
Extracting Configuration Guidance Models
from Business Process Repositories

Nour Assy(B) and Walid Gaaloul

Computer Science Department, Telecom SudParis,
UMR 5157 CNRS Samovar, Évry, France

nour.assy@telecom-sudparise.eu

Abstract. Configurable process models are gaining a great importance
for the design and development of reusable business processes. As these
processes tend to be very complex, their configuration becomes a diffi-
cult task. Therefore, many approaches propose to build decision support
systems to assist users selecting desirable configuration choices. Never-
theless, these systems are to a large extent manually created by domain
experts, which is a time-consuming and tedious task. In addition, relying
solely on the expert knowledge is not only error-prone, but also challenge-
able. In this paper, we propose to learn from past experience in process
configuration in order to automatically extract a configuration guidance
model . Instead of starting from scratch, a configuration guidance model
assists analysts creating business-driven support systems.

1 Introduction

Motivated by the “Design by Reuse” paradigm, configurable process models are
recently gaining momentum due to their capability of explicitly representing the
common and variable parts of similar processes into one customizable model [1].
However, configurable process models cannot be freely configured as the derived
variants have to be correct. Besides the structural and behavioral correctness [2],
the configured variants need to be valid considering specific domain constraints.
For instance, in a hotel reservation process, if the “online reservation” activity is
excluded from the model, the “online payment” activity would be excluded, oth-
erwise the derived variant would not be optimal or consistent. While automated
approaches have been proposed for configuring process models in a structurally
and semantically correct manner [3], existing domain-based approaches [4–7] still
require a significant manual work.

Inspired by the need to integrate the users’ experience in process configura-
tion [1,8], we propose in this paper to benefit from previous experience in process
configuration in order to automatically extract configuration guidance models.
Our aim is to learn from the experience gained through past process configu-
rations in order to extract useful and implicit knowledge that assist analysts
deriving business-driven decision support systems. Following the requirements
identified in [1] for a successful process configuration technique, a configuration
guidance model targets to answer the following three questions: (1) When a
c© Springer International Publishing Switzerland 2015
H.R. Motahari-Nezhad et al. (Eds.): BPM 2015, LNCS 9253, pp. 198–206, 2015.
DOI: 10.1007/978-3-319-23063-4 14



Extracting Configuration Guidance Models 199

configuration decision can be taken for a configurable element? (2) How an ele-
ment is configured given the previously selected choices? (3) How often a specific
decision has been made?

With respect to these questions, we define a configuration guidance model
as a tree-like structure with dependencies’ relations and frequency information.
First, the tree structure allows a “hierarchical” ordering of the configuration
steps in a parent-child fashion. That is, the parent element is configured before
the child element (answer of the when). Second, two types of dependencies rela-
tions, inclusion and exclusion, may exist between the configurable elements (i.e.
tree elements), (2) between their configuration choices and (3) between the con-
figurable elements and the configuration choices (answer of the how). And last,
the configuration choices and dependencies relations are labeled with frequency
information that reveal the probability of their presence in previous process con-
figurations (answer of the how often).

The remainder of the paper is organized as follows: Section 2 introduces our
configuration guidance model. In section 3, we present our automated approach
to extract configuration guidance models from existing business process reposi-
tories. Related work is discussed in section 4, and we conclude in section 5.

2 Configuration Guidance Model

In this section, we give some definitions on configurable process models and
introduce our configuration guidance model.

A configurable process model, is a business process model with configurable
elements. A configurable element is an element whose configuration decision is
made at design-time [1]. An example of a configurable process model for a simple
travel booking process modeled with the configurable BPMN (c-BPMN) is illus-
trated in Fig. 1. The configurable elements are graphically modeled with thick
lines. They are the active elements of a process modeling notation. In case of
c-BPMN, configurable elements can be activities and/or connectors. A config-
urable activity can be included (i.e. ON ) or excluded (i.e. OFF ) from the process
model. A configurable connector has a generic behavior which is restricted by
configuration. It can be configured by (1) changing its type while preserving its
behavior and/or (2) restricting its incoming (respectively outgoing) branches in
case of a join (respectively split) [1]. For example, the configurable “OR” can
be configured to any connector’s type while a configurable “AND” can be only
configured to an “AND”. We denote by c1 � c2 iff the behavior of c1 is sub-
sumed by that of c2. For example AND � ORc, AND � ANDc, Seq � XORc

etc.
Definition 1 gives the formal definition of a configuration.

Definition 1 (Configuration Conf ). A configuration of a configurable node
nc denoted as Confnc is defined as:

– if nc is an activity then Confnc ∈ {ON,OFF};
– if nc is a connector then Confnc ∈ {(c’, s) : (c’, s) ∈ CT × 2S} where:



200 N. Assy and W. Gaaloul

Fig. 1. An example of a configurable travel booking process

• CT = {OR,AND,XOR,Seq} and c’ � c,
• S = • c (respectively S = c •) in case c is a join (respectively split)

connector where •c (respectively c•) is the set of elements in the incoming
branches (respectively outgoing branches) of c.

We denote by Cnc the set of all configurations of the configurable
element nc according to Definition 1. For example, in Fig. 1, COR4 =
{(OR, {a6, a7}), (XOR, {a6, a7}), (AND, {a6, a7}), (Seq, {a6}), (Seq, {a7})}.

A configuration guidance model is a tree-like structure with inclusion and
exclusion dependencies relations. An excerpt of the configuration guidance model
for the configurable process in Fig. 1 is illustrated in Fig. 2. The tree structure
allows for a “hierarchical” ordering of the configurable elements of a process
model in a parent-child fashion, that is the parent element is configured before
the child element (see Section 3.1). The tree elements are graphically modeled
with circles. Each tree element has multiple configuration choices (see Defini-
tion 1). In our approach, we compute the probability of selection of each config-
uration option (see Section 3). Graphically, the configuration choices are modeled
with rectangles attached to their configurable elements.

The configuration guidelines represented as inclusion and exclusion relations
are graphically modeled with dotted lines and have their probability of certainty.
The probability of certainty expresses to which extent an inclusion or exclusion
relation is valid. Three types of inclusion relations (denoted as IR) may exist (i)
between the configurable elements (denoted as Ic−c), (ii) between the configura-
tion choices (denoted as Icf−cf ) and (iii) between the configurable elements and
the configuration choices (denoted as Ic−cf ). The same holds for the exclusion
relations ER (see section 3.2).



Extracting Configuration Guidance Models 201

Fig. 2. An excerpt of the extracted configuration guidance model

3 Deriving Configuration Guidance Models

In this section, we present our automated approach for extracting configuration
guidance models from business process repositories. Let P c be a configurable
process model and P = {Pi : i ≥ 1} a set of previously derived variants from P c.
The processes in P can be collected by computing a similarity value (e.g. [9]).
P c and P are used as inputs by our algorithm (see Algorithm 1) to generate a
configuration guidance model denoted as Gc

M = (T c,C∗, IR, ER) where T c is the
tree hierarchy, C∗ is the set of elements’ configurations, IR is the set of inclusion
relations and ER is the set of exclusion relations. The algorithm consists of a
preliminary step (Line 3) then proceeds in two main steps (Lines 4-9).

Algorithm 1. Building a configuration guidance model
1: input: P c, P
2: output: Gc

M = (T c,C∗, IR, ER)
3: get inclusion associations A→ and exclusion associations A→¬

{extract tree hierarchy}
4: derive probabilistic dependency matrix MP = getProbabilisticMatrix(A→)
5: derive implication graph G→ = getImplicationGraph(Mp)
6: generate tree hierarchy T c = getTreeHierarchy(G→)

{derive model additional information}
7: derive configurations’ probability Pconf = Sup(conf) : conf ∈ C∗

8: derive inclusion relations IR from G→ and A→
9: derive exclusion relations ER from A→¬

In the preliminary step, the sets of positive and negative configuration asso-
ciations denoted as A→ and A→¬ respectively are extracted from P using Apri-
ori [10], a well known algorithm for deriving association rules. This step has
been elaborated in our previous work [11] and is briefly explained in the fol-
lowing. A positive configuration association is in the form of conf1 → conf2



202 N. Assy and W. Gaaloul

where conf1 and conf2 are configuration choices of different configurable ele-
ments and conf1 → conf2 means that conf1 and conf2 co-occur frequently
together. An example of a positive configuration association is: Confa10

= ON →
ConfOR8

= (Seq{a10}). A negative configuration association is in the form of
conf1 → ¬conf2 and means that the occurrence of the configuration conf1
excludes that of conf2. An example of a negative configuration association is:
ConfOR10

= (Seq, {a14}) → ¬Confa9
= ON . Well known metrics, such as sup-

port, confidence and Conditional Probability Increment Ratio (CPIR) are used
by Apriori in order to (1) prune the set of extracted configurations to the fre-
quently ones using a minimum support threshold, (2) generate the highly prob-
able configuration associations using a minimum confidence threshold and (3)
mine negative associations using a minimum CPIR threshold.

3.1 Extracting Tree Hierarchy

The tree hierarchy T c consists of parent-child relations between the configurable
elements. An element nc

1 is a candidate parent of a child element nc
2 if the config-

uration of nc
2 highly depends on that of nc

1. The dependencies relations between
the configurable elements can be derived from their configuration choices. In
fact, the more are their configuration choices dependent, the more are the con-
figurable elements dependent. The dependency of a configuration choice conf2
on another configuration choice conf1 corresponds to their conditional probabil-
ity P (conf2|conf1) which can be derived from the confidence of their positive
configuration association conf1 → conf2 ∈ A→. It is computed as:

P (conf2|conf1) =
P (conf1 ∩ conf2)

P (conf2)
=

Sup(conf1 ∪ conf2)

Sup(conf2)
= C(conf1 → conf2)

(1)

where P (conf1 ∩ conf2) is the probability of co-occurrence of conf1 and conf2;
P (conf2) is the probability of occurrence of conf2. The probabilities are derived
from the support metric computed by Apriori. Having the dependencies prob-
abilities between the configuration choices, the conditional probability between
two configurable elements nc

1 and nc
2 is computed as:

P (nc
2|nc

1) =

∑
j P (confnc

2j
|nc

1)

#confnc
2j

=

∑
j

∑
i P (confnc

2j
|confnc

1i
)

#confnc
1i

#confnc
2j

(2)

where P (nc
2|nc

1) is the average of the conditional probabilities between the con-
figuration choices of nc

1 and nc
2.

∑
j P (confnc

2j
|nc

1) is the sum of the conditional
probabilities between each configuration choice confnc

2j
of nc

2 and the config-
urable element nc

1. The probability P (confnc
2j

|nc
1) is in turn defined as the aver-

age of the conditional probabilities between the configuration choice confnc
2j

and
each configuration choice confnc

1i
of nc

1. It can be computed by dividing the sum



Extracting Configuration Guidance Models 203

of the conditional probabilities between confnc
2j

and each confnc
1i

of nc
1 by the

number of confnc
1i

such that P (confnc
2j

|confnc
1i

) �= 0; #confnc
2j

is the number
of the configuration choices of nc

2 such that P (confnc
2j

|nc
1) �= 0.

The conditional probabilities between each pair of configurable elements are
computed and stored in a dependency probabilistic matrix denoted as MP . MP

is a m × m matrix where m is the number of configurable elements. An entry
(i, j) in MP corresponds to the conditional probability P (nc

j |nc
i ) where nc

j is the
element in the jth column and nc

i is the element in the ith row. We say that a
configurable element nc

2 depends on another element nc
1 denoted as nc

1 → nc
2 iff

P (nc
2|nc

1) ≥ minP where minP is a given threshold.
The derived dependencies’ relations with their probabilities are modeled in

a graph, called implication graph G→ [12]. The nodes in G→ correspond to the
configurable elements. A weighted edge exists from a node nc

1 to nc
2 iff nc

1 → nc
2;

the edge’s weight is the probability P (nc
2|nc

1). An excerpt of G→ derived from
a set of dependencies relations is illustrated in Fig. 3a. Having G→, the tree

(a)
(b)

Fig. 3. (a) An implication graph and (b) its derived optimal spanning tree

hierarchy corresponds to extracting a spanning tree (called arborescence for
directed graphs) [12]. Since, there exist multiple possible spanning trees, we
aim at deriving the optimal hierarchy that maximizes the dependencies’ rela-
tions weights. The problem can be mapped to finding the minimal spanning tree
which can be solved using existing algorithms such as Edmonds’ algorithm [13]
and efficient implementations such as [14]. Figure 3b illustrates an excerpt of the
optimal spanning tree extracted from the implication graph in Fig. 3a which con-
tains multiple trees. In this case, an artificial root node is added and connected
to them in order to obtain the tree hierarchy in Fig. 2.

3.2 Deriving Additional Model Information

In this section, we complete the remaining configuration guidance model infor-
mation, i.e. the configuration choices probabilities and the inclusion/exclu-
sion relations and their probabilities. The configuration choices C∗ are the set
of configurations extracted by Apriori and and their probabilities are equal



204 N. Assy and W. Gaaloul

to the Apriori computed support. For example, in Fig. 2, the configuration
(Seq, {XOR2}) ∈ C∗ has a probability P = 0.5. The three types of inclusion
relations and their probabilities are defined as follows 1

– Ic−c = {nc
1 → nc

2}: nc
1, n

c
2 ∈ N c ∧ nc

1 → nc
2 ∈ G→ \ T c, i.e. the inclusion

relations between the configurable elements are those that are present in the
implication graph but have been excluded when deriving the tree hierarchy.
The probability PR(nc

1 → nc
2) = P (nc

2|nc
1).

– Icf−cf = {conf1 → conf2}: conf1 ∈ Cnc
x
, conf2 ∈ Cnc

y
∧ (conf1 → conf2 ∈

A→)∧(∃conf ′
1 ∈ Cnc

x
, conf ′

2 ∈ Cnc
y

: conf ′
1 → conf ′

2 /∈ A→), i.e. the inclusion
relations between the configuration choices are those that appear in the
positive configuration associations but whose configurable elements are not
fully dependent. PR(conf1 → conf2) = P (conf2|conf1).

– Ic−cf = {nc → conf} : nc ∈ N c, conf ∈ C∗ ∧ ∀conf ′ ∈ Cnc : conf ′ →
conf ∈ A→. The probability PR(nc → conf) = P (conf |nc), i.e. an inclu-
sion relation exists between a configurable element nc and a configuration
choice conf iff each configuration choice of nc has a dependency relation to
conf . The same holds for the relations conf → nc ∈ Ic−cf . The probability
PR(nc → conf) = P (conf |nc).

4 Related Work

Business process variability modeling [15] is an emergent topic that is being
increasingly addressed by academic and industrial researchers for enabling
design-time process flexibility. Our work is based on configurable process mod-
els proposed in [1]. The authors in [1] define the requirements for a configurable
process modeling technique. They highlight the need for configuration guidelines
that may include the configuration steps order, the interrelationships between
the configuration decisions and the frequency information that come from sys-
tem users. In our work, we follow these requirements and propose an automated
approach to learn a configuration guidance model depicting such information.

La Rosa et al. [4] propose a questionnaire-driven approach for configuring
reference models. They describe a framework to capture the system variability
based on a set of questions defined by domain experts and answered by designers.
Asadi et al. [7] and Gröner et al. [6] propose to use feature models for modeling
the variability and the configuration constraints. The constraints are defined by
experts and formalized in Description Logic expressions. Templates and configu-
ration rules are used by Kumar et al. [5] in order to configure a reference process
template using configuration rules which are defined and validated by experts.

In summary, existing approaches for assisting the configuration of process
models require an expensive manual work from experts. These approaches are
only based on the expert knowledge while, as highlighted in [1,8], a successful
process configuration has to integrate the experience gained through previous

1 The exclusion relations can be derived in the same way using A→¬.



Extracting Configuration Guidance Models 205

configurations. Therefore, in this paper, we address this research gap by propos-
ing an automated approach for assisting the configuration of process models
using previously configured processes.

5 Conclusion and Future Works

In this paper, we proposed an automated approach for extracting configuration
guidance models from process model repositories. Our work is motivated by the
need of (1) automated approaches on the one hand and (2) information origi-
nating from previous process configurations on the other hand in the creation
of configuration decision support systems. Experimental results show that we
generate accurate configuration guidance models.

The current limitation of our approach lies in the the lack of an empirical
evaluation. In this regard, we are currently conducting experiments in order
to evaluate the accuracy of our extracted configuration guidance models. In
parallel, we are working with industrial partners and our team members in order
to validate the approach from a business perspective.

References

1. Rosemann, M., van der Aalst, W.M.P.: A configurable reference modelling lan-
guage. Inf. Syst. 32(1), 1–23 (2007)

2. van der Aalst, W.M.P.: The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

3. van der Aalst, W.M.P., Lohmann, N., Rosa, M.L.: Ensuring correctness during
process configuration via partner synthesis. Inf. Syst. 37(6), 574–592 (2012)

4. La Rosa, M., van der Aalst, W., Dumas, M., ter Hofstede, A.: Questionnaire-based
variability modeling for system configuration. Software & Systems Modeling 8(2),
251–274 (2009)

5. Kumar, A., Yao, W.: Design and management of flexible process variants using
templates and rules. Comput. Ind. 63(2), 112–130 (2012)

6. GröNer, G., BošKović, M.: Silva Parreiras, F., GašEvić, D.: Modeling and vali-
dation of business process families. Information Systems 38(5), 709–726 (2013)

7. Asadi, M., Mohabbati, B., Gröner, G., Gasevic, D.: Development and validation
of customized process models. Journal of Systems and Software 96, 73–92 (2014)

8. Gottschalk, F.: Configurable Process Models. Ph.D thesis, Eindhoven University
of Technology, December 2009

9. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based
on behavioral profiles of process models. IEEE Trans. Softw. Eng. 37(3), 410–429
(2011)

10. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB, pp. 487–499 (1994)

11. Assy, N., Gaaloul, W.: Configuration rule mining for variability analysis in config-
urable process models. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.)
ICSOC 2014. LNCS, vol. 8831, pp. 1–15. Springer, Heidelberg (2014)



206 N. Assy and W. Gaaloul

12. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: ICSE (2011)

13. Edmonds, J.: Optimum Branchings. Journal of Research of the National Bureau
of Standards 71B, 233–240 (1967)

14. Gabow, H.N., Galil, Z., Spencer, T., Tarjan, R.E.: Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica 6(2),
109–122 (1986)

15. Rosa, M.L., van der Aalst, W.M., Dumas, M., Milani, F.P.: Business process
variability modeling: A survey. ACM Computing Surveys (2013)


	Extracting Configuration Guidance Models from Business Process Repositories
	1 Introduction
	2 Configuration Guidance Model
	3 Deriving Configuration Guidance Models
	3.1 Extracting Tree Hierarchy
	3.2 Deriving Additional Model Information

	4 Related Work
	5 Conclusion and Future Works
	References


