
123

S P R I N G E R B R I E F S I N CO M P U T E R S C I E N C E

Paulo Shakarian
Abhinav Bhatnagar
Ashkan Aleali
Elham Shaabani
Ruocheng Guo

Di� usion in Social
Networks

SpringerBriefs in Computer Science

Series Editors
Stan Zdonik
Shashi Shekhar
Jonathan Katz
Xindong Wu
Lakhmi C. Jain
David Padua
Xuemin (Sherman) Shen
Borko Furht
V.S. Subrahmanian
Martial Hebert
Katsushi Ikeuchi
Bruno Siciliano
Sushil Jajodia
Newton Lee

More information about this series at http://www.springer.com/series/10028

http://www.springer.com/series/10028

Paulo Shakarian • Abhinav Bhatnagar
Ashkan Aleali • Elham Shaabani
Ruocheng Guo

Diffusion in Social Networks

123

Paulo Shakarian
School of Computing, Informatics

and Decision Systems Engineering
Arizona State University
Tempe, AZ, USA

Ashkan Aleali
Arizona State University
Tempe, AZ, USA

Ruocheng Guo
Arizona State University
Tempe, AZ, USA

Abhinav Bhatnagar
Arizona State University
Tempe, AZ, USA

Elham Shaabani
Arizona State University
Tempe, AZ, USA

ISSN 2191-5768 ISSN 2191-5776 (electronic)
SpringerBriefs in Computer Science
ISBN 978-3-319-23104-4 ISBN 978-3-319-23105-1 (eBook)
DOI 10.1007/978-3-319-23105-1

Library of Congress Control Number: 2015947765

Springer Cham Heidelberg New York Dordrecht London
© The Author(s) 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com

Preface

In recent years, research on diffusion process in social networks has grown in a
variety of fields including computer science, physics, and biology. However, often
times research in these individual disciplines becomes stove-piped. In this book,
we focus on cutting-edge research in social network diffusion bringing together a
range of ideas from these disciplines with the goal of creating a single volume that
examines these ideas.

We sought to cover many of the most important concepts, models, and methods
from these areas. We felt by exploring a variety of work from different fields that
we could help open the door to more innovative findings in this fascinating area of
diffusion in social networks.

Tempe, AZ, USA Paulo Shakarian
May 2015 Abhinav Bhatnagar

Ashkan Aleali
Elham Shaabani
Ruocheng Guo

v

Acknowledgements

The authors would like to acknowledge the generous support from Arizona
State University, the Army Research Office, the Air Force Office of Scientific
Research, and the Office of Naval Research that have enabled our research in
the area of social network diffusion. We would also like to thank the following
collaborators who have contributed to some of the research that is reviewed in this
volume: Anthony Johnson, Brian Macdonald, Christian Molinaro, Damon Paulo,
Geoffrey Moores, Gerardo Simari, Hansheng Lei, Luke Gerdes, Matthias
Broecheler, Nicholas Howard, Patrick Roos, Maria Luisa Sapino, Sean Eyre, and
V.S. Subrhamanian.

vii

Contents

1 Introduction . 1
References . 2

2 The SIR Model and Identification of Spreaders . 3
2.1 Introduction . 3
2.2 The SIR Model . 4

2.2.1 Selecting the Infection Probability . 4
2.3 Centrality and Other Nodal Measures. 5

2.3.1 Degree Centrality . 5
2.3.2 Shell Number . 5
2.3.3 Betweenness Centrality. 7
2.3.4 Closeness Centrality . 7
2.3.5 Eigenvector Centrality . 7
2.3.6 PageRank .. 8
2.3.7 Neighborhood .. 8
2.3.8 The Imprecision Functions . 9

2.4 Experimental Findings . 9
2.4.1 Datasets . 10
2.4.2 Sensitivity to β . 12
2.4.3 Eigenvector Centrality for Spreader Identification 13
2.4.4 Large Values of β . 15

2.5 Conclusions . 16
References . 17

3 The Tipping Model and the Minimum Seed Problem 19
3.1 Introduction . 19
3.2 The Tipping Model. 20
3.3 The Minimum Seed Problem .. 21

3.3.1 Exact Approach .. 21
3.3.2 Heuristic . 22

3.4 Experimental Findings . 23
3.4.1 Datasets . 24

ix

x Contents

3.4.2 Runtime . 26
3.4.3 Seed Size . 26
3.4.4 Comparison with Centrality Measures. 28
3.4.5 Effect of Removing High-Degree Nodes . 30

3.5 Conclusion . 32
References . 32

4 The Independent Cascade and Linear Threshold Models 35
4.1 Introduction . 35
4.2 Model Definitions . 35

4.2.1 Independent Cascade Model . 36
4.2.2 Linear Threshold Model . 36
4.2.3 Generalized Threshold Model . 38

4.3 Influence Maximization Problem.. 39
4.3.1 Influence Maximization Under the IC Model 40
4.3.2 Influence Maximization Under the LT Model 42
4.3.3 Influence Maximization Under the GT Model 42

4.4 Scaling Influence Maximization.. 43
4.4.1 Lazy Greedy Approximation .. 43
4.4.2 Maximum Influence Arborescence (MIA) Model. 44
4.4.3 SIMPATH Algorithm . 46

4.5 Conclusion . 48
References . 48

5 Logic Programming Based Diffusion Models . 49
5.1 Introduction . 49
5.2 Embedding Diffusion Models into Annotated Logic Programs 51

5.2.1 Social Networks Formalization . 52
5.2.2 Generalized Annotated Programs: A Recap 53

5.3 Social Network Diffusion Optimization Problem
(SNDOP) Queries . 56
5.3.1 Basic SNDOP Queries. 56
5.3.2 Special Cases of SNDOPs . 59
5.3.3 The Complexity of SNDOP Queries . 62

5.4 Applying SNDOPs to Diffusion Problems. 63
5.4.1 Tipping Diffusion .. 63
5.4.2 Cascading Diffusion . 64
5.4.3 Homophilic Diffusion . 66

5.5 Algorithmic Approach and Experiments. 67
5.6 Conclusion . 72
References . 72

6 Evolutionary Graph Theory . 75
6.1 Introduction . 75
6.2 Evolutionary Graph Theory Models . 76

6.2.1 Properties of Fixation Probability . 77
6.2.2 Game Theoretic Extensions . 79

Contents xi

6.3 Determining Fixation Probability for Fixed Fitness 80
6.3.1 Fixation Probability Calculations for Certain Topologies 80
6.3.2 Undirected Evolutionary Graphs . 82

6.4 Alternate Update Rules . 84
6.5 Further Game Theoretic Results. 87

6.5.1 Evolutionary Stability on Graphs . 87
6.5.2 Regular Graphs and the Replicator Equation 87
6.5.3 Evolution of Cooperation and Social Viscosity 88
6.5.4 Graph Heterogeneity and Evolution of Cooperation 88

6.6 Conclusion . 89
References . 90

7 Examining Diffusion in the Real World . 93
7.1 Introduction . 93
7.2 Identifying Viral Diffusion Processes: Centrality-Based

Approaches .. 94
7.3 Structural Diversity and Diffusion . 96
7.4 Conclusion . 98
References . 99

8 Conclusion . 101

Chapter 1
Introduction

This book introduces the readers to recent research concerning diffusion in social
networks and attempts bring together disparate lines of work on the topic from
multiple fields. The availability of large social network datasets over nearly the past
two decades have made it possible to explore network diffusion like never before.
Having said that, the materials covered in this book is not limited to the online
platforms, but rather are thought to be applicable to social networks from a variety of
domains. Similar to other subjects in social network analysis, information diffusion
has its roots in multiple field of study: biologists and physicists have done research in
the field by studying evolutionary dynamics [2] and disease propagation models [3];
economist and Nobel Laureate Thomas Schelling introduced the idea of “tipping
points” which now has become mainstream [4]; concurrently Mark Granovetter
studied these ideas from a sociological perspective [5]. However, it wasn’t until
Kempe et al. article [1] in 2003 that information diffusion became a significant line
of research in computer science.

In this volume, we look to provide an overview of the major diffusion models
seen in multiple disciplines. First we examine the popular SIR model—which
has been studied in biology and physics. This is followed by a chapter on the
“tipping” model—which has its roots in economics and sociology and is prevalent
in mathematics and some computer science venues. We then turn our attention to
the independent cascade and linear threshold models that are often explored in data
mining. Then we discuss the artificial intelligence community’s logic programming
based diffusion models. After that, we examine models based on evolutionary
dynamics such as the voter model—which have become popular with theoretical
biologists and the statistical physics community. Finally, we briefly examine some
work related to observing and reasoning about diffusion processes in the real world.

To sum up, research in social network analysis in general, and information
diffusion in social networks in particular is still in its early stages. We try to give a
good overview of the work done so far. We hope that the reader finds the material
useful and a good starting point for cutting-edge research in this area.

© The Author(s) 2015
P. Shakarian et al., Diffusion in Social Networks, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-23105-1_1

1

2 1 Introduction

References

1. Kempe, David, Jon Kleinberg, and Éva Tardos. “Maximizing the spread of influence through
a social network.” Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2003.

2. Moran, P., 1958. Random processes in genetics. Mathematical Proceedings of the Cambridge
Philosophical Society 54 (01), 60–71.

3. Anderson, Roy M., May, Robert M. (1979). Population biology of infectious diseases: Part i.
280 (5721), 361.

4. Schelling, T.C. (1978). Micromotives and Macrobehavior. W.W. Norton and Co.
5. Granovetter, M. (1978). Threshold models of collective behavior. The American Journal of

Sociology (6), 1420–1443.

Chapter 2
The SIR Model and Identification of Spreaders

2.1 Introduction

In this chapter, we study one of the most ubiquitous diffusion models: the
susceptible-infected-recovered (SIR) model. Considering a network structure, a key
problem relating to SIR model is how to identify the nodes that, if initially infected,
will result in the greatest expected infected population. These nodes are often
referred to as “spreaders”. Unfortunately, exactly computing the expected number of
infected individuals in a network-structured population given a single initial infectee
is #P-hard (we shall discuss this complexity result further in Chap. 4). This implies
that solving this problem exactly is likely beyond the ability of today’s computer
systems. However, the literature on complex networks has provided various nodal
measures that can be used as heuristics. In this chapter, we review various nodal
measures and examine the utility of these measures as heuristics to find spreaders
under the SIR model. These experiments show that the ability of nodal measures to
identify spreaders in the SIR Model.

With these experiments, we carefully selected the parameter β based on β ′, the
epidemic threshold of the network. We can be sure that a contagion can spread to a
significant portion of the network for β > β ′, and we studied a variety of different
values for β above this threshold.

The rest of this chapter is organized as follows. In Sect. 2.2, we review the SIR
model and describe how we calculate the epidemic threshold of a given complex
network. This is followed by a review of the various centrality and other nodal
measures we will study in Sect. 2.3 along with a recap of the description of the
“imprecision function” [17] used to measure the effectiveness of a nodal measure in
identifying the top spreaders in a network. We give a description and discussion of
the experimental results in Sect. 2.4.

© The Author(s) 2015
P. Shakarian et al., Diffusion in Social Networks, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-23105-1_2

3

4 2 The SIR Model and Identification of Spreaders

2.2 The SIR Model

As in [17], we consider the classic susceptible-infected-recovered (SIR) model of
disease spread introduced in [2]. In this model, all nodes in the network are in one of
three states: susceptible (able to be infected), infected, or recovered (no longer able
to infect or be infected). At each time step, only node infected in the last time step
can infect any of its neighbors who are in a susceptible state with a probability β .
After that time step, the node previously in an infected state moves into a recovered
state and is no longer able to infect or be infected.

2.2.1 Selecting the Infection Probability

We note that for scale-free networks, having degree distribution P(k) ∼ k−γ , the
literature shows that for γ ≤ 3, the epidemic threshold of β approaches 0 as
the number of nodes goes to infinity [10, 14]. However, the networks we examine
are of finite size and have various levels of “scale-freeness”, based on the R2

value of the linear correlation of a log-log plot of the degree distribution (see
Sect. 2.4.1 for details). Instead, we explored β values based on the epidemic
threshold calculation in [20]. Using this method, the SIR model is mapped onto
a bond percolation process. Assuming a randomly connected network, the average
number of influenced neighbors, 〈n〉 can be written

〈n〉= β ·∑
k

P(k) · k · (k− 1)
〈k〉 , (2.1)

where k is the degree of a node, P(k) is the probability of a node having degree k,
and 〈k〉 is the average degree. Since an epidemic state can only be reached when
〈n〉> 1, and from (2.1) we have

β >

(
∑
k

P(k) · k · (k− 1)
〈k〉

)−1

= β ′. (2.2)

We note that there is some work discussing the effect of different infection
probabilities on spreading in [17] and more recent and comprehensive study on
the topic in [12]. These works consider the effect of this parameter with respect to
degree and shell decomposition (and betweenness in [17]). Here we consider these
and many other nodal measures, and find that some of them, such as eigenvector
centrality, outperform those in these previous works.

2.3 Centrality and Other Nodal Measures 5

2.3 Centrality and Other Nodal Measures

We now describe the centrality measures that we examine in our experiments.
We note that the major centrality measures in the literature can be classified as
either radial (the quantity of certain paths originating from the node) or medial
(the quantity of certain paths passing through the node) as done in Borgatti and
Everett [6]. Based on the negative result concerning betweenness of Kitsak et al. [17]
and the intuitive association between high-radial nodes and spreading, we focused
our efforts on radial measures. While the work of Kitsak et al. [17] compares shell
number to degree and betweenness, we consider several other well-known radial
measures in addition to degree, including closeness and eigenvector centrality. As
done in [17], we also develop “imprecision functions” for these centrality measures.

2.3.1 Degree Centrality

Of all the measures that we are examining, degree is perhaps the most simplistic
measure—simply the total of incident edges for a given node. As noted throughout
the literature, such as [24], it is perhaps the easiest centrality measure to compute.
Further, in other diffusion processes, such as the voter model on undirected networks
in [1], it has been shown to be proportional to the expected number of individuals
becoming infected1 (we discuss these results in detail in Chap. 6). As pointed out in
[6], degree is a radial measure as it is the number of paths starting from a node of
length 1. Degree is one of three measures considered in [17].

2.3.2 Shell Number

The other radial measure considered in [17], shell number, or “k-shell number”, is
determined using shell decomposition [23]. High shell-number nodes in the network
are often referred to as the “core” and are regarded by Kitsak et al. [17] as influential
spreaders under the SIR model. Our results described later in this chapter confirm
this finding, although we also show that shell number was generally outperformed
by eigenvector centrality. There have also been some more practical applications
of this technique to find key nodes in a network. For instance, Borge-Holthoefer
and Moreno [7, 8] uses shell-decomposition to find individuals likely to initiate

1Technically, the work of Antal et al. [1] proves that the fixation probability for a single mutant
invader is proportional to the degree of that node. However, the expected number of mutants, in the
limit as time goes to infinity, can simply be computed by multiplying fixation probability by the
number of nodes in the network.

6 2 The SIR Model and Identification of Spreaders

Fig. 2.1 Consider the progression of the graph above, where the elimination of nodes with degree
1 occurs in B and C. D represents the first iteration for the second shell, and E represents the
complete second shell (as well as the first). F finalizes the decomposition with the third shell

information cascades in an online social network while [11] uses it to identify key
nodes in a subset of autonomous systems on the Internet.

An example of this process is shown in Fig. 2.1. Given graph G = (V,E), shell
decomposition partitions a graph into shells and is described in the algorithm below.

Let ki be the degree of node i. Set S = 1. Let VS denote the first shell of G.
while |V|> 0 do

while There exists i such that ki = S do
Remove all i ∈ V where ki = S;
Also, remove all corresponding adjacent edges.
Place removed nodes into shell VS.

end while
S++

end while

2.3 Centrality and Other Nodal Measures 7

2.3.3 Betweenness Centrality

The intuition behind high betweenness centrality nodes is that they function as
“bottlenecks” as many paths in the network pass through them. Hence, betweenness
is a medial centrality measure. Let σst be the number of shortest paths between
nodes s and t and σst(v) be the number of shortest paths between s and t containing

node v. In [15], betweenness centrality for node v is defined as ∑s �=v�=t
σst(v)

σst
. In most

implementations, including the ones used in this chapter, the algorithm of Brandes
[9] is used to calculate betweenness centrality.

2.3.4 Closeness Centrality

Another common measure from the literature that we examined is closeness [16].
Given node i, its closeness Cc(i) is the inverse of the average shortest path length
from node i to all other nodes in the graph. Intuitively, closeness measures how
“close” it is to all other nodes in a graph.

Formally, if we define the shortest path between nodes i to j as function dG(i, j),
we can express the average path length from i to all other nodes as

Li =
∑j∈V\i dG(i, j)

|V|− 1
. (2.3)

Hence, the closeness of a node can be formally written as

Cc(i) =
1
Li

=
|V|− 1

∑j∈V\i dG(i, j)
. (2.4)

2.3.5 Eigenvector Centrality

The use of the principle eigenvector of the adjacency matrix of a network was first
proposed as a centrality measure in [5]. Hence, the intuition behind eigenvector
centrality is that it measures the influence of a node based on the sum of the
influences of its adjacent nodes. Given a network V = (G,E) with adjacency matrix
A = (aij), where aij = 1 if an edge exists between nodes i and j, the eigenvector
centrality of node i satisfies

xi =
1
λ ∑

j∈V

aijxj, (2.5)

8 2 The SIR Model and Identification of Spreaders

for some λ . If we define x to be the vector of xi’s, this relationship can be
expressed as

x =
1
λ

Ax, or Ax = λ x, (2.6)

which is the familiar equation relating A with its eigenvalues and eigenvector.
The eigenvector centralities for the network are the entries of the eigenvector
corresponding to the largest real eigenvalue.

2.3.6 PageRank

PageRank, introduced in [22], is computed for each node based on the PageRank
of its neighbors. Where E is the set of undirected edges, Rv,dv is the PageRank and
degree of v, and c is a normalization constant, we have the relationship

Rv = c · ∑
v′|(v,v′)∈E

Rv′

dv′
.

An initial value for rank is entered for each node and the relationship is then
computed iteratively until convergence is reached. Intuitively, PageRank can be
thought of as the importance of a node based on the importance of its neighbors.

2.3.7 Neighborhood

The next nodal measure we consider is the “neighborhood.” Given a natural number
q, the q-neighborhood of vertex i is the number of nodes in the network that are
distance q or closer from node i. For example, for q = 0, this metric is 1 for every
node. For q = 1, this metric is identical to degree centrality of node i, since it is the
number of nodes within a distance 1 of i. For q = 2, this metric counts the number
of nodes within a distance 2 of i, so it counts i’s neighbors along with its neighbors’
neighbors. In our work, we computed neighborhoods using q = 2,3,5,10, and
denoted these measures by nghd2, nghd3, nghd5, and nghd10, respectively. We
note that the work of Chen et al. [13] develops a centrality measure with a similar
intuition to the neighborhood and show it performs well in identifying influential
spreaders.

2.4 Experimental Findings 9

2.3.8 The Imprecision Functions

We now define the imprecision functions from [17] that are used to measure the
effectiveness of a nodal measure in identifying influential spreaders. We also extend
their definition for all nodal measures explored in this chapter. Let N denote the
number of nodes, and let p be a real number between 0 and 100. The pN/100
highest efficiency spreaders, ϒeff (p), are chosen based on number of nodes infected
Mi per node. Similarly, a set ϒks(p) is defined as the pN/100 predicted most efficient
spreaders, chosen with priority to highest ks valued nodes. Let

Meff (p) = ∑
i∈ϒeff (p)

Mi
pN ,and (2.7)

Mks(p) = ∑
i∈ϒks (p)

Mi
pN . (2.8)

The imprecision function of ks, εks(p), is defined as

εks(p) = 1− Mks(p)
Meff (p)

(2.9)

Similarly, εeig(p) and εdeg(p) are defined as

εeig(p) = 1− Meig(p)
Meff (p)

, (2.10)

εdeg(p) = 1− Mdeg(p)
Meff (p)

(2.11)

In general, for any nodal measure c, the imprecision function εc(p) is defined as

εc(p) = 1− Mc(p)
Meff (p)

(2.12)

2.4 Experimental Findings

In this section, we will briefly recap some of our previous experiments involving the
identification of spreaders under the SIR model using nodal measures. Please refer
to [3] for the complete technical report.

10 2 The SIR Model and Identification of Spreaders

2.4.1 Datasets

We obtained our datasets from a variety of sources. Brief descriptions of these
networks are as follows:

cond-mat-GCC is an academic collaboration network from the e-print arXiv and
covers scientific collaborations between authors’ papers submitted to Condensed
Matter category from 1999 [21].
ca-GrQc-GCC is an academic collaboration network from the e-print arXiv and
covers scientific collaborations between authors’ papers submitted to the General
Relativity and Quantum Cosmology category from Jan. 1993 to Apr. 2003 [18].
urv-email is an e-mail network based on communications of members of the
University Rovira i Virgili (Tarragona) [4]. It was extracted in 2003.
1-edges-GCC is a network formed from YouTube, the video-sharing website
that allows users to establish friendship links [25]. The sample was extracted in
Dec. 2008. Links represent two individuals sharing one or more subscriptions to
channels on YouTube.
std-GCC is an online sex community in Brazil in which links represent that
one of the individuals posted online about a sexual experience with the other
individual, resulting in a bipartite graph. The data was extracted from September
of 2002 to October of 2008 [19].
as20000102 is a one day snapshot of Internet routers as constructed from the
border gateway protocol logs [18]. It was extracted on Jan 2nd, 2000.
oregon_010331 is a network of Internet routers over a one week period as
inferred from Oregon route-views, looking glass data, and routing registry from
covering the week of March 3rd, 2001 [18].
ca-HepTh-GCC is a collaboration network from the e-print arXiv and covers
scientific collaborations between authors’ papers submitted to the High Energy
Physics—Theory category. It covers paper from Jan 1993 to Apr 2003 [18].
as-22July06 is a snapshot of the Internet on 22 July 2006 at the autonomous
systems level compiled by Mark Newman [21].
netscience-GCC is a network of coauthorship of scientists working on network
theory and experiments compiled by Mark Newman in May 2006 [21].

All datasets used for this chapter were obtained from one of four sources:
the ASU Social Computing Data Repository [25], the Stanford Network Analysis
Project [18], Mark Newman’s data repository at the University of Michigan [21],
and Universitat Rovira i Virgili [4]. All networks considered were symmetric; i.e.,
if a directed edge from vertex v to v′ exists, there is also an edge from vertex v′ to v.
Summary statistics for these networks can be found in Table 2.1.

In the cases where the network had more than one connected component, we
used only the greatest one. We append the suffix “-GCC” when referring to those
networks. For example, the cond-mat network had more than one component, so we
will use the greatest connected component and refer to this network as “cond-mat-
GCC”.

2.4 Experimental Findings 11

Table 2.1 Network summary statistics

Name Type Nodes Edges Density β ′ λ R2 〈k〉 〈k2〉 KS

1-edges-GCC Online 13679 76741 0.0008 2.3 1.8 0.90 11.2 502.6 25

as20000102 Router 6474 12572 0.0006 0.6 1.2 0.73 3.9 640.0 12

ca-GrQc-GCC Collab 4158 13422 0.0016 6.3 2.0 0.88 5.5 93.2 43

cond-mat-GCC Collab 13861 44619 0.0005 8.4 2.4 0.93 5.9 75.6 17

oregon2_010331 Router 10900 31180 0.0005 0.5 1.2 0.79 5.7 1188.8 31

std-GCC Std 15810 38540 0.0003 3.7 1.9 0.92 4.7 130.9 11

urv-email Email 1133 5451 0.0085 5.7 1.5 0.84 9.6 179.8 11

ca-HepTh-GCC Collab 8638 24806 0.0007 8.3 2.2 0.90 5.7 74.6 31

as-22July2006 Router 22963 48436 0.0002 0.4 1.2 0.72 4.2 1103.0 25

netscience-GCC Collab 379 914 0.0127 14.2 1.6 0.76 4.8 38.7 8

Note that β ′ is the minimum threshold of infection rate for the epidemic to spread to a
significant portion of the network, λ is exponent of the power law of the degree distribution,
R2 is goodness of fit between the power law and the degree distribution, 〈k〉 and 〈k2〉 are the
first and second moments of the degree distribution, and KS is the maximum shell present
in the network

Fig. 2.2 In the higher shells
of these two examples, degree
and shell number are not
correlated, indicating these
can not be assumed to be
generated by preferential
attachment models. The red
line shows the average degree
of each shell. Note that log
scales are being used on both
axes

1

1
2

5
10k

20
50

10
0

2
ks

5

Degree vs k -shell number for cond-mat-GCC

10

As seen in the Table 2.1, all networks used are approximately scale free. This
does not infer that they were generated using a preferential attachment model,
as many mechanisms can be responsible for generating scale free networks.
If they were generated using a preferential attachment model then we would see
a correlation between shell number and degree. This would also mean that degree
centrality and shell number would have little difference in predicting spreaders, but
our simulations show otherwise. Figure 2.2 shows an example in which degree and
shell number are not correlated.

12 2 The SIR Model and Identification of Spreaders

Fig. 2.3 Imprecision plots vs. p for the cond-mat network with different β . (a) Imprecision versus
p for the cond-mat network with β = 11.17. Notice that for this β , k-shell has a lower imprecision,
meaning that shell number outperforms degree. See Sect. 2.3 for the definitions of imprecision
function and p. (b) Imprecision plots vs. p for the cond-mat network with β = 15.95. Notice that
for this β , degree has a lower imprecision, meaning that degree outperforms shell number, the
opposite of what we saw in Fig. 2.3a

2.4.2 Sensitivity to β

The experiments revealed that (1) the relative performance of degree, shell number
and other nodal measures can depend on the β parameter of the SIR model, and
(2) eigenvector centrality performs very well in general regardless of the value
of β used, typically outperforming all of the other measures that we tried. Here
we present more results illustrating these two points. Unless otherwise specified,
the β values that we used when plotting the imprecision function versus β are
1.1β ′,1.2β ′, . . . ,2.0β ′, where β ′ is the epidemic threshold for the network in
question.

In Fig. 2.3a, b, we give an example of a network where shell number outperforms
degree for one value of β , but degree outperforms shell number for another value
of β . In Sect. 2.4, we give additional examples illustrating that the imprecision
functions of other measures, as well as the choice of the “best” nodal measure,
can be sensitive to β as well.

Figure 2.3a, b show that the performance of degree relative to shell number
changes with β for the cond-mat network. For β = 11.17, shell number is a better
indicator of spreading, but for β = 15.95, degree is better. Another way that we
could depict this dependence on β is to fix p and plot the imprecision versus β ,
instead of fixing β and plotting the imprecision versus p. In Fig. 2.4a, we fix p = 5
and plot the imprecision function of degree, shell number, and eigenvector centrality
versus β , for β between 11.17 and 15.95. As it shows, degree outperforms shell
number after β gets large enough.

The relative performance of other centrality measures can change as well.
In Fig. 2.4b, we plot the imprecision functions of degree, shell number, eigenvector,
and closeness centrality versus β for p = 5.

2.4 Experimental Findings 13

Fig. 2.4 Imprecision vs. β for the cond-mat network and ca-GrQc-GCC network. (a) Imprecision
vs. β for the cond-mat network. The relative performance of degree and shell number changes near
β = 14. (b) Imprecision vs. β for the ca-GrQc-GCC network

In this network, for β near β ′, degree and shell number perform very well.
However, as β increases, the imprecision functions of those measures increase, and
other measures, like closeness and eigenvector, outperform degree and shell number.

2.4.3 Eigenvector Centrality for Spreader Identification

The experiments show that eigenvector centrality consistently outperforms all
other measures considered, including both shell number and degree (which were
considered by Kitsak et al.), in all but one of the networks examined. See Fig. 2.5
for a comparison of shell number (the best performing measure of Kitsak et al.)
with eigenvector centrality. Also, if we average over all of our networks, including
the one where eigenvector was not the best, we find that, on average, eigenvector
centrality outperforms the other measures.

As we saw in Fig. 2.5, eigenvector centrality outperforms shell number for all but
one of the networks we examined. Eigenvector centrality also typically outperforms
all of the other measures that we tried. In Fig. 2.6a, we plot the imprecision functions
of several different measures for the cond-mat network. We see that eigenvector
centrality performs best for this network. In Figs. 2.6b and 2.7a–c, we give examples
of a collaboration network, an online network, a STD network and an email network
in which eigenvector performs best.

Eigenvector centrality does not outperform shell number for the ca-HepTh
network, so we can not conclude that eigenvector centrality performs best for every
network that we tried. However, it does seem that, on average, for the networks
we considered, eigenvector centrality performs best for β = 1.1β ′,1.2β ′, . . . ,2.0β ′.
Suppose we take the imprecision functions for β = 1.1β ′ for each network, and
we average these imprecision functions over all of our networks, including the

14 2 The SIR Model and Identification of Spreaders

Fig. 2.5 Imprecision of k-shell minus the imprecision of eigenvector centrality. Positive values
indicate that shell number has a higher imprecision than eigenvector centrality, which means that
eigenvector centrality typically outperforms shell number

Fig. 2.6 Imprecision vs. p for the cond-mat-GCC network and netscience-GCC network.
(a) Imprecision vs. p for the cond-mat-GCC network with β = 1.1β ′ = 8.77. We see that eigenvalue
centrality performs best for this network. (b) Imprecision vs. p for the netscience-GCC network
with β = 1.1β ′ = 15.67. We see that eigenvalue centrality performs best for this network

ca-HepTh network. This would be one way to check how well each measure
performs on average. In Fig. 2.8, we plot this the average imprecision versus p
for β = 1.1β ′. We see that, on average, eigenvector centrality outperforms the
other measures. The measure nghd2 performs well also. We show similar results
for β = 1.5β ′ and β = 2.0β ′ in Fig. 2.9a, b. In both cases, eigenvector centrality
outperforms all of the other measures.

2.4 Experimental Findings 15

Fig. 2.7 Imprecision vs. p for 1-edges-GCC, std-GCC and urv-email network. (a) Imprecision vs.
p for the 1-edges-GCC network with β = 1.1β ′ = 2.50. We see that eigenvalue centrality performs
best for this network. (b) Imprecision vs. p for the std-GCC network with β = 1.1β ′ = 4.01. We
see that eigenvalue centrality performs best for this network. (c) Imprecision vs. p for the urv-email
network with β = 1.1β ′ = 6.22. We see that eigenvalue centrality performs best for this network

Fig. 2.8 Average
imprecision vs. p with
β = 1.1β ′, where the average
is taken over all networks that
we considered

We believe that eigenvector centrality performs well for some of the same reasons
that shell number performs well. A node has high eigenvector centrality when the
node and its neighbors have high degree. Nghd2, nghd3, and the closely related
measure of Chen et al. [13] also perform well for this reason. A hub, or a node with
high degree, in the periphery of a network, which does not have many neighbors
with high degree, will not typically be as good of a spreader as a node with high
eigenvector centrality.

2.4.4 Large Values of β

In [17], only relatively small values for β were explored as it was noted that larger
values of β would likely cause spreading to a large portion of the population
regardless of the location of the initially infected node. However, in the networks
we studied, we found a difference in the ability of the starting node to spread even

16 2 The SIR Model and Identification of Spreaders

Fig. 2.9 Average imprecision vs. p with different β . (a) Average imprecision vs. p with β =
1.5β ′, where the average is taken over all networks that we considered. We see that, on average,
eigenvector performs best. (b) Average imprecision vs. p with β = 2.0β ′, where the average is
taken over all networks that we considered. We see that, on average, eigenvector performs best.
(c) Average imprecision vs. p with β = 5β ′, where the average is taken over all networks that we
considered. We see that, on average, eigenvector performs best

Fig. 2.10 Average
imprecision vs. β with p = 5.
We see that, on average,
eigenvector performs best

at seven times the epidemic threshold. Further, the result that eigenvector centrality
performs best, based on average imprecision over all the networks, still holds for
these large values of β . We display our imprecision functions for large values of β
in Fig. 2.10. We also show that for five times the epidemic threshold, eigenvector
centrality still outperforms the other centrality measures for different values of p
(Fig. 2.9c).

2.5 Conclusions

In this chapter we studied the SIR model and looked at identifying nodes that cause
diffusion to spread to a large extent based on various nodal measures. However,
we made two assumptions—that the infection probability was the same amongst

References 17

all edges and that we only looked for single “spreaders”. In the Chap. 4, we make
efforts to find sets of nodes and extend the model to allow for different infection
probabilities amongst the edges.

References

1. Antal, T., Redner, S., Sood, V. (2006). Evolutionary dynamics on degree-heterogeneous graphs.
Physical review letters, 96 (18), 188104.

2. Anderson, Roy M., May, Robert M. (1979). Population biology of infectious diseases: Part i.
280 (5721), 361.

3. Macdonald, B., Shakarian, P., Howard, N., Moores, G. (2012). Spreaders in the Network SIR
Model: An Empirical Study. (USMA Technical Report).

4. Arenas, Alex. (2012). Network data sets.
5. Bonacich, Phillip. (1972). Factoring and weighting approaches to status scores and clique

identification. The journal of mathematical sociology. 2 (1), 113–120.
6. Borgatti, S., Everett, M. (2006). A Graph-theoretic perspective on centrality. Social networks

28 (4), 466–484.
7. Borge-Holthoefer, Javier, & Moreno, Yamir. (2012). Absence of influential spreaders in rumor

dynamics. Phys. rev. e, 85 (026116).
8. Borge-Holthoefer, Javier, Rivero, Alejandro, & Moreno, Yamir. (2012). Locating privileged

spreaders on an online social network. Phys. rev. e 85 (Jun), 066123.
9. Brandes, Ulrik. (2001). A faster algorithm for betweenness centrality. Journal of mathematical

sociology, 25 (163).
10. Callaway, Duncan S., Newman, M. E. J., Strogatz, Steven H., & Watts, Duncan J. (2000).

Network robustness and fragility: Percolation on random graphs. Phys. rev. lett. , 85(Dec),
5468–5471.

11. Carmi, Shai, Havlin, Shlomo, Kirkpatrick, Scott, Shavitt, Yuval, & Shir, Eran (2007). From
the Cover: A model of Internet topology using k-shell decomposition. Pnas , 104 (27),
11150–11154.

12. Castellano, & Pastor-Satorras, Romualdo. (2012). Competing activation mechanisms in epi-
demics on networks. Scientific reports, 2 (371).

13. Chen, Duanbing, L, Linyuan, Shang, Ming-Sheng, Zhang, Yi-Cheng, & Zhou, Tao (2012).
Identifying influential nodes in complex networks. Physics a: Statistical mechanics and its
applications, 391(4), 1777–1787.

14. Cohen, Reuven, Erez, Keren, ben Avraham, Daniel, & Havlin, Shlomo. (2000). Resilience of
the Internet to Random Breakdowns. Physical review letters, 85(21), 4626–4628.

15. Freeman, Linton C. (1977). A set of measures of centrality based on betweenness. Sociometry,
40(1), pp. 35–41.

16. Freeman, Linton C. (1979). Centrality in social networks conceptual clarification. Social
networks, 1 (3), 215–239.

17. Kitsak, Maksim, Gallos, Lazaros K., Havlin, Shlomo, Liljeros, Fredrik, Muchnik, Lev, Stanley,
H. Eugene, & Makse, Hernan A. (2010). Identification of influential spreaders in complex
networks. Nat phys, 6 (11), 888–893.

18. Leskovec, Jure. (2012). Stanford network analysis project (snap).
19. Luis E. C. Rocha, Fredrik Liljeros, & Holme, Petter. (2010). Information dynamics shape

the sexual networks of internet-mediated prostitution. Proceedings of the national academy
of sciences, March.

20. Madar, N., Kalisky, T., Cohen, R., ben Avraham, D., & Havlin, S. (2004). Immunization and
epidemic dynamics in complex networks.The European physical journal b - condensed matter
and complex systems, 38 (2), 269–276.

18 2 The SIR Model and Identification of Spreaders

21. Newman, Mark. (2011). Network data.
22. Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The pagerank citation ranking:

Bringing order to the web. Pages 161–172 of: Proceedings of the 7th international world wide
web conference.

23. Seidman, Stephen B. (1983). Network structure and minimum degree. Social networks, 5 (3),
269–287.

24. Wasserman, Stanley, & Faust, Katherine. (1994). Social network analysis: Methods and
applications. 1 edn. Structural analysis in the social sciences, no. 8. Cambridge University
Press.

25. Zafarani, R., & Liu, H. (2009). Social computing data repository at ASU.

Chapter 3
The Tipping Model and the Minimum Seed
Problem

3.1 Introduction

A much studied model in the context of social network diffusion, tipping [9,
10, 17] (a.k.a. deterministic linear threshold [11]) is often associated with “seed”
or “target” set selection, [7] (a.k.a. the maximum influence problem). Tipping
models first became popular by the works of Granovetter [9] and Schelling [17]
where it was presented primarily in a social context. Since then, several variants
have been introduced in the literature including the non-deterministic version of
[11] (described later in Chap. 4) and a generalized version of [10] (discussed in
Chap. 5). In this chapter, we focus on the deterministic version. In [19], the authors
look at deterministic tipping where each node is activated upon a percentage of
neighbors being activated. Dryer and Roberts [8] introduce the MIN-SEED problem
(sometimes referred to as target set selection), study its complexity, and describe
several of its properties w.r.t. certain special cases of graphs/networks. The hardness
of approximation for this problem is described in [7]. The work of Ben-Zwi et al.
[3] presents an algorithm for target-set selection whose complexity is determined by
the tree-width of the graph. The work of Reichman [16] proves a non-trivial upper
bound on the smallest seed set.

In target set selection problem (a.k.a. seed set selection), we have a social
network in the form of a directed graph and a threshold for each individual. Based
on this data, the desired output is the smallest possible set of individuals (seed set)
such that, if initially activated, the entire population will become activated (adopting
the new property). When a cardinality constraint is imposed, this problem is NP-
Complete [8, 11] so approximation algorithms must be used. Though some such
algorithms have been proposed, [3, 7, 14] none of them can be scaled to very large
data sets. In this chapter, we use the intuition of shell decomposition, [2, 5, 12] we
present a method guaranteed to find a set of nodes that causes the entire population
to activate—but is not necessarily of minimal size. We then evaluate the algorithm
on 31 large, real-world, social networks and show that it often finds very small

© The Author(s) 2015
P. Shakarian et al., Diffusion in Social Networks, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-23105-1_3

19

20 3 The Tipping Model and the Minimum Seed Problem

seed sets (often several orders of magnitude smaller than the population size). We
also show that the size of a seed set is related to Louvain modularity and average
clustering coefficient. Therefore, we find that dense community structure combined
with tight-knit local neighborhoods inhibit the spreading of activation under the
tipping model. We also found that our algorithm outperforms the classic centrality
measures (such as those discussed in Chap. 2) and is robust against the removal of
high-degree nodes.

The rest of the chapter is organized as follows. In Sect. 3.2, we provide formal
definitions of the tipping model. This is followed by the presentation of algorithms
in Sect. 3.3. We then describe the experimental results in Sect. 3.4.

3.2 The Tipping Model

Throughout this chapter we assume the existence of a social network, G = (V,E),
where V is a set of vertices and E is a set of directed edges. We will use the notation
n and m for the cardinality of V and E respectively. For a given node vi ∈ V , the
set of incoming neighbors is η in

i , and the set of outgoing neighbors is ηout
i . The

cardinalities of these sets (and hence the in- and out-degrees of node vi) are din
i ,d

out
i

respectively. We now define a threshold function that for each node returns the
fraction of incoming neighbors that must be activated for it to become activate as
well.

Definition 3.1 (Threshold Function). We define the threshold function as map-
ping from V to (0,1]. Formally: θ : V → (0,1].

For the number of neighbors that must be active, we will use the shorthand ki.
Hence, for each vi, ki =
θ (vi) · din

i �. We now define an activation function that,
given an initial set of active nodes, returns a set of active nodes after one time step.

Definition 3.2 (Activation Function). Given a threshold function, θ , an activa-
tion function Aθ maps subsets of V to subsets of V, where for some V ′ ⊆ V ,

Aθ (V
′) = V ′ ∪ {vi ∈ V s.t. |η in

i ∩V ′| ≥ ki} (3.1)

We now define multiple applications of the activation function.

Definition 3.3 (Multiple Applications of the Activation Function). Given a nat-
ural number i > 0, set V ′ ⊆ V , and threshold function, θ , we define the multiple
applications of the activation function, Ai

θ (V
′), as follows:

Ai
θ (V

′) =

{
Aθ (V ′) if i = 1

Aθ (A
i−1
θ (V ′)) otherwise

(3.2)

3.3 The Minimum Seed Problem 21

Clearly, when Ai
θ (V

′) = Ai−1
θ (V ′) the process has converged. Further, this always

converges in no more than n steps (as, prior to converging, a process must, in each
step, activate at least one new node). Based on this idea, we define the function Γ
which returns the set of all nodes activated upon the convergence of the activation
function.

Definition 3.4 (Γ Function). Let j be the least value such that Aj
θ (V

′) = Aj−1
θ (V ′).

We define the function Γθ : 2V → 2V as follows.

Γθ (V
′) = Aj

θ (V
′) (3.3)

3.3 The Minimum Seed Problem

We now have all the pieces to introduce our problem—finding the minimal number
of nodes that are initially active to ensure that the entire set V becomes active.

Definition 3.5 (The MIN-SEED Problem). The MIN-SEED Problem is defined
as follows: given a threshold function, θ , return V ′ ⊆ V s.t. Γθ (V ′) = V , and there
does not exist V ′′ ⊆ V where |V ′′|< |V ′| and Γθ (V ′′) = V .

The following theorem is from the literature [8, 11] and tells us that the
MIN-SEED problem is NP-complete.

Theorem 3.1 (Complexity of MIN-SEED [8, 11]). MIN-SEED in NP-Complete.

Now, we introduce an integer program that solved the MIN-SEED problem
exactly and our new decomposition-based heuristic.

3.3.1 Exact Approach

Below we present SEED-IP, an integer program that if solved exactly, guarantees
an exact solution to MIN-SEED (see Proposition 3.1). Though, in general, solving
an integer program is also NP-hard, suggesting that an exact solution will likely
take exponential time, good approximation techniques such as branch-and-bound
exist and mature tools such as QSopt and CPLEX can readily take and approximate
solutions to integer programs.

Definition 3.6 (SEED-IP).

min∑i xi,1, w.r.t. (3.4)

∀i, t ∈ {1, . . . ,n}, xi,t ∈ {0,1} (3.5)

∀i, xi,n = 1 (3.6)

22 3 The Tipping Model and the Minimum Seed Problem

∀i,∀t > 0, xi,t ≤ xi,t−1 +
1

din
i θ(vi)

∑vj∈η in
i

xj,t−1 (3.7)

Proposition 3.1. If V ′ is a solution to MIN-SEED, then setting ∀vi ∈ V ′,xi,1 = 1
and ∀vi /∈ V ′,xi,1 = 0 is a solution to SEED-IP. If the vector [xi,t] is a solution to
SEED-IP, then {vi|xi,1 = 1} is a solution to MIN-SEED.

However, despite the availability of approximate solvers, SEED-IP requires a
quadratic number of variables and constraints (Proposition 3.2), which likely will
prevent this approach from scaling to very large datasets. As a result, in the next
section we introduce our heuristic approach.

Proposition 3.2. SEED-IP requires n2 variables and 2n2 constraints.

3.3.2 Heuristic

Next, we present the heuristic algorithm of [22, 23]. The algorithm is based on
the idea of shell decomposition often cited in physics literature [2, 5, 12, 18] but
modified to ensure that the resulting set will lead to all nodes being activated. The
algorithm, TIP_DECOMP is presented in this section.

Intuitively, the algorithm proceeds as follows (Fig. 3.1). Given network G =
(V,E) where each node vi has threshold ki =
θ (vi) · din

i �, at each iteration, pick
the node for which din

i − ki is the least but positive (or 0) and remove it. Once there
are no nodes for which din

i −ki is positive (or 0), the algorithm outputs the remaining
nodes in the network. The resulting set of nodes is guaranteed to cause all nodes in
the graph to activate under the tipping model.

Theorem 3.2. If all nodes in V ′ ⊆ V returned by TIP_DECOMP are initially
active, then every node in V will eventually be activated, too.

Algorithm 1 TIP_DECOMP
Require: Threshold function, θ and directed social network G = (V,E)
Ensure: V ′

1: For each vertex vi, compute ki.
2: For each vertex vi, disti = din

i − ki.
3: FLAG = TRUE.
4: while FLAG do
5: Let vi be the element of v where disti is minimal.
6: if disti = ∞ then
7: FLAG = FALSE.
8: else
9: Remove vi from G and for each vj in ηout

i , if distj > 0, set distj = distj −1. Otherwise
set distj = ∞.

10: end if
11: end whilereturn All nodes left in G.

3.4 Experimental Findings 23

Fig. 3.1 Example of our algorithm for a simple network depicted in box A. We use a threshold
value set to 50% of the node degree. Next to each node label (lower-case letter) is the value for

din
i − ki (where ki =
 din

i
2 �). In the first four iterations, nodes e, f, h, and i are removed resulting in

the network in box B. This is followed by the removal of node j resulting in the network in box C.
In the next two iterations, nodes a and b are removed (boxes D-E respectively). Finally, node c is
removed (box F). The nodes of the final network, consisting of d and g, have negative values for
di −θi and become the output of the algorithm

We also note that by using the appropriate data structure (we used a binomial
heap in our implementation), for a network of n nodes and m edges, this algorithm
can run in time O(m logn).

Proposition 3.3. The complexity of TIP_DECOMP is O(m · log(n)).

3.4 Experimental Findings

In this section we describe the results of an experimental evaluation. We describe
the datasets we used for the experiments in Sect. 3.4.1. We evaluate the run-time
of TIP_DECOMP in Sect. 3.4.2. In Sect. 3.4.3, we evaluate the size of the seed-set
returned by the algorithm and we compare this to the seed size returned by known
centrality measures in Sect. 3.4.4. We then study how the removal of high-degree
nodes affects the results of the algorithm in Sect. 3.4.5.

The algorithm TIP_DECOMP was written using Python 2.6.6 in 200 lines
of code that leveraged the NetworkX library available from http://networkx.lanl.
gov/. The code used a binomial heap library written by Björn B. Brandenburg

http://networkx.lanl.gov/
http://networkx.lanl.gov/

24 3 The Tipping Model and the Minimum Seed Problem

available from http://www.cs.unc.edu/~bbb/. The experiments were run on a com-
puter equipped with an Intel X5677 Xeon Processor operating at 3.46 GHz with
a 12 MB Cache running Red Hat Enterprise Linux version 6.1 and equipped with
70 GB of physical memory. All statistics presented in this section were calculated
using R 2.13.1 (Source code for TIP_DECOMP is available at https://github.com/
viralTipping/viralTipping).

3.4.1 Datasets

In total, we examined 36 networks: nine academic collaboration networks, three
e-mail networks, and 24 networks extracted from social-media sites. The sites
included general-purpose social-media (similar to Facebook or MySpace) as well
as special-purpose sites (i.e. focused on sharing of blogs, photos, or video).

All datasets used in this chapter were obtained from one of four sources: the
ASU Social Computing Data Repository, [20] the Stanford Network Analysis
Project, [13] the University of Michigan, [15] and Universitat Rovira i Virgili [1].
Thirty one of the networks considered were symmetric—i.e. if a directed edge from
vertex v to v′ exists, there is also an edge from vertex v′ to v. The networks are
categorized by the results for the MIN-SEED experiments (explained later in this
section). Additionally, we also looked at several non-symmetric (directed) networks
and placed them in their own category. In what follows, we provide their real-world
context.

3.4.1.1 Category A

• BlogCatalog is a social blog directory that allows users to share blogs with
friends [20]. The first two samples of this site, BlogCatalog1 and 2, were taken
in Jul. 2009 and June 2010 respectively. The third sample, BlogCatalog3 was
uploaded to ASU’s Social Computing Data Repository in Aug. 2010.

• Buzznet is a social media network designed for sharing photographs, journals,
and videos [20]. It was extracted in Nov. 2010.

• Douban is a Chinese social medial website designed to provide user reviews and
recommendations [20]. It was extracted in Dec. 2010.

• Flickr is a social media website that allows users to share photographs [20]. It
was uploaded to ASU’s Social Computing Data Repository in Aug. 2010.

• Flixster is a social media website that allows users to share reviews and other
information about cinema [20]. It was extracted in Dec. 2010.

• FourSquare is a location-based social media site [20]. It was extracted in Dec.
2010.

• Frienster is a general-purpose social-networking site [20]. It was extracted in
Nov. 2010.

• Last.Fm is a music-centered social media site [20]. It was extracted in Dec. 2010.

http://www.cs.unc.edu/~bbb/
https://github.com/viralTipping/viralTipping
https://github.com/viralTipping/viralTipping

3.4 Experimental Findings 25

• LiveJournal is a site designed to allow users to share their blogs [20]. It was
extracted in Jul. 2010.

• Livemocha is touted as the “world’s largest language community” [20]. It was
extracted in Dec. 2010.

• WikiTalk is a network of individuals who set and received messages while
editing WikiPedia pages [13]. It was extracted in Jan. 2008.

3.4.1.2 Category B

• Delicious is a social bookmarking site, designed to allow users to share web
bookmarks with their friends [20]. It was extracted in Dec. 2010.

• Digg is a social news website that allows users to share stories with friends [20].
It was extracted in Dec. 2010.

• EU E-Mail is an e-mail network extracted from a large European Union research
institution [13]. It is based on e-mail traffic from Oct. 2003 to May 2005.

• Hyves is a popular general-purpose Dutch social networking site [20]. It was
extracted in Dec. 2010.

• Yelp is a social networking site that allows users to share product reviews [20].
It was extracted in Nov. 2010.

3.4.1.3 Category C

• CA-AstroPh is a an academic collaboration network for Astro Physics from Jan.
1993 to Apr. 2003 [13].

• CA-CondMat is an academic collaboration network for Condense Matter
Physics. Samples from 1999 (CondMat99), 2003 (CondMat03), and 2005 (Cond-
Mat05) were obtained from the University of Michigan [15]. A second sample
from 2003 (CondMat03a) was obtained from Stanford University [13].

• CA-GrQc is a an academic collaboration network for General Relativity and
Quantum Cosmology from Jan. 1993 to Apr. 2003 [13].

• CA-HepPh is a an academic collaboration network for High Energy Physics -
Phenomenology from Jan. 1993 to Apr. 2003 [13].

• CA-HepTh is a an academic collaboration network for High Energy Physics -
Theory from Jan. 1993 to Apr. 2003 [13].

• CA-NetSci is a an academic collaboration network for Network Science from
May 2006.

• Enron E-Mail is an e-mail network from the Enron corporation made public by
the Federal Energy Regulatory Commission during its investigation [13].

• URV E-Mail is an e-mail network based on communications of members of the
University Rovira i Virgili (Tarragona) [1]. It was extracted in 2003.

• YouTube is a video-sharing website that allows users to establish friendship
links [20]. The first sample (YouTube1) was extracted in Dec. 2008. The second
sample (YouTube2) was uploaded to ASU’s Social Computing Data Repository
in Aug. 2010.

26 3 The Tipping Model and the Minimum Seed Problem

Fig. 3.2 m lnn vs. runtime in
seconds (log scale, m is
number of edges, n is number
of nodes). The relationship is
linear with R2 = 0.9015,
p = 2.2 ·10−16

3.4.2 Runtime

First, we examined the runtime of the algorithm (see Fig. 3.2). Our experiments
aligned well with our time complexity result (Proposition 3.3). For example, a
network extracted from the Dutch social-media site Hyves consisting of 1.4 million
nodes and 5.5 million directed edges was processed by our algorithm in at most
12.2 min. The often-cited LiveJournal dataset consisting of 2.2 million nodes and
25.6 million directed edges was processed in no more than 66 min—a short time to
approximate an NP-hard combinatorial problem on a large-sized input.

3.4.3 Seed Size

For each network, we performed 10 “integer” trials. In these trials, we set θ (vi) =
min(din

i ,k) where k was kept constant among all vertices for each trial and set at
an integer in the interval [1,10]. We evaluated the ability of a network to promote
spreading under the tipping model based on the size of the set of nodes returned
by our algorithm (as a percentage of total nodes). For the purposes of discussion,
we have grouped our networks into three categories based on results (Fig. 3.3a). In
general, online social networks had the smallest seed sets—13 networks of this type
had an average seed set size less than 2% of the population (these networks were all

3.4 Experimental Findings 27

Fig. 3.3 Threshold value vs. size of initial seed the set as returned by our algorithm in our three
identified categories of networks (categories A–C are depicted in panels A–C respectively). Figure
on the left (a) has its threshold value assigned as an integer in the interval [1,10] whereas the right
(b) one as a fraction of node in-degree as a multiple of 0.05 in the interval [0.05,0.60]. In left figure
(a), average seed sizes were under 2% for Category A, 2–10 % for Category B and over 10% for
Category C. The relationship, in general, was linear for categories A & B and logarithmic for C.
CA-NetSci had the largest Louvain Modularity and clustering coefficient of all the networks. In
the right figure (b), average seed sizes were under 5% for Category A, 17 % for Category B and
over 3 % for Category C.The relationship between threshold and initial seed size for networks in
all categories was exponential

in Category A). We also noticed, that for most networks, there was a linear relation
between threshold value and seed size.

Category A can be thought of as social networks highly susceptible to
influence—as a very small fraction of initially activated individuals can lead to
activation of the entire population. All were extracted from social media websites.
For some of the lower threshold levels, the size of the set of seed nodes was
particularly small. For a threshold of three, 11 of the Category A networks produced
seeds smaller than 0.5% of the total populations. For a threshold of four, nine
networks met this criteria.

28 3 The Tipping Model and the Minimum Seed Problem

Networks in Category B are susceptible to influence with a relatively small set
of initial nodes—but not to the extent of those in Category A. They had an average
initial seed size greater than 2% but less than 10%. Members in this group included
two general purpose social media networks, two specialty social media networks,
and an e-mail network. Non-symmetric networks generally performed somewhat
poorer than Category B networks (though in general, not as poorly as those in
Category C). The initial seed sizes for the non-symmetric networks ranged from
3 to 29 %.

Category C consisted of networks that seemed to hamper diffusion in the tipping
model, having an average initial seed size greater than 10%. This category included
all of the academic collaboration networks, two of the email networks, and two
networks derived from friendship links on YouTube.

We also studied the effects on spreading when the threshold values were
assigned as a specific fraction of each node’s in-degree [10, 19], which results in
heterogeneous θi’s across the network. We performed 12 trials for each network.
Thresholds for each trial were based on the product of in-degree and a fraction in
the interval [0.05,0.60] (multiples of 0.05).

3.4.4 Comparison with Centrality Measures

We compared our results with six popular centrality measures: degree, betweenness,
closeness, shell number, eigenvector, and PageRank. Here, we define degree
centrality is simply the number of outgoing adjacent nodes.

We evaluated the performance of centrality measures in finding a seed set by
iteratively selecting the most central nodes with respect to a given measure until
the Γθ of that set returns the set of all nodes. Due to the computational overhead
of calculating these centrality measures and the repeated re-evaluation of Γθ , we
limited this comparison to only BlogCatalog3, CA-HepTh, CA-NetSci, URV E-
Mail, and Douban (no betweeness calculated for Douban). As with the experiments
in the previous section, we studied threshold settings based on an integer in the
interval [1,10] (see Fig. 3.4) and analogous results were found for the case where
the thresholds were set as a fraction of nodes. In general, selecting highly-central
nodes is an inefficient method for finding small seed sets.

In all but the lowest threshold settings, the use of centrality measures for the
integer-threshold trials proved to significantly underperformed when the method
presented in this chapter—often returning seed-sets several orders of magnitude
larger and in many cases including the majority of nodes in the network. Even for
the centrality measures which outperform our method in these trials, the reduction
in seed set size was minimal (the greatest reduction in seed set size experienced in
a centrality-measure test over the algorithm of this chapter was 0.09%, while often
producing seed sets orders of magnitude greater than our method). This held even
for the centrality measures associated with diffusion (shell number, eigenvector, and
PageRank).

3.4 Experimental Findings 29

Fig. 3.4 The use of degree, shell number, betweenness, Eigenvector, closeness and PageRank to
find seed-sets on select networks when the threshold is set to an integer in the interval [1,10]

Our tests using fractional-based thresholds tell a slightly different story. While
our method still generally outperformed the centrality measures for the fractional
tests, there were a few cases where the centrality measures fared better. With
BlogCatalog3 all of the centrality measures outperformed our algorithm in the
fraction-based experiments. For that dataset, centrality-based algorithm consistently
outperformed our method finding seed sets with less members (by 3.13–3.29% of
the population, on average). With URV-Email, many trials that utilized a lower
threshold setting outperformed our method, but never finding a seed set with smaller
by more than 8% of the total population. However, in the larger threshold settings,
our method consistently found smaller seeds. For a given centrality measure for this
dataset, centrality measures on average provided poorer results than our algorithm
ranged—returning seed sets which were, on average 10.22–67.14% (by overall
population) larger than that returned by our algorithm. Perhaps the most interesting
result among the centrality measures were the PageRank fraction-based tests on CA-
NetSci, which is associated with the largest seed sets. PageRank found seed sets that
were, on average 14.45 % smaller (by population) than our approach. Additionally,
though centrality measures outperformed TIP_DECOMP for BlogCatalog3, this

30 3 The Tipping Model and the Minimum Seed Problem

does not appear to hold for all social networks as the seed sets returned using
centrality measures for the Douban approaches at least an order of magnitude
increase over our method for nearly every fractional threshold setting for all
centrality measures. Hence, we conclude that for fraction-based thresholds, using
centrality measures to find seed sets provides inconsistent results, and when it fails,
it tends to provide a large portion of the network. A possibility for a practical
algorithm that could combine both methods would be to first run TIP_DECOMP,
returning some set V ′. Then, V ′′ is created by selecting the most central nodes until
either |V ′| = |V ′′| or Γθ (V ′′) = V (whichever ensures the lower cardinality for V ′′.
If |V ′| = |V ′′|, V ′ is returned, otherwise V ′′. For such an approach, we would likely
recommend using degree centrality due to its ease of computation and performance
in our experiments. However, we note that highly-central nodes often may not
be realistic targets for a viral-marketing campaign. For instance, it may be cost-
prohibitive to create a seed set consisting of major celebrities in order to spread
the use of a product. As such is a practical concern, we look at the performance of
TIP_DECOMP when high-degree nodes are removed in the next section.

3.4.5 Effect of Removing High-Degree Nodes

In the last section we noted that high-degree nodes may not always be targetable
in a viral marketing campaign (i.e. it may be cost prohibitive to include them in a
seed set). In this section, we explore the affect of removing high-degree nodes on
the size of the seed-set returned by TIP_DECOMP. This type of node removal has
also recently been studied in a different context in [4]. In these trials, we studied all
31 networks and looked at two specific threshold settings: an integer threshold of 2
(Fig. 3.5) and analogous results were found with respect to fractional threshold. We
then studied the effect of removing up to 50% of the nodes in order from greatest to
least degree.

With an integer threshold of 2, networks in category A still retained a seed-
size (as returned by TIP_DECOMP) two orders of magnitude smaller than the
population size up to the removal of 10% of the top degree nodes, and for many
networks this was maintained to 50%. Networks in category B retained seed sets an
order of magnitude smaller than the population for up to 50% of the nodes removed.
For most networks in category C, the seed size remained about a quarter of the
population size up to 15% of the top degree nodes being removed.

With a fractional threshold of 0.5, we noted that many networks in category
A actually had larger seed sets (as returned by TIP_DECOMP) when more high
degree nodes are removed. Further, networks in categories A-B retained seed sets of
at least an order of magnitude smaller than the population in these tests while most
networks in category C retained sizes of about a quarter of the population.

3.4 Experimental Findings 31

Fig. 3.5 Size of the seed set returned by TIP_DECOMP (as a fraction of the population) as a
function of the percentage of the highest degree nodes removed from the network with an integer
threshold of 2 for networks in categories A–C

32 3 The Tipping Model and the Minimum Seed Problem

3.5 Conclusion

In this chapter, we reviewed the “tipping” model and the associated problem of
finding a minimum seed set—a group of individuals that will lead to universal
adoption under this process. In the next chapter, we shall look at a probabilistic
variant of this model where the threshold for each node is not known but selected
based on a probability distribution.

References

1. Arenas, A. (2012). Network data sets. http://deim.urv.cat/~aarenas/data/welcome.htm
2. Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F. (2011). Heterogeneous k-core

versus bootstrap percolation on complex networks . Phys. Rev. E 83.
3. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I. (2011). Treewidth governs the

complexity of target set selection. Discrete Optimization 8 (1), 87–96.
4. Boldi, P., Rosa, M., Vigna, S.: Robustness of social and web graphs to node removal. Social

Network Analysis and Mining pp. 1–14 (2013). http://dx.doi.org/10.1007/s13278-013-0096-x
5. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E. (2007). From the Cover: A model of

Internet topology using k-shell decomposition. PNAS 104 (27), 11,150–11,154.
6. Centola, D. (2010). The Spread of Behavior in an Online Social Network Experiment. Science

329 (5996), 1194–1197.
7. Chen, N.(2009) On the approximability of influence in social networks. SIAM J. Discrete

Math. 23, 1400–1415.
8. Dreyer, P., Roberts, F. (2009). Irreversible -threshold processes: Graph-theoretical threshold

models of the spread of disease and of opinion. Discrete Applied Mathematics 157 (7),
1615–1627.

9. Granovetter, M. (1978). Threshold models of collective behavior. The American Journal of
Sociology (6), 1420–1443.

10. Jackson, M., Yariv, L. (2005). Diffusion on social networks. Economie Publique, vol. 16,
pp. 69–82.

11. Kempe, D., Kleinberg, J., Tardos, E. (2003). Maximizing the spread of influence through a
social network. KDD ’03: Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 137–146. ACM, New York, NY, USA.

12. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.
(2010). Identification of influential spreaders in complex networks. Nat Phys (11), 888–893.

13. Leskovec, J. (2012). Stanford network ana lysis project (snap). http://snap.stanford.edu/index.
html

14. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N. (2007). Cost-
effective outbreak detection in networks. KDD ’07: Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 420–429. ACM, New
York, NY, USA.

15. Newman, M.(2011) Network data. http://www-personal.umich.edu/~mejn/netdata/
16. Reichman, D. (2012). New bounds for contagious sets. Journal, Discrete Mathematics 312

(10), (May 2012).
17. Schelling, T.C. (1978). Micromotives and Macrobehavior. W.W. Norton and Co.
18. Seidman, S.B. (1983). Network structure and minimum degree. Social Networks 5 (3),

269–287.
19. Watts, D.J., Dodds, P.S. (2007) Influentials, networks, and public opinion formation. Journal

of Consumer Research 34 (4), 441–458. http://www.journals.uchicago.edu/doi/abs/10.1086/
518527

http://deim.urv.cat/~aarenas/data/welcome.htm
http://dx.doi.org/10.1007/s13278-013-0096-x
http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html
http://www-personal.umich.edu/~mejn/netdata/
http://www.journals.uchicago.edu/doi/abs/10.1086/518527
http://www.journals.uchicago.edu/doi/abs/10.1086/518527

References 33

20. Zafarani, R., Liu, H. (2009). Social computing data repository at ASU . http://socialcomputing.
asu.edu

21. Zhang, L., Marbach, P. (2011). Two is a crowd: Optimal trend adoption in social networks.
Proceedings of International Conference on Game Theory for Networks (GameNets)

22. P. Shakarian, S. Eyre, D. Paulo. A Scalable Heuristic for Viral Marketing Under the Tipping
Model. Social Network Analysis and Mining. Springer 3(4), 2013.

23. P. Shakarian, D. Paulo. Large Social Networks can be Targeted for Viral Marketing with
Small Seed Sets. 2012 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM-2012) (Aug. 2012).

http://socialcomputing.asu.edu
http://socialcomputing.asu.edu

Chapter 4
The Independent Cascade and Linear Threshold
Models

4.1 Introduction

In Chaps. 2 and 3, we presented the SIR model and the tipping model respectively.
In the former any node infected in last time step has a single chance (with probability
β , a parameter of the model) to infect any of its neighbors which are not in a
susceptible state. In the latter, an individual adopts a behavior if it has certain
number of adopted incoming neighbors.

In this chapter, we focus on independent cascade (IC) model which is a
generalized of SIR model, and two other models known as linear threshold (LT)
and generalized threshold (GT) models, which are probabilistic extensions of the
tipping model. These models are similar to the tipping dynamics of Chap. 3, except
that the tipping threshold for each node is drawn at random.

In this chapter, we describe properties of these models and study problems of
influence maximization and spread in this context. Finally, we present approaches
to address the influence maximization problem to find the seed sets that maximize
the number of adopters in expectation.

4.2 Model Definitions

We assume a social network G = (V,E), where V is a set of vertices and E is a
set of directed edges. For a given node v ∈ V , the set of incoming neighbors and
outgoing neighbors are considered as η in(v) and ηout(v) respectively. We will use
the notation | · | for the cardinality of the sets.

The diffusion process occurs in discrete time steps t. If a node adopts a new
behaviour or idea, it becomes active, otherwise it is inactive. An inactive node has
the ability to become active. The set of active nodes at time t is considered as Xt.
The tendency of an inactive node v to become active is positively correlated with the

© The Author(s) 2015
P. Shakarian et al., Diffusion in Social Networks, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-23105-1_4

35

36 4 The Independent Cascade and Linear Threshold Models

number of active incoming neighbors v. Also, we assume that each node can only
switch from inactive state to active state, and an active node will remain active for
the rest of the diffusion process—hence these models are often referred to as “pro-
gressive” or “montonic.” On the other hand, in non-progressive models active nodes
can also switch back and become inactive—we will cover these in Chap. 6 when we
describe evolutionary graph theory. In general, we start with an initial seed set X0

(when it is clear from context, we shall often drop the subscript and use X to denote
the seed set), and through the diffusion process, for a given inactive node v, its active
neighbors attempt to activate it. The process runs until no more activations occur.

4.2.1 Independent Cascade Model

Independent cascade (IC) model generalizes the SIR model described in Chap. 2.
Instead of a single probability infection, there is a probability of infection associated
with each edge. The probability Pu,v is the probability of u infecting v. This prob-
ability can be assigned based on frequency of interactions, geographic proximity,
or historical infection traces. Each node, once infected, has the ability to infect its
neighbor in the next time step based on the probability associated with that edge.

Definition 4.1 (Independent Cascade Model (IC)). Under the Independent Cas-
cade model dynamics, at each time step t where X new

t−1 is the set of newly activated
nodes at time t−1, each v ∈X new

t−1 infects the inactive neighbors u ∈ ηout(v) with a
probability Pu,v.

An example of this model is shown in Fig. 4.1. Active nodes are shown in yellow
dotted line. At initial time, two nodes C and D are activated. At the next time step,
node C and D has a chance to activate their three neighbors (A, G, and H) and
(B, E, and F) respectively. According to Fig. 4.1b, only three nodes A, H, and E are
successfully activated and the initial active nodes change to gray (denoting it stays
active but no chance to activate others). In the next time step, two nodes G and F
become active, and the previous active nodes A, E, and H change to gray. At time
t = 2, two nodes F and G become active. Node G’s neighbors are active, so it does
not have a chance to activate any nodes. Node F has an option to activate node I;
however it fails as shown in our given example in Fig. 4.1d. Since there is no more
new active node, the diffusion process stopped.

4.2.2 Linear Threshold Model

The linear threshold model extends tipping model to its natural, weighted variant
where each directed edge (u,v) ∈ E has a non-negative weight b(u,v). For any
node v ∈ V , the total incoming edge weights sum to less than or equal to one, i.e.
∑u∈η in(v) b(u,v)≤ 1. The dynamics of the model are specified below.

4.2 Model Definitions 37

a b

c d

Fig. 4.1 Independent cascade model. Probability of transitions from each state to its successor
state(in alphabetic order) are 7.0−3, 6.0−3, 5.0−1, and 1.0, respectively. The probability of
occurring for this sequence is 2.0−5. (a) t = 0. (b) t = 1. (c) t = 2. (d) t = 3

Definition 4.2 (Linear Threshold Model (LT)). Under the linear threshold model
dynamics, each node v selects a threshold θv in the interval [0,1] uniformly at
random. Then, at each time step t where Ht−1 is the set of nodes activated at time
t − 1 or earlier, each inactive node becomes active if ∑u∈η in(v)∩Ht−1

b(u,v) ≥ θv.

38 4 The Independent Cascade and Linear Threshold Models

a b c

Fig. 4.2 Linear threshold model. The probability is determined based on the thresholds drawn at
the first step, then the model proceeds deterministically.The probability of this sequence is almost
7.0−3. (a) t = 0. (b) t = 1. (c) t = 2

Once the thresholds are drawn, these dynamics are equivalent to the tipping model
of Chap. 3 where the activation function is re-written as follows:

Aθ (V
′) = V ′ ∪ {v ∈ Vs.t. ∑

u∈η in(v)∩V ′
b(u,v)≥ θv} (4.1)

An inactive node is influenced by all of its active neighbors at each time step.
An active node influences its inactive neighbors according to the weights. At each
step, an inactive node becomes active if the total weight of its incoming neighbors
is at least θv. Thresholds θv are selected randomly due to lack of knowledge of the
tendency of nodes, and express the different levels of tendency of nodes to adopt an
idea or innovation.

An example of this model is shown in Fig. 4.2. Each node is assigned a random
threshold in [0,1] and two yellow dotted nodes C and D are initially activated. Node
C is unable to activate two nodes G and H as its influence weight is not large enough,
but it is able to activate node A (0.2≥ 0.1). Node D also activates node F (0.4≥ 0.3),
but not B and E. In the next step (Fig. 4.2b), there are four active nodes and they are
able to activate node I (0.3+ 0.5 ≥ 0.2) and E (0.4+ 0.2 ≥ 0.5). In the next time
step, no new active node exists; so, the diffusion process terminates.

4.2.3 Generalized Threshold Model

Generalized threshold model is a broader framework of which the linear threshold
and independent cascade models are special cases. Kempe et al. [1] also presented
a generalized cascade model, which is equivalent to generalized threshold model.
Therefore, we only provide the generalized threshold model definition here.

4.3 Influence Maximization Problem 39

Definition 4.3 (Generalized Threshold Model (GT)). Given node v, a monotone
threshold function fv : 2η in(v) → [0,1], a threshold value θv ∈ [0,1], and an active set
Xt at time t, node v is infected at time step t if fv(Xt)≥ θv.

Again, the threshold value θv is uniformly randomly chosen for each node v.
Linear threshold model is a special case of generalized threshold model, where the
threshold function is in the form of summation over all active neighbors of node v,
denoted X v, i.e. fv(X v) = ∑u∈X v b(u,v) where ∑u∈η in

v
b(u,v)≤ 1.

4.3 Influence Maximization Problem

In this section, we examine the influence maximization problem for the previously-
mentioned models. First, we introduce some common terminology and concepts
among all three models. The diffusion models involve an initial set of nodes to start.
The influence of an initial set is defined as the number of active nodes at the end of
the diffusion process. This is often referred to as influence spread.

Definition 4.4 (Influence Spread). Given an initial seed set X , influence spread
is the expected number of infectees σ(X).

A natural optimization problem is to find the set of maximum influence nodes
with a specific size k. That is, the initial k-node set X has been targeted to become
active. We can formally define this problem as:

Definition 4.5 (Influence Maximization Problem). Given a natural number k,
find an initial seed set X , where |X | ≤ k, such that σ(X) is maximized.

Unfortunately, this problem is NP-hard. This reduction is shown by an embed-
ding of the max-k-cover problem.

In 1978, Nemhauser et al. [2] showed that (under the assumption that the
influence spread can be efficiently calculated) a greedy algorithm provides an
(1−1/e) approximation if f meets normalization, monotonicity and submodularity
conditions.

Definition 4.6 (Normalization). If there is no initial infectees then there is no
spread, i.e. f (/0) = 0.

Definition 4.7 (Montonicity). For S ⊆ S′, f (S)≤ f (S′).

Definition 4.8 (Submodularity). An arbitrary set function f : S→R is submodular
if and only if for all S′,S′′ ⊆ S, it is the case that if S′ ⊆ S′′, then f (S′ ∪{s})− f (S′)≥
f (S′′ ∪ {s})− f (S′′). Intuitively, a submodular function has diminishing returns
property.

The intuition behind submodularity can be explained with the following example.
Suppose you have a poor man with very few possessions (H1) and a rich man with
many more possessions (H2). Suppose neither possesses a Ferrari car (h). Giving the
poor man the Ferrari would make a greater difference to his net worth (computed
via f as a function of the person’s possessions) than giving it to the rich man.

40 4 The Independent Cascade and Linear Threshold Models

4.3.1 Influence Maximization Under the IC Model

Kempe et al. [1] show that influence maximization problem can be viewed as a
general case of an NP-complete Set Cover problem under the IC model.

Theorem 4.1 (Complexity of Influence Maximization in the IC Model). The
influence maximization in the independent cascade model is NP-hard within a factor
of 1− 1/e+ ε for any ε > 0.

They [1] also show that σ meets the requirements (mentioned under Defini-
tion 4.6, 4.7 and 4.8) under the IC model.

Theorem 4.2. In the independent cascade model, the influence function σIC(·) is
normalized, monotone, and submodular.

We will give an intuition for this finding under IC dynamics. The influence
function in IC is normalized, since if there is no initial infectees then there is no
spread, i.e. σIC(/0) = 0. It is also monotone, because each element of X contributes
at least one expected infectee. However, this is not true if we do not count nodes
in set X toward the expected infectees. In this case, we can view the oracle
function as σIC(X)−|X |, which is not monotonic. This is a special case of profit
maximization [6, 7].

We can prove submodularity of the influence function in IC model using live-
edge model. The proof of submodularity relies on a manipulation of the “live edge”
model—a mathematically equivalent representation of the IC model (and several
others as well). This technique is commonly used in much of the literature relating
to the models described in this chapter. We outline the technique used to obtain this
result next.

First, we define an outcome under the IC models as a subgraph of G. A given
outcome intuitively is one possible way the IC process can occur. Using this idea,
we can assign a probability to an outcome as follows. For outcome G′ = (V,E′)
the probability of the outcome is: Π(u,v)∈E′Pu,v ×Π(u,v)∈E\E′(1−Pu,v). For a given
outcome W , we denote this probability Pr(W).

Definition 4.9 (Live-Edge Path). Given graph G, and an initial active set X , the
path from X to other nodes is called a live-edge path.

According to the definition, given graph G with edge probabilities, we can
view some subgraph G′ as a potential set of available edges that diffusion can
deterministically occur.

Definition 4.10 (Live-Edge Model). Given graph G = (V,E), seed set X , and
probability distribution Pr over subgraphs of G, the probability a node v ∈ V \
X is defined as the sum of the probabilities of subgraphs of G (based on Pr) where
exists a path from a node in X to v is active.

As, for a given subgraph G′, the infection is deterministic, a node x is infected
under the live-edge model if there is simply a path from a node in X to x. The edges
successfully activate are declared as live, and the rest of the edges are declared as
blocked. Kempe et al. show that live-edge model is equivalent to IC model.

4.3 Influence Maximization Problem 41

Algorithm 2 Greedy Algorithm
1: procedure GREEDYAPPROXIMATION(V, k)
2: Set X = /0
3: while |X | ≤ k do
4: Pick s ∈ V where σ (X ∪ s)−σ (X) is the greatest
5: Add s to X
6: end while
7: return X
8: end procedure

Consider two sets S and S′ such that S ⊆ S′ and an element s which is in neither.
For random weight of edges W , Let RW (S), RW (S′), and RW ({s}) be the sets
of nodes reachable by S,S′, and s by weights W , respectively. Since |RW (S′)∩
RW ({s})| ≥ |RW (S)∩ RW ({s})|; thus, σW (S ∪ {s})− σW (S) ≥ σW (S′ ∪ {s})−
σW (S′). For any W , we have the following relationship: σIC(S) = ∑W Pr(W)×
σW (S) As positive linear combinations of submodular functions are also submodu-
lar, we have completed the proof.

Greedy Approximation Algorithm To find the initial seed set we can use Greedy
Algorithm as presented in Algorithm 2. In each iteration, the element with maximum
marginal influence is added to the seed set. Let k be the size of the seed set, there are
k and |V| iterations of the outer loop and inner loop respectively, where each of these
k×|V| iterations require many evaluations of σ . Thus, this becomes very expensive.
And note, this assumes that the computation of σ can be done efficiently. However,
the straight-forward method is to rely on simulation, which is also expensive.

Let us consider the issue of the calculation of σ . It turns out, that by leveraging
the live-edge model, that calculation influence is #P-hard by a reduction from the
counting version of s-t connectivity (this result was originally proven by Chen et al.
in [5]). The problem of s-t connectivity deals with determining if their exist a path
between two nodes (denoted s and t) in a graph. Chen’s reduction works by creating
an instance of the live-edge model where the probability of t adopting given a seed
set consisting of node s is proportional to the number of paths between these two
nodes.

Theorem 4.3 (Complexity of Influence Spread in the IC Model). In the inde-
pendent cascade model, influence spread σIC(·) is #P-hard.

Practically, we can obtain arbitrarily close approximation using simulation.
However, this is expensive and at the time of this writing, does not provide any
formal guarantee.

However, the expected number of infectees is solvable in polynomial time
for directed acyclic graphs [5]. We can compute the activation probability, the
probability of a node u is infected given seed set X , of each node using Algorithm 3.
Though this seems to be a restrictive case, this intuition is useful in building a
heuristic approach to this problem—as we shall describe later in the chapter.

42 4 The Independent Cascade and Linear Threshold Models

Algorithm 3 Computing Activation Probability in DAG
1: procedure ACTIVATIONPROBABILTY(D,X)
2: ∀u ∈ DAG D,ap(u) = 0
3: ∀u ∈ seed set X ,ap(u) = 1
4: Topologically sort all nodes reachable from X in D into a sequence ρ , with in-degree zero

nodes sorted first.
5: for u ∈ {ρ \X } according to the order ρ do
6: ap(u) = ∑x∈ηin(u)∩ρ ap(x)×b(x,u)
7: end for
8: return S
9: end procedure

4.3.2 Influence Maximization Under the LT Model

We now turn our attention to influence maximization and influence spread under
the LT model. It turns out that influence spread calculation is also #P-hard [4]. This
time the proof is shown by a reduction from the problem of counting the number of
simple paths between nodes—again using the live-edge model.

Theorem 4.4 (Complexity of Influence Spread in the LT Model). In the linear
threshold model, influence spread σLT(·) is #P-hard.

Further, even if influence spread can be computed efficiently, solving the
influence maximization problem under this model is NP-hard by an embedding of
the vertex cover problem [1].

Theorem 4.5 (Complexity of Influence Maximization in the LT Model). The
influence maximization in the linear threshold model is NP-hard.

However, with respect to the optimization problem associated with influence
maximization under LT, the same properties hold as with the IC model. Intuitively,
the LT model is normalized (no seed, no diffusion). Monotonicity of the LT model
follows the same argument showed for the IC model. Kempe et al. leverage the
live-edge model and show that the model is submodular.

Theorem 4.6. In the linear threshold model, the influence function σLT(·) is
normalized, monotone, and submodular.

4.3.3 Influence Maximization Under the GT Model

In [1] the generalized threshold model is shown to capture both the IC and LT
models, hence the hardness results for both influence maximization and influence
spread still hold.

4.4 Scaling Influence Maximization 43

Theorem 4.7 (Complexity of Influence Maximization in the GT Model).
The influence maximization in the generalized threshold model is NP-hard.

Theorem 4.8 (Complexity of Influence Spread in the GT Model). In the gener-
alized threshold model, computing influence function σGT (·) is #P-hard.

The influence maximization problem in GT model can be reduced to max-k-cover
problem. It is NP-hard within a factor of |V|1−ε [1]. However, the result of Mossel
and Roch [3] relate the local activation functions to influence spread, providing
for an elegant result that allows the greedy algorithm to obtain an approximation
guarantee in this large special case.

Theorem 4.9. If all the activation functions are normalized, monotonic, and
submodular, then the expected number of infectees under the generalized threshold
model is also normalized, monotonic, and submodular [3].

4.4 Scaling Influence Maximization

Due to the demands of potential real-world applications, Influence maximization
problem should be scalable for the real world—as these are often of size 105 nodes
or greater (i.e. see the datasets described in Chaps. 2 and 3). As we said in the
previous section (Algorithm 2), Greedy algorithm is computationally expensive
since in each iteration, it iterates through all the nodes in the given network, and
we run the simulation multiple times to get a closer approximation of the diffusion
outcome. In this section, we present two algorithms and one model to find the seed
set with maximum influence for the LT and IC models.

4.4.1 Lazy Greedy Approximation

We can accelerate greedy algorithm and reduce its computational complexity under
the certain assumption. In 1978, Minoux [8] showed that if a given function f is
submodular, we can optimally accelerate greedy algorithms which is confirmed
theoretically.

The key intuition behind “Lazy Greedy” algorithm is that by the definition of
submodularity, the incremental increase to σ afforded by a node is always bounded
above by its incremental increase on previous iterations. By checking this, we can
avoid unnecessary calculation.

Consider the ith iteration of the Greedy Algorithm 2. Let Xi be the set of
elements picked at the end of iteration i− 1. For node s, the algorithm evaluates
the following quantity:

λ (i,s) = σ(Xi ∪ s)−σ(Xi) (4.2)

44 4 The Independent Cascade and Linear Threshold Models

Let us call λ (i,s) the incremental increase afforded to s at iteration i. Now, there
are many nodes evaluated at a given iteration. Let us assume that s does not do very
well—in fact it is somewhere in the middle of the pack. Now consider the (i+ 1)th

iteration of the Greedy Algorithm. Let Xi+1 be the set of elements picked at the end
of iteration i. For node s, the algorithm evaluates the following quantity:

λ (i+ 1,s) = σ(Xi+1 ∪ s)−σ(Xi+1) (4.3)

This value is incremental increase afforded to s at iteration i+ 1. Let us assume
that s again does not do very well. We note that Xi+1 is a superset of Si. Hence, as
σ(·) is submodular, we get the following:

σ(Xi+1 ∪ s)−σ(Xi+1)≤ σ(Xi ∪ s)−σ(Xi) (4.4)

λ (i+ 1,s)≤ λ (i,s) (4.5)

So, suppose at iteration i we saved λ (i,s) in some data structure. Suppose we
start evaluating λ (i+ 1,s) at the start of iteration i+ 1, and let s′ be the node where
currently λ (i+1,s′) is the greatest. So, now instead of evaluating λ (i+1,s) directly,
we perform the following steps:

1. If λ (i+ 1,s′)≤ λ (i,s):

a. Evaluate λ (i+ 1,s)
b. If λ (i + 1,s′) ≤ λ (i + 1,s), then s is the node that affords the greatest

incremental increase

2. Otherwise:

a. Go to the next node

This can produce significant speedup in practice. Performance may vary depend-
ing on the ordering of the nodes and ordering the nodes may increase algorithm
runtime. So, worst-case time complexity does not change. This algorithm also needs
to iterate through all nodes during the first iteration of the outer loop.

To avoid costly simulation runs, we turn to the issue of scaling the computation
of σ . In general, the approaches presented in the literature for scaling σ is tied to
the underlying model, i.e. IC vs. LT. Hence, we shall describe a method for IC and
a method for LT.

4.4.2 Maximum Influence Arborescence (MIA) Model

Computing the influence spread in the IC model is # P-hard, yet computable in
polynomial time for directed trees. Chen et al. [5] introduce the maximum influence
arborescence (MIA) model where the probability that node v′ infects node v is based
on the probability of v′ infecting v only by the most influential path, called the
maximum influence path. An arborescence is a directed tree with a root node v and
for any other node v′ there is exactly one directed path from v′ to v.

4.4 Scaling Influence Maximization 45

For a given pair of nodes, (u,v) ∈ E, the MIA model is defined as the path
between two nodes whose probability is greatest, denoted MIP(u,v). If there is no
path, then MIP(u,v)= /0. This is uniquely and consistently determined for each node
pair—hence ties are assumed to be broken in a consistent manner. If we create an
alternative graph where each edge (u,v) is weighted by log(P(u,v)−1) then we can
easily find the MIP’s using Dijkstra’s algorithm.

For a given node v, and a threshold θ ∈ [0,1], we define its maximum influence
in-arborescence (MIIA)—the arborescence created by the union of all maximum
influence paths starting from each other node to v whose probability exceeds
threshold θ as follows:

MIIA(v,θ) = ∪u∈V ,Pr(MIP(u,v))≥θ MIP(u,v) (4.6)

This is the graph created by the union of all MIP’s from other nodes to v whose
probability is at least θ . By keeping the MIP unique and consistently defined, we
know the resulting graph is an arborescence. Note that this can be computed before
any algorithmic attempt to solve the maximum influence problem.

Given a seed set X , node u and an arborescence A, the activation probability
ap(u,X ,A) is the probability u is infected given seed set X in graph A under the
IC model. There are three cases: 1) If u is in X , then ap(u,X ,A) = 1, 2) If u is
not in X and has no incoming neighbors, then ap(u,X ,A) = 0, 3) If the first two
cases do not hold, then:

ap(u,X ,A) = 1− Π
w∈η in(u)

1− (ap(w,X ,A))×P(w,v)) (4.7)

This can be computed in polynomial time by a single traversal of A by
considering nodes from the leaves to the root.

Let the activation of node v given seed set X and its MIIA ap(u,X ,MIIA(u,θ)),
the expected number of infectees in the MIA model, denoted σM , given seed set X
is computed as follows:

σM(X) = ∑
v∈V

ap(u,X ,MIIA(u,θ)) (4.8)

Note that the graph used to calculate the activation probability for each node can
be different. As the activation probabilities can be computed in polynomial time, so
can the expected number of infectees.

As we said, the goal is to replace the IC model with the MIA model in the
algorithm in the hope that the seed set returned provides a large number of infectees
(in expectation) under the IC model. Influence maximization problem under the
MIA model is NP-hard. However, this problem becomes easier than influence
maximization under the IC model, which, due to the difficulty of the influence
spread problem, is actually harder [9] showed that this problem is actually #P hard.
This NP-completeness result is due to the fact that influence spread under this model

46 4 The Independent Cascade and Linear Threshold Models

is computable in PTIME (see Algorithm 2). This also allows us to avoid costly
simulation runs. Further, the MIA model is normalized, monotonic and submodular.
So, the greedy algorithm can be applied and achieve the 1− 1/e approximation
ratio with respect to the expected number of infectees under the MIA model. The
greedy algorithm for the MIA model possess no (known) theoretical properties with
respect to the IC model though a close relationship has been shown experimentally.
However, we note that the results with respect to the MIA model hold if we use lazy
evaluation.

Chen et al. [5] demonstrate speedups to improve incremental increase specific
to the MIA model. Suppose we are considering node w on the ith iteration of the
greedy algorithm. When we compute the activation probability of some node v, the
shortest path from w to v has a node previously picked. This causes an incremental
increase of node w to be zero with regards to v. So, the intuition is at each iteration,
re-compute the in-arborescence for each node such that no paths from other nodes
outside of X contain a node in X .

Chen et al. create a prefix-excluding variant of the MIA model, called PMIA.
They defined a special version of MIIA, called PMIIA, that takes the current seed
set into account. Then they identify extensions to monotonicity and submodularity
and show the PMIA model has these properties. The greedy algorithm also achieves
the 1− 1/e approximation under a new propriety identified by Chen et al. called
“sequence submodularity”. The runtime has several order-of-magnitude improve-
ment as well. It also outperforms centrality-based heuristics on large datasets
(millions of edges) [5].

4.4.3 SIMPATH Algorithm

According to the hardness of influence spread under the LT model, Goyal et al.
[4] leverage heuristic algorithm to tackle this problem. The key intuition behind
SIMPATH algorithm is to enumerate the simple paths from the seed set instead of
running costly simulations. A simple path is a directed path in a graph where no
nodes are repeated. Let ϒu,v be the probability that v is infected by u. If Puv be the
set of simple paths between u and v, then we have the following relationship:

ϒu,v = ∑
P∈Puv

Pr(P) (4.9)

Where Pr is computed as: for some subset S, X of V , let σS(X) be the expected
number of infectees in the LT model given seed set X on the subgraph induced by
the set of nodes in S. So, the expected number of infectees is:

σ(X) = ∑
u∈X

σV−X +{u}(u) (4.10)

4.4 Scaling Influence Maximization 47

Algorithm 4 SIMPATH Spread Algorithm
1: procedure SIMPATHSPREAD(X)
2: σ = 0
3: for u ∈X do
4: Compute all simple paths from u to all other nodes in the graph G(V −X +u)
5: Compute the probability for all the paths, let this equal T
6: σ = σ +T
7: end for
8: return σ
9: end procedure

According to the Eq. (4.9), the expected spread for a singleton is the sum of the
probability of each node being influenced as follows:

σ({u}) = ∑
v∈V

ϒu,v (4.11)

So, we can compute the expected number of infectees as follows:

σ(X) = ∑
u∈X

∑
v∈V−X +{u}

∑
P∈Puv on G(V−X +u)

Pr(P) (4.12)

Let us suppose we have an oracle that enumerates all simple paths from some
node u to all other nodes within a graph. Goyal et al. use the backtrack algorithm to
achieve this. We can compute σ exactly as Algorithm 4.

As we said, computing the expected number of infectees in the LT model is #P
hard because just counting the number of simple paths between nodes is #P hard.
So, Algorithm 4 is not efficient—as it computes σ exactly. As the longer paths
will occur with a much lower probability (the influence events are independent), a
heuristic is only enumerating the paths that have a probability greater than a certain
threshold. Hence, SIMPATH computes a lower bound on the expected number of
infectees—the hope is that the paths it does not consider, do not add up to a whole lot
which, would make the lower bound tight. This is not an approximation guarantee—
there are currently no known results regarding how close this bound is to the actual
expected value. However, the threshold can be used to trade runtime for accuracy.

The overall algorithm for scalable influence maximization under the LT model
is called SIMPATH and calls SIMPATH-Spread to approximate σ . Goyel et al.
leverage lazy submodular evaluation as well as some graph-theoretic techniques to
limit the calls to SIMPATH-Spread. However, one major issue is to limit the number
of calls to SIMPATH-Spread on the first iteration of the greedy algorithm. SIMPATH
shortens the runtime of the first iteration by computing SIMPATH Spread for nodes
within a vertex cover.

48 4 The Independent Cascade and Linear Threshold Models

SIMPATH performed comparable to the greedy algorithm and outperform degree
centrality, PageRank, and LDAG [5] in terms of expected number of infectees
and provides 3− 4x order of magnitude improvement over the greedy in terms of
runtime.

4.5 Conclusion

In this chapter we reviewed the popular independent cascade and linear threshold
models as well as their associated influence maximization problems. We also
described various algorithmic approaches to these problems and the current state-
of-the-art techniques for achieving scalability. However, as with the tipping model
and SIR model of the previous chapters, this framework does not take the attributes
of the nodes and edges into account during the diffusion process. In the next chapter,
we describe a logic-programming based framework that includes this dimension.

References

1. Kempe, David and Kleinberg, Jon and Tardos. Maximizing the spread of influence through a
social network. (2003) ACM 137–146.

2. Nemhauser, George L and Wolsey, Laurence A and Fisher, Marshall L. An analysis of
approximations for maximizing submodular set functions. (1978) 14(1) 265–294.

3. Mossel, Elchanan and Roch, Sebastien. On the submodularity of influence in social networks.
(2007) ACM 128–134.

4. Goyal, Amit and Lu, Wei and Lakshmanan, Laks VS. Simpath: An efficient algorithm for
influence maximization under the linear threshold model.(2011) Data Mining (ICDM), 2011
IEEE 11th International Conference, 211–220.

5. Chen, Wei and Wang, Chi and Wang, Yajun. Scalable influence maximization for prevalent
viral marketing in large-scale social networks. (2010) Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, 1029–1038.

6. Shakarian, Paulo and Salmento, Joseph and Pulleyblank, William and Bertetto, John. Reducing
gang violence through network influence based targeting of social programs. (2014) 20th ACM
SIGKDD international conference on Knowledge discovery and data mining, 1829–1836

7. Lu, Wei and Lakshmanan, Laks VS. Profit maximization over social networks. (2012) arXiv
preprint arXiv:1210.4211

8. Minoux, Michel. Accelerated greedy algorithms for maximizing submodular set functions.
(1978) , Optimization Techniques 234–243.

9. Wang, Chi and Chen, Wei and Wang, Yajun. Scalable influence maximization for independent
cascade model in large-scale social networks (2012) Data Mining and Knowledge Discovery.
545–576.

Chapter 5
Logic Programming Based Diffusion Models

5.1 Introduction

This chapter focuses on a logic-programming approach to social network diffusion
first introduced in [23] and later extended in [4]. The advantage with this approach is
that we can not only consider the topology of the network, but also consider labeled
attributes of the nodes and edges in a natural way. Since its introduction, there have
been other variants of the logic-based approach that have leveraged formalisms such
as PSL [2] and modal logic [24] in addition to tackling problems such as non-
monotonic diffusion reasoning [25] and informing the creation of diffusion-specific
centrality measures [26]. These approaches differ from some of the diffusion models
in previous chapters in several key ways. For instance, the other models largely
assume that a social network is nothing but a set of vertices and edges [16–18].
In contrast, in this chapter we adopt a richer model where edges and vertices
can both be labeled with properties. For instance, a political campaigner hoping
to spread a positive message about a campaign needs to use demographics (e.g.
sex, age group, educational level, group affiliations, etc.) for targeting a political
message—a “one size fits all” message will not work. In general, social network
researchers would say that they have several sociomatrices that can be used for
such applications. Another key difference is that the approaches of the previous
chapters reason about a single diffusion model, rather than develop a framework for
reasoning about a whole class of diffusion models.

Past diffusion models developed in a variety of fields ranging from business [10],
economics [21], social science [20], epidemiology [15, 22, 27], mobile phone
usage [11] show that diffusion models vary dramatically from application to
application. In this chapter, we organize these models into three broad categories.

1. Cascade models [15, 22, 27] are widespread in epidemiology and assume that
diffusions are largely based on connectivity between nodes and are largely
probabilistic.

© The Author(s) 2015
P. Shakarian et al., Diffusion in Social Networks, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-23105-1_5

49

50 5 Logic Programming Based Diffusion Models

2. Tipping models do not use probabilities, but use various quantitative calculations
to determine when a vertex adopts (or is infected with) a diffusive property. They
are omnipresent in the social sciences and business [7, 12, 20]. Nobel-laureate
Tom Schelling makes a similar point that diffusions in many social science
applications have a tipping point when vertices become influenced by the number
of neighbors and the strength of commitment the neighbors may have to a certain
position. No probabilities are present in such models.

3. Homophilic models are ones where similarity between users, rather than net-
works effects, dominate diffusion. Similarity is usually calculated using some
quantitative model, often related to distance between vectors representing (values
of) properties of nodes. For example, [11] tracks adoption of mobile applications
in a study of over 27M users and shows that homophily—similarity between
users—is the most compelling diffusion model. There are no probabilities here,
just similarity measures. Another world famous diffusion model focused on
marketing [10] also is based on homophily and similarity of nodes’ intrinsic
properties rather than a probability.

Moreover, many models use a mix of the above forms. For instance, Cha et al. [5]
argues that the way photos are marked as “favorites” on Flickr is based on a mix of
cascading and homophilic behavior and to study the former, one must also account
for the latter. A similar combination of cascading and tipping is observed in [21].
In general, a language to express diffusion models must be capable of expressing a
wide variety of quantitative methods encapsulated in the above.

In this chapter, we first show that a class of the well-known generalized annotated
program (GAP) paradigm [6] form a convenient method to express many diffusion
models. We focus on reasoning with diffusion models (expressed via GAPs) after
the diffusion models have been learned. In particular, we consider the problem of
optimal decision making in social networks which have associated diffusion models
expressible as Linear GAPs, though many of the results in this chapter apply to
arbitrary GAPs as well. Here are two examples.

• (Q1) Cell Phone Plans A cell phone company is promoting a new cell phone
plan—as a promotion, it is giving away k free plans to existing customers.1

Which set of k people should they pick so as to maximize the number of plan
adoptees predicted by a cell phone plan adoption diffusion model they have
learned from their past promotions?

• (Q2) Medication Distribution Plan A government combating a disease spread
by physical contact has limited stocks of free medication to give away. Based on
a diffusion model of how the disease spreads (e.g. kids might be more susceptible
than adults, those previously inoculated against the disease are safe, etc.), they
want to find a set of k people who (jointly) maximally spread the disease when

1This framework allows us to add additional constraints—for instance, that plans can only be given
to customers satisfying certain conditions, e.g.customers deemed to be “good” according to various
business criteria.

5.2 Embedding Diffusion Models into Annotated Logic Programs 51

infected (so that they can provide immediate treatment to these k people in an
attempt to halt the disease’s spread).2 Notice that this query corresponds to only
one of many different policies that can be considered to deal with the disease
spread scenario, that is, we consider the case where a diffusion model expressing
how an infected person can infect other people is available and formulate a
query that looks at the maximum spread when k people are infected. Other
queries, possibly leading to different answers about who should be treated with
medications, are possible.

Both these problems are instances of a class of queries that we call Social
Network Diffusion Optimization Problem (SNDOP) queries. They differ from other
queries studied in logic programming in two fundamental ways: (1) They are
specialized to operate on graph data where the graph’s vertices and edges are labeled
with properties and where the edges can have associated weights, (2) They find sets
of vertices that optimize complex objective functions that can be specified by the
user.

This chapter is organized as follows. In Sect. 5.2, we provide an overview
of GAPs (past work), define a social network (SN for short), and explain how
GAPs can represent some types of diffusion in SNs. Section 5.3 formally defines
different types of social network diffusion optimization problems and provides
results on their computational complexity and other properties. Section 5.4 shows
how our framework can represent several existing diffusion models for social
networks including economics and epidemiology. In Sect. 5.5 we present the exact
SNDOP-Mon algorithm to answer SNDOP queries under certain assumptions
of monotonicity. We then develop a greedy algorithm GREEDY-SNDOP and
show that under certain conditions, it is guaranteed to be an (e

e−1) approximation
algorithm for SNDOP queries—this is the best possible approximation guarantee.
Last, but not least, we describe our prototype implementation and experiments in
Sect. 5.5. Specifically, we tested our GREEDY-SNDOP algorithm on a real-world
social network data set derived from Wikipedia logs. We show that we solve social
network diffusion optimization problems over real data sets in acceptable times.

5.2 Embedding Diffusion Models into Annotated Logic
Programs

In this section, we first formalize social networks, then briefly review generalized
annotated logic programs (GAPs) [6] and then describe how GAPs can be used to
represent concepts related to diffusion in social networks.

2Again, this framework allows us to add additional constraints—for instance, that medication can
only be given to people satisfying certain conditions, e.g. be over a certain age, or be within a
certain age range and not have any conditions that are contra-indicators for the medication in
question.

52 5 Logic Programming Based Diffusion Models

5.2.1 Social Networks Formalization

Throughout this chapter, we assume the existence of two arbitrary but fixed
disjoint sets VP,EP of vertex and edge predicate symbols respectively. Each vertex
predicate symbol has arity 1 and each edge predicate symbol has arity 2.

Definition 5.1. A social network is a 5-tuple (V,E, �vert, �edge,w) where:

1. V is a finite set whose elements are called vertices.
2. E ⊆ V×V is a finite multi-set whose elements are called edges.
3. �vert : V → 2VP is a function, called vertex labeling function.
4. �edge : E → EP is a function, called edge labeling function.3

5. w : E → [0,1] is a function, called weight function.

We now present a brief example of an SN.

Example 5.1. Let us return to the cell phone example (query (Q1)). Figure 5.1
shows a toy social network the cell phone company might use. Here, we might
have VP = {male, female, adopter, temp_adopter, non_adopter} denoting the sex
and past adoption behavior of each vertex; EP might be the set {phone,email, IM}
denoting the types of interactions between vertices (phone call, email, and instant
messaging respectively). The function �vert is shown in Fig. 5.1 by the shape
(denoting past adoption status) and shading (male/female). The type of edges (bold
for phone, dashed for email, dotted for IM) is used to depict �edge. w(〈v1,v2〉)
denotes the percentage of communications of type �edge(〈v1,v2〉) initiated by v1 that
were with v2 (measured either w.r.t. time or bytes).

It is important to note that our definition of social networks is much broader than
that used by several researchers [10, 11, 22, 27] who often do not consider either
�edge or �vert or edge weights through the function w—it is well-known in marketing
that intrinsic properties of vertices (customers, patients) and the nature and strength
of the relationships (edges) is critical for decision making in those fields.

Note We assume that SNs satisfy various integrity constraints. In Example 5.1,
it is clear that �vert(v) should include at most one of male, female and at most one
of adopter, temp_adopter,non_adopter. We assume the existence of some integrity
constraints to ensure this kind of semantic integrity—they can be written in any
reasonable syntax to express ICs—in the rest of this chapter, we assume that social
networks have associated ICs and that they satisfy them. In our example, we will
assume ICs ensuring that a vertex can be marked with at most one of male, female
and at most one of adopter, temp_adopter,non_adopter.

3Each edge e ∈ E is labeled by exactly one predicate symbol from EP. However, there can be
multiple edges between two vertices labeled with different predicate symbols.

5.2 Embedding Diffusion Models into Annotated Logic Programs 53

Fig. 5.1 Example cellular network

5.2.2 Generalized Annotated Programs: A Recap

We now recapitulate the definition of generalized annotated logic programs from [6].
We assume the existence of a set AVar of variable symbols ranging over the unit real
interval [0,1] and a set F of function symbols each of which has an associated arity.
We start by defining annotations.

Definition 5.2 (Annotation). Annotations are inductively defined as follows:

(i) Any member of [0,1] ∪AVar is an annotation.
(ii) If f ∈ F is an n-ary function symbol and t1, . . . , tn are annotations, then

f (t1, . . . , tn) is an annotation.

For instance, 0.5,1,0.3 and X are all annotations (here X is assumed to be a
variable in AVar). If +,∗,/ are all binary function symbols in F , then (X+1)∗0.5

0.3 is
an annotation.4

We define a separate logical language whose constants are members of V and
whose predicate symbols consist of VP ∪ EP. We also assume the existence of
a set V of variable symbols ranging over the constants (vertices). No function
symbols are present. Terms and atoms are defined in the usual way (cf. [19]).
If A = p(t1, . . . , tn) is an atom and p ∈ VP (resp. p ∈ EP), then A is called a vertex
(resp. edge) atom. We will use A to denote the set of all ground atoms (i.e., atoms
where no variable occurs).

4Notice that in [6] annotations are not restricted to be in [0,1] but any upper semi-lattice is
allowed—for the purpose of this chapter we will restrict ourselves to the unit real interval.

54 5 Logic Programming Based Diffusion Models

Definition 5.3 (Annotated Atom/GAP-Rule/GAP). If A is an atom and μ is an
annotation, then A : μ is an annotated atom. If A is a vertex (resp. edge) atom, then
A : μ is also called vertex (resp. edge) annotated atom. If A0 : μ0,A1 : μ1, . . . ,An : μn

are annotated atoms, then

A0 : μ0 ← A1 : μ1 ∧ . . .∧ An : μn

is called a GAP rule (or simply rule). When n = 0, the above rule is called a fact.5

A generalized annotated program (GAP) is a finite set of rules. An annotated atom
(resp. a rule, a GAP) is ground iff there are no occurrences of variables from either
AVar or V in it.

Every social network S = (V,E, �vert, �edge,w) can be represented by the GAP
ΠS = {q(v) : 1 ← | v ∈ V ∧ q ∈ �vert(v)}∪{ep(v1,v2) : w(〈v1,v2〉) ← | 〈v1,v2〉 ∈
E ∧ �edge(〈v1,v2〉) = ep}.

Definition 5.4 (Embedded Social Network). A social network S is said to be
embedded in a GAP Π iff ΠS ⊆ Π .

It is clear that all social networks can be represented as GAPs. When we augment
ΠS with other rules—such as rules describing how certain properties diffuse
through the social network, we get a GAP Π ⊇ ΠS that captures both the structure
of the SN and the diffusion principles. Here is a small example of such a GAP.

Example 5.2. The GAP Πcell might consist of ΠS using the social network of
Fig. 5.1 plus the GAP-rules:

1. will_adopt(V0) : 0.8×X+0.2 ← adopter(V0) : 1 ∧ male(V0) : 1∧
IM(V0,V1) : 0.3 ∧ female(V1) : 1 ∧ will_adopt(V1) : X.

2. will_adopt(V0) : 0.9×X+0.1 ← adopter(V0) : 1 ∧ male(V0) : 1∧
IM(V0,V1) : 0.3 ∧ male(V1) : 1 ∧ will_adopt(V1) : X.

3. will_adopt(V0) : 1 ← temp_adopter(V0) :
1 ∧ male(V0) : 1 ∧ email(V1,V0) : 1∧ female(V1) : 1 ∧ will_adopt(V1) : 1.

Rule (1) says that if V0 is a male adopter and V1 is female and the weight of V0’s
instant messages to V1 is 0.3 or more, and we previously thought that V1 would be
an adopter with confidence X, then we can infer that V0 will adopt the new plan with
confidence 0.8×X+ 0.2. The other rules may be similarly read.

Suppose S is a social network and Π ⊇ ΠS is a GAP. In this case, we call the
rules in Π −ΠS diffusion rules. In this chapter we consider a restricted class of
GAPs: every rule with a non-empty body has a vertex annotated atom in the head
([6] allows any atom to appear in the head of a rule). Thus, edge atoms can appear
only in rule bodies or facts. This means that neither edge weights nor edge labels
change as the result of the diffusion. However, for the general case, it is possible for
them to change as a result of the diffusion process.

5For notational simplicity, we will often write a fact A0 : μ0 ← simply as A0 : μ0, i.e. we drop the
symbol ←.

5.2 Embedding Diffusion Models into Annotated Logic Programs 55

GAPs have a formal semantics that can be immediately used. An interpretation
I is any mapping from the set A of all grounds atoms to [0,1]. The set I of all
interpretations can be partially ordered via the ordering: I1 � I2 iff for all ground
atoms A, I1(A)≤ I2(A). I forms a complete lattice under the � ordering.

Definition 5.5 (Satisfaction/Entailment). An interpretation I satisfies a ground
annotated atom A : μ , denoted I |= A : μ , iff I(A) ≥ μ . I satisfies a ground GAP-
rule r of the form AA0 ← AA1 ∧ . . . ∧ AAn (denoted I |= r) iff either (i) I satisfies
AA0 or (ii) there exists an 1 ≤ i ≤ n such that I does not satisfy AAi. I satisfies a
non-ground annotated atom (rule) iff I satisfies all ground instances of it. I satisfies
a GAP iff I satisfies all rules in it. A GAP Π entails an annotated atom AA, denoted
Π |= AA, iff every interpretation I that satisfies Π also satisfies AA.

As shown by Kifer and Subrahmanian [6], we can associate a fixpoint operator with
any GAP Π that maps interpretations to interpretations.

Definition 5.6. Suppose Π is any GAP and I an interpretation. The mapping TΠ
that maps interpretations to interpretations is defined as TΠ (I)(A) = sup{μ |A : μ ←
AA1 ∧ . . .∧ AAn is a ground instance of a rule in Π and for all 1 ≤ i ≤ n, I |= AAi}.

The results of [6] show that TΠ is monotonic (w.r.t. �) and has a least fixpoint
lfp(TΠ). Moreover, they show that Π entails A : μ iff μ ≤ lfp(TΠ)(A) and hence
lfp(TΠ) precisely captures the ground atomic logical consequences of Π . They also
define the iteration of TΠ as follows: TΠ ↑ 0 is the interpretation that assigns 0 to
all ground atoms; TΠ ↑ (i+ 1) = TΠ (TΠ ↑ i).

The semantics of GAPs requires that when there are multiple ground instances
of GAP-rules with the same head that “fire”, the highest annotation in any of these
ground rules is “chosen” according to the semantics of GAPs. This might seem
restrictive and counter-intuitive to some, but it actually is the source of much power
of GAPs. For instance, one school of thought is that when multiple ground rules
with the same head “fire”, the annotation derived should be the “noisy-or” value
derived by combining the values of the annotations in the heads of firing rules.
However, this is just one way of combining evidence from multiple sources many
other triangular co-norms other than noisy-or can be used and have been used in the
literature. However, such T-norms can be expressed in our framework. If we have
ground rules G1,G2, . . . ,Gn, each having the same atom in the head, and we want to
combine evidence using a triangular co-norm6 ⊕, and if Gi has the form:

A : μi ← Bodyi

then we can replace these rules with the rules:

A : ⊕({μi | i ∈ X}) ←
∧
i∈X

Bodyi

6When we apply ⊕ to a set {x1, . . . ,xk}, we use ⊕({x1, . . . ,xk}) as short-hand for
⊕(x1,⊕({x2, . . . ,xn})) which is well defined as all triangular co-norms are commutative and
associative.

56 5 Logic Programming Based Diffusion Models

for any subset X ⊆ {1, . . . ,n}. Moreover, as we have already remarked, many
real-world diffusion models are non-probabilistic, making assumptions about how
annotations should be combined harder to justify. However, the above discussion
shows that the GAP framework is capable of expressing such rules. Though there is
clearly a cost in terms of difficulty of expressing such methods to combine evidence
generated by multiple rules, algorithms already exist and have been implemented [2]
to learn GAP-based diffusion rules automatically from social network time series
data.

We will show (in Sect. 5.4) that many existing diffusion models for a variety
of phenomena can be expressed as a GAP Π ⊇ ΠS by adding some GAP-rules
describing the diffusion process to ΠS .

5.3 Social Network Diffusion Optimization Problem
(SNDOP) Queries

5.3.1 Basic SNDOP Queries

In this section, we develop a formal syntax and semantics for optimization in social
networks, taking advantage of the aforementioned embedding of SNs into GAPs.
In particular, we formally define SNDOP queries, examples of which have been
informally introduced earlier as (Q1) and (Q2). We see from queries (Q1) and (Q2)
that a SNDOP query looks for a set V′ of vertices and has the following components:
(1) an objective function expressed via an aggregate operator, (2) an integer k > 0,
(3) a set of conditions that each vertex in V′ must satisfy, (4) an “input” atom gI(V),
and (v) an “output” atom gO(V) (here gI and gO are vertex predicate symbols,
whereas V is a variable).

Aggregates It is clear that in order to express queries like (Q1) and (Q2), we need
aggregate operators which are mappings agg : FM([0,1]) → R

+ (R+ is the set of
non-negative reals) where FM(X) denotes the set of all finite multisets that are
subsets of X. Relational DB aggregates like SUM,COUNT,AVG,MIN,MAX are all
aggregate operators which can take a finite multiset of non-negative reals as input
and return a single non-negative real.

Vertex Condition A vertex condition is a set of vertex annotated atoms containing
exactly one variable (intuitively, such annotated atoms are conditions that must be
jointly satisfied by a vertex). More formally, a vertex condition VC is a set {p1(V) :
μ1, . . . ,pn(V) : μn} where each pi ∈VP, V ∈V , and each μi ∈ [0,1]. We use VC[V/v]
to denote the set of ground annotated atoms obtained from VC by replacing each
occurrence of V with v, that is VC[V/v] = {p1(v) : μ1, . . . ,pn(v) : μn}. A GAP Π
entails VC[V/v], denoted Π |= VC[V/v], iff Π |= pi(v) : μi for all 1 ≤ i ≤ n.

Thus, in our example, {male(V) : 1,adopter(V) : 1} is a vertex condition, but
{male(V) : 1,email(V,V ′) : 1} is not. We are now ready to define a SNDOP query.

5.3 Social Network Diffusion Optimization Problem (SNDOP) Queries 57

Definition 5.7 (SNDOP Query). A SNDOP query is a 5-tuple (agg,VC,k,gI(V),
gO(V)) where agg is an aggregate, VC is a vertex condition, k > 0 is an integer, and
gI(V), gO(V) are vertex atoms.

Let us consider again the medication distribution plan example. Suppose we have
a diffusion model expressing how a property healthy diffuses in a social network
w.r.t. a property immune (which would hold for a vertex when a medication is given
to it). An interesting query to pose would be to determine a set of at most k people
such that if these people were immune to the disease, then the number of healthy
people would be maximized. Such a query can be expressed with the SNDOP query
(SUM, /0,k, immune(V),healthy(V)). Here, the goal is to find a set V′ ⊆V of vertices
such that |V′| ≤ k and the following is maximized:

SUM{lfp(TΠ∪{immune(v′):1 | v′∈V′})(healthy(v)) | v ∈ V}

Here, the SUM is applied to a multiset rather than a set. Note that in the query above
VC = /0, meaning that the immune property can be assigned to any vertex of the SN.
However, other queries can be expressed where VC imposes restrictions on which
vertices can have property immune. As an example, VC = {adult(V)}would enforce
every vertex in V′ to be an adult person.

If we return to our cell phone example, we can set agg = SUM, VC = /0, k = 3
(for example), gI(V) = will_adopt(V), and gO(V) = will_adopt(V) (notice that in
this case gI(V) = gO(V)). Here also, the goal is to find a set V′ ⊆ V of vertices such
that |V′| ≤ 3 and the following is maximized:

SUM{lfp(TΠ∪{will_adopt(v′):1 | v′∈V′})(will_adopt(v)) | v ∈ V}

Here, the SUM is applied to a multiset rather than a set. Note that the diffusion
model’s impact is captured via the lfp(TΠ∪{will_adopt(v′):1 | v′∈V′})(will_adopt(v))
expression which, intuitively, tells us the confidence (according to the diffusion
model) that each vertex v will be an adopter. If we return to an extended version
of our cell phone example and we want to ensure that the vertices in V′ are “good”
customers7 then we merely can set VC = {good(V) : 1}. This query now asks us
to find a set V′ of three or less vertices—all of which are “good” customers of the
company C—such that SUM{lfp(TΠ∪{will_adopt(v′):1 | v′∈V′})(will_adopt(v)) | v ∈ V}
is maximized.

Our framework also allows the vertex condition VC to have annotations other
than 1. So in our cell phone example, the company could explicitly exclude anyone
whose “opinion” toward the company is negative. If opinion is quantified on a
continuous [0,1] scale (such automated systems do exist [1]), then the vertex
condition might be restated as VC = {good(V) : 1,negative_opinion_C(V) : 0.7}

7We can think of many ways a company may define “good” customers, e.g. those who regularly
pay their bills on time, those who buy a lot of services from the company, those who have stayed
as customers for a long time, etc. For our example, the specific definition of “good” is not relevant.

58 5 Logic Programming Based Diffusion Models

which says that the company wants to exclude anyone whose negativity about the
company exceeds 0.7 according to an opinion scoring engine such as [1].

Definition 5.8 (Pre-answer/Value). Consider a social network S = (V,E, �vert,
�edge,w) embedded in a GAP Π . A pre-answer to the SNDOP query Q =
(agg,VC,k,gI(V), gO(V)) w.r.t. Π is any set V′ ⊆ V such that:

1. |V′| ≤ k, and
2. for all vertices v′′ ∈ V′, Π ∪{gI(v′) : 1 | v′ ∈ V′} |= VC[V/v′′].

We use pre_ans(Q,Π) to denote the set of all pre-answers to Q w.r.t. Π (whenever
Π is clear from the context we simply write pre_ans(Q)).

The value of a pre-answer V′ is defined as follows:

value(V′) = agg({lfp(TΠ ∪{gI(v′):1 | v′∈V′})(gO(v)) | v ∈ V})

where the aggregate is applied to a multi-set rather than a set. We also note that
we can define value as a mapping from interpretations to reals based on a SNDOP
query. We say value(I) = agg({I(gO(v)) | v ∈ V}).

If we return to our cell phone example, V′ is the set of vertices to which the
company is considering giving free plans. value(V′) is computed as follows.

1. Find the least fixpoint of TΠ ′
cell

where Π ′
cell is Πcell expanded with facts of the

form will_adopt(v′) : 1 for each vertex v′ ∈ V′.
2. For each vertex v ∈ V (the entire set of vertices, not just V′ now), we now find

the confidence assigned by the least fixpoint.
3. Summing up these confidences gives us a measure of the expected number of

plan adoptees.

Definition 5.9 (Answer). Suppose a social network S = (V,E, �vert, �edge,w) is
embedded in a GAP Π and Q = (agg,VC,k,gI(V),gO(V)) is a SNDOP query.
A pre-answer V′ is an answer to the SNDOP query Q w.r.t. Π iff the SNDOP query
has no other pre-answer V′′ such that value(V′′)> value(V′).8

The answer set to SNDOP query Q w.r.t. Π , denoted ans(Q,Π), is the set of
all answers to Q w.r.t. Π (whenever Π is clear from the context we simply write
ans(Q)).

It is important to note that an answer to an SNDOP query is a set of vertices that
jointly maximize the objective function specified. Thus, it is entirely possible that
if we set k = 1, we could have two answers {a1} and {a2} each of which ties for the
highest value. However, {a1,a2} may not be the answer that optimizes the objective
function when k = 2.

8Throughout this chapter, we only treat maximization problems—there is no loss of generality in
this because minimizing an objective function f is the same as maximizing −f .

5.3 Social Network Diffusion Optimization Problem (SNDOP) Queries 59

Example 5.3. For instance, suppose a1 and a2 are brothers with largely the same
connections. The sets {a1} and {a2} both have value 100 each and let us say these
constitute an answer (looking at one individual only) w.r.t. an objective function, e.g.
influencing voters in an election to vote for candidate X. As a1,a2 mostly influence
the same people, they may jointly be able to get only 110 people to vote for the
candidate because of the large overlap in their sphere of influence. However, now
consider persons a3,a4. Each of them can only influence 90 voters by themselves,
but only 10 of these voters “overlap”. Thus, they can jointly influence 80+80+10=
170 voters to vote for X. It would make more sense (all other things being equal)
for the candidate’s party to invest in {a3,a4}.

Example 5.4. Consider the GAP Πcell of Example 5.2 with the social network from
Fig. 5.1 embedded and the SNDOP query Qcell =(SUM, /0,3,will_adopt,will_adopt).
The sets V′

1 = {v15,v19,v6} and V′
2 = {v15,v18,v6} are both pre-answers. In the

case of V′
1, two applications of the TΠ operator yields a fixpoint where the vertex

atoms formed with will_adopt and vertices in the set {v15,v19,v6,v12,v18,v7,v10}
are annotated with 1. For V2, only one application of TΠ is required to reach a
fixpoint. In the fixpoint, vertex atoms formed with will_adopt and vertices in the set
{v15,v6,v12,v18,v7,v10} are annotated with 1. As these are the only vertex atoms
formed with will_adopt that have a non-zero annotation after reaching the fixed
point, we know that value(V′

1) = 7 and value(V′
2) = 6.

5.3.2 Special Cases of SNDOPs

In this section, we examine several special cases of SNDOPs that still allow us to
represent a wide variety of diffusion models. Table 5.1 illustrates the special cases
discussed in this section while Table 5.2 illustrates various properties we prove (and
the assumptions under which those properties are proved).

Special Cases of GAPs First, we present a class of GAPs called linear GAPs.
Intuitively, a GAP is linear if the annotations in the rule heads are linear functions
and the annotations in the body are variables. It is important to note that a
wide variety of diffusion models can be represented with GAPs that meet the
requirements of this special case. We formally define linear GAPs below.

Table 5.1 Special cases of
SNDOPs

Type Special case Reference
Special cases of Π Linear GAP Definition 5.10

Special cases of agg
Monotonic Definition 5.11
Positive-linear Definition 5.12

Special cases of value
Normalized Definition 5.13
A-priori VC Definition 5.14

60 5 Logic Programming Based Diffusion Models

Table 5.2 Properties that can be proven given certain assumptions

Property Assumptions
Monotonicity of value (Lemma 5.1) Monotonicity of agg
Multiset {V′ ⊆ V|V′ is a pre-answer} is a uniform matroid A-priori VC
(Lemma 5.2)

Submodularity of value (Theorem 5.1)

Linear GAP

Positive-linear agg

A-priori VC

Definition 5.10 (Linear GAP). A GAP-rule is linear iff it is of the form:

H0 : c0 + c1 ·X1 + · · ·+ cn ·Xn ← A1 : X1 ∧ . . .∧ An : Xn

where each ci ∈ [0,1], Σn
i=1ci ∈ [0,1], and each Xj is a variable in AVar. A GAP is

linear iff each rule in it is linear.

Special Aggregates We define two types of aggregates: monotonic aggregates and
positive-linear aggregates.

To define monotonicity, we first define a partial order � on multi-sets of numbers
as follows: given two multi-sets of numbers X1 and X2, we write X1 � X2 iff there
exists an injective mapping β : X1 → X2 such that ∀x1 ∈ X1,x1 ≤ β (x1).

Definition 5.11 (Monotonic Aggregate). An aggregate agg is monotonic iff
whenever X1 � X2, it is the case that agg(X1)≤ agg(X2).

Definition 5.12 (Positive-Linear Aggregate). An aggregate agg is positive-linear
iff it is defined as follows: agg(X) = c0 +Σxi∈X ci · xi, where X is a finite multiset
and ci ≥ 0 for all i > 0.

In the previous definition, note that c0 can be positive, negative, or 0. Thus, we
only require that the coefficients associated with the elements of the multi-set be
positive—we allow for an additive constant to be negative. One obvious example of
a positive-linear aggregate is SUM. Moreover, any positive weighted sum will also
meet these requirements.

Proposition 5.1. If agg is a positive-linear aggregate, then it is a monotonic
aggregate.

Special Cases of the Query We now describe two special cases of the query:
Normalized and a-priori VC SNDOP queries. Intuitively, normalized means that
value(/0) = 0.

Definition 5.13 (Normalized). An SNDOP query is Normalized w.r.t. a given
social network S and a GAP Π ⊇ ΠS iff value(/0) = 0.

Note that the function value is uniquely defined by a social network, a SNDOP
query, and a diffusion model Π and hence the above definition is well defined.

5.3 Social Network Diffusion Optimization Problem (SNDOP) Queries 61

The following result states that if an SNDOP query Q with a positive-linear
aggregate is not normalized, then we can always modify it into an “equivalent”
SNDOP query Q′ (i.e. ans(Q) = ans(Q′)) which is normalized and still maintains a
positive-linear aggregate.

Proposition 5.2. Let Q = (agg,VC,k,gI(V),gO(V)) be a SNDOP query which
is not normalized w.r.t. a social network S and a GAP Π ⊇ ΠS , and
where agg is positive-linear. Let agg′(X) = agg(X) − value(/0). Then, Q′ =
(agg′,VC,k,gI(V),gO(V)) is a SNDOP query which is normalized w.r.t. S and
Π , ans(Q) = ans(Q′), and agg′ is positive-linear.

Recall that in order to check if a set of vertices V′ is a pre-answer, we need
to check for all vertices v′′ ∈ V′ if Π ∪ {gI(v′) : 1 | v′ ∈ V′} |= VC[V/v′′] (see
condition (2) of Definition 5.8). Intuitively, a SNDOP query has an A-Priori VC
(w.r.t. a given social network S and a GAP Π ⊇ ΠS) when we can check this
condition by looking only at the original social network S (thereby disregarding
Π), that is we can check for all vertices v′′ ∈ V′ if ΠS ∪{gI(v′′) : 1} |= VC[V/v′′].
We formally define this notion below.

Definition 5.14 (A-Priori VC). A SNDOP query Q = (agg,VC,k,gI(V),gO(V))
has an A-Priori VC w.r.t. a given social network S = (V,E, �vert, �edge,w) and a
GAP Π ⊇ΠS iff for each V′ ⊆V the following holds: for each v′′ ∈V′, Π ∪{gI(v′) :
1 | v′ ∈ V′} |= VC[V/v′′] iff ΠS ∪{gI(v′′) : 1} |= VC[V/v′′].

If, in the cell phone example, we require that the free cell phones are given
to “good” vertices, then query (Q1) is a-priori VC because being “good” may be
defined statically and is not determined by the diffusion process. Likewise, if we
consider our medical example, in the case of an a-priori VC query (Q2) saying that
an individual below 5 should not get the medicine, this boils down to a static labeling
of each node’s age (below 5 or not) which is not affected by the diffusion process.
Table 5.2 summarizes the different properties that we prove in this section (as well
as what assumptions we make to prove these properties).

We say that function value is monotonic iff V1 ⊆ V2 implies value(V1) ≤
value(V2) for any two sets of vertices V1 and V2. The first property we show is
that the value function is monotonic if agg is monotonic.

Lemma 5.1. Given a SNDOP query Q = (agg,VC,k,gI(V),gO(V)), a social
network S , and a GAP Π ⊇ ΠS , if agg is monotonic (Definition 5.11), then value
(defined as per Q and Π) is monotonic.

Before introducing the next result we recall the definitions of matroid and
uniform matroid. A matroid is a pair (X, I) where X is a finite set and I is a collection
of subsets of X (called “independent”), satisfying two axioms:

1. B ∈ I,A ⊂ B ⇒ A ∈ I.
2. A,B ∈ I, |A|< |B| ⇒ ∃x ∈ B−A s.t. A∪{x} ∈ I.

A uniform matroid is a matroid such that independent sets are all sets of size at most
k for some k ≥ 1.

62 5 Logic Programming Based Diffusion Models

Next, we show that the set of pre-answers is a uniform matroid in the special case
of an a-priori VC query.

Lemma 5.2. Given a SNDOP query Q = (agg,VC,k,gI(V),gO(V)), a social
network S , and a GAP Π ⊇ ΠS , if Q is a-priori VC w.r.t. S and Π , then the
set of pre-answers is a uniform matroid.

As we will see in Sect. 5.5, the above lemma (along with other properties,
see Theorem 5.5) enables us to define a greedy approximation algorithm to
solve SNDOP queries that achieves the best possible approximation ratio that a
polynomial algorithm can achieve (unless P = NP).

An important property in social networks is submodularity whose relationship
to the spread of phenomena in social networks has been extensively studied (see
Chap. 4). If X is a set, then a function f : 2X → R is submodular iff whenever X1 ⊆
X2 ⊆ X and x ∈ X−X2, f (X1 ∪ {x})− f (X1)≥ f (X2 ∪ {x})− f (X2). The following
result states that the value function associated with a linear GAP and an a-priori VC
SNDOP query whose aggregate is positive-linear is guaranteed to be submodular.

Theorem 5.1. Given an SNDOP query Q = (agg,VC,k,gI(V),gO(V)), a social
network S , and a GAP Π ⊇ ΠS , if the following criteria are met:

• Π is a linear GAP,
• Q is a-priori VC, and
• agg is positive-linear,

then value (defined as per Q and Π) is sub-modular.

5.3.3 The Complexity of SNDOP Queries

We now study the complexity of answering an SNDOP query. First, we show that
SNDOP query answering is NP-hard by a reduction from max k-cover [14]. We
show that the problem is NP-hard even when many of the special cases hold.

Theorem 5.2. Finding an answer to an SNDOP query Q=(agg,VC,k,gI(V),gO(V))
(w.r.t. a social network S and a GAP Π ⊇ ΠS) is NP-hard (even if Π is a linear
GAP, VC = /0, agg = SUM and value is normalized).

Under some conditions, the decision problem for SNDOP queries is also in NP.

Theorem 5.3. Given a SNDOP query Q = (agg,VC,k,gI(V),gO(V)), a social
network S , a GAP Π ⊇ ΠS , and a real number target, the problem of checking
whether there exists a pre-answer V′ s.t. value(V′) ≥ target is in NP under the
assumptions that agg and the functions in F are polynomially computable, and
Π is ground.

5.4 Applying SNDOPs to Diffusion Problems 63

Most common aggregate functions like SUM, AVERAGE, Weighted average,
MIN, MAX, COUNT are all polynomially computable. Moreover, the assumption
that the functions corresponding to the function symbols in F (i.e. the function
symbols that can appear in the annotations of a GAP) are polynomially computable
is also reasonable.

Later in this chapter, we shall address the problem of answering a SNDOP
query using an approximation algorithm. We say that V′ is a 1

α -approximation to an
SNDOP query if value(Vopt)≤α ·value(V′) (where Vopt is an answer to the SNDOP
query). Likewise, the algorithm that produces V′ in this case is an α-approximation
algorithm. We note that due to the nature of the reduction from MAX-K-COVER
that we used to prove NP-hardness, we can now show that unless P=NP, there is no
PTIME-approximation of the SNDOP query answering problem that can guarantee
that the approximate answer is better than 0.63 of the optimal value. This gives us an
idea of the limits of approximation possible for a SNDOP query with a polynomial-
time algorithm. Later, we will develop a greedy algorithm that precisely matches
this approximation ratio.

Theorem 5.4. Answering a SNDOP query Q = (agg,VC,k,gI(V),gO(V)) (w.r.t. a
social network S and a GAP Π ⊇ ΠS) cannot be approximated in PTIME within
a ratio of e−1

e + ε for some ε > 0 (where e is the inverse of the natural log) unless
P = NP—even if Π is a linear GAP, VC = /0, agg = SUM and value is normalized.

In other words, the previous theorem says that there is no polynomial-time
algorithm that can approximate value within a factor of about 0.63 under standard
assumptions.

5.4 Applying SNDOPs to Diffusion Problems

In this section, we show how SNDOPs can be applied to real-word diffusion
problems. Most diffusion models in the literature fall into one of three categories—
tipping models (Sect. 5.4.1), where a given vertex adopts a behavior based on
the ratio of how many of its neighbors previously adopted the behavior, cascade
models (Sect. 5.4.2), where a property passes from vertex to vertex solely based
on the strength of the relationship between the vertices, and homophilic mod-
els (Sect. 5.4.3), where vertices with similar properties tend to adopt the same
behavior—irrespective (or in addition to) of network relationships.

5.4.1 Tipping Diffusion

Tipping models [6, 20, 21] have been studied extensively in economics and
sociology to understand diffusion phenomena. In tipping models, a vertex changes a
property based on the cumulative effect of its neighbors. In this section, we present
the tipping model of Jackon and Yariv [10], which generalizes many existing tipping
models.

64 5 Logic Programming Based Diffusion Models

The Jackson-Yariv Diffusion Model [10] In this framework, the social network
is just an undirected graph G′ = (V′,E′) consisting of a set of agents (e.g. people).
Each agent has a default behavior (A) and a new behavior (B). Suppose di denotes the
degree of a vertex vi. Jackson and Yariv [10] use a function γ : {0, . . . , |V′| − 1}→
[0,1] to describe how the number of neighbors of v affects the benefits to v for
adopting behavior B. For instance, γ(3) specifies the benefits (in adopting behavior
B) that accrue to an arbitrary vertex v ∈ V′ that has three neighbors. Let πi denote
the fraction of neighbors of vi that have adopted behavior B. Let constants bi and ρi

be the agent-specific benefit and cost, respectively, for vertex vi to adopt behavior B.
Jackson and Yariv [10] state that node vi switches to behavior B iff bi

ρi
·γ(di) ·πi ≥ 1.

Returning to our cell-phone example, one could potentially use this model to
describe the spread of the new plan. In this case, behavior A would be adherence
to the current plan the user subscribes to, while B would be the use of the new
plan. The associated SNDOP query would find a set of nodes which, if given a free
plan, would jointly maximize the expected number of adoptees of the plan. Cost and
benefit could be computed from factors such as income, time invested in switching
plans, etc. We show how the model of [10] can be expressed via GAPs.

Diffusion Model 5.4.1 (Jackson-Yariv model) Given a Jackson-Yariv model con-
sisting of G′ =(V′,E′), we can set up a social networkS =(V′,E′′, �vert, �edge,w) as
follows. We define E′′ = {(x,y),(y,x) | (x,y) ∈ E′}. We have a single edge predicate
symbol edge which is assigned by �edge to every edge in E′′, and w assigns 1 to
all edges in E′′. Our associated GAP ΠJY now consists of ΠS plus one rule of the
following form for each vertex vi:

B(vi) :

⌊
bi

ρi
· γ

(
∑

j

Ej

)
· ∑j Xj

∑j Ej

⌋
←

∧
vj|〈vj,vi〉∈E′′

(edge(vj,vi) : Ej ∧B(vj) : Xj)

It is easy to see that this rule (when applied in conjunction with ΠS for a social
network S) precisely encodes the Jackson-Yariv semantics.

5.4.2 Cascading Diffusion

In a cascading model, a vertex obtains a property from one of its neighbors,
typically based on the strength of its relationship with the neighbor. These models
were introduced in the epidemiology literature and perhaps the most well-known
of these models, the SIR model, is more fully reviewed in Chap. 2. These cascading
diffusion models have been applied to other domains as well. For example, Cha et al.
[9] (diffusion of photos in Flickr) and Sun et al. [8] (diffusion of bookmarks in
Facebook) both look at diffusion process in social networks as “social cascades” of
this type.

5.4 Applying SNDOPs to Diffusion Problems 65

The SIR Model of Disease Spread The SIR (susceptible, infectious, removed)
model of disease spread (see Chap. 2) is a classic disease model which labels each
vertex in a graph G = (V,E) (of humans) with susceptible if it has not had the
disease but can receive it from one of its neighbors, infectious if it has caught the
disease and trec units of time have not expired, and removed when the vertex can no
longer catch or transmit the disease. The SIR model assumes that a vertex v that is
infected can transmit the disease to any of its neighbors v′ with a probability pv,v′ for
trec units of time. It is assumed that becoming infected takes precisely a time unit.
We would like to find a set of at most k vertices that would maximize the expected
number of vertices that become infected. These are obviously good candidates to
treat with appropriate medications. The following is a non-probabilistic variant of
the SIR model represented as a GAP. Note it is not equivalent to the SIR model of
Chap. 2—though it captures the intuition.

Diffusion Model 5.4.2 (SIR Model) Let S = (V,E, �vert, �edge,w) be an SN where
each edge is labeled with the predicate symbol e and w(〈v,v′〉) = pv,v′ assigns a
probability of transmission to each edge . We use the predicate inf to designate the
initially infected vertices. In order to create a GAP ΠSIR capturing the SIR model of
disease spread, we first define trec predicate symbols rec1, . . . ,rectrec where reci(v)
intuitively means that node v was infected i days ago. Hence, rectrec(v) means that v
is “removed.” We embed S into GAP ΠSIR by adding the following diffusion rules.
If trec > 1, we add a non-ground rule for each i = {2, . . . , trec} - starting with trec:

reci(V) : R ← reci−1(V) : R

rec1(V) : R ← inf(V) : R

inf(V) : (1−R) ·PV ′,V ·PV ′ · (1−R′) ← rectrec(V) : R∧ e(V ′,V) : PV ′,V ∧
inf(V ′) : PV ′ ∧ rectrec(V

′) : R′.

The first rule says that if a vertex is in its (i − 1)’th day of recovery with
confidence R in the j’th iteration of the TΠSIR operator, then the vertex is i days
into recovery (with the same confidence) in the j+ 1’th iteration of the operator.
Likewise, the second rule intuitively encodes the fact that if a vertex became infected
with confidence R in the j’th iteration of the TΠSIR operator, then the vertex is one
day into recovery in the j+ 1’th iteration of the operator with the same confidence.
The last rule says that if a vertex V ′ was infected with confidence PV ′ and has
not been removed with confidence 1− R′, and there is an edge from V ′ to V in
the social network (weighted with PV ′,V), given the confidence 1− R that V has
not already been removed, then the confidence that the vertex V gets infected is
(1−R)·PV ′,V ·PV ′(1−R′). Here, PV ′(1−R′) is one way of measuring the confidence
that V ′ is infected and has not recovered and PV ′,V is the confidence of infecting the
neighbor. Notice that e is a static property of the graph which does not change over
the time, so we do not need time indexes for it. As for inf , the reason why we can
avoid using time indexes is that we can keep track of how much time has gone since
a vertex got infected with the predicates reci using the second rule.

66 5 Logic Programming Based Diffusion Models

Diffusion in the Flickr Photo Sharing Network The Flickr social network allows
users to share photographs. Users create a list of “favorite” photos that can be viewed
by other users. Cha et al. [9] use a variant of SIS above to study how photographs
spread to the favorite lists of different users. A key difference is that they do not
consider a node “recovered”—i.e. once a photo was placed on a favorite list, it
was relatively permanent (the study was conducted over about 100 days). They
also found that photos lower on a favorite list (as the result of a user marking a
large number of photos as “favorite”) for a given user could still spread through
the network. A simple GAP that captures the intuition of how Flickr photos spread
according to [9] uses just one rule:

Diffusion Model 5.4.3 (Flickr Photo Diffusion)

photoi(V) : consti ·Xi ← connected_to(V ′,V) : 1∧photoi(V
′) : Xi

In Diffusion Model 5.4.3, the annotation of the vertex atom photoi(V) is the
confidence that vertex V has marked photo i as one of its favorites. The predicate
connected_to is the sole edge label representing that there is a connection from
vertex V ′ to V (users select other users on this network). Additionally, the value
consti is a number in [0,1] that determines how a given photo spreads in the
network. Notice that the above rule is linear, as the head is a linear combination and
consti ∈ [0,1]. We note that for all of these models, the annotation functions reflect
one interpretation of the confidence that a vertex is infected or recovered—others
are possible in our framework.

5.4.3 Homophilic Diffusion

Recently, [11] studied the spread of mobile application use on a global instant-
messaging network of over 27 million vertices. They found that network-based
diffusion could overestimate the spread of a mobile application and, for this
scenario, over 50% of the adopted use of the applications was due to homophily—
vertices with similar properties adopting similar applications.

These results should not be surprising—the basic idea behind web-search
advertising is that two users with a similar property (search term) will be interested
in the same advertised item. In fact, Cha et al. [9] explicitly pre-processed their
Flickr data set with a heuristic to eliminate properties attached to vertices that could
not be accounted for by a diffusion process. We can easily represent homophilic
diffusion in a GAP with the following type of diffusion rule:

Diffusion Model 5.4.4 (Homophilic Diffusion of a Product)

buys_product(V) : 0.5×X ← property(V) : 1∧ exposed_to_product(V) : X

5.5 Algorithmic Approach and Experiments 67

In Diffusion Model 5.4.4, if a vertex is exposed to a product (e.g. through mass
advertising) and has a certain property, then the person associated with the vertex
purchases the product with a confidence of 0.5×X, where X measures the extent of
the exposure. For this rule, there are no network effects.

In [10], the authors propose a “big seed” marketing approach that combines both
homophilic and network effects. They outline a strategy of advertising to a large
group of individuals who are likely to spread the advertisement further through
network effects. We now describe a GAP that captures the ideas underlying big seed
marketing. Suppose we have a set of vertex predicate symbols AL⊆VP correspond-
ing to people “attributes”—these may be certain demographic characteristics such
as education level, race, level of physical fitness, etc. Suppose we want to advertise
to people having (at least) one of k ≤ |AL| attributes to maximize an aggregate agg
with respect to a goal predicate g (in other words, we want to choose k attributes
and advertise to people having those attributes so that agg with respect to g is
maximized). Consider the following construction.

Diffusion Model 5.4.5 (Big Seed Marketing) The GAP includes an embedding of
the social network as well as the network diffusion model of the user’s choice.
We make the following additions to the GAP and the SN:

1. Add vertex predicate symbol attrib to VP.
2. For each lbl ∈ AL, add a vertex vlbl to V. We also set �vert(vlbl) = {attrib}.
3. For each lbl ∈ AL, add the following non-ground rule:

g(V) : eff lbl ×X ← lbl(V) : 1∧ g(vlbl) : X

where eff lbl is a constant in [0,1] corresponding to the confidence that, if adver-
tised to, a vertex v with attribute lbl obtains an annotation of 1 on g(v).

Our SNDOP query is (agg,VC,k,g(V),g(V)), where VC = {attrib(V) : 1}.

Note that in the above diffusion model, the vlbl vertices correspond to advertise-
ments directed toward different vertex properties. The VC condition forces the query
to only return vlbl vertices. As an example, a solution like {g(vlbl1),g(vlbl2)} means
that we are targeting people having attribute lbl1 or lbl2. The diffusion rule, added
per label, ensures that the mass advertisement is received and that the vertex acts
accordingly (hence the efflbl constants).

5.5 Algorithmic Approach and Experiments

Regretfully, Theorem 5.2 precludes an exact solution in PTIME and Theorem 5.4
precludes a PTIME α-approximation algorithm where α < e

e−1 . Both of these
results hold for the restricted case of linear-GAPs and positive-linear aggregate
functions.

68 5 Logic Programming Based Diffusion Models

The good news is that we were able to show that (1) for linear-GAPs and a-priori
VC queries with positive-linear aggregates, the value function is submodular
(Theorem 5.1). (2) Under these conditions, we can reduce the problem to the
maximization of a submodular function over a uniform matroid (the uniformity of
the matroid is proved in Lemma 5.2 for a-priori VC queries). (3) We can leverage
the work of [13] that admits a greedy e

e−1 approximation algorithm. In this section,
we develop a greedy algorithm for SNDOP queries that leverages the above three
results. This is analogous to the greedy approximation technique for the IC and LT
models described in Chap. 4.

The GREEDY-SNDOP algorithm shown below assumes a linear GAP, an a-
priori VC query with positive-linear aggregates, and a Normalized value function
(notice that the latter requirement can be met as stated by Proposition 5.2).
The algorithm provides e

e−1 approximation to the SNDOP query problem. As this
matches the upper bound of Theorem 5.4, we cannot do better in terms of an
approximation guarantee.

GREEDY-SNDOP(Π ,agg,VC,k,gI(V),gO(V)) returns SOL ⊆ V

1. Initialize SOL = /0 and REM = {v ∈ V|
(
{gI(v) : 1}∪⋃

pred∈�vert(v){pred(v) : 1}
)
|= VC[V/v]}

2. While |SOL|< k and REM �= /0

a. vbest = null, val = value(SOL), inc = 0
b. For each v ∈ REM, do the following

i. Let incnew = value(SOL∪{v})− val
ii. If incnew ≥ inc then inc = incnew and vbest = v

c. SOL = SOL∪{vbest}, REM = REM−{vbest}
3. Return SOL

We now analyze the time complexity of GREEDY-SNDOP.

Proposition 5.3. Given a SNDOP query Q = (agg,VC,k,gI(V),gO(V)), a social
network S , and a GAP Π ⊇ ΠS , the complexity of GREEDY-SNDOP is O(k ·
|V| ·F(|V|)) where F(|V|) is the time complexity to compute value(V′) for some set
V′ ⊆ V of size k.

We note that most likely, the most expensive operation is the computation of
value at line 2(b)i. One obvious way to address this issue is by using a non-ground
version of the fixed-point.

Theorem 5.5. Given a SNDOP query Q = (agg,VC,k,gI(V),gO(V)), a social
network S , and a GAP Π ⊇ ΠS , if

• Π is a linear GAP,
• Q is a-priori VC,
• agg is positive-linear, and
• value is Normalized,

then GREEDY-SNDOP is an (e
e−1)-approximation algorithm.

5.5 Algorithmic Approach and Experiments 69

We have implemented the GREEDY-SNDOP algorithm in 660 lines of Java code
by re-using and extending the diffusion modeling Java library of [2] (approx 35 K
lines of code). Our implementation uses multiple threads in the inner loop of the
GREEDY-SNDOP algorithm to increase efficiency. All experiments were executed
on the same machine with a dedicated 4-core 2.4 GHz processor and 22 GB of main
memory. Times were measured to millisecond precision and are reported in seconds.

Data Set In order to evaluate GREEDY-SNDOP, we used a real-world dataset
based on a social network of Wikipedia administrators and authors. Wikipedia is
an online encyclopedia collaboratively edited by many contributors from all over
the world. Selected contributors are given privileged administrative access rights
to help maintain and control the collection of articles with additional technical
features. A vote by existing administrators and ordinary authors determines whether
an individual is granted administrative privileges. These votes are publicly recorded.
Leskovec et al. [3] crawled 2794 elections from the inception of Wikipedia until
January 2008. The votes casted in these elections give rise to a social network among
Wikipedia administrators and authors by representing a vote of user i for user j as a
directed edge from node i to j. In total, the dataset contains 103,663 votes (edges)
connecting more than 7000 Wikipedia users (vertices). Hence, the network is large
and densely connected.9

SNDOP-Query In our experiments, we consider the hypothetical problem of
finding a set of administrators having the highest overall influence in the Wikipedia
social network described above. We treat votes as a proxy for the inverse of
influence. In other words, if user i voted for user j, we assume user j (intentionally
through lobbying or unintentionally through the force of his contributions to
Wikipedia) influenced user i to vote for him. All edges are assigned a weight of
1. Our SNDOP queries are designed as per the following definition.

Definition 5.15 (Wikipedia SNDOP-Query). Given some natural number k > 1,
a Wikipedia SNDOP query, WQ(k) is specified as follows:

• agg = SUM—the intuition is that the aggregate provides us an expected number
of vertices that are influenced.

• VC = /0—we do not use a vertex condition in our experiments
• k as specified by the input
• gI(V) = gO(V) = influenced(V)

Diffusion Models Used We represented the diffusion process with two different
models: one tipping and one cascading.

• Cascading Diffusion Model We used the Flickr Diffusion Model (Diffusion
Model 5.4.3 on page 66) described in Sect. 5.4.2. In this model, a constant
parameter α represents the “strength” or “likelihood” of influence. The larger
the parameter α the higher the influence of a user on those who voted for her.

9Our Wikipedia data set does not include edge weights. However, including edge weights should
not appreciably change the experimental results which show that solving SNDOP queries when
tipping models are used is faster, in general, than when cascade models are used.

70 5 Logic Programming Based Diffusion Models

Fig. 5.2 Runtimes of GREEDY-SNDOP for different values of α and k = 5 in both diffusion
models

• Tipping Diffusion Model Cha et al. [5] shows that there is a relationship
between the likelihood of a vertex marking a photo as a favorite and the per-
centage of their neighbors that also marked that photo as a favorite. This implies
a tipping-model (as in Sect. 5.4.1). We apply the Jackson-Yariv model with B

equated to influenced. For each vertex vj ∈ V, we set the benefit to cost ratio (
bj
cj

)
to 1. Finally, the function γ defined in the Jackson Yariv model is the constant-
valued function (for all values of x):

γ(x) = α.

This says that irrespective of the number of neighbors that a vertex has, the benefit
to adopting strategy B (i.e. influenced) is α . Therefore, the resulting diffusion rule
for the linear Jackson-Yariv model is:

influenced(v) : α · ∑j Xj

|{vj|〈vj,v〉}| ←
∧

vj|〈vj,v〉∈E

influenced(vj) : Xj

For both models, we derive a unique logic program for each setting of the
parameter α . The parameter α depends on the application and can be learned from
ground truth data. In our experiments, we varied α to avoid introducing bias.

Run-Time of GREEDY-SNDOP with Varying α and Different Diffusion Mod-
els Figure 5.2 shows the total runtime of GREEDY-SNDOP in seconds to find the
set of k = 5 most influential users in the Wikipedia voting network for different
values of the strength of influence parameter α . We varied α from 0.05 (very low
level of influence) to 0.5 (very high level of influence) for both the cascading and
tipping diffusion model. We observe that higher values of α lead to higher runtimes
as expected since the scope of influence of any individual in the network is larger.
Furthermore, we observe that the runtimes for the tipping diffusion model increase
more slowly with α compared to the cascading model.

5.5 Algorithmic Approach and Experiments 71

Fig. 5.3 Runtimes of GREEDY-SNDOP for different values of k and α = 0.2 in both diffusion
models

Fig. 5.4 Time per iteration of GREEDY-SNDOP for α = 0.2 in both diffusion models

Run-Time of GREEDY-SNDOP with Varying k For the next set of experiments,
we keep the strength of influence fixed to α = 0.2 and varied k which governs the
size of the set of influencers. Figure 5.3 reports the runtime of GREEDY-SNDOP
for the query WQ(k) with k = 5,10,15,20,25. For the cascading model, the runtime
is approximately linear in k—a curve-fitting analysis using Excel showed a slight
superlinear trend (even though the figure itself looks linear at first sight). Figure 5.4
shows the time taken to execute each of the 25 iterations of the outer loop for the
query WQ(25) with α = 0.2. Note that each subsequent iteration is more expensive
than the previous one since the size of the logic programs to consider increases with
the addition of each ground atom influenced(vi). However, we also implemented the
practical improvement of “lazy evaluation” of the submodular function as described
in [7]. This improvement, which maintains correctness of the algorithms, stores
previous improvements in total score and prunes the greedy search for the highest
scoring vertex as discussed. We found that this technique also reduced the runtime
of subsequent iterations.

72 5 Logic Programming Based Diffusion Models

Our experimental results show that we can answer SNDOP queries on large
social networks. For example, computing the set of five most influential Wikipedia
users in the voting network required approximately 2 h averaged over the different
values of α in the tipping diffusion model.

5.6 Conclusion

Social networks are proliferating rapidly and have led to a wave of research on
diffusion of phenomena in social networks. In this chapter, we introduce the class
of Social Network Diffusion Optimization Problems (SNDOPs for short) which try
to find a set of vertices (where each vertex satisfies some user specified vertex
condition) that has cardinality k or less (for a user-specified k > 0) and that optimizes
an objective function specified by the user in accordance with a diffusion model
represented via the well-known generalized annotated program (GAP) framework.
We have used specific examples of SNDOP queries drawn from product adoption
(cell phone example) and epidemiology.

References

1. Subrahmanian, Venkatramana S., and Diego Reforgiato. “AVA: Adjective-verb-adverb
combinations for sentiment analysis.” Intelligent Systems, IEEE 23.4 (2008): 43–50.

2. Broecheler, Matthias, Paulo Shakarian, and V. S. Subrahmanian. “A scalable framework for
modeling competitive diffusion in social networks.” Social Computing (SocialCom), 2010
IEEE Second International Conference on. IEEE, 2010.

3. Leskovec, Jure, Daniel Huttenlocher, and Jon Kleinberg. “Predicting positive and negative links
in online social networks.” Proceedings of the 19th international conference on World wide
web. ACM, 2010.

4. Shakarian, Paulo, et al. “Using generalized annotated programs to solve social network
diffusion optimization problems.” ACM Transactions on Computational Logic (TOCL) 14.2
(2013): 10.

5. Cha, Meeyoung, Alan Mislove, and Krishna P. Gummadi. “A measurement-driven analysis of
information propagation in the flickr social network.” Proceedings of the 18th international
conference on World wide web. ACM, 2009.

6. Kifer, M., Subrahmanian, V.S., “Theory of generalized annotated logic programming and its
applications.” The Journal of Logic Programming, 12(4), 1992.

7. Leskovec, Jure, et al. “Cost-effective outbreak detection in networks.” Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and data mining. ACM,
2007.

8. Sun, Eric, et al. “Gesundheit! Modeling Contagion through Facebook News Feed.” ICWSM.
2009.

9. Cha, Meeyoung, et al. “Characterizing social cascades in flickr.” Proceedings of the first
workshop on Online social networks. ACM, 2008.

10. Watts, Duncan J., Jonah Peretti, and Michael Frumin. Viral marketing for the real world.
Harvard Business School Pub., 2007.

References 73

11. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic net-
works

12. Goundan, Pranava R., and Andreas S. Schulz. “Revisiting the greedy approach to submodular
set function maximization.” Optimization online (2007): 1–25.

13. Nemhauser, George L., Laurence A. Wolsey, and Marshall L. Fisher. “An analysis of
approximations for maximizing submodular set functions.” Mathematical Programming 14.1
(1978): 265–294.

14. Feige, Uriel. “A threshold of ln n for approximating set cover.” Journal of the ACM (JACM)
45.4 (1998): 634–652.

15. Hethcote, Herbert W. “Qualitative analyses of communicable disease models.” Mathematical
Biosciences 28.3 (1976): 335–356.

16. Cowan, Robin, and Nicolas Jonard. “Network structure and the diffusion of knowledge.”
Journal of economic Dynamics and Control 28.8 (2004): 1557–1575.

17. Watts, Duncan J. “Networks, dynamics, and the small-world phenomenon 1.” American
Journal of sociology 105.2 (1999): 493–527.

18. Rychtár, Jan, and Brian Stadler. “Evolutionary dynamics on small-world networks.” Interna-
tional Journal of Computational and Mathematical Sciences 2.1 (2008): 1–4.

19. Lloyd, J. Foundations of Logic Programming. Berlin: Springer-Verlag, 1987.
20. Granovetter, Mark. “Threshold models of collective behavior.” American journal of sociology

(1978): 1420–1443.
21. Schelling, Thomas C. Micromotives and macrobehavior. WW Norton & Company, 2006.
22. Anderson, Roy M., and Robert M. May. “Population biology of infectious diseases: Part I.”

Nature 280 (1979): 361–7.
23. P. Shakarian, V.S. Subrahmanian, M.L. Sapino. Using Generalized Annotated Programs to

Solve Social Network Optimization Problems. 26th Intl. Conference on Logic Programming
(ICLP-10) (Jul. 2010).

24. Christoff, Z., Hansen, J.U., A logic for diffusion in social networks. Journal of Applied Logic,
13(1), 2015.

25. P. Shakarian, G.I. Simari, D. Callahan. Reasoning about Complex Networks: A Logic
Programming Approach. 29th Intl. Conference on Logic Programming (ICLP-13) (Aug. 2013).

26. Kang, C., Molinaro, C., Kraus, S., Shavitt, Y., Subrahmanian, V.S. Diffusion Centrality in
Social Networks. IEEE ASONAM, 2012.

27. Coelho, Flávio C., Oswaldo G. Cruz, and Cláudia T. Codeço. “Source Code for Biology and
Medicine.” Source code for biology and medicine 3 (2008): 3.

Chapter 6
Evolutionary Graph Theory

6.1 Introduction

Evolutionary graph theory (EGT), introduced by Lieberman et al. [17], studies the
ability of a mutant gene to overtake a finite structured population. The reproduction
of the individuals in the population is modeled as a stochastic process. The structure
of the population is represented as a directed, weighted graph called an evolutionary
graph (EG). Since its introduction, numerous results on EGT, both analytical and
experimental, have been produced. Additionally, several extensions to the model
have been proposed, including game-theoretic ones. The application of EGT to
game theory has provided researchers new insight about the evolution of cooperation
and other game-theoretic concepts in structured populations. In this chapter, we
present the original model of [17] and various extensions. We also summarize major
results in EGT (both analytical and experimental), including those relating to game
theory. For a more comprehensive review of evolutionary graph theory, we suggest
the previously-published review of [4], from which this chapter is based.

This chapter is organized as follows. In Sect. 6.2, we introduce the original
model, discuss computation of fixation probability, and describe the standard game
theoretic extensions. This is followed by a presentation of results concerning
the computation of the fixation probability in Sect. 6.3 for graphs of certain
topologies—including the large class of undirected EG’s. Then we describe how
some of the results relating to fixation probability change under alternative model
dynamics in Sect. 6.4. We then survey more advanced game theoretic extensions in
Sect. 6.5.

© The Author(s) 2015
P. Shakarian et al., Diffusion in Social Networks, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-23105-1_6

75

76 6 Evolutionary Graph Theory

6.2 Evolutionary Graph Theory Models

Consider a population of N individuals where there is no specified graph-structure
relating them to each other (this is known as a well-mixed population). The Moran
Process of [23] is a stochastic process used to model evolution in such a population.
It is defined as follows. At each time-step a randomly selected individual is chosen
to reproduce. Then, a second individual is chosen at random to die—replaced by
a duplicate of the first individual. If all of the members of the population are
identical (termed residents with fitness 1), and a mutant is introduced at random
in the population (with fitness r, where r = 1 is the special case of neutral drift),
the probability that the mutant will eventually overtake the population is known
as the fixation probability (the opposite event—that all mutants die out—is called
extinction and a population with a lower fixation probability is deemed more
evolutionarily stable as it is resistant to invasion by a mutant). This probability, ρ1,
arising from this N original Moran Process, is often termed the Moran probability
and can be solved for exactly (see Eq. (6.1)).

ρ1 =
1− 1/r

1− 1/rN (6.1)

In the original work that introduced EGT [17], Lieberman et al. generalize the
model of the Moran Process by specifying relationships between the N individuals
of the population in the form of a directed, weighted graph. We shall use the symbol
V to denote the set of individuals. We can think of these individuals as vertices in a
graph. The edges of the graph are specified by the adjacency matrix W = [wij], where
for vertices vi,vj, the quantity wij specifies the weight of the directed edge from vi

to vj. As this is an evolutionary graph (EG), wij corresponds to the probability that,
if vi is selected to reproduce then it replaces vj (note that for all vi, wii = 0). Hence,
for any given vi, ∑j wij = 1. The earlier work of [32] proves that, in such a structure
if ∀vi,vj ∈ V we have wij = wji, then the fixation probability for a randomly placed
mutant is ρ1. A similar result was proved in [18]. In [17], this result is extended
for a wider variety of EG’s where ∀vi, ∑j wij = ∑j wji. This type of EG is known as
isothermal. Consider the following theorem.

Theorem 6.1 (Isothermal Theorem [17]). An EG is isothermal iff the fixation
probability of a randomly placed mutant is ρ1.

Hence, for EG’s that are not isothermal, the fixation probability of the evolutionary
process is not only dependent on the fitness of the mutant (as in the Moran Process),
but also on the structure of the graph.

6.2 Evolutionary Graph Theory Models 77

6.2.1 Properties of Fixation Probability

Many researchers (such as [8, 20]) have studied the problem of computing the
probability of fixation given that a certain subset of vertices are mutants. If the
mutants inhabit set C ⊆ V , then this probability is written PC. As the calculation
of the fixation probability (ρ) for an EG is determined based on a uniformly picked
vertex, we have the following relationship between ρ and P:

N ·ρ = ∑
i

P{vi} (6.2)

Note that although these two problems are closely related, they have rather different
intuitions. The fixation probability ρ provides insight into a graph of a certain
topology. For example, researchers often refer to graphs with a low value for ρ
as being “evolutionary stable” as the topology of the graph seems to be resistant to
a mutant invasion. The fixation probability PC on the other hand tells us something
about a set of vertices C. For example, identifying a certain subset C of a graph that
has a higher fixation probability may cause a user to take a certain action regarding
those vertices (dependent on the domain).

If the graph is not isothermal, but if we are under neutral drift, fixation probability
PC is additive. This was proven for the special case of undirected graphs in [7] and
proved for general, weighted, directed graphs[5, 31].

Theorem 6.2 (Additive Under Neutral Drift [5, 31]). When r = 1 for disjoint sets
C,D ⊆ V, PC +PD = PC∪D.

This additive result says that, under neutral drift, determining a subset of indi-
viduals in the population that maximize fixation probability is not (polynomially)
harder than determining the fixation probability. Further, when we fix the topology
of the graph, we find that for some subset of vertices C, that the fixation probability
under neutral drift is a lower bound for the fixation probability when r > 1.

Theorem 6.3 (Neutral Drift as a Lower Bound [5, 31]). For a given set C, let P(1)
C

be the fixation probability under neutral drift and P(r)
C be the fixation probability

calculated using a mutant fitness r > 1. Then, P(1)
C ≤ P(r)

C .

By Theorem 6.2 and Eq. (6.2), we observe that under neutral drift ρ = 1/N
regardless of the topology of the graph—even with directed and weighted edges.
Hence, Theorem 6.3 tells us that for r > 1 we have ρ ≥ 1/N. This particular
observation is independently noted in [15]. In [19] the authors observe in their
experiments that fixation probability monotonically increases with r.

As we can appeal to the Moran probability only in the case of an isothermal
graph, we must resort to other calculations to determine ρ or P. Using the following
set of constraints, we can solve directly for any PC (hence, ρ as well by Eq. (6.2)).

78 6 Evolutionary Graph Theory

PC =
∑vi∈C ∑vj /∈C(r ·wij ·PC∪{vj}+wji ·PC−{vi})

∑vi∈C ∑vj /∈C(r ·wij +wji)
. (6.3)

These constraints originally appeared in [29] for the case of an undirected EG,
but applies to the general case as it follows directly from the rules of dynamics.
However, the number of constraints and variables is equal to the number of mutant-
resident formations in the graphs, which is intractable for large N. In fact, [17]
presents a decision problem related to computing the fixation probability that is
claimed to be as hard as any problem in the complexity class NP (the class of
nondeterministic polynomial time computable problems). In [7, 8] the authors
attempt to reduce the number of constraints by finding automorphisms in the graph.
Based on automorphism, the authors are able to calculate the exact number of
possible mutant-resident formations (MRF’s). Since this number gives the size of
the system of linear equations for the fixation probability and in general increases
with the difficulty of solving this system, the measure may be a useful indicator
in deciding whether to undertake an analytical approach to solving for the fixation
probability on a given graph. The authors then show that even in the special case of
undirected EG’s, if the graph contains a vertex of degree of at least 3, that there is
a non-zero probability that the dynamics will evolve to any of the MRF’s (except in
the trivial cases where C = V or C = /0).1 We note that for the general case, this still
leads to an intractable number of constraints. Further, finding graph automorphisms
is also a non-trivial problem in the general case (see [35] for the latest complexity
results on graph automorphism).

Despite the computational difficulty of determining the fixation probability in
the general case, there are several special classes of EG’s where we have analytical
solutions (or at least good approximations). We review many of these special cases
in the next section. To address the issue of computation of the fixation probability
in the general case (i.e., to confirm analytical approximations), most work we
review resorts to simulation methods via Markov Chain Monte Carlo (MCMC).
These simulations generally rely on a direct application of the model we have
already described (see [29] for a pseudocode algorithm). However, as the size of the
graph increases, even such simulations may become impractical. In [3], the authors
address the issue of increasing the speed of such simulations. Their main technique
for the general case is to stop the simulation early if the number of mutants in the
population exceed a certain threshold (hence that particular simulation would be
considered to have reached fixation). They determine this threshold by finding the
conditional probability that mutants spread to M vertices in the graph given that
extinction eventually occurs. The authors plot the probability distribution density of
this function compared to M and determine for several types of networks (including
E-R graphs) of size 103, that if M > 102 then this probability drops to 10−5—which
is lower than the estimated standard error of a MCMC simulation by several orders

1There is the exception of an alternating state where every edge connects a mutant-resident pair.
This state cannot be reached if it exists.

6.2 Evolutionary Graph Theory Models 79

of magnitude (the authors show that the estimated standard error for populations of
104 to 106 have associated standard errors of at least 10−4). Hence, the outcome of
any simulation where the number of mutants exceeds 100 is considered equivalent
to fixation. The authors showed that for networks with 103 and 104 vertices, and
showed it provided a significant speed-up of up to 100 times, depending on the size
of the network.

In change to [5, 31], the authors introduce a novel approach that can quickly
compute the fixation probability in an evolutionary graph (with weights and
directions) under neutral drift. We rely on the idea of a vertex probability—the
probability of a given vertex being a mutant. In the limit of time, these probabilities
converge to the fixation probability (for strongly connected graphs). We have shown
that this convergence occurs quickly in practice, providing an improvement over
MCMC by several orders of magnitude. While this result is for the case of neutral
drift, Theorem 6.3 suggests it may provide good insight for r > 1. Further, the quick
convergence of our algorithm in practice may also suggest that having a value of
r �= 1 may be a source of complexity.

Another recent development is the work of Houchmandzadeh and Vallade who
use dynamics to quickly approximate fixation probability in a certain bi-level
graph that generalizes the model of [18]. While this particular model can also
generalize the standard evolutionary graphs of [17]. However, it is unclear if their
approximation is still appropriate for arbitrary graphs.

6.2.2 Game Theoretic Extensions

One of the most popular applications of EGT is game theory. In the game theoretic
context, vertices of a graph represent agents and edges represent potential for
interaction between them. Interactions between agents are games played that can
be described using a normal game theoretic payoff matrix. EGT thus provides
a structural component for interactions in populations of agents. Evolutionary
game theory, which is concerned with the population-dependent success of game
theoretic strategies, has initially mostly focused on well-mixed populations in which
interactions between all agents are equally likely. Incorporating EGT to evolutionary
game theory can take into account the effect of population structure, which has
the capacity to crucially impact evolutionary trajectories, outcomes, and strategy
success. Thus EGT is a welcome tool to explore how many of the results for well-
mixed populations are affected by population structure.

In game-theoretic applications of EGT, the evolutionary fitness (fi) of individual
vi is often related to their game theoretic payoff (P) (based on game-play with
neighbors) with something akin to the following equation:

fi = 1−w +w ·P (6.4)

80 6 Evolutionary Graph Theory

The parameter w relates the payoff acquired from games played to fitness. If w = 1,
the payoff acquired is equal to the fitness. If w = 0, the game is irrelevant and we
are at neutral drift. An often explored special case is weak selection, where w << 1,
which reflects the assumption that the game of interest plays only a partial role in
the overall fitness of individuals. Using this paradigm, researchers have reached a
variety of important conclusions on the effects of population structure on game-
theoretic concepts.

Evolutionary game dynamics of finite populations on graphs for a general two-
player game between mutants and residents are often considered using the following
payoff matrix:

mutant resident
mutant a b
resident c d

(6.5)

Tarnita et al. [34] consider evolutionary dynamics (under weak selection) on
graphs for the general game given by (6.5) and present a theorem stating that
a strategy A (mutant) is favored over strategy B (resident) iff σa + b > c + σd,
depending on the single parameter σ . “A is favored over B” means that it is more
abundant in the stationary distribution of the mutation selection process. The authors
show σ to depend on the population structure, update rule (see Sect. 6.4), and
mutation rate. Thus the single parameter can be used to quantify the ability of a
population structure to promote the evolution of cooperation or to choose efficient
equilibria in coordination games. In general, if the combination of update rule and
population structure leads to a σ > 1 (which can but does not necessarily occur
for different combinations), individuals of the same strategy type are more likely to
interact due to a clustering of strategies [24, 25].

In Sect. 6.5 we will review other important work considering various aspects of
game theoretic applications of EGT.

6.3 Determining Fixation Probability for Fixed Fitness

We now turn to the problem of determining fixation probability for some special
cases of graphs when the value of r is fixed (i.e., most non-game theoretic work).
First we look at computing fixation probabilities for graphs of certain topologies.
Then, we look at a very large special case—that of undirected graphs.

6.3.1 Fixation Probability Calculations for Certain Topologies

In [17], the authors examine the fixation probability for a few special cases of EG’s
to illustrate how fixation can be amplified or suppressed based on the structure of the

6.3 Determining Fixation Probability for Fixed Fitness 81

Fig. 6.1 Left: Super-star EG, K = 3,L = 2,M = 4. Center: Star EG, K = 2,L = 8,M = 1. Right:
Funnel EG, K = 3

graph. For example, they define a one-rooted graph as a graph with a unique global
source without incoming edges (i.e., a directed tree, with edges directed toward the
leaves, would be such a graph—the unique global source being the root in this case).
Hence, for any value of r, if an EG is one-rooted its fixation probability is 1/N.

Another special case is the EG referred to as a super-star (see Fig. 6.1). Such
a structure, denoted SK

L,M consists of a central vertex, vcenter surrounded by L
leaves. A leaf �, contains M reservoir vertices, r�,m and K − 2 ordered chain
vertices c�,1, . . . ,c�,K−2. All directed edges are of the form (r�,m, c�,1), (c�,w, c�,w+1),
(c�,K−2,vcenter), and (vcenter,r�,m). Denoting the fixation probability of EG SK

L,M as
ρ(SK

L,M), the following result is given in [17].

lim
L,M→∞

ρ(SK
L,M) =

1/r
1− 1/rK·N (6.6)

Because of the role it plays in enhancing fixation, the K parameter is often referred
to as the amplification factor. If K = 2, this is simply referred to as a star
EG (see Fig. 6.1). Another special case, related to the super-star, is the funnel
(see Fig. 6.1). A generalization of the funnel, known as a layered network was
studied in [2, 3]. In this type of EG, V can be partitioned into K subsets V1, . . . ,VK

such that for all v ∈ Vi there are only outgoing edges to vertices in set Vi+1modK .
Barbosa et al. also presents a way to increase the speed of MCMC simulations
specific to layered networks in [3]. Their technique involves skipping evolutionary
steps where none of the vertices in the graph changes a label. This is done by
calculation the probability of a change occurring somewhere in the graph. The
tradeoff with this speed-up is the price of calculating this probability compared to
the savings. The authors show for layered networks, that this probability can be
efficiently computed and yield a 2–3 times speed-up in simulations for K-funnels
and random layered networks.

These special cases represent important building blocks for other results. For
instance, [6] leverages some of these intuitions to study fixation probability for
games on star graphs while the work on bi-level EG’s. More recently, this style

82 6 Evolutionary Graph Theory

of analytical calculation of fixation probabilities has been applied to economics
in [38] where the authors determine the evolutionary stability of various forms of
business, which are modelled as star and bi-level graphs. Analytically finding the
value of ρ for certain graph topologies will most likely continue to be an active
area of research in EGT, particularly as certain structures are identified in nature
or other domains. Perhaps an interesting direction would be to use work on the
subgraph isomorphism problem [12] to identify structures such as stars and funnels
in larger graphs. The presence of such structures may allow us to make statements
on the evolutionary stability of the larger graph and/or compare the probability PC

for certain vertices in the larger graph (i.e., PC may be higher for a set of nodes
located in a star substructure of a larger graph).

6.3.2 Undirected Evolutionary Graphs

Several work explore: undirected EG’s. In this case, we shall use the symbol E to
denote the set of edges. However, it is important to note that the precise definition of
this graph is somewhat different than the standard concept of an undirected graph.
Specifically, the weights in both directions are not the same. This is defined by
Broom and Rychtar [8] as

wij =

{
d−1

i iff (vi,vj) ∈ E or (vj,vi) ∈ E
0 otherwise

(6.7)

where di is the degree of vi. The intuition behind this asymmetric assignment of
weights is that if vi is chosen to reproduce, it replaces one of its neighbors with
a uniform probability. In [8], the authors determine a necessary and sufficient
condition for an isothermal undirected graph.

Theorem 6.4 (Undirected Isothermal Theorem [8]). An undirected EG is
isothermal iff it is regular.

Interestingly, for the undirected case, when r = 1 (neutral drift), there is a
tractable solution to the constraints specified by Eq. (6.3) that is presented in [7].

PC =
∑vi∈C(d

−1
i)

∑vj∈V(d
−1
j)

(6.8)

Hence, for an undirected graph with r = 1, we have ρ = 1/N. For the case where
a mutant is very advantageous, r >> 1, [9] provides us with an approximation for
PC when C is a singleton set (the approximation is based on the assumption that
once |C| ≥ 2, then fixation occurs).

6.3 Determining Fixation Probability for Fixed Fitness 83

P{vi} ≈
r

r+∑vj∈V−{vi} wji
(6.9)

The authors of [9] conducted an exhaustive study of undirected graphs with
eight vertices and concluded that a low degree of a vertex corresponded with a
more advantageous mutant and this advantage seemed to increase monotonically for

vertex vi with
∑vj∈V dj

N − di. This aligns well with Eqs. (6.8) and (6.9). Further, they
also provide the following analytical approximation for relative mutant advantage.

P{vi}
P{vj}

≈ (
dj

di
)2 (6.10)

The inverse relationship between fixation and the degree of the initial mutant
vertex shown by Broom et al. [9] is in strong agreement with the previous work
of [1]. It is interesting to note that experimentally, it was observed in [9] that as
the relative fitness of the mutant increases, the fixation probabilities increase more
rapidly for mutants placed into vertices with higher degree. Some of these results
were experimentally verified in [10]. In Sect. 6.4, we examine the correlation of
the initial mutant’s degree to the fixation probability when the dynamics of the
evolutionary process is changed via different update rules.

It is also interesting to note that the authors of [8] were able to analytically solve
for the fixation probabilities for the special case of undirected star graphs (K = 2)
of L leaf vertices (hence N = L+ 1). Let P0

i (P /0
i) denote the fixation of probability

given i mutants on the leaves and the center being a mutant (resp. the center being a
resident). Broom and Rychtar [8] derive the following.

P0
1 =

1

1+ L
L+r ∑L−1

j=1

(
L+r

r(L·r+1)

)j (6.11)

P0
0 =

r
r+L

P0
1 P /0

0 =
r ·L

r ·L+ 1
P0

1 (6.12)

From this, they derive the following for fixation probability (ρundir-star).

ρundir-star =
L · r·L

r·L+1 +
r

r+L

(L+ 1)

(
1+ L

L+r ∑L−1
j=1

(
L+r

r(L·r+1)

)j
) (6.13)

lim
L→∞

ρundir-star =
1− 1

r2

1− 1
r2L

(6.14)

84 6 Evolutionary Graph Theory

6.4 Alternate Update Rules

Let us momentarily return to the original model of [17]. At each time-step, some
vertex vi is selected with probability fi

∑vj∈V fj
, where fi is the fitness of vi and equal

to either 1 or r. This is the vertex chosen to reproduce, hence a ‘birth’ event. The
next vertex selected is one of the neighbors of vi—lets call it vj and it is selected
with probability wij. This is a ‘death’ event as vj is replaced with a duplicate of vi.
Notice that the fitness of vj is not considered when it is selected. Hence, the fitness
bias is on the birth event. This method of selecting vertices vi and vj is referred to as
an update rule. The update rule described in [17] is termed ‘birth-death with birth
bias’ or BD-B updating. Several works address different update rules including:
[1, 19, 20, 27, 33]. Overall, we have identified three major families of update rules—
birth-death (a.k.a. the invasion process) where the vertex to reproduce is chosen first,
death-birth (a.k.a. the voter model) where the vertex to die is chosen first, and link
dynamics, where an edge is chosen. We summarize these in Table 6.1.

Note that the three categories of Table 6.1 are very broad as they do not consider
fitness-based bias in vertex selection (i.e., the BD-B updating of [17] places the
bias on the birth event as the first vertex is chosen with a probability proportional
to its fitness). If there is a birth-bias, the individual reproducing is chosen with a
probability proportional to its fitness. If there is a death-bias, the individual dying is
chosen with a probability inversely proportional to its fitness. We summarize how
directionality and bias affect the update rules in Table 6.2. Note that imitation (IM)
is also known as biased link dynamics.

For the case on undirected graphs, there are many results based on the initial
placement of the mutant have been discovered for several update rules (as we have
described for BD-B in the previous section). In [1, 33], the authors study moments
of degree distribution, density, and degree-weighted moments and show that the
fixation probability is proportional to the average degree-weighted moment for
death-birth updating (a.k.a. voter model), the inverse for birth-death (a.k.a. invasion
process), and equal to the density (the percentage of the number of vertices in the

Table 6.1 Different families of update rules

Update rule Intuition

Birth-Death (BD) (1) vertex vi selected

(a.k.a. Invasion process (IP)) (2) Neighbour of vi, vertex vj selected

(3) Offspring of vi replaces vj

Death-Birth (DB) (1) vertex vi selected

(a.k.a. Voter model (VM)) (2) Neighbour of vi, vertex vj selected

(3) Offspring of vj replaces vi

Link dynamics (LD) (1) Edge (vi,vj) selected

(2) The offspring of one vertex in the

edge replaces the other vertex

6.4 Alternate Update Rules 85

Table 6.2 Variations of EGT

Update rule Special case Intuition

Birth-Death (BD) Unbiased, undirected Offspring of vi replace vj

Directed Considers vi’s outgoing edges

Biased-birth (BD-B) vi chosen w. prob. proportional to fi
Biased-death (BD-D) vj chosen w. prob. proportional to f−1

j

Death-Birth (DB) Unbiased, undirected Offspring of vj replace vi

Directed Considers vi’s incoming edges

Biased-birth (DB-B) vj chosen w. prob. proportional to fj
Biased-death (DB-D) vi chosen w. prob. proportional to f−1

i

Link Dyn. (LD) Unbiased, undirected One vertex reproduces to replace the other

Imitation (IM) Least fit vertex dies, replaced by offspring

of other vetex

Pairwise Compar. (PC) vj replaces vi iff fj > fx, o/w no change

Directed, unbiased Edge from vi to vj, vi replaces vj

Directed, birth biased Edge selected w. prob. proportional to fi
Directed, death biased Edge selected w. prob. proportional to f−1

j

vi and vj are vertices in a graph that are neighbors, vi is always chosen first. fi and fj are
the associated fitness values which both equal 1 in the case of neutral drift

Table 6.3 Relationship
between fixation and degree
of initial vertex (undirected
graphs)

Update rule Fixation probability proportional to

BD-B Inverse of degree of initial vertex

DB-D Degree of initial vertex

LD Density of mutant vertices

graph labeled as mutants) for link dynamics, thus independent of the underlying
graph in that case. Note that their results for BD-B are in agreement with the finding
of [9] described earlier (Table 6.3).

As shown in Theorem 6.4, under BD-B, an undirected EG is isothermal iff it is
regular. In [1], this is extended to other update rules as follows.

Theorem 6.5 ([1]). Evolutionary dynamics under BD-B, DB-D, and LD are equiv-
alent for undirected regular EG’s.

Although there is currently an excellent suit of results for studying evolutionary
graphs under various different update rules in the directed case, there has been no
work (to the knowledge of the authors) that compares any of these update rules
to the synchronous update model described by Santos et al. in [30]. At each time-
step, all individuals in the population update their labels (i.e., mutant or resident,
or strategy if game-play is involved) simultaneously. For each vertex vi, one of its
neighbors (vertex vj) is selected at 1

di
. Then, if and only if fj > fi, vi’s label is replaced

with vj’s label with a probability proportional to fj − fi (i.e.,
fj−fi

max(di,dj)·r for example).

There are several interesting aspects about this model. For instance, the fitness of
vertices does not play a role in selecting which vertex is born and/or dies. Rather,

86 6 Evolutionary Graph Theory

the fitness determines if a vertex is replaced by a neighbor and the probability at
which this happens. Additionally, as all vertices are updated simultaneously, we
might conjecture that the evolutionary process occurs faster than in the other update
rules. These topics may warrant some further consideration in that synchronous
updates may represent some real-world processes more accurately or possibly be
used as a proxy for the standard update rules we have already described. Further, the
synchronous update model can also easily be extended to the directed case, which
we cover for the other update rules in the next section.

Not only does the original model of [17] utilize a directed graph, but many real-
world networks can be more accurately modeled as directed graphs than undirected
ones. This is the motivation of the work [19, 20]. There are two main conclusions
to their work: (1) degree correlation to fixation probability (i.e., using the exact
methods of [7] or the mean-field approximation) for undirected graphs does not
necessarily hold in the direct case and (2) directed graphs generally suppress fixation
more than undirected ones.

In [20], the authors study directed graphs under LD, BD, and DB for r = 1. For all
three update rules, under r = 1, they derive sets of linear constraints using the mean-
field approximation (degrees of connected vertices in the EG are uncorrelated). They
compare these analytical approximations with experiments and find that, in general,
the fixation probability is not only dependent on the degree of the initial vertex but
also the global structure of the graph. In fact, often there is no observed relation
between degree and fixation. See Table 6.4 for a summary of experimental results
compared with the analytical approximations. While [20] mainly considers the case
of neutral drift (r = 1), they also run some tests with r = 4 and claim that fixation
increases monotonically with r.

In [19], the authors perform an in-depth comparison on directed and undi-
rected networks for several variants of these rules. He exactly computes fixation
probabilities on an exhaustive set of small graphs (with six vertices) and uses Monte-
Carlo approximation for randomly generated larger graphs. He found that directed
networks tended to suppress more than undirected, regardless of update rule. Based
on these experiments for small networks, the order of amplification for rules is as
follows: BD-B > LD > DB-D > BD-D > DB-B (BD-B was least suppressive and
DB-B was the most suppressive). The value of r was set to 4 in these trials. For
large graphs (also with r = 4), the simulations provided the following ordering:
BD-B > BD-D,LD > DB-D > DB-B.

Table 6.4 Summary of experimental results for directed case with
r = 1 in [20] illustrating whether experimentally-determined fixation
probability results that aligned with the mean-field approximation

Mean-field approximation BD: 1/din DB: dout LD: dout/din

Asymmetric random 1/din dout dout/din

Asymmetric scale-free No relation dout dout/din

E-mail No relation No relation No relation

Asymmetric small world No relation No relation No relation

din and dout are the in and out degrees of the initial mutant vertex

6.5 Further Game Theoretic Results 87

6.5 Further Game Theoretic Results

Now that we have described alternate update rules, we shall re-visit our game-
theoretic extensions and review some results regarding topics such as cooperation,
reciprocity, and evolutionary stability w.r.t. a game on the graph under various
update rules.

6.5.1 Evolutionary Stability on Graphs

Evolutionary stability, describing the ability of a player type comprising a popu-
lation to be resistant against invasion by another type, is an important concept in
evolutionary game theory that has been well studied for well-mixed populations.
Ohtsuki et al. [28] analyze evolutionary stability on regular graphs of degree
k > 2 for the BD, DB, and IM updating rules through pairwise approximation
and simulation. Evolutionary stability on graphs means that a small fraction of
rare mutants cannot spread, i.e., a resident strategy evolutionarily stable if it has
a selective advantage over an invading strategy (invading at an ε fraction of the
total population). Ohtsuki et al. provide evolutionary stability conditions for this
definition on regular graphs for the different update rules considered, and (on
top of the game payoff matrix values) all these conditions depend on the graph
degree k. The results are validated through simulations on specific game examples.
The important point to consider from these results is that population structure can
have crucial impact on the evolutionary stability of strategies, i.e., in the words of
“traditional criterion for evolutionarily stable strategies in well-mixed populations
is neither necessary nor sufficient to guarantee evolutionary stability in structured
populations”.

6.5.2 Regular Graphs and the Replicator Equation

Ohtsuki et al. [27] study evolutionary games on regular graphs of degree k
considering the BD, DB, IM, PC update rules.2 The authors use pair approximation
[14, 16, 21, 22, 36] to derive a system of ordinary differential equations describing
the change in expected frequency of strategies in a game on a graph over time. In the
limit of weak selection (w << 1), the authors show that under the update rules BD,
DB, and IM this differential equation is the well-known replicator equation with a
transformed payoff matrix. The payoff matrix is the original payoff matrix summed
with a payoff matrix describing the local competition of strategies, different for BD,

2We use the shorter BD and DB notation for the update rules with birth bias BD-B and DB-B. See
Table 6.2.

88 6 Evolutionary Graph Theory

DB, and IM. PC is shown to be equivalent to BD in the model used. This result
is applied to the Prisoner’s Dillema and the Snow Drift Game on regular graphs.
Results for the Prisoner’s Dillema coincide with those of [26], showing identical
conditions necessary for cooperators to be favored over defectors.

6.5.3 Evolution of Cooperation and Social Viscosity

Ohtsuki et al. [26] explore the problem of cooperation on a variety of graphs through
numerical simulations. The graph types explored are cycles, spatial lattices, random
regular graphs, random graphs and scale free networks. Every player plays a game
with all its neighbors, where the game between two players is given by the payoff
matrix (6.15) below. This game represents a Prisoner’s Dilemma game between two
players, and gives a kind of Public Goods Game when each player plays the game
with all its neighbors. In this game b is called the benefit of the altruistic act and
c is the cost of the altruistic cooperation act. A Cooperator that is connected to n
Cooperators and m Defectors for receives a payoff of bn− c(n+m).

cooperate defect
cooperate b− c −c

defect b 0
(6.15)

Ohtsuki et al.’s results suggests that under the DB update rule, a necessary
condition for cooperation to arise in the types of graphs explores is that b/c > k,
where k is the average number of neighbors. This result is derived under the
conditions of weak selection and that the number of vertices in the graph is much
larger than the average degree. The authors note the close and interesting relation
of this result to Hamilton’s rule [13], which states that kin selection can favor
cooperation provided that b/c> 1/r, where r is the coefficient of genetic relatedness
between individuals. The condition for cooperation fits less well for non-regular
graphs, as one would expect due to the larger variance in vertex degrees, but is a
good approximation unless the variance in degree distributions of the graph gets
too large. Other dynamics explored are IM,3 for which cooperation is favored when
b/c > k+ 2, and BD, for which cooperation is never favored by selection.

6.5.4 Graph Heterogeneity and Evolution of Cooperation

Santos et al. [30] investigate the effects of single-scale and scale-free networks on
cooperation in the Prisoner’s Dillema, Snow-Drift, and Stag-Hunt games through

3The authors of [26] also note that mathematically, “IM updating can be obtained from DB updating
by adding loops to every vertex”.

6.6 Conclusion 89

simulations. The update rule used is a type of imitation dynamic in which all vertices
update simultaneously in each generation, as follows: for each vertex a random
neighbor is chosen, and if that neighbor has achieved a higher payoff, the vertex
adopts the strategy of this neighbor with a probability proportional to the payoff
difference. The authors find that in degree-heterogeneous graphs cooperation is
easier to sustain than in well-mixed populations and thus identify heterogeneity
as a “powerful mechanism for the emergence of cooperation.” Additionally, the
authors find that the sustainability of cooperation also depends on “detailed and
intricate ties” between agents. As evidence of this, scale free networks which
exhibit properties like those that emerge from models of growth from preferential
attachment (Albert-Barbarasi topology) are shown to produce higher cooperation
than random scale-free networks.

Fu et al. [11] devise a framework for the general study of games on arbitrary
graphs under weak selection, formulating the game dynamics as a discrete Markov
process. Using DB updating and the game of the prisoner’s dilemma, they employ
their method on random regular graphs and scale-free networks to demonstrate the
utility of their framework compared to pair-approximation and simulated data. The
authors find a stronger correlation between their approach and the simulated results.
They also reach some conclusions on the evolution of cooperation, most notably
that under DB updating and weak selection, degree heterogeneous graphs (e.g.,
scale-free networks) generally impose higher invasion barriers than regular graphs.
This extends a result in [1] reporting that a heterogeneous graph is an inhospitable
environment for a mutant to evolve in the case of constant selection. Fu et al. show
this to be true for weak selection as well. This result seems to be in disagreement
with the conclusion of [30], which concludes that graph heterogeneity aids the
emergence of cooperation. Fu et al. point out that this conclusion by Santos et al.
[30] hinges on the simultaneous appearance of a number of cooperators to overcome
the invasion barrier.

6.6 Conclusion

In this chapter, we have described evolutionary graph theory, which was first
introduced in [17] and generalizes the classic Moran process of [23]. We have
described the original model, the major results and extensions, and applications to
game theory. A somewhat recent trend in the area of evolutionary graph theory is
applied work such as [38] for economics and [37] in biology most likely represent
just the beginning of a new trend. Further, the desire to add realism to diffusion
models extends beyond EGT and is currently an active topic relating to nearly every
model in this book. In the next chapter, we review some empirical results toward
this end.

90 6 Evolutionary Graph Theory

References

1. Antal, T., Redner, S., Sood, V., 2006. Evolutionary dynamics on degree-heterogeneous graphs.
Physical Review Letters 96 (18), 188104. http://link.aps.org/abstract/PRL/v96/e188104

2. Barbosa, V. C., Donangelo, R., Souza, S. R., 2009. Network growth for enhanced natural
selection. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 80 (2), 026115.
http://link.aps.org/abstract/PRE/v80/e026115

3. Barbosa, V. C., Donangelo, R., Souza, S. R., Oct 2010. Early appraisal of the fixation
probability in directed networks. Phys. Rev. E 82 (4), 046114.

4. P. Shakarian, P. Roos, A. Johnson. A Review of Evolutionary Graph Theory with Applications
to Game Theory. BioSystems 107(2), 2012.

5. P. Shakarian, P. Roos, G. Moores. A Novel Analytical Method for Evolutionary Graph Theory
Problems. BioSystems. 111(2), 2015.

6. Broom, M., Hadjichrysanthou, C., Rychtar, J., 2010. Evolutionary games on graphs and the
speed of the evolutionary process. Proceedings of the Royal Society A 466, 1327–1346.

7. Broom, M., Hadjichrysanthou, C., Rychtar, J., Stadler, B. T., Apr. 2010. Two results on
evolutionary processes on general non-directed graphs. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences 466 (2121), 2795–2798. http://rspa.
royalsocietypublishing.org

8. Broom, M., Rychtar, J., May 2008. An analysis of the fixation probability of a mutant on
special classes of non-directed graphs. Proceedings of the Royal Society A 464, 2609–2627.

9. Broom, M., Rychtar, J., Stadler, B., 2011. Evolutionary dynamics on graphs - the effect of graph
structure and initial placement on mutant spread. Journal of Statistical Theory and Practice 5
(3), 369–381.

10. Broom, M., Rychtar, J., Stadler, B., 2009. Evolutionary dynamics on small-order graphs.
Journal of Interdisciplinary Mathematics 12 (2), 129–140.

11. Fu, F., Wang, L., Nowak, M. A., Hauert, C., Apr. 2009. Evolutionary dynamics on graphs:
Efficient method for weak selection. Physical Review E 79 (4).

12. Garey, M. R., Johnson, D. S., 1979. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

13. Hamilton, W., 1964. The genetical evolution of social behaviour. II* 1. Journal of theoretical
biology 7 (1), 17–52.

14. Haraguchi, Y., Sasaki, A., 2000. The evolution of parasite virulence and transmission rate in a
spatially structured population. Journal of Theoretical Biology 203 (2), 85–96.

15. Houchmandzadeh, B., Vallade, M., July 2011. The fixation probability of a beneficial mutation
in a geographically structured population. New Journal of Physics 13 (7), 073020. http://stacks.
iop.org/1367-2630/13/i=7/a=073020

16. Keeling, M., 1999. The effects of local spatial structure on epidemiological invasions.
Proceedings: Biological Sciences 266 (1421), 859–867.

17. Lieberman, E., Hauert, C., Nowak, M. A., 2005. Evolutionary dynamics on graphs. Nature 433
(7023), 312–316. http://dx.doi.org/10.1038/nature03204

18. Maruyama, T., 1974. A simple proof that certain quantities are independent of the geo-
graphical structure of population. Theoretical Population Biology 5 (2), 148–154. http://www.
sciencedirect.com/science/article/pii/0040580974900379

19. Masuda, N., 2009. Directionality of contact networks suppresses selection pressure in evolu-
tionary dynamics. Journal of Theoretical Biology 258 (2), 323–334.

20. Masuda, N., Ohtsuki, H., 2009. Evolutionary dynamics and fixation probabilities in directed
networks. New Journal of Physics 11, 033012.

21. Matsuda, H., Ogita, N., Sasaki, A., Sato, K., 1992. Statistical mechanics of population. Prog.
Theor. Phys 88 (6), 1035–1049.

22. Matsuda, H., Tamachi, N., Sasaki, A., N., O., 1987. A lattice model for population biology.
In: Mathematical Topics in Biology, Morphogenesis and Neuro-sciences. Vol. 71 of Springer
Lecture Notes in Biomathematics. pp. 154–161.

http://link.aps.org/abstract/PRL/v96/e188104
http://link.aps.org/abstract/PRE/v80/e026115
http://rspa.royalsocietypublishing.org
http://rspa.royalsocietypublishing.org
http://stacks.iop.org/1367-2630/13/i=7/a=073020
http://stacks.iop.org/1367-2630/13/i=7/a=073020
 http://dx.doi.org/10.1038/nature03204
http://www.sciencedirect.com/science/article/pii/0040580974900379
http://www.sciencedirect.com/science/article/pii/0040580974900379

References 91

23. Moran, P., 1958. Random processes in genetics. Mathematical Proceedings of the Cambridge
Philosophical Society 54 (01), 60–71.

24. Nowak, M., May, R., 1992. Evolutionary games and spatial chaos. Nature 359 (6398), 826–829.
25. Nowak, M., Tarnita, C., Antal, T., 2010. Evolutionary dynamics in structured populations.

Philosophical Transactions of the Royal Society B: Biological Sciences 365 (1537), 19.
26. Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M. A., May 2006. A simple rule for the

evolution of cooperation on graphs and social networks. Nature 441 (7092), 502–505. http://
dx.doi.org/10.1038/nature04605

27. Ohtsuki, H., Nowak, M. A., November 2006. The replicator equation on graphs. Journal of
Theoretical Biology 243 (7), 86–97. http://dx.doi.org/10.1016/j.jtbi.2006.06.004

28. Ohtsukia, H., Nowak, M., 2008. Evolutionary stability on graphs. Journal of Theoretical
Biology 251, 698–707.

29. Rychtar, J., Stadler, B., Winter 2008. Evolutionary dynamics on small-world networks.
International Journal of Computational and Mathematical Sciences 2 (1).

30. Santos, F. C., Pacheco, J. M., Lenaerts, T., February 2006. Evolutionary dynamics of social
dilemmas in structured heterogeneous populations. PNAS 103 (9), 3490–3494. http://dx.doi.
org/10.1073/pnas.0508201103

31. Shakarian, P., Roos, P., 2011. Fast and deterministic computation of fixation probability
in evolutionary graphs. In: CIB ’11: The Sixth IASTED Conference on Computational
Intelligence and Bioinformatics (accepted). IASTED.

32. Slatkin, M., May 1981. Fixation probabilities and fixation times in a subdivided population.
Evolution 35 (3), 477–488.

33. Sood, V., Antal, T., Redner, S., 2008. Voter models on heterogeneous networks. Physical
Review E (Statistical, Nonlinear, and Soft Matter Physics) 77 (4), 041121. http://link.aps.org/
abstract/PRE/v77/e041121

34. Tarnita, C., Ohtsuki, H., Antal, T., Fu, F., Nowak, M., 2009. Strategy selection in structured
populations. Journal of Theoretical Biology 259, 570–581.

35. Toran, J., May 2004. On the hardness of graph isomorphism. SIAM J. Comput. 33, 1093–1108.
http://dx.doi.org/10.1137/S009753970241096X

36. Van Baalen, M., 2000. Pair approximation for different spatial geometries. In: The geom-
etry of ecological interactions: simplifying spatial complexity. Cambridge University Press,
p. 359387.

37. Voelkl, B., Kasper, C., 2009. Social structure of primate interaction networks facilitates the
emergence of cooperation. Biology Letters 5, 462–464.

38. Zhou, A.-n., 2011. Stability analysis for various business forms. In: Zhou, Q. (Ed.), Applied
Economics, Business and Development. Vol. 208 of Communications in Computer and
Information Science. Springer Berlin Heidelberg, pp. 1–7.

http://dx.doi.org/10.1038/nature04605
http://dx.doi.org/10.1038/nature04605
http://dx.doi.org/10.1016/j.jtbi.2006.06.004
http://dx.doi.org/10.1073/pnas.0508201103
http://dx.doi.org/10.1073/pnas.0508201103
http://link.aps.org/abstract/PRE/v77/e041121
http://link.aps.org/abstract/PRE/v77/e041121
http://dx.doi.org/10.1137/S009753970241096X

Chapter 7
Examining Diffusion in the Real World

7.1 Introduction

In the previous chapters, we introduced various diffusion models and associated
“influence maximization” or “seed set” problems. The intuition is that once the
problem is solved—a seed set identified—that an information cascade initiating
in that set will become wide-spread. However, to date, fitting models such as
linear threshold or independent cascade to data has proved difficult—see [1, 2] for
examples. Hence, recent data-driven studies have focused on simply detecting if a
given cascade will grow in size [3, 5, 7, 10, 11]. In this chapter, we review some of
the main results for this “cascade prediction” problem.

It turns out that the cascade prediction problem is difficult due to the frequency
of large cascades. Figure 7.1 shows the relationship between cascade size and
frequency for retweet traces in a Sina Weibo dataset [4]. This implies that vast
major of original contents would only attract little attention from the sociality while
only a quite small portion of them can finally become “viral”. In this chapter, we
differentiate “viral” cascades from “non-viral” ones by the number of reposts as
[11] did. In some research, keywords extracted from content or hashtags are also
considered as identifiers of a cascade [5]. In addition, researchers may also treat
the number of views of a message in social media as its popularity [6]. However,
viewing is often considered as a neutral action, viewers may either agree or disagree
with the content of a microblog.

Work such as [7] and [9] aimed to discover correlation between centrality
measures (such as those described in Chap. 2) of users and their influence in real-
world social networks. However, experiments in [7] show that historical influence is
a better predictor of actual influence than out degree, furthermore, the combination
of them does not work well in terms of predicting actual influence for individual
cascade. The authors of [9] claim that shell number of a node is a good predictor of
its influence. The correlation between average actual influence and the top fraction
of the node in terms of shell number. However, experiments shown in this chapter

© The Author(s) 2015
P. Shakarian et al., Diffusion in Social Networks, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-23105-1_7

93

94 7 Examining Diffusion in the Real World

Fig. 7.1 Power-law
distribution of cascade size in
a real-world social network:
2.2 million original
microblogs published in
August, 2011 in Sina Weibo
were monitored until the end
of the month

demonstrate low precision for shell number in terms of predicting cascades. Hence,
nodal measures, even with other features like historical influence of the root node,
are not enough to provide reliable prediction result on cascade size.

Therefore, features extracted from cascades in premature stage (beyond a single
node, but only after a small number of individuals have adopted) have been studied
to solve this problem [10, 11]. Inspired by “structural diversity” introduced by
Ugander et al. [12], the work of Weng et al. [5] extracted features based on
distribution of nodes over communities to predict final size of cascades. Recently, in
[3] this has been extended to enable order-of-magnitude prediction—identification
of cascades that will grow ten-fold. We review some of these findings in this chapter.

7.2 Identifying Viral Diffusion Processes: Centrality-Based
Approaches

Following along the ideas introduced in Chap. 2 for the SIR model, it would
seem sensible to predict how a trend spreads by only examining the root node.
In that chapter, nodal measures like degree, pagerank, shell number were used to
estimate the influence of a node. However, in real-world social networks, although
centrality measures can show some predictability of influence of a node when it
seeds cascades, the reliability of this method is shown to be poor.

With data crawled from Twitter, Bakshy et al. [7] trained a regression tree with
two group of features of the root nodes shown in Table 7.1. The importance of
features are measured by information gain they provides during the splitting process
while training the regression tree. In terms of influence of a node, it intuitively
represents the size of cascades seeded by it. In that work, historical influence
that made by a node is measured by “influence score”. The contributors would
be assigned a unit influence score (1.0) in total for each repost behavior. In that
work, contributors are the active in-coming neighbors who reposted the message
before the specific repost published. Three ways they used to assign the influence
are: assign the unit influence to the first active in-coming neighbor, assign the unit
influence to the latest active in-coming neighbor, assign it uniformly to each active

7.2 Identifying Viral Diffusion Processes: Centrality-Based Approaches 95

Table 7.1 Features of root
node applied to prediction of
influence in [7]

Group 1
Number of followers, number of friends,
number of tweets, date of joining

Group 2 Past local influence

Fig. 7.2 In the Facebook dataset studied by Sen et al. [9], root nodes with the same shell number
can result in quite different influence spread value, though it is more effective than other measures

in-coming neighbor (1
N). It turns out that these three ways perform quite similarly.

The regression tree shows past local influence is the most informative feature while
the number of followers (out degree) is the second. Therefore, out degree itself is
not informative enough for evaluation of actual influence of the root. This result is
consistent with the discovery of another empirical study by Cha et al. [8] on Twitter.
Furthermore, their regression result only shows the average predicted influence
is approximately linearly correlated to the actual influence with a relatively high
standard deviation. This means the prediction actually is quite unreliable for each
individual case (R2 = 0.34).

In [9], results of experiment show shell number and two simple heuristics based
on it are more effective than in degree and pagerank in terms of measuring the
influence of a node in real-world social networks. For evaluation of influence, the
authors introduced “influence spread”, which is the average number of influenced
nodes seeded by roots under all combinations of shell number and in degree value.
However, while they showed improvement over the other centrality measures, shell-
number alone provides low-precision in predicting viral trends (see Fig. 7.2).

For example, in the Facebook dataset, less than 30% of the nodes in the top 5%
by shell number are in the set of nodes with top 5% influence. Moreover, we inves-
tigated the influence spread of nodes in the highest shell number. The distribution
of historical influence spread for the nodes in the highest shell can be quite varied,
for example, 12% of them have not produced any influence spread at all and 39%
of them only end up with influence spread smaller than half of the maximum. Thus,
shell number actually can not provide good precision for identifying nodes that will
consistently initiate a large cascade.

96 7 Examining Diffusion in the Real World

7.3 Structural Diversity and Diffusion

As the information provided by the root is not enough to predict the virality of a
cascade, then perhaps it is more sensible to instead investigate features based on
first N nodes in the cascade. For example, in Cheng et al. [10] the connectivity
of the first four nodes in each cascade is shown to be correlated to whether
the cascade can reach the median size of cascades based on distribution—hence
enabling identification of cascades that will double in size.

In 2012, Ugander et al. [12] introduced the idea of “structural diversity” to
explain why some nodes are more susceptible to influence than others. In their
experiment, the number of connected components in friendship network crawled
from Facebook is applied to measure structural diversity. By structural diversity,
they demonstrated that users who received invitations from more various social
context are more likely to become a regular Facebook user in their study of the
activity of Facebook user recruitment through email. The finding is different from
most standard diffusion models—the users potentially infected by this recruitment
process are actually not considered as a member of any connected components.1

This runs counter to the traditional idea that users influenced by more people are
more likely to adopt the behavior.

Figure 7.3 shows an example of difference between the size of active
neighborhood and structural diversity. In some cases, the size of active in-coming
neighborhood even is negatively correlated with the probability of adoption. While
the number of connected components in k-core (k = 2), k-brace (k = 2) or with size
larger than k = 8 respectively shows strong positive correlation with the likelihood
of adoption.

Figure 7.4 illustrates the effect on the probability of adoption when a node is
influenced by a certain number of neighbors and communities. This is based on
our analysis of data from the microblog Sina Weibo [4]. Instead of measuring
the structural diversity by number of connected components, we investigate the
probability for users to repost a microblog under the condition of combinations
of number of active in-coming neighbors and number of active communities in
their in-coming neighborhood. The communities are detected by Louvain algorithm
[13] proposed by Blondel et al. which was also used to identify communities in the
analysis presented in Chap. 3.

The probability of adoption increases more obviously with the number of active
communities than the number of active nodes. One potential explanation for the
phenomenon is that communities influence individuals independently. In other
words, the person exposed to the influence of multiple sources in the same
community may consider them as one because they fail to exhibit independence.

1This is excepting recent diffusion models created in the aftermath of the publication of [12] such
as [15].

7.3 Structural Diversity and Diffusion 97

Fig. 7.3 Compared to the right individual, the individual on the left has a larger size of active
in-coming neighbors while the right individual receives stimuli from more communities

Fig. 7.4 Probability of repost
for users under different size
of in-coming neighborhood
and number of in-coming
communities, computed using
reposting in a 3 month time
interval, 5 million users
included

In the recent work of Weng et al. [5], the authors leverage the ideas of structural
diversity to accurately identify cascades that will increase by 100 nodes or less.
In the recent work of [3], the authors achieve order-of-magnitude prediction, despite
the imbalance caused by the power-law distribution of cascade size. In that work,
the social network is learned from historical reposts where an edge from user A
to user B represents B has reposted at least one microblog from A. Hence, this
method can work without any knowledge about the underlying friendship network.

98 7 Examining Diffusion in the Real World

Fig. 7.5 Overlap for different cascade size m = {10,30,50,100,200}, ‘M’ represents median and
‘A’ represents average. (a) Overlap of adopters and λ -frontiers for non-viral cascades. (b) Overlap
of adopters and λ -frontiers for viral cascades

Moreover, besides just focusing on the users already adopted the reposting behavior
(adopters) as other works did, the users exposed to influence of the reposts are also
taken into consideration as frontiers. Based on the diffusion network, frontiers are
the out neighbors of adopters. Recent reposts from adopters illustrate that frontiers
are able to see adopter’s activities.

In [3], several features were created based on the notion of structural diversity.
For instance, “overlap” refers to the number of common communities represented
in the set of adopters and those who are exposed to the social contagion (we refer to
them as “frontiers”).

Figure 7.5 illustrates box plots of the distribution of a structural diversity based
feature for viral and non-viral cascades respectively, where a cascade is viral or not
based on whether its final size can reach 500 (with an initial size of 50). Statistically
significant difference is shown by KS test for the distribution for the two classes of
cascades. KS test outputs extremely small K values which reject the null hypothesis
that two distributions are not significantly different.

Therefore, a classifier can recognize viral cascades when is provided with
these features. Binary classification with ten-fold cross validation is performed to
verify the effectiveness of this approach. SMOTE [14] is also implemented for
oversampling the viral cascades, but synthetic samples are not considered during
computation of precision, recall or F1 score. The result shown in Fig. 7.6 displays
the precision, recall, and F1 for the viral class (2% of samples)—highlighting the
effectiveness of these features.

7.4 Conclusion

There are many open problems in the field of information diffusion in social
networks. One of the most important topic in the field is about predicting the
size of the information cascade and estimate the time when a meme will go viral

References 99

Fig. 7.6 Prediction results
provided by structural
diversity based features
extracted from first 50 nodes
in cascades. Threshold on
final size to distinct viral
cascades from non-viral ones
is set as 500

0.65

0.53
0.58

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Precision Recall F1 Score

in a social network platform. There are some work trying to learn an influence
function from the historic diffusion traces. Work in both areas take advantage of
the techniques in machine learning and data mining. There are some preliminary
work about sequential seeding to maximize the size of cascades. This is natural
extension of the idea. Instead of coming up with all the seeds at the begging and
do the expensive simulation for all the time steps, lets come up with a new seed in
each time step and let the nature do the computation for us! This is in particular very
useful in viral marketing where we can observe the outcome of the diffusion in the
real world network.

We also note that almost all the research done in the field uses computer simula-
tion to determine the outcome, and hence resulting in non-realistic observation, or
uses past diffusion traces to learn a model. It would also be good to come up with
experiments on human subjects to validate our hypotheses.

Finally, there has not been many operational implementation of the systems
taking advantage of the ideas proposed in information diffusion in different
applications.

References

1. Amit Goyal, Francesco Bonchi, Laks V. S. Lakshmanan, A Data-Based approach to Social
Influence Maximization. In PVLDB 2012.

2. Amit Goyal, Francesco Bonchi, Laks V. S. Lakshmanan, Learning Influence Probabilities in
Social Networks. In Proc. of the 3rd ACM International Conference on Web Search and Data
Mining, WSDM 2010, New York City, 2010.

3. Guo, R., Shaabani, E., Bhatnagar, A., Toward Order-of-Magnitude Viral Cascade Prediction
in Social Networks. IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, 2015.

4. Qian, W., WISE 2012 Challenge 13th International Conference on Web Information Systems
Engineering (WISE 2012), 11 May. 2012. Web. 24 May. 2015.

5. Weng, Lilian, Filippo Menczer, and Yong-Yeol Ahn. “Virality prediction and community
structure in social networks.” Scientific reports 3 (2013).

6. Ma, Haixin, et al. “Towards modeling popularity of microblogs.” Frontiers of Computer
Science 7.2 (2013): 171–184.

100 7 Examining Diffusion in the Real World

7. Bakshy, Eytan, et al. “Everyone’s an influencer: quantifying influence on twitter.” Proceedings
of the fourth ACM international conference on Web search and data mining. ACM, 2011.

8. Cha, Meeyoung, et al. “Measuring User Influence in Twitter: The Million Follower Fallacy.”
ICWSM 10.10-17 (2010): 30.

9. Pei, Sen, et al. “Searching for superspreaders of information in real-world social media.”
Scientific reports 4 (2014).

10. Cheng, Justin, et al. “Can cascades be predicted?” Proceedings of the 23rd international con-
ference on World wide web. International World Wide Web Conferences Steering Committee,
2014.

11. Jenders, Maximilian, Gjergji Kasneci, and Felix Naumann. “Analyzing and predicting viral
tweets.” Proceedings of the 22nd international conference on World Wide Web companion.
International World Wide Web Conferences Steering Committee, 2013.

12. Ugander, Johan, et al. “Structural diversity in social contagion.” Proceedings of the National
Academy of Sciences (2012): 201116502.

13. Blondel, Vincent D., et al. “Fast unfolding of communities in large networks.” Journal of
Statistical Mechanics: Theory and Experiment 2008.10 (2008): P10008.

14. Chawla, Nitesh V., et al. “SMOTE: synthetic minority over-sampling technique.” Journal of
artificial intelligence research 16.1 (2002): 321–357.

15. P. Shakarian, L. Gerdes, H. Lei. Circle-Based Tipping Cascades in Social Networks. WSDM
2014 Workshop on Diffusion Networks and Cascade Analytics (Feb. 2014).

Chapter 8
Conclusion

There are many open problems in the area of diffusion in social networks. First,
we believe that data-driven approaches, such as those described in the Chap. 7,
are really still in the early stages of development. We have noted that recent
work of this type deals with issues such as predicting the influence of individuals
nodes, predicting the outcome of a diffusion process, and identifying more realistic
models. Work in this area spans from observational studies in disciplines such as
sociology and economics to the machine learning approaches seen in the computer
science community. As data on real-world diffusion traces become more available,
we expect this line of work to grow further.

Sequential seeding is another emerging topic that will likely prove to be
important. An individual conducting such marketing operations in practice would
likely attempt to adjust ones seeding strategy based on the ongoing dynamics of the
process. Though scalability issues seem to loom with this line of work, addressing
sequential seeding will likely help better operationalize the ideas described in this
volume.

As research on diffusion progresses, we also anticipate to see more human-
subjects based tests—which will better validate the approaches and provide fresh
insights.

Finally, there are many practical issues concerning the deployment of diffusion
ideas in a real-world system. Issues such as collecting and reasoning about social
network data in real-time will become paramount. Though challenging, we believe
that all of these issues will be addressed as the field progresses—allowing us to
harness the power of diffusion in social networks.

© The Author(s) 2015
P. Shakarian et al., Diffusion in Social Networks, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-23105-1_8

101

	Preface
	Acknowledgements
	Contents
	1 Introduction
	References

	2 The SIR Model and Identification of Spreaders
	2.1 Introduction
	2.2 The SIR Model
	2.2.1 Selecting the Infection Probability

	2.3 Centrality and Other Nodal Measures
	2.3.1 Degree Centrality
	2.3.2 Shell Number
	2.3.3 Betweenness Centrality
	2.3.4 Closeness Centrality
	2.3.5 Eigenvector Centrality
	2.3.6 PageRank
	2.3.7 Neighborhood
	2.3.8 The Imprecision Functions

	2.4 Experimental Findings
	2.4.1 Datasets
	2.4.2 Sensitivity to β
	2.4.3 Eigenvector Centrality for Spreader Identification
	2.4.4 Large Values of β

	2.5 Conclusions
	References

	3 The Tipping Model and the Minimum Seed Problem
	3.1 Introduction
	3.2 The Tipping Model
	3.3 The Minimum Seed Problem
	3.3.1 Exact Approach
	3.3.2 Heuristic

	3.4 Experimental Findings
	3.4.1 Datasets
	3.4.1.1 Category A
	3.4.1.2 Category B
	3.4.1.3 Category C

	3.4.2 Runtime
	3.4.3 Seed Size
	3.4.4 Comparison with Centrality Measures
	3.4.5 Effect of Removing High-Degree Nodes

	3.5 Conclusion
	References

	4 The Independent Cascade and Linear Threshold Models
	4.1 Introduction
	4.2 Model Definitions
	4.2.1 Independent Cascade Model
	4.2.2 Linear Threshold Model
	4.2.3 Generalized Threshold Model

	4.3 Influence Maximization Problem
	4.3.1 Influence Maximization Under the IC Model
	4.3.2 Influence Maximization Under the LT Model
	4.3.3 Influence Maximization Under the GT Model

	4.4 Scaling Influence Maximization
	4.4.1 Lazy Greedy Approximation
	4.4.2 Maximum Influence Arborescence (MIA) Model
	4.4.3 SIMPATH Algorithm

	4.5 Conclusion
	References

	5 Logic Programming Based Diffusion Models
	5.1 Introduction
	5.2 Embedding Diffusion Models into Annotated Logic Programs
	5.2.1 Social Networks Formalization
	5.2.2 Generalized Annotated Programs: A Recap

	5.3 Social Network Diffusion Optimization Problem (SNDOP) Queries
	5.3.1 Basic SNDOP Queries
	5.3.2 Special Cases of SNDOPs
	5.3.3 The Complexity of SNDOP Queries

	5.4 Applying SNDOPs to Diffusion Problems
	5.4.1 Tipping Diffusion
	5.4.2 Cascading Diffusion
	5.4.3 Homophilic Diffusion

	5.5 Algorithmic Approach and Experiments
	5.6 Conclusion
	References

	6 Evolutionary Graph Theory
	6.1 Introduction
	6.2 Evolutionary Graph Theory Models
	6.2.1 Properties of Fixation Probability
	6.2.2 Game Theoretic Extensions

	6.3 Determining Fixation Probability for Fixed Fitness
	6.3.1 Fixation Probability Calculations for Certain Topologies
	6.3.2 Undirected Evolutionary Graphs

	6.4 Alternate Update Rules
	6.5 Further Game Theoretic Results
	6.5.1 Evolutionary Stability on Graphs
	6.5.2 Regular Graphs and the Replicator Equation
	6.5.3 Evolution of Cooperation and Social Viscosity
	6.5.4 Graph Heterogeneity and Evolution of Cooperation

	6.6 Conclusion
	References

	7 Examining Diffusion in the Real World
	7.1 Introduction
	7.2 Identifying Viral Diffusion Processes: Centrality-BasedApproaches
	7.3 Structural Diversity and Diffusion
	7.4 Conclusion
	References

	8 Conclusion

