
Chapter 2
The SIR Model and Identification of Spreaders

2.1 Introduction

In this chapter, we study one of the most ubiquitous diffusion models: the
susceptible-infected-recovered (SIR) model. Considering a network structure, a key
problem relating to SIR model is how to identify the nodes that, if initially infected,
will result in the greatest expected infected population. These nodes are often
referred to as “spreaders”. Unfortunately, exactly computing the expected number of
infected individuals in a network-structured population given a single initial infectee
is #P-hard (we shall discuss this complexity result further in Chap. 4). This implies
that solving this problem exactly is likely beyond the ability of today’s computer
systems. However, the literature on complex networks has provided various nodal
measures that can be used as heuristics. In this chapter, we review various nodal
measures and examine the utility of these measures as heuristics to find spreaders
under the SIR model. These experiments show that the ability of nodal measures to
identify spreaders in the SIR Model.

With these experiments, we carefully selected the parameter β based on β ′, the
epidemic threshold of the network. We can be sure that a contagion can spread to a
significant portion of the network for β > β ′, and we studied a variety of different
values for β above this threshold.

The rest of this chapter is organized as follows. In Sect. 2.2, we review the SIR
model and describe how we calculate the epidemic threshold of a given complex
network. This is followed by a review of the various centrality and other nodal
measures we will study in Sect. 2.3 along with a recap of the description of the
“imprecision function” [17] used to measure the effectiveness of a nodal measure in
identifying the top spreaders in a network. We give a description and discussion of
the experimental results in Sect. 2.4.
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2.2 The SIR Model

As in [17], we consider the classic susceptible-infected-recovered (SIR) model of
disease spread introduced in [2]. In this model, all nodes in the network are in one of
three states: susceptible (able to be infected), infected, or recovered (no longer able
to infect or be infected). At each time step, only node infected in the last time step
can infect any of its neighbors who are in a susceptible state with a probability β .
After that time step, the node previously in an infected state moves into a recovered
state and is no longer able to infect or be infected.

2.2.1 Selecting the Infection Probability

We note that for scale-free networks, having degree distribution P(k) ∼ k−γ , the
literature shows that for γ ≤ 3, the epidemic threshold of β approaches 0 as
the number of nodes goes to infinity [10, 14]. However, the networks we examine
are of finite size and have various levels of “scale-freeness”, based on the R2

value of the linear correlation of a log-log plot of the degree distribution (see
Sect. 2.4.1 for details). Instead, we explored β values based on the epidemic
threshold calculation in [20]. Using this method, the SIR model is mapped onto
a bond percolation process. Assuming a randomly connected network, the average
number of influenced neighbors, 〈n〉 can be written

〈n〉= β ·∑
k

P(k) · k · (k−1)
〈k〉 , (2.1)

where k is the degree of a node, P(k) is the probability of a node having degree k,
and 〈k〉 is the average degree. Since an epidemic state can only be reached when
〈n〉> 1, and from (2.1) we have

β >

(
∑
k

P(k) · k · (k−1)
〈k〉

)−1

= β ′. (2.2)

We note that there is some work discussing the effect of different infection
probabilities on spreading in [17] and more recent and comprehensive study on
the topic in [12]. These works consider the effect of this parameter with respect to
degree and shell decomposition (and betweenness in [17]). Here we consider these
and many other nodal measures, and find that some of them, such as eigenvector
centrality, outperform those in these previous works.
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2.3 Centrality and Other Nodal Measures

We now describe the centrality measures that we examine in our experiments.
We note that the major centrality measures in the literature can be classified as
either radial (the quantity of certain paths originating from the node) or medial
(the quantity of certain paths passing through the node) as done in Borgatti and
Everett [6]. Based on the negative result concerning betweenness of Kitsak et al. [17]
and the intuitive association between high-radial nodes and spreading, we focused
our efforts on radial measures. While the work of Kitsak et al. [17] compares shell
number to degree and betweenness, we consider several other well-known radial
measures in addition to degree, including closeness and eigenvector centrality. As
done in [17], we also develop “imprecision functions” for these centrality measures.

2.3.1 Degree Centrality

Of all the measures that we are examining, degree is perhaps the most simplistic
measure—simply the total of incident edges for a given node. As noted throughout
the literature, such as [24], it is perhaps the easiest centrality measure to compute.
Further, in other diffusion processes, such as the voter model on undirected networks
in [1], it has been shown to be proportional to the expected number of individuals
becoming infected1 (we discuss these results in detail in Chap. 6). As pointed out in
[6], degree is a radial measure as it is the number of paths starting from a node of
length 1. Degree is one of three measures considered in [17].

2.3.2 Shell Number

The other radial measure considered in [17], shell number, or “k-shell number”, is
determined using shell decomposition [23]. High shell-number nodes in the network
are often referred to as the “core” and are regarded by Kitsak et al. [17] as influential
spreaders under the SIR model. Our results described later in this chapter confirm
this finding, although we also show that shell number was generally outperformed
by eigenvector centrality. There have also been some more practical applications
of this technique to find key nodes in a network. For instance, Borge-Holthoefer
and Moreno [7, 8] uses shell-decomposition to find individuals likely to initiate

1Technically, the work of Antal et al. [1] proves that the fixation probability for a single mutant
invader is proportional to the degree of that node. However, the expected number of mutants, in the
limit as time goes to infinity, can simply be computed by multiplying fixation probability by the
number of nodes in the network.
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Fig. 2.1 Consider the progression of the graph above, where the elimination of nodes with degree
1 occurs in B and C. D represents the first iteration for the second shell, and E represents the
complete second shell (as well as the first). F finalizes the decomposition with the third shell

information cascades in an online social network while [11] uses it to identify key
nodes in a subset of autonomous systems on the Internet.

An example of this process is shown in Fig. 2.1. Given graph G = (V,E), shell
decomposition partitions a graph into shells and is described in the algorithm below.

Let ki be the degree of node i. Set S = 1. Let VS denote the first shell of G.
while |V|> 0 do

while There exists i such that ki = S do
Remove all i ∈ V where ki = S;
Also, remove all corresponding adjacent edges.
Place removed nodes into shell VS.

end while
S++

end while
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2.3.3 Betweenness Centrality

The intuition behind high betweenness centrality nodes is that they function as
“bottlenecks” as many paths in the network pass through them. Hence, betweenness
is a medial centrality measure. Let σst be the number of shortest paths between
nodes s and t and σst(v) be the number of shortest paths between s and t containing

node v. In [15], betweenness centrality for node v is defined as ∑s �=v �=t
σst(v)

σst
. In most

implementations, including the ones used in this chapter, the algorithm of Brandes
[9] is used to calculate betweenness centrality.

2.3.4 Closeness Centrality

Another common measure from the literature that we examined is closeness [16].
Given node i, its closeness Cc(i) is the inverse of the average shortest path length
from node i to all other nodes in the graph. Intuitively, closeness measures how
“close” it is to all other nodes in a graph.

Formally, if we define the shortest path between nodes i to j as function dG(i, j),
we can express the average path length from i to all other nodes as

Li =
∑j∈V\i dG(i, j)

|V|−1
. (2.3)

Hence, the closeness of a node can be formally written as

Cc(i) =
1
Li

=
|V|−1

∑j∈V\i dG(i, j)
. (2.4)

2.3.5 Eigenvector Centrality

The use of the principle eigenvector of the adjacency matrix of a network was first
proposed as a centrality measure in [5]. Hence, the intuition behind eigenvector
centrality is that it measures the influence of a node based on the sum of the
influences of its adjacent nodes. Given a network V = (G,E) with adjacency matrix
A = (aij), where aij = 1 if an edge exists between nodes i and j, the eigenvector
centrality of node i satisfies

xi =
1
λ ∑

j∈V

aijxj, (2.5)
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for some λ . If we define x to be the vector of xi’s, this relationship can be
expressed as

x =
1
λ

Ax, or Ax = λx, (2.6)

which is the familiar equation relating A with its eigenvalues and eigenvector.
The eigenvector centralities for the network are the entries of the eigenvector
corresponding to the largest real eigenvalue.

2.3.6 PageRank

PageRank, introduced in [22], is computed for each node based on the PageRank
of its neighbors. Where E is the set of undirected edges, Rv,dv is the PageRank and
degree of v, and c is a normalization constant, we have the relationship

Rv = c · ∑
v′|(v,v′)∈E

Rv′

dv′
.

An initial value for rank is entered for each node and the relationship is then
computed iteratively until convergence is reached. Intuitively, PageRank can be
thought of as the importance of a node based on the importance of its neighbors.

2.3.7 Neighborhood

The next nodal measure we consider is the “neighborhood.” Given a natural number
q, the q-neighborhood of vertex i is the number of nodes in the network that are
distance q or closer from node i. For example, for q = 0, this metric is 1 for every
node. For q = 1, this metric is identical to degree centrality of node i, since it is the
number of nodes within a distance 1 of i. For q = 2, this metric counts the number
of nodes within a distance 2 of i, so it counts i’s neighbors along with its neighbors’
neighbors. In our work, we computed neighborhoods using q = 2,3,5,10, and
denoted these measures by nghd2, nghd3, nghd5, and nghd10, respectively. We
note that the work of Chen et al. [13] develops a centrality measure with a similar
intuition to the neighborhood and show it performs well in identifying influential
spreaders.
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2.3.8 The Imprecision Functions

We now define the imprecision functions from [17] that are used to measure the
effectiveness of a nodal measure in identifying influential spreaders. We also extend
their definition for all nodal measures explored in this chapter. Let N denote the
number of nodes, and let p be a real number between 0 and 100. The pN/100
highest efficiency spreaders, ϒeff (p), are chosen based on number of nodes infected
Mi per node. Similarly, a set ϒks(p) is defined as the pN/100 predicted most efficient
spreaders, chosen with priority to highest ks valued nodes. Let

Meff (p) = ∑
i∈ϒeff (p)

Mi
pN ,and (2.7)

Mks(p) = ∑
i∈ϒks (p)

Mi
pN . (2.8)

The imprecision function of ks, εks(p), is defined as

εks(p) = 1− Mks(p)
Meff (p)

(2.9)

Similarly, εeig(p) and εdeg(p) are defined as

εeig(p) = 1− Meig(p)
Meff (p)

, (2.10)

εdeg(p) = 1− Mdeg(p)
Meff (p)

(2.11)

In general, for any nodal measure c, the imprecision function εc(p) is defined as

εc(p) = 1− Mc(p)
Meff (p)

(2.12)

2.4 Experimental Findings

In this section, we will briefly recap some of our previous experiments involving the
identification of spreaders under the SIR model using nodal measures. Please refer
to [3] for the complete technical report.
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2.4.1 Datasets

We obtained our datasets from a variety of sources. Brief descriptions of these
networks are as follows:

cond-mat-GCC is an academic collaboration network from the e-print arXiv and
covers scientific collaborations between authors’ papers submitted to Condensed
Matter category from 1999 [21].
ca-GrQc-GCC is an academic collaboration network from the e-print arXiv and
covers scientific collaborations between authors’ papers submitted to the General
Relativity and Quantum Cosmology category from Jan. 1993 to Apr. 2003 [18].
urv-email is an e-mail network based on communications of members of the
University Rovira i Virgili (Tarragona) [4]. It was extracted in 2003.
1-edges-GCC is a network formed from YouTube, the video-sharing website
that allows users to establish friendship links [25]. The sample was extracted in
Dec. 2008. Links represent two individuals sharing one or more subscriptions to
channels on YouTube.
std-GCC is an online sex community in Brazil in which links represent that
one of the individuals posted online about a sexual experience with the other
individual, resulting in a bipartite graph. The data was extracted from September
of 2002 to October of 2008 [19].
as20000102 is a one day snapshot of Internet routers as constructed from the
border gateway protocol logs [18]. It was extracted on Jan 2nd, 2000.
oregon_010331 is a network of Internet routers over a one week period as
inferred from Oregon route-views, looking glass data, and routing registry from
covering the week of March 3rd, 2001 [18].
ca-HepTh-GCC is a collaboration network from the e-print arXiv and covers
scientific collaborations between authors’ papers submitted to the High Energy
Physics—Theory category. It covers paper from Jan 1993 to Apr 2003 [18].
as-22July06 is a snapshot of the Internet on 22 July 2006 at the autonomous
systems level compiled by Mark Newman [21].
netscience-GCC is a network of coauthorship of scientists working on network
theory and experiments compiled by Mark Newman in May 2006 [21].

All datasets used for this chapter were obtained from one of four sources:
the ASU Social Computing Data Repository [25], the Stanford Network Analysis
Project [18], Mark Newman’s data repository at the University of Michigan [21],
and Universitat Rovira i Virgili [4]. All networks considered were symmetric; i.e.,
if a directed edge from vertex v to v′ exists, there is also an edge from vertex v′ to v.
Summary statistics for these networks can be found in Table 2.1.

In the cases where the network had more than one connected component, we
used only the greatest one. We append the suffix “-GCC” when referring to those
networks. For example, the cond-mat network had more than one component, so we
will use the greatest connected component and refer to this network as “cond-mat-
GCC”.
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Table 2.1 Network summary statistics

Name Type Nodes Edges Density β ′ λ R2 〈k〉 〈k2〉 KS

1-edges-GCC Online 13679 76741 0.0008 2.3 1.8 0.90 11.2 502.6 25

as20000102 Router 6474 12572 0.0006 0.6 1.2 0.73 3.9 640.0 12

ca-GrQc-GCC Collab 4158 13422 0.0016 6.3 2.0 0.88 5.5 93.2 43

cond-mat-GCC Collab 13861 44619 0.0005 8.4 2.4 0.93 5.9 75.6 17

oregon2_010331 Router 10900 31180 0.0005 0.5 1.2 0.79 5.7 1188.8 31

std-GCC Std 15810 38540 0.0003 3.7 1.9 0.92 4.7 130.9 11

urv-email Email 1133 5451 0.0085 5.7 1.5 0.84 9.6 179.8 11

ca-HepTh-GCC Collab 8638 24806 0.0007 8.3 2.2 0.90 5.7 74.6 31

as-22July2006 Router 22963 48436 0.0002 0.4 1.2 0.72 4.2 1103.0 25

netscience-GCC Collab 379 914 0.0127 14.2 1.6 0.76 4.8 38.7 8

Note that β ′ is the minimum threshold of infection rate for the epidemic to spread to a
significant portion of the network, λ is exponent of the power law of the degree distribution,
R2 is goodness of fit between the power law and the degree distribution, 〈k〉 and 〈k2〉 are the
first and second moments of the degree distribution, and KS is the maximum shell present
in the network

Fig. 2.2 In the higher shells
of these two examples, degree
and shell number are not
correlated, indicating these
can not be assumed to be
generated by preferential
attachment models. The red
line shows the average degree
of each shell. Note that log
scales are being used on both
axes
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As seen in the Table 2.1, all networks used are approximately scale free. This
does not infer that they were generated using a preferential attachment model,
as many mechanisms can be responsible for generating scale free networks.
If they were generated using a preferential attachment model then we would see
a correlation between shell number and degree. This would also mean that degree
centrality and shell number would have little difference in predicting spreaders, but
our simulations show otherwise. Figure 2.2 shows an example in which degree and
shell number are not correlated.
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Fig. 2.3 Imprecision plots vs. p for the cond-mat network with different β . (a) Imprecision versus
p for the cond-mat network with β = 11.17. Notice that for this β , k-shell has a lower imprecision,
meaning that shell number outperforms degree. See Sect. 2.3 for the definitions of imprecision
function and p. (b) Imprecision plots vs. p for the cond-mat network with β = 15.95. Notice that
for this β , degree has a lower imprecision, meaning that degree outperforms shell number, the
opposite of what we saw in Fig. 2.3a

2.4.2 Sensitivity to β

The experiments revealed that (1) the relative performance of degree, shell number
and other nodal measures can depend on the β parameter of the SIR model, and
(2) eigenvector centrality performs very well in general regardless of the value
of β used, typically outperforming all of the other measures that we tried. Here
we present more results illustrating these two points. Unless otherwise specified,
the β values that we used when plotting the imprecision function versus β are
1.1β ′,1.2β ′, . . . ,2.0β ′, where β ′ is the epidemic threshold for the network in
question.

In Fig. 2.3a, b, we give an example of a network where shell number outperforms
degree for one value of β , but degree outperforms shell number for another value
of β . In Sect. 2.4, we give additional examples illustrating that the imprecision
functions of other measures, as well as the choice of the “best” nodal measure,
can be sensitive to β as well.

Figure 2.3a, b show that the performance of degree relative to shell number
changes with β for the cond-mat network. For β = 11.17, shell number is a better
indicator of spreading, but for β = 15.95, degree is better. Another way that we
could depict this dependence on β is to fix p and plot the imprecision versus β ,
instead of fixing β and plotting the imprecision versus p. In Fig. 2.4a, we fix p = 5
and plot the imprecision function of degree, shell number, and eigenvector centrality
versus β , for β between 11.17 and 15.95. As it shows, degree outperforms shell
number after β gets large enough.

The relative performance of other centrality measures can change as well.
In Fig. 2.4b, we plot the imprecision functions of degree, shell number, eigenvector,
and closeness centrality versus β for p = 5.
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Fig. 2.4 Imprecision vs. β for the cond-mat network and ca-GrQc-GCC network. (a) Imprecision
vs. β for the cond-mat network. The relative performance of degree and shell number changes near
β = 14. (b) Imprecision vs. β for the ca-GrQc-GCC network

In this network, for β near β ′, degree and shell number perform very well.
However, as β increases, the imprecision functions of those measures increase, and
other measures, like closeness and eigenvector, outperform degree and shell number.

2.4.3 Eigenvector Centrality for Spreader Identification

The experiments show that eigenvector centrality consistently outperforms all
other measures considered, including both shell number and degree (which were
considered by Kitsak et al.), in all but one of the networks examined. See Fig. 2.5
for a comparison of shell number (the best performing measure of Kitsak et al.)
with eigenvector centrality. Also, if we average over all of our networks, including
the one where eigenvector was not the best, we find that, on average, eigenvector
centrality outperforms the other measures.

As we saw in Fig. 2.5, eigenvector centrality outperforms shell number for all but
one of the networks we examined. Eigenvector centrality also typically outperforms
all of the other measures that we tried. In Fig. 2.6a, we plot the imprecision functions
of several different measures for the cond-mat network. We see that eigenvector
centrality performs best for this network. In Figs. 2.6b and 2.7a–c, we give examples
of a collaboration network, an online network, a STD network and an email network
in which eigenvector performs best.

Eigenvector centrality does not outperform shell number for the ca-HepTh
network, so we can not conclude that eigenvector centrality performs best for every
network that we tried. However, it does seem that, on average, for the networks
we considered, eigenvector centrality performs best for β = 1.1β ′,1.2β ′, . . . ,2.0β ′.
Suppose we take the imprecision functions for β = 1.1β ′ for each network, and
we average these imprecision functions over all of our networks, including the
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Fig. 2.5 Imprecision of k-shell minus the imprecision of eigenvector centrality. Positive values
indicate that shell number has a higher imprecision than eigenvector centrality, which means that
eigenvector centrality typically outperforms shell number

Fig. 2.6 Imprecision vs. p for the cond-mat-GCC network and netscience-GCC network.
(a) Imprecision vs. p for the cond-mat-GCC network with β = 1.1β ′ = 8.77. We see that eigenvalue
centrality performs best for this network. (b) Imprecision vs. p for the netscience-GCC network
with β = 1.1β ′ = 15.67. We see that eigenvalue centrality performs best for this network

ca-HepTh network. This would be one way to check how well each measure
performs on average. In Fig. 2.8, we plot this the average imprecision versus p
for β = 1.1β ′. We see that, on average, eigenvector centrality outperforms the
other measures. The measure nghd2 performs well also. We show similar results
for β = 1.5β ′ and β = 2.0β ′ in Fig. 2.9a, b. In both cases, eigenvector centrality
outperforms all of the other measures.
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Fig. 2.7 Imprecision vs. p for 1-edges-GCC, std-GCC and urv-email network. (a) Imprecision vs.
p for the 1-edges-GCC network with β = 1.1β ′ = 2.50. We see that eigenvalue centrality performs
best for this network. (b) Imprecision vs. p for the std-GCC network with β = 1.1β ′ = 4.01. We
see that eigenvalue centrality performs best for this network. (c) Imprecision vs. p for the urv-email
network with β = 1.1β ′ = 6.22. We see that eigenvalue centrality performs best for this network

Fig. 2.8 Average
imprecision vs. p with
β = 1.1β ′, where the average
is taken over all networks that
we considered

We believe that eigenvector centrality performs well for some of the same reasons
that shell number performs well. A node has high eigenvector centrality when the
node and its neighbors have high degree. Nghd2, nghd3, and the closely related
measure of Chen et al. [13] also perform well for this reason. A hub, or a node with
high degree, in the periphery of a network, which does not have many neighbors
with high degree, will not typically be as good of a spreader as a node with high
eigenvector centrality.

2.4.4 Large Values of β

In [17], only relatively small values for β were explored as it was noted that larger
values of β would likely cause spreading to a large portion of the population
regardless of the location of the initially infected node. However, in the networks
we studied, we found a difference in the ability of the starting node to spread even
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Fig. 2.9 Average imprecision vs. p with different β . (a) Average imprecision vs. p with β =
1.5β ′, where the average is taken over all networks that we considered. We see that, on average,
eigenvector performs best. (b) Average imprecision vs. p with β = 2.0β ′, where the average is
taken over all networks that we considered. We see that, on average, eigenvector performs best.
(c) Average imprecision vs. p with β = 5β ′, where the average is taken over all networks that we
considered. We see that, on average, eigenvector performs best

Fig. 2.10 Average
imprecision vs. β with p = 5.
We see that, on average,
eigenvector performs best

at seven times the epidemic threshold. Further, the result that eigenvector centrality
performs best, based on average imprecision over all the networks, still holds for
these large values of β . We display our imprecision functions for large values of β
in Fig. 2.10. We also show that for five times the epidemic threshold, eigenvector
centrality still outperforms the other centrality measures for different values of p
(Fig. 2.9c).

2.5 Conclusions

In this chapter we studied the SIR model and looked at identifying nodes that cause
diffusion to spread to a large extent based on various nodal measures. However,
we made two assumptions—that the infection probability was the same amongst
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all edges and that we only looked for single “spreaders”. In the Chap. 4, we make
efforts to find sets of nodes and extend the model to allow for different infection
probabilities amongst the edges.
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