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Abstract Orexin A and orexin B (also known as hypocretin 1 and hypocretin 2)
are hypothalamic neuropeptides that were discovered as endogenous cognate
ligands for two orphan G-protein coupled receptors in 1998. Initially, these peptides
were reported as regulators of feeding behavior (Sakurai et al. in Cell 92:573–585,
1998). Thereafter, several studies suggested that orexin deficiency causes narco-
lepsy in several mammalian species including humans, highlighting roles of this
hypothalamic neuropeptide in the regulation of sleep and wakefulness (Sakurai in
Nat Rev Neurosci 8:171–181, 2007). Studies of efferent and afferent systems of
orexin-producing neurons have revealed that orexin neurons has close interactions
with systems that regulate emotion, energy homeostasis, the reward system, and
arousal (Boutrel et al. in Proc Natl Acad Sci USA 102:19168–19173, 2005;
Yamanaka et al. in Neuron 38:701–713, 2003a; Akiyama et al. in Eur J Neurosci
20:3054–3062, 2004; Mieda et al. in J Neurosci 24:10493–10501, 2004; Sakurai
et al. in Neuron 46:297–308, 2005; Yoshida et al. in J Comp Neurol 494:845–861,
2006; Harris et al. in Nature 437:556–559, 2005; Narita et al. in J Neurosci 26:398–
405, 2006). Subsequent studies suggested that emotionally salient cues and contexts
excite orexin neurons to promote arousal, and to support behavior. This system
seems to be important to maintain the vigilance and arousal during doing various
motivated and adaptive behaviors. Recently, suvorexant, a dual orexin receptor
antagonist, has become clinically available for treatment of insomnia. In this
chapter, I will overview the history of orexin research, highlighting some of the
physiological roles of orexins.
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1 Orexin and Orexin Receptors

1.1 Identification of Orexin (Hypocretin)

In 1998, we identified and purified novel neuropeptides, orexin A and orexin B,
from rat brain extracts as two endogenous peptide ligands for an orphan
G-protein-coupled receptor (GPCR), called HFGAN-72 by means of a method
called “reverse pharmacology” (Sakurai et al. 1998). We expressed numbers of
GPCRs in HEK293 or CHO cells, and used them as then assay system to identify
the cognitive ligands for each receptor. We successfully identified and purified two
peptide ligands for HFGAN-72 from rat brains. Subsequent structural analysis and
molecular cloning studies showed that both rat orexin A and orexin B are derived
from a common precursor peptide, prepro-orexin (Fig. 1a).

Our structural analysis of purified peptides showed that orexin A is a
33-amino-acid peptide with an N-terminal pyroglutamyl residue, two intra-chain
disulfide bonds, and C-terminal amidation. This structure is completely conserved
among several mammalian species identified so far (human, rat, mouse, cow, sheep,
dog and pig). Orexin B is a 28-amino-acid, C-terminally amidated linear peptide.
There are several species differences in the structure of orexin B, although also
highly conserved. The C-terminal half of orexin B is very similar to that of orexin
A, whereas the N-terminal half is more variable.

An mRNA encoding the same precursor peptide was independently identified by
de Lecea et al. as a hypothalamus-specific transcript (de Lecea et al. 1998), as
described in detail in the separate chapter (de Lecea). They predicted that the
transcript encoded a polypeptide precursor that is cleaved to form two neuropep-
tides, termed hypocretin-1 and hypocretin-2 (corresponding to orexin A and orexin
B, respectively).

1.2 Orexin Receptors

Because an in vitro study suggested that orexin B has a much lower affinity to
HFGAN72 than orexin A did, we had searched several EST data bases, and
identified another subtype of orexin receptor, which we term orexin-2 receptor
(OX2R), which appeared to have similar affinities to both orexin A and orexin B,
and we re-named HFGAN72 as orexn-1 receptor (OX1R) (Fig. 1a). The actions of
orexins are mediated via these two G-protein coupled receptors (GPCRs). OX1R
has one-order-of-magnitude greater affinity for orexin A over orexin B. In contrast,
OX2R binds both ligands with similar affinities (Sakurai et al. 1998) (Fig. 1b).
OX1R and OX2R mRNAs exhibit a markedly different and basically complemen-
tary distributions, suggesting that these receptors have distinct physiological roles
through different neuronal pathways (Marcus et al. 2001; Mieda et al. 2011).
Recently, the structure of the human OX2R bound to suvorexant was solved using
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lipid-mediated crystallization (Yin et al. 2014). The structure revealed that suvo-
rexant adopts a π-stacked horseshoe-like conformation and binds to the receptor
deep in the orthosteric pocket, stabilizing extracellular salt bridges and blocking
transmembrane helix motions necessary for activation. Signal transduction system
and physiological roles of these receptors are discussed in a separate chapter by
Mieda et al.

Fig. 1 Orexin and orexin receptors. a Structures of various species of orexin A and orexin B. The
topology of the two intrachain disulfide bonds of orexin A is indicated above the sequence.
Shadows indicate amino acid identity. Mammalian orexin A sequences thus far identified (human,
rat, mouse, pig, dog, sheep, cow) are all identical. b Orexin A and orexin B are derived from a
common precursor peptide, prepro-orexin. The actions of orexins are mediated via two G
protein-coupled receptors named orexin-1 (OX1R) and orexin-2 (OX2R) receptors. OX1R is
relatively selective for orexin A, whereas OX2R shows similar affinities for both orexin A and
orexin B. OX1R is coupled to the Gq subclass of heterotrimeric G proteins, whereas OX2R
couples to Gi/o and/or Gq in neuronal cell lines
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2 Orexin-Producing Neurons

2.1 Anatomical Feature of Orexin-Producing Neurons

We and others raised antisera for orexin, and examined histological characteristics
of orexin-producing neurons. Numbers of orexin neurons are estimated to be
around 3,000 in rat or mouse brains, or 70,000 in human brains (Peyron et al. 1998;
Nambu et al. 1999). These neurons are found exclusively in the hypothalamic
regions, including the lateral hypothalamic area (LHA), perifornical area, and
posterior hypothalamus (PH) (Peyron et al. 1998; Nambu et al. 1999; Date et al.
1999) (Fig. 2). However, orexin-imunoreactive fibers were observed in the almost
entire neuroaxis excluding the cerebellum (Peyron et al. 1998; Nambu et al. 1999;
Date et al. 1999). Especially dens staining of fibers were found in the paraven-
tricular nucleus of the thalamus, several regions of the hypothalamus, including

Fig. 2 Schematic drawing of coronal section and sagittal section of rat brain, summarizing the
orexin neuronal system. a Prepro-orexin mRNA-containing neurons are shown in black
superimposed upon anatomical structures of the hypo- and subthalamic areas. The rectangle
designates the area schematized in the figure. Abbreviations: lateral hypothalamic area (LH),
perifornical nucleus (PeF), posterior hypothalamic area (PH), subthalamic nucleus (Sth),
subincertal nucleus (SubI), ventral zona incerta (ZIV). Additional landmarks include: thalamus
(THAL), habenular complex (HAB), internal capsule (ic), optic tract (opt), mammillothalamic tract
(mt), fornix (f), medial forebrain bundle (mfb), third ventricle (3V), arcuate hypothalamic nucleus
(Arc), dorsomedial hypothalamic nucleus (DM), and ventromedial hypothalamic nucleus (VMH).
Inset shows immunostaining image of orexin neurons. b Orexin neurons are found only in the
lateral hypothalamic area and project to the entire central nervous system. The thickness of arrows
represents relative abundance of projections. Abbreviations: third ventricle (3V), fourth ventricular
(4V), tuberomammillary nucleus (TMN), locus coeruleus (LC), laterodorsal tegmental nucleus
(LDT), pedunculopontine nucleus (PPT)
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arcuate nucleus, ventromedial hypothalamus, and posterior hypothalamus, and most
notably, monoaminergic nuclei in the hypothalamic/brain stem regions, such as the
locus coeruleus (LC) (containing noradrenergic neurons), raphe nuclei (containing
serotonergic neurons), tuberomammillary nucleus (TMN) (containing histaminergic
neurons), and laterodorsal and pedunculopontine tegmental nuclei (LDT/PPT)
(containing cholinergic neurons) (Nambu et al. 1999; Date et al. 1999; Peyron et al.
2000). The distribution of the orexin receptor mRNA was consistent with these
projection sites, with differential expression of each subtype; within the brain,
OX1R is most abundantly expressed in the LC, while OX2R is highly expressed in
the TMN (Marcus et al. 2001). Both regions are important for the maintenance of
arousal (Marcus et al. 2001). The raphe nuclei, LDT/PPT, and ventral tegmental
area (VTA) contain both OX1R and OX2R (Marcus et al. 2001), although they are
expressed in distinct neuronal populations in each region (Mieda et al. 2011). These
observations suggest that these monoaminergic regions, implicated in the regulation
of wakefulness, are major effector sites of orexins.

In vivo recording studies revealed changes of orexin neuronal activity across the
sleep-wake cycle in rats or mice (Mileykovskiy et al. 2005; Lee et al. 2005;
Takahashi et al. 2008). Basically, orexin neurons fire during active waking,
decrease discharge during quiet waking, and virtually cease firing during both rapid
eye movement (REM) and non-rapid eye movement (NREM) sleep. This firing
pattern was consistent with earlier studies showing that Fos expression (a marker of
neuronal activity) in orexin neurons in rats or mice is increased during the dark,
active period in which the awake state is dominant (Estabrooke et al. 2001), and
orexin levels in CSF peak during the dark period and decrease during the light
period in which the sleep state is dominant (Yoshida et al. 2001).

2.2 Regulation of Orexin Neurons

2.2.1 Input and Output of Orexin Neurons

Orexin system is involved in the diverse functions. Knowledge about the regulatory
mechanisms of orexin neurons is important for understanding the roles of orexin
neurons in these functions (Fig. 3). Studies using anterograde and retrograde tracers
suggest that orexin neurons receive abundant projections from the lateral septum,
preoptic area, amygdala, bed nucleus of the stria terminalis (BNST),
posterior/dorsomedial hypothalamus, and the raphe nuclei (Sakurai et al. 2005;
Yoshida et al. 2006). Input and output of orexin neurons are described in detail in a
chapter by Mochizuki.

Abundant input from the limbic system suggests it plays a part in the regulation
of the firing rate of orexin neurons by conveying emotive factors to maintain
arousal. The limbic input to orexin neurons might also be involved in the regulation
of feeding behavior, because some of the affective content of the perception of food
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is thought to be processed in the amygdala and limbic system (Berthoud 2004).
Interestingly, it is well known that food perception often evokes cataplexy in
narcoleptic dogs (Reid et al. 1998), suggesting that orexin signaling is activated
upon perception of food, and that this system is necessary to evoke normal feeding
behavior.

Orexin neurons also receive abundant input from the preoptic area (POA), which
is thought to play an important role in initiation and maintenance of sleep. This
connection seems to be important for silencing orexin neurons during sleep (Saito
et al. 2013).

Fig. 3 Connections of orexin neurons with other regions. Orexin neurons in the lateral
hypothalamic area (LHA) provide a link between the limbic system, energy homeostasis and the
brain stem nuclei. Modified from Sakurai (2007). Circles show major target sites for orexins.
Included in these are the locus coeruleus (LC, containing noradrenaline, NA), tuberomammillary
nucleus (TMN, containing histamine, HA), raphe nuclei (Raphe, containing 5-HT), ventral
tegmental area (VTA, containing dopamine, DA), and laterodorsal/pedunclopontine tegmental
nuclei (PPT/LDT, containing acetylcholine, Ach). Orexin neurons promote wakefulness through
the monoaminergic/cholinergic nuclei that are wake-active. Connection between dopaminergic
centers and orexin neurons plays to modulate the reward systems. Input from the limbic system
might be important to regulate the activity of orexin neurons upon emotional stimuli to evoke
emotional arousal or fear-related responses. Sleep-active neurons in the POA send inhibitory
influences to monoaminergic/cholinergic neurons and orexin neurons. Orexin neurons send both
direct excitatory input to cholinergic neurons in the LDT/PPT and indirect inhibitory input to these
cells through GABAergic local interneurons and GABAergic neurons in the substantia nigra pars
reticulata (Takakusaki et al. 2005). Noradrenergic neurons in the LC and serotonergic neurons in
the RN also send inhibitory influences to these cholinergic neurons. Blood glucose levels also
affect the activity of orexin neurons through fluctuations of glucose levels in the CSF and vagal
afferent. NAc nucleus accumbens; PVH paraventricular hypothalamic nucleus; TMN tubero-
mammilary nucleus; LHA lateral hypothalamic area; DMH dorsomedial hypothalamus; ARC
arcuate nucleus; VTA ventral tegmental area; SN substantia nigra; SCN suprachiasmatic nucleus;
RN raphe nucleus; LC locus coeruleus; PPT pedunculopontine tegmental nucleus; LDT
laterodorsal tegmental nucleus
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2.2.2 Factors that Influence Firing of Orexin Neurons

In vitro electrophysilogical studies identified a number of factors that affect activity
of orexin neurons (Table 1). In addition to the classical aminoacid neurotransmit-
ters, glutamate and GABA, several factors were shown to influence the activity of
orexin neurons. Both noradrenaline and serotonin inhibited orexin neurons through
the activation of G protein-regulated inwardly rectifying K+ (GIRK or Kir3)
channels via α2-adrenoceptors and 5HT1A-receptors, respectively (Li et al. 2002;
Yamanaka et al. 2003b, 2006). The cholinergic agonist carbachol activated 27 %

Table 1 Factors that influence activity of orexin neurons

Excitation Receptor involved

Glutamate AMPAR, NMDAR mGluRs

Acetylcholine (muscarinic) (27 %) M3

Orexin OX2R

Ghrelin GHSR

Cholecystokinin CCKA

Neurotensin NTSR2 (unpublished data)

Vasopressin V1a

Oxytocin V1a

Glucagon-like peptide 1 ND

Corticotropin-releasing factor CRFR1

Thyrotropin-releasing hormone TRH1

BRS3 agonist BRS3

ATP P2X

H+ ASIC1a

CO2 ND

Mixture of amino acids System-A amino acid transporters

Inhibition

Glucose Unknown

GABA GABAA, GABAB

Glycine Glycine receptor

Serotonin 5HT1A

Noradrenaline α2
Dopamine α2
Acetylcholine (muscarinic) (6 %) ND

Neuropeptide Y Y1

Enkephalin μ opioid-R

Nociceptin NOPR

Leptin Ob-R

Adenosine A1

BRS3 agonist BRS3
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and inhibits 6 % of orexin neurons (Sakurai et al. 2005; Yamanaka et al. 2003b),
whereas histamine had little effect on orexin neurons. Although orexin neurons do
not express functional dopamine receptors, dopamine inhibited orexin neurons by
acting through α2-adrenoceptors (Yamanaka et al. 2003b, 2006). Several neuro-
peptides, including cholecystokinin (CCK-8S), neurotensin, oxytocin, and vaso-
pressin, induced depolarization and excitation of orexin neurons (Tsujino et al.
2005). A synthetic surrogate ligand for an orphan receptor, BRS-3, also
directly activated these neurons, although it also inhibits orexin neurons through
activation of GABAergic interneurons (Furutani et al. 2010). Orexin itself was also
shown to activate orexin neurons through OX2R, suggesting a positive feedback
mechanism that maintain orexin neuronal activity (Yamanaka et al. 2010).
Similarly, neurotensin was shown to co-localize with orexin neurons and excites
orexin neurons (Furutani et al. 2013).

Interestingly, metabolic signals also seem to contribute to the regulation of
orexin neurons. Decreasing the extracellular glucose concentration produced
depolarization and increased the frequency of firing of orexin neurons, whereas
increasing glucose concentration induced hyperpolarization and cessation of firing
(Yamanaka et al. 2003a; Burdakov et al. 2005). Importantly, this mechanism is
sensitive enough to monitor variations in glucose levels in cerebrospinal fluid
reflecting those occurring physiologically between normal meals (Burdakov et al.
2005). These responses were shown to be mediated by tandem-pore K+ (K2P)
channels (Burdakov et al. 2006).

In addition, a gut/stomach-derived hormone, ghrelin activated 60 % of dispersed
orexin neurons with depolarization and an increase in firing frequency (Yamanaka
et al. 2003a). By contrast, bath-application of leptin, an anorexigenic protein hor-
mone secreted by adipocytes, was found to robustly inhibit most of the orexin
neurons examined, causing hyperpolarization and a decrease in firing rate
(Yamanaka et al. 2003a). These findings show that peripheral humoral factors that are
related to energy metabolism influence the activity of orexin neurons (Sakurai et al.
1998; Yamanaka et al. 2003a; Willie et al. 2001). The ability of orexin neurons of
sensing metabolic signals might play an important physiological role in the regula-
tion of feeding behavior. This suggests that negative energy balance activates orexin
neurons to increase arousal, thereby reinforcing food-seeking/feeding pathways.
Consistently, orexin neurons-ablated mice failed to exhibit this fasting-induced
arousal (Yamanaka et al. 2003a), suggesting that orexin neurons are necessary for
evoking adaptive behavioral arousal during fasting. The mechanism that helps to
ensure survival in nature clearly involves orexins. As discussed later, motivation
toward food might also activate orexin neurons when animals are fasted.
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3 Physiological Functions of Orexins

3.1 Orexin and Feeding

We initially reported orexins as factors that is involved in the regulation of feeding
behavior (Sakurai et al. 1998). Orexin neurons are bilaterally and synmetorically
distributed within the LHA and adjacent regions (Sakurai et al. 1998). The LHA has
been thought to be the “feeding center”, because lesions in this region caused
anorexia, whereas electrical stimulation resulted in overeating and obesity in rats
(Anand and Brobeck 1951). Indeed, we found an orexigenic effect of intracere-
broventricular (icv) administration of orexin A and orexin B in rats (Sakurai et al.
1998), and this effect was subsequently confirmed in several species (Sakurai
2007b). Furthermore, central administration of an orexin antibody or an OX1R
antagonist have been shown to decrease food intake (Yamada et al. 2000; Haynes
et al. 2000a).

Intraperitoneal administration of the selective OX1R antagonist (1-SORA)
SB-334867 or RNAi-mediated knockdown of the orexin gene reduced food intake
in mice exposed to mild food restriction (Sharf et al. 2010a), and orexin-deficient
mice showed decreased food intake (Willie et al. 2001; Hara et al. 2005). However,
importantly, orexin signaling increases not only food intake but also energy
expenditure, and a decrease in the overall orexin tone generally results in obesity
(Funato et al. 2009; Hara et al. 2001). This is consistent with the findings that
human narcolepsy patients show increased incidence of obesity (Hara et al. 2001).
The role of orexins in body weight regulation is discussed in a separate chapter of
this volume (Funato).

The orexin system may contribute to the regulation of energy homeostasis by
integrating information regarding metabolic state and regulating wakefulness to
support feeding behavior (Yamanaka et al. 2003a; Mieda and Sakurai 2012; Sakurai
and Mieda 2011). Indeed, mice lacking orexin neurons do not show an increase in
wakefulness or locomotor activity in response to starvation, unlike wild-type mice
(Yamanaka et al. 2003a). Moreover, prepro-orexin mRNA is upregulated in fasted
animals (Sakurai et al. 1998) and several studies reported that the firing rates of
orexin neurons are influenced by glucose, triglycerides and amino acids (Yamanaka
et al. 2003a; Burdakov et al. 2005b; Venner et al. 2011; Chang et al. 2004; Karnani
et al. 2011). Orexin neurons were also shown to be innervated by neurons in the
arcuate nucleus (which are primary sensors for plasma leptin levels) (Elias et al.
1998), and they are directly inhibited by leptin and excited by ghrelin (Yamanaka
et al. 2003a). Together, these observations suggest that orexin neurons sense the
animal’s metabolic and nutritional status through both direct and indirect pathways,
and integrate it in order to evoke a level of arousal necessary to promote
food-seeking behavior in response to negative energy balance. In addition, moti-
vation toward food might also contribute to activate orexin neurons.
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As already mentioned, one of the possible mechanisms by which orexins pro-
mote feeding is that these factors increase arousal to secure feeding behavior.
However, although the OX2R is thought to be a major player in the regulation of
wakefulness, the studies using 1-SORA SB-334867 pointed to the importance of
OX1R in the regulation of food seeking (Sharf et al. 2010a; Haynes et al. 2000b).
This suggests that the orexin system influences food intake and wakefulness
through at least partially different receptors and pathways.

Orexins might also directly affect the neuronal circuits in the hypothalamus that
are implicated in the regulation of feeding behavior. They inhibit glucoreceptor
neurons in the ventromedial hypothalamus (VMH), and excite neuropeptide Y
(NPY) neurons in the arcuate nucleus and melanin-concentrating hormone
(MCH) neurons in the LHA (van den Pol et al. 2004; Shiraishi et al. 2000;
Yamanaka et al. 2000). Local injection of orexin in the paraventricular nucleus of
the hypothalamus (PVN), DMH or LHA increased food intake in rats (Dube et al.
1999; Thorpe et al. 2003; Sweet et al. 1999). The area postrema and nucleus of the
solitary tract (NTS) were also shown to be involved in orexin-mediated feeding
(Baird et al. 2009; Thorpe and Kotz 2005). Together, orexin is likely to promote
feeding by influencing multiple elements of the feeding circuitry.

Orexin-mediated feeding seems to be closely related with the reward system, in
which OX1R has been also shown to be involved (Sharf et al. 2010a; Harris et al.
2005b; Choi et al. 2010). In rats, orexin increased the motivation to food-seeking
when administered icv, especially for palatable food (Borgland et al. 2009, 2010;
Thorpe et al. 2005). Furthermore, feeding behavior induced by administration of the
mu-opioid receptor agonist DAMGO (D-Ala(2)-N-MePhe(4)-Gly-ol(5)-enkepha-
lin) into the shell of the nucleus accumbens (NAc) was dependent on OX1R
activation (Zheng et al. 2007), and intraperitoneal injection of the 1-SORA
SB-334867 reduced high-fat food intake in food-restricted rats (Choi et al. 2010;
Borgland et al. 2009; Nair et al. 2008).

A recent study showed that the number of Fos-immunoreactive orexin neurons
in the hypothalamus increased in response to a chow-predictive (that is, condi-
tioned) cue in rats (Petrovich et al. 2012). Similarly, the expectation of receiving a
palatable food like chocolate increased numbers of Fos-positive hypothalamic or-
exin neurons (Choi et al. 2010). Numbers of Fos-positive orexin neurons in the
LHA were increased after conditioned place preference training for a sweet cereal
reward in rats (Harris et al. 2005a). Together, these findings indicate that orexin
plays a role in food pursuit, especially when motivation towards food is high (e.g.,
when an animal is food-deprived or when foods are palatable), or when
reward-conditioned cues are present. Input from the limbic system and NAc, which
are thought to process the affective content of the perception of food (Berthoud
2004), might be involved in this function. Notably, food-related cues often evoke
cataplexy in narcoleptic dogs (which are defective in orexin signaling) (Reid et al.
1998), suggesting that the perception of food normally induces orexin signaling,
and that this signaling is necessary to elicit feeding behavior, including the
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maintenance of motor activity and wakefulness. Collectively, orexin neurons are
likely to be excited by food-related cues and/or a low energy balance through
neuronal connections with the limbic system and by factors that indicate a low
energy balance to ensure feeding behavior.

3.2 Orexin and Wakefulness

The importance of orexins in the maintenance of wakefulness was highlighted by
the findings that showed the involvement of the dysfunction of orexin signaling in a
sleep disorder, narcolepsy. Clues that revealed the dysfunction of orexins are
involved in narcolepsy initially came from animal models (Chemelli et al. 1999; Lin
et al. 1999) (see other chapters). The link between orexin signaling and narcolepsy
was subsequently supported by studies with human patients (Peyron et al. 2000;
Thannickal et al. 2000).

Narcolepsy is a debilitating neurological disorder that affects approximately 1 in
2,000 individuals in the United States (Mignot 1998). A cardinal symptom of the
disorder is excessive daytime sleepiness (an insurmountable urge to sleep), which
often results in falling asleep at inappropriate times and situations (‘sleep attack’).
The latency for rapid eye movement (REM) sleep is notably reduced in narcolepsy
patients, and the existence of ‘sleep-onset REM periods’ (i.e. REM-sleep is directly
preceded by an awake period) is one of the diagnostic criteria for narcolepsy.
Nocturnal sleep is also often disturbed by nocturnal wakening combined with the
occurrence of hypnagogic hallucinations, vivid dreaming, and sleep paralysis.
Narcolepsy patients often suffer from a condition called “cataplexy”, which is a
sudden weakening of muscle tone, ranging from jaw dropping and speech slurring
to complete bilateral collapse of the postural muscles. Cataplexy is usually triggered
by emotional stimuli. Unlike the sleep attack, consciousness is preserved during
cataplexy.

A postmortem study of human narcoleptic brains showed no detectable levels of
orexin peptides in the cortex and pons, in which normally orexinergic projections
are found. In the hypothalamus, an 80–100 % reduction in the number of neurons
containing detectable prepro-orexin mRNA or orexin-like immunoreactivity were
found (Peyron et al. 2000; Thannickal et al. 2000). More than 90 % of patients with
narcolepsy are shown to have decreased orexin A levels in the cerebrospinal fluid
(Mignot et al. 2002). Relationship between orexin deficiency and narcolepsy is
described in detail in other chapters (Nishino, Kanbayashi).

As already discussed, the projection pattern of orexin neurons and distributions
of orexin receptor mRNAs suggested that main effector sites for orexin are
monoaminergic/cholinergic neurons in the brainstem, and electrophysiological
experiments also showed that firing rates of monoaminergic cells in these nuclei are
increased by orexins. For instance, noradrenergic cells of the LC (Hagan et al.
1999; Horvath et al. 1999), dopaminergic cells of the VTA (Nakamura et al. 2000),
serotonergic cells of the dirsal raphe (DR) (Liu et al. 2002; Brown et al. 2002), and
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histaminergic cells in the TMN (Yamanaka et al. 2002) were all shown to increase
their firing rates by orexins. The firing rates of these monoaminergic neurons are
well known to be associated with sleep/wakefulness states. They fire tonically
during awake period, less during NREM sleep, and cease firing during REM sleep
(Vanni-Mercier et al. 1984), displaying similar firing patterns with orexin neurons.
These observations suggest that firing of these wake-active monoaminergic neurons
mediates arousal are supported by orexins. Orexin neurons also project directly to
the LDT/PPT, which contain cholinergic neurons. Some populations of these
cholinergic neurons are implicated in the maintenance of wakefulness and REM
sleep (W/REM-on neurons) (Shouse and Siegel 1992), whereas other populations
are implicated in desynchronization of cerebral cortex and muscle atonia during
REM sleep (REM-on neurons) (Shouse and Siegel 1992). Pharmacologically, a
direct injection of orexin A into the LDT of cats results in an increased awake time
and a decreased REM sleep time (Xi et al. 2001). In addition, several reports have
shown that orexin induces long-lasting excitation of cholinergic neurons in the LDT
(Takahashi et al. 2002). However, recent work also showed that orexin A inhibits
cholinergic neurons in the PPT via activation of GABAergic local interneurons and
GABAergic neurons in the substantia nigra pars reticulate (SNr), which send
inhibitory projections to the PPT (Takakusaki et al. 2005). Since orexins show
strong inhibitory effects on REM sleep, the indirect inhibition of cholinergic neu-
rons of orexin might play an important role during REM sleep. In fact, we found
robust expression of OX1R in the cholinergic neurons, and both receptor expres-
sions in GABAergic neurons in these regions (Mieda et al. 2011). Collectively,
these results indicate that in the LDT/PPT, orexin may directly activate W/REM-on
cholinergic neurons through OX1R to facilitate wakefulness. Simultaneously, or-
exin is likely to activate GABAergic interneurons through both receptors to inhibit
REM-on cholinergic neurons. Additionally, orexinergic activations of wake-active
noradrenergic and serotonergic neurons in the LC and raphe nuclei, respectively,
are likely to counteract activation of REM-on cholinergic neurons in the LDT/PPT
during wakefulness (Sakurai 2007a; Pace-Schott and Hobson 2002). This is con-
sistent with the fact that tricyclic antidepressants and serotonin-specific reuptake
inhibitors are effective for treating cataplexy in narcoleptic patients.

Recent optogenetic studies revealed that orexin neurons are also glutamatergic
(Schone et al. 2014). Glutamate-mediated fast and orexin-mediated slow neuroto-
rasmission make it possible for orexin neurons to convert signals into transient and
sustained signals in the same postsynaptic target neurons. The downstream path-
ways of orexin receptor-expressing neurons are described in more detail in a sep-
arate chapter (Mieda).

3.3 Orexin and Reward/Addiction

Besides feeding and arousal, orexin system also plays an important role in the
reward system. The reward system is closely related to both feeding and
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wakefulness. Cues and contexts associated with rewards, including food, sex and
drugs, increase the number of Fos-positive orexin neurons and prepro-orexin
mRNA levels (Sakurai et al. 1998; Harris et al. 2005a; Di Sebastiano et al. 2011;
Cason et al. 2010). Orexin neurons send dense projections to the ventral tegmental
area (VTA), in which dopaminergic neurons that send innervations to the NAc are
localized (Yoshida et al. 2006) (Fig. 2). The NAc in turn sends projections to orexin
neurons, constituting a reciprocal link. Intracerebroventricular injection of orexins
or local administration into the VTA can reinstate previously-extinguished
drug-seeking or food-seeking behaviour in rodents (Boutrel et al. 2005; Harris
et al. 2005a), and orexin neurons are activated during the behavioural expression of
preferences for cues associated with reward (Harris et al. 2005a). The VTA
expresses both OX1R and OX2R (Marcus et al. 2001), with dopaminergic neurons
predominantly expressing OX1R, and orexin signaling in the VTA has been
implicated in reinforcement and reward-related processes via actions on VTA
dopamine neurons (Balcita-Pedicino and Sesack 2007) (Fig. 3).

An increasing body of work shows that orexin neurons also play a part in the
behavioural presentation of addiction to drugs including cocaine, amphetamine,
morphine, heroin, nicotine, ethanol and cannabinoids (Espana et al. 2011; Mahler
et al. 2012; Martin-Fardon and Boutrel 2012). Generally, orexin seems to be
involved in the modulation of highly-motivated reward seeking, especially when
this seeking is triggered by external cues that are conditioned with the rewards.
Although the 1-SORA SB-334867 did not affect the expression of cocaine and
amphetamine-sensitization in animals tested immediately after training (Borgland
et al. 2006), it blocked the expression of sensitization after a period of abstinence
following amphetamine sensitization training, as did the DORA almorexant (Quarta
et al. 2010; Winrow et al. 2010). This suggests that the OX1R is involved in the
acquisition of sensitization. In another example, the 1-SORAs SB-334867 and
GSK-1059865 attenuated the expression of cocaine and amphetamine-induced
conditioned place preference in rats (Gozzi et al. 2011; Hutcheson et al. 2011;
Sartor and Aston-Jones 2012).

Importantly, neither orexins nor their receptor antagonists affect self-adminstration
of addictive drugs such as cocaine in rodents (Espana et al. 2010, 2011; Hutcheson
et al. 2011), suggesting that orexins have no major role in the reinforcing or the
priming effects of cocaine. However, orexin A has been shown to promote motivation
in a study using rats in which high levels of effort were required for seeking addictive
drugs in self-administration paradigms (Borgland et al. 2009). These results sug-
gested that orexins plays an essential role in reward-seeking not by influencing the
primary reinforcing or priming effects of rewards, but by supporting motivated
behavior. Intraperitoneal injections or intra-VTA administration of the 1-SORA
SB-334867 blocked reinstatement of cocaine seeking elicited by either discrete cues
or contextual stimuli in rats (Smith et al. 2009, 2010; James et al. 2011), whereas
intraperitoneal injection of the 2-SORA4-PT did not affect cue-induced reinstatement
(Smith et al. 2009). These observations suggest that orexin neuronsmight be activated
by external reward-related stimuli and then send information to the VTA to induce
reinstatement through the activation of OX1R.
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Orexins also seem to play a role in addiction to drugs other than cocaine and
amphetamine. For example, Fos expression was increased in orexin neurons in rats
following acute nicotine administration or nicotine withdrawal (Pasumarthi et al.
2006; Plaza-Zabala et al. 2013), and nicotine withdrawal was decreased in orexin
knockout mice (Plaza-Zabala et al. 2013). Prior intraperitoneal administrations of
the 1-SORA SB-334867, but not the 2-SORA TCSOX229, attenuated nicotine
withdrawal (Plaza-Zabala et al. 2013), as did intra-PVN infusion of the 1-SORA
SB-334867 (Plaza-Zabala et al. 2013). Moreover, systemic administration of the
DORA almorexant or the 1-SORA SB-334867 reduced nicotine self-administration
(Hollander et al. 2008; LeSage et al. 2010).

Orexin knockout mice and wild-type mice that received the 1-SORA SB-334867
show reduced morphine withdrawal responses (Sharf et al. 2010a, b; Georgescu
et al. 2003), suggesting that orexin may also be involved in opiate addiction.
Furthermore, intraperitoneal injection of the 1-SORA SB-334867 reduced the
expression of morphine-induced conditioned place preference in rats and mice
(Harris et al. 2005a; Sharf et al. 2010b). Similarly, a report showed that
orexin-deficient mice did not show morphine-induced conditioned-place preference
and hyperlocomotion (Narita et al. 2006), although this finding is argued in another
study (Sharf et al. 2010b). Action of orexin in the VTA is important for the
expression of morphine-induced conditioned place preference (Richardson and
Aston-Jones 2012). Moreover, in contrast with the lack of effect of the 1-SORA
SB-334867 on cocaine self-administration, intraperitoneal delivery of the 1-SORA
SB-334867 reduced heroin self-administration (Smith and Aston-Jones 2012).

3.4 Stress, Emotion and Emotional Memory

Emotional stimuli are known to evoke autonomic responses and arousal through
neural connections between the amygdala and LHA, the region orexin neurons
locate. Historically, the LHA has been recognized as the ‘defence area’, as electrical
stimulation here can evoke aggressive behavior and the accompanying sympathetic
activation (Hilton 1982). The orexin system has close functional relationships with
systems that regulate emotion and stress response, including so-called “fight or
flight” response.

Orexin system has been shown to be involved in emotion-induced changes in
autonomic and neuroendocrine functions. Orexin neurons in the LHA receive
innervations from limbic regions including the lateral septum, bed nucleus of the
stria terminalis (BNST) and the amygdala (Sakurai et al. 2005; Yoshida et al. 2006)
and send projections to monoaminergic and cholinergic regions in the brain stem,
periaqueductal grey (PAG), parabrachial nucleus, NST, PVN, and the rostral
ventrolateral and ventromedial medulla (RVLM and RVMM) (Peyron et al. 1998;
Nambu et al. 1999). Thus, orexin neurons may link limbic structures with arousal
and premotor autonomic centres (Fig. 2). Indeed, several studies showed that
excitation of orexin neurons increases arousal along with increased sympathetic
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outflow in response to various physiological and emotional stimuli (Kayaba et al.
2003a; Zhang et al. 2006, 2009, 2010).

Notably, oral administration of a DORA, almorexant, inhibited cardiovascular
responses to novelty and contextual fear (Furlong et al. 2009) without affecting
responses to cold or restraint stress. Similarly, orexin knock-out mice have a
decreased cardiovascular response to social stress but a normal response to a tail
pinch (Kayaba et al. 2003a). Together with the finding that oral administration of
the 1-SORA ACT335827 reduced the tachycardic response to social stress (Steiner
et al. 2013), these data suggest that orexin more profoundly contributes to auto-
nomic responses to psychological stressors than to physical stressors. Similarly,
narcoleptic patients show reduced autonomic responses to emotional stimuli,
especially aversive ones (Tucci et al. 2003), whereas they have a normal cardio-
vascular response to basic homeostatic challenges (such as head-up tilt, Valsalva
manoeuver and cold pressor test). This suggests that orexin regulates the sympa-
thetic nervous system primarily in response to salient emotional cues or contexts,
rather than physical stress.

Several papers have suggested that dysregulation of the orexin system has been
implicated in anxiety and panic-like behaviour in humans and rats (Johnson et al.
2010). For example, humans with panic anxiety have higher orexin levels in the
cerebrospinal fluid compared to subjects without panic anxiety (Johnson et al.
2010), as do patients with post-traumatic stress disorder (PTSD) (Strawn and
Geracioti 2008).

The limbic input to orexin neurons (Sakurai et al. 2005; Yoshida et al. 2006;
Winsky-Sommerer et al. 2004) might regulate or modulate physiological responses
to emotional and stressful stimuli. Indeed, the cardiovascular and locomotor
responses that wild-type mice show after exposure to an intruder mouse are
diminished in orexin-deficient mice (Kayaba et al. 2003b). Similarly, cardiovascular
responses to air-jet stress were reduced in mice in which orexin neurons were
genetically ablated (Zhang et al. 2006). Disinhibition of the amygdala or BNST
through microinjections of a GABAA receptor antagonist increased Fos immuno-
reactivity in nuclei of orexin neurons and induced cardiorespiratory excitation in
wild-type mice but not in mice lacking orexin neurons (Zhang et al. 2009).
Together, these observations indicate that orexin neurons are excited by input from
the amygdala and BNST (Zhang et al. 2009). Thus, it is possible that activation of
orexin neurons by the limbic system maintains wakefulness during emotional
arousal by conveying various emotional stimuli to orexin neurons.

The regulation of orexin neurons by the limbic system is also implicated in
pathophysiology of cataplexy, as strong, generally positive emotional stimuli are
well known to trigger this phenomenon in patients. Cholinergic neurons in the PPT
have a role in REM sleep-related atonia (Shiromani et al. 1988) and are therefore
likely to be implicated in cataplexy as well. Indeed, local injections of orexin into
the PPT strongly inhibited REM-related atonia in cats (Takakusaki et al. 2005).
Thus, excitatory input from the limbic system might increase orexin release in the
PPT in order to sustain muscle tone that may be required to respond to salient
situations.
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Orexin neurons send abundant projections to the LC, and noradrenergic neurons
strongly express OX1R (Marcus et al. 2001; Mieda et al. 2011). The orexin–LC
pathway was shown to be involved in the formation of emotional memory in mice
(Soya et al. 2013). Mice lacking OX1R displayed reduced freezing (a behavioral
expression of fear) and reduced lateral amygdala activation (as measured by
expression of the immediate-early gene Zif268) in response to cued- and contextual
fear stimuli (Soya et al. 2013). Interestingly, this study showed that re-expression of
OX1R in noradrenergic neurons in the LC by an AAV-mediated gene transfer in
these mice restored both freezing time and lateral amygdala activation in the test
phase of the cued fear conditioning procedure, but not in the contextual fear pro-
cedure. Mice lacking the OX2R (Ox2r−/− mice) also showed reduced freezing in the
contextual fear test, but normal freezing in the cued fear test (Soya et al. 2013). This
study thus suggested that OX1R, but not OX2R, plays a major role in the estab-
lishment of explicit cue-dependent emotional memory.

Icv infusion of the 1-SORA SB 334867 blocked the establishment of long-term
fear memory, whereas infusion of the 2-SORA TCS-OX2-29 did not (Sears et al.
2013). Furthermore, blockade of OX1R signalling in the LC before conditioning,
but not immediately after conditioning inhibited threat-memory formation. These
findings suggest that OX1R signalling is important during the learning phase of fear
memory formation. In human, individuals with narcolepsy showed reduced
amygdala activity during aversive conditioning (Ponz et al. 2010), suggesting that
orexin deficiency may result in impaired emotional learning.

A recent study using pharmacological MRI in rats found that amphetamine-
induced activation in the extended amygdala, BNST and NAc, regions involved in
emotion processing and emotional memory formation, was attenuated by admin-
istration of the 1-SORA GSK1059865, whereas activation of the frontal cortex and
thalamus, regions that are involved in regulating arousal, was attenuated by the
2-SORA JNJ-1037049 (Gozzi et al. 2011). These findings suggest that OX2R plays
a major role in maintenance of arousal, while OX1R is predominantly involved in
processing emotive or reward information.

Together, these observations suggest that the orexins are important in the for-
mation of cued fear memory. This is consistent with the observation that human
narcolepsy patients show impairments in fear response acquisition as well as
reduced amygdala activity relative to controls when exposed to aversively condi-
tioned stimuli (Ponz et al. 2010; Khatami et al. 2007).

Stress response is also closely related with emotion, and orexin is also involved
in this response. Early studies showed that icv administration of orexin results in
increased CRH levels in the hypothalamus and in activation of the hypothalamus–
pituitary–adrenal (HPA) axis (Al-Barazanji et al. 2001; Sakamoto et al. 2004) and,
conversely, that orexin neurons are activated by CRH (Winsky-Sommerer et al.
2004, 2005). Indeed, an in vitro study, application of CRH depolarized the mem-
brane potential and increased the firing rate in a subpopulation of orexin neurons by
activating CRHR1 on these neurons (Winsky-Sommerer et al. 2004). These
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findings are in accordance with the reciprocal connections between CRH neurons in
the PVN and orexin neurons in the LHA (Winsky-Sommerer et al. 2004) and
suggest that orexin might play a role in activating the HPA axis in response to
stress. Indeed, forced swim stress caused orexin neuron activation and increased
plasma levels of adrenocorticotropic hormone (ACTH) (Chang et al. 2007), and icv
administration of a 2-SORA reduced this ACTH response. Considering that the
PVN expresses abundant OX2R mRNA (Marcus et al. 2001), these results suggest
that stress increases orexin neuron firing to stimulate CRH neurons in the PVN
through OX2R.

Numbers of Fos-positive orexin neurons were reported to be increased by a
fear-conditioned cue, but not by restraint stress (Furlong et al. 2009). These
observations again suggest that orexin neurons are activated by psychological
stressors. This response seems to be an appropriate response to which requires
proper vigilance level and attention to environmental cues.

4 Therapeutic Potential of Orexin Agonists/Antagonists

Several orexin receptor antagonists (DORAs and SORAs) are expected to become
next-generation drugs for insomnia. To date, several orexin receptor antagonists
with different pharmacological characteristics have been developed (Table 2), and a
DORA suvorexant has been already clinically available for insomnia disorder in
Japan and the U.S. OX2R selective antagonists were also shown to be effective in
animal studies for inducing sleep (Dugovic et al. 2009; Etori et al. 2014). The
clinical features of orexin receptor antagonists for insomnia treatment are discussed
in detail in a separate chapter (Uslaner).

On the other hand, orexin agonists a promising candidate for narcolepsy treat-
ment in the future. Given the broad range of function of the orexin system, these
drugs might be also beneficial for treating a variety of conditions other than sleep
disorders.

As discussed above, it has been shown that orexin mediates many behaviors
associated with drug addiction in rodents due to its effects on the VTA (Harris et al.
2007). It is reasonable to speculate that orexin receptor antagonists might be
effective for treating drug addiction. Recent report showed that orexin-1 receptor
antagonist SB-334867 reduces the acquisition and expression of
cocaine-conditioned reinforcement and the expression of amphetamine-conditioned
reward, suggesting that OXR1-selective antagonists (1-SORA) have the potential to
be a treatment for individuals struggling with drug relapse and dependency
(Hutcheson et al. 2011). 1-SORA might also be effective for panic disorders,
because they were shown to inhibit elevations of mean arterial pressure, heart rates
and freezing responses in rat models of panic disorder (Johnson et al. 2010).
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5 Conclusion and Future Perspective

Proper arousal levels are necessary for executing any purposeful behavior that
requires high motivation. These behaviors are usually triggered by external cues.
These functions are closely related and are interconnected through the orexin system.
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