and normal site s0 can only bind to a 0-valued
spider. In the AND gate, when both spiders are 1, they meet at the crossroad in the
middle. Spider X gets trapped at sites st and su, site su sends a “turning-on” signal to
unblock site sp, allowing spider Y = 1 to take the unblocked central path from site sp
to the output location. Under other input assignments, the 1-valued spider gets stuck
at the crossroad, so only the 0-valued spider can reach the output location. Therefore,
the AND gate yields 1 when both spiders are assigned 1, and yields 0 in all other
cases. Similarly, in the OR gate, when both spiders are 0, they meet at the crossroad
in the middle and only spider Y = 0 can reach the output location. Under other input
assignments, the 0-valued spider gets stuck at the crossroad, so only the 1-valued spider
can reach the output location. Therefore, the OR gate yields 0 when both spiders are
assigned 0, and yields 1 in all other cases.

route is cut off. We explain how mechanism SW1→0 works with a 1-valued spider
as an example; mechanism SW0→1 works analogously.

Mechanism SW1→0 is formed by three neighboring functional sites along the
horizontal direction: s1→0, s

I
r , s

II
r . We use a staging transition diagram in Fig. 5

to describe how mechanism SW1→0 changes a 1-valued spider to be 0, and cuts
off the backward route of the spider. A stage transition shows the change of the
spider’s location, value or the site states. At stage (1), all sites are “on” initially.
Site s1→0 can trap a spider, and contains a “switching to 0” signal that will
be sent to its left site when a spider attaches to it. Therefore, when a 1-valued
spider attaches to s1→0, it is trapped and receives the signal changing its value
to 0, causing a transition to stage (2). At stage (2), since the limb trapped at
site s1→0 cannot move back, the spider could only move forward by attaching to
site sIr that traps the spider and sends out a “turning off” signal to its left site.
When site s1→0 receives that signal and turns itself “off”, we get to stage (3).
At stage (3), the limb trapped on sIr cannot move back, the spider could only
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Fig. 4. The computation time distributions for the AND gate and the OR gate under
four possible input assignments. Each curve in one gate represents a time distribution
under one assignment. The vertical line indicates the mean value of computation time
under one assignment in the simulation. The standard deviation for each curve is shown
in the legend.
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Fig. 5. The layout of gate NOT is shown in the figure. The function of mechanism
SW1→0 is to switch a spider’s value from 1 to 0 and cuts off its backward route. We
show how mechanism SW1→0 works in a staging transition diagram, where the spider
value is expressed as X and the state of each functional site is shown above it.

move forward by attaching to site sIIr that sends a “turning off” signal to its left
site. When sIr receives that signal and turns itself “off”, we get to stage (4). At
stage (4), the limb on sIr can transit to a normal site on the right of sIIr , while
the limb on sIIr cannot move back to s1→0 which is “off”. The spider could only
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assignments.

move forward to get to stage (5). At stage (5), sites sIr and sIIr are “off”, the
spider cannot walk back. When a spider goes through these 5 stages, its value is
switched and its backward route is cut off. The mechanism SW0→1 comprising
s0→1, s

I
r , s

II
r follows similar staging transitions, the only difference being that a

0-valued spider becomes 1 in the stage transition (1) to (2).
Figure 6 shows the computation time distributions for the NOT gate. The

distribution curves for the two input assignments are long-tailed and alike, which
is due to the symmetric path design for the 1-valued spider and the 0-valued
spider.

3.4 Gate Cascades

To construct a large logic circuit, we need to cascade logic gates of the three
kinds defined in Sects. 3.2 and 3.3. A wire w connecting an upstream gate and
a downstream gate is composed of continuous normal sites sl. To ensure that
the spider that reaches the output location exits the upstream gate and never
goes back to it, we place two additional sites sIr and sIIr after site st on the
output location, forming an exit mechanism which cuts off the backward route
of a spider that moves through it.

The mechanism exit follows similar staging transitions to mechanism SW1→0

shown in Fig. 5. It consists of three neighboring functional sites along the hor-
izontal direction: st, s

I
r , s

II
r . We explained the functionality of site sIr and sIIr

at the end of Sect. 3.3. Site st is designed to trap the spider. Therefore, a stag-
ing transition diagram for mechanism exit is similar to the one shown in Fig. 5,
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Fig. 7. A logic circuit: (¬X ∧ ¬Y ). The input locations of each gate are highlighted
in grey. Spiders X and Y exit the NOT gate, becoming spider ¬X and ¬Y after
passing through the exit mechanisms. The AND gate computation begins whenever a
spider enters the AND gate. The spider reaching the output location of the AND gate
represents the computation result ¬X ∧ ¬Y .

with the only difference that the spider value is unchanged throughout the five
stages. For a downstream gate with two inputs, its two input spiders may arrive
at different moments. Computation of the downstream gate begins when either
input spider enters the gate, and the asynchronous arrival of input spiders will
not influence the computation accuracy of the gate.

Figure 7 illustrates a simple logic circuit implemented by cascading two NOT
gates as the inputs to an AND gate. The output location of each NOT gate is
connected to an input location of the AND gate via the exit mechanism. Spider
X and spider Y start to move in the two NOT gates concurrently. When the
two spiders move out of the NOT gate, their backward routes are cut off due
to the exit mechanisms, and they have their values changed to ¬X and ¬Y .
When either spider enters the AND gate, gate computation begins, yielding the
result ¬X ∧ ¬Y eventually. The computation time of this logic circuit is shown
in Fig. 8. In all simulation runs, the output spider produced the correct output
value.

3.5 Complexity Analysis

In a single gate, the computation time tgate is the traversal time of the spider
that reaches the output location. Since the spider moves on the track stochas-
tically, the computation time tgate is a random variable following a long-tailed
distribution, as shown in Figs. 4 and 6.

When a spider leaves a gate or enters a gate, its backward route is cut off
due to the functionality of the exit mechanism, so we can use the computation
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time of a single gate tgate to estimate the computation time t of a circuit. For
any n-variable boolean function, we can transform it into 3-CNF, which is a
conjunction of m clauses, each a disjunction of at most three literals. Since our
design allows parallel evaluation, for a clause mi = (li1∨ li2∨ li3), the computation
time of mi is

tmi
≤ 2 × (tOR + tNOT) = O(1).

Since each clause needs time tmi
, to evaluate m clauses in parallel, we conduct

log m AND gate computations that cost tAND × log m, and in total use time

t = tAND × log m + tmi
= O(log m).

For any boolean function in 3-CNF with m clauses, we use at most 3m spiders
to represent the literals. For each clause, we need at most three NOT gates and
two OR gates if all the literals are the negation of a variable, which is a constant
number. For m clauses, we need m − 1 AND gates. Therefore, the total space
complexity is O(m). Hence, our circuit designs are scalable because circuit size
in our design scales linearly with formula size, and evaluation time is logarithmic
in the formula size.
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4 Formal Definition of the Model

The active molecular spider system is modeled as a continuous-time Markov
process where the state transitions depend on the interactions between the mole-
cular spiders and the sites on the track. We first define the site types and tran-
sition rules of alterable sites, and then give a formal definition of the model.

4.1 Site Types and Transition Rules

Sites are categorized into normal sites and functional sites. A normal site s ∈
Snorm = {sl, s0, s1} has no state. Site sl binds to the spider’s leg. Sites s0 and
s1 bind to the spider’s arm if it has type 0 or 1, respectively.

A functional site s ∈ Sfun has a state of “on”, “off” and “trapped”. The site
state transition diagram is:

A spider limb can only attach to an “on”-state site. An “off”-state site is
non-alterable. The limb trapped on a “trapped”-state site cannot leave the site
by itself. Whether a site can trap a spider is indicated by TR ∈ {0, 1}: a site
with TR = 1 will trap a spider when a limb attaches to it. A functional site may
change the spider’s value, or the state of another site, by sending out a signal
to the spider or another site. We define

signal = (val, d) or null, where d ∈ Z
2 and val ∈ {on, off, trapped, 1, 0}. (1)

Suppose a functional site is located at (x, y). If it holds a signal = (val, d =
(dx, dy)) then it sends the signal to the location (x+dx, y+dy), setting the state
of the site located there, or the spider’s value, to val. When d = (0, 0), the val
field of the signal is either 1 or 0, which is sent to the spider, setting the spider’s
value to 1 or 0.

Therefore, we can define a functional site s ∈ Sfun as

s = (state, TR, signal). (2)

The signal held in a site is sent out once a spider limb attaches to the site.
When a signal is sent out, the site has no signal remaining, which we express as
s = (state, TR, null). A functional site s = (on, null) is equivalent to a normal
site, which is non-alterable. Once a signal is received by a site or a spider, the
site state or the spider’s value is changed according to the signal.

In the logic circuit construction, we use two functional sites su and sp in the
AND gate and OR gate, and we design a set of functional sites that form different
mechanisms in the NOT gate and the gate cascades. Table 1 gives the definitions
of these functional sites and the transition rules applied to them. A functional
site s transits to site s′ in the second column, either by receiving a signal or
being attached by a spider limb. If s holds a signal, it causes other changes in
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Table 1. Definition of different functional sites used in the circuit construction and
the transition rules applied to them. Suppose the location of the site is (x, y), define
(x′, y′) = (x + dx, y + dy).

Transition rules

Functional site Updated site Other changes

st = (on, 1, null) s′
t = (trapped, 1, null)

s1→0 = (on, 1, (0, (0, 0))) s′
1→0 = (trapped, 1, null) A = 0

s0→1 = (on, 1, (1, (0, 0))) s′
0→1 = (trapped, 1, null) A = 1

sIr = (on, 1, (off, d)) sI
′

r = (trapped, 1, null) site at (x′, y′) becomes off

sIIr = (on, 0, (off, d)) sII
′

r = (on, 0, null) = sl site at (x′, y′) becomes off

su = (on, 0, (on, d)) s′
u = (on, 0, null) = sl site at (x′, y′) becomes on

sp = (off, 0, null) s′
p = (on, 0, null) = sl

when a “turning-on” signal is received

the last column. In Table 1, the updated site s′ in the second column is either a
normal site or a trapped site. According to the site state transition diagram, a
trapped site can only transit to a “off”-state site that is non-alterable by itself.
Since no signals are designed to turn on these “off”-state sites transited from
the trapped sites, these “off”-state sites are non-alterable finally. Therefore, all
the functional sites in Table 1 are alterable initially and become non-alterable
finally. The functional sites used in our design are

{st, s1→0, s0→1, s
I
r , s

II
r , su, sp},

where each site s among them includes its site transitions under the transition
rules described in Table 1. The set of site types is S = Snorm ∪ Sfun.

A mechanism is a set of neighboring mechanism sites along the same direc-
tion. We design three different mechanisms used in the logic circuit construction.
The switch mechanism SW1→0 (SW0 → 1) contains sites s1→0(s0→1), sIr , s

II
r ,

where site sIr , sIIr contains the signal of (off, (−1, 0)) which can block its left site.
When a spider moves over the switch mechanism, its value is flipped, and its
backward route is cut off. The exit mechanism contains sites st, s

I
r , s

II
r . When a

spider moves over this mechanism, its backward route is cut off.
When a spider limb leaves a site, this limb can reach 4 sites geometrically

(shown in Fig. 1). Since sites have different types, wether a site is available for a
limb of a spider depends on the spider value and the site types. Given a spider with
value A and a site, algorithm check summarizes how to tell if the site is available.

Using Algorithm 1, we examine every site among the 4 sites shown in Fig. 1,
putting those available into a set A V .

4.2 Model Definition

The active multi-spider system with normal sites and alterable sites can be mod-
eled as a continuous-time Markov process. We define the state of the model as

X = (S1, S2, . . . , Sn, E), (3)
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Algorithm 1. Algorithm check tells if a given site is available.
• if the site is occupied by another spider, it is not available.
• else:

1. if the site is a normal site:
(a) if the site is sl, it is available;
(b) if the site is s1 and A = 1, it is available;
(c) if the site is s0 and A = 0, it is available;

2. else if the site is a functional site:
(a) if the site is s1→0 and A = 1, it is available;
(b) if the site is s0→1 and A = 0, it is available;
(c) if the site is “on”-state, it is available;

3. else, the site is not available.

where Si = (Pi, Ai) (1 ≤ i ≤ n) describes the state of the i-th spider. Set
Pi = (pia, p

i
b) contains attachment points for the i-th spider, and Ai ∈ {0, 1}

represents the Boolean value of the spider. The lattice configuration E : Z2 → S
shows the layout of different sites, where S is the set of site types. Normal sites
can be regarded as having state “on”, TR = 0 and no signal, so we can redefine
the lattice configuration as

E : Z2 → {on, off, trapped} × {1, 0} × S,

where S represents the set of signals.
Given a model state X = (S1, S2, . . . , Sn, E) at time t, if a limb leaves an

attachment point p ∈ Pi ∈ Si, we use the algorithm check to obtain a set of
available sites A V . At time t + δ, this limb transits to p′ ∈ A V , changing the
set of attachment points to P ′

i = Pi − {p} ∪ {p′}. We use the transition rules to
update Ai, so we have S′

i = (P ′
i , A

′
i). The transition rules also updates E, thus

the new state is

X ′ = (S1, S2, . . . , Si−1, S
′
i, Si+1, . . . , Sn, E′).

5 Conclusions and Discussions

Using an active multi-spider model with spider cooperation and localized signal
transmission, we have implemented the basic logic gates (AND, OR, NOT). We
have shown how to implement gate cascades, in which each upstream gate Gu

is connected to a downstream gate Gd using the exit mechanism. We use O(1)
types of spiders and sites. To evaluate an n-variable Boolean function that is
in 3-CNF with m clauses, the evaluation time is O(log m) and the size of the
circuit is O(m). Therefore, our design supports scalable computation and ensures
spatial locality. Molecular circuits with spatial locality overcome the challenges
of computation speed-up and sequence reuse in molecular computing in a well-
mixed environment, but there are still other issues. Compared with previous
work [2,3,5], our design better addresses the following issues:
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Geometrical Layout. Molecular circuits with spatial locality arrange different
computing components on a 2D plane where the distance between different com-
ponents should be set carefully to avoid interference across components. Reduc-
ing the number of gates used in a circuit can ease the geometrical layout problem.
Our design implements a NOT gate to avoid dual-rail logic conversion used in
previous work [2,5], which simplifies the circuit and its layout. Compared with
the circuit [3] in a form of BDD where the layout of different branching paths
requires appropriate angles and lengths, our design only considers connections
between gates because each gate has a fixed layout.

Data Encoding. In previous work, variable representation is encoded into the
circuit [2,3,5], so each variable corresponds to a distinct sequence. This compli-
cates sequence design if the circuit has a large number of variables. Our design
separates variable representation from circuit design, only using two types of
spiders placed at different input locations to represent all variables.

Circuit Reusability. Tethered circuits [2,5] use irreversible local signal trans-
mission to implement logic computation and value propagation, so the circuit is
not reusable. The circuit [3] adds external strands to unblock a path for an eval-
uating walker. This procedure irreversibly changes the circuit configuration, thus
the circuit is not reusable. In our design, irreversible local signal transmission
is used to control the spiders’ behavior at a few locations in the circuit, which
only occupy a small portion of computation. Since non-alterable sites form the
majority of the circuit, most parts of the circuit are reusable.

We lack an experimental implementation of our designs, thus here we use a
simulator that simulates the circuit at the site level, assuming spiders have equal
transition rates to all sites. We are working on an implementation where normal
sites are short DNA strands so that molecular spiders can attach to or detach
from the normal sites freely, and functional sites transmit signals to neighboring
sites via strand displacement. For example, we can encode a signal in the loop
(inactive part) of a hairpin structure. Once a spider attaches to the hairpin
structure, the loop is opened so that the exposed domain can react with other
neighboring sites, transmitting the signal encoded in the opened loop to other
neighboring sites. In the future, we will complete a plausible implementation and
focus on a simulator that can better reflect how different sites react with spiders
according to that implementation.

Since spiders move bidirectionally on the track, we can use this feature to
solve some interesting problems. For example, it may be possible to construct
a feedback loop that can be used to solve a SAT problem automatically where
the spider that does not satisfy the formula can go back to switch its value.
In the current model, molecular spiders can probe, walk, and change their own
states and the state of the environment. These behaviors of the molecular spiders
can be extended for complex intracellular tasks, e.g., we can use the molecular
spiders to replace natural motors. In the future, we will explore applications of
our design, as well as the possibility of implementing it in the laboratory.
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Abstract. Formally, cellular information processing requires mathematical
forms of representation of parts of the whole. Several types of mereological
operands, co-operands, and operators are necessary to embed the symbolic
meanings. The common source of propositions is the atomic numbers, taken as
both (measurable) physical objects and mathematical objects. The atomic
numbers serve as source of the novel notation for organic mathematics. The
historical scientific basis for the notation is described in terms of the electrical
particles (abstractly defined as cardinal and ordinal numbers). The regular order
of atomic numbers as diagrams define the radix attributes of the perplex number
system. A triad of mathematical constructs built from the perplex numerals
include quantum mechanics, the table of elements, and molecular biology. The
radix of the hybrid logic of biological information processing includes forms of
both copulative and predicative propositions on the attractive and repulsive
attributes of electrical particles.

Keywords: Organic mathematics � Perplex numbers � Chemical notation �
Synductive logic �Mereology � Constructive mathematics � Electrical relations �
Categories

1 Introduction

1.1 The Symbolic Gap

A quantitative theory of biological information processing requires a general method to
relate the biological changes of organic structures to orthodox mathematical and
physical symbols. But, the notation for chemistry and that of mathematics use two
different numbering systems, two different modes of logical extension. The latter bases
extension on Pythagorean geometry. The former number system extends the count by
generating new relation classes from the natural reference system. This “difference that
makes a difference” between the chemical and mathematical symbol systems create an
insurmountable logical gap between the disciplines. The radix notation for biological
information processing emerges from the algebra of chemical symbols in contrast with
the informational processing of physical systems. The communications gaps arise as a
consequence of the incompleteness of the logical expressive capacity of orthodox

© Springer International Publishing Switzerland 2015
M. Lones et al. (Eds.): IPCAT 2015, LNCS 9303, pp. 29–35, 2015.
DOI: 10.1007/978-3-319-23108-2_3



mathematics with respect the description of chemical and biological structures and
processes (see Chandler et al. 1995).

1.2 The Logical Gap

The logic of chemical algebra differs from the logic of physical algebra. Organic
Mathematics is the formal mathematics of the chemical notational system (Chandler
2014). Organic objects are expressively complete with respect to the atomic numbers.
Informally, the logic of organic mathematics exists now, encoded within the copulative
grammar of chemical and molecular biological propositions and the logical operations
on molecular formula, molecular structures, metabolites, biomolecule synthesis,
inheritance, adaptation, and so forth. The radix of cellular information processing is
necessarily expressed in the specific electrical relations describing the existence of the
organic components of the organization of the organism. A critical distinction between
physical mathematics and organic mathematics is the crisp separation of the founda-
tional chemical concept of matter from the foundational scientific concepts of space
and time. The novel electrical relations of organic mathematics bridge many of the gaps
of meaning that separate the mathematical sciences from chemical sciences. In the
recent book “Integral Biomathics” (Simeonov et al. 2012), several prominent mathe-
maticians and informational scientists called for a new mathematics for biology.
Although they did not provide specific criteria for identifying “biomathics”, the
foundational logic of Organic Mathematics provides a coherent testable hypothesis that
can be evaluated against future criteria, should they become available.

2 A Novel Electrical Notation for the Bio-chemical Sciences

2.1 Origins of Atomic Numbers

Organic mathematics introduces a novel notation for the chemical sciences that is
expressively complete and deductive with respect to both mathematical structures and
physical laws. The novel notation is necessary for a formal basis for a scientifically
coherent expression of such vital cellular information processes as metabolism,
inheritance, and emergence. The logical construction of organic mathematics is initi-
ated by the application of Newton’s and Coulomb’s laws to individual chemical ele-
ments, resulting in the induction of the term “atomic number” (Born 1969) to represent
the electrical relations within every atom. Hence, the radix of organic mathematics is a
propositional term logic referenced in the atomic numbers as constructs of electrical
particles. Three different mathematical constructions of mereological relations have
emerged from the physical conceptualization of these natural integers. The entelechy of
each of the mathematical constructs is to describe part-whole relations in order cor-
respond with and validate empirical measurements on natural systems.
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2.2 Extensions of the Atomic Numbers

The mereology of atoms as electrical dynamical systems, the mereology of molecules as
physical compositions of multi-sets of atomic numbers, and the mereology of cells with
physical potential to reproduce the multi-set of compounds inherited from progenitors
are all based on the abstract concept of the linear order of the atomic numbers. Roughly
speaking these three types of part-whole relations infer the intrinsic propositional terms
of “quantum mechanics”, “chemical synthesis” and “molecular genetics”. The three
mathematical compositions are guided and constrained by the common physical prin-
ciples of the conservation of matter and the conservation of electricity. These two
physical conservation laws necessitate exact indices for each unique whole that contains
every individual part of a whole. Logically and necessarily, each part of a whole enters
into the mathematical construct, otherwise the mathematical construct would fail Hil-
bert’s criteria of consistency, completeness and decidability for mathematics, and would
fail the physical conservation laws and would fail, roughly speaking, to reproduce the
multi-set of components of the progenitors. In other words, in order to ensure scientific
coherence among parts of wholes, the unit of a whole must be a logical consequence of
the units of the parts. The electrical units of the parts of an atom (positive nuclei,
negative electrons) entail the mereology of atomic numbers (Quantum mechanics
describes the motion of parts of atoms in relation to energy units.). The units of the parts
of a molecule are the atomic numbers, taken together as the molecular formula repre-
senting all the electrical parts of the whole (An identity theorem is necessary for each
molecule.). The unit of a cell infers a specific object that can be expressed within a
specific multi-set of components such that reproduction is entailed through dynamic
organic feedback and feed forward relations (The internal mereological relations of a
cell are a consequence of both the antecedent physical environment and its antecedent
organic structures. The on-going information processing of a living cell is thus inter-
dependent on the relations between both internal and external organic structures.). In
summary, despite the differences in mathematical forms, mathematical functions and
logical operators, the triad of mereologic constructs from the atomic numbers are
logically consistent with one another. The notation for organic mathematics captures
the consistency among part-whole relations among relatives.

3 Perplex Notation and Physical Dependence of Organic
Operands and Operations

3.1 Physically Independent and Interdependent Electrical Particles

The proposed notation for organic mathematics represents the physically independent
atomic numbers as a set of relatives (e.g., the chemical table of elements), as members
of a closed multi-set (Chandler 2009). A molecular number is represented as an
interdependent multi-set of relatives. The logical operation that transforms independent
objects (operands) to interdependent objects forms measurable physical links between
the relatives by emergent electrical relations. Hence, the logical expressive power of
organic mathematics is restricted to electrical relations between electrons and nuclei.
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Abstractly, the organic operators may conjoin any two integers. Pragmatically, physical
evidence is necessary to demonstrate the attributes of each emergent class.

This novel notation for both mathematics and chemistry was introduced as the
perplex number system (Chandler 2009). The meaning of the notational symbols
reflects the various roots of the mathematical, physical and chemical concepts from
which the number system is constructed (Chandler 2009). The heterodoxy of organic
mathematics was contrasted with orthodox mathematics (of category theory) in alge-
braic biology (Chandler 2009).

3.2 Constraints on Formal Electrical Logics

The formal propositional logic of organic mathematics is excluded from all standard
forms of logic that I am aware of because the meaning of the terms includes the polarity
of electrical relations among relatives. Classical chemical notation developed as an
expression of physical data as chemical diagrams of relationships among relatives. It
necessarily requires an identity term to specify each unique physical entity of the
chemical plexus. This identity term is synonymous with a unique rhetorical name as
well as the components of the composition (Chandler 2014). Furthermore, the perplex
logic of organic mathematics must preserve the organic indexing of the empirical
associations of meanings of number symbols such that organic diagrams express the
same meaning as the orthodox chemical notation. Several indices may be requires to
express the relative places in relative spaces, for example, to express the multiple
handednesses of bio-macromolecules.

The meaning of a perplex numeral symbol differs from the meaning of a simple
number symbol as well as that of the notation for a complex number. The orthodox
meaning of an integer number symbol may correspond with the geometric distances
(Pythagorean Theorem) or Peano’s postulates. The meaning of a complex number is
defined in terms of the square root of a minus one (−1). The meaning of a perplex
numeral is defined as a triad of concepts, an ordinal number, a cardinal numbers and
an equinumerous set of relations to represent an atomic number. This is logically the
same as a star graph with a central ordinal connecting a corresponding set of cardinals.
This is a physically motivated definition, inferring a correspondence relation between
mathematical and physical concepts. Physically, this definition corresponds with counts
the electrical charges of the mereological parts of an atom. These physical constraints
are interpreted as mathematical constraints on the logic of ordinal and cardinal numbers
as operands and operators.

4 Mereology and Electrically Labeled Bipartite Graphs

4.1 Ratiocinations

A central postulate of the organic notation is that the electrical attributes of matter
enumerate the structures of organic mathematics, its operands and its operators, anal-
ogous to the role of electrical properties of each chemical element for enumerating its
internal structure. This is a critical assertion for the organic sciences for three specific
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ratiocinations. Prior to the 20th Century enumeration of the electrical parts of an atom,
Lavoisier (1778) and Dalton (1806) grounded chemical notations in the physical
attribute of weight (or mass). By switching the radix (base) of the notation to the
electrical regularity of the atomic numbers as perplex numerals and numbers, the novel
notation allows a simple algebra to be developed for compounding integers and
ratio of integers into irregular patterns. Such irregular patterns can be enumerated in
logical terms as perplex numbers, perplex diagrams (icons, structures) and an irregular
tabular arrangement, patroids (roughly homologous to matroids). Secondly, the ratio-
cinations from this critical assertion constrains the associations of terms of perplex
logic. Electrical attributes of the parts of atoms are either mutually attractive or
mutually repulsive. Pairs of perplex ordinal numbers are mutually repulsive. Pairs of
cardinal numbers are mutually repulsive. Only a pair of an ordinal number with a
cardinal number forms an attractive unit and hence can be logically associated adjacent
to one another. These facts of pairings of electrical particles as attractors and repellors
are crucial to physical quantum theory as well. (The reader should note the difference
between electrical pairings of ordinal and cardinals and set theory pairings and the
logical implications thereof.) Thirdly, this assertion establishes the logical foundation
for emergence and submergence of relations among relatives, for the economy of radix
relations essential to the representation of biological reproduction in logical terms.

4.2 Mereology

The first level of logic of organic mathematics places independent but relative objects
in relationships to one another as parts of a whole. The chemist’s “arrow” (as an
operator) signifies the placements are to be related as nodes of graphs in a three
dimensional network. Each perplex numeral (atomic number) represents a star graph
in the iconic notation of organic mathematics. Each unit of the chemical plexus is a
composition of star graphs, as signified by a labeled bipartite graph that represents its
identity. The construction of a whole from its parts (composition of molecular numbers
from atomic numbers) is guided by valence and other local physical situations. Under
the conservation laws of physics, the bijective mapping from a multi-set of perplex
numerals to a type of the chemical plexus preserve the parts of the whole. Attraction
and repulsion among the ordinal and cardinal components of a multi-set “glue” the
parts into a harmonious whole by generating new inter-graphic edges. The number and
the placement of newly generated edges form a fresh identity by connecting the
independent organic objects into a singular interdependent object. The emergent
interdependent object is synonymous with an organic structure, a logical diagram and a
patroid, a tabular representation of the data that generates the chemical icon.

5 Conclusions

5.1 The Role of Hybridizations of Logics in Organic Mathematics

The novel “type” notation of organic mathematics forms a hybrid associative logic for
the construction of logical diagrams from fragments (see: Brauner 2011). Roughly
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speaking the perplex notation hybridizes propositional sentences originating from
mathematical, physical and chemical theories. The essential meanings of the arithmetic
logic of ordinal and cardinal numbers, the predicate logic of physical attributes, and the
copulative logic of organic proofs of structure is captured by this type notation. This
form of local associative extension, guided by the order of numerals, the individual
electro-neutrality values of each integer and its potential valences are extendable
indefinitely to any integer. Emergence of perplex objects (molecules, bio-macro-mol-
ecules, genetic systems…) is quantified within diagrams of the chemical plexus. The
major scientific advantage of the novel notation of organic mathematics over other
approaches to theories of complex systems lies in the desmology. The quantities of
ligands can be extended over the integers by copulative logic based on the universal
role of the atomic numbers and validated physical measurements such as x-ray crys-
tallography. The notation can provide the initial conditions for theories of dynamical
systems, including quantum mechanics. (Szabo and Ostlund 1996, pp. 40–46).

5.2 Future Work and International Collaboration

This work originated in 1972 from attempts to describe the relationships between
chemical structures and cellular information processing. We were studying the triadic
relationships between chemical reaction mechanisms of alkylating agents, DNA
reaction sites and the forms of mutagenic does-response relationships. The problem
remains open today. This work emerges from these initial efforts to relate
structure-function relations among chemical relatives. This note gathers together some
of logical aspects of the relevant scientific theories into a coherent notation for the
identities of individuals. The notation provides a radix (base) for the ampliative logic
for construction of new organic terms.

The sortal logic of types can be viewed as the spine of the economies of relations
among organic relatives. Such sortal logics of types, by preserving the ordering prin-
ciple of the linearity of the numerals in the logical size of objects (mereological
part/whole compositions), can be extended to any integers by addition. From the radix
of perplex numerals, new mathematical objects (graphs, forests of graphs, etc.) can be
extended indefinitely to higher order organizations of matter by sublations on collec-
tions of terms. This fact opens opportunities for explorations of outstanding problems
of mathematical biology.

I seek international colleagues from the logical, mathematical, physical, biomedical
and computer sciences to collaborate on these challenging problems.

6 Summary

In summary, the logic intrinsic to the atomic numbers can now be used to construct a
unique diagrammatic/iconic logic and organic terms that can contribute to bridging the
communications gaps between mathematics and biological sciences.
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Abstract. We extend and adapt the Artificial Ecosystem Algorithm
(AEA), by applying it to the dynamic redistribution of bicycles in Lon-
don’s Santander Cycle scheme. Just as an ecosystem comprises many
separate components that adapt to form a single synergistic whole, the
AEA uses a bottom up approach to build a solution. A problem is decom-
posed into relative subcomponents, they then evolve and cooperate to
form solution building blocks, which connect to form a single optimal
solution. In this way the AEA is designed to take advantage of highly dis-
tributed computer architectures and adapt to changing problems. Three
variants of the AEA are described and applied to the Santander Cycle
scheme: AEA, AEA Random and AEA Nearest Neighbour. The algo-
rithms have been tested using historical data and empirical results prove
their potential effectiveness.

1 Introduction

London’s Santander Cycle scheme currently operates 748 docking stations and
11500 bikes [13]. Forming a large component of London’s transport system. Due
to usage patterns, there is often an imbalance between user demand and the
service provided by the scheme [17]. To overcome this issue and ensure con-
stant availability of bikes/spaces at docking stations, a fleet of trucks manually
redistribute bicycles.

As the complete input for the dynamic redistribution of bikes is not known
in advance, exact methods cannot be used, in retrospect we use biology inspired
algorithms to find practical optimal solutions. Dynamic vehicle routing is a simi-
lar problem [2], which has been addressed in multiple papers [5,7,8,16]. However,
the algorithms proposed typically deal with small network sizes and it is difficult
to scale them to hundreds of docking stations and thousands of bicycles.

In this work we apply the Artificial Ecosystem Algorithm (AEA), which
was used to solve the travelling salesman problem (TSP) in [1]. The process of
determining routes for a fleet of vehicles allows you to select any sequence of
docking stations, therefore the problem grows exponentially with the number of
docking stations, making this a combinatorial optimisation problem similar to
the TSP [4].

The AEA accepts that some classes of problems can become so prohibitively
large, that it is more appropriate to divide the problem into smaller more
c© Springer International Publishing Switzerland 2015
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tractable pieces and have separate processors work on them. Most evolutionary
algorithms such as Genetic Algorithms [6] represent an entire candidate solution
in each individual of the population, any attempts to distribute the algorithm
across many processors will divide populations, not individual solution evalua-
tions.

AEA solves a problem by adapting its subcomponents such that they connect
to form a single optimal solution, akin to the way an ecosystem comprises many
separate components that adapt to form a single synergistic whole. Like the
different species in an ecosystem, the AEA may have species of components rep-
resenting sub-parts of the solution that evolve together and cooperate with each
other. In this way the AEA is designed to take advantage of highly distributed
computer architectures and adapt to dynamic problems.

This paper is organised as follows: the next section surveys background lit-
erature on redistribution algorithms; Sect. 3 describes the proposed cycle redis-
tribution algorithm; the experiments section compares the performance of the
proposed algorithm variants using historical Transport For London data [14,17].
The final section discusses findings and draws conclusions.

2 Background

Multiple biology-inspired algorithms have been used for scheduling problems.
Ant Colony Optimization (ACO) is based on the foraging behaviour of ant

colonies [3]. Artificial ants build solutions and exchange information through an
indirect communication mechanism (stigmergy). An alternative method [10] pro-
poses an implementation of Ant Colony System algorithm for a dynamic vehicle
routing problem (VRP). The input is divided into multiple time segments, each
is then treated as a static VRP. Their approach has three main components: an
events manager to handle orders, Ant Colony System to solve a static VRP and
most importantly a pheromone conservation matrix, used to store information
on promising solutions such that it can be passed onto subsequent iterations.

The Genetic Algorithm (GA) is inspired by the concepts of natural selection
and survival of the fittest [6]. There are many variations of GA’s that make use of
multiple populations through co-evolution, or that assemble smaller components
of solutions together (e.g. classifier systems) [6]. Other approaches [11] propose a
self organising method that applies a Genetic Algorithm to the redistribution of
bicycle trucks for Santander Cycles (previously named Barclays Cycle scheme).
Docking stations emit signals and trucks operate on these signals using local
rules to rebalance the distribution of bicycles. A London Cycling Hire Index
(LCHI) is maintained to measure the accessibility of different docking stations,
a higher index indicates better accessibility and a station must have at least 2
bikes and 2 docking spaces in order to be accessible. Experiments showed that
the proposed approach is preferable to random and greedy search algorithms.
However their solution was proposed when the schemes scale was smaller in 2010;
the dataset used had around 6000 bikes and 415 docking stations, which is 45 %
smaller than the dataset used in this paper.
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An alternative approach [11] proposes a routing algorithm based on greedy
heuristics and a price incentive scheme for Santander Cycle scheme’s customers
Santander Cycle scheme. The price incentive scheme is used to reward customers
who return their bikes to nearby less congested docking stations. Their approach
first constructs a time-expanded network on a graph, a list of promising candi-
date solutions is built using a greedy heuristic, then the optimal number of bikes
for each route is computed and the route with the highest utility is selected. A
utility function is defined that estimates the value gained through a change in a
stations state, this is achieved by computing the difference in the expected future
usage of a docking station. This paper also defines a utility function, however
our approach is different as we consider the status of docking stations.

3 Problem Description

3.1 Problem Overview

Currently Santander Cycle scheme [13,17] covers a 100 km2 area of London with
748 docking stations strategically positioned and 11500 bikes, see Fig. 1. Table 1
introduces the key problem concepts.

The bike redistribution algorithm’s goal is to maximise usage of the scheme
by maintaining availability of bikes/spaces at docking stations. Too many bikes
reduces the number of docking spaces available to return bikes, whilst not having
enough bikes reduces the number of bikes available to commence a journey.
Therefore there is an acceptable level of bikes, bounded by an upper and lower
threshold, which must be maintained.

Fig. 1. TFL Santander Cycle Interactive Map showing the location of bike docking
stations across London [15].
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Table 1. Terminology

Docking station Terminal where bicycles are picked up or dropped off. Docking
stations vary in capacity and usage level

Environment Holds all docking stations

Job Single pairwise movement of bikes from one station to another. A
job is a solution building block, an individual member of a
population

Schedule Represents a sequence of jobs and their estimated operation time

Truck A fleet of electric trucks, operated using a partially manual
system, are used to redistribute bikes. All trucks have a fixed
capacity of 18 bikes

Turnover Percentage of jobs, where each job is an individual in the
population, that is removed and replaced at the end of an
iteration

Time segment Time window during which we consider the problem to be static

3.2 Performance Indicators

Docking Station Status a docking stations status depends on the percentage
of available bikes. Docking stations have different capacities and therefore their
status depends on the percentage of available bikes, see Table 2.

Replenishment Level is the number of bikes that must be added/removed
for a docking station to maintain an acceptable status. The aim is to ensure
the number of available bikes in docking stations is always maintained within a
threshold, which is between 30 % and 70 %. If the percentage of available bikes
in a docking station is greater than 70 % then the station has excess bikes and is
eligible to give bikes to other stations. Otherwise if the percentage of available
bikes is less than 30 % then this station needs to be given bikes to increase the
overall level of service.

Fitness Function this fitness measure is used to evolve the solution, see Eq. 1.
Where, Fi = Fitness value for individual i. Fdi = Normalised Euclidean distance

Table 2. Docking station status

Status No bikes available

Empty 0 %

Critical <= 10 %

Lower threshold <= 30 %

Acceptable 30 % – 70 %

Upper threshold >= 70 %

Full 100 %
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of the complete tour. Fci = Normalised schedule utility. w1 = Weight for Fvi.
w2 = Weight for Fvi.

Fi = w1Fdi + w2Fci (1)

Nearest Neighbour Fitness this fitness measure aims to minimise the distance
between docking stations within a job and between jobs in a schedule. Where,
Fi = Fitness value for Job i. Fvi = The Euclidean distance between docking
stations. Fci = The Euclidean distance between stations in the Job. w1 = Weight
for Fvi. w2 = Weight for Fvi.

Fi = w1Fvi + w2Fci (2)

Schedule Time the time taken to redistribute bikes is calculated using Eq. 3.
Where, Ti = time taken to perform a job i. di = The Euclidean (Haversine
formula) was used to calculate the distance between docking stations. si = Speed
(assumed to be 20 mph).

Ti =
di
si

(3)

Utility Function is used to determine the value provided by a schedule, and
therefore the benefit it provides to the scheme. A schedule’s utility is calculated
at each iteration, using Eq. 4. A higher utility implies that the schedule increases
the scheme’s service level. Where, U(ci) = Utility for a schedule ci. vi = Value
for Job. Sn = Total number of stations.

U(ci) =
∑

vi
Sn

(4)

A schedule is composed of a sequence of jobs. A job ji is associated with
a value vi that can be positive or negative depending on the rules below. Sic

is a docking stations current state. Sip is a docking stations predicted state.
A docking station’s status can be: E = empty, C = critical, L = below lower
threshold, A = acceptable, U = above upper threshold and F = full.

1. Sic = A and Sip = E|C|L or Sic = A and Sip = F |U (negative)
2. Sic = E and Sip = C|L|A or Sic = F and Sip = U |A (positive)

3.3 Datasets

Experiments were performed using historical data from Transport For London
library [14] and giCentre at City University London [12]. The data comprises:

1. Docking Station: A list of all the available docking stations in the scheme.
Each station has the following parameters: a unique number identifier per
docking station, location (latitude, longitude) and capacity docking points.

2. Historical TFL Dataset: This dataset captures the status of all docking sta-
tions, from TFL this data [12], at 10 min intervals. It was used to determine
the historical service level of all the docking stations, which is indirectly rep-
resentative of the service level provided by the scheme in operation.
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3. Simulated TFL Dataset: A list of all successful journeys performed by users,
also retrieved from TFL databank. It was used to simulate the journeys per-
formed in the scheme and test the AEA.

4 Method

4.1 Assumptions and Restrictions

1. Trucks do not start and end at a depot. The start position is the first station
in the schedule and the end position is the last station in the schedule.

2. The trucks speed is 20 mph at all times. Traffic flow is not considered.
3. In a schedule, a truck can only visit a station once. However, it is possible to

visit the same station at the next time segment.
4. We do not consider the time it takes the truck driver to perform the redistri-

bution.
5. The effect of weather, season, day of week, tube strikes.
6. The Euclidean formula is used to calculate the distance between docking

stations.
7. Redistribution involves pairwise swaps between docking stations.

4.2 Bicycle Distribution Simulator

In order to assess the performance of bike distribution algorithms, we created a
bicycle distribution simulator which uses the TFL dataset to simulate journeys
from docks at different times, and calls a truck scheduling algorithm to redistrib-
ute bicycles as necessary. The proposed approach divides a day d into a number
of equally sized time segments n. This allows us to treat each time segment as a
static problem. The idea of using time segments was originally proposed by [9].
It is possible to stop/start the optimiser when the problem changes, but this is
unfeasible due to the large scale of the scheme, moreover this may prevent the
optimiser from converging to a good solution [10]. Algorithm 1 shows the Bicycle
Distribution Simulator.

4.3 Truck Scheduling Algorithms

This section describes five approaches used to dynamically redistribute bikes.
The Random and Nearest Neighbour algorithms are first described, then three
AEA variants are proposed: Artificial Ecosystem 1, Artificial Ecosystem 2 (using
random) and Artificial Ecosystem 3 (using nearest neighbour).

Random. The Random Approach, see Algorithm 2, builds a schedule through
stochastic selection of docking stations.

Nearest Neighbour. The Nearest Neighbour, see Algorithm 3, generates a
schedule by selecting the nearest neighbouring docking station.
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Algorithm 1. Bicycle Distribution Simulator
1: Split time period provided into days
2: Split day into time segments Ti

3: Get Station data Sn from the Historical TFL dataset
4: for each Time Segment Ti do
5: Load Journeys performed from Simulated TFL dataset
6: Schedule = Run Truck Scheduling Algorithm to obtain new schedule Si

7: Process Journeys and Schedule according to their timings
8: end for

Algorithm 2. Random
1: loop
2: Pick a station at random Si1

3: If station has excess bikes: randomly select a station that needs bikes Si2

4: If station needs bikes: randomly select a station that has excess bikes Si2

5: Calculate the Replenishment level Ri

6: Generate Job Ji using Si1, Si2 and Ri

7: Add Ji to the Schedule
8: until Schedule reaches time segment limit

Algorithm 3. Nearest Neighbour
1: loop
2: Pick a station at random Si1

3: If station has excess bikes: select a station that needs bikes Si2 using Eq. 2
4: If station needs bikes: select a station that has excess bikes Si2 using Eq. 2
5: Calculate the Replenishment level Ri

6: Generate Job Ji using Si1, Si2 and Ri

7: Add Ji to the Schedule
8: until Schedule reaches time segment limit

Artificial Ecosystem 1. The Artificial Ecosystem Algorithm (AEA) 1, see
Algorithms 4 and 5, solves a problem by adapting subcomponents of a problem
such that they fit together and form a single optimal solution. The problem is
first decomposed into multiple sub-problems using a clustering algorithm, namely
K-means++ or Self Organising Map (SOM). A population of jobs is created for
each subproblem, then populations iteratively undergo a series of steps to form
subsolutions in parallel. Firstly, a schedule is built using fitness based tournament
selection, the schedule’s utility is then evaluated and the best solution so far is
updated, if necessary. Then fitness values of all jobs who have been part of
the resulting schedule are updated using Eq. 1. Finally, a percentage of solutions
with low fitness values are removed and new jobs are randomly created to replace
them.

Artificial Ecosystem 2 (Using Random Selection). The Artificial Ecosys-
tem Algorithm (AEA) 2, see Algorithms 4 and 5, first decomposes the problem
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Algorithm 4. Artificial Ecosystem Algorithm
Initialise Environment E
loop

Run SOM/K-means to build clusters of docking stations;
for each Cluster Cn do

Create a population Pn of Jobs;
Schedule = ScheduleBuilder(Pn)
Process Schedule;

end for
Connect all the segments to form a complete solution
Evaluate overall solution

until All Time Segments processed

into multiple sub-parts using a clustering algorithm, then a population of jobs
is created for each cluster. A solution is built by randomly selecting a sequence
of jobs to form a schedule. The solution is then evaluated using the utility func-
tion, and the solution with the highest utility is used in subsequent stages of the
simulation. At the end of each iteration, a percentage of solutions is removed
and replaced randomly.

Ecosystem Artificial 3 (Using Nearest Neighbour Selection). The Arti-
ficial Ecosystem Algorithm (AEA) 3, see Algorithms 4 and 5, first decomposes
the problem into multiple sub-problems using a clustering algorithm, a popu-
lation of Jobs is created per cluster, then a schedule is generated by using the
neighbour fitness equation Eq. 2. The best schedule has the highest utility and
is used in later stages of the simulation. At the end of each iteration, jobs with a
high Euclidean distance between stations are removed and replaced by randomly
generated jobs.

5 Experiments

All experiments were repeated 50 times and results on the total number of full
and empty docking stations, every time segment, each day, were recorded. The
bike redistribution simulator and all the algorithms were built using Java. Whilst
the Simulated and Historical TFL datasets were remotely held in a server running
Mongo database instances. We ran experiments for 7 consecutive days, from
01/10/14 to 07/10/14. Data for all approaches was then gathered and compared
in order to assess their relative performance:

1. Random.
2. Nearest Neighbour.
3. Artificial Ecosystem Algorithm (Random).
4. Artificial Ecosystem Algorithm (Nearest Neighbour).
5. Artificial Ecosystem Algorithm.
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Algorithm 5. Schedule Builder
1: MaxGen = 500; Iteration = 1; BestSchedule;
2: loop
3: loop
4: Pick first Job at random;
5: Use fitness based tournament selection to pick consecutive jobs;
6: until Time constraint reached
7: if Schedule utility > Best Schedule utility then
8: BestSchedule = Schedule
9: end if

10: UpdateFitness(Schedule)
11: RemoveUnfitJobs()
12: CreateNewJobs()
13: Iteration++;
14: until MaxGen == Iteration

6. Simulate TFL data, the same initialisation parameters given to the algo-
rithms. To see what difference the algorithm does.

7. Historical data, the actual recorded status of the different docking stations.

6 Results and Analysis

The performance of all the docking stations for seven consecutive days, from
Wednesday 01/10/14 to Tuesday 07/10/14 are compared in Fig. 2. The key per-
formance indicator used, is the aggregate sum of full and empty stations at
different time segments. The Simulated TFL and Random algorithm show very
similar results. The three AEA’s also show similar results, the fitness based AEA
provides the best results for empty stations, whereas the Nearest Neighbour AEA
provides the best results for full stations. These results show that the proposed
ecosystem inspired algorithm performs promisingly, improving on or matching
the results obtained from the Simulated and Historical TFL datasets.

The average performance of all the docking stations throughout the 7 consec-
utive days is presented in Fig. 3. The drop in the line on days 4 and 5, represents
a reduction of user demand during the weekend, whereas during the week heavier
use is recorded due to routine activities such as going to work. This graph clearly
shows that the overall level of service provided by the Artificial Ecosystem Algo-
rithm is an improvement based on the data gathered from the Simulated TFL
and Historical TFL datasets.

The mean and standard deviation for all the implemented truck redistribu-
tion algorithms is given in Fig. 4. The results show that all implementations of
the AEA perform well with low variance for both empty and full docks. This
can be contrasted with the worse performance of the other approaches, and their
higher variance for empty stations - not a desirable feature when consistency of
service is important.
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(Continued)
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(Continued)

Fig. 2. Comparison of empty and full stations for the aforementioned datasets and
algorithms across seven consecutive days (from 01/10/14 to 07/10/14)

Fig. 3. Mean empty and full stations per day for each truck scheduling approach (low
is good).

Fig. 4. Overall mean empty (left) and full (right) stations per truck distribution app-
roach. Error bars show 1 standard deviation from the mean.
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7 Conclusion and Future Work

7.1 Conclusion

This paper extended and applied the AEA to the problem of redistributing bikes
in London’s Santander Cycle scheme. The proposed approach divides a day into
multiple time segments, each is then treated as a static problem and solved using
the AEA.

The AEA shows potential, it is composed of multiple separate components
that adapt and evolve together to form a complete system. Also, the AEA is
easily configurable as it uses a utility function that can incorporate additional
constraints such as priorities for different docking stations.

Three variants of this algorithm were proposed, namely AEA, AEA Ran-
dom, AEA Nearest Neighbour. These algorithms were then compared against a
Random and Nearest Neighbour algorithms, as well as Simulated and Historical
TFL datasets. Computational results show that the Artificial Ecosystem algo-
rithm reduces the number of empty and full docking stations, therefore improving
service level provided by the scheme.

7.2 Future Work

The AEA is being developed, with many research avenues available. We plan to
incorporate more problem specific constraints: accommodate for truck capacities,
allow the formation of more complex jobs that take into account multiple docking
stations in close proximity, as well as pressures caused by temporal, climatic,
seasonal and local factors.

Data decomposition is as well as not limited to Self Organizing Maps and
K-means, different levels of clustering can be used to expose dimensions of the
data. For example, density Based Clustering can be used to avoid the formation
of highly packed clusters, or we could adapt clusters according to the current
status of the docking stations. It is also possible to look at the topology of the
search space and select an appropriate decomposition method. Small clusters
can be merged, large clusters can be decomposed, and more resources can be
allocated to clusters with high importance.
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Abstract. Ensembles are groups of classifiers which cooperate in order
to reach a decision. Conventionally, the members of an ensemble are
trained sequentially, and typically independently, and are not brought
together until the final stages of ensemble generation. In this paper, we
discuss the potential benefits of training classifiers together, so that they
learn to interact at an early stage of their development. As a poten-
tial mechanism for achieving this, we consider the biological concept of
mutualism, whereby cooperation emerges over the course of biological
evolution. We also discuss potential mechanisms for implementing this
approach within an evolutionary algorithm context.

1 Introduction

Data mining is the process of finding meaningful patterns embedded within data.
It typically comprises several stages, including feature extraction, feature selec-
tion, classification, and knowledge extraction. Here we focus on classification,
which is the process of correctly identifying which category a previously unseen
data point belongs to, based on the values of different explanatory variables
(or features). Classification is the basis of computer-aided decision making, and
has become an important tool in many spheres of knowledge, including biomed-
ical diagnosis [9]. A classifier can be considered a function that maps features
to classes. This function may be implemented in many different ways, including
linear models, probabilistic models, decision trees, artificial neural networks, and
support vector machines, to name but a few [5].

Traditionally, classification uses a single model instance, trained on a single
sample of the data. Recently, however, there has been a shift towards ensemble
models, which train multiple model instances (or base classifiers) and then com-
bine their outputs [6]. By using a diverse selection of base classifiers, it is often
possible to reach more accurate and robust decisions than those produced by
individual classifiers. Diversity amongst the base classifiers is typically achieved
by training them on different samples of the data and/or by restricting them to
using different subsets of the features. Widely used examples include bagging,
boosting and random forests [5,6].
c© Springer International Publishing Switzerland 2015
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A common element of ensemble generation algorithms is that the base clas-
sifiers are generated sequentially. With the notable exception of boosting, where
the performance of each classifier influences the training of the next one, base
classifiers are also typically trained independently. This is in stark opposition to
the patterns of interaction seen within biological systems, where the elements of
cooperative systems emerge in parallel and with considerable inter-dependency.
This begs the question: is there some advantage to the biological approach?
Moreover, can we learn how to build better ensembles by studying the organ-
isation and evolution of biological systems? To answer this question, we begin
by surveying some of the previous work on using models of evolution, namely
evolutionary algorithms, to generate ensembles. We also survey previous work on
introducing ideas of biological mutualism to evolutionary algorithms. We then
discuss how mutualistic models might be practically applied to the problem of
ensemble generation, outlining potentially useful research directions.

2 Evolving Ensembles

Evolutionary algorithms (EAs) are population-based optimisation algorithms
modelled upon the process of biological evolution. From an ensemble classifica-
tion perspective, an evolutionary algorithm’s population is a potentially valuable
resource. During the course of evolution it often contains multiple solutions with
diverse behaviours, which is precisely what we are looking for in an ensemble.
This has promoted interest in using EAs to train ensemble classifiers.

However, in general, an EA’s population loses diversity as evolution pro-
gresses. This means that it is often necessary to use a diversity preservation
mechanism to maintain behavioural diversity. In our work, we have been looking
at whether niching methods can be used to maintain a diverse population of
base classifiers throughout an EA run, and whether we can then form effective
classifiers from the final population [7,8,13]. Niching techniques in EAs are moti-
vated by observations from biology, notably the appearance and preservation of
ecological niches within evolving biological populations. Common examples are
crowding, fitness sharing and geographical segregation. Our results are promis-
ing, showing that the resulting ensembles are significantly more predictive than
individually trained classifiers [8]. More recently, we have applied this approach
to a medical diagnosis problem, finding that evolved ensembles can compensate
for the small differences in clinical practice that often occur between different
sites in medical studies. Because evolved ensembles comprise a relatively small
number of individually strong classifiers, rather than many weak classifiers (as
in random forests), there is also the potential to extract knowledge, which is
important for diagnostic classifiers used within a medical context [10].

In biology, niching often reflects the loss of competition between organisms
that have no need to compete, for instance because they use different energy and
nutrient sources. Species in different niches can then cooperate [16], producing
mutualistic interactions that can be beneficial to the ecosystem as a whole [5].
Interestingly, a classifier ensemble is in some ways similar to an ecosystem. It
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comprises a group of different classifiers (akin to species) that reach their deci-
sions (their behaviour) as a result of processing different data sources. In general,
it makes no sense for classifiers in different niches to compete. However, it does
make sense for them to cooperate. We might therefore expect that biological
mutualism can guide us in finding more effective ways of evolving ensembles.

3 Biological Mutualism

A mutualism is a symbiotic relationship that is beneficial to all parties [19,20].
These are very common in biology. For example, over 80 % of plant species
form mycorrhizal associations with fungi, in which the fungus absorbs sugars
from the plant’s roots and the plant receives phosphates and other hard to
absorb nutrients that the fungus scavenges from the surrounding area [21]. This
allows the plant to grow in nutrient-poor environments and the fungus to grow
in energy-poor environments. Other well known examples include mutualisms
between flowering plants and pollinating insects, and between mammals and
their colonies of gut bacteria. In many cases, evolution has driven the process to
the stage where the individual members of the mutualism can not survive without
their mutualistic partners. Mutualistic interactions can involve more than two
species [2]. Furthermore, wider interactions involving mutualistic partners lead
to the formation of mutualistic networks, which may involve hundreds of species,
and which have been described as the ‘architecture of biodiversity’ [1]. It has also
been suggested that selection inevitably pushes populations in the direction of
ever increasing cooperation and integration, so the scope and connectivity of
these mutualistic networks is likely to increase over evolutionary time [19].

An important issue, both for biology and for any system that seeks to emu-
late biology, is understanding the conditions required for mutualisms to occur.
In particular, what are the mechanisms that prevent the emergence of selfish
behaviour in a population of cooperating species—or, to put it another way,
which mechanisms support collective action? This question is also studied in
the context of economic and social interactions, where it is framed as dealing
with asymmetric or hidden information, i.e. where there is a lack of trustworthy
information regarding a potential partner’s intentions or abilities. Two broad
mechanisms for dealing with this situation are signalling and screening [20].
Signalling involves an up-front expenditure of energy or resources (a strategic
waste) in order to attract cooperation from a potential partner. Examples are
the investment in costly phenotypes (e.g. large tail feathers) in animal mating
displays, and the distribution of dividends by companies looking for investors.
Screening is similar, but is initiated by the less well-informed partner; for exam-
ple, the expectation that potential suitors should fight for mating rights in order
to demonstrate their fitness, or requiring an employee to undergo a probationary
period. In symmetric situations, where neither party has sufficient knowledge of
the other, combinations of both signalling and screening are often used.
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4 Mutualistic Evolutionary Algorithms

EAs are based upon relatively simple models of biological evolution. Ideas of
biological mutualism, which have become increasingly influential in the under-
standing of biological systems, have so far had little impact upon their devel-
opment. Nevertheless, there are notable exceptions, and several forms of EA do
exhibit behaviours that resemble those seen in biological mutualisms.

Co-evolutionary algorithms [14], in particular, model the co-evolution of mul-
tiple species within one or more populations. Although mutualistic relationships
are co-evolutionary, the two terms are not synonymous, and co-evolution can
also lead to symbiotic, predator-prey, constructive or destructive relationships
between species. Co-evolutionary algorithms are mainly restricted to two-species
systems, and model either competitive (e.g. predator-prey) or cooperative co-
evolutionary systems. The latter approach has been particularly successful in
recent years, with cooperative co-evolutionary algorithms being successfully used
to solve high-dimensional optimisation problems [22]. We have also had some suc-
cess using these within the context of ensemble classification. For instance, in
[13], this mechanism was used to evolve pattern recognisers (i.e. classifiers) in
DNA sequences, using a second population of pattern combinators (i.e. ensem-
bles) to promote the discovery of meaningful groups of patterns. This was only
possible because the base classifiers were evolved in parallel, using information
about their ensemble behaviour to focus the search towards the most useful
population of base classifiers.

Although not directly motivated by biological mutualism or co-evolution, two
other forms of EA that display behaviours akin to mutualism are Michigan-style
learning classifier systems and cultural algorithms. Learning classifier systems
(LCS) [3] evolve distributed rule sets that can be used to determine responses,
for example class predictions in classification problems. In a Michigan-style LCS,
each member of the population is a simple rule; however, the overall behaviour of
the LCS is a result of cooperation between the rules. Cultural algorithms [15] use
a shared belief space where population members can read and write information.
This provides a mechanism for population members to interact with one another,
and this in turn can be used to support mutualism, amongst many other kinds of
behaviour. Both systems use mechanisms to discourage selfish behaviour. In the
case of the LCS, rewards are divided between groups of interacting rules using
credit assignment techniques such as the bucket brigade. Selfish behaviour by a
rule will reduce the overall reward for the group, reducing the likelihood of it
being propagated to the next generation. In the case of cultural algorithms, only
the fittest population members are typically allowed to write to the belief space,
with the expectation that fitter members are more likely to be part of a beneficial
mutualism. A notable feature of LCS and certain cultural algorithms [18] is that
the population is the solution, since individual members of the population may
not have a meaningful function when separated from other population members.
In this respect, they bear significant resemblance to mutualistic biological sys-
tems. However, the mechanisms used to promote mutualisms are quite different
to those seen within biological systems.
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5 Evolving Mutualistic Ensembles

So, might biological ideas of mutualism be useful for evolving ensembles? The
combination of specialism and co-operation seen within biological populations is
precisely the behaviour we desire in classifier ensembles. We want individual base
classifiers to focus on particular sub-tasks, such as processing different subsets
of the data (comparable to different nutrient and energy sources). We then want
them to co-operate, combining their behaviours in a way that increases their
mutual fitness, i.e. we want them to be well-adapted to one another. With current
ensemble methods, the behaviours of base classifiers are combined in a variety of
simple ways, such as voting or averaging of their outputs (Exceptions include our
work on evolving non-linear output combinators [7]). In addition, the ensembles
produced are strictly hierarchical, with only the raw features delivered to the
inputs, and only the final outputs delivered to the combinator.

It would be interesting to explore forms of interaction more akin to those we
see in biology. For example, the output of one classifier could be delivered to an
intermediate decision node within another classifier. This is more comparable
to a plant/fungus mutualism, with a classifier that is specialised at process-
ing a difficult part of the decision space (analogous to sparse nutrients) feeding
into a classifier that makes broader judgements. Using suitable classifier mod-
els, we could even remove the hierarchical organisation of classifiers entirely,
allowing cyclic interactions to occur (see Fig. 1). Recurrent dynamical systems
models, such as recurrent ANNs, and artificial biochemical networks [11], would
be appropriate for this. Our work on artificial signalling networks [4] is partic-
ularly relevant, showing how complex decision making networks can be formed
from interactions between simpler recurrent pathways. However, these are just
some of the possible models of representation and interaction that could be

Fig. 1. Left — the standard form for an ensemble classifier, with information feeding
hierarchically upwards from the data set to the individual classifiers to the combinator.
Right — a mutualistic arrangement in which information flows between classifiers.
Classifier A is not able to reach a decision by itself, but generates an important sub-
decision that feeds into the rest of the system. An appropriate form of credit assignment
would then cause it to be promoted in the next generation.



Evolving Ensembles: What Can We Learn from Biological Mutualisms? 57

used within a mutualistic classifier ensemble, and there is considerable scope for
adventure in this area. Nevertheless, all approaches would have to address the
issue of how to promote the emergence of mutuality in classifier populations.

5.1 Promoting Mutuality

Biological organisms enter into mutualisms because it directly improves their
fitness. A similar motivation is required for classifiers, otherwise there is no
incentive for them to enter into mutualistic partnerships. In general, we expect
to achieve this by redistributing the fitness of the ensemble amongst its com-
ponent base classifiers, with the expectation that ensembles will outperform
individual classifiers and therefore exert selective pressure. Reinforcement learn-
ing techniques, such as those used in LCS, could be used for this redistribution.
However, there are potential complexities. For example, it would not be unrea-
sonable for a single classifier to be involved in multiple mutualistic ensembles. In
such a circumstance, should it receive a reward from all its partnerships, or just
the most successful one? The former might promote overly-promiscuous classi-
fiers, yet the latter might discourage wider interactions. Also, should a classifier
involved in an ensemble also receive its standalone fitness? This would promote
the propagation of individually strong classifiers, but would disadvantage a clas-
sifier that plays an important role in supporting an ensemble but which has little
standalone worth.

Credit allocation acts as a carrot for the formation of mutualistic interactions,
but a stick is also needed to prevent selfish or inefficient behaviours akin to par-
asitic or symbiotic relationships in biology. Based on biological understanding,
signalling and screening have the potential to be effective mechanisms for achiev-
ing this. For instance, classifiers could be required to pay a fitness penalty in
order to be involved in an ensemble. This form of signalling would be expected
to discourage selfish behaviour, since parasitic classifiers would lose individual
fitness at the same time as reducing the potential fitness payback from join-
ing an ensemble. There is also the potential for using such a system to study
biological hypotheses of how mutualisms are formed. Unlike many of the game
theoretic models typically used for this, an evolving ensemble has its own com-
plex behavioural outcomes. In this respect, the mutualistic evolution of classifier
ensembles can be seen as an opportunity to test, refine, and potentially even
discover biological theories of mutualism.

5.2 Identifying Partners

Biological mutualisms involve different forms of interaction. Mycorrhizal asso-
ciations between plants and fungi, for instance, usually involve direct contact,
with the fungus identifying and then invading the cells of its interacting plant
species. Other kinds of mutualism are based upon geographical proximity. For
example, a tree provides shelter for birds, birds excrete beside the tree, and the
tree absorbs the nutrients. This is also an example of using the environment (the
soil in this case) as an intermediary for sharing nutrients, energy, or information.
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The classifiers involved in an ensemble must also be able to identify one
another, and must be able to do this in a way that is robust to evolutionary
change. For instance, a classifier could reference another classifier by a pointer.
However, pointers are not robust to evolution, since the reproduction process
usually involves cloning, and often leads to multiple offspring. An alternative is
to use the environment as a go-between. LCS, for example, do this, with the
behaviour of a rule changing the environment, and this change of context then
leading to the firing of another rule. It is also the basis of interaction in cultural
algorithms, with information being transferred via the belief space environment.
However, environmental interaction can lead to unintended interactions, and can
increase the scope for selfish behaviour.

Another alternative is to use some form of functional referencing in which
the reference describes the form or behaviour of the intended partner. Assuming
that no major change in form or behaviour takes place during reproduction,
this form of referencing would also be fairly robust to evolution. An example of
a functional reference is our work on implicit context representation in genetic
programming systems [12].

6 Conclusions

Biological systems are a potentially useful source of information and motivation
for the design of computer algorithms. However, there is a danger of taking
inappropriate motivation from biology, or of unthinkingly applying bio-inspired
algorithms to inappropriate problems. This has led to a degree of criticism in
the literature [17]. In this paper, we propose that inspiration from biological
mutualisms could be applied to the design and generation of classifier ensembles.
To us, this is an example of where biological systems display a clear example of
how to achieve complex behaviour in a system of distributed decision makers,
and where useful lessons could be learnt and applied to a problem which shows
parallels to these biological systems. We have discussed some of the issues that
would be involved in doing this. However, we have not tried to suggest one
particular way of doing this, because there are many paths that could be taken.
Rather, we wish to begin a discussion of the ways in which this could be done,
and the potential benefits to which it could lead.

Whilst we have restricted our attention to the particular problem of gen-
erating classifier ensembles, it seems likely that mutualism could also provide
solutions to other kinds of problem addressed using EAs. For example, genetic
programming is concerned with evolving executable structures, such as computer
programs. In this context, mutualistic interactions could potentially be used to
address the scalability barrier associated with evolving single large programs.
Mutualisms could even develop over a series of evolutionary runs, with subse-
quent runs interacting with solutions found in earlier runs, and possibly bringing
them back into the evolutionary process. We would argue that mutualism is an
important area of biology that is often overlooked by the evolutionary compu-
tation community, but which could bring significant benefits to this community
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if modelled and used appropriately. Doing so would also provide an opportu-
nity to test, and potentially generate, biological theories of the ways in which
mutualisms evolve.
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Abstract. Swarm robotics is concerned with the decentralised coordi-
nation of multiple robots having only limited communication and inter-
action abilities. Although fault tolerance and robustness to individual
robot failures have often been used to justify the use of swarm robotic
systems, recent studies have shown that swarm robotic systems are sus-
ceptible to certain types of failure. In this paper we propose an app-
roach to self-healing swarm robotic systems and take inspiration from
the process of granuloma formation, a process of containment and repair
found in the immune system. We use a case study of a swarm perform-
ing team work where previous works have demonstrated that partially
failed robots have the most detrimental effect on overall swarm behav-
iour. In response this, we have developed an immune inspired approach
that permits the recovery from certain failure modes during operation
of the swarm, overcoming issues that effect swarm behaviour associated
with partially failed robots.

1 Introduction

Swarm robotics is an approach to the co-ordination and organisation of multi-
robot systems of relatively simple robots [6]. Traditional multi-robot systems
employ centralised or hierarchical control and communication systems in order
to coordinate behaviours of the robots. Swarm robotics, however, adopts a decen-
tralised approach, in which the desired collective behaviours emerge from the
local interactions and communications between robots and their environment.
Work in [6] argues that a significant benefit of swarm robotics is robustness to
failure. However, recent work has shown, that for certain modes of operation,
swarm robotic systems are not as robust as first thought [2,3].

Work in [3] proposed a simple, but effective, algorithm, the ω-algorithm,
for emergent swarm taxis (swarm motion towards a beacon) under sensory
c© Springer International Publishing Switzerland 2015
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constraint. In order to achieve beacon-taxis, the algorithm provides coherence
through simple rules of operation, and introduces a simple symmetry breaking
mechanism which permits the emergence of beacon-taxis. To understand the reli-
ability of the ω-algorithm, work in [2,3] undertook an evaluation of the effect of
individual robot failures on the operation of the overall swarm. Potential failures
investigated were: (1) complete failure of individual robots due to, for example, a
power failure (2) failure of a robot’s IR sensor and (3) failures of robot’s motors
only, leaving all other functions operational including the sensing and signalling.
The study revealed that the effect of motor failures will have a potentially seri-
ous effect of causing the partially-failed robot to ‘anchor’ the swarm impeding
its movement towards the beacon.

Work described in this paper uses the ω-algorithm and investigates a fail-
ure mode specific to motor failures due to a lack of power in the robots: a
variation on (3) outlined above. We detail an immune-inspired solution which
enables, under the given failure mode, the swarm to ‘self-heal’ through simulated
trophallaxis, the exchange of power between units, to permit continued opera-
tion and overcome ‘anchoring’ of the swarm. In order to develop the immune-
inspired algorithm, we adopt an immune-engineering approach, as outlined in
[10]. Specifically, we take inspiration from the process of granuloma formation in
the immune system: a process of ‘containment and repair’ observed during vari-
ous inflammatory responses. We develop a simple agent-based simulation, from
which we derive a set of design principles that are used to design an algorithm
capable of isolating the effect of the failure and initiate a recovery strategy. We
explore the performance of the proposed algorithm, in simulation, and show that
an effective self-healing system can be operationalised within the ω-algorithm,
thus increasing tolerance to failure of the swarm.

The rest of the paper is structured as follows. In Sect. 2 we provide the neces-
sary background to the ω-algorithm and discuss the issues of ‘anchoring’ of the
swarm. In Sect. 3 we provide an overview of initial experimental investigations
into the ω-algorithm that were undertaken for this work and provide a baseline
of results against which to compare our proposed approach. In Sect. 4 we intro-
duce our immune-inspired approach, a granuloma-formation inspired system. In
this section we provide a basic introduction to the underlying biology and four
design principles that were abstracted from an agent-based simulation, devel-
oped by the authors, that captured the basic granuloma operation. In Sect. 5
we provide simulation based experimental results from our investigations and
conclude in Sect. 6.

2 Robotic Swarm Taxis

Aggregation of a swarm requires that agents maintain physical coherence when
performing a task. Robots are placed in an environment, ensuring that they are
within signalling distance of each other, and interact with each other to maintain
swarm coherence. This is relatively easy when a centralised control approach is
used, but very challenging when a distributed control approach is used [1].
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Work in [2] and [3] developed a class of aggregation algorithms which makes
use of local wireless connectivity information alone to achieve swarm aggregation
namely the α, β and ω algorithms.

For work in this paper, we make use of the ω-algorithm which contains two
swarm behaviours: flocking and swarm taxis towards a beacon. This combination
means that the swarm maintains itself as a single coherent group, whilst mov-
ing toward an infra-red (IR) beacon. The algorithm is a modified version of the
wireless connected swarming algorithm (the α-algorithm) developed by [5]. The
wireless communication channel in ω-algorithm has been removed and replaced
with simple sensors and a timing mechanism. Flocking is achieved through a
combination of attraction and repulsion mechanisms. Repulsion between robots
is achieved using IR sensors and a simple obstacle avoidance behaviour. Attrac-
tion is achieved using a simple timing mechanism. Each robot measures the
duration since its last avoidance behaviour. If that time exceeds a threshold,
then the robot turns towards its own estimate of where the center of the swarm
is. It will move in that direction until it, once again, must avoid the other
robots in the swarm. In order for the swarm to reach the beacon, the algorithm
uses a symmetry-breaking mechanism, in which the short-range avoid sensor
radius for those robots that are illuminated by the beacon is set slightly larger
than the avoid sensor radius for those robots in the shadow of other robots [3].
An emergent property of this approach is swarm taxis towards the beacon.

2.1 Anchoring of the Swarm

Various types of failure modes and the effect of individual robots failures and its
effect to the swarm have been analysed by [2]. From [2] the failure modes and
effects for swarm beacon taxis are as follows:

– Case 1: complete failures of individual robots (completely failed robots due,
for instance, to a power failure) might have the effect of slowing down the
swarm taxis toward the beacon. These are relatively benign, in the sense that
‘dead’ robots simply become obstacles in the environment to be avoided by
the other robots of the swarm.

– Case 2: failure of a robot IR sensors. This could conceivably result in the
robot leaving the swarm and becoming lost. Such a robot would become a
moving obstacle to the rest of the swarm and might reduce the number of
robots available for team work.

– Case 3: failure of a robot’s motors only. Complete motor failure only leaving
all other functions operational, including IR sensing and signalling. Such a
failure will have the potentially serious effect of causing the partially-failed
robot to ‘anchor’ the swarm, impeding its taxis toward the beacon.

The effect of completely failed robot(s) is to ‘anchor’ the swarm thus imped-
ing its taxis toward the beacon. If in the swarm there are only one or two robots
that are subject to complete failure, the swarm will still move towards the bea-
con. This is a form of a self-repairing mechanism inherent in the ω-algorithm.
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With complete failure of a robot, the ‘dead’ robots simply become obstacles in
the environment to be avoided by the other robots of the swarm, thus temporar-
ily slowing the swarm down. However, under a partial failure mode, the swarm
will experience a serious effect which causes the partially failed robot to ‘anchor’
the swarm. In swarm beacon taxis, this can only happen if the anchoring force
resulted by the effect of the robot’s motor failure are greater than the beacon
force, which is the force pulling the swarm toward the beacon.

A certain number of robots are necessary to maintain the emergent swarm
taxis property. A reliability model (k-out-of-n-system model) of the swarm in
swarm beacon taxis has been developed and the results show that there is a point
at which the swarm no longer functions [2]. The results from that paper suggest
that in a swarm of 10, then at least 5 robots have to be working in order for swarm
taxis to emerge [2]. This would indicate that in order for the swarm to continue
operation then some form of self-healing mechanism is required apart from self-
repairing mechanism which is already available in swarm beacon taxis [3].

Work in this paper will consider the failure mode in which there is not enough
power to drive the motors, but sufficient for signalling via LEDs on the robots.
This is classified as a partial failure. This assumption has been tested electron-
ically. We performed a simple experiment with epuck robots where we allowed
the robots to wander in an environment with a simple obstacle avoidance behav-
iour until the robots stopped moving. We monitored the power levels within the
robots from this point (when the robots stopped moving) and when the battery
was totally discharged. We found that on average, the e-puck robots are able to
send signals for 27 min before all the energy is lost.

The following section investigates the ω-algorithm [3] in a Player/Stage sim-
ulation. This will serve as a baseline against which we will be able to compare
our proposed immune-inspired algorithm.

3 Initial Investigations into the ω-algorithm

3.1 Experimental Protocol

The experiments presented in this section were performed in simulation using
the sensor-based simulation tool set, Player/Stage [4]1. 10 e-puck robots are
simulated, sized 5 cm × 5 cm, and equipped with 8 proximity sensors, two at the
front, two at the rear, two at left and two at right. Initially robots are dispersed
within a 2 m circle arena with random headings, ensuring that IR communication
between robots was possible. A robot will poll its proximity sensors at frequency
5 Hz (1/T), whenever one or more sensors are triggered the robot will execute an
avoidance behaviour, and turn away from the colliding robot or obstacles. The
avoidance turn speed depends on which sensors are triggered and robots will keep
turning for 1 s. The task of the swarm is to aggregate and move together towards
an infra-red beacon located in the arena. The parameters for the simulation
are provided in Table 1. Each simulation run consisted of ten robots and was

1 Player-Stage can be downloaded from http://playerstage.sourceforge.net/.

http://playerstage.sourceforge.net/
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Table 1. Robot fixed parameters for all simulations.

Parameter Value

Time step duration 1 s

Robot normal speed 15 cm/s

Avoidance sensor range 4 cm

Robot body radius 12 cm

Energy left in battery in order to move 500 J

Battery capacity 5000 J

Component fault power drain

No of faulty robots 1 to 5 units

Simulation duration 1000 s

repeated ten times. For each run, the centroid position of the robots in swarm
were recorded.

As outlined above, the failure mode for our experiments is a motor failure,
which is due to low battery power. We assume that the failure is sufficient to stop
the motors of the robot, but that there is sufficient power to light LEDs. Using
the simulation, we inject a power reduction failure to robots: for a single robot
failure, for two robot failures and three or more robot failures (until we reach
five failures) which will be introduced simultaneously in the simulation. When
the robots fail, they are not moving and will remain static in the environment.
The parameters for the failed robots in this scenario are shown in Table 2.

In these experiments we measure the progression of the centroid of the swarm
towards the beacon for every 100 s, using Eq. 1; where x and y are the coordinates
of the robots and n is the number of robots in the experiment and cd is the
centroid distance of robots to beacon. Statistical tests were performed using the
Mann-Whitney rank sum test, effect magnitude tests were performed using the
A-Test.

cd =
n∑

i=1

√
(x1i − x2i)2 + (y1i − y2i)2

n
(1)

We undertook a series of experiments on the ω-algorithm to reproduce work
in [3]. For the sake of space we report only a single hypothesis tested, which
formed part of work by [3] and allows us to establish a baseline of performance

Table 2. Variable parameters for failing scenario in the environment

Number of faults Parameter Time (s)

Single failure Speed = 0 m/s, energy = 500 joules t = [100]

Multiple failure Speed = 0 m/s, energy = 500 joules t = [100]
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Fig. 1. Boxplots of the distance between swarm centroid and beacon as a function of
time for 10 experiments using ω-algorithm with no robot failure for H10. The centre
line of the box is the median while the upper edge of the box is the 3rd quartile and
the lower edge of the box is the 1st quartile. At about t= 600 seconds, the swarm has
reached the beacon

for the ω-algorithm: H10: The ω-algorithm for swarm beacon taxis allows the
swarm to achieve a centroid distance less than 5 cm away from the beacon when
there are no failures introduced.

The swarm starts the experiment in one part of the arena and begins to
move toward the beacon. The distance from the centroid of the swarm to the
beacon for each run is given in Fig. 1. For each experiment the robots have a
different starting position in the arena, but as the importance here is on the
relative performance between different sets of runs, the starting point was set
to 35 cm from the beacon. This allows for a comparison between each run, as
comparison between runs will be for identical starting distances from the beacon.
The hypotheses can be accepted if the swarm reaches a distance of less than 5 cm
from the beacon. Based on the experiments, the swarm has a mean velocity of
1.2 mm/simulation seconds. The fastest moved at 1.52 mm/simulation seconds
and the slowest had the velocity of 1.01 mm/simulation seconds. At time t = 600
seconds, the swarm has reached 5 cm from the beacon.

Now we have established a baseline of operation with respect to the algo-
rithm, and reproduced previous work, we now proceed to detail our proposed
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immune-inspired solution. Experimental results reproducing the ‘anchoring’
problem can be found in Sect. 5.

4 Immune Inspiration: Granuloma Formation

Of particular interest to our work is the formation of structures known as granu-
loma in response to certain pathogenic infection. Granulomas form in response to
cells being infected by pathogens (in particular in response to infection by tuber-
culosis and Leishmania). They are structures that form of particular immune
cells, known as T-cells that try and contain the infection from spreading inside
the host [8]. The main cells involved in granuloma formation are macrophages,
T-cells and cytokines. Work by [8] outlines three main stages of granuloma for-
mation:

1. T-cells are primed by antigen presenting cells;
2. Cytokines and chemokines are released by macrophages, activated T-cells

and dendritic cells. The released cytokines and chemokines attract and retain
specific cell populations.

3. The stable and dynamic accumulation of cells lead to the formation of the
organised structure of the granuloma.

These stages do vary slightly depending on location of the granuloma, be that
in the liver or lung, for example, but the principles are common.

The Leishmania parasite infects a cell known as a Kupfer cell. If the cells
begin to break down (cell lysis) these cells will begin to release chemokines,
notably IL-10, which in turn beings to attract macrophages and T-Cells to form
around the infected cell, in an attempt to “contain” the infected cell. This process
will ultimately lead to the formation of a granuloma, and in many cases the
resolution of the infection. By the creation of the granuloma structure, resolution
from the infection is possible, however in some cases, the infection is fatal. For
the purposes of our work, we consider the most important property in granuloma
formation to be the communication between cells, and the recruitment of T-cells,
which is determined by the level of chemokine secretion (IL-10). Chemokines will
not only attract other macrophages to move towards the site of infection but
will activate T-cells that will secrete cytokines to act as a signal for activation
of macrophages. T-cells and activated macrophages are able to kill extra cellular
bacteria that will control infections in a host.

Using the conceptual framework described in [9] for the development of
immunologically grounded algorithms, we prepared a simple agent based simu-
lation to provide the framework to allow us to understand how the process of
granuloma formation occurs in the immune system. The agent based simulation
can provide insight into the behavioural aspects of a granuloma formation, which
can then be abstracted into design principles for algorithm development. There-
fore, by modelling and simulating the properties of granuloma formation we can
attempt to formalise principles that govern the behaviour of cells in the system
and apply them towards the development of a solution in our specific engineering
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problem. Through the analysis of our developed model and simulation, we have
constructed four design principles of self-healing in swarm robotic systems. The
four principles for our algorithm development are:

1. Communication between agents in the system is indirect (so not direct from
one specific robot to another), and should consist of a number of signals that
allow for coordination of the agents.

2. Agents in the systems react to defined failure modes in a self-organising
manner.

3. Agents must be able to learn and adapt by changing their role dynamically.
4. Agents can initiate a self-healing process dependant to their ability and

location.

We now move to the development of a granuloma inspired approach to a
self-healing swarm.

4.1 Granuloma Formation Algorithm

Using our knowledge gained from the development of a computational model, and
the subsequent derivation of the design principles outlined above, we have derived
a granuloma formation algorithm for addressing the anchoring issue in swarm bea-
con taxis. The algorithm is outlined in Algorithm 1. Failing robots will send signals
that can be recognised by other functional robots. These functional robots are then
attracted towards the faulty robot, akin to how T-cells are attracted by cytokines
emitted by an infected macrophage in granuloma formation. A limited number of
these robots then isolate the faulty robot. The other robots which are not involved
in isolating the faulty robot will ignore the failed and surrounding robots and treat
them as if they were obstacles in a manner similar to the standard ω-algorithm.

begin
Deployment: robots are deployed in the environment ;
repeat

Random movement of the robot in the environment;
Communication: Faulty robots will get the information on distance and
energy of its neighbour, where the average radius of the target
neighbouring robot is R;
;
Protection and rescue: Healthy robots will decide how many will
perform protection and rescue according to Algorithm 2;
Repair: Sharing of energy between faulty and healthy robots according
to Algorithm 3;

until forever ;

end
Algorithm 1. Overview of Granuloma Formation Algorithm

In our proposed algorithm, the number of functional robots that will come
to the aid of a faulty robot varies, it is not pre-defined and therefore is dynamic.
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Fig. 2. The number of functional robots that will share their energy will be based on
its position, their current energy and the energy needed from the faulty robot.

The number of robots required will be determined by the amount of energy
required to repair the failed robot, together with the location of the faulty robot.
Each faulty robot is able to evaluate their own energy level and position, and
propagate that information to other robots, as outlined in Algorithm 2. An
illustration of this process is shown in Fig. 2. When a faulty robot(s) are present,
they will emit a signal to other robots, which can only receive that signal if they
are within a certain predefined radius (R). The robots that receive the signal
will communicate and exchange information on their current battery energy
levels, in accordance with the energy transfer rules detailed in Algorithm 3. The
nearest functional robot will attach to the failed robot and share an amount of
energy, ensuring that the robot providing the energy does not deplete their own
resource to such a degree as to enter a failure mode itself. If sufficient energy
can be donated, the robot being repaired will stop emitting the energy request
signal. However, if the energy is not sufficient, the faulty robot will continue
to request energy from other functional robots in the environment. This will
be repeated until enough energy has been transferred to the robot to permit
resumed operation.

The basic terms used in the algorithm are as follow:

– posself (t): position of self robot
– pospeer(x): position of peer robots
– egyself (t): energy of self robot
– egypeer(x): energy of peer robots
– egyneeded: energy needed by failing robot
– egythreshold: the limit of the energy that is needed
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begin
Evaluate egyneeded(t) ;
Send egyneeded(t) to peers within R;
Receive egypeer(x) from peers within R;
forall the egypeer(x) received do

if egypeer(t) received < egyneeded then
Send egyneeded(t) to peers within R;

else
Stop sending egyneeded(t) to peers within R;

end

end

end
Algorithm 2. Algorithm for containment and repair according to energy and
position of robots

begin
Evaluate egyself (t) and posself (t);
Send egyself (t) and posself (t) to peers within R;
Receive egypeer(x) and pospeer(x) from peers;
forall the egypeer(x) received do

if egypeer(x) < egymin then
R = match egypeer(x), egyself (t) ;
Store egypeer(x) in inbound queue ;

else
R’ = not match egypeer(x), egyself (t);
Add egypeer(x) to outbound queue;

end

end
forall the egypeer(x) in inbound queue do

Add signature ;
Store egypeer(x) in robot list
forall the egypeer(x) in robot list do

if egyself (t) < egythreshold then
Evaluate pospeer(x) ;
Sort pospeer(x)in ascending order;
Move to nearest pospeer(x) ;

end

end

end
forall the egypeer(x) in outbound queue do

Delete signature ;
end

end
Algorithm 3. Algorithm for containment and repair according to energy and
position of robots
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Fig. 3. Boxplots of the of the distance between swarm centroid and beacon as a function
of time for 10 experiments using the ω-algorithm, one failing robot (Fig. 3(a)) and three
failing robots (Fig. 3(b))

For a full hardware deployment, during the repair phase, donor robots will
be able to dock share energy with the faulty robot, using a platform such as [7].

Fig. 4. Boxplots of the distance between swarm centroid and beacon as a function of
time for 10 experiments using granuloma formation algorithm with one faulty robot
(Fig. 4(a)), and three failing robots (Fig. 4(b))
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Fig. 5. The energy autonomy for swarm of 10 robots using granuloma formation algo-
rithm with three (Fig. 5(a)), four (Fig. 5(b)) and five (Fig. 5(c)) failing robots.

5 Experimental Investigation: Granuloma Formation
Algorithm

For this experiment, we follow the experimental protocol that is described in
Sect. 3.1. We cast our hypothesis as follows:
H20: The use of a granuloma formation algorithm does not improve the ability
of the robots in the system to reach the beacon when compared to the ω-algorithm
when more than two faulty robots are present in the swarm.

5.1 Results

We compared the performance of the ω-algorithm when one and then three faults
were introduced, this is shown in Fig. 3(a) and (b). As can be seen progress is
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made to the beacon with a single fault (Fig. 3(a)) but when three faults are
present, the anchoring problem is clearly shown and the mean centroid distance
does not change (Fig. 3(b)). However, when the granuloma-inspired system was
tested with three failing robots, we can see from Fig. 4(a) that swarm taxis is
still successful (when compared to Fig. 3(a)) and importantly when tested for
H20 we can see that from Fig. 4(b) we are unable to accept the hypothesis, as
even in the presence of three failures, swarm taxis is successful in permitting the
swarm to reach the beacon. We were able to reject the hypothesis at the 5 %
confidence level.

5.2 Maintaining Energy Across the Swarm

The use of energy across the swarm can also be investigated. As in previous
experiments, all robots start with equal energy which is 5000 Joules. Figure 5(a),
(b) and (c) show the energy of 10 robots during 1000 simulation seconds with
different failing robots in the environment with granuloma formation algorithm.
Having three to five failing robots, we can see that the average energy level of
all robots in the environment are still above the minimum energy level which is
500 Joules. This shows that the robots can share their energy even though half
of the robots are experiencing low energy levels. The swarm is able to continue
operating even with such failures.

6 Conclusion

Our work has proposed a novel immune-inspired system, a granuloma formation
algorithm for self-healing mechanism in swarm robotic systems applied in a case
study of swarm beacon taxis, specifically the ω-algorithm developed by [3]. Our
experiments show that the granuloma formation algorithm is able to provide a
mechanism for ‘self-healing’ under certain failure models, being able to initiate
a simple recovery strategy through the recruitment of capable robots in the sur-
rounding area, which are able to perform trophollaxis and transfer energy between
one robot and another. Further work on this approach would demand the demon-
stration on a suitable hardware platform to demonstrate the applicability away
from simulation only.
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Abstract. User defined tactics for teams of unmanned systems can be
brittle and difficult to define. The state and action space grows with each
new system added to the team which increases the difficultly in designing
robust behaviors. In this paper we present a method for using Multi-
agent HyperNEAT to develop tactics for a team of simulated unmanned
systems that is robust to novel situations, and scales with the number of
team members. We focus on the tactics of a search area coverage task,
where the need for team work, and robust asset management are critical
to success.

1 Introduction

The use of remote operated and autonomous vehicles is increasing as the size
and cost of the unmanned platforms continues to decrease. Drones are being
used by farmers to survey crops, photographers for aerial views, and volunteer
search and rescue groups. With the advent of cheap consumer friendly drones
like the Parrot ARDrone, and the DJI Phantom, it is now possible to build low
cost swarms of drones. As the number of vehicles grows the requirement for each
to have an individual operator will become ever more burdensome. To alleviate
this, more robust autonomy needs to be developed, especially in the case of large
numbers of drones acting in concert, such as a swarm.

The specific case of a team of unmanned systems can be treated as a multi-
agent system (MAS). Multi-agent systems is a very active area of research. It is
interesting because of the joint behaviors and the complexities arising from the
interactions of agents with some degree of autonomy [13]. Early work in MAS dealt
with planning and scheduling [12], and had very little to do with learning. It was
primarily focused on developing protocols for interaction, and studying the effect
of various levels of agent communications. Early methods used scripted or rule
based controls [9] or symbolic systems [6,8]. However, because of the increased
complexity of designing and building MAS, machine learning quickly came into
play. For an in depth survey of Machine Learning in MAS see [15,21] or [13].

In this paper, we will explore the use of Multi-Agent HyperNEAT [7] in devel-
oping search tactics for a team of autonomous agents. Tactics, in this case, refer
to the collective search paths of the team. The team will need to work together
to provide continuous coverage of designated search areas. MA-HyperNEAT has

c© Springer International Publishing Switzerland 2015
M. Lones et al. (Eds.): IPCAT 2015, LNCS 9303, pp. 75–89, 2015.
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been used in developing team behaviors in the predator-prey problem as well as
for teams of robots attempting to completely compounds tasks requiring team-
work [14]. In this work we are interested in how the incorporation of tactical
information about the environment impacts the tactics developed through the
evolutionary process.

The following sections will go into the background of NEAT, HyperNEAT,
and MA-HyperNEAT, followed by a description of our experiments and finally
our results.

2 Background

2.1 NeuroEvolution of Augmenting Topologies (NEAT)

Neuro-evolution (NE; [27]) is a technique for training artificial neural networks
(ANNs) through evolutionary algorithms. Instead of updating connection weights
through a learning rule like back-propagation, ANNs are generated through evo-
lutionary processes, evaluated in a task and given a fitness that used to select and
create a new generation of ANNs through mutations and recombination of their
genomes. The NeuroEvolution of Augmenting Topologies (NEAT) algorithm [20]
is a popular neuroevolutionary approach that has been proven in a variety of chal-
lenging tasks, including particle physics [1,26], simulated car racing [2], RoboCup
Keepaway [22], function approximation [25], and real-time agent evolution [17],
among others [20].

NEAT begins with a population of minimal size, simple ANNs which increase
in complexity over generations through adding new nodes and connections using
mutation. This allows the topology of the network to evolve over time rather
than being defined a priori. In this way NEAT searches through increasingly
complex networks to find the appropriate level of complexity. The techniques
used to evolve a population of increasingly complex and diverse networks are
described in [20]. The major concept that should be noted for this paper is that
NEAT is a successful method that discovers the best topology and weights for
a neural network that maximizes the performance on a task. NEAT has been
extended to allow for indirect encodings which allows it to evolving very large
networks with a method called HyperNEAT. This technique is detailed in the
next section.

2.2 CPPNs and HyperNEAT

Hypercube-based NEAT (HyperNEAT; [10,18]) is an extension of NEAT that
allows for the evolution of high-dimensional ANNs. The effectiveness of the
HyperNEAT algorithm has been demonstrated in multiple domains; multi-agent
predator prey [4,5] and RoboCup Keep away [24]. The full description of Hyper-
NEAT is available in [18].

The core idea in HyperNEAT is that geometric relationships are learned
through an indirect encoding that describes how the weights of the ANN can
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be generated as a function of geometry. In a standard direct representation each
connection weight is represented as part of the genome, whereas an indirect rep-
resentation describes a pattern of parameters without enumerating each indi-
vidual parameter. This allows information to be reused which is a major focus
in the field of Generative and Developmental systems from which HyperNEAT
originates [19,23]. This information reuse allows indirect encodings to search a
compressed space. HyperNEAT discovers the regularities in the geometry of a
problem and learns from them.

The indirect encoding in HyperNEAT is called a compositional pattern pro-
ducing network (CPPN; [16]), which encodes the weight pattern of an ANN
[11,18]. The idea behind CPPNs is that geometric patterns can be encoded by a
composition of functions that are chosen to represent common regularities. Given
a function f and a function g, a composition is defined as f ◦ g(x) = f(g(x)). In
this way, a set of simple functions can be composed into more elaborate functions
through hierarchical composition. (e.g. f ◦g(f(x)+g(x))). Formally, CPPNs are
functions of geometry (i.e. locations in space) that output connectivity patterns
for nodes situated in n dimensions. Consider a CPPN that takes four inputs
labeled x1, y1, x2, and y2; this point in four-dimensional space can also denote
the connection between the two-dimensional points (x1, y1) and (x2, y2). The
output of the CPPN for that input thereby represents the weight of that con-
nection (Fig. 1). By querying every pair of points in the space, the CPPN can
produce an ANN, wherein each queried point is the position of a neuron. While
CPPNs are themselves networks, the distinction in terminology between CPPN
and ANN is important for explicative purposes because in HyperNEAT, CPPNs
encode ANNs.

Because the connection weights are produced as a function of their endpoints,
the final pattern is produced with knowledge of the domain geometry, which is

Fig. 1. The CPPN encodes the values of the connection weights between any two nodes
in the substrate.
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literally depicted geometrically within the constellation of nodes. Weight pat-
terns produced by a CPPN in this way are called substrates so that they can
be verbally distinguished from the CPPN itself. It is important to note that the
structure of the substrate is independent of the structure of the CPPN. The
substrate is an ANN whose nodes are situated in a coordinate system, while the
CPPN defines the connectivity among the nodes of the ANN. The experimenter
defines both the location and role (i.e. hidden, input, or output) of each node in
the substrate. As a rule of thumb, nodes are placed on the substrate to reflect the
geometry of the domain (i.e. the state), making setup straightforward [10,18].

2.3 Multi-Agent HyperNEAT

HyperNEAT is extended further in [5] to allow the algorithm to produce net-
works for multiple agents. It introduces the idea of policy geometry which is
the concept that the behaviors of a team are a continuum between homoge-
neous and heterogeneous extremes. If every member of a team were completely
heterogeneous then there would be no shared skills amongst the team mates.
MA-HyperNEAT is able to generate a spectrum of policies by extending the
HyperNEAT idea to a new dimension. In MA-HyperNEAT each connection is a
function of its nodes end points and the position of its parent network along the
spectrum of the policy geometry. Using a z -stack parameter MA-HyperNEAT
is able to generate a near infinite amount of policies that share common traits
but that differ according to their position in the team. It is this ability in MA-
HyperNEAT that we will take advantage of in our work. Figure 2 shows a simple
CPPN with the z input and a hypothetical stack of generated networks.

Fig. 2. The MA-HyperNEAT algorithm uses a z parameter to adjust the position of
the agents policy. This allows MA-HyperNEAT to create a stack of networks that have
different behaviors based on its position in the team.
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3 Experimental Method

This section will detail the simulator and the experiments in learning team search
tactics. The primary focus of these experiments is to determine which combina-
tions of sensors and control schemes allow MA-HyperNEAT to develop effective
search tactics. The learned tactics are compared to a selection of hand coded
tactics scripted at the team level.

3.1 Search Task

The experiments in this paper are designed to explore the ability of MA-
HyperNEAT to develop team tactics, and how the representation of the environ-
ment and agents effects the development of these tactics. The task explored in
these is experiments is a cooperative search task where the agents work together
to provide continuous coverage of designated search areas. Tactics in this sce-
nario refer to the collective search patterns followed by the team of agents. Each
agent has a limited area they can cover and they must work together to maximize
their combined coverage.

Figure 3 shows the simulated search environment used in each of the exper-
iments. There are two separate search areas to provide the opportunity for the
team to split up and cover multiple areas. The experiments are carried out with
a team of 3 simulated agents. This team size was chosen to minimize processing
time for the experiments while still allowing for MA-HyperNEAT to learn mul-
tiple team roles. The size and placement of the search areas are fixed between
experiments so that the coverage score calculation is based solely on the effec-
tiveness of the search patterns.

To evaluate how well each search tactic covers the area, and to provide a
fitness function for the evolutionary process we use a measure of decayed cov-
erage. Equation 1 provides the details for the DecayedCoverage measure. This
measures the average search area covered by the team over time. The measure
decays at an exponential rate of about 5 % per time step. In order to maximize
this measure the team must move quickly and minimize the overlap between
their sensor coverage. This measure is used to provide an indication of how well
the team maintains continuous coverage of the search areas. Since speed has a
large influence over this measure, and the intended goal of the evolution is inter-
esting search patterns, the speed of the evolved agents, and the scripted agents
are held to the same maximum velocity. This is done to make the comparisons
fair. With speed held at an identical level the values become primarily depen-
dent on minimizing the overlap between the agents sensors and traversing over
unseen search area.

DecayedCoverage =

∑A
a=0

∑X,Y
x,y=0 Vx,y(t)
t

(1)

Vx,y(t) =
{
e−t/20 t time steps since last view
0 >20 time steps since last view

(2)
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Fig. 3. Sample search environment. The boxes defined by the dotted lines indicate
areas that need to be searched.

3.2 Agent Simulator

The experiments were carried out using the MA-HyperNEAT Agent simulator [3]
developed by the EPLEX group at UCF. The simulator models a 2D environment
and includes collision detection, first order kinematics, and several object types.
Experiments can be setup to include any number of simulated agents, points of
interests, start points, goal points, obstacles, and walls. The simulator is built to
interface with the HyperSharpNEAT code base which is included in the download
with several pre-configured experiments, robots types, and sensor types included
as well.

In order to implement the multi-agent search experiment it was necessary to
extend the simulator in several ways. To implement search areas a new simulation
object type was added based on the existing area of interest. The area of interest
is a special rectangle in the simulation that bounds the environment. Walls are
placed at the edges to keep the agents from leaving the area. The search areas
are also represented in the simulation by special rectangles, but with additional
properties that allow them to interact with the agent sensors, and to track where
the agents have already searched. On the agent side several new sensor types were
added to allow the agents to sense the search areas both at a lower relative level,
and at a higher tactical level. These sensors are used in conjunction with the
existing sensors in the simulator to give the agents their view of the environment.

3.3 Sensing Tactical Environments

The primary goal of this research is to learn tactics for a team of agents. The theory
is that in order for the MA-HyperNEAT algorithm to be able to develop tactics,
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it needs to be able to incorporate tactical information. In this instance tactical
information means a higher level overview of the environment. In previous multi-
agent experiments [7] MA-HyperNEAT has been used to develop networks for each
individual agent in a predator-prey scenario. In these experiments each agent has
its own relative sensors and controls.Thismeans eachagent’s interactions are based
solely on it’s local environment. The sensors described below provide the inputs to
the neural networks developed by the MA-HyperNEAT algorithm, while the type
of control scheme determines the output of the networks. The combination of sen-
sors and controls determines the structure of the neural network substrate.

The standard relative sensors used in these experiments are radar sensors,
and ray sensors. Radar sensors detect the presence of other simulation objects
(search areas, other agents) within a specified range, and arc around the agent.
The radar segments surround the agent providing a 360◦ field of coverage. The
value returned by the radar sensor depends on what is being sensed. For search
areas the radar returns a value from 0 to 1 representing the percentage of the
radar cone that is unseen search area. For other agents the value represents the
distance to the detected agent again in the range of 0 to 1. In these experi-
ments 8 radar segments are used. The ray sensors detect intersections along a
particular relative angle from the agent. The ray sensors are binary so the value
represents a detection or no detection. Ray sensors are used to sense the edge
of the environment. The ray sensors are not used by the agent control network,
they are used by the simulation to turn the agents away from the environment
boundaries. Figure 4 shows a graphical depiction of a radar segment and an array
of ray sensors.

To incorporate tactical information into the agents behavior a new sensor
type is added to compliment the local sensors of the agents. Figure 6(a) shows
a representation of a grid sensor. The grid sensor overlays the entire environ-
ment and provides the agent with two types of information. The first type of
information is the absolute location of all of the search areas. The second type
of information is the absolute position of all of the agents in the environment
including itself. In our experiments we explore several combinations of these
inputs. The GridHeading input combines the grid sensor with a relative head-
ing sensor. This setup is intended to give the individual agents an indication of

Fig. 4. The Radar sensors provide a 360◦ coverage around the agent, while the ray
sensors provide binary detection along specific relative angles
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their heading in addition to their absolute position. The RadarGrid input is a
combination of the search area radar and the grid sensor. These combinations
are tested in addition to the grid, and radar sensors individually.

The standard controls tested in these experiments are velocity and heading
(VelHeading), grid heading (GridOut), and absolute heading (AbsOut). Velocity
and heading uses 3 output signals to determine the movement of the agent. Two
of the values are used to determine the heading, one output represents left, while
the other represents right. The difference in their output signals determines the
change in heading of the agent. If the left output activates stronger than the right,
then the agent will turn towards the left. The size of the change is determined by
the size of the difference. The velocity output determines the speed value from
0 to max speed. The grid heading control uses 8 output signals and represents
the cardinal positions of a compass. Each output signal is polled and the highest
value is chosen, the agent then moves in the direction represented by that output.
The speed of the agent depends on the value of the output signal, a max output
signal corresponds to max speed. The absolute heading output is similar to the
grid heading scheme; the difference is the relative heading represents 8 directions
in relation to the agent; forward, left, right, backward, and the angles in between.

In addition to adding the grid sensor to provide high level tactical input,
a new type of output is added as well. Figure 6(b) shows a vector field output
(VectorOut). This type of output is designed to give a high level sense of direction
to the agent. The standard outputs for the agents are a velocity and relative
heading which are poled at each time step to determine the agents next course
of action. The vector field on the other hand provides a heading vector for each
point on the grid corresponding to the grid sensor. At each time step the agents
position is polled and its current heading vector is moved a fraction of the way
toward the vector field desired heading.

Fig. 5. The standard agent control schemes. Velocity and heading use 3 output signals,
while the two heading controls use 8.
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Fig. 6. The Grid Sensor (a) gives a tactical overview of the environment while the
Vector Field Output (b) gives a high level policy that applies a directional force on the
agents heading.

3.4 MA-HyperNEAT Agents

To develop team tactics the MA-HyperNEAT algorithm is used to generate
neural network controllers for each agent in the team. The search tactics for the
evolved controllers result from the interaction of these individual agent behav-
iors. The agents interact with each other through their sensors of the environ-
ment and do not have explicit communication. The MA-HyperNEAT algorithm
has been shown to develop cooperative behaviors without the need for explicit
communication in previous work [7].

The choice of sensors and control scheme determines the size and shape of
the neural substrate for each agent. MA-HyperNEAT works by evolving a CPPN
to set the weights of the fixed substrate. In our experiments the substrates are
designed to match the different input/output choices of each experiment. In the
Grid/Vector Field cases the grids are set to 20 × 20 grids. The substrates are laid
out so that the input/output nodes follow a 2D pattern matching the grid sensor
or the vector field out. For the radar and heading inputs each sensor has eight sub
divisions leading to the substrate having 8 input nodes for each of these sensors.
The VelHeading output uses three nodes; one for the velocity value and two to
indicate the relative heading (left or right). The GridOut and AbsOut outputs
each have eight subdivisions meaning eight nodes in the substrate for each of
those outputs. The hidden layers of the substrate used two primary shapes. For
the inputs involving grids the hidden layer was set to a 10× 10 grid, while the
radar only substrates used a hidden layer of 20 nodes.

These dimensions for the substrates lead to very large neural networks. The
largest network arises from the Grid input/Vector Field output. Each agent has
two input grids of 400 input nodes each (one for the search areas, and one for
agent locations), a hidden layer of 100 nodes, and an output layer of 400 nodes.
The substrates are fully connected so this leads to a network with 120000 connec-
tions. Each agent has their own substrate so the total number of connections for
the experiment totals 360000. Using the standard NEAT or other neuro-evolution
techniques would mean evolving with these 360000 parameters, but the indirect
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encoding of these weights using the evolved CPPN of MA-HyperNEAT allows us
to evolve new solutions much more quickly. This is one of the primary advantages
of the MA-HyperNEAT approach. Using other techniques each additional agent
would introduce 120000 more connections to optimize while MA-HyperNEAT
only has to evolve the smaller CPPN architecture.

3.5 Scripted Agents

The scripted agents were developed to represent standard search tactics used
in patrols and search and rescue operations. The scripted agents have perfect
information about the locations of the search areas and thus do not make use
of the sensors in the simulation environment. This allowed the scripted agents
to be explicitly programmed for the desired patterns, rather than having to
develop rules and behaviors based on sensor inputs to elicit the patterns. Three
distinct patterns were programmed into the scripted agents. The ladder pattern
or lawnmower pattern moves up and down the area moving over slightly after
each pass. The spiral pattern moves along the outside of the search area in a
cycle and then moves inward at the end of each cycle. The random pattern
simply chooses a new random direction once it reaches the edge of a search area.

The scripted agents are controlled by a single monolithic controller. The
controller takes the position of each agent into account and sends their next
control signals based on where they are in the desired pattern. The controller
also handles load balancing by dividing the search areas up into equal portions
based on the number of agents available to search; each agent gets their own sub
area to patrol.

3.6 Evolution and Evaluation

In order for the MA-HyperNEAT algorithm to develop the team controllers each
team must be evaluated on the search task. The CPPNs that develop the best
teams continue on to the next generation during the evolutionary process. Each
of the evaluation runs starts with the three agents below the search areas lined
up behind a start point. The agents are evaluated for 300 simulated seconds,
and their DecayedCoverage score at the end of the run is reported back to the
MA-HyperNEAT algorithm. The evolution continues for 2000 generations and
the CPPN that developed the highest scoring team is retained. This process is
repeated for each of the combinations of sensor and control schemes.

To evaluate the effectiveness of the evolved team tactics and the scripted
tactics, the best evolved teams for each configuration and the scripted agents
are run through the search task a final time. The final search task is also run
for 300 seconds, and the DecayedCoverage score of each configuration and the
scripted agents are returned. The evaluations are only run once for each scenario
as the simulation is deterministic. This means that with the same search area
configuration and starting point the teams will always perform the same search
patterns, and achieve the same score. The evaluation results are presented in the
next section.



Team Search Tactics Through Multi-Agent HyperNEAT 85

4 Results

In this section we will detail the results of our experiments with learning search
tactics. Table 1 shows the DecayedCoverage scores for several combinations of
inputs/outputs for the MA-HyperNEAT algorithm and the scripted agents, while
Figs. 7 and 8 show the learned and scripted search patterns respectively. The
first thing to note is that the absolute best performer is the team using the
survey area radar and relative velocity and heading outputs. This combination
achieved a high score of 10.67 out of a maximum of about 12. The maximum
value of 12 is estimated based on the combination of the sensor area of each agent,
the number of agents, and the maximum allowed speed. The Radar/VelHeading
combination provided the smoothest behavior and tended to develop a concentric
circle pattern as can be seen in Fig. 7(b). One agent patrolled along the outer
perimeter while the other agents did smaller patrols inside each others tracks.
The agents tend to stay in the largest search area and do not venture into the
second search area. This result is not surprising since the relative sensors and
outputs have produced good results in other problem types.

The tactical combinations varied in their performance depending on the type
of output used. The Grid in combination with the VelHeading performed rea-
sonably well with a score of 7.54 beating both the scripted ladder and spiral
tactics. This combination lead to a pattern of two agents performing sliding spi-
rals while the third agent drove straight through at seemingly random angles
(Fig. 7(a)). When the Grid and Radar inputs were combined this lead to the
second best learned tactics with a score of 8.16. This shows that the addition of
the radar was able to improve on the base score of the grid, but not enough to
bring it up to the level of the radar alone. The resulting pattern produced by this
combination resembles the patterns produced by the Grid and Radar separately.

Table 1. Results for the search task.

Learned Search Tactics

Inputs Outputs Score

Grid VelHeading 7.54

GridHeading VelHeading 7.06

GridHeading GridOut 3.48

GridHeading AbsOut 3.54

Grid VectorOut 6.18

Radar VelHeading 10.67

RadarGrid VelHeading 8.16

Scripted Search Tactics

Spiral 6.52

Ladder 6.79

Random 8.29
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Fig. 7. Evolved search tactics

Fig. 8. Scripted search tactics

The concentric circles return but there more exploration outside the larger search
area. This lessens the score as the agents loose points when they leave the search
area, However this is a more interesting behavior since it starts to cover both
areas. The DecayedCoverage measure does not take this into account.

The Grid/VectorOut combination scored similarly to the scripted agents with
a score of 6.18, meaning it did not perform as well as the other learned tactics.
However, The behavior exhibited by this combination is the most interesting.
The pattern combines a spiral and a ladder search. Each agent has a larger spiral
path but along each run of the spiral it zig-zags in a short ladder search. This can
be seen in Fig. 7(c). This combination also behaved better in terms of staying in
the search areas more consistently. The primary reason for its lower score comes
from the sensor overlap during the zig-zag periods.

The Grid in combination with the GridOut or AbsOut output techniques
were the worst performers. These combinations tended to lead to agents that
sped straight across the map and embedded themselves against the wall. These
techniques will be abandoned during our future work.
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Fig. 9. Layered learning will allow the tactical and local networks to work together.

Overall these results show that MA-HyperNEAT is able to learn team search
tactics that perform as well or in some cases better than hand coded canonical
search tactics. The relative sensor and control schemes produce the best coverage
scores, while the tactical sensors and controls tend to explore more of the area.
In future experiments the fitness function will be adjusted to provide better feed-
back for tactics that cover multiple search areas. The combination of the tactical
and relative sensors improved the fitness for the tactical sensor, but not enough
to overcome the difference. It would be interesting to see how the combination
would perform in a layered approach with a tactical network and a local network
working together rather than a single network trying to incorporate both.

5 Conclusion

As we move into the future where drones and unmanned systems outnumber out
human operators it is important that we develop strong and robust autonomous
systems to allow each operator to control a larger number of agents. In this
work we have explored the use of the MA-HyperNEAT algorithm for the devel-
opment of team tactics in the area search task. Our results show that the MA-
HyperNEAT algorithm is able to develop search tactics that perform as well
as, and in some cases outperform, hand coded solutions while providing novel
patterns. The results leave us room for improvement and will inform out future
work on the subject. While the tactical sensors and controls didn’t provide the
strongest performance they did lead to interesting behaviors. Our next experi-
ments will try to combine the tactical and local sensors by using layered learning
of separate networks that work together rather than trying to combine them into
a single network. Figure 9 shows two methods for combining tactical and local
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networks. This work will also be extended by incorporating elements of inter-
active evolution thus allowing a human user to determine which patterns they
prefer. This should lead to novel patterns that are more desirable from the user
standpoint as well as more efficient.
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Abstract. Elucidating the role that microRNAs (miRNAs) and signaling
transduction play in the directed differentiation of human embryonic stem cells
(hESCs) into glucose-responsive, insulin-producing endocrine cells is critical to
our understanding of systems biology and the development of cell-based ther-
apeutics. To accomplish this, a biochemical understanding the underpinnings of
hESC differentiation bias – the propensity of hESCs to differentiate into cells
of a specific lineage – must be described in molecular detail. An inherent aspect
of hESC culture is stress, and we hypothesize that stress is largely responsible
for differentiation bias. Our results indicate that manipulating stress increases
apoptosis and disrupts differentiation. Cells subjected to stress fail to become
endocrine precursor cells and retain many characteristics of pluripotent cells.
Many stresses induce massive apoptosis and result in a loss of up to 80 % of the
cells. A consequence of the reduction in cell density is elevated stress signaling,
dramatic changes in cell proliferation, maintenance of pluripotency markers, and
a complete absence of transcription factors associated with pancreatic endocrine
cell production. Coincident with changes in stress, we observed dramatic
changes in correlated miRNAexpression, suggesting that cell stress may mod-
ulate miRNA transcription and ultimately hESC differentiation.

1 Introduction

1.1 miRNA Dynamics and During hESC Differentiation

Small, non-coding, regulatory RNA molecules such have microRNAs (miRNAs) have
emerged as key rheostats involved in diverse cellular processes and functions (Bagga
et al. 2005; Bartel 2004). MiRNAs regulate post-transcriptional gene networks and
function in a manner analogous to transcription factors. Mature miRNAs are partially
complementary to one or more messenger RNAs (mRNA), and function typically to
downregulate gene expression (Hinton et al. 2012; Bagga and Pasquinelli 2006). There
are currently several hundred experimentally validated miRNA genes in the human
genome, predicted to target many thousands of mRNAs (Ritchie et al. 2013). The
importance of miRNAs in hESC differentiation has been demonstrated in studies where
critical components of the miRNA machinery have been knocked out (Hinton et al.
2012; Wang et al. 2007; Suh et al. 2004). In two seminal studies, hESC failed to
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differentiate or endocrine tissue failed to form when miRNA processing was disrupted
(Suh et al. 2004; Lynn et al. 2007).

Previously, we used microarrays and next-generation sequencing (NGS) to dem-
onstrate that miRNA expression profiles could distinguish pluripotent hESCs from
definitive endoderm (DE), the first step toward pancreas lineage specification Hinton
et al. 2010, 2014). In the 2010 paper, microarray analysis of a panel of known miRNAs
was performed to profile changes in expression during the transition from pluripotency
to DE. Our results identified a unique miRNA signature that characterized early pan-
creas differentiation at the DE stage. Seventeen unique miRNAs were up-regulated in
DE compared to pluripotent cells, suggesting a role for these miRNAs in the first step
of commitment to endoderm-derived cell lineages. Notably, we detected robust and
lineage-specific expression of miR-375 in hESCs differentiated to DE, implicating it in
endoderm formation in addition to its established role in regulating islet cell devel-
opment and function. These studies were amongst the first that demonstrated that
miRNAs drive hESC differentiation. A limitation of this work was the inability to
detect novel miRNAs and a large numbers of known miRNAs that were not yet
available for chip-based analysis. Therefore, this work was extended using next gen-
eration sequencing for both cell populations. Millions of sequencing reads from plu-
ripotent and DE cells allowed us to expand the number of miRNAs that significantly
change during DE formation from 17 to 77 miRNAs. The changes were significant,
four of the five most highly upregulated miRNAs were previously undetected in DE.

As individual miRNAs were interrogated for specific roles in differentiation, ques-
tions about global miRNA dynamics affecting differentiation capacity arose. To address
this, we undertook NGS analysis of total miRNA expression at 24-h intervals during the
first 10 days of hESC differentiation towards pancreatic endoderm (day 0–day 10). Our
biological and computational analysis revealed rapid, daily changes in the expression of
specific miRNAs grouped within 4 sub-clusters, coupled with longer patterns of coor-
dinated miRNA changes as cell lineage specificity emerged (Fogeland King, in revi-
sion). Alterations of growth factor composition of the media strongly correlated with
increases in stress and dramatic changes in miRNA expression. While these data pro-
vided essential insights into how the dynamics of miRNA expression regulates hESC
differentiation through DE towards pancreatic endoderm, little was known about whe-
ther expression of miRNAs during this process was correlated or about how all miRNAs
functioned as a network.

1.2 Chemical Regulators of Pluripotency

During DE formation, a small number of hESC remain pluripotent, resulting in tera-
toma formation following transplant. From our signal transduction work, we identified
a compound that regulates hESC pluripotency: Gö6976, a protein kinase C inhibitor
that enhances exit from pluripotency. The effect of Gö6976 on exit from pluripotency
appears to be pleiotropic. Although inhibition of PKC in cells occurs at low concen-
trations (250 nM), other off target effects that alter signaling also occur during hESC
differentiation to DE. One is on signaling through the JAK/Stat pathway (Reyes-Cava
and King, in preparation). Given the critical role of miRNAs in the transition of
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pluripotent hESCs to DE, we wanted to examine whether Gö6976 also disrupted the
dynamics of miRNA expression.

2 Methods

2.1 Stem Cell Culture and Differentiation

CyT49 cells (provided by ViaCyte, San Diego, CA) were maintained on reduced
growth factor BD Matrigel at 37 °C, 5 % CO2 in DMEM/F12 supplemented with 20 %
knockout serum replacement, glutamax, nonessential amino acids, β-mercaptoethanol,
penicillin/streptomycin (Life Technologies, Carlsbad, CA), 4 ng/mL basic fibroblast
growth factor (FGF; Peprotech, Rocky Hill, NJ) and 10 ng/mL activin A (R&D Sys-
tems, Minneapolis, MN). Differentiation to pancreatic precursor stage was carried out
as previously described (Hinton et al. 2014). Details for hESC differentiation are as
follows: Day 0 – Activin A (100 ng/ml; R&D Systems, Minneapolis, MN) and Wnt3A
(25 ng/ml, R&D Systems) with 0.2 % FBS (Hyclone, Thermo Fisher Scientific,
Waltham, MA) in RPMI-1640 (Invitrogen, Carlsbad, CA); days 1 and 2– Activin A
with 0.5 % FBS in RPMI-1640; day 3 – Activin A with 2 % FBS in RPMI-1640.days
4–6 – kerotinocyte growth factor (KGF; 50 ng/ml) in RPMI-1640 with 2 % FBS; days
7–8 – KAAD-cyclopamine (0.25 µM, EMD-Millipore, San Diego, CA), retinoic acid
(2 µM, Sigma, St. Louis, MO), noggin (50 ng/ml, R&D Systems), 1 % B-27 (Invit-
rogen) in DMEM (Invitrogen); days 9-10–1 % B-27 (Invitrogen) in DMEM (Invitro-
gen). Gö6976 (Calbiochem, Danver, MA) was added to the media at days 1, 2, and 3 at
a final concentration of 250 nM.

2.2 RNA Preparation

To ensure representative samples were generated for each time point during hESC
differentiation, the following biological replicates were generated starting from the
same passage of CyT49 cells: Day 0 (n = 8); Day 1 (n = 4); Day 2 (n = 4); Day 3
(n = 4); Day 4 (n = 6). For each 24-h interval of differentiation, samples were prepared
as follows. Cells were lysed in Trizol and RNA was extracted by the manufacturer’s
recommended protocol (Life Technologies, Carlsbad, CA). Resultant RNA was treated
with Turbo DNAse (Life Technologies) for 30 min. DNAse-treated RNA was purified
by sequential extraction in acid phenol:chloroform (5:1), followed by chloroform
alone, then precipitated in 4 volumes ethanol. Small RNA libraries were prepared using
the Small RNA 1.0 Sample Preparation Kit (Illumina, Inc., San Diego, CA). A band of
RNA ranging from 18–30 nt was cut from a 15 % TBE-urea gel and RNA was
extracted according to the manufacturer’s recommended protocol. After ligation of 5’
and 3′ adaptors, bands of 40–60 and 70–90 nt, respectively, were cut from the gel and
RNA was again extracted as described above, followed by RT-PCR amplification.
Finally, a * 92 bp band of small RNA library was purified from the gel. The library
was validated on an Agilent 2100 Bioanalyzer using the DNA100 chip and quantified
using a Roche LightCycler 480. Ten picomoles were run per flow cell in an
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Illumina GAII sequencer using a v4 Cluster generation kit and a v5 sequencing kit for
36 cycles with Illumina Sequencing Primer Read 1 Mix.

2.3 Network Analysis

Given statistical correlation measurements for all miRNA pairs, network graphs can be
constructed where vertices represent miRNAs and edges connect miRNAs that have a
strong positive or negative correlation (that exceeds some threshold). Remondini et al.
2007, analyzed such network graphs that represent strongly correlated expression time
series for microarray gene expression data. In particular, they considered vertices that
have a high ratio of betweenness centrality, b, to connectivity degree, k. The
betweenness centrality of a vertex V is the number of shortest-paths between pairs of
vertices U and W (other than V) that traverse V. The connectivity degree of a vertex V
is the number of edges incident on the vertex. In the case of miRNA expression,
vertices with a high value of b/k may represent miRNAs operating early in an
expression cascade.

3 Results

3.1 Correlated Expression of miRNAs During hESC Differentiation

After measuring pairwise correlations between the 694 miRNAs that were expressed
over all 10 days, we obtained the distribution of correlation coefficients. Generating
artificial time series from the distribution of log expression values in our data, 20,000
random time series were obtained. We determined that absolute correlation values
above 0.98 and 0.99 corresponded to α-values of 0.05 and 0.01, respectively, thus
establishing useful significance levels for our real data. Selected miRNAs associated
with pluripotency/differentiation and development/growth dominated the list of the top
20 miRNAs that change during early differentiation (Table 1). Most of the changes
were correlated within specific miRNA clusters. For example, expression of the
miRNAs in the miR-371/372/373 cluster were highly correlated, as were miR-302a,
miR-302c, and miR-302d (data not shown). Interestingly, miR-302b and miR-367
expression profiles did not correlate strongly with other miRNAs in their cluster,
suggesting that expression even within a specific miRNA cluster can be differentially
regulated. With the exception of miR-103a-3p, the expression profiles of selected
miRNAs associated with pluripotency/differentiation or development/growth did not
correlate strongly with those of other miRNAs. The miR-103a-3p expression profile
correlated strongly with those of 13 different miRNAs (miR-30e-5p, miR-148b-3p,
miR-151a-5p, miR-151a-3p, miR-181c-5p, miR-181d, miR-197-3p, miR-301a-3p,
miR-338-3p, miR-342-3p, miR-429, miR-574-3p, and miR-769-5p) (Fig. 1). The
profile of expression follows the pattern of low, but sustained expression during DE
formation, followed by a rapid increase in miRNA expression during cell expansion,
another plateau as cells adjust to a change in media containing retinoic acid, cyclop-
anine, and noggin, and finally a second burst of miRNA expression as these growth
factors are removed.
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Fig. 1. Correlation of miR-103a-3p expression profile with selected miRNAs. Thirteen different
non-clustered miRNAs have coordinated expression with miR-103a during the 11 day
differentiation from pluripotency to pancreatic precursor cell. Each miRNA has an absolute
correlation value above 0.99 which corresponds to an α-value of 0.01. This is one example of a
single pattern of correlated miRNA expression during differentiation. Many others were observed
(data not shown).
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3.2 Global Network Analysis

Given correlation measurements for all miRNA pairs, we constructed a network graph
where vertices represented miRNAs and edges connected miRNAs that had a strong
positive or negative correlation (that exceeds some threshold). Using this approach, we
found six miRNAs to have relatively large b/k values, based upon a network graph
where the absolute value of correlation must exceed 0.98. These miRNAs include
hsa-miR-130a-3p; a miRNA whose expression dramatically changes during early dif-
ferentiation. Figure 2 graphically demonstrates the relationship between miR-130a-3p
and the other miRNAs whose expression changes during the 10 day differentiation
period.

3.3 Effect of Gö6976 on miRNA Expression During DE Formation

Cells treated with Gö6976 for only days one, two, and three of the ten day differen-
tiation protocol lost all pluripotency markers, but did not express markers of pancreatic
endoderm. Results were confirmed by both Western blotting and immunofluorescence
(data not shown). Additionally, PCR arrays and Western blotting found that stress
signaling pathways and gene expression were elevated further in Gö6976-treated
hESCs. Gö6976-treated hESCs undergo massive apoptosis, losing up to 70 % of the

Fig. 2. Network graph of miR-130a-3p expression profile with selected miRNAs. Network
analysis allows for the exploration of the relationships between miRNAs during hESC
differentiation. miRNAs whose expression changes are related to miR-130a-3p are shown in
black, then levels of coordinated expression in decreasing order are shown in red, green, blue,
teal, pink, grey, and yellow (Colour figure online).
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plated cells, compared with the *10 % of cells lost to apoptosis in untreated cells.
Within 5 days, proliferation increases and the cells recover. However, after recovery,
Gö6976-treated cells appear dramatically different from untreated cells under the
microscope. NGS sequencing of miRNAs from Gö6976-treated cells after 4 days
revealed a dramatic change in miRNA expression. Table 1 shows the top 20 miRNAs
expressed in RPM (reads per million) in hESC after differentiation to DE. Consistent
with our previously published work, a number of miRNAs we have identified as critical
for DE formation are present. Upon treatment with Gö6976, expression of these
miRNAs drop (column 1 vs. column 2). This is not due to a general blocking of
miRNA expression by treatment with Gö6976, because other miRNAs increased sig-
nificantly (column 3 vs. column 4). The decrease in expression of various miRNAs was
confirmed by TaqMan analysis (not shown). Decreased hESC plating density at the
initiation of differentiation recapitulates the effect of Gö6976 treatment.

We next wanted to determine whether changes in cellular architecture observed
upon Gö6976 treatment were a result of the drug or the apoptosis. Results from
RT-PCR experiments found that decreased cell plating density yielded results identical
to Gö6976 treatment (Fig. 3). Cells lost the ability to become pancreatic lineage (no
expression of PDX1 and FoxA2), while expression of the mesendoderm marker
Brachyury increased, indicating cells shift into non-directed differentiation.

Table 1. Changes in miRNA expression in the presence of Gö6976. The miRNAs listed on the
left were upregulated during DE formation in CyT49 cells at Day 4 (Av. RPM φ; shaded green).
Upon addition of Gö6976, expression of these miRNAs drops (Av. RPM + Gö6976; shaded red).
The miRNAs listed on the right were upregulated in cells treated with Gö6976. (The last column
on the right shows expression in untreated cells.)
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4 Discussion

Overall, correlated miRNA expression profile analysis revealed two distinct and
unexpected trends. Firstly, not all mature miRNAs within a miRNA cluster originating
from the same locus and likely subjected to the same transcriptional regulation followed
the same expression profile. Of the many clusters examined, including the
miR-371/372/373 and the miR-520 cluster, many had intra-cluster correlated expression
profiles. However, some clusters such as the miR-302/367 cluster had selected miRNAs
whose expression profiles were not correlated and varied 100-fold between specific
miRNAs (data not shown). This suggests differential regulation of expression, pro-
cessing, and/or degradation. Secondly, multiple seemingly unrelated miRNAs have
nearly identical expression profiles. This is exemplified by miR-103a, whose expression
correlates strongly with 13 other miRNAs (Fig. 1). While there is a possibility that some
of the expression profiles match by chance, it is unlikely that all do. While miR-103a
was the only miRNA within the limited selection of pluripotency/differentiation and
development/growth cohort we examined in detail to correlate strongly with other
miRNA, it was far from the only one. Additionally, we observed anti-correlation of
selected miRNA expression, suggesting that under certain circumstances, miRNAs
might suppress expression of other miRNAs (data not shown). Coordinated regulation
of miRNA expression has not been well documented, but our results indicate that this
might be a mechanism by which expression of multiple proteins required to shift cell
fate can be simultaneously down-regulated. Network analysis of miRNAs (Fig. 2)
supports this hypothesis.

Fig. 3. Plating hESC at decreasing densities alters attenuates expression of pancreatic markers
and increases expression of the mesendoderm marker Brachyury. Cyt49 cells from the same
passage were plated at decreasing densities. As density was decreased, the cell stress increased,
and expression of pancreatic markers PDX1 and FoxA2 decreased. During these differentiations,
expression of Brachyury, a mesendoderm marker increased significantly.
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In an attempt to explore how signal transduction regulates cell fate decisions, the
protein kinase C inhibitor Gö6976 was incubated with hESC during DE formation. The
net result was decreased expression of pluripotency markers coupled with increased
apoptosis. After Gö6976 treatment, no pancreatic precursor cells were formed as
measures by expression of FoxA2 and PDX1. Exploring the early stages of differen-
tiation, we found that plating cells at lower density also prevented formation of pan-
creatic precursors, suggesting that the massive apoptosis associated with Gö6976
treatment helped direct cell fate. Both lower density plating and Gö6976 treatment were
found to increase cell stress as measured by increased expression of stress-related genes
and kinases. In addition, Gö6976 treated cells had dramatically altered expression of
miRNAs. We hypothesize that stress related acutely to apoptosis, but ultimately to cell
density result in misregualtion of miRNA expression which alters cell fate (Fig. 4).
Additional work regarding the nature of stress, the means through which this infor-
mation is conveyed in the cell, and the resulting cellular development is required.
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Abstract. Motifs are small gene interaction networks that frequently
occur within larger genetic regulatory networks (GRNs). However, it is
unclear what evolutionary and developmental advantages motifs provide
that have led to this enrichment. This study seeks to understand how
motifs within developmental GRNs influence the complexity of multicel-
lular patterns that emerge from the dynamics of the regulatory networks.
A computational study was performed by creating Boolean intracellular
networks with varying inserted motifs within a simulated epithelial field
of embryonic cells. Each cell contains the same network and communi-
cates with adjacent cells using contact-mediated signaling. Comparison
of random networks to those with motifs demonstrated that: (1) Bistable
switches that encode mutual inhibition simplify both the pattern and
network dynamics. (2) All other motifs with feedback loops increase
information complexity of the multicellular patterns while simplifying
the network dynamics. (3) Negative feedback loops affect the dynam-
ics complexity more significantly than positive feedback loops. (4) Feed
forward motifs without feedback have little effect on the complexity of
patterns formed.

Keywords: Network motifs · Kolmogorov complexity · Pattern forma-
tion · Genetic regulatory networks

1 Introduction

Multicellular organisms contain a large variety of cellular patterns. For instance,
Fig. 1 illustrates a Drosophila melanogaster embryo in which muscle and ner-
vous system structures interconnect through sensory and activation signaling.
These patterns are formed during development and are a consequence of genetic
regulatory networks (GRNs) that operate within cells and that respond to com-
munication between cells [1–3]. GRN’s are networks of interacting genes where
the expression or non-expression of genes determines the expression state of other
genes. The dynamics of GRNs determine the gene expression profile for each cell
leading to spatial patterns of cellular differentiation. This process is repeated to
implement an organism’s body plan, and subsequence morphology [4].

c© Springer International Publishing Switzerland 2015
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GRNs contain subnetworks of genes referred to as motifs [5,6]. Motifs are
detected at a higher frequency than would be expected in random networks.
Computational biologists have hypothesized that motifs play a determinative
role in cell function [7,8]. However, their influence on pattern formation during
development is poorly understood. This work presents a computational study
aimed at understanding how the presence of motifs within intracellular networks
changes the GRN dynamics and the emergent multicellular patterns.

In particular, this study measures the complexity of the organization of the
dynamics and patterns. As can be seen in Fig. 1, patterns can involve complex
arrangements of specialized regions and interconnections that develop later, or
earlier patterns such as simple segmentation [9] or mosaics arrangements [10,11].
To quantify the level of organization we employ Kolmogorov complexity, also
known as algorithmic complexity [12]. Such methods measures the information
contained within an object, such as a cellular pattern, by considering the size of
the algorithm needed to generate the object, hence the term algorithmic com-
plexity. The smaller the algorithm, the simpler the pattern. The calculations of
Kolmogorov complexity is detailed in the methods section following.

To understand how GRNs regulate biological events, scientists have developed
mathematical and computational models to generate predictions and explain
experimental observations. Among these modeling approaches is to represent a
GRN as a Boolean network in which the activity of a gene is either on or off, deter-
mined by a set of logical functions over the activity of other genes [13]. It is this
modeling framework that we apply in this study.

Fig. 1. Ventral view of stage 16 Drosophila melanogaster embryo immunostained for
tropomyosin (green; a protein expressed in muscle), Pax 3/7 (blue; a regulatory protein
expressed in central nervous system nuclei and ectoderm), and HRP (red; neurons). All
nuclei shown in gray (DAPI). Courtesy of Julieta Maŕıa Acevedo and Lucas Leclere,
Marine Biological Laboratory, Woods Hole, www.mbl.edu/dev.biologists.org/(Color
figure online).

To evaluate the influence of motifs on network dynamics and patterns, we
design GRNs that are embedded into cells arranged in a 2D grid, simulating an
epithelium. Such abstractions of the epithelium have been employed successfully
in many developmental systems, such as the cellularized Drosophila embryo [9],
and the sensory epithelia of the developing vertebrate retina [14] and the inner

www.mbl.edu/dev.biologists.org/
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ear [10]. Each cell contains an identical Boolean network, referred to as a com-
plete network. We explore the influence of the best-understood motifs on network
dynamics and multicellular patterns by inserting them into randomly generated
Boolean networks.

2 Motifs Within Gene Regulatory Networks

It is believed that motifs increase the modularity of gene regulatory networks by
performing relatively independent tasks [15,16] such as decision making, signal
processing and communication. The modular organization of biological structure
is supported by experimental studies from pathogen structure, gene networks,
and protein-protein interaction networks [17]. For example, Kim et al. [15] stud-
ied the connected subset of protein networks in protein-protein interaction data
for budding yeast. Their analysis suggests that the yeast protein network is
significantly modular, and it contains various motifs.

Motifs are defined as a set of interconnected genes that produce a distinct func-
tion, regardless of whether they are structurally isolated within a network. Motifs
frequently occur and consist of few interacting genes [8]. Motifs were first noted
in Escherichia coli, where they were detected at a higher frequency than would be
expected in random networks. Since then multiple motifs have been identified in
bacteria and yeast [20], the immune system [21], and Drosophila [15]. This finding

Fig. 2. (a) A positive feedback loop (a double inhibitory loop with two positive autoreg-
ulatory loops). (b) A positive feedback loop (a double excitatory loop with two positive
autoregulatory loops). (c) A negative feedback loop [18] with two positive autoregula-
tory loops. (d) Coupled positive-positive feedback loops. (e) Coupled positive-negative
feedback loops. (f) The type-1 coherent feed-forward loop [19].
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suggests that motifs are building blocks of transcription networks and that they
may have evolved to achieve specific regulatory behaviours in cellular transcrip-
tion networks [18]. Regulatory motifs have be found in regulatory networks that
perform two distinct functions: (1) Developmental networks that guide differenti-
ation and cell fate determination by transducing signals into irreversible cell-fate
decisions [22,23]; and (2) Sensory networks that respond to signals such as stresses
and nutrients rapidly and make reversible decisions [5].

The motifs that are associated with developmental networks are commonly
comprised of feedback loops. Positive-feedback loops are most common and
are made up of two transcription factors that regulate each other. There are
two kinds of positive-feedback loops, a double excitatory loop (Fig. 2(b)) and a
double-inhibitory loop (Fig. 2(a)). The regulatory dynamics of these gene pairs
coupled by positive feedback loops often results in two or more steady states
and is referred to as multistability [18]. Positive feedback loops amplify sig-
nals and elongate the time required to reach a steady state, referred to as a
network attractor [20]. This slowed response can be helpful when a cell makes
significant decisions such as irreversible cell specification and apoptosis. Unlike
positive feedback loops, negative feedback loops (Fig. 2(c)) often enhance attrac-
tor stability. They also function as noise filters and make cells more robust to
signal noises. Also, positive and negative feedback loops are coupled into struc-
tures containing two feedback loops, such as positive-positive, positive-negative
and negative-negative feedback loops (Fig. 2(d and e)). Coupled feedback loops
perform functions that single feedback loops cannot. In particular, Kim et al.
[18] found that a positive-positive feedback loop enhances signal amplification
and bistability, and a positive-negative feedback loop increases reliable decision-
making by modulating signal responses and effectively dealing with noise.

Feed-forward loops (FFL) are another family of motifs that do not contain
feedback and are associated with sensory networks. FFL are found in a variety
of organisms such as Saccharomyces cerevisiae, Bacillus subtilis, Caenorhabditis
Elegans and humans [19]. FFLs consists of a three genes (Fig. 2(f)). The first
regulatory gene controls the second and the third genes. The third gene is also
regulated by the second gene. Logical gates such AND or OR could be applied
to the three regulatory interactions in the FFL. The best known FFL which
frequently occurs in (E. coli and yeast), is the coherent type-1 FFL [24] with all
AND gates.

3 Multicellular Model and Implementation

The size of gene networks for multicellular pattern formation drove the deci-
sion to use Boolean networks as the framework for this computational study.
A Boolean network is a simplified model of a genetic regulatory network. In this
application, each gene is represented as a network node that takes binary values
(1 for expressed and 0 for not expressed). The state of a gene (0 or 1) is deter-
mined by its Boolean function defined as the expressions of AND, OR, NOT on
the inputs from other genes. These inputs are represented as directed edges in
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Fig. 3. Motif insertion. Example motif insertion into a random GRN. Dashed arrows
represent random outgoing signals from the motif. Outgoing and incoming signals from
and to the random GRN are randomly connected to genes within the random network.

the network graph. Boolean networks provide a qualitative description of gene
states and their interactions, first introduced by Kauffman [13,25].

This work extends our previous study [3] that studied the role of different
dynamical regimes (ordered, critical or chaotic) the complexity of multicellular
pattern formation. For this study, all networks were created in the critical domain
and then motifs were inserted (Fig. 3). The simulation model was unchanged
along with the epithelial model as a lattice of cells, with each cell holding a
complete Boolean network. Cell-cell signaling was implemented in the model as
an edge connecting the state of one gene in a cell to an input of a Boolean function
of one or more of its neighbors. Such genes are called communicating genes. The
number of communicating genes is referred to as the signaling bandwidth.

Signaling bandwidth was set to half of the total number of genes in a cell as
our previous study showed that this configuration established the most efficient
cell-cell signaling. We employed directional signaling between adjacent cells were
cells connect to their north-south and/or east-west neighbors. These directions
corresponded to the anterior-posterior and dorsal-ventral embryonic axis [3].

The state of each cellular GRN is initialized randomly by setting the state of
each gene to 0 or 1. Randomly generated logic functions are assigned to networks
as the transition rules used to determine the state of genes [3]. The state of the
system during simulation is clocked synchronously until a steady or cyclic state
(in up to 300 repeats) is reached for all individual cells. When the state of genes
change in a repetitive cycle or reach a fixed state, then cell are in attractor
state [13]. Since cells are connected through directional signaling, neighboring
cells may converge to different attractors, forming a regular pattern, where cells
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in the same attractor have differentiated into the same cell types. The state of
all the genes as the networks along with multicellular patterns are recorded for
analysis of information content.

After running the randomly-generated GRNs, single and coupled feedback
and feedforward loops are inserted into the randomly generated intra-cellular
GRN Fig. 3). The network is run again with the inserted motifs to identify
the attractors and visualize the multicellular patterns that are formed. The
Kolmogorov complexity of both the gene network dynamics and multicellular
patterns is computed by an information theoretic measure called Set Complex-
ity described below.

4 Methodology

4.1 Information Complexity

Set Complexity [26] is an information complexity metric derived from Kol-
mogorov’s original work on algorithmic complexity. In this seminal paper by
Galis et al., the method was developed explicitly to measure the information
contained in sets of biological data at different scales: the molecular, sequence
and network. Recently, Set Complexity has been applied to study modularity in
biological networks [27] and large-scale genetic interaction networks [28]. In this
work, we extend the approach to the analysis of multicellular patterns and the
network dynamics that create them.

Kolmogorov complexity of an object is the size of the shortest program that
can produce that object. The exact calculation is undecidable and, therefore,
cannot be computed as defined. As an approximation, the compression size of
an object is used. Kolmogorov analysis defines the similarity of two objects as
the size of the shortest program that can translate one object to the other. This
measure is approximated by the Normalized Compression Distance (NCD) [29],
where the NCD of two objects is 0.0 if they are identical and 1.0 if they are
random. Set Complexity combines the analysis of single objects and pairwise
objects to arrive at a complexity measure of a set of objects, given in Eq. 1.
By employing NCD as a metric to evaluate the similarity of all pairs of objects
in a set, set complexity discounts the influence of the pairs of objects that are
randomly related or redundant. As long as any object can be encoded as a string,
Set Complexity can compute the information content that resides in the set.

Set Complexity of a set of n strings S = {s1, . . . , sn} is defined:

Ψ(S) =
1

n(n − 1)

∑

si∈S

C(si)
∑

sj �=si

NCD(si, sj)(1 − NCD(si, sj)) (1)

where C(si) is the compression size of string si. The term NCD(si, sj)
(1 − NCD(si, sj)) is maximized when NCD(si, sj) = 0.5, which occurs when
C(si + sj) � C(si)/2 − C(sj), assuming C(si) > C(sj). The influence of simi-
lar and dissimilar strings is discounted by NCD(si, sj)(1 − NCD(si, sj)) because
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NCD(si, sj) will be near 1.0 or 0.0. In this implementation, bZip is used as a
compression algorithm.

A one-to-one mapping is required to encode an object into a string so that
no information is lost. The method by which each GRN, its temporal dynamics,
and the spatial pattern produced are encoded as a string is described in [3].

5 Results

In this section, we explore the effect of insertion of the best-known motifs illus-
trated in Fig. 2 into randomly generated coupled GRNs. For each motif, 600
random networks were generated and then each network was modified by the
insertion of that regulatory motif. To obtain the data for analysis, each network
was executed from initial random conditions and the dynamics and resulting
pattern recorded. Following this step, the network data is grouped into sets of
10 and the set complexity computed for the networks, the dynamics, and the
pattern.

Figure 4 shows the influence of insertion of a positive feedback loop (Fig. 2(b))
into a random GRN. The vertical axis of both graphs is the pattern complexity;
on the left shows the relationship with dynamics complexity, on the right shows
the relationship with network complexity. Each point on the graph corresponds
to a set of 10 runs described above.

Insertion of a double positive feedback loop into random GRNs clearly mod-
ifies the behavior of the network. The addition of the motif increases pattern
complexity significantly while slightly reducing the complexity of the dynamics
(Fig. 4 left). Little effect on network complexity is observed (Fig. 4 right).

Figure 5 illustrates the average network, network dynamics and pattern com-
plexity for 60 network sets for each of the motifs. The influence of each motif
is represented as an arrow. The start of the arrow is the set of random net-
works and is the same for all motifs. The arrowhead is the average complexity
of the set of all networks with the indicated motif inserted. The insertion of a

Fig. 4. Effect of insertion of a double positive feedback loop on network, network
dynamics and pattern complexity.
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Fig. 5. (a) Effects on network dynamics and pattern complexity of inserting regulatory
motifs into random GRNs. Average dynamics and pattern complexity for 60 random
sets of GRNs (arrow tails) and 60 sets of GRNs with the indicated inserted motifs
(arrow heads). (b) Effects on network and pattern complexity of inserting regulatory
motifs into random GRNs.

negative feedback loop, a double negative feedback loop or a double positive
feedback loop all have the same qualitative effect of decreasing network dynam-
ics complexity and increasing pattern complexity. However, a double positive
loop increases pattern complexity much more than either of the negative feed-
back loops (Fig. 5(a)). Insertion of feed-forward motifs decreases dynamics with
almost no effect on the pattern complexity. Only the double negative motif leads
to a reduction in pattern complexity. Statistical analysis confirms that insertion
of these motifs makes a significant change in the average network dynamics and
patterns complexity.

6 Discussion

In this study, we explored the role of common regulatory motifs in network
structure, network dynamics and pattern complexity. These motifs frequently
appear in biological networks and are thought to play critical roles in overall
network function. Although the significance of these motifs have been shown
in multiple studies, there is a lack of computational analysis to explore how
and to what degree biological network dynamics and the resulting multicellular
patterns are influenced by network motifs. The results show that network motifs
that are associated with feedback loops increase the information complexity of
the multicellular patterns. Another important observation was negative feedback
loops do not affect the dynamics complexity significantly as positive feedback
loops do.

We hypothesise that variation in dynamics complexity associated with adding
different types of motifs to random GRNs originates from the time it takes
for the GRN to reach a steady state and the proportion of single state versus
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cyclic attractors produced by the GRN. Since the motifs studied here act as
multistable switches, they simplify the complex cyclic attractors to attractors
with a few states. Gene expression in feedback loops reach a steady state quickly,
and so reduce the length and complexity of cyclic attractors. We hypothesize that
this is why in all cases dynamics complexity decreases from that of the original
random networks. The rate of dynamics complexity reduction associated with the
addition of the motifs with negative feedback loops is significantly lower than
for positive loops. Unlike positive feedback loops, negative feedback loops do
not increase the time to reach steady states [18]. Therefore, they don’t effect the
dynamics complexity noticeably. As results show, negative feedback loop motifs
(such as single negative feedback loop and coupled positive-negative loops) have
the lowest reduction in their dynamics complexity.

All the motifs with feedback loops impact the pattern complexity. In fact,
the only motifs in this study that has no effect on pattern complexity are feed-
forward loops. This observation confirms the association of feedback loop motifs
with developmental networks that mediate important cell fate decision. The
increase in information complexity of the multicellular patterns shows more pre-
dictable cell-fate decisions have been taken. Only double negative motifs decrease
the complexity of the patterns formed. We hypothesize that this is due to the
bistable behavior of these motifs, where they rapidly converge to one state or
another producing few distinct non-cyclic attractors.

Overall, we find that all motifs with feedback decrease the complexity of the
dynamics. By decreasing the complexity of the dynamics, these motifs could
increase the robustness in pattern formation in the presence of noise as shown
in [8]. Feedback motifs tend to increase pattern complexity while decreasing
dynamics complexity. This implies that these motifs increase the “efficiency” of
pattern formation where simpler dynamics leads to more complex patterns. Such
an increase in efficiency may be one of the principle reasons that feedback motifs
are enriched within developmental networks.
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Abstract. The behavioural diversity of chaotic oscillator can be con-
trolled into periodic dynamics and used to model locomotion using cen-
tral pattern generators. This paper shows how controlled chaotic oscil-
lators may improve the adaptation of the robot locomotion behaviour
to terrain uncertainties when compared to nonlinear harmonic oscilla-
tors. This is quantitatively assesses by the stability, changes of direction
and steadiness of the robotic movements. Our results show that the con-
trolled Wu oscillator promotes the emergence of adaptive locomotion
when deterministic sensory feedback is used. They also suggest that the
chaotic nature of chaos controlled oscillators increases the expressiveness
of pattern generators to explore new locomotion gaits.

1 Introduction

Living organisms use distinctive locomotive abilities to interact adaptively with
their environment. Central Pattern Generators (CPGs) are a popular approach
inspired by the networks of neurons in spinal cords of vertebrates and inver-
tebrate thoracic ganglia to develop accurate neuro-mechanical representations
of locomotive behaviours in legged robots. Whilst traditional CPGs are often
dynamically represented by coupled of harmonic oscillators [1,2], recent studies
envisage CPGs as a collection of coupled chaotic oscillators [4,5] which mutually
self-regulate according to environmental fluctuations and local influences.

Although the consideration of sensory information is not essential in the
generation of synchronous pattern of motion, it increases the adaptability and
robustness of control system in unsteady real environments. Orchestrating envi-
ronmental signals to achieve efficient locomotion is a difficult task, specially when
these signals come from potentially noise sources (i.e. robotic sensors). However,
this is a task at which signalling networks are evidently good at solving in a
biological contexts. We collectively refer to computational analogies of cellular
signalling networks as Artificial Signalling Networks (ASNs) [8,9].
c© Springer International Publishing Switzerland 2015
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In this article, we explore whether adaptability in multi-legged robots can be
reinforced by the structural and dynamical properties of chaotic oscillators when
compared to harmonic oscillators. Particularly, we aim to investigate whether
the use of chaos controlled oscillators offer more flexibility in the generation of
effective patterns of coordination with adequate sensory feedback loops. To do
so, a two-layered architecture is used to map environmental signals into adap-
tive locomotive trajectories. The upper layer consists of a collection of intercon-
nected ASNs. It receives real-time positional information and produces a set of
environmental-based control directives, which collectively alter in a determinis-
tic manner the dynamics of a CPG composed of either Hopf or controlled Wu
oscillators in the bottom layer. Both oscillators exhibit a stable limit circle, but
otherwise they lie at opposite ends of the dynamical spectrum: the former is a
single steady state system and the latter shows ordered and chaotic behaviours
depending on its governing parameters. We use an evolutionary algorithm to
optimise computational analogies of signalling networks that, when stimulated
with sensory feedback, tune the CPG’s oscillatory trajectories appropriately.
A simulated version of the T-Hex robot is used to evaluate the performance of
both oscillators in a challenging environment.

The rest of the article is organised as follows: Sect. 2 introduces the oscilla-
tors addressed in this article, Sect. 3 describes the CPGs, Sect. 5 describes our
methodology, Sect. 4 presents signalling networks, Sect. 6 presents results and [8]
Sect. 7 concludes.

2 Central Pattern Generators

Central Pattern Generators (CPGs) are a common way of modelling and gen-
erating locomotive gaits. Whilst they are often implemented using biologically-
motivated models such as feedforward neural networks [13] and artificial biochem-
ical networks [12], they can also be considered as systems of coupled nonlinear
oscillators. This kind of CPG favours distributed control approaches, leg synchro-
nisation and the modulation of locomotion by simple control signals. Its simple
structure also eases the integration of sensory information when CPGs made of
coupled nonlinear oscillators are applied to the control of robotic locomotion.

2.1 Hopf Oscillator

The Hopf oscillator (see Fig. 1) is a single steady state dynamical system that
exhibits harmonic oscillation [14]. It is defined by the following two differential
equations:

ẏ = α(μ − r2)y − ωz ż = β(μ − r2)z − ωy (1)

where (y, z) ∈ R
2 are the state variables, r =

√
y2 + z2, A =

√
μ is the oscillation

amplitude, ω is the oscillation frequency and α and β are positive constants that
determine its convergence rate to the limit circle. From our perspective, the Hopf
oscillator has three prominent benefits. First, it is able to generate smooth, stable
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Fig. 1. Outputs of the Hopf oscillator with μ = 1, ω = 2, α = 5 and β = 50 and a
phase portrait of its stable limit circle attractor.

and cyclic trajectories in the presence of small perturbations. Second, its output
can be exclusively modulated by changing its frequency ω and amplitude μ,
whilst preserving the other parameters. This separation eases its optimisation
by evolutionary algorithms [15]. Third, it eases the development of coupling
terms in an analytical way.

2.2 Wu Oscillator

The Wu oscillator (see Fig. 2(a, b)) is a four-dimensional autonomous dynamical
system able to exhibit a large variety of dynamical states [16]. It is defined by
the following set of differential equations:

ẋ = a(y − x) + eyz − kw ẏ = cx − dy − xz (2)
ż = xy − bz ẇ = ry + fyz (3)

where (x, y, z, w) ∈ R
4 and a, b, c, d, e, f , k and r are all real constants. This

oscillator is adopted for several reasons. Its four nonlinear terms help to rapidly
propagate small alterations across its variables and, when coupled, through-
out neighbouring oscillators. The Wu oscillator is also able to self-regulate and
self-sustain its internal dynamics by adjusting its amplitude and frequency in
response to external signals. When coupled, the system’s overall state can only
be deduced from the interactions amongst individual oscillators.

Trajectory Stabilisation. Individual chaotic trajectories of the Wu oscilla-
tor are stabilised using the Rate Control of Chaos (RCC) method [17]. Unlike
other chaos control strategies, the RRC method does not require any a priori
knowledge about the presence of unstable periodic trajectories in a chaotic sys-
tem. This approach relies on the expansion rate of an oscillator away from its
trajectory to apply a small scale into its governing variables proportion to the
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Fig. 2. Outputs of the Wu and controlled Wu oscillators. In both cases, the state
parameters are a = 56, b = 16, c = 49, d = 9, k = 8, e = 30, f = 40 and r = −1943.
Using this configuration the Wu oscillator exhibits an aperiodic chaotic behaviour (a)
with all its trajectories converging to a toroid attractor (b). When the RCC method
is active at t = 0.8 × 104 (vertical dotted line), the oscillator’s unstable and aperiodic
trajectories (c) become harmonic with constant frequency and amplitude after an initial
transient time (wandering period). (d) illustrates the stable limit circle attractor of the
controlled Wu oscillator.

divergence rate. Thus, it is possible to reduce the chaotic nature of the oscil-
lator but preserving its chaotic properties. The extend of the perturbation can
be calculated by determining the current proportion the variable occupies in its
space. Within a robotic locomotion context, this also allows the modulation of
the state of the robot based uniquely on the CPG’s local influences and sensory
feedback without any explicit knowledge of the robot’s surrounding environment.
The equations of the chaos controlled Wu oscillator are as follows:

ẋ = a(y − x) + eσxyz − kw ẏ = cx − dy − σyxz (4)
ż = σzxy − bz ẇ = ry + fσwyz (5)
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where σx, σy, σz and σw are the rate control functions and regulate the diver-
gence rate between the variables in each of the nonlinear terms1. The controlled
Wu oscillator is shown in Figures (see Fig. 2(c, d)).

3 Interlimb Coordination

3.1 Hopf Oscillator

Interlimb coordination amongst Hopf oscillators is achieved by coupling them in
a non-diffusive manner. It is non-diffusive in the sense that the influence amongst
oscillator is constant over time. Contralateral and lateral adjacent oscillators are
coupled through the ż variable as follows:

ż = β(μ − r2i )zi − ωixi +
∑

kij(zi + λijzj) (6)

where i, j = 1 . . . 6 are the oscillator indices, kij is the diffusive coupling and
λij is the coupling coefficient and establishes the phase relationships amongst
coupled oscillators. The value of λ is set to 1 if the oscillators excite each other
and to -1 if the oscillators inhibit each other. We chose a coupling such that
the tripod gait is stable. Figure 3(a) illustrates the coupled trajectories of the
Hopf CPG.

Fig. 3. Coupled y (upper plot) and z (bottom plot) trajectories of two CPGs composed
of six Hopf and controlled Wu oscillators. For the Hopf CPG, trajectories are obtained
for kij = 1. For the Wu CPG, trajectories are obtained using σ = 0.0118, τ12 = 1.0,
τ13 = 1.8, τ24, τ34 = τ35 = 1.1, and τ56 = 1.8. We exploit the fact that τij = τji.
Although Wu CPG trajectories are not completely synchronised, their minimal phase
difference does not affect the performance of the control system and allows preserving
stable forward locomotion.

1 Refer to [17] for additional insight about controlling unstable trajectories using the
RRC method.
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3.2 Chaos Controlled Wu Oscillator

Chaos controlled Wu oscillators are coupled in a non-diffusive manner with time
delay feedback. Contralateral and lateral adjacent oscillators are coupled through
the ẋ variable as follows:

ẋi = a(yi − xi) + eσ(yi, zi)yizi − kwi +
∑

τij(xj(t − σ) − xi) (7)

where i, j = 1 . . . 6 are the oscillator indices, σ is the time delay and τij is
the coupling coefficient and defines the effect of the ith on the jth oscillator
thereby establishing their phase relationship. The y and z trajectories of the
controlled Wu oscillators are chosen to describe the motion of each leg because
they increase stability when the robot moves on a flat surface. The coupling
amongst trajectories also matches the tripod gait. Figure 3(b) illustrates the
coupled trajectories of the Wu CPG.

4 Coupled Artificial Signalling Network

An Artificial signalling Network (ASN) is an enzyme-mediated abstraction of
a cellular signalling process. Cellular signalling is the biological mechanism by
which cells interact with other cells and their environment [7]. Broadly speaking,
cellular signalling is a chain of events that, triggered by an extracellular signal,
induces an adaptive cellular response. It begins with the binding of certain mes-
sengers and their later diffusion inside the cell. Such messengers then spread
across the cell using signalling pathways until they reach the nucleus where they
regulate gene expression and lead to the process by which a change in the cellular
activity can be achieved.

Formally, an ASN is an indexed set of enzyme-analogous elements E and a
set of continuous-valued biochemical reactions. Each ei ∈ E has a set of sub-
strates si, a product concentration pi and a regulatory function fi. Substrate
concentrations are mapped to product concentrations using the probabilistic
Michaelis-Menten function which was previously shown to lead to the best per-
formances when evolving ASNs capable of controlling trajectories in a prescribed
manner [10]. The execution of the ASN starts with the random initialisation of
the concentrations (si and pi). External inputs are delivered to the network
by the substrate concentration of nominated enzymes. At each time step, each
enzyme ei applies its regulatory function fi to the current concentration of its
substrates si to determine the new concentration of its product pi. After iterat-
ing the network a specific number of times tS , the outputs are extracted from
the final product concentration of designated enzymes.

Biological responses to sensory information are often the result of the inter-
action of multiple pathways. Motivated by this observation, a number of authors
have investigated the coupling of computational architectures based on models
of interacting biochemical networks [11,12]. This article focuses on the inter-
action amongst signalling pathways since this is the principal process through
which biological organisms handle environmental information. One of the main
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Fig. 4. Overview of the locomotive control system and coupling topology. Sensory feed-
back is delivered to an upper layer composed of six interconnected signalling networks,
one per leg. Coupled networks comprise 10 enzyme-analogous elements. Gait trajecto-
ries are generated in the bottom layer, which contains a pattern generator made of six
nonlinear oscillators. This layer, whose connectivity mirrors the upper layer, receives
control directives that modulate the oscillatory trajectories, also one per leg. Finally,
these are transformed into actuator positions.

mechanisms that allows the exchange of information between interconnected sig-
nalling networks is crosstalk. In [8], we introduced a simple model of crosstalk
within a connectionist architecture called a Coupled Artificial Signalling Net-
work (CASN). Mimicking the structure of a signalling network, different types
of external inputs are delivered to different sub-networks. These sub-networks
(which are comparable to ASNs) do not have explicit interconnections, but they
do contain crosstalk nodes which permit the exchange of information using a
simple regulatory function. In this article, CASNs are optimised using evolu-
tionary algorithms in order to transform sensory data into deterministic control
directives that when applied to the governing parameters of each oscillator in
the CPG alter its dynamics and elicit adaptive modifications in the locomotion
pattern. From a locomotive perspective, coupling adjacent ASNs also favours
the synchronisation of CASN-modulated oscillatory trajectories [8] (Fig. 4).

5 Controlling Legged Robot Locomotion

A simulated model (see Fig. 5) of the commercial T-Hex robot is used to evalu-
ate the expressiveness of the Hopf and the Wu CPGs. The T-Hex is a 24-DoF
hexapedal robot manufactured by Lynxmotion [18]. It has four joints per leg
connected by actuators at the corners. The robot initially walks using the tripod
gait, which is described by the moving of three legs simultaneously in each step.
Its limited adaptability on irregular surfaces is exploited to determine the capac-
ity of the CPGs to deliver reactive locomotion using local sensory feedback. The
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Fig. 5. Simulated T-Hex robot in open dynamics engine.

robot is simulated using the Open Dynamics (ODE) physics engine with a step
side of Δt = 0.01 s, friction of 200 N, CFM (an ODE parameter) of 10−5 and
standard gravity. Actuators have a maximum angular velocity of 4 ms−1 and
a maximum torque of 70 Nm. Their movements are limited in both the z-axis
plane for the coxa joint and the x-axis for the femur, tibia and tarsal joints, to
a maximum rotation of 90◦ and a minimum rotation of −90◦. These values are
sufficient to simulate the characteristics of the physical T-Hex [3,10]. The CASN
is executed every 20 simulation steps.

5.1 Gait Generation

The task is to evolve a CASN capable of generating control signals that when
applied to the oscillators’ governing parameters originate different outputs in
the CPG, i.e. patterns of coordination which would cause the robot to displace
away from its starting point. The aim is to measure qualitatively whether chaotic
properties of the controlled Wu oscillators are sufficient to generate adaptive pat-
terns of movement in response to deterministic sensory feedback when compared
with the harmonic Hopf oscillator. The movement of each leg is controlled. The
CASN consists of six individual ASN uniquely coupled to its adjacent ASN using
a fixed crosstalk rate of 0.5. Each ASN is immediately connected with its cor-
responding bottom-level oscillator, whose output dictates the gait trajectory its
matching leg. The controller fitness is the Euclidean distance minus the lateral
displacement walked by the robot within an evaluation period of 4000 simulation
steps. Both the Hopf and the Wu CPGs are randomly initialised and numeri-
cally integrated using the fifth-order Dormand-Prince method with step sizes of
ΔtH = 0.01 and ΔtW = 0.00001 respectively. The selected y and z trajectories
are scaled to a maximum height of 40mm and a maximum length of 30mm
respectively, and sampled with a rate of sr = π/4 (≈ 40tH and ≈ 380tW ). The
population size is 200, with a generation limit of 100.

The rotational readings along the three Cartesian axes of each leg with
respect to the centre of the robot represent the inputs of each ASN. They are
the easiest feedback that gives actual insight into the robot stability and ter-
rain features. Our objective is to calculate the rate of control needed to stabilise
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Fig. 6. Linear encoding of the CASN network used by the evolutionary algorithm, also
showing how individual ASN and enzymes are represented.

the robot whilst promoting the emergence of different patterns of movement.
Rotational values are matched to the [−π/3, π/3] interval, linearly scaled to the
concentration range of [0, 1], and delivered to the ASN through its substrate
concentrations. Values out of the rotation interval indicate that the robot has
fallen. For the Hopf CPG, each ASN has two outputs which match the ω and μ
Hopf parameters and modulate them in the intervals [0, 4] and [0, 8] respectively.
For the Wu CPG, each ASN has also two outputs which match the c and b Wu
constant and modulate them in the intervals [44, 54] and [11, 21] respectively. In
both cases, the outputs are in the range of [0, 1]. The behaviour of the Hopf and
controlled Wu pattern generators is evaluated on an uneven terrain consisting
of a starting zone for the robot and a randomly generated uneven terrain, which
comprises a mesh of 500 boxes with randomly chosen heights. Each box has a
side of 20 mm and incremental height between 20 mm and 45 mm. Values over
these thresholds prevent the robot from moving forwards.

5.2 Evolving Coupled Artificial Signalling Networks

CASNs are evolved using a standard generational evolutionary algorithm with
tournament selection (size = 4), uniform crossover (rate = 0.3), and point muta-
tion (rate = 0.05). Each individual in the population is encoded as an indexed
sequence of chromosomes, each of which represents an ASN (see Fig. 6). A multi-
chromosomal representation favours the evolution of problems with growing com-
plexity and increases modularity [19]. Signalling networks are encoded as a set
of 10 indexed genes followed by timing information. Crossover points lie between
gene boundaries and chromosome shuffling is not permitted. Inputs and outputs
(si and pi) are represented by their absolute indices. Mutation is restricted to
the set of operations in [20] to embrace biochemical plausibility in the evolu-
tion of enzymatic graphs. Chemical concentrations and function parameters are
represented using floating-point values and mutated using a Gaussian function
centred around the current value.
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6 Results

The results show that CASNs can be used to deliver reactive control directives
to CPGs with distinctive dynamics. While the robots actuated by the Hopf CPG
exhibits an average walked distance of 67 cm (s.d. 21 cm), the robots actuated
by the controlled Wu CPG exhibit an averaged walked distance of 58 cm (s.d.
12 cm). However, the performance of the Hopf CPG decreases drastically when
the robot steps over the uneven terrain. Figure 7 shows the trajectories of each
robot controlled during the evaluation time. Notably, the trajectories of the Hopf
GPG start diverging apart as the robot steps over the test area. The results is
that, in some runs, the robot laterally exits the uneven section of the terrain, giv-
ing rise to the furthest walking distances. Particularly, Hopf CPG-based robots
experience noticeable difficulties to move when the terrain’s height is 20 mm and
nearly do not move when the terrain’s height is up to 25 mm. On the contrary,
the trajectories of the Wu CPG remain grouped until the terrain’s height is
approximately 25 mm, the movement at which they progressively diverge always
within the test arena. This may suggests that the controlled Wu CPGs exhibit
a better regulatory capacity as the intensity of the sensory feedback increases.

Figure 8 illustrates the overall rotation of the robot body along the x-axis
(a), (b) and y-axis (c), (d) for both CPGs. Attending to the number CASN
executions, it is also noticeable that robots actuated by the Hopf CPG reach
the uneven part of the terrain quicker than the ones actuated by the controlled
Wu CPG. However, the controlled Wu CPGs lead to more stable and steady
locomotive movements on the flat surface despite that the Wu oscillators are not
perfectly synchronised. A possible explanation is that the coupling error may
promote stability since representative sensory feedback is received to the CASN

Fig. 7. Trajectories of each of the 10 evolved robot controllers when moving forwards
in the test arena. The box represented with a solid line illustrates the bounds of the
uneven terrain. Its initial maximum height is 20 mm and increases in steps of 5 mm
after each horizontal dashed line up to 40 mm.
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Fig. 8. Rotations of the robot body along the x- and y-axes for the Hopf CPGs (left
plot) and the controlled Wu CPGs (right plot) every time the CASN is executed during
the evaluation period. The vertical solid black line indicate the movement at which the
robot reaches the uneven terrain.

from the starting of the evaluation period. Further, it is also evident that the
Hopf CPGs readily produce sharp and unbalanced rotational trajectories. As can
be seen in Fig. 8(c) the simulated robot is slight tilted towards the right through-
out the evaluation time. Interestingly, the robots actuated by Hopf CPGs have
less difficulty stepping over the rough terrains, but they exhibit more fuzzy rota-
tional trajectories as the complexity of the terrain increases. The robots actuated
by the controlled Wu CPG behave in an opposite manner. They show abrupt
changes in their walking direction while stepping over the uneven terrain, but
they manage to control their stability while walking over it. We can hypothesis
that this is a consequence of the flexibility of chaos controlled Wu oscillator to
explore new pattern of coordination which appears to enhance the stabilisation
of the robot in different terrains.

Adaptive locomotion is inherently difficult to analyse. This is because loco-
motive patterns of coordination not only depend on sensory feedback but also on
the local interactions amongst the oscillators in a CPG. However, techniques to
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Fig. 9. Example of the distributions of the time interval between consecutive touch-
downs for each leg of the simulated robot when actuated by a Hopf CPG (left plot)
and a controlled Wu CPG (right plot) during the evaluation time.

study the temporal distribution of the stepping patterns can be used to provide
some insight into the behaviour of the CPG [21]. Figure 9 exemplifies the pat-
terns of movement of two runs as the distribution of the time interval between
consecutive touchdowns for each leg of the hexapod robot. In general, we found
that the Wu CPGs have a clearly defined stepping pattern, which suggests that
some self-induced patterns of motion may exist for this type of controller.

Figure 9(a) depicts histograms whose shape resembles a Gaussian-like distri-
bution with a time lag mean steadily centred at 0.2 s. This is indicative that the
robot changes its initial fast tripod gait to another locomotive gait with smaller
stance phase and longer swinging phase. This is perhaps surprising since there
is not explicit coordination between oscillators during the evaluation time apart
form the initial tripod coupling. In addition, this also suggests that anti-phase
synchronisation between legs arises despite the dissimilarity of the sensory feed-
back. To a certain extent, this is also a consequence of the RCC method which
regulates the effect that external perturbations have in the controlled Wu oscilla-
tor by allowing it to migrate to another area in the state space whilst preserving
the integrity of its limit cycle. On the contrary, the Hopf CPGs produce rather
irregular patterns of coordination (see Fig. 9(b)) in which no real synchronisa-
tion occurs amongst oscillators. As a consequence, the robot either preserves its
initial tripod coupling while exploring gaits around it, or explores new patterns
of coordination but it is unable to preserve any of them. Nonetheless, the Hopf
CPG is sufficient to induce reactive locomotive patterns when the irregularities
of the terrain are not severe. This also explains the differences in performance
seen in Figs. 7 and 8, with the controlled Wu CPGs leading to more stable
solutions whose patterns of coordination are more likely to adapt to changing
environments.
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7 Conclusions

In this paper, we have compared the performance of two different CPGs based on
the Hopf and Wu systems in a rough terrain with incremental difficulty. Sensory
information was added to the systems using CASNs, which were optimised for
each controller using evolutionary algorithms.

The robots actuated by the Hopf CPG achieve the furthest walking distances
and show the fastest locomotive paces, but also exhibit a remarkable lack of sta-
bility on rough terrains. The robots actuated by the controlled Wu CPG exhibit
more deterministic patterns of locomotion. Likewise, the intrinsic nature of the
controlled Wu oscillator allows the emergence of new patterns of adaptation in
a reactive and efficient manner and increases the flexibility of CPGs to explore
different patterns of motion when compared with the Hopf oscillator. Overall, it
appears that the chaotic nature of the chaotic rate controlled Wu CPG enhances
the development of adaptive and robust behaviours using sensory feedback.

In future work, we plan to investigate the importance of sensory feedback in
the generation of differential patterns of motion and to evaluate the performance
of both CPGs in the physical T-Hex and alternative surfaces.
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Abstract. A fundamental question in biology is how cells change into
specific cell types with unique roles throughout development. This
process can be viewed as a program prescribing the system dynam-
ics, governed by a network of genetic interactions. Recent experimental
evidence suggests that these networks are not fixed but rather change
their topology as cells develop. Currently, there are limited tools for the
construction and analysis of such self-modifying biological programs.We
introduce Switching Gene Regulatory Networks to enable the modeling
and analysis of network reconfiguration, and define the synthesis problem
of constructing switching networks from observations of cell behavior. We
solve the synthesis problem using Satisfiability Modulo Theories (SMT)
based methods, and evaluate the feasibility of our method by considering
a set of synthetic benchmarks exhibiting typical biological behavior of
cell development.

Keywords: Gene regulatory networks (GRNs) · Boolean networks ·
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1 Introduction

The cell is a fundamental unit of biological systems. Many aspects of cellular
function are interpreted as the consequence of a series of genetic interactions that
ultimately determine the expression levels of genes within the cell. Such inter-
actions are composed into Gene Regulatory Networks (GRNs), which describe
how individual genes regulate one another. Computational modeling allows us
to represent a mechanistic understanding of GRNs, to formally compare model
simulations to experimental data, explore new hypotheses and perform in-silico
experiments.

Recent findings suggest that the process through which cells take on a specific
role, termed differentiation, might be implemented by changing the accessibility
of binding sites required for regulation [23], essentially enabling and disabling
interactions in the GRN. When considering network reconfiguration in cells,
self-modifying programs come to mind. Self-modifying programs are not a new
c© Springer International Publishing Switzerland 2015
M. Lones et al. (Eds.): IPCAT 2015, LNCS 9303, pp. 131–144, 2015.
DOI: 10.1007/978-3-319-23108-2 11
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concept in software, but they have not become mainstream, mainly because in
most contexts they do not add expressive power, and they are hard to write
and analyze. Consequently, modern program analysis tools have no, or very
limited, means of reasoning about such programs. It does appear, however, that
for biological modeling, supporting the concept of switching networks can provide
a useful abstraction for capturing the processes at work as cells change type.

To capture these phenomena, we introduce the concept of a Switching Gene
Regulatory Network (SGRN), a framework for the analysis and synthesis of
self-modifying biological programs. An SGRN is constructed to incorporate
knowledge of network topology and to reproduce and explain experimental obser-
vations of system dynamics, by integrating known biological hypotheses. We for-
malize our approach and provide an encoding of SGRNs and bounded temporal
constraints representing known experimental data, within a framework based on
Satisfiability Modulo Theories (SMT) solvers. This builds upon and extends our
previous work in the area, which supported only fixed GRNs [8,26]. Finally, we
evaluate the performance of our approach on a set of synthetic benchmarks in
terms of running time, accuracy, and precision and we show that our method
is scalable and that it reliably recovers the changes taking place in the network
topology.

2 Background

We focus on Boolean networks (BNs) [13], a class of GRN models that are
Boolean abstractions of genetic systems, i.e. every gene is represented by a
Boolean variable specifying whether the gene is active or not. The concept of an
Abstract Boolean Network (ABN) was introduced in [8] to allow the representa-
tion of models with initially unknown network topologies and dynamics. ABNs
were then used to investigate the decision-making in pluripotent stem cells. In
the following, we briefly review the relevant definitions from [8], which serve as
a basis for the modeling approach described in later sections.

Let G be a finite set of genes and let E : G × G × B → B denote the set
of directed edges between elements of G, labeled with a regulation activity (�
for positive and ⊥ for negative). Given genes g and g′, we call g an activator of
g′ if (g, g′,�) ∈ E, a repressor if (g, g′,⊥) ∈ E and a regulator if it is either of
those. Due to the Boolean abstraction of genetic states, the state space Q = B

|G|

is induced implicitly where, for a given state q ∈ Q and gene g ∈ G, q(g) ∈ B

denotes the state of g. An update function fg : Q → B defines the dynamics
of gene g. For a Boolean network with synchronous updates, the dynamics of
the system are defined in terms of the update functions of all genes applied at
each step, where given a current and next state q, q′ ∈ Q,

∧
g∈G q′(g) = fg(q).

Although the presentation and examples in this paper focus on synchronous
semantics, we also support asynchronous updates, where at each step the update
function of only one gene is applied, while the value of all the other genes remains
unchanged.

A set of 18 biologically plausible update function templates, which are called
regulation conditions, was proposed in [8]. For a given gene g ∈ G, each regulation
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condition defines an update function fg : E × Q → B that respects biologically-
inspired constraints. One such constraint is monotonicity, where the availability
of additional activators does not lead to the inactivation of a gene, i.e., if a gene
is expressed in q′ when only some of its activators are expressed in q, then it
must also be expressed in q′ if all its activators are expressed in q and there is no
change in the presence of repressors. These regulation conditions only consider
whether none, some, or all potential activators or repressors of g are expressed
in a state q.

To capture the possible uncertainty in the precise network topology, the
ABN formalism allows some interactions to be marked as optional (denoted by
the set E?), each of which could be included in a synthesized concrete model (a
model where all interactions are definite). Thus, in terms of network topology,
an ABN model specifies a set of 2|E?| concrete models, each corresponding to a
unique selection of optional interactions. Additionally, a choice of several possible
regulation conditions for each gene is allowed, leading to the following definition:

Definition 1 (Abstract Boolean Network [8]). An abstract Boolean net-
work (ABN) is a tuple N = (G,E,E?, R), where G is a finite set of genes,
E : G × G × B → B is the set of definite (positive and negative) interactions
between them, E? : G × G × B → B is the set of optional interactions and
R = {Rg | g ∈ G}, where Rg specifies a (non-empty) set of possible regulation
conditions for each gene g ∈ G.

An ABN is transformed into a concrete model by selecting a subset of the
optional interactions to be included and assigning a specific regulation condition
for each gene. Formally, let Ê? ⊆ E? denote the set of selected optional interac-
tions, Ê = E ∪ Ê? denote the set of all selected interactions and R̂g ∈ Rg denote
the specific regulation condition chosen for each gene g ∈ G. The semantics of
such a concrete model are defined in terms of a transition system T = (Q,T ),
where Q = B

|G| is the set of states (q(g) ∈ B is the state of gene g in q ∈ Q) and
the transition relation T : Q × Q → B is defined as

∀q, q′ ∈ Q . T (q, q′) ↔
∧

g∈G

q′(g) = R̂g(Ê, q). (1)

A finite trajectory of a concrete model is defined as a sequence of states t =
q0, q1, . . . , qK where qi ∈ Q and ∀0≤i<K . T (qi, qi+1). The semantics of an ABN
can be understood in terms of the choice of optional interactions Ê? and the
choice of a regulation condition for each gene, R̂g, together with the transition
system T representing the resulting concrete model.

A set of experimental observations that each concrete model needs to be able
to satisfy are encoded as predicates over system states which limits the possible
consistent choices of Ê? and R̂g. For instance, an experiment in which genes g and
g′ are observed to be initially active and become inactive at step K is formalized
as a constraint requiring the existence of a trajectory t = q0, . . . , qK such that
q0(g) ∧ q0(g′) ∧ ¬qK(g) ∧ ¬qK(g′). The approach developed in [8] allows GRN
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synthesis for non-switching networks: given an ABN and a set of experiments,
find a choice of interactions Ê? and regulation conditions R̂g for each gene,
guaranteeing that the resulting concrete model is consistent with all experimental
observations.

3 Switching Gene Regulatory Networks

We propose an extension of the ABN formalism, where transitions between
unique cell types, characterized by potentially different network topologies, are
directly supported. Let C denote a set of cell types sharing a set of genes G
and regulation conditions R. Each cell type c ∈ C is modeled as an ABN
Nc = (G,Ec, E

?
c , R), where the set of definite interactions Ec and optional inter-

actions E?
c could be different for different cell types. Note that, while the network

topology is allowed to change between different cell types, we assume that the
possible regulation conditions Rg ∈ R depend only on a gene g ∈ G and remain
consistent across cell types.

Arbitrary transitions between different cell types are not plausible in most
biological systems. For example, two distinct cell types c, c′ ∈ C can represent
a progenitor cell c and a differentiated cell c′ that is derived from c. While the
progenitor can become a differentiated cell, the reverse does not occur under
normal conditions. For each cell c ∈ C, we capture this information using the
(non-empty) subset Dc ⊆ C of all possible cell types that c can transition into
directly. In order to capture mechanistic details within the model, our framework
also supports the addition of guards, encoded as state predicates, to further con-
strain cell type switches. In the absence of restrictive guards, switching between
cell types is represented as a nondeterministic choice (when |Dc| > 1), without
explicitly modeling either the mechanism or preconditions on the system state
required for such a switch.

This leads to the following definition of SGRNs:

Definition 2 (Switching Gene Regulatory Network). A Switching Gene
Regulatory Network (SGRN) is a tuple NS = (G,C,Dc, Ec, E

?
c , R), where

– G is the finite set of genes,
– C is a finite set of cell types,
– for each c ∈ C, Dc ⊆ C is the set of cell types that c can transition into

directly,
– Ec : G × G × B → B is the set of definite interactions between genes for each

c ∈ C,
– E?

c : G × G × B → B is the set of optional interactions for cell type c, and
– R = {Rg | g ∈ G}, where Rg specifies a (non-empty) set of possible regulation

conditions for each gene g ∈ G.

Figure 1 shows an SGRN with 3 cell types: C = {c0, c1, c2}, and 6 genes: G =
{g0, g1, g2, g3, g4, g5}. In this example, a (progenitor) cell type, c0, may change
into cell types c1 or c2, by reconfiguring its network, so that Dc0 = {c1, c2}, while
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Fig. 1. An SGRN with 3 cell types (c0-c2) with 6 genes (g0-g5), illustrating a typical
setting where one cell type (c0) can maintain its identity (self-loops) or give rise to
other cell types by switching its interactions. Edges between genes represent regulatory
interactions, with a bar representing repression and an arrow representing activation,
and appear as solid or dashed lines for definite or optional interaction, respectively.

c1 and c2 cannot switch their identity (thus Dc1 = {c1} and Dc2 = {c2}). For
each cell type, edges between genes appear in solid or dashed lines for definite
(Ec) or optional (E?

c ) interactions respectively. Genes appear in dashed circles
to indicate that R consists of multiple possible regulations conditions for each
gene.

As in Sect. 2, the semantics of SGRNs are defined in terms of a transition
system T = (Q,T ). Here Q = B

|G|×C is the set of states where, for a given state
q ∈ Q, q = (qG, qC), qG(g) ∈ B indicates the state of a given gene g ∈ G and
qC ∈ C indicates the current cell type. For a concrete switching GRN model, let
Ê?

c ⊆ E?
c denote the set of selected optional interactions and Ê = Ec ∪Ê?

c denote
the set of all selected interactions for each cell type c ∈ C. Let R̂g ∈ Rgdenote



136 Y. Shavit et al.

the specific regulation condition selected for each gene g ∈ G, which is the same
for all cell types. The transition relation T : Q × Q → B is defined as

∀q, q′ ∈ Q. T (q, q′) ↔
∧

c∈C

⎡

⎣qC = c →
⎛

⎝q′
C ∈ Dc ∧

∧

g∈G

q′
G(g) = R̂g(Êc, qG)

⎞

⎠

⎤

⎦ .

(2)
Intuitively, Eq. 2 captures the fact that all genes are updated according to the
selected regulation conditions R̂g and the network topology Êc corresponding
to the particular cell type c in the current state q. In the next state q′, the cell
type can be updated (non-deterministically) to one of the possible cell types
Dc ⊆ C that c can transition into directly. As for ABNs, given an assignment of
the optional interactions Ê?

c for each cell type c ∈ C, and a specific regulation
condition R̂g for each gene g ∈ G, Eq. 2 allows us to define finite trajectories of
the resulting concrete SGRN models as a sequence of states t = q0, q1, . . . , qK

from Q where ∀0≤i=0<K . T (qi, qi+1).

4 SGRN Model Synthesis

We are interested in concrete SGRN models that are consistent with given exper-
imental observations. In this section, we formalize this as a synthesis problem
and present the details of our solution and implementation.

A SGRN model NS = (G,C,Dc, Ec, E
?
c , R) is transformed into a concrete

model by selecting a specific regulation condition R̂g ∈ Rg for each gene g ∈ G

and a subset of the optional interactions Ê?
c ⊆ E?

c to be included for each cell
type c ∈ C. Each possible concrete model is represented as a transition system
T = (Q,T ), where the system set of states is Q = B

|G| × C.
Let π : Q → B denote a state predicate capturing some observed gene states

or cell type and the tuple (π, n) denote a constraint that, for a given trajectory
t = q0, . . . , qK , t satisfies π at step n (i.e. π(qn) = �). An experiment E =
{(πi, ni) | i = 0 . . . M}, where πi is a state predicate and ni ∈ [0,K] for all
i ∈ [0,M ], is expressed as a finite set of such constraints and formalizes the gene
expressions or cell types observed during a particular execution of the system. We
write t � E when trajectory t satisfies experiment E (i.e. when

∧
(π,n)∈E π(qn)).

More complicated expressions can also be constructed as part of an experiment
by combining terms (π, n) using the logical operators {∧,∨,⇒,⇔,¬}.

The main problem we consider in this paper is the following:

Problem 1 (Lineage Synthesis) Given an SGRN NS = (G,C,Dc,Ec,
E?

c , R) and a finite set of experiments E0, . . . , Em, find an assignment Ê?
c of

the optional interactions E?
c for each cell type c ∈ C and a single regulation

condition R̂g ∈ Rg for each gene g ∈ G such that, for each i = 0, . . . ,m there
exists a trajectory ti of the resulting concrete model that satisfies Ei (i.e. ti � Ei).
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Fig. 2. A lineage synthesis problem. The SGRN from Fig. 1 and a finite set of exper-
iments define a lineage synthesis problem. A solution for this problem includes the
assignment of definite interactions for each cell type and the choice of a single regula-
tion condition for each gene.

Figure 2 illustrates a lineage synthesis problem for an example SGRN.
Given an SGRN NS = (G,C,Dc,Ec, E

?
c , R) we encode the choice of optional

interactions Ê?
c for each cell type c ∈ C using a unique Boolean choice variable

for each interaction, or more conveniently, as a single bit-vector using the respec-
tive SMT theory. Additionally, a single regulation condition R̂g from the set of
allowed conditions Rg must be selected for each gene g ∈ G. We encode this as
the synthesis of a single bit-vector or integer ‘coefficient’ for each gene, which is
shared across all cell types.

The choice variables for optional interactions of each cell type and regulation
conditions for each gene allow us to consider the transition system T = (Q,T )
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as defined in Sect. 3, which represents a given concrete model. The set of states
Q = B

|G| × C is finite since both the number of genes G and the number of cell
types C are finite. Furthermore, for a given state q ∈ Q where q = (qG, qC), the
component of the state space describing the state of all genes qG is encoded as
a single bit-vector using the SMT theory of bit-vectors. In our implementation,
we represent the cell type component of a state qC using a “one-hot” encoding,
where qC ∈ B

|C| with the guarantee that the cardinality of qC for any state
q ∈ Q is 1. This allows us to represent the entire state (qG, qC) as individual
Boolean variables or as a single bit-vector.

We follow a bounded model checking (BMC) approach [4], and unroll the
transition relation T of T to define a trajectory ti for each experiment Ei (see
problem 1), for which the corresponding experimental observations from Ei are
asserted. Note that while a separate trajectory ti is used for each experiment Ei,
we do not require these trajectories to be unique (i.e. it is possible that a single
trajectory t = ti = tj satisfies the constraints of both experiments Ei and Ej).

Finally, we employ an SMT solver to determine the satisfiability of all gener-
ated constraints (our choice of SMT solver is Z3 [16]). Here, we exploit the fact
that SMT solvers such as Z3 produce an assignment of all the constants used in
the encoding of the problem, which is presented as a certificate of the satisfia-
bility of all constraints. When such an assignment (referred to as a “model” in
this context) is found, we extract the optional interactions Ê?

c selected for each
cell type and the regulation condition R̂g selected for each gene. In addition,
since each trajectory ti was represented explicitly as part of the problem, the
exact sequence of states is recovered from the model synthesized by the SMT
solver, to serve as an example demonstrating exactly how the SGRN reproduces
the behavior observed in each experiment Ei. In addition to the sequence of
gene expressions at each time point, this information also reveals the cell types
along executions of the system, allowing for further investigation of the captured
cellular differentiation processes.

5 Experimental Results

In order to test our approach and systematically evaluate its performance we
require benchmarks of lineage synthesis problems for SGRNs with different num-
ber of genes and cell types. This is achieved by producing synthetic problems,
following the main steps summarized in Fig. 3 and described in Subsect. 5.1. Sub-
section 5.2 gives the results of our evaluation in terms of accuracy, precision and
running time.

5.1 Benchmark Design

Cell types are defined by directed networks with a scale-free topology (the degree
of the vertices follows a power-law distribution), which is a common feature
of GRNs and other biological networks [2], with the exponent of the degree
distribution set to 2 (for both in- and out- degree distributions). Interactions are
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Fig. 3. The three steps for generating an in-silico lineage synthesis problems involve:
(a) randomly generating a concrete SGRN, where all interactions are definite and a
single regulation condition is allowed for each gene. (b) Generating trajectories of the
concrete SGRN model from (a). This essentially amounts to simulation, which is possi-
ble since the model does not include any uncertainty. (c) Generating a lineage synthesis
problem with partial information about the interactions in the system (encoded as an
SGRN) and the trajectories it produces (encoded as experimental observations).

labelled with either a positive or negative sign, such that each gene has at least
one activator. This is in keeping with the assumption that, by default, genes are
repressed in higher organisms, and must be “switched on” to be expressed and
behave as regulators of their target genes [19]. A regulation condition is randomly
assigned to each gene from a set of 16 out of the 18 regulation conditions defined
in [8], excluding the two functions that allow activation of a gene in the absence
of any activators. For a given model with m cell types, n genes, and a progenitor
cell type c0, we generate 2 · m · n trajectories of length K = 11 starting at c0
with a gene state configuration j, and switching to cell type ci at a randomly
selected time point s, for i = 0 .. m, j = 1 .. 2n and 1 ≤ s ≤ K. In order
to create the set of 2n starting gene state configurations, we randomly select
2n − 2 integer values in the range (0, 2n − 1) (exclusive) and add the values 0
and 2n −1, representing the extreme configurations of the system. System states
are represented by bit-vectors of size |G|, where the kth position in the vector
represents the state of the kth gene.

To construct an instance of the lineage synthesis problem, each model (gen-
erated as described above) is used to produce a SGRN and its trajectories are
encoded as experimental observations. We assume no information about the
exact regulation conditions available and, therefore, all 16 choices are allowed
for each gene. Let E�

c denote the interactions of cell type c in the “true” model
and E� = ∪c∈CE�

c denote the interactions appearing in any cell type. We con-
struct the SGRN by assigning a small proportion (20%) of E�

c as definite for cell
type c (representing known interactions) and marking the rest of E� as optional,
which defines the sets Ec and E?

c respectively (Fig. 4). Each trajectory is then
used to generate an experiment with the gene states observed at each time step,
and the cell type observed at the start and at the end of the experiment (time
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Fig. 4. A true, a hypothesized, and a synthesized progenitor cell type in an SGRN with
6 genes (g0-g5) and 3 cell types. The true cell type (a) was generated with a scale-free
topology. The union of all cell types in the SGRN was used to create the hypothesized
cell type (optional interactions appear as dashed lines) with a small proportion of its
true interactions known (solid lines). Genes appear with dashed circles to indicate that
their regulation condition is not fixed. The synthesized cell type is part of our solution
for a lineage synthesis problem generated for this SGRN and recovers the true cell type
with the exception of the negative interaction from g5 to g4.

steps 0 and 10, correspondingly). In total, this amounts to 2 · m · n experiments
included in a lineage synthesis problem of m cells and n genes.

5.2 Results

We demonstrate our technique on benchmarks of lineage synthesis problems with
1–7 cell types and 4–10 genes, generated as described above. For each problem
we record the running time required to solve and we evaluate solutions by means
of accuracy and precision in relation to the ‘hidden’ true model from which each
problem was generated.

Let E�
c denote the “true” interactions of cell type c, Ec (E?

c ) denote the
definite (optional) interactions of the corresponding SGRN cell type, and Êc

(Ê?
c ) denote the synthesized (optional) interactions. A True Positive (Negative)

is an interaction that is (not) in Ê?
c and (not) in E�

c (note that we evaluate the
synthesis of only those interactions that were optional in the SGRN since definite
interactions will always be part of the synthesized model). A False Positive is an
interaction in Ê?

c that is not in E�
c and a False Negative is an interaction in E�

c

that is not in Ê?
c . The precision of a solution for a given cell type is then defined

as TP
TP+FP , and its accuracy as TP+TN

TP+FP+TN+FN , with TP , TN , FP and FN , the
number of True Positives, True Negatives, False Positives and False Negatives,
respectively. The total precision and accuracy of a solution is the mean precision
and accuracy across all cell types in the problem.
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Fig. 5. Heatmaps of experimental results for a benchmark of lineage synthesis problems
with 1–7 cells and 4–10 genes. Darker pixels indicate higher accuracy (a) and precision
(b), while lighter pixels indicate poorer performance. Running times (c) are indicated
on a color scale from white to black, with darker pixels for longer running times.

The results of our evaluation (Figs. 5a,b) show that our approach can suc-
cessfully recover hidden topologies of SGRNs, achieving 0.81 accuracy and 0.78
precision (on average, across 2–7 cell types and 1–10 genes). As evident from
the heatmaps in Figs. 5a,b, cell types are synthesized with good accuracy across
problems (17% with accuracy > 0.9, 86% of cases with accuracy > 0.7 and all
problems with accuracy > 0.6) and with good precision in the majority of cases
(71% of cases with precision > 0.7). For our benchmarks, the performance seems
to be independent of the number of cells or genes. The running time of our syn-
thesis is also feasible for the SGRNs under consideration, with all problems in
the benchmark set solved in under an hour on a personal computer (Intel Core
i3-4010U 1.7 GHz, 4 GB RAM, Windows 8.1 64-bit OS) and with an average
running time of 730.25 sec (Fig. 5c).

6 Related Work

Since the early days of computer science, the concept of self-modifying programs
has been a natural one to explore, especially after the introduction of the Von
Neumann architecture [17], in which both the program and the data were stored
in the same memory, leading to the possibility of allowing program modification
during runtime. This model was supported in early computer architectures (cf.
e.g., [3]) and applied in some specific domains, however it did not become a
mainstream paradigm.

Boolean networks have been suggested for studying cell differentiation [13,
24]. In this context the concept of switching was mainly used to describe changes
in the state of the nodes (genes) rather than the reconfiguration of the topology
of the network itself. The change in the gene’s state could be a result of exe-
cuting the GRN and by including additional effects such as the spatio-temporal
dynamics of the neighbouring cellular (tissue) environment (for example: [7,10]).
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However, little attention was given to the rewiring of the network as a mechanism
to achieve differentiation or changes in the cellular function.

Petrinets and their extensions have been used in modeling of GRNs (see
e.g., [5,11]) and in particular the extension of self-modifying nets [25] enables
to describe reconfiguration of Petrinets. This is achieved by allowing an arc to
refer to a place, implying that the number of tokens in this place should be
added/removed while firing the transition. The number of tokens in a place
can change during execution leading to the ‘reconfiguration’ of the net. Self-
modifying nets and further extensions have been used in modeling of metabolic
networks [12], where self-modification permits the representation of concentra-
tions and kinetic effects. It is known that self-modifying Petrinets are more
expressive than conventional Petrinets, making the reachability problem unde-
cidable [25], whereas in our work we defined a framework in which the basic
dynamic properties of the system remain decidable.

Bayesian networks have been extensively applied to the problem of inference
of gene regulatory networks from time series data [9]. Unlike our work, these
methods handle continuous variables and stochastic events, but they lack some
of the general advantages of reasoning based approaches, including proofs that
solutions do not exist and effective ways to symbolically reason about sets of
solutions. More recently, there has been research on generalizing Bayesian net-
works inference to the case of time varying networks (e.g., [1,6,14,18,21,22]).

Related concepts of switching have also been introduced and explored in other
fields. For example, mode-automata was proposed as a formalism for modelling
reactive systems, in order to capture explicitly a decomposition of the system’s
global behaviour into multiple independent tasks [15]. In our work, however, such
a decomposition is not fully known a priori and our focus is on synthesizing the
structure of the system in different cell types, which can be viewed as modes,
together with the transitions between them. Thus, our approach is also related
to methods for the synthesis of controllers for discrete event systems (e.g. [20])
- a problem that has received considerable attention. However, the problem we
address requires the synthesis of a system for each cell type such that the overall
behaviour reproduces certain experimental observations, rather than synthesiz-
ing a controller that, when coupled with the system, restricts its behaviour to
some desirable subset.

7 Conclusion

Computational methods are becoming a powerful tool for experimental biologists
to improve the understanding of cellular decision-making. In particular, formal
reasoning and different synthesis approaches are attractive as they enable the
automatic generation of models that are guaranteed to satisfy a given set of con-
straints representing known experimental measurements. Motivated by recent
biological evidence suggesting that it makes sense to view a molecular program
within a cell as a self-modifying program, we introduce a framework that allows
us to represent cellular reconfiguration, and effectively synthesize models that
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are consistent with experimental constraints and hypotheses. This opens the way
to combined computational and experimental research to improve our under-
standing of how cells differentiate into specific cell types during development, as
well as how cells may modify their behavior under artificial culture conditions
used for research and medical applications. A long-term research goal is to gain
a mechanistic understanding of how self-modifying biological programs operate
and investigate whether the underlying principles nature utilizes can inspire new
directions for the design of self-modifying software.
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Abstract. Research into the biology of microRNAs (miRNA) continues to
expand rapidly. As a result, their abundance and importance in cellular regu-
lation and disease states, also continues to grow and they are considered master
regulators. Despite this greater understanding, key mechanisms regulating glo-
bal miRNA transcription have remained elusive. This paper addresses a critical
issue regarding regulation of miRNA expression. Here, we describe and bio-
chemically characterize a universal regulatory complex that directly binds
miRNA genetic loci and regulates transcription of miRNA genes. In addition,
our preliminary results provide evidence that miRNA-induced Ago2 binding can
result in positive post-transcriptional regulation of many important primary
miRNAs. Using chromatin immuno-precipitation (ChIP) assays, our results
demonstrate that the human miRNA binding protein Argonaute 2 (Ago2)
associates with endogenous promoter DNA from each of the important human
miRNA genes investigated to date. Additionally, our data shows a robust, direct
interaction between mature miR-21 directed Ago2 and a miR-21 promoter DNA
sequence.

1 Introduction

The field of miRNA research has grown exponentially since the first report of human
miRNAs in 2000. Our understanding of miRNA function, as well as their abundance
and importance in cellular regulation and disease states, has also grown. It is estimated
that miRNAs regulate more than half of the transcriptome, and they are master regu-
lators of human embryonic stem cell (hESC) differentiation. Although there has been a
virtual explosion of publications and tools generated in the miRNA field, key mech-
anisms regulating global miRNA transcription have remained elusive.

One issue currently facing miRNA researchers is that all components of the protein
machinery required for transcription of miRNA genes have not been completely elu-
cidated. Downstream of transcription, however, global processing pathways common
to all miRNAs have been published (Finnegan and Pasquinelli 2013). After tran-
scription by PolII, nascent primary miRNA (pri-miRNA) transcripts are processed by
two different RNAse III enzymes: Drosha, which generates precursor miRNAs; fol-
lowed by Dicer, which releases mature miRNAs. Once mature miRNAs bind to
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Argonaute proteins (Ago2 in humans), this complex is dogmatically called a miRNA
induced silencing complex (miRISC). Within this complex, mature miRNAs act as
guide strands for miRISCs binding directly to target RNAs which, in turn, initiate
downstream regulatory events (Finnegan and Pasquinelli 2013).

Though mature miRNA function has become a major focus of academic and
commercial research, two critical issues remain unresolved in the relationship of
miRNAs to cancer and other diseases. Firstly, the research community lacks a global
component for transcriptional regulation of miRNA genes. In 2012, data was published
showing that let-7 miRNA guided Argonaute proteins directly bind and positively
regulate maturation of pri-let-7 transcripts in a novel auto-regulatory feedback loop that
is conserved across species (Zisoulis et al. 2012) this was the first report of Ago2 and
miRNAs targeting a primary miRNA transcript, the first report of miRNAs and Arg-
onaute proteins mediating positive regulation of biogenesis, and the first report of a
miRNA induced auto-regulatory model of miRNA maturation. However, this model
was restricted to C. elegans let-7 miRNA. In this paper, we present preliminary results
establishing that human Argonaute (Ago2) also binds primary transcripts of several
important human miRNAs, including miR-21, let-7i, miR-302, miR-375, and the
mir-17-92 cluster. Because of the conservation of sequence and function the let-7 locus
across species and miRNAs, we expect that this is a global mechanism of Ago2 and
miRNA induced positive auto-regulation of primary miRNA biogenesis in human cells.
This has great importance in improving our understanding of miRNA function and
information processing through regulation.

Secondly, miRNAs are viewed predominately (or entirely) by the scientific com-
munity, as repressors. In fact, the name RNA induced silencing complex (RISC) was
created for RNA interference (RNAi) regulation. Though binding of Argonaute family
proteins are required for the function of both miRNAs and small interfering RNAs
(siRNAs or RNAi), the *22 bp siRNAs are perfectly complementary when they base
pair to their target and, in every reported case, result in silencing or degradation
(Ketting 2011).

1.1 Ago2

Human Ago2 protein was first named eukaryotic initiation factor 2C 2 (EIF2C2). Soon
after, it was accepted that Ago2 bound the 3’ end of mRNA targets to arrest translation.
We now know that Ago2 binding to mRNA targets can be promiscuous in the 3’ and 5’
ends (Lee et al. 2009), and our understanding of the roles for Ago2 in small RNA
regulation have also evolved to include targeting and biogenesis of noncoding RNAs
(ncRNAs) from precursor to mature without Dicer (Yang and Lai 2010), as well as
methylation and transcriptional regulation of DNA, and alternative splicing of nascent
mRNA transcripts. In short, we now understand that Ago2 is a major player in global
regulation on miRNA expression, biogenesis and function. It is the direct interface
between the world of small RNAs and their diverse regulatory outcomes (Fig. 1).
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1.2 miR-21

Our research initially focused on mature miR-21 because it is one of the most highly
expressed human miRNAs, and its importance in cellular regulation and as a potent
onco-miR has been the focus of several publications, providing ample information on
which to build our experimental design. Additionally, mature miR-21 miRNAs have
also been pursued as diagnostic markers for different types of cancer, and pursued as
potential therapeutic targets (Kadera et al. 2013; Hong et al. 2013; Jardin and Figeac
2013; Baer et al. 2013). The miR-21 locus is located within the intronic region of the
TMEM49 gene (in the same orientation) and yet transcription of miR-21 is regulated by
an independent promoter and terminated by an independent poly (A) tail (Kumarswamy
et al. 2011). The miR-21 locus contains a single mature miRNA precursor, as opposed to
a cluster of miRNAs, and produces a single primary transcript (Kumarswamy et al.
2011). Transcription of the miR-21 locus is regulated by several important transcription
factors, including NFκB and the STAT family of transcriptional activators (Niu et al.
2012). After maturation of the primary miR-21 transcript, a two-step biogenesis process
produces the mature miR-21 miRNA. It only after this biogenesis that mature miR-21
can target RNAs for downstream regulation, such as PTEN and PDCD4, which ulti-
mately results in apoptosis and decreased metastasis (Niu et al. 2012). Because mature
miR-21 also regulates PDCD4, miR-21 is also capable of preventing type 1 diabetes
(T1D) by blocking pancreatic β cell death (Ruan et al. 2011). However, as much as we
know about regulation of the miR-21 gene, mechanisms driving this regulation have yet
to be identified. Our preliminary data shows that there is at least one additional layer of
transcriptional regulation concerning the miR-21, let-7i, miR-302, miR-375, and
mir-17-92 loci; Ago2 and miRNA induce regulation of transcription, as Ago2 binding to

Fig. 1. Regulation of miRNA transcription. During miRNA biogenesis, Pol II transcribes the
nacent primary miRNA transcript. This pri-miRNA is processed by Drosha which removes the
precursor hairpin containing the mature miRNA. This pre-miRNA is further processed by Dicer
to generate a mature miRNA that binds Argonaute 2 (Ago2) resulting in multiple regulatory
outcomes (left panel). Here we present evidence for a novel miRNA/Ago2 feedback mechansim
that regulates miRNA transcription (right panel).
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miRNA promoters is consistent among miRNA species, regardless of cell type, miRNA
function or genomic loci arrangement.

1.3 Summary

Of the several genetic factors that contribute to cell function, miRNAs are emerging as
important determinants. As information about the role of non-coding RNAs increases,
it has become evident that miRNAs drive an increasing number of cellular responses,
including differentiation of hESCs. Given the current dearth of information about how
miRNA transcription is regulated, it is critical to identify promoters and repressors that
will provide transformative information about information processing of small
non-coding RNAs within the cell.

2 Methods

CyT49 cells (provided by ViaCyte, San Diego, CA) were maintained on reduced
growth factor BD Matrigel at 37 °C, 5 % CO2 in DMEM/F12 supplemented with 20 %
knockout serum replacement, glutamax, nonessential amino acids, β-mercaptoethanol,
penicillin/streptomycin (Life Technologies, Carlsbad, CA), 4 ng/mL basic fibroblast
growth factor (FGF; Peprotech, Rocky Hill, NJ) and 10 ng/mL activin A (R&D Sys-
tems, Minneapolis, MN). Cross-linking immunoprecipitation (CLIP) of Ago2, in hESC
lines was be used to pull out endogenous DNA. Bound DNA was examined using PCR
amplification and sequencing (https://www.idtdna.com).

3 Results

Our initial results using cross-linked chromatin immuno-precipitation (ChIP) in human
embryonic stem cells (hESCs), and PCR amplification of purified DNA, identified
endogenous genes bound by Ago2 (Fig. 2). Using nested primers to increase sensitivity
and specificity, we determined that Ago2 binds the promoter of miR-21. Lane 1 is the
specific Ago2 (A2) immunoprecipitation (IP), Lane 2 is the negative IP control (using
the non-specific HA epitope), Lanes 3 and 4 are positive control inputs for A2 and HA
respectively, Lane 5 is the whole cell lysate (W) before IP, and Lane 6 is a negative
control with water (H20) rather than DNA.

In an effort to identify miRNA-binding sequences in the promoter of the miR-21
gene, an RNA hybrid (Kruger and Rehmsmeier 2006) analysis was employed to locate
the most likely miR-21 binding region (Fig. 2). After PCR amplification and purifi-
cation of the *250 bp region centered around this predicted miR-21 binding site,
gel-shift assays with purified Ago2 and synthetic miR-21 RNA oligos were performed.
Together, these results demonstrate that Ago2 specifically binds the promoter region of
miR-21. Additionally, we have preliminary data suggesting that Ago2 specifically
binds the promoter of let-7i, miR-375, the miR-302, miR-371, and miR17-92 clusters
(manuscript in preparation).
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The data in Fig. 3 shows, that with the addition of the miR-21 molecule and Ago2,
the *250 bp DNA segment is significantly shifted up above 1000 bp with no
detectable DNA remaining at *250 bp. This data supports our ChIP data showing
Ago2 targeting of miR-21 promoter DNA, and establishes the interaction as direct and
robust.

4 Discussion

Taken together, our data demonstrate the importance of mature miR-21 and Ago2 in
the binding of the promoter of the miR-21 gene. We hypothesize that this interaction
plays an important role driving the transcription of miR-21 biogenesis and ultimately
regulates cellular miR-21 levels. Previously, (Zisoulis et al. 2012) found that the Ago2
protein homolog in Caenorhabditis elegans specifically binds at the 3′ end of let-7
miRNA primary transcripts to promote downstream processing events in the nucleus
and creates a positive-feedback loop. The C. elegans studies revealed a novel role for
Ago2 in promoting biogenesis of a targeted transcript and autoregulation of let-7
biogenesis that established a new mechanism for controlling miRNA expression. Here,
we extend these initial observations to demonstrate that pri-miRNA-Ago2 interactions
occur for multiple mammalian miRNAs and likely serve as previously unrecognized
regulators of miRNA transcription.

The canonical view of miRNAs is that these regulatory non-coding RNAs block
translation and degrade mRNA. Recently, additional roles of miRNAs in cell trans-
lation and regulation of transcription have emerged; suggesting miRNAs act as rheo-
stats to help cells sense their environment and fine-tune the response. Our work has
further expanded the role of miRNAs by demonstrating that miRNAs can bind within
their own promoters and regulate auto-regulate biogenesis. These observations have the
potential to profoundly impact cell biology and modeling progression from normal to
disease states. On a cellular level, the mechanisms by which transcription of miRNAs is
not well understood. Our biochemical studies indicate that pri-miRNAs bind specific
sequences within the miRNA promoters and act as regulators (enhancers or repressors)

Fig. 2. Ago2 binds different miRNA promoter transcripts in human cells. (A) miR-21 genomic
locus. The miR-21 precursor (grey box) is between two exons (black boxes) in the same direction
of a protein-coding gene. Three start sites (triangle arrows) and four primers (check arrows) are
used in nested PCR reactions. (B) PCR amplification of miR-21 ChIP DNA. Lanes 1 and 2
are specific (A2) and non-specific (HA) immunoprecipitations of Ago2, respectively. Lanes 3-5
are positive control input DNA from before each immunoprecipitation (A2 and HA), as well as
whole cell lysate (W). Lane 6 is a negative control. All ChIP data shown are representative
examples of at least 3 biological replicate experiments.
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of miRNA transcription. Given that binding sequences within individual promoters are
at least partially complimentary to the miRNA itself, there exists an opportunity to
develop predictive algorithms that can identify binding sites for specific miRNAs. Once
identified, interaction sites on the promoter can be tested to determine whether miRNA
transcription is enhanced or repressed. Additionally, single nucleotide polymorphism
analysis in diseased states can be explored to detect mutations that my alter miRNA
binding to specific promoters.

We also note that shortly after the discovery of miRNAs, computational approaches
have been used to help elucidate their role in systems biology. However the vast
majority of these previous papers have focused solely on miRNAs as drivers of
repression (Nissan and Parker 2008; Hobert 2008; Papadopoulos et al. 2009; Djuranovic
et al. 2011). While that does not necessarily invalidate their results, it does suggest that

Fig. 3. Ago2 directly binds miR-21 promoter DNA. (A) miR-21 locus and mature miR-21
binding. GREY BOX: The top line is the DNA binding sequence; bottom line is the mature miR–
21 miRNA sequence. Spaces in sequence represent bulges in miRNA binding. (B) miR-21 locus.
BLACK LINE: The human miR-21 locus is on chromosome 17. ARROWS: annotated start sites.
SMALLGREY BOX: predicted miR–21 binding site. GREY LINE: nascent primary miR-21
primary transcript. RED BOX: precursor miR-21. 1–3 were taken from the UCSC Genome
Browser. (1) Repression of this locus in diverse cell lines as shown by layered Histone 3, lysine
4 methylation (H3K4Me3). (2) Activation of this locus as shown by Histone 3 lysine 27
acetylation (H3K27Ac). (3) Conservation of the DNA sequence across several mammalian
species as represented by the line of hash marks represents. (C) Mature miR-21 and Ago2 bind
the miR-21 promoter. 1 μg of DNA added in all lanes, 2.5 mM miR-21 synthetic RNA oligo
added to lanes 2 and 3. Purified Ago2 (0.03 μg) added to lane 3. Note: bands at *80 bp in lanes
2&3 are miR-21 primer dimers. Data is representative of five replicates (Color figure online).
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alternative computational approaches that allow for both miRNA-induced repression
and promotion would provide a more complete view of the cellular mechanics. Further,
the true percentage of miRNAs that are involved with promotion remains unclear – it
could be that this is a phenomenon only used by a select group of miRNAs or it could be
that every miRNA is equally a repressor or promoter depending on the cellular state and
environment. The results presented here are focused upon miR-21 because it is known to
be involved with many disease pathways including colorectal cancer (Asangani et al.
2008), breast cancer (Frankel et al. 2008) and is already known to be associated as a
signature for mycoardial infaraction (Roy et al. 2009) and other human disease issues
(Hinton et al. 2012), understanding both its ability to repress and promote is key to
understanding its proper function. However, we have idenitifed many other miRNAs
that bind to their promoter region, indicating that this regulation is likely to exist for
other miRNAs. From this work, a critical question that emerges is: what cellular
environments help define the role miRNAs play as either repressors or promoters if it is
that they can play both roles? The opportunity to study miRNAs in both roles over
multiple environments and cell types will help provide additional understanding and
importance to dynamic computational models that can help decipher the meta-level
regulatory mechanisms of miRNA regulation. Given the complex dynamic nature of
these interactions, methods of computational intelligence and machine learning will be
of central importance.
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Abstract. The artificial epigenetic network (AEN) is a computational
model which is able to topologically modify its structure according to
environmental stimulus. This approach is inspired by the functionality
of epigenetics in nature, specifically, processes such as chromatin mod-
ifications which are able to dynamically modify the topology of gene
regulatory networks. The AEN has previously been shown to perform
well when applied to tasks which require a range of dynamical behaviors
to be solved optimally. In addition, it has been shown that pruning of
the AEN to remove non-functional elements can result in highly com-
pact solutions to complex dynamical tasks. In this work, a method has
been developed which provides the AEN with the ability to self prune
throughout the optimisation process, whilst maintaining functionality.
To test this hypothesis, the AEN is applied to a range of dynamical
tasks and the most optimal solutions are analysed in terms of function
and structure.

1 Introduction

Biological systems have many innate advantages when compared to typical com-
putational systems. Principally these advantages revolve around the ideas of
adaptability, robustness and evolvability [7,10]. It has long since been the goal
of computer scientists and engineers to model biological systems in an attempt
to capture these properties in silico.

Since the inception of biologically inspired computer science, there have been
many successes both in capturing the properties of biological systems and using
these models to perform computation. It is now commonplace for bio-inspired
models to be the state of the art in their field [6,12,19,20]. Certain biologically
inspired models are derived from the idea of trying to model their biological
counterpart with high levels of detail whereas others take a much more simplistic
approach, omitting a vast amount of biological detail. Yet even these simplis-
tic models remain functional and are capable of capturing real-world complex
c© Springer International Publishing Switzerland 2015
M. Lones et al. (Eds.): IPCAT 2015, LNCS 9303, pp. 153–165, 2015.
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Fig. 1. DNA being wound round histone octamers into a chromatin fiber

dynamics [2,18]. This poses the question, what is the correct level of abstraction
to model a biological system for computation whilst maximising function and
reducing model complexity and overheads?

In previous work we have demonstrated that there are significant benefits
in increasing the biological faithfulness of artificial gene regulatory networks via
the incorporation of an epigenetic analogue. This model, the Artificial Epige-
netic Network showed a greater ability to abruptly change its network dynamics
resulting in better performance when applied to complex dynamical tasks. In
addition the AEN also allowed for the autonomous decomposition of complex
tasks into smaller sub-tasks [16,17].

In this work we adapt the networks to allow a more unconstrained type of
optimisation which is not limited by the number of inputs and outputs set by
a task. This gives the networks potential to significantly alter their size and
topology during optimisation to create very small, highly efficient solutions to
real world complex tasks.

2 Background

Epigenetics refers to mechanisms which result in changes in gene expression with-
out altering the underlying DNA [1]. From both a logical and physical perspec-
tive, epigenetics can be considered to be acting on a different level of abstraction
compared to genes. A gene can be considered to be a section of DNA which is
typically used as an encoding for the primary structure of a protein [11]. Pro-
teins are molecular machines which are responsible for a significant amount of
the biochemical interactions within living organisms.

Eukaryotes posses a higher order genetic structure called chromatin. Chro-
matin acts as a genetic packaging which facilitates the condensing of 2 m of DNA
into a 2µm diameter nucleus within a typical human cell. This is achieved by
wrapping the DNA through 1.67 toroidal super helical turns around a histone
octamer. This combination of histones and DNA is called the nucleosome and
is depicted in Fig. 1. These histone octamers can dynamically change their posi-
tion on the DNA strand allowing the cellular machinery to access certain genes,
effectively acting as a genetic switch. This is the fundamental principle on which
the AEN was built upon.

When optimising networks for a given task, it is common practice to generate
heuristics about the task and heuristics about the mapping of the task on to the
network. For example, if a system contains 10 state variables and is controlled
using 2 inputs, it would be fair to assume that the network applied to controlling
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this system would require at least 10 inputs and produce 2 outputs, omitting any
processing units in between. This creates 2 potential knock on effects. Firstly it
is assumed that all 10 variables are required in order to solve the task. Secondly,
the topology and size of the network are limited according to the task constraints.
This is especially problematic when computational efficiency is of importance.

In previous work it has been shown that by comprehensive post processing
of the AEN after optimisation, typically involving a brute force search, it is
frequently the case that a significant number of genes and epigenetic switches
contained in the network are surplus to the network in terms of functionality
[15–17]. These surplus units can be removed without altering the performance
of the networks, resulting in very small networks which maintain the behaviour
of their larger counterparts. This is beneficial because it provides significant
information about the exact functionality of the network, the emergence of its
behavior and the system it is controlling [15–17].

In the following section, a set of adaptions to the AEN are described which
allow for a higher level of plasticity during optimisation by not constraining its
size and topology to the dimensions of the task which it is trying to solve. This
is done specifically with the idea of the networks being able to create as efficient
solution as possible autonomously, during optimisation, without the requirement
of significant levels of post processing.

3 The Artificial Epigenetic Network

The AEN is built upon an artificial gene regulatory [9] network with the addition
of an epigenetic control layer which dynamically alters the expression of genes
during execution. It consists of artificial genes and artificial epigenetic switches
which are separate in form, but interact functionally during execution of the
network.

3.1 Artificial Genes

Each gene within the network contains a set of parameters which are listed in
Table 1. The inner workings of each gene are a parameterisable sigmoid function.
The expression level is calculated using the sigmoid function in Eq. (1), where s
(sigmoid slope) ∈ [0,20], b (sigmoid offset) ∈ [−1,1] and x is the weighted sum
of the expressions of connected genes where i and j are each genes respective
weight and expression level (2).

f(n) = (1 + e−sx−b)−1 (1)

x =
∑n

J=0ijwj (2)
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3.2 Artificial Epigenetics

The artificial epigenetic control layer is a set of switches (approximately 20 % of
the number of genes, which was found to be suitable after prior experimentation
[15,16]). The parameters of which can be seen in Table 1. The switches are
connected to gene(s) and function according to the same equations the genes
use (Eqs. 1 and 2). The difference being that when the result of Eq. 2 is above
0.5, the genes expression values which are connected to the epigenetic molecule
are set to 0 (effectively removing them from the network). These values have

Table 1. Ranges of the variables within a gene and epigenetic switch. The values are
identical to those in [15,16]

Gene

Variable Type Range

Gene Expression Real 0;1

Weight Real -1;1

Sigmoid Offset Real -1;1

Sigmoid Slope Int 0;20

Input Number Real 0;1

Output Number Real 0;1

Identification Real 0;1

Proximity Real 0;0.25

Epigenetic Switch

Variable Type Range

Identification Real 0;1

Proximity Real 0;0.15

Sigmoid Offset Real -1;1

Sigmoid Slope Int 0;20

3.3 Adaptations

Connections within the network are a product of an n-dimensional space where
the connections are not directly encoded, but are a product of the genes’ interac-
tions within this space and are compiled at runtime. The use of this technique,
referred to as indirect representation, has demonstrated advantages in terms
of the evolvability of the underlying structure [8,14]. In previous instances an
indirect representation was used to derive the connections between genes and
epigenetic switches. In this work, this principle is extended to include the map-
ping of the inputs and outputs of the task onto and from the network.

The implementation of indirect representation in this instance uses 4 variables
within each gene. These are the input number, output number, identifier and
proximity (Table 1). The input and output number describe a position in two
separate one dimensional spaces which specify which environmental input and
output, if any, they will be connected to (Fig. 2). Within this space, there are
partitions each of which correspond to an environmental input or output. The
size of these partitions is created at runtime and equate to 1/average number of
genes over all networks. A partition is then attributed to each input, allocating
approximately half of the input space to mapping to a specific input. An example
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Fig. 2. An example of how the inputs and outputs are mapped from the task onto the
AEN. Each gene exists within both the input and output space, but only genes within
the partitions will be allocated an input or provide an output. This image shows that
gene A is connected to input 2, and gene C is connected to input 1. Gene A provides
the output for the network

of this can be seen in Fig. 2, where a large proportion of the input space does
not map any input onto the gene.

Each gene has a location in the input space, output space and connection
space meaning a gene can be any combination of an input, an output, or a
processing gene. Upon network initialisation at the start of an experiment, each
network is provided with all possible environmental inputs and outputs exactly
once. This is achieved by a single gene existing in each partition of the input and
output space. The networks are then free to optimise their topology and remove
or add additional inputs and outputs from the network during optimisation.

The connections between genes and epigenetic switches use a different space
called the connection space which is illustrated in Fig. 3. The connection space
is different from the input and output space because genes’ connections are a
product of both their position and size. Each gene contains an identifier and
a size, which specifies a position for that gene within the connection space.
Genes and epigenetic switches are connected when their representations in the
connection space overlap. This can be seen in Fig. 3 as can the resulting network.
In addition, this method also allows for non functioning genes to be effectively
bred out of the network by moving to an inactive part of the connection space.

Using this method, environmental inputs are not directly mapped onto a
gene. Therefore, the size of the network is no longer constrained to the sum of
the environmental inputs and outputs. Only if genes exist within specific places
within the input and output spaces will they be allocated inputs or provide
outputs.
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Fig. 3. An example of how the input, output and connection space come together
to form the topology of the AEN. The genes, light shaded circles exist in the input
space, connection space and the output space. Whereas the epigenetic switch A (darker
shaded circle) only exists within the connection space. However, because all genes exist
within this space also, the epigenetic switch can via proxy also control the inputs and
outputs of the AEN

4 Methodology

This work sets out to assess if the adaptions made to the AEN allow for the
autonomous reduction of network size throughout optimisation whilst maintain-
ing underlying functionality.

To address these questions, the AEN is applied to three tasks. These are
the coupled inverted pendulum tasks [5], a processor scheduling tasks and the
towers of Hanoi puzzle. From this we ascertain the size and functionality of the
solutions provided. Prior to execution, the AEN has several key parameters to
be initialised. Firstly the number of genes in the network. This is set between 15
and 20 to begin with and has a minimum value of 2 throughout optimisation.
The networks are initialised with between 2 and 5 epigenetic switches with a
minimum of 2 throughout optimisation.

The networks are optimised using NSGA II which has been shown to be very
effective at evolving solutions within a multidimensional search space [3,4]. A
total of 50 runs will be conducted for each experiment with a population size of
250 over 250 generations.

4.1 Coupled Inverted Pendulums

The coupled inverted pendulums task [5] consists of a set of 3 pendulums which
are mounted to carts (1 per cart) on a 1-dimensional track. These carts are cou-
pled together by a tether which restricts each cart’s movement. The carts exist
within a finite space, and must avoid the edges of this space. The objective of
the task is to move the pendulums from the lower equilibrium position (swinging
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below the carts), and balance them in the upper unstable equilibrium position
via the movements of the carts to which they are attached. To do this requires
a periodic swinging movement to generate momentum in the pendulums; when
the upper unstable equilibrium point is reached, the carts have to adapt their
periodic behaviour to maintain it in that position.

The AEN controller is provided with 10 environmental inputs which refer
to the position, momentum and angular velocity of a single cart and pendulum.
These inputs are subject to a noise term to increase the difficulty of the task and
to promote robustness in the evolved controllers. The AEN using this produces
2 outputs for each of the three carts. This is repeated 3 times for each time
step. There is a total of 4000 time steps in total. There are 2 objective fitness
values which represent the AEN’s fitness. Firstly its objective performance, and
secondly, an aggregate of its performance and the size of the network.

4.2 Processor Scheduling

The processor scheduling tasks simulates a multi core system and a set of tasks
which need to be executed on it. There are 4 cores, each capable of executing
a single task at a time. Each core is only capable of executing tasks for a set
amount of time before its temperature exceeds a critical threshold of between
150 and 300 units (core 1 = 150, core 2 = 200, core 3 = 250, core 4 = 300).
At each time step, if the core is currently executing its temperature will rise at
1 unit per time step. If the core is paused or inactive, the core will reduce its
temperature by 1 unit per time step unless the temperature reaches 25, upon
which it will remain static.

Each core can do one of 2 things at any given time. It can accept a task to
process, and it can pause and un-pause any currently active core. If a core is
active, it must finish processing its current task until completion, and cannot
accept another task until that point. The AEN takes 4 inputs from each core
and then produces 2 outputs. The four inputs are the core’s temperature, its
activity state and its pause state. The first of the 2 outputs controls whether
a task is to be loaded on a core or the core’s pause state is to be toggled. The
second of the 2 outputs specifics which core the action is to be applied to.

There are 30 separate tasks to be scheduled. Each task is attributed a diffi-
culty requiring either 50, 125 or 200 time steps to complete. A level of noise is
introduced by taking these time step values from a Gaussian distribution. This
is to provide noise to the simulation to improve the robustness of the AEN con-
trollers. The task’s difficulty is the number of time steps required to complete
that task. The 3 different task difficulties are 50, 125 and 200. In total there are
approximately 3000 consecutively executed time steps worth of tasks and the
scheduler has 2000 time steps in which to have executed all tasks. The objective
fitness values are the amount of tasks completed, the time steps required to do
so, and an aggregate of the number of tasks completed and the network size.
Only when all tasks are executed and run to completion will the scheduler stop
before the 2000 steps are reached. At this point, the objective for the number of
time steps automatically becomes active.
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4.3 Towers of Hanoi

The towers of Hanoi is an NP hard mathematical puzzle [13]. The problem
consists of 3 pegs and in this instance 5 discs of varying size, ordered from
largest to smallest on the first peg. The objective is to move the discs from the
first peg to the third peg. This is to be done without placing a larger disc upon
a smaller one. The problem is represented as 2 sets of 3 variables. The first 3
describe the number of discs on each peg. The second 3 describe the sum of the
weights of the dics on each peg, with 5 being the heaviest and 1 the smallest. The
starting state is represented as [5,0,0,15,0,0] with the goal being [0,0,5,0,0,15].
The AEN will produce 2 outputs, the peg from which to move a disc, and the
peg to move that disc to. If the move is invalid the task remains in its current
state.

5 Results

For all tasks the AEN was able to find an optimal solution. In the coupled
inverted pendulums, this was to maintain the pendulum in the upright position.
For the scheduling task, this was to schedule all 30 tasks (of 3000 linear time
steps in length) within 2000 time steps. For the Towers of Hanoi, all 5 discs were
moved to the third peg.

For all tasks there was a distribution of results similar to that of the cou-
pled inverted pendulums task shown in Fig. 4 where there is a general trade off
between function and the size of the network. There is however an exception to
this for the scheduling task where the highest performing network is also the
smallest.

For all tasks an optimum solution is found containing under 6 genes or epi-
genetic switches. In every case this is below the sum of the number of inputs and
outputs set by the task. It is to be noted that the number of genes and epige-
netic switches within a network is typically lower than that shown in the results
graphs. This is because there are often genes and epigenetic switches which exist
within the network but are not connected either directly or via proxy to an out-
put. Hence due to the small size of the AENs, they can easily be reduced in size
further by very simple analysis.

5.1 Coupled Inverted Pendulums

There are a significant amount of instances of the AEN which are capable of
producing the optimum behaviour. Of which, all of them contain either 9 units
of less. This is 3 less than the sum of inputs and outputs set by the task. Of these
instances there is a general trend of how the networks solve the problem. All of
these instances use 2 specific sensors to control their behavior. These specify the
position and angular velocity of the pendulum, and each of the networks which
achieved the optimal behaviour used these inputs. In addition, all these networks
utilise at least one epigenetic switch.
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Fig. 4. The size of the networks (y axis - lower numbers are better) plotted against
the performance of the networks (x axis - higher numbers are better) for all AEN’s at
the final generation. The performance is calculated as the normalised amount of time
steps the pendulums were positioned in the upright position. The threshold for the
AEN developing an optimal balancing behavior is above 0.7.

When the size of the AENs reaches a threshold, it becomes possible to math-
ematically reproduce their behavior in a set of equations. An example of the
smallest network which can optimally solve the task is shown in Eq. 3 (It is to
be noted that this network contained 3 genes and 2 epigenetic switches How-
ever, one of each was unconnected, and has been removed). This equation fully
describes each functional gene within the network to 2 decimal places where S0

and S9 are sensor inputs from the task specifying the speed and location of the
pendulum.

Gene 1 =
1

1 + e(−7.90·S0·(0.63))−0.76
Gene 2 =

1
1 + e(−6.38·S9·(−0.48))−0.74

Gene 3 =

⎧
⎨

⎩

0.45 if
1

1 + e(−12.90·(gene3))−0.07
< 0.5

0 otherwise
(3)

5.2 Processor Scheduling

Of network structures capable of solving this task, the majority showed very
little correlation between structure and function. Some instances of the AEN
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Fig. 5. The temperatures of all 4 cores with all 30 tasks successfully scheduled in 1653
steps. The grey boxes denote the individual tasks and how long they were executed for
in each core. In cores 2, 3 and 4 it can be seen that for the majority of execution, the
temperature is significantly lower then the threshold for damage (core 1 = 150, core 2
= 200, core 3 = 250, core 4 = 300).

solve the task utilising the majority of the environmental inputs. Approximately
40 % use epigenetic switching to achieve this. However, there are also instances
which function well which utilise no inputs from the environment and use no
epigenetic switches.

In general, the overall functionality in which the AEN uses to solve the task
is to create an oscillator which allows execution of a task for a small amount of
time, and then pauses the executing core for a set amount of time. This allows
for reasonably efficient execution of the tasks without significantly increasing the
temperatures of the cores.

Equation 4 shows a very efficient instance of the AEN which is able to sched-
ule all 30 tasks. There was a single gene and 2 epigenetic switches within this
network which were removed as they were not connected to any other units. This
is the mathematical representation of the the AEN shown to be scheduling the
tasks in Fig. 5.

Gene 1 =
1

1 + e(−8.04·(gene2+gene3))−0.14
Gene 2 =

1

1 + e(−7.39·(gene1+gene3))−0.31

Gene 3 =
1

1 + e(−6.82·(gene1+gene2))−0.30

(4)
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5.3 Towers of Hanoi

The towers of Hanoi task is different from that of the previous two in that it
is known to have a recursive solution. This is demonstrated by the analysis of
the AEN’s which are able to solve it, with almost all instances having evolved
solutions which contain no inputs.

Gene 1 =
1

1 + e(−19.58·(gene2+gene3))−0.08
Gene 2 =

1

1 + e(−11.8·(gene1+gene3))−0.36

Gene 3 =
1

1 + e(−13.3·(gene1+gene2))−0.08

(5)

Although many of the networks which solve the task use 6 or more genes or
epigenetic molecules, many of these units are surplus to the functionality of the
network, and a significant number of solutions only contain 3 functional units.
A mathematical example of which can be seen in Eq. 5. The best solutions are
able to solve the problem in about 150 moves (where 31 is optimal), however the
AEN’s also try a significant number of invalid moves which accounts for usually
the same number of valid moves. Hence, for 150 valid moves, the AENs will
usually try around 300 moves.

6 Conclusions

In this work we have shown that the adaptations to the AEN give it the capa-
bilities of autonomously evolving efficient solutions to complex tasks. The AENs
produced solutions to all of the tasks outlined which contain a combination of
6 or less genes and epigenetic switches. With very simple post processing, the
most efficient solutions contained a combination of only 3 epigenetic switches,
whilst maintaining functionality. In addition, this work also adds weight to the
idea that the AEN is a general processing tool, capable of solving a wide range
of problems.

In future work, we plan to investigate how the solutions produced by the
AEN can be encapsulated within electronic circuits. Additionally, we plan to
investigate how apparent biological properties such as genetic redundancy are
within the AEN structures.
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Abstract. To ensure homeostasis as well as proliferation, cellular sys-
tems usually adapt to changes in environmental and intracellular con-
ditions at the level of the flux phenotype. The latter is characterized
by the biochemical reaction rates in the underlying metabolic network
and depends on the concentration of individual metabolites. As a result,
concentrations of metabolites with large effect on the flux phenotype are
expected to be tightly controlled. We examine the sensitivity of the flux
phenotype upon changes in metabolite concentrations via the shadow
prices in a flux balance analysis using multiple contending objectives
of the central carbon metabolism of E. coli. The shadow prices of the
metabolites are determined individually for sampled solutions of the
Pareto front and objective functions. Utilization of 13C flux measure-
ments for different environmental conditions enables us to draw con-
clusions about the relation of shadow prices and physiological cellular
states. We find that E. coli operates in the vicinity of an area of the
Pareto front which exhibits low variation of shadow prices compared to
the whole front, which enables to react to changing conditions without
large changes in the reguatory machinery. In addition, the determined
shadow prices under different conditions suggest an increased require-
ment for regulation of concentrations of metabolites from the pentose
phosphate pathway under carbon-limiting conditions compared to aerobe
conditions. Our study extends the applicability of concepts from classical
constraint-based modelling in a multi-objective settings to obtain predic-
tions about regulation of metabolite levels based solely on stoichiometry.

Keywords: Flux balance analysis · Shadow prices · Multi-objective
optimization · Sensitivity · Escherichia coli · Central carbon metabolism

1 Introduction

Biological systems perpetually sense and respond to changes in environmental
and intracellular conditions. To ensure homeostasis as well as proliferation, cellu-
lar systems usually adapt to the experienced changes via an integrated response
of metabolic and regulatory networks manifested at the level of the flux phe-
notype. The latter is characterized by the biochemical reaction rates in the
c© Springer International Publishing Switzerland 2015
M. Lones et al. (Eds.): IPCAT 2015, LNCS 9303, pp. 169–172, 2015.
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underlying metabolic network and depends on the concentration of individual
metabolites. As a result, concentrations of metabolites with large effect on the
flux phenotype are expected to be tightly controlled.

Shadow prices describe the sensitivity of the objective function of a linear pro-
gram upon perturbation of individual constraints. In a cellular setting, shadow
prices can be used to analyze the change of the optimal flux phenotype upon
introduction/removal of quantities of a given metabolite in the framework of
flux balance analysis [3,4,7]. It has been shown that shadow prices are suitable
predictors of temporal variation of metabolite concentrations as well as indica-
tors of the growth-limiting effects of the respective metabolites [2]. Therefore,
shadow prices can be used to examine the requirement for regulating individual
metabolite concentrations solely based on a stochiometric model of the metabolic
network.

To the best of our knowledge, existing studies have concentrated only on
shadow prices for a single objective function. However, it was shown that utiliza-
tion of a combination of multiple objective functions can improve the accuracy
of the predicted flux phenotypes [5]. For the case of Escherichia coli, a multi-
objective analysis established that flux phenotypes determined under different
environmental conditions could be best described by individual weightings of
objective functions [6]. Moreover, it was found that flux phenotypes are in very
close vicinity to the Pareto front describing the set of noninferior solutions, i.e.,
flux phenotypes which can only improve one objective at the price of reducing
at least one other objective.

Here, we examine the shadow prices in an analysis using multiple contending
objectives of the central carbon metabolism of E. coli in accordance with the
work of [6]. The shadow prices of the metabolites are determined individually for
sampled solutions of the Pareto front and objective functions. Utilization of 13C
flux measurements for aerobe as well as carbon- and nitrogen-limited conditions
allows us to determine the section of the Pareto front in which the cell operates
under the examined conditions. Therefore, the combination of experimentally
estimated fluxes and multi-objective analysis enabled us to draw conclusions
about the relation of shadow prices and physiological cellular states.

Our results indicate that E. coli operates in the vicinity of an area of the
Pareto front which exhibits low variation of shadow prices compared to the
whole front. This finding implies that E. coli is able to react upon changes in
environmental conditions without large changes in the regulatory machinery.
In addition, the determined shadow prices under different conditions suggest
an increased requirement for regulation of concentrations of metabolites from
the pentose phosphate pathway under carbon-limiting conditions compared to
aerobe conditions.

2 Materials and Methods

The Pareto front describes the set of noninferior solutions of a multi-objective
programming problem. A representative set of solutions can be determined by
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successive sampling of solutions which cover the entire Pareto front. We deter-
mine a representative set of the Pareto front solutions of E. coli ’s central carbon
metabolism in accordance with [6], utilizing the objective functions of max-
imizing biomass yield, maximizing ATP yield, and minimizing total flux. The
representative subset of the Pareto front is determined via the epsilon-constraint
method [1]. Shadow prices are then individually calculated for each element of
the representative set and each objective function. To this end, we fix all but
one of the objectives to the values of an element of the representative set, and
calculate the effects of perturbing the steady-state constraints (corresponding to
the individual metabolites) on the remaining objective. Elements of the repre-
sentative subset that are closest to the experimentally estimated flux phenotypes
are determined by optimization as described by [6].

3 Results

We compare shadow prices across the entire Pareto front as well as physio-
logical flux phenotypes. Moreover, we provide an analysis of shadow prices for
physiological flux phenotypes to obtain insights into the adaption of regulatory
mechanisms employed upon environmental changes.

Opposing changes of shadow prices with respect to individual objectives upon
shifts in environmental conditions indicate that concurrent regulatory mecha-
nisms may have to be utilized. Based on Kendall’s rank correlation coefficient,
we find that shadow prices across the experimentally determined flux pheno-
types are highly correlated for each two of the three objectives and for most of
the metabolites. In contrast, correlations are lower across the whole Pareto front
and less metabolites show high correlations. We conclude that E. coli operates
near an area of the Pareto front enabling adaptation to environmental changes
with low requirement of concurrent mechanisms for regulating the concentration
of individual metabolites.

The comparison of shadow prices obtained for different environmental condi-
tions identifies increasing and decreasing sensitivity to changes in metabolite con-
centrations. In particular, we find that metabolites of the pentose phosphate path-
way exhibit larger sensitivity under conditions of carbon- and nitrogen-limitation
in comparison to aerobe conditions. This finding indicates that metabolites of the
pentosephosphatepathwayshouldbemore regulatedunder stress conditions.Alto-
gether, our study extends the applicability of concepts from classical constraint-
based modeling in a multi-objective settings to obtain predictions about regulation
of metabolite levels based solely on stoichiometry.

References

1. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers, Boston (1999)
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Abstract. High-throughput biological data analysis has received a large
amount of interest in the last decade due to pioneering technologies that
are able to automatically generate large-scale datasets by performing mil-
lions of analytical tests on a daily basis. Here we present a new network-
based approach to analyze a high-throughput phenomic dataset that was
collected on maize inbreds and hybrids by an automated phenotyping
facility. Our dataset consists of 1600 biological samples from 600 differ-
ent genotypes (200 inbred and 400 hybrid lines). On each sample, 141
phenotypic traits were observed for 33 days. We apply a graph-theoretic
approach to address two important problems: (i) to discover meaning-
ful patterns in the dataset and (ii) to predict hybrid performance in
terms of biomass based on automatically collected phenotypic traits.
We propose a modelling framework in which the prediction problem
becomes transformed into finding the shortest path in a correlation-based
network. Preliminary results show small but encouraging correlations
between predicted and observed biomass. Extensions of the algorithm
and applications of the modelling framework to other types of biological
data are discussed.

1 Introduction

In the continuous effort to obtain improved crop plant varieties, high-throughput
methods have taken center stage in recent years. The methods to assess genomes
and metabolomes, to take just two examples, are fully established and standard-
ized protocols and processing software are available. This is not the case for
phenomic data, which is the large and parallel collection of phenotypic informa-
tion on a large number of samples.
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Fig. 1. The hybrid principle. A: A Dent and a Flint inbred line (green and red respec-
tively) combine in a cross to give rise to a hybrid. Both Dent and Flint are taken to be
homozygous for each locus, therefore their two chromosomes are identical. B: hybrid
vigour (heterosis). Hybrids are vastly superior in performance measures such as bio-
mass. C: hybrid space. The panel of nearly 200 inbred lines could give rise to about
10,000 hybrids. The blue dots on the grey background represent the 400 hybrids that
were experimentally tested. Thus only 4 % of hybrid space is probed (Color figure
online).

Phenomic data usually implies taking a large number of pictures of a plant
from different angles and at different wavelengths during an extended period
of development. The images are automatically processed and features, e.g. plant
height and volume, are extracted, yielding a three-dimensional matrix of samples,
features and time [3,13]. In order to restrict human interference to a minimum
and to make sure each plant is watered and phenotyped regularly, fully auto-
mated robotic greenhouses have been constructed in which the plants are moved
on conveyor belts around the greenhouse until it is their turn to be weighed,
watered and imaged [8].

The particular biological question that motivates our work is how phenomics
of a large variety of maize cultivars could be used in aiding the selection of
superior varieties for agricultural use. Maize is the worlds third most important
crop plant (after wheat and rice) and has an impressive track record in improved
yields for more than eight decades. The technology behind this is to cross two
homozygous varieties (inbreds) yielding a highly homogenous population of het-
erozygous offspring, so-called hybrids, which are far superior to their parents.
This effect is widely known as heterosis [1,6,15] and is illustrated in Fig. 1.

Since the number of possible hybrids that can be generated from panels of
inbred lines (hybrid space) is the product of the number of parental male and
female lines (tens to hundreds of thousands potential crosses each year) it is not
possible to test each of them even in the most rudimentary fashion which has
motivated the development of computational methods that predict the desired
properties. While prediction is of course likely to be very error-prone, it can at
the very least help to considerable reduce in size the part of hybrid space that
needs to be experimentally evaluated.
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Several statistical and machine learning methods have been proposed to this
end, some of them focusing on genomic prediction [14,19], others integrating
both genetic and metabolic profiles [5,16]. The majority of these approaches
make use of both feature selection and regression techniques for reducing the
number of selected biomarkers and generating more powerful and interpretable
models. Classical approaches, such as partial least squares [18], and more recent
ones, like regularization and LASSO-based techniques [7], have proved to reach
good performance in this field. Alternative approaches [4] also exist where, for
instance, biomass/heterosis prediction is treated as a classification problem and
methods such as support vector machines, linear discriminant analysis and ran-
dom forests are used to generate predictive models [7].

In this paper, we take a graph-theoretical approach [17]. After presenting an
exploratory overview of the data we convert them into a correlation network and
analyze the properties thereof. Finally, we develop an algorithm that explores
the correlation network to predict properties (performance) of candidate hybrids
from the same breeding program. Section 2 formally describes the main features
of our dataset. The methodology (i.e., data preparation, exploratory analysis and
predictive breeding approach) is presented in Sect. 3 and preliminary results are
discussed in Sect. 4. In Sect. 5 we propose possible extensions to this approach.

2 Dataset

In our study, 197 inbred lines derived from European and North American vari-
eties form the two so-called heterotic pools, “Dent” and “Flint” (sets D and F in
Definition 1, below). The hybrids in this study are the F1 generation of a direc-
tional cross between a Dent and a Flint inbred line, such that the male parent is
always a Flint. Two subsets of respectively 26 Dents and 22 Flints were selected
as founders (sets D′ and F ′ in Definition 1) of the cross and 392 Dent x Flint
hybrids were made. The number of hybrids is a mere 4 % of the hybrid space
spanned by the 115 Dents and 82 Flints, but 58 % of all possible Dent x Flint
hybrids derived from the founders. Hereafter, we shall refer to Dents, Flints and
hybrids as the three genetic pools or simply “pools”.

Plants were grown from seeds and were transferred to the robotic platforms
as seedlings. Four seedlings of the same genotype were place in a carrier. Each
plant was imaged by a visible-range, UV and infrared camera from several angles.
From the raw image files, features of interest were derived as described in [9,10].
From over 300 features, the most reproducible 141 were selected. They describe
either spectral (e.g. sum of side view fluorescence in the chlorophyll range) or
structural (e.g. visible spectrum side view hull area) properties. Imaging started
13 or 15 days after sowing (DAS) and the initial pictures are an average over all
four plants. Two of the plants were harvested 28 DAS to manually determine
the biomass. The remaining two plants were imaged together and harvested at
the end of the experiment, 48 days after sowing. In each greenhouse run up to
400 carriers (genotypes) can be processed. The data of this study comprise four
greenhouse runs: two with inbreds and two with hybrids.
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The four greenhouse runs were combined into a single dataset, a matrix of
67425 rows and 141 columns. Each row represents the observations on a specific
sample (i.e., carrier) of one of the four greenhouse runs on a specific day after
sowing (DAS). A total of 1584 plants were observed for 34 to 36 days. For each of
the 197 inbred genotypes there were four independent biological samples, and for
each of the 392 hybrids there were two independent samples. In addition, final
biomass measurements (wet weight) on all genotypes was available (modelled as
function γ(·) in Definition 1 below).

Data Preprocessing and Cubes Generation. After median normalisation
by greenhouse run, the values of phenotypic traits of plants of the same genotype
were averaged yielding a matrix of 20404 rows (i.e., one row for each genotype-
DAS pair) and 141 columns (i.e. one column for each phenotypic trait). Since
inbred DAS range from 13 to 48 and hybrid DAS from 15 to 48, we focused our
analysis on the common DASs only, namely 15–48. The analysis of missing values
showed that 66 % of hybrid phenotypes of DAS 15 and 13 % of hybrid phenotypes
of DAS 18 were missing. We therefore also removed DAS 15 from our analysis
and imputed missing values of DAS 18 with random forests [2,11]. The final
dataset is summarized in Fig. 2 as three genotype-feature-time cubes, one for
Dents (115 genotypes of which 26 are founders), one for Flints (82 of which 22
are founders) and one for hybrids (392 genotypes). All three cubes have 141
phenotypic traits and 33 DAS (from 16 to 48). The subdivision into three sub-
cubes is motivated by the genetic relationship that leads to the formation of a
hybrid from exactly one Dent and one Flint. This relationship, a two-generation
pedigree, can be interpreted as a function δ that maps (Dent, Flint) pairs to
hybrids. The pedigree is rendered as a two-dimensional map in Fig. 2.

In the following we introduce some mathematical notation, then used through-
out the manuscript, to formally describe the main features of our dataset.

Definition 1 (Dataset). The dataset under investigation (see Fig. 2) includes
three 3-dimensional arrays of observed phenotypic traits

MD : D × P × T → R
+, MF : F × P × T → R

+, MH : H × P × T → R
+,

a breeding function which maps couples of genotypes to hybrid genotypes

δ : D′ × F ′ → H

and a genotype performance mapping which associates a performance measure
(e.g., biomass value) to each genotype

γ : D ∪ F ∪ H → R
+,

where:

– P = {p1, . . . , pn} is a set of phenotypic traits,
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Fig. 2. Preprocessed dataset. The data are subdivided into three cubes according to
the genetic pools (Dent, Flint and hybrid). The Dent pool contains 115 lines of which
26 are founders, the Flint pool contains 82 lines of which 22 are founders and the hybrid
pool contains 392 lines. The number of points on the time axis (33) and the number
of features (141) is the same in each cube. One Dent and one Flint are the parents of
one hybrid. This relationship is captured in the pedigree which is represented here as
a two-dimensional mapping from parental inbreds to hybrid.

– D = {d1, . . . , dm} is a set of Dent genotypes,
– D′ ⊆ D | D′ = {d1, . . . , dm′},m′ ≤ m is a subset of Dent genotypes tested for

hybridization,
– F = {f1, . . . , fr} is a set of Flint genotypes,
– F ′ ⊆ F | F ′ = {f1, . . . , fr′}, r′ ≤ r is a subset of Flint genotypes tested for

hybridization,
– H = {h1, . . . , hs} is a set of hybrid genotypes,
– D ∩ F ∩ H = ∅,
– T = {t1, . . . , tq} is a set of natural numbers representing days after sowing
(DAS).

The correlation (based on phenotypic traits) between couples of genotypes
observed at the same time can be computed, according to the the notation
defined above, by the function ρ : (D ∪F ∪H)× (D ∪F ∪H)×T → [−1, 1] ∈ R.

3 Method

3.1 Problem Definition

In this work we address two important problems:
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1. to discover meaningful patterns in the correlation structure of cubes MD, MF
and MH,

2. to rank all couples of available Dent and Flint genotypes according to some
measure (based on biomass) which enables the prediction of hybrid perfor-
mance.

3.2 Data Normalization

The range of absolute values of each column differed strongly from feature to
feature. Moreover, the range of values of a single feature was in some cases
very different in hybrids compared to inbreds leading to bimodal distributions.
For this reason, the columns of each sub-cube were scaled and mean-centered
separately (mean of 0 and standard deviation of 1, Z-scores). This normalization
is necessary to make the features more comparable and thus usable for generating
networks of genotypes. The effect of normalization on the correlation histograms
is illustrated in Fig. 3.

3.3 A Graph-Theoretic Approach for Predictive Breeding

Given the three cubes of Fig. 2 three kinds of correlation structures can be inves-
tigated, namely with respect to genotypes, phenotypes and time. In the first case
the aim is to understand the relationships among genotypes, based on phenotypic
traits. We observe that the mapping δ between pairs of inbreds (i.e., one Dent

Fig. 3. Data normalization. (a) Two examples of heterosis in phenotypic traits. The
range of values is very different for inbreds and hybrids and would lead to a bimodal
distribution if the pools were combined. (b) Heat map and histograms of the correlation
matrix for all inbred genotypes (i.e., dent and flint) on DAS 48 with or without (bottom
and top panels respectively) normalization.
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and one Flint) and hybrids can enrich the analysis based on genotypes because
it connects patterns in the correlation structure of inbreds with patterns in the
correlation structure of hybrids. In the following we will therefore focus on the
analysis of genotypes and only briefly touch on correlations in time and between
phenotypes.

There exist several methods of network inference, some of them developed
in the context of gene regulatory networks, where high-throughput data are
also available [12]. Here we use a correlation-based network, which allows us to
reformulate the problem of predicting hybrid performance as the search for the
shortest path between two nodes.

Definition 2 (Network Nt). Network Nt is a graph (V,E) where:

– V = D ∪ F ∪ H is the set of nodes,
– E = {eij | i, j ∈ V } is the set of edges having weights wij defined as follows:

• wij = 1 − ρ(i, j, t), if (i ∈ D ∧ j ∈ D) ∨ (i ∈ F ∧ j ∈ F) ∨ (i ∈
H ∧ j ∈ H), where ρ(i, j, t) is the correlation between genotype i and
genotype j at day t after sowing.

• wij = 10, if i ∈ H and j ∈ δ−1(i), where δ is the breeding function,

Figure 4 outlines an example of network Nt which combines the intra-pool
correlation structure with the breeding function. Before adding the edges of the
breeding function (those with weight equals to 10), all nodes in each connected
component are from the same pool and the network consists of three connected
components, one for Dents, one for Flints and one for hybrids.

The distance between two genotypes (i.e., nodes) of the same pool in a spe-
cific day t is defined as 1 minus the correlation coefficient between them, given
their phenotypic values in t, and is encoded by edge weights. Edges originating
from the breeding function have a weight equals to 10, which is higher than the
maximum intra-pool weight. This value avoids shortest paths going back and
forth from Dents/Flints to hybrids.

The usage of breeding function edges and distance edge weights has a number
of consequences: (i) a path pdf between a given Dent d and a given Flint f must
exist if at least one hybrid exists; (ii) the length of the path (which is related
to prediction quality) is the sum of its edge weights, which are higher the less
correlated the connected nodes are; (iii) every path pdf must contain at least one
hybrid.

The nodes of the network Nt can be tagged with additional information.
In the following we describe how this property could be exploited to predict
how much biomass a fully-grown plant yields at harvest. The task of hybrid
prediction for our purposes is defined in the following way: to accurately predict
the performance of candidate hybrids given that (i) the parents of the hybrid are
nodes in Nt, (ii) some measurement of hybrid performance on all hybrid nodes
in Nt is available.

Let us therefore assume that we have collected a performance measure (e.g.,
final biomass) on all hybrids in our breeding program. We want to predict the
performance of a candidate hybrid h = δ(d, f) which could be realized by crossing
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Fig. 4. Network Nt. The graph is schematically subdivided into Dent, Hybrid and
Flint nodes. An edge within these components represents the distance, in terms of
correlation, between the nodes (0: maximum positive correlation, 1: no correlation, 2:
maximum negative correlation). An edge between an inbred and a hybrid results from
the breeding function. The illustrated path from d1 reaches f1 via a Dent in the founder
layer D′, a hybrid (h1 = δ(d3, f2)) and a Flint in the founder layer F ′. In our predictive
framework, this path (taken to be the shortest path) provides a means to estimate the
properties of the potential hybrid “d1 ×f1” which is not a node in the graph (otherwise
the appropriate edge would have been present in the graph).

the Dent d with the Flint f . Both d and f are nodes in Nt while h is not a node
in Nt. The idea how to exploit the network (correlation) structure is this: if a
path from d to f exists in the network, then the hybrids in that path for which
the performance measure is known can be used to predict the performance of
h = δ(d, f). The idea is based on the fact that any edge in the network guarantees
a degree of similarity (correlation) between the two nodes based on all phenomic
features. Therefore it is reasonable to expect a similar amount of correlation also
for the performance measure which is a phenotypic trait as well. By using highly
correlated genotypes as stepping-stones and the breeding function as a bridge
between the pools, we can get from d to f . Should several such paths exist, the
shortest path is to be used for prediction. Moreover, if more than one shortest
path exists, all hybrids in these paths are averaged. The algorithm in Table 1
sketches the main steps of the process of prediction and quality assessment of
hybrid performance using this approach.

Table 1. Predictive breeding algorithm

Predictive breeding (D, F , Nt)

1. For each couple (d, f) | d ∈ D, f ∈ F
2. Compute the shortest path between d and f in the network Nt

3. Performance measure ϕ(d, f): average value of biomasses of hybrids in this path

4. Quality measure φ(d, f): path length (the smaller the better)
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4 Results

4.1 Biomass Performance Prediction

The predictive breeding algorithm was run to calculate the performance measure
ϕ(d, f) (biomass) on all D ×F pairs in N48, the final time point. It is important
to note that the predicted value of the biomass of one of the known hybrids
is always equal to its observed one because the shortest path from d′ to f ′

is directly via the hybrid δ(d′, f ′). The median path length between unknown
(d, f) pairs is 0.6 and the median number of nodes in each path is 5. Thus, a
representative path starts at a non-founder d, continues via a Dent founder d′,
a hybrid h = β(d′, f ′), a Flint founder f ′, and ends in f . The number of hybrids
in the path is almost always 1 - therefore our performance measure is simply the
biomass of that hybrid. In the few cases in which two hybrids were found in the
shortest path biomass is the average of both.

In order to validate the algorithm, we deleted the edges of each hybrid h =
δ(d′, f ′) in turn and calculated the performance measure ϕ(d′, f ′) in this network.
This is essentially leave-one-out cross-validation. The predicted versus observed
hybrid biomasses are shown in Fig. 5. The correlation between observed and
expected biomass is 0.35. Given that we are using a very simple algorithm that
can be improved in numerous ways, this is an encouraging result. Interestingly,
the path length (the quality measure φ(d, f)) versus the log-ratio of predicted
and observed biomass shows no indication that a longer path length is worse
at predicting hybrid performance. On the other hand, in absolute terms the

Fig. 5. Validation of the algorithm. Performance of known hybrids h ∈ H were pre-
dicted after removing all of their edges in turn. The scatter plot predicted vs observed
is shown in the left panel. In the right panel, the prediction result is compared to the
path length. The red line in both panels corresponds to a correlation of 1.
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Fig. 6. Time line network. Three schematic layers, networks from DAS 18, 47 and 48,
represent the full network of all 33 layers. Note that only on DAS 48 (and 28, not
shown) hybrid nodes are present because biomass measurements are only available on
those days. Therefore a prediction starting on e.g. DAS 47 must travel through the
DAS 48 layer. Connections between layers are here only modelled between the same
genotypes.

maximum path length is only 0.4 (remember that this is for shortest paths
between Dents and Flints of the founder layers, and therefore much shorter than
the general case quoted above). In summary, our preliminary analysis with a
simple algorithm shows encouraging results in the direction of predicting hybrid
performance from inbred phenotypic traits by graph-theoretic methods applied
to the network proposed above.

5 Conclusion and Future Work

In this paper, we present a modelling framework for a large dataset of pheno-
typic features on a set of inbred and hybrid lines that are linked by a breeding
function. We also present a first graph-theoretic algorithm that exploits corre-
lation properties to predict hybrid performance. In the following we will outline
how the proposed network and algorithm could be improved and extended.

Firstly, the algorithm could be improved in a number of ways. For example, it
would be desirable to average over several paths that have a similar path length,
or one could explore the network neighbourhood of the hybrid(s) in the path.
For most of these extensions, suitable helper algorithms already exists and it
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is only a matter of implementing them in the given context. Another topic of
interest is the relationship between the set of phenotypic traits used to compute
the correlation between genotypes and the performance measure. Here we used
all the 141 available phenotypic traits, which are somewhat redundant and in
some cases uncorrelated to biomass. We are in the process of testing several
selection methods to identify an optimal set of features.

The network Nt itself could also be improved and enriched. It is important
to note that several other correlation structures that are related to different bio-
logical levels give rise to networks like Nt. Combining several data sources (e.g.
SNPs, RNA-seq and metabolic profiles) in a single network with the same nodes
would generate networks with multi-weighted edges which could be analyzed by
specific algorithms that consider also the reliability of information coming from
each biological level. Moreover, additional information related to genotypes can
be stored in the nodes, such as several performance measures that could all
contribute to the final prediction.

Finally, a timeline network that collapses all networks Nt into a single net-
work M is of high interest. To that end, edges between nodes from different
time points need to be added, again based on correlations. The simplest way
to achieve this would be to add edges between the same genotypes at adjacent
time points; however, one could also include all pairwise correlations between
members of the same pool and even allow edges to jump several DASs. The
structure of such a network is illustrated in Fig. 6. In the regime of network M ,
the same algorithms could be employed to predict final biomass from nodes in
earlier time layers. Translated into the world of maize breeders, it might allow
selecting promising hybrids at earlier developmental stages which would results
in great savings in time and money. With this happy prospect in mind, our
network model bears considerable potential for hybrid breeding.
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Abstract. This paper presents a novel method for tracking and characterizing
adherent cells in monolayer culture. A system of cell tracking employing
computer vision techniques was applied to time-lapse videos of replicate normal
human uro-epithelial cell cultures exposed to different concentrations of aden-
osine triphosphate (ATP), acquired over a 20 h period. Subsequent analysis,
comprising feature extraction, demonstrated the ability of the technique to
successfully separate the modulated classes of cell.

1 Introduction

The bladder is lined by urothelium, a remarkable tissue that forms the tightest and most
efficient self-repairing barrier in the body. After physical or other damage, the uro-
thelium switches rapidly and transiently from a stable mitotically-quiescent barrier into
a highly regenerative state. The mechanisms involved in this switch are poorly
understood, but are central to understanding the pathophysiology of the human urinary
bladder.

The urothelium is reported to respond to mechanical and chemical stimulation by
releasing various transient mediators, including adenosine triphosphate (ATP), which
have been proposed to play a role in mediating neuronal signalling [1]. In addition, the
urothelium expresses purinergic P2X and P2Y receptors and channels that are
responsive to ATP released from autocrine or paracrine sources [2]. The outcome of
such signalling is incompletely understood, as it could have a feedback role in mod-
ulating neuronal signalling, but alternatively could play a more direct role in urothelial
barrier repair [2]. It has been further suggested that aberant expression of receptors
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and/or mediator release by the urothelium is involved in dysfunctional diseases of the
bladder, including idiopathic detrusor instability and interstitial cystitis [3, 4].

Despite the literature reporting expression of these channels and receptors by the
urothelium, consensus has been confounded by contradictions in experimental
approaches, including the species, specificity of reagents, and the nature of the tissue
preparation (reviewed [5]). Our approach to address these questions has been to
develop a cell and tissue culture system for investigating normal human urothelial cells
and tissues in vitro. In our work, we have shown that stimulation of P2 receptors with
exogenous ATP enhanced scratch wound repair, as did the addition of the ecto-ATPase
inhibitor ARL-67156, which prevents the breakdown of autocrine-produced ATP. By
contrast, blockade of P2 activity inhibited scratch wound repair in either the presence or
absence of ATP [2]. This indicates that ATP is one of the major factors released upon
damage and contributes to the regenerative phenotype.

To understand the effect of ATP on urothelial cell phenotype, time-lapse videos
have been generated of urothelial cell cultures to which exogenous ATP has been
applied. This paper describes the development of an automated method for objective
measurement of these videos using computer vision techniques, followed by the
extraction of features, with the aim of describing the cell behaviour. These processes
are described in detail in Sect. 2, where measurements have been obtained from the set
of videos of urothelial cell cultures with and without exogenous ATP added. The
results with statistical analysis are presented in Sect. 3, verified by manual analysis.

2 Methods

The automated analysis of cell motion comprises the following sequence of analysis:
capturing images of the cells at regular intervals using videomicroscopy, tracking cells
within the video on a frame-by-frame basis using custom-written software, followed by
characterisation of cell movement through the extraction of specially designed features.
Each of these stages is considered in further detail in the following sections.

2.1 Cell Culture and Videomicroscopy

Normal human urothelial (NHU) cells were established in culture as finite
(non-immortalised) cell lines and maintained as detailed elsewhere [6]. For ATP
experiments, cells were seeded in a 12 well plate and the growth medium was sup-
plemented with 0, 10 or 50 μM ATP in replicates of four. Cultures were observed by
differential interference contrast videomicroscopy (Olympus IX81 microscope) in an
environmental chamber with an automated mechanical stage. Timelapse videos were
compiled from individual images captured digitally every 10 min over a 20 h time
period. A sample frame from one such video is illustrated in Fig. 1.

2.2 Cell Tracking

Custom-written software was developed to undertake automated cell tracking using the
OpenCV computer vision programming library [7]. In order to track the relative

186 Z. Zhang et al.



movement of cells within a video, each frame undergoes processing to identify the
likely locations of cells. This process takes the raw videos as an input, performs
common preprocessing to each frame, and then either tries to identify the likely
location of cells, or track the location of previously located cells.

Each video frame initially undergoes Gaussian blurring to remove noise, followed
by simple thresholding against a predetermined fixed value, resulting in a binary image
separating the foreground and background (i.e. the cells from the frame background).
A distance transform is then applied to this binary image, resulting in frames where the
centre of large cells (or masses of cells) have a larger value, the edge of cells have a low
value, and the background has a value of 0.

In order to efficiently estimate the locations of the centres of cells, the local maxima
of the distance images are computed. Local maxima are then selected from the highest
to lowest scoring, with a small area around each selected maxima being filtered out to
reduce the number of selections made within the body of a cell. The (x,y) coordinates
of the selected maxima are then used as estimations of the locations of cells within the
frame.

To estimate the location of a cell within a frame, given the location within the
previous frame, the distance image around the previous cell location is first multiplied
by a simple Gaussian filter. The maximal pixel value in this region can then be used to
estimate the new cell location. This approach, although simplistic, is demonstrated to
be effective. The usage of the distance image promotes matches with the centre of cells,
whilst the application of the Gaussian filter means that matches are preferred that are
close to the original location of the cell.

Although the process for tracking cells works well over the videos so far tested, it is
unable to consistently identify and track cell locations for the duration of the videos. In
order to detect as many cells as possible, a large number of potential cell locations are
initially calculated, with many of these quickly converging into the same locations.
Similarly, the cell tracking process can occasionally fail to track the location of cells
within frames, meaning that if cell detection were only to be performed on the first

Fig. 1. Sample frame from timelapse video of NHU cells in culture.
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frame of the video then many cells would not be tracked in the latter parts of the video.
These difficulties associated with tracking cells can be due to cell proliferation - giving
rise to new cells, cell death – the loss of cells, and cells moving in and out of the field
of view.

In order to cope with these issues, an approach was adopted where duplicated cell
locations are removed from the tracking process and cell detection is performed at
regular intervals to find new candidate locations. This approach is found to be effective
and results in location data for a sufficient number of cells over the duration of the
video to adequately describe the cell population behavior. The entire cell tracking
process is summarised in Fig. 2.

2.3 Feature Extraction

Once the location of cells has been identified for each frame of the video in the form of
(x,y) coordinate pairs, it is possible to extract features with the aim of describing the
cell population behaviour. This was undertaken using the MATLAB programming
environment [8] and to illustrate the processing applied, a single cell from a video

Fig. 2. The process used for detecting cell locations within a video, and tracking detected cells
between video frames
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analysed is taken as an example to demonstrate how features of interest are calculated.
The cell selected has been tracked from a video of NHU cell culture with 50 μM
exogenous ATP. As this cell was successfully tracked from the beginning to the end of
the video, its path can be shown graphically as depicted in Fig. 3.

2.4 Choice of Features

The choice of features to extract from the videos was made on the basis of their
subsequent use in describing cell behaviour. For this reason features of (i) cell
migration speed and (ii) migration persistence were defined as described below.

2.4.1 Cell Migration Speed
Speed of an object is the rate of change of its position. In this case, the aim is to obtain
the migration speed of a cell from a video, which can be determined by calculating the
number of pixels travelled over a certain time interval. The time interval applicable in
this context is that between two consecutive video frames, at a frame rate of one every
10 min. The migration speed is therefore simply obtained by calculating the Euclidean
distance between the two pairs of coordinates for the cell between consecutive frames.
This is shown graphically in Fig. 4 where the initial position of the cell is at coordinates
(74,32) and in the subsequent frame, coordinates (75,33). Hence, the distance travelled
by this cell over time dt (10 min), and subsequently, its speed, can be calculated. The
migration speed of all cells tracked during the entire video was calculated in the
same way.

2.4.2 Cell Migration Persistence
In cell migration, persistence is one of the features in which biologists are most
interested and can be described as the tendency of cells to change direction. Hence,
obtaining the direction of travel of the cell in each frame of the video is essential for
calculating migration persistence.

Fig. 3. Example tracking of a single cell over a 20 h video sampled every 10 min.
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Figure 5 shows how the angle of the vector formed from the coordinates of the cell
in consecutive frames of the video can be used to determine the direction of travel.
Angular Velocity is defined here as the rate of change of the direction of travel of a cell
over subsequent frames. Figure 6 illustrates an example calculation over two consec-
utive frames.

3 Results

Four time-lapse videos have been generated from three classes of NHU cell cultures:
(i) a control culture with no ATP; (ii) a culture with 10 μM ATP; and (iii) a culture with
50 μM ATP. The average cell migration speeds and average angular velocity for each
video is presented in Table 1.

By applying analysis of variance (ANOVA), it can be seen in Fig. 7 that the
separation between the three classes for migration speed are statistically significant.

=deeppsnoitargimlleeC

Fig. 4. Example calculation of cell migration speed.

Fig. 5. Direction of travel of cell migration.
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Verification of these results was confirmed by comparing with manual tracking of 15
random cells for each experimental condition as shown in Fig. 7. Similarly, results for
angular velocity, shown in Fig. 8, also demonstrate good separation between the three
sets of culture conditions.

Fig. 6. Example calculation of cell migration persistence over two consecutive frames.

Table 1. Automated average migration speed and average angular velocity values for a control
culture with no ATP, a culture with 10 μM ATP and a culture with 50 μM ATP.

Cell culture
video

Average migration speed
(pixels/frame)

Average angular velocity
(rads/frame)

Control 1 3.52 1.31
Control 2 3.75 1.35
Control 3 3.45 1.37
Control 4 3.56 1.36
10 uM ATP1 3.04 1.52
10 uM ATP2 3.09 1.39
10 uM ATP3 3.08 1.52
10 uM ATP4 3.01 1.46
50 uM ATP1 2.00 1.79
50 uM ATP2 2.22 1.74
50 uM ATP3 2.06 1.77
50 uM ATP4 1.83 1.85
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Fig. 7. Automated calculation of cell migration persistence. Average migration speeds are
shown in F-distribution form for Control, 10 uM ATP and 50 uM ATP Videos: small circles
mark the mean of the group and the bars the 95 % confidence interval.
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Fig. 8. Calculation of cell migration persistence using manual tracking.
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4 Conclusion and Discussion

The application of an automated approach for tracking and characterizing adherent cells
in monolayer culture has been presented that compensates for the loss and gain of cells
during the course of the video – a commonly encountered problem in tracking systems
of this type. This opens the possibility of lineage-tracking within mixed populations,
where the automated approach removes the labour intensive nature of manual tracking.
Here, the classification of cells from cultures with and without exogenous ATP has
identified statistically significant effects on cell behaviour that will contribute to
understanding of urothelial tissue repair mechanisms and the role of ATP (Fig. 9).

We do not yet understand the implications of the results for urothelial biology as we
have not previously had the capability to measure these aspects of cell behaviour.
Purinergic receptor activation by ATP as a result of cellular release upon injury has
been implicated in cellular migration during the restitution of cornea [9], airway
[10, 11] and bladder [2] epithelial tissues, suggesting common effects. The underpin-
ning mechanisms are poorly understood, although amplification of TGFβ1-induced
actin remodelling associated with cell migration has been suggested [11]. The results of
our study were unexpected in that we found ATP to give increased angular velocity and
reduced migration speeds. However, we studied the effect of exogenous application of
ATP rather than local endogenous ATP release and although speculative, it may be that
the precise mode (concentration/locality) of ATP stimulation might affect cell migra-
tion response including directionality, for recruitment to the wound.

Current and future work is focused on further characterisation of the behaviour of
cells using additional extracted features that relate to cohesivity – the tendency of cells
to form and stay in clumps. The nature of this contact can be described in terms of the
duration of the contact and number of cells that form a clump, as well as the effect on
post-contact migration speed and angular velocity of individual cells. These

Fig. 9. Automated calculation of cell angular velocity. Average migration speeds are shown in
F-distribution form for Control, 10 uM ATP and 50 uM ATP Videos: small circles mark the
mean of the group and the bars represent 95 % confidence intervals.
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characteristics relate to the physical nature of the contact that forms between cells and
provides critical information as to what extent they are transient or more sustained in
character.
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Abstract. Densely connected parts in networks are referred to as “communities”.
Community structure is a hallmark of a variety of real-world networks; individual
communities form functional modules constituting complex systems described by
networks. Therefore, revealing community structure in networks is essential to
approaching and understanding complex systems described by networks. This is
the reason why network science has made a great deal of effort to develop effective
and efficient methods for detecting communities in networks. Here we examine a
novel type of community detection, which has not been examined so far but will
be of great practical use. Suppose that we are given a set of source nodes that
includes some (but not all) of “true”members of a particular community; suppose
also that the set includes some nodes that are not the members of this community
(i.e., “false” members of the community). We propose to detect the community
from this “imperfect” and “inaccurate” set of source nodes using attractor
neural-network dynamics. Community detection achieved by the proposed
method can be viewed as restoration of the original pattern from a deteriorated
pattern, which is also analogous to cue-triggered recall of short-term memory in
the brain. We demonstrate the effectiveness of the proposed method using syn-
thetic networks and real social networks for which correct communities are
known.

Keywords: Complex network � Community � Local detection � Pattern
restoration � Cell assembly � Short-term memory

1 Introduction

In network science, a group of nodes in a network that are densely connected within
this group and are less densely connected with nodes outside the group is referred to as
a “community”. Community structure is a fundamental property of a variety of bio-
logical, social and engineering networks. Development of effective and efficient
algorithms to detect communities in networks has been a big challenge of network
science in the last decade [1, 2].

Many of algorithms proposed up to now aim to exhaustively detect all the commu-
nities in a given network. Another, more economic approach is to detect only a com-
munity to which given source nodes belongs. Starting from source nodes, one explores
the network; exploration will continue until certain criteria are met. The explored region
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or a part of it is then judged as a community to which source nodes belongs. This type of
community detection is described as “local” because it requires only knowledge about the
structure of a local part of the network around the community to be detected.

Several algorithms for local community detection have already been proposed
[3–9]. Nevertheless, most of them are designed to detect a community to which a
‘single’ source node belongs. However, we often encounter practical situations where
community detection for a set of source nodes is required. For instance, suppose that
we know several members of a particular community and wish to find all the members
belonging to this community. Let S be a set of these known members; namely,
S expresses our “imperfect” knowledge about this community. Our knowledge might
also be “inaccurate” and therefore S might include some “false” members (i.e. members
that do not belong to this community). Our task is to find all the members that “truly”
belong to this community starting from the imperfect and inaccurate set of members.
Most of the algorithms proposed up to now [3–9] are unable to efficiently accomplish
this kind of local community detection.

Recently the present author has proposed a method of local community detection
by attractor neural-network dynamics for a single source node [10]. Here we extend
this method so as to make it applicable to local community detection for a set of source
nodes that might be imperfect and inaccurate. We demonstrate the effectiveness of the
proposed method using synthetic networks and real social networks for which correct
communities are known.

We can consider individual communities in a given network as correct patterns
embedded in this network and a set of source nodes, which might include false as well
as true members of a particular community, as a pattern deteriorated from the original
pattern. Detection of the correct community from this imperfect and inaccurate set of
source nodes can therefore be viewed as restoration of the original pattern from the
deteriorated pattern. This is analogue to pattern completion by Hopfield’s attractor
neural-network dynamics [11].

In fact, we have devised the proposed method inspired by possible neural mech-
anisms of cue-triggered recall of short-term memory in the brain. Hence we addi-
tionally discuss biological relevance of local detection of communities in networks.

2 Methods

2.1 Neural-Network Dynamics

Let N be the number of nodes of a network from which we wish to detect communities.
Let A = (Anm) (n, m = 1, ···, N) be the adjacency matrix of this network, where Anm is
the weight of the link from node m to node n. For simplicity this study deals with
networks with undirected links, where the adjacency matrix is symmetric (Anm = Amn),
but our discussion can easily be extend to community detection from directed
networks.

Now we compare individual nodes to neurons and individual links to synaptic
connections between neurons. Let pn(t) and fn(t) be the “potential” and the “activity” of
neuron n at time t, respectively. We assume that the relationship between pn(t) and
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fn(t) is given by a threshold-linear function (Fig. 1), which models the relationship
between the membrane potential and the firing rate of pyramidal cells [12]:

fn tð Þ ¼ H pn tð Þ � hð Þpn tð Þ; ð1Þ

where Θ(x) = 0 for x < 0 and Θ(x) = 1 for x ≥ 0.

Time evolution of potentials of individual neurons is described by the dynamics
defined by

pn tð Þ ¼
XN

m¼1
Tnmfm t � 1ð Þ þ fn t � 1ð Þ

F t � 1ð Þ F0 � F t � 1ð Þ½ � F0 [ 0ð Þ; ð2Þ

where Tnm � Anm
�PN

n0¼1 An0m and F tð Þ �PN
n¼1 fn tð Þ. The first term on the right-hand

side describes propagation of activities from neurons making synaptic connections onto
neuron n to neuron n. The second term models competition between neurons for a finite
resource F0 − F; such competition, which is generally considered to occur owing to
activation of inhibitory interneurons, is common in cortical network architecture [13].

One can easily verify that the sum of the potential of all neurons is kept constant
with time

XN

n¼1
pn tð Þ ¼ F0: ð3Þ

This property is important as it stabilizes the neural-network dynamics (2), keeping it
from falling into pathological states such as flare-up or extinction of activities of all
neurons. Without loss of generality one can set F0 = 1.
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0.0

0.2
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Fig. 1. Threshold-linear relationship between the potential p and the activity f defined by Eq. (1)
for θ = 0.1.
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2.2 Imperfect and Inaccurate Set of Source Nodes: Deteriorated Pattern

Let C be the correct community that we wish to detect from a given network (indicated
by black nodes in the right of Fig. 2); S be a set of source nodes (indicated by blue and
red nodes in the left of Fig. 2); T be the set of nodes in S that belong to C (“true”
members indicated by blue nodes in the left of Fig. 2); F be the set of nodes in S that
never belong to C (“false” members indicated by red nodes in the left of Fig. 2). Thus,
S = T [ F.

Now we can view S as a “pattern” deteriorated from the original pattern, C. To
characterize a deteriorated pattern, we define pS � Sj j= Cj j, which expresses the level of
partialness of S to C, and define rF � Fj j= Cj j, which expresses to what extent S is
contaminated by false nodes. Here, |X| stands for the number of elements of set X. Our
task is to restore the original pattern, C, from a deteriorated pattern, S. Figure 2 gives
intuitive illustration of local community detection viewed as pattern restoration.

2.3 Local Community Detection

Given a set of source nodes, S, local community detection as pattern restoration is
performed as follows. First we set the initial condition

pn 0ð Þ ¼ 1= Sj j if node n 2 S;
pn 0ð Þ ¼ 0 otherwise:

ð4Þ

Note that this initial condition satisfies normalization,
PN

n¼1 pn 0ð Þ ¼ 1. Activities of
neurons spread from the source nodes and then propagate in the network according to
Eq. (2). Iterative calculation of Eq. (2) eventually leads to the steady-state distribution of

potentials, pðsteadÞ1 ; � � � ; pðsteadÞN

n o
. This steady-state distribution defines the community

Fig. 2. Local detection of a community as pattern restoration. The subnetwork enclosed by
dashed line expresses the community (the original pattern) to be detected. Filled nodes (either
blue or red) in the left are source nodes, with blue and red nodes being “true” and “false”
members of the community, respectively. In the right, the members of the detected community
(restored pattern) are expressed by black nodes (Color figure online).
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detected for the deteriorated pattern, S. The pðsteadÞn has a graded value ranging from
0 to 1, which expresses the level of belongingness of node n to the detected community.

To quantify to what extent the detected community accurately restores the correct
community (original pattern), we use the mean average precision (MAP), which is a
metrics widely used for evaluating goodness of document retrieval with ranking.
Let K be the total number of correct communities in the network. For each correct
community Ck, a set of source nodes Sk is generated, and then the steady-state distri-
bution of activities of nodes are calculated as described above. Then, all the nodes are
sorted in descending order of their steady-state activities. The average precision for
detection of community k is defined by

APk ¼ 1
Ckj j
XN
i¼1

zi
i

1þ
Xi�1

j¼1

zj

 !
: ð5Þ

Here, zi = 1 if the node with the i-the largest steady-state potential is a member of
community Ck; zi = 0 otherwise. The average precision is larger for more accurate
restoration of correct communities. It is maximized (APk = 1) when the top |Ck| nodes
are all the members of community.

The MAP is the mean of the average precision over the communities:

MAP ¼ 1
K

XK
k¼1

APk: ð6Þ

Specifically, MAP = 1 means that the local detection of communities (namely, resto-
ration of patterns) is perfect.

2.4 State-of-the-Art Study

Other than the proposed method, spreading activation [14], also known as personalized
PageRank algorithm (PPR) [15], is an efficient and probably unique method for
detecting a set of nodes that are densely connected and are relevant to a given set of
source nodes. We choose PPR as a competitor to the proposed method for a state-of-the
art study.

Spreading of activities by PPR is given by

pn tð Þ ¼ 1� qð Þ
XN

m¼1
Tnmfm t � 1ð Þ þ qbn 0� q� 1ð Þ ð7Þ

where

bn ¼ 1= Sj j if node n 2 S;
bn ¼ 0 otherwise:

ð8Þ
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The first term on the right-hand side of (7) describes that activities propagate in the
network along links with probability 1 − ρ; the second term describes that an activity at
any node warps to source nodes with probability ρ and hence serves as a bias towards
source nodes. Thus, in parallel to spreading of activities along links, activities are
constantly pushed to S; eventually activities are localized to C in the steady state.

2.5 Biological Relevance

In fact, we have devised the above method of local community detection inspired by
possible neural mechanisms of short-term memory recall in the brain. The cell
assembly hypothesis, which is prevailing in neuroscience, states that neurons coding
the same item tend to be mutually connected [16], thus forming a densely connected
group, referred to as a “cell assembly”. Short-term memory recall of a particular item is
associated with sustained activation of the cell assembly coding this item [17, 18].
Reverberative propagation of neuronal activities in the cell assembly is the mechanism
of sustainment of activation of neurons constituting the cell assembly [19].

The brain stores numerous memory items. Different items are coded by different
cell assemblies. This means that the neural-network dynamics underlying short-term
memory recall is multi-stable [11, 20]. Initial activation of a fraction of neurons, which
serves as a cue, determines which stable state (attractor) will be selected. These
mechanisms achieve cue-triggered short-term memory recall of a particular item.

It is quite natural to compare cell assemblies in brain networks to communities in
real-world networks; a fraction of neurons that are initially activated serving as a cue to
a set of source nodes. Thus, our method of local community detection by use of the
neural-network dynamics as given by Eq. (2) models cue-triggered short-term memory
recall in the brain.

3 Results

3.1 Local Detection of Communities from Synthetic
Benchmark Networks

First we evaluated the performance of local community detection as pattern restoration
by neural-network dynamics using synthetic benchmark networks for which we knew
correct communities. A method for synthesizing networks with community structure
has been proposed by Lancichinetti et al. [21, 22]. The number of communities and
their sizes can be controlled by adjusting the parameter values. We synthesized a
network of N = 1000 nodes with K = 30 communities. The parameter values used for
synthesizing the network and the statistics of communities are given in Appendix.

For each of the 30 communities, a set of source nodes was generated. In the first
experiment, pS was fixed at the maximum value (pS = 1.0) while rF was ranged from
0.1 to 1.0. The pS = 1.0 means that the number of source nodes was approximately the
same as the number of members of the correct community to be detected. The frac-
tional value of rF expresses the ratio of the number of false nodes in the set of source
nodes to the number of true members of the community to be detected, which models
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the level of inaccuracy of our knowledge about the community. The MAP is shown as a
function of rF in Fig. 3a (open circles). The MAP takes near maximum values (* 1.0)
up to considerably high values of rF; even for rF = 0.8, where only * 20 % of source
nodes are “true” and the remaining * 80 % are “false”, the MAP is considerably high
(> 0.8).

In the next experiment, we ranged pS from 0.1 to 1.0 while keeping rF = 0.3. The
fractional value of pS expressed the ratio of source nodes to the total number of true
members of the community and models the imperfectness of our knowledge about
the community to be detected. For smaller pS, the correct community must be restored
from its smaller portion. Figure 3b (open circles) shows the MAP as a function of pS.
The MAP takes near maxim values for a wide range of the value of pS. Even for

Fig. 3. a, MAP as a function of rF for pS = 1.0. b, MAP as a function of pS for rF = 0.3.The
dashed line in each diagram indicates the maximum of possible MAP values. Open and filled
circles indicate the results obtained by the proposed method and PPR, respectively. Double
asterisks (**) above open circles indicate the statistical significance of the superiority of the
proposed method to PPR (p < 0.01, paired t-test).
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pS = 0.3, where only * 30 % of nodes of the community to be detected were given as
source nodes with * 30 % of them being “false”, a considerably high value of MAP
(> 0.9) was obtained.

The results obtained by PPR are also shown in Fig. 3 (filled circles). The MAP
values obtained by the proposed method always exceed or are equal to those obtained
by PPR (p < 0.01, paired t-test). Thus, local detection of communities from synthetic
benchmark networks by the proposed method outperforms that by PPR.

3.2 Local Detection of Communities from Real Social Networks

Next we examined local community detection from real social networks. The network of
American football games between Division I-A colleges during regular season Fall 2000,

Fig. 4. a, MAP as a function of rF for pS = 1.0. b, MAP as a function of pS for rF = 0.3. The
dashed line in each diagram indicates the maximum of possible MAP values. Open and filled
circles indicate the results obtained by the proposed method and PPR, respectively. A single
asterisk (*) and double asterisks (**) above open circles indicate the statistical significance of the
superiority of the proposed method to PPR (* for p < 0.05 and ** for p < 0.01, paired t-test).
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as compiled by Girvan and Newman (2002) [23], has 115 nodes with each corresponding
to a team. Each team (except for five independent teams) belongs to one of 12 confer-
ences. Since teams belonging to the same conference have more games with each other
than with those belonging to different conferences, teams belonging to the same con-
ference will tend to form a community.

The MAP was examined as a function of either rF or pS. Essentially the same results
as was obtained for synthetic networks was gained; the MAP takes near maximum
values for a wide range of the values for rF (Fig. 4a, open circles) or pS (Fig. 4b, open
circles).

Filled circles in Fig. 4a and b indicate the results obtained by PPR. The MAP
values obtained by the proposed method are always above or equal to those obtained by
PPR. Since the superiority of the proposed method to PPR was undetected for pS = 0.4,
0.6 and 0.7 in Fig. 4b by paired t-test, we looked into individual APk’s (see Eq. (5))
obtained by the both methods. We found that for these values of pS, most of APk’s
obtained by the proposed method was maximum (APk = 1) but a few APk’s were near
zero; all APk’s obtained by PPR were less than 1 but their distribution was much more
moderate. The extreme separation of APk values obtained by the proposed method
produced a specious large variation, which masked statistical significance of the
superiority of the proposed method. Results obtained above suggest that local detection
of communities from real social networks by the proposed method outperforms that
by PPR.

4 Discussion

Most algorithms for local community detection proposed up to now are intended to
detect the community to which a single source node belongs [3–10]. In the present
study we have examined a different type of local community detection task, which is
difficult to efficiently achieve for the previously proposed algorithms [3–9]. This task
requires local detection of a correct community given a set of source nodes that
includes false as well as true members of this community. Such a set of source nodes
expresses our imperfect and inaccurate knowledge about the community to be detected.
We have proposed to perform this type of local community detection by use of
neural-network dynamics. Local community detection in this way can be viewed as
restoration of the original pattern (namely, the correct community to be detected) from
a deteriorated pattern (an imperfect and inaccurate set of nodes) and is analogue to
pattern completion by Hopfield’s attractor neural-network dynamics [11].

We have demonstrated the effectiveness of the proposed method using synthetic
benchmark networks and real social networks for which correct communities are
known. The proposed method accurately restores the correct communities and out-
performs PPR, the only existing method that achieves detection of the densely con-
nected part around the source nodes.

To our surprise, local community detection from an imperfect and inaccurate set of
source nodes as demonstrated in the present study has been little examined in literature
of network science. However, we believe that this type of local community detection is
of great practical use. For instance, just given only partial and inaccurate knowledge
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about the members of a particular community, one can extract all the members of this
community from social networks by use of the method proposed here. This will enable
effective advertising or recommendation of products or services focused on this
community.

We have devised the proposed method of local community detection inspired by
neural mechanisms of cue-triggered short-term memory retrieval in the brain. The
present study exemplifies that modelling real brain mechanisms is beneficial for cre-
ating new information processing architecture.

Acknowledgments. This study was partly supported by KAKENHI (15K00418).

Appendix: Synthetic Benchmark Network

The benchmark network used in Sect. 3.1 was synthesized using the software down-
loaded from [15] under the following settings: Number of nodes 1000; average degree
15; maximum degree 50; exponent for the degree distribution 2; exponent for the
community size distribution 1; mixing parameter 0.2; minimum for the community
sizes 20; maximum for the community sizes 50. The synthesized network has 30
communities, with the following size occurrences: (size, occurrence) = (20, 1), (21, 2),
(23, 1), (26, 4), (27, 2), (28, 2), (29, 1), (30, 1), (31, 2), (33, 1), (34, 1), (36, 1), (37, 1),
(38, 1), (40, 1), (41, 3), (42, 1), (44, 2), (471, 1), (62, 1).
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Abstract. Imagery analysis represents a significant aspect of mar-
itime domain awareness; however, the amount of imagery is exceed-
ing human capability to process. Unfortunately, the maritime domain
presents unique challenges for machine learning to automate such analy-
sis. Indeed, when object recognition algorithms observe real-world data,
they face hurdles not present in experimental situations. Imagery from
such domains suffers from degradation, have limited examples, and vary
greatly in format. These limitations are present satellite imagery because
of the associated constraints in expense and capability. To this end, the
Hypercube-based NeuroEvolution of Augmenting Topologies approach is
investigated in addressing some such challenges for classifying maritime
vessels from satellite imagery. Results show that HyperNEAT learns fea-
tures from such imagery that allows better classification than Principal
Component Analysis (PCA). Furthermore, HyperNEAT enables a unique
capability to scale image sizes through the indirect encoding.

Keywords: Image classification · Artificial neural networks · Hyperneat

1 Introduction

A proliferation of remote and unmanned platforms has resulted in an exponential
growth of streaming imagery. This increase in data presents many challenges. For
example, the growth in data from unmanned systems has resulted in an unex-
pected paradox: Unmanned systems require more labor to operate than manned
systems, that is, to remotely operate a single Reaper unmanned aerial vehicle
(UAV) requires more than 80 analysts during a single mission [9]. Thus cost
in human labor is increasing despite the extensive deployment of “unmanned”
systems because of the challenges in analyzing the data. In particular, a sig-
nificant reason for the labor costs of unmanned systems is the need to analyze
streaming visual data. The challenge in addressing this overload of visual data is
replicating the flexibility and capability of humans on the required tasks; there-
fore, approaches that can replicate the power of the human visual system are of
significant interest.

c© Springer International Publishing Switzerland 2015
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Successfully designing an automated approach to such visual tasks often
result in significant labor costs. First, articulating how the visual system works
is difficult. That is, it is easy for an analyst to recognize an object, but it is
more difficult to describe the method by which that recognition occurs, there-
fore experts must invest significant time to design such systems. Second, data
is constantly changing with new objects to be recognized or existing objects
changing appearance that requires system redesign. Thus, machine learning is
employed to automate this design of imagery analysis. Indeed, artificial neural
networks are resurgent thanks to breakthroughs in deep learning that have led
to state-of-the-art results in a number of challenging domains [2].

In particular, deep learning approaches have achieved remarkable perfor-
mance in a number of object recognition benchmarks, often achieving the cur-
rent best performance on these tasks. Such object recognition tasks where deep
learning has achieved the best results include the MNIST hand-written digit
dataset [17,21], traffic sign recognition [5], and the ImageNet Large-Scale Visual
Recognition Challenge [18]. Real-world conditions, however, can degrade the
effectiveness of such approaches [13]. Imagery from the maritime domain (the
focus of this paper) presents barriers to learning in the form of small data sets
and many image formats, in addition to occlusions, distortions, and degradation
[19]. In addition, processing maritime imagery presents limitations in the form
of resources, such as bandwidth or processing power, that necessitates dynamic
resolution changes to adapt to time constraints, that is, imagery may be trans-
mitted or processed at lower resolutions when required by constraints.

This paper explores the Hypercube-based NeuroEvolution of Augmenting
Topologies (HyperNEAT; [11,12,24]) in the domain of vessel classification from
satellite imagery. HyperNEAT has shown promise in simple visual discrimination
tasks [6,10,16,33] and in extracting features for handwritten digits [27,30,31] but
its potential has yet to be fully explored in real-world imagery. HyperNEAT is
applied to a vessel-classification problem that has been investigated with tradi-
tional computer vision techniques [14,15,19,20] by learning feature extractors
for this image classification task and is compared against Principal Component
Analysis (PCA). In addition, the robustness of HyperNEAT’s learning to vari-
ations in how the data is normalized is examined and robustness to changes in
image resolution for a trained solution is explored. Results show that Hyper-
NEAT is capable of creating feature extractors that outperform PCA extracted
features in classification performed by k-Nearest Neighbors (KNN). Furthermore,
HyperNEAT can effectively learn with different variations on normalizing the
input data. Interestingly, these different normalizations do impact the types of
features learned and can aid in overcoming challenges in the data set (e.g. biases
towards a particular class). Finally, HyperNEAT’s indirect encoding allows the
resizing of the feature extractor, thus training at one resolution can be applied
to any resolution.
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Fig. 1. BCCT200 Data Set Examples. Example images from each class of the BCCT200
data set: (a) barge, (b) cargo vessel, (c) container vessel, and (d) tanker.

2 Background

The satellite imagery data set being examined and the neuro-evolutionary meth-
ods that underlie the approach are described in this section.

2.1 BCCT200

Automatic vessel classification is an important goal for many military and
security-related applications. Towards that goal, Harguess et al. [14] created the
Barge, Cargo, Container, and Tanker (BCCT200) dataset. The data originates
from image chips (sub-images within a larger image containing desired objects)
created by the RAPid Image Exploitation Resource (RAPIER R©), developed by
Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) [3],
which provides automatic vessel detection in overhead satellite imagery in sup-
port of image analysts. The BCCT200 dataset was created by first hand-labeling
the image chips into the appropriate vessel type category to form an database of
4 classes with 200 images in each class. Then the images were rotated, cropped,
and resized as described in [14,15]. In this paper, the BCCT200-resize is the
dataset for performance comparisons and is referred to generically as BCCT200.
Examples from each class of the BCCT200 dataset can be seen in Fig. 1.

2.2 NeuroEvolution of Augmenting Topologies (NEAT)

The NeuroEvolution of Augmenting Topologies (NEAT) algorithm [26] is a pop-
ular neuroevolutionary approach that has been proven in a variety of challenging
tasks, including particle physics [1,35], simulated car racing [4], RoboCup Keep-
away [28], function approximation [34], and real-time agent evolution [23], among
others [26]. NEAT starts with a population of small, simple ANNs that increase
their complexity over generations by adding new nodes and connections through
mutation. That way, the topology of the network does not need to be known a
priori; NEAT searches through increasingly complex networks as it evolves their
connection weights to find a suitable level of complexity. The techniques that
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facilitate evolving a population of diverse and increasingly complex networks are
described in detail in Stanley and Miikkulainen [26]; the important concept for
the approach in this paper is that NEAT is an evolutionary method that discov-
ers the right topology and weights of a network to maximize performance on a
task. The next section reviews the extension of NEAT called HyperNEAT that
allows it to effectively train large neural structures.

2.3 CPPNs and HyperNEAT

Hypercube-based NEAT (HyperNEAT; [12,24]) is an extension of NEAT that
enables effective evolution of high-dimensional ANNs through indirect encod-
ing. The effectiveness of the geometry-based learning in HyperNEAT has been
demonstrated in domains such as multi-agent predator prey [7,8] and RoboCup
Keepaway [32]. A full description of HyperNEAT is in Stanley et al. [24].

The main idea in HyperNEAT is that geometric relationships are learned
though an indirect encoding that describes how the weights of the ANN can
be generated as a function of geometry. Unlike a direct representation, wherein
every connection in the ANN is described individually, an indirect representa-
tion describes a pattern of parameters without explicitly enumerating each such
parameter. That is, information is reused in such an encoding, which is a major
focus in the field of GDS from which HyperNEAT originates [25,29]. Such infor-
mation reuse allows indirect encoding to search a compressed space. HyperNEAT
discovers the regularities in the geometry and learns from them.

The indirect encoding in HyperNEAT is called a compositional pattern pro-
ducing network (CPPN; [22]), which encodes the weight pattern of an ANN
[11,24]. The idea behind CPPNs is that geometric patterns can be encoded by a
composition of functions that are chosen to represent common regularities. Con-
sider a CPPN that takes four inputs labeled x1, y1, x2, and y2; this point in four-
dimensional space can also denote the connection between the two-dimensional
points (x1, y1) and (x2, y2). The output of the CPPN for that input thereby rep-
resents the weight of that connection (Fig. 2). By querying every pair of points,
the CPPN can produce an ANN, wherein each queried point is the position of
a neuron. Because the connection weights are produced as a function of their
endpoints, the pattern is produced with knowledge of the domain geometry.

In summary, HyperNEAT evolves the topology and weights of the CPPN that
encodes ANN weight patterns. An extension of HyperNEAT called HyperNEAT
with Link Expression Output (HyperNEAT-LEO) was introduced to constrain
connectivity with a bias towards modularity [33]. This extension separates the
decision of weight magnitude and expression into two different CPPN outputs
and seeds the LEO with the concept of locality. The next section introduces the
approach in this paper that applies HyperNEAT to deep learning.

3 Feature Learning HyperNEAT

Although the HyperNEAT method succeeds in a number of challenging tasks
[11,12,24,32] by exploiting geometric regularities, it is just beginning to be
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X2

Y2

Y1

x1 x2y1 y2 bias

ANN Substrate
2) Feed coordinate pair to CPPN

3) Set connection weight
to output

X1

1) Query each substrate connection

CPPN

Fig. 2. A CPPN Describes Connectivity. A grid of nodes, called the ANN sub-
strate, is assigned coordinates. (1) Every connection between layers in the substrate is
queried by the CPPN to determine its weight; the line connecting layers in the sub-
strate represents a sample such connection. (2) For each such query, the CPPN inputs
the coordinates of the two endpoints. (3) The weight between them is output by the
CPPN. Thus, CPPNs can generate regular patterns of connections.

applied to visual domains [27,30,31]. Because HyperNEAT learns as a function
of domain geometry, it is well suited towards such domains where geometric rela-
tionships are important. Conventional HyperNEAT trains a CPPN that defines
an ANN that is the solution, that is, the produced ANN is applied directly to
the task and then the ANN’s performance on that task determines the CPPN’s
fitness score. However, Feature Learning HyperNEAT trains an ANN that trans-
forms inputs into features based upon domain geometry and then the features
are given to another machine learning approach to solve the problem. Thus,
the performance of this learned solution then defines the fitness score of the
CPPN for HyperNEAT (Fig. 3). In this way, HyperNEAT acts as a reinforce-
ment learning approach that determines the best features to extract for another
machine learning approach to maximize performance on the task. The experi-
ments exploring Feature Learning HyperNEAT in maritime vessel classification
are detailed in the next section.

4 Experimental Setup

These investigations are conducted on the BCCT200 data set, which is a real-
world data from commercial satellite imagery consisting of 200 images each of
barge, cargo, container, and tanker vessels. BCCT200 images are 150×300 pixels,
but for these experiments the images are scaled down to 28 × 28 pixels. The
goal for machine learning is to correctly classify vessel contained within each
image. The data set is split into three sub-sets: Training (100 images/class),
Evaluation (50 images/class), and Testing (50 images/class). During evolution,
features are extracted from the training set to train KNN (k = 3), features
extracted from the evaluation set determine the performance of KNN on unseen
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Fig. 3. Feature Learning HyperNEAT. To learn features, HyperNEAT trains
CPPNs (1) that generate the connectivity for a defined ANN substrate (2). The ANN
substrate processes the inputs from a data set to produce a set of features (3). These
features are given to another machine learning algorithm (4) that learns to perform
the task (e.g. image classification). Machine learning then produces a solution that
is evaluated on testing data. The performance of the solution on data not seen dur-
ing training provides the fitness score of the CPPN for HyperNEAT (5). In this way,
HyperNEAT learns better features for the machine learning approach to perform its
task.

data and inform the fitness of the feature extractor for HyperNEAT, and after
evolution is completed, the testing set is applied to determine performance on
data not seen during evolution. For both HyperNEAT and PCA, the number
of features extracted is set to 48. To compare with PCA, the ANN substrate
is constrained to no hidden layers, ensuring the features extracted are linear as
are the features extracted by PCA. Thus HyperNEAT’s ANN substrate is to a
28× 28 pixels input to 48 outputs with no hidden layers and sigmoid activation
function on the outputs.

A number of methods exist for pre-processing pixels prior to presentation,
chief among them statistical normalization approaches. This paper explores the
effect of varying three different normalization settings on the performance of
feature learning with HyperNEAT. (1) Normalization is varied between max nor-
malization (simply dividing all pixels by the max possible value), mean normal-
ization, and normalizing to the standard deviation. (2) The data from which the
normalization is calculated is varied between all the pixels from all the images,
all the pixels within a single image, and the pixels at a particular location. (3)
The range of the values is set to either unipolar ([0, 1]) or bipolar ([−1, 1]). The
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normalization values are calculated through the training set and then applied to
the evaluation and testing sets.

Scaling is implemented by applying a solution trained at the 28×28 resolution
to the BCCT200 data scaled down from 150×300 to 20×20, 50×50, and 100×100.
Results for these experiments are recorded in the next section.

5 Results

For each of these experiments, results are averaged over 30 independent runs of
1500 generations with a HyperNEAT population size of 200. The fitness score is
a weighted sum of the true positive rate, true negative rate, positive predictive
value, negative predictive value, and accuracy for each class plus the fraction
correctly classified overall and the inverse of the mean square error from the
correct label outputs. For all the runs, the same 100 training, 50 evaluation, and
50 testing images are given from the BCCT200 data set.

First, the effects of different input normalization techniques on the ability of
HyperNEAT to learn effective features are examined. Table 1 shows the mean
champion performance on training and testing sets under various normalization
approaches (Note: Associated standard deviations are shown in AppendixA).
Mean classification performance on the training data ranges from a minimum of
0.843 with mean normalization per pixel and bipolar range to 0.896 with stan-
dard deviation normalization per pixel with bipolar range. For performance on
the testing data, the minimum performance is 0.659 with mean normalization
per pixel with bipolar range and maximum performance is 0.787 with stan-
dard deviation normalization per image with unipolar range. The best com-
bined training and testing performance is with data normalized to the standard
deviation per image and unipolar range (0.857 training, 0.787 testing). Inter-
estingly, only the mean per pixel with bipolar range normalization approach
significantly (p < 0.01) underperforms the rest. Additionally, the peak perform-
ers for the training data and testing data both have greater performance than
other approaches with significance (p < 0.01).

Complementing the mean results, Table 2 shows the results of the champion
under each normalization approach with the best overall performance, that is, it
classifies the combined training and testing data better than the other champi-
ons. PCA provides the baseline performance comparison with mean normalized
performance of 0.855 training and 0.753 testing and standard deviation normal-
ized performance of 0.863 training and 0.733 testing. Peak HyperNEAT classifi-
cation performance in on the training data ranges from a minimum of 0.858 with
mean normalization of all images and bipolar range to 0.920 with standard devi-
ation normalization of all images with unipolar range. For performance on the
testing data, the minimum performance is 0.693 with mean normalization per
pixel with bipolar range and maximum performance is 0.803 with max normal-
ization with bipolar range. The best combined training and testing performance
is with data normalized to the max and bipolar range (0.893 training, 0.803
testing). Note that the best peak performers (max bipolar, and, standard devi-
ation of all images with unipolar range) do not come from the normalization
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Table 1. Mean training and testing classification performance by normalization app-
roach.

Table 2. Peak training and testing classification performance of feature learning
HyperNEAT by normalization approach versus PCA.

approaches the achieved the best mean champion performance on those data
sets. Furthermore, all HyperNEAT extracts better features for the training set
under all normalization approaches except the mean of all images with bipo-
lar range. However, HyperNEAT only exceeds PCA’s testing performance under
three normalization approaches; Standard deviation per image with unipolar
range, Max with bipolar range, and Mean of all images with bipolar range.

Further comparison between PCA and HyperNEAT features can be seen in
the performance per image class from the BCCT200 data set from peak per-
formers learned by HyperNEAT. Features extracted by PCA are strongly biased
towards correctly classifying the barge class, correctly specifying 98% of barges
as barges. However, such features are weak at classifying cargo vessels, only spec-
ifying 50% correctly as cargo. Most of the normalization approaches result in
HyperNEAT learning features with similar biases to PCA. Figure 4a shows that
the best peak performer (max bipolar normalization) classifies 96% of barges
correctly and only 56% of cargo vessels correctly. Interestingly, one normaliza-
tion approach, mean normalization per image with bipolar range, finds a peak
performer that begins to overcome this bias in the data (Fig. 4b). In this case,
HyperNEAT learns features that has KNN classifying barges with 92% correct
and cargo with 72% correct.

Exploring this contrast in features learned, Fig. 5 shows the classification
performance on the training set over time per class and overall for HyperNEAT
with max bipolar and mean per image bipolar normalization, respectively. The
max bipolar normalization quickly converges to a set of features on the training
set that allows 95% of barges, 89% of tankers, 85% of container vessels, 81%
of cargo vessels to be correctly classified. Once it reaches this level, very little is
gained from further learning. In contrast, the mean per image with bipolar range
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Fig. 4. Confusion of Image Classes with Feature Learning HyperNEAT.
Shown is the percentage of instances (vertical axis) each class of image (horizontal
axis) is designated as a particular class by KNN when given features extracted by the
peak performer (champion with best combined training and testing performance across
30 runs) learned by HyperNEAT with max normalization with bipolar range (a) and
mean per image normalization with bipolar range (b).
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Fig. 5. Classification Performance by Class Over Evolution. Shown is the mean
of each generation champion’s fraction correctly classified for each image class max
normalization with bipolar range (a) and mean per image normalization with bipolar
range (b) from the training set.

normalization starts by finding features biased towards barges, with classification
rates of 97% for barges, 82% for container vessels, and 80% each for tankers
and cargo vessels, but then learns features that are more balanced for classifying
all the classes, with classification rates of 93% (barges), 86% (cargo, container),
and 85% (tankers).

Finally, scaling is examined by taking the best performer from the mean per
image normalization with bipolar range and applying the trained CPPN to larger
(50× 50, 100× 100) and smaller (20× 20) ANN substrates. These different sized
ANN substrates are then applied to the BCCT200 images scaled down from
150 × 300 pixels to the appropriate resolution to extract features without fur-
ther training. As a comparison, Fig. 6 shows the performance of PCA extracted
features when PCA is re-run at each resolution. PCA’s features improve per-
formance on the training set as the resolution increases, with 85% correct
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Fig. 6. Classification Performance through Scaling. Shown is the performance of
PCA and Feature Learning HyperNEAT extracted features at 20×20, 28×28, 50×50
and 100 × 100 resolutions. Note that PCA is retrained at each resolution and Feature
Learning HyperNEAT scales without further training.

classification at 20× 20, 86% at 28× 28, 87% at 50× 50, and 88% at 100× 100.
Interestingly, the same improvement in performance is not found in the testing
set performance, where PCA’s feature extraction initially improves from 68%
correct classification at 20 × 20 to 73% at 28 × 28, but then declines to 72% at
50×50 and 71% at 100×100. This decline in testing performance demonstrates a
two-fold challenge with such real-world data sets, in that small sample amounts
prevent generalization especially when given more information per data sample.

Scaling for Feature Learning HyperNEAT is tested by taking the single best
performer from the mean per image normalized with a bipolar range runs. Unlike
PCA, the learned CPPN is not re-trained at each resolution, instead it is trained
at a single resolution (28×28) and then the is CPPN applied to smaller (20×20)
and larger (50 × 50, 100 × 100) substrates to extract features from the different
resolution images. In this way, learning can be transferred from one resolution to
another without costly re-training. HyperNEAT’s correct classification perfor-
mance at the trained resolution (28× 28) is 90% for training data and 75% for
testing data. Performance on both training and testing data is degraded when
scaling to the different resolutions with training and testing performance being
81% and 65%, 82% and 64%, and, 81% and 63% for the 20, 50, and 100 scales,
respectively. Note again that these are results with no further training on the
new resolutions, but are simply scaled from the original trained solution. These
results further contrast from prior results in scaling with traditional computer
vision approaches [19], where performance drops by more than half under similar
scale changes.

6 Discussion and Conclusion

Performance of image classification algorithms often depends on the type and
quality of the data on which the algorithm is used. Imagery gathered under
real-world conditions suffer from problems often not observed in experimental
conditions, such lack of data samples, degraded quality, and different formats
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or resolutions. In particular, satellite imagery encounters these problems fre-
quently, with imagery of high or low resolution, noise from the sensor or trans-
mission process, and be blocked by clouds or other occlusions. Overall, algorithms
deployed to the real-world are more likely to face less than ideal data, thus it
essential for successful designs to handle such data.

Prior work with HyperNEAT has shown promise in vision tasks that oper-
ate directly on raw pixels. This paper extended such work by investigating
Feature Learning HyperNEAT in the challenging classification of maritime of
maritime vessels from satellite imagery represented by the BCCT200 data set.
Results showed that HyperNEAT discovers superior linear feature extractors
versus PCA under different manipulations of the data. Furthermore, the correct
pre-processing allows HyperNEAT to overcome a strong bias present that can be
present in small data sets. Finally, HyperNEAT demonstrates an ability extend
what has been learned to different image resolutions, which is challenging to
other machine learning approaches. Thus, HyperNEAT presents a unique app-
roach to feature learning for imagery that can enable capabilities that are not
present or difficult in current computer vision approaches.
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Innovative Science and Engineering (NISE) Program.

A Result Standard Deviations

Table 3. Standard deviation of training and testing classification performance by
normalization approach.
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Abstract. Crossover is an important genetic operator that re-combines
beneficial genes together and rapidly traverses the fitness landscape.
Unfortunately, neuro-evolution (NE) has not experienced the benefits
of crossover. Indeed, observations have shown that crossover has been
detrimental to NE approaches. Tangentially, speciation has become an
important feature in NE for diversity maintenance; however, such speci-
ation research has focused on what measure is driving speciation versus
how the measure determines species. This research posits that appropri-
ate speciation implementations enable effective crossover by determin-
ing an individual’s potential mating partners. Prior speciation research
demonstrated the impact of restricting the mating pools of genomes on
search performance. This paper investigates these concepts in the context
of NE and results demonstrate; (1) the impact of speciation implemen-
tation in NE, (2) crossover’s negative effect on search in NE, and (3) a
novel speciation approach that enables effective crossover in NE.

Keywords: Speciation · Crossover · Artificial neural networks · NEAT

1 Introduction

Speciation and crossover are two prominent features of natural evolution that
have significant mutual interaction [2]. In nature, speciation results in reproduc-
tive isolation that, in turn, limits the mating partners for sexual reproduction.
This limitation of mating partners for reproduction then influences the genetic
make-up of a population [1]. Diverging genetics among populations can be rein-
forced through crossover, which potentially results in speciation. Thus specia-
tion plays an important role in crossover and vice versa. Similarly, evolutionary
algorithms have explored speciation and crossover as important factors in evo-
lutionary search, but not the interaction of the two aspects of evolution. This
paper investigates the interaction of speciation and crossover and their impact
on performance, in particular their effect on neuro-evolution (NE).

Interestingly, evolutionary approaches for artificial neural networks (ANNs)
that rely on crossover have historically been shown to have diminished perfor-
mance relative to approaches that emphasize mutation [14], despite evidence
that natural evolution benefits from crossover [3]. This negative performance
c© Springer International Publishing Switzerland 2015
M. Lones et al. (Eds.): IPCAT 2015, LNCS 9303, pp. 221–232, 2015.
DOI: 10.1007/978-3-319-23108-2 19
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impact is thought to be due to the permutation problem, that is, multiple neural
network genotypes can encode functionally equivalent phenotypes. This many-
to-one mapping results in crossover for neural networks being ineffective. Addi-
tionally, the connectionist nature of neural networks presents a difficulties in
representing the “building blocks” necessary for effective crossover. These limi-
tations have resulted in dismissal of crossover as an operator in NE.

The effectiveness of crossover is influenced by the pool of available mating
partners. Such pools are limited by reproductive isolation, which is reinforced by
speciation [6]. Speciation has proven to be popular in evolutionary algorithms
to encourage the formation of “niches” to preserve diversity, that is, rather than
being the driver of limited mating pools, the focus is on preventing the population
from prematurely converging [4]. Indeed, such speciation has proven effective in
NE for preserving diversity in the population and improving performance [9].
Further research has focused on alternative measures to induce speciation, such
as genotypic, phenotypic, and behavioral [8]. These alternate approaches are
meant to preserve different types of diversity, thus research has focused creating
“niches” rather than better mating pools for crossover.

In contrast, this paper explores how varying the heuristic that is applied to
the speciation metric in order to select the species for genomes can influence.
Four different heuristics for selecting species are investigated: First Compatible,
Most Compatible, Parental, and Uncanny Valley (described in Sect. 3). The
experiments to explore the interaction of speciation heuristic and crossover are
performed in classic benchmark and calibration domains for NE (XOR and
double-pole balancing) under high mutation and high crossover rates. Results
from the experiments demonstrate the negative effect that relying highly on
crossover has on performance, with the majority of speciation heuristics per-
forming worse under such conditions. However, changing the heuristic results
in different performance profiles. Indeed, Most Compatible is consistently the
worst performing heuristic, while Uncanny Valley is the highest performer and
performs similarly well under both high and low crossover conditions. These
results indicate the importance of the effect of speciation heuristics on the perfor-
mance of crossover and reveal the potential to unlock crossover’s power through
improved mating pool selection.

2 NeuroEvolution of Augmenting Topologies (NEAT)

This section briefly reviews the NEAT evolutionary algorithm [9,10], a promi-
nent method that evolves ANNs. NEAT evolves connection weights as well as
adds new nodes and connections over generations, thereby increasing solution
complexity. It has been proven to be effective in challenging control and decision
making tasks [10–13]. NEAT starts with a population of small, simple ANNs that
increase their complexity over generations by adding new nodes and connections
through mutation. That way, the topology of the network does not need to be
known a priori; NEAT searches through increasingly complex networks as it
evolves their connection weights to find a suitable level of complexity. The tech-
niques that facilitate evolving a population of diverse and increasingly complex
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networks are described in detail in Stanley and Miikkulainen [9]; Stanley and
Miikkulainen [10]; the important concept for the approach in this paper is that
NEAT implements a solution to the competing conventions problem (a.k.a. the
Permutation problem) through historical markings thereby enabling crossover
and speciation for neural network genomes.

The NEAT implementation for this paper differs in a few details. First,
crossover is on a neuron basis rather than connection basis, that is, genes are
selected from parents through matching neurons. Thus the unit of crossover is
a neuron rather than a connection. This change is inspired by the idea of neu-
rons as feature extractors and detectors [14]. Second, this change to a neuron-
based crossover change the way compatibility is counted. Excess connections are
now defined as mis-matching connections on matched neurons. Disjoint connec-
tions are defined connections on mis-matching neurons. In addition, the count of
mis-matching neurons now is incorporated into the compatibility metric. Third,
crossover and mutation are mutually exclusive, that is, a new genome is either
created through crossover without mutation or cloning with mutation, but muta-
tion is never applied after crossover. Finally, the number of new species allowed
to be created each generation is limited to one.

3 Speciation Heuristics

This paper investigates four different genotypic-based speciation heuristics. First
is First Compatible, the original heuristic in NEAT, wherein genomes are placed
with the first species that has compatibility below the current threshold (Algo-
rithm1). If no species is below the threshold, either a new species is created for
the genome (if no new species has already been created) or the genome is placed
with the most compatible of the species.

Second, Most Compatible places genomes with the species that is the most
compatible (Algorithm 2). If no species is below the threshold, either a new
species is created for the genome (if no new species has already been created)
or the genome is placed with the most compatible of the species. This heuristic
is a logical extension of First Compatible because genomes would ideally always
be matched with their most compatible counterparts.

Third, Parental looks only at the species of the genome’s parents to determine
compatibility (Algorithm 3). If the none of the parent species are below the
threshold, either a new species is created for the genome (if no new species has
already been created) or the genome is placed with the most compatible of the
parent and new species. This approach is intuited from nature, in that a child
belongs either to its parent species or to a new sub-species of the parent species.

Finally, the fourth is Uncanny Valley looks first at the species of the genome’s
parents (Algorithm 4). If the genome is below the threshold for the parent, then
the remaining species are investigated to see if there is another, non-parent
species below the threshold. If there exists an additional compatible species
(that is not the parent), the genome is placed in that species, otherwise the
genome is placed with the parent species. If the genome is not compatible with
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Input: Genome to be speciated
Output: Species to which the genome is assigned
Selected Species = null;
Minimum Compatibility = ∞;
foreach Species s in current set of species do

Compatibility = GetCompatibility(s, Genome);
if Compatibility < Minimum Compatibility then

Minimum Compatibility = Compatibility;
Selected Species = s;

if Compatibility ≤ Threshold then
break;

if Minimum Compatibility > Threshold then
if New Species == null then

New Species = CreateNewSpecies(Genome);
Selected Species = New Species;
Add New Species to current set of species;

Output Selected Species;

Algorithm 1. First Compatible Speciation Heuristic

Input: Genome to be speciated
Output: Species to which the genome is assigned
Selected Species = null;
Minimum Compatibility = ∞;
foreach Species s in current set of species do

Compatibility = GetCompatibility(s, Genome);
if Compatibility < Minimum Compatibility then

Minimum Compatibility = Compatibility;
Selected Species = s;

if Minimum Compatibility ¿ Threshold then
if New Species == null then

New Species = CreateNewSpecies(Genome);
Selected Species = New Species;
Add New Species to current set of species;

Output Selected Species;

Algorithm 2. Most Compatible Speciation Heuristic

its parent species, either a new species is created for the genome (if no new
species has already been created) or it is placed with the most compatible of
the parent and new species. This heuristic is named after the “uncanny valley”
principle from robotics [7], since it follows a similar pattern where there is a dip in
probability of being placed with your parents the closer you are in compatibility.
This heuristic is similar to “anti-incest” approaches [5] in that it suppresses
mating between substantially similar genomes by encouraging genomes to join
the next most similar species. The next section details the experiments that
reveal the differences resulting from these speciation heuristics.
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Input: Genome to be speciated
Output: Species to which the genome is assigned
Selected Species = null;
Minimum Compatibility = ∞;
foreach Species s in species of genome’s parents do

Compatibility = GetCompatibility(s, Genome);
if Compatibility < Minimum Compatibility then

Minimum Compatibility = Compatibility;
Selected Species = s;

if Minimum Compatibility > Threshold then
if New Species == null then

New Species = CreateNewSpecies(Genome);
Selected Species = New Species;

else
Compatibility = GetCompatibility(New Species, Genome);
if Compatibility < Minimum Compatibility then

Selected Species = New Species;

Output Selected Species;

Algorithm 3. Parental Speciation Heuristic

4 Experimental Approach

Each of the speciation heuristics are tested in two domains under 0.1 and 0.9
crossover rates to demonstrate the effects that speciation heuristic selection has
on performance and crossover. First is the XOR problem, an important cali-
bration domain to ensure neuro-evolution can correctly solve and optimize non-
linear functions. XOR is a logical operator that returns true iff only one of the
inputs is true. True is represented by +1 and false is represented by −1. The two
inputs to XOR must be combined at a hidden unit, as opposed to only at the
output. In the experiments with XOR, evolution is limited to 1000 generations
and will not terminate at the first solution.

The second domain examined is the double-pole balancing domain [10], which
is a well-known benchmark in reinforcement learning domains. In double-pole
balancing, two poles are attached at a hinge to a movable cart. The role of
the learning agent is to discover how to keep both pole elevated and not allow
either to hit the cart. The agent keeps the poles elevated by instructing the cart
to move at particular velocity and within the boundaries of the track. Fitness
is determined by the number of time-steps the agent keeps the poles elevated,
which is capped at 100000 for these experiments. Furthermore, the number of
generations is limited to 500 and evaluation of a given run is stopped once a
solution that achieves 100000 time steps is discovered. The next section describes
the results of these experiments with speciation and crossover.
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Input: Genome to be speciated
Output: Species to which the genome is assigned
Selected Species = null;
Minimum Compatibility = ∞;
foreach Species s in species of genome’s parents do

Compatibility = GetCompatibility(s, Genome);
if Compatibility < Minimum Compatibility then

Minimum Compatibility = Compatibility;
Selected Species = s;

if Minimum Compatability < Threshold then
foreach Species s in current set of species do

Compatibility = GetCompatibility(s, Genome);
if Compatibility < Threshold then

Minimum Compatibility = Compatibility;
Selected Species = s;

else
if New Species == null then

New Species = CreateNewSpecies(Genome);
Selected Species = New Species;

else
Compatibility = GetCompatibility(New Species, Genome);
if Compatibility < Minimum Compatibility then

Selected Species = New Species;

Output Selected Species;

Algorithm 4. Uncanny Valley Speciation Heuristic

5 Results

All results are averaged over 40 runs and under identical settings (Appendix A)
except for speciation heuristic and crossover rate. In the XOR domain with a low
crossover (high asexual) rate of 10%, all the speciation heuristics find a solution
and optimizes to a perfect solution of XOR within 1000 generations (Fig. 1a), but
demonstrate different learning trajectories getting there. While Most Compatible
and Parental are substantially similar, the Uncanny Valley quickly spike upward
in fitness and the Most Compatible slowly reaches the optimal. Figure 2a show
the number of generations to achieve the first (not most exact) solution to XOR.
The Uncanny Valley finds a solution to XOR significantly (p < 0.01) faster
than the other speciation heuristics at an average of 47.6 generations to the
first solution. The First Compatible and Parental are the next faster performers
and are not significantly different with 97.2 and 122.5 generations on average,
respectively. Finally, Most Compatible is significantly (p < 0.01) worse than the
other heuristics at 445.8 generations on average.

In contrast, a high crossover rate of 90% results in First Compatible (874.6
generations to first solution), Most Compatible (987.6 generations), and Parental
(857.9 generations) as having similarly dismal performances (Fig. 1b) and, in
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Fig. 1. Maximum fitness for XOR by speciation approach. The maximum fitness (aver-
aged over 40 runs) for each generation is shown, surrounded by a 99 % confidence
interval, under high mutation (a) and high crossover (b) rates.

Fig. 2. Average generations to first solution for XOR by speciation approach. The
generation count to the first genome that solves XOR (averaged over 40 runs) is shown
with a 99 % confidence interval for high mutation (a) and high crossover (b) rates.

fact, do not find a solution to XOR in a majority of runs (Fig. 2b). However,
Uncanny Valley (123.7 generations) significantly (p < 0.01) outperforms the
other approaches at all generations past generation 50. Indeed, the time to first
solution for Uncanny Valley with high crossover is not significantly different from
First Compatible and Parental with low crossover rates.

Further contrast in the differences in heuristic and the effect of crossover can
be seen in the average population fitness (Fig. 3). Similar to the maximum fitness
results for the high asexual reproduction, the average population fitness under
high asexual reproduction results in the Most Compatible and Parental as being
statistically the same at most generations and the Uncanny Valley and Most Com-
patible as different from all other heuristics with significance p < 0.01. Interest-
ingly, the final average population fitness scores for First Compatible (3.2) and
Parental (3.2) are higher than Uncanny Valley (2.9), though Uncanny Valley’s
max fitness is better, while Most Compatible (2.7) remains the worst performer.
For the high crossover rate setting, the average population fitness of Uncanny Val-
ley (3.6) is significantly (p < 0.01) greater than the other speciation heuristics,
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Fig. 3. Average population fitness for XOR by speciation approach. The mean pop-
ulation fitness (averaged over 40 runs) is shown for each of the 1000 generations and
surrounded with a shaded region representing a 99 % confidence interval under high
mutation (a) and high crossover (b) rates.

which quickly converge to 2.91 (First Compatible, Parental) and 2.83 (Most Com-
patible). Indeed, the Uncanny Valley under high crossover significantly outper-
forms itself under low crossover rates.

In the DPB domain with low crossover, only First Compatible and Uncanny
Valley always find a solution with a perfect score (Fig. 4a), Parental achieves
an average max fitness of 95716 and Most Compatible achieves significantly
(p < 0.01) less than all other approaches at 82717. Figure 5a show the number
of generations to achieve a solution. In this domain with the low crossover rate,
only Most Compatible (148.8 generations) is significantly different from the other
heuristics. Most Compatible performs worse than Parental (53.1), First Compat-
ible (34.6), and Uncanny Valley (19.2).

Fig. 4. Maximum fitness for Double Pole Balancing (DPB) by speciation approach.
The maximum fitness (averaged over 40 runs) is shown for each generation until the
stopping criteria is met (performance of 100000 time steps or up to 500 generations)
and surrounded with a shaded region representing a 99 % confidence interval under
high mutation (a) and high crossover (b) rates.
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Fig. 5. Average generations to a solution for Double Pole Balancing (DPB) by spe-
ciation approach. The generation count to the first genome that meets the stopping
criteria (performance equal to 100000 time steps) for DPB (averaged over 40 runs) is
shown with a 99 % confidence interval for high mutation (a) and high crossover (b).

Under a high crossover rate, none of the heuristics find a solution in every run
within 500 generations. However, Uncanny Valley achieves an average champion
fitness of 92647 that significantly (p < 0.01) outperforms the non-significantly
different First Compatible (72590), Most Compatible (72678), and Parental
(67756) at all generations past 70 (Fig. 4b). Indeed, the generations to a solution
(Fig. 5b) for Uncanny Valley (75.3) is significantly fewer than First Compatible
(210.1), Most Compatible (224.2), and Parental (248.1).

The average population fitness (Fig. 6) for DPB provides further insight into
the interaction of speciation and crossover. In the low crossover scenario, there
is no significant difference among the average population fitness by speciation
heuristic, through the Uncanny Valley and First Compatible terminate early
due to finding solutions. However, the high crossover scenario reveals differences

Fig. 6. Average population fitness for Double Pole Balancing (DPB) by speciation app-
roach. The mean population fitness (averaged over 40 runs) is shown for each generation
or until the stopping criteria of a champion with a 100000 time step performance is
found and surrounded with a shaded region representing a 99 % confidence interval
under high mutation (a) and high crossover (b).
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among the approaches. The final average population fitness scores for First Com-
patible (7189) is significantly (p < 0.01) higher than the other heuristics. Inter-
estingly, Uncanny Valley’s average population fitness reverses the pattern from
its max fitness, that is, Uncanny Valley’s average population fitness of 1772 is
the lowest of the heuristics, while its max fitness is the highest.

6 Discussion

In nature, crossover is the primary (or only) form of reproduction for the most
complex of organisms, especially those whose intelligence neuro-evolution (NE)
is attempting to replicate. However, crossover in NE has not been beneficial,
resulting in degraded performance in approaches that rely in crossover. Indeed,
this paper provides evidence that crossover negatively affects NE performance.

Speciation has become an important aspect of NE approaches, with signifi-
cant research examining measures to differentiate genomes into species to pre-
serve diversity. This paper showed that different heuristics to place genomes into
species based off a particular metric can enhance or impede performance. The
Uncanny Valley speciation heuristic showed benefits in both the XOR and DPB
domains, significantly improving performance over the baseline NEAT heuris-
tic (First Compatible) as well as two other intuitively sensible heuristics (Most
Compatible and Parental). Speciation improves performance of crossover by act-
ing as a means of limiting the pool of candidates that may mate. Thus specia-
tion, appropriately implemented in artificial evolution, can provide benefits to
crossover by maintaining appropriate candidates pools.

Note, this paper doesn’t claim one speciation heuristic is better than another,
rather the deeper concept is that seemingly small implementation details (e.g.
the speciation heuristic) can have a significant effect on the performance of
an algorithm and interaction effects with varied parameters. Indeed, one naive
implementation of speciation in NEAT is to group genomes that are most com-
patible together; however, these results show that such an approach is the least
ideal performance-wise on the simple tasks of XOR and double pole balancing.
Thus, it is important when considering algorithm performance that these disre-
garded details may be the cause of negative performance, such as in the negative
performance of crossover in NE that is solved by better mate selection.

7 Conclusion

Crossover and speciation are two important features of natural evolution in their
own right that can have significant mutual interaction. NE approaches have
embraced speciation, but have not been able to exploit the power of crossover.
Indeed, experiments in this paper demonstrated that crossover can be detri-
mental to performance in NE. However, results shows that different specia-
tion heuristics change the performance of crossover. In fact, careful selection
of speciation heuristic can allow NE to perform as well under high crossover as
low crossover and improve performance under all conditions. Overall, speciation
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plays an important role in NE in preserving diversity, but a well-designed speci-
ation heuristic has the potential to improve performance and unlock the power
of crossover.
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Innovative Science and Engineering (NISE) Program.

A NEAT Parameters Shared Across Experiments

Parameter name Parameter value

Population size 200

Minimum species # 5

Maximum species # 15

Interspecies mating rate 0.01

Selection proportion 0.5

Elitism proportion 0.01

Disjoint weight coefficient 1

Excess weight coefficient 1

Matching weight coefficient 0.4

Recurrence no

Maximum weight magnitude 5

Initial connection ratio 1

Probability mutate weights 0.9

Probability add neuron 0.01

Probability add connection 0.08

Probability delete neuron 0.001

Probability delete connection 0.09

Probability select fitter gene 0.5

Probability recombine excess (fitter genome) 0.8

Probability recombine excess (less fit genome) 0.15
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