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Abstract. This paper addresses the problem of predicting the outcome
of an ongoing case of a business process based on event logs. In this set-
ting, the outcome of a case may refer for example to the achievement of a
performance objective or the fulfillment of a compliance rule upon com-
pletion of the case. Given a log consisting of traces of completed cases,
given a trace of an ongoing case, and given two or more possible out-
comes (e.g., a positive and a negative outcome), the paper addresses the
problem of determining the most likely outcome for the case in question.
Previous approaches to this problem are largely based on simple symbolic
sequence classification, meaning that they extract features from traces
seen as sequences of event labels, and use these features to construct
a classifier for runtime prediction. In doing so, these approaches ignore
the data payload associated to each event. This paper approaches the
problem from a different angle by treating traces as complex symbolic
sequences, that is, sequences of events each carrying a data payload. In
this context, the paper outlines different feature encodings of complex
symbolic sequences and compares their predictive accuracy on real-life
business process event logs.

Keywords: Process mining · Predictive monitoring · Complex symbolic
sequence

1 Introduction

Process mining is a family of methods for analyzing business processes based on
event logs consisting of traces, each representing one execution of the process
(a.k.a. a case). A trace consists of a sequence of (possibly timestamped) events,
each referring to an execution of an activity (a.k.a. an event class). Events in a
trace may have a payload consisting of attributes such as the resource(s) involved
in the execution of an activity or other data recorded with the event.
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Predictive business process monitoring [14] is a category of process mining
methods that aims at predicting at runtime and as early as possible the outcome
of a case given its current (incomplete) trace. In this context, an outcome may
be the fulfillment of a constraint on the cycle time of the case, the validity of a
temporal logic constraint, or any predicate over a completed case. For example, in
a sales process, a possible outcome might be the placement of a purchase order
by a potential customer, whereas in a medical treatment process, a possible
outcome is the recovery of the patient upon completion of the treatment.

Existing approaches to predictive monitoring [7,14] essentially map the prob-
lem to that of early sequence classification [24]. The idea is to train a classifier
over the set of prefixes of historical traces. This classifier is used at runtime in
order to predict the outcome of an ongoing case based on its current (incomplete)
trace. A key step is to extract features from prefixes of historical traces. In this
respect, existing approaches treat traces as simple symbolic sequences, meaning
sequences of symbols, each representing an event but without its payload. When
data is taken into account, only the latest payload of data attributes attached
to the event at the end of each trace prefix is included in the feature vector of
the classifier, but the evolution of data attributes as the case unfolds is ignored.

This paper investigates an alternative approach where traces are treated as
complex symbolic sequences, that is, sequences of events each carrying a data pay-
load consisting of attribute-value pairs. A crucial design choice in this approach is
how to encode a complex symbolic sequence in terms of vectors of features. In this
respect, the paper proposes two complex sequence encodings. The first encoding is
based on indexes. This encoding specifies, for each position in the case, the event
occurring in that position and the value of each data attribute in that position. The
second encoding is obtained by combining the first one with an encoding based on
Hidden Markov Models (HMMs), a well-known generative probabilistic technique.
As this work deals with the problem of case classification, a discriminative HMM
approach is adopted. In particular, separate HMMs are trained for each possible
outcome (e.g., one HMM for positive cases and one for negative cases). Then, the
likelihood of a trace prefix to belong to each of these two models is measured. The
difference in likelihoods is expressed in terms of odds-ratios, which are then used
as features to train the classifier. The proposed methods are evaluated in terms of
their accuracy at different points in a trace based on two real life logs: (i) a patient
treatment log provided for the BPI challenge 2011 [1] and (ii) an insurance claim
process log from an insurance company [22].

The paper is structured as follows. Section 2 reviews previous work on pre-
dictive business process monitoring and introduces HMMs, which are used later
in the paper. Section 3 presents the proposed methods while Section 4 discusses
their evaluation. Finally, Section 5 draws conclusions and outlines future work.

2 Background and Related Work

This section provides an overview of existing predictive business process mon-
itoring approaches (Section 2.1) and briefly introduce Hidden Markov Models
(HMMs), which we use for complex symbolic sequence encoding (Section 2.2).
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2.1 Predictive Monitoring: The Related Work

Existing techniques for predictive business process monitoring can be broadly
classified based on the type of predicted outcome. In this respect, a first group of
works concentrates on the time perspective. In [2,3], the authors present a set of
approaches in which annotated transition systems, containing time information
extracted from event logs, are used to: (i) check time conformance while cases
are being executed, (ii) predict the remaining processing time of incomplete
cases, and (iii) recommend appropriate activities to end users working on these
cases. In [10], an ad-hoc predictive clustering approach is presented, in which
context-related execution scenarios are discovered and modeled through state-
aware performance predictors. In [20], the authors use stochastic Petri nets for
predicting the remaining execution time of a process.

A second group of works focuses on approaches that generate predictions
and recommendations to reduce risks. For example, in [7], the authors present
a technique to support process participants in making risk-informed decisions,
with the aim of reducing the process risks. Risks are predicted by traversing deci-
sion trees generated from the logs of past process executions. In [16], the authors
make predictions about time-related process risks, by identifying (using statisti-
cal principles) and exploiting indicators observable in event logs that highlight
the possibility of transgressing deadlines. In [21], an approach for Root Cause
Analysis through classification algorithms is presented. Decision trees are used
to retrieve the causes of overtime faults on a log enriched with information about
delays, resources and workload.

An approach for prediction of abnormal termination of business processes
is presented in [12]. Here, a fault detection algorithm (local outlier factor) is
used to estimate the probability of a fault to occur. Alarms are provided for
early notification of probable abnormal terminations. In [6], Castellanos et al.
present a business operation management platform equipped with time series
forecasting functionalities. This platform allows for predictions of metric values
on running process instances as well as for predictions of aggregated metric values
of future instances (e.g., the number of orders that will be placed next Monday).
Predictive monitoring focused on specific types of failures has also been applied
to real case studies. For example, in [8,15], the authors present a technique for
predicting “late show” events in transportation processes. In particular, they
apply standard statistical techniques to find correlations between “late show”
events and external variables related to weather conditions or road traffic.

A key difference between these approaches and our technique is that they
rely either on the control-flow or on the data perspective for making predictions
at runtime, whereas we take both perspectives into consideration. The two per-
spectives have been considered together only in [14], where a framework for the
predictive monitoring of constraint fulfillment and violation has been proposed.
In this approach, however, only the payload of the last executed event is taken
into account, while neglecting the evolution of data values throughout the exe-
cution traces. The present paper aims at addressing this latter limitation by
treating the input traces as complex symbolic sequences.
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2.2 Hidden Markov Models

Hidden Markov Models (HMMs) [18] are a class of well-studied models of sequen-
tial observations that have been widely applied in the context of sequence clas-
sification [24]. HMMs are probabilistic generative models, meaning that there
is an assumption that an observed sequence is generated by some process that
needs to be uncovered via probabilistic reasoning. The idea behind HMM is
that a sequence consists of observed events, generated by some hidden factors.
Assume, for example, that two coins – a fair one and a biased one – are tossed in
some unknown order. Only a sequence of heads and tails can be observed. Our
goal is to figure out which parts of the sequence were produced by the fair and
which by the biased coin. This process can be described by:

• observed events O = {O1, O2, ..., OT } - resulting sequence consisted of heads
and tails;

• set of discrete symbols - the finite alphabet size V = {V1, V2, ..V|M |} - {head,
tail} in our example;

• number of hidden states N , where each state is denoted as S =
{S1, S2, ..S|N |} - represented by fair and biased coin in our example;

• vector of initial probabilities π - how often, in general, each coin is chosen;
• matrix of emission probabilities B - probabilities for each symbol to occur in

a particular hidden state - for example, the probability of tails of the biased
coin;

• matrix transition probabilities A - probability to move from one state to
another or to stay in the same state - transition probabilities answer the
question “how often the coins were switched”.

The common HMM construction procedure is to specify parameters N and
V and to train a model λ = {A,B, π} using a maximum likelihood method such
as the standard Baum-Welch algorithm [18].

3 Predictive Monitoring: The Proposed Approach

In this section, the proposed approach for predictive monitoring is described.
In particular, in Section 3.1, an overview of the entire approach is given. In
Section 3.2, the core part of the proposed approach is introduced, i.e., the encod-
ing of log cases as complex symbolic sequences.

3.1 Overview

Fig. 1 shows an overview of the proposed approach. To predict the outcome of an
ongoing case, its current (incomplete) trace (say of length n) is encoded using
complex symbolic sequences. As explained in detail in Section 3.2, a complex
symbolic sequence carries information about the control flow and the data flow
of the trace.

In the approach, a log of historical (completed) cases is supposed to be avail-
able. From these cases, all the prefixes of length n are extracted and, in turn,
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Fig. 1. Overview of the proposed approach.

encoded in the form of complex symbolic sequences. In addition, these sequences
are labeled using a binary or categorical value according to their outcome. These
“historical complex symbolic sequences” are used to train a classifier. The cur-
rent ongoing trace is then used to query the classifier that returns the label that
is the most probable outcome for the current case according to the information
derived from the historical cases. In this work, we use random forest as classifier
that belongs to the class of ensemble methods [5]. At the core of the method
is the concept of decision tree. However, instead of training a single tree on a
dataset, it grows a pre-defined number of trees and let them vote for the most
popular outcome. Random forest is easy to train as it requires less input parame-
ters to tune compared to other classification algorithms.1 Moreover, it has shown
superior results over other well-known classification algorithms like support vec-
tor machines (SVM) and generalized boosted regression models (GBM) [19,23]
in several cases [9]. A comparison of the performances of these algorithms when
applied to one of the datesets used in this paper is shown in Fig. 8.

3.2 Complex Symbolic Sequence Encodings

Each case of a log corresponds to a sequence σi of events describing its control
flow. Each event is also associated with data in the form of attribute-value pairs.
Moreover, each completed case is associated to an outcome - a label, which can
assume binary or categorical values. We represent a case in the following form:

sequence(event{associated data},...,event{associated data}): label

As running example, we consider the log in Fig. 2 pertaining to a medical
treatment process. Each case relates to a different patient and the correspond-
ing sequence of events indicates the activities executed for a medical treatment
of that patient. In the example, consultation is the first event of sequence σ1.
Its data payload “{33, radiotherapy}” corresponds to the data associated to

1 Random forest requires two parameters: Number of trees to grow (ntrees) and num-
ber of features to use for each tree (mtry).
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σ1 (consultation{33, radiotherapy},...,ultrasound{33, nursing ward}):false
...

σk (order rate{56, general lab},..., payment{56, clinic}):true

Fig. 2. Running example.

attributes age and department. Note that the value of age is static: It is the
same for all the events in a case, while the value of department is different for
every event. In the payload of an event, always the entire set of attributes avail-
able in the log is considered. In case for some event the value for a specific
attribute is not available, the value unknown is specified for it.

The goal of predictive business process monitoring is to build a classifier
that learns from a set of historical cases L how to discriminate classes of cases
and predict as early as possible the outcome of a new, unlabeled case. More
specifically, we are interested in automatically deriving a function f that, given
an ongoing sequence σx provides a label for it, i.e., f : (L, σx) → {labelx}. To
achieve this goal, a random forest classifier is trained on all sequence prefixes of
the same length of σx derived from historical cases in L. In order to train the
classifier, each (prefix) sequence σi, i = 1...k has to be represented through a
feature vector gi = (gi1, gi2, ...gih).

In the most straightforward encodings, sequences are treated as simple sym-
bolic sequences, while additional information related to data and data flow is
neglected. This work combines and exploits both the control and the data flow
dimension by considering the sequences as complex symbolic sequences. In par-
ticular, two different encodings (the index-based encoding and the HMM-based
encoding) are taken into consideration. In the following sections, first, four clas-
sical baseline encodings are sketched and then the two new encodings are illus-
trated in detail.

Table 1. Baseline encodings for the example in Fig. 2.

(a) boolean encoding.

consultation ultrasound ... payment label

σ1 1 1 ... 0 false
...
σk 0 0 ... 1 true

(b) frequency-based encoding.

consultation ultrasound ... payment label

σ1 2 1 ... 0 false
...
σk 0 0 ... 4 true

(c) simple index encoding.

event 1 ... event m label

σ1 consultation ultrasound false
...
σk order rate payment true

(d) index latest payload encoding.

age event 1 ... event m ... department last label

σ1 33 consultation ultrasound ... nursing ward false
...
σk 56 order rate payment ... clinic true

3.3 Baselines

The first two approaches we use as baselines in our experiments describe
sequences of events as feature vectors, where each feature corresponds to an
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event class (an activity) from the log. In particular, the boolean encoding rep-
resents a sequence σi through a feature vector gi = (gi1, gi2, ...gih), where, if gij

corresponds to the event class e, then:

gij =
{

1 if e is present in σi

0 if e is not present in σi

For instance, the encoding of the example reported inFig. 2 with the boolean encod-
ing is shown in Table 1a. The frequency-based encoding, instead of boolean values,
represents the control flow in a case with the frequency of each event class in the
case. Table 1b shows the frequency-based encoding for the example in Fig. 2.

Another way of encoding a sequence is by taking into account also informa-
tion about the order in which events occur in the sequence, as in the simple
index encoding. Here, each feature corresponds to a position in the sequence
and the possible values for each feature are the event classes. By using this type
of encoding the example in Fig. 2 would be encoded as reported in Table 1c.

The fourth baseline encoding adds to the simple index baseline the data of
the latest payload. Here, data attributes are treated as static features without
taking into consideration their evolution over time. Table 1d shows this encoding
for the example in Fig. 2.

Table 2. Encodings for the example in Fig. 2.

(a) index-based encoding.

age event 1 ... event m ... department 1 ... department m label

σ1 33 consultation ultrasound radiotherapy nursing ward false
...
σj 56 order rate payment general lab clinic true

(b) HMM-based encoding.

age event 1 ... event m ... department 1 ... department m LLR event ... LLR department label

σ1 33 consultation ultrasound radiotherapy nursing ward 0.12 ... 0.56 false
...
σj 56 order rate payment general lab clinic 4.3 ... 1.7 true

3.4 Index-Based Encoding

In the index-based encoding, the data associated with events in a sequence is
divided into static and dynamic information. Static information is the same for
all the events in the sequence (e.g., the information contained in case attributes),
while dynamic information changes for different events (e.g., the information
contained in event attributes). The resulting feature vector gi, for a sequence
σi, is:

gi = (s1i , .., s
u
i , eventi1, eventi2, ..eventim, h1

i1, h
1
i2...h

1
im, ..., hr

i1, h
r
i2, ...h

r
im),
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where each si is a static feature, each eventij is the event class at position j and
each hij is a dynamic feature associated to an event. The example in Fig. 2 is
transformed into the encoding shown in Table 2a.

3.5 HMM-Based Encoding

The core idea of HMMs is to provide an abstraction of the information con-
tained in a sequence. However, in general, HMMs are used to describe sequential
data, not to classify it. Moreover, they usually deal only with simple symbolic
sequences. The aim of the proposed approach, in contrast, is to be able to dis-
criminate between complex symbolic sequences with respect to their outcome
and make predictions for new, unlabeled sequences.

In order to overcome these limitations of HMMs, we propose some extensions.
In order to shift from generative (descriptive) to discriminative models, we take
an approach similar to the one presented in [11,13]. Here, the main idea is
to use discriminative HMMs to represent a sequence through a measure that
captures in some way the relation of the sequence with its outcome. To deal
with complex symbolic sequences, the data associated to events is separated
into static and dynamic information and the evolution of each dynamic feature
(and the sequence of event classes) is expressed as a simple symbolic sequence.
In addition, to encode a case with HMM-based encoding, a training set is needed
to train the HMMs. In particular, the following steps need to be performed:

• the sequences of event classes and sequences related to each dynamic fea-
ture of both the case to be encoded and to the ones in the training set are
transformed into simple symbolic sequences;

• the simple symbolic sequences of each dynamic feature (or event class) from
the training set are partitioned according to the labels of the cases they
belong to. For example, in the binary case one subset corresponds to all
sequences that have a positive label and another subset to the sequences
with a negative label;

• for each subset of simple symbolic sequences corresponding to a dynamic
feature (or event class), a HMM is trained. For example, in the binary case
two different HMMs, HMMpositive and HMMnegative, are generated;

• for each simple symbolic sequence derived from the case to be encoded, the
log-likelihood ratio (LLR) is computed. LLR expresses the likelihood of the
sequence to belong to one of the trained models. In the binary case, it shows
the likelihood of the sequence to belong to the model describing the positive
sequences (HMMpositive) over the likelihood to belong to the HMM of the
negative ones (HMMnegative). Intuitively, the greater the value of LLR is,
the greater is the chance that the sequence belongs to a case with a positive
outcome. For a case σi, and for a given dynamic feature (or event class) hj ,
the corresponding log-ratio is defined as:

LLR(σhj

i ) = log(
HMM(σhj

i )positive

HMM(σhj

i )negative

),
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where σ
hj

i is the simple symbolic sequence extracted from σi related to hj .
The information contained in a simple symbolic sequence is, hence, con-
densed into one number, expressing the relationship of the sequence with a
given label value.

The result of applying this procedure to all the information that can be con-
sidered as a simple symbolic sequence in a case (sequences of event classes and
dynamic data) is a set of LLR values, which are added to the feature vector
obtained with the index-based encoding. In particular, the input vector for the
classifier is, in this case:

gj = (s1j , .., s
u
j , eventj1, eventj2, ..eventjm, h1

j1, ...h
1
jm, ..., hr

j1, ...h
r
jm, LLR1

j , ..LLRr
j ),

where each si is a static feature, each eventij is the event class at position j
and each hij is a dynamic feature associated to an event. Each LLRi

j is the log-
likelihood ratio computed based on the simple symbolic sequence corresponding
to an event class or a dynamic feature of the original case. Table 2b shows an
encoding for the example in Fig. 2 obtained by using log-likelihood ratio values.

4 Evaluation

In this section, we provide a description of the carried out experimentation. In
particular, our evaluation focuses on the following research questions:

RQ1. Do the proposed encodings provide reliable results in terms of predictions?
RQ2. Do the proposed encodings provide reliable predictions at early stages of

the running case?
RQ3. Are the proposed encodings stable with respect to the quality of the results

provided at different stages of the running case?

The three questions focus on three intertwined aspects. The first one relates to
the quality of the results (in terms of prediction correctness) provided by the
proposed encodings. The second one investigates how early the encodings are
able to provide reliable results. The third one focuses on the stability of the
quality of the results when computed at different stages of an ongoing case. In
the following, we describe the experiments carried out to answer these research
questions.

4.1 Datasets

We conducted the experiments by using two real-life logs: The BPI challenge 2011
[1] log (herein called dataset1) and an event log (herein called dataset2) of an
Australian insurer. The former log pertains to a healthcare process and describes
the executions of a process related to the treatment of patients diagnosed with
cancer in a large Dutch academic hospital. Each case refers to the treatment of a
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Table 3. Case study datasets.

Log # Cases # Events # Event Classes

dataset1 1,143 150,291 624

dataset2 1,065 16,869 9

different patient. The event log contains domain specific attributes that are both
case attributes and event attributes in addition to the standard XES attributes.2

For example, Age, Diagnosis, and Treatment code are case attributes (that we
consider as static features) and Activity code, Number of executions, Specialism
code, and Group are event attributes (that we consider as dynamic features). The
second log relates to an insurance claims handling process and covers about one
year of completed cases. The insurance claims log includes only event attributes
like Claim type, Claim reason, and Amount. Table 3 summarizes the character-
istics of the two logs (number of cases, number of events, and number of event
classes).

4.2 Evaluation Measures

In order to assess the goodness-of-fit for the trained classifiers, we used the Area
Under the ROC Curve (AUC) measure [4]. A ROC curve is defined starting from
a standard notion of confusion matrix, i.e., the matrix in which each column
represents the predicted outcomes of a set of cases, while each row represents
the actual outcomes and cells represent:

• true-positive (TP : cases with positive outcomes predicted correctly);
• false-positive (FP : cases with negative outcomes predicted as positive);
• true-negative (TN : cases with negative outcomes predicted correctly);
• false-negative (FN : cases with positive outcomes predicted as negative).

To draw a ROC curve, two derivatives of the confusion matrix should be
defined, i.e., the true positive rate (TPR), represented on the y-axis, and the
false positive rate (FPR), represented on the x-axis of the ROC curve. The TPR
(or recall), TP

(TP+FN) , defines how many positive outcomes are correctly predicted
among all positive outcomes available. On the other hand, the FPR, FP

(FP+TN) ,
defines how many negative outcomes are predicted as positive among all negative
outcomes available. AUC condenses the information provided by a ROC curve
into a single measure of performance. A classifier of the random guess, expressed
as a ROC curve, is represented by a diagonal line with AUC of 0.5, while the
perfect classifier would score AUC of 1 and is represented by the ROC curve
crossing the coordinates (0, 1) - where FPR = 0 and TPR = 1.

The measure we use to evaluate the earliness of a prediction is based on the
number of events that are needed to achieve a minimum value for AUC. Finally,
2 XES (eXtensible Event Stream) is an XML-based standard for event logs proposed

by the IEEE Task Force on Process Mining (www.xes-standard.org).

www.xes-standard.org
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Table 4. Distribution of labels in the datasets.

LTL # Positive cases # Negative cases

ϕ1 459 684

ϕ2 894 249

ϕ3 260 883

ϕ4 320 823

γ1 788 277

we use standard deviation to evaluate the stability of the results computed at
different stages of an ongoing case.

4.3 Evaluation Procedure

In our experimentation, first, we have ordered the cases in the logs based on the
time at which the first event of each case has occurred. Then, we have split the
logs in two parts. We have used the first part (80% of the cases) as training set,
i.e., we have used these cases as historical data. Note that the training set was
used differently in the experiments based on the different encodings. For most of
them, the entire training set was used to train the random forest classifier. The
only exception is the HMM-based encoding that uses 75% of the training set for
training the HMMs and 25% for training the random forest. We have used the
remaining cases (remaining 20% of the whole log) as a test set (used as ongoing
cases).

Next, we have defined 4 temporal constraints corresponding to the following
linear temporal logic rules [17] over event classes in dataset1:

• ϕ1 = F(“tumor marker CA − 19.9”) ∨ F(“ca − 125 using meia”),
• ϕ2 = G(“CEA − tumor marker using meia” → F(“squamous cell carcinoma using eia”)),
• ϕ3 = (¬“histological examination−biopsies nno”)U(“squamous cell carcinoma using eia”),
• ϕ4 = F(“histological examination − big resectiep”).

and we have used them to label cases in the training set from dataset1 as com-
pliant or non-compliant (one labeling for each rule). This set of (realistic) rules
encompasses all the main linear temporal logic operators. Cases in the training
set of dataset2 have been labeled with respect to a constraint corresponding to
a rule γ1 formalizing a regulation internal to the insurance company. This rule
requires a claimant to be informed with a certain frequency about the status of
his or her claim. The distribution of labels in the datasets is shown in Table 4.

In our experiments, a few input parameters had to be chosen. For random
forest classifier, the number of trees was fixed to 500 and the optimal number of
features to use for each tree (mtry) was estimated separately using 5-fold cross-
validation on the training set. The optimal number of hidden states for HMMs
was estimated in a similar way. In particular, the original training set was split,
in turn, into training and testing cases and, using these cases, different parameter
configurations were tested. The optimal ones – with highest AUC, were chosen
for the experiments.
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In order to measure the ability of the models to make accurate predictions
at an early stage, we computed the AUC values using prefixes ranging from 2
to 20. This choice is justified by the observation that for the defined formulas,
encodings based on the sole control flow are able to provide correct predictions
after about 20 events.

4.4 Results and Discussion

Figures 3-6 show the trend of the AUC values when predicting the compliance
of cases in the test set from dataset1, with respect to ϕ1-ϕ4. In particular, each
plot shows the evolution of the AUC values for the encodings under examination
when using the first 20 prefixes of each case in the test set. In Fig. 3, we plot the
AUC trend for predictions over the fulfillment of ϕ1. For very early predictions
the baseline based on the latest data payload gives an AUC that is compara-
ble to the one obtained with complex symbolic sequences. However, for longer
prefixes, when more data is available referring to the trend of the attribute val-
ues attached to events, this information is exploited by the encodings based on
complex symbolic sequences that diverge from the baseline that remains approx-
imately constant. Note that starting from prefixes of length 7 the AUC for both
the encodings based on complex symbolic sequences is above 0.9.

Similar trends can be observed in Figures 4-5 referring to the case labeling
based on the compliance with respect to ϕ2 and ϕ3. In the last plot, in Fig. 6,
referring to the case labeling based on the compliance with respect to ϕ4, the
divergence of the encodings based on complex symbolic sequences with respect
to the one that considers only the latest data payload is more evident. Here, the
HMM-based encoding slightly outperforms the one that considers only indexes.

Fig. 7 shows the AUC trend obtained for the case labeling based on the com-
pliance with respect to γ1 of cases in dataset2. We can observe that also for this
dataset, for early predictions the baseline encoding based on the latest data pay-
load gives a good AUC, while the other baselines have a lower AUC. For slightly
longer prefixes (between 6 and 13), the AUC values of all the baseline encod-
ings is comparable with the one of the encodings based on complex symbolic
sequences. From prefixes of length 11 the AUC values for the boolean encoding
and for the one based on the latest data payload decrease again. This case study
shows that, although baseline encodings can perform very well for certain prefix
lengths, their performance is not stable. On the other hand, encodings based on
complex symbolic sequences are able to provide a reasonable AUC (around 0.8
in this case) even for short prefixes and to keep it constant or slightly improve
it for longer prefixes.

Summing up, the case studies show that the baseline based on the latest
data payload and the encodings based on complex symbolic sequences provide,
in general, reliable predictions. Table 5, reporting the average AUC values for
all the encodings under examination, confirms these results. However, while the
baseline encoding is not always able to reach an average AUC value of 0.8, the
two encodings based on complex symbolic sequences have an average AUC that
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Fig. 3. AUC values using prefixes of dif-
ferent lengths. Labeling based on compli-
ance with respect to ϕ1.

Fig. 4. AUC values using prefixes of dif-
ferent lengths. Labeling based on compli-
ance with respect to ϕ2.

Fig. 5. AUC values using prefixes of dif-
ferent lengths. Labeling based on compli-
ance with respect to ϕ3.

Fig. 6. AUC values using prefixes of dif-
ferent lengths. Labeling based on compli-
ance with respect to ϕ4.

is always higher than 0.82. Based on these results, we can, hence, positively
answer RQ1.

Our experimentation also highlights that some of the presented encodings
are able to provide reliable predictions at a very early stage of an ongoing case.
As shown in Table 6 (left), the baseline based on the latest data payload and
the encodings based on complex symbolic sequences are able to provide an AUC
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Fig. 7. AUC values using prefixes of dif-
ferent lengths. Labeling based on compli-
ance with respect to γ1.

Fig. 8. AUC values using different clas-
sification algorithms. Labeling based on
compliance with respect to ϕ1.

Table 5. AUC trends. Bold values show the highest average AUC values (higher than
0.8) and the lowest AUC standard deviation values (lower than 0.02).

mean across prefixes st. deviation across prefixes

encoding ϕ1 ϕ2 ϕ3 ϕ4 γ1 ϕ1 ϕ2 ϕ3 ϕ4 γ1

boolean 0.614 0.610 0.714 0.655 0.690 0.027 0.018 0.063 0.036 0.111
frequency-based 0.609 0.610 0.735 0.679 0.816 0.025 0.021 0.022 0.043 0.084
simple index 0.590 0.627 0.656 0.631 0.814 0.013 0.025 0.018 0.036 0.080
index latest payload 0.863 0.908 0.892 0.831 0.787 0.009 0.008 0.012 0.018 0.060
index-based 0.917 0.928 0.935 0.876 0.828 0.016 0.006 0.004 0.006 0.013
HMM-based 0.907 0.932 0.931 0.890 0.835 0.018 0.009 0.003 0.010 0.013

Table 6. Min. number of events needed for an AUC > 0.8 (left) and > 0.9 (right).

min(prefix) for AUC = 0.8 min(prefix) for AUC = 0.9

encoding ϕ1 ϕ2 ϕ3 ϕ4 γ1 ϕ1 ϕ2 ϕ3 ϕ4 γ1

boolean 8

frequency-based 6

simple index 6

index latest payload 2 2 2 2 2 2 2

index-based 2 2 2 2 3 7 2 2

HMM-based 2 2 2 2 2 7 2 2 18

higher than 0.8 in all the cases under examination at a very early stage of an
ongoing case (starting from prefixes of length 2 in most of the cases). This is
not the case for the other baseline encodings. The encodings based on complex
symbolic sequences are also able in most of the cases to reach an AUC higher
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Table 7. Execution times per prefix length in seconds.

HMM Training RF Training Predictions

2 5 10 15 20 2 5 10 15 20 2 5 10 15 20

index-based avg 1.08 5.05 26.29 79.20 176.65 0.23 1.43 6.46 13.37 24.21

index-based s.d. 0.09 0.22 2.46 5.54 12.28 0.05 0.13 0.57 0.78 1.72

HMM-based avg 23.14 34.11 49.03 65.95 83.51 0.99 4.88 26.55 81.74 186.41 0.24 1.45 6.34 13.69 26.40

HMM-based s.d. 1.24 2.53 4.02 4.75 8.23 0.20 0.55 1.18 6.25 11.22 0.05 0.14 0.56 0.92 2.96

than 0.9, though not always and at a very early stage of an ongoing case. In
fact, both these encodings require 7 events for predicting the fulfillment of ϕ1.
The HMM-based encoding is the only one able to predict the fulfillment of ϕ4

with an AUC of 0.9 (after 18 events). Starting from these observations, we can
positively answer RQ2.

Finally, the experiments highlight that some of the encodings have a trend
that is more stable than others when making predictions at different stages of
the ongoing cases. Table 5 shows that the encodings based on complex symbolic
sequences have the most stable AUC trends (the standard deviation for AUC
is lower than 0.02 in all the cases). This is not always true for the baseline
encodings. We can then provide a positive answer to RQ3.

Execution Times All experiments were conducted using R version 3.0.3 on a
laptop with processor 2,6 GHz Intel Core i5 and 8 GB of RAM. Table 7 shows
the average execution time (in seconds) and the standard deviation (with respect
to the time needed to predict the fulfilment for each of the investigated rules)
required by the index-based and the HMM-based methods for different prefix
lengths. The execution times for constructing the classifiers (off-line) is between
1.08 seconds and 186.41 seconds across all the experiments for the index-based
encoding and between 0.99 and 186.41 seconds for the HMM-based encoding.
Note that, in addition, the HMM-based encoding also requires time for training
the HMMs, ranging from 23.14 to 83.51 seconds. At runtime, the process time for
making a prediction on a given prefix of a case is in the order of milliseconds for
the runtime prediction on short cases (in the order of seconds for longer cases).

5 Conclusion

The paper has put forward some potential benefits of approaching the problem of
predictive business process monitoring using complex symbolic sequence encod-
ings. The empirical evaluation has shown that an index-based encoding achieves
higher reliability when making early predictions, relative to pure control-flow
encodings or control-flow encodings with only the last snapshot of attribute val-
ues. The evaluation has also shown that encodings based on HMMs may add in
some cases an additional margin of accuracy and reliability to the predictions,
but not in a significant nor systematic manner.

A threat to validity is that the evaluation is based on two logs only. Although
the logs are representative of real-life scenarios, the results may not generalize
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to other logs. In particular, the accuracy may be affected by the definition of
positive outcome. For logs different from the ones used here and other notions of
outcome, it is conceivable that the predictive power may be lower. A direction
for future work is to evaluate the methods on a wider set of logs so as to better
understand their limitations.

The methods considered in this paper are focused on the problem of intra-case
predictive monitoring, where the aim is to predict the outcome of one individual
ongoing case seen in isolation from others. A macro-level version of this problem
is the inter-case predictive monitoring, where the goal is to make predictions on
the entire set of ongoing cases of a process, like for example predicting what
percentage of ongoing cases will be delayed or end up in a negative outcome.
Initial work on inter-case predictive monitoring [7] has approached the problem
using control-flow encodings plus the last snapshot of attribute values. An avenue
for future work is to investigate the use of complex symbolic sequence encodings
in this context.
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