
Chapter 5
Logic Programming Based Diffusion Models

5.1 Introduction

This chapter focuses on a logic-programming approach to social network diffusion
first introduced in [23] and later extended in [4]. The advantage with this approach is
that we can not only consider the topology of the network, but also consider labeled
attributes of the nodes and edges in a natural way. Since its introduction, there have
been other variants of the logic-based approach that have leveraged formalisms such
as PSL [2] and modal logic [24] in addition to tackling problems such as non-
monotonic diffusion reasoning [25] and informing the creation of diffusion-specific
centrality measures [26]. These approaches differ from some of the diffusion models
in previous chapters in several key ways. For instance, the other models largely
assume that a social network is nothing but a set of vertices and edges [16–18].
In contrast, in this chapter we adopt a richer model where edges and vertices
can both be labeled with properties. For instance, a political campaigner hoping
to spread a positive message about a campaign needs to use demographics (e.g.
sex, age group, educational level, group affiliations, etc.) for targeting a political
message—a “one size fits all” message will not work. In general, social network
researchers would say that they have several sociomatrices that can be used for
such applications. Another key difference is that the approaches of the previous
chapters reason about a single diffusion model, rather than develop a framework for
reasoning about a whole class of diffusion models.

Past diffusion models developed in a variety of fields ranging from business [10],
economics [21], social science [20], epidemiology [15, 22, 27], mobile phone
usage [11] show that diffusion models vary dramatically from application to
application. In this chapter, we organize these models into three broad categories.

1. Cascade models [15, 22, 27] are widespread in epidemiology and assume that
diffusions are largely based on connectivity between nodes and are largely
probabilistic.
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50 5 Logic Programming Based Diffusion Models

2. Tipping models do not use probabilities, but use various quantitative calculations
to determine when a vertex adopts (or is infected with) a diffusive property. They
are omnipresent in the social sciences and business [7, 12, 20]. Nobel-laureate
Tom Schelling makes a similar point that diffusions in many social science
applications have a tipping point when vertices become influenced by the number
of neighbors and the strength of commitment the neighbors may have to a certain
position. No probabilities are present in such models.

3. Homophilic models are ones where similarity between users, rather than net-
works effects, dominate diffusion. Similarity is usually calculated using some
quantitative model, often related to distance between vectors representing (values
of) properties of nodes. For example, [11] tracks adoption of mobile applications
in a study of over 27M users and shows that homophily—similarity between
users—is the most compelling diffusion model. There are no probabilities here,
just similarity measures. Another world famous diffusion model focused on
marketing [10] also is based on homophily and similarity of nodes’ intrinsic
properties rather than a probability.

Moreover, many models use a mix of the above forms. For instance, Cha et al. [5]
argues that the way photos are marked as “favorites” on Flickr is based on a mix of
cascading and homophilic behavior and to study the former, one must also account
for the latter. A similar combination of cascading and tipping is observed in [21].
In general, a language to express diffusion models must be capable of expressing a
wide variety of quantitative methods encapsulated in the above.

In this chapter, we first show that a class of the well-known generalized annotated
program (GAP) paradigm [6] form a convenient method to express many diffusion
models. We focus on reasoning with diffusion models (expressed via GAPs) after
the diffusion models have been learned. In particular, we consider the problem of
optimal decision making in social networks which have associated diffusion models
expressible as Linear GAPs, though many of the results in this chapter apply to
arbitrary GAPs as well. Here are two examples.

• (Q1) Cell Phone Plans A cell phone company is promoting a new cell phone
plan—as a promotion, it is giving away k free plans to existing customers.1

Which set of k people should they pick so as to maximize the number of plan
adoptees predicted by a cell phone plan adoption diffusion model they have
learned from their past promotions?

• (Q2) Medication Distribution Plan A government combating a disease spread
by physical contact has limited stocks of free medication to give away. Based on
a diffusion model of how the disease spreads (e.g. kids might be more susceptible
than adults, those previously inoculated against the disease are safe, etc.), they
want to find a set of k people who (jointly) maximally spread the disease when

1This framework allows us to add additional constraints—for instance, that plans can only be given
to customers satisfying certain conditions, e.g.customers deemed to be “good” according to various
business criteria.
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infected (so that they can provide immediate treatment to these k people in an
attempt to halt the disease’s spread).2 Notice that this query corresponds to only
one of many different policies that can be considered to deal with the disease
spread scenario, that is, we consider the case where a diffusion model expressing
how an infected person can infect other people is available and formulate a
query that looks at the maximum spread when k people are infected. Other
queries, possibly leading to different answers about who should be treated with
medications, are possible.

Both these problems are instances of a class of queries that we call Social
Network Diffusion Optimization Problem (SNDOP) queries. They differ from other
queries studied in logic programming in two fundamental ways: (1) They are
specialized to operate on graph data where the graph’s vertices and edges are labeled
with properties and where the edges can have associated weights, (2) They find sets
of vertices that optimize complex objective functions that can be specified by the
user.

This chapter is organized as follows. In Sect. 5.2, we provide an overview
of GAPs (past work), define a social network (SN for short), and explain how
GAPs can represent some types of diffusion in SNs. Section 5.3 formally defines
different types of social network diffusion optimization problems and provides
results on their computational complexity and other properties. Section 5.4 shows
how our framework can represent several existing diffusion models for social
networks including economics and epidemiology. In Sect. 5.5 we present the exact
SNDOP-Mon algorithm to answer SNDOP queries under certain assumptions
of monotonicity. We then develop a greedy algorithm GREEDY-SNDOP and
show that under certain conditions, it is guaranteed to be an ( e

e−1 ) approximation
algorithm for SNDOP queries—this is the best possible approximation guarantee.
Last, but not least, we describe our prototype implementation and experiments in
Sect. 5.5. Specifically, we tested our GREEDY-SNDOP algorithm on a real-world
social network data set derived from Wikipedia logs. We show that we solve social
network diffusion optimization problems over real data sets in acceptable times.

5.2 Embedding Diffusion Models into Annotated Logic
Programs

In this section, we first formalize social networks, then briefly review generalized
annotated logic programs (GAPs) [6] and then describe how GAPs can be used to
represent concepts related to diffusion in social networks.

2Again, this framework allows us to add additional constraints—for instance, that medication can
only be given to people satisfying certain conditions, e.g. be over a certain age, or be within a
certain age range and not have any conditions that are contra-indicators for the medication in
question.
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5.2.1 Social Networks Formalization

Throughout this chapter, we assume the existence of two arbitrary but fixed
disjoint sets VP,EP of vertex and edge predicate symbols respectively. Each vertex
predicate symbol has arity 1 and each edge predicate symbol has arity 2.

Definition 5.1. A social network is a 5-tuple (V,E, �vert, �edge,w) where:

1. V is a finite set whose elements are called vertices.
2. E ⊆ V×V is a finite multi-set whose elements are called edges.
3. �vert : V → 2VP is a function, called vertex labeling function.
4. �edge : E → EP is a function, called edge labeling function.3

5. w : E → [0,1] is a function, called weight function.

We now present a brief example of an SN.

Example 5.1. Let us return to the cell phone example (query (Q1)). Figure 5.1
shows a toy social network the cell phone company might use. Here, we might
have VP = {male, female, adopter, temp_adopter, non_adopter} denoting the sex
and past adoption behavior of each vertex; EP might be the set {phone,email, IM}
denoting the types of interactions between vertices (phone call, email, and instant
messaging respectively). The function �vert is shown in Fig. 5.1 by the shape
(denoting past adoption status) and shading (male/female). The type of edges (bold
for phone, dashed for email, dotted for IM) is used to depict �edge. w(〈v1,v2〉)
denotes the percentage of communications of type �edge(〈v1,v2〉) initiated by v1 that
were with v2 (measured either w.r.t. time or bytes).

It is important to note that our definition of social networks is much broader than
that used by several researchers [10, 11, 22, 27] who often do not consider either
�edge or �vert or edge weights through the function w—it is well-known in marketing
that intrinsic properties of vertices (customers, patients) and the nature and strength
of the relationships (edges) is critical for decision making in those fields.

Note We assume that SNs satisfy various integrity constraints. In Example 5.1,
it is clear that �vert(v) should include at most one of male, female and at most one
of adopter, temp_adopter,non_adopter. We assume the existence of some integrity
constraints to ensure this kind of semantic integrity—they can be written in any
reasonable syntax to express ICs—in the rest of this chapter, we assume that social
networks have associated ICs and that they satisfy them. In our example, we will
assume ICs ensuring that a vertex can be marked with at most one of male, female
and at most one of adopter, temp_adopter,non_adopter.

3Each edge e ∈ E is labeled by exactly one predicate symbol from EP. However, there can be
multiple edges between two vertices labeled with different predicate symbols.
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Fig. 5.1 Example cellular network

5.2.2 Generalized Annotated Programs: A Recap

We now recapitulate the definition of generalized annotated logic programs from [6].
We assume the existence of a set AVar of variable symbols ranging over the unit real
interval [0,1] and a set F of function symbols each of which has an associated arity.
We start by defining annotations.

Definition 5.2 (Annotation). Annotations are inductively defined as follows:

(i) Any member of [0,1] ∪AVar is an annotation.
(ii) If f ∈ F is an n-ary function symbol and t1, . . . , tn are annotations, then

f (t1, . . . , tn) is an annotation.

For instance, 0.5,1,0.3 and X are all annotations (here X is assumed to be a
variable in AVar). If +,∗,/ are all binary function symbols in F , then (X+1)∗0.5

0.3 is
an annotation.4

We define a separate logical language whose constants are members of V and
whose predicate symbols consist of VP ∪ EP. We also assume the existence of
a set V of variable symbols ranging over the constants (vertices). No function
symbols are present. Terms and atoms are defined in the usual way (cf. [19]).
If A = p(t1, . . . , tn) is an atom and p ∈ VP (resp. p ∈ EP), then A is called a vertex
(resp. edge) atom. We will use A to denote the set of all ground atoms (i.e., atoms
where no variable occurs).

4Notice that in [6] annotations are not restricted to be in [0,1] but any upper semi-lattice is
allowed—for the purpose of this chapter we will restrict ourselves to the unit real interval.
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Definition 5.3 (Annotated Atom/GAP-Rule/GAP). If A is an atom and μ is an
annotation, then A : μ is an annotated atom. If A is a vertex (resp. edge) atom, then
A : μ is also called vertex (resp. edge) annotated atom. If A0 : μ0,A1 : μ1, . . . ,An : μn

are annotated atoms, then

A0 : μ0 ← A1 : μ1 ∧ . . .∧ An : μn

is called a GAP rule (or simply rule). When n = 0, the above rule is called a fact.5

A generalized annotated program (GAP) is a finite set of rules. An annotated atom
(resp. a rule, a GAP) is ground iff there are no occurrences of variables from either
AVar or V in it.

Every social network S = (V,E, �vert, �edge,w) can be represented by the GAP
ΠS = {q(v) : 1 ← | v ∈ V ∧ q ∈ �vert(v)}∪{ep(v1,v2) : w(〈v1,v2〉) ← | 〈v1,v2〉 ∈
E ∧ �edge(〈v1,v2〉) = ep}.

Definition 5.4 (Embedded Social Network). A social network S is said to be
embedded in a GAP Π iff ΠS ⊆ Π .

It is clear that all social networks can be represented as GAPs. When we augment
ΠS with other rules—such as rules describing how certain properties diffuse
through the social network, we get a GAP Π ⊇ ΠS that captures both the structure
of the SN and the diffusion principles. Here is a small example of such a GAP.

Example 5.2. The GAP Πcell might consist of ΠS using the social network of
Fig. 5.1 plus the GAP-rules:

1. will_adopt(V0) : 0.8×X+0.2 ← adopter(V0) : 1 ∧ male(V0) : 1∧
IM(V0,V1) : 0.3 ∧ female(V1) : 1 ∧ will_adopt(V1) : X.

2. will_adopt(V0) : 0.9×X+0.1 ← adopter(V0) : 1 ∧ male(V0) : 1∧
IM(V0,V1) : 0.3 ∧ male(V1) : 1 ∧ will_adopt(V1) : X.

3. will_adopt(V0) : 1 ← temp_adopter(V0) :
1 ∧ male(V0) : 1 ∧ email(V1,V0) : 1∧ female(V1) : 1 ∧ will_adopt(V1) : 1.

Rule (1) says that if V0 is a male adopter and V1 is female and the weight of V0’s
instant messages to V1 is 0.3 or more, and we previously thought that V1 would be
an adopter with confidence X, then we can infer that V0 will adopt the new plan with
confidence 0.8×X+ 0.2. The other rules may be similarly read.

Suppose S is a social network and Π ⊇ ΠS is a GAP. In this case, we call the
rules in Π −ΠS diffusion rules. In this chapter we consider a restricted class of
GAPs: every rule with a non-empty body has a vertex annotated atom in the head
([6] allows any atom to appear in the head of a rule). Thus, edge atoms can appear
only in rule bodies or facts. This means that neither edge weights nor edge labels
change as the result of the diffusion. However, for the general case, it is possible for
them to change as a result of the diffusion process.

5For notational simplicity, we will often write a fact A0 : μ0 ← simply as A0 : μ0, i.e. we drop the
symbol ←.
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GAPs have a formal semantics that can be immediately used. An interpretation
I is any mapping from the set A of all grounds atoms to [0,1]. The set I of all
interpretations can be partially ordered via the ordering: I1 � I2 iff for all ground
atoms A, I1(A)≤ I2(A). I forms a complete lattice under the � ordering.

Definition 5.5 (Satisfaction/Entailment). An interpretation I satisfies a ground
annotated atom A : μ , denoted I |= A : μ , iff I(A) ≥ μ . I satisfies a ground GAP-
rule r of the form AA0 ← AA1 ∧ . . . ∧ AAn (denoted I |= r) iff either (i) I satisfies
AA0 or (ii) there exists an 1 ≤ i ≤ n such that I does not satisfy AAi. I satisfies a
non-ground annotated atom (rule) iff I satisfies all ground instances of it. I satisfies
a GAP iff I satisfies all rules in it. A GAP Π entails an annotated atom AA, denoted
Π |= AA, iff every interpretation I that satisfies Π also satisfies AA.

As shown by Kifer and Subrahmanian [6], we can associate a fixpoint operator with
any GAP Π that maps interpretations to interpretations.

Definition 5.6. Suppose Π is any GAP and I an interpretation. The mapping TΠ
that maps interpretations to interpretations is defined as TΠ (I)(A) = sup{μ |A : μ ←
AA1 ∧ . . .∧ AAn is a ground instance of a rule in Π and for all 1 ≤ i ≤ n, I |= AAi}.

The results of [6] show that TΠ is monotonic (w.r.t. �) and has a least fixpoint
lfp(TΠ ). Moreover, they show that Π entails A : μ iff μ ≤ lfp(TΠ )(A) and hence
lfp(TΠ ) precisely captures the ground atomic logical consequences of Π . They also
define the iteration of TΠ as follows: TΠ ↑ 0 is the interpretation that assigns 0 to
all ground atoms; TΠ ↑ (i+ 1) = TΠ (TΠ ↑ i).

The semantics of GAPs requires that when there are multiple ground instances
of GAP-rules with the same head that “fire”, the highest annotation in any of these
ground rules is “chosen” according to the semantics of GAPs. This might seem
restrictive and counter-intuitive to some, but it actually is the source of much power
of GAPs. For instance, one school of thought is that when multiple ground rules
with the same head “fire”, the annotation derived should be the “noisy-or” value
derived by combining the values of the annotations in the heads of firing rules.
However, this is just one way of combining evidence from multiple sources many
other triangular co-norms other than noisy-or can be used and have been used in the
literature. However, such T-norms can be expressed in our framework. If we have
ground rules G1,G2, . . . ,Gn, each having the same atom in the head, and we want to
combine evidence using a triangular co-norm6 ⊕, and if Gi has the form:

A : μi ← Bodyi

then we can replace these rules with the rules:

A : ⊕({μi | i ∈ X}) ←
∧

i∈X

Bodyi

6When we apply ⊕ to a set {x1, . . . ,xk}, we use ⊕({x1, . . . ,xk}) as short-hand for
⊕(x1,⊕({x2, . . . ,xn})) which is well defined as all triangular co-norms are commutative and
associative.
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for any subset X ⊆ {1, . . . ,n}. Moreover, as we have already remarked, many
real-world diffusion models are non-probabilistic, making assumptions about how
annotations should be combined harder to justify. However, the above discussion
shows that the GAP framework is capable of expressing such rules. Though there is
clearly a cost in terms of difficulty of expressing such methods to combine evidence
generated by multiple rules, algorithms already exist and have been implemented [2]
to learn GAP-based diffusion rules automatically from social network time series
data.

We will show (in Sect. 5.4) that many existing diffusion models for a variety
of phenomena can be expressed as a GAP Π ⊇ ΠS by adding some GAP-rules
describing the diffusion process to ΠS .

5.3 Social Network Diffusion Optimization Problem
(SNDOP) Queries

5.3.1 Basic SNDOP Queries

In this section, we develop a formal syntax and semantics for optimization in social
networks, taking advantage of the aforementioned embedding of SNs into GAPs.
In particular, we formally define SNDOP queries, examples of which have been
informally introduced earlier as (Q1) and (Q2). We see from queries (Q1) and (Q2)
that a SNDOP query looks for a set V′ of vertices and has the following components:
(1) an objective function expressed via an aggregate operator, (2) an integer k > 0,
(3) a set of conditions that each vertex in V′ must satisfy, (4) an “input” atom gI(V),
and (v) an “output” atom gO(V) (here gI and gO are vertex predicate symbols,
whereas V is a variable).

Aggregates It is clear that in order to express queries like (Q1) and (Q2), we need
aggregate operators which are mappings agg : FM([0,1]) → R

+ (R+ is the set of
non-negative reals) where FM(X) denotes the set of all finite multisets that are
subsets of X. Relational DB aggregates like SUM,COUNT,AVG,MIN,MAX are all
aggregate operators which can take a finite multiset of non-negative reals as input
and return a single non-negative real.

Vertex Condition A vertex condition is a set of vertex annotated atoms containing
exactly one variable (intuitively, such annotated atoms are conditions that must be
jointly satisfied by a vertex). More formally, a vertex condition VC is a set {p1(V) :
μ1, . . . ,pn(V) : μn} where each pi ∈VP, V ∈V , and each μi ∈ [0,1]. We use VC[V/v]
to denote the set of ground annotated atoms obtained from VC by replacing each
occurrence of V with v, that is VC[V/v] = {p1(v) : μ1, . . . ,pn(v) : μn}. A GAP Π
entails VC[V/v], denoted Π |= VC[V/v], iff Π |= pi(v) : μi for all 1 ≤ i ≤ n.

Thus, in our example, {male(V) : 1,adopter(V) : 1} is a vertex condition, but
{male(V) : 1,email(V,V ′) : 1} is not. We are now ready to define a SNDOP query.
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Definition 5.7 (SNDOP Query). A SNDOP query is a 5-tuple (agg,VC,k,gI(V),
gO(V)) where agg is an aggregate, VC is a vertex condition, k > 0 is an integer, and
gI(V), gO(V) are vertex atoms.

Let us consider again the medication distribution plan example. Suppose we have
a diffusion model expressing how a property healthy diffuses in a social network
w.r.t. a property immune (which would hold for a vertex when a medication is given
to it). An interesting query to pose would be to determine a set of at most k people
such that if these people were immune to the disease, then the number of healthy
people would be maximized. Such a query can be expressed with the SNDOP query
(SUM, /0,k, immune(V),healthy(V)). Here, the goal is to find a set V′ ⊆V of vertices
such that |V′| ≤ k and the following is maximized:

SUM{lfp(TΠ∪{immune(v′):1 | v′∈V′})(healthy(v)) | v ∈ V}

Here, the SUM is applied to a multiset rather than a set. Note that in the query above
VC = /0, meaning that the immune property can be assigned to any vertex of the SN.
However, other queries can be expressed where VC imposes restrictions on which
vertices can have property immune. As an example, VC = {adult(V)}would enforce
every vertex in V′ to be an adult person.

If we return to our cell phone example, we can set agg = SUM, VC = /0, k = 3
(for example), gI(V) = will_adopt(V), and gO(V) = will_adopt(V) (notice that in
this case gI(V) = gO(V)). Here also, the goal is to find a set V′ ⊆ V of vertices such
that |V′| ≤ 3 and the following is maximized:

SUM{lfp(TΠ∪{will_adopt(v′):1 | v′∈V′})(will_adopt(v)) | v ∈ V}

Here, the SUM is applied to a multiset rather than a set. Note that the diffusion
model’s impact is captured via the lfp(TΠ∪{will_adopt(v′):1 | v′∈V′})(will_adopt(v))
expression which, intuitively, tells us the confidence (according to the diffusion
model) that each vertex v will be an adopter. If we return to an extended version
of our cell phone example and we want to ensure that the vertices in V′ are “good”
customers7 then we merely can set VC = {good(V) : 1}. This query now asks us
to find a set V′ of three or less vertices—all of which are “good” customers of the
company C—such that SUM{lfp(TΠ∪{will_adopt(v′):1 | v′∈V′})(will_adopt(v)) | v ∈ V}
is maximized.

Our framework also allows the vertex condition VC to have annotations other
than 1. So in our cell phone example, the company could explicitly exclude anyone
whose “opinion” toward the company is negative. If opinion is quantified on a
continuous [0,1] scale (such automated systems do exist [1]), then the vertex
condition might be restated as VC = {good(V) : 1,negative_opinion_C(V) : 0.7}

7We can think of many ways a company may define “good” customers, e.g. those who regularly
pay their bills on time, those who buy a lot of services from the company, those who have stayed
as customers for a long time, etc. For our example, the specific definition of “good” is not relevant.
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which says that the company wants to exclude anyone whose negativity about the
company exceeds 0.7 according to an opinion scoring engine such as [1].

Definition 5.8 (Pre-answer/Value). Consider a social network S = (V,E, �vert,
�edge,w) embedded in a GAP Π . A pre-answer to the SNDOP query Q =
(agg,VC,k,gI(V), gO(V)) w.r.t. Π is any set V′ ⊆ V such that:

1. |V′| ≤ k, and
2. for all vertices v′′ ∈ V′, Π ∪{gI(v′) : 1 | v′ ∈ V′} |= VC[V/v′′].

We use pre_ans(Q,Π) to denote the set of all pre-answers to Q w.r.t. Π (whenever
Π is clear from the context we simply write pre_ans(Q)).

The value of a pre-answer V′ is defined as follows:

value(V′) = agg({lfp(TΠ ∪{gI(v′):1 | v′∈V′})(gO(v)) | v ∈ V})

where the aggregate is applied to a multi-set rather than a set. We also note that
we can define value as a mapping from interpretations to reals based on a SNDOP
query. We say value(I) = agg({I(gO(v)) | v ∈ V}).

If we return to our cell phone example, V′ is the set of vertices to which the
company is considering giving free plans. value(V′) is computed as follows.

1. Find the least fixpoint of TΠ ′
cell

where Π ′
cell is Πcell expanded with facts of the

form will_adopt(v′) : 1 for each vertex v′ ∈ V′.
2. For each vertex v ∈ V (the entire set of vertices, not just V′ now), we now find

the confidence assigned by the least fixpoint.
3. Summing up these confidences gives us a measure of the expected number of

plan adoptees.

Definition 5.9 (Answer). Suppose a social network S = (V,E, �vert, �edge,w) is
embedded in a GAP Π and Q = (agg,VC,k,gI(V),gO(V)) is a SNDOP query.
A pre-answer V′ is an answer to the SNDOP query Q w.r.t. Π iff the SNDOP query
has no other pre-answer V′′ such that value(V′′)> value(V′).8

The answer set to SNDOP query Q w.r.t. Π , denoted ans(Q,Π), is the set of
all answers to Q w.r.t. Π (whenever Π is clear from the context we simply write
ans(Q)).

It is important to note that an answer to an SNDOP query is a set of vertices that
jointly maximize the objective function specified. Thus, it is entirely possible that
if we set k = 1, we could have two answers {a1} and {a2} each of which ties for the
highest value. However, {a1,a2} may not be the answer that optimizes the objective
function when k = 2.

8Throughout this chapter, we only treat maximization problems—there is no loss of generality in
this because minimizing an objective function f is the same as maximizing −f .
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Example 5.3. For instance, suppose a1 and a2 are brothers with largely the same
connections. The sets {a1} and {a2} both have value 100 each and let us say these
constitute an answer (looking at one individual only) w.r.t. an objective function, e.g.
influencing voters in an election to vote for candidate X. As a1,a2 mostly influence
the same people, they may jointly be able to get only 110 people to vote for the
candidate because of the large overlap in their sphere of influence. However, now
consider persons a3,a4. Each of them can only influence 90 voters by themselves,
but only 10 of these voters “overlap”. Thus, they can jointly influence 80+80+10=
170 voters to vote for X. It would make more sense (all other things being equal)
for the candidate’s party to invest in {a3,a4}.

Example 5.4. Consider the GAP Πcell of Example 5.2 with the social network from
Fig. 5.1 embedded and the SNDOP query Qcell =(SUM, /0,3,will_adopt,will_adopt).
The sets V′

1 = {v15,v19,v6} and V′
2 = {v15,v18,v6} are both pre-answers. In the

case of V′
1, two applications of the TΠ operator yields a fixpoint where the vertex

atoms formed with will_adopt and vertices in the set {v15,v19,v6,v12,v18,v7,v10}
are annotated with 1. For V2, only one application of TΠ is required to reach a
fixpoint. In the fixpoint, vertex atoms formed with will_adopt and vertices in the set
{v15,v6,v12,v18,v7,v10} are annotated with 1. As these are the only vertex atoms
formed with will_adopt that have a non-zero annotation after reaching the fixed
point, we know that value(V′

1) = 7 and value(V′
2) = 6.

5.3.2 Special Cases of SNDOPs

In this section, we examine several special cases of SNDOPs that still allow us to
represent a wide variety of diffusion models. Table 5.1 illustrates the special cases
discussed in this section while Table 5.2 illustrates various properties we prove (and
the assumptions under which those properties are proved).

Special Cases of GAPs First, we present a class of GAPs called linear GAPs.
Intuitively, a GAP is linear if the annotations in the rule heads are linear functions
and the annotations in the body are variables. It is important to note that a
wide variety of diffusion models can be represented with GAPs that meet the
requirements of this special case. We formally define linear GAPs below.

Table 5.1 Special cases of
SNDOPs

Type Special case Reference
Special cases of Π Linear GAP Definition 5.10

Special cases of agg
Monotonic Definition 5.11
Positive-linear Definition 5.12

Special cases of value
Normalized Definition 5.13
A-priori VC Definition 5.14
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Table 5.2 Properties that can be proven given certain assumptions

Property Assumptions
Monotonicity of value (Lemma 5.1) Monotonicity of agg
Multiset {V′ ⊆ V|V′ is a pre-answer} is a uniform matroid A-priori VC
(Lemma 5.2)

Submodularity of value (Theorem 5.1)

Linear GAP

Positive-linear agg

A-priori VC

Definition 5.10 (Linear GAP). A GAP-rule is linear iff it is of the form:

H0 : c0 + c1 ·X1 + · · ·+ cn ·Xn ← A1 : X1 ∧ . . .∧ An : Xn

where each ci ∈ [0,1], Σn
i=1ci ∈ [0,1], and each Xj is a variable in AVar. A GAP is

linear iff each rule in it is linear.

Special Aggregates We define two types of aggregates: monotonic aggregates and
positive-linear aggregates.

To define monotonicity, we first define a partial order � on multi-sets of numbers
as follows: given two multi-sets of numbers X1 and X2, we write X1 � X2 iff there
exists an injective mapping β : X1 → X2 such that ∀x1 ∈ X1,x1 ≤ β (x1).

Definition 5.11 (Monotonic Aggregate). An aggregate agg is monotonic iff
whenever X1 � X2, it is the case that agg(X1)≤ agg(X2).

Definition 5.12 (Positive-Linear Aggregate). An aggregate agg is positive-linear
iff it is defined as follows: agg(X) = c0 +Σxi∈X ci · xi, where X is a finite multiset
and ci ≥ 0 for all i > 0.

In the previous definition, note that c0 can be positive, negative, or 0. Thus, we
only require that the coefficients associated with the elements of the multi-set be
positive—we allow for an additive constant to be negative. One obvious example of
a positive-linear aggregate is SUM. Moreover, any positive weighted sum will also
meet these requirements.

Proposition 5.1. If agg is a positive-linear aggregate, then it is a monotonic
aggregate.

Special Cases of the Query We now describe two special cases of the query:
Normalized and a-priori VC SNDOP queries. Intuitively, normalized means that
value( /0) = 0.

Definition 5.13 (Normalized). An SNDOP query is Normalized w.r.t. a given
social network S and a GAP Π ⊇ ΠS iff value( /0) = 0.

Note that the function value is uniquely defined by a social network, a SNDOP
query, and a diffusion model Π and hence the above definition is well defined.
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The following result states that if an SNDOP query Q with a positive-linear
aggregate is not normalized, then we can always modify it into an “equivalent”
SNDOP query Q′ (i.e. ans(Q) = ans(Q′)) which is normalized and still maintains a
positive-linear aggregate.

Proposition 5.2. Let Q = (agg,VC,k,gI(V),gO(V)) be a SNDOP query which
is not normalized w.r.t. a social network S and a GAP Π ⊇ ΠS , and
where agg is positive-linear. Let agg′(X) = agg(X) − value( /0). Then, Q′ =
(agg′,VC,k,gI(V),gO(V)) is a SNDOP query which is normalized w.r.t. S and
Π , ans(Q) = ans(Q′), and agg′ is positive-linear.

Recall that in order to check if a set of vertices V′ is a pre-answer, we need
to check for all vertices v′′ ∈ V′ if Π ∪ {gI(v′) : 1 | v′ ∈ V′} |= VC[V/v′′] (see
condition (2) of Definition 5.8). Intuitively, a SNDOP query has an A-Priori VC
(w.r.t. a given social network S and a GAP Π ⊇ ΠS ) when we can check this
condition by looking only at the original social network S (thereby disregarding
Π ), that is we can check for all vertices v′′ ∈ V′ if ΠS ∪{gI(v′′) : 1} |= VC[V/v′′].
We formally define this notion below.

Definition 5.14 (A-Priori VC). A SNDOP query Q = (agg,VC,k,gI(V),gO(V))
has an A-Priori VC w.r.t. a given social network S = (V,E, �vert, �edge,w) and a
GAP Π ⊇ΠS iff for each V′ ⊆V the following holds: for each v′′ ∈V′, Π ∪{gI(v′) :
1 | v′ ∈ V′} |= VC[V/v′′] iff ΠS ∪{gI(v′′) : 1} |= VC[V/v′′].

If, in the cell phone example, we require that the free cell phones are given
to “good” vertices, then query (Q1) is a-priori VC because being “good” may be
defined statically and is not determined by the diffusion process. Likewise, if we
consider our medical example, in the case of an a-priori VC query (Q2) saying that
an individual below 5 should not get the medicine, this boils down to a static labeling
of each node’s age (below 5 or not) which is not affected by the diffusion process.
Table 5.2 summarizes the different properties that we prove in this section (as well
as what assumptions we make to prove these properties).

We say that function value is monotonic iff V1 ⊆ V2 implies value(V1) ≤
value(V2) for any two sets of vertices V1 and V2. The first property we show is
that the value function is monotonic if agg is monotonic.

Lemma 5.1. Given a SNDOP query Q = (agg,VC,k,gI(V),gO(V)), a social
network S , and a GAP Π ⊇ ΠS , if agg is monotonic (Definition 5.11), then value
(defined as per Q and Π ) is monotonic.

Before introducing the next result we recall the definitions of matroid and
uniform matroid. A matroid is a pair (X, I) where X is a finite set and I is a collection
of subsets of X (called “independent”), satisfying two axioms:

1. B ∈ I,A ⊂ B ⇒ A ∈ I.
2. A,B ∈ I, |A|< |B| ⇒ ∃x ∈ B−A s.t. A∪{x} ∈ I.

A uniform matroid is a matroid such that independent sets are all sets of size at most
k for some k ≥ 1.
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Next, we show that the set of pre-answers is a uniform matroid in the special case
of an a-priori VC query.

Lemma 5.2. Given a SNDOP query Q = (agg,VC,k,gI(V),gO(V)), a social
network S , and a GAP Π ⊇ ΠS , if Q is a-priori VC w.r.t. S and Π , then the
set of pre-answers is a uniform matroid.

As we will see in Sect. 5.5, the above lemma (along with other properties,
see Theorem 5.5) enables us to define a greedy approximation algorithm to
solve SNDOP queries that achieves the best possible approximation ratio that a
polynomial algorithm can achieve (unless P = NP).

An important property in social networks is submodularity whose relationship
to the spread of phenomena in social networks has been extensively studied (see
Chap. 4). If X is a set, then a function f : 2X → R is submodular iff whenever X1 ⊆
X2 ⊆ X and x ∈ X−X2, f (X1 ∪ {x})− f (X1)≥ f (X2 ∪ {x})− f (X2). The following
result states that the value function associated with a linear GAP and an a-priori VC
SNDOP query whose aggregate is positive-linear is guaranteed to be submodular.

Theorem 5.1. Given an SNDOP query Q = (agg,VC,k,gI(V),gO(V)), a social
network S , and a GAP Π ⊇ ΠS , if the following criteria are met:

• Π is a linear GAP,
• Q is a-priori VC, and
• agg is positive-linear,

then value (defined as per Q and Π ) is sub-modular.

5.3.3 The Complexity of SNDOP Queries

We now study the complexity of answering an SNDOP query. First, we show that
SNDOP query answering is NP-hard by a reduction from max k-cover [14]. We
show that the problem is NP-hard even when many of the special cases hold.

Theorem 5.2. Finding an answer to an SNDOP query Q=(agg,VC,k,gI(V),gO(V))
(w.r.t. a social network S and a GAP Π ⊇ ΠS ) is NP-hard (even if Π is a linear
GAP, VC = /0, agg = SUM and value is normalized).

Under some conditions, the decision problem for SNDOP queries is also in NP.

Theorem 5.3. Given a SNDOP query Q = (agg,VC,k,gI(V),gO(V)), a social
network S , a GAP Π ⊇ ΠS , and a real number target, the problem of checking
whether there exists a pre-answer V′ s.t. value(V′) ≥ target is in NP under the
assumptions that agg and the functions in F are polynomially computable, and
Π is ground.
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Most common aggregate functions like SUM, AVERAGE, Weighted average,
MIN, MAX, COUNT are all polynomially computable. Moreover, the assumption
that the functions corresponding to the function symbols in F (i.e. the function
symbols that can appear in the annotations of a GAP) are polynomially computable
is also reasonable.

Later in this chapter, we shall address the problem of answering a SNDOP
query using an approximation algorithm. We say that V′ is a 1

α -approximation to an
SNDOP query if value(Vopt)≤α ·value(V′) (where Vopt is an answer to the SNDOP
query). Likewise, the algorithm that produces V′ in this case is an α-approximation
algorithm. We note that due to the nature of the reduction from MAX-K-COVER
that we used to prove NP-hardness, we can now show that unless P=NP, there is no
PTIME-approximation of the SNDOP query answering problem that can guarantee
that the approximate answer is better than 0.63 of the optimal value. This gives us an
idea of the limits of approximation possible for a SNDOP query with a polynomial-
time algorithm. Later, we will develop a greedy algorithm that precisely matches
this approximation ratio.

Theorem 5.4. Answering a SNDOP query Q = (agg,VC,k,gI(V),gO(V)) (w.r.t. a
social network S and a GAP Π ⊇ ΠS ) cannot be approximated in PTIME within
a ratio of e−1

e + ε for some ε > 0 (where e is the inverse of the natural log) unless
P = NP—even if Π is a linear GAP, VC = /0, agg = SUM and value is normalized.

In other words, the previous theorem says that there is no polynomial-time
algorithm that can approximate value within a factor of about 0.63 under standard
assumptions.

5.4 Applying SNDOPs to Diffusion Problems

In this section, we show how SNDOPs can be applied to real-word diffusion
problems. Most diffusion models in the literature fall into one of three categories—
tipping models (Sect. 5.4.1), where a given vertex adopts a behavior based on
the ratio of how many of its neighbors previously adopted the behavior, cascade
models (Sect. 5.4.2), where a property passes from vertex to vertex solely based
on the strength of the relationship between the vertices, and homophilic mod-
els (Sect. 5.4.3), where vertices with similar properties tend to adopt the same
behavior—irrespective (or in addition to) of network relationships.

5.4.1 Tipping Diffusion

Tipping models [6, 20, 21] have been studied extensively in economics and
sociology to understand diffusion phenomena. In tipping models, a vertex changes a
property based on the cumulative effect of its neighbors. In this section, we present
the tipping model of Jackon and Yariv [10], which generalizes many existing tipping
models.
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The Jackson-Yariv Diffusion Model [10] In this framework, the social network
is just an undirected graph G′ = (V′,E′) consisting of a set of agents (e.g. people).
Each agent has a default behavior (A) and a new behavior (B). Suppose di denotes the
degree of a vertex vi. Jackson and Yariv [10] use a function γ : {0, . . . , |V′| − 1}→
[0,1] to describe how the number of neighbors of v affects the benefits to v for
adopting behavior B. For instance, γ(3) specifies the benefits (in adopting behavior
B) that accrue to an arbitrary vertex v ∈ V′ that has three neighbors. Let πi denote
the fraction of neighbors of vi that have adopted behavior B. Let constants bi and ρi

be the agent-specific benefit and cost, respectively, for vertex vi to adopt behavior B.
Jackson and Yariv [10] state that node vi switches to behavior B iff bi

ρi
·γ(di) ·πi ≥ 1.

Returning to our cell-phone example, one could potentially use this model to
describe the spread of the new plan. In this case, behavior A would be adherence
to the current plan the user subscribes to, while B would be the use of the new
plan. The associated SNDOP query would find a set of nodes which, if given a free
plan, would jointly maximize the expected number of adoptees of the plan. Cost and
benefit could be computed from factors such as income, time invested in switching
plans, etc. We show how the model of [10] can be expressed via GAPs.

Diffusion Model 5.4.1 (Jackson-Yariv model) Given a Jackson-Yariv model con-
sisting of G′ =(V′,E′), we can set up a social networkS =(V′,E′′, �vert, �edge,w) as
follows. We define E′′ = {(x,y),(y,x) | (x,y) ∈ E′}. We have a single edge predicate
symbol edge which is assigned by �edge to every edge in E′′, and w assigns 1 to
all edges in E′′. Our associated GAP ΠJY now consists of ΠS plus one rule of the
following form for each vertex vi:

B(vi) :

⌊
bi

ρi
· γ

(

∑
j

Ej

)
· ∑j Xj

∑j Ej

⌋
←

∧

vj|〈vj,vi〉∈E′′
(edge(vj,vi) : Ej ∧B(vj) : Xj)

It is easy to see that this rule (when applied in conjunction with ΠS for a social
network S ) precisely encodes the Jackson-Yariv semantics.

5.4.2 Cascading Diffusion

In a cascading model, a vertex obtains a property from one of its neighbors,
typically based on the strength of its relationship with the neighbor. These models
were introduced in the epidemiology literature and perhaps the most well-known
of these models, the SIR model, is more fully reviewed in Chap. 2. These cascading
diffusion models have been applied to other domains as well. For example, Cha et al.
[9] (diffusion of photos in Flickr) and Sun et al. [8] (diffusion of bookmarks in
Facebook) both look at diffusion process in social networks as “social cascades” of
this type.
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The SIR Model of Disease Spread The SIR (susceptible, infectious, removed)
model of disease spread (see Chap. 2) is a classic disease model which labels each
vertex in a graph G = (V,E) (of humans) with susceptible if it has not had the
disease but can receive it from one of its neighbors, infectious if it has caught the
disease and trec units of time have not expired, and removed when the vertex can no
longer catch or transmit the disease. The SIR model assumes that a vertex v that is
infected can transmit the disease to any of its neighbors v′ with a probability pv,v′ for
trec units of time. It is assumed that becoming infected takes precisely a time unit.
We would like to find a set of at most k vertices that would maximize the expected
number of vertices that become infected. These are obviously good candidates to
treat with appropriate medications. The following is a non-probabilistic variant of
the SIR model represented as a GAP. Note it is not equivalent to the SIR model of
Chap. 2—though it captures the intuition.

Diffusion Model 5.4.2 (SIR Model) Let S = (V,E, �vert, �edge,w) be an SN where
each edge is labeled with the predicate symbol e and w(〈v,v′〉) = pv,v′ assigns a
probability of transmission to each edge . We use the predicate inf to designate the
initially infected vertices. In order to create a GAP ΠSIR capturing the SIR model of
disease spread, we first define trec predicate symbols rec1, . . . ,rectrec where reci(v)
intuitively means that node v was infected i days ago. Hence, rectrec(v) means that v
is “removed.” We embed S into GAP ΠSIR by adding the following diffusion rules.
If trec > 1, we add a non-ground rule for each i = {2, . . . , trec} - starting with trec:

reci(V) : R ← reci−1(V) : R

rec1(V) : R ← inf(V) : R

inf(V) : (1−R) ·PV ′,V ·PV ′ · (1−R′) ← rectrec(V) : R∧ e(V ′,V) : PV ′,V ∧
inf(V ′) : PV ′ ∧ rectrec(V

′) : R′.

The first rule says that if a vertex is in its (i − 1)’th day of recovery with
confidence R in the j’th iteration of the TΠSIR operator, then the vertex is i days
into recovery (with the same confidence) in the j+ 1’th iteration of the operator.
Likewise, the second rule intuitively encodes the fact that if a vertex became infected
with confidence R in the j’th iteration of the TΠSIR operator, then the vertex is one
day into recovery in the j+ 1’th iteration of the operator with the same confidence.
The last rule says that if a vertex V ′ was infected with confidence PV ′ and has
not been removed with confidence 1− R′, and there is an edge from V ′ to V in
the social network (weighted with PV ′,V ), given the confidence 1− R that V has
not already been removed, then the confidence that the vertex V gets infected is
(1−R)·PV ′,V ·PV ′(1−R′). Here, PV ′(1−R′) is one way of measuring the confidence
that V ′ is infected and has not recovered and PV ′,V is the confidence of infecting the
neighbor. Notice that e is a static property of the graph which does not change over
the time, so we do not need time indexes for it. As for inf , the reason why we can
avoid using time indexes is that we can keep track of how much time has gone since
a vertex got infected with the predicates reci using the second rule.



66 5 Logic Programming Based Diffusion Models

Diffusion in the Flickr Photo Sharing Network The Flickr social network allows
users to share photographs. Users create a list of “favorite” photos that can be viewed
by other users. Cha et al. [9] use a variant of SIS above to study how photographs
spread to the favorite lists of different users. A key difference is that they do not
consider a node “recovered”—i.e. once a photo was placed on a favorite list, it
was relatively permanent (the study was conducted over about 100 days). They
also found that photos lower on a favorite list (as the result of a user marking a
large number of photos as “favorite”) for a given user could still spread through
the network. A simple GAP that captures the intuition of how Flickr photos spread
according to [9] uses just one rule:

Diffusion Model 5.4.3 (Flickr Photo Diffusion)

photoi(V) : consti ·Xi ← connected_to(V ′,V) : 1∧photoi(V
′) : Xi

In Diffusion Model 5.4.3, the annotation of the vertex atom photoi(V) is the
confidence that vertex V has marked photo i as one of its favorites. The predicate
connected_to is the sole edge label representing that there is a connection from
vertex V ′ to V (users select other users on this network). Additionally, the value
consti is a number in [0,1] that determines how a given photo spreads in the
network. Notice that the above rule is linear, as the head is a linear combination and
consti ∈ [0,1]. We note that for all of these models, the annotation functions reflect
one interpretation of the confidence that a vertex is infected or recovered—others
are possible in our framework.

5.4.3 Homophilic Diffusion

Recently, [11] studied the spread of mobile application use on a global instant-
messaging network of over 27 million vertices. They found that network-based
diffusion could overestimate the spread of a mobile application and, for this
scenario, over 50% of the adopted use of the applications was due to homophily—
vertices with similar properties adopting similar applications.

These results should not be surprising—the basic idea behind web-search
advertising is that two users with a similar property (search term) will be interested
in the same advertised item. In fact, Cha et al. [9] explicitly pre-processed their
Flickr data set with a heuristic to eliminate properties attached to vertices that could
not be accounted for by a diffusion process. We can easily represent homophilic
diffusion in a GAP with the following type of diffusion rule:

Diffusion Model 5.4.4 (Homophilic Diffusion of a Product)

buys_product(V) : 0.5×X ← property(V) : 1∧ exposed_to_product(V) : X
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In Diffusion Model 5.4.4, if a vertex is exposed to a product (e.g. through mass
advertising) and has a certain property, then the person associated with the vertex
purchases the product with a confidence of 0.5×X, where X measures the extent of
the exposure. For this rule, there are no network effects.

In [10], the authors propose a “big seed” marketing approach that combines both
homophilic and network effects. They outline a strategy of advertising to a large
group of individuals who are likely to spread the advertisement further through
network effects. We now describe a GAP that captures the ideas underlying big seed
marketing. Suppose we have a set of vertex predicate symbols AL⊆VP correspond-
ing to people “attributes”—these may be certain demographic characteristics such
as education level, race, level of physical fitness, etc. Suppose we want to advertise
to people having (at least) one of k ≤ |AL| attributes to maximize an aggregate agg
with respect to a goal predicate g (in other words, we want to choose k attributes
and advertise to people having those attributes so that agg with respect to g is
maximized). Consider the following construction.

Diffusion Model 5.4.5 (Big Seed Marketing) The GAP includes an embedding of
the social network as well as the network diffusion model of the user’s choice.
We make the following additions to the GAP and the SN:

1. Add vertex predicate symbol attrib to VP.
2. For each lbl ∈ AL, add a vertex vlbl to V. We also set �vert(vlbl) = {attrib}.
3. For each lbl ∈ AL, add the following non-ground rule:

g(V) : eff lbl ×X ← lbl(V) : 1∧ g(vlbl) : X

where eff lbl is a constant in [0,1] corresponding to the confidence that, if adver-
tised to, a vertex v with attribute lbl obtains an annotation of 1 on g(v).

Our SNDOP query is (agg,VC,k,g(V),g(V)), where VC = {attrib(V) : 1}.

Note that in the above diffusion model, the vlbl vertices correspond to advertise-
ments directed toward different vertex properties. The VC condition forces the query
to only return vlbl vertices. As an example, a solution like {g(vlbl1),g(vlbl2)} means
that we are targeting people having attribute lbl1 or lbl2. The diffusion rule, added
per label, ensures that the mass advertisement is received and that the vertex acts
accordingly (hence the efflbl constants).

5.5 Algorithmic Approach and Experiments

Regretfully, Theorem 5.2 precludes an exact solution in PTIME and Theorem 5.4
precludes a PTIME α-approximation algorithm where α < e

e−1 . Both of these
results hold for the restricted case of linear-GAPs and positive-linear aggregate
functions.
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The good news is that we were able to show that (1) for linear-GAPs and a-priori
VC queries with positive-linear aggregates, the value function is submodular
(Theorem 5.1). (2) Under these conditions, we can reduce the problem to the
maximization of a submodular function over a uniform matroid (the uniformity of
the matroid is proved in Lemma 5.2 for a-priori VC queries). (3) We can leverage
the work of [13] that admits a greedy e

e−1 approximation algorithm. In this section,
we develop a greedy algorithm for SNDOP queries that leverages the above three
results. This is analogous to the greedy approximation technique for the IC and LT
models described in Chap. 4.

The GREEDY-SNDOP algorithm shown below assumes a linear GAP, an a-
priori VC query with positive-linear aggregates, and a Normalized value function
(notice that the latter requirement can be met as stated by Proposition 5.2).
The algorithm provides e

e−1 approximation to the SNDOP query problem. As this
matches the upper bound of Theorem 5.4, we cannot do better in terms of an
approximation guarantee.

GREEDY-SNDOP(Π ,agg,VC,k,gI(V),gO(V)) returns SOL ⊆ V

1. Initialize SOL = /0 and REM = {v ∈ V|
(
{gI(v) : 1}∪⋃

pred∈�vert(v){pred(v) : 1}
)
|= VC[V/v]}

2. While |SOL|< k and REM �= /0

a. vbest = null, val = value(SOL), inc = 0
b. For each v ∈ REM, do the following

i. Let incnew = value(SOL∪{v})− val
ii. If incnew ≥ inc then inc = incnew and vbest = v

c. SOL = SOL∪{vbest}, REM = REM−{vbest}
3. Return SOL

We now analyze the time complexity of GREEDY-SNDOP.

Proposition 5.3. Given a SNDOP query Q = (agg,VC,k,gI(V),gO(V)), a social
network S , and a GAP Π ⊇ ΠS , the complexity of GREEDY-SNDOP is O(k ·
|V| ·F(|V|)) where F(|V|) is the time complexity to compute value(V′) for some set
V′ ⊆ V of size k.

We note that most likely, the most expensive operation is the computation of
value at line 2(b)i. One obvious way to address this issue is by using a non-ground
version of the fixed-point.

Theorem 5.5. Given a SNDOP query Q = (agg,VC,k,gI(V),gO(V)), a social
network S , and a GAP Π ⊇ ΠS , if

• Π is a linear GAP,
• Q is a-priori VC,
• agg is positive-linear, and
• value is Normalized,

then GREEDY-SNDOP is an ( e
e−1)-approximation algorithm.
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We have implemented the GREEDY-SNDOP algorithm in 660 lines of Java code
by re-using and extending the diffusion modeling Java library of [2] (approx 35 K
lines of code). Our implementation uses multiple threads in the inner loop of the
GREEDY-SNDOP algorithm to increase efficiency. All experiments were executed
on the same machine with a dedicated 4-core 2.4 GHz processor and 22 GB of main
memory. Times were measured to millisecond precision and are reported in seconds.

Data Set In order to evaluate GREEDY-SNDOP, we used a real-world dataset
based on a social network of Wikipedia administrators and authors. Wikipedia is
an online encyclopedia collaboratively edited by many contributors from all over
the world. Selected contributors are given privileged administrative access rights
to help maintain and control the collection of articles with additional technical
features. A vote by existing administrators and ordinary authors determines whether
an individual is granted administrative privileges. These votes are publicly recorded.
Leskovec et al. [3] crawled 2794 elections from the inception of Wikipedia until
January 2008. The votes casted in these elections give rise to a social network among
Wikipedia administrators and authors by representing a vote of user i for user j as a
directed edge from node i to j. In total, the dataset contains 103,663 votes (edges)
connecting more than 7000 Wikipedia users (vertices). Hence, the network is large
and densely connected.9

SNDOP-Query In our experiments, we consider the hypothetical problem of
finding a set of administrators having the highest overall influence in the Wikipedia
social network described above. We treat votes as a proxy for the inverse of
influence. In other words, if user i voted for user j, we assume user j (intentionally
through lobbying or unintentionally through the force of his contributions to
Wikipedia) influenced user i to vote for him. All edges are assigned a weight of
1. Our SNDOP queries are designed as per the following definition.

Definition 5.15 (Wikipedia SNDOP-Query). Given some natural number k > 1,
a Wikipedia SNDOP query, WQ(k) is specified as follows:

• agg = SUM—the intuition is that the aggregate provides us an expected number
of vertices that are influenced.

• VC = /0—we do not use a vertex condition in our experiments
• k as specified by the input
• gI(V) = gO(V) = influenced(V)

Diffusion Models Used We represented the diffusion process with two different
models: one tipping and one cascading.

• Cascading Diffusion Model We used the Flickr Diffusion Model (Diffusion
Model 5.4.3 on page 66) described in Sect. 5.4.2. In this model, a constant
parameter α represents the “strength” or “likelihood” of influence. The larger
the parameter α the higher the influence of a user on those who voted for her.

9Our Wikipedia data set does not include edge weights. However, including edge weights should
not appreciably change the experimental results which show that solving SNDOP queries when
tipping models are used is faster, in general, than when cascade models are used.
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Fig. 5.2 Runtimes of GREEDY-SNDOP for different values of α and k = 5 in both diffusion
models

• Tipping Diffusion Model Cha et al. [5] shows that there is a relationship
between the likelihood of a vertex marking a photo as a favorite and the per-
centage of their neighbors that also marked that photo as a favorite. This implies
a tipping-model (as in Sect. 5.4.1). We apply the Jackson-Yariv model with B

equated to influenced. For each vertex vj ∈ V, we set the benefit to cost ratio (
bj
cj

)
to 1. Finally, the function γ defined in the Jackson Yariv model is the constant-
valued function (for all values of x):

γ(x) = α.

This says that irrespective of the number of neighbors that a vertex has, the benefit
to adopting strategy B (i.e. influenced) is α . Therefore, the resulting diffusion rule
for the linear Jackson-Yariv model is:

influenced(v) : α · ∑j Xj

|{vj|〈vj,v〉}| ←
∧

vj|〈vj,v〉∈E

influenced(vj) : Xj

For both models, we derive a unique logic program for each setting of the
parameter α . The parameter α depends on the application and can be learned from
ground truth data. In our experiments, we varied α to avoid introducing bias.

Run-Time of GREEDY-SNDOP with Varying α and Different Diffusion Mod-
els Figure 5.2 shows the total runtime of GREEDY-SNDOP in seconds to find the
set of k = 5 most influential users in the Wikipedia voting network for different
values of the strength of influence parameter α . We varied α from 0.05 (very low
level of influence) to 0.5 (very high level of influence) for both the cascading and
tipping diffusion model. We observe that higher values of α lead to higher runtimes
as expected since the scope of influence of any individual in the network is larger.
Furthermore, we observe that the runtimes for the tipping diffusion model increase
more slowly with α compared to the cascading model.
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Fig. 5.3 Runtimes of GREEDY-SNDOP for different values of k and α = 0.2 in both diffusion
models

Fig. 5.4 Time per iteration of GREEDY-SNDOP for α = 0.2 in both diffusion models

Run-Time of GREEDY-SNDOP with Varying k For the next set of experiments,
we keep the strength of influence fixed to α = 0.2 and varied k which governs the
size of the set of influencers. Figure 5.3 reports the runtime of GREEDY-SNDOP
for the query WQ(k) with k = 5,10,15,20,25. For the cascading model, the runtime
is approximately linear in k—a curve-fitting analysis using Excel showed a slight
superlinear trend (even though the figure itself looks linear at first sight). Figure 5.4
shows the time taken to execute each of the 25 iterations of the outer loop for the
query WQ(25) with α = 0.2. Note that each subsequent iteration is more expensive
than the previous one since the size of the logic programs to consider increases with
the addition of each ground atom influenced(vi). However, we also implemented the
practical improvement of “lazy evaluation” of the submodular function as described
in [7]. This improvement, which maintains correctness of the algorithms, stores
previous improvements in total score and prunes the greedy search for the highest
scoring vertex as discussed. We found that this technique also reduced the runtime
of subsequent iterations.
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Our experimental results show that we can answer SNDOP queries on large
social networks. For example, computing the set of five most influential Wikipedia
users in the voting network required approximately 2 h averaged over the different
values of α in the tipping diffusion model.

5.6 Conclusion

Social networks are proliferating rapidly and have led to a wave of research on
diffusion of phenomena in social networks. In this chapter, we introduce the class
of Social Network Diffusion Optimization Problems (SNDOPs for short) which try
to find a set of vertices (where each vertex satisfies some user specified vertex
condition) that has cardinality k or less (for a user-specified k > 0) and that optimizes
an objective function specified by the user in accordance with a diffusion model
represented via the well-known generalized annotated program (GAP) framework.
We have used specific examples of SNDOP queries drawn from product adoption
(cell phone example) and epidemiology.
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