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Abstract Langmuir waves take place in a quasi-neutral plasma and are modeled
by the Zakharov system. The phenomenon of collapse, described by blowing up
solutions, plays a central role in their dynamics. We present in this article a review of
the main mathematical properties of blowing up solutions. They include conditions
for blowup in finite or infinite time, description of self-similar singular solutions and
lower bounds for the rate of blowup of certain norms associated with the solutions.

1 Introduction

Langmuir waves take place in a non-magnetized or weakly magnetized plasma and
are described by the Zakharov system [1]

i@tE � ˛r � .r � E/C r.r � E/ D nE; (1)

@ttn ��n D �jEj2: (2)

Equation (2) originates from the hydrodynamic system

nt C r � v D 0; (3)

vt C rn D �r jEj2; (4)

governing ion sound waves. E.x; t/ is the complex envelope of the electric field
oscillations. n.x; t/ denotes the fluctuations of density of ions and v.x; t/ their
velocity, with x 2 R

d, in dimension d D 2 or 3. The parameter ˛ in (1) is
defined as the square ratio of the light speed and the electron Fermi velocity and
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is usually large. A simplified system of equations is obtained in the electrostatic
limit (˛ ! 1) expanding the electric field in the form E D r C .1=˛/E1 C � � �.
Substituting this expansion in (1) and taking the divergence of the equation gives
a system describing the interaction of the electrostatic potential with the plasma
density [1, 2]

�.i@t C� / D r � .nr /; (5)

@ttn ��n D �.jr j2/: (6)

A further simplification leads to

i t C� D n ; (7)

ntt ��n D �j j2: (8)

with

nt C r � v D 0; (9)

vt C rn D �r j j2; (10)

usually called the scalar Zakharov system. Introducing the hydrodynamic potential
U such that v D �rU, (4) becomes

@tU D n C jEj2: (11)

Heuristic derivations of the Zakharov system can be found in [3, 4]. Viewing the
plasma as a two interpenetrating fluids (electrons and ions), the Zakharov system
(7)–(9) can be obtained using a multiple-scale modulation analysis [5]. A rigorous
derivation of the scalar model is given in [6] using techniques of geometric optics
and semi-classical calculus.

Invariance properties of the system by simple transformations lead to several
conserved quantities. In particular, if .E; n/ is a smooth solution of (7)–(10), the
wave energy N D jEj2

L2
and the Hamiltonian

H D ˛jr � Ej2L2 C jr � Ej2L2 C 1
2
jnj2L2 C 1

2
jrUj2L2 C

Z
njEj2 dx (12)

are conserved. Other invariants are the linear and angular momenta

P D
Z �

i

2

X
j

.EjrE�
j � E�

j rEj/C nv
�

dx (13)

and

M D
Z
.iE � E� C x � P/ dx: (14)
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Modulational instability leads to the formation of regions where the density of
the plasma is very low. In these regions referred to as cavities, high-frequency
oscillations of the electric field are trapped. Their nonlinear evolution gives rise
to the collapse of the cavities and a strong amplification of the amplitude of the
oscillations of the electric field. Heuristic arguments and numerical simulations
show that, for large enough initial conditions, solutions blowup in a finite time both
in two and three dimensions (see [5] for a review).

In this article, we present an overview of mathematical results and open questions
concerning blowing up solutions for the scalar Zakharov model. We also discuss
the extension of some of the features of blowup to the Vectorial Zakharov system
for which very few rigorous are known apart from local well-posedness and global
well-posedness under the assumption of small enough initial conditions.

2 The Scalar Zakharov System

We consider the scalar Zakharov system (7) and (8) with initial conditions

 .x; 0/ D  0.x/; n.x; 0/ D n0.x/; nt.x; 0/ D n1.x/: (15)

The conserved quantities are:

• the wave energy

N D j j2L2 ; (16)

• the linear momentum

P D
Z �

i

2
. r � �  �r /C nv

�
dx; (17)

• the angular momentum

M D
Z

x � P dx; (18)

and
• the Hamiltonian

H D
Z �

jr j2 C nj j2 C 1

2
jvj2 C 1

2
n2
�

dx: (19)

There is a large literature devoted to the local and global well-posedness of
the initial value problem. Earlier works concern smooth solutions, in particular
solutions with finite energy (Hamiltonian) [7–13]. More recently, there has been
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an interest in solutions with lower regularity assumptions and in particular in
solutions with infinite energy [14–19]. Associated to the long time existence theory
are the important questions of scattering theory, existence of wave operators [20],
and precise decay of solutions for large time. In particular, in three dimensions,
it is proved in [21] that, if the initial conditions are small and localized, then
supxj .t/j � Cjtj�7=6�, supxjn.t/j � Cjtj�1, and the solution . ; n/ scatters
to a solution to the associated linear problem as jtj ! 1. Here the notation
7=6 � means 7=6 � ", for any " > 0.

We denote by Hk.Rd/ the Sobolev space of functions f such that f and its
derivatives of order p, jpj � k, are bounded in the L2-space. It is also convenient
to define the product space

Hk D Hk.Rd/ � Hk�1.Rd/ � Hk�2.Rd/: (20)

The energy space corresponds to H1.

2.1 Blowup in Finite or Infinite Time

A central tool in the theory of blowup for the Nonlinear Schrödinger (NLS) equation

i@t C� C j j2� D 0;  .x; t/ D  0.x/ (21)

is the variance identity

d2

dt2

Z
jxj2j j2 dx D 8HNLS � 4d� � 2

� C 1

Z
j j2�C2 dx;

where HNLS D R
.jr j2 � .� C 1/�1j j2�C2/ dx is the NLS Hamiltonian. Under

the assumption that the initial condition  0 is in H1.Rd/ has finite variance and
HNLS. 0/ < 0, the solution of (21) blows up in a finite time if �d � 2. For the
Zakharov system, the usual variance

R jxj2j j2 dx can be replaced by the quantity

V.t/ D 1

4

Z
jxj2j j2 dx C

Z t

0

Z
.x � v/n dx dt (22)

which is well defined for functions in the space

˙ 0 D
�
. ; n; v/ 2 H1;

Z �jxj2j j2 C jxj.jnj2 C jvj2/� dx < 1
�
: (23)

The function V.t/ and satisfies

d2V

dt2
.t/ D dH � .d � 2/jr j2L2 � .d � 1/jvj2L2 ; (24)
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where H is the Hamiltonian defined in (19). In dimension d � 2, one has
.d2= dt2/V < 0 if the initial conditions are such that H < 0. However, one cannot
conclude on existence of blowup solutions because, unlike the NLS case, V does not
have a fixed sign. In particular, in dimension 2, Merle [22] proved that it tends
to �1 as the singularity is approached. Nevertheless, one can get partial results,
under the assumption of radial symmetry. Indeed in this case, there is a useful result
referred to as the Strauss Lemma [23] which gives an upper bound of the sup norm
of a function in terms of its H1-norm far from the origin. Namely, if f is a radially
symmetric function in H1.Rd/ with d � 2, then, for any R > 0,

jf j2L1.jxj>R/ � CR�dC1jrf jL2.jxj>R/jf jL2.jxj>R/: (25)

The radial assumption has been useful in other contexts such as in existence and
scattering theory, where it allows a larger range of parameters for linear estimates
of Strichartz type [24].

The method consists in modifying the quadratic weight jxj2 in V defined in (22)
by a smooth function p.x/ that behaves like jxj2 near the origin and like jxj at
infinity, and by considering the time derivative y.t/ D �.d= dt/U of the modified
variance

U.t/ D 1

2

Z
p.x/j j2 dx C

Z t

0

Z
.rp � v/n dx dt; (26)

as in the case of solutions of the NLS equation with infinite variance. However,
the modification of the weight induces additional terms in the time evolution of the
function y.t/ that need to be estimated. For this purpose, one uses a sequence of
rescaled weights pm.jxj/ D m2p.x=m/, and proves that the additional contributions
are controlled for m sufficiently large. More precisely, one proves that

ym.t/ D �=
Z �
.rpm � r / � � .rpm � v/n

�
dx (27)

satisfies, for m sufficiently large

ym.t/ � d

2
jHjt: (28)

On the other hand, the function ym.t/ is controlled by the norm of the solution in the
energy space, namely

jym.t/j � C.j 0j2L2 C jr j2L2 C jvj2L2 C jnj2L2 /: (29)

We have the following result proved by Merle in [25]:

Theorem 1. Consider the Zakharov system (7), (9), (10) in dimension d D 2

or d D 3 with initial conditions in the space ˙ 0. Assume that there exists a
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smooth solution . ; n; v/ during an interval of time Œ0; t0�. In particular, its mass and
Hamiltonian are conserved and its variance U is well defined. Assume in addition
that the solution is radially symmetric and its Hamiltonian H < 0. Then, either
j jH1 C jnjL2 C jvjL2 ! 1 as t ! t� with t� finite, or . ; n; v/ exists for all time
and j jH1 C jnjL2 C jvjL2 ! 1 as t ! 1.

Remark 1. An open question is the extension of this analysis to solutions that are
not radially symmetric, and furthermore, to solutions to the full vector Zakharov
system. Based on numerical observations, it is believed that blowup does indeed
occur in a finite time for general initial conditions with negative Hamiltonian.

2.2 Self-similar Blowing Up Solutions

2.2.1 Dimension d D 2

Unlike for the NLS equation, there is no conformal mapping for the two-
dimensional Zakharov system. Nevertheless one can construct exact self-similar
blowing up solutions that have the form in the form [26]

 .x; t/ D 1

a.t� � t/
P

� jxj
a.t� � t/

�

� exp

 
i

�
� C 1

a2.t� � t/
� jxj2
4.t� � t/

�!
; (30)

n.x; t/ D 1

a2.t� � t/2
N

� jxj
a.t� � t/

�
; (31)

where .P;N) are real functions satisfying the system of ODEs

�P � P � NP D 0; (32)

a2.�2N�� C 6�N� C 6N/ ��N D �P2; (33)

with � being the rescaled independent variable and a > 0 a free parameter.
Glangetas and Merle have rigorously studied the system (32) and (33) in [11, 12].
We summarize below the most important properties. When a D 0, N D �P2

and (32) becomes

�P � P C P3 D 0: (34)

It is known that (34) has an infinite number of radially symmetric solutions that
decay exponentially at infinity, only one of them, denoted R and called the NLS the
ground state, (also known as the Townes soliton) is strictly positive and monotone
decreasing (see, for example, [27, 28]). It plays a central role in the study of NLS
equations.
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If the coefficient a in (33) is sufficiently small, there exists a solution .Pa;Na/ in
H1�L2 with Pa > 0. This solution is in fact C1 and its derivatives of order k satisfy
the decay properties

jP.k/.�/j � cke�ı�; jN.k/.�/j � ck

j�jkC3

for large �. When the parameter a is small, the solution .Pa;Na/ is constructed by a
continuation method from the solution .R;�R2/ corresponding to a D 0.

Furthermore, for any value c strictly larger than the L2-norm of the NLS ground
state R, there exists ac such that for any a < ac, there is a unique solution .Pa;Na/

in H1 � L2 with Pa > 0 and jPajL2 < c.
Numerical simulations show that for a large class of radially symmetric initial

conditions having a strictly negative Hamiltonian, the solutions display a self-
similar collapse as t ! t� as described by (30) and (31) [29, 30]. The coefficient a in
the equation for the limiting profiles .P;N/ depends on the initial conditions. When
considering a sequence of initial conditions with an initial L2-norm of 0 decreasing
to jRj2

L2
, where R is the NLS ground state, it was observed that the computed value

of the coefficient a tends to zero. In this limit, the self-similar profile becomes
(strongly) subsonic and tends to the NLS ground state R. This limit is delicate,
since solutions of the scalar Zakharov equation with critical norm j 0j2L2 D jRj2

L2

remain smooth for all time [11, 12]. Indeed, unlike the NLS equation, there are no
minimal blowing up solutions to the 2D Zakharov system. For initial conditions in
the energy space such that j 0jL2 � jRjL2 solutions remain in the energy space for
all times. The case j 0jL2 < jRjL2 is straightforward and follows the NLS analysis
[8, 31]. When j 0jL2 D jRjL2 , the global well-posedness property is very specific to
the Zakharov system.

Finally, when numerical simulations are performed with anisotropic initial
conditions with negative Hamiltonian, it was observed that the solutions become
isotropic near collapse with the same limiting profiles as those obtained with
isotropic initial conditions [30].

2.2.2 Dimension d D 3

In three dimensions, there are no known explicit blowing up solutions. Self-similar
solutions exist only asymptotically close to collapse and have the universal form
[26, 32]

 .x; t/ � 1

.t� � t/
P

� jxjp
3.t� � t/2=3

�
exp

�
i.t� � t/�1=3

�
; (35)

n.x; t/ � 1

3.t� � t/4=3
N

� jxjp
3.t� � t/2=3

�
; (36)
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where P.�/ and N.�/ are radially symmetric scalar functions satisfying the coupled
system of ODEs

�P � P � NP D 0; (37)

2
9
.2�2N�� C 13�N� C 14N/ D �P2: (38)

This type of blowup is referred to as supersonic collapse, because, when substituting
the expressions (35) and (36) into the Zakharov system, the pressure term �n is of
lower order than @ttn.

Note that, unlike the 2D case, there is no free parameter in the system. As
discussed in [26] and proved more recently in [33], there exists an infinite number
of solutions .Pk;Nk/ to (37) and (38) such that, for all k,

0 < Pk.�/ < PkC1.�/ and Nk.�/ < 0: (39)

The profiles Pk decay exponentially jPk.�/j � Cke�ı� for � large, while the jNkj �
Ck=.1C �2/ decay algebraically.

The values of P and N at the origin satisfy Nk.0/ D 9Pk.0/
2=
�
14 � 9P2k.0/

�
.

We have also P0.0/ D N0.0/ D 0 due to the radial symmetry. The pair .Pk;Nk/ is
thus characterized by the value Pk.0/. It is proved in [33] that there exists a sequence
˛k D 1

3

p
2k.4k C 3/ > 0 such that the values Pk.0/ are ordered as ˛k < Pk.0/ <

˛kC1. It is of interest to see how the values ˛k arise in the analysis. They appear
when one writes the Taylor series expansion of P and N near the origin:

P.�/ D
1X

iD0
ai�

2iI N.�/ D
1X

iD0
bi�

2i: (40)

The series have only even powers because P and N are radially symmetric. From the
substitution of the Taylor series into the system (37) and (38), one gets two relations
between the coefficients ai; bi. The values ˛i appear when solving the equation for
the coefficient ai:

.˛2i � a20/ai D F.a0; : : : ; ai�1; b0; : : : ; bi�1/ (41)

when solving for the coefficients. In order to have well-defined coefficients and an
analytic solution, P.0/which identifies to a0 should be different from the ˛i. In [33],
it is proved that there is at least one solution Pk with initial value Pk.0/ 2 .˛k; ˛kC1/
which is strictly positive and decays to 0 at infinity. Numerically, we found (at least
for the first few that we computed) that there is only one. Figure 1 shows the first four
pairs of solutions computed numerically by a shooting method (with the shooting
parameter being Pk.0/. The values Pk.0/ (for k D 1; : : : ; 4) are:

P1.0/ � 1:38; P2.0/ � 2:43; P3.0/ � 3:42; P4.0/ � 4:40: (42)
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Fig. 1 Solutions .Pk;Nk/ of (37) and (38) for k D 1; : : : ; 4. Left: solid line—.P1;N1/, dashed
line—.P2;N2/ corresponding to initial values P1.0/ and P2.0/ in (42), respectively. Right: solid
line—.P3;N3/, dashed line—.P4;N4/ corresponding to initial values P3.0/ and P4.0/, respectively

Like in the 2D case, the dynamical stability of the asymptotically self-similar
solutions to the 3D Zakharov system for both radially symmetric and anisotropic
initial conditions was studied numerically in [30]. It was observed that for a
large class of data, blowup solutions asymptotically display a self-similar collapse
described by the above solutions. The profiles identify to the first mode .P1;N1/
solution of (37) and (38) that has the lowest value at the origin, and for which N1 is
monotone increasing.

Remark 2. There is no rigorous proof of dynamic stability of the (2D) self-
similar or (3D) asymptotically self-similar solutions even for well-prepared initial
conditions (with or without radial symmetry) chosen close to the profiles .P;N/
solutions of the ODE systems (32) and (33) or (37) and (38).

2.3 Lower Bounds for Rate of Blowup

2.3.1 Scale Invariance, Criticality, and Local Well-Posedness

An important aspect in the analysis of dispersive equations is the notion of criticality.
It is closely related to the invariance properties of the equation. For example,
the NLS equation (21) is invariant under the scaling transformation  .x; t/ !
 �.x; t/ D �1=� .�x; �2t/. It is said to be PHs-critical if the (homogeneous) Hs-norm
is unchanged under the above scaling transformation. The corresponding critical
Sobolev exponent for NLS is thus sc D d=2 � 1=� . The notion of criticality is
not straightforward for the Zakharov system because the Schrödinger equation and
the wave equation have different scale invariances. In [14], criticality is defined by
considering the scaling
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 !  � D �3=2 .�x; �2t/; n ! n� D �2n.�x; �2t/ (43)

that would leave the Zakharov system invariant in the absence of the term �n. This
is indeed the relevant scaling to study blowing up solutions of the three-dimensional
Zakharov system as we have seen in the previous section.

In relation to the initial value problem, the Sobolev space with critical exponent
often corresponds to the space with minimal regularity in which the problem is
locally well-posed. For the Zakharov system, the critical values for the initial value
problem in Hk � Hl � Hl�1 are k D d=2 � 3

2
and l D d=2 � 2. Note that k � l D 1

2
,

while one would have k � l D 1 in the classical setting of the energy space H1.
We now summarize the well-posedness results from the works of Ginibre et al.
[14], Colliander et al. [17], Bejenaru et al. [18], and Bejenaru and Herr [19]. For
ill-posedness results in dimension one, see [34].

Theorem 2. In dimension d D 1, the Zakharov system is locally well-posed in
Hk � Hl � Hl�1, provided that � 1

2
< k � l � 1, 2k � l C 1

2
� 0. Furthermore, global

well-posedness holds in the largest space in which local well-posedness holds, that
is L2 � H�1=2 � H�3=2.

In dimension 2, it is locally well-posed in the critical space L2 � H�1=2 � H�3=2,
and in dimension 3, it is locally well-posed in H" � H�1=2C" � H�3=2C" which is
also, up to arbitrarily small " the critical space.

Finally, in dimension d � 4, the whole range of subcritical values k > d=2 � 3
2

and l > d=2� 2 is covered by the theorem as long as l � k � l C 1 and 2k � l � 1 >
d=2 � 2.

2.3.2 Finite Energy Solutions: The Two-Dimensional Case

The next theorem is due to Merle [22]. It concerns solutions of the 2D scalar
Zakharov system with initial conditions . 0; n0; n1/ in the energy space H1, thus
having a finite Hamiltonian. Assume that there exists a finite time t� such that

jr .t/jL2 C jn.t/jL2 C jv.t/jL2 ! 1 as t ! t�:

The question is to determine at what rate these norms become infinite as t
approaches t�.

Theorem 3. Assume that the solution . ; n/ to the 2D scalar Zakharov system
blows up in the energy space H1 at a finite time t�. Then there exist constants c1 > 0
and c2 > 0 depending only on j 0jL2 such that for t close to t�,

jr .t/jL2 � c1
t� � t

; (44)

jn.t/jL2 � c2
t� � t

: (45)
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More precisely, the constants c1 and c2 scale like .j 0j2L2 � jRj2
L2
/�1=2 where R is the

NLS ground state.

Remark 3. This rate is optimal in the sense that the self-similar solutions (30) and
(31) satisfy

jr .t/jL2 D 1

a.t� � t/
jrPjL2 ; jn.t/jL2 D 1

a.t� � t/
jNjL2 : (46)

and thus blow up exactly at the rate stated in theorem. Notice also that the theorem
provides the blowup rate for the two quantities jr .t/jL2 and jn.t/jL2 separately but
does not give information on jv.t/jL2 .

The derivation of this result is based on scaling properties and conservation of
the Hamiltonian. One defines the rescaled functions Q .x; s/; Qn.x; s/; Qv.x; s/ (where t
is seen as a parameter)

Q .x; s/ D 1

�.t/
 

�
x
�.t/

; t C s

�.t/

�
; (47)

Qn.x; s/ D 1

�2.t/
n

�
x
�.t/

; t C s

�.t/

�
; (48)

Qv.x; s/ D 1

�2.t/
v
�

x
�.t/

; t C s

�.t/

�
: (49)

where the scaling factor

�.t/ D
Z �jr j2 C 1

2
n2 C 1

2
jvj2� dx; (50)

is associated with the energy norm. Notice that the scaling of the time variable
corresponds to the wave equation rather than to the Schrödinger equation. At s D 0,

Z �jr Q .0/j2 C 1
2
Qn.0/2 C 1

2
jQv.0/j2� dx D 1: (51)

Under the hypothesis of the theorem, �.t/ ! 1 as t approaches t�.
The analysis consists in establishing bounds for the individual quantities

jr Q .0/j, Qn.0/, Qv.0/ and estimates of Q .s/, Qn.s/ and Qv.s/ as t ! t�. It uses delicate
compactness arguments allowing the identification of limiting quantities as t goes
to t�. This approach, initiated in [22] and now known as profile decomposition, has
led to many breakthroughs in various fields of dispersive PDEs.
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2.3.3 Infinite Energy Solutions

We present in this section another approach for the derivation of a lower bound for
the rate of blowing up solutions. It is more general, but less precise than the one
presented in the previous section. It applies to the problem in dimensions two or
three, and to initial conditions that may or may not have a finite Hamiltonian. The
result below was established in 3D in [35]. The 2D result follows the same line of
proof.

Theorem 4. Let the initial data
�
 .0/; n.0/; nt.0/

�
be in H` :D H`C1=2.Rd/ �

H`.Rd/ � H`�1.Rd/, with the condition 0 � ` � 1
2

if d D 2 and 0 � ` � 1 if
d D 3. Assume that the solution . ; n; nt/ blows up in a finite time t�, that is, as
t approaches t�, k .t/kH`C1=2 C kn.t/kH` C knt.t/kH`�1 ! 1. Then, the rate of
blowup of the Sobolev norms satisfies the lower bound estimate

k .t/kH`C1=2 C kn.t/kH` C knt.t/kH`�1 > C.t� � t/��` (52)

with �` D 1
4
.4 � d C 2`/�, d D 2 or d D 3.

In the above formula, the notation a� means .a � "/ for arbitrarily small " > 0.

Remark 4. Unlike the method of the previous section, this approach provides a
lower bound for the sums of the norms of  ; n; nt but not for the norms separately.

Remark 5. In 3D, the lower bound (52) is probably not optimal. Indeed, the homo-
geneous PH`C1=2-norm of  and the homogeneous PH`-norm of n in the expression of
the asymptotic solution (35) and (36) both blowup at a faster rate, namely 1

3
.1C2`/.

Note that these norms blowup at the same rate in 3D, showing that the space
H`C1=2 � H` is appropriate for the analysis.

Remark 6. In 2D, the norms k k PHk , with k D ` C 1 and knkH` of the exact self-
similar solutions (30) and (31) blow up at the same rate .t� � t/�.`C1/. Merle’s work
[22] gives the optimal rate when k D 1. Theorem 4 predicts rates of blowup in the
space H`. It gives almost the optimal rate of blowup for  when ` D 0, but it is off
then by 1

2
for n.

Remark 7. In 3D, a particular result about blowup of a space-time norm Lq;r
x;t of n is

given in [33] under the assumption that blowup occurs in the energy space H1.

Assume that the solution u :D . ; n; nt/ exists during a finite time jtj � T in the
space H`. There are two elements in the proof of the theorem above:

1. A local well-posedness estimate for u in the form of the one obtained by Ginibre–
Tsutsumi–Velo [14],

kukXT � Cku0kH`
C CT�kuk2XT

; � > 0; (53)

where k�kXT is a space-time norm that will be defined later. For the purpose of
local well-posedness, it is not important to determine exactly the power � , the
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only requirement being that it is away from 0. On the other hand, in the blowup
analysis, a key element is to maximize the power � , because it leads to a better
estimate for the lower bound of the blowup rate. We find an expression for � that
depends on `, the order of the norm under consideration and increases with `.

2. A classical contradiction argument introduced in [36] for semilinear heat equa-
tions and used in [37] for NLS equations that reverses the local well-posedness
estimate into a blowup rate estimate.

Step 1 (Local Well-Posedness Estimate). Rewrite the wave equation (8) as two
reduced wave equations for

w˙ D n ˙ i!�1@tn;

where ! D .��/1=2. The Zakharov system then becomes

i@t C� D .wC C w�/ ; (54)

.i@t 	 !/w˙ D ˙!.j j2/: (55)

. ;w˙/ solve (54) and (55) with initial data . 0;w0̇ / D . 0; n0 ˙ i!�1n1/ if and
only if . ; n/ solve (7) and (8) with initial data . 0; n0; n1/.

In the analysis, one slightly modifies the above system by replacing the operator
! D .��/1=2 by !1 D .1 � �/1=2 to avoid divergence at low wavenumbers. This
leads to an additional term in the wave equation of the form hri�1<w˙, which is
linear with a gain in derivatives, thus it is easily controlled (see [35]).

The solution of (54) and (55) is written in its Duhamel formulation. Since the
solution is considered in a fixed interval Œ�T;T�, we introduce in addition a cut-off
C1 function '.t/ D 1 for jtj � 1, '.t/ D 0 for jtj � 2, 0 � '.t/ � 1, and define
'T.t/ D '.t=T/, (T � 1). The initial value problem (54) and (55) on time interval
Œ�T;T� is equivalent to the system of integral equations

 .t/ D '1.t/U.t/ 0 � i'T.t/
Z t

0

U.t � s/'22T.w
C C w�/ .s/ ds; (56)

w˙.t/ D '1.t/W.t/w0 ˙ i'T.t/
Z t

0

W.t � s/'22T!.j j2/ ds; (57)

where U.t/ D eit�, W.t/ D e�it
p�� are the free Schrödinger and free reduced wave

operators, respectively.
The space XT in (53), in which the analysis performed, is a product of weighted

Sobolev spaces, with space-time weights being the Fourier multipliers associated
with the linear Schrödinger and linear reduced wave equation [38]. Namely,
XT D X`C1=2;bS � Xl;b

W
˙

, with the norms given by
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k k
X
`C1=212;b
S

D kh�i`C1=2h	 C j�j2ib O .	; �/kL2	;�
;

kwkX`;bW
˙

D kh�i`h	 ˙ j�jib Ow.	; �/kL2	;�
;

where h�i D .1C j�j2/1=2 and b > 1
2
.

There are two distinct elements in the estimates, the linear estimates and the
nonlinear ones.

Lemma 1 (Linear Estimates [14, Lemma 2.1]). Consider the general linear
equation

iut � ˚.�ir/u D F on Œ0;T� � R
d; u.0/ D u0 2 Hs;

where ˚ is a real valued function. Then for 1
2

� " < b � 1 � ", (" > 0)

k'TukXs;b . ku0kHs C T"kFkXs;b�1C" ; (58)

where the norm in Xs;b is associated with the linear operator, namely k�kXs;b D
kh�ish	 C ˚.�/ibO�.	; �/kL2	;�

.

An application of (58) to the solution . ;w˙/ gives

k k
X
`C1=2;b
S

. k 0kH`C112 C T"k'22T.w
C C w�/ k

X
`C1=2;b�1C"
S

; (59)

and

kw˙kX`;bW
˙

. kw0kH` C T"k'22T!j j2k
X`;b�1C"

W
: (60)

We now explain how one gets an estimate for the nonlinear terms and produce
higher powers of T . The goal is to establish

k'22TwC k
X
`C1=2;b�1C"
S

. T�k'2TwCkX`;bW
C

k'2T k
X
`C1=2;b
S

; (61)

k'22T!j j2k
X`;b�1C"

W
C

. T�k'2T k2
X
`C1=2;b
S

; (62)

with equivalent estimates for w�. A classical argument is to consider the nonlinear
terms on the Fourier side and use duality. This reduces (61) and (62) to showing the
following inequalities

jN1j . T�kvk2kv1k2kv2k2 (63)

jN2j . T�kvk2kv1k2kv2k2; (64)
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where

N1 D
Z Ov.�1 � �2; 	1 � 	2/ Ov1.�1; 	1/ Ov2.�2; 	2/ h�1ik

h	 C j�jibh	1 C j�1j2ich	2 C j�2j2ibh�2ikh�il
d�1 d�2 d	1 d	2; (65)

N2 D
Z Ov.�1 � �2; 	1 � 	2/ Ov1.�1; 	1/ Ov2.�2; 	2/ j�j h�i`

h	 C j�jich	1 C j�1j2ibh	2 C j�2j2ibh�1ikh�2ik
d�1 d�2 d	1 d	2: (66)

Ginibre–Tsutsumi–Velo [14] showed the above estimates by a repeated application
of an inequality obtained from Strichartz estimates and Hölder inequality in time
(see [14, Lemmas 3.1–3.4]). Their analysis did not require an optimal power of � ,
but needed it to be just large enough, so the final power of T was positive. They find

�
b C 1 �

�
n

2
C 1

�
b0 � 


�
1

2b
:

For the rate of blowup analysis, we seek the optimal power of � , and obtain estimates
(63) and (64) with

� D b C 1 �
�

n

2
C 1 � `

�
b0 � 
: (67)

To remove the time cutoff from the right-hand side of (61) and (62), we recall

Lemma 2 ([14]).

k'TukXs;b � CT�bC1=qkukXs;b ;

where s 2 R, b � 0, q � 2 and bq > 1.

Applying this twice (since the nonlinearity is quadratic) with q D 2 and
combining estimates (59) and (60) with (61) and (62) gives the final estimate

k k
X
`C1=2;b
S

C knkX`;bW
C

C kntkX`�1;bW
C

� C
�k 0kH`C1=2 C kn0kH` C kn1kH`�1

�

C CT�`
�k k

X
`C1=2;b
S

C knkX`;bW
C

C kntkX`�1;bW
C

�2
; (68)

with a power of �` as stated in Theorem 4.

Step 2 (Contradiction Argument and Lower Bound).
Let us explain the contradiction argument for a general evolution PDE with a
quadratic nonlinearity, and an initial data u0 belonging to some space H. Suppose
an a priori estimate of the form

kukXT � Cku0kH C CT�kuk2XT
; � > 0 (69)
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holds, where k:kXT is some appropriate space-time norm. (This is the a priori
estimate (68) with u D . ; n; nt/ and H D H`.) Let

X.T;M/ D fu W u.0/ D u0; kukXT � Mg:

When performing an iteration argument in X.T;M/, we would like to show

Cku0kH C CT�M2 � M (70)

to keep the iterates in X.T;M/. Local well-posedness follows if (70) holds (with,
for example, M D 2Cku0kH , and T small enough so that 2CT�M < 1). The relation
between the spaces XT and H is that XT must be imbedded in C.Œ�T;T�;H/meaning
that if u belongs to XT , it must be a continuous function of t 2 Œ�T;T� with values
in H.

Let t� be the maximal time of existence of solutions, that is

t� D supfT W kukXT < 1g:

The blowup hypothesis implies that t� is finite. Returning to (70), let 0 < t < t� and
consider u.t/ as an initial condition. The following statement must hold:

If there exists some M > 0 such that Cku.t/kH C C.T � t/�M2 � M, then T < t�.
Or equivalently:

If T � t�, in particular T D t�, then for all M > 0

Cku.t/kH C C.t� � t/�M2 > M:

We now choose M D 2Cku.t/kH , then 1
2
M C C.t� � t/�M2 > M or

C.t� � t/�M2 >
M

2
(71)

or equivalently

ku.t/kH > c.t� � t/�� : (72)

Hence, since we cannot continue the time of existence past time t�, we have a lower
bound for the blowup rate of the norm H as given by (72).

Note that the conclusion is about the rate of blowup of the norm H even though
the iteration is performed in another norm. One just needs the other norm to embed
into C.Œ�T;T�;H/.
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3 The Vectorial Zakharov System

There is no rigorous analysis of blowing up solutions of the full vectorial Zakharov
system (1)–(3) although wave collapse is expected when the initial conditions are
large enough on the basis of numerical simulations and heuristic arguments (see [5]
for review). Here we extend the results of Sect. 2.3.3.

Recalling that for a vector valued function E

�E D r.r � E/ � r � .r � E/;

we can write (1)–(3) as

i@tE C ˛�E C .1 � ˛/r.r � E/ D nE; (73)

@ttn ��n D �jEj2: (74)

The symbol of the Laplacian is j�j2. This together with the one time derivative
determines the h	 C j�j2i weight in the Xs;b norm for the NLS equation of the
scalar Zakharov system. To determine the weight that should appear in the Xs;b norm
for the NLS equation of the vectorial Zakharov system, one needs to determine the
symbol of the spatial linear operator appearing in the left-hand side of (73). A simple
calculation leads to the matrices M2 in two dimensions and M3 in three dimensions
given by

M2 D .1 � ˛/
�
�21 �1�2
�1�2 �22

�
C ˛j�j2I2�2;

and

M3 D .1 � ˛/
0
@ �21 �1�2 �1�3
�1�2 �22 �2�3
�1�3 �2�3 �23

1
AC ˛j�j2I3�3:

where Id�d is the d � d unit matrix. It was observed by Tzvetkov [15] that the
symbol of the operator given by matrix Md is actually equivalent to the symbol
of the Laplacian.

Lemma 3 ([15, Proposition 1]). Let d D 2; 3. Then there exists a constant C such
that

j�j2Id�d � Md � Cj�j2Id�d:

Using this lemma, one can obtain a local well-posedness result for (73) and
(74) [15] analogous to the scalar case, and a lower bound for the rate of blowup
of Sobolev norms.
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Theorem 5. Let d D 2; 3, and the initial data
�
E.0/; n.0/; nt.0/

�
be in H` :D

.H`C1=2.Rd//d � H`.Rd/ � H`�1.Rd/, 0 � ` � d=2 � 1
2
. Assume that the solution

.E; n; nt/ blows up in a finite time t� < 1. Then

kE.t/kH`C1=2 C kn.t/kH` C knt.t/kH`�1 > C.t� � t/��` (75)

with �` D 1
4
.4 � d C 2`/�, in dimension d D 2 or d D 3.

Finally, as for the NLS equation, it is of interest to consider the influence of
additional dispersive terms and their effect on blowing up solutions. In [39], Haas
and Schukla consider the system

i@tE � ˛r � .r � E/C r.r � E/ D nE C � r�.r � E/ (76)

@ttn ��n D �jEj2 � ��2n: (77)

which takes into account quantum corrections. The coefficient � > 0 is assumed to
be very small. In [40], it is shown rigorously that quantum terms arrest collapse in
two and three dimensions, for arbitrarily small values of the parameter � .

Acknowledgements MC is partially supported by grant #246255 from the Simons Foundation.
CS is partially supported by NSERC through grant number 46179–13 and Simons Foundation
Fellowship #265059.

References

1. V.E. Zakharov, Sov. Phys. JETP 35(5), 908 (1972)
2. V.E. Zakharov, A.F. Mastryukov, V.S. Synakh, Sov. J. Plasma Phys. 1, 339 (1975)
3. P.A. Robinson, Rev. Mod. Phys. 69, 507 (1997)
4. L. Bergé, Phys. Rep. 303(5–6), 259 (1998)
5. C. Sulem, P.L. Sulem, The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse.

Applied Mathematical Sciences, vol. 139 (Springer, New York, 1999)
6. B. Texier, Arch. Ration. Mech. Anal. 184(1), 121 (2007)
7. C. Sulem, P.L. Sulem, C. R. Acad. Sci. Paris Sér. A-B 289(3), A173 (1979)
8. H. Added, S. Added, C. R. Acad. Sci. Paris Sér. I Math. 299(12), 551 (1984)
9. S.H. Schochet, M.I. Weinstein, Commun. Math. Phys. 106(4), 569 (1986)

10. T. Ozawa, Y. Tsutsumi, Publ. Res. Inst. Math. Sci. 28(3), 329 (1992)
11. L. Glangetas, F. Merle, Commun. Math. Phys. 160(1), 173 (1994)
12. L. Glangetas, F. Merle, Commun. Math. Phys. 160(2), 349 (1994)
13. J. Bourgain, J. Colliander, Int. Math. Res. Not. 1996(11), 515 (1996)
14. J. Ginibre, Y. Tsutsumi, G. Velo, J. Funct. Anal. 151(2), 384 (1997)
15. N. Tzvetkov, Differ. Integr. Equ. 13(4–6), 423 (2000)
16. H. Pecher, Int. Math. Res. Not. 2001(19), 1027 (2001)
17. J. Colliander, J. Holmer, N. Tzirakis, Trans. Am. Math. Soc. 360(9), 4619 (2008)
18. I. Bejenaru, S. Herr, J. Holmer, D. Tataru, Nonlinearity 22(5), 1063 (2009)
19. I. Bejenaru, S. Herr, J. Funct. Anal. 261(2), 478 (2011)
20. J. Ginibre, G. Velo, Hokkaido Math. J. 35(4), 865 (2006)



Blowing Up Solutions to the Zakharov System for Langmuir Waves 95

21. Z. Hani, F. Pusateri, J. Shatah, Commun. Math. Phys. 322(3), 731 (2013)
22. F. Merle, Commun. Pure Appl. Math. 49(8), 765 (1996)
23. W.A. Strauss, Commun. Math. Phys. 55(2), 149 (1977)
24. Z. Guo, K. Nakanishi, Int. Math. Res. Not. IMRN 2014(9), 2327 (2014)
25. F. Merle, Commun. Math. Phys. 175(2), 433 (1996)
26. V.E. Zakharov, L.N. Shur, Sov. Phys. JETP 54(6), 1064 (1981)
27. H. Berestycki, P.L. Lions, Arch. Ration. Mech. Anal. 82(4), 313 (1983)
28. H. Berestycki, P.L. Lions, Arch. Ration. Mech. Anal. 82(4), 347 (1983)
29. L. Bergé, Luc, G. Pelletier, D. Pesme, Phys. Rev. A 42(8), 4962 (1990)
30. M. Landman, G.C. Papanicolaou, C. Sulem, P.L. Sulem, X.P. Wang, Phys. Rev. A 46(12), 7869

(1992)
31. M.I. Weinstein, Commun. Math. Phys. 87(4), 567 (1982/1983)
32. O.B. Budneva, V.E. Zakharov, V.S. Synakh, Sov. J. Plasma Phys. 1, 335 (1975)
33. V. Masselin, Adv. Differ. Equ. 6(10), 1153 (2001)
34. J. Holmer, Electron. J. Differ. Equ. 24, (2007)
35. J. Colliander, M. Czubak, C. Sulem, J. Hyperbolic Differ. Equ. 10(3), 523 (2013)
36. F.B. Weissler, Isr. J. Math. 38(1–2), 29 (1981)
37. T. Cazenave, F.B. Weissler, Nonlinear Anal. 14(10), 807 (1990)
38. J. Bourgain, Geom. Funct. Anal. 3(2), 107 (1993)
39. F. Haas, P.K. Shukla, Phys. Rev. E 79(6), 066402 (2009)
40. G. Simpson, C. Sulem, P.L. Sulem, Phys. Rev. E 80(5), 056405 (2009)


	Blowing Up Solutions to the Zakharov System for Langmuir Waves
	1 Introduction
	2 The Scalar Zakharov System
	2.1 Blowup in Finite or Infinite Time
	2.2 Self-similar Blowing Up Solutions
	2.2.1 Dimension d=2
	2.2.2 Dimension d=3

	2.3 Lower Bounds for Rate of Blowup
	2.3.1 Scale Invariance, Criticality, and Local Well-Posedness
	2.3.2 Finite Energy Solutions: The Two-Dimensional Case
	2.3.3 Infinite Energy Solutions


	3 The Vectorial Zakharov System
	References


