
Chapter 4
The Independent Cascade and Linear Threshold
Models

4.1 Introduction

In Chaps. 2 and 3, we presented the SIR model and the tipping model respectively.
In the former any node infected in last time step has a single chance (with probability
β , a parameter of the model) to infect any of its neighbors which are not in a
susceptible state. In the latter, an individual adopts a behavior if it has certain
number of adopted incoming neighbors.

In this chapter, we focus on independent cascade (IC) model which is a
generalized of SIR model, and two other models known as linear threshold (LT)
and generalized threshold (GT) models, which are probabilistic extensions of the
tipping model. These models are similar to the tipping dynamics of Chap. 3, except
that the tipping threshold for each node is drawn at random.

In this chapter, we describe properties of these models and study problems of
influence maximization and spread in this context. Finally, we present approaches
to address the influence maximization problem to find the seed sets that maximize
the number of adopters in expectation.

4.2 Model Definitions

We assume a social network G = (V,E), where V is a set of vertices and E is a
set of directed edges. For a given node v ∈ V , the set of incoming neighbors and
outgoing neighbors are considered as η in(v) and ηout(v) respectively. We will use
the notation | · | for the cardinality of the sets.

The diffusion process occurs in discrete time steps t. If a node adopts a new
behaviour or idea, it becomes active, otherwise it is inactive. An inactive node has
the ability to become active. The set of active nodes at time t is considered as Xt.
The tendency of an inactive node v to become active is positively correlated with the

© The Author(s) 2015
P. Shakarian et al., Diffusion in Social Networks, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-23105-1_4

35

36 4 The Independent Cascade and Linear Threshold Models

number of active incoming neighbors v. Also, we assume that each node can only
switch from inactive state to active state, and an active node will remain active for
the rest of the diffusion process—hence these models are often referred to as “pro-
gressive” or “montonic.” On the other hand, in non-progressive models active nodes
can also switch back and become inactive—we will cover these in Chap. 6 when we
describe evolutionary graph theory. In general, we start with an initial seed set X0

(when it is clear from context, we shall often drop the subscript and use X to denote
the seed set), and through the diffusion process, for a given inactive node v, its active
neighbors attempt to activate it. The process runs until no more activations occur.

4.2.1 Independent Cascade Model

Independent cascade (IC) model generalizes the SIR model described in Chap. 2.
Instead of a single probability infection, there is a probability of infection associated
with each edge. The probability Pu,v is the probability of u infecting v. This prob-
ability can be assigned based on frequency of interactions, geographic proximity,
or historical infection traces. Each node, once infected, has the ability to infect its
neighbor in the next time step based on the probability associated with that edge.

Definition 4.1 (Independent Cascade Model (IC)). Under the Independent Cas-
cade model dynamics, at each time step t where X new

t−1 is the set of newly activated
nodes at time t−1, each v ∈X new

t−1 infects the inactive neighbors u ∈ ηout(v) with a
probability Pu,v.

An example of this model is shown in Fig. 4.1. Active nodes are shown in yellow
dotted line. At initial time, two nodes C and D are activated. At the next time step,
node C and D has a chance to activate their three neighbors (A, G, and H) and
(B, E, and F) respectively. According to Fig. 4.1b, only three nodes A, H, and E are
successfully activated and the initial active nodes change to gray (denoting it stays
active but no chance to activate others). In the next time step, two nodes G and F
become active, and the previous active nodes A, E, and H change to gray. At time
t = 2, two nodes F and G become active. Node G’s neighbors are active, so it does
not have a chance to activate any nodes. Node F has an option to activate node I;
however it fails as shown in our given example in Fig. 4.1d. Since there is no more
new active node, the diffusion process stopped.

4.2.2 Linear Threshold Model

The linear threshold model extends tipping model to its natural, weighted variant
where each directed edge (u,v) ∈ E has a non-negative weight b(u,v). For any
node v ∈ V , the total incoming edge weights sum to less than or equal to one, i.e.
∑u∈η in(v) b(u,v)≤ 1. The dynamics of the model are specified below.

4.2 Model Definitions 37

a b

c d

Fig. 4.1 Independent cascade model. Probability of transitions from each state to its successor
state(in alphabetic order) are 7.0−3, 6.0−3, 5.0−1, and 1.0, respectively. The probability of
occurring for this sequence is 2.0−5. (a) t = 0. (b) t = 1. (c) t = 2. (d) t = 3

Definition 4.2 (Linear Threshold Model (LT)). Under the linear threshold model
dynamics, each node v selects a threshold θv in the interval [0,1] uniformly at
random. Then, at each time step t where Ht−1 is the set of nodes activated at time
t − 1 or earlier, each inactive node becomes active if ∑u∈η in(v)∩Ht−1

b(u,v) ≥ θv.

38 4 The Independent Cascade and Linear Threshold Models

a b c

Fig. 4.2 Linear threshold model. The probability is determined based on the thresholds drawn at
the first step, then the model proceeds deterministically.The probability of this sequence is almost
7.0−3. (a) t = 0. (b) t = 1. (c) t = 2

Once the thresholds are drawn, these dynamics are equivalent to the tipping model
of Chap. 3 where the activation function is re-written as follows:

Aθ (V
′) = V ′ ∪{v ∈ Vs.t. ∑

u∈η in(v)∩V ′
b(u,v)≥ θv} (4.1)

An inactive node is influenced by all of its active neighbors at each time step.
An active node influences its inactive neighbors according to the weights. At each
step, an inactive node becomes active if the total weight of its incoming neighbors
is at least θv. Thresholds θv are selected randomly due to lack of knowledge of the
tendency of nodes, and express the different levels of tendency of nodes to adopt an
idea or innovation.

An example of this model is shown in Fig. 4.2. Each node is assigned a random
threshold in [0,1] and two yellow dotted nodes C and D are initially activated. Node
C is unable to activate two nodes G and H as its influence weight is not large enough,
but it is able to activate node A (0.2≥ 0.1). Node D also activates node F (0.4≥ 0.3),
but not B and E. In the next step (Fig. 4.2b), there are four active nodes and they are
able to activate node I (0.3+ 0.5 ≥ 0.2) and E (0.4+ 0.2 ≥ 0.5). In the next time
step, no new active node exists; so, the diffusion process terminates.

4.2.3 Generalized Threshold Model

Generalized threshold model is a broader framework of which the linear threshold
and independent cascade models are special cases. Kempe et al. [1] also presented
a generalized cascade model, which is equivalent to generalized threshold model.
Therefore, we only provide the generalized threshold model definition here.

4.3 Influence Maximization Problem 39

Definition 4.3 (Generalized Threshold Model (GT)). Given node v, a monotone
threshold function fv : 2η in(v) → [0,1], a threshold value θv ∈ [0,1], and an active set
Xt at time t, node v is infected at time step t if fv(Xt)≥ θv.

Again, the threshold value θv is uniformly randomly chosen for each node v.
Linear threshold model is a special case of generalized threshold model, where the
threshold function is in the form of summation over all active neighbors of node v,
denoted X v, i.e. fv(X v) = ∑u∈X v b(u,v) where ∑u∈η in

v
b(u,v)≤ 1.

4.3 Influence Maximization Problem

In this section, we examine the influence maximization problem for the previously-
mentioned models. First, we introduce some common terminology and concepts
among all three models. The diffusion models involve an initial set of nodes to start.
The influence of an initial set is defined as the number of active nodes at the end of
the diffusion process. This is often referred to as influence spread.

Definition 4.4 (Influence Spread). Given an initial seed set X , influence spread
is the expected number of infectees σ(X).

A natural optimization problem is to find the set of maximum influence nodes
with a specific size k. That is, the initial k-node set X has been targeted to become
active. We can formally define this problem as:

Definition 4.5 (Influence Maximization Problem). Given a natural number k,
find an initial seed set X , where |X | ≤ k, such that σ(X) is maximized.

Unfortunately, this problem is NP-hard. This reduction is shown by an embed-
ding of the max-k-cover problem.

In 1978, Nemhauser et al. [2] showed that (under the assumption that the
influence spread can be efficiently calculated) a greedy algorithm provides an
(1−1/e) approximation if f meets normalization, monotonicity and submodularity
conditions.

Definition 4.6 (Normalization). If there is no initial infectees then there is no
spread, i.e. f (/0) = 0.

Definition 4.7 (Montonicity). For S ⊆ S′, f (S)≤ f (S′).

Definition 4.8 (Submodularity). An arbitrary set function f : S→R is submodular
if and only if for all S′,S′′ ⊆ S, it is the case that if S′ ⊆ S′′, then f (S′ ∪{s})− f (S′)≥
f (S′′ ∪ {s})− f (S′′). Intuitively, a submodular function has diminishing returns
property.

The intuition behind submodularity can be explained with the following example.
Suppose you have a poor man with very few possessions (H1) and a rich man with
many more possessions (H2). Suppose neither possesses a Ferrari car (h). Giving the
poor man the Ferrari would make a greater difference to his net worth (computed
via f as a function of the person’s possessions) than giving it to the rich man.

40 4 The Independent Cascade and Linear Threshold Models

4.3.1 Influence Maximization Under the IC Model

Kempe et al. [1] show that influence maximization problem can be viewed as a
general case of an NP-complete Set Cover problem under the IC model.

Theorem 4.1 (Complexity of Influence Maximization in the IC Model). The
influence maximization in the independent cascade model is NP-hard within a factor
of 1−1/e+ ε for any ε > 0.

They [1] also show that σ meets the requirements (mentioned under Defini-
tion 4.6, 4.7 and 4.8) under the IC model.

Theorem 4.2. In the independent cascade model, the influence function σIC(·) is
normalized, monotone, and submodular.

We will give an intuition for this finding under IC dynamics. The influence
function in IC is normalized, since if there is no initial infectees then there is no
spread, i.e. σIC(/0) = 0. It is also monotone, because each element of X contributes
at least one expected infectee. However, this is not true if we do not count nodes
in set X toward the expected infectees. In this case, we can view the oracle
function as σIC(X)−|X |, which is not monotonic. This is a special case of profit
maximization [6, 7].

We can prove submodularity of the influence function in IC model using live-
edge model. The proof of submodularity relies on a manipulation of the “live edge”
model—a mathematically equivalent representation of the IC model (and several
others as well). This technique is commonly used in much of the literature relating
to the models described in this chapter. We outline the technique used to obtain this
result next.

First, we define an outcome under the IC models as a subgraph of G. A given
outcome intuitively is one possible way the IC process can occur. Using this idea,
we can assign a probability to an outcome as follows. For outcome G′ = (V,E′)
the probability of the outcome is: Π(u,v)∈E′Pu,v ×Π(u,v)∈E\E′(1−Pu,v). For a given
outcome W , we denote this probability Pr(W).

Definition 4.9 (Live-Edge Path). Given graph G, and an initial active set X , the
path from X to other nodes is called a live-edge path.

According to the definition, given graph G with edge probabilities, we can
view some subgraph G′ as a potential set of available edges that diffusion can
deterministically occur.

Definition 4.10 (Live-Edge Model). Given graph G = (V,E), seed set X , and
probability distribution Pr over subgraphs of G, the probability a node v ∈ V \
X is defined as the sum of the probabilities of subgraphs of G (based on Pr) where
exists a path from a node in X to v is active.

As, for a given subgraph G′, the infection is deterministic, a node x is infected
under the live-edge model if there is simply a path from a node in X to x. The edges
successfully activate are declared as live, and the rest of the edges are declared as
blocked. Kempe et al. show that live-edge model is equivalent to IC model.

4.3 Influence Maximization Problem 41

Algorithm 2 Greedy Algorithm
1: procedure GREEDYAPPROXIMATION(V , k)
2: Set X = /0
3: while |X | ≤ k do
4: Pick s ∈ V where σ(X ∪ s)−σ(X) is the greatest
5: Add s to X
6: end while
7: return X
8: end procedure

Consider two sets S and S′ such that S ⊆ S′ and an element s which is in neither.
For random weight of edges W , Let RW (S), RW (S′), and RW ({s}) be the sets
of nodes reachable by S,S′, and s by weights W , respectively. Since |RW (S′)∩
RW ({s})| ≥ |RW (S) ∩ RW ({s})|; thus, σW (S ∪ {s})− σW (S) ≥ σW (S′ ∪ {s})−
σW (S′). For any W , we have the following relationship: σIC(S) = ∑W Pr(W)×
σW (S) As positive linear combinations of submodular functions are also submodu-
lar, we have completed the proof.

Greedy Approximation Algorithm To find the initial seed set we can use Greedy
Algorithm as presented in Algorithm 2. In each iteration, the element with maximum
marginal influence is added to the seed set. Let k be the size of the seed set, there are
k and |V| iterations of the outer loop and inner loop respectively, where each of these
k×|V| iterations require many evaluations of σ . Thus, this becomes very expensive.
And note, this assumes that the computation of σ can be done efficiently. However,
the straight-forward method is to rely on simulation, which is also expensive.

Let us consider the issue of the calculation of σ . It turns out, that by leveraging
the live-edge model, that calculation influence is #P-hard by a reduction from the
counting version of s-t connectivity (this result was originally proven by Chen et al.
in [5]). The problem of s-t connectivity deals with determining if their exist a path
between two nodes (denoted s and t) in a graph. Chen’s reduction works by creating
an instance of the live-edge model where the probability of t adopting given a seed
set consisting of node s is proportional to the number of paths between these two
nodes.

Theorem 4.3 (Complexity of Influence Spread in the IC Model). In the inde-
pendent cascade model, influence spread σIC(·) is #P-hard.

Practically, we can obtain arbitrarily close approximation using simulation.
However, this is expensive and at the time of this writing, does not provide any
formal guarantee.

However, the expected number of infectees is solvable in polynomial time
for directed acyclic graphs [5]. We can compute the activation probability, the
probability of a node u is infected given seed set X , of each node using Algorithm 3.
Though this seems to be a restrictive case, this intuition is useful in building a
heuristic approach to this problem—as we shall describe later in the chapter.

42 4 The Independent Cascade and Linear Threshold Models

Algorithm 3 Computing Activation Probability in DAG
1: procedure ACTIVATIONPROBABILTY(D, X)
2: ∀u ∈ DAG D,ap(u) = 0
3: ∀u ∈ seed set X ,ap(u) = 1
4: Topologically sort all nodes reachable from X in D into a sequence ρ , with in-degree zero

nodes sorted first.
5: for u ∈ {ρ \X } according to the order ρ do
6: ap(u) = ∑x∈η in(u)∩ρ ap(x)×b(x,u)
7: end for
8: return S
9: end procedure

4.3.2 Influence Maximization Under the LT Model

We now turn our attention to influence maximization and influence spread under
the LT model. It turns out that influence spread calculation is also #P-hard [4]. This
time the proof is shown by a reduction from the problem of counting the number of
simple paths between nodes—again using the live-edge model.

Theorem 4.4 (Complexity of Influence Spread in the LT Model). In the linear
threshold model, influence spread σLT(·) is #P-hard.

Further, even if influence spread can be computed efficiently, solving the
influence maximization problem under this model is NP-hard by an embedding of
the vertex cover problem [1].

Theorem 4.5 (Complexity of Influence Maximization in the LT Model). The
influence maximization in the linear threshold model is NP-hard.

However, with respect to the optimization problem associated with influence
maximization under LT, the same properties hold as with the IC model. Intuitively,
the LT model is normalized (no seed, no diffusion). Monotonicity of the LT model
follows the same argument showed for the IC model. Kempe et al. leverage the
live-edge model and show that the model is submodular.

Theorem 4.6. In the linear threshold model, the influence function σLT(·) is
normalized, monotone, and submodular.

4.3.3 Influence Maximization Under the GT Model

In [1] the generalized threshold model is shown to capture both the IC and LT
models, hence the hardness results for both influence maximization and influence
spread still hold.

4.4 Scaling Influence Maximization 43

Theorem 4.7 (Complexity of Influence Maximization in the GT Model).
The influence maximization in the generalized threshold model is NP-hard.

Theorem 4.8 (Complexity of Influence Spread in the GT Model). In the gener-
alized threshold model, computing influence function σGT(·) is #P-hard.

The influence maximization problem in GT model can be reduced to max-k-cover
problem. It is NP-hard within a factor of |V|1−ε [1]. However, the result of Mossel
and Roch [3] relate the local activation functions to influence spread, providing
for an elegant result that allows the greedy algorithm to obtain an approximation
guarantee in this large special case.

Theorem 4.9. If all the activation functions are normalized, monotonic, and
submodular, then the expected number of infectees under the generalized threshold
model is also normalized, monotonic, and submodular [3].

4.4 Scaling Influence Maximization

Due to the demands of potential real-world applications, Influence maximization
problem should be scalable for the real world—as these are often of size 105 nodes
or greater (i.e. see the datasets described in Chaps. 2 and 3). As we said in the
previous section (Algorithm 2), Greedy algorithm is computationally expensive
since in each iteration, it iterates through all the nodes in the given network, and
we run the simulation multiple times to get a closer approximation of the diffusion
outcome. In this section, we present two algorithms and one model to find the seed
set with maximum influence for the LT and IC models.

4.4.1 Lazy Greedy Approximation

We can accelerate greedy algorithm and reduce its computational complexity under
the certain assumption. In 1978, Minoux [8] showed that if a given function f is
submodular, we can optimally accelerate greedy algorithms which is confirmed
theoretically.

The key intuition behind “Lazy Greedy” algorithm is that by the definition of
submodularity, the incremental increase to σ afforded by a node is always bounded
above by its incremental increase on previous iterations. By checking this, we can
avoid unnecessary calculation.

Consider the ith iteration of the Greedy Algorithm 2. Let Xi be the set of
elements picked at the end of iteration i− 1. For node s, the algorithm evaluates
the following quantity:

λ (i,s) = σ(Xi ∪ s)−σ(Xi) (4.2)

44 4 The Independent Cascade and Linear Threshold Models

Let us call λ (i,s) the incremental increase afforded to s at iteration i. Now, there
are many nodes evaluated at a given iteration. Let us assume that s does not do very
well—in fact it is somewhere in the middle of the pack. Now consider the (i+1)th

iteration of the Greedy Algorithm. Let Xi+1 be the set of elements picked at the end
of iteration i. For node s, the algorithm evaluates the following quantity:

λ (i+1,s) = σ(Xi+1 ∪ s)−σ(Xi+1) (4.3)

This value is incremental increase afforded to s at iteration i+ 1. Let us assume
that s again does not do very well. We note that Xi+1 is a superset of Si. Hence, as
σ(·) is submodular, we get the following:

σ(Xi+1 ∪ s)−σ(Xi+1)≤ σ(Xi ∪ s)−σ(Xi) (4.4)

λ (i+1,s)≤ λ (i,s) (4.5)

So, suppose at iteration i we saved λ (i,s) in some data structure. Suppose we
start evaluating λ (i+1,s) at the start of iteration i+1, and let s′ be the node where
currently λ (i+1,s′) is the greatest. So, now instead of evaluating λ (i+1,s) directly,
we perform the following steps:

1. If λ (i+1,s′)≤ λ (i,s):

a. Evaluate λ (i+1,s)
b. If λ (i + 1,s′) ≤ λ (i + 1,s), then s is the node that affords the greatest

incremental increase

2. Otherwise:

a. Go to the next node

This can produce significant speedup in practice. Performance may vary depend-
ing on the ordering of the nodes and ordering the nodes may increase algorithm
runtime. So, worst-case time complexity does not change. This algorithm also needs
to iterate through all nodes during the first iteration of the outer loop.

To avoid costly simulation runs, we turn to the issue of scaling the computation
of σ . In general, the approaches presented in the literature for scaling σ is tied to
the underlying model, i.e. IC vs. LT. Hence, we shall describe a method for IC and
a method for LT.

4.4.2 Maximum Influence Arborescence (MIA) Model

Computing the influence spread in the IC model is # P-hard, yet computable in
polynomial time for directed trees. Chen et al. [5] introduce the maximum influence
arborescence (MIA) model where the probability that node v′ infects node v is based
on the probability of v′ infecting v only by the most influential path, called the
maximum influence path. An arborescence is a directed tree with a root node v and
for any other node v′ there is exactly one directed path from v′ to v.

4.4 Scaling Influence Maximization 45

For a given pair of nodes, (u,v) ∈ E, the MIA model is defined as the path
between two nodes whose probability is greatest, denoted MIP(u,v). If there is no
path, then MIP(u,v) = /0. This is uniquely and consistently determined for each node
pair—hence ties are assumed to be broken in a consistent manner. If we create an
alternative graph where each edge (u,v) is weighted by log(P(u,v)−1) then we can
easily find the MIP’s using Dijkstra’s algorithm.

For a given node v, and a threshold θ ∈ [0,1], we define its maximum influence
in-arborescence (MIIA)—the arborescence created by the union of all maximum
influence paths starting from each other node to v whose probability exceeds
threshold θ as follows:

MIIA(v,θ) = ∪u∈V,Pr(MIP(u,v))≥θ MIP(u,v) (4.6)

This is the graph created by the union of all MIP’s from other nodes to v whose
probability is at least θ . By keeping the MIP unique and consistently defined, we
know the resulting graph is an arborescence. Note that this can be computed before
any algorithmic attempt to solve the maximum influence problem.

Given a seed set X , node u and an arborescence A, the activation probability
ap(u,X ,A) is the probability u is infected given seed set X in graph A under the
IC model. There are three cases: 1) If u is in X , then ap(u,X ,A) = 1, 2) If u is
not in X and has no incoming neighbors, then ap(u,X ,A) = 0, 3) If the first two
cases do not hold, then:

ap(u,X ,A) = 1− Π
w∈η in(u)

1− (ap(w,X ,A))×P(w,v)) (4.7)

This can be computed in polynomial time by a single traversal of A by
considering nodes from the leaves to the root.

Let the activation of node v given seed set X and its MIIA ap(u,X ,MIIA(u,θ)),
the expected number of infectees in the MIA model, denoted σM , given seed set X
is computed as follows:

σM(X) = ∑
v∈V

ap(u,X ,MIIA(u,θ)) (4.8)

Note that the graph used to calculate the activation probability for each node can
be different. As the activation probabilities can be computed in polynomial time, so
can the expected number of infectees.

As we said, the goal is to replace the IC model with the MIA model in the
algorithm in the hope that the seed set returned provides a large number of infectees
(in expectation) under the IC model. Influence maximization problem under the
MIA model is NP-hard. However, this problem becomes easier than influence
maximization under the IC model, which, due to the difficulty of the influence
spread problem, is actually harder [9] showed that this problem is actually #P hard.
This NP-completeness result is due to the fact that influence spread under this model

46 4 The Independent Cascade and Linear Threshold Models

is computable in PTIME (see Algorithm 2). This also allows us to avoid costly
simulation runs. Further, the MIA model is normalized, monotonic and submodular.
So, the greedy algorithm can be applied and achieve the 1 − 1/e approximation
ratio with respect to the expected number of infectees under the MIA model. The
greedy algorithm for the MIA model possess no (known) theoretical properties with
respect to the IC model though a close relationship has been shown experimentally.
However, we note that the results with respect to the MIA model hold if we use lazy
evaluation.

Chen et al. [5] demonstrate speedups to improve incremental increase specific
to the MIA model. Suppose we are considering node w on the ith iteration of the
greedy algorithm. When we compute the activation probability of some node v, the
shortest path from w to v has a node previously picked. This causes an incremental
increase of node w to be zero with regards to v. So, the intuition is at each iteration,
re-compute the in-arborescence for each node such that no paths from other nodes
outside of X contain a node in X .

Chen et al. create a prefix-excluding variant of the MIA model, called PMIA.
They defined a special version of MIIA, called PMIIA, that takes the current seed
set into account. Then they identify extensions to monotonicity and submodularity
and show the PMIA model has these properties. The greedy algorithm also achieves
the 1− 1/e approximation under a new propriety identified by Chen et al. called
“sequence submodularity”. The runtime has several order-of-magnitude improve-
ment as well. It also outperforms centrality-based heuristics on large datasets
(millions of edges) [5].

4.4.3 SIMPATH Algorithm

According to the hardness of influence spread under the LT model, Goyal et al.
[4] leverage heuristic algorithm to tackle this problem. The key intuition behind
SIMPATH algorithm is to enumerate the simple paths from the seed set instead of
running costly simulations. A simple path is a directed path in a graph where no
nodes are repeated. Let ϒu,v be the probability that v is infected by u. If Puv be the
set of simple paths between u and v, then we have the following relationship:

ϒu,v = ∑
P∈Puv

Pr(P) (4.9)

Where Pr is computed as: for some subset S, X of V , let σS(X) be the expected
number of infectees in the LT model given seed set X on the subgraph induced by
the set of nodes in S. So, the expected number of infectees is:

σ(X) = ∑
u∈X

σV−X +{u}(u) (4.10)

4.4 Scaling Influence Maximization 47

Algorithm 4 SIMPATH Spread Algorithm
1: procedure SIMPATHSPREAD(X)
2: σ = 0
3: for u ∈X do
4: Compute all simple paths from u to all other nodes in the graph G(V −X +u)
5: Compute the probability for all the paths, let this equal T
6: σ = σ +T
7: end for
8: return σ
9: end procedure

According to the Eq. (4.9), the expected spread for a singleton is the sum of the
probability of each node being influenced as follows:

σ({u}) = ∑
v∈V

ϒu,v (4.11)

So, we can compute the expected number of infectees as follows:

σ(X) = ∑
u∈X

∑
v∈V−X +{u}

∑
P∈Puv on G(V−X +u)

Pr(P) (4.12)

Let us suppose we have an oracle that enumerates all simple paths from some
node u to all other nodes within a graph. Goyal et al. use the backtrack algorithm to
achieve this. We can compute σ exactly as Algorithm 4.

As we said, computing the expected number of infectees in the LT model is #P
hard because just counting the number of simple paths between nodes is #P hard.
So, Algorithm 4 is not efficient—as it computes σ exactly. As the longer paths
will occur with a much lower probability (the influence events are independent), a
heuristic is only enumerating the paths that have a probability greater than a certain
threshold. Hence, SIMPATH computes a lower bound on the expected number of
infectees—the hope is that the paths it does not consider, do not add up to a whole lot
which, would make the lower bound tight. This is not an approximation guarantee—
there are currently no known results regarding how close this bound is to the actual
expected value. However, the threshold can be used to trade runtime for accuracy.

The overall algorithm for scalable influence maximization under the LT model
is called SIMPATH and calls SIMPATH-Spread to approximate σ . Goyel et al.
leverage lazy submodular evaluation as well as some graph-theoretic techniques to
limit the calls to SIMPATH-Spread. However, one major issue is to limit the number
of calls to SIMPATH-Spread on the first iteration of the greedy algorithm. SIMPATH
shortens the runtime of the first iteration by computing SIMPATH Spread for nodes
within a vertex cover.

48 4 The Independent Cascade and Linear Threshold Models

SIMPATH performed comparable to the greedy algorithm and outperform degree
centrality, PageRank, and LDAG [5] in terms of expected number of infectees
and provides 3− 4x order of magnitude improvement over the greedy in terms of
runtime.

4.5 Conclusion

In this chapter we reviewed the popular independent cascade and linear threshold
models as well as their associated influence maximization problems. We also
described various algorithmic approaches to these problems and the current state-
of-the-art techniques for achieving scalability. However, as with the tipping model
and SIR model of the previous chapters, this framework does not take the attributes
of the nodes and edges into account during the diffusion process. In the next chapter,
we describe a logic-programming based framework that includes this dimension.

References

1. Kempe, David and Kleinberg, Jon and Tardos. Maximizing the spread of influence through a
social network. (2003) ACM 137–146.

2. Nemhauser, George L and Wolsey, Laurence A and Fisher, Marshall L. An analysis of
approximations for maximizing submodular set functions. (1978) 14(1) 265–294.

3. Mossel, Elchanan and Roch, Sebastien. On the submodularity of influence in social networks.
(2007) ACM 128–134.

4. Goyal, Amit and Lu, Wei and Lakshmanan, Laks VS. Simpath: An efficient algorithm for
influence maximization under the linear threshold model.(2011) Data Mining (ICDM), 2011
IEEE 11th International Conference, 211–220.

5. Chen, Wei and Wang, Chi and Wang, Yajun. Scalable influence maximization for prevalent
viral marketing in large-scale social networks. (2010) Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, 1029–1038.

6. Shakarian, Paulo and Salmento, Joseph and Pulleyblank, William and Bertetto, John. Reducing
gang violence through network influence based targeting of social programs. (2014) 20th ACM
SIGKDD international conference on Knowledge discovery and data mining, 1829–1836

7. Lu, Wei and Lakshmanan, Laks VS. Profit maximization over social networks. (2012) arXiv
preprint arXiv:1210.4211

8. Minoux, Michel. Accelerated greedy algorithms for maximizing submodular set functions.
(1978) , Optimization Techniques 234–243.

9. Wang, Chi and Chen, Wei and Wang, Yajun. Scalable influence maximization for independent
cascade model in large-scale social networks (2012) Data Mining and Knowledge Discovery.
545–576.

	4 The Independent Cascade and Linear Threshold Models
	4.1 Introduction
	4.2 Model Definitions
	4.2.1 Independent Cascade Model
	4.2.2 Linear Threshold Model
	4.2.3 Generalized Threshold Model

	4.3 Influence Maximization Problem
	4.3.1 Influence Maximization Under the IC Model
	4.3.2 Influence Maximization Under the LT Model
	4.3.3 Influence Maximization Under the GT Model

	4.4 Scaling Influence Maximization
	4.4.1 Lazy Greedy Approximation
	4.4.2 Maximum Influence Arborescence (MIA) Model
	4.4.3 SIMPATH Algorithm

	4.5 Conclusion
	References

