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Preface

BPM 2015 was the 13th International Conference on Business Process Management. It
provided a global forum for researchers to meet and exchange views over research
topics and outcomes in business process management. BPM 2015 was hosted by the
University of Innsbruck and took place August 31 to September 3.

We received 125 full submissions. After a review process involving 17 senior
Program Committee (PC) members and 75 PC members, we accepted 30 papers in
total, 21 full papers (17 % acceptance rate), seven short papers and two industrial
papers, for an overall acceptance rate of 24 %.

This year, we encouraged in particular two types of submissions. First, research that
attests to the interdisciplinary nature of BPM and connects to disciplines such as
information systems, management and organizational science, data and knowledge
management, operations management, service-oriented computing, social computing,
cloud computing, big data, and others. Second, research that explicitly examines
emerging BPM areas and novel applications of BPM concepts and methods. Out of the
submissions on these and the existing traditional subject areas of BPM research, we
selected a range of papers addressing topics ranging from process discovery, modeling,
and monitoring, to emerging and practical areas of BPM, runtime process management,
and process performance aspects.

The selection of this scientific program would not have been possible without the
dedicated combined efforts of the PC and the entire reviewer community. We are most
grateful to all those involved and in particular to the senior PC members for leading the
review process and preparing recommendations to the PC chairs. Of course, all these
efforts would have been futile if not for the entire community of BPM researchers that
authored submissions to BPM and that led to the enjoyable yet difficult task of selecting
papers from the vast set of submissions.

The scientific program in 2015 was complemented by three keynotes, selected to
provide a perspective from within the BPM community (Marlon Dumas, University of
Tartu), from BPM industry (Gustavo Gomez, Bizagi) and from adjacent areas to the
core BPM research community (Munindar Singh, North Carolina State University).

Finally, we would like to thank the BPM 2015 Organizing Committee and in
particular the General Chair, Barbara Weber, for their efforts in making this conference
possible, and we thank the sponsors, Bizagi, Prologics, Minitlabs, IBM Research,
Signavio, Exformatics, and SAP, for their generous support.

We hope that you will enjoy reading the papers that comprise the scientific program
of BPM 2015 and we hope that you will be inspired to contribute to the next edition of
BPM in 2016.

September 2015 Hamid R. Motahari-Nezhad
Jan Recker

Matthias Weidlich
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From Models to Data and Back: The Journey
of the BPM Discipline and the Tangled Road

to BPM 2020

Marlon Dumas

University of Tartu, Estonia
marlon.dumas@ut.ee

Keynote Abstract

It has been over two decades since the first research articles on Business Process
Management (BPM) saw light. Much ink has been spilled meantime to build up a
discipline out of what is essentially a vision of how work in organizations can be
effectively conceptualized and analyzed for the purpose of performance improvement.
There is by now a relatively well-established body of methods and tools to instill
“process thinking” in organizations and to manage business processes throughout their
lifecycle.

A considerable subset of these methods and tools rely on business process models,
be it for understanding processes, for preserving and communicating process knowl-
edge, for analyzing, redesigning or automating processes, and even for monitoring
them. It is thus not surprising that a lot of research and development in the field of BPM
has concentrated on modeling languages, tools and methods, to the extent that the early
evolution of the discipline is sometimes associated with the development of modeling
languages. Along this line, the discipline has gone through a long convergence and
standardization process, starting from proprietary notations such as Event-driven
Process Chains (EPCs), moving on to standardization attempts such as UML Activity
Diagrams and the XML Process Definition Language (XPDL), followed by a parade of
standardization proposals and associated acronyms in the early ’00s (WSFL, XLANG,
BPML, WSCI to name a few), the rise and fall of the Business Process Execution
Language (BPEL), the broad adoption of the Business Process Model and Notation
(BPMN), and the somehow failed struggle to reach a standard case management
notation (cf. CMMN).

The overwhelming volume of these developments calls for two questions: What
have we fundamentally learned from the development of modeling languages, tools and
methods? And perhaps more importantly, what have we so far failed to fully
comprehend?

Another significant subset of methods and tools in the BPM field rely on data,
specifically data collected during the execution of business processes. As processes
become increasingly digitized, data is moving from being a (necessary) side-product
of the execution of business processes, to becoming a central asset that can be



leveraged across all phases of the business process lifecycle. This prospect has fueled a
stream of research and development on business process data analytics, starting from
dashboards, cockpits and process data warehouses, to the era of process mining
methods and tools. Along this line, we have seen emerge a number of methods and
tools to summarize process execution data, to generate or enhance models using these
data, and to understand how the recorded execution of a business process diverges from
its modeled behavior or vice-versa.

Again, the overwhelming volume of developments in this field calls for two
questions: What have we fundamentally learned from the development of process
mining tools and methods? And perhaps more importantly, what have we so far failed
to fully comprehend?

This talk will argue that answers to the above questions can be summarized with
two concepts: variation and decisions, be them offline (e.g. design-time) or online
(runtime). Many if not most developments and open challenges in the field boil down
to comprehending, analyzing, executing and monitoring business processes with
inherently high levels of variation and with complex decisions. Indeed, the discipline
has learned to analyze, optimize and automate routine work that involves
well-structured data objects and simple choices, even on relatively large scales. But we
are yet to learn how to manage large-scale variation, unstructuredness and complex
decision spaces. The emergence of the Internet of Things and cyber-physical systems is
likely to only heighten the challenge, as in a world where the number of connections
increases exponentially, so does the complexity of options and variations that ought to
be accounted for. The coming of age of automated decision making, the maturation of
natural language processing as well as advances in heterogeneous data analytics, create
significant opportunities to address the challenges that lie ahead for the BPM discipline.

For a while, the trend in BPM has been to simplify by standardization, at different
levels. Now it's time to learn how to embrace variation and the manifold decisions that
arise thereof. One thing for sure: A tangled road lies ahead towards BPM 2020.

XVI M. Dumas



NoBPM: Supporting Interaction-Oriented
Automation via Normative Specifications

of Processes

Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

Keynote Abstract

Business and business processes are centuries old social constructions that underlie
human society. Business process management or BPM is a modern construction in
information technology. The objective of BPM is to support business processes: it has
partially succeeded, especially in regards to improving the efficiency of process
enactment.

However, BPM embodies a number of restrictive assumptions treated as dogma in
current research that limit its applicability. First, BPM is almost entirely characterized
in operational terms, that is, describing the steps to be taken and constraints on their
ordering and occurrence. Usually, these characterizations are procedural, though
occasionally they may be declarative, such as in temporal logic. The underlying
modeling primitives in operational characterizations, especially, the procedural forms,
are little different from the primitives of any programming language.

Second, BPM is usually treated from a central viewpoint, even when the enact-
ments of the concerned business process are physically distributed. That is, BPM’s
focus is on technical rather than business aspects. In essence, BPM does not so much
support a business process as redefine it in operational terms. That is, it omits a
standard of correctness but provides a means to an implementation as an alternative to a
standard.

Although BPM has proved effective in IT practice, I claim that it has run its course.
I claim that BPM is inadequate for dealing with modern challenges such as processes
that incorporate humans and organizations as well as diverse services and devices that
reflect the autonomy of humans and organizations.

If we were to rethink the foundations of business processes from first principles, we
would understand them as social constructions just as they are—and have been through
history. We would establish new computational foundations for business processes that
place them as elements of a sociotechnical system. In particular, we would

– specify them via normative (not operational) standards of correctness—independent
of implementation;



– describe how to verify correctness properties of specifications and evaluate
implementations with respect to specifications; and

– enact and govern them in a decentralized manner.

I term this new perspective NoBPM. NoBPM is about a computational approach—
or, rather, a family of computational approaches—to business processes that seek to,
first, capture the essence of what a business process is meant to accomplish for its
various participants and, second, to support provably most flexible enactments.

The vision of NoBPM brings forth a number of major research questions.

– What does it mean for a normative process specification to be sound?
– How can we learn such specifications from observations of humans and organi-

zations and their services and devices?
– What does it mean for an autonomous participant to comply with a normative

process specification?
– How can we define and ensure a suitable notion of alignment of the various parties

involved in a business process?

I describe recent and ongoing research [1–13] that hints at how we may approach
the above questions. I offer some suggestions for how the considerable research
strength of the BPM community can be directed toward these questions and invite
researchers to participate in NoBPM.

Acknowledgments Thanks to Matteo Baldoni, Cristina Baroglio, and Amit Chopra for
helpful discussions about this research.
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Adaptability, Architecture and CX:
The Bizagi Way

Gustavo Ignacio Gomez

Bizagi, UK
Gustavo.Gomez@bizagi.com

Keynote Abstract

Business Process Management Systems (BPMS) have put processes at the centre of the
universe. This focus has enabled the creation of formal practice and theories from
which IT solutions have benefited enormously during the last 15 years.

By delivering the right information to the right person at the right time, information
workers have been empowered by systems that truly understand what they intend to do.
And by doing this in a model-driven way whereby the technology adapts itself to this
business model - and not the other way around - these new systems have enabled
continuous improvement and adaptability: capabilities indispensable to achieving
much-desired business agility. Yet despite this, the user experience is often
counter-intuitive to the business objectives. Knowledge workers may find themselves
asking questions such as:

– Do I really know which process I want to start when I enter my BPMS application?
– Do I need to carry out some analysis before I start?
– Are all process combinations known to me beforehand?
– How smart is the solution at suggesting processes that actually make sense?

Furthermore, what if we wanted to create modern applications that resemble
sophisticated web sites such as amazon.com or hotels.com? Could we build them with a
BPMS? If not… why not? What’s missing?

Customer experience (CX) is quickly becoming the hottest buzzword in business
and industry. How is CX related to BPMS? What makes a great CX anyway?

In this talk, we will explore how by marrying process and data and extending
current process technologies with few new concepts we can create fundamentally new,
context-sensitive applications that empower knowledge workers like never before, and
redefine the boundaries of what a BPMS can do.
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Abstract. As part of process redesign initiatives, substantial time is spent on the 
systematic description and analysis of the as-is process. By contrast, to-be sce-
narios are often generated in a less rigorous way. Only one or a few workshops 
are organized for this purpose, which rely on the use of techniques that are sus-
ceptible to bias and incompleteness, e.g. brainstorming. In this paper, we eva-
luate a new technique for generating process improvement ideas: the RePro 
(Rethinking of Processes) technique. Its backbone is formed by process im-
provement principles that guide practitioners in a systematic and comprehensive 
exploration of the solution space. An experiment was conducted to compare the 
performance of the RePro technique with traditional brainstorming. Results 
confirm the potential for using a more advanced technique during process rede-
sign workshops, but also show that the way such a technique is used strongly 
affects its performance. 

Keywords: Process redesign · Process innovation · Improvement principles · 
Controlled experiment · RePro 

1 Introduction 

The redesign of business processes has a huge potential in terms of reducing 
processes’ costs and throughput times, as well as improving customer satisfaction [1]. 
A typical process redesign initiative consists of describing the as-is process, analyzing 
the as-is to identify process weaknesses, and generating process improvement ideas 
[2]. Whereas practitioners typically spend a lot of time on describing and analyzing 
the as-is situation, process improvement ideas are often generated in one or a few 
workshops using traditional creativity techniques, in particular brainstorming [3 - 5]. 
Such techniques lack guidance concerning the kind of process alternatives that are 
worthwhile to consider and do not provide a solution for the personal inertia to search 
for alternatives that are different from familiar directions [6]. In other words, no safe-
guard is provided to guarantee a systematic exploration of the full range of redesign 
possibilities. Consequently, traditional brainstorms are at risk to lead to biased choices 
and neglect interesting redesign possibilities [4, 6]. As such, the improvement poten-
tial of many process redesign initiatives is not fulfilled.   



4 R.J.B. Vanwersch et al. 

 

As an alternative to traditional creativity techniques, the Rethinking of Processes 
(RePro) technique was developed [7]. The RePro technique, which primarily supports 
rethinking care processes, relies on a set of process improvement principles that are 
rooted in Business Process Redesign (BPR) best practices [8] and TRIZ innovation 
principles [6]. All RePro principles can be seen as solutions that have been applied 
previously and seem worthwhile to reproduce in another situation or setting. Exam-
ples of these principles are “parallelism” (consider whether tasks in the business 
process can be executed in parallel) and “reconstruction” (consider reconstructing the 
physical lay-out of the workplace). The RePro technique contains an application pro-
cedure, which allows practitioners to go systematically through the list of principles. 
In summary, the RePro technique includes two innovations: an integration of two 
groups of process improvement principles, and an application procedure [7]. 

Prior research, in the form of a cross-case survey and an applicability check with 
potential end-users, suggests that the RePro technique provides comprehensive, com-
pact and well-structured support for rethinking care processes [7]. Nonetheless, de-
tailed insights into the benefits of explicitly applying the technique were not obtained.  

It is expected that by using the RePro technique effective process alternatives are 
more likely to be identified as compared to a traditional brainstorm. Through the me-
thod-ism of the technique, novice analysts may become less reliant on experienced 
consultants or domain experts to support them in finding attractive process redesigns. 

In order to gain more in-depth insights into the benefits of the technique, experi-
ments offer interesting opportunities for a rigorous evaluation [9]. In the experiment 
that is reported upon in this paper, we evaluate the RePro technique and compare its 
performance with traditional brainstorming. By doing so, our work informs research 
into the effectiveness of process improvement techniques and potentially advances the 
knowledge base for people being active in process improvement. 

This paper is structured as follows. Section 2 provides a summary of the RePro 
technique. Section 3 outlines the expected effects of using the technique and includes 
our hypotheses. In Section 4, the experiment is explained. Section 5 presents the re-
sults of the experiment, and Section 6 discusses the findings and limitations of our 
work. We discuss related work in Section 7, and Section 8 summarizes this paper.  

2 Background 

This section provides a brief summary of the RePro technique. More details about the 
RePro technique can be found in [7].  

After an analysis of the as-is process, the RePro technique supports analysts in a 
workshop setting to generate process improvement ideas for reducing costs and 
throughput times, as well as improving customer satisfaction. The RePro technique 
contains a set of 46 RePro principles and a related application procedure [7]. All Re-
Pro principles are organized into 9 categories that address aspects of a process that 
can be improved. In Table 1, we provide a description of each RePro category, the 
number of RePro principles per category, and an example of a RePro principle.  
Descriptions of all 46 principles can be found in [7].  



 Improving Business Processes: Does Anybody have an Idea? 5 

 

Table 1. RePro categories.  

RePro 
category 

Description of RePro category No. of   
principles 

Example of RePro principle 

Customers Contacts with customers 3 Move controls towards cus-

tomers 

External 

environment 

Collaboration and communica-

tion with third parties 

2 Consider outsourcing a busi-

ness process in whole or parts 

of it 

Tasks  The tasks that are part of the 

process 

6 Add tasks to prevent the occur-

rence of an undesirable situa-

tion or to reduce its impact 

Task order 

and timing 

The order in which tasks are 

executed and the more detailed 

timing of task execution 

7 Consider whether tasks may be 

executed in parallel 

 

Human 

resources  

The number and types of availa-

ble human resources, and the 

way they are allocated to tasks 

11 Let workers perform as many 

steps as possible for single 

orders 

Facilities, 

equipment 

and material 

The number and types of availa-

ble facilities, equipment and 

material, and the way these are 

allocated to tasks 

7 Consider changing  the num-

ber of involved non-human 

resources 

Information The way information is used or 

created in the process 

5 Consider introducing feedback.  

Information 

and Com-

munication 

Technology 

How information and communi-

cation technology is used 

2 Consider automating tasks 

Physical 

lay-out 

The physical arrangement of the 

process 

3 Make the spatial arrangement 

flexible 

 
An application procedure based on the nominal group technique [10] and the multi-

level design approach [11] guides practitioners in applying the RePro principles. This 
application procedure contains five steps: (1) introduction and explanation of the  
procedure, (2) idea generation by each individual based on RePro principles and an 
analysis of the as-is process, (3) sharing ideas, (4) discussing content, advantages and 
disadvantages of ideas, and (5) voting and ranking ideas. In this study, the second 
step, i.e. idea generation, is at the center of attention. During this step, the RePro  
principles are explicitly considered by each participant taking into account the multi-
level design approach (see Figure 1). For the sake of brevity, we use the term  
RePro technique in the remainder of this paper to refer to this particular step of the 
technique.  
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Fig. 1. RePro multi-level design approach. 

The RePro multi-level design approach implies that all RePro categories and re-
lated principles are assigned to three levels that can be considered successively:  
(1) Service concept: the position of the process in relation to customers and third par-
ties; principles of the customers and external environment category are assigned, (2) 
Main process design: the tasks that have to be executed in order to fulfill customer 
needs; principles of the tasks category are assigned, and (3) Detailed process design: 
the “when, who, with what, where” aspects of task execution; principles belonging to 
the remaining categories are assigned. By offering this classification, the RePro tech-
nique aims to enable a more systematic exploration of the solution space. 

3 Hypotheses 

In this section, we formulate hypotheses with regard to the impact of the RePro tech-
nique on productivity (i.e. the number of unique process improvement ideas generated 
by each individual) and participants’ satisfaction with and intention-to-use the tech-
nique. The correlation between the quantity of ideas and the number of high-quality 
ideas was so high in other studies that reliance on the quantity of ideas as the sole 
indicator of productivity has become common practice [12 - 14].  

Productivity (H1). The RePro technique might have both stimulating and impeding 
effects on idea generation productivity. Firstly, we consider two stimulating effects: 
(1) a more complete exploration of the solution space, and (2) a reduction of cognitive 
effort required to start a new train of thought. Secondly, we discuss a potential imped-
ing effect: (3) fixation on ideas that conform to examples offered by the technique. 

Exploration of the solution space. Prior research suggests that individuals pre-
sented with an all-encompassing problem tend to explore only a small fraction of the 
potential solution space (e.g. [15 - 18]). This is caused by people’s tendency to not 
leave the path of least resistance and reproduce slightly modified or even unmodified 
ideas that can be directly retrieved from memory [18]. As a result, key solution oppor-
tunities are missed. For example, unaided participants in [15] missed on average more 
than half of the solution categories while generating solutions for a parking as well as 
a housing problem. 

Service concept Main process design Detailed process design

Customers

External 
environment

Tasks

Task order and 
timing Human resources

Facilities / 
equipement / 

material

Information

Information and  
communication 

technology

Physical 
lay-out
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Several studies suggest that problem decomposition into multiple categories might 
decrease the inclination to explore a small number of dominant solution categories. In 
the context of a natural environment problem [19], individual brainstormers who re-
ceived stimulation ideas from a diverse range of solution categories outperformed 
unaided participants in terms of the diversity and number of ideas generated. Similar-
ly, individual brainstormers in [17] receiving ten potential solution categories were 
more productive than unaided participants and participants receiving only two solu-
tion categories when generating ideas for improving their university. 

The RePro technique also offers diverse stimulus ideas in the form of RePro prin-
ciples. Hence, we expect that the RePro technique facilitates a more complete explo-
ration of the solution space as well. 

Cognitive effort required to start new train of thought. As indicated by the results 
of [17, 19], diverse stimuli do not only increase the diversity of ideas generated, but 
also increase productivity. The observed productivity increases might be attributable 
to the fact that diverse stimuli prevent individuals from completely running out of 
ideas. Given the fact that individual brainstormers in [17, 19] had to work under tight 
time constraints, it is not likely that this is the only mechanism responsible for the 
observed productivity increase.  

Another mechanism responsible for the observed productivity increase was found 
in [19]. In a follow-up analysis, the researchers observed that unaided participants 
needed on average significantly more time for a category change (the next idea is 
from a different solution category) than for a category repetition (the next idea is from 
the same solution category). For participants receiving stimuli, this difference was not 
found. It appeared that stimulation ideas reduce the time for a category change to the 
level of a category repetition.  

Accordingly, we expect that the RePro technique, which offers nine RePro catego-
ries, is able to reduce the cognitive effort to start exploring a new category of ideas 
(i.e. a new train of thought), with a productivity gain as a consequence.  

Conformance to technique examples. Previous research indicates that concrete idea 
examples may constrain the ideas generated by individuals subsequently [20]. More 
precisely, generated ideas seem to conform to features of examples given prior to a 
design task [20]. Given ample time, such a conformity effect might also have negative 
consequences for the number of ideas that an individual is able to generate.  

In a more recent study [21], individuals received design heuristics accompanied 
with application examples prior to a product design task. These design heuristics were 
conceptually similar to RePro principles, i.e. also contained a title, definition, expla-
nation and example. The results of [21] indicate that multiple applications of the same 
design heuristic do not yield prescribed solutions. The researchers concluded that this 
finding supports the level of specificity of heuristics, suggesting that they support 
exploration without limiting possibilities (e.g. without a conformity effect). 

Based on the conceptual similarity between the design heuristics in [21] and the 
RePro principles, we expect that the negative impact of the RePro technique on prod-
uctivity due to a conformity effect is limited. 

The three arguments above suggest that individuals using the RePro technique 
should be able to generate more ideas than individual brainstomers, i.e. individuals 
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following the four brainstorming rules (quantity is wanted, freewheeling is welcomed, 
combine and improve ideas, and self-criticism is ruled out) [22].  

Hypothesis 1: The RePro technique supports individuals in generating more ideas 
as compared to traditional brainstorming.  

 
Satisfaction with and Intention-to-Use the Technique (H2 and H3). Prior research 
that gives insights into the potential effects of the RePro technique on satisfaction and 
intention-to-use is limited to case studies. In [23], a goal-driven approach for analyz-
ing and improving business processes was evaluated. During the improvement phase 
of this approach, 28 process improvement principles were considered. The question-
naire evaluating users’ perceptions indicated that users were satisfied with the ap-
proach and were willing to use it in future projects. However, the different phases of 
the approach were not separately evaluated. Consequently, it is hard to draw conclu-
sions regarding users’ perceptions of the technique supporting the improvement 
phase. In [24], professional engineers working on a new outdoor product line were 
observed while applying the design heuristics as mentioned in [21]. The results of this 
study were similar to the results in [23]. Given these positive findings and our expec-
tation that users will experience the stimulating effects of the technique as mentioned 
in the previous section, we expect that users of the RePro technique are more satisfied 
with their technique than individual brainstormers, and have a positive intention-to-
use the technique.  

Hypothesis 2: Individuals using the RePro technique are more satisfied with their 
technique than individuals using traditional brainstorming.  

Hypothesis 3: Individuals using the RePro technique have a positive intention-to-
use the technique.  

4 Research Method 

In this section, we outline the set-up of our controlled experiment. In line with  
[25, 26], we describe the participants, experiment task, factor and factor levels,  
experiment procedure, response variables as well as the pre-test and pilot of our  
experiment.   

Participants. The participants in our experiment were 89 graduate students in Indus-
trial Engineering at Ghent University. Given the fact that many practitioners involved 
in generating process improvement ideas are not business process redesign experts, 
participants in our experiment were not required to be experts. We contend that the 
selected students are likely to be quite representative for novice process advisors in-
volved in redesigning business processes.  

To avoid problems with understanding process models that had to be studied as 
part of the experiment task, all participants were trained into the EPC process model-
ing notation prior to this experiment during a university lecture of one hour.   

All students received course credit for participation in the experiment. Additionally, 
the three best performing students received a cash prize (€€ 75, €€ 50, €€ 25).  
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Experiment Task. We asked participants to generate improvement ideas for the cata-
ract surgery process at a University Medical Center. A cataract leads to a decrease in 
vision due to a clouding of the lens inside the eye, and is conventionally treated with 
surgery. The cataract surgery process describes all diagnosis and treatment steps from 
intake until discharge for cataract patients. As a basis for idea generation, all partici-
pants received a case-description of this process. Based on a long-term collaboration 
with the EyeClinic, we were able to create a real-life case-description together with its 
employees. The case-description included information about (1) redesign objectives 
(i.e. reducing costs and throughput-times, and increasing patient satisfaction), (2) 
redesign limitations (e.g. surgery supervision of assistants is required), (3) process 
models including projections of actual routing fractions, wait- and process times, and 
cost information, (4) textual process descriptions, and (5) main problem areas as iden-
tified by employees and patients (e.g. scheduling assistants work overtime). As such, 
the real-life case-description covers the typical inputs for generating process im-
provement ideas [27, 28].  

Prior to the experiment, we conducted a pre-test and pilot study to check the un-
derstandability of the case-study description, as well as the time needed to read the 
description (see last part of this section for more details). 

Factor and Factor Levels. The factor considered in this study is the technique used 
to generate process improvement ideas. Two factor levels are distinguished, resulting 
in two experiment conditions: traditional brainstorming (TB) and RePro. Participants 
were randomly assigned to one of the two conditions, leading to groups of 44 and 45 
individuals per condition respectively. Individuals in the TB condition received an 
instruction document that included the four brainstorming rules formulated in process 
redesign terminology [22]. Individuals in the RePro condition received an instruction 
document that, besides these rules, included the list of 46 principles. As illustrated in 
Figure 2, each RePro principle contained a title, definition, explanation as well as an 
application example.   

 

1. Control relocation:  ‘Move controls towards the customers’ 
By moving checks and other operations that are part of a business process to the customer, 
cost can be reduced and customer satisfaction might increase. A disadvantage of this solu-
tion is a higher probability of fraud. 
Example: Ask the patient, instead of the nurse, to pick up the drugs by the hospital  
pharmacy. 

Fig. 2. Example of RePro principle in technique description.  

To prevent a positive instrument bias, two reviewers independently checked that all 
application examples of the RePro principles were unrelated to the cataract surgery 
process.   
 
Experiment Procedure. The experiment started with a plenary video message of the 
medical manager of the Eyeclinic. In this video message, the objective of the experi-
ment task and cataract surgery process were briefly discussed. After this video mes-
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sage, all participants received a hand-out, which included a reading guide, a descrip-
tion of the experiment task, the case-description mentioned earlier and a technique 
description (TB or RePro). The first two steps in the experiment task description in-
structed participants in both conditions to read the case-description and technique 
description successively. As part of the RePro technique description, participants had 
to read a summary of the RePro technique and screen all RePro principles. These 
principles were investigated in more detail while generating ideas. 

After the first two preparatory steps, participants in both conditions were asked to 
generate as many good process improvement ideas as possible while using the as-
signed technique. For each idea, all participants had to document the concrete process 
change as well as its expected effect. Additionally, participants in the RePro condition 
were asked to indicate which RePro principle inspired them to come up with the sug-
gested improvement. For the complete experiment task, i.e. reading the hand-out, 
which included the case-description and the technique description, and generating 
process improvement ideas, all participants had 2 hrs 40 m available. Although this 
duration can be considered somewhat long, the pilot study revealed that students 
showed enthusiasm for the “real-life” experiment task and were motivated to keep on 
generating ideas until the end of the session.  

Immediately after finishing the experiment task, participants received a digital, 
post-experiment questionnaire. Participants had to indicate personal characteristics 
(e.g. age, sex, and prior experience with cataract surgery processes), whether or not 
they used the assigned technique, and their satisfaction with the technique. Partici-
pants in the RePro condition were additionally asked about their intention-to-use the 
technique. Participants in the TB condition were not asked a similar question, due to 
the fact that they lacked detailed information with regard to a relevant benchmark, i.e. 
the RePro technique. After completing the questionnaire, all participants were de-
briefed and thanked, and the price winners were announced during a guest-lecture.  
 
Response Variables. Productivity was determined by counting the number of unique 
ideas of each individual. Two reviewers, who where blind to experiment conditions, 
independently evaluated the entered input of each individual. They were instructed to 
identify redundant ideas, ideas not describing an improvement action (e.g. the phrase 
“waiting time before consultation is long” does not describe an improvement action), 
and ideas containing multiple unrelated ideas. Redundant ideas and ideas not describ-
ing an improvement action were eliminated for calculation purposes. Ideas containing 
multiple unrelated ideas were split for these purposes.  

Satisfaction with the provided technique was measured using a single questionnaire 
item in line with [18]: How satisfied are you with the provided traditional brainstorm-
ing / RePro technique? Responses were given on a seven-point Likert scale ranging 
from “completely dissatisfied” (1) to “completely satisfied” (7).   

Intention-to-use the RePro technique was measured using the two items of the Me-
thod Evaluation Model [29], which is based on the Technology Acceptance Model. 
More specifically, we used the following items: (1) I would definitely not use the 
RePro technique for similar process improvement initiatives (reverse scored); (2) I 
intend to use the RePro technique in preference to relying on just personal experience 
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and intuition if I have to generate improvement ideas in future similar process im-
provement initiatives. Responses to both items were given on seven-point Likert scale 
ranging from “completely disagree” (1) to “completely agree” (7).  
 
Pre-test and Pilot Experiment. Prior to the experiment, a pre-test and pilot experi-
ment were conducted. The pre-test was used to check the understandability of the 
hand-out material and evaluate the timing of the session. During the pre-test, partici-
pants went through the complete experiment procedure as outlined earlier. However, 
at this stage, the post-experiment questionnaire was not used to measure the con-
structs as specified above (e.g. satisfaction with the provided technique), but to eva-
luate and improve the hand-out material. 12 students in Industrial Engineering with at 
least three-year education experience at Eindhoven University of Technology (TU/e) 
participated in the pre-test and were randomly assigned to the two experiment condi-
tions. The pre-test led to a more brief description of the post-operative phase of the 
cataract surgery process, small improvements regarding the readability of process 
models, and minor textual updates of the hand-out material.   

After the pretest, a pilot experiment was conducted to check the understandability 
of the updated hand-out material, post-experiment questionnaire, and the timing of the 
complete experiment procedure. 13 third-year undergraduate students in Industrial 
Engineering at TU/e were randomly assigned to the two conditions. The pilot study 
revealed that participants were motivated to use all time available to generate im-
provement ideas and were enthusiastic about the “real-life” experiment task. In addi-
tion, minor final textual corrections in the hand-out material were suggested.  

5 Results 

This section outlines the results of the experiment. Before presenting descriptive sta-
tistics and test results regarding our hypotheses, we discuss demographic information 
as well as data validation measurements and criteria.  
 
Demographics. The average age of participants in our experiment was 22.6 years 
(std: 0.93 years). About 38% of these were female. 
 
Data Validation Measurements and Criteria. For each of the three productivity 
correction types (i.e. redundant ideas, ideas not describing an improvement action, 
and ideas containing multiple unrelated ideas), two reviewers independently checked 
whether each entered input needed to be corrected or not. Percentages of agreements 
between the two reviewers were 98.9%, 99.8% and 97.9% respectively. The inter-
rater reliability measurements in terms of Cohen’s kappa were high as well: 0.74, 0.75 
and 0.77. In total, 89 out of 1401 ideas (6.1%) were corrected. 

We also checked whether all participants had used the assigned technique. Seven 
participants in the TB condition and one participant in the RePro condition indicated 
in the questionnaire that they had not used the assigned technique. Consequently, 
eight participants had to be removed. 37 and 44 participants remained in the TB and 
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RePro condition respectively. Note that none of the participants indicated to have 
prior experience with or knowledge about cataract surgery processes.  

Finally, the reliability of the two-item construct intention-to-use in the question-
naire was high: Cronbach’s alpha = 0.87. 

5.1 Results Hypotheses Testing  

This section presents descriptive statistics and test results regarding our hypotheses. 
 
Productivity (H1). Means (avg), standard deviations (std), medians (m), minimum 
(min) and maximum (max) values for productivity are presented in Table 2. In the TB 
condition, individuals generated on average 14.57 unique ideas. In the RePro condi-
tion, the average number of unique ideas generated was 17.82. Since the data were not 
normally distributed in the RePro condition (p < 0.01 in Shapiro Wilk test), the Mann-
Whitney U-test was used to test for differences regarding productivity. No significant 
difference was found (p = 0.082) when using a confidence interval of 95%. As such, 
we did not find support for hypothesis 1.  
 
Satisfaction with the Technique (H2). As shown in Table 2, the average satisfaction 
with the technique in the TB condition was 4.7 (on a seven-point Likert scale). In the 
RePro condition, the average satisfaction with the technique was 5.3. Since the data 
were not normally distributed in both conditions, we used the Mann-Whitney U-test 
to test for differences regarding satisfaction with the technique. A significant differ-
ence (U = 1067.50, p = 0.013) offered support for hypothesis 2. 
 
Intention-to-Use the Technique (H3). Table 2 shows that the mean intention-to-use 
(ITU) of the RePro technique was 5.07 (on a seven-point Likert scale). 82% of the 
participants had a positive intention-to-use the RePro technique (ITU > 4). The per-
centages of participants with a neutral (ITU = 4) or negative (ITU < 4) intention-to-
use the RePro technique were 14% and 5% respectively. The Wilcoxon Signed Rank 
test for non-normal distributions revealed that the median intention-to-use was signif-
icantly positive (T = 789.50; p < 0.001). As such, we found support for hypothesis 3.  

Table 2. Descriptive statistics regarding productivity, satisfaction with the technique and 
intention-to-use the technique (NTB = 37; NRePro = 44).  

Measure TB RePro 
 Min - 

Max 
M Avg 

(std) 
Min - 
Max 

M Avg 
(std) 

Productivity (number of unique ideas 
generated) 

7 - 24 14 14.57 
(0.76) 

8 - 37 17 17.82 
(1.11) 

Satisfaction with the technique (seven-
point Likert scale) 

2 - 7 5 4.70 
(0.20) 

2 - 7 5.5 5.30 
(0.21) 

Intention-to-use the technique (seven-
point Likert scale) 

   1 - 7 5.5 5.07 
(0.18) 
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5.2 Results Follow-Up Analysis 

The non-normal and double-peaked distribution of the number of unique ideas gener-
ated in the RePro condition, led us to investigate the idea generation logs in more 
detail and conduct follow-up discussions with eight individual participants in this 
condition1. By screening the idea generation logs of the participants and discussing 
our findings with participants, we identified two different styles of using the RePro 
technique. Several participants took the RePro principles as a starting point and went 
through them category-by-category to identify application opportunities. We will 
refer to this style as opportunity-centric (OC) generation. Other participants took the 
problem areas as identifiable in the case-description as a starting point. For identified 
process weaknesses, each time they screened the list of RePro principles to identity or 
label relevant solutions. This implies that the order of the RePro principles being ap-
plied did not follow the strict category-by-category application scheme. We will refer 
to this style as problem-centric (PC) generation.  

To objectify the classification of participants regarding these two styles, the Ad-
justed Ratio of Clustering (ARC)2 was calculated for each participant in the RePro 
condition. This ratio measures the degree to which consecutive ideas fall in the same 
RePro category corrected for chance [15, 30]. In this way, we received an indication 
for the degree of following an opportunity-centric category-by-category scheme (high 
ARC) versus a problem-centric approach (low ARC).  
 
Productivity. Correlation analysis between ARC and productivity revealed a positive 
and significant correlation (Spearman’s rho = 0.38; p = 0.012), which indicates that 
the usage style of RePro is strongly connected to productivity. In order to enable fur-
ther statistical testing, we analyzed the ARC - productivity scatterplot in line with 
[31] to identify a cut-off point for classifying participants as adopters of either an OC 
or PC generation style. This analysis revealed a steep increase of the graph around 
ARC = 0.75. Hence, we decided to use ARC = 0.75 as cut-off value for classifying 
participants as being adopters of an OC (ARC >= 0.75) or PC generation (ARC < 
0.75) style. Whereas the normality assumption had to be rejected for productivity data 
in the RePro condition before the ARC classification, the productivity distributions of 
the two post-hoc groups no longer violated this assumption (p > 0.05 in Shapiro Wilk 
test). This phenomenon further confirmed that our post-hoc classification was based 
on a relevant factor and appropriate cut-off value.  

                                                           
1  We used stratified sampling to gain the best insights into RePro usage styles: 4 individuals 

with a negative and 4 individuals with a positive intention-to use were randomly selected.  
2  ARC = (R - E(R)) / (maxR - E(R)), where R is the number of observed RePro category 

repetitions (the next idea is from the same solution category), E(R) is the expected number 
of RePro category repetitions according to chance, and maxR is the maximum number of 
RePro category repetitions. maxR = N - k, where N is the total number of ideas generated 
and k is the number of RePro categories surveyed by a participant. For ARC calculation 
purposes, redundant ideas as well as ideas not describing an improvement action were in-
cluded, because these contain information with regard to the order in which RePro principles 
are considered. All ideas, including ideas containing multiple ideas, were labeled with the 
RePro principle as indicated by the participant. Based on this label, the related RePro cate-
gory was determined and ARC calculations were performed. 
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As shown in Table 3, participants adopting an OC generation style in the RePro 
condition generated on average 24.77 unique ideas. Participants adopting a RePro PC 
generation style generated on average only 14.90 unique ideas. Recall that partici-
pants using TB generated on average 14.57 unique ideas. Since the normality assump-
tion for each of these three groups was no longer violated, we conducted a one-way 
ANOVA to test for significant differences. Because the homogeneity of variances 
assumption was violated as assessed by the Levene Statistic (p < 0.01), we relied on 
the Welch ANOVA and related Games-Howell post-hoc tests. Productivity was sig-
nificantly different between the three groups, Welch’s F(2, 29) = 8.20, p < 0.01. 
Games-Howell post-hoc tests revealed that the participants using a RePro OC style 
generated significantly more ideas than participants in the two other groups (for both 
groups: p < 0.01). Differences between adopters of a RePro PC generation style and 
participants using TB were not significant (p = 0.947).  

These results indicate that only adopters of an opportunity-centric application 
scheme of RePro generate more ideas than individual brainstormers. This provides us 
with an important insight as to the optimal use of the RePro technique, as will be dis-
cussed in more detail in the next section.  

Table 3. Descriptive statistics regarding productivity for different generation styles (NTB = 37; 
NRePro_PC = 31 ; NRePro_OC = 13).    

Measure TB RePro_PC RePro_OC 
 Min - 

Max 
M Avg 

(std) 
Min - 
Max 

M Avg 
(std) 

Min - 
Max 

M Avg 
(std) 

Productivity 7 - 24 14 14.57 
(0.76) 

8 - 24 15 14,90 
(0.76) 

12 - 37 24 24.77 
(2.40) 

 
Satisfaction with the Technique. We did not identify a significant correlation be-
tween ARC and satisfaction with the RePro technique (Spearman’s rho = 0.256; p = 
0.094). In line with this result, pairwise comparisons of the three groups (i.e. TB, 
RePro_PC, RePro_OC) as part of the Kruskal Wallis test for multiple sample non-
normal data did not reveal a significant differences between the PC (avg = 5.23; std = 
0.26) and OC generation style (avg = 5.46; std = 0.39). 
 
Intention-to-Use the Technique. A significant correlation between ARC and inten-
tion-to-use the RePro technique was neither identified (Spearman’s rho = 0.252; p = 
0.099). In line with this result, the Mann-Whitney U-test for two-sample non-normal 
data, did not lead to the identification of a significant difference between the PC (avg 
= 5.03; std = 0.21) and OC generation style (avg = 5.12; std = 0.38). 

6 Discussion 

In this paper, we investigated the impact of the RePro technique on productivity, sa-
tisfaction with and intention-to-use the technique, and compared its performance with 
traditional brainstorming.  

Regarding productivity, we did not find direct support for our hypothesis that the 
RePro technique supports individuals in generating more process improvement ideas 
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than traditional brainstormers. However, our follow-up analysis suggests that the 
usage style of the RePro technique is strongly connected to productivity. In our expe-
riment, adopters of an opportunity-centric category-by-category application scheme 
generated 65-70% more ideas than RePro participants adopting a problem-centric 
generation style or participants using traditional brainstorming. These results are in 
line with [17], where it was found that presenting categories of solutions sequentially 
supports individuals in generating more ideas. The authors argued that a simultaneous 
presentation of solution categories may overwhelm individuals and prevent them from 
focusing attention adequately on each prime. Similarly, a problem-centric screening 
of the complete list of RePro principles is likely to prevent a productivity gain. Fur-
ther research should investigate the impact of different usage styles of RePro on  
productivity and other outcome measures in more detail. In further experiments, par-
ticipants might be more strongly guided to adopt an opportunity-centric generation 
style. For example, by making use of automated tool support the RePro principles can 
be offered piecemeal, i.e. category-by-category. Outcome effects of the opportunity-
centric variant can then be investigated while taking into account potential modera-
tors, such as a participant’s Personal Need for Structure [32, 33].   

In line with our second and third hypotheses, individuals using the RePro tech-
nique were more satisfied with the technique than individual brainstormers, and in-
tend to use the technique in future projects. This finding is in line with qualitative 
evaluation of design heuristics in the context of a product design project [24]. Interes-
tingly, the usage style of the RePro technique did not affect the satisfaction with and 
intention-to-use the technique. Apparently, participants adopting a problem-centric 
style were still satisfied with the technique and intended to use the technique in future 
projects, despite the absence of productivity gains. In post-experiment interviews, 
participants adopting this style mentioned that the RePro technique supported them in 
coming up with ideas that were different from familiar directions. This finding calls 
for further research investigating whether other outcomes besides productivity, such 
as diversity and originality of ideas, explain the satisfaction of these adopters.   

Inevitably, there are some limitations to our work. As mentioned earlier, we fo-
cused on the quantity of ideas as the sole indicator of productivity. This focus was 
justified by the fact that the quantity of ideas and the number of high-quality ideas are 
typically strongly related [12 - 14]. Notwithstanding this, an evaluation of other out-
comes, such as the diversity, originality, expected effectivity and feasibility of ideas, 
can give us additional insights into the effects of the RePro technique.  

Also, the use of the Adjusted Ratio of Clustering (ARC) classification mechanism 
for distinguishing the two RePro generation styles can be further validated. By asking 
participants in future experiments to indicate their generation style, the results of the 
classification mechanism can be cross-checked and statistically tested.  

Finally, we have to note that our experiment participants were graduate students in 
Industrial Engineering with basic training in process modeling and analysis. Although 
these students are likely to be representative for novice process advisors, one should 
be careful in generalizing our results to the redesign community at large. Based on 
reviews indicating consistency between findings from artificial laboratory studies and 
field studies in a number of different domains [34, 35], we do not expect causal infe-
rences to be highly different for real-life settings. 
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7 Related Work 

Besides the RePro technique, several other techniques have been developed that - in 
contrast to traditional brainstorming - offer guidance regarding the kind of process 
alternatives that are worthwhile to consider, e.g. techniques relying on BPR best prac-
tices (e.g. [8]) and techniques assuming the existence of a repository that includes 
specifications of numerous existing processes (e.g. [36 - 38]). A complete overview 
and analysis of these techniques is provided in [28]. As discussed there, many me-
thod-development studies do not include an evaluation mechanism or merely provide 
an illustration of how the technique can be applied. Only a small number of studies 
(e.g. [6, 23, 39]) includes a case study that investigates the application of the tech-
nique in practice [28]. These case studies include an evaluation of the technique, but 
lack possibilities for comparing the performance of the applied technique with the 
performance of competing techniques, e.g. brainstorming. Consequently, benefits 
attributable to the technique are still hard to determine. Although conducting  
controlled experiments is getting more common in the area of process modeling (e.g. 
[25, 26]), this study is, as far as we know, the first investigation to report on a  
controlled experiment in the area of generating process improvement ideas. We  
contend that our experiment offers an interesting alternative for traditional case stu-
dies, and enables a more rigorous evaluation of the benefits attributable to process 
improvement techniques.  

8 Conclusion 

Whereas many process improvement techniques have been developed during the last 
decade, little is known about the effectivity of these techniques. The reported experi-
ment can be seen as the first endeavor to evaluate the performance of process im-
provement techniques in a controlled environment. In particular, we focused on eva-
luating the Rethinking of Processes (RePro) technique, which relies on a set of 46 
process improvement principles, and compared its performance with traditional 
brainstorming. The results of the experiment confirm the potential of using a more 
advanced technique for generating process improvement ideas, but also indicate that 
the usage style of such a technique strongly affects its performance. Future experi-
ments are recommended to investigate the effects of different usage styles of RePro 
on outcome measures in more detail.  
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Abstract. Just like cars, processes require a general inspection from time to 
time. As, in reality, process portfolio managers are in charge of many processes, 
they do not have enough resources to deeply inspect all processes simultaneous-
ly. Nor would this be reasonable from a process performance point of view. 
Process portfolio managers therefore require guidance on how to determine the 
service interval of their processes, i.e., when they should analyze which process 
in depth to find out whether to initiate redesign projects. Despite the profound 
knowledge on process improvement, monitoring, and controlling, existing ap-
proaches are only able to rank processes or redesign projects. They do not indi-
cate when to conduct an in-depth analysis. To overcome this research gap, we 
propose the critical process instance method (CPIM) that analytically predicts 
after which number of executed instances a process should undergo an in-depth 
analysis. The CPIM combines ideas from process performance management, 
value-based business process management, and stochastic processes. It accounts 
for variations in process performance induced by the paths and tasks included in 
a process model as well as by the positive and negative deviance experienced 
during past executions. For demonstration purposes, we apply the CPIM to an 
approval process for loan applications from the banking industry including a 
scenario analysis. 

Keywords: Business process management · Deviance · Process decision-
making · Process performance management · Stochastic processes 

1 Introduction 

Process orientation is an accepted paradigm of organizational design with a proven 
impact on corporate performance [21]. Business process management (BPM) there-
fore receives constant attention from industry and academia [13], [44]. Global surveys 
and literature reviews corroborate the interest in BPM in general and business process 
redesign in particular [27], [35]. As, during the last years, BPM has proposed many 
approaches to the design, analysis, improvement, and enactment of processes [17], 
[39], the BPM’s focus is shifting towards managerial topics [43]. In this paper, we 
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investigate a novel managerial research question, i.e., how to determine when 
processes should undergo an in-depth analysis to check whether they require redesign.  

This research question bears resemblance to the car industry, as processes, just like 
cars, require a general inspection from time to time [18]. Whereas car inspections 
focus on technical issues, an in-depth process analysis needs an economic perspective 
as well. Process portfolio managers require guidance on how to determine the service 
interval of their processes, leveraging performance data like a car’s mileage from 
process aware information systems [37], [47]. As process portfolio managers do not 
have enough resources to analyze all processes simultaneously and as processes 
should not undergo an in-depth analysis too often, providing such guidance is a 
worthwhile endeavor [7]. 

From a literature perspective, the BPM body of knowledge abounds in approaches 
to process redesign, monitoring, and controlling [35]. Approaches to process monitor-
ing and controlling primarily focus on technically enabling the assessment of the state 
of a process, e.g., using complex event processing or modelling of control objectives 
[19], [22], [34]. Most redesign approaches take a single-process perspective, e.g., they 
propose redesign projects for single processes based on an identified need for rede-
sign [41], [46]. The need for redesign is typically quantified via performance indica-
tors [13], [24]. Very few approaches investigate how to select or schedule redesign 
projects for multiple processes [10], [23]. Bandara et al. [1] discuss approaches to 
process prioritization, classifying them as “either of very high level and hence not of 
much assistance […] or […] so detailed that it can take a significant effort to simply 
identify the critical processes.” Some approaches to process prioritization help rank 
processes or redesign projects [10], [28], [30]. No approach, however, helps deter-
mine when processes should undergo the next in-depth analysis to check whether they 
require redesign. 

To address the research gap, we propose the critical process instance method 
(CPIM) that analytically predicts after which number of executed instances a process 
should undergo the next in-depth analysis. An in-depth process analysis is a thorough 
and resource-intense means of identifying variations in process performance and re-
spective root causes (e.g., including simulation and diagnosis, verification, and 
process mining) [13], [41]. The CPIM builds on knowledge from process performance 
management and value-based BPM using process cash flows as performance indica-
tors [6], [25]. To predict the risky performance of future process instances in terms of 
their cash flows, the CPIM draws from stochastic processes, a tool commonly used in 
financial mathematics [8]. The CPIM is data- and model-driven as it accounts for two 
types of performance variation, i.e., variation induced by the paths and tasks included 
in process models and variation induced by positive or negative deviance experienced 
during past executions. That is, the CPIM uses historical performance data not only to 
analyze how a process currently performs, but also to forecast future performance. 
Our contribution is a new method that extends prior work on process performance 
management and value-based BPM via predictive components based on stochastic 
processes. 

The paper is organized as follows: In section 2, we outline the background with  
respect to process monitoring and controlling, process performance management, 
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value-based BPM, and stochastic processes. In section 3, we introduce the CPIM and 
illustrate how it fits into the BPM lifecycle by a general monitoring and controlling 
cycle. In section 4, we report the results of applying the CPIM to an approval process 
for loan applications from the banking industry including a scenario analysis. In sec-
tion 5, we critically discuss results and limitations. We conclude by pointing to future 
research. 

2 Theoretical Background 

2.1 Business Process Monitoring and Controlling 

From a lifecycle perspective, BPM involves the identification, discovery, analysis, 
redesign, and implementation plus the monitoring and controlling of processes [13]. 
Continuous monitoring and controlling as well as adequate redesign are necessary to 
prevent process performance from degenerating over time. Reasons are the organic 
nature of processes and the evolving environment [13]. While people are bound in 
day-to-day operations, processes become more complex and lose performance. Mul-
tiple actors and resources influence one another, while being influenced themselves 
by the technological and organizational environment [3]. The unexpected behavior of 
employees as well as other kinds of unexpected change let emerge process instances 
that deviate from the process model [40]. Deviance becomes manifest in better or 
worse performance compared to the “normal” performance in case of positive or neg-
ative deviance. Deviance can be analyzed manually or automated, e.g., using se-
quence mining [29]. In sum, the organic evolution of processes over time allows for 
interpreting processes as a specific subset of organizational routines at drift [3]. 

The key part of process monitoring and controlling is to determine how well is the 
process performs with respect to defined performance indicators and targets as well as 
to identify bottlenecks, waste, and deviance [13], [33]. The monitoring and control-
ling phase can be considered from an operational and a strategic perspective [25]. 
Operationally, process managers and process-aware information systems continuously 
observe process performance regarding the target values and undertake corrective 
actions if necessary without changing the process model [22]. The operational pers-
pective can be linked with each single process instance. The strategic perspective 
strives for novel process models through redesign, when the target can no longer be 
reached or critical performance thresholds are violated. In this case, processes must 
undergo an in-depth analysis whose results serve as input for a subsequent redesign.  

2.2 Process Performance Management and Value-Based BPM 

To assess the performance of a process, organizations use performance indicators 
together with desired target values (benchmarks) and admissible value ranges [25]. 
Process performance indicators can be grouped via the Devil’s Quadrangle, a frame-
work comprising a time, cost, quality, and flexibility dimension [32]. The Devil’s 
Quadrangle is so-named because improving one dimension weakens at least one  
other, disclosing the trade-offs to be resolved during redesign. To resolve the partly 
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conflicting nature of these performance dimensions via integrated performance  
indicators, the principles of value-based management have been applied to process 
performance management [6]. 

Value-based management is a paradigm where all corporate activities and deci-
sions are valued according to their contribution to the company value [15]. A process-
related performance indicator that complies with value-based management is the  
risk-adjusted expected net present value of the process cash flows [6]. This indicator 
can be decomposed into risky cash flows per process instance [5]. A process model 
consists of tasks and gateways that define the paths along which a model can be tra-
versed. Each instance follows a distinct path. The instance cash flows result from the 
tasks included in the paths (e.g., outflows for wages) as well as independently from 
the paths (e.g., inflows for selling a product). The instance cash flows are risky, i.e., 
they are beset with variation, as it is unclear ex-ante which path an instance takes and 
because the cash flows of the tasks show variation themselves (e.g., consulting a cus-
tomer takes different amounts of time, which causes different outflows) [5]. Task cash 
flows are risky as they depend on characteristics such as wages, material prices, time, 
or quality [13], [42]. In line with value-based management, instance cash flows are 
characterized in terms of their expected value and variance, capturing all path and 
task information [6]. Bolsinger [5] proposed a method for determining both figures 
for arbitrary process models. Using the expected value and the variance of instance 
cash flows is reasonable as, according to the central limit theorem, cumulated instance 
cash flows are approximately normally distributed for sufficiently many instances and 
independent from how the cash flows of single instances are distributed [5]. This 
property holds for the net present value of the process cash flows and the aggregated 
difference from a performance benchmark, which allows for providing analytical 
decision support. In sum, instance cash flows are a reasonable value-based perfor-
mance indicator for monitoring and controlling purposes, whereas more complex 
value-based performance indicators such as the risk-adjusted expected net present 
value fit the preparation of investments in process redesign. 

2.3 Predicting Process Performance Using Stochastic Processes 

The performance data collected during process monitoring and controlling form an 
essential input for forecasting the performance of future process instances. While 
redesign projects can be initiated based on the insights from the last in-depth analysis, 
predicting when a process should undergo the next in-depth analysis requires informa-
tion about future process executions, i.e., about the risky development of process 
performance. As this problem is similar to the assessment of risky price movements, 
we adopt the concept of stochastic processes from mathematical finance. 

Stochastic processes are typically used to model the behavior of physical or ma-
thematical systems [36]. This behavior is characterized by transitions among a finite 
or infinite number of states over time. At a distinct point in time, a system is in a dis-
tinct state. As transitions among states occur either at discrete points in time or conti-
nuously, there is a distinction between discrete and continuous stochastic processes. 
Mathematically speaking, a stochastic process is a family of random variables 



 Inspection Coming Due! How to Determine the Service Interval of Your Processes! 23 

   denoting the transition probabilities for different states at time . Stochastic 
processes are further classified according to the properties of the transition probabili-
ties and the evolution of states. If transition probabilities do not change over time, the 
stochastic process is homogenous. If the evolution of a stochastic process is invariant 
to shifts in time, the process is stationary, i.e., it has a stationary distribution for being 
in certain recurrent states at time , if ∞ [36]. Otherwise, the stochastic process 
is non-stationary. 

Mathematical finance is a typical application domain of stochastic processes. As 
financial products can be traded at virtually each point in time such that the value of 
these products changes continuously, continuous stochastic processes are used to 
enable risk-neutral assessments of options or other derivatives based on interest rates 
[4], [9]. Stochastic processes also enable trading strategies based on volatility fore-
casts or risk management according to the value-at-risk approach [12], [26]. Even 
portfolio investment strategies are based on stochastic processes [14].  

Since the development of process performance is driven by process instances, con-
tinuous stochastic processes do not fit the BPM context. Rather, discrete stochastic 
processes are appropriate, such as shown in the field of stochastic process control, a 
fundamental concept of six sigma [2]. As all instances of a process follow the same 
process model, the transition probabilities do not change over time. The stochastic 
process is homogenous. The number of states depends on the used performance indi-
cator. It is finite for qualitative, ordinally scaled performance indicators (e.g., a cus-
tomer satisfaction index). In case of quantitative, metrically scaled indicators, such as 
the risky instance cash flows, the number of states is infinite. Considering stationarity, 
both cases are possible as shown in stochastic process control [45]. A stochastic 
process that models aggregated performance (e.g., aggregated difference from a per-
formance benchmark) does not have a stationary distribution as the value range of the 
aggregated performance increases with an increasing number of executed process 
instances. 

3 The Critical Process Instance Method 

3.1 General Setting 

The CPIM predicts after which critical number of executed process instances (CPI) a 
process should undergo the next in-depth analysis. As it is neither possible nor rea-
sonable to work on all processes simultaneously, the CPIM uses an individual process 
as unit of analysis. The central input of the CPIM is the related process model anno-
tated with cash flows [41]. If available, the CPIM also considers historical process 
data (e.g., from event logs) to achieve better predictions by catering for deviant beha-
vior. Depending on the available performance data, the risky instance cash flows  
can be determined based on real values from past executions or be estimated based on 
process simulation or experts [13], [39], [42]. As discussed in section 2.2, the ex-
pected value and the variance of the instance cash flows can be calculated based on 
Bolsinger [5]. We make the following assumptions: 
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(A.1) The processes included in the organization’s process portfolio can be analyzed 
independently. Sufficient performance data is available or can be estimated for the 
process in focus. The CPIM does not consider external events that may trigger an ex-
traordinary, potentially earlier in-depth analysis (e.g., price changes, new competitors). 

(A.2) The expected values and variances of the cash flows associated with process 
tasks are finite and known (or can be estimated). The cash flows of single process 
instances are independent, i.e., the expected value  and variance  of 
the instance cash flows can be calculated based on Bolsinger [5]. 

Besides the performance indicator , the organization must provide a process-
specific performance benchmark  [25]. This benchmark could be any target value 
set by the management or just the expected value of the instance cash flows. 

3.2 The Role of Variation and Deviance 

Comparing the cash flows of a specific instance with the performance benchmark 
provides no information about future process instances. It only shows the difference 
between that instance and the benchmark, not a trend in process performance. To 
determine the CPI, the organization must be able to predict process performance. 
Thus, it should account for two types of performance variation, i.e., variation induced 
by the tasks and paths included in the process model and variation induced by positive 
or negative deviance from the process model experienced in the past.  

Although handling process instances in a compliant way, the first type of variation 
results from the process model itself depending on the process paths as discussed in 
section 2.2. Thus, the planned model-induced cash flows of a process instance M , 
i.e., the cash flows that result from executing the process according to its current mod-
el, are a random variable whose distribution depends on the control flow of the process 
model as well as on the risky cash flows that relate to tasks. The expected value and 
the variance of the model-induced cash flows are shown in Formula (1) and (2).  M E M  1 M Var M  2  

The second type of variation results from positive or negative deviance expe-
rienced during past executions, i.e., behavior not covered by the process model as 
used in the past. In fact, process users sometimes run a process in a way not intended 
by the process owner [3]. As, for instance, more or fewer tasks are executed and new 
process paths emerge, this type of variation results in deviance-induced cash 
flows D . Deviance-induced cash flows take positive or negative values in case of 
positive or negative deviance, respectively. We consider deviant executions that 
largely comply with the process model. Deviance can, for example, be identified by 
analyzing event data from past executions using sequence mining [29]. To use the 
deviance experienced during past executions as a predictor for future deviance, we 
make the following assumption: 

(A.3) The historic model-induced cash flows M ,  and the actual cash flows 
recorded from past executions L ,  feature a strong positive correlation 01. Although the process model may have changed over time (e.g., due to the 
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implementation of redesign projects), the process model used in the past only slightly 
differs from the process model to be used as foundation of future executions. Further, 
the current process users are about the same as in the past. 

Assumption (A.3) implies that the cash flows recorded from past executions result 
from many instances with compliant and very few instances with deviant behavior. 
Assuming a strong positive correlation is a reasonable compromise between assuming 
independence, which would heavily overestimate the variance of the deviance-
induced cash flows, and assuming a perfect correlation, which would underestimate 
the variance of the deviance-induced cash flows. If the recorded cash flows were in-
deed independent of the historic model-induced cash flows, all process instances 
would have shown deviant behavior. Perfect correlation would imply that all in-
stances had perfectly complied with the process model. Both options seem unrealistic. 
We investigate the sensitivity of the CPIM with respect to this parameter in the dem-
onstration section. 

On this foundation, the deviance-induced cash flows can be calculated as differ-
ence between the cash flows actually recorded for past process executions and the 
historic model-induced cash flows that should have been recorded based on the 
process model used in the past [36]: D L , M ,  3  

D L , M , 2 · · L , · M ,  4  
As it is not possible to determine the exact correlation  mathematically, it must 

be set outside the CPIM. If an organization cannot access recorded data from event 
logs at all, only the first type of variation can be used for predicting the development 
of process performance. The prediction results then are less precise compared to the 
case where the deviance-induced variation is included as well. Based on this informa-
tion, we can formulate the risky cash flows of a single instance via a compound ran-
dom variable: 

M D  5  
Thus, the performance of a single instance can be predicted based on past and 

planned cash flows. As the organization is interested in determining the CPI, it must 
be able to identify trends in process performance. Therefore, the organization needs 
aggregated information about future process instances. We therefore calculate the 
aggregated difference  from the process benchmark , shown in Formula (6), as 
a discrete stochastic process where  refers to the number of executed instances. 
Remember that the cash flows of instances from the same process are identically dis-
tributed as they share the same process model. Thus, the aggregated difference is a 
sum of independent and identically distributed (iid) random variables and can be 
treated as a normally distributed random variable for sufficiently many process in-
stances according to the central limit theorem [36]. In addition, the property of identi-
cally distributed cash flows results in homogenous transitions. In contrast to many 
homogenous stochastic processes, the distribution of  will be non-stationary as 
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the value range of the aggregated performance increases with the number of executed 
instances. 

 6  
Hence, the aggregated difference serves as central indicator for determining the 

CPI. 

3.3 Determining the Critical Process Instance 

As the instance cash flows follow Formula (5), the value range of the aggregated dif-
ference from the process benchmark is cone-shaped, as illustrated in Figure 1 [11]. 
The cone represents the upper limit  and the lower limit  of the aggre-
gated difference’s value range after a distinct amount of executed instances  and at 
a distinct probability. As the aggregated difference is a sum of random variables, the 
upper and the lower limit increase and decrease with an increasing number of ex-
ecuted instances. That is, the cone is small in the near future after and broadens in the 
farer future expressed in terms of executed instances.  

 

Fig. 1. Determination of the process instances  and  

As the aggregated difference from the performance benchmark is risky, it may take 
any value. Therefore, we use a confidence interval in which the true value of the ag-
gregated difference lies with the probability 0; 1 , also known as the confidence 
level. Consequently, the value of the aggregated difference is outside the confidence 
interval with a probability of 1 . The confidence level must be set by the man-
agement. A confidence level  of 95% is typically used in statistics [11]. Transferred 
to the CPIM, the factual aggregated difference from the performance benchmark then 
lies outside the upper and lower limits with a probability of 2.5%, respectively. The 
larger the confidence level, the broader the confidence interval.  
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The upper limit  and the lower limit  of the confidence interval are 
calculated as shown in Formula (8) and (9) [11]. Based on assumption (A.3), the va-
riables M  and D  feature the correlation  as well because the current 
process model is very similar to the historical process model. Further, the function 

 is the inverse function of the normal distribution for the chosen confidence 
level. We use this function as the aggregated difference, as specified in Formula (5) 
follows a normal distribution. Formula (7) represents the diffusion of the stochastic 
process . M D 2 · · M · D  7  · D M · ·  8  · D M · ·  9  

Besides the performance benchmark, we need thresholds concerning the aggre-
gated difference from the performance benchmark to determine the CPI. The process 
in focus should undergo an in-depth analysis if the aggregated difference violates one 
of the thresholds at the given confidence level to check whether the aggregated differ-
ence factually violates a threshold. According to [20], [31], and [3], the organization 
must balance two conflicting goals: Staying competitive by conducting redesign 
projects earlier vs. avoiding resistance by conducting redesign projects later. Thus, the 
organization must define two thresholds for the aggregated difference, one upper 

 and one lower  threshold. The upper threshold represents the value at 
which the organization has gathered enough information about positive deviance that 
could be used to realize first mover advantages or to reflect on a reallocation of re-
sources currently assigned to the process. The lower threshold represents the value at 
which a negative development of process performance endangers the profitability or 
competitiveness of the process.  

Based on the thresholds and the information about the future development of the 
aggregated difference, we can determine the CPI after which the aggregated differ-
ence falls short of or exceeds the thresholds at the given confidence level. We calcu-
late the number of instances for which the upper and the lower limit of the confidence 
interval intersect the upper and lower threshold following Formula (10) and (11). 

min · · 4 · D M ·2 · D M  10  

min · · 4 · D M ·2 · D M  11  

If the benchmark equals the expected performance of the process, i.e., DM , Formulas (10) and (11) can be simplified as follows: 

·   12 ·   13  
The CPI then equals the smaller number of instances: min ;  14  
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3.4 Integration into the BPM Lifecycle 

As mentioned, the BPM lifecycle covers the phases identification, discovery, analysis, 
redesign, implementation as well as monitoring and controlling. A vital part of moni-
toring and controlling is “to determine how well is the process performing with re-
spect to its performance measures and performance objectives” [13]. Since the CPIM 
identifies the critical number of instances, it belongs to the monitoring and controlling 
phase. We therefore investigate how the CPIM can be integrated into this phase. 

First, the CPIM determines the next CPI of a specific process. Therefore, our pro-
posed monitoring and controlling cycle follows an iterative approach, as shown in 
Figure 2: In the beginning, the expected value and the variance are calculated based 
on the current process model. If available, the performance data gathered in a preced-
ing in-depth analysis can serve as input. For instance, performance data can be ex-
tracted from event logs [38]. These performance data fit past process executions, if 
the process model has not changed. Otherwise, the performance data from past execu-
tions must be collected separately. After that, the process benchmark and the thre-
sholds must be set. Then, the CPI is calculated based on past and planned cash flows, 
following three steps: First, the past deviance and, second, the intersections between 
the thresholds and the confidence interval are determined. Third, the CPI is selected. 
Now, the process is executed until the CPI is reached, before an in-depth analysis is 
conducted to assess whether the process required redesign. If the in-depth analysis 
concludes that the process performance is uncritical, the CPIM is applied again. The 
organization may also adapt the thresholds or the benchmark in response to changes 
in the corporate environment. Otherwise, a redesign project should be started. No 
forecast is needed until the redesign is finished. 

 

 

Fig. 2. Monitoring and Controlling Cycle 

In cases of IT-supported process performance management or business activity moni-
toring, the CPIM can be applied continuously, i.e., after each finished process instance. 
As the performance forecast also grounds on data from past executions, each instance 
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provides knowledge about process performance and deviance. As the deviance-induced 
cash flows affect the intersection between the thresholds and the confidence interval, 
they can be used to continuously adjust the scheduling of the next in-depth analysis.  

Finally, the CPIM can be used as a tool for process portfolio management, taking a 
multi-process perspective. When applying the CPIM to multiple processes, the 
process portfolio manager receives information about the CPI for each process. 
Hence, the process portfolio manager is not only able to prioritize processes such as 
already supported by existing approaches, but also to schedule several in-depth ana-
lyses, taking into account possible resource restrictions. 

4 Demonstration Example 

For demonstration purposes, we apply the CPIM to an exemplary approval process for 
loan applications from the banking industry. We first present the process models that 
contain the information needed for the calculation, including the properties of the 
deviance-induced cash flows. We then determine and analyze the CPI using a scena-
rio analysis to discuss the sensitivity of the CPIM. 

The approval process for loan applications is an internal back-office process. The 
planned – historical and future – process model, shown in Figure 3, starts with a request 
of the bank agency. First, an employee of the loan approval department gathers the ne-
cessary customer data. Before the internal assessment, an external rating agency as-
sesses the customer’s creditworthiness. If the customer is creditworthy, the application 
comes to a decision based on the four-eyes-principle. Two independent and positive 
assessments are required for specifying the contract conditions and accepting the loan 
application. Otherwise, creditworthiness is denied and the application is declined. As it 
is for internal use only, we consider a transfer price as cash inflow in addition to cash 
outflows induced by task processing when calculating the process cash flows. 

As it is part of the CPIM, we also include information about the process model and 
the associated deviant behavior extracted from log data (differing parts are presented in 
gray and where appropriate with dashed lines in Figure 3). The main difference is that 
internal creditworthiness assessors consolidate their information before the final judg-
ment and may ask for further customer information one time. Furthermore, the factual 
task cash flows as well as the particular path probabilities differ from the planned ones. 

We analytically calculate the expected values and variances of both process mod-
els. As this is a fictitious example, we estimate the distribution properties of the past 
executions. To visualize the deviance-induced cash flows, we determined the density 
functions of the process instance cash flows for both process models using simulation. 
The results in Figure 4 show that simple distributions such as the normal distribution 
typically do not fit the instance cash flows. It can also be seen that the planned 
process model overestimated the expected value and underestimated the variation of 
the instance cash flows. Based on these insights, the model-induced as well as the 
deviance-induced variation can be calculated and included in the CPIM. 

Besides the parameters gathered from process models or logs, the management 
must set the critical thresholds, the performance benchmark, and the confidence level. 
It must also determine the correlation between the model-induced cash flows and the 
cash flows recorded from past executions (e.g., approximating by the fraction of in-
stances adhering to the historical process model or the quotient M L⁄  as it 
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explains the variance of the cash flows recorded from past executions that cannot be 
explained by the process model). Since estimation errors can occur in real-world  
applications (e.g., when reconstructing an event log), we consider different scenarios 
to evaluate the sensitivity of the CPIM. Table 1 summarizes the results. 

 

 

Fig. 3. Process model based on design and log data (deviant tasks and properties in gray) 

   
Model 8.48 213.55 
Log 2.83 298.60 
Dev -5.65 512.15 – 505.04⋅ρ 

 

Fig. 4. Density functions of the process instance cash flows 

Table 1. Results of the scenario analysis 

No.         
1 0.70 0.80 8.48 -1,000 1,000 133 n.d. 133 
2 0.70 0.80 5.65 -1,000 1,000 238 n.d. 238 
3 0.70 0.90 5.65 -1,000 1,000 194 n.d. 194 
4 0.70 0.90 2.83 -1,000 1,000 966 1,249 966 
5 0.70 0.90 2.83 -500 250 241 78 78 
6 0.80 0.90 2.83 -500 250 269 74 74 
7 0.80 0.90 1.41 -500 250 n.d. 42 42 
8 0.80 0.99 1.41 -500 250 n.d. 18 18 
9 0.80 0.99 1.41 -500 1,000 n.d. 191 191 
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The results can be interpreted as follows (with corresponding scenarios in brackets): 

1. The variation of the benchmark confirms that a benchmark close to the actual  
performance increases the CPI and postpones the next in-depth analysis (3 & 4). 
Larger differences between the benchmark and the performance lead to unilateral  
solutions, i.e., one threshold will never be reached (1 & 7). As there is no solution 
for the calculation of the second intersection, one CPI is not defined (“n.d.”).  
In this case, the process heavily under- or over-performs. 

2. The results show that the thresholds have a higher impact on the CPI, if the actual 
process performance is close to the benchmark, i.e., the process executions meet 
the process target (4 & 5 and 8 & 9). As the cone of the confidence interval is a 
concave curve, this is not a counterintuitive observation, but must be remembered 
by process managers when defining the thresholds. 

3. Just like the thresholds, the breadth of the confidence interval expressed by the 
confidence level influences the CPI (2 & 3 and 7 & 8). An increased confidence 
level heavily reduces the CPI. A higher confidence level increases the probability 
that the predicted process performance matches with the real future one. 

4. Finally, the demonstration example contains statements about the influence of the 
correlation between the model-induced cash flows and the cash flows recorded 
during past executions (5 & 6). A higher correlation implies a lower variance of the 
deviance-induced cash flows and, therefore, a more distant CPI. It can be seen that 
the CPI is less sensitive to the correlation compared to other parameters such as the 
confidence level. The effect of a differing correlation on the CPIM is very limited. 

The scenario analysis provides insights into the sensitivity of the CPIM against es-
timation errors. The assumption of a strong positive correlation between the model-
induced cash flows and the cash flows recorded from past executions has a small 
effect on the CPI. The thresholds and the confidence level affect the CPI much more 
strongly. Determining these parameters thus requires special care. The process-
specific performance benchmark has the greatest effect on the CPI. Therefore, process 
targets should be very clear and set very mindfully – not just because of the applica-
tion of the CPIM. 

5 Discussion 

As the CPIM is beset with limitations, we compile noteworthy discussion points that, 
e.g., arise from the CPIM’s assumptions. The most important point relates to the as-
sumed independence of process instances (A.2). This simplification has weaknesses 
compared to techniques from time series analysis (e.g., autocorrelation, asymmetric 
effects), particularly when using deviance-induced cash flows. Deviance-induced cash 
flows, however, are only an optional input of the CPIM. As event logs are not available 
for all processes, the CPIM is content with model-induced cash flows that can be esti-
mated by process experts. Thus, the CPIM also applies to processes where no historical 
data is available, which is not the case for techniques from time series analysis. Moreo-
ver, assumption (A.2) enabled building on Bolsinger’s results [5]. It cannot be easily 
assessed how (A.2) influences the results of the CPIM. Thus, a thorough comparison 
between the CPIM and time series analysis should be conducted in future research. 
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Further, the CPIM focuses on single processes and abstracts from interactions 
among processes. In reality, however, we find portfolios of interacting processes. 
Hence, the CPIM should be extended such that the critical number of instances ac-
counts for interactions among processes. Moreover, the CPIM only incorporates per-
formance data that results from deviance experienced during past executions as well 
as performance data that can be expected to occur based on the current process model. 
The CPIM neglects external events that may cause an extraordinary, potentially earli-
er in-depth analysis. To overcome this drawback, the CPIM may be coupled with 
complex event processing systems, which already account for external events. 

As for the evaluation, the CPIM was applied to only a small example. The sensitiv-
ity analysis aimed at testing the CPIM with respect to varying input parameters. 
Therefore, the results must be critically examined when applying the CPIM in reality. 
Furthermore, organizations use different process variants in different contexts. Ac-
cording to a higher amount of routing constructs, the variance of the instance cash 
flows increases and influences the CPI substantially. Conducting in-depth analyses 
would be impossible. In such cases, it might help split the process model into smaller 
groups of similar paths regarding a limited set of executed instances. 

6 Conclusion 

We investigated when a process should undergo an in-depth analysis to check whether it 
requires redesign. As a first answer, we proposed the critical process instance method 
(CPIM) that analytically predicts the critical number of executed instances after which a 
process should undergo the next in-depth analysis. We also sketched how to integrate 
the CPIM in the process monitoring and controlling phase of the BPM lifecycle, de-
pending on whether a process runs in an automated execution environment. Finally, we 
demonstrated the CPIM using a sample process from the banking industry. 

Future research should address the limitations discussed in section 5 and conduct 
real-world case studies. Our long-term vision is to extend the CPIM accordingly and 
to implement it in an automated process execution environment such that it can be 
applied continuously and simultaneously to multiple interdepending processes to pro-
vide process portfolio managers with adequate support for process decision-making. 
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Abstract. The performance of scheduled business processes is of central
importance for services and manufacturing systems. However, current
techniques for performance analysis do not take both queueing seman-
tics and the process perspective into account. In this work, we address
this gap by developing a novel method for utilizing rich process logs
to analyze performance of scheduled processes. The proposed method
combines simulation, queueing analytics, and statistical methods. At the
heart of our approach is the discovery of an individual-case model from
data, based on an extension of the Colored Petri Nets formalism. The
resulting model can be simulated to answer performance queries, yet it
is computational inefficient. To reduce the computational cost, the dis-
covered model is projected into Queueing Networks, a formalism that
enables efficient performance analytics. The projection is facilitated by a
sequence of folding operations that alter the structure and dynamics of
the Petri Net model. We evaluate the approach with a real-world dataset
from Dana-Farber Cancer Institute, a large outpatient cancer hospital in
the United States.

1 Introduction

Scheduled processes are pervasive in our lives. In services, manufacturing systems
and transportation, one encounters corresponding schedules, such as appoint-
ment books, production plans and bus timetables. Typically, it is of central
importance for companies to analyze the performance of their processes. Data
stemming from event logs of these processes play an increasingly important role
in this context [2] and first contributions have been made to investigate scheduled
process from a conformance perspective, which is grounded in process mining
concepts [22].

While there are powerful methods for performance analysis in prior research,
these are bound to different types of limitations. First, analytical work in the
area of operations research often does not provide direct techniques to make use
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of available execution data [15]. Second, process mining methods for performance
analysis carry their own limitations. In particular, Petri Net-based techniques
discover fine-grained models to capture the process perspective at the individual-
case level [18,19], but these analyses are restricted to simulation. Third, queue
mining [21] focuses on the resource perspective to efficiently answer performance
questions (e.g., delay prediction), while ignoring other aspects of the underlying
process, such as the control-flow perspective.

The main purpose of this paper is to provide a flexible, efficient and accurate
method for data-driven performance analysis of scheduled processes. We achieve
this goal by bridging the gap between the discovery of Petri Net simulation mod-
els and queue mining. In contrast to manual modeling that is typically applied in
operations research fields (simulation, queueing theory), our approach is driven
by data. At the foundation of the approach lies a discovery procedure that uti-
lizes the schedules and execution logs of the underlying process to construct and
enrich a novel type of Colored Petri Nets, the Queue-Enabling Colored Stochastic
Petri Nets (QCSPN). The proposed formalism is highly expressive and includes
stochastic times, scheduling mechanisms and queues.

To reduce the computational effort required to simulate the resulting model,
we project the QCSPN into the performance-oriented formalism of Queueing
Networks. Several types of Queueing Networks and their approximations are
well-known for their complexity-reducing characteristics [8]. However, there is a
gap of expressiveness between Petri Nets and Queueing Networks, which does
not allow for an immediate transformation of one formalism into the other [24].
To close the gap between the two formalisms, we introduce the concept of folding
that alters the structure and dynamics of the originating Petri Net, thus making
the Petri Net projection-ready. We test our approach by conducting a predictive
evaluation against a real-world dataset of the Dana-Farber Cancer Institute, a
large outpatient cancer hospital in the United States. Our experiments demon-
strate the influence of abstraction on prediction accuracy, depending on the
correctness of folding assumptions. Moreover, we show that projection of Petri
Net models into Queueing Networks can improve accuracy, while benefiting from
run-time efficiency.

This paper is structured as follows. Section 2 presents an overview of our
approach and a running example. Section 3 presents our data model and the
Queue-Enabling Colored Stochastic Petri Nets. Section 4 defines the discovery
algorithm for Queue-Enabling CSPNs (QCSPN). Section 5 formalizes the tech-
niques for folding and projecting QCSPNs. Section 6 describes an empirical
evaluation of our approach. Section 7 discusses related work before Section 8
concludes.

2 Approach Overview

This section motivates the need for our approach. To this end, we refer to a
use-case that is inspired by data from the Dana-Farber Cancer Institute. The
outpatient hospital is equipped with a Real-Time Location System (RTLS) that
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Fig. 1. The main process in Dana-Farber Cancer Institute.

tracks, via 905 sensors, approximately 900 patients per day. These patients are
served by 300 healthcare providers (e.g., physicians, nurse practitioners, regis-
tered nurses), supported by 70 administrative staff, and occupying 7 floors.

The schedule of an ambulatory patient typically includes a blood draw, an
examination by a physician or nurse practitioner, and a chemotherapy infusion
(Figure 1). The process may vary among cases, with some patients skipping
activities, while others having additional activities (e.g., acupuncture therapy,
speech therapy, radiology scans).

Example 1. Consider two specific patients, pat1 and pat2, and their scheduled
routes for the same day. Both patients are to go through a blood draw activity
that is scheduled to be performed by Registered Nurse Tanya (we write RNTanya,
as an abbreviation). Then, pat1 is to go through an examination activity, per-
formed by two physicians (medical doctors): MDVictor and MDElaine. Pat2 is
also scheduled to go through an examination, which includes a speech therapy
appointment as a parallel activity; the examination is planned to be carried out
by MDElaine, while the speech therapy will be performed by Speech Therapist
Brooke (STBrooke).

Performance questions arise from several perspectives. From the patient’s
perspective, it is important to predict their length-of-stay to reduce uncertainty
about the remainder of their day. From the hospital’s perspective, assessing the
utilization profiles of resources is a key issue. These questions can be answered
either off-line (e.g., the day before) or in real-time. For the off-line scenario, a
data-driven simulation model that captures every phase of the process can be
invaluable (because run-time is not an issue). This detailed case-level view is
not covered by the queueing perspective. For real-time analysis, an efficient and
relatively accurate model with a fast response time is required. This excludes
simulation as an option, because its run-time may be slower than the required
response time. Our approach offers methods to move freely in the spectrum
between detailed-complex models and abstract-efficient models.

Figure 2 presents the outline of our approach with section numbers on the
arcs. The phases of our approach are depicted by rectangles, modeling formalisms
(QCSPN, Queueing Networks) are shown by circles, while the resulting models
(after each phase) are shown above the relevant phases.

The approach starts with a data log, which contains details on the sched-
uled tasks, and on the corresponding actual execution times. As our formalism,
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Fig. 2. An outline of our approach.

we adjust Colored Petri Nets [13] to form Queue-Enabling Colored Stochastic
Petri Nets (QCSPN) with time distributions, scheduling transitions and queue-
ing stations. In the first phase, the data is used to discover a simulation-ready
QCSPN model that represents a schedule in detail. The main drawback of the
resulting model is that one ‘cannot see the forest for the trees,’ meaning that
the amount of details cause the QCSPN model to be less effective in terms of
run-time complexity.

To resolve this inefficiency, we propose the second and third phases, folding
and projection. An abstracted version of the original QCSPN model is produced
by applying a sequence of foldings, which alter the model at the net-level. This
phase bridges the expressiveness gap between Petri Nets and Queueing Networks
(QNets), thus allowing for the last phase of our approach, which is projection of
the QCSPN into Queueing Networks.

3 Models

We introduce a schedule log, which serves as the data model, and Colored Stochas-
tic Petri Nets, a modeling formalism that is based on Coloured Petri Nets with
stochastic delays and scheduling transitions. For the latter, we define Queue-
Enabling CSPNs, to be used to construct projection functions from Petri Nets
into Queueing Networks.

Data Model. A schedule log contains a set of tasks and the actual execution
times of these tasks. A task is defined as a relation between cases, activities,
resources, and times. Let Θ be the universe of tasks, A be the domain of activities,
R be the set of resources, TS be the set of timestamps (Unix time) and I be the
set of case identifiers. Then, task information is defined as follows.

Definition 1 (Task Information). Task information I = 〈ξ, α, ρ, τ, δ, τstart,
τend〉 is a tuple satisfying the following requirements:

– ξ : Θ → I assigns a case identifier to a task.
– α : Θ → A assigns an activity to a task.
– ρ : Θ → 2R assigns a set of resources to a task.
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– τ : Θ → TS assigns a timestamp representing the planned start time to a
task.

– δ : Θ → N
+ assigns a scheduled duration to a task.

– τstart : Θ → TS assigns the observed start time to a scheduled task.
– τend : Θ → TS assigns the observed end time to a scheduled task.

Given task information, we can define schedule logs, which will serve us as input.

Definition 2 (Schedule Log). Let ΘP ⊆ Θ be a set of scheduled tasks. The
schedule log is defined as a tuple 〈ΘP , I〉, which contains all scheduled tasks and
their task information.

Table 1 shows a schedule log for the running example. Notice that the scheduled
times and actual times do not necessarily match.

Table 1. Schedule log for the running example.

Case Activity Resources Scheduled Start Scheduled Duration Actual Start Actual End

pat1 Blood-Draw [RNTanya] 9:00AM 10 (MIN) 9:05AM 9:10AM
pat1 Exam [MDVictor, MDElaine] 10:00AM 30 (MIN) 9:55AM 10:20AM
pat2 Blood-Draw [RNTanya] 9:10AM 15 (MIN) 9:15AM 9:27AM
pat2 Exam [MDElaine] 9:40AM 20 (MIN) 9:30AM 9:45AM
pat2 Speech-Therapy [STBrooke] 9:40AM 50 (MIN) 9:35AM 10:32AM

Formalism. Regarding our formalism, we build on Colored Petri Nets (CPN)
by Jensen [13] to discover, enrich and simulate the scheduled process. To this
end, we extend the CPN model with scheduling transitions and distribution
functions of firing delays. Below, we define the structure of the CSPN formalism
and specify its state and dynamics (marking and firing semantics, respectively).

Definition 3 (CSPN Structure). The structure of a CSPN is a tuple N =
〈C, P, T, F,N, G, E ,D,S〉 where:

– C is a finite set of non-empty types, called color sets.
– P is a finite set of places.
– T = TR ∪TΣ is a finite set of transitions, such that TR is the ‘regular’ timed

transitions, and TΣ are referred to as ‘scheduling’ transitions.
– F is a finite set of arcs representing flow such that: P ∩ T = P ∩ F =

T ∩ F = ∅.
– N : F → P × T ∪ T × P is a node function.
– G : T → Expr is a guard function that evaluates to boolean predicates.
– E : F → Expr is an arc expression function that evaluates to a multi-set of

colors.
– D : TR → (N+ → [0, 1]) are distribution functions of firing delays in seconds

that are associated with timed transitions,
– S : TΣ → TS are timestamps assigned to scheduling transitions,

In the remainder of the paper, we adopt the common Petri Net bullet notation
for in-places and out-places of transitions. That is, the in-places •t of a transition
t are {p ∈ P | (p, t) ∈ F}, and the out-places t• are {p ∈ P | (t, p) ∈ F}.
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Fig. 3. An illustration of the blood-draw task for pat1; the elements of the queueing
station are highlighted with the dashed box.

Figure 3 demonstrates parts of the formalism by showing the CSPN that
corresponds to the blood draw task for the first patient pat1 in our running
example. We closely follow the semantics as introduced by Jensen for CPNs [13].
The arc expressions contain variables that can be bound to typed tokens. For
example, the variable pat can be bound to patient pat1. A transition t is color
enabled in a binding, if the input places •t contain tokens that satisfy the arc
expressions and the guard function G(t) evaluates to true given the binding. The
binding by the arc expressions takes care of proper routing of the tokens to their
respective output places. In our example, we require the token of RNTanya to
return to its place so that she can draw blood from the next patient. This is
taken care of by the variable res in the corresponding arc expressions.

Besides the colors, a token carries an associated time that specifies at which
point in time the token becomes ready for the next firing. This depends on the
global clock g, i.e., the token time must be smaller or equal to g. Transitions are
eager to fire, that is, whenever a transition is color enabled and the tokens are
ready, it immediately fires. The timestamp ts of each of the produced tokens is
set to g + Δ(t, g), where Δ(t, g) is the firing delay of t at time g:

Δ(t, g) =

{
d if t ∈ TR,

max(g,S(t)) − g if t ∈ TΣ ,
(1)

Here, d is a realization of the random duration Dt that comes from distribution
D(t). We call a transition ti with all the probability mass of D(ti) on 0 an
immediate transition and depict it with a bar in the model, as known from the
GSPN formalism [4].

Queue-Enabling CSPN. In this part we define the Queue-Enabling CSPN
(QCSPN), which is a CSPN with scheduling transitions, queueing stations, and
fork/join constructs.

Definition 4 (Queueing Station). A queueing station is a CSPN, where

– P = {pq, pa, pe, pr1 , ..., prK
}, with pq being a queueing place, pa being the

on-going activity place, pe being the end place and K ∈ N being the number
of service providing resources per station,

– T = {ts, te} being the start and end transitions,
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– F = {fenter , fini , fserve , fserved , fouti , fleave} are the flow arcs with i =
1, ...,K and,

– N(fenter ) = (pq, ts), N(fini
) = (pri

, ts), N(fserve) = (ts, pa), N(fserved ) =
(pa, te), N(fouti) = (te, pri

), N(fleave) = (te, pe).

For example, in Figure 3, the subnet that starts with the queueing place
‘BD Queue’ and ends at the ’BD End’ place, is a queueing station. We are now
ready to define the Queue-Enabling CSPN (QCSPN).

Definition 5 (Queue-Enabling CSPN (QCSPN)). A Colored Stochastic
Petri Net 〈C, P, T, F,N,G, E ,D,S〉 is called Queue-Enabling, if the CSPN con-
tains a single source pα, a single sink pω, and every other node (n ∈ P ∪ T \
{pα, pω}) of the CSPN belongs to either,

– A queueing station, or
– An immediate split or join transition ti (with | • ti| = 1 ∧ |ti • | > 1 or

| • ti| > 1 ∧ |ti • | = 1), or
– There exist a scheduling transition tΣ ∈ TΣ, such that n is the predecessor

place of the scheduling transition or tΣ itself.

In other words, the QCSPN models represent cases flowing through queue-
ing stations that can be parallel, and are scheduled. In our running example,
patient pat2 has two tasks scheduled in parallel, with the corresponding QCSPN
depicted in Figure 4.

4 Discovery of Queue-Enabling CSPN Models

This section is devoted to the discovery and enrichment of Queue-Enabling Col-
ored Stochastic Petri Nets (QCSPN) from the schedule log. To discover the
QCSPN, we extend the approach of van der Aalst’s work on scheduling with
Petri Nets [1] to include scheduling transitions and stochastic times. First, we
provide an overview of preprocessing and assumptions required for discovering
and enriching the QCSPN model. Then, we demonstrate a three-step discovery
algorithm that constructs the QCSPN. Finally, an enrichment procedure of the
model from data is described.

Preprocessing and Assumptions. Precedence constraints (synchronization
points) are a key feature of scheduled processes, ensuring that cases are not
allowed to continue to a new task before a subset of other tasks is performed. To
handle parallelism, we apply a preprocessing phase in which we detect parallel
tasks using interval calculus [5]. Thereby, we assume tasks to be parallel if the
intersection of their planned times is not empty. Henceforth, we shall assume
the existence of a parallelism set, Π ⊆ 2Θ, which contains sets of tasks that are
scheduled to be performed in parallel. The set Π is a partition of ΘP , since we
assume transitivity of the parallelism property, thus avoiding new splits prior
to joining previous splits. Three more assumptions are used in the discovery
process, as follows:
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– Work conserving: Resources become available immediately after the com-
pletion of a task.

– Temporal deviations: The scheduled tasks may deviate in time only (no
activities, resources or routing deviation).

– Duration dependencies: Activity durations depend only on the activ-
ity and its planned duration (independent of marking components, i.e. case
identifier, resources, and scheduled time).

Discovery. The discovery algorithm comprises three steps of linear complexity
in the number of tasks in the schedule. The steps are (1) construction of queueing
stations, (2) synchronization of parallel tasks, and (3) initialization of the state
(marking and global clock). Next, we go over the steps and relate them to the
proposed models (Section 3).

Step 1: Construct Queueing Stations. We start by inserting all resource
places, {pr | r ∈ R}. Then, for each task θ ∈ ΘP of the schedule log, a cor-
responding queueing station is created as follows. The activity place is defined
as pθ

a, a = α(θ). The resource places that are connected to the starting tran-
sitions are {pr | r ∈ ρ(θ)}; the durations of timed transitions tθs are set to be
deterministic (i.e., according to plan) with Dtθ

s
= δ(θ). Arcs that connect places

and transitions receive arc-expressions, which verify that resource tokens and
case tokens are separated and routed appropriately. Subsequently, scheduling
transitions are inserted to precede queueing places, pθ

q , to prevent an ahead-of-
time arrival into the queueing station. Every scheduling transition tθΣ ∈ TΣ is
assigned with a timestamp S(tθΣ) = τ(θ) according to the earliest start time of
the activity. Finally, we add a source and sink place, pα and pω, respectively.

Step 2: Synchronize Parallel Constructs. In this step, we add split and join
transitions for every parallelism class in Π. Let π ∈ Π be a set of parallel
tasks, with |π| > 1 (parallelism classes may be singletons for sequential tasks).
We add a split transition tπsp to the set of transitions and connect it to each
scheduling transition tθΣ , θ ∈ π via a new scheduling place. Then, we add join
transitions tπj after each parallel construct to express the synchronization of
the concurrent tasks. Each of the join transitions is assigned with a guard that
verifies that joining is performed only for tokens with the same static component,
i.e., case identifier. Figure 4 demonstrates a parallel construct for pat2 from our
running example. According to schedule, the patient is to undergo examination
and speech therapy in an overlapping period of time.

Step 3: Initialize State. This step sets the initial marking and the global
clock. The global clock, which is the dynamic part of the state, is set to zero.
For the initial marking, all case tokens start at pα, while resource tokens reside
in their corresponding places. The number of resource tokens in each resource
place corresponds to the offered capacity of that resource, which is the maximum
number of tasks that a single resource is scheduled to perform at the same time.
For our running example, this allows for a nurse to attend multiple infusion
patients in parallel. The static marking component of case and resource tokens is
their unique identifiers. The timestamp component for case tokens is initialized
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to be zero. The timestamp component of resource tokens is initialized to the
timestamp of the first scheduled task for the corresponding resource.

Enrichment. Once the QCSPN model is discovered from the schedule, we enrich
it based on actual execution times per task by replacing deterministic durations
with stochastic ones. To this end, we apply the techniques for enhancement of
non-Markovian Stochastic Petri Nets with non-parametric kernel density regres-
sion [18]. Other model components that are often stochastic, e.g., exception-
handling mechanisms and routing, are assumed to be driven by case-information
and therefore deterministic. The outcome of the discovery and enrichment steps
is a simulation-ready QCSPN model, which we refer to as N0.

5 Folding and Projection of QCSPN into Queueing
Networks

In this section we introduce the concepts of folding and projection of QCSPNs.
First, we define the folding function and provide several examples of foldings.
Then, we define the projection function and demonstrate a single projection with
the help of a sequence of foldings.

5.1 Folding of QCSPN

Let MQCSPN be the universe of all QCSPN models and let A be the universe
of possible assumptions on the process, (e.g., activity times are exponentially
distributed, all parallel tasks start and end at the same time). Note that these
process assumptions must not always be realistic, however they can be useful as
approximations for performance analysis.

Definition 6 (Folding Function). A folding function ψA : MQCSPN →
MQCSPN , creates a new QCSPN model, under a set of assumptions A ⊆ A.

Below, we provide several examples of folding functions. For each function, we
explain the net-level changes that it requires, and demonstrate it with our run-
ning example. We omit the formal proofs that show that the resulting nets are
QCSPN, due to space restrictions.

Folding 1: Remove Parallelism (RP) Parallelism is well-known for its negative
influence on the analytical tractability of Queueing Networks [9]. This motivates
us to consider a folding operation ψRP that transforms N0 into a concurrency-
free model, ψRP (N0). Specifically, ψRP adds the assumption: “all parallel tasks
must start and end at the same time occupying all resources that were scheduled
to perform the (originally) parallel tasks.”

Without loss of generality, we show the net-level changes that the RP func-
tion implies on a single parallel class of tasks, π ∈ Π. Note that the marking-
related elements remain unchanged. For every θ ∈ π, |π| > 1, the folding function
removes the corresponding queueing station (non-resource places, transitions,
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flow relation). Moreover, the corresponding split and join transitions (tπsplit, t
π
join)

are also removed from the net.
Subsequently, a single queueing station that corresponds to a new task θ′ is

created and is connected to all resource places that were connected to the original
tasks θ ∈ π. The activity name for the new station is defined as a concatenation
(denoted

⊎
) of all previously parallel activities, i.e., α(θ′) =

⊎
θ∈π

α(θ). The random

duration of the timed transition t′ that corresponds to the new activity is given
as Dt′ = max

θ∈π
[Dtθ

s
], with Dtθ

s
being the random duration of task θ. The schedul-

ing transitions per parallel branch are folded into a single scheduling transition tθ
′

Σ

with S(tθ
′

Σ) = min
θ∈π

[S(tθΣ)], i.e. the scheduled start time of the new task is the earli-

est among all start times of the original parallel tasks. Figure 5 shows ψRP (N0) for
the running example. We observe that for pat2, a new task ‘Exam SpeechTherapy’
that requires both resources is created. The synchronization constructs for the pre-
vious two queueing stations no longer exist.

Folding 2: Remove Shared Resources (RSR) Shared resource possession imposes
mathematical difficulties when analyzing queueing systems [12]. Therefore, as
a next step towards projection of N0 into Queueing Networks we apply folding
function ψRSR, which removes shared resources. The underlying assumption for
the RSR function is the following: “resources R′ ⊆ R that share task θ can be
combined into a single resource with ρ(θ) = { ⊎

r∈R′
r}”. In other words, the set of

resources R′ becomes a new resource that is added to R. Figure 6 demonstrates
the result of ψRSR(ψRP (N0)): a new resource MDElaine STBrooke is created
for the second task of patient pat2.

Folding 3: Fuse Queues (FQ) In this step, we reduce model complexity by fusing
queueing stations that perform the same activities and share the same resources.
For example, consider two queueing stations that correspond to two tasks, θ1 and
θ2, such that α(θ1) = α(θ2) and ρ(θ1) = ρ(θ2). The fusion merges the queuing,
service, and end places, as well as the start and end transitions for the two
tasks. Duplicate arcs are removed, as the arc-expressions are equal. Scheduling
transitions are not fused and govern the routing of the corresponding patients
through the fused queueing stations.

Figure 7 presents ψFQ(N0) for RNTanya’s two blood draw tasks of our
running example. We observe that in the new net, two case tokens can reside in
the queueing place and wait for RNTanya. Here, if we assume that both patient
tokens are ready, the conflict between them needs to be resolved. We assume that
cases are served according to the earliest-due-date first (EDD) policy, i.e. the case
token with the smaller timestamp gets served first. The fuse queues folding does
not change the performance characteristics of the QCSPN model. Nevertheless,
it is a required step that enables projection into Queueing Networks, since it
joins the otherwise scattered queues of activity-resource pairs.
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Fig. 4. Parallel examination and speech therapy for pat2.

Fig. 5. Folding function: Remove parallelism.

Fig. 6. Folding function: Remove shared resources.

Folding 4: Remove Scheduling Constraints (RSched) The last folding function
builds on the assumption that “scheduling constraints are not enforced”. In
other words, cases that finish service in a certain queueing station are immedi-
ately routed to the succeeding station according to schedule. The RSched folding
implies a very simple change at the net level: every scheduling transition is turned
into an immediate transition with corresponding guards that verify the identity
of cases for routing purposes.

5.2 Projection of QCSPN into Queueing Networks.

The intuition behind the idea of projecting QCSPN into Queueing Networks
is straightforward. Queueing networks are directed graphs, with vertices being
single-station queues and edges being the routing mechanism that communi-
cate customers between these queues1. Therefore, as a first step of projection,
1 Due to Queueing Network conventions we write the terms customers and cases inter-

changeably
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Fig. 7. The result of fusing queues

Fig. 8. The result of the projection function: Queueing Network with distinguishable
cases.

queueing stations of the originating QCSPN are transformed into vertices of
the target Queueing Network. Every vertex of the Queueing Network can be
characterized by the number of resources that reside in that vertex, which serve
customers according to some service time distribution. These times correspond
to the random durations of the timed transitions in the QCSPN. The matching
between cases and resources are governed by service policies, e.g. first-come-first-
served (FCFS) or earliest-due-date first (EDD). At service completion, customers
are routed to the next queueing vertex (either deterministically or according to
assigned probabilities). The described behavior corresponds in a one-to-one man-
ner to our definition of a QCSPN, and provides the basis for the construction of
a projection function. Formally, the projection function is defined as follows.

Definition 7 (Projection Function). Let MQN be the universe of all Queue-
ing Networks. A projection function φ : MQCSPN → MQN creates a Queueing
Network from the originating QCSPN.

Figure 8 presents a projection function, operated on the folded version of our
running example. The folding includes the four foldings of Section 5.1, namely
Remove Parallelism, Remove Shared Resources and Fuse Queues, and Remove
Scheduling Constraints, in the order of their presentation. The resulting Queue-
ing Network has distinguishable customers, single resource per-station and does
not allow for exogenous arrivals (customers start in the system at the time of
their arrival).

6 Evaluation

In this section we describe the results of an empirical evaluation of the proposed
approach. Here, we aim at demonstrating the usefulness of the method spectrum:
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from detailed Petri Net-based simulators, through folded versions of the original
model, to predictors that are based on the projected Queueing Network. We
start with the main aspects that involve the implementation of our techniques.
Then, we describe the dataset and the design of our experiment. We conclude
the section with our main results and a discussion of the evaluation.

Implementation. We implemented the model construction, its enrichment with
historical data, the simulation semantics, the folding operations and a projec-
tion into the Queueing Theory based snapshot predictor. The implementation
uses the Python programming language and builds on the open-source SNAKES
framework [16]. The implementation is available as a free open-source project.2

Data Description. The data that we consider comes from the Dana-Farber
Cancer Institute. We combine two datasets into one: the scheduled visits and
their corresponding execution times. The former contains a detailed schedule for
each day, while the latter is based on Real-Time Location System measurements
of that day. Specifically, every patient’s path is measured by the RTLS and
matched to the originating appointments that reside in the patient’s schedule.
We utilize a year’s worth of data, for year 2014 (222 regular workdays, nearly
140000 scheduled visits), for training the enrichment algorithms and testing our
techniques. The training set includes 212 regular workdays, while the test set
consists of 10 workdays, selected at random. We excluded special days (e.g.,
Christmas) with irregularly high or low workloads from the random selection of
the test days.

Experimental Setup. The design of our experiment is as follows. We predict
the length-of-stay (i.e. the time in process from start to end) for every scheduled
patient over the 10 test days. The prediction is then compared against the actual
length-of-stay. Patients are assumed to arrive at their real arrival-time, as it is
recorded in the data. The uncontrolled variables in our experiments are the
root of the mean-squared prediction error (RMSE), and the mean error. The
former measures the deviation between the predicted value and the actual value
of the length-of-stay (LOS), while the latter shows the ‘bias’ of the predictors.
The controlled variable is the model that we use for prediction of the LOS.
The QCSPN models are discovered from the test day’s schedules and are then
enriched by the training set.

For prediction, we consider the following five models: the original model
(N0), the no-concurrency model (ψRP (N0)), the removed shared resources model
without concurrency (ψRP,RSR(N0)), the scheduling transitions and fuse queues
model (ψRP,RSR,FQ,RSched(N0)), and the queueing predictor that corresponds
to the projected model (φ(ψRP,RSR,FQ,RSched(N0))).

The first four models are based on simulation and therefore, their application
to predicting lengths-of-stay is straightforward. Specifically, all test-day patients
are placed into the simulator at their corresponding actual arrival time, and their
simulated departure times are recorded. The predictor that we use per patient is
the average length-of-stay of that patient across 30 runs. On the other hand, the
2 See QueueingCPN project: https://github.com/AndreasRoggeSolti/QueueingCPN

https://github.com/AndreasRoggeSolti/QueueingCPN
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Table 2. Mean Error and RMSE (hours) for length-of-stay predictors.

N0 RP RP&RSR RSched Queueing

Mean Error 0.92 0.91 0.88 0.46 -0.42
RMSE 1.97 1.95 1.95 1.82 1.38

queueing predictor does not require simulation, and can be calculated directly
as the patient arrives. The justification for using the former quantity is based
on the heavy-traffic snapshot principle for networks, a well-known result from
Queueing Theory [17]. The predictor was found to be empirically accurate in
several recent works on queue mining [20]. The second predictor is a first-order
approximation that is based on average durations and stationarity assumptions,
in the spirit of the queue-length predictor in [11,21], extended from single-station
queues to networks.

Let us examine the queueing predictor in further detail. Let 〈q1, ..., qk〉 be
the scheduled path in terms of queueing stations for the patient whose length-
of-stay we wish to predict. Denote Si, i = 1, ..., k the sojourn time (delay and
activity duration) of the last patient that went through station qi (every Si

can be calculated from histories of different patients). Let Li be the number
of patients that currently occupy the ith station (queue and service), upon the
patient’s arrival, and let μi be the service rate of the ith station. The queueing
predictor LOSq is given as follows:

LOSq =

{∑k
i=1 Si if Si > 0,∀i∑k
i=1

(Li+2)
μi

otherwise.
(2)

As default, we use the well-established snapshot predictor, which uses the sum of
recent visits to stations q1, ..., qk. However, Si might not exist (Si = 0) for some
of the patients, since there is a positive probability that no other patient has
visited station qi before the arrival time of the current patient. For these cases,
we resort to the second predictor, which assumes that the queue-length will not
change while the patient is in the system. The second predictor assumes that
for each station, the patient will wait for the queue to clear up (Li + 1 service
terminations), at rate μi. Then, the patient enters service and gets served at rate
μi, hence the total time per station is (Li+2)

μi
.

Results. Table 2 presents the results of the empirical evaluation, with time
units being hours. The considered measures are Mean Error representing the
bias of the model, and the Root Mean Squared Error (RMSE) as an indicator for
model accuracy. We observe that the most accurate predictor in terms of RMSE
is the queueing predictor. However, it is characterized with systemic under-
estimation of the length-of-stay. The first 3 simulation-based models are less
accurate and comparable among each other in terms of their RMSE. These pre-
dictors present an over-estimation of the length-of-stay. In contrast, the RSched
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folding demonstrates improvement in both RMSE and mean error, with respect
to other QCSPN models.

Discussion. The empirical evaluation demonstrates that, in terms of RMSE,
the efficient queueing predictor is most accurate, when compared to the simu-
lation models. The weakness of the projected model however, is that it cannot
be applied to answer performance questions at a granular level. For instance,
consider the estimation of individual resource utilization, without relaxing the
shared-resources and parallelism assumptions. Classical Queueing Networks are
not expressive enough to analyze such questions, without the help of simulation.
We also observe that folding of parallelism and shared resources did not have
an influence on the simulation model. This can be explained by the fact that
our dataset comprises few parallel tasks, and that tasks are executed by single
resources.

The mean error measure provides us with additional insights. Since the queue-
ing predictor builds upon the RSched folding, it neglects scheduling delays and
thus has a negative mean error. This causes it to under-estimate the length-of-
stay. However, this relaxation may also be the reason for its superior accuracy.
The latter hypothesis is supported by the fact that the error has decreased due
to the removal of scheduling transitions in the RSched model. One may then
conclude that, for the process in the Dana-Farber Cancer Institute, scheduling
constraints are not strictly binding in the process.

Finally, after an exploratory data analysis, we found that deviations in the
order of tasks are not rare. This phenomena explains the inaccuracy of the
simulation models, since they assume that the sequence of tasks is not violated.
However, the queueing predictors consider only the set of tasks regardless of
their execution order, which explains their accuracy.

7 Related Work

We categorize related research to three classes, namely modeling formalisms,
abstraction methods, and process mining techniques for performance analysis.

Formalisms. Several modeling formalisms were proposed to extend Petri Net
models, such that stochastic elements and queues are included [7]. For example,
Queueing Petri Nets (QPN) were developed to accommodate subprocesses that
encompass queueing stations [6]. However, their work does not clearly define
the allowed structure for the embedded queueing network. This can result in
an arbitrary large and complex Queueing Networks within the Petri Net. Our
QCSPN formalism is also related to Interval Timed Colored Petri Nets [3]. In
this work, we extend this formalism with stochastic durations and scheduling
transitions.

Abstraction. Abstraction techniques, such as aggregation at the net level, were
applied to conceal insignificant model details with respect to some analysis [23].
Furthermore, simplifying reduction rules that preserve certain properties of the
original system were applied to Petri Nets. For instance, Juan et al. considered
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reduction rules for delay time Petri Nets [14], such that timing and deadlock
properties of the model were unchanged. The idea of aggregation is also encoun-
tered in the performance analysis of Stochastic Well-Formed Colored Nets [10].
The idea is to construct the symbolic reachability graph and apply an aggrega-
tion method to condense the state space for efficient analysis. These techniques
are only applicable with exponential delay distributions. Our methods allow for
transitions with arbitrary firing distributions, while preserving queueing related
properties with scheduling transitions.

Operational Process Mining. As previously mentioned, our work relates to
discovery of Petri Net models from execution logs. Rozinat et al. [19] extracted
Colored Petri Net models from data by mining control-flow, case, decision and
time perspectives. Rogge-Solti et al. [18] extended this framework by considering
the Generalized Stochastic Petri Net formalism, with non-Markovian durations
of timed transitions. However these two works did not consider the queueing per-
spective, but rather modeled resource induced delays as stochastic components.
On the other side of the abstraction scale, research on queue mining focused
on resources, without considering the process perspective [21]. In this paper, we
combine the best of both worlds by integrating the queueing perspective with
other process mining perspectives. Furthermore, we generalize the approach for
discovering scheduled processes presented in [22]. In their work, only a single
type of Queueing Networks (Fork/Join network) was considered, while our app-
roach allows for the discovery (through projection) of an arbitrary Queueing
Network.

8 Conclusion

In this paper, we address the problem of data-driven performance analysis for
scheduled processes. To this end, we develop an approach that combines tech-
niques from Queueing Theory with Colored Petri Nets and define the corre-
sponding class of Queue-Enabling Colored Stochastic Petri Nets (QCSPN). For
computational efficiency, we define folding operations that allow us to project
the originating QCSPN model into the Queueing Networks formalism. Our app-
roach was implemented and evaluated using real-world data from an outpatient
cancer hospital showing the impact of model abstraction on accuracy in terms
of root mean-squared error.

We consider the current work as a first step in bringing together process
mining techniques that often present a high computational cost (curse of dimen-
sionality), and efficient Queueing Theory-based techniques that ignore elements
of the process perspective (curse of simplicity). In future work, we aim to
extend our approach towards conformance checking of schedules via discovery of
QCSPN models. Understanding where and why patients and resources deviate
from schedules is of utmost importance to hospitals and other businesses, and
can have an impact on performance analysis. Furthermore, we are interested in
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developing techniques for predicting case paths, as well as real-time prediction
methods as cases progress along these paths.
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Abstract. The Business Process Modeling Notation (BPMN) has been
widely used as a tool for business process modeling. However, BPMN suf-
fers from a lack of standard formal semantics. This weakness can lead to
inconsistencies, ambiguities, and incompletenesses within the developed
models. In this paper we propose a formal semantics of BPMN using
recursive ECATNets. Owing to this formalism, a large set of BPMN
features such cancellation, multiple instantiation of subprocesses and
exception handling can be covered while taking into account the data
flow aspect. The benefits and usefulness of this modelling are illustrated
through two examples. Moreover, since recursive ECATNets semantics
is expressed in terms of conditional rewriting logic, one can use the
Maude LTL model checker to verify several behavioral properties related
to BPMN models.

Keywords: Business process modelling · BPMN · RECATNets ·
Conditional rewriting logic · Maude language and tool.

1 Introduction

The standard Business Process Modeling Notation (BPMN) [12] has been estab-
lished as the de-facto standard for modeling business processes. It provides
a standard notation easily understandable that supports the business process
management while being able to represent complex processes semantics. Never-
theless, despite the various advantages of BPMN, it suffers from a lack of formal
semantics which can lead to inconsistencies, ambiguities, and incompletenesses
within the developed models. Furthermore, BPMN brings additional features
drawn from a range of sources including Workflow Patterns [15] which are able
to define: (1) subprocesses that may be executed multiple times concurrently; and
(2) subprocesses that may be interrupted as a result of exceptions. These features
increase the types of semantic errors that can be found in BPMN models. As
a result, many researchers proposed formal methods to build formal description
and verification models of business processes. However, one of the weaknesses of
c© Springer International Publishing Switzerland 2015
H.R. Motahari-Nezhad et al. (Eds.): BPM 2015, LNCS 9253, pp. 55–71, 2015.
DOI: 10.1007/978-3-319-23063-4 4



56 A. Kheldoun et al.

these proposals is their lack of support for modeling complex BPMN business
processes involving exception, cancellation and multiple instantiation of subpro-
cesses. For that, we need an expressive modeling formalism that allows, on one
hand, to specify their dynamic structure, and on the other hand, to check the
control-flow correctness of these business processes while taking into account
their data flow aspect.

In this paper, we propose the use of Recursive ECATNets [1] to cope with the
modeling and verification of complex BPMN models. The Recursive ECATNets
model offers practical mechanisms for handling the most advanced BPMN con-
structs (involving exception, cancellation and multiple instances). Since Recur-
sive ECATNets semantics can be expressed in terms of conditional rewriting
logic [10], we can use the Maude LTL model-checker [7] to investigate several
behavioral properties of business processes.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 provides an overview about BPMN and Recursive ECATNets.
Section 4 presents the suggested approach for the verification of BPMN mod-
els. Section 5 presents the mapping rules from BPMN to Recursive ECATNet.
Section 6 shows two examples for the proposed mapping. Section 7 presents the
formal semantics of the mapping rules. Finally, Section 8 concludes and gives
some further research directions.

2 Related Work

Many researchers have tried to deal with formal modeling and verification of
business processes using BPMN models. [11] presents an extended survey of the
existing verification techniques of BPMN diagrams and compares them with
each other with respect to motivations and methods. Nevertheless, none of the
cited works take into account the following key features of BPMN : (1) cancella-
tion of subprocesses; (2) parallel multi-instance subprocesses; and (3) exception
handling in the context of subprocesses that are executed multiple times con-
currently.

Petri nets often are a topic in verification of business processes using BPMN
models. In [5], the authors propose a mapping from a core set of BPMN to
labelled Petri nets. This output is represented in the PNML language [4] and
can subsequently be used to verify BPMN processes by using the open source
tool WofBPEL [14]. The proposed mapping for exception handling is very com-
plicated and does not work properly in the case where an activity within the
subprocess is enabled multiple times concurrently. In [13], the authors propose
a Petri-net-based approach to evaluate the feasibility of a BPMN model. This
approach enables to reveal deadlocks and infinite loops. It consists in manu-
ally translating the BPMN model to a modified BPEL4WS representation, and
then to XML-based representation of Colored Petri nets (CPNXML) that can
be verified using CPN Tools. However, only, simple BPMN contructs are taken
into account. In [18], an approach is proposed to automatically convert business
processes to YAWL (Yet Another Workflow Language) nets [16] and to verify
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them subsequently by YAWL verification tools like WofYAWL [17]. However,
modelling a synchronization of a dynamic number of process instances depend-
ing on their termination state can’t be done using the multiple instantiation
constructors of YAWL where the terminated process instances are synchronized
following their number and not following their states. Also, the semantics of
YAWL constructors is expressed in terms of Colored Petri nets and in terms
of reset nets [6] to describe the cancellation construction. Therefore, regarding
BPMN analysis, the soundness property is not decidable for YAWL specifica-
tions. In contrast, our model allows the modelling of cancellation constructs via
cut steps execution while the soundness property remains decidable, if the state
space generated from the specified model is finite [3]. Table 1 summarizes the
BPMN features that are supported by the different semantics discussed above.
The advantages of our proposed model are : (1) adequate for handling the most

Table 1. Features supported by BPMN semantics



58 A. Kheldoun et al.

advanced BPMN constructs such as multiple instantiation, cancellation of sub-
processes and exceptional behaviors (2) providing a hierarchical and modular
specification (3) allowing distributed execution of modeling business processes
and (4) its semantic may be defined in terms of conditional rewriting logic [10]
and therefore the model checker Maude [7] can be used to investigate several
behavioral properties.

3 Background

This section gives background on BPMN 2.0 and Recursive ECATNets.

3.1 BPMN Overview

A BPMN process, which is using the core subset of BPMN elements shown in
Fig. 1 is referred to as a core BPMN process. In this paper, we only consider the
well-formed core BPMN models [5].

Definition 1. A core BPMN process [5] is a tuple B = 〈O,F,Cond,Excp〉
where :

– O is a set of objects which can be partitioned into disjoint sets of activities
A, events E and gateways G,

• A can be partitioned into disjoint sets of tasks T and subprocess invoca-
tion activities S,

• E can be partitioned into disjoint sets of start events Es, intermediate
events Ei and end events Ee,

• Ei can be partitioned into disjoint sets of intermediate message events
Ei

M , intermediate timer events Ei
T and intermediate error events Ei

R,
• Ee can be partitioned into disjoint sets of end non-error events Ee

N and
end error events Ee

R,
• G can be partitioned into disjoint sets of parallel fork gateways GF , paral-

lel join gateways GJ , data-based XOR decision gateways GD and XOR
merge gateways GM .

– F ⊆ O × O is the control flow relation,
– Cond : F∩(GD×O) → C is a function which maps sequence flows emanating

from data-based XOR gateways to conditions1,
– Excp : Ei → A is a function assigning an intermediate event to an activity.

3.2 RECATNet Overview

Recursive ECATNets (abbreviated RECATNets) [1][2] are a kind of high level
algebraic Petri nets combining the expressive power of abstract data types and
Recursive Petri nets [8]. RECATNets are proposed to specify flexible concur-
rent systems where functionalities of discrete event systems such as abstraction,
dynamicity, preemption and recursion are preponderant.
1 A condition C is a boolean function, which operates over a set of propositional
variables.
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Fig. 1. A core subset of BPMN elements

In what follows, we denote by Spec = 〈Σ,E〉 an algebraic specification of
an abstract data type associated to a RECATNet, where Σ = 〈S,OP 〉 is its
multi-sort signature (S is a finite set of sort symbols and OP is a finite set of
operations, such that OP ∩S = φ ). E is the set of equations associated to Spec.
A set of variables associated to Spec is a family X = (Xs)s∈S with Xs being
the set of variables of sort s, where OP ∩ X = φ. We denote by TΣ(X) the
set of Σ-terms with variables in the set X and by TΣ,s(X) the set of Σ-terms
with variables in the set Xs. The multisets of Σ-terms are denoted by [TΣ(X)]⊕,
where the multiset union operator (⊕) is associative, commutative and admits
the empty multiset φ as the identity element.

Definition 2. A recursive ECATNet [1] is a tuple RECATNet = 〈Spec, P, T,
sort, Cap, IC,CT, TC,Ω, I, Υ, ICT,K〉 where:

– Spec = (Σ,E) is a many sorted algebra, where the sorts domains are finite
(with Σ = (S,OP ) ), and X is a set of variables associated to Spec,

– P is a finite set of places,
– T = Telt ∪ Tabs is a finite set of transitions (T ∩ P = φ) partitioned into

abstract and elementary ones,
– sort: P → S, is a mapping called a sort i.e type assignment,
– Cap: is a P-vector on capacity places: p∈P, Cap(p): TΣ(φ) → N ∪ {∞},
– IC : P ×T → [TΣ,sort(p)(X)]⊕ maps a multiset of terms for every input arc,
– CT : P × T → [TΣ,sort(p)(X)]⊕ maps a multiset of terms for every output

arc (p, t) where t ∈ Telt,
– TC : T → [TΣ,bool(X)] maps a boolean expression for each transition,
– Ω : P × Tabs → [TΣ,sort(p)(X)]⊕ maps a multiset of terms for every starting

marking associated to t ∈ Tabs according to place p,
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– I = Icut ∪ Ipre is a finite set of indices, called termination indices, dedicated
to cut steps and preemptions (interruptions) respectively,

– Υ is a family, indexed by Icut, of effective semi-linear sets of final markings,
– ICT : P ×Tabs × Icut → [TΣ,sort(p)(X)]⊕ maps a multiset of terms for every

output arc (p, t, i) where t ∈ Tabs and i ∈ Icut,
– K : Telt → Tabs × Ipre, maps a set of interrupted abstract transitions, and

their associated termination indexes, for every elementary transition.

Let’s use the net in Fig. 2(a) to highlight RECATNet’s graphical symbols :

1. An elementary transition is represented by a filled rectangle; its name is
possibly followed by a set of terms (t′, i) ∈ Tabs × I. Each term specifies
an abstract transition t′, which is under the control of t, associated with a
termination index to be used when interrupting t′ consequently to a firing of
t. For instance, tcancel is an elementary transition, where its firing preempts
instances of threads created by the firing of t1 and the associated termination
index is <1>.

2. An abstract transition t is represented by a double rectangles; its name
is followed by the starting marking Ω(t). For instance, t1 is an abstract
transition and Ω(t1) =<p5, Rq> means that any thread, named refinement
net, created by firing of t1 starts with one token i.e. Rq in place p5.

3. Any termination set can be defined based on place marking. For instance,
Υ0 specifies the final marking of threads such that the place p6 is marked at
least by one token.

4. The set I of termination indices is deduced from the indices used to subscript
the termination sets and from the indices bound to elementary transitions
i.e. interruption. For the example, I = {0, 1}.

Informally, a RECATNet generates during its execution a dynamical tree of
marked threads called extended marking [1] which reflects the global state of
such net. This latter denotes relation between generated threads, where each
one of them having its own execution context.

Let’s now consider the net of Fig. 2(a) with initial marking <p1, Rq1>⊗
<p0, ok> to illustrate the firing sequence notion. The graphical representation
of any extended marking Tr is a tree where an arc v1(m1) → v2(m2) labelled
by tabs means that v2 is a child of v1 created by firing the abstract transition
tabs, and m1 (resp. m2) is the marking of v1 (resp. v2). In Fig. 2(b), note that
the initial extended marking Tr0 is reduced to a single node v0, whose marking
is <p1, Rq1>⊗ <p0, ok>. From the initial extended marking Tr0, the abstract
transition t1 is enabled; its firing is achieved as follows: the consumption of
tokens specified by the precondition of t1 (i.e. IC(t1) from the place p1) and the
creation of a thread modelled by a refinement net, which starts its evolution with
an initial marking Ω(t1) = (p5, Rq). The obtained extended marking after firing
the abstract transition t1 is denoted by Tr1. Note that the extended marking Tr1
contains a new node v1 marked by the starting marking Ω(t1). Then, the firing
of the elementary transition t2 from the node v1 of Tr1 leads to an extended
marking Tr2, having the same structure as Tr1, but only the marking of node v1
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is changed. From the node v1 in Tr2, the cut step τ0 is enabled; its firing leads to
an extended marking Tr3 by removing the node v1 and change the marking on
its node father i.e. v0 by adding ICT (t1, 0) = (p4, achieved). Also, from the node
v0 in Tr1, the elementary transition tcancel with associated interruption (t1, 1)
is enabled; its firing leads to an extended marking Tr4 by removing the node
v1 and changing the marking on its node father, i.e. v0 by adding ICT (t1, 1) =
(p3, cancelled).

(a) RECATNet (b) Firing sequences

Fig. 2. Example of a RECATNet and two possible firing sequences

The analysis of a RECATNet is based on constructing its state space, named
extended reachability graph, which is used for checking properties such as
reachability, deadlock and liveness. Furthermore, RECATNets semantics can be
expressed in rewriting logic, and the Maude LTL model checker can be used to
check LTL properties.

4 RECATNet Based Model Verification for Business
Processes

The proposed approach for the verification of BPMN models is based
mainly on Meta-modeling and Model Transformations. It is achieved auto-
matically into three steps : (1) transformation of business processes speci-
fied in BPMNs into RECATNets using the ATLAS Transformation Language
(ATL) [9] where two meta-models for BPMN and RECATNet are defined
(URL: http://recatnets.cnam.fr/), (2) transformation of obtained RECATNets
into rewriting logic description using the transformation tool Acceleo (URL:
http://www.eclipse.org/acceleo/) (3) checking the properties of business pro-
cesses expressed as rewrite theories by using the the Maude LTL model checker.
This is summarized in Fig. 3.
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Fig. 3. Overview of the proposed approach

5 Mapping BPMN into RECATNets

This section presents the mapping rules of the core BPMN models into RECAT-
Nets.

5.1 Mapping Events and Gateways

In Fig. 4, we present the mapping of a set of BPMN events and Gateways to
RECATNets. A start event indicates where a particular process starts. So, in
Fig. 4.(a), a start event is mapped into an elementary transition with one input
place. An end event ends the flow of the process. So, in Fig. 4.(b), an end event
is mapped into one transiton with only one output place. An intermediate event,
such message event is mapped, in Fig. 4.(c), into an elementary transition with
one input resp. output place.

Fig. 4. Mapping Events and Gateways into RECATNets

Gateways are used to control the divergence and convergence of sequence
flows in a Process. A parallel Fork gateway, known as AND-Split, allowing to
split one sequence flow into two or more paths that can run in parallel within the
process. So, in Fig. 4.(d), a parallel Fork gateway is mapped into one elementary
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transition with only one input place and a set of output places as paths that
can run in parallel. A parallel Join gateway, known as AND-Join, allowing to
combine two or more parallel sequence flow paths into one sequence flow path.
So, in Fig. 4.(e), a parallel Join gateway is mapped into one elementary tran-
sition with a set of input places as the number of parallel sequence flow paths
to be combined, and one output place. A diverging exclusive Decision gateway,
known as XOR-Split, is used to create alternative paths within a process flow.
So, in Fig. 4.(f), a Decision gateway is mapped into a set of elementary tran-
sitions as the number of alternative paths, sharing in common one input place.
To each transition t is associated an additional condition of firing TC(t). A
Merge gateway, known as XOR-Join, is used to combine two or more alterna-
tive sequence flow paths into one sequence flow path, but no synchronization is
required because no parallel activity runs at the join point. So, in Fig. 4.(g), a
Merge gateway is mapped into a set of elementary transitions as the number of
sequence flow paths to be combined, and one output place.

5.2 Mapping Activities

An activity can be a task or a subprocess. A task is mapped, as shown in
Fig. 5.(a), into an elementary transition with one input resp. output place. A sub-
process may be viewed as an independent BPMN process. In Fig. 5.(b), we depict
the mapping of calling a subprocess via a subprocess invocation activity. The
place psSubProc. resp peSubProc represents the start. resp end event of the invoked
subprocess. Also, a semi-linear set of final markings is defined which indicates
the end flows of a subprocess. For instance, the set Υ0 = {M(peSubProc) > 0}
indicates that a subprocess ends when the place peSubProc is marked. The invoca-
tion of a subprocess is mapped into an abstract transition tCallSubProc where its
starting marking is Ω(tCallSubProc) = (psSubProc, x). The firing of the abstract
transition tCallSubProc refines the transition by a new sub-net (i.e. creation of
new thread, named its child), which starts its own token x in place psSubProc.
Once a final marking is reached, according to the semi-linear set of final mark-
ings Υ0 defined above, a cut step closes the corresponding sub-net, and produces
tokens in the appropriate output place peCallSubProc of the abstract transition
tCallSubProc.

In BPMN, an activity may have attributes specifying its additional behavior,
such as looping and parallel multiple instances. Activity looping constructs cap-
ture both While-do and do-Until loops depending on their attribute TestTime.
In fact, if TestTime = Before resp. TestTime = After means that the loop con-
dition is evaluated at the beginning resp. at the end of the loop iteration. The
Fig. 6.(a) shows the mapping of While-do loop activity in RECATNet whereas
the Fig. 6.(b) shows the mapping of do-Until loop activity in RECATNet. In the
obtained RECATNets, when the abstract transition tCallTask is fired, it calls the
sub-net associated to the looped Task. Parallel multi-instance activity contruct
allows for creation a set of activity instances where they executed in parallel. In
Fig. 6.(c), we show a mapping of Parallel multi-instance activity. The obtained
RECATNet is general where we don’t need, a priori, to know the number of
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Fig. 5. Mapping Activities into RECATNets

multiple instances of activity. The number of instances may be created dynam-
ically using the elementary transition taddInst, where its firing will add a token
in place pinst, which can enable the abstract transition tCallTask. Each firing of
the abstract transition tCallTask will create one instance of the activity Task.
The elementary transition tremove is used to stop the creation of instances. In
the case, where the number of multi-instances (n) running in parallel is known
at design time, then the place pinst will be marked by this natural (n).

5.3 Exception Handling

In BPMN, exception handling is captured by exception flow. An exception flow
originates from an exception event attached to the boundary of an activity,
which is either a task or a subprocess. Fig. 7.(a) depicts the mapping of an
exception associated with a task and a subprocess. The RECATNet associated
to a subprocess shows the mapping of an exception associated with an atomic
activity i.e. Task. The occurrence of the exception may only interrupt the normal

Fig. 6. Mapping Advanced Activities into RECATNets
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flow at the point when it is ready to execute the task. Hence, the mapping of an
exception associated with a task is an elementary transition texTask where its
firing will avoid to run the atomic activity Task and generates a token represents
the type of exception in place pexTask.

For the exception handling associated to a subprocess, the occurrence of
the exception event will interrupt the execution of the normal flow within the
subprocess, when it is active (running). This mapping is straightforward into
RECATNet. Firstly, a semi-linear set of final markings is defined, it indicates the
occurring of such exception in a subprocess. For instance, as shown in Fig. 7.(a),
the semi-linear set of final markings Υ1 = {M(pexTask) > 0} indicates the occur-
ring of an exception associated to the atomic activity Task. So, the subprocess
may end with two types of terminations. The first way of termination is when the
subprocess ends properly by marking the place peSubProc, which needs to define
the set of terminations Υ0. The second way of termination is when the subprocess
ends upon the occurrence of an exception i.e. marking the place pexTask which
needs to define the set of termination Υ1. Secondly, we need to add another
output place for the abstract transition, which models the invocation of the
subprocess to capture the exception. For instance, as shown in Fig. 7.(a), the
asbtract transition tCallSubproc, which can invoke the subprocess, has a second
output place psException, with index of termination <1>. It means that, when
the subprocess reachs a final marking in Υ1, a cut step interrupts the subprocess
and produces tokens in the output place psException associated to the index of
termination <1>.

5.4 Cancellation Activity

Assume that a subprocess P is nested within another subprocess P ′ (i.e. P ′ is
the parent of P ). The execution of P may be cancelled at any point due to the

Fig. 7. (a)Mapping exceptions and (b)Mapping cancellation subprocess into RECAT-
Nets
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cancellation of P ′, despite whether or not, there is an exception associated with
P . This type of construct is very difficult for mapping using other types of Petri
nets. But, by using the RECATNets, the mapping becomes straightforward,
thanks to the preemption and cut step which are a key features of RECATNet.
Fig. 7.(b) depicts the mapping of cancellation subprocess into RECATNet. In
fact, in the subprocess P ′, we need to add an elementary transition tCancel

associated a term K(tCancel) = (tCallSubproc, 1). The firing of this elementary
transition will interrupt all instances of a subprocess P created by firing the
abstract transition tCallSubproc, with a termination’s index <1>. After firing
this elementary transition, a token cancelled is added to the place pe2CallSubproc

for each running instance of subprocess P .

6 Case Studies

In this section, we illustrate our approach for mapping BPMN processes into
RECATNets through two examples, where a translation to Petri nets is not
feasible.

6.1 Travel Request Process

Fig. 8(a) depicts the business process for Travel Request process. First, the
requester enters the information related to the travel, then the administrative
department has to manage the bookings for the employee and send the infor-
mation related to them, once they have been confirmed. The administrative
department can manage the car, hotel and flight bookings simultaneously as
requested by the employee. When completed, the subprocess finishes. However,
many situations can arise during the booking process. Suppose that the admin-
istrative department has successfully confirmed the car and hotel booking, but
when the flight is going to be booked, an error arises (connection error, etc.).
Thus, the sub-process will have to be finished and an exception flow has to be
enabled for the main process. In addition, to make the travel request process
more flexible, the employee must be able to cancel the booking process at any
moment, if necessary.

The RECATNet derived from the travel request process is depicted in
Fig. 8(b). The obtained RECATNet contains one abstract transition tCallBook,
where its firing will call the sub-net models the booking process. As shown in
Fig. 8(b), the sub-net associated to the booking process models the car, hotel
and flight bookings by three elementary transitions tCarBook, tHotelBook and
tFlightBook. Then to each type of booking is associated an elementary transi-
tion to model exceptions. For instance, the elementary transition tFlightBookEx

models the exceptions occurred during flight booking. The abstract transition
tCallBook has three outgoing labelled arcs. The arc labelled by the termination
index <0> means that the bookings process ends successfully. The arc labelled by
the termination index <1> BookError means that the bookings process ends
with failure and the expected error BookError is returned. The arc labelled
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(a) Travel Request process (b) Derived RECATNet

Fig. 8. Travel Request process and its derived RECATNet

by the termination index <2> Cancelled means that the Bookings process is
cancelled when firing the elementary transition tCancelBook associated a term
K(tCancelBook) = (tCallBook, 2).

6.2 Intelligence Test Process (Cancel Multiple Instance Activity)

The Cancel Multiple Instance Task pattern describes the ability of completing
a whole Multiple Instance task by withdrawing all running instances, which
have not yet been completed. For instance, the Human Resources Manager

(a) Intelligence test process (b) Derived RECATNet

Fig. 9. Intelligence test process and its derived RECATNet
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established that a group of applicants must face concurrently the same intel-
ligence test. However, the Human Resources Manager must be able to interrupt
applicants, when a specific test’s time is expired. The business process modelling
this example is shown in Fig. 9(a). The RECATNet derived from the intelli-
gence test process is depicted in Fig. 9(b). The abstract transition tCallPerTest is
used to call the subnet models the perform test process. The abstract transition
tCallPerTest has two outgoing labelled arcs. The arc labelled by the termination
index <0> Completed means that the perform test process ends successfully.
The arc labelled by the termination index <1> Stopped means that the per-
form test process is interrupted. In fact, when firing the elementary transition
tStopPerTest, associated a term K(tStopPerTest) = (tCallPerTest, 1), it interrupts
all running instances which perform test process, created by the abstract tran-
sition tCallPerTest. This type of BPMN process is not trivial to model by other
types of Petri nets.

7 Formal Semantics of the Mapping BPMN into
RECATNet

In this section, we formally define the mapping of BPMN to RECATNet. In
order to facilitate the definition, we introduce the following functions : The
function in(x) = {y ∈ O|(y, x) ∈ F} returns the input BMPN objects of a
BPMN object x, the function out(x) = {y ∈ O|(x, y) ∈ F} returns the output
BPMN objects of a BPMN object x, the function endsSubProc(S) returns the
set of end events in a BPMN subprocess associated to invocation activity S,
the function startSubProc(S) returns the start event in a BPMN subprocess
associated to invocation activity S and the function getTermIndex() returns a
natural number represent the index of termination.

Definition 3. Let B = 〈O,F,Cond,Excp〉 be a core BPMN process. Without
considering activities attributes and the communication between
interacting processes, B can be mapped to a RECATNet = 〈Spec, P, T, sort,
Cap, IC,CT, TC,Ω, I, Υ, ICT,K〉 where:

start event start ∈ Es P = P ∪ {pstart}, Telt = Telt ∪ {tstart},
IC = IC ∪ {(pstart, tstart, token)},
CT = CT ∪ {(tstart, p(start,y), token)|y ∈ out(start)}

end event end ∈ Ee P = P ∪ {pend}, Telt = Telt ∪ {tend},
IC = IC ∪ {(p(x,end), tend, token)|x ∈ in(end)},
CT = CT ∪ {(tend, pend, token)},
Υ = Υ ∪ {(pend > 0, getTermIndex())|∃x∈S : end ∈
endSubProc(x)}

sequence flow
(x, y) ∈ F

P = P ∪ {p(x,y)}
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fork x ∈ GF Telt = Telt ∪ {tx},
IC = IC ∪ {(p(x,y), ty, token)|y ∈ in(x)},
CT = CT ∪ {(tx, p(x,y), token)|y ∈ out(x)}

join x ∈ GJ Telt = Telt ∪ {tx},
IC = IC ∪ {(p(x,y), ty, token)|y ∈ in(x)},
CT = CT ∪ {(tx, p(x,y), token)|y ∈ out(x)}

data-decision x ∈ GD Telt = Telt ∪ {t(x,y)|y ∈ out(x)},
TC = TC ∪ {(t(x,y),Cond(x,y))|y ∈ out(x)},
IC = IC∪{(p(z,x), t(x,y), token)|y ∈ out(x)∧z ∈ in(x)},
CT = CT ∪ {t(x,y), (p(x,y), token)|y ∈ out(x)}

merge x ∈ GM Telt = Telt ∪ {t(x,y)|y ∈ in(x)},
IC = IC ∪ {(p(y,x), t(x,y), token)|y ∈ in(x)},
CT = CT ∪{t(x,y), (p(x,z), token)|y ∈ in(x)∧z ∈ out(x)}

intermediate event
x ∈ Ei

Telt = Telt ∪ {tx|in(x) = φ},
IC = {(p(y,x), tx, token)|y ∈ in(x)},
CT = CT ∪ {(tx, p(x,y), token)|y ∈ out(x)}

task x ∈ T Telt = Telt ∪ {tx},
IC = IC ∪ {(p(y,x), tx, token)|y ∈ in(x)},
CT = CT ∪ {(tx, p(x,y), token)|y ∈ out(x)}

subprocess x ∈ S Tabs = Tabs ∪ {tx},
Ω = Ω ∪ {(tx, pstart, token)|start = startSubProc(x)},
IC = IC ∪ {(p(y,x), tx, token)|y ∈ in(x)},
ICT = ICT ∪ {(tx, p(x,y), index, token)|y ∈ out(x) ∧
∃cs(pend,index)∈Υ end ∈ endsSubProc(x) ∧ end ∈ Ee

N}
exception@task Ei

R@T Telt = Telt ∪{texcp|excp ∈ Ei
R ∧ in(excp) = φ∧∃y∈T y =

Excp(excp)},
IC = IC ∪{(p(x,y), texcp, exception)|y ∈ T ∧x ∈ in(y)∧
excp ∈ Ei

R ∧ y = Excp(excp)},
CT = CT ∪ {(texcp, p(excp,y), exception)|excp ∈ Ei

R ∧
∃x∈T x = Excp(excp) ∧ y ∈ out(excp)}∪

exception@subprocess
Ei

R@S
ICT = ICT ∪ {(ty, p(excp,z), index, exception)|y ∈ S ∧
excp ∈ Ei

R ∧ y = Excp(excp) ∧ z ∈ out(excp) ∧
∃cs(pend,index)∈Υ end ∈ endsSubProc(y)} ∧ end ∈ Ee

R}
cancellation@task
Ei

T @T
Telt = Telt ∪ {tcancel|cancel ∈ Ei

T ∧ in(cancel) = φ ∧
∃y∈T y = Excp(cancel)},
IC = IC ∪ {(p(x,y), tcancel, cancelled)|y ∈ T ∧ x ∈
in(y) ∧ cancel ∈ Ei

T ∧ y = Excp(cancel)},
CT = CT ∪ {(tcancel, p(cancel,y), cancelled)|cancel ∈
Ei

T ∧ ∃x∈T x = Excp(cancel) ∧ y ∈ out(cancel)}



70 A. Kheldoun et al.

cancellation
@subprocess Ei

T @S
P = P ∪ {pscancel, pecancel|cancel ∈ Ei

T ∧ ∃y∈S y =
Excp(cancel)},
Telt = Telt ∪ {tcancel|cancel ∈ Ei

T ∧ in(cancel) = φ ∧
∃y∈S y = Excp(cancel)},
IC = IC ∪ {(pscancel, tcancel, cancelled)|cancel ∈ Ei

T ∧
∃x∈S x = Excp(cancel)},
CT = CT ∪ {(tcancel, pecancel, cancelled)|cancel ∈ Ei

T ∧
∃x∈S x = Excp(cancel)},
Υ = Υ ∪ {(φc, getTermIndex())|∃s∈S ∃c∈Ei

T
s =

Excp(c)},
ICT = ICT ∪ {(ty, p(cancel,z), index, cancelled)|y ∈ S ∧
cancel ∈ Ei

T ∧ y = Excp(cancel) ∧ z ∈ out(cancel) ∧
∃cs(φc,index)∈Υ c = cancel},
K = K ∪ {(tcancel, tx, index)|cancel ∈ Ei

T ∧ x ∈ S ∧ x =
Excp(cancel) ∧ ∃cs(φc,index)∈Υ c = cancel}

8 Conclusion and Future Work

The contribution of this work is a definition of a method allowing the transfor-
mation of a subset of BPMN to RECATNets. On the basis of mapping rules
for which a formal semantics is established. With this mapping, we can cover a
large set of BPMN features like cancellation, multiple instantiation of subpro-
cesses and exception handling while taking into account the data flow aspect.

The formalism of RECATNets benefits from its definition in terms of rewrit-
ing logic. A set of rewriting rules has been introduced in [1][2] to express the
semantics of RECATNet in termes of rewriting logic. In order to automate this
transformation, we have developed a Model-to-Text (M2T) transformation tool
based Acceleo generator code. Since we obtain a rewriting logic description from
a RECATNet, we can benefit from the use of the LTL model checker of the
Maude system for verification purpose. For instance, we can check the liveness
and the safety properties on the finite generated state space related to finite
BPMN models.

In the future, we plan to complete this work by developing a graphical tool
which helps users to visualize the derived RECATNets from their BPMN models.
Other ongoing work aims at extending this work by proposing a mapping rules
for other BPMN constructs such as transaction, compensation activities...etc.
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Abstract. Declarative or constraint-based business process and work-
flow notations, in particular DECLARE and Dynamic Condition
Response (DCR) graphs, have received increasing interest in the last
decade as possible means of addressing the challenge of supporting at the
same time flexibility in execution, adaptability and compliance. However,
the definition of concurrent semantics, which is a necessary foundation
for asynchronously executing distributed processes, is not obvious for for-
malisms such as DECLARE and DCR Graphs. This is in stark contrast
to the very successful Petri-net–based process languages, which have an
inherent notion of concurrency. In this paper, we propose a notion of
concurrency for declarative process models, formulated in the context
of DCR graphs, and exploiting the so-called “true concurrency” seman-
tics of Labelled Asynchronous Transition Systems. We demonstrate how
this semantic underpinning of concurrency in DCR Graphs admits asyn-
chronous execution of declarative workflows both conceptually and by
reporting on a prototype implementation of a distributed declarative
workflow engine. Both the theoretical development and the implemen-
tation is supported by an extended example; moreover, the theoretical
development has been verified correct in the Isabelle-HOL interactive
theorem prover.

1 Introduction

The last decade has witnessed a massive revival of business process and workflow
management systems driven by the need to provide more efficient processes and
at the same time guarantee compliance with regulations and equal treatment of
customers. Starting from relatively simple and repetitive business processes, e.g.
for handling invoices, the next step is to digitalise more flexible work processes,
e.g. of knowledge workers [22] that are distributed across different departments.

In many business process management solutions, notably solutions employ-
ing Business Process Model and Notation (BPMN), a distributed process will be
described as a set of pools, where each pool contains a flow graph that explicitly
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describes the flow of control between actions at that particular location. How-
ever, the explicit design time specification of both distribution and control flow
sometimes lead to overly rigid processes; and changes to the distribution and
control flow at run time, i.e. delegation of activities to different locations, repeti-
tion or skipping of activities, is non-trivial to support. Moreover, flow diagrams
describe constraints on the ordering of activities only implicitly. For instance, a
simple business rule stating that a bank customer must provide a budget before
getting approved for a loan can be checked only by verifying that on every path
from the request for a loan to an approval, there is a “receive budget” event.
Depending on the exact process language, the complexity of verifying this simple
rule ranges from challenging to undecidable.

Towards the challenge of accommodating flexibility and compliance, there has
been a renewed and increasing interest in declarative or constraint-based process
notations such as DECLARE [23,24] and Dynamic Condition Response (DCR)
graphs [7,13,16]. In a declarative process notation, a process is described by the
constraints it must fulfill, while the control flow is left implicit. This means that
activities can be carried out in any order and at any location that fulfills the
constraints. It also means that compliance rules and constraints are captured
explicitly in the model. However, so far constraint-based process notations have
only been equipped with sequential semantics allowing only one event to hap-
pen at a time. This is in stark contrast to successful Petri Net-based workflow
specifications, which have an inherent notion of concurrency.

In the present paper we make the following contributions:

1. We provide an overview of the challenges a notion of concurrency must over-
come for an event-based declarative workflow notation.

2. We give a “true concurrency” semantics for DCR graphs by enriching DCR
graphs with a notion of independent events, and prove that the semantics of
a DCR graph in this case gives rise to a labelled asynchronous transition sys-
tem [25,27]. The development, which is quite technical, has been verified to
be correct in the Isabelle-HOL interactive theorem prover[19]; the formalised
development is available online [4].

3. We show how this semantic underpinning of concurrency admits practical
asynchronous execution of declarative workflows. Essentially, this is achieved
by assigning events to location. Thus, we capture asynchronous semantics
for the entire spectrum of distributions, spanning from the fully centralized
workflow where every event is happening at the same location, to the fully
decentralized workflow, where every event is managed at its own location.

4. We demonstrate the practical feasibility of the developed theory by reporting
on a prototype implementation of a distributed declarative workflow engine.
The prototype is accessible online [3].

Related Work. Concurrency and distribution of workflows defined as flow
graphs are well-studied. Declarative modelling and concurrency has been studied
in the context of the Guard Stage Milestone (GSM) model [14] and declaratively
specified (Business) Protocols [8–10,26]. In the GSM model [14], declarative rules
govern the state of Guards, which in turn admits Stages to open and execute.
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The declarative rules reference a global state, which executing a Stage might
change non-atomically. Stages may run concurrently; to prevent errors of atom-
icity, a transactional concistency dicipline based on locks is followed. That is,
stages can be said to be concurrent if they do not have interferring reads and
writes to the global state. Neither (core) DCR graphs nor (core) DECLARE
has explicit notions of data, global state or state update. Writes and reads of
data must be modelled in DCR graphs as events, and interferrence between
such events by relations, i.e. any write event to a data location should explicitly
exclude and include every other event representing access to the same location.
Thus, dependencies between activities are not expressed implicitly as predicates
on a global state, but instead explicitly through relations between activities.

In [8–10,26] protocols are given declaratively as rules governing which actions
must and must not be available in a given state. Like GSM, the steps in the
protocol entail modifying the global state, and the availability of actions in a
particular state is directly expressed as predicates on this state. Unlike GSM,
race conditions are resolved by either ordering the types of updates [8], or by
projecting the global specification onto subsets of its rules in a way that avoids
the problems of non-local state and blindness [10].

The Agent-based approach of [15], while philosophically similar to the present
approach, sidesteps the issue of concurrency. Agents manage or invoke services,
comprised of tasks; tasks are explicitly declared as being in sequence, in parallel,
etc. Before invoking a service, the invoking agent must negotiate the particu-
lars of its usage with the managing agent; this negotiation is specified in part
declaratively. It is left to the implementation of agents and services to ensure
that concurrency issues do not arise.

Concurrency is less well-studied in the setting of pure declarative formalisms
without explicit data and global state, like DECLARE and DCR graphs. We
took tentative steps for DCR graphs in [1]. For DECLARE, [11,12] provide pat-
tern based translations of a subset of DECLARE LTL constraints to Petri Nets
by giving a net for each constraint. These works do not cover the full expressive
power of LTL (in particular, they only cover finitary semantics). In contrast,
DCR Graphs are known to be equivalent to Büchi-automata [5,16,18], and thus
express infinitary liveness conditions and are more expressive than LTL. [20]
offers a fully automatic mapping from Declare to finite state automata to Petri
Nets, but disregard the independence relation in their translation. Finally, [21]
considers declarative, event-based workflow specifications. Local constraints for
each event are derived from a global specification provided in an LTL-like tem-
poral logic. However, the use of the temporal logic makes the setting dependent
on an initial calculation of the local constraints, which only provide the inde-
pendence relation implicitly.

2 Concurrency and Declarative Workflows

In this section, we explain through examples the issues surrounding concurrency
in declarative workflow specifications, and give the main gist of our proposed
solution. Along the way, we will recall the declarative model of DCR graphs.
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2.1 A Mortgage Credit Application Workflow

As our main example, we will use a declarative specification of a workflow from
the financial services industry, specifically the mortgage application process of a
mortgage credit institution. The example is based on an ongoing project with the
Danish mortgage credit institution BRFKredit. For confidentiality reasons, we
are unable to present an actual process of BRFKredit; instead, we have distilled
down the major challenges discovered in that project into the following wholly
fictitious application process.

Mortgage application processes are in practice extremely varied, depending
on the type of mortgage, the neighbourhood, the applicant, and the credit insti-
tution in question. The purpose of the process is to arrive at a point where the
activity Assess loan application can be carried out. This requires in turn:

1. Collecting appropriate documentation,
2. collecting a budget from the applicant, and
3. appraising the property.

In practice, applicants’ budgets tend to be underspecified, so an intern will screen
the budget and request a new one if the submitted one happens to be so.

The caseworker decides if the appraisal can be entirely statistical, i.e., carried
out without physical inspection, but rather based on a statistical model taking
into account location, tax valuation, trade history etc.; or if it requires an on-site
appraisal. On-site appraisals are cursory in nature, and do not require actually
entering the property. For reasons of cost efficiency, one may not do both on-
site and statistical appraisals, not even in the case of an audit. However, if the
neighbourhood is insufficiently uniform, a thorough on-site appraisal is required.
This thorough appraisal requires physical access to the property, so the mobile
consultant performing the appraisal will in this case need to book a time with
the applicant.

Appraisals are occasionally audited as a matter of internal controls; an audit
may entail an on-site appraisal, which may or may not coincide with an ordinary
on-site appraisal. It is customary, however, to consider a statistical appraisal an
acceptable substitute for an on-site appraisal during an audit.

2.2 A DCR Formalisation

This textual description of the application process is inherently declarative: we
have described constraints on the ordering of activities in the process rather
than positing a particular sequencing. Thus, this process is naturally described
by a declarative process model such as DECLARE or DCR graphs. Presently,
we give a DCR graph-based declarative model in Figure 1 on page 76, produced
with the tool available at [3].

DCR models are graphical; activities, also known as “events” are represented
by boxes, labelled by the name of the activity and the role or participant execut-
ing that activity. E.g., the top-right box represents an activity Collect documents
which is carried out by a caseworker. Activities are colored according to their
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Fig. 1. Declarative DCR model of a mortgage application process

state: grey is not currently executable, red text is required, and greyed out is
excluded. Arrows between boxes represent constraints between activities. DCR
graphs define in their most basic form only 4 such constraints: Conditions and
Responses, Inclusions and Exclusions.

Conditions. A condition, drawn as an arrow with a dot at the head, represents
the requirement that the source activity must be executed at least once before
the target activity can be executed. In our model, we see, e.g., that Collect
documents must be executed before Assess loan application can be.

Responses. An activity can be required for the workflow to be considered com-
plete, usually called accepting. Incomplete or “pending” activities are labelled in
red and have an exclamation mark next to them. In the model, the activities Bud-
get screening approve andAssess loan application are initially pending.A response,
represented by an arrow with a dot at the tail, indicates that executing the source
activity imposes the requirement to later do the target activity, that is, executing
the former makes the latter pending. In the model, when an applicant does Submit
budget , this imposes the requirement of a subsequent screening, and so there is a
response from Submit budget to Budget screening approve.

Inclusions and Exclusions. An activity is always in one of two states: it is
either included or excluded. In diagrams, excluded activities are drawn with a
thin gray; regularly drawn activities are included. An excluded activity cannot
execute; it cannot prevent the workflow from being accepting, even if it is pend-
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ing; and it cannot prevent other activities from executing, even if they have
conditions on it. For ease of reading, conditions from excluded activities are also
drawn with a thin gray, to indicate that they currently do not have effect.

An activity may cause other activities to be included or excluded when it
is itself executed. This is indicated diagrammatically with arrows that has “+”
and “%” as heads. In the model, the Irregular neighbourhood activity—which
is an automated activity executed by IT-systems—includes the Make appraisal
appointment , which is initially excluded; this in turn makes On-site appraisal
non-executable until the appointment has been made, by virtue of the condition
from Make appraisal appointment to On-site appraisal . Conversely, the On-site
appraisal and Statistical appraisal activities exclude each other: after doing one,
one may no longer do the other.

The semantics of a DCR model is the set of (finite and infinite) sequences of
activities in which every pending activity is eventually executed. We call such
sequences “traces”. For finite traces, this means that no activity is pending at
the end.

Example 2.1. The model in Figure 1 admits (among infinitely many others), the
following three traces. The first is the “happy path”, the usual and simplest case.
The second is the “happy path” for the less frequent case of an irregular neigh-
borhood. The third is a convoluted special case, with audit and re-submission
of a pre-screened budgets.

1. Collect documents, Submit budget, Statistical appraisal, Budget screening
approve, Assess loan application.

2. Submit budget, Collect documents, Irregular neighbourhood, Budget screening
approve, Make appraisal appointment, On-site appraisal, Assess loan appli-
cation.

3. Collect documents, Submit budget, Statistical appraisal, Irregular neighbour-
hood, Budget screening approve, Appraisal audit, Make appraisal appoint-
ment, Submit budget, On-site appraisal, Budget screening approve, Assess
loan application.

2.3 Concurrency in the Example Workflow

It would appear that certain activities in this workflow could happen concurrently,
whereas others are somehow in conflict. It is clear from the textual specification
that, e.g., the process of submitting and screening the budget is independent from
the appraisal model, and we would expect to be able to execute them concurrently
in practice.

Our DCR model of Figure 1 appears to bear out this observation: there are no
arrows—and so it would seem no constraints—between Submit budget and Bud-
get screening approve on the one hand; and Appraisal audit , On-site appraisal ,
and Statistical appraisal on the other. This insight begets the question: Exactly
when are two activities concurrent? Exactly when will it always be admissible to
swap two activities? These questions have practical relevance: E.g., the mobile
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consultant might be without internet connectivity when he executes the activity
On-site appraisal ; but this is admissible only if it is somehow guaranteed that
only concurrent activities happen simultaneously.

We proceed to examine what is a reasonable notion of concurrency of activ-
ities through a series of examples. We will attempt to obtain a set of principles
to help us later judge what is and is not a good definition of “concurrency”.

Example 2.2. The traces indicated above gives an indication that there is indeed
some form of independence, in that, e.g., in the first trace, the activities Submit
budget on the one hand and Statistical appraisal on the other can be swapped
and we still have an admissible trace. In fact, it is not terribly difficult to prove
that in any admissible trace, we can always swap adjacent activities when one
is among the budget activities and the other is among the appraisal activities,
and the trace we then get is still admissible.

The principle we observe here is that adjacent concurrent activities should
be able to happen in either order.

Example 2.3. A very easy example of activities that cannot be considered con-
current are ones related by a condition. If one requires the other to have happened
previously, clearly they cannot in general happen at the same time. This is the
case for, e.g., Collect documents and Irregular neighbourhood.

The principle we observe here is that concurrent activities cannot enable each
other.

Example 2.4. However, clearly not every two activities can be reasonably
swapped. For instance, the activies On-site appraisal and Statistical appraisal
are specified to be mutually exclusive (in most cases) in the textual specifica-
tion, and in the DCR model each excludes the other. If one happens, the other
cannot, and so they cannot reasonably be considered concurrent: When they
cannot happen one after the other, surely they should not be allowed to happen
simultaneously.

The principle we observe here is that concurrent activities cannot disable
each other.

Example 2.5. A different way activities can be in conflict is if their executions
have mutually incompatible effects on the state of the DCR graph. For instance,
the Appraisal audit includes On-site appraisal , whereas Statistical appraisal
excludes it. Clearly, Appraisal audit and Statistical appraisal cannot be exe-
cuted concurrently: if they were to happen at the same time, what would be the
resulting state of On-site appraisal—included or excluded?

The principle we observe here is that concurrent activities cannot have incom-
patible effects on the state of other activities.

Example 2.6. The examples we have seen so far have one thing in common:
activities that could not be considered concurrent were related by arrows in the
model. Could it be that events not directly related are necessarily concurrent?

No! Consider the events Irregular neighbourhood and On-site appraisal . These
are not directly related: there are no arrows from one to the other. However,
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Irregular neighbourhood includes Make appraisal appointment , which is a condi-
tion for On-site appraisal . Thus executing Irregular neighbourhood prevents the
execution of On-site appraisal . Thus we might observe the ordering first On-site
appraisal followed by Irregular neighbourhood , but never the opposite order. In
the abstract, like for conditions, one of these activities precludes the execution
of the other, and so they cannot be considered concurrent—even though there
is no arrow between them.

The principle we observe here we saw already before: concurrent events can-
not disable each other.

In subsequent sections, we formalise concurrency of DCR activities in terms of
Labelled Asynchronous Transition Systems. We shall see that within the notion
of concurrency embodied in those, the handful of examples we have given above
in fact embody all the ways activities of a DCR graph can be non-concurrent.

3 DCR Graphs

In this Section we define DCR graphs formally. This is a necessary prerequisite
for defining concurrency of DCR graph events (activities) in the next Section.

The formalisation here mirrors a mechanised but somewhat less readable for-
malisation in the proof-assistant Isabelle-HOL [19]; results of the next section are
verified to be correct by Isabelle-HOL. The formalisation is available online [4].

We will need the following notation. For a set E we write P(E) for the power
set of E (i.e. set of all subsets of E) and Pne(E) for the set of all non-empty
subsets of E. For a binary relation →⊆ E × E and a subset ξ ⊆ E of E we
write → ξ and ξ → for the set {e ∈ E | (∃e′ ∈ ξ | e → e′)} and the set
{e ∈ E | (∃e′ ∈ ξ | e′ → e)} respectively. For convenience, we write →e and e→
instead of the tiresome →{e} and {e}→.

In Def. 3.1 below we formally define DCR Graphs.

Definition 3.1 (DCR Graph). A Dynamic Condition Response Graph
(DCR Graph) G is a tuple (E,M,R, L, l), where

(i) E is a set of events (or activities),
(ii) M = (Ex,Re, In) ∈ M(G) is the marking, for M(G) =def P(E) × P(E) ×

P(E) (mnemonics: Executed, Response-required, and Included),
(iii) R = (→•, •→,→+,→%) are the condition, response, include and exclude

relation respectively, with each relation →⊆ E × E.
(iv) L is the set of labels and l : E → L is a labeling function mapping events

to labels.

For the remainder of this paper, when a DCR graph G is clear from the
context, we will assume it has sub-components named as in the above definition;
i.e., we will write simply •→ and understand it to be the response relation of G.

An event of a DCR graph is enabled if it is included and every one of its
conditions were previously executed:
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Definition 3.2. For an event e of a DCR graph G, we say that e is enabled,
written G � e, iff e ∈ In ∧ (In ∩ →•e) ⊆ Ex.

In the following definitions we then define the result of executing an event of a
DCR Graph. Firstly, in Def. 3.3 we define the effect of the execution of the event,
i.e. which event was executed(Δe), which events are being included(ΔI), which
events are being excluded(ΔX) and which events are being made pending(ΔR).
We then in Def. 3.4 define how the effect is applied to the (marking of the)
DCR Graph to yield a new (marking of the) DCR Graph: Δe is added to the
set of executed events, first ΔX are removed from the set of included events and
afterwards ΔI are added to the set of included events (meaning that events that
are both included and excluded in a single step will remain included), finally Δe
is removed from the set of pending responses before ΔR is added to the set of
pending responses (meaning that if an event is a response to itself it will remain
pending after execution). Finally in Def. 3.5 we define how these two operations
are used together to execute an event on a DCR Graph, yielding a new DCR
Graph.

Definition 3.3. The effect of the execution of an event e on a DCR Graph G
is given by effect(G, e) = (Δe,ΔI,ΔX,ΔR) where:

(i) Δe = {e} the singleton set containing the event being executed,
(ii) ΔI = e→+ the events being included by e,
(iii) ΔX = e→% the events being excluded by e,
(iv) ΔR = e•→ the events being made pending by e.

When the DCR Graph G is given from the context we will below write δe for
effect(G, e).

Definition 3.4. The action effect δe = (Δe,ΔI,ΔX,ΔR) on marking
(Ex,Re, In) is:

δe · (Ex,Re, In) =
(
Ex ∪ Δe, (Re \ Δe) ∪ ΔR, (In \ ΔX) ∪ ΔI)

The action of effect δe on a DCR Graph G = (E,M,R, L, l) is then defined as:

δe · (E,M,R, L, l) = (E, δe · M,R, L, l)

Definition 3.5. For a Dynamic Condition Response Graph G and event G � e,
we define the result of executing e as G ⊕ e =def effect(G, e) · G.

Towards defining accepting executions of DCR graphs, we first define the
obligations of a DCR graphs to be its set of included, pending events.

Definition 3.6. Given a DCR graph G = (E,M,R, L, l) with marking M =
(Ex,Re, In), we define the obligations of G to be obl(G) = Re ∩ In.

Having defined when events are enabled for execution, the effect of execut-
ing an event and a notion of obligations for DCR Graphs we define in Def. 3.7
the notion of finite and infinite executions and when they are accepting. Intu-
itively, an execution is accepting if any obligation in any intermediate marking
is eventually executed or excluded.
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Definition 3.7 (DCR Semantics). For a DCR graph G an execution of G
is a (finite or infinite) sequence of tuples {(Gi, ei, G

′
i)}i≤k (for k ∈ N ∪ ω) each

comprising a DCR Graph, an event and another DCR Graph such that G = G0

and for i < k we have G′
i = Gi+1; moreover for i ≤ k we have Gi � ei and

G′
i = Gi ⊕ ei. We say the execution is accepting if for i ≤ k we have for all

e ∈ obl(Gi) there is a j ≥ i with either ej = e or e ∈ obl(G′
j). We denote

by exe(G) respectively acc(G) the sets of all executions respectively all accepting
executions of G. Finally, we say that a DCR graph G′ is reachable from G iff
there exists a finite execution of G ending in G′.

4 Asynchronous Transition Systems and DCR Graphs

With the DCR graphs in place, we proceed to imbue DCR graphs with a notion
of concurrency. For this, we use the classical model of asynchronous transition
systems [27], here extended with labels as in [25]. As mentioned, the develop-
ment has been verified in Isabelle-HOL [19]; the formalisation source is available
online [4].

Once we embed DCR graphs in labelled asynchronous transition systems, we
shall find that the examples of concurrent and non-concurrent activities from
Section 2 actually exemplify independent and non-independent events. More-
over, the examples will turn out to be exhaustive, in the sense that each exam-
ple exemplifies one of the properties necessary for events to be (or not to be)
independent.

We apply the results of the present section in Section 5, when we present
a prototype implementation of a distributed declarative workflow engine. The
correctness of this engine hinges on the notion of independence presented here.

First, we recall the definition of labelled asynchronous transition systems [25].

Definition 4.1 (LATS). A Labelled Asynchronous Transition System is a
tuple A = (S, s0,Ev,Act, l ,→, I) comprising states S, an initial state s0 ∈ S,
events Ev, a labelling function l : Ev → Act assigning labels (actions) to events,
a transition relation →⊆ S×Ev×S, and an irreflexive, symmetric independence
relation I satisfying

1. s
e−→ s′ and s

e−→ s′′ implies s′ = s′′

2. s
e−→ s′ and s′ e′

−→ s′′ and eIe′ implies ∃s′′′ such s
e′
−→ s′′′ and s′′′ e−→ s′′

3. s
e−→ s′ and s

e′
−→ s′′ and eIe′ implies ∃s′′′ such s′ e′

−→ s′′′ and s′′ e−→ s′′′

In words, the first property says simply that the LATS is event-determinate:
an event will take you to one and only one new state. The second says that
independent events do not enable each other. The third that independent events
can be re-ordered. In the context of DCR graphs, the first property is trivially
true, and we have seen an example of the second property holding in Example 2.3,
and of the third in Example 2.2.
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For the remainder of this section, we establish that a DCR graph G gives rise
to a LATS A(G). Along the way, we shall see how the various definitions we set
up to eventually arrive at independence arise from the examples of “obviously
concurrent” and “obviously non-concurrent” behaviours we saw in Section 2.

Towards finding a suitable notion of independence, we first define a notion of
effect-orthogonality for events of a DCR graph. As we shall see, this orthogonality
characterises the situation where the effects of events commute on markings.

Definition 4.2. We say that events e = f of a DCR graph G are effect-
orthogonal iff

1. no event included by e is excluded by f and vice versa, and
2. e requires a response from some g iff f does.

We lift this notion to effects themselves, saying δe, δf of G are orthogonal iff
e, f are.

Here, the first condition says that effect-orthogonal events cannot have
conflicting effects. We saw an example of such conflicts in Example 2.5: the
Appraisal audit includes On-site appraisal , whereas Statistical appraisal excludes
it. The second condition is perhaps less intuitive, saying that if one event makes
the other pending, the other event hides this effect by making itself pending.
A more intuitive, but also more restrictive alternative, would be to require that
neither event has a response on the other.

Proposition 4.3. Let δe, δf be effects of a DCR graph G, and let M be a mark-
ing for G. If e, f are orthogonal then δe · (δf · M) = δf · (δe · M).

Proof (in Isabelle). See [4], Lemma “orthogonal-effect-commute”.

Next, we define that two events are cause-orthogonal. The intention is that
for such event pairs, executing one cannot change the executability of the other.

Definition 4.4. Events e, f of a DCR-graph G are cause-orthogonal iff

1. neither event is a condition for the other,
2. neither event includes or excludes the other, and
3. neither event includes or excludes a condition of the other.

We saw examples of all three conditions previously. Specifically, for (1), we
saw in Example 2.3 that Collect documents is a condition for Irregular neigh-
bourhood , and so these activities cannot be considered non-causal. For (2), we
saw in Example 2.4 how On-site appraisal and Statistical appraisal exclude each
other and thus cannot be cause-orthogonal. For (3), we saw in Example 2.6 how
Irregular neighbourhood included a condition of On-site appraisal , and thus those
two events cannot be cause-orthogonal.

From effect- and cause-orthogonality, we obtain the requisite notion of inde-
pendence. This explains the contents of the examples we have seen so far: activ-
ities that could be considered “concurrent” are independent; those that could
not are not.
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Definition 4.5. Given a DCR graph G, we say that events e, f are independent
if they are both effect- and cause-orthogonal. We write IG for the independence
relation induced by a DCR-graph G.

We must of course prove that our proposed independence relation IG satisfies
the conditions for an independence relation of Definition 4.1.

Theorem 4.6. Let G be a DCR graph. If e, f are independent events of G then
any marking in G satisfies the concurrency properties (1–3) of Definition 4.1.

Proof (in Isabelle). See [4], Theorem “causation-and-orthogonality-entails-
independence”.

And with that, we arrive at a formal definition of concurrency for the declar-
ative workflow model of DCR graphs: Each DCR graph has an associated inde-
pendence relation, and thus an associated LATS, which tells us which activities
(events) can be considered concurrent and which cannot.

Corollary 4.7. Let G be a DCR graph. Then L(G) is a Labelled Asynchronous
Transition System when equipped with independence relation IG. We call this
LATS A(G).

Proof (in Isabelle). See [4], Theorem “DCR-LATS”.

We shall see in Section 5 how Corollary 4.7 and Theorem 4.6 enables a
practical distributed implementation of declarative workflows in general, and in
particular of our mortgage application example. We conclude this section by
noting in Table 1 which events of our running example are in fact independent.

5 A Process Engine for Distributed Declarative
Workflows

The previous sections supply an understanding of DCR graphs as labelled asyn-
chronous transition systems and in particular of independence of DCR graph
events. With that, the door opens to a distributed implementation of a declar-
ative workflow language. We have implemented such a prototype engine; in this
Section, we describe by example the workings of that engine.

The central idea is to exploit the extremely local nature of DCR events in
conjunction with the notion of independence. Because of the locality of DCR
events, we can partition the set of events of a DCR graph into components,
assigning each component to a distinct node in a distributed system. The node
is responsible for executing the particular event, and for notifying other compo-
nents of executions, when such executions requires them to update their state.

However, a node cannot freely execute its events; that would leave us open
to all the mistakes of non-concurrency exemplified in Section 2. We there-
fore employ a locking mechanism to ensure that only concurrent events can be
executed simultaneously.
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Table 1. Independence relation for activites of the model of Figure 1.

We exemplify this by forming a distributed version of our running example.
For ease of presentation, we distribute the workflow over only two nodes: one
for the “Mobile consultant” (presumably his mobile device), and one for the
rest. However, the principles of distribution employed here apply to arbitrarily
fine sub-divisions of DCR graphs, right down to each node hosting only a single
event.

Presently, we obtain the two components in Figure 2. The diagram for each
component represents remote events as dashed boxes. Moreover each component
retains only remote events with which some local event is not independent. For
the “Mobile consultant” component (Figure 2), that means that all events related
to budgets are gone, as is the initial Collect documents. The “other” component
(Figure 2) retains all the “Mobile consultant” events, because every event of the
Mobile consultant is in fact in conflict with some event local to “other”.

The procedure for executing an event, in detail, is as follows. A component
wishing to execute an event e must first request1 and receive locks on all (local
and remote) events that are in conflict (i.e., not independent ) with e (thus, in
particular, on itself). It then queries the state of remote events to determine if
e is currently executable. If it is, it instructs remote events affected by firing e
to change state accordingly. Finally, it releases all locks.

For example, if the “other” component wishes to execute the Assess loan
application event in the DCR graphs of Figures 2 and 2, it will first request and
receive a lock on On-site appraisal ; then query the state of On-site appraisal ;

1 All components request locks in the same fixed order to prevent deadlocks.
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Fig. 2. Component models for the Mobile consultant (left) and for other roles (right).

then find out that that event is not previously executed; and will then release
the lock on On-site appraisal .

Notice that since this procedure is based on independence, it allows concur-
rency in the very concrete sense that the “other” component is free to execute
any of the events Collect documents, Submit budget , and Budget screening approve
without communication with the “Mobile consultant” component, because these
three events are all independent with all the events of the “Mobile consultant”
component. Conversely, any other event requires communication, since these other
events are all in conflict with the some event of the “Mobile consultant” compo-
nent.

Implementation. We have implemented the technique described here in the DCR
Workbench, an existing web-based tool for experimenting with DCR graphs; see,
e.g., [7]. The diagrams in this paper are all output from this prototype.

The prototype allows specifying components by accepting for each activity an
optional indication of a URL at which the event is located. E.g, in the component
model for other roles (Fig 2), the remote activity “On-site appraisal” is given as:

"On-site appraisal"

[ role = "Mobile consultant"

url = "http://localhost:8090/events/On-site%20appraisal" ]

The DCR Workbench then enables starting separate REST services for each
such component model. Each service accesses information about state of remote
events by issuing a GET to URLs derived from the specified one. E.g., in the
other roles component model, “On-site appraisal” is a condition for “Assess loan
application”; accordingly, to execute “Assess loan application”, the REST service
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for that model will query the executed state of “On-site appraisal” by issuing a
GET request to:

http://localhost:8090/events/On-site%20appraisal/executed

Similarly, PUT requests are used to update the state of remote activities; e.g.,
“Irregular neighbourhood” will, when executed, make “Make appraisal appoint-
ment” excluded by issuing an appropriate PUT.The implementation ensures
that before state of remote events is queried or updated, all independent activi-
ties are locked. Please refer to the prototype [3] to experiment with declarative
concurrency first-hand!

6 Conclusion

We have studied concurrency of pure declarative workflow models. This prob-
lem is important, since its solution is a prerequisite for implementing distributed
engines for declaratively specified workflows. Concretely, we investigated reason-
able examples and non-examples of concurrency for the declarative DCR model
by example; we formally added a notion of concurrency between events of DCR
graphs, enriching the standard semantics to a semantics of the classical true
concurrency model of labelled asynchronous transition systems. We backed this
foundational contribution by (a) a formal verification in Isabelle-HOL of the
development [4], and (b) a proof-of-concept implementation of a distributed
declarative workflow engine, available at [3].

6.1 Discussion and Future Work

The present work considers only core DCR Graphs, which can represent only
finite state processes and have no (practical) representation of data, as events
can not be parametrized by data. This consitutes of course a noteworthy gap
between the theory and practice.

The practical commercial use of DCR graphs by Exformatics has succes-
fully employed DCR graphs as a control-flow layer on top of an underlying
database, using database triggers as events signalling changes to data values [6].
Processes dynamically handling multiple instances of business artifacts (e.g. mul-
tiple instances of the budget in our running example) with separate life cycles
were realised by different DCR graphs, one for each data object being processed,
interacting via the underlying database. In this case, the present work would
apply to the individual models for each artifact, but not accross the models.

In [5,7], DCR Graphs have been extended to DCR Graphs with sub-
processes, allowing dynamically created multiple instances of sub processes and
thus enabling analysis of processes as described above. We believe that the
present work on concurrency can be lifted to DCR Graphs with sub-processes.
The increased expressiveness however comes at the cost of making the model
Turing complete [5].
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Regarding data, we are presently working on extending the work on sub-
processes for DCR-graphs [7] to parametric sub-processes: Events which take
data values as input can spawn a new sub-process as a continuation, whose
shape depends on the data inputs (and in particular allows to declaratively
”store” the revieved data in the continuation, as in functional programming
languages). This should be compared to declarative models facilitating data and
state as side-effects on a global state such as [14].

On a different note, given the similarity of DCR graphs and DECLARE, it
is natural to ask whether the presently introduced notion of concurrency and
subsequent distribution of executable models can be transferred to DECLARE.
To this end, it’s important to realise that the present work relies crucially on the
notion of “event state” inherent in DCR graphs. Concurrency and independence
can be framed in terms of which events may or may not update the states of other
events by firing. DECLARE does not come with a similar notion of state, and
so it would appear that the present approach does not apply directly. However,
there is still hope: Looking at the standard relations of DECLARE instead of
LTL in general, it seems plausible that one might define an alternate semantics
either by encoding of DECLARE into DCR Graphs or in terms of some similar
notion of “activity state”; and then apply the approach of the present paper.

Our work with industry suggests that the flexibility of DCR Graphs is sought
for, but the difficulty of presenting and understanding declarative models is a
major obstacle to wider adaptation of declarative methodologies. This often
stems from fairly small models defining sometimes quite complex behaviour. We
believe that the ability to distribute DCR Graphs and understand the inde-
pendence between events is likely to help presenting the models. For instance,
defining independence for DCR graph events as labelled asynchronous transi-
tion systems (lats) opens the door to an encoding of DCR graphs into Petri nets
using the mapping from lats to Petri nets in [25]. In addition to opening up for
the application of the many tools and techniques developed for Petri Nets, it
would give a way of deriving flow diagrams from DCR graphs in a concurrency-
preserving way, which should be compared to the work in [11].

Finally, the concurrent semantics opens up for possible use of partial-order
reduction model checking techniques [2] towards more efficient static analysis of
DCR graphs than the current implementations based on verification on Büchi-
automata [16–18].
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Abstract. Text-based and model-based process descriptions have their
own particular strengths and, as such, appeal to different stakeholders.
For this reason, it is not unusual to find within an organization descrip-
tions of the same business processes in both modes. When considering
that hundreds of such descriptions may be in use in a particular orga-
nization by dozens of people, using a variety of editors, there is a clear
risk that such models become misaligned. To reduce the time and effort
needed to repair such situations, this paper presents the first approach to
automatically identify inconsistencies between a process model and a cor-
responding textual description. Our approach leverages natural language
processing techniques to identify cases where the two process represen-
tations describe activities in different orders, as well as model activities
that are missing from the textual description. A quantitative evaluation
with 46 real-life model-text pairs demonstrates that our approach allows
users to quickly and effectively identify those descriptions in a process
repository that are inconsistent.

1 Introduction

Organizations use business process models for documenting and improving busi-
ness operations as well as for the specification of requirements for information
systems [18]. As a result, many companies maintain huge process model repos-
itories, often including several hundred or even thousand models [32]. While
process models turn out to be useful artifacts in numerous contexts, many orga-
nizations are also aware of their limitations. One major challenge is that process
models are not intuitive to every employee. Particularly business professionals,
those who actually conduct the various process tasks, often do not feel confident
in reading and interpreting process models [7,11]. For this reason, the value of
maintaining text-based business process descriptions alongside model-based ones
has been recognized [24]. A textual description uses natural language to outline
the steps of a business process. While such a description may not be suitable to
exactly represent all complex aspects of a process [3], it has the advantage that it
can be understood by virtually everyone. Companies can thus ensure that infor-
mation about their processes is widely accessible by using textual descriptions
next to using process models for analytical and technical purposes [1].
c© Springer International Publishing Switzerland 2015
H.R. Motahari-Nezhad et al. (Eds.): BPM 2015, LNCS 9253, pp. 90–105, 2015.
DOI: 10.1007/978-3-319-23063-4 6
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Despite its merits, the existence of multiple representation formats describing
the same process can lead to considerable problems as well. When a text and a
process model both describe the same business process, it is crucial to prevent
inconsistencies in terms of contradicting information. Inconsistencies occur in
particular when documents are being developed or maintained independently
from each other [31]. Once conflicts start occurring over time, the effort that
is needed to identify and clear up the differences is considerable, even more so
when organizations have already built up huge process repositories.

To effectively deal with the problem of inconsistencies between process model
and text, we propose in this paper a technique that automatically detects differ-
ences between textual and model-based process descriptions. The technique can
be used to quickly identify those process models in a collection that are likely to
diverge from their accompanying textual descriptions. This allows organizations
to focus their efforts on those processes that can be expected to contain such
inconsistencies. Focusing on such key processes is crucial for organizations, since
few have the resources required to analyze all their processes in detail [11]. Our
quantitative evaluation demonstrates that the proposed technique is indeed able
to quickly identify the vast majority of problematic processes in a collection of
model-text pairs obtained from practice.

The remainder of this paper is structured as follows. Section 2 explains the
research problem using an illustrative example. Section 3 discusses related work
and identifies the research gap of interest. Section 4 describes the proposed
approach for inconsistency detection. In Section 5, we present a quantitative
evaluation of the approach. Finally, we conclude the paper and present directions
for future research in Section 6.

2 Problem Illustration

To illustrate the challenges that are associated with the endeavor to detect incon-
sistencies between textual and model-based process descriptions, consider the
model-text pair shown in Figure 1. It includes a textual and a model-based
description of a bicycle manufacturing process. On the left-hand side, we observe
a textual description, which comprises eleven sentences. On the right-hand side,
a corresponding model-based description can be seen, expressed in the Business
Process Model and Notation (BPMN). The model contains nine activities, which
are depicted using boxes with rounded edges. The diamond shapes that contain a
plus symbol indicate concurrent streams of action; the diamond shapes contain-
ing a cross represent decision points. The gray shades suggest correspondences
between the sentences and the activities of the process model.

A closer look at the example reveals that many connections between the two
artifacts are evident. For example, there is little doubt that sentence (7) describes
the activity “reserve part” or that sentence (8) describes the activity “back-order
part”. In some cases, however, there is clearly an inconsistency between the two
process representations. For instance, there is no sentence that is related to
the activity “ship bicycle to customer”, i.e. that activity is missing from the
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(1) A small company manufactures customized 
bicycles.  

(2) Whenever the sales department receives an 
order, a new process instance is created.  

(3) A member of the sales department can then 
reject or accept the order for a customized bike.  

(4) If the order is accepted, the order details are 
entered into the ERP system.    

(5) Then, the storehouse and the engineering 
department (S&E) are informed.  

(6) The storehouse immediately processes the part 
list of the order. 

(7) If a part is available, it is reserved.  

(8) If it is not available, it is back-ordered.  

(9) This procedure is repeated for each item on the 
part list.  

(10) In the meantime, the engineering department 
prepares everything for the assembling of the 
ordered bicycle.  

(11) If the storehouse has successfully reserved or 
back-ordered every item of the part list and the 
preparation activity has finished, the engineering 
department assembles the bicycle.  

Fig. 1. A textual and a model-based description of a bicycle manufacturing process

textual description. Likewise, we can observe that sentences (4) and (5) occur in
a different order than the corresponding activities in the model.

In other cases it is less straightforward to decide on the consistency – or
lack thereof – between the representations. For example, the text of sentence (9)
simply indicates that a part of the process must be repeated. By contrast, the
model includes an activity, “select unchecked part”, which associates an explicit
action with this repetition. Whether or not sentence (9) actually describes an
activity, and thus should be considered an inconsistency, seems to be open for
debate. Ambiguous cases that are already difficult to resolve for human readers
pose even greater problems when texts are analyzed in an automatic manner.

The brief illustration of the model-text pair from Figure 1 shows that an
appropriate technique for detecting inconsistencies (i) must consider several
types of inconsistencies and (ii) must deal with considerable challenges caused
by the ambiguous nature of natural language.

3 Related Work

The work presented in this paper relates to two major streams of research:
semantic matching and transformations between model and text.

Semantic matching refers to the task of identifying relations between con-
cepts [15]. Particularly in the field of schema and ontology matching it has
received considerable attention [10,13,30]. However, in recent years the potential
of matching was also recognized in the domain of process modeling [5]. So-called
process model matchers are capable of automatically identifying correspondences
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between the activities of two process models. The application scenarios of these
matchers range from harmonization of process model variants [21] to the detec-
tion of of process model clones [34]. To accomplish these goals, matchers exploit
different process model features, including natural language [12], model structure
[9], and behavior [20]. Nevertheless, due to the different nature of our problem,
these matchers cannot be applied in a straightforward fashion. Natural language
texts neither explicitly provide structural nor behavioral information. Natural
language information in texts also differs significantly from what we can find
in process model activities. The labels of model activities are shorter than sen-
tences; they also lack the background information and conditional sentences that
are provided by natural language texts [23].

The field of transformations between model and text can be further subdi-
vided into two groups. The first group relates to techniques that automatically
derive models from natural language text material. Such techniques have been
defined for UML class diagrams [4], entity-relationship models [16], and process
models [14]. The second group includes techniques that transform a given model
into a textual description. Such techniques have been defined for UML diagrams
[28], object models [22], and process models [24]. What both groups have in
common is that they provide insights on how to move from model to text and
vice versa. Among others, they address the problem of inferring structural and
behavioral information from textual descriptions. However, to achieve satisfac-
tory results, these techniques require human input. Hence, they are not suitable
for supporting the automatic identification of correspondences between a textual
and a model-based description.

In summary, we can state that existing techniques do not provide the means
to adequately compare textual and model-based process descriptions. In light of
this research gap, we define an approach that detects inconsistencies between
textual and model-based process descriptions in the subsequent section.

4 Approach

This section describes our approach to identify inconsistent model-text pairs in a
process model repository, which consists of various steps. It ultimately provides
a quantification of the likelihood that any particular model-text pair contains
inconsistencies. Section 4.1 presents an overview of the approach. Sections 4.2
through 4.5 subsequently describe the steps of the approach in detail.

4.1 Overview

As depicted in Figure 2, the first three steps in our approach set out to create
an activity-sentence correspondence relation between a process model’s activities
and the sentences of a textual process description. This aligns each process model
activity to the sentence that best describes it, if any. To obtain an optimal
correspondence relation, we first subject the textual process description and the
labels of the activities in the process model to a linguistic analysis. Second,
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we compute similarity scores between individual activities and sentences, which
quantify how well a given sentence describes an activity. Third, we compute an
optimal activity-sentence correspondence relation. We do so by complementing
the similarity scores with a consideration of the ordering relations that exist
between the various process elements. In the fourth and final step, the approach
evaluates the quality of the obtained correspondence relation. The quality is
here assessed in terms of the similarity between activities and sentences included
in the optimal correspondence relation. If this quality is deemed sufficient, we
expect that the model-text pair does not contain any inconsistencies. If, however,
the correspondence relation has severe quality issues, we predict that the model-
text pair contains inconsistencies.

Fig. 2. Outline of the approach

4.2 Linguistic Analysis

In order to create an accurate activity-sentence correspondence for a model-text
pair, we first subject the textual process description and the activity labels to
a linguistic analysis. In this step we make extensive use of the Stanford Parser,
a widely employed Natural Language Processing (NLP) tool [27]. It is used to
identify base forms of words (i.e. lemmatization), and for part-of-speech tagging.
The latter task assigns a category, i.e. the part of speech, to each word in a
text [17]. Common parts of speech include nouns, verbs, adjectives, and adverbs.

This step consists of three sub-steps: (i) anaphora resolution, (ii) clause
extraction, and (iii) text sanitization. With these three sub-steps, we aim to
obtain a representation that accurately reflects the important parts of a sen-
tence, while abstracting from irrelevant details. To illustrate the sub-steps, we
consider their impact on sentence (8) from the running example. This sentence
is initially represented by the following bag-of-words:
{if, it, is, not, available, it, is, back-ordered}.

Anaphora Resolution. A problem that must be tackled when analyzing natu-
ral language texts is the resolution of anaphoric references or anaphors. Anaphors
are usually pronouns (“he”, “her”, “it”) or determiners (“this”, “that”) that
refer to a previously introduced unit. These references represent an important
challenge in the context of assessing the similarity between an activity and a
sentence. Anaphoric references must be properly resolved in order to correctly
determine the object that some action refers to. As an example, consider the
sentence “If it is not available, it is back-ordered”. Here, the approach has to
identify that “it” refers to the word “part”, which is contained in the preceding
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sentence. To augment sentences with such important information, we introduce
an anaphora resolution technique.

The anaphora resolution technique in our approach sets out to identify the
objects contained in a sentence. We identify objects by considering Stanford
Dependencies, which reflect grammatical relations between words [8]. To iden-
tify objects in a sentence, the most important relations to consider include
direct objects and nominal subjects. For instance, in sentence (7) the Stanford
Parser identifies the relation nsubj(reserved, part), indicating that the business
object “part” (acting as the nominal subject in the sentence) is the object being
reserved. If all the objects in a sentence are anaphoric references, i.e. the sentence
includes only pronouns and determiners, we resolve the references by replacing
them with the objects contained in the previous sentence. For sentence (8), this
results in: {if, part, is, not, available, part, is, back-ordered}.

Relevant Clause Extraction. Sentences in a textual description describe
actions that are performed in a process, its flow, and additional information.
To accurately align process model activities, it is important to identify (parts
of) sentences related to actions, while excluding parts unrelated to these actions
from consideration. The most problematic cases are conditional sentences, in
which the dependent clause that specifies a condition, contains terms similar or
equal to those used in activity labels. Consider, for example, sentence (11): “If
the storehouse has successfully reserved or back-ordered every item of the part list
and the preparation activity has finished [...]” When considered naively, this sen-
tence has a high term similarity to the activities “reserve part” and “back-order
part”. However, it is clear that these activities are actually described elsewhere
in the description. By focusing only on the main clause of such sentences, we
therefore remove potential confusion caused by conditional expressions.

In order to differentiate between conditions and main clauses, we use the
parse trees generated by the Stanford Dependency Parser. In these trees, condi-
tional expressions are represented as subordinate clauses (SBAR), starting with
a conditional term, e.g. “if ”, ”in case”, or “once”. The parse tree for sentence
(8) is shown in Figure 3. By extracting the main clause from this sentence, the
following bag-of-words remains: {part, is, back-ordered}.

Text Sanitization. The final linguistic analysis sub-step involves text saniti-
zation on both (previously processed) sentences and activity labels. Text sani-
tization sets out to create a similar and comparable representation of activity
labels and sentences, and of their individual terms. Sanitization comprises the
removal of stop words and word lemmatization.

First,we removeall stopwords fromeachactivity label and sentence. Stopwords
are commonwords that are of little valuewhen considering similarity between texts
(i.e. labels and sentences) [26]. We remove closed class determiners, prepositions,
and conjunctions (e.g. “the”, “in”, “to”, “for”) from the activity labels and sen-
tences. This procedure is in line with many approaches from the domain of process
model matching (see e.g. [6,19,36]). Second, we lemmatize the remaining words
using the StanfordParser. The resulting lemmas represent grammatical base forms
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Fig. 3. Simplified parse tree for sentence (8).

of words. By considering lemmas, it is straightforward to determine whether two
words have a similar root. E.g. “sing”, “sang”, and “sung” are all mapped to the
common lemma “sing” [17].

Text sanitization concludes the linguistic analysis. For sentence (8), this
results in the final bag-of-words representation: {part, be, back-order}. The
next step takes the processed activity labels and sentences as input, to determine
their similarity.

4.3 Computation of Similarity Scores

The ability to judge the similarity between a sentence and an activity is critical
to the performance of our approach. A sentence and an activity are considered
to be similar if they refer to the same stream of action. To accurately judge this,
the variability of natural language expressions contained in the sentences should
be taken into account [2]. To deal with this variability, we select a semantic
measure to assess the similarity of a sentence to an activity. Specifically, we
use a semantic similarity measure proposed by Mihalcea et al. [29] because it
combines word semantic similarity with word specificity scores. The similarity
between an activity a and a sentence s is formalized in Equation 1.

sim(a, s) =
1
2
(

∑
t∈{a}

maxSim(t, s) × idf(t)

∑
t∈{s}

idf(t)
+

∑
t∈{s}

maxSim(t, a) × idf(t)

∑
t∈{s}

idf(t)
) (1)
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Here, maxSim(t1, s) denotes the maximum semantic similarity between a
term t1 and any term t2 contained in s.

maxSim(t1, s) = max{Lin(t1, t2) | t2 ∈ s} (2)

To compute the semantic similarity Lin(t1, t2) between two terms, we employ
a WordNet-based implementation of the similarity measure defined by Lin1. It
is a measure from the domain of information theory, which has been widely
adopted for computing semantic similarity. What is more, it has been shown to
correlate well with human judgments [25].

To determine the similarity between a sentence and an activity, it is not
only important to consider the similarity between individual terms. The rel-
ative importance of words or word specificity also plays an important role.
Common terms have little discriminating power in determining similarity, while
more unique terms represent important similarity indicators. For this reason,
Equation 1 incorporates the Inverse Document frequency (idf) of terms. The idf
assigns a low score to terms that occur in a large number of activity labels or
sentences and, therefore, have lower discriminating power. The idf for a term t is
given by Equation 3, where document collection D comprises all activity labels
and sentences.

idf(t,D) = log
|D|

|d ∈ D : t ∈ d| (3)

The similarity between a sentence and an activity plays an important role in
the creation of a correspondence relation between a process model and a textual
description. To further improve the results, our approach also considers the order
in which activities and sentences appear, as detailed in the next section.

4.4 Optimal Correspondence Relation

This section describes how we obtain an optimal correspondence relation between
activity set A and sentence set S. To achieve this, we not only consider the
similarity of activities and sentences, but also the order in which activities are
described the textual description and contained in the process model. We refer
to a correspondence relation that respects these orders as coherent.

Textual process descriptions generally describe process steps in a chronolog-
ical order [33]. That means that if activity a precedes activity b in a process,
the text describes activity a prior to b. For a process model, these relations are
explicitly captured in a partial order relation ≤. The relation ≤ defines for each
activity which other activities precede and succeed it. Such an order is only
partial (as opposed to a strict order), because processes may contain alternative
and concurrent execution paths. For instance, the process of Figure 1 executes
either of the alternative activities “reserve part” and “back-order part”, depend-
ing on the availability of a given part. To construct a partial order, we employ

1 https://code.google.com/p/ws4j/

https://code.google.com/p/ws4j/
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the behavioral profile computation as defined in [37]. A correspondence relation
C between an activity set A and a sentence set S is considered to be coherent
if it adheres to the following constraint: Given process model activities a and b,
and the sentences sa and sb to which they are, respectively, aligned. If activity
a is a predecessor of activity b, i.e. a ≤ b, then sentence sa should not occur in
the text after sentence sb.

The optimal correspondence relation Ĉ is then the coherent correspondence
relation C with the highest total similarity score between the activities and
sentences. This is defined in Equation 4.

Ĉ = argmax
C

(a,s)∈C∑
sim(a, s) (4)

Because the majority of process models are not purely sequential, finding Ĉ is
not straightforward. Each ordering in which the activities of a process model can
be executed must be considered as a possible ordering in which the activities are
contained in the textual process description. Given that each of these orderings
has a potentially huge set of possible correspondence relations to the sentence
set S, this problem calls for an efficient solving approach.

We adopt a best-first search algorithm similar to those used in machine trans-
lation problems [17]. Instead of aligning one language to another, we here align the
activities of A with sentences of S. Intuitively, the best-first search algorithm tra-
verses a search space of partial hypotheses, which consist of activity-sentence align-
ments between A and S. The algorithm explores the search space by expanding
the partial hypothesis with the highest possible score, while it exempts unpromis-
ing hypotheses from expansion. Because this approach exempts unpromising
hypotheses from expansion, the explored search space is greatly reduced. Since the
algorithm merely affects computational efficiency – not the resulting optimal cor-
respondence relation Ĉ – we abstract from further details for reasons of brevity.2

Section 4.5 describes how we assess the optimal correspondence relation to quan-
tify the likelihood that it contains inconsistencies.

4.5 Inconsistency Assessment

The optimal correspondence relation Ĉ represents the best coherent alignment
possible between activity set A and sentence set S. If this alignment is of insuffi-
cient quality, it can be expected that the model-text pair contains inconsistencies.
An inconsistency exists if an activity cannot be coherently aligned to a sentence
that refers to the same action. The semantic similarity measure sim(a, s) quan-
tifies this. An optimal correspondence Ĉ that contains an activity-sentence pair
with a low similarity score thus implies that an activity exists that cannot be
aligned to a sentence with a similar meaning. This means that the textual and

2 The interested reader is referred to e.g. [17,35] for a detailed description.
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model-based descriptions likely contain one or more inconsistencies. As a quan-
tification of this likelihood we define a likelihood indicator ρ as the lowest simi-
larity value found in the optimal correspondence relation. Equation 5 formalizes
this concept.

ρ = min{sim(a, s) | (a, s) ∈ Ĉ} (5)

Section 5 demonstrates the usefulness of the likelihood indicator ρ and,
accordingly, the ability of our approach to identify inconsistent processes in a
process model repository.

5 Evaluation

This section presents a quantitative evaluation that demonstrates how well the
proposed approach is able to identify inconsistent model-text pairs in a collection.
We have manually annotated the inconsistencies in a collection of 46 model-text
pairs obtained from practice. This annotation is referred to as the gold standard
against which we compare the results of our approach. Subsequently, we present
the set-up of the evaluation, its results, and a discussion of the strengths and
weaknesses of our approach.

5.1 Test Collection

To evaluate our approach, we use an existing collection of pairs of process models
and manually created textual descriptions from [14]. The collection contains
46 model-text pairs that originate from different sources including academia,
industry, textbooks, and public sector models.3 The included process models are
heterogeneous with regard to several dimensions, such as size and complexity.
Also, the corresponding textual descriptions vary in several regards. For instance,
they describe the processes from different perspectives (first and third person)
and differ in terms of how explicitly and unambiguously they refer to the process
model content. Hence, we believe that the collection is well-suited for achieving a
high external validity of the results. Table 1 summarizes the main characteristics
of the collection and the contained model-text pairs.

We involved three researchers in the creation of the gold standard. Two
of them independently identified activity-to-sentence mappings for each model.
This yielded an inter-annotator agreement of 92.9%. The biggest cause for dis-
cussion was the implicitness of some activity descriptions, such as seen for the
“select unchecked part” activity in the bicycle manufacturing example. The 27
differences were discussed, involving a third researcher to settle ties.

Out of the 378 activities contained in the process models, five activities are
described in the wrong place, whereas 26 activities can be considered to be
missing. These lead to a gold standard that consists of 24 correct processes and
22 that contain between one and three erroneously described activities.

3 For more details about the sources of the collection, please refer to [14].
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Table 1. Overview of the test collection

ID Source P Pi Type A G S

1 HU Berlin 4 1 Academic 9.0 6.5 10.3
2 TU Berlin 2 2 Academic 22.5 10.5 34.0
3 QUT 8 0 Academic 6.1 2.0 7.1
4 TU Eindhoven 1 1 Academic 18.0 8.0 40.0
5 Vendor Tutorials 3 2 Industry 5.3 1.3 7.0
6 inubit AG 4 3 Industry 9.0 3.8 11.5
7 BPM Practitioners 1 0 Industry 4.0 1.0 7.0
8 BPMN Practice Handbook 3 3 Textbook 5.0 2.0 4.7
9 BPMN Guide 6 5 Textbook 7.0 3.2 7.0
10 Federal Network Agency 14 5 Public Sector 8.0 3.1 6.4

Total 46 23 - 8.1 3.5 9.0

Legend: P = Model-text pairs per source, Pi = Inconsistent pairs per source,
A = Activities per model, G = Gateways per model, S = Sentences per Text,

5.2 Setup

To demonstrate the applicability of the approach presented in this paper, we
test the following, different configurations:

– Baseline: As a baseline configuration, we aligned every activity a to the
sentence s with the highest value for sim(a, s). Prior to the computation of
the similarity scores, we sanitize all sentences and activity labels.

– Linguistic analysis: For this configuration, prior to the computation of
similarity scores, we applied all linguistic analysis activities described in
Section 4.2. We thus subjected the textual description to text sanitization,
resolved anaphoric references, and extracted relevant clauses.

– Full configuration: For the full configuration, we performed all linguis-
tic analysis activities and included the ordering constraint described in
Section 4.4. This configuration computes a correspondence relation between
activity set A and sentence set S that achieves a maximal similarity score,
while respecting the ordering constraints implied by the partial ordering of
the process model.

We assess the performance of each of these configurations with standard
information retrieval metrics. More specifically, we calculate precision and recall
by comparing the computed results against a manually created gold standard.
For a process collection P , we define a set Pτ as the set of processes with an
assigned likelihood indicator ρ in the range [0.0, τ ]. PI is the set of 22 processes
that are inconsistent according to the gold standard. Each process in PI con-
tains at least one activity that is not included in the textual description or has
activities that are described in a different order.
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For a given Pτ , precision describes the fraction of processes a configuration
classified as inconsistent that are also contained in PI . Recall represents the
fraction of all inconsistent processes from the gold standard which our approach
successfully identified. Formally, the metrics are defined as shown by Equations
6 and 7.

precision =
|PI ∩ Pτ |

|Pτ | (6) recall =
|PI ∩ Pτ |

|PI | (7)

5.3 Results

We computed precision and recall scores for different values of threshold τ for
each of the three configurations. When the value of τ increases, more model-text
pairs are predicted to contain inconsistencies and thus included in Pτ .
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Fig. 4. Precision-recall graph for the performance of the three configurations

The precision-recall graph of Figure 4 shows that the full configuration con-
sistently outperforms the baseline. The curves for the linguistic analysis and full
configurations are always equal to or higher than the curve for the baseline con-
figuration. This means that there are numerous cases for which the inclusion of
these additional steps improves the results, it furthermore indicates that these
steps never negatively impact the performance of the approach.
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The improved results for the full approach also become apparent when con-
sidering the F-measures of the configurations. The F-measure represents the
harmonic mean between precision and recall. For the baseline configuration, the
maximum achieved F-measure equals 0.70. This performance is already promis-
ing, signaling that the semantic similarity measure we have selected is able to
correctly identify a considerable number of inconsistencies. At this point, the
baseline yields a recall of 0.91 against a precision of 0.57. The performance of
the approach is further improved by including a linguistic analysis. This config-
uration achieves a maximum F-measure of 0.74, simultaneously improving both
recall (0.96) and precision (0.60) in comparison to the baseline. The full con-
figuration achieves an even higher F-measure of 0.77. It reaches a recall of 0.91
with a precision of 0.68. The full approach thus outperforms the precision of the
baseline configuration by 11 percentage points.

The performance of the full approach is also demonstrated when we consider
the point at which the approach has successfully identified all 22 inconsistent
model-text pairs, i.e. the point when recall equals 1.0. The baseline configuration
only reaches this point after considering 43 model-text pairs. It therefore hardly
yields any benefits in comparison to a random selection as it makes 21 incorrect
predictions. By contrast, the full configuration identifies all inconsistent processes
after considering just 36 model-text pairs. Due to our linguistic analysis and the
consideration of order, we thereby reduce the number of incorrect predictions by
more than 33%.

5.4 Discussion

The evaluation shows that the full approach successfully identifies inconsistent
model-text pairs from a collection while limiting the number of false positives. A
post-hoc analysis reveals that the approach faces two main types of challenges.

First, the approach sometimes fails to recognize that an activity is contained
in a textual description. These cases mainly occur when the description of activ-
ities is highly implicit or context-dependent. Consider, for example, an activity
labeled “use other sources”, as present in a process related to the procurement
of information through various channels. The sentence fragment that describes
this activity is “[..] and sometimes you just happen to know somebody”. Due
to its implicit description, aligning that activity to the appropriate sentence is
difficult using natural language processing techniques. Similar problems occur
when a textual description describes actions using references to earlier parts of
the text. Most notably due to the anaphora resolution, the linguistic analysis
successfully mitigates the impact of such problematic cases. Consequently, the
full configuration of our approach detects inconsistencies more precisely.

Second, the approach, especially the baseline configuration, can return false
negatives when it fails to detect inconsistencies in a model-text pair. In these
cases, an activity is aligned with a sentence even though the activity is actu-
ally missing in the textual description. This happens when a strong semantic
similarity between certain terms in an activity label and terms in the sentence
exists, although neither this, nor any other sentence in the textual description, is
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related to the activity. The evaluation results demonstrate that the introduction
of ordering constraints successfully avoids a number of such cases. For this config-
uration, it is no longer sufficient that a sentence just contains words semantically
similar to those used in an activity label. Rather, the sentence must also occur
in a proper location in the textual description. Hence, the approach including
these constraints achieves higher recall values than the baseline configuration.

6 Conclusions

In this paper, we presented the first approach to automatically detect incon-
sistencies between textual and model-based process descriptions. The approach
combines linguistic analysis, semantic similarity measures, and ordering rela-
tions to obtain a correspondence relation between the activities of a process
model and the sentences of a textual process description. The approach subse-
quently assesses the quality of the obtained correspondence relation to predict
whether or not a model-text pair contains inconsistencies. A quantitative eval-
uation shows that this approach successfully identifies the majority of incorrect
process models, while yielding a low number of false positives. These insights
result from a comparison of the predictions made by the approach against a
manually constructed gold standard for a collection of real-life process descrip-
tions. The evaluation furthermore reveals that the quality of the results is greatly
improved due to the inclusion of tailored natural language processing techniques.
By using our approach, organizations can thus quickly gain insights into the pro-
cesses for which conflicts between the textual and model-based process descrip-
tions are most likely. The effort that is needed to identify differences in large
process model repositories is thereby greatly reduced. As such, organizations
can focus their redesign efforts on the analysis and improvement of only their
most problematic process descriptions.

In future work we set out to further develop approaches aimed at processes
described using both models and text. The current approach can be extended
by considering information beyond the control-flow dimension of a process. For
instance, by deriving “who does what, to whom, and where” from sentences,
or by comparing a model’s conditional branches to the discourse in a textual
description. The approach can also be broadened by performing a complete-
ness check, i.e. by verifying whether all described activities are contained in the
process model. Furthermore, the activity-sentence correspondence relation we
obtain can be used for other purposes. Instead of using them to identify incon-
sistencies ex post facto, correspondence relations can form a basis to directly
propagate one-sided process updates. In this way, the consistency between mul-
tiple process representations can be ensured, rather than corrected. Finally, we
recognize that organizations also capture process information in formats other
than the textual and model-based descriptions considered in this paper. Com-
mon examples include checklists, rules and regulations, and spreadsheets. In the
future, we therefore aim to apply the techniques developed here on a broader
spectrum of process representation formats.
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34. Uba, R., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M.: Clone detection in reposi-
tories of business process models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.)
BPM 2011. LNCS, vol. 6896, pp. 248–264. Springer, Heidelberg (2011)

35. Wang, Y.Y., Waibel, A.: Decoding algorithm in statistical machine translation.
In: Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics and Eighth Conference of the European Chapter of the Association for
Computational Linguistics, pp. 366–372 (1997)

36. Weidlich, M., Dijkman, R., Mendling, J.: The ICoP framework: identification of
correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

37. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on
behavioral profiles of process models. IEEE Transactions on Software Engineering
37(3), 410–429 (2011)



Process Model Discovery I



Mining Invisible Tasks in Non-free-choice
Constructs

Qinlong Guo1, Lijie Wen1(B), Jianmin Wang1, Zhiqiang Yan2,
and Philip S. Yu3,4

1 School of Software, Tsinghua University, Beijing, China
guoqinlong@gmail.com, {wenlj,jimwang}@tsinghua.edu.cn

2 Information School, Capital University of Economics and Business, Beijing, China
zhiqiang.yan.1983@gmail.com

3 Department of Computer Science, University of Illinois at Chicago, Chicago, USA
4 Institue for Data Science, Tsinghua University, Beijing, China

psyu@cs.uic.edu

Abstract. The discovery of process models from event logs (i.e. pro-
cess mining) has emerged as one of the crucial challenges for enabling
the continuous support in the life-cycle of a process-aware information
system. However, in a decade of process discovery research, the relevant
algorithms are known to have strong limitations in several dimensions.
Invisible task and non-free-choice construct are two important special
structures in a process model. Mining invisible tasks involved in non-
free-choice constructs is still one significant challenge. In this paper, we
propose an algorithm named α$. By introducing new ordering relations
between tasks, α$ is able to solve this problem. α$ has been implemented
as a plug-in of ProM. The experimental results show that it indeed sig-
nificantly improves existing process mining techniques.

Keywords: Process mining · Non-free-choice constructs · Invisible tasks

1 Introduction

Process mining is an essential discipline for addressing challenges related to
Business Process Management and “Big Data” [15]. Nowadays, more and more
organizations are applying workflow technology to their information systems, in
order to manage their business processes. The information systems are logging
events that are stored in so-called “event log”. Informally, process mining algo-
rithms are meant to extract meaningful knowledge from event logs, and use this
knowledge for supporting or improving the process perspective.

Of the three process mining scenarios (i.e., discovery, conformance checking,
and enhancement), discovery of a process model from an event log is the most
important. In this paper we focus on the scenario of discovering Workflow nets
[8] from event logs. However, the techniques presented in this paper may be
adapted for the discovery of other process formalisms.

In many cases, the benefit of process mining depends on the exactness of
the mined models [2]. The mined models should preserve all the tasks and the
c© Springer International Publishing Switzerland 2015
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dependencies between them that are present in the logs. Although much research
is done in this area, there are still some significant and challenging problems to be
solved [2][5]. In this paper, we focus on mining invisible tasks involved in non-
free-choice constructs (IT-in-NFC for short). Invisible tasks (IT) [4] are such
tasks that appear in a process model, while not observable in the corresponding
event log. In a Workflow net, places cannot be linked with each other directly, so
invisible tasks can be used for bridges between places. Besides, invisible tasks can
also be used for expressing routing information. AND construct is that several
places are connected to a transition, which has a meaning of parallel construct;
XOR construct is that several transitions are connected to a place, which means
a choice construct. Non-free-choice construct (NFC) [3] is a special kind of choice
construct, whether to choose some task is dependent on what have been executed
in the process model before (i.e. this choice is not “free”). In other words, NFC
means the input places set of two transitions share some common places while
they are not same. IT-in-NFC means that a process model contains both IT and
NFC. As mentioned in [3][4], both of them are difficult to be discovered from
event logs. Moreover, the combination of them (namely, some tasks in NFCs are
invisible) even increases the difficulty of mining.

α [8] is a pioneering process mining algorithm which mines the Workflow
net by considering relations between tasks in the event log. In order to mine
NFCs, α++ [3] takes a new relation called implicit dependency (i.e. the indirect
casual relation between tasks) into consideration based on α. Similarly, α# [4]
is able to mine invisible tasks by considering mendacious dependency, which is
the improper casual relations caused by invisible tasks. However, none of α#

and α++ can properly mine IT-in-NFC. There are several other state-of-the-art
mainstream process mining algorithms, such as Genetic [6], Heuristic [11], ILP
[12], and Region [1]. Each of these algorithms has its own advantages. However,
none of them is able to mine IT-in-NFC correctly.

In this paper, α$ algorithm takes both mendacious dependency and implicit
dependency into consideration. However, simple combination of considering these
two dependencies cannot guarantee a correct mining result. There will be two
significant challenging issues encountered:

1. The reachable dependency, which means one task can be executed after the
execution of another task directly or indirectly, is a required relation to obtain
the implicit dependency. However, reachable dependencies are detected by
scanning the event log, but invisible tasks are unobservable here. Thus, reach-
able dependencies involved with these invisible tasks cannot be detected with-
out complementation. The details can be found in Subsection 4.3.

2. Non-free-choice constructs, which are discovered after invisible tasks, bring
more dependencies (e.g. the implicit dependency). These newly added depen-
dencies may make invisible tasks unstructured. Thus, the affected invisible
tasks should be split or combined to make the mined model sound. The
details can be found in subsection 4.5.

Besides dealing with these issues, α$ algorithm also addresses two drawbacks of
implicit dependencies and mendacious dependencies respectively:



Mining Invisible Tasks in Non-free-choice Constructs 111

1. Mendacious dependencies cannot deal with some invisible tasks spanning
one whole branch in a parallel construct.

2. Implicit dependencies cannot deal with the Length-1-loop (L1L for short)
involved in NFCs.

The remainder of this paper is organized as follows. Section 2 shows a moti-
vating example. Section 3 gives some preliminaries about process mining. In
Section 4, we propose α$ algorithm. Experimental results are given in Section 5.
Section 6 concludes the paper and sketches the future work.

2 A Motivating Example

Figure 1 shows a real-life process model in SY company that is the largest con-
struction machinery manufacturer in China. This model depicts the roadheader
repairing process in the mine. A roadheader is a piece of excavating equipment
consisting of a boom-mounted cutting head, a loading device usually involving
a conveyor, and a crawler traveling track to move the entire machine forward
into the rock face. For repair, there are three options. One option is that the
roadheader is directly repaired underground. This option usually applies to sim-
ple repairs. In the other two options, the roadheader has to be repaired on the
ground. The difference between the later two options is whether the roadheader
should be decomposed before moved up to the ground through the tunnel, and
then should be assembled after taken down to the mine.

De com -
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ground

Apply 
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repairing
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Fig. 1. A process model in SY company

The process model in Figure 1 is modelled in Petri net [8]. There are two
invisible tasks (i.e., I1 and I2 ), which are designed to skip the task Decompose
and Assemble respectively. I2, together with Assemble, P2, P3, and P4 composes
a NFC. After Take down to the mine, whether Assemble is executed is dependent
on whether Decompose has been executed before.

For convenience, we use the label in the right top of each task as abbrevia-
tion, for example A is short for Apply for repairing. Then [<A,F>,<A,D,E,G>,
<A,C,D,E,G,I>] is an example event log corresponding to this model. Despite its
apparent simplicity, this model and its corresponding log represent a hard case



112 Q. Guo et al.

for all existing techniques. Table 2(c) is an example model similar to this one.
α# mines a similar model, while the NFC has not been discovered. The models
mined by Genetic and Heuristic are identical, with the ITs not discovered. The
models mined by α++ and ILP are not Workflow nets at all.

3 Preliminaries

Firstly, we discuss event log in detail and give an example. Then we give WF-net
and its relevant concepts.

3.1 Event Log

The event, which represents a real-life action, is the basic unit of event logs. As
defined in Definition 1, each event has several attributes, such as the time (i.e.,
when the event happens), activity 1 (i.e., what task this event corresponds to).

Definition 1. (Event, Attribute) Let E be event universe, i.e., the set of all
possible event identifiers. Let AN be a set of attribute names. For any event
e ∈ E and a name n ∈ AN :#n(e) is the value of an attribute n for event e.

For convenience we assume the following standard attributes: #activity(e) is the
task associated to event e, #time(e) is the timestamp associated to event e.

Though time is an important attribute for an event, we only consider the
time order between events in this paper. Namely, the exact start time, end time
or duration of an event are not taken in to consideration. The time order between
events is enough for α$ to mine a process model.

An event log consists of cases. Each case consists of ordered events, which are
represented in the form of a trace, i.e., a sequence of unique events. Moreover,
cases, like events, can also have attributes. Each case or event has an attribute
of case id or event id respectively as the unique identifier.

Definition 2. (Case, Trace, Event log, Simple Event Log) Let C be the case
universe, i.e., the set of all possible case identifiers. For any case c ∈ C and
name n ∈ AN :#n(c) is the value of an attribute n for case c. Each case has a
special mandatory attribute trace : #trace(c) ∈ E ∗. c = #trace(c) is a shorthand
for the trace of case c.

A trace is a finite sequence of events σ ∈ E ∗ such that each event appears only
once, where |σ| means the number of events contained in trace σ. The order of
events in a trace is according to their timestamp, namely ∀1≤i<j≤|σ|#time(σi) ≤
#time(σj). An event log is a set of cases L ⊂ E ∗.

Let A be the set of activity names, A simple trace σ is a sequence of activities,
i.e., σ ∈ A ∗. A simple even log L is a multi-set of traces over A .

1 In this paper, we use activity and task alternatively.
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Since information of time order and activity name of an event are sufficient
for α$, the simple event log and trace are used in the rest part of the paper.

Given a set of tasks (say T), an event log W over T means the task associated
to any event in W is contained in T, i.e. ∀e ∈ W : #activity(e) ∈ T .

Table 1 is an example simple event log of the process model in Figure 1.
This log contains four cases. For example, for case 1 and case 4, A and F are
executed successively. The event log in Table 1 can be shortened as [< A,F >2, <
A,D,E,G >,< A,C,D,E,G, I >], where 2 means < A,F > occurs twice.

As mentioned in [5], dealing with noises in event logs is a challenging issue
in process mining domain. However, many log filtering plugins have been imple-
mented in Prom 6 [9]. The plugin Filter Log with Simple Heuristic is used for
abating noise. By this way, we assume that the event log has no noise.

Table 1. An example simple event log of the process model in Figure 1

Case Id Event Id Activity Case Id Event Id Activity Case Id Event Id Activity

1 35654422 A 35654485 G 35654583 G
35654423 F 3 35654579 A 35654584 I

2 35654481 A 35654580 C 4 35655442 A
35654483 D 35654581 D 35655443 F
35654484 E 35654582 E

3.2 Workflow Net

In this paper, Workflow net [8] is used as the process modelling language. Work-
flow nets as defined in Definition 5, are a subset of labeled Petri nets.

Definition 3. (Petri net) A Petri net is a triplet N = (P, T, F ) where P is a
finite set of places, T is a finite set of transitions such that P ∩T = ∅∧P ∪T 
= ∅,
and F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs, called the flow relation.

Definition 4. (Labeled Petri Net) A labeled Petri net is a tuple
LΣ=(P, T, F,A, l), where (P, T, F ) is a Petri net, A is a finite set of task names,
and l is a surjective mapping from T to A ∪ {τ} (τ is a symbol unobservable to
the outside world).

Definition 5. (Workflow net). Let N = (P, T, F,A, l) be a labeled Petri net and
t̄ be a fresh identifier not in P ∪ T . N is a workflow net (WF-net) if and only if
(a) P contains a unique source place i such that ·i = ∅, (b) P contains a unique
sink place o such that o· = ∅, and (c) N̄ = (P, T ∪ {t̄}, F ∪ {(o, t̄), (t̄, i)}, A ∪
{τ}, l ∪ {(t̄, τ)}) is strongly connected.

Figure 1 gives an example of a process modelled in WF-net. This model
has two IT-in-NFCs. The transitions (drawn as rectangles) A,C, ..., I represent
tasks, where hollow rectangles represent visible tasks, and the solid one (i.e. I1
or I2 ) represents an invisible task. The places (drawn as circles) P1, P2, ..., P4
represent conditions. We adopt the formal definitions, properties, and firing rules
of WF-net from [7] [8]. For mining purpose, we demand that each visible task
(i.e., transition) has a unique name in one process model.
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4 The New Mining Algorithm α$

α$ is composed of five steps: Detect Invisible Tasks, Complement Reachable
Dependencies, Detect Non-free-choice Constructs, Adjust Invisible Tasks, and
Construct Workflow Net. By applying improved mendacious dependencies, the
first step of α$ finds invisible tasks from the given event log. In the second step, α$

complements reachable dependencies related to the found invisible tasks. Then,
it discovers NFCs by using implicit dependencies. Next, α$ adjusts the invisible
tasks in order to ensure the mined model’s soundness. Finally, α$ constructs the
process model based on the relations found in previous steps. Since the last step
is identical to other α-series algorithms [3][4][8], it would not be elaborated.
Initially, basic relations are introduced, then the following subsections elaborate
the first four steps and the whole algorithm respectively.

4.1 Basic Relations

α algorithm, which is the forerunner of the α-series algorithms, defined six rela-
tions, >W ,�W , ♦W , →W , ||W , and #W . >W expresses two tasks can be exe-
cuted successively. �W means a possible length-2-loop structure (i.e. a loop with
length 2). ♦W shows two tasks have the �W relations between each other. →W

is referred as the (direct) casual relation. ||W suggests the concurrent behavior,
namely two activity can be executed in any order. Relation #W reflects that two
tasks never follow each other directly. For example, in the event log in Table 1,
A >W F , A >W C, A→W F , G→W I hold.

Definition 6. (Relations defined in α [8], Mendacious dependency [4], Reach-
able dependency [3]) Let T be a set of tasks, W be an event log over T, a and b
be two tasks in T, the relations defined in α algorithm, mendacious dependency,
and reachable dependency are defined as follows:
– a >W b ⇐⇒ ∃σ = t1t2...tn ∈ W, i ∈ 1, ..., n − 1 : ti = a ∧ ti+1 = b,
– a�W b ⇐⇒ ∃σ = t1t2...tn ∈ W, i ∈ 1, ..., n − 2 : ti = ti+2 = a ∧ ti+1 = b,
– a♦W b ⇐⇒ a�W b ∧ b�W a,
– a→W b ⇐⇒ (a >W b ∧ b 
>W a) ∨ a♦W b,
– a||W b ⇐⇒ a >W b ∧ b >W a ∧ a
♦W b,
– a#W b ⇐⇒ a 
>W b ∧ b 
>W a,
– a�W b ⇐⇒ a→W b ∧ ∃x, y ∈ T : a→W x ∧ y→W b ∧ y≯W x ∧ x∦W b ∧ a∦W y,
– a�W b ⇐⇒ ∃σ = t1t2...tn ∧ i, j ∈ 1, ..., n : i < j ∧ ti = a ∧ tj = b ∧

∀k ∈ [i + 1, ..., j − 1] : tk 
= a ∧ tk 
= b, and
– a�W b ⇐⇒ a→W b ∨ a�W b.

In α# algorithm, mendacious dependency �W is proposed to describe the
relations reflecting invisible tasks. It is based on six pre-conditions as defined
in Definition 6. A �W D holds in the event log in Table 1, because A →W D,
A →W C, C →W D, C ∦W D, C ∦W A, and C ≯W C, which means there should
be an invisible task between A and D (i.e., the invisible task I1 in Figure 1).

Reachable dependency is used to depict the indirect dependency between
activities. In α++, reachable dependency is a necessary condition for discovering
NFCs. For example, in Table 1, E �W G, C �W I, and D �W G hold.
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4.2 Detecting Invisible Tasks by Improved Mendacious Dependency

The aim of this step is to discover invisible tasks from the given event log.
Most invisible tasks can be detected by applying mendacious dependency pro-
posed in [4]. However, mendacious dependency cannot deal with some invisible
tasks involved in one whole branch of a parallel construct. Thus, we propose an
improved mendacious dependency to resolve this issue.
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Fig. 2. Two examples for the defect of mendacious dependency

Two examples in Figure 2 show the defect of mendacious dependency. N1 and
N2 are the original models, N ′

1 and N ′
2 are the models mined by α# algorithm. In

N ′
1, α# didn’t discover the invisible task I. This is because that A →W D, which

is a requirement for discovering task I, does not hold due to the interference
from task C in another branch. As for N ′

2, the disturbance from task B makes
A ≯W C hold. This leads to the invisible task I improperly discovered in N ′

2.
Due to task I, N ′

2 has less behavior than N2, e.g., trace < A,B,C > cannot be
replayed on N ′

2. In order to the overcome this defect, we introduce Between-Set
and define improved mendacious dependency.

Between-Set, which is defined in Definition 7, is to depict the tasks that occur
between two tasks. When the two tasks are the endpoints of a parallel construct,
the Between-Set is the set of tasks in the parallel branches. For examples in
Figure 2, Between(W1, A,D) = {B,C}, Between(W2, A,C) = {B,D,E}.

Definition 7. (Between-Set) Let T be a set of tasks, W be an event log over T,
a and b be two tasks in T, σ be a trace of W with length n, namely σ ∈ W , the
Between-Set of a,b (i.e. Between(W,a,b)) can be defined as follows:

•Between(σ, a, b) = {σk|∃1≤i<j≤n(σi = a ∧ σj = b ∧ i < k < j
∧ �i<l<j(σl = a ∨ σl = b))},

•¬Between(σ, a, b) = {σk|1 ≤ k ≤ n}\Between(σ, a, b), and
•Between(W,a, b) = ∪σ∈W Between(σ, a, b)\ ∪σ∈W ¬Between(σ, a, b)

The improved mendacious dependency is defined in Definition 8. We redefine
→W and >W in [4] as ⇒W and �W respectively. Compared with the old ones,
⇒W and �W are able to eliminate the interference of parallel constructs. For
instance, in N1, A →W D does not hold. However, A ⇒W D holds. In N2,
A ≯W C ‘improperly’ holds. Nevertheless, A �W C holds.
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Definition 8. (Improved mendacious dependency) Let T be a set of tasks, W
be an event log over T, a,b be two tasks from T, the improved mendacious depen-
dency a↪→W b is defined as follows:

•a �W b ⇐⇒ ∃x,y∈T (Between(W,x, y) ⊂ Between(W,a, b) ∧
∀m∈(Between(W,a,b)\(Between(W,x,y)∪{x,y}))∀n∈Between(W,x,y)m ‖W n ∧
∃σ∈W Between(σ, a, b) ⊆ (Between(W,a, b)\(Between(W,x, y)∪{x, y}))),

•a ⇒W b ⇐⇒ (a �W b ∧ b�
W

a) ∨ a♦W b, and
•a↪→W b ⇐⇒ ∃x,y∈T (a →W x∧y →W b∧x ∦W b∧y ∦W a∧a ⇒W b∧y �W x).

4.3 Complementing Reachable Dependencies

Since invisible tasks do not appear in any event log, >>W and �W related
to invisible tasks are missing for discovering NFSs. For example, in Figure 1,
the part with solid lines is the model mined by α$ without this complementing
step. NFC (i.e. the dotted edge line part) was not discovered due to incomplete
reachable dependencies regarding to invisible tasks.

In order to deal with this incompleteness, we first introduce the definition
of conditional reachable dependency (CRD for short). Symbol a>>σb expresses
that task a is indirectly followed by task b in trace σ. We artificially add a
starting task (i.e. ⊥) and an ending task (i.e. �) to each trace in the event log.
Namely, for a trace σ with length n, #activity(σ0) = ⊥ and #activity(σn+1) = �.

In Definition 9, there are three kinds of CRDs: pre-CRD (i.e. �W,Pre=x), post-
CRD (i.e. �W,Post=y), and both-CRD (i.e. �W,Pre=x,Post=y). a�W,Pre=x,Post=yb
means there is a trace σ where a>>σb holds, and x occurs directly before a, y
occurs directly after b. For example, in Table 1, C�W,Pre=A,Post=�I holds. The
pre-CRD and post-CRD are special cases of both-CRD.

Definition 9. (Conditional reachable dependency) Let T be a set of tasks, W be
an event log over T, a,b be two tasks from T, x,y be two tasks from T ∪{⊥}∪{�}.
Conditional reachable dependencies are defined as follows:

– a�W,Pre=xb ⇐⇒ a →W b ∨ (∃σ∈W∧1≤i≤|σ|σi = a ∧ σi−1 = x ∧ a>>σb),
– a�W,Post=yb ⇐⇒ a →W b ∨ (∃σ∈W∧1≤j≤|σ|σj = b ∧ σj+1 = y ∧ a>>σb),
– a�W,Pre=x,Post=yb ⇐⇒ a →W b∨ (∃σ∈W∧1≤i,j≤|σ|σi = a∧σj = b∧σj+1 =

y ∧ σi−1 = x ∧ a>>σb).

Based on CRDs, the Reachable dependency related to invisible task is defined
in Definition 10. For two invisible tasks x and y, x�W y holds if there are four
tasks a1, a2, b1, and b2 satisfying a1 →W x, x →W b1, a2 →W y, y →W b2, and
b1�W,Pre=a1,Post=b2a2 holds. For an invisible task x, and a task m, x�W m holds
if there are two tasks a and b satisfying a →W x, x →W b, and b�W,Pre=am
holds. For instance, the event log in Table 1, I1�W E holds, because A →W I1,
and D�W,Pre=AE and I1 →W D. m�W x is similar to x�W m.

Definition 10. (Reachable dependency related to invisible task) Let T be a set
of tasks, W be an event log over T, m be a task from T, x,y be two invisible tasks,
the reachable dependency related to invisible task is defined as follows:
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– x�W m ⇐⇒ ∃(a=⊥∨a∈W )∧b∈W a →W x ∧ x →W b ∧ b�W,Pre=am,
– m�W x ⇐⇒ ∃a∈W∧(b∈W∨b=�)a →W x ∧ x →W b ∧ m�W,Post=ba,
– x�W y ⇐⇒ ∃(a1=⊥∨a1∈W )∧b1∈W∧a2∈W∧(b2∈W∨b2=�)

a1 →W x ∧ x →W b1 ∧ a2 →W y ∧ y →W b2 ∧ b1�W,Pre=a1,Post=b2a2.

4.4 Detecting Non-free-choice Constructs

After making the reachable dependencies complete, the aim of this step is to
discover NFCs. α++ algorithm can mine NFCs in most cases. However, α++ is
not able to mine the length-1-loop construct (L1L for short) involved in NFCs.
L1L set, as defined in Definition 11, is a set of tasks, where each task appears
at least twice continuously in an given event log. α++ excludes all tasks in L1L
set when considering implicit dependencies, which impedes discovering the L1L
involved in NFCs. For example, Figure 3 shows the defect of α++ on dealing with
such issue. N3 and N4 are the original models which contain NFCs combined
with L1L, N ′

3 and N ′
4 are models mined by α++. The NFC is not detected in N ′

3,
which makes N ′

3 have more behavior than N3: trace ¡A,C,G,F,D,B,E¿ can be
replayed on N ′

3 but cannot be replayed on N3. Besides, α++ does not discover
the arcs related to task D, which results in N ′

4 not sound at all [8].
Definition 11. (length-1-loop set) Let T be a set of tasks, W be an event log
over T, the L1L set is defined as follows:
– L1L = {t ∈ T |∃σ=t1t2...tn∈W ;i∈2,3,...,nt = ti−1 ∧ t = ti}.
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<A,F,D,D,B,C,H,H,G,E>,<A,F,C,G,B,E>]
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C

D
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N4

Fig. 3. Defect of α++ on mining L1L involved in NFCs

Thus, a set of tasks (called L1L-Free set) is determined before applying α++,
in which the tasks should not be excluded when detecting NFCs. L1L-Free set is
summarized in Definition 12. Namely, for each such task x of L1L, there exists
a pair of tasks a, b parallel with each other. Besides, two sequence relations
a →W x and x →W b hold. For example, L1L-Free set of N3 is {D,H}. For task
D, F →W D, D →W C, and F ||W C hold.

Definition 12. (L1L-Free set) Let T be a set of tasks, W be an event log over
T, and L1L be the set of length-1-loop. The L1L-Free set is defined as follows:
– L1L-Free ={x ∈ L1L|∃a∈T∧b∈T (a →W x ∧ x →W b ∧ a ‖W b)}.
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4.5 Adjusting Invisible Tasks

In order to construct a sound and accurate process model, this step adjusts
the invisible tasks by combining or splitting. Before introducing the details of
invisible task adjustment, some auxiliary functions are given.

– MD means the set of improved mendacious dependencies,
– ID means the set of implicit dependencies,
– MD(t) is the set of improved mendacious dependencies related to an invisible

task t, and
– σ ↑ X is the projection of σ onto some task set X ⊂ T .

A

P1 P3B

E

C

I

P2

W5=[<A,B,C,E>,<A,C,B,E>,<A,E>] N5'

P4

A

P1 P3B

E

C

I2

P2 P4

I1N5

(a) Mined model without combining

A

P3

I1

C

B

P1

D

W6=[<A,C,E>,<B,C,D>,<A,C>,<B,C>] N6'

P2
E

I2

A

P3

C

B

P1

D

P2

E

I

N6

(b) Mined model without spliting

Fig. 4. Example of mined process models without combining or splitting

Combining Invisible Tasks. When there are invisible tasks in different
branches of a parallel construct, there is a possibility that invisible tasks should
be combined together. However, α# does not take this situation into consider-
ation. For example, N5 in Figure 4(a) is a process model with an invisible task
I combined with the parallel construct (B,C,P1,P2,P3,P4). N ′

5 is the process
model mined by α#, where there is one invisible task I1 or I2 in each par-
allel branch. N ′

5 has more behavior than N5, such as traces < A,C,E > and
< A,B,E >. Definition 13 is used to discover the pairs of combinable invisible
tasks.

Definition 13. (Combinable invisible tasks) Let T be a set of tasks, W be an
event log over T, TI be the set of invisible tasks discovered from W, and trace
σ ∈ W . The Combinable invisible tasks is defined as follows:

– R(t) = {z|(a, x, y, b) ∈ MD(t) ∧ (z = x ∨ z = y)},
– P (σ, a, b) = σ ↑ (R(a) ∪ R(b)),
– a

⊗
σ b ⇐⇒ |P (σ, a, b)| = 0∨(|P (σ, a, b)|%2 = 0∧∀1≤k<|P |/2((P (σ, a, b)2k+1

∈ R(a) ∧ P (σ, a, b)2k+2 ∈ R(b)) ∨ (P (σ, a, b)2k+1 ∈ R(b) ∧ P (σ, a, b)2k+2 ∈
R(a))),
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– a
⊗

W b ⇐⇒ ∀σ∈W a
⊗

σ b, and
– Combinable Set(W,TI) = {(a, b)|a ‖W b ∧ a ∈ TI ∧ b ∈ TI ∧ a

⊗
W b}.

R(t) is the set of tasks that are related to invisible task t. P (σ, a, b) is the
projection of trace σ on the task set R(a) ∪ R(b). a

⊗
σ b holds only if either

the tasks from R(a) and R(b) alternately occurs in P (σ, a, b), or none of tasks
in R(a) and R(b) occurs. It means that in one trace, either invisible tasks a and
b occur together or none of them occurs. If for any trace σ ∈ W , a

⊗
σ b holds

(i.e. a
⊗

W b), invisible tasks a and b should be combined.

Splitting Invisible Tasks. NFCs are detected after the discovery of invisible
tasks, and they would bring extra dependency relations between tasks. This
would lead to deadlock when they are involved with invisible tasks in some case.
N6 and N ′

6 in Figure 4 present an example of this situation. N6 is the original
sound process model, while N ′

6 is the process model mined without splitting. In
N ′

6, task I is found earlier than the NFC (P1, P2, P3, E, D). Place P1, P3 and the
dotted edges are added for constructing the NFC. The new-added dependencies
(A,E) and (B,D) make the net not sound. For example, after the execution of
< A,C, I > or < B,C, I >, there would be a remaining token in P1 or P3. Thus,
we should check each invisible task, and split them if necessary.

Definition 14. (Splittable invisible tasks) Let T be a set of tasks, W be an event
log over T. The Splittable invisible tasks is defined as follows:

– IMD(t) = {(a, x, y, b) ∈ MD(t)|∃(m,n) ∈ ID : (n = x ∨ m = y)}, and
– Splittable Set(W,TI)={t ∈ TI ||IMD(t)| > 1}.

For each invisible task t, IMD(t) is the set of mendacious dependencies
involved in implicit dependencies (we call this mix dependencies for short). By
analyzing the workflow net, we discover that each mix dependency should be
expressed as one unique invisible task. If two mix dependencies are expressed in
one invisible task, the mined model would not be sound, like the invisible task I
in N ′

6. Thus, the invisible task t should be split if |IMD(t)| > 1.

4.6 The α$ Algorithm

The α$ algorithm is defined in Definition 15. According to the previous sections,
the algorithm is luminous. And thus, there is no further explanation.

Definition 15. Let T be a set of tasks, W be an event log over T. The α$(W )
algorithm is defined as follows:

1. Tlog = {t ∈ T |∃σ∈W t ∈ σ},
2. L1Lraw = {t ∈ Tlog|∃σ=t1t2t3...tn∈W ;i∈1,2,...,nt = ti−1 ∧ t = ti},
3. L1Lfree = getL1LFree(),
4. L1L = L1Lraw − L1Lfree,
5. W−L1L = removeL1L(W,L1L),
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6. (PW−L1L , TW−L1L , T I
W−L1L , FW−L1L) = α�

improved(W
−L1L),

7. RW−L1L = getReachableDependency(T I
W−L1L ,W−L1L),

8. IDW−L1L = α++(PW−L1L , TW−L1L , T I
W−L1L , FW−L1L , RW−L1L),

9. (F ′
W−L1L , P ′

W−L1L)=addImplicitDependency(FW−L1L , PW−L1L , IDW−L1L),
10. (PW , TW , FW ) = addL1L(L1L,F ′

W−L1L , P ′
W−L1L , TW−L1L),

11. (PW , TW , FW ) = adjustInvisibleTask(T I
W−L1L , FW ), and

12. α$(W ) = (PW , TW , FW ).

5 Experimental Evaluation

The α$ algorithm has been implemented as a plug-in in ProM [9]. The
ProM 5.2-based implementation of α$, is publicly accessible from GitHub
(https://github.com/ guoqinlong/Alpha-Dollar-Process-Mining-Algorithm).

In the evaluation, we compared the performance of α$ with other process
mining algorithms: α++, α#, Genetic, Heuristic, ILP , and Region. Note that
the default mining results of Genetic and Heuristic are Heuristic nets. With
the transformation package in ProM, a transformation to Petri net has been
implemented. Besides, all algorithms were executed using their default settings.

5.1 Evaluation Based on Artificial Logs

We first focus on artificial examples which demonstrate that α$ significantly
improves existing approaches. To illustrate the capabilities of α$, we first show
some concrete experimental results in Table 2.

Table 2(a) is an example of an invisible task involved in a parallel construct.
In the reference model, two parallel branches share the same invisible task. α$

and Genetic managed to mine the proper process model. α++ and Heuristic
failed to discover the invisible task. α# managed to mine two invisible tasks,
but failed to combine them into one. ILP cannot mine a sound process model.
Besides, ILP also cannot mine proper process models for other examples in
Table 2, which will not be elaborated then. The reference model in Table 2(b)
has two invisible tasks combined with NFCs. α$ managed to rediscover it. The
models mined by α#, Heuristic and Genetic failed to detect all NFCs, and these
three mined models have more behavior than the reference model. α++ failed to
discover the invisible task. Table 2 is an example of IT-in-NFC. α++, Genetic
and Heuristic failed to mine the invisible task. Two invisible tasks were detected
by α#, while the NFC was not discovered. The reference model in Table 2(d)
has one invisible task. α++, α# and Heuristic failed to discover the invisible
task. Besides, the process model discovered by Genetic is not sound.

There are 40 process models in the artificial data set, 30 of which are from
the general significant reference model set proposed in [13]. Besides, five artificial
models (i.e., Artif-1) with IT-in-NFC are supplied in the experimental data set
to demonstrate the capabilities of α$ algorithm. Another five artificial models
(i.e., Artif-2) are generated by tool Process Log Generator(PLG) [17].
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Table 2. Four example process models

(a)

Log [< A, B, C, D >7, < A, C, B, D >9, < A, B1, C, D >4, <
A, B, C1, D >3, < A, C1, B, D >6, < A, C, B1, D >5, <
A, C1, B1, D >3, < A, B1, C1, D >4, < A, D >11]

Reference Model & α$ α++ α#

B1

C
DA

B

C1

C
B1

C
DA

B

C1

B1

C
DA

B

C1

C C

Genetic Heuristic ILP

B1

C
DA

B

C1

C
B1

C
DA

B

C1

B1

C
DA

B

C1

(b)

Log [< B, C, D, F, G >22, < A, C, E, F, H >17, <
B, C, F, G >32, < A, C, F, H >18]

Reference Model & α$ α++ α#

B1

C
EA

D

D

B

H

F

G

C
EA

D

B

H

F

G

C

EA

D

DB

H

F

G

Genetic Heuristic ILP

C

E

A
D

D

B H

F

GD
C

EA

D

DB

H

F

G
C

EA

DB

H

F

G

(c)

(d)

Log [< A, E, F, G >, < A, E, B, C, F, G >6, <
A, E, C, B, F, G >, < A, E, C, F, B, G >10, <
A, C, E, F, B, G >8, < A, C, F, E, B, G >6, <
A, C, E, B, F, G >4]

Reference Model & α$ α++ α#

C

E

DA

B

F

G

C

E

A

B

F

G

C

E

A

B

F

G

Genetic Heuristic ILP

C

E

DA

B

F

G

C

E

A

B

F

G

C

EA

B

F G
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For evaluation of the performance on artificial dataset, two criteria are
applied : Fitness [10] tests the conformance between the mined model and the
given log. The fitness is determined by replaying the log on the model, i.e., for
each trace the “token game” is played. If fitness = 1 then the log can be parsed
by the model without any error; Model rediscoverability [13] tests the confor-
mance between the mined model and the original model. Model rediscoverability
of a process mining algorithm is measured by the similarity degree between the
original model and the model mined by the process mining algorithm.

Table 3. Time expense on experiments in seconds

Mining algorithm α$ α++ α# Genetic Heuristic ILP Region

Artificial logs 14.63 10.33 12.06 122.04 14.95 23.95 47.13

Table 3 shows the time expense on evaluation. As for the artificial logs, the
cost of α$ are more than that of either α# or α++, yet less than the sum of
them. Compared with Genetic, the time cost of α$ is much smaller.
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Fig. 5. Experiment result on artificial logs

Figure 5(a) shows the fitness result of different process mining algorithms.
Since α$ is based on α# and α++, α$ outperforms both of them. For the clearness
of the figure, the results of α# and α++ are not listed in Figure 5. In the fitness
measurement, 2.5% models mined by α# and 10.0% models mined by α++ do not
have a value of 1, but α$ has a fitness of 1 in all the models. α$ has a better fitness
result than all the other algorithms. Model rediscoverability result is shown in
Figure 5(b). Except the process models with duplicate tasks, α$ is able to mine
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each process model identical with the original one in the experiment data set,
while the other algorithms cannot mine them successfully. α$ has a better result
in model rediscoverability than α# and α$. 47.5% of models mined by α# and
32.5% of models mined by α++ have a less model rediscoverability than α$.

5.2 Evaluation Based on Real-Life Log

In this section, we use the event log used in paper [6]. This real-life log shows the
event traces (process instances) for four different applications to get a license to
ride motorbikes or drive.

Since there is no groundtruth model of the event log, model rediscoverability
cannot be applied as the evaluation criteria. In this section, two additional qual-
ity measures in ProM are applied: precision - a measure how closely the behavior
in the log is represented by the Petri net, simplicity - all places, transitions and
arcs of the discovered Petri nets are counted and accumulated to a simplicity
measure. Additionally, whether the mined model is a WF-net and the time cost
of mining are evaluated.

Table 4. Evaluation results of different process discovery algorithms on a real-life log

α$ α++ α# Genetic Heuristic ILP Region

Fitness 1.00 0.95 1.00 1.00 1.00 1.00 0.90

Precision 1.00 1.00 0.84 1.00 0.84 0.56 0.91

Simplicity 22 20 22 26 20 17 26

Workflow Net True True True True True False False

Time(ms) 224 175 185 34301 102 470 2786

Table 4 is the evaluation result on the log. Due to strongly unconnected nodes,
models mined by ILP and Region are not WF-nets. Only α$ and Genetic mined
process model with both Precision = 1 and Fitness = 1. Other algorithm such
as α++, α# and Heuristic cannot mine invisible tasks and NFCs simultaneously,
which leads either Precision or Fitness less than 1. Though α$ and Genetic mine
the same model, α$ shows about 2 orders of magnitudes improvement in time
costs, and there is no parameter setting needed for α$.

6 Conclusion and Future Work

A novel process mining algorithm named α$ is proposed. Using the improved
mendacious dependency and implicit dependency, α$ is the first algorithm which
can adequately mine IT-in-NFC. Experiments show that α$ can outperform the
state-of-the-art mainstream process mining algorithms. The efficiency of α$ is
comparable to the fastest process mining algorithms by far.

Our future work would mainly focus on the following two aspects. One is to
enhance mining capability of α$ on process models with duplicated tasks. The
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other one is to design a parallel and distributed process mining algorithm based
on α$ to handle huge event logs.
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Abstract. The discovery of a formal process model from event logs
describing real process executions is a challenging problem that has
been studied from several angles. Most of the contributions consider the
extraction of a model as a semi-supervised problem where only positive
information is available. In this paper we present a fresh look at process
discovery where also negative information can be taken into account.
This feature may be crucial for deriving process models which are not
only simple, fitting and precise, but also good on generalizing the right
behavior underlying an event log. The technique is based on numerical
abstract domains and Satisfiability Modulo Theories (SMT), and can be
combined with any process discovery technique. As an example, we show
in detail how to supervise a recent technique that uses numerical abstract
domains. Experiments performed in our prototype implementation show
the effectiveness of the techniques and the ability to improve the results
produced by selected discovery techniques.

1 Introduction

The digital revolution that is taking place in the last decade is abruptly changing
the way organizations, industry and people access, store and analyze the vast
amount of digital information currently available. The challenge is to be able to
extract value from this information in an effective way. In the context of informa-
tion systems and business process management, where processes are responsible
for the correct undertaking of system functionalities, end-users desire to extract
process-oriented aspects that can contribute to a better understanding of the
process perspective of the reality observed.

Process Mining is considered to be a viable solution to this problem: by using
the event logs containing the footprints of real process-executions, process mining
techniques aim at discovering, analyzing and extending formal process models

c© Springer International Publishing Switzerland 2015
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revealing the real processes in a system [1]. From its arising around a decade
ago, the process mining field has evolved into several directions, with process
discovery perhaps being the most difficult challenge demonstrated by the large
amount of techniques available nowadays. What makes process discovery hard
is the fact that derived process models are expected to be good in four quality
dimensions which often are opposed: fitness (ability of the model to reproduce the
traces in the event log), precision (how precise is the model in representing the
behavior in the log), generalization (is the model able to generalize for behavior
not in the log) and simplicity (the well-known Occam’s Razor principle).

Process discovery is a learning technique: a set of training examples (traces
denoting process executions) are used to derive a process model which encloses
the behavior underlying in the training set. Most techniques that have been
proposed for process discovery so far assume a positive label in each trace, i.e.
the example is an instance of behavior that must be in the process model to be
derived. A slight extension of this assumption may be obtained if extra infor-
mation is considered that enables to weight different traces: for instance, if the
frequency of a trace is also considered, there exist some techniques that are able
to extract only the most frequent patterns into a process model [2,3].

In literature, very few techniques have been presented that consider the dis-
covery problem as a supervised learning task, i.e. using both the real process
executions as positive examples, but also incorporating negative examples, that
is, traces representing behavior that cannot be executed in the underlying sys-
tem and should hence not be present in the process model to be derived. Such
information might be crucial to derive the right model [4–8]. Clearly, the use of
negative information can bring significant benefits, e.g. enable a controlled gen-
eralization of a process model: the patterns to generalize should never include
the negative behavior. Another benefit is the ability to simplify a model on those
parts that do not contribute to differentiate between positive and negative exam-
ples. The existence of few techniques for supervised process discovery is due to
the fact that most real-life event logs do not provide easy ready-to-use negative
examples.

This paper proposes a novel methodology for supervised process discovery,
and shows how this technique can be adapted to be used in combination with
arbitrary process discovery methods. The two main techniques combined to this
end are numerical abstract domains [9] and Satisfiability Modulo Theories [10].

We ground the supervisory approach on the duality between the marking
equation of a Petri net and the domain of convex polyhedra which has been
already exploited for process discovery [11] and which we summarize now infor-
mally. The idea of [11] is to transform the traces in the log into points of an
n-dimensional space (where n is the number of different activities in the log)
and then to find a convex envelope of these points representing the concept to
learn. The domain of convex polyhedra is used as it is a good compromise between
expressivity and complexity of the operations [12]. The final step is to convert
the convex polyhedron into a process model (a Petri net [13]) by extracting
half-spaces of the polyhedron and transforming them into Petri net places that
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Fig. 1. Three process models to illustrate supervised process discovery.

restrict behavior in the derived Petri net. Remarkably, this approach is among
the few ones that can discover the full class of pure P/T-nets, i.e. Petri nets with
arbitrary arc weights and tokens. This aspect makes the approach well suited
for domains like manufacturing, where the flow relation between activities may
be non-unitary. Most of the techniques in the literature do not aim for such a
general class of process models.

The technique presented in [11] suffers from two main limitations. First,
since it is tailored to P/T nets, the number of half-spaces describing the concept
learned are often large and complex which significantly hampers the practical use
of the corresponding model to understand the underlying process. Among the
problems, we highlight deriving overfitting and/or spaghetti models as the most
stringent ones. Second, the technique follows a semi-supervised paradigm, i.e.
only positive instances of a process are considered. This implies that the model
obtained may be accepting behavior that is against the expected functioning of
the process represented; in other words: the model is imprecise.

We extend the technique from above by an extra simplification step on the
polyhedron before transforming it into a net. The restrictions on the polyhedron
can be relaxed as far as they preserve the initial solutions, i.e. the positive traces.
Additionally, negative information can be encoded as negative points which must
be not enclosed by the polyhedron and thus preventing some of the problems
from [11]. This step is automated with the help of SMT instances that enable
the rotation and shifting of the polyhedron.

Example 1. Consider the three models of Fig. 1 and the logs L+ and L− repre-
senting respectively the observed and the undesired behavior of the system. The
model on the left (N1) represents a system where an action c can only be fired
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once and when it is preceded by action a1. N1 can replay all the traces in L+,
but not those in L−; we can conclude that it is fitting, precise and generalizes
well the intended behavior. N2 is also fitting, but it is too general since it accepts
some of the undesired behaviors in L−, e.g. action c can be fired independently
of the firing of a. Using the approach from [11] both nets could be discovered,
but the structure of the latter is simpler (it has less arcs and smaller weights).
The problem with the simplification from N1 into N2 is that it introduces unde-
sired behaviors as commented previously. With the contributions of this paper
net N3 can be discovered, which is fitting, precise, does not accept any undesired
behavior and it is still simpler than N1.

The remainder of this paper is organized as follows: Section 2 introduces all
the necessary background to understand the contribution of this paper. Then
in Section 3 the approach for supervised process discovery is presented. A small
discussion in Section 4 is devoted to decouple the methods of this paper from
the particular discovery technique used. The approach is evaluated in Section 5,
and compared with related work in Section 6. Section 7 concludes.

2 Preliminaries

In this section we introduce some basic definitions and ideas used in the subse-
quent sections.

2.1 Parikh Representation of an Event Log

The behavior of a process is observed as sequences of events from a given alpha-
bet. For convenience, we use T to denote the set of symbols that represent the
alphabet of events. A trace is a word σ ∈ T ∗ that represents a finite sequence of
events; |σ|a represents the number of occurrences of a in σ.

A log L is a set of traces from a given alphabet. We say that σ ∈ L if σ
is the prefix of some trace of L. Given an alphabet of events T = {t1, . . . , tn},
the Parikh vector of a sequence of events is a function ̂: T ∗ → N

n defined as
σ̂ = (|σ|t1 , . . . , |σ|tn). For simplicity, we will also represent |σ|ti as σ̂(ti). Given
a log L, the set of Parikh vectors of L is defined as Π(L) = {σ̂ | σ ∈ L}.

2.2 Petri Nets and Process Discovery

A Petri net [13] is a tuple (P, T, F,M0) where P and T represent respectively
finite and disjoint sets of places and transitions, F : (P × T ) ∪ (T × P ) → N is
the weighted flow relation. A marking M is a function M : P → N. M0 is the
initial marking that defines the initial state of the Petri net.

The preset and postset of a place p are respectively denoted as •p and p•

and defined by •p = {t ∈ T | F (t, p) > 0}, p• = {t ∈ T | F (p, t) > 0}. A Petri
1 Notice that there is a safe Petri net which includes L+ and excludes L−: we are

using the unsafe models in Fig. 1 just as an illustrative example.
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net is said to be pure if it does not have any self-loop, i.e. ∀p ∈ P : •p ∩ p• = ∅.
Henceforth, we will assume that all Petri nets referred to in the paper are pure.

The dynamic behavior of a Petri net is defined by its firing rules. A transi-
tion t ∈ T is enabled in a marking M if M(p) ≥ F (p, t) for any p ∈ P . Firing
an enabled transition t in a marking M leads to the marking M ′ defined by
M ′(p) = M(p) − F (p, t) + F (t, p), for any p ∈ P , and is denoted by M

t−→ M ′.
A sequence of transitions σ = t1t2 . . . tn is fireable if there is a sequence of mark-
ings M1,M2, . . . ,Mn such that M0

t1−→ M1
t2−→ M2 · · · tn−→ Mn. Given a Petri

net N , L(N) denotes the language of N , i.e. the set of fireable sequences of
transitions. The set of markings reachable from the initial marking M0 is called
the Reachability Set of N and denoted as RS(N).

The Marking Equation: Let us consider a place p with •p = {x1, . . . , xk},
p• = {y1, . . . , yl} and all flow relations having weight 1. Let us assume that the
place contains M0(p) tokens in its initial marking. Then, the following equality
holds for any sequence of events σ:

M(p) = M0(p) + σ̂(x1) + · · · + σ̂(xk) − σ̂(y1) − · · · − σ̂(yl).

The previous equation can be generalized for weighted flows:

M(p) = M0(p) +
∑

xi∈•p
F (xi, p) · σ̂(xi) −

∑
yi∈p•

F (p, yi) · σ̂(yi).

If we formulate the previous equation for all places in a Petri net, we can
compress it using a matrix notation: M = M0 + A · σ̂, where M and M0 are
place vectors and A is the incidence matrix with |P | rows and |T | transitions
that represents the flow relation of the net. The previous equation is called the
Marking Equation of the Petri net [13].

The set of solutions for which the following inequality holds

M = M0 + A · σ̂ ≥ 0 (1)

is called the Potentially Reachable Set (PRS(N)). All reachable markings of a
Petri net fulfill (1). However the opposite is not always true. In general there
can be unreachable markings for which (1) also holds, i.e. RS(N) ⊆ PRS(N).

Process Discovery: The problem of process discovery requires the computa-
tion of a model M that adequately represents a log L. A model M is overfitting
with respect to log L if it is too specific and too much driven by the informa-
tion in L. On the other hand, M is an underfitting model for L if the behavior
of M is too general and allows for things “not supported by evidence” in L.
Whereas overfitting denotes lack of generalization, underfitting represents too
much generalization. A good balance between overfitting and underfitting is a
desired feature in any process discovery algorithm [1].
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Fig. 2. Walks in the integer lattice and Petri net.

2.3 Convex Polyhedra and Integer Lattices

An n-dimensional convex polyhedron is a convex set of points in R
n. Convex

polyhedra admit two equivalent representations: the H-representation and the
V -representation [9]. The former denotes a convex polyhedron P as the inter-
section of a finite set of half-spaces, i.e.

P = {x ∈ R
n | A · x + b ≥ 0} (2)

where A ∈ R
k×n and b ∈ R

k are the matrix and vector that represent k half-
spaces. Given a polyhedron P, the set of integer points inside P are called the
Z-polyhedron of P. For the sake of brevity, all polyhedra mentioned in this work
will be assumed to be convex.

2.4 Numerical Abstract Domains and Process Discovery

In [11] several techniques are presented for the discovery of Petri nets from
Parikh vectors. In particular, given a log L, the set Π(L) is used to find A and
M0 in (1) such that the associated Petri net is a good approximation of the
process behavior. We now summarize the approach.

Given a Petri net N , by comparing the expressions (1) and (2) we can observe
that PRS(N) is the Z-polyhedron of a convex polyhedron that has two properties:
A ∈ Z

|P |×n and M0 ∈ N
|P |. These properties guarantee that the initial marking

is not negative and only markings with integral token values are reachable.
The n-dimensional integer lattice Z

n is the lattice of n-tuples of integers. For
describing a log, each lattice point represents a Parikh vector from an alphabet
with n symbols and hence the points belong to N

n. A log can be represented
as a set of walks in N

n. Every step in a walk moves from one lattice point to
another by only increasing one of the components of the n-tuple by one unit.

The link between logs and Petri nets is illustrated in Fig. 2. The figure at
the left represents three different walks in a 2-dimensional space. The light grey
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area represents a polyhedron that covers the points visited by the walks. The
polyhedron can be represented by the intersection of two half-spaces in R

2:

1 + σ̂(x) − σ̂(y) ≥ 0
6 − 2 · σ̂(x) + 3 · σ̂(y) ≥ 0

The polyhedron can also be represented in matrix notation with a direct
correspondence with the marking equation (1) of a Petri net:[

1
6

]
+

[
1 −1

−2 3

]
·
[

σ̂(x)
σ̂(y)

]
≥

[
0
0

]

The Petri net on the left represents the one obtained from the interpreta-
tion of the marking equation. Each face of the polyhedron is represented by a
place (row in the matrix). The set of Parikh vectors generated by the Petri net
corresponds to the Z-polyhedron of the polyhedron depicted at the left.

In summary, given a set of Parikh vectors from a log, the techniques in [11]
find the polyhedron which can finally be translated to a Petri net as shown in
the example.

2.5 Inducing Negative Information from a Log or Model

Due to the fact that real-life event logs seldom contain negative information, i.e.
behavior that the system should not allow, scholars have proposed alternative
ways to induce negative information to guide the learning task. In [8], a tech-
nique is proposed to induce so called “artificial negative events” based on the
positive information contained in the log. Recent contributions have shown that
the obtention of negative information from event logs can be done efficiently in a
manner which is robust to differing levels of event log completeness [14]. Finally,
when a prescriptive, ground-truth process model is known, negative information
can also be appended to the known, positive traces contained in a given event
log by replaying the traces over the model and querying the latter to investigate
which activities in the activity alphabet are not enabled in a given position in
the trace at hand, from which a set of negative traces can be derived.

3 Supervised Process Discovery

In this section we show in detail how to make the approach from [11] supervised.
Next section shows how to make an arbitrary discovery technique supervised.

3.1 Stages of the Approach

The proposed approach for supervised process discovery and simplification is
illustrated in Fig. 3. The upper part of the figure (enclosed in a round box) rep-
resents the approach from [11] from which this work is grounded; the detailed
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Fig. 3. Flow for supervised process discovery (arrows with black background) compared
with the approach in [11] (arrows with white background).

explanation of this is found in Section 2.4. This approach suffers from two short-
comings. First, it is exponential on the number of different activities in the log:
in [11] a divide-and-conquer strategy is presented that uses sampling and pro-
jection to overcome this limitation for large event logs. Sampling and projection
techniques alleviate the complexity of the monolithic approach considerably, but
on the other hand the quality metrics regarding precision and simplicity may
become considerably degraded, thus deriving an underfitting and complex pro-
cess model. The reason for this is due to the fact that sampling tends to extract
an overfitting representation of the samples used, which may be simplified if the
whole set of Parikh vectors (instead of using samples) was used to construct the
polyhedron. Additionally, the representations for the samples obtained may miss
important relations, a problem that causes a precision degradation.
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The second limitation of the approach in [11] is the manual selection of the
constraints within the H-representation of the polyhedron computed. Only con-
straints with simple coefficients (those with gray background in Fig. 3) are used,
leaving the rest of constraints (half-spaces that mean to separate the observed
behavior from the rest of behavior) out of the model, and hence the model
derived may be generalizing too much, i.e. may be imprecise. The selection of
simple constraints is guided by the assumption that in reality (and specially, in
the scope of business process management), process models tend to be defined
by simple constructs.

Having only event logs with positive information at our disposal, we use the
technique from [14] to extract accurate negative execution traces. The proposed
approach inserts the negative Parikh vectors into the n-dimensional space and
uses a tailored SMT-based optimization technique to shift and rotate the half-
spaces covering the positive information to simplify and generalize them while
keeping the negative information away from the transformed polyhedron (see
Sections 3.2 and 3.3). In the figure, it can be seen that 34f − 12g ≥ 0 is a
constraint obtained from the polyhedron only covering the positive information.
This constraint is then simplified and generalized to 3f − g ≥ 0 which is then
considered as a simple constraint, and therefore will be also translated to the
final process model. This enables relating in the model activities f and g.

Remarkably, the approach of Fig. 3 can also be applied without any nega-
tive information, leading to a simplification (and generalization) of the models
derived by the approach presented in [11]. As the shifting and rotation tech-
niques presented in the following sections are implemented as instances of an
SMT problem, leaving out the parts related to negative information will enable
end users focusing only on simplification of the model in the positive perspective.
Next section presents this idea.

3.2 Generalization and Simplification on the Positive Perspective

Section 2.4 explains how to to compute a Petri net containing a set of traces
using the minimal convex hull of its Parikh vectors and then extracting its H-
representation that can in turn be translated to a Petri net. However, the struc-
ture of the obtained model might be too complicated; e.g. actions might consume
and produce big amounts of resources. Real-life business process usually have
a simpler structure and therefore the discovered models need to be simplified.
This task is usually done manually using expert knowledge to detect situations
where the net can be simplified. When discovery algorithms based on numeri-
cal abstract domains are used, the simplification consists on removing manually
inequalities (half-spaces defining the polyhedron) from the H-representation.
Since each inequality defines a place in the net, removing them reduces the
number of places in the net and simplifies it.

We shift and rotate the polyhedron to obtain simpler inequalities and thus
preserve as much as possible the behavior of the system. In Fig. 3 only inequal-
ities in dark background are transformed into places in the final net. Whenever
an inequality is removed, the new polyhedron is less restrictive and therefore
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more points satisfy the set of remaining constraints; in the mined Petri net,
more traces are possible, thus generalizing the underlying behavior.

Example 2. Fig. 2 (left) shows a polyhedron (light grey area) defined by the H-
representation {p0, p1}, and some of its walks. A more general polyhedron, i.e.
one with larger Z-polyhedron (see Section 2.3) is defined by {p0, p2} (light and
dark grey area). Points marked as • are solutions of {p0, p2}, but not of {p0, p1}.
The right of the figure shows the Petri nets representing both polyhedra; the
sequence xxxyxxx is a trace of the second net, however it cannot be fireable in
the first net. This is represented in the left part of the figure by the point (6, 1)
which is a solution of {p0, p2}, but not of {p0, p1}.

The approach that we propose in this section simplifies the H-representation
of a given polyhedron by modifying its inequalities; this is achieved by trying
to reduce the coefficients of each inequality. Each new inequality should accept
at least the same solutions as the original one to avoid loosing the fitness of the
model. Given an inequality of the form α0 + α1 · x1 + · · · + αn · xn ≥ 0 we need
to find new coefficients β0, β1, . . . , βn such that:

n∑
i=1

βi > 0 and β0 ≥ 0 (NZ)

for each 0 ≤ i ≤ n:
|βi| ≤ |αi| (MIN)

and for all xi ≥ 0 with i ≤ n:

(α0 +
n∑

i=1

αi · xi) ≥ 0 ⇒ (β0 +
n∑

i=1

βi · xi) ≥ 0 (PC)

Constraint (NZ) specifies that at least one of the variable’s coefficients should
be different than zero to eliminate trivial solutions and that the independent
coefficient should not be negative since it represents the initial marking. The
meaning of constraint (MIN) is that the new inequality should be simpler than
the original one, i.e. each transition should consume or produce less tokens.
Finally, every solution of the original inequality should also be a solution of the
discovered one (PC).

To obtain the H-representation of a polyhedron representing a simpler and
more general net, constrains (NZ), (MIN) and (PC) can be encoded using Sat-
isfiability Modulo Theories; we have implemented the proposed encoding using
the Z3 SMT solver [15]. For the inequality 6−2 · σ̂(x)+3 · σ̂(y) ≥ 0 the proposed
encoding results in:

(β1 + β2 > 0) ∧ (β0 ≥ 0) ∧ (|β1| ≤ 2) ∧ (|β2| ≤ 3)∧
∀σ̂(x), σ̂(y) : (6 − 2 · σ̂(x) + 3 · σ̂(y) ≥ 0) ⇒ (β0 + β1 · σ̂(x) + β2 · σ̂(y) ≥ 0)

which has as a solution for example β0 = 6, β1 = −1, β2 = 2. The original
inequality can be thus replaced in the H-representation of the polyhedron by
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6 − σ̂(x) + 2 · σ̂(y) ≥ 0. The new polyhedron generates a simpler Petri net (less
tokens are consumed by x and produced by y), but more traces are accepted as
it is shown in Example 2.

Since our approach only simplifies inequations, it might be still necessary
to remove some of them manually; in Fig. 3 two inequalities are simplified and
remain in the final model, but 13a + 4b − c ≥ 0 cannot be simplified and thus is
still removed.

The method that we propose does not sacrifices fitness of the model since
the Z-polyhedron obtained by the transformations is a superset of the original
one:

Theorem 1. Let L be a log, N a fitting model of L and N ′ the model obtained
by our method, then N ′ if fitting for L.
Proof. The proof is immediate by the constraint (PC) in the encoding of the
new polyhedron.

Structural Simplification Ratio: Given an inequality pi = α0+
n∑

i=1

αi ·xi ≥ 0

its structural complexity is given by Cpi
=

n∑
i=0

|αi|; the complexity of the H-

representation of a polyhedron is the sum of the complexity of its inequalities.
With this definition the complexity of polyhedra {p0, p1} and {p0, p2} are 14 and
12 respectively. Hence we consider the second polyhedron and the corresponding
net simpler since its complexity is smaller. The effectiveness of our method is
defined as the reduction in the complexity of the new polyhedron.

Example 3. Fig. 1 shows the result of applying our method; the net N1 has
complexity c1 = Cp0 + Cp1 + Cp2 + Cp3 + Cp4 + Cp5 = (6 + 2 + 3) + (1 +
1 + 1) + (2 + 1) + (1 + 1 + 1) + (3 + 1) + 1 = 25 while the net N2 obtained
by our method has complexity c2 = Cp0 + Cp1 + Cp2 + Cp3 + Cp4 + Cp5 =
(2 + 1 + 1) + (1 + 1 + 1) + (2 + 1) + (1 + 1) + (3 + 1) + 1 = 17. In this example
the efficiency of our method is 100 − 100 × (c2/c1) = 32%.

3.3 Improving Generalization and Simplicity via Negative
Information

The generalization and simplification method proposed in Section 3.2 may intro-
duce extra behaviors in the discovered model since the new polyhedron covers
more points. If we take into account negative information (forbidden traces), the
proposed encoding needs to be refined to rule out certain solutions.

We use the method proposed in [14] to generate negative information for our
supervised process discovery. This method generates negative traces which are
in the frontier of a polyhedron, but since any postfix of a negative trace is also
a negative trace, we use extrapolation to generate traces that are not close to
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the positive behaviors, i.e. the half-spaces defining the polyhedron. If this step
is avoided, in most of the cases the method presented in this section does not
reduce the complexity of the model discovered simply by using [11] since rotation
is very restricted.

In order to avoid the negative traces derived, each of them is converted into
its Parikh representation. Each negative point should not be a solution of the new
inequality; this can be encoded as follows; for each negative point (k1, . . . , kn):

β0 +
n∑

i=1

βi · ki < 0 (NP)

x y

p3

p0

5

1

2 2

Going back to Example 2, if we want to simplify inequality
p1 while ruling out the point (6, 1), the new encoding should
add the constraint

(β0 + β1 · 6 + β2 · 1 < 0)

which rules out β0 = 6, β1 = −1, β2 = 2 as a solution. The
method using negative information proposes 5 − 2 · σ̂(x) + 2 ·
σ̂(y) ≥ 0 as the simplified inequality resulting in the net on the
right which does not accept xxxyxxx as a trace.

3.4 Discussion

The approach presented in this section comes with a hidden assumption that
we would like to acknowledge here. It is assumed that negative information
can be separated from positive information linearly, i.e. by a set of half-spaces
representing a convex polyhedron. However, it is clear that geometrically this
is not true in general, i.e. there may be negative points inside the polyhedron
constructed. Due to the prefix-closed nature of the positive points in the convex
polyhedron (see Fig. 2), negative points must be near the polyhedron half-spaces,
and not in the center since a negative point cannot be the prefix of a positive
point. In case of dealing with negative points inside a polyhedron, the learning
can be oriented to not one but a set of convex polyhedron covering only the
positive points, and the merge of several models can then be applied.

Another interesting source of negative information apart from the techniques
used in this paper is the use of expert knowledge. This has not been considered
in this paper, but extracting negative points from such expert knowledge can be
done easily and may contribute to improve the method considerably.

4 Supervising Arbitrary Process Discovery Techniques

An important observation can be made at this point of the paper: the techniques
presented in the previous section can be applied on top of any Petri net and
hence are not dependent on the discovery technique from [11]. In Section 2.4
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Fig. 4. Supervising the discovery approach from [16].

it has been shown the correspondence between a polyhedron and a Petri net
by observing that the H-representation of P represents the marking equation
of the corresponding Petri net N . This correspondence is used in [11] in the
forward direction, i.e. for computing N from P. To enable the application of the
techniques in the previous section to an arbitrary Petri net N , one can simply
use the aforementioned correspondence in the backward direction (to compute
P from N) by taking the adjacency matrix of N and the initial marking and use
them as the H-representation of a polyhedron corresponding to N .

Example 4. Fig. 4 (left) shows a Petri net that has been derived with the app-
roach from [16] using the state-based theory of regions. The Petri net accepts
traces where after firing a, there might be twice the number of bs, e.g., ababbbc.
Now imagine that these traces are now forbidden, i.e. they are negative traces
and only traces with the same amount of as, bs and cs should be included in the
model. The technique presented will derive the inequalities in the right, denot-
ing a Petri net similar to the original but where the weights in the arcs are now
unitary and the net is conformant with the negative information provided.

5 Experiments

We run our approach as described in Section 3 on several real-life logs. To illus-
trate the general applicability of the approach as described in Section 4, we
also apply our technique on models obtained by ILP Miner [17]. Results on
the effectiveness (reduction in the complexity of the simplified polyhedron with
regards to the original one) are reported. We also evaluate the precision of dis-
covered models using the state-of-the-art technique from [18], as well as the
generalization using the approach from [14]. Finally we compare our method
with AGNEsMiner [8], a supervised technique for process discovery.

5.1 Supervising Process Discovery Techniques

The results of the simplification/generalization approach are shown in Tables 1
and 2. For all the examples the simplification step took less than a minute,
showing that the overall performance of the discovery method is not degraded.
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Table 1. Experimental results on models mined by the approach of Section 3.

log total prec gen
L+ L+ and L−

iter effec prec gen iter effec prec gen

caise2014 425 0,08 0.56 6 7.41 0,09 0.59 4 0.31 0,08 0.56

complex 28 0,32 0.54 2 2.81 0,32 0.60 1 0.00 0,32 0.54

confdimblocking 15 1,00 0.84 2 6.25 0,25 0.84 1 0.00 1,00 0.84

documentflow 26 0,16 0.99 2 11.94 0,16 0.99 2 7.46 0,15 0.99

fhmexamplen5 11 0,32 0.90 3 16.21 0,35 0.93 2 2.70 0,36 0.90

incident 15 0,26 1.00 2 17.46 0,22 1.00 2 4.76 0,24 1.00

purchasetopay 15 0,17 1.00 2 4.16 0,20 1.00 2 2.08 0,20 1.00

receipt 49 0,26 0.62 2 19.31 0,23 0.69 3 3.44 0,24 0.62

The following information is given: total number of inequations2 (“total”), pre-
cision (“prec”) and generalization (“gen”) in the original model3; the efficiency
(“effec”) precision and generalization of the enhanced models when only positive
information is used (“L+”) and when negative information is also added (“L+

and L−”). Since the SMT encoding gives one solution (not necessarily the min-
imal one), we applied our method iteratively until the effectiveness between two
iterations is not improved; the number of iterations is also reported in the table
(“iter”).

The results show that the complexity can be reduced up to 20% when only
positive information is considered; in all the cases the penalty of this reduction
is rather small, since the precision of the new model is similar to the original one
(except for confdimblocking where a drop in precision occurs). When negative
information is added, the effectiveness is reduced (below 8%) but precision values
are almost coinciding with the original models. The same remark can be made for
generalization: when only positive information is considered, all models exhibit
a slight increase. After adding negative information, generalization scores are
comparable to the original models. We can conclude that applying the ideas of
Sections 3 and 4 results in models which are much simpler without a big impact
on precision and which retain original generalization capabilities.

5.2 Empirical Comparison

Few approaches have been proposed in literature towards supervised process
discovery (see next Section 6 for an overview on related work). We have chosen
to compare our approach with [8], a supervised technique which is also able
to utilize artificially generated negative events. Table 3 provides a comparative
2 Although in Section 3 we comment on the fact that inequations can be chosen man-

ually to retain only simple constructs, in the experiments we have avoided such
manual selection for the sake of a fair comparison.

3 As both the numerical abstract domains based miner and ILP Miner discover per-
fectly fitting models, fitness is not reported in the result tables.
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Table 2. Experimental results on models mined by ILP Miner [17].

log total prec gen
L+ L+ and L−

iter effec prec gen iter effec prec gen

caise2014 112 0,17 0.57 7 24.04 0,05 0.65 3 9.21 0,24 0.58

complex 15 0,57 0.56 2 14.89 0,35 0.75 2 2.12 0,40 0.58

confdimblocking 10 1,00 0.84 2 8.33 0,26 0.84 2 4.16 0,28 0.84

documentflow 128 0,37 0.95 5 10.23 0,39 0.96 3 2.13 0,36 0.96

fhmexamplen5 22 0,38 0.92 2 9.70 0,42 0.94 2 0.97 0,38 0.92

incident 27 0,25 0.99 9 25.25 0,28 0.99 4 10.60 0,29 0.99

purchasetopay 12 0,35 0.99 3 13.13 0,09 0.99 2 12.12 0,20 0.99

receipt 35 0,35 0.62 6 25.26 0,29 0.83 2 3.15 0,32 0.62

Table 3. Fitness, precision, and generalization for supervised techniques.

log
Supervised
Polyhedra

Supervised
ILP Miner

AGNEsMiner

fit prec gen fit prec gen fit prec gen

caise2014 1.00 0,08 0.56 1.00 0,24 0.58 – – –

complex 1.00 0,32 0.54 1.00 0,40 0.58 0.82 0.71 0.43

confdimblocking 1.00 1,00 0.84 1.00 0,28 0.84 1.00 1.00 0.84

documentflow 1.00 0,15 0.99 1.00 0,36 0.96 – – –

fhmexamplen5 1.00 0,36 0.90 1.00 0,38 0.92 0.94 0,53 0.32

incident 1.00 0,24 1.00 1.00 0,29 0.99 0.84 0,65 0.63

purchasetopay 1.00 0,20 1.00 1.00 0,20 0.99 0.86 0,82 0.26

receipt 1.00 0,24 0.62 1.00 0,32 0.62 0.92 0.81 0.23

overview of fitness, precision and generalization scores for our approach applied
on the numerical abstract domains based miner, ILP Miner, and AGNEsMiner4.

The following conclusions are derived from the results: first, we note that
AGNEsMiner generally performs well on the dimension of precision, although
at a cost of deriving models which are not perfectly fitting. In addition, the
miner did not succeed to find a model within the allotted time period (one day
of calculation, the dash mark “–” represents a time out). In terms of general-
ization, our proposed approach outperforms AGNEsMiner since the best results
are obtained either by the supervised polyhedra or the supervised ILP Miner.

4 Attentive readers will observe that it is in fact possible to apply our supervised sim-
plification approach to models mined by supervised process discovery techniques, e.g.
AGNEsMiner. We have not done so in this section, however, to keep the comparison
between various supervised discovery strategies pure.
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6 Related Work

Very few approaches exist towards supervised process discovery, especially when
compared to the multitude of process discovery techniques which work in an
unsupervised fashion. Maruster et al. [19] were among the first to investigate
the use of supervised techniques (in this case: rule-induction learners) to pre-
dict dependency relationships between activities. Instead of relying on negative
information, the authors apply the learner on a table of metrics for each activity
derived from the positive information.

Ferreira and Ferreira [4] apply inductive logic programming and partial-order
planning techniques to derive a process model. Negative information is collected
from users and domain experts who indicate whether a proposed execution plan
is feasible or not, iteratively combining planning and learning to discover a pro-
cess model.

Lamma et al. [5–7] apply an extension of logic programming, SCIFF, towards
supervised declarative process discovery, i.e. the process model is represented as
a set of logic constraints and not as a visual process model as done in this work.
The authors assume the presence of negative information.

Similarly, Goedertier et al. [8] represent the process discovery task as a multi-
relational first-order classification problem and apply inductive logic program-
ming in their AGNEsMiner algorithm to learn the discriminating preconditions
that determine whether an event can take place or not, given a history of events
of other activities. These preconditions are then converted to a graphical model
after applying a pruning and post-processing step. To guide the learning pro-
cess, an input event log is supplemented with induced artificial negative events,
similar as in this work.

7 Conclusions and Future Work

We have presented a supervised approach based on numerical abstract domains
and SMT which is able to simplify and generalize discovered process models
based on negative information found in event logs, derived artificially or supplied
by domain experts. We believe this contribution opens the door for supervising
(either manually or automatically) discovery techniques, a crucial feature for
improving the quality of derived process models.

With regard to future work, we plan to pursue to following avenues. First,
we have made use of an artificial negative event induction technique in order
to derive negative information for a given event log. We plan to investigate the
possibilities towards incorporating domain knowledge to simplify and generalize
models using our technique. Second, we have assumed that negative information
can be separated from positive information in a linear fashion, i.e. by a set of half-
spaces representing a convex polyhedron. However, there may be negative points
inside the polyhedron constructed. As such, the learning task can be oriented
to not one but a set of convex polyhedron covering only the positive points, for
which merging methods would need to be investigated. Third we may combine
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the techniques of this paper with other simplification techniques developed by
some of the authors that enrich the model with log-based simulation scores.
Finally, we plan to set up a thorough experiment in which we investigate the
effects of our approach on models mined by various miners. As we have argued,
our approach can be applied on top of any Petri net in order to generalize and
simplify it without loss of fitness.
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Abstract. Declarative process models define the behaviour of business
processes as a set of constraints. Declarative process discovery aims at
inferring such constraints from event logs. Existing discovery techniques
verify the satisfaction of candidate constraints over the log, but com-
pletely neglect their interactions. As a result, the inferred constraints can
be mutually contradicting and their interplay may lead to an inconsistent
process model that does not accept any trace. In such a case, the output
turns out to be unusable for enactment, simulation or verification pur-
poses. In addition, the discovered model contains, in general, redundan-
cies that are due to complex interactions of several constraints and that
cannot be solved using existing pruning approaches. We address these
problems by proposing a technique that automatically resolves conflicts
within the discovered models and is more powerful than existing prun-
ing techniques to eliminate redundancies. First, we formally define the
problems of constraint redundancy and conflict resolution. Thereafter,
we introduce techniques based on the notion of an automata-product
monoid that guarantee the consistency of the discovered models and, at
the same time, keep the most interesting constraints in the pruned set.
We evaluate the devised techniques on real-world benchmarks.

1 Introduction

The compact and correct representation of behaviour observed in event data
of a business process is one of the major concerns of process mining. Various
techniques have been defined for generating models that balance criteria such as
fitness and completeness. Mutual strengths and weaknesses of declarative and
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procedural models are discussed in terms of capturing the behaviour of the log
in a structured and compact way.

One of the advantages of procedural models such as Petri nets is the rich
set of formal analysis techniques available. These techniques can, for instance,
identify redundancy in terms of implicit places or inconsistencies like deadlocks.
In turn, novel declarative modelling languages like Declare have hardly any-
thing to offer as counterparts. This is a problem for several reasons. First, we are
currently not able to check the consistency of a generated constraint set. Many
algorithms that generate Declare models work with confidence and support,
often set to values smaller than 1 such that potentially inconsistent constraint
sets are returned. Second, it is currently unclear whether a given constraint set
is minimal. Since there are constraint types that imply one another, it is pos-
sible that constraint sets are generated that are partially redundant. The lack
of formal techniques for handling these two issues is unsatisfactory from both a
research and a practical angle. It is also a roadblock for conducting fair compar-
isons in user experiments when a Petri net without deadlocks and implicit places
is compared with a constraint set of unknown consistency and minimality.

In this paper, we address the need for formal analysis of Declare mod-
els. We define the notion of an automata-product monoid as a formal notion
for analysing consistency and local minimality, which is grounded in automata
multiplication. Based on this structure, we devise efficient analysis techniques.
Our formal concepts have been implemented as part of a process mining tool,
which we use for our evaluation. Using event log benchmarks, we are able to
show that inconsistencies and redundancies are indeed likely to occur and that
our technique generates constraints sets that are not only consistent, but also
substantially smaller than sets provided by prior algorithms.

The paper is structured as follows. Section 2 introduces the problem of incon-
sistencies and redundancies. In this context, the major concepts of Declare are
revisited. Section 3 frames the problem. Section 4 defines our formal notion of
an automata-product-space, which offers the basis to formalise techniques for
checking consistency and local minimality. Section 5 gives an overview of our
implementation and the results of our evaluations based on benchmarking data.
Section 6 discusses our contributions in the light of related work. Section 7 con-
cludes the paper.

2 Background

This section describes the consistency and minimality problem and revisits the
Declare concepts.

2.1 The Consistency Problem

In order to illustrate the problem of potential inconsistencies and redundancies,
we utilise the event log set of the BPI Challenge 2012 [9]. The event log per-
tains to an application process for personal loans or overdrafts of a Dutch bank.
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Table 1. Semantics of Declare templates as POSIX regular expressions [18]

It contains 262,200 events distributed across 24 different possible tasks
and 13,087 traces. In general, an event log L is as a collection of
traces ti with i ∈ [1, |L|], which in turn are finite sequences of events
ei,j with i ∈ [1, |L|] and j ∈ [1, |ti|]. Each event refers to a task. The log alphabet
A is the set of symbols identifying all possible tasks and we write a, b, c to refer
to them.

Process mining tools such as MINERful [8] and Declare Maps Miner [15]
generate declarative process models in Declare from event logs. In essence,
these models define a set of declarative constraints that collectively determine
the allowed and forbidden traces. Each constraint is defined using a template that
captures the semantics of the constraint using generic parameters. We generically
refer to parameters of templates as x, y, z. Table 1 summarises the available
templates. A template is then instantiated by assigning parameters to actual
tasks. For instance, Response(a, b) is a constraint imposing that if a is executed,
then b must be eventually executed in the future. In this example, a and b are
the assigned parameters of Response(x, y). We define C as the set of templates
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and refer to CA as the set of constraints constructed by considering all possible
parameter assignments of the templates in C to the tasks in A.

The main idea of declarative process mining is that overfitting of the dis-
covered models can be avoided by defining thresholds for parameters such as
support. The support (supp) of a constraint is defined as the number of traces
verifying the constraint divided by the total number of traces in the event log.
Additional metrics are confidence (conf ) and interest factor (IF ), which scale
the support by the percentage of traces in which the constraint is triggered, resp.
both parameters occur. By choosing a support threshold smaller than 100%, we
can easily obtain constraint pairs that are supported by different parts of the
log and such that the first contradicts the second. E.g., when using MINER-
ful on the BPIC 2012 event log with a support threshold of 75%, it returns
the constraints NotChainSuccession(A PREACCEPTED, W Completeren aanvrag) and
ChainResponse(A PREACCEPTED, W Completeren aanvrag), which have an empty set
of traces that fulfil both. In fact, the first constraint imposes that A PREACCEPTED

can never be directly followed by W Completeren aanvrag, whereas the second one
requires that if A PREACCEPTED is executed, W Completeren aanvrag must immedi-
ately follow. Clearly, such inconsistent constraint pairs should not be returned.
Models with inconsistencies cannot be used for simulation nor execution, and
process analysts might be confused by these results.

2.2 The Minimality Problem

The second problem next to consistency is minimality. As observed in [8,20],
Declare templates can be organised in a hierarchy of constraints, depending
on a notion of subsumption. Technically, given the names N1 and N2 of two
templates C, C′ ∈ C of the same arity, we say that C is subsumed by C′, written
N1 � N2, if for every trace t over A and every parameter assignment σ from the
parameters of C to tasks in A, whenever t complies with the instantiation of C
determined by σ, then t also complies with the instantiation of C′ determined
by σ. For binary constraints, we write N1 � N−1

2 if the subsumption holds by
inverting the parameters of C′ w.r.t. those in C, i.e., by considering templates
N1(x, y) and N2(y, x).

For example, RespondedExistence(a, b) states that if a occurs in a trace,
then b has to occur in the same trace (either before or after a). Response(a, b)
thus enforces RespondedExistence(a, b) by stating that not only must b be exe-
cuted, but also that it must follow a. By generalising, we have then Response �
RespondedExistence. By the same line of reasoning, we have that Precedence �
RespondedExistence−1.

Based on the concept of subsumption, we can define the notion of relaxation,
R. R is a unary operator that returns the direct parent in the subsumption
hierarchy of a given template. If there exists no parent for the given template,
then R returns a predicate that would hold true for any possible trace, i.e., �.
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Fig. 1. The subsumption map of Declare relation templates

Formally, given a template C ∈ C, we have:

R (C) =

⎧⎪⎨
⎪⎩

C′ if (i) C′ ∈ C \ {C}, (ii) C � C′, and
(iii) �C′′ ∈ C \ {C, C′} s.t. C � C′′ � C′

� otherwise

We extend the relaxation operator and the subsumption relation also to the
domainof constraints:Hence, e.g.,R (Response(a, b)) = RespondedExistence(a, b).
Figure 1 depicts the subsumption hierarchy for relation templates. The forward
and backward components are specified for coupling templates, and the negative
templates are linked with their negated counterparts. Note that, in addition to
the specified template subsumption, also Init(x) and End(x) are subsumed by
Participation(x).

When using MINERful on BPIC 2012 with a support threshold of 75%, it
returns the constraints ChainResponse(A SUBMITTED, A PARTLYSUBMITTED) and
NotChainSuccession(A SUBMITTED, A ACCEPTED). The latter constraint is clearly
redundant, because the former requires the first task following A SUBMITTED to
be A PARTLYSUBMITTED. Therefore, no other task but A PARTLYSUBMITTED can
directly follow. A fortiori, A SUBMITTED and A ACCEPTED cannot be in direct
succession. Clearly, such redundant constraint pairs should not be returned.
Models that are not minimal are difficult to understand for the process analysts.
Also, redundant constraints do not provide any additional information about the
permitted behaviour.

3 Framing the Problem

In Section 2, we have informally introduced the issues of consistency and
redundancy in declarative process discovery. We now specify the problem more
precisely. Our goal is to define effective post-processing techniques that, given a
previously discovered Declare model M possibly containing inconsistencies and
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redundancies, manipulate it by removing inconsistencies and reducing redundan-
cies, but still retaining as much as possible its original structure. In this respect,
the post-processing is completely agnostic to the process mining algorithm used
to generate the model, as well as to the input event log.

This latter assumption makes it impossible to understand how much a vari-
ant of the discovered model “fits” with the log. However, we can at least assume
that each single constraint in M retains the support, confidence, and interest
factor that were calculated during the discovery phase. These values can be
used to decide which constraints have to be preferred, and ultimately decide
whether a variant M ′ of M has to be preferred over another one M ′′. Still,
notice that by no means such values can be composed to calculate a global sup-
port/confidence/interest factor for the whole model M ′. This is only possible if the
original log is considered. To see this, consider the case of two constraints C1, C2,
with support s1, s2 < 100%. When the two constraints are considered together,
the global support could range from 0 to the minimum of s1 and s2, and the exact
value could only be determined by computing it directly over the log.

In principle, we could obtain an optimal solution by exhaustive enumeration,
executing the following steps. 1. The vocabulary Σ of M is extracted. 2. The set
CΣ of all possible candidate constraints is built. 3. The set PCΣ of all possible
subsets of CΣ , i.e., of all possible Declare models using constraints in CΣ , is
computed. 4. A set K of candidate models is obtained from PCΣ , by filtering
away those models that are inconsistent or contain redundant constraints. 5. A
ranking of the models in K is established, considering their similarity to the
original, discovered model M .

However, this exhaustive enumeration is in general unfeasible, given the fact
that it requires to iterate over the exponentially many models in PCΣ , a too huge
state space. Consequently, we devise a heuristic algorithm that mediates between
optimality of the solution, and performance. In summary, its main features are:

– It produces as output a consistent variant of the initial model M . This is a
strict, necessary requirement.

– The algorithm works in an incremental fashion, i.e., it constructs the variant
of M by iteratively selecting constraints, and once a constraint is added, it
is never retracted from the model. This is done by iterating through can-
didate constraints in decreasing order of “suitability” w.r.t. the input log,
which is computed by considering the support/confidence/interest factor of
such constraints. On the one hand, this drives our algorithm to favour more
suitable constraints, and remove less suitable constraints in the case of an
inconsistency. On the other hand, this has a positive effect on performance,
and also guarantees that the algorithm is deterministic.

– Due to incrementality, the algorithm is not guaranteed to produce a final
variant that is optimal in size, but we obtain a local minimum. However, our
experimental findings show that the algorithm is able to significantly reduce
the number of redundant constraints.
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4 The Approach

This section describes how we tackle the problem of finding a non-redundant
consistent Declare model in a way that reduces the intractable theoretical
complexity. First, we present the algebraic structure on top of which the check
of redundancies and conflicts is performed: It bases upon the mapping of the
conjunction of Declare constraints to the product of finite state automata
(FSAs). Thereafter, we define and discuss the algorithm that allows us to pursue
our objective. In particular, we rely on the associativity of the product of FSAs.
This property allows us to check every constraint one at a time and include it
in a temporary solution. This is done by saving the product of the constraints
checked so far with the current one. For the selection of the next candidate
constraint to check, we make use of a greedy heuristic, that explores the search
space by gathering at every step the constraint that has the highest support, or
is most likely to imply the highest number of other constraints. The algorithm
proceeds without visiting the same node in the search space twice.

4.1 Declare Models as Automata

As already shown in [7], Declare constraints can be formulated as regular
expressions (REs) over the log alphabet. The assumption is that every task in
the log alphabet is bi-univocally identified by a character. Thus, traces can be
assimilated to finite sequences of characters (i.e., strings) and regular languages
represent the traces allowed by a Declare model.

Using the POSIX wildcards, we can express, e.g., Init(a) as a.*, and
Response(a, b) as [^a]*(a.*b)*[^a]*. The comprehensive list of transpositions
for Declare templates is listed in Table 1 and explained in [18]. Henceforth, we
will refer to such mapping as EReg (C), which takes as input a constraint C and
returns the corresponding RE: E.g., EReg (Response(a, b))=[^a]*(a.*b)*[^a]*.
Defining the operations of conjunction between Declare constraints (∧)
and intersection between REs (&&), EReg is a monoid homomorphism
w.r.t. ∧ and &&. In other words, given two constraints C and C ′,
EReg (C ∧ C ′) = EReg (C) && EReg (C ′), preserving closure, associativity and the
identity element (resp., � and .*).

Since regular grammars are recognisable through REs [5], an RE can always
be associated to a deterministic labelled FSA, which accepts all and only those
finite strings that match the RE. Formally, an FSA is a tuple S = 〈Σ,S, s0, δ, S

f 〉,
where: Σ is the alphabet; S is the finite non-empty set of states; s0 ∈ S is the
initial state; δ : S × Σ → S is the transition function; Sf ⊆ S is the set of
final states. Naming as A the operation leading from an RE to an FSA, we thus
have that a Declare constraint can be associated with its corresponding FSA,
AC = A (EReg (C)). Henceforth, we also call AC the C-automaton. We remark
that, by applying A to the RE of a conjunction of constraints, we obtain an FSA
that exactly corresponds to the product × of the FSAs for the individual con-
straints [12]: A (EReg (C ∧ C ′)) = A (EReg (C)) × A (EReg (C ′)). Also, we recall
that the identity element for FSAs is a single-state automaton whose unique
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state is both initial and accepting, and has a self-loop for each character in the
considered alphabet.

Given a model M =
{
C1, . . . , C|M |

}
, we can therefore implicitly describe the

set of traces that comply with M as the language accepted by the product of
all Ci-automata (for i ∈ [1, |M |]). The language accepted by an FSA A will
be denoted as L (A). In the light of this discussion, our approach searches a
solution to the problem of finding a non-redundant consistent Declare model
within the automata-product monoid, i.e., the associative algebraic structure
with identity element (the universe-set of FSAs) and product operation ×. For
the automata-product monoid, the property of commutativity also holds.

4.2 The Algorithm

Algorithm 1 outlines the pseudocode of our technique. Its input is a Declare
model, M , intended as a set of constraints C1, . . . , C|M |. For every C ∈ M , we
assume that its support, confidence and interest factor are given too, which is
the usual condition when M is the output of mining algorithms such as Declare
Maps Miner or MINERful. Table 2a shows an example of M , defined on the

Algorithm 1. Procedure makeConsistent (M), returning the suboptimal
solution to the problem of finding a minimal set of non-conflicting con-
straints in a Declare model.

Input: A log alphabet A, and a Declare model M defined over A. M is a set of constraints
for which support, confidence and interest factor are given

Output: Set of non-conflicting constraint MR

1 M ′ ← removeSubsumptionHierarchyRedundancies(M)

2 MS ← {
C ∈ M ′ : supp (C) = 1.0

}
// Non-conflicting constraints

3 MU ← M ′ \ MS // Potentially conflicting constraints

4 A ← 〈
A, {s0} , s0,

{⋃
σ∈A 〈s0, σ, s0〉, {s0}}〉 // Automaton accepting any sequence of tasks

5 MR ← ∅ // Set of returned constraints

6 MV ← ∅ // Set of checked constraints

/* Pruning of redundant constraints from the set of non-conflicting ones */

7 MS
list ← sortBySupportCategoryConfidenceIF(MS)

8 foreach CMS
i ∈ MS

list, with i ∈ [1, |MS
list|] do

9 MV ← MV⋃
{

CMS
i

}
// Record that CMS

i has been checked

10 ACMS
i ← A

(
EReg

(
CMS

i

))
// Build the constraint-automaton of CMS

i

11 if L (A) ⊃ L

(
ACMS

i

)
then // If CMS

i is not redundant

12 A ← A × ACMS
i // Merge the CMS

i -automaton with the main FSA

13 MR ← MR⋃
{

CMS
i

}
// Include CMS

i in the set of returned constraints

/* Pruning of conflicting constraints */

14 MU
list ← sortBySupportCategoryConfidenceIF(MU)

15 foreach CMU
i ∈ MU

list, with i ∈ [1, |MU
list|] do

16 resolveConflictAndRedundancy
(

A, MR, CMU
i , MV

)

17 return removeSubsumptionHierarchyRedundancies(MR)
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Algorithm 2. Procedure resolveConflictAndRedundancy
(
A,MR, C,MV

)
,

adding constraint C to the set of constraint MR, if it has not already been
checked (and thus included in set MV), and is not conflicting with the
already added constraints, as verified over the corresponding FSA A.

Input: An FSA A, a set of non-conflicting constraints MR, a constraint C, and a list of
already checked constraints MV

1 if C /∈ MV then // If C was not already checked

2 MV ← MV⋃ {C} // Record that C has been checked

3 AC ← A (EReg (C)) // Build the C-automaton

4 if L (A) ⊃ L
(

AC
)

then // If C is not redundant

5 if L
(

A × AC
)


= ∅ then // If C is not conflicting

6 A ← A × AC // Merge the C-automaton with the main FSA

7 MR ← MR⋃ {C} // Include C in the set of returned constraints

8 else // Otherwise, resolve the conflict
9 if R (C) 
= � then // If a relaxation of C, i.e., R (C), exists

10 resolveConflictAndRedundancy
(

A, MR,R (C) , MV
)

11 if C is a coupling constraint then

12 resolveConflictAndRedundancy
(

A, MR, fw (C) , MV
)

13 resolveConflictAndRedundancy
(

A, MR, bw(C), MV
)

log alphabet {a, b, c, d}. We also assume that the same metrics are defined for
those constraints that are not in M , yet are either their subsuming, negated,
forward or backward version. Again, this is common in the output of the afore-
mentioned algorithms. For the sake of readability, these additional constraints
are not reported in Table 2a. Table 2b shows the output that corresponds to the
post-processing of Table 2a. Constraints that are considered as redundant are
coloured in grey. Struck-out constraints are those that are in conflict with the
others and thus dropped from the returned set.

Given M , the first operation “removeSubsumptionHierarchyRedundancies”
prunes out redundant constraints based on the subsumption hierarchy. The pro-
cedure considers a removal of the subsuming constraints such that their support
is less than or equal to the subsumed one, and the elimination of forward and
backward constraints if the related coupling constraint has an equivalent sup-
port. Detail of this operations have already been described in [8]. The usefulness
of this procedure resides in the fact that it reduces the number of candidate
constraints to be considered, thus reducing the number of iterations performed
by the algorithm. In Table 2b, this operation is responsible for the dropping of
Participation(a), due to the fact that Init(a) is known to hold true.

Thereafter, we partition M into two subsets, i.e.: (i) MS, consisting of those
constraints that are verified over the entire event log (i.e., having a support of
1.0), and (ii) MU, containing the remaining constraints. The reason for doing
this is that the former is guaranteed to have no conflict: Given the fact that
constraints are mined using the alphabet of the event log, those that have a
support of 1.0 can be conjoined, giving raise to a consistent constraint model.
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Table 2. An example of input constraint set processing

(a) Input (b) Processed output

Even though constraints in MS are guaranteed to be conflict-free, they could
still contain redundancies. Therefore, the following part of the algorithm is ded-
icated to the elimination of redundant constraints from this set. To check redun-
dancies, we employ the characterisation of constraints in terms of FSAs. Instead,
constraints in MU may contain both redundancies and inconsistencies. Table 2b
presents the partition of M into MS and MU.

First, we initialise an FSA A to be the identity element w.r.t. automata prod-
uct. In other words, A is initialised to accept any sequence of events that map
to a task in the log alphabet. This automata incrementally incorporates those
constraints that are maintained in the filtered model. To set up the redundancy
elimination in MS as well as the redundancy and inconsistency elimination in
MU, we then order their constitutive constraints according the the following
criteria (in descending order of priority): (i) descending support (this is trivial
for MS, since all constraints have a support of 1.0);(ii) category – consider first
existence constraints, then positive relation constraints, and finally negative con-
straints; (iii) descending confidence; (iv) descending interest factor. This ranking
is of utmost importance, as it determines the priority with which constraints are
analysed. The priority, in turn, implicitly defines the “survival expectation” of a
constraint, as constraints that come later in the list are more likely to be pruned
if they are either redundant or conflicting.

We briefly explain the reason for this multi-dimensional ranking. Support is
the first criterion adopted, because we prefer to preserve those constraints that
are satisfied in the most part of the log. The category criterion is instead driven
by the expertise acquired in the last years in the context of Declare mining
[15,20]. In particular, we tend to preserve those constraints that have the poten-
tial of inducing the removal of a massive amount of other constraints, due to
redundancy. As an example, consider the case of the Init template: Given ρ ∈ A,
if Init(ρ) holds true, then also the relation constraint Precedence(ρ, σ) is guaran-
teed to hold true, for every σ ∈ A\{ρ}. This means that, in the best case, |A|−1
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constraints will be removed because they are all redundant with Init(ρ). Sim-
ilarly, consider the positive relation constraint ChainResponse(ρ, σ): It implies
NotChainSuccession(ρ, σ′) for every σ′ ∈ A \ {ρ, σ}. Thus, ChainResponse(ρ, σ)
has the potential of triggering the removal of |A| − 2 negative constraints due
to redundancy. The last criteria adopted pertain confidence and interest fac-
tor, in order to prefer those constraints whose parameters occur in most traces.
In Algorithm 1, the computation of this ranking is encapsulated inside func-
tion “sortBySupportCategoryConfidenceIF”, which returns a list of constraints
ordered according to the aforementioned criteria. In Table 2b, the result of the
sorting is reported.

After the sorting, constraints are iteratively considered for inclusion in the
refined model, by iterating through the corresponding ranked lists. Constraints
in the list of MS, i.e., CMS

i ∈ MS
list, are only checked for redundancy, whereas con-

straints in MU, CMU

i ∈ MU
list, are checked for both redundancy and consistency.

For every constraint CMS

i ∈ MS
list, redundancy is checked by leveraging language-

inclusion. In particular, this is done by computing the FSA ACMS
i for CMS

i ,

and then checking whether its generated language L
(
ACMS

i

)
is included inside

L (A), which considers the contribution of all constraints maintained so far. If
this is the case, then the constraint is dropped. Otherwise, A is extended with
the contribution of this new constraint (by computing the product A × ACMS

i ),
and CMS

i is added to the set MR of constraints to be returned. In the example
of Table 2b, CoExistence(a, d) is analysed after the existence constraints Init(a)
and End(d), based on the preliminary sorting operation. It thus turns out to be
redundant, because Init(a) and End(d) already specify that both a and d will
occur in every trace. Therefore, they will necessarily always co-occur.

Redundancy and consistency checking of the constraints CMU

i ∈ MU
list is

performed by the “resolveConflictAndRedundancy” procedure (Algorithm 2).
The procedure checks the consistency of those constraints that are not redun-
dant. The redundancy is, again, checked based on the language inclusion of the
language generated by the currently analyzed constraint L

(
ACMU

i

)
in L (A),

where A is the automaton that accumulates the contribution of all constraints
that have been kept so far. The consistency is checked through a language
emptiness test, performed over the intersection of L

(
ACMU

i

)
and L (A). This

is done by checking that L
(
A × ACMU

i

)

= ∅. In case a conflict is detected,

we do not immediately drop the conflicting constraint, but we try, instead, to
find a more relaxed constraint that retains its intended semantics as much as
possible, but does not incur in a conflict. To do so, we employ the constraint
subsumption hierarchy (cf. Section 2.2). In particular, we employ the relax-
ation operator to retrieve the parent constraint of the conflicting one, and
we recursively invoke the “resolveConflictAndRedundancy” procedure over the
parent. The recursion terminates when the first non-conflicting ancestor of the
conflicting constraint is found, or when the top of the hierarchy is reached.
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The two cases are resp. covered in the example of
Table 2b by ChainResponse(b, a), replaced by AlternateResponse(b, a), and by
NotChainSuccession(a, d), which is removed because a non-conflicting ancestor
does not exists. Note that NotChainSuccession(a, d) is to be eliminated because
of the interplay of the other two NotChainSuccession constraints, Init(a) and
End(d). ChainResponse(b, a) is in conflict with ChainResponse(b, c).

If the constraint under analysis is a coupling constraint, then we know that
it is constituted by the conjunction of a corresponding pair of forward and
backward constraints. In this situation, it could be the case that all the relax-
ations of the coupling constraint along the subsumption hierarchy continue to be
conflicting, but the conflict would be removed by just considering either its for-
ward or backward component (or a relaxation thereof). Consequently, we also
recursively invoke the “resolveConflictAndRedundancy” procedure on these two
components.

Finally, a last complete pass over constraints in MR is done, to check again
whether there are subsumption-hierarchy redundancies. If so, MR is pruned
accordingly.

5 Experiments and Results

Our experimentation is based on the application of the proposed approach to
the event log provided for the BPI challenge 2012. In the first set of experi-
ments, we use MINERful to mine the log. We discover the set of constraints
with a support higher than 75%, a confidence higher than 12.5%, and an inter-
est factor higher than 12.5%. The discovered constraints are 306. The total
execution time is of 9,171 milliseconds. By applying the proposed algorithm,
we obtain 130 constraints in total. In the original set of 306 there are 2 con-
flicting constraints that make the entire model inconsistent. These constraints
are NotChainSuccession(A PREACCEPTED, W Completeren aanvrag), conflicting with
ChainResponse(A PREACCEPTED, W Completeren aanvrag),
and NotChainSuccession(W Completeren aanvraag, A ACCEPTED), conflicting with
ChainResponse(W Completeren aanvraag, A ACCEPTED) for similar reasons. Note
that the percentage of reduction over the set of discovered constraints (that
was already pruned based on the subsumption hierarchy) is of 58%.

In the second set of experiments, we have applied the Declare Maps Miner
to mine the log. We discovered the set of constraints with a support higher
than 75% confidence higher than 12.5% and interest factor higher than 12.5%.
The set of discovered constraints pruned based on the diverse pruning techniques
provided by the tool contains 69 constraints. By applying the proposed algorithm
starting from this set, we obtain 41 constraints (with an execution time of 2,764
milliseconds). The percentage of reduction is still of around 40%.

Figure 2 shows the number of discovered constraints using MINERful. In
particular, the plot shows the percentage of templates that are redundant and
then pruned by the proposed algorithm and the ones that are not redundant and,
therefore, discovered. For some templates, it is easy to explain why a high per-
centage of constraints become redundant. For example, CoExistence constraints
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Fig. 2. Redundancy reduction w.r.t. templates

are more often pruned because they are weaker than others and are transitive so
that very often their transitive closures become redundant [16]. For example, if
CoExistence(a, b), CoExistence(b, c), and CoExistence(a, c) are valid, one of them
is always redundant. On the other hand, other constraints, like the ones based
on “chain” templates are stronger and not transitive and then pruned less often.

In general, redundant constraints can be pruned based on very com-
plex reduction rules. For example, from our experiments, we derived that
AtMostOne(A FINALIZED) becomes redundant due to the presence in combina-
tion of AtMostOne(A PARTLYSUBMITTED), Participation(A PARTLYSUBMITTED),
and AlternatePrecedence(A PARTLYSUBMITTED, A FINALIZED). Indeed,
Participation(A PARTLYSUBMITTED) and AtMostOne(A PARTLYSUBMITTED) com-
bined ensure that A PARTLYSUBMITTED occurs exactly once.
Then AlternatePrecedence(A PARTLYSUBMITTED, A FINALIZED) ensures that either
A FINALIZED does not occur or if it occurs it is preceded by the unique occurrence of
A PARTLYSUBMITTED without the possibilities of other occurrences of A FINALIZED

in between. Another example is NotSuccession(W Nabellen offertes, A SUBMITTED),
which is redundant with the combination of Init(A SUBMITTED),
AtMostOne(A PARTLYSUBMITTED), Participation(A PARTLYSUBMITTED),
and ChainSuccession(A SUBMITTED, A PARTLYSUBMITTED). Indeed,
AtMostOne(A PARTLYSUBMITTED) and Participation(A PARTLYSUBMITTED) com-
bined ensure that A PARTLYSUBMITTED occurs exactly once. This constraint
in combination with ChainSuccession(A SUBMITTED, A PARTLYSUBMITTED) and
Init(A SUBMITTED) ensures that A SUBMITTED occurs only once at the beginning
of every trace and, therefore, it can never occur after any other activity.



Ensuring Model Consistency in Declarative Process Discovery 157

All experiments were run on a machine equipped with an Intel Core i5-3320M,
CPU at 2.60GHz, quad-core, Ubuntu Linux 12.04 operating system. The tool has
been implemented in Java SE 7 and integrated with the MINERful declarative
process miner. It can be downloaded at: www.github.com/cdc08x/MINERful.

6 Related Work

Our research relates to three streams of research: Consistency checking for knowl-
edge bases, research on process mining, and specifically research on Declare.
Research in the area of knowledge representation has considered the issue of con-
sistency checking. In particular, in the context of Knowledge-based configuration
systems, Felfernig et al. [10] have challenged the problem of finding the core cause
of inconsistencies within the knowledge base during its update test, in terms of
minimal conflict sets (the so-called diagnosis). The proposed solution relies on
the recursive partitioning of the (extended) CSP problem into subproblems, skip-
ping those that do not contain an element of the propagation-specific conflict [13].
In the same research context, the work described in [11] focuses on the detection
of non-redundant constraint sets. The approach is again based on a divide-and-
conquer approach, that favours however those constraints that are ranked higher
in a lexicographical order. Differently from such works, we tend to exploit the char-
acteristics of Declare templates in a sequential exploration of possible solutions.
As in their proposed solutions, though, we base upon a preference-oriented rank-
ing when deciding which constraints to keep in the returned set.

The problem of consistency arises in process mining when working with
behavioural constraints. Constraint sets as those of the α algorithm [1] and
its extension [23] or behavioural profiles [21,22] are per construction consistent.
DCR graphs are not directly discussed from the perspective of consistency [19],
but benefit from our work due to their grounding in Büchi automata.

More specifically, our work is related to research on Declare and strate-
gies to keep sets small and consistent. In [17], the authors present an approach
based on the instantiation of a set of candidate Declare constraints that are
checked with respect to the log to identify the ones that are satisfied in a higher
percentage of traces. This approach has been improved in [15] by reducing the
number of candidates to be checked through an apriori algorithm. In [16], the
same approach has been applied for the repair of Declare models based on
log and for guiding the discovery task based on apriori knowledge provided in
different forms. In this work, some simple reduction rules are presented. These
reduction rules are, however, not sufficient to detect redundancies due to com-
plex interactions among constraints in a discovered model as demonstrated in
our experimentation.

In [2,3], the authors present an approach for the mining of declarative process
models expressed through a probabilistic logic. The approach first extract a set
of integrity constraints from a log. Then, the learned constraints are translated
into Markov Logic formulas that allow for a probabilistic classification of the
traces. In [4,14], the authors present an approach based on Inductive Logic Pro-
gramming techniques to discover Declare process models. These approaches

http://www.github.com/cdc08x/MINERful
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are not equipped with techniques for the analysis of the discovered models like
the one presented in this paper.

In [7,8], the authors introduce a two-step algorithm for the discovery of
Declare constraints. As a first step, a knowledge base is built, with informa-
tion about temporal statistics gathered from logs. Then, the statistical support
of constraints is computed, by querying that knowledge base. Also these works
introduce a basic way to deal with redundancy based on the subsumption hier-
archy of Declare templates that is non capable to deal with redundancies due
to complex interactions of constraints.

In [6], the authors propose an extension of the approach presented in [7,8]
to discover target-branched Declare constraints, i.e., constraints in which the
target parameter is replaced by a disjunction of actual tasks. Here, as well as
redundancy reductions based on the subsumption hierarchy of Declare con-
straints, also different aspects of redundancy are taken into consideration that
are characteristic of target-branched Declare, such as set-dominance.

7 Conclusion

In this paper, we addressed the problems of redundant and inconsistent constraint
sets that are potentially generated by declarative process mining tools. We for-
malised the problem based on the notion of automata-product monoid and devised
the corresponding analysis algorithms. The evaluation based on our prototypi-
cal implementation shows that typical constraint sets can be further pruned such
that the result is consistent and locally minimal. Our contribution complements
research on declarative process execution and simulation and provides the basis
for a fair comparison of procedural and declarative representations.

In future research, we aim at extending our work towards other perspectives
of processes. When mining declarative constraints with references to data and
resources, one of the challenges will be to identify comparable notions of sub-
sumption and causes of inconsistency. We also plan to follow up on experimental
research comparing Petri nets and Declare. The notions defined in this paper
help design declarative and procedural process models that are equally consistent
and minimal, such that an unbiased comparison would be feasible.
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Abstract. The aim of process discovery is to discover a process model
based on business process execution data, recorded in an event log.
One of several existing process discovery techniques is the ILP-based
process discovery algorithm. The algorithm is able to unravel complex
process structures and provides formal guarantees w.r.t. the model dis-
covered, e.g., the algorithm guarantees that a discovered model describes
all behavior present in the event log. Unfortunately the algorithm is
unable to cope with exceptional behavior present in event logs. As
a result, the application of ILP-based process discovery techniques in
everyday process discovery practice is limited. This paper addresses this
problem by proposing a filtering technique tailored towards ILP-based
process discovery. The technique helps to produce process models that
are less over-fitting w.r.t. the event log, more understandable, and more
adequate in capturing the dominant behavior present in the event log.
The technique is implemented in the ProM framework.

Keywords: Process mining · Process discovery · Integer linear program-
ming · Filtering

1 Introduction

Process mining [1] aims to assist in the improvement and understandability of
business processes. The basic input of process mining is process execution data,
stored in an event log. We identify three process mining branches. Process dis-
covery aims at constructing a process model given an event log. Conformance
checking aims at assessing the conformance of an event log to a given process
model. Process enhancement aims at extending, improving or repairing existing
process models using the two aforementioned disciplines as a basis. In process
mining, a process model’s quality is evaluated w.r.t. four essential quality dimen-
sions [2]. Replay fitness describes to what extent a model is able to reproduce
the behavior present in an event log. Precision describes what fraction of the
behavior allowed by a model is present in an event log. Generalization describes
to what extent a model is able to reproduce future, unseen, behavior of a process.
Simplicity describes the (perceived) complexity of a process model.
c© Springer International Publishing Switzerland 2015
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The ILP-based process discovery algorithm [3] encodes an event log as a set of
linear inequalities that act as a core constraint body of a number of integer linear
programs (ILPs) aimed at process model construction. The algorithm ensures
perfect replay fitness, i.e., all behavior present in the event-log can be repro-
duced by the resulting process model. Under the assumption that the event log
only holds frequent behavior, the algorithm works well. Real event logs typically
include low-frequent exceptional behavior, e.g. caused by employees deviating
from some normative process. As the algorithm guarantees perfect replay-fitness,
it guarantees that the resulting model allows for all exceptional behavior present
in the event log. In practice this leads to models that are incapable of capturing
the dominant behavior present in the event log.

To leverage the strict replay-fitness guaranteed by the ILP-based process
discovery algorithm we present a filtering technique that exploits the underly-
ing data abstraction used within the ILP formulation. Using a simple running
example we show that the approach enables us to filter exceptional behavior
from event logs and results in models that do not have perfect replay-fitness
w.r.t. the input data. However, the models are simpler and less over-fitting. To
evaluate the technique we have applied it on a set of artificially generated event
logs with varying levels of exceptional behavior.

The outline of this paper is as follows. In Section 2 we motivate the need
for an ILP-based process discovery algorithm able to cope with the presence of
exceptional behavior. In Section 3 we explain the effect of exceptional behavior.
In Section 4 we introduce the concept of sequence encodings. In Section 5 we
present a sequence encoding based filtering technique. In Section 6 we evaluate
the approach in terms of its effects on model quality. Section 7 concludes the
paper.

2 Motivation

The ILP-based process discovery algorithm uses Petri nets without arc-weights1

as a process model formalism. Petri nets allow for expressing complex control
flow patterns within event data, a valuable property from a business manage-
ment perspective. Consider the two models depicted in Figure 1a and Figure 1b

(a) Result of the ILP-based algorithm.
(b) Result of the Inductive Miner.

Fig. 1. Process discovery results of the conventional ILP-based discovery and the
Inductive Miner [4] based on a log consisting of milestone pattern based behavior.

1 We assume the reader to be acquainted with of Petri nets and refer to [1] for an
overview.
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which depict the result of applying the ILP-based process discovery algorithm
and the Inductive Miner [4] on event log L = [〈a, c, d, e, f〉10, 〈a, c, b, d, f〉10,
〈a, c, e, d, f〉10, 〈a, e, c, d, f〉10]2. L contains behavior generated by a model
exhibiting a milestone pattern [5]. The ILP-based discovery algorithm allows
us to discover the milestone pattern whereas the inductive miner neglects the
pattern and results in an under-fitting Petri net, i.e., it allows for much more
behavior compared to the behavior present in the event log. This is due to the fact
that the inductive miner assumes that the resulting model is block-structured.

Many process discovery algorithms assume models to be (semi)-structured
or assume that only local dependencies exist amongst activities. As a side effect,
the algorithms are not able to find complex control flow patterns. Examples of
such techniques are the Heuristics miner [6], the Fuzzy miner [7] and the Genetic
miner [8]. A selection of patterns that the ILP-based process discovery algorithm
is able to reproduce are patterns like interleaved parallel routing, critical section
and arbitrary cycles.

The impact of exceptional behavior present in event logs becomes clear when
regarding the two Petri nets depicted in Figure 2. The models are discovered
using conventional ILP-based process discovery. The event log used to discover
the model in Figure 2a only consists of traces that fit the model presented, i.e. no
exceptional behavior. The event log used for discovery of the model in Figure 2b
is a slightly manipulated version of the event log used for Figure 2a. The event
log contains little exceptional behavior, i.e., 5% of the traces in the event log
is manipulated. Clearly, the model depicted in Figure 2b is not capturing the
dominant behavior present in the event log.

The ILP-based process discovery algorithm allows for finding complex
patterns within business process event data yet at the same time the algorithm
suffers drastically from the presence of exceptional behavior in event logs. There-
fore we need means to cope with exceptional behavior in order to enable the

(a) Resulting model using an event log
without exceptional behavior.

(b) Resulting model using an event log with
a minimal amount of exceptional behavior.

Fig. 2. Discovered Petri nets after applying conventional ILP-based process discovery
on event logs with and without the presence of exceptional behavior in the event log.

2 For event logs we use the notion of a multiset of traces, using a control-flow
perspective.
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algorithm to discover models that more accordingly represent the dominant
behavior present in an event log.

3 Exceptional Behavior and ILP-Based Discovery

The essential component of the ILP-based process discovery algorithm is a set of
linear inequalities, based on the event log, that is used as a basic ILP constraint
body. The global constraint expressed by these inequalities is best explained by
the following sentence: Any place present in the resulting Petri net must allow
for each event in the input event log to be executed. This leads to the fact that
every trace in the log is completely reproducible by the resulting process model,
i.e. replay fitness is perfect. It is also the root cause of the algorithm’s behavior
w.r.t. to exceptional behavior, e.g. Figure 2.

Consider event log L = [〈a, b, c, d, e, g〉105, 〈a, c, b, d, e, g〉98, 〈a, b, c, d, e,
f, e, g〉87, 〈a, c, b, d, e, f, e, g〉117] which could be a result of 407 executions of the
process model depicted in Figure 3a. Consider place p5 having an incoming arc
from transition c and an outgoing arc to transition d. As place p5 is not having
an outgoing arc to transitions a, b, c, e, f and g it does not interfere with firing
these transitions at any point in time. The outgoing arc of place p5 allows for
firing d, only after firing transition c. This is in line with the event log because if
event d occurs, it is always (indirectly) preceded by event c. In fact, each place
within the Petri net allows for the execution of every activity in L. Hence, the
Petri net is discoverable by the ILP-based process discovery algorithm.

Consider the addition of the single trace 〈a, b, d, e, g〉 to event log L, resulting
in L′, consisting of 408 traces. Arguably we can deem the newly added trace as
exceptional behavior. The newly added trace can not be executed by the Petri
net depicted in Figure 3a due to the presence of p5, as it prevents transition d
from firing as long as transition c has not fired. Consequently, given event log L′

which only consists of one additional exceptional trace 〈a, b, d, e, g〉 w.r.t. event
log L, the ILP-based process discovery algorithm is unable to find the Petri net
of Figure 3a. If we replace p5 by p′

5 (Figure 3b), the resulting Petri net is again
able to execute every activity in L′.

p1

a
p2

p3

b

c

p4

p5

d
p6

e

f
p7

g

(a) Petri net corresponding to example event log L.

a

c

p′5

d

(b) Place p′
5.

Fig. 3. A Petri net corresponding to event log L, discoverable by the ILP-based process
discovery algorithm (3a) and an alternative place p′

5 for place p5 given L′ (3b).
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4 Sequence Encoding

The exact construction of the linear inequalities used by the ILP-based process
discovery algorithm is outside of the scope of this paper, hence we refer to [3,9].
It suffices to know that the set of linear inequalities is solely based on the prefix
closure of the event log. The prefix closure of L′ is the set of sequences L′ s.t.
each sequence in L′ is either a prefix of a sequence in L′ or a prefix of a sequence
in L′. Extrapolation of trace frequency information present in the event log to
the prefix closure is trivial, i.e., L′ = [ε408, 〈a〉408, 〈a, b〉193, 〈a, c〉215, 〈a, b, c〉192,
〈a, b, d〉, 〈a, c, b〉215..., 〈a, b, c, d, e, f, e, g〉87, 〈a, c, b, d, e, f, e, g〉117].

Each non-empty sequence in L′ is mapped to a linear inequality, representing
an ILP constraint. These linear inequalities can be represented by a pair con-
sisting of the Parikh-based multiset representation of the sequence’s prefix and
the last event of the sequence. Such tuple is deemed a sequence encoding. The
Parikh-based multiset representation of a sequence is just a mutliset denoting
the number of occurrences of each element in the sequence, e.g. given sequence
〈a, b, b, c〉, its Parikh-based multiset representation is [a, b2, c]. Computing
sequence encodings is straightforward, e.g. for 〈a〉 we have ([], a), for 〈a, b〉
we have ([a], b), for 〈a, c, b, d, e, f, e, g〉 we have ([a, b, c, d, e2, f ], g), etc. Differ-
ent sequences can have the same sequence encoding and therefore map to the
same constraint. Consider 〈a, b, c, d〉 and 〈a, c, b, d〉 both mapping to ([a, b, c], d).
The sequence encoding of ε is defined as ([], ε).

5 Sequence Encoding Filtering

The presence of 〈a, b, d, e, g〉 in L′ causes the ILP-based process discovery algo-
rithm to be unable to find place p5 of the Petri net depicted in Figure 3a. As the
body of constraints of the ILP-based process discovery algorithm, i.e., the set of
linear inequalities, specifies this behavior, we need means to remove the inequal-
ities related to 〈a, b, d, e, g〉 from the constraint body. We do so by constructing a
directed acyclic graph where each sequence encoding, i.e., each constraint, acts as
a vertex. The sequence encoding ([], ε) always acts as a root vertex. Two vertices
are connected by an arc if the arc’s source could be a prefix of the arc’s target.
The arcs are labeled using sequence frequencies present in the prefix closure of
the event log. An example of such graph, based on L′ is depicted in Figure 4.

In L′ the empty sequence ε acts as a prefix of 〈a〉. Hence ([], ε) has an outgoing
arc to ([], 〈a〉) labeled with 408, i.e., in 408 cases ε acts as a prefix of 〈a〉. Sequence
〈a〉 on its turn acts as a prefix of 〈a, b〉 and 〈a, c〉, thus, ([], a) is connected to
([a], b) and ([a], c). The edge weights of the arcs from 〈a〉 to 〈a, b〉 and 〈a, c〉 are
related to the number of times 〈a〉 acts as a prefix of 〈a, b〉, 〈a, c〉 respectively.
Applying the previous rationale on all nodes yields the graph as presented in
Figure 4.

After constructing the graph, we traverse it in a breadth-first manner and cut
off branches that represent exceptional behavior. We start at its root and assess
what outgoing arcs have a too low arc weight given some decision function.
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Fig. 4. Sequence encoding graph based on event log L′. Filtering affected the branch
starting at ([a], b) and ending in ([a, b, d, e], g).

Once we have decided what outgoing arcs should remain we traverse each of
these arcs. From the end-point of such arc we again evaluate all outgoing arcs.
Only those constraints corresponding to a vertex present in the filtered sequence
encoding graph will be added to the ILP constraint body. The decision function
that decides whether we cut off a certain branch is a parameter of the approach.

In the implementation of the algorithm we have adopted the following app-
roach. For each vertex that we decide to keep, we always include the outgoing
edge with the maximum edge label value. Additionally we include all other edges
e that have a lower (or equal) value than (to) the maximum value, as long as
the difference of e’s value w.r.t. the maximum is within some bounded range.
The bounded range is typically some fraction of the maximum, this fraction is
deemed the cut-off coefficient cc. As an example we apply this technique on the
graph depicted in Figure 4 with cc = 0.25.

The root has one arc and thus we keep this arc. Traversing the arc leads us
to vertex ([], a) which has two outgoing arcs. The outgoing arc from ([], a) with
the maximum label is the arc to ([a], c), labeled 215. This arc will be kept in
the graph. The bounded range for any other arc starting from vertex ([], a) is
computed by multiplying the cut-off coefficient with the maximum value for this
node, i.e., the bounded range is 0.25 × 215 = 53.75. Any edge going out of ([], a)
that has a value greater than or equal to 215 − 53.75 = 161.25 is kept in the
graph. In this case the arc from ([], a) to ([a], b) will remain as it has a value
of 193. In vertex ([a], b) we identify that we keep the edge to ([a, b], c), which
has the maximum label. We only keep outgoing arcs from ([a, b], c) with a label
value greater than or equal to 192 − 0.25 × 192 = 144. As a result we will drop
the edge to ([a, b], d) as it only has a label value of 1. The result of repeating
the filtering procedure on all vertices is visualized Figure 4 where the filtered
branch, i.e., starting at ([a], b) and ending in ([a, b, d, e], g), is graying out. Note
that using the aforementioned approach all constraints related to (prefixes of)
〈a, b, d, e, g〉 are remove from the constraint body. As a consequence, place p5 in
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Figure 3a becomes a feasible place again. Thus, the model depicted in Figure 3a
can be found using sequence encoding filtering applied on L′. As the model does
not allow for 〈a, b, d, e, g〉, we no longer guarantee perfect replay fitness w.r.t. L′.

6 Evaluation

For evaluation we used an implementation of sequence encoding filtering present
in the HybridILPMiner3 package within the ProM framework (http://www.
promtools.org). Here we discuss effects on model quality. For a quantification
of the effect on ILP solve time we refer to [9]. The event logs used for eval-
uation are artificially generated event logs originating from a study related to
the impact of exceptional behavior on rule-based approaches in process discov-
ery [10]. The event logs contain different levels of exceptional behavior and are
based on two ground truth event logs. The ground truth event logs, a22f0n00
and a32f0n00, are free of exceptional behavior, i.e. all traces fit the originating
model. a22f0n00 consists of 22 different event classes whereas a32f0n00 consists
of 32 different event classes. Out of each ground truth event log a total of four
new logs is generated, consisting of either 5%, 10%, 20% or 50% of manipu-
lated traces. Manipulation of traces is performed by either tail/head of sequence
removal, random part of sequence body removal or interchange of two randomly
chosen events [10].

We primarily focus on precision, i.e. the amount of behavior allowed by the
model also present in the event log. If all behavior allowed by the model is present
in the event log, precision is maximal and equals 1. The more behavior is allowed
by the model that is not present in the event log, the lower the precision value
will be. By definition, the conventional ILP-based process discovery algorithm
will result in models that allow for all behavior present in the event log. Thus,
if we use the conventional algorithm on a manipulated event log, the resulting
model will allow for all exceptional behavior. As the exceptional behavior is
not present in the ground truth events log, computing precision of the resulting
model based on the ground truth log is expected to be low. On the other hand, if
we discover models using an algorithm that is more able to handle the presence
of exceptional behavior, we expect the algorithm to allow for less exceptional
behavior and, w.r.t. the ground truth model, we expect a higher precision value.

In Figure 5 the results of applying the conventional ILP-based process discov-
ery algorithm and three different sequence encoding filtering instantiations for
each event log are depicted. We used the branch cut-off technique as described in
Section 5 with cut-off coefficients 1

4 , 1
2 , 3

4 . We measured both the replay-fitness
and precision based on the ground truth event logs. Replay-fitness of the discov-
ered models w.r.t. the ground truth event logs using all four approaches remains
1 in all cases4. Due to the incapability of handling exceptional behavior of the
conventional algorithm, as expected, precision drops rapidly. For the sequence
3 https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Branches/

experiments/2015 bpm ilp filtering-0.2.1/
4 One exception for SEF with cc = 1

2
, where replay fitness equals 0.99515.

http://www.promtools.org
http://www.promtools.org
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Branches/experiments/2015_bpm_ilp_filtering-0.2.1/
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Branches/experiments/2015_bpm_ilp_filtering-0.2.1/
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Fig. 5. Precision measurements based on event logs with exceptional behavior. Con-
ventional ILP-based process discovery (Conv.) and sequence encoding filtering (SEF)
was used for porcess model discovery.

encoding filtering we identify the 1
4 variant to outperform the other two. This

is explained by the fact that this variant is the most rigorous filter and removes
the most constraints. It is clear that the decrease of precision for the sequence
encoding based approaches is less severe compared to the conventional approach.
This is in line with the rationale presented before, i.e., we expect the filtering
based approaches to be more able in handling exceptional behavior. Therefore,
we conclude that the filtering based models discover Petri net patterns that
more accurately represent the dominant behavior in the input event log. Thus,
the newly presented techniques allow us to successfully apply filtering whilst
using ILP-based process discovery as a basis.

7 Conclusion

The work presented in this paper is motivated by the observation that the exist-
ing ILP-based process discovery algorithm is unable to cope with exceptional
behavior in event logs. ILP-based process discovery has several advantages, but
the inability to abstract from infrequent exceptional behavior makes it unus-
able in real-life settings. We presented the sequence encoding filtering technique
which enables us to apply filtering exceptional behavior within the ILP-based
process discovery algorithm. The technique allows us to find models with accept-
able trade-offs w.r.t. replay fitness and precision. We showed that the technique
enables us to find Petri net structures in data consisting of exceptional behavior,
using ILP-based process discovery as an underlying technique.
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Abstract. Analysis of performance is crucial in the redesign phase of
business processes where bottlenecks are identified from the average wait-
ing and service times of activities and resources in business processes.
However, such averages of waiting and service times are not readily avail-
able in most event logs that only record either the start or the completion
times of events in activities. The transition times between events in such
logs are the only performance features that are available. This paper
proposes a novel method of estimating the average latent waiting and
service times from the transition times that employs the optimization
of the likelihood of the probabilistic model with expectation and maxi-
mization (EM) algorithms. Our experimental results indicated that our
method could estimate the average latent waiting and service times with
sufficient accuracy to enable practical applications through performance
analysis.

Keywords: Process mining · Performance analysis · Latent waiting and
service times · Convolution of gamma distributions · EM algorithm

1 Introduction

The role of process mining has become much more important in the redesign
phases of business processes. Recent developments in process mining have been
based on the Process-Aware Information System (PAIS) [5] including the
Workflow Management (WFM) system and the Business Process Management
(BPM) system, which record business events as event logs. Process models and
performance data extracted from observed event logs have played significant roles
in business process improvement, redesign, re-engineering, and optimization.

Performance analysis that deals with time and frequency is especially cru-
cial in improvements to business processes to reduce labor costs and to increase
customer satisfaction. Event logs typically observed on PAIS contain the assign-
ment, start, and end times of events in activities, from which useful statistics can
be inferred. We can easily calculate the average waiting time and the average

c© Springer International Publishing Switzerland 2015
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service time of individual activities or resources from such event logs to discover
bottlenecks in business processes.

The average of activity transition times, which are differences between the
source end and destination start times, provides information on how many time
resources are consumed outside of activities. However, the domain that can be
improved is limited to inside the activities in most cases. Hence, the average
transition time needs to be split into two parts, i.e., the source and destination
activity related parts, to know how much of the transition time the activities
consume in two cases:

1. When activity transition times tend to be very long, the source or destination
activity must be a bottleneck.

2. The duration of activities cannot be known when only a single timestamp
is observed for each activity. These types of event logs usually arise from
non-PAIS. For example, legacy BPMS may only recode the end time, and
Kuo et al. [7] faced start times only from logs in the clinical system of a
hospital.

Such problems with incompleteness become more serious in non-PAIS. Nev-
ertheless, the analysis of such incomplete event logs is indeed required by BPM
system vendors. In fact, if the vendor can demonstrate promising improvements
to business processes based on logs from the existing non-PAIS when customers
of a vendor consider system migration from non-PAIS to PAIS, customers can
easily be encouraged to accept the proposal for migration by the vendor.

We modeled the latent average waiting and service times of event logs under
two assumptions:

1. The probability distribution of time duration only depends on the present
state, and not on the previous sequence of events that preceded it, which are
so called Markov properties.

2. The transition times are composed of latent waiting and service times, and
individual time durations are i.i.d. with Gamma distributions.

We aimed at estimating the parameters of Gamma distributions for latent wait-
ing and service times based on the maximum likelihood estimation (MLE). Since
these were latent variables, the EM (expectation maximization) algorithm was
applied to infer the parameters. We evaluated our method with artificially gen-
erated data, and an event log “teleclaim” referred to by van der Aalst [1].

Performance analysis is discussed in Section 2 in terms of process mining.
Observable and unobservable performance indicators are described in Section 3.
The probabilistic model is defined in Section 4, and it is estimated in Section 5.
Finally, the experimental results are presented in Section 6.

2 Related Work

A number of studies and tools have been developed to summarize performance
data from workflow logs or event logs. Ferreira [6] gathered the minimum, max-
imum, and average activity durations of health care processes to analyze the
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lengths of stays by patients in a hospital. Lanz et al. [8] have accurately defined
various time patterns that could be observed from event logs.

Performance summary data can also be utilized in the running process, i.e.,
in so called “operational support”. The prediction of the remaining lead time
in instances of the running process has been presented by van der Aalst et al.
[2,3]. Sindhgatta et al. [11] assigned the tasks of a running process to appropri-
ate workers by analyzing the average service time of activities. Rogge-solti and
Kasneci [9] used the average service time of activities to detect anomalies in the
instance of running processes.

Activities in business processes have been analyzed using queueing models
in some literature [10,12] based on rich event logs that contain several types
of events such as ‘Entry’, ‘Assign’, ‘Start’ and ‘End’. Arrival processes and the
number of services (operators) need to be described beforehand in these models.
Nevertheless, difficulties arise since the arrival processes can vary by the behavior
of the preceding activities, and the number of available operators in the back
office can vary by a day or weeks as well as the time zone of the day.

Since assumptions about the arrival processes and the number of services are
usually not recorded in event logs, they are determined based on the experience
of data analysts. We tried to make our method work with as few assumptions as
possible to avoid making estimations with incorrect assumptions. Our proposed
method estimated latent waiting and service times without any assumptions
about the arrival processes or the number of services. We only assumed that the
time intervals were distributed with Gamma distributions because it includes
rich and flexible expressions.

3 Performance Indicators of Activities Deliverable from
Event Logs

Event sequences provide us some performance indicators of activities due to the
difference in the two timestamps between two events. When an event sequence
with a timestamp (e.g., in Fig. 1) is given, some indicators can be explicitly
derived such as waiting time, service time, activity duration, and transition time.

Fig. 1. Observable and unobservable performance indicators on event log.
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The timestamps when one activity passes control to another are not explic-
itly recorded. We assumed that the latent service time, i.e., the first part of
the transition time, would be controlled by the source activity, and the latent
waiting time, i.e., the last part of the transition time, would be controlled by
the destination activity in this research.

4 Probabilistic Model

We used the gamma distribution as the probability density function of the
latent waiting and service times because it has enough flexibility to model
the time duration composed in the practice of several small activities. For
example, the underwriting activity in the insurance industry includes under-
standing of incoming applications, measuring of risk exposures, and determin-
ing of premiums that need to be charged to insure the client against risk. Its
probability density function over a probabilistic variable X > 0 is defined by
p(X; q, α) = Xq−1e− X

α /Γ(q)αq with a shape parameter q > 0 and a scale param-
eter α > 0 where Γ(q) is the gamma function Γ(q) =

∫ ∞
0

zq−1e−zdz. We write
this as X ∼ G(q, α).

We assumed that the transition time from a source to different destinations
would share the same latent service time at the transition source. In addition,
the transition time from different sources to one destination shares the same
latent waiting time at that transition destination. For example, Fig. 2 illustrates
the transition time and their latent waiting and service times on an XOR-split
gateway. We expect that latent times can be estimated if we simultaneously solve
the inverse problem.

Let A be the set of activities, and T be the set of transitions. Further, let
Tij be the random variable of the transition time from i ∈ A to j ∈ A, Si

be the random variable of the latent service time of activity i ∈ A, and Wj

be the random variable of the latent waiting time of activity j ∈ A. From the
assumption in Section 1, Si ∼ G(qi, αi), Wj ∼ G(rj , βj), and Tij = Si + Wj

for all (i, j) ∈ T (see Fig. 3). The probabilistic density function of Tij can be
obtained from convolutional integration p(Si; qi,αi)∗p(Wj ; rj ,βj) as:

Fig. 2. Couple of transition times
with couple of latent waiting and
single shared latent service times
on XOR-split gateway. Fig. 3. Probabilistic model focusing on activity i.
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Fig. 4. Examples of BPMN notations. Time peri-
ods of notations on left can be considered as sum
of two latent times following gamma distribution.
Time periods of notations on right do not match
our model well.

Fig. 5. Sequential process (Top)
and generated XOR-split/join
gateways (Bottom) by changing
an activity identifier from name
to name + resource.

p(Tij ; θij) =
e−Tij/βj

Γ(qi)Γ(rj)α
qi

i β
rj

j

f(Tij ,θij) (1)

where we define θij as the vector (qi, αi, rj , βj), and f(x,θ) =∫ x

0
zq−1(x − z)r−1e(

1
β − 1

α )zdz.
This probabilistic model can describe the Business Process Model and Nota-

tion (BPMN) on the left of Fig. 4. However, it cannot adequately describe the
AND-join gateway and time event on the right of Fig. 4. Another limitation of
this model is that the transition time on stand alone sequential process, like that
at the top of Fig. 5, is always split into the same two distributions. However, it
is possible to generate XOR-split/join gateways by changing the definition of an
activity identifier from name to name + resource.

5 Estimation of Parameters

Let Θ be a vector (q1, . . . , α1, . . . , r1, . . . , β1, . . . ) that includes all shape and
scale parameters. Suppose the transition times tijk ((i, j) ∈ T , k = 1, . . . , nij)
are independent and observed to be identically distributed, we aim to find an
estimator Θ̂ which would be as close to the true value Θ0 as possible by using
MLE. The estimators give us the average latent waiting and service times of
activity i as r̂iβ̂i and q̂iα̂i respectively. The log likelihood function becomes:

log L =
∑

(i,j)∈T

nij∑
k=1

log p(tijk; θij) (2)

However, the parameters that maximize this function are impossible to solve
explicitly with equation transformations.

The EM algorithm [4] is a general technique for finding maximum likelihood
solutions to probabilistic models that have latent variables. The observed vari-
ables in this case are Tij and the latent variables are Si. Note that Wj vanishes
with Wj = Tij −Si. The EM algorithm iteratively maximizes the likelihood with
the expectation and maximization steps.
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In the expectation step, we construct a function:

Q(Θ,Θ′) =
∑

(i,j)∈T

nij∑
k=1

∫ tijk

0

p(Si| tijk; θij) log p(tijk , Si; θ′
ij)dSi

to approximate the log likelihood (2), where the joint probability p(T, S; θ) =
p(S; l, α) p(T − S; m,β) = Sq−1(T−S)r−1

Γ(q)Γ(r)αqβr e− T
β e(

1
β − 1

α )S and the posterior proba-

bility p(S| T ; θ) = p(T, S; θ)/p(T ; θ) = Sq−1(T−S)r−1

f(T,q,α,r,β) e(
1
β − 1

α )S .
In the maximization step, we find a new parameter Θ′ that maximizes Q

while holding the old parameter Θ. The optimal point satisfies ∂Q
∂Θ′ = 0. By

substituting ∂Q
α′

i
= 0 into ∂Q

q′
i

= 0, and ∂Q
β′

j
= 0 into ∂Q

r′
j

= 0, we obtain:

ψ(q′
i)−log(q′

i)− 1∑
j∈A

nij

∑
j∈A

nij∑
k=1

g(tijk, θij)

f(tijk, θij)
+log

⎛
⎜⎜⎝ 1∑

j∈A
nij

∑
j∈A

nij∑
k=1

f1(tijk, θij)

f(tijk, θij)

⎞
⎟⎟⎠=0 (3)

ψ(r′
j)−log(r′

j)− 1∑
i∈A

nij

∑
i∈A

nij∑
k=1

h(tijk, θij)

f(tijk, θij)
+log

⎛
⎜⎜⎝ 1∑

i∈A
nij

∑
i∈A

nij∑
k=1

f2(tijk, θij)

f(tijk, θij)

⎞
⎟⎟⎠=0 (4)

where we have defined g(x,θ) =
∫ x

0
zq−1(x − z)r−1e(

1
β − 1

α )z log z dz,

h(x,θ) =
∫ x

0
zq−1(x − z)r−1e(

1
β − 1

α )z log(x − z)dz, f1(x,θ) = f(x, q + 1, α, r, β),
f2(x,θ) = f(x, q, α, r+1, β), and ψ (x) is the digamma function d

dx ln Γ(x). The
optimal shape parameters q′

i and r′
j are given by solving these nonlinear one

variable equations. Then, by substituting the shape parameters into ∂Q
α′

i
= 0 and

∂Q
β′

j
= 0, we obtain the optimal scale parameters:

α′
i =

1

q′
i

∑
j∈A

nij

∑
j∈A

nij∑
k=1

f1(tijk, θij)
f(tijk, θij)

, β′
j =

1

r′
j

∑
i∈A

nij

∑
i∈A

nij∑
k=1

f2(tijk, θij)
f(tijk, θij)

. (5)

6 Experimental Results

We implemented our method and the synthetic log generator by using GNU
Octave. The programming language was required to support a numerical inte-
gration and a root-finding algorithm.

6.1 Synthetic Log

We evaluated our method using artificially generated random numbers with
three gamma distributions whose parameters were known in a business pro-
cess of Fig. 6. We generated random numbers s1

1, . . . , s
200
1 as the instance of
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Fig. 6. XOR-split gate-
way (Top) and stand alone
sequential process (Bottom)
to generate synthetic logs.

Fig. 7. Estimators of each iteration with the synthetic
log data generated on process in Fig. 6 (Top).

latent service time S1 ∼ G(3, 5), w1
2, . . . , w

100
2 as the instance of latent wait-

ing time W2 ∼ G(2, 4), and w1
3, . . . , w

100
3 as the instance of latent waiting

time W3 ∼ G(4, 6). Based on ti12 = si
1 + wi

2 and ti13 = si+100
1 + wi

3 for each
i = 1, . . . , 100, We then created transition times t112, . . . , t

100
12 and t113, . . . , t

100
13 .

For the XOR-split gateway shown by the top of Fig. 6, two hundreds of
transition times from A1 to A2 and A1 to A3 were generated. Fig. 7 illustrates
the history of the estimators over iterations. The estimators converged with
values close to the true average latent waiting and service times as the iteration
progressed.

For the sequential process shown by the bottom of Fig. 6, one hundred of
transition times from A1 to A2 were generated. The estimaters of the average
latent waiting time of A1 and service time of A2 were the same value, the half
of the sample average of transition times from A1 to A2, and not close to the
true values. This result suggests that our method cannot decompose latent times
from stand alone transition times as we discussed in Section 4.

6.2 Teleclaim Log

We evaluated our method with an event log ”teleclaim” referred to by van der
Aalst [1] that describes the handling of claims in an insurance company. It con-
tains an instance of an XOR-split gateway from an ”Incoming Claim” activity
to a ”B check” and an ”S check” activities. The average transition time from
an ”Incoming Claim” to the ”B check” and the ”S check” were 2518 (s) for the
former and 936 (s) for the latter.

We found that the estimator of the average latent service time of an ”Incom-
ing Claim” was 508 (s) from the results in this experiment. The estimator of the
average latent waiting time of the ”B check” and the ”S check” were 1415 (s)
for the former and 105 (s) for the latter. These results indicate the ”Incoming
Claim” incurred a relatively heavy time cost after the activity is completed.



Estimation of Average Latent Waiting and Service Times 179

7 Conclusion

We proposed three unobservable performance indicators, i.e., the latent waiting
and service times and the latent activity duration. These indicators are not
only useful in the performance analysis but also in predicting the time of a new
sequence of activities that was not observed in event logs. We also proposed a
statistical algorithm to estimate averages of such unobservable indicators with
some assumptions.

We considered that these assumptions were reasonable in practice and our
method could be applied to various event logs. The estimators obtained with
our method were in good agreement with the true average latent times in the
experimental results with artificially generated numbers.

Decomposition of transition times on AND-join gateway remains as one of
the key issues to be clarified. Experiments with event logs that include a large
number of events and gateways are also required as future work.
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Abstract. An improvement or redesign of a process often starts by
modifying the model supporting the process. Analysis techniques, like
simulation, can be used to evaluate alternatives. However, even a small
number of design choices may lead to an explosion of models that need
to be explored to find the optimal models for said process. If the explo-
ration depends on simulation, it often becomes infeasible to simulate
every model. Therefore, for throughput time, we define a notion of mono-
tonicity to reduce the number of models required to be simulated whilst
the optimal models are still found.

1 Introduction

While improving or redesigning a business process, one can model each part of
the process in various ways. Even if each part has a limited number of variants,
the combination of options may cause an explosion of possible models. This
set of possible models, we call a model collection. As a redesigner is often not
interested in just any model, she would like to have qualitative and quantitative
information on the models in the model collection such that she can select the
most suitable models, assuming one or more relevant performance criteria. In
this paper, we are particulary interested in the throughput time (sometimes
called flow time, sojourn time, or lead time) of a model and the best models
are those models having a significant lower throughput time than the other
models. Unfortunately, brute-force approaches require the simulation of each
model, which is a time-consuming endeavour. Therefore, we present a technique
to reduce the amount of models needed to be simulated, whilst the best models
are still found. We have chosen throughput time as this is a well-understood and
often studied Key Performance Indicator (KPI) which can only be deduced from
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the dynamic behaviour of a model contrary to some other KPIs, e.g., number of
control-tasks, which can be deduced from the structure of the model.

The aforementioned reduction is achieved by defining a monotonicity notion,
which provides a partial order over the models. If we take the model collection
on the left-hand side of Fig. 1, where each dot corresponds to a model, our
particular monotonicity notion may allow for the partial order on the right-
hand side of the same figure. Our monotonicity notion is based on the structure
of the process models and gives a so-called at-least-as-good relation. If we can
deduce monotonicity between a model M and a model M ′, then we know that
the throughput time of M is at-least-as-good as the throughput time of M ′.
By having such a partial order, we can limit our search for the optimal models,
i.e., to the models A and B in Fig. 1. We know that models not considered
have poorer or equal throughput performance. In Fig. 1, if we have simulated
A and B and A is better than B, then we know that all models connected to
B via the partial order do not need to be simulated as A is better than all
of them. In this paper, the structural comparison between two models is done
using a divide-and-conquer approach. In this approach, each model is seen as a
collection of weighted runs (runs are sometimes called process nets [1], or partial
orders). Based on the structures of two runs, we can decide whether one run is
at-least-as-good as the other run. Then, using the run weights, representing the
execution likelihood, we can decide whether one model is at-least-as-good as
another model.

This paper is organised as follows: In Sect. 2, we present our runs, models,
and model collections. Our monotonicity notion is presented in Sect. 3. Finally,
we conclude our paper with related work (Sect. 4) and the conclusions (Sect. 5).
A more extensive version of this paper can be found in [2].

2 Model Collection

In this paper, a model collection consists of models, while a model itself consists
of weighted runs [1] (see Fig. 2). A run specifies the partial order of activities
needed to be executed for a particular case and does not contain any choices. A
run consists of vertices which are labelled with activities. In Fig. 2, we have a
run P1 with a vertex v1 labelled with activity a. Next to this, a run specifies the

Fig. 1. Using monotonicity, we can transform the model collection on the left to the
partially ordered model collection on the right. As a result, fewer alternatives need to
be explored.
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causal relationship between the vertices by means of edges. The edge between
the vertices v4 and v5 in run P ′

1 means that e can only start once vertex v4
executing d has been completed. We have abstracted from the transitive closure
of the edges. The transitive closure of the edges we call paths. We have chosen
this representation for our models as this fits better with our divide-and-conquer
technique. In [1], an algorithm is presented to transform a Petri net into a col-
lection of runs. By limiting the number of times an iteration is executed, it is
possible to obtain a finite set of runs.

A model consists of runs and these runs combined define the behaviour of a
model. As not every run must be equally probable, we define a weight function
(w) within the model. Furthermore, a model specifies which resources can execute
which activity (ar), e.g., in model M in Fig. 2, activity a can be executed by
resources r1 and r6.

Note that a resource can execute only one activity, but multiple resources
can execute the same activity. We require that a resource can only perform a
single activity to guarantee that we can compare the resource utilisation of both
models and thus the queue time per activity based on the structure. This is
due to the fact that even a small increase in the resource utilisation can have a
significant effect on the throughput time.

A model collection consists of models, a set of activities (A), a set of resources
(R), a random variable describing the inter-arrival time of new cases (Ka), and
a function giving the processing time of each activity (KPT ). Note that our
model collection is less general than most other model collections as our model
collection is a body of scenarios for executing the same process.

3 Throughput Time

As mentioned before, we focus on the throughput time. The throughput time of
a single case is the time between arrival of this case and the moment the case

a b c

dr1
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Run P1

Run P2

Model M
w(P1) = 0.5

d

Run P1
Model M

e

Model Collection MC
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Fig. 2. An example model collection.
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x

FTT (x)
FTT (x) of M =

FTT (x) of M =

Fig. 3. Example throughput time KPIs for the models from Fig. 2.

is finished. We consider the situation where the model and runs are in steady
state.

To save space, within this section, MC is a model collection, M and M ′ are
models from MC, P and P ′ are runs from M and M ′ respectively.

We are interested in the best models, that is, the models which have a sig-
nificantly lower throughput time, which requires the comparison of two random
variables. For this comparison, we use the Cumulative Distribution Function
(CDF) of the throughput time which we also use as our notion of through-
put time KPI. Note that our approach is not limited to this definition of the
throughput time KPI. Any definition works as long as it is monotone, i.e., if the
throughput time increases, then the KPI should decrease.

Definition 1 (Throughput time KPI). Let KTT be the random variable
describing the throughput time, let P(KTT ≤ x) be the probability that KTT

is at-most x, then the throughput time KPI, denoted by FTT , is defined as:
∀x(FTT (x) = P(KTT ≤ x)).

Since our models consist of a collection of runs with a weight function, we
define the throughput time of a model as the weighted sum of the throughput
times of the runs. The at-least-as-good relation is defined as:

Definition 2 (At-least-as-good). Let FTT and F ′
TT be two values for the

throughput time, then the former is at-least-as-good as the latter if ∀x(FTT (x) ≥
F ′
TT (x)).

By having that the throughput time KPI of M is above that of M ′, i.e., the
probability that it stays below a certain point x is greater, we guarantee that in
general M has a lower throughput time. It is, however, still possible that for an
individual case the throughput time of M ′ is better than M . We are, however,
interested in an overall comparison.

Taking the models from the collection in Fig. 2, Fig. 3 shows the possible
throughput time KPIs for the models. By having that the KPI of M is above
M ′, we conclude that M is at-least-as-good as M ′. For the runs and vertices, we
can draw similar graphs and also for runs and vertices it holds that if one KPI
is above that of the other, then the former is at-least-as-good as the latter.

We define the at-least-as-good relation first between runs and show how this
can be deduced based on the structures of the runs. Afterwards, we show how
the at-least-as-good relation between runs can be leveraged to the model.
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3.1 At-Least-as-Good Runs

Informally when comparing the structures of the runs P and P ′, if P has fewer
work, or has more flexibility in the order of executing activities, then P can
do things faster than P ′ (assuming M has not less resources per activity). We
operationalise this by comparing the vertices in P and P ′ (fewer vertices is fewer
work), and by comparing the edges (flexibility in the ordering). Next to this, we
need to make the requirement that we only compare vertices with the same label.
When comparing two runs, we abstract from the respective models these runs
are part of. In the comparison of two models, we shall elaborate on this.

Since which resource can execute which activity is defined on model level, we
first introduce when a model M is at-least-as-good as M ′ with respect to the
resource allocation, denoted by M ≥ar M ′. This is if every activity in M can be
performed by at least the same resources as that activity in M ′.

Definition 3 (Structurally at-least-as-good runs). Let M ≥ar M ′, and let
map be an injective mapping from vertices in P to vertices of P ′, then we say P
is structurally at-least-as-good as P ′ given mapping map (denoted by P ≥map

s P ′)
if and only if: (1) every vertex in P is mapped onto some vertex in P ′, (2) every
path in P is mapped to some path in P ′, and (3) every vertex in P is mapped
onto a vertex in P ′ labelled with the same activity. We say P is structurally
at-least-as-good as P ′ (denoted by P ≥s P ′), if a mapping map exists such that
P ≥map

s P ′.

For Def. 3, we take two runs and compute the partial order, e.g., if we take
P1 and P ′

1 from Fig. 2, we obtain the partial orders in Fig. 4 (we have given
the vertices from P ′

1 different names). Between these partial orders, we create a
mapping which does not need to be unique, e.g., v4 could also have been mapped
onto v′

6. Taking also ar and ar′ from Fig. 2 into account, we say P1 is structurally
at-least-as-good as P ′

1 since there exists a mapping such that: (a) each vertex in
P1 is mapped onto a vertex in P ′

1, (b) P1 has fewer edges in the partial order,
and (c) on model level, a can be executed by r1 and r6.

The throughput time of a vertex consists of the queue time and the processing
time. Queue time is the time between the moment that a work item arrives at
v and the moment the resource starts working it. The processing time is the

a b c d

P1 v1 v2 v3 v4

dea b c

v1 v2 v3 v4 v5 v6
P1

map

Fig. 4. The partial orders of the runs P and P ′ with a mapping map such that P ≥map
s

P ′. Note that a mapping where v4 is mapped onto v′
6 would also have been fine.
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time between when a resource starts working on a particular work item at v and
the moment it is finished . This requires us to compare the queue times of the
vertices. Therefore, we make the following assumptions:

1. the amount of arriving cases per time unit is exactly the same per run;
2. there is a single First In First Out (FIFO) queue per activity from which

resources execute work items. This FIFO queue contains all the work items
currently in the queues of the vertices labelled with a particular activity;

3. having more resources for an activity cannot increase the queue time of the
FIFO queue for that activity if the amount of cases per time unit stays
exactly the same.

Assumptions 1 and 3 allow us to compare the queue times for a particular
activity. This is not yet enough for comparing the queue times between two
vertices, e.g., it might be that the queue time on activity level is smaller, but,
at a particular vertex, it could have increased. By having the FIFO queue, we
prevent this from happening.

3.2 At-Least-as-Good Models

After showing the at-least-as-good relation between runs, we now define our
at-least-as-good relation between models. The at-least-as-good relation between
models holds if we can find a valid matching graph between the runs of the
models. Graphically, a matching graph can be seen as a bipartite graph (Fig. 5).
The runs of M are on the left-hand side and the runs of M ′ are on the right-hand
side together with their weights. An edge between two runs indicates that the run
on the left-hand side is at-least-as-good as the run on the right-hand side, e.g.,
P1 is at-least-as-good as P ′

1. As the weight of a run gives the probability of this
run occurring it also gives the fraction of cases arriving for this run. Therefore,
we have weights on the edges in the matching graph indicating the weight of the
runs when they are compared. For instance, the 0.5 between P2 and P ′

1 indicates
that in the comparison of P2 and P ′

1, we give them both a weight of 0.5.
As the weights on the edges in the matching graph indicate the weight of the

runs when they are compared, we need to guarantee that the sum of the weights
on the outgoing edges of a run is always that of the actual weight of that run.
The same holds for the weights of the incoming edges of a run. The weights in
the matching graph should be in [0, 1]. A (valid) matching graph is defined as:

Definition 4 ((Valid) Matching Graph). Let M ≥ar M ′, then the matching
graph, between M and M ′, denoted by matchM,M ′ , is a weighted collection of
directed edges between vertices in M and vertices in M ′. We say matchM,M ′ is
valid if and only if:

– if there is an edge between two runs in the matching graph, then the first is
structurally at-least-as-good as the latter;

– the weights of the outgoing edges are the same as the weight of the run;
– the weights of the incoming edges are the same as the weight of the run.
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Using the matching graph, it becomes possible to structurally compare mod-
els with each other. If we are able to obtain a valid matching graph, we can
conclude that one model is at-least-as-good as another model.

4 Related Work

By analysing redesign alternative encapsulated in a model collection, our work
can be positioned on the intersection of model collections, and performance eval-
uation. We first discuss work from each of the two areas and then discuss work
on the intersection.

In [3], the authors list the research areas within model collections. Often
these model collections lack sufficient information for quantitative analysis, i.e.,
the context is missing, e.g., the arrival process of new cases, duration of activities,
etc. If the model collection is viewed from a specific context, then our technique
can be most beneficial in querying the collection of models. For instance, in
PQL [4], the user can specify she is interested in models where an activity A
is eventually followed by an activity B. As there might be a large amount of
models returned from a query, our technique can be used to structurally order
these models based on the throughput time. In this way, the user is immediately
presented with the most promising models whilst adhering to the earlier specified
structural requirements.

Within performance evaluation, the idea of monotonicity is not new and in
queueing theory it has already been pursued [5]. In [5], the notion of monotonicity
is similar but they focus on the parameters of the network and not the topology
of the network. The work in [6] is similar to the work in [5] but now defined on
continuous Petri nets. Since runs can be translated to Petri nets, this might be
an interesting approach to use in the at-least-as-good relation between runs.

In [7], an approach is presented to evaluate when certain changes to the
structure of the process model are appropriate. Starting from commonalities in
reengineered processes, the paper deduces under which circumstances a change
to the structure of the model is beneficial. The majority of the authors’ ideas
is not tailored towards throughput time but some ideas can be applied to our
setting. These ideas are mainly on how resources perform their tasks.

So-called Knock-Out systems are discussed in [8] and heuristics for optimising
these are defined. A Knock-Out system is a process model where after each task
or group of tasks in case they are in parallel a decision is made to continue with
the process or to terminate. The goal is to rearrange the tasks in such a way that

Runs of M Runs of M

P1

P2

P1

0.5

0.

ww

15 0.5

0.5

Fig. 5. An example valid matching graph.
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the resource utilisation and flow time (throughput time) are optimised whilst
adhering to constraints on the order of tasks encoded in precedence relations.
By having an approach starting from a single model, this approach is not directly
applicable to comparing two models.

In [9], a tool called KOPeR (Knowledgebased Organizational Process
Redesign) is presented. KOPeR starts from a single model and identifies redesign
possibilities. These redesign possibilities are simulated to obtain performance
characteristics. This approach is not tailored towards directly comparing two
models to determine which is at-least-as-good but our approach can be used to
discard models prior to simulation.

In [10], process alternatives are analysed which have been obtained by apply-
ing redesign principles. Similar to the work in [9], our approach can aid in reduc-
ing the amount of to-be-analysed redesign options.

In our previous work, we have presented Petra a toolset for analysing a
family of process models [11]. A family of process models is similar to a model
collection but models are closer related. The work here can improve Petra by
a-priori sorting the process models and only analyse the models most promising.

5 Conclusion

We have shown an approach to structurally compare the models within a model
collection resulting in an at-least-as-good relation between models based on
throughput time. This at-least-as-good relation can be used to minimise the
effort to simulate a collection of highly similar models. This is particularly use-
ful if redesigning an existing process where different improvement opportunities
exist. Our approach poses a number of restrictions on the resources. In particu-
lar, we demand that resources can only execute a single activity and that they
are truly dedicated to the process in question.

For future work, an interesting question is which of our assumptions can be
relaxed to allow for the inclusion of a wider set of models to be considered. In
particular, we want to look into whether runs have to be directed or whether
they are also allowed to be undirected. This would allow us to compare different
sequences of tasks and greatly increase our applicability. Furthermore, we want
to extend the preliminary experimentation presented in [2] with models better
reflecting reality.
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Abstract. Many organizations manage repositories of several thousand
process models. It has been observed that a lot of these models have
quality issues. For the model collections we have worked with, we found
that every third model contains elements with incomplete element names.
While prior research has proposed techniques to close gaps on the struc-
tural level, approaches that address the naming of incompletely specified
model elements are missing. In this paper, we propose three strategies for
naming process elements and a context-sensitive ranking to present the
most relevant naming recommendations to the user. We prototypically
implemented our approach and conducted an extensive user experiment
with real-world process models in order to assess the usefulness of the
recommendations. The results show that our approach fulfills its purpose
and creates meaningful recommendations.

Keywords: Incompleteness of model elements · Context-sensitive
recommendations · Business process models

1 Introduction

Nowadays, the management and documentation of business processes have
become common practice in companies and led to an increasing adoption of
BPM ideas [1]. In fact, the increasing adoption of BPM has stimulated the use of
process models in different scenarios, such as providing knowledge for action [2],
analyzing and redesigning real-world processes [3], or specifying system require-
ments and components [4]. However, in order to use these process models in such
scenarios, they need to satisfy specific requirements with regard to layout, level
of detail, and element labeling, which is typically not the case in practice [5].

A frequent problem of process models is their incompleteness with regard
to the underlying business processes [6]. In general, the process model may be
incomplete with regard to the structural and the textual content [7]. Structural
incompleteness refers to missing elements of a process model, such as events,
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activities, or flows relations. Textual incompleteness involves incomplete names
of the aforementioned elements or of the model itself. While structural incom-
pleteness has been addressed in prior research [8,9], there is the problem of
textual incompleteness, which we observed in every third model of the collec-
tions we worked with. In particular, automatic support is needed for collections
of several thousand models in which hundreds of activities may be incomplete
[10]. So far, prior research has addressed the textual incompleteness only by
automatically detecting violations according to naming conventions in multilin-
gual repositories [11] or by automatically creating a missing name for an entire
process model [12].

In this paper, we define the issue of incomplete model elements as a recom-
mendation problem and propose an approach that supports modelers in closing
these gaps. More specifically, our contribution is a two-step approach for recom-
mending complete element names and for ranking them according to the con-
text that is given by the process model. The first step creates a list of potential
naming recommendations by applying three strategies with increasing level of
context. The second step ranks these recommendations according to their appro-
priateness for the given process model. In order to demonstrate the capabilities
and usefulness of our approach, we conducted a user experiment with real-world
process models.

The paper is structured as follows. Section 2 provides an introductory exam-
ple and illustrates the problem of incomplete process model elements. Section 3
introduces our approach for creating and ranking recommendations for incom-
plete model elements. Section 4 applies this approach to real-world process mod-
els and shows the result of a user evaluation. Section 5 reflects upon related work
on process model auto-completion, before Section 6 closes the paper.

2 Problem Illustration

In order to discuss the problem of incomplete model elements and their conse-
quences, we use the Group Retirement process of the SAP Reference model [13]
in EPC notation (see Figure 1). Here, we omitted the events and only indicate
them with dashed control-flow edges. The process begins with the creation of
a master record for the respective asset. Depending on the result, the process
continues with either processing the related asset acquisition, the transfer to the
client, or the retirement. If one of these activities has been conducted, we assume
the process to finish.

Figure 1 also highlights two bold-edged tasks that appear to be incomplete.
The task Transfer to a client informs the reader about a transfer that needs
to be conducted to complete the process. However, it is unclear if a particular
object, e.g. an asset, needs to be transferred to the client or if a transfer itself
needs to be planned, executed, or put into action. Depending on the situation, it
would be more consistent to either name the task Transfer of Asset to a Client or
Transfer Processing to a Client. Similarly, the task Retirement does not specify
whether a particular object, for instance an asset or a asset group, needs to be
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Fig. 1. Group Retirements Process Adapted from [13] with Incomplete Activities and
Ranked Recommendations

retired. Apparently, both tasks fail to specify a particular action or an object as
demanded by process modeling guidelines [14,15]. This not only hampers model
understanding, but also leads to feedback loops between analysts and developers
[16] or wrong business decisions [17].

3 Conceptual Approach

We define the issue of incomplete activities as a problem of creating and ranking
recommendations for the incomplete elements [18]. We consider those elements
to be incomplete if they fail to specify essential information, such as action and
business object, as demanded by several studies [14,15]. The key feature of our
recommendation creation approach is the incorporation of several context layers.
Specifically, we distinguish three layers of context:

◦ Layer I: Local Process Model: The local context strategy considers all actions
and business objects of a single process model as potential recommendations.

◦ Layer II: Process Model Collection: This strategy considers all process mod-
els of a repository and infers the missing business objects or actions from
them.

◦ Layer III: External Corpora: This strategy uses a general text corpus to
search for terms which frequently co-occur with the missing element.

With regard to the ranking of recommendations, we employ the sense clus-
tering method of Richetti et al. [19] and apply it to all activity labels from a
process model. Then, as an adaptation from the work of Bracewell et al. [20],
we calculate the similarity of the recommended item with all sense clusters to
obtain a ranking score that reflects the appropriateness of the recommendation
to the model. This procedure is shown in Algorithm 1.
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4 Evaluation

Evaluation Setup. To demonstrate the capabilities of our approach, we conduct
an extensive user evaluation which aims to assess the usefulness of the recom-
mendations. For this purpose, we outline our evaluation setup in terms of test
data, prototypical implementation, evaluation design, and evaluation metrics.

Regarding the test data, we selected two process model collections of varying
size, domain and expected quality of element naming. Table 1 summarizes the
main characteristics of these process models, i.e. the SAP Reference Model [13]
and the AI collection (see http://bpmai.org).

For the prototypical implementation, we used Java 1.7 to implement our
approach. Based on the list of incomplete activities from our test collections,
we created a set of potential recommendations by using the previously dis-
cussed strategies and creating a ranking of these recommendations. As far as
the external corpora strategy is concerned, we used the publicly accessible
version of the ANC corpus, which contains 15 million words of contemporary
American English. Moreover, we also used the Stanford Tagger and Parser (see
http://nlp.stanford.edu/software/) to retrieve the typed dependencies, i.e. verb
object and passive sentence constructs, to identify frequent co-occurrences of
words. For the ranking algorithm, we selected the Lin semantic similarity mea-
sure as it correlates best with human judgment [21].

Algorithm 1. Ranking Created Recommendations for a Process Model
1: rankRecommendations(RecommendationList R, ProcessModel p)
2: rankedRecommendations ← ∅
3: activityLabels ←extractTextLabels(p)
4: senseClusters ←retrieveSenseClusters(activityLabels)
5: for all r ∈ R do
6: for all C ∈ senseClusters do
7: simp += sim(r, C)
8: rankedRecommendations ← (r, simp) ∪ rankedRecommendations
9: sortDescendingBySimV alue(rankedRecommendations)

10: return rankedRecommendations

Table 1. Demographics of the Test Collections

Characteristic SRM AI

No. of Models 604 1,091
No. of Activities 2,432 8,339
No. of Incomplete Activities 311 741
No. of Affected Models 184 381
Avg. No. Incomplete Activities 1.69 1.96
Modeling Language EPC BPMN
Domain Independent Academic Training
Standardization High Medium
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Table 2. Performance of Recommendation Creation

Local Collection External Total

Useful Recommendations 58 58 33 149
Useless Recommendations 46 51 36 133

Concerning the evaluation design, we require the decision of humans whether
a recommendation is useful given a specific process model as context. Since we
face a considerably large number of incomplete labels together with an enormous
list of recommendations (1052 incomplete labels with approx. 28600 recommen-
dations), we utilize a statistical sampling among the recommendations and let
the user evaluate a representative subset. Following the recommendations of
Piegorsch [22] for the Jeffrey interval, we draw a random sample of 282 rec-
ommendations. Finally, we asked 5 users (2 modeling novices and 3 modeling
experts) to provide us with their decision for the sample. Each user was provided
with an incomplete activity and the corresponding process model in which this
activity was highlighted. The participants were then asked to provide feedback
for each recommendation on a 4-point-Likert-scale from very useless (-2) to very
useful (+2).

As far as evaluation metrics are concerned, we use precision and recall to
assess the recommendations [18]. As it is fairly easy to achieve a recall of 1
(by presenting all recommendations to the user), we further distinguish between
three situations: i) the most highly ranked, ii) the five most highly ranked (Top
5), and iii) all recommendations are shown to the user (Top 10). Thus, we report
on the usefulness of the recommendations in general (Top 10 scenario), and
on the performance of the ranking (Top 1 and Top 5 scenario). Moreover, we
may also have a closer look at the performance of the recommendation creation
strategies.

Results of Recommendation Creation. The performance results of the rec-
ommendation creation strategies are summarized in Table 2. The numbers show
that the strategies are capable to create a large amount of relevant and useful rec-
ommendations. Apparently, the local context and the model collection strategy
perform best in producing useful recommendations.

Results of Recommendation Ranking. The results of the ranking technique
are shown in Table 3. In the Top 5 scenario, the number 0.57 indicates that
at least two out of five Top 5 recommendations fit to the model context and
are also regarded as a useful recommendation for the incomplete activity. In
the Top 1 setting, the precision even amounts to 0.74 which implies that the
first recommendation is already useful in three out of four cases. Depending
on the setting, recall ranges between 0.15 and 0.58 which shows that even if
our techniques did not create any meaningful recommendations on the first or
the five highest ranked recommendations, more useful items may be included
when looking at the following 5 recommendations. In the Top 10 scenario, the
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Table 3. Recommendation Performance Results

Top 1 Top 5 Top 10

No. Relevant & Retrieved 23 86 149
No. Non-relevant & Retrieved 8 66 133
No. Relevant & Not retrieved 126 63 0

Precision 0.74 0.57 0.53
Recall 0.15 0.58 1

Table 4. Top 5 Recommendations for the Group Retirement Process

Activity Top 5 Recommendations Ranking

Transfer to a
Client

Transfer Time Specifications to a Client 25.76
Transfer Balance Sheet Items to a Client 19.51
Transfer Planned Sales Quantities to a Client 18.87
Transfer Group to a Client 18.26
Transfer Personnel Costs to a Client 16.24

Retirement

Retirement of Master Record 18.02
Retirement of Leased Asset 16.42
Retirement of Asset Acquisition 15.53
Retirement of Group 14.81
Retirement of Number 13.77

precision value of 0.53 indicates that at least half of the recommendations are
useful for the given process models in our user experiment. Overall, we consider
the performance of our techniques as satisfactory to address the problem at
hand.

In addition to the quantitative results, we also discuss qualitative results of
our recommendation techniques. Table 4 shows the five highest ranked recom-
mendations for the two incomplete activities of Fig. 1. In general, we can infer
from the context of the process model that the two activities Transfer to a Client
and Retirement are most likely applied to the business objects Group or Asset.
Looking at the results of our techniques, we do spot two recommendations that
incorporate these two business objects. Moreover, the techniques also provide
additional recommendations that make also sense in the process model, such as
Balance Sheet Items or Planned Sales Quantities in case of the first activity.

5 Related Work

We discuss related work based on the classification of Kluza et al. [7], i.e. struc-
tural and textual recommendations. Structural recommendations propose a new
model fragment to the users and connects it with already existing fragments of
the process model. There is a plethora of recommendation methods available
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that employ different techniques. Prior research proposed similarity metrics [23],
a combination of business rules and structural constraints [24], the π-calculus
in combination with ontologies [25], a tagging-based approach [26], or Bayesian
networks [27] for the recommendation task. Moreover, prior research also pro-
posed modeling editors that support the user and provide recommendations
based on the existing process model that was modeled so far [8,9]. Although
these approaches provide model fragments including a naming, they need to rely
on existing knowledge bases such as the model repository. Thus, naming errors
in the knowledge base also appear in the recommendations and are multiplied
when users follow these recommendations. Instead, our approach contributes to
the overall quality of the knowledge base because it supports modelers in cor-
recting process model elements with missing information.

Textual recommendations involve the recommendation of model element
names based on existing process model elements. Leopold et al. proposed sev-
eral naming strategies for individual model fragments or process models [12]. The
authors build on linguistic features, such as dominating objects or conjunctions,
to infer a suitable name. In contrast to these approaches, we do not focus on the
recommendation of a general name of a process model fragment, but instead on
the naming of single elements which improves the overall quality of results .

6 Conclusion

In this paper, we proposed a novel approach to address the problem of incom-
plete process model elements which occurs in every third process model of a
model repository. In particular, we introduced three different strategies that
exploit the local process model, the collection, and external sources to come up
with a set of initial recommendations. In order to filter useful recommendations,
we further ranked them according to their fitness to the process model context.
Both aspects have been implemented in a research prototype and evaluated in
an extensive user experiment by sampling process models from real world pro-
cess model repositories. The quantitative and qualitative evaluation demonstrate
the capabilities of creating meaningful recommendations and stimulates further
endeavors for practice and research.

In future research, we first want to include additional aspects of process
models, such as events and roles, in the creation of recommendations. Moreover,
we also plan to enhance our techniques with machine learning approaches to
improve the overall recommendation results. Second, we intend to evaluate our
approach in a professional environment. In such an environment, process model-
ers will use our technique as a complement when designing process models. For
this purpose, we want to gain a cooperation partner from practice. We hope
that the research of this paper resembles an important step towards the quality
assurance of process models.
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Abstract. Configurable process models are gaining a great importance
for the design and development of reusable business processes. As these
processes tend to be very complex, their configuration becomes a diffi-
cult task. Therefore, many approaches propose to build decision support
systems to assist users selecting desirable configuration choices. Never-
theless, these systems are to a large extent manually created by domain
experts, which is a time-consuming and tedious task. In addition, relying
solely on the expert knowledge is not only error-prone, but also challenge-
able. In this paper, we propose to learn from past experience in process
configuration in order to automatically extract a configuration guidance
model . Instead of starting from scratch, a configuration guidance model
assists analysts creating business-driven support systems.

1 Introduction

Motivated by the “Design by Reuse” paradigm, configurable process models are
recently gaining momentum due to their capability of explicitly representing the
common and variable parts of similar processes into one customizable model [1].
However, configurable process models cannot be freely configured as the derived
variants have to be correct. Besides the structural and behavioral correctness [2],
the configured variants need to be valid considering specific domain constraints.
For instance, in a hotel reservation process, if the “online reservation” activity is
excluded from the model, the “online payment” activity would be excluded, oth-
erwise the derived variant would not be optimal or consistent. While automated
approaches have been proposed for configuring process models in a structurally
and semantically correct manner [3], existing domain-based approaches [4–7] still
require a significant manual work.

Inspired by the need to integrate the users’ experience in process configura-
tion [1,8], we propose in this paper to benefit from previous experience in process
configuration in order to automatically extract configuration guidance models.
Our aim is to learn from the experience gained through past process configu-
rations in order to extract useful and implicit knowledge that assist analysts
deriving business-driven decision support systems. Following the requirements
identified in [1] for a successful process configuration technique, a configuration
guidance model targets to answer the following three questions: (1) When a
c© Springer International Publishing Switzerland 2015
H.R. Motahari-Nezhad et al. (Eds.): BPM 2015, LNCS 9253, pp. 198–206, 2015.
DOI: 10.1007/978-3-319-23063-4 14
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configuration decision can be taken for a configurable element? (2) How an ele-
ment is configured given the previously selected choices? (3) How often a specific
decision has been made?

With respect to these questions, we define a configuration guidance model
as a tree-like structure with dependencies’ relations and frequency information.
First, the tree structure allows a “hierarchical” ordering of the configuration
steps in a parent-child fashion. That is, the parent element is configured before
the child element (answer of the when). Second, two types of dependencies rela-
tions, inclusion and exclusion, may exist between the configurable elements (i.e.
tree elements), (2) between their configuration choices and (3) between the con-
figurable elements and the configuration choices (answer of the how). And last,
the configuration choices and dependencies relations are labeled with frequency
information that reveal the probability of their presence in previous process con-
figurations (answer of the how often).

The remainder of the paper is organized as follows: Section 2 introduces our
configuration guidance model. In section 3, we present our automated approach
to extract configuration guidance models from existing business process reposi-
tories. Related work is discussed in section 4, and we conclude in section 5.

2 Configuration Guidance Model

In this section, we give some definitions on configurable process models and
introduce our configuration guidance model.

A configurable process model, is a business process model with configurable
elements. A configurable element is an element whose configuration decision is
made at design-time [1]. An example of a configurable process model for a simple
travel booking process modeled with the configurable BPMN (c-BPMN) is illus-
trated in Fig. 1. The configurable elements are graphically modeled with thick
lines. They are the active elements of a process modeling notation. In case of
c-BPMN, configurable elements can be activities and/or connectors. A config-
urable activity can be included (i.e. ON ) or excluded (i.e. OFF ) from the process
model. A configurable connector has a generic behavior which is restricted by
configuration. It can be configured by (1) changing its type while preserving its
behavior and/or (2) restricting its incoming (respectively outgoing) branches in
case of a join (respectively split) [1]. For example, the configurable “OR” can
be configured to any connector’s type while a configurable “AND” can be only
configured to an “AND”. We denote by c1 � c2 iff the behavior of c1 is sub-
sumed by that of c2. For example AND � ORc, AND � ANDc, Seq � XORc

etc.
Definition 1 gives the formal definition of a configuration.

Definition 1 (Configuration Conf ). A configuration of a configurable node
nc denoted as Confnc is defined as:

– if nc is an activity then Confnc ∈ {ON,OFF};
– if nc is a connector then Confnc ∈ {(c’, s) : (c’, s) ∈ CT × 2S} where:
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Fig. 1. An example of a configurable travel booking process

• CT = {OR,AND,XOR,Seq} and c’ � c,
• S = • c (respectively S = c •) in case c is a join (respectively split)

connector where •c (respectively c•) is the set of elements in the incoming
branches (respectively outgoing branches) of c.

We denote by Cnc the set of all configurations of the configurable
element nc according to Definition 1. For example, in Fig. 1, COR4 =
{(OR, {a6, a7}), (XOR, {a6, a7}), (AND, {a6, a7}), (Seq, {a6}), (Seq, {a7})}.

A configuration guidance model is a tree-like structure with inclusion and
exclusion dependencies relations. An excerpt of the configuration guidance model
for the configurable process in Fig. 1 is illustrated in Fig. 2. The tree structure
allows for a “hierarchical” ordering of the configurable elements of a process
model in a parent-child fashion, that is the parent element is configured before
the child element (see Section 3.1). The tree elements are graphically modeled
with circles. Each tree element has multiple configuration choices (see Defini-
tion 1). In our approach, we compute the probability of selection of each config-
uration option (see Section 3). Graphically, the configuration choices are modeled
with rectangles attached to their configurable elements.

The configuration guidelines represented as inclusion and exclusion relations
are graphically modeled with dotted lines and have their probability of certainty.
The probability of certainty expresses to which extent an inclusion or exclusion
relation is valid. Three types of inclusion relations (denoted as IR) may exist (i)
between the configurable elements (denoted as Ic−c), (ii) between the configura-
tion choices (denoted as Icf−cf ) and (iii) between the configurable elements and
the configuration choices (denoted as Ic−cf ). The same holds for the exclusion
relations ER (see section 3.2).



Extracting Configuration Guidance Models 201

Fig. 2. An excerpt of the extracted configuration guidance model

3 Deriving Configuration Guidance Models

In this section, we present our automated approach for extracting configuration
guidance models from business process repositories. Let P c be a configurable
process model and P = {Pi : i ≥ 1} a set of previously derived variants from P c.
The processes in P can be collected by computing a similarity value (e.g. [9]).
P c and P are used as inputs by our algorithm (see Algorithm 1) to generate a
configuration guidance model denoted as Gc

M = (T c,C∗, IR, ER) where T c is the
tree hierarchy, C∗ is the set of elements’ configurations, IR is the set of inclusion
relations and ER is the set of exclusion relations. The algorithm consists of a
preliminary step (Line 3) then proceeds in two main steps (Lines 4-9).

Algorithm 1. Building a configuration guidance model
1: input: P c, P
2: output: Gc

M = (T c,C∗, IR, ER)
3: get inclusion associations A→ and exclusion associations A→¬

{extract tree hierarchy}
4: derive probabilistic dependency matrix MP = getProbabilisticMatrix(A→)
5: derive implication graph G→ = getImplicationGraph(Mp)
6: generate tree hierarchy T c = getTreeHierarchy(G→)

{derive model additional information}
7: derive configurations’ probability Pconf = Sup(conf) : conf ∈ C∗

8: derive inclusion relations IR from G→ and A→
9: derive exclusion relations ER from A→¬

In the preliminary step, the sets of positive and negative configuration asso-
ciations denoted as A→ and A→¬ respectively are extracted from P using Apri-
ori [10], a well known algorithm for deriving association rules. This step has
been elaborated in our previous work [11] and is briefly explained in the fol-
lowing. A positive configuration association is in the form of conf1 → conf2
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where conf1 and conf2 are configuration choices of different configurable ele-
ments and conf1 → conf2 means that conf1 and conf2 co-occur frequently
together. An example of a positive configuration association is: Confa10

= ON →
ConfOR8

= (Seq{a10}). A negative configuration association is in the form of
conf1 → ¬conf2 and means that the occurrence of the configuration conf1
excludes that of conf2. An example of a negative configuration association is:
ConfOR10

= (Seq, {a14}) → ¬Confa9
= ON . Well known metrics, such as sup-

port, confidence and Conditional Probability Increment Ratio (CPIR) are used
by Apriori in order to (1) prune the set of extracted configurations to the fre-
quently ones using a minimum support threshold, (2) generate the highly prob-
able configuration associations using a minimum confidence threshold and (3)
mine negative associations using a minimum CPIR threshold.

3.1 Extracting Tree Hierarchy

The tree hierarchy T c consists of parent-child relations between the configurable
elements. An element nc

1 is a candidate parent of a child element nc
2 if the config-

uration of nc
2 highly depends on that of nc

1. The dependencies relations between
the configurable elements can be derived from their configuration choices. In
fact, the more are their configuration choices dependent, the more are the con-
figurable elements dependent. The dependency of a configuration choice conf2
on another configuration choice conf1 corresponds to their conditional probabil-
ity P (conf2|conf1) which can be derived from the confidence of their positive
configuration association conf1 → conf2 ∈ A→. It is computed as:

P (conf2|conf1) =
P (conf1 ∩ conf2)

P (conf2)
=

Sup(conf1 ∪ conf2)

Sup(conf2)
= C(conf1 → conf2)

(1)

where P (conf1 ∩ conf2) is the probability of co-occurrence of conf1 and conf2;
P (conf2) is the probability of occurrence of conf2. The probabilities are derived
from the support metric computed by Apriori. Having the dependencies prob-
abilities between the configuration choices, the conditional probability between
two configurable elements nc

1 and nc
2 is computed as:

P (nc
2|nc

1) =

∑
j P (confnc

2j
|nc

1)

#confnc
2j

=

∑
j

∑
i P (confnc

2j
|confnc

1i
)

#confnc
1i

#confnc
2j

(2)

where P (nc
2|nc

1) is the average of the conditional probabilities between the con-
figuration choices of nc

1 and nc
2.

∑
j P (confnc

2j
|nc

1) is the sum of the conditional
probabilities between each configuration choice confnc

2j
of nc

2 and the config-
urable element nc

1. The probability P (confnc
2j

|nc
1) is in turn defined as the aver-

age of the conditional probabilities between the configuration choice confnc
2j

and
each configuration choice confnc

1i
of nc

1. It can be computed by dividing the sum
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of the conditional probabilities between confnc
2j

and each confnc
1i

of nc
1 by the

number of confnc
1i

such that P (confnc
2j

|confnc
1i

) �= 0; #confnc
2j

is the number
of the configuration choices of nc

2 such that P (confnc
2j

|nc
1) �= 0.

The conditional probabilities between each pair of configurable elements are
computed and stored in a dependency probabilistic matrix denoted as MP . MP

is a m × m matrix where m is the number of configurable elements. An entry
(i, j) in MP corresponds to the conditional probability P (nc

j |nc
i ) where nc

j is the
element in the jth column and nc

i is the element in the ith row. We say that a
configurable element nc

2 depends on another element nc
1 denoted as nc

1 → nc
2 iff

P (nc
2|nc

1) ≥ minP where minP is a given threshold.
The derived dependencies’ relations with their probabilities are modeled in

a graph, called implication graph G→ [12]. The nodes in G→ correspond to the
configurable elements. A weighted edge exists from a node nc

1 to nc
2 iff nc

1 → nc
2;

the edge’s weight is the probability P (nc
2|nc

1). An excerpt of G→ derived from
a set of dependencies relations is illustrated in Fig. 3a. Having G→, the tree

(a)
(b)

Fig. 3. (a) An implication graph and (b) its derived optimal spanning tree

hierarchy corresponds to extracting a spanning tree (called arborescence for
directed graphs) [12]. Since, there exist multiple possible spanning trees, we
aim at deriving the optimal hierarchy that maximizes the dependencies’ rela-
tions weights. The problem can be mapped to finding the minimal spanning tree
which can be solved using existing algorithms such as Edmonds’ algorithm [13]
and efficient implementations such as [14]. Figure 3b illustrates an excerpt of the
optimal spanning tree extracted from the implication graph in Fig. 3a which con-
tains multiple trees. In this case, an artificial root node is added and connected
to them in order to obtain the tree hierarchy in Fig. 2.

3.2 Deriving Additional Model Information

In this section, we complete the remaining configuration guidance model infor-
mation, i.e. the configuration choices probabilities and the inclusion/exclu-
sion relations and their probabilities. The configuration choices C∗ are the set
of configurations extracted by Apriori and and their probabilities are equal
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to the Apriori computed support. For example, in Fig. 2, the configuration
(Seq, {XOR2}) ∈ C∗ has a probability P = 0.5. The three types of inclusion
relations and their probabilities are defined as follows 1

– Ic−c = {nc
1 → nc

2}: nc
1, n

c
2 ∈ N c ∧ nc

1 → nc
2 ∈ G→ \ T c, i.e. the inclusion

relations between the configurable elements are those that are present in the
implication graph but have been excluded when deriving the tree hierarchy.
The probability PR(nc

1 → nc
2) = P (nc

2|nc
1).

– Icf−cf = {conf1 → conf2}: conf1 ∈ Cnc
x
, conf2 ∈ Cnc

y
∧ (conf1 → conf2 ∈

A→)∧(∃conf ′
1 ∈ Cnc

x
, conf ′

2 ∈ Cnc
y

: conf ′
1 → conf ′

2 /∈ A→), i.e. the inclusion
relations between the configuration choices are those that appear in the
positive configuration associations but whose configurable elements are not
fully dependent. PR(conf1 → conf2) = P (conf2|conf1).

– Ic−cf = {nc → conf} : nc ∈ N c, conf ∈ C∗ ∧ ∀conf ′ ∈ Cnc : conf ′ →
conf ∈ A→. The probability PR(nc → conf) = P (conf |nc), i.e. an inclu-
sion relation exists between a configurable element nc and a configuration
choice conf iff each configuration choice of nc has a dependency relation to
conf . The same holds for the relations conf → nc ∈ Ic−cf . The probability
PR(nc → conf) = P (conf |nc).

4 Related Work

Business process variability modeling [15] is an emergent topic that is being
increasingly addressed by academic and industrial researchers for enabling
design-time process flexibility. Our work is based on configurable process mod-
els proposed in [1]. The authors in [1] define the requirements for a configurable
process modeling technique. They highlight the need for configuration guidelines
that may include the configuration steps order, the interrelationships between
the configuration decisions and the frequency information that come from sys-
tem users. In our work, we follow these requirements and propose an automated
approach to learn a configuration guidance model depicting such information.

La Rosa et al. [4] propose a questionnaire-driven approach for configuring
reference models. They describe a framework to capture the system variability
based on a set of questions defined by domain experts and answered by designers.
Asadi et al. [7] and Gröner et al. [6] propose to use feature models for modeling
the variability and the configuration constraints. The constraints are defined by
experts and formalized in Description Logic expressions. Templates and configu-
ration rules are used by Kumar et al. [5] in order to configure a reference process
template using configuration rules which are defined and validated by experts.

In summary, existing approaches for assisting the configuration of process
models require an expensive manual work from experts. These approaches are
only based on the expert knowledge while, as highlighted in [1,8], a successful
process configuration has to integrate the experience gained through previous

1 The exclusion relations can be derived in the same way using A→¬.
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configurations. Therefore, in this paper, we address this research gap by propos-
ing an automated approach for assisting the configuration of process models
using previously configured processes.

5 Conclusion and Future Works

In this paper, we proposed an automated approach for extracting configuration
guidance models from process model repositories. Our work is motivated by the
need of (1) automated approaches on the one hand and (2) information origi-
nating from previous process configurations on the other hand in the creation
of configuration decision support systems. Experimental results show that we
generate accurate configuration guidance models.

The current limitation of our approach lies in the the lack of an empirical
evaluation. In this regard, we are currently conducting experiments in order
to evaluate the accuracy of our extracted configuration guidance models. In
parallel, we are working with industrial partners and our team members in order
to validate the approach from a business perspective.
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Abstract. As a provider of Electronic Case Management solutions to
knowledge-intensive businesses and organizations, the Danish company
Exformatics has in recent years identified a need for flexible process sup-
port in the tools that we provide to our customers. We have addressed
this need by adapting DCR Graphs, a formal declarative workflow nota-
tion developed at the IT University of Copenhagen. Through close collab-
oration with academia we first integrated execution support for the nota-
tion into our existing tools, by leveraging a cloud-based process engine
implementing the DCR formalism. Over the last two years we have taken
this adoption of DCR Graphs to the next level and decided to treat the
notation as a product of its own by developing a stand-alone web-based
collaborative portal for the modelling and simulation of declarative work-
flows. The purpose of the portal is to facilitate end-user discussions on
how knowledge workers really work, by enabling collaborative simula-
tion of processes. In earlier work we reported on the integration of DCR
Graphs as a workflow execution formalism in the existing Exformatics
ECM products. In this paper we report on the advances we have made
over the last two years, we describe the new declarative process mod-
elling portal, discuss its features, describe the process of its development,
report on the findings of an initial evaluation of the usability of the tool,
resulting from a tutorial on declarative modelling with DCR Graphs that
we organized at last years BPM conference and present our plans for the
future.
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cess modelling · Collaborative process simulation · Process flexibility ·
Knowledge work

Authors listed alphabetically. This work has been supported by the Danish Agency
for Science, Technology and Innovation through an industrial PhD grant. We grate-
fully acknowledges helpful comments from Søren Debois, Thomas Hildebrandt and
anonymous reviewers.

c© Springer International Publishing Switzerland 2015
H.R. Motahari-Nezhad et al. (Eds.): BPM 2015, LNCS 9253, pp. 209–225, 2015.
DOI: 10.1007/978-3-319-23063-4 15



210 M. Marquard et al.

1 Introduction

Former secretary of labor in the Clinton administration, Robert Reich, argued that
the competitiveness of nations depends on the education and skills of its people and
on the infrastructure connecting people with one another [25]. He segmented the
work force into three types of work: (1) routine production services, (2) ”in-person”
services and (3) ”symbolic- analytic” services. Today we often refers to symbolic
analysts as knowledge workers [3,6], the employees which contribute to most of
the economic growth in developed economies. Supporting these knowledge work-
ers and ensuring easy and smooth collaboration is important to compete globally.
Enabling knowledge workers to work smarter, rather than just harder, involves
various IT infrastructures to ensure communication and collaboration.

Traditional process initiatives, typically seen in the automobile industry, focus
on routine production services [25]. While increasing productivity and cutting
costs in primary industries is important to compete globally, it is even more impor-
tant to provide similar support for knowledge workers. Comparing tools and pro-
cesses used in the automobile industry with knowledge intensive industries reveals
a great disparity: the infrastructure supporting routine production services ismuch
more advanced what is found supporting knowledge workers. Often knowledge
workers use email as their primary communication and collaboration tool, and
studies shows that knowledge workers on average spend 28 percentage of the time
reading and responding to emails [16]. This is hardly efficient and makes it hard
to compete in a global economy, especially as knowledge workers in the devel-
oping countries have cheap and easy access to secretaries and other in-person
services, and therefore will be better serviced than knowledge workers in the devel-
oped countries. The engineers, doctors and financial analysts in the western world
simply need to work harder as they cannot leverage cheap primary services. There-
fore, providing infrastructure and technologies for knowledge workers which auto-
mate their more mundane tasks is critical to compete globally. McKinsey Global
Institute estimate a productivity gain of 20-25 percentage on average knowledge
workers by using modern social technologies [16].

Efforts to make knowledge workers more productive often involve attempts to
transfer and adopt the technologies used in routine production services, in partic-
ular process technologies are commonly based on the industry standard Business
Process Management Notation (BPMN) [23,34]. The BPMN notation is founded
in the concept of flow; the idea that to describe the behaviour of a process one needs
to describe how control passes (flows) between its activities. It has been observed
however that the flow-based paradigm is not ideal for knowledge-centred processes:
knowledge workers deal with very diverse problems which rarely ”fit the mould”,
instead of being given predefined sequences of tasks they often need to decide them-
selves what actions they should take based on their expert knowledge. The IT
systems that support them therefore need to be able of offering a large degree of
flexibility. [21,26,35] Such flexible processes exhibit a large degree of variability,
exhibited in flow-based models by many different possible paths and states, which
leads to so-called spaghetti models which are no longer understandable by users.
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As an alternative a new declarative or constraint-based paradigm has been
proposed[8,12,22,24,30]. The declarative paradigm is grounded in the idea that
one should only model the constraints (or business rules) of a process and then
derive the possible paths from the constraints. Any execution allowed by the
constraints is a valid execution of the process model, i.e. the workers are given
maximal flexibility within the rules.

Exformatics is a Danish software developer providing Electronic Case Man-
agement (ECM) solutions to knowledge-intensive businesses and organizations
such as LEGO, ISS, ministries and government institutions. Already from their
founding they have realised the need for flexible processes support in their tools
and in initial versions this was solved by very rough process definitions that
only grouped tasks within specific phases, but otherwise left maximal flexibil-
ity to the users. They realised that this approach lacked the ability of adding
more meaningful rules and constraints to their processes and through partic-
ipation in a Danish knowledge network Infinit [1], which supports interaction
and dissemination between academia and industry they came into contact with
the Process Models group at the IT University of Copenhagen (ITU) which
was working on related issues and in particular has developed the DCR Graphs
notation [5,8,10,19]. DCR Graphs is a declarative notation for flexible processes
that sets itself apart from other declarative notations such as Declare by uti-
lizing only a very small set of constraints, yet yielding high formal expressive
power. In addition it offers a straightforward run-time semantics formalized as
transformations of the graphs, which means that its visual representation can
be used both at design-time to represent process definitions and at run-time to
represent process instances, in a similar manner as Petri-nets.

Exformatics became very interested in the work on DCR Graphs and how
they could employ the notation to leverage flexible processes. Therefore they
initiated a close collaboration with the researchers at ITU, facilitated through
various Danish funding mechanisms supporting university-industry collabora-
tion [4]. Most notable among these was a 3 years industrial PhD project, where
Exformatics employed a PhD student to do research on flexible process notations
while at the same time being enrolled at ITU.

During this project DCR Graphs were first integrated into the existing ECM
tools as a formalism for process-control by implementing a cloud-based process
engine based on the DCR Graphs semantics[28]. At the same time the student
also developed a prototype tool for the graphical modelling of DCR Graphs which
was well received within the company and opened the road to further adaptation
of DCR Graphs not only as an internalized notation for standardized processes,
but also as a graphical notation for designing processes as a part of business
consultancy services, in essence making DCR Graphs a product of their own.

Engaging end-users in the process dialogue is hard as process notations can
be hard to understand for the users, but lack of end-user engagement often leads
to process implementations not supporting the real business needs. Misunder-
standings over the semantics of notations and assumed implicit behaviour that
is not explicitly modelled lead to users interpreting processes in different ways,
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ultimately leading to failure of many process initiatives. In order to avoid such
issues we aimed to include extensive support for collaborative process simulation
in our tools. To ensure employee engagement we allow the users to play the pro-
cesses like a computer game among co-workers. The team of co-workers can define
the process using a declarative process-model and immediately start process sim-
ulation in order to verify whether the modelled processes meet their expectations
and the real world needs. End-users often asks questions like what happens if... or
can we do ..., such questions can be simulated in the tool and subsequently the
process model can be adjusted to meet the increased understanding of the pro-
cess. Rather than requiring modellers to ”know” a precise and correct model from
day one, we empower them to iteratively model the processes through an increased
understanding of the (possibly changing) business rules and requirements.

To support such flexible, interactive and run-time adaptable process mod-
elling activities and facilitating end-user discussions on how knowledge workers
really work we developed a stand-alone web-based collaborative portal for the
modelling and simulation of declarative workflows. This paper focuses on this
new declarative process portal. We start by giving a short introduction to DCR
Graphs. We then give a detailed overview of the portal and its features, discuss
the development processes that led to its creation and discuss initial efforts at
evaluating the usability of the portal. We finalize by discussing our plans for the
future, both in terms of new features to the portal and new avenues of research.

1.1 Related Work

Several web-based commercial tools exist for the modelling of business processes;
such as Signavio, IBM Blueworks Live and Oracles Business Process Management
Suite. However, to our knowledge DCRGraphs.net is the first web-based modelling
tool aimed in particular at constraint-based notations for flexible processes.

The latest version of BPMN [23] includes support for so-called ad hoc sub-
processes, providing a method for adding pockets of flexibility to a BPMN diagram
and supporting constraints similar to the condition and response relation of DCR
Graphs [9]. In addition there is an currently ongoing effort by the Object Man-
agement Group to develop a new standard notation aimed in particular at case
management and adding support for flexible processes to BPMN, called the Case
Management Model And Notation (CMMN) [22]. The work on CMMN is strongly
inspired on the research on the Guard-Stage-Milestone (GSM) model [13] devel-
oped at IBM Research, which in turn is based on earlier work on artifact-centric
business processes [2]. While GSM is foremost a data-centric model it has some
declarative influences as well, the main elements of the notation are stages con-
taining tasks, which are either active or inactive based on guards defined on the
stage. The acceptance criteria of a stage are modelled through milestones, which
can in turn be part of the guards of other stages. Compared to GSM, DCR Graphs
put more focus on the behaviour of tasks and events than on the data of the process.

Declarative process languages came to prominence in the BPM community
through the development of the Declare notation [24,31,33]. Declare consists of
a relatively large set of constraints typically found in business processes, which
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are traditionally mapped to Linear Temporal Logic(LTL) formulae, although
other formalizations also exist [15,17,18]. DCR Graphs differ from Declare in
the number of symbols used in the notation: Declare uses a large number of con-
straint templates, each with their own symbol whereas DCR Graphs are limited
to 5 elementary relations. Also, because the runtime semantics of DCR Graphs
are given in terms of transformations on their marking, it is straightforward to
visualize and reason about the simulation of DCR Graphs. Exformatics adopted
DCR Graphs because of their close research collaboration with ITU, giving them
direct access to the researchers behind the notation, because they preferred a
more concise notation and put particular importance into reasoning about the
runtime of processes through simulation. We are not aware of any published
work reporting on industrial use of Declare.

2 Hierarchical DCR Graphs

In this section we exemplify DCR Graphs and their semantics using an
abstracted version of the main case management process of the Exformatics
ECM system. In figure 1 we start with

Case

Case Manager

Archive Case

Create MeetingPost To Activity

Stream

Create Document

%
▼

Fig. 1. Root Case Management Process

the root process. The main building
blocks of a DCR Graph are the events
(or activities), drawn as a box with
a bar on top. The box contains the
name of the activity and the bar con-
tains the roles that are able of exe-
cuting it. Our process has a single
role: the case manager. Activities can
be grouped together by nesting them
under a super-activity, in which case
only the atomic activities are exe-
cutable. Such groupings are a graphi-
cal shorthand for applying constraints
or properties to multiple activities at
once: in our process the super-activity
Case having the role Case Manager
means that the case manager is able of executing every atomic activity nested
under it. Constraints or business rules can be added to the model by adding
one of five relations, drawn as directed arrows between activities. The root pro-
cess contains a single relation, the exclusion relation (→%) from Archive Case
to Case. The exclusion relation is used to remove activities from the process,
for example to close tasks that should no longer be executable, or to model an
exclusive choice between two activities. Because the super-activity Case acts
as a grouping the exclusion relation applies to all five of the underlying activ-
ities. This means that after archiving the case no further actions can be taken
as it removes all activities from the process. Following the declarative paradigm
unconstrained activities can be done at any time and any number of times, there-
fore the process supports many different runs: one could for example upload two
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Fig. 2. Meeting Sub-process

documents, create a meeting, upload another document and finally archive the
case. Note that while Archive Case closes the process by removing all activities,
it is not required to happen and the previous example run would also have been
valid if it had not ended by archiving the case.

Figure 2 shows the process for organizing a meeting. Similarly to the previ-
ous example we use the exclusion relation to remove activities from the process
when they are no longer relevant: the activities Invite Participants, Change
Date, Hold Meeting and Cancel Meeting are grouped together and removed
by either holding or cancelling the meeting. Only after holding the meeting is
it possible to upload the minutes of the meeting, this is modelled by the con-
dition relation (→•) which states that before Upload Minutes can be done we
first need to have done Hold Meeting. Cancel Meeting excludes this activity
since it does not make sense to upload minutes for a meeting that was can-
celled. Finally the goal of the meeting sub-process is that we either eventually
hold the meeting or cancel it. This is modelled by making Hold Meeting a
pending response, drawn by adding a blue exclamation mark to the activity
box. A pending response denotes that an activity should either happen or be
removed from the process before we can finish or close the process; in our example
either Hold Meeting needs to be done or Cancel Meeting needs to exclude it.

Checkin

Case Manager

Checkout

Case Manager

Download

Case Manager

%▼%▼

+

▼

+▼
▼

Fig. 3. Document Handling Sub-process

Figure 3 shows the
process for manag-
ing a document in
the ECM. To edit
the document a user
needs to check it out,
the file is then locked
until it is checked in
again. This is modelled using first the exclusion relation to exclude each activity
when they happen (meaning they can only be done once at a time) and the
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Fig. 4. Case Management Process

two new include relations (→+) between the two activities. The include relation
is used to add removed activities back into the process, so in this case, when
Checkout happens, it removes itself and adds Checkin to the process and vice
versa. Finally when a file is checked out we always want it to be checked in again
before the process can finish. We model this through the response relation (•→)
which is a dynamic version of the pending response that we introduced earlier.
It denotes that after Checkout is executed we require Checkin to be executed
(or excluded) at least once before we can close the process. It is always possible
to download the document through the unconstrained Download activity.

Finally we would like to tie all these process together into a single process
describing the handling of a case in the ECM system. For this we use an extension
called hierarchical DCR (Hi-DCR) Graphs, which adds a notion of spawnable
multi-instance sub-processes. Figure 4 shows the case management process as a
Hi-DCR Graph. The main new concept are the two new sub-processes Meeting
and Document Handling, drawn as a box without a bar on top of it. These
are essentially DCR Graphs inside the root process that need to be initialized
through the new spawn relation (→∗), creating a new copy of the sub-process for
each time it is spawned. In the example the activity Create Meeting spawns a
new copy of Meeting each time it is executed and Create Document and Create
Minutes create a new Document Handling process each time they are executed.

When one has a relation between an activity of a sub-process and an activity
of its parent, the relation will apply to each instance of the activity. For example
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a case can not be archived while there are pending meetings; this is modelled by
adding a condition from Hold Meeting to Archive Case, meaning that while
there is at least one Hold Meeting-activity that has not yet been executed or
excluded (by cancel meeting), it is impossible to execute Archive Case. In a
similar manner it should not be possible to archive the case while documents are
checked out. We model this through the milestone relation (→�), which blocks
an activity as long as some other activity is pending. Because of the response
relation from Checkout to Checkin, there will be a pending response on the latter
whenever the file is checked out. The milestone from Checkin to Archive Case
ensures that as long as there is at least one instance of Checkin that is pending,
we can not archive the case. Finally, to archive the case, Archive Case excludes
all instances of all activities in Document Handling, except for Download as it
should still be possible to download files. All instances of Upload Minutes are
also excluded, it is not necessary to exclude the other activities in Meeting as
this will already have been done by holding or cancelling the meeting and unless
one of these has been executed the case can not be archived.

The example DCR Graphs from figures 1, 2 and 3 are all available on DCR-
Graphs.net, the Hi-DCR Graph in figure 4 was drawn using the development
version of the portal which is not yet ready for release.

3 The DCR Graphs Process Portal

The DCR Graphs Portal 1 provides an online web based tool for the modelling,
sharing and simulation of DCR graphs.

To use the portal one can register as a new user or log in using a LinkedIN
or Facebook account. After registering users can maintain their profile, create
DCR Graphs, connect to friends and colleagues and simulate DCR Graphs either
individually or collaboratively with other users. Users can communicate with
each other through a main activity stream (similar to Facebook’s news feed) and
local activity streams for each DCR Graph.

The portal contains a graphical web-based editor which supports the mod-
elling of all aspects of a DCR Graph, such as the activities, relations, roles and
data. A number of unique features have been added to help improve the presen-
tation and understanding of the modelled processes: activities and relations can
be assigned a numerical level, which can be used to control the level of detail at
which one wishes to view the model. In addition activities and relations can be
assigned one or more groups and a model can be filtered based on these groups
or specific roles. To facilitate discussion and collaboration among co-workers,
easy access to the activity stream of the graph has been provided from within
the editor. The editor also supports revisions management, tracking all changes
and providing users the ability to designate major versions. Older versions can
be viewed graphically and rolled-back to. There is a wizard available to rapidly
create a new graph. The editor supports importing XML files (following the
standard provided in [28]) and can export DCR Graphs as XML, SVG and
1 www.dcrgraphs.net

www.dcrgraphs.net
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Fig. 5. Portal

PNG files. Models can be shared with friends an co-workers or made publicly
available to all users of the portal.

From the editor the user can start to simulate a model. When initiating a
new simulation the user can assign a user to each of the roles of the model,
these can be human users or automated users. To simulate a model individually
one simply leaves all the roles assigned to oneself, but by inviting friends or
co-workers one can start a collaborative simulation with different people playing
different roles in the process. Currently two automated users are provided, an
eager user that will perform any available activity that is either required or has
not yet been done before and a lazy user that only performs activities which
are currently required. By assigning all roles to automated users one can start
a fully automated simulation. Simulations can be paused, at which point it is
possible to dynamically edit the model, resumed and restarted and a record of
each simulation is kept in the system which can be viewed and replayed. During
simulation the runtime of the DCR Graph is updated and visualized on-the-fly,
enabled activities which have either not been executed before, or are currently
required are given a green border to highlight them to the user. In addition
there is a task list which displays all enabled or pending activities, grouped
in the following order: 1) enabled and pending event, 2) pending but blocked
events, 3) enabled events which have not been executed earlier and 4) enabled
events which have been executed earlier (but can be repeated). The activities
executed are logged in the Execution Log, which can be used later to replay the
simulation. The task list also displays the current accepting state of the process,
i.e. whether the process can be considered completed or more activities need
to be executed to finish the process. The participants in the process are listed
during simulation with the roles they play in the current simulation.
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Fig. 6. Editor

Fig. 7. Simulation

In order to support private usage by customers and universities (for which
academic licensing possibilities are available) we’ve extended the portal to sup-
port private organizations with their own users, graphs, etc. This enables organ-
isations to set up their own version of the portal, inviting their employees and
students and model and share processes within a closed community. Users can
belong to several organisations, including the public organisation which is avail-
able to all users by default.

In order to enable and encourage 3rd party development, such as student
projects, we provide an application plug-in framework for the portal. We fore-
see a series of additional features such as model checking (dead- and live-lock
checking) and extended process visualisation being facilitated by this framework.
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The framework has recently been used to develop an app supporting flow-based
visualizations of DCR Graphs and searching for suitable ”happy paths” based
on different search criteria as part of a research project performed in coopera-
tion with the IT university of Copenhagen and a Danish credit institution. More
details on the framework can be found at the wiki2.

4 Development of the DCR Portal

Development of the portal has been carried out using the Scrum methodology,
through close co-operation between the development team at TEO International
in Pakistan and the design team at Exformatics in Denmark. We used short 2 to
3 week sprints with frequent updates of the portal. Different technologies have
been used to achieve the solution so far, including: JavaScript with Raphaël,
jQuery, Microsoft .NET with MVC 4, REST services and the existing DCR
Process Engine which was developed in a mix of C# and F#. We are currently
working on the 10th major version of the portal, which will include support for
sub-processes.

The DCR Editor is purely a JavaScript application which utilizes REST
services developed in .NET to communicate with the web-server. The editor
uses the Raphaël Library to visualize the graphs in SVG-format. Simulation of
the graphs uses DCR process engine services which have been upgraded over the
time to support newly added features. The wrapper of the Editor, which provides
listing of the graphs, sharing, activity stream and friendship functionalities is
developed in MVC 4 .NET. Simulation in Editor uses realtime notifications,
updates with the help of Signal R which uses WebSockets where possible. The
editor utilizes caching techniques to minimize the requests to server and improve
the performance of the product.

5 Evaluation

At last years BPM conference we organized a tutorial on flexible business pro-
cess modelling using DCR Graphs where we first gave an introduction to DCR
Graphs, exemplifying the notation through a demo of the process portal, then
asked the audience to try out the portal for themselves by doing a number of
exercises and finally requested their feedback in the form of a questionnaire.

2 wiki.dcrgraphs.net

wiki.dcrgraphs.net
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Table 1. Understandability of Concepts

Very Easy Easy Neutral Hard Very hard
Events (Activities) 4 5 2 1
Roles 5 5 1 1
Condition Relation 2 7 2
Response Relation 2 5 3 2
Inclusion Relation 1 2 4 5
Exclusion Relation 1 4 5 2
Pending response 1 5 4 1
Nesting 6 2 3

Twelve people
filled out the ques-
tionnaire, eleven
identified as res-
earchers and one
as a practitioner.
On average the
attendants had
been active in the
BPM field for 5
years, ranging from
6 months to 14
years. Five people had previous experience with DCR Graphs, whereas 9 people
had previous experience with declarative modelling notations in general.

Table 2. Understandability of Notation

Very Easy Easy Neutral Hard Very hard
Events(Activities) 3 7 2
Roles 3 4 4 1
Condition Relation 6 3 3
Response Relation 8 2 2
Inclusion Relation 5 5 2
Exclusion Relation 6 5 1
Pending response 7 3 2
Nesting 1 6 2 3

In the first set
of questions we
asked the audience
if they found the
underlying con-
cepts of DCR
Graphs hard or
easy to understand.
We specifically
asked them to only
comment on the
understandability
of the concept and not the graphical notation used. The results are shown in
table 1, perhaps not surprisingly most found activities (9) and roles (10) easy
or very easy to understand. Of the relations the participants found the condi-
tion the easiest to understand, 9 people scored it easy or very easy, followed
by the response (7), exclusion (5) and finally inclusion (3). It is noteworthy
that despite being closely related the audience found the inclusion relation sig-
nificantly harder to understand then the exclusion relation, we conjecture that
the exclusion more closely matches familiar concepts such as mutual exclusion,
whereas the inclusion relation was more novel to the audience.

Table 3. Usability of the Tool

Very Easy Easy Neutral Hard Very hard
Modelling Screen 11 1
Adding Friends 1 6 2 1
Individual simulation 11 1
Collaborative simulation 6 2 1

In the next
set of questions
we asked the
audience to rate
the understand-
ability of the
graphical nota-
tion. Table 2
shows the results,
overall activities and roles were found to be easy or very easy to understand,
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whereas the users were more neutral about the notation of the relations. The
condition and response scored higher then the inclusion and exclusion, we con-
jecture that this may be because many attendants were already familiar with
the precedence and response constraints in Declare.

In our final set of questions, whose results are shown in table 3, we focussed
on the tool itself and asked the participants to rate the usability of its various
components. Both the modelling and simulation functionality scored high, with
11 people finding them easy to use and the final participant being neutral on
their usability. Adding connections scored a little less well, with 7 people finding
this part of the tool easy or very easy to use. Collaborative simulation scored
only slightly lower, with 6 participants finding it easy to use, out of 9 people
answering this particular question.

The portal has been used for teaching a process modelling course at ITU,
with 75 users signed up. While we have not organized a similar questionnaire for
the students, overall the experience has been positive and no major issues were
encountered in using the portal. More recently we also initiated a collaboration
with the Federal University of the State of Rio de Janeiro (UNIRIO) where they
use the portal for teaching a similar course.

6 Future Work

We recognize that it is too early to draw strong conclusions from the question-
naire based on a small number of academic participants. In the near future we
plan to run multiple industrial workshops following the same structure as the
tutorial, both as a method for raising awareness of the portal and attracting
potential new customers and as a way to receive additional feedback from actual
practitioners which will allow us to make stronger claims regarding its usability.

Further initiatives focus on:

Sub-processes
The ability to split processes into sub-processes which can be instantiated
and executed separately from the parent process. Experience from previous
use cases [7] shows that sub-processes are important to model processes in
an easy to describe and understandable way. Work on this item is already
ongoing and we expect to have sub-processes included in the live version of
the portal by the summer of 2015.

Verification
Various algorithms have been developed to analyse DCR graphs for dead-
and live-lock [11,20]. Adding such analysis to the portal is important not only
to support modelling DCR Graphs in the design phase, but also to support
run-time adaptation of DCR Graphs within production systems such as the
Exformatics Electronic Case Management tool. When the user adds new
activities and/or constraints the resulting model should be checked for live-
and dead-lock.
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Gamification
As suggested by Keith Swenson, author of various books on Adaptive Case
Management [29], we intend to investigate adding gamification features to
the portal by allowing participants to earn points and credits through active
participation in the various aspects of the portal, for example helping other
users with relevant questions or modelling and publishing popular models of
common processes.

Collaborative Editing
Several users, in particular students (who commonly work in groups), have
requested support for the collaborative editing of process models. As this
goes well along with collaborative simulation this is a feature we’re likely to
add in the near future.

Time
An extension to DCR Graphs supporting time and deadlines has been pro-
posed in the past [11]. We aim to support this extension in the portal, both
as a part of the editor and simulation, for which we will provide the ability
to scale, manually progress and pause time so that long-term processes can
be simulated more quickly.

Resources and Stochastic Models
DCR Graphs provide a constraint-based notation that allows one to describe
and find all possible paths through a model, but to assist the users enacting
the process it would be useful to inform them which paths the most efficient,
similarly to how a route-finding tool such as Google Maps can find the fastest
route between two points based on maps that describe any possible path.
Simply finding the path requiring the least amount of activities is in most
cases not enough, as not all activities consume the same amount of resources.
To improve the ability of the portal to find efficient solutions for a process
it would be useful if we could model the resources consumed by activities
(for example time, machinery, personnel and/or financial means) and the
probability that activities out of the users control (for example external or
automated activities) will occur.

Process Mining
We plan to integrate various process mining [32] techniques into the tool,
allowing users to conformance check logs based on a DCR Graphs model
and supporting process discovery of DCR Graphs models. In addition we
intend to use process mining techniques in combination with the previously
mentioned support for resources and stochastic models to support advanced
methods for process improvement where the portal predicts efficient paths
through a process based on an analysis of previous behaviour.

Hybrid Techniques
A common pitfall of declarative notations is that practitioners are more
familiar and accustomed to flow-based approaches such as BPMN diagrams,
swim-lanes and flow-charts, making them hesitant to fully adopt a completely
new paradigm. We are therefore investigating adding hybrid techniques [14,
27,36] to the portal which will allow users to use DCR Graphs in combination
with some of the flow-based models that they are used to.
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7 Conclusion

Over the last few years Exformatics has taken large steps in adopting declarative
process notations and techniques: they have employed the notation as a mod-
elling tool in projects with customers, developed a declarative process engine
based on the DCR Graphs notation and deployed said process engine as part of
a recent customer project. More recently they have developed a new stand-alone
solution, the DCR Graphs process portal, which provides an easily accessible
web-based modelling and simulation tool for declarative processes. The por-
tal has a strong social aspect, supporting communication between the different
stakeholders about their models and the ability to jointly simulate models in a
collaborative setting. In this paper we described the portal and its development,
together with the underlying Hierarchical DCR Graphs language, an extension
of the original DCR Graphs language that offers support for multi-instance sub-
processes.

There are many avenues for possible future work and Exformatics will con-
tinue to invest heavily in both declarative and hybrid process technologies. They
have entered into a new collaboration initiative with IT University of Copen-
hagen (ITU), are partly funding a postdoctoral researcher over the next two
years, are directly hiring a part-time researcher who is also employed at ITU
and have joined as a partner on a number of research funding applications on
declarative and hybrid process notations and technologies. Furthermore Exfor-
matics participates in various industry initiatives, currently with a major Danish
financial institution which has worked with process modelling for many years but
are looking into declarative notations to provide more flexible process models.
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Abstract. Hybrid process models are considered an attractive approach for 
modeling knowledge-intensive processes. A hybrid process model combines 
both imperative and declarative modeling, which can handle both the structured 
and the flexible parts of a business process. However, it is difficult and time-
consuming to create and refine a hybrid process model due to its structure  
complexity and case variability. This paper introduces the Case Analytics 
Workbench, an end-to-end system to accelerate hybrid process model creation 
and evolution by combining declarative and imperative process mining, event 
log clustering and human interaction in a cloud environment. We validated the 
effectiveness and applicability of our system by performing two case studies 
from insurance and health care industry respectively. 

Keywords: Hybrid process model · CMMN · Process mining · Clustering 

1 Introduction 

Business process modeling plays a significant role in the domain of business process 
management, which is the activity of representing the processes of an enterprise, so 
that they can be executed, analyzed and improved. Imperative modeling approaches, 
such as the XML process definition language (XPDL) [35], the web services business 
process execution language (BPEL) [26], and the business process model and notation 
(BPMN) [27], have been the dominant manner for modeling processes. These ap-
proaches model every possible sequence of activities in a business process to provide 
a structured model.  

Along with the emerging of knowledge-intensive processes, the imperative  
approaches meet challenges. As defined in [33], the conduct and execution of  
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knowledge-intensive processes are heavily dependent on knowledge workers per-
forming various interconnected knowledge intensive decision-making tasks, which 
are information centric and require substantial flexibility [5]. Declarative modeling 
approaches such as Declare [2], DCR Graphs [3] and SCIFF [15] have been proposed 
recently to support the required flexibility [1]. With declarative models, only the es-
sential characteristics are described in the model, and constraints between activities 
are explicitly defined to restrict banned behaviors. 

However, a study [31] among experts shown that the declarative modeling lan-
guage is not a process modeling language that can be used to model entire business 
processes in practice. It also indicated that in most processes at least parts of the 
process are better represented by the imperative approach. As an overall considera-
tion, the hybrid modeling approach, combining imperative and declarative modeling 
approaches, appears as a more attractive way to model the entire business processes.  

From the aspect of human effort, to create and refine a hybrid process model is not 
a trivial work especially for knowledge-intensive processes. First, the modeler should 
get an overall perspective about the process model. It will become more difficult 
along with the increasing structure/information complexity of the process. Second, 
there will be a learning curve for modeler to get hold of new hybrid modeling lan-
guages and guidelines. Third, to keep the hybrid model up-to-date, the modeler should 
be able to run process mining methods and explain the results properly for model 
refinement. Finally, the modeler would also call other analytics methods to provide 
customized modeling.  

In order to ease the workload of process modelers and accelerate the hybrid 
process model creation and evolution, we introduce an end-to-end system named Case 
Analytics Workbench, which 

• Combines declarative and imperative process mining results to extract data-driven 
evidences and automatically synthesize them with the original hybrid model,  

• Implements an industry oriented hybrid modeling approach which uses CMMN 
[24, 28] to model the declarative parts and BPMN [27] to model the imperative 
parts with the consideration of applicability and extendibility, 

• Leverages event log clustering to support customized process modeling,  
• Provides rich user interactions and visualizations to facilitate the model creation 

and evolution process, and 
• Is integrated with a case management [6, 9, 32] product IBM Case Manager (ICM) 

[13, 36]. 

We also performed two real world case studies from insurance and health care  
industries to show the capability of workbench on process model creation and  
evolution. 

2 Related Work 

Although a formal definition of hybrid process models has not come to a broad 
agreement, there is already existing industrial and academic works about modeling of 
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hybrid processes and hybrid model creation. ICM [13, 36] is an industrial product for 
case modeling and execution that implement hybrid process models. The declarative 
constraints between hierarchical container tasks and tasks are defined as precondi-
tions. And the process tasks that contain a set of restricted connected steps form the 
imperative parts. In ICM, graphical user interfaces are developed for modelers to 
manually create and refine hybrid models, but neither process mining methods nor 
data analytics components are involved yet. As a successful implementation in indus-
try, we refer to the main structure of the hybrid model in ICM, but extend it to a more 
generalized way. That is, to use CMMN to model the declarative part and keep it as 
the main structure of the model, and to use BPMN as the imperative modeling lan-
guage and keeps them in process tasks. 

Hermans [12] introduced a comprehensive hybrid process modeling approach con-
taining 1) a hybrid modeling language, which combines BPMN as imperative model-
ing language and Declare as declarative language, 2) An iterative process of creating 
a hybrid process model, and 3) a set of user guidelines for hybrid process model crea-
tion. A new element named block is introduced to wrap either declarative or impera-
tive sub-processes. Different from our hybrid model structure, block elements can be 
freely organized in a hybrid model. Other than process mining approaches for such 
hybrid model are not mentioned in the paper. Another hybrid modeling approach 
implemented in CPN Tools 4 [18, 29] combines the places and transitions of colored 
Petri nets with the constraints of the Declare and DCR Graphs languages. The work in 
[4] produced a hybrid process model that combine control flow and business rules 
modeling, and the work in [7] introduced a hybrid process model that combine beha-
vioral and informational models. 

Since most of the existing process mining techniques can only generate a process 
model that is either procedural or declarative, Maggi et al [23] introduced a hybrid 
process mining approach which can automatically discover imperative sub-processes 
and declarative sub-processes by dividing event logs into structured and unstructured 
sequences. Suppose the support of sub-processes by event logs and correlation with 
specified goal could be calculated, this kind of process mining engine can be treated 
as a source of evidence for the workbench. 

3 Case Analytics Workbench 

Fig. 1 illustrates the high-level architecture of the workbench, which is divided into 
four main modules. The first and fundamental module is the Case Model Management 
Module (see Fig. 2), which contains a model storage component, a model manager 
component and an editor component. This module allows a user to interact with a case 
model for model creation, editing, saving and transformation.  

To retrieve evidences from data, three additional modules are designed. Goal of the 
Data Management Module is to handle (diverse of) process execution logs, transform 
them to formal event log formats, and further process them with clustering. The 
Process Mining Module consumes event logs from the Data Management Module to 
run declarative and imperative process mining methods. In addition to presenting the 
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forms such as Bluemix [14] services and APPs, which makes them standardized for 
invocation and distribution. We will provide more detail about each module next. 

3.1 Case Model Definition 

Referencing the requirements of hybrid modeling language described in [12], the 
hybrid modeling language should 1) support imperative modeling elements, 2) sup-
port declarative modeling elements, 3) support hierarchical modeling elements, 4) be 
executable, and 5) be graphically intuitive. 

Considering the applicability and extendibility, we decide to combine existing im-
perative and declarative language other than to develop a new language [31]. We 
produce the definition of Case Model to address the following challenges. First, ac-
cording to the requirements of hybrid modeling language, we need to find a declara-
tive language and an imperative language and they should be able to be integrated 
together. Second, according to the goal of widely industry applicability and rapid 
industry use, we should use industry-oriented languages. Naturally, CMMN and 
BPMN are identified as the industrial oriented standards as declarative and imperative 
language, respectively. In our case model, CMMN elements are used to form the main 
structure, which contain elements such as Case, Stage, Human Task, Process Task 
and Sentry (Constraint) element, and BPMN elements are defined under Process Task 
elements. 

 

Fig. 3. Main elements of Case Model. 

Definition 1 (Case Model). A Case Model (CM) (Fig. 3) is a hybrid process model 
with contracted and BPMN-extended CMMN in which  

• The hierarchical declarative part is composed by CMMN elements including Stage, 
Planning Table, Sentry, Human Task and Process Task, 

• Imperative parts are defined by BPMN elements under Process Task elements such 
as Lane, Lane Set, Sequence Flow and Task (To distinguish from Task elements in 
CMMN, we rename this Task element as Step), and 

• Data elements are defined by using Case File, Case File Item elements in CMMN. 
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3.2 Data Management and Clustering 

The Data Management Module serves as prerequisite for the Process Mining Module, 
in which the data preparation component consumes process execution logs from di-
verse sources and converts to event logs. Data clustering component is also assembled 
to this module to enhance the analysis of event logs.  

3.2.1   Data Clustering 
The goal of the clustering methods is to group processes together based on their ex-
ecution patterns. Events related to a particular case are grouped together to reflect a 
given process instance. We use timestamps to define an order of occurrence of events. 
Each event is then mapped uniquely to a single Unicode character. Thus, every trace 
is transformed into a Unicode string representation, where the order of the Unicode 
characters is determined by the order of events within the process trace.  

We apply DBScan Clustering algorithm [10] to cluster the set of string based trace 
representations. The reason we chose DBScan is to allow for arbitrary number of 
clusters to form and extends seamless to run in a Map reduce framework [11]. By 
default, DBScan implementations use Euclidean distance between points, which in 
our case each point is a sequence of characters. To overcome this issue, we adopt 
Levenshtein distance [19] instead of the Euclidean distance. As an instance of string 
edit distance, Levenshtein distance has been used in process mining and clustering 
event logs [40]. 

Levenshtein distance measures the difference between two string sequences of ar-
bitrary lengths (not necessarily the same). It does so by calculating the number of 
operations required to transform one string into another. Thus, it provides a good 
measure of similarity for finding similar execution patterns. DBScan requires the 
initialization of two parameters. 

MinPts: determines the number of points required to form a cluster. We set this 
parameter to 1, which means that every trace can possibly be a standalone cluster. It 
also means that clusters containing a single trace can be considered as outliers. 

epsilon: represents the distance threshold between two points that can be consi-
dered similar. 

To find the optimal epsilon is achieved through user experiments combined with 
subjective expectations of what should correspond to a good cluster outcome [38].  
A typical way to aid the user is to provide suggestions for epsilon by calculating the 
mean or median distance based on a sample set of available traces. 

The clustering algorithm outputs a group of clustered traces — share similar execu-
tion sequence based on Levenshtein distance — which are then presented to the user 
using the cluster visualization tool. Users have the option to drill down into the cluster 
to visualize for example, a particular event sequence. 

3.3 Process Mining 

The Process Mining Module contains at least one engine for declarative process min-
ing and one for imperative process mining. Remember the process-mining method for 
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each engine is not restricted to what is described in this paper. Take imperative 
process-mining engine as an example, those mining methods that can consume event 
logs and mine BPMN-based processes can be wrapped into the engine and convert its 
results to evidences.  

3.3.1   Declarative Process Mining 
A declarative process-mining engine mines declarative elements from the event logs 
such as human tasks and constraints. According to the definition of Case Model, The 
declarative part is hierarchical. That is to say, the same step can be planned in differ-
ent tasks, and a task can also be defined in different stages. However, in an event 
trace, each event is defined in step level, and its task and stage information is normal-
ly unavailable, which may result in ambiguity of mapping an event to the correct task 
in the model. Here works in [20] are applied to align each event trace with the model 
before performing process mining, and types of variations are extended to additional 
tasks, absent tasks, additional constraints and violated constraints. 
 
Additional and Absent Activities Discovery. This task is achieved by building a 
Hidden Markov Model (HMM) [30] to annotate each event in the event logs with  
a task in the model. The structure of HMM is derived from the process model, where 
a hidden state represents a task and an observation corresponds to an event in step 
level [20]. As the process model is incomplete and events that are not defined in the 
model may occur, we also create an “unknown” observation to match these events. 
The probabilities of the HMM are initially assigned according to the hierarchy and 
dependencies of the model, and refined from a set of training event traces by applying 
the Baum-Welch algorithm [30]. Then we can align a given event trace with the 
HMM by using the Viterbi algorithm [30], which finds the globally optimal sequence 
of tasks. After alignment, we can directly detect two types of variations: additional 
activities, which are frequently executed in the event log but not defined in the model, 
and absent activities, which are defined in the model but rarely or never executed in 
the event logs. 
 
Additional Constraints Discovery. The event-condition-action (ECA) based con-
straints are discovered from an event trace by applying our modified association rule 
mining algorithm [21]. The algorithm uses the metrics of support (that is the propor-
tion of traces satisfying a constraint) to measure the frequency of a candidate  
constraint, as well as the normalized odds ratio to quantify its correlation with the 
achievement of case goal. For each task, the best ECA rule, which is frequent and 
significantly more likely to lead to the goal achievement, is translated into the con-
straint of the task. Note that in a CMMN-based model, both temporal dependencies 
(on part) and data conditions (if part) of the tasks should be formally represented as 
constraints, which can be defined based on ECA rules [8].  
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Violated Constraints Discovery. Because the semantics of ECA rules can not be 
used for verification, while traditional linear temporal logic (LTL) can not capture the 
data conditions of tasks, we redefine the constraints using first-order LTL (FO-LTL) 
[25], which is constructed by combining first-order formulas by temporal and Boo-
lean operators. For detecting the violated constraints, we translate each FO-LTL  
constraint into a Büchi automaton[25]. If an event trace can not be accepted by the 
automaton, then the trace violates the constraint. Base on the checking results of each 
event trace, we calculate the support of each constraint, as well as its correlation 
(normalized odds ratio) with the achievement of case goal. 

3.3.2   Imperative Process Mining 
The imperative process-mining component extracts from event logs information about 
the events for each process task. This produces a set of typed and time-stamped 
events. We exploited this data in two ways: First, we used the standard flexible heu-
ristic miner [34]. This returns the results of the mining (a BPMN specification) to the 
workbench as evidence, to be considered and combined with evidence from other 
analyses in order to refine or create the complete model. 

Our second approach was to create aggregate behavioral view of the process. The 
goal here was to provide a visual representation of the execution of typical processes.  
In order to achieve this, we combine the individual process trace into a single aggre-
gate trace. The aggregate trace consists of tasks, with their average, minimum and 
maximum start and end times. All timestamps are expressed relative to the start of the 
case, in order to have a normalized basis for aggregation of the data. Additionally, the 
percentage of cases in which a particular task was executed (which would be relevant 
in case the task was discretionary or created on an ad hoc basis) is included in the 
aggregation. Similar to the data for each task, the list of steps within each task is  
aggregated. The algorithm to compute this aggregation is simple, and amenable to 
parallelization (we discuss this further below). This aggregation, represented in JSON 
format, is provided to a timeline visualizer created for the purpose of providing visual 
insights about historical data for the workbench users. 

3.4 Evidence Management Module 

Evidence Manager. This component collects evidences from diverse of adapters that 
convert process-mining results to evidences. 

Definition 2 (Evidence). Evidence is a piece of model elements with support infor-
mation (see Table 1) about how strongly this piece should be synthesized to the model 
and where and how it could be synthesized.  
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Table 1. The main attributes of Evidence 

Key  Value  Sample  
name The name of an evidence Request Expert 
modelEleId The aligned model element id of an 

evidence 
347834-123347 

modelType The model type of an evidence Task 
evidenceType The analysis type of an evidence Additional  
supportDegree The support degree of an evidence 0.25 
goalCorrelation The goal correlation of an evidence 3.42 
content The content of an evidence / 
parentModelId The parent model id of an evidence Underwriting Case 

 
Evidence Synthesizer. Evidence synthesizer automatically aligns the case model and 
evidences together, and recommends the synthesis operations against the base model 
[39]. First, with the adapted modeling evidences from various sources, we need to 
synthesize them together in order to recommend refinement operations against the 
base case model. Because a task can be defined in multiple stages and data sets usual-
ly do not include explicit stage labels for each task, evidences may not have labeling 
information either (note that evidences derived from the declarative process engine 
have been aligned with the case model already). Thus, a critical task is to assign those 
evidences with unknown stage labels into appropriate stages. We adopt a K-means 
clustering method to solve the problem where we cluster task evidences relying on 
their context attributes including performer role, information required, information 
updated, temporal relationships with other activities, and K is the number of stages, 
and the members of one cluster are assigned into the same stage. We represent the 
alignment result as a Consolidated Model View (CMV) where the original model is a 
tree and aligned evidences are put into appropriate branches. Fig. 4 depicts an exam-
ple of CMV where the case model has three stages and three activities a1, a2 and a3, 
and five evidences are aligned with the case model. Activity a3 have a predefined 
precondition of a2 and a vetoing precondition evidence E1-(a2, a3). Note that multiple 
evidences from different sources may target to the same case model element. We call 
them peer evidences, and a voting evidence E1+(a4) and vetoing evidence E2-(a4) are 
such examples as they both target to a4 (which is actually a newly discovered task 
from the data). Other three evidences are noted as unique evidences. 

After a consolidate model view is formed, we recommend three types of synthesis 
operations for a given case model (CM) as follows: 

• ADD(Tx): Adding a newly discovered element Tx to the CM where Tx can be 
either a task or a precedence constraint between two existing activities in the CM.   

• DEL(Tx): Deleting an existing element Tx in the CM. 
• UPD(Tx, Mandatory): Changing behavior of task Tx from optional to mandatory 

(the default execution behavior of an task in a CM is optional) 

The main idea of recommending synthesis operations is as follows: (1) For an unique 
evidence the algorithm recommends an ADD or DEL operation depending on whether it 
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Data Preparation and Clustering. 4300 historical execution logs of the underwriting 
process are collected from the insurance company lasting from August to December 
2013. This kind of data was then transformed to formal event logs via the data prepa-
ration component. Event log clustering could also be triggered in order to derive dis-
tinctive views from the original model. As the result, two clusters were generated, one 
of which contain 2038 case instances such as “Generate Auto quote  Check quote 
 Handle pending quotation request”, “Check quote  Generate Auto quote  Con-
sult Expert  Handle pending quotation request” and the other contain 2267  
instances such as “Check quote  Generate property quote  Handle pending quota-
tion request”. From the clustering results, the user is able to discern that cluster 0 
corresponds to auto insurance cases (since there are no steps relating to property in-
surance underwriting), while cluster 1 corresponds to property insurance cases.  

 

Fig. 5. Visualization of declarative process mining results 

Process Mining. Fig. 5 shows the results of declarative process-mining method which 
also took the raw case model as input and set the goal as “Cycle time less than two 
days”. For better understanding, all the results was visualized in a Dendrogram, which 
clearly shown the structure of variation types. Each result was shown as a leaf node of 
the Dendrogram with its main attributes including support degree (visualized as the 
length of a blue bar and a succedent support degree number) and correlation with goal 
achievement (visualized as the position of a black line on the colored bar and a succe-
dent correlation number). We observed that some reasonable and meaningful  
elements that were not defined in the raw model, such as the additional tasks (e.g., 
“Consult Expert”) as well as the additional constraints, were discovered by the declar-
ative process-mining engine. The imperative process-mining engine also mined rea-
sonable sub-processes for some tasks and converted them to evidences. As seen in the 
evidence management panel in Fig. 2, the last seven evidences were converted from 
imperative process-mining results. For example, the Submit Quotation evidence 
marked with a workflow icon contains a sub-process “start  car quotation  check 
quotation  end”. 
 
Evidence and Evidence Synthesis. Evidences shown in Fig. 2 were converted from 
the results of both the declarative and imperative process-mining engines. Before 
running the automatic evidence synthesis engine, “strong” evidences whose support is 
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larger than 0.3 and goal correlation is larger than 0.5 are selected via the filter. The UI 
of synthesis is shown in Fig. 6(a). The evidence synthesizer component provided the 
recommendations of model refinement, and the user selected and finally confirmed 
the modifications to generate the final model as shown in Fig. 6(b). 

 

Fig. 6. (a) The synthesis overlay on the raw case model; (b) The final model after synthesis. 

 

Fig. 7. The care pathway model, selected evidences and the synthesis results. 
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4.2 Case Study 2:  Care Pathway Refinement 

We also performed a real world case study for care pathway refinement. A care path-
way is a standardized process that consists of multiple care stages corresponding to 
different disease progression conditions, where each stage contains various clinical 
tasks and their constraints. Due to its strong requirement on flexibility and ad hoc 
variation, we think the hybrid approach will be suitable to model complex care path-
ways. In this study, an initial care pathway, which was derived from a clinical guide-
line for the management of congestive heart failure (CHF) [37], was manually built as 
a case model using our workbench. Then we refined this model for a specific patient 
cohort based on the evidences mined from the real electronic medical records (EMR).  

The process-mining engines provided meaningful evidences for the improvement 
of the care pathway. For example, in the original care pathway derived from the 
guideline, some constraints specify that the baseline tests have to be performed before 
initiating treatments. However, as shown in Fig. 7, our declarative process-mining 
engine detected that in actual EMR data, the treatments were usually initiated without 
performing the baseline tests before. Clinicians gave a reasonable explanation for 
these violations. In real world care practice, clinicians can give treatments based on 
past medical histories that are not recorded in EMR; therefore, these constraints are 
not required and can be ignored in some cases. Besides, we also applied the results of 
care pathways mined by the imperative process-mining approach [38]. Though the 
treatment actions were defined in the original case model, their orders were not expli-
citly specified. Therefore, as shown in Fig. 7, we manually selected fragments from 
the care pathway model found in [38], and added the possible sequences into the re-
fined model. 

5 Discussion and Conclusion 

In this paper, we presented a solution to accelerate the hybrid process model creation 
and evolution by combining declarative and imperative process mining with event log 
clustering. An end-to-end system named Case Analytics Workbench was built up in 
the cloud environment allowing users to check analysis results and interact with case 
models, and real world case studies are designed from insurance and health care in-
dustry.  

From the system design point of view, the cloud-based architecture brings adaptivi-
ty and extendibility for different use case design. For example, in the introduced case 
studies, different components were assembled in different manners. Case Study 1 
leveraged Data Clustering component to group event logs that have similar patterns, 
while evidences in Case Study 2 are from embedded declarative process-mining en-
gine as well as external imperative process-mining engine. The cost of component 
decoupling exists. As the Data Management Module is independent with process-
mining engines, to transmit data among them will be a burden for the network if the 
volume of data is relatively large. There should be advanced mechanism to deal with 
the data transmission in each process-mining engine. 
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From the applicability point of view, running of case studies and their results made 
strong impressiveness to specialists include business process administrators, BPM 
specialists, BPM product managers and developers, as well as clinical physicians. 
Most of them gave positive feedbacks about the combination of diverse process min-
ing methods and the involvement of clustering method. They also agreed that the 
process of creating or improving a business process model should include the user 
interaction, and our mechanism of user interaction, including the visualization of ana-
lytics results and the design of interaction mode, is also appreciated by the specialists. 

For further evaluation, a thorough empirical evaluation is still needed which should 
involve different modelers to complete a hybrid modeling task integrally. As the 
workbench is just a modeling tool but can not run the generated models, the applica-
bility of models is also not well evaluated. Generated models should be further trans-
formed and exported to other practical business process management platforms such 
as ICM and do empirical evaluation during the runtime of model.  

Considering the hybrid process modeling approach, there are also further consider-
ations. Firstly, due to the modeling limitations of CMMN and BPMN, we clearly 
distinguished the declarative part (Stage and Task elements) from the imperative part 
(Step elements in Process Task) in our definition of case model, which worked well in 
our case studies. In some other cases, however, there is no significant border between 
the model elements where these two modeling manners should be applied, and a more 
flexible hybrid process model could be designed. Besides, our current platform use 
the GSM-based model [8] to represent both temporal and data-aware constraints for 
the declarative part of model, which can only support limited categories of temporal 
constraints. A potential solution is to integrate the data-aware extended model of Dec-
lare [22], which supports much more types of temporal constraints and data condi-
tions. 

The Process Mining Module could also be enhanced by developing more process-
mining engines such as works in [23] and [41]. Each engine could be treated as one 
source of evidences. Along with the increasing of diverse engines, fusion of evidences 
from them will become a challenge for the Evidence Management Module. 
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Abstract. As discussed in numerous studies, clinical pathways of patients form 
an appropriate tool for describing hospital processes and thereby provide a basis 
for increasing the effectiveness of hospitals. Developing pathways led to a con-
siderable research investigating IT-techniques to support pathway generation. 
However, previous research neglected finding pathways designed to support 
scheduling of hospital relocations and treatment services. To close this gap, we 
first introduce a clinical pathway concept consisting of both pathway structure 
and pathway constraints suitable for scheduling tasks. Second, we provide a 
pathway mining method for automatically extracting corresponding pathways 
from standard hospital billing data required for the German §21-KHentgG. Ap-
plying our approach to a real world dataset of a university hospital, we illustrate 
the results using a pathway for malignant neoplasm of prostate containing feas-
ible time windows and precedence relations of treatments, durations at attended 
wards as well as possible process improvements stimulated from the results. 

Keywords: Clinical pathway · Hospital · Process mining · Scheduling 

1 Introduction 

Hospitals in Germany cause costs of 76bn Euro per year, which is approx. 25% of the 
total costs of the German health care system [1]. In order to reduce healthcare costs, 
the German Diagnosis Related Groups (DRG) system was established in 2003. Since 
then, hospitals are under considerable cost and quality strain by earning a case-based 
lump-sum. Today, every third hospital is still unprofitable [2]. Badly managed patient 
flows lead to an inefficient use of human and material resources, increasing costs and 
decreasing quality of medical care [3]. One of the most promising methods to achieve 
an efficient patient flow management is the use of clinical pathways (CP) [3]. 

A CP is a specific set of time-constrained treatment services and ward relocations to 
be performed to cure a disease between a patient’s admission and discharge. The aim of 
using CP is to increase the transparency and the standardization of medical processes in 
order to enable scheduling and controlling [4]. However, developing CP is a complex 
and time-consuming task. As a result, only few CP are used in day-to-day hospital  
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operations. Due to heavily interdependent treatment services, using none or just a few 
CP within some kind of patient scheduling system becomes an obstacle to finding a best 
possible allocation of hospital resources. In order to obtain CP for nearly every disease 
treated by a hospital, IT support is indispensable. 

Because of the great potential of employing CP, in recent years much effort has 
been taken to develop methods to automatically identify pathways. Existing methods 
for pathway mining focus on explicit descriptive characterizations of CP. Since they 
neglect implicit path feasibility information such as time windows of treatments or 
precedence constraints, they typically struggle with the heterogeneity and the variabil-
ity of hospital-wide treatment processes and, cannot be used for scheduling. 

Based on recent research in pathway mining and hospital-wide scheduling, this paper 
has two aims to improve business process management in hospitals: (1) Introduce a 
scheduling-focused CP concept composed of pathway structure and pathway constraints 
and (2) to develop a pathway mining method which is able to automatically extract CP 
corresponding to this CP concept from a standardized billing data each German hospital 
is obliged to create once a year according to the §21-KHentgG. 

2 Related Work 

Studies show significant improvements in medical care quality and economic factors 
like costs by employing CP in clinical operations management [5, 6]. In order to leve-
rage this potential throughout the entire hospital, one pathway for every kind of 
treatment is needed. Unfortunately, due to the highly complex, ad hoc and multi-
disciplinary nature of hospital processes, the development of a specific CP containing 
all necessary constraints of all treatments to cure an illness is a difficult and time-
consuming task [7]. 

To support the development of CP, IT-based pathway mining methods have been de-
signed in the recent years. These methods can be classified into process mining, mining 
from clinical guidelines and other techniques like data mining or machine learning.  

In process mining, process models are extracted from execution logs [8]. Since the 
billing data used in this paper is similar to event logs, our novel path mining method 
can be classified as a process mining approach. For this reason, the following review 
focusses on this class of approaches for pathway mining. 

Process mining methods have successfully been employed to identify changes in 
treatment processes and differences to given guidelines or clinical best practices [9]. 
Furthermore, they have been used to find particularly conspicuous and deceitful pa-
tient cases automatically [7, 10]. Notwithstanding, there is a great need of new 
process mining approaches. After analyzing several common process mining tech-
niques, none of them was able to meet all requirements for using them in practice or 
to identify good models even for well-defined clinical processes [11, 12]. 

Huang et al. face these criticisms and develop a new approach based on a dynamic 
programming algorithm which splits the observed time periods into continuous and 
overlapping intervals. Their approach is able to find frequent medical behavior pat-
terns in each specific time interval in a given event log file. In a case study valid 
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pathway summaries are found showing the global and time interval specific structure 
of current medical treatment processes [13]. 

Another approach developed by Huang et al. is based on an unsupervised probabil-
istic clustering technique called Latent Dirichlet Allocation. The patterns encompass a 
set of treatment activities forming the essential features of the CP [14]. In experiments 
with a real word data set, the temporal structure of discovered CP patterns could be 
extracted successfully by considering a treatment’s timestamps [15]. 

To sum up, the mentioned approaches have a descriptive character and are able to 
show how current treatment processes are performed in hospitals. Nevertheless, none 
of these approaches is able to find CP that can be used for scheduling patient treat-
ment services and relocations since they lack scheduling-relevant information like 
time or precedence constraints between single CP steps. Furthermore, the hetero-
geneity of patient case data from highly variable treatment processes is one of the 
most challenging problems in process mining approaches [7, 11, 12, 15, 16]. To find 
homogenous case groups, the use of clustering techniques is advised [16]. Unfortu-
nately, using a clustering algorithm is likely to mix up heterogeneous patient cases 
resulting in CP that will never occur in reality, cannot be used for scheduling and 
could even decrease hospital process transparency. 

To bridge this gap, we describe a process mining approach which is able to find 
homogenous cases and plausible CP for elective inpatients (pre-planned, non-
emergency cases) that meet scheduling-relevant requirements, addressing the two 
main challenges of process mining techniques: (1) strongly heterogeneous patient 
cases with a great variability in treatment processes and (2) event data from various 
IT-systems with different structure and content [7, 11, 12, 15–17]. 

3 Concept of Scheduling-Focused Clinical Pathways 

The CP scheduling problem aims at improving the patient flow and hospital resource 
allocation by finding a best possible hospital-wide schedule for each patient avoiding 
bottlenecks, waiting times etc. As a result, for each patient it is known where and 
when which kind of treatment will be performed and how long the patient will stay on 
certain wards during his hospitalization if no complications arise [18, 19]. 

Regarding the findings related to this scheduling problem, a time granularity of one 
day is considered to be sufficient [18, 19]. Thus, a clinical pathway comprises a set of 
day-based steps (ward relocations and medical treatments). Consequently, we propose 
that the result of CP mining should contain two separate interrelated components lead-
ing to an implicit pathway characterization: First, the pathway structure containing a 
set of daily pathway steps which are categorized into relocations and treatments to-
gether with their timely occurrence relative to the hospital admission. Second, a set of 
pathway constraints ensure feasible scheduling results while allowing some flexibility 
in scheduling which can be used for optimization (see Fig 1). Details of required re-
sources are part of the scheduling process and beyond our scope. 
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ensure medically correct CP. To avoid CP biased by some exceptions in treatment 
processes, we use thresholds for the minimum relative transition frequency (e.g. oc-
currence of 90% in all cases) which have to be satisfied in order to consider a given 
transition. Transition frequencies between wards show valid relocation alternatives. 
Finally, treatment occurrences ensure that each treatment tk is at least (Mintk) and at 
most (Maxtk) times contained in a CP. Average (AVGtk) and median (Mediantk) occur 
is again computed for transparency purposes. 

4 Pathway Mining Approach 

1 caseGroupList = getHomogenousGroups(leadingDiagnosis,admissionWard) 
2  for each group in caseGroupList: 
3   while i <= max(countRelocationStates(group)): 
4    wardList = getWardsAtRelocationState(i,group) 
5    for each ward in wardList: 
6     wardKeyFigDict[i,ward] = computeWardKF(i,ward,group) 
7    i = i+1 
8   totalLOSKeyFiguresDict = getTotalLOSKF(group) 
9   treatmentList = getAllTreatments(group) 
10   for each treat in treatmentList: 
11    treatmentKeyFigures[treat] = getTreatKF(group) 
12    listOfDays = getDaysOfOccurrence(treat, group) 
13    treatDays[treat] = getFeasDays(listOfDays) 
14   posGroups = getAllPossibleTreat-Groups(treatmentList) 
15   for each (treat-A, treat-B) in posGroups: 
16    if getGroupValue(treat-A, treat-B) >= groupThreshold: 
17     listOfFoundGroups.add(treat-A, treat-B) 
18   for each (pred,succ) in getAllPossibleStepOrders(group): 
19    transFreq = getTransitionFrequency(pred,succ) 
20    if transFreq >= precedenceThreshold then: 
21     orderDict[pred,succ] = getOrderKF(pred,succ,group) 

The above shown CP mining algorithm identifies pathway structures and con-
straints based on homogenous case groups received from a §21-KHentgG1 billing data 
set. A homogenous case group is a collection of patient cases sharing the same illness 
and a similar treatment. In line (L) 1 we extract all of these case groups, assuming that 
all possible treatments of a certain illness have to start at the same ward within a hos-
pital and show a similar set of operations and procedures (OPS). Thus we first select 
all elective cases with the same leading diagnosis2 and an admission on the same 
ward. After that we compute binary OPS profiles of all selected cases. All cases that 
now share the same OPS profile are considered as a homogenous case group. 

To find all relocations, we first compute the maximum number of relocation steps 
of a group (L 3). Based on this, we extract the list of possible wards in chronological 
order (L 4). In L 5, we compute the key figures Min, Max, AVG and Median of 
length of stay (LOS) on each ward as well as the feasible day-based time windows for 

                                                           
1  An overview of the entire §21-KHentgG dataset, all case related data and an example data set 

can be found at: http://www.g-drg.de/cms/Datenlieferung_gem._21_KHEntgG 
2  Each case can have plenty of diagnoses, but only one leading diagnosis. This diagnosis is the 

medical reason for hospitalization. 
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admission and discharge to/from these wards relative to the first admission. Similar 
key figures are computed in L 8 for the total LOS for the whole case group3. 

In L 9 to 13, we extract all treatments within the case group, the key figures Min, 
Max, AVG and Median of the occurrence of each treatment as well as the list of feas-
ible days (relative to the first admission) for each treatment. Start and end of the feas-
ible time interval are computed in L 13 as min/max of all observed occurrences. 

In order to obtain all groups of treatments to be scheduled at the same day, we first 
determine all pairs of steps which occurred at the same day (L 14). Based on these, 
we compute the relative group value by counting the number of real occurrences of 
both treatments at the same day divided by the amount of possible occurrences at the 
same day, which is the minimum of the occurrence of both treatments (L 16). To 
avoid groupings due to exceptional treatments, a given groupThreshold has to be met 
to create a hard-constrained grouping (L 17). 

To identify precedence constraints, we compute the transition frequency of each 
possible pairing of case steps (L 18 to 19). We compute the transition frequency of 
two steps by counting how many times a certain daily-based pair occurred divided by 
the number of how many times the pair could have occurred within the group. The 
value of possible occurrences is the value of how many times both steps occur within 
all cases. To ensure valid relocation sequences after scheduling, we compute the tran-
sition frequency for two wards depending on the number of relocations in the case. 
Possible wards at stage i+1 are feasible only if a relocation from the former ward at 
stage i has been observed. In order to avoid precedence constraints based on few indi-
vidual patient treatments, a given precedenceThreshold has to be met within all cases 
to create significant constraints (L 20 to 21).  

5 Results 

The following results are based on a real-world billing dataset of a German university 
medical center from 2011 involving approx. 40.000 inpatient cases.  

Since we pursue the goal of developing a general pathway mining method, we 
tested our approach on several leading diagnoses. In order to facilitate the discussion 
of the results, the following presentation focuses on the diagnosis C614 (Malignant 
neoplasm of prostate) forming the leading diagnosis with the third largest amount of 
inpatients, admitted 504 times in 2011. We chose ward HA2200 for further path min-
ing because 97 % of all patients were admitted there. 

After extracting the OPS profiles of all 492 cases, we received the homogenous 
case groups by hierarchical Ward clustering using the Jaccard coefficient to compute 
the distance matrix and cutting the results at a height of zero such that only equal 
items are within a cluster. This ensures that different kinds of treatments are not 
mixed up within one cluster. Altogether, the Ward clustering resulted in 112 equal 
cases contained in three big clusters with 85, 75 and 50 cases and four medium-sized 

                                                           
3 In order to simplify accessing the figures later on, we store them in [key: value] dictionaries: 
4 All diagnosis are stored as IDC-10 strings within the dataset. 
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clusters with 11 to 27 cases. One third of all cases (131) are assigned to clusters with 
2 to 10 cases and 71 clusters contain a single case. In the following, we discuss the 
results mining a 13-case cluster containing interesting results and exhibiting a com-
plex treatment process. The parameters groupThreshold and precedenceThreshold 
were set to 0.95 and 0.9. Fig. 2 shows the path mining results. This CP contains 5 
treatments including a surgery. The stay time is between 8 and 19 days, with an aver-
age of 11 and no further relocation. The DRG of the cases is M01B and has an aver-
age stay time of 9.9 days in Germany5. 

 

 

Fig. 2. CP obtained with the presented method 

It is notable that the surgery in our cases is done at day 2 or 3. If the surgery could 
be performed at the first day of hospitalization, the length of stay may be reduced. 
The found precedence constraint between t2 and  with a min lag of 7 days under-
lines this guess. A closer look at the data reveals that the average stay time of cases 
with surgery at the second day is approximately 11 days, instead of 14 days. Another 
interesting insight for managing patient flows is the insight of grouping the surgery 
(t2) and “measures of blood circulation” (t3). If it is known ahead that the resources 
required for t3 are unavailable at a certain time, the admission of patients should be 
shifted accordingly in order to avoid waiting time. The pathway mining results were 
discussed the case manager of the ward HA2200. She recognized the structure of our 
mined treatments processes and confirmed our scheduling-related interpretations like 
shifting the surgery on the first day and that a surgery could only be done if all prepar-
ing OPS have been done before.  

                                                           
5 http://medcode.ch/de/de/drgs/G-DRG-2012/M01B 
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6 Conclusion 

In 2012, every third German hospital was unprofitable [2]. One of most promising 
ways to improve hospital efficiency is the implementation of CP [3]. In this paper, we 
propose a scheduling-focused CP concept and an algorithm to automatically extract 
CP from standardized billing data. Summarizing the results, our method is able to 
identify real-world treatment processes from standardized hospital billing data. Re-
garding the aims of this paper, the unique contributions of our approach are: First, our 
scheduling-based CP concept identifies structures and dependencies instead of merely 
computing key figures. This new level of transparency enables discussing reasons and 
solutions for inefficient treatment processes. Second, our CP ensure a valid patient 
scheduling by only considering homogenous case groups and scheduling-related in-
formation. 

In future research, we will combine our CP components (structure and constraints) 
with resource information in order to develop a new kind of hospital-wide scheduling 
system for elective patient flows. This system will be validated in cooperation with 
the university hospital. With our results we hope to make an important step on the 
path to realizing the vision of being “[..] able to derive (partial) treatment process 
models merely by pushing a button”[12]. 
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Abstract. The diverse landscape of Workflow Management Systems
(WfMSs) makes it challenging for users to compare different solutions
to identify the ones most suitable to their requirements. Thus a com-
parison framework that would define common grounds in many different
aspects, such as price, reliability, security, robustness and performance
is necessary. In this paper we focus on the performance aspect, and we
present a framework for automatic and reliable calculation of perfor-
mance metrics for BPMN 2.0 WfMSs. We validate the framework by
applying it on two open-source WfMSs. The goal is to contribute to the
improvement of existing WfMSs by pinpointing performance bottlenecks,
and to empower end users to make informed decisions when selecting a
WfMS.

Keywords: BPMN 2.0 · Workflow management systems · Benchmark-
ing

1 Introduction

With the growth in the variety of Workflow Management Systems (WfMSs) com-
panies face a difficult decision when selecting a suitable system for their Business
Process Management (BPM) projects. The main differences among WfMSs con-
sist of: the supported executable modeling languages (e.g., WS-BPEL, BPMN
2.0), the integration with external systems and tools (e.g., Web service APIs for
monitoring and business intelligence [3]), their performance [12], robustness [6],
operating costs and other non-functional requirements. In this paper, we address
the need to assess alternative WfMSs based on the runtime performance of the
Business Process (BP) execution by their Workflow Engine (WfE). Such assess-
ment would empower BPM adopters to map their requirements to the available
solutions and BPM vendors and developers to improve their technology offer-
ings. Our framework for benchmarking BPMN 2.0 WfMSs ensures the reliability
of the benchmarking process. It does so by structurally defining and controlling
the environment under which the performance experiments are carried out and
their results analyzed, while taking into account the main requirements of a good
benchmark [5]. The decision to focus on BPMN 2.0 (BPMN2 hereinafter) is due
to its growing support by commercial and academic WfMSs. As initial validation
of the framework we use it for a simplistic performance test of two WfMSs.
c© Springer International Publishing Switzerland 2015
H.R. Motahari-Nezhad et al. (Eds.): BPM 2015, LNCS 9253, pp. 251–259, 2015.
DOI: 10.1007/978-3-319-23063-4 18
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2 Related Work

The need for benchmarking WfMSs has been identified many times. In 2000,
Weikum et al. [4] propose a benchmark for comparing the performance of dif-
ferent commercial WfEs by measuring their throughput to study the impact
of the database component. Ten years later, SOABench [1] defines one of the
first performance comparisons for WS-BPEL WfEs. It assumes that the per-
formance of a WS-BPEL WfE can be reduced to its response time. A recent
review by Röck et al. [12], of the work undertaken so far for benchmarking WS-
BPEL WfEs, highlights: the lack of an extensive evaluation of different WfEs, the
unclear definition of the workload mix (i.e., the mix of process models executed
by the System Under Test (SUT)) and the load functions (i.e., the functions
describing how the requests to start and interact with the BP instances are
sent to the SUT), as well as the narrowly focused metrics for characterizing
system’s performance. There exist many commercial and open-source perfor-
mance measurement frameworks [11], some dedicated to generic Web Applica-
tions (e.g, Faban (http://faban.org), JMeter (http://jmeter.apache.org)), and
others to middlewares [1], [8]. However, to the best of our knowledge, no ready-
to-use open-source solutions exist for comprehensive benchmarking of BPMN2
WfMSs. There exist similar tools [1], [7], however they do not implement perfor-
mance benchmarking (e.g., Betsy [7]), or they use virtual machines to deploy the
SUT (e.g., SOABench [1]), introducing additional overhead possibly impacting
the performance.

3 The BenchFlow Benchmarking Framework

As opposed to other software systems, benchmarking WfMSs introduces addi-
tional challenges derived from: 1) the system deployment complexity due to
their distributed nature; 2) the high number of configuration parameters affect-
ing their performance; 3) the absence of a standard interface to interact with
the WfMSs and to access execution data; 4) the asynchronous execution of
the processes; and 5) the complexity of the execution behaviours that can be
expressed by modern modeling and execution languages such as BPMN2. The
system deployment complexity and the high number of configuration options
require to integrate the configuration and the deployment of the SUT, i.e., the
WfMS, as part of the performance test definition. It is the only way to scale out
the large number of tests needed to comprehensively evaluate the WfMSs per-
formance. The absence of a standard interface makes abstractions necessary for
handling many different WfMSs by the framework. The asynchronous execution
of processes makes it challenging to collect the measures directly on the SUT
side since the client is only aware of the response time of the requested task’s
queuing, whereas it remains unaware of its actual execution status and execution
time. The complexity of the possible behaviours that can be expressed needs to
be tackled by proposing a model-driven approach that, starting from a BPMN
model and a set of WfMS configurations, has to instantiate the infrastructure
necessary to perform the test.

http://faban.org
http://jmeter.apache.org


A Framework for Benchmarking BPMN 2.0 Workflow Management Systems 253

Fig. 1. BenchFlow Framework Architecture

The BenchFlow framework builds upon Faban, an established and tested
“performance workload creation and execution framework”, to design the load
drivers and issue the load to the WfMS. The load driver, which is executed by
the harness, provides the infrastructure needed to define the simulated users and
their interaction with the WfE. BenchFlow also exploits Docker (https://www.
docker.com) as a containerization technology, to enable the automatic deploy-
ment and configuration of the WfMS and to ensure that the experimental results
can be reproduced. As shown in Fig.1, a WfMS can be tested with BenchFlow
only if: 1) its API can be used for automation of the test execution [13]. The
API should feature: deployment of BP models, start of a BP instance execution,
access to the list of pending user and manual tasks and ability to complete them,
and sending events to the running BP instances; 2) its logs or instance database
(DB) include performance data about the BP instances’ execution. These can be
queried to calculate WfMS performance metrics. BenchFlow aims to minimise
the effort of adding a new WfMS to the framework and executing performance
tests on it. To add a new WfMS, users need to: provide a containerized version of
the WfMS (this should be published in a public registry if the results are meant
to be reproduced), integrate the custom WfE interfaces, provide the queries that
BenchFlow can run to assess the completion of the BP instances execution and
to extract the raw performance data.

3.1 Performance Test Execution

The WfMSs are automatically deployed and undeployed using Docker (Fig. 1.1
and 1.2). Each component involved in the benchmark (the WfE, the instance

https://www.docker.com
https://www.docker.com


254 V. Ferme et al.

DB, the Web services and Faban load drivers) are packaged as Docker images
to be deployed and executed on different servers connected by a dedicated local
network so that interferences are minimized. Docker enables the repeatability of
the benchmark execution, since it freezes the system state so that every test runs
from exactly the same initial conditions. Containerization technologies introduce
some overhead in system’s performance that can be detrimental for the perfor-
mance tests. However a recent reliable performance analysis of Docker [2] has
shown that, if carefully configured, Docker reaches near-zero overhead.

After the WfMS is deployed, the workload can be applied. The workload is
defined by standard BPMN2 models and BenchFlow provides already defined
workload packages and artifacts. These consist of a mix of BPMN2 models that
have to be deployed in the WfE. They are characterized by their features (e.g.,
which BPMN2 language constructs they use), and the simulated behaviour of
the users instantiating them and interacting with them, as well as the simu-
lated behaviour of the Web Services called by the WfE. Each WfMS uses a
custom mechanism for deployment, instantiation and interaction with tasks. We
abstract common interaction interfaces, and then map them to the actual ones
implemented by each WfMS. Faban drivers issue the load to the WfMS, and
we expose its API by means of a Domain Specific Language (DSL), similarly to
what has been done in other performance frameworks and generic application
performance testing (e.g., https://github.com/flood-io/ruby-jmeter). The use of
a DSL simplifies the definition of a reusable workload package encapsulating the
simulated behaviour of the interacting users and external services.

3.2 Performance Analyzes

BenchFlow automatically collects all the data needed to compute performance
metrics, and to check the correct execution of the tests (e.g., errors by different
WfMS components). The client-side data (e.g., the response time of BP instance
start requests) are collected by Faban and integrated with the server-side data
collected by BenchFlow. The server-side data is collected from the execution logs
from all the different containers realizing the WfMS, as well as from the instance
DB populated by the WfMS during the test execution. In order to avoid inter-
ferences during the test execution, we collect (Fig. 1.4) all the data only after
the WfMS completes the execution of the issued load. This is determined by
first monitoring the CPU utilization of the running Docker container, and then
when the container is idle, by checking if the number of completed BP instances
matches the number of BP instances started by the load driver (Fig. 1.3). We
exploit the logs to identify execution errors, and containers’ statistics (obtained
through Docker stats API) and the instance DB data to compute the perfor-
mance metrics included in BenchFlow (Fig. 1.6). Each WfMS has its own inter-
nal representation and structure for the logs and the instance DB data. In order
to define the metrics computation and the performance analyzes only once for
all WfMSs we map these logs and data to a uniform representation (Fig. 1.5).

https://github.com/flood-io/ruby-jmeter
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4 Evaluation: Preliminary Scalability Experiment

In this section we present the results of using BenchFlow to evaluate the scal-
ability of two open-source WfMSs as the number of users increases. The load
issued to the WfMS and the selected performance metrics are not exhaustive.

Fig. 2. Experiment Business Process Model

4.1 Experiment Description and Set-Up

This performance testing experiment is based on the following elements [11]:
1) Workload: the instances of the BP models set executed by the WfE during

the experiment. Given the limited scope of this experiment we use only one
simple BP model presented in Fig. 2. The Script task is an empty script. The
Timer event defines a wait time of 2s before allowing the process to continue.

2) Load Function: the function handling system’s load. In our case the Load
function determines how the BP instances are initiated by a variable number of
simulated users (since we are testing system’s scalability), growing from 5 to 150
concurrent users. Due to experiment’s simplicity the load driver executes the
Load function only once when the test starts. The duration of the load function
is 300s with 30s of ramp-up period. The ramp-up period defines the transition
from none to all simulated users being active. This means that it takes 30s before
all users start issuing requests for BP instance instantiation. For example, in an
experiment with 5 users, a new simulated user is created every 6s during the
ramp-up period. After becoming active each user issues one BP instance start
request per second.

3) Test environment : the characteristics of the hardware used to run the
experiment. We use three servers (Fig. 1): one for the harness executing the load
driver, one for the WfE and one for the Database Management System (DBMS).
We deploy the WfE on the least powerful machine (12 CPU Cores at 800Mhz,
64GB of RAM) to ensure that the machine where we deploy the Load driver (64
CPU Cores at 1400MHz, 128GB of RAM) can issue sufficient load and that the
DBMS (64 CPU Cores at 2300MHz, 128GB of RAM) can handle the requests
from the WfE. After each test we verify the absence of measurement noise by
checking the environment metrics (CPU, RAM and network usage) and the WfE
logs to ensure that all the BP instances are completed.

We run the experiment on two open-source WfMSs supporting native exe-
cution of BPMN2. We test them on top of Apache Tomcat 7.0.59 using Oracle
Java 8 and MySQL Community Server 5.5.42. We use the default configuration
as specified on vendors’ websites.
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4.2 Results

The first metric we analyze is the Throughput = #BPInstances(bp)
Time(s) [9, ch. 11].

As per Fig. 3 Engine B does not scale well after 25 and the throughput starts
degrading after 50 users. Engine A can handle a load up to 125, with the through-
put decreasing abruptly with 135-150 users. Thus the Capacity of the WfEs can
be estimated to less than 135 for Engine A and less than 50 users for Engine B.

The BP instance duration is the time difference between the start and the
completion of a BP instance. It is presented in the box and whisker plot in
Fig. 4(a) for Engine A and Fig. 4(b) for Engine B. This type of plot displays
the analyzed data into quartiles where the box contains the second and third
quartile, while the median is the line inside the box. The lines outside of the
box, called whiskers, show the minimum and maximum value of the data [10].
The measurements show that Engine A scales better since it starts having an
unexpected behaviour after 125 concurrent users, while the first execution per-
formance problems of Engine B appear at 50 users, as evident from the instance
duration increase of one order of magnitude. In Fig. 5 we report Engine A’s
CPU utilization for each of the tests. It is interesting to notice that while
the instance duration increases substantially starting from 135 concurrent users
(Fig. 4 (a)), the CPU utilization decreases, indicating that the slowdown of the
WfE is not caused by lack of resources. The same has been verified by checking
the CPU/RAM utilization of the DBMS.

After noticing a bottleneck in performance scaling, we investigate the causes.
Since only two constructs, a Script task and a Timer event, are used in the
experiment BP model, we test the WfE performance in handling each of them
individually. The test processes used consist of a Start event, the tested construct
and an End event. As per the previously gathered information we focus on the
critical number of users (125/135 for Engine A and 25/50 for Engine B). We
use the delay metric which compares the expected to the actual duration of the
construct execution. The expected duration of the Timer is 2s, while the empty
Script task should take 0s to complete. The delay measurements (Fig. 6) show
that both WfEs handle the Script task efficiently with an average delay below
10ms. The same does not hold for the Timer. For Engine A, the average delay of
the Timer at 135 users is by three orders of magnitude greater than at 125 users.



A Framework for Benchmarking BPMN 2.0 Workflow Management Systems 257

In
st
an

ce
D
ur
at
io
n
(s
)

5 25 50 75 100 110 125
2

4

6

8
(a
)
E
ng

in
e
A

135 150
0

2,000
4,000
6,000
8,000

5 25 50
0

10
20
30
40

(b
)
E
ng

in
e
B

75 100 125 150
0

200

400

600

Concurrent Users

Fig. 4. Aggregated Process Instance Duration Comparison

5 25 50 75 100 110 125 135 150
0

10
20

Concurrent Users

C
P
U

(%
)

Fig. 5. Aggregated CPU Usage (Engine A)

(a) Engine A

125 135 125
0

0.2

0.4

0.6

0.8

1

C
on

st
ru
ct

In
st
an

ce
D
el
ay

(s
)

135
0

2,000

4,000

Concurrent Users

(b) Engine B

25 50
0

0.2

0.4

0.6

0.8

1

C
on

st
ru
ct

In
st
an

ce
D
el
ay

(s
)

25 50
0

100

200

300

Concurrent Users

Fig. 6. Script Task ( ) and Timer Event ( ) feature comparison

For Engine B, the delay increases by two orders of magnitude between 25 and
50 users. The observed system behaviour could be due to an excessive overhead
introduced by concurrently handling many Timers, which could cause growth in
the Timers queue thus postponing their execution and increasing their delay.
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5 Conclusion and Future Work

The BenchFlow framework greatly simplifies the performance benchmarking
of BPMN2 WfMSs, by abstracting the heterogeneity of their interfaces and
automating their deployment, the data collection and the metrics and Key Per-
formance Indicators (KPIs) computation. It does so by relying on Faban and
Docker, and by verifying the absence of noise in the performance measurements.
While the complexity of BPMN2 makes it challenging to benchmark the perfor-
mance of the WfMSs implementing it, the benefits of doing so are evident. The
first experimental results obtained with a simple BP model running on two pop-
ular open-source WfMSs have uncovered important scalability issues. We have
discussed the identified performance bottlenecks with the WfMS vendors who
have clarified the probable cause. Namely, in Engine A we have used a differ-
ent DBMS configuration in the setup of the system. In Engine B the goal of the
default configuration is a fast setup, not optimisation. The discussion has empha-
sised the need of defining a systematic methodology for obtaining a ready to use
setup of the WfMS from the vendors. Developers can use these results to improve
the WfMSs, while end users can decide which WfMS to deploy depending on how
many concurrent users they have, and carefully set their configuration.

As a next step we plan to release the framework to the community to gain
empirical evidence about its benefits and limitations. We will also continue the
experiments to measure the performance of additional real-world WfEs. The ulti-
mate goal is to give a fair comparison of commercial BPMN2 WfMSs by means
of a small set of KPIs [13], which we intend to derive by defining and aggregating
a set of raw metrics. We also plan to extend the BenchFlow framework towards
other non-functional quality attributes, e.g., reliability, security and robustness.
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Abstract. A challenge for any enterprise is to ensure conformance of
its business processes with imposed compliance rules. The latter may
constrain multiple perspectives of a business process, including control
flow, data, time, resources, and interactions with business partners. How-
ever, business process compliance cannot completely be decided at design
time, but needs to be monitored during run time as well. This paper
introduces a comprehensive framework for visually monitoring business
process compliance. As opposed to existing approaches, the framework
supports the visual monitoring of all relevant process perspectives based
on the extended Compliance Rule Graph (eCRG) language. Furthermore,
it not only allows detecting compliance violations, but visually highlights
their causes as well. Finally, the framework assists users in monitoring
business process compliance and ensuring a compliant continuation of
their running business processes.

Keywords: Business process compliance · Compliance monitoring

1 Introduction

Correctness issues of business process models have been intensively discussed for
more than a decade. While early work focused on syntactical correctness and
soundness constraints (e.g., absence of deadlocks and lifelocks), the compliance
of business processes with semantic constraints has been increasingly considered
during the recent years. Usually, compliance rules stem from domain-specific
requirements, e.g., corporate standards or legal regulations [1], and need to be
ensured in all phases of the process life cycle [2,3]. In this context, approaches
dealing with the compliance of business processes during their execution are
covered by the notion of compliance monitoring. In general, events of running
business processes need to be considered to detect run-time violations of com-
pliance rules and to notify users accordingly (cf. Fig. 1).

In general, two kinds of compliance monitoring need to be distinguished–
reactive and proactive. Regarding reactive monitoring, the system only reports
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Research Foundation (DFG) under project number RE 1402/2-1.
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Fig. 1. Compliance Monitoring [4]

a compliance violation once it has occurred. By contrast, proactive monitoring
aims to preventively avoid any violation; e.g., by recommending appropriate
tasks, which still need to be executed to meet the compliance rule, to users.

As example consider the event log from Fig. 2, which refers to an order-to-
delivery process [5]: Compliance rule c1, shown on the right, is satisfied in one
case, but violated in another. In particular, the depicted log refers to two differ-
ent request items related to customers Mr. Smith and Mrs. John. These items,
in turn, trigger two different instances of compliance rule c1. In both cases, the
amount is greater than 10,000 e and hence a solvency check is required (cf. c1).
However, the latter was only performed for the request item of Mr. Smith, but
not for the one of Mrs. John, i.e., c1 is violated in the latter case. In addition
to the violation of c1, compliance rule c2 is violated twice. While the violated

Fig. 2. Event log of order-to-delivery processes and compliance rules
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instance of rule c1 will never be successfully completed, the violations of c2 still
may be healed by informing the agent about the results of the approvals. The
compliance rule examples further indicate that solely monitoring control flow
dependencies between tasks is not sufficient to ensure compliance at run time.
In addition, constraints with respect to the data, time, and resource perspectives
of a business process as well as the interactions this process has with partner
processes need to be monitored as well [6–9]. For example, the data perspective
of compliance rule c1 is addressed by the request item and its amount. In turn,
receiving the request item (cf. c1) corresponds to an interaction with a business
partner. Furthermore, the phrase ”by different staff members” deals with the
resource perspective, whereas the condition ”at maximum three days” refers to
the time perspective. To meet practical demands, compliance monitoring must
not omit these process perspectives.

Altogether, the following requirements need to be addressed:

RQ1. As a fundamental challenge of any compliance monitoring approach, com-
pliance violations must be reliably detected and reported to the appropriate
parties by using alerts, emails, text messages, or other notification mechanisms.
Furthermore, compliance-aware user guidance is needed to avoid rule violations.

RQ2. Since compliance is not restricted to the control flow perspective solely,
the time, resource and data perspectives of a business process as well as its
interactions with business partners need to be considered during compliance
monitoring as well.

RQ3. In general, the execution of a business process may trigger multiple
instances of the same compliance rule. On one hand, this highlights the need
for being able to identify the causes of a specific compliance violation as well
as for providing proper user feedback [10]. On the other, this mightlead to sit-
uations in which a compliance rule is fulfilled or violated multiple times in the
context of a particular process instance. Accordingly, any compliance assessment
must reflect the relation between fulfilled and violated instances of compliance
rules.

RQ1-RQ3 cover the essential compliance monitoring functionalities (CMFs) as
proposed in [4]. Therefore, they may be used to compare existing approaches for
monitoring business compliance. However, [4] also states that existing approaches
only partially meet the CMFs. In particular, the combination of an expressive lan-
guage (RQ2) and full traceability (RQ3) is not well understood yet.

This paper extends the work, we presented in [5] in order to provide a com-
prehensive framework addressing RQ1-RQ3. In particular, it adds detailed algo-
rithms for compliance rule monitoring based on the visual extended Compliance
Rule Graph (eCRG) language [8,9]. The current state of a particular eCRG is
reflected through a set of visual rule markings. The latter not only indicate compli-
ance violations, but may also be utilized for recommending the next process tasks
to be executed to ensure compliance (RQ1). Furthermore, these markings allow us
to clearly differ between fulfilled and violated instances of an eCRG and also pro-
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Fig. 3. Elements of the eCRG language [8,9]

vide a suitable basis for compliance metrics (RQ3). Note that the eCRG language
supports the time, resource and data perspectives as well as interactions with busi-
ness partners (RQ2). We evaluate the algorithms based on a proof-of-concept pro-
totype, which was also applied to real world compliance scenarios we had obtained
from one of our case studies in the healthcare domain [9].

The remainder of this paper is organized as follows: Section 2 introduces the
extended Compliance Rule Graph (eCRG) language. The monitoring framework
as well as algorithms that manage the markings of an eCRG are introduced in
Section 3. Section 4 validates the framework and presents its proof-of-concept
prototype. Section 5 discusses related work. Section 6 concludes the paper and
provides an outlook on future research.

2 Fundamentals

This paper utilizes the extended Compliance Rule Graph (eCRG) language we
developed for modeling compliance rules [8,9]. The eCRG language is based on
the Compliance Rule Graph (CRG) language [10]. As opposed to CRG, eCRG
not only focuses on the control flow perspective, but also provides integrated
support for the resource, data and time perspectives as well as for the interactions
with business partners. To cover the various perspectives, the eCRG language
allows for attachments in addition to nodes and connectors (i.e. edges). Nodes,
connectors and attachments may be partitioned into an antecedence pattern and
one or several related consequence patterns. Both patterns are modeled using
occurrence and absence nodes, which either express the occurrence or absence of
certain events (e.g. related to the execution of a particular task) or which refer
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Fig. 4. Modeling compliance rules c1 − c3 with the eCRG language

to process entities (e.g. data objects). In turn, edges and attachments are used to
refine the specification of the elements they are affiliated to (e.g., by specifying
control flow dependencies). Furthermore, an eCRG may contain instance nodes
referring to particular objects that exist independently from the respective rule
(e.g. Mr. Smith, postnatal ward, physician). Note that instance nodes are neither
part of the antecedence nor the consequence pattern. Fig. 3 provides an overview
of eCRG elements, which are applied in Fig. 4 to model the compliance rules
from Fig. 2. In this paper, we refer to the following elements of an eCRG:

– Nodes: These include, for example, TaskNodes, MessageNodes, PointInTi-
meNodes, DataObjects, and ResourceNodes.

– Edges: These include, for example, SequenceFlowEdges, DataFlowEdges,
PerformingEdges, ResourceRelations, and DataRelations.

– Attachments : These include, for example, DataConditionAttachments,
ResourceConditionAttachments, and TimeConditionAttachments.

In this context, two elements a and b of an eCRG have the same depen-
dency level (a b), if they are elements of the same pattern. In turn, an attach-
ment or edge c corresponds to a node d, if c directly or indirectly constrains d.
Finally, set Λ := Nodes∪Edges∪Attachments contains all elements of an eCRG.
For a more formal eCRG specification, we refer to [11,12].

3 eCRG Compliance Monitoring

This section introduces the framework for visually monitoring multiple perspec-
tives of business process compliance at runtime. As discussed in Sect. 1, compli-
ance monitoring is based on streams of events occurring during the execution of
business processes. In particular, it aims to determine or prevent compliance vio-
lations. For this purpose, the framework annotates and marks the elements of an
eCRG with text, colors and symbols during the processing of events. These mark-
ings not only provide a basis for determining the state of compliance of a partic-
ular rule, but also highlight the causes of occurring compliance rule violations.

States of Compliance Rules. When monitoring the compliance of running pro-
cesses, compliance rule instances may be in different states. Fig. 5 outlines the
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Fig. 5. States of compliance rules

states supported by the framework. The most fundamental state is Not Activa-
ted, i.e., the compliance rule does not apply to the running process instance so
far. In turn, state Activated expresses that the compliance rule is applicable to
the process instance. Furthermore, this state includes the sub-states Satisfied
and Violated (cf. Fig. 5). State Satisfied is further partitioned into sub-
states Violable and PerSatisfied (i.e., permanently satisfied), whereas state
Violated includes sub-states Pending and PerViolated (i.e., permanently
violated). As explained in the context of the example, business processes may
trigger (i.e. activate) multiple instances of a compliance rule. Hence, a compliance
rule may be in state Activated multiple times as indicated by superscript ”+”
in Fig. 5. However, each of these activations of a compliance rule may be in
a different sub-state. For example, the event log of the example from Fig. 2
activates compliance rule c1 twice (cf. Fig. 2). While the first activation is in
state PerSatisfied, the second one is in final state PerViolated.

Events. As the framework enables compliance monitoring for multiple process
perspectives (cf. RQ2), it not only monitors events referring to the start and
end of tasks. In addition, it considers events that correspond to the sending
and receiving of messages as well as data flow events. Furthermore, events may
include temporal information as well as information about involved resources.
Table 1 summarizes the event types supported by the framework. Each entry
refers to the time the event occurred and to a unique identifier. The latter enables
us to correlate start, end and data flow events of the same task or message. Note
that we presume correct event streams; i.e., they do not deviate from the real
process. Further, events are provided in ascending order.

eCRG Markings. To monitor the state of a compliance rule, we mark the elements
of an eCRG (cf. Sect. 2, [8,9]) with symbols, colors and text (cf. Fig. 6). Such a
marking of an eCRG highlights whether or not the events corresponding to a node
have occurred so far. Further, a marking describes whether conditions correspond-
ing to edges and attachments are satisfied, violated, or still may be evaluated.

Table 1. Supported Events

Task events Message events Data flow events

start(time, id, tasktype, performer) send(time, id,message) write(time, id, value
param−−−−−→source)

end(time, id, tasktype, performer) receive(time, id,message) read(time, id, value
param←−−−−−source)

end(time, id,message)
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Fig. 6. Fundamental markings of eCRG elements

Let R be the set of resources, Ω be the set of data objects, I be the set of
identifiers, and be the set of point in times. Further, let ε be the empty value.
Then: A marking M can be described with the following functions:

– M.mark : Λ → { = ε, , ,�, } marks the elements of the eCRG as not-
marked , activated , running , satisfied (or completed) �, and violated (or
skipped) (cf. Fig. 6),

– M.res : Λ → R ∪ {ε} assigns resources to the elements of the eCRG,
– M.val : Λ → Ω ∪ {ε} assigns values to each element of the eCRG,
– M.id : Λ → I ∪ {ε} assigns unique identifiers to the elements of the eCRG,
– M.start(M.end) : Λ → ∪{ε} assigns starting (ending) times to the elements.

The functions of the initial marking 0 assign ε (and respectively) to all elements
of an eCRG, except the ones of the instance pattern that are mapped to the par-
ticular resource, data value or point in time they refer to. Since there may be mul-
tiple activations of a particular compliance rule, the state of an eCRG is a set M
of markings.

Fig. 7 shows two markings for compliance rule c1 from Fig. 2. On the left,
marking F highlights the fulfillment of c1 for the request of Mr. Smith. In turn,
marking K on the right emphasizes how markings support users in proactively
ensuring compliance. In particular, K indicates which data values the task sol-
vency check shall read and how task approval shall be performed afterwards in
order to satisfy c1.
Event Processing. This section describes the processing of events with an eCRG.1

Fig. 8 provides an overview. First, all markings are prepared for the processing.
Second, effects of these preparations (i.e., changed markings) are propagated
onto connected elements. Third, the actual event handling takes place. Fourth,
effects of the latter step are propagated to connected elements as well. Note that
the first two steps may be applied without the last two ones, e.g., to calculate
the current state of a compliance rule at an arbitrary point in time.
1 [11] provides a formal specification of the operational semantic of the eCRG language.
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Fig. 7. Examples of markings for compliance rule c1

Fig. 8. Processing of start, message, data, and end events

In general, not only the occurrence of events, but also elapsing time can
violate compliance, e.g, when the maximum time distance between two tasks
becomes violated. To ensure that related issues are not ignored, Listing 1 updates
the time perspective of markings before the latter process an event. In particular,
point in time nodes are changed to �, if they lie in the past now, whereas time
condition attachments on task nodes or sequence flow edges are skipped ( ) if
they are no longer satisfiable.

Listing 2 deals with the handling of start and message events. In particular,
markings of activated task or message nodes, which match the event, are re-set
from to . Accordingly, identifiers, resources and starting times are set. Note

Listing 1. Prepare Markings (with respect to the time perspective)
1 prepareMarking(M, event(time,. . . ))
2 ForEach(pitn ∈ PointInTimeNodes with M.mark(pitn) = )
3 If (pitn ≤time ) M.mark(pitn) := �;

4 ForEach(tc ∈ TimeConditionAttachments with M.mark(tc) = )

5 If (tc is attached to tn ∈ TaskNodes and M.mark(tn) = )

6 If (∀t ≥time: tc(ts(t), t) = false) M.mark(tc) := ;

7 ElseIf (tc is attached to sf = (n1, n2) ∈ SequenceFlowEdges and
M.mark(n1) = �)

8 If (∀t ≥time: tc(te(n1), t) = false) M.mark(tc) := ;

9 Return M ;
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Listing 2. Handle Events
1 handleStartEvent(M, start/send/receive(time, id, type, performer))
2 M := ∅;
3 ForEach(σ ⊆ {tn|tn ∈ TaskNodes and M.mark(tn) = and typeOf(tn) =type} )
4 ForEach(tn ∈ σ)
5 M ′ := copy(M);

6 M ′.mark(tn) := ; M ′.start(tn) :=time;

7 M ′.id(tn) =id; M ′.res(tn) :=performer;

8 M := M ∪ {M ′};
9 Return M;

10 handleMessageEvent(M, send/receive(time, id, type))
11 M := ∅;
12 ForEach(σ ⊆ {tn|tn ∈ MessageNodes and M.mark(tn) = and typeOf(tn) =type} )
13 ForEach(tn ∈ σ)
14 M ′ := copy(M);

15 M ′.mark(tn) := ; M ′.start(tn) :=time; M ′.id(tn) =id; ;

16 M := M ∪ {M ′};
17 Return M;

18 handleEndEvent(M, end(time, id, type, performer))
19 ForEach(tn ∈ TaskNodes with M.id(tn) = id)
20 M.mark(tn) := �; M.end(tn) :=time;

21 Return {M};

22 handleDataEvent(M, write/read(time, id, value
param−−−−−→ source))

23 ForEach(df = (n, x) ∈ DataflowEdges with M.id(n) = id and M.mark(n) = )
24 If (typeOf(df) =param)
25 M.mark(df) := �; M.val(df) :=value;

26 Return {M};

that start and message events are handled non-deterministically; i.e., the changes
are applied to copies of the original marking that is maintained (cf. Fig. 9.2).
Further, Listing 2 specifies the handling of data events. In particular, the cor-
responding data flow edges of running task (message) nodes are annotated with
the data value passed (cf. Figs. 9.4 and 9.5). Finally, the handling of end events
is addressed in Listing 2 as well. In particular, the markings of corresponding
nodes in state running ( ) are set to completed (�); their ending time is set
accordingly. (cf. Fig. 9.A)

Effects of preparing and handling events must be propagated to ensure correct
markings (e.g., activation of subsequent task nodes) as well as to detect contra-
dictory markings related to the data and resource perspectives. In particular,
data values are propagated along data flow edges to connected data objects. In
turn, resources are propagated from task nodes via resource edges to connected
resource nodes. The propagation fails, if a resource or data object node is set to
a different value before. In this case, the respective edge is skipped ( ). Further-
more, conditions and relations are evaluated as soon as possible. If any element
of the eCRG, which corresponds to a task or message node, becomes skipped



272 D. Knuplesch et al.

Fig. 9. Handling of events

(e.g., due to a failed data or resource propagation, or a violated condition), the
task or message node will be skipped as well. Then, outgoing sequence flows of
completed nodes will be marked as satisfied (�). In turn, non-marked incoming
edges of already started nodes as well as edges from and to skipped nodes will
be skipped. Task and message nodes will be activated ( ) when all incoming
sequence flows, these nodes depend on, are satisfied. In turn, task or message
nodes will be skipped ( ) if they depend on sequence flows being skipped as well.
Note that the latter might result in the cascading skipping of other sequence flow
edges (cf. Listing 3).

Table 2 illustrates the set of markings that results after processing the event
stream from Fig. 2 for compliance rule c1. In turn, Figs. 10-13 highlight conflicts
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Listing 3. Propagate Effects
1 effectPropagation(M)
2 ForEach(pfr = (tn, r) ∈ PerformingEdges with M.mark(pfr) = and

M.res(tn) �= ε)
3 M.mark(pfr) := �; M.res(pfr) := M.res(tn);

4 If(M.mark(r) = )

5 If(r pfr) M.mark(r) := �; M.res(r) := M.res(tn);

6 ElseIf (M.res(pfr) �= M.res(r)) M.mark(pfr) := ;

7 ForEach(rr = (r1, r2) ∈ ResRelations with M.mark(r1) = M.mark(r2) = �)

8 If(rr(r1, r2) = true) M.mark(rr) = � Else M.mark(rr) =

9 ForEach(df = (n, o) ∈ DataFlowEdges with M.mark(df) = �)
10 If(M.mark(o) = )

11 If(o df) M.mark(o) := �; M.val(o) := M.val(df);

12 ElseIf (M.val(df) �= M.val(o)) M.mark(df) := ;

13 ForEach(dr = (o1, o2) ∈ DataRelations with M.mark(o1) = M.mark(o2) = �)

14 If(dr(o1, o2) = true) M.mark(dr) := � Else M.mark(dr) :=

15 ForEach(att ∈ Attachments with M.mark(att) = and M.mark(@(att)) = �)

16 If(att(@(att)) = true) M.mark(att) := � Else M.mark(att) := ;

17 ForEach(x, y ∈ AllElements with x y and y corresponds to x)

18 If(M.mark(y) = and M.mark(x) �= ) M.mark(x) := ;

19 ForEach(sf = (n1, n2) ∈ SequenceFlowEdges with M.mark(sf) = )
20 If(M.mark(n1) = �) M.mark(sf) = �;

21 If(M.mark(n1) = or M.mark(n2) ∈ { , �, }) M.mark(sf) = ;

22 ForEach(n ∈ TaskNodes ∪ MessageNodes with M.mark(n) = )

23 If(∀sf = (n, n2) ∈ SequenceFlowEdges with sf n holds M.mark(sf) = �)

24 M.mark(n) = ;

25 Repeat
26 M ′ = M ;

27 ForEach(sf = (n1, n2) ∈ SequenceFlowEdges with M.mark(sf) = )

28 If(M.mark(n1) = or M.mark(n2) ∈ { , �, }) M.mark(sf) = ;

29 ForEach(n ∈ TaskNodes ∪ MessageNodes with M.mark(n) = )

30 If(∃sf = (n, n2) ∈ SequenceFlowEdges with sf n and M.mark(sf) = )

31 M.mark(n) = ;

32 If(∃sf = (n2, n) ∈ SequenceFlowEdges with sf n and M.mark(sf) = )

33 M.mark(n) = ;

34 Until (M = M’);

35 Return M ;

regarding the data (Fig. 10), control flow (Fig. 12), resource (Fig. 11), and time
(Fig. 13) perspectives. Note that conflicting markings only highlight why the
considered events do not constitute a fulfillment of a particular compliance rule,
but they do not necessarily lead to a violation of the latter.
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Table 2. Markings after processing the event log from Fig. 2

Request Approval Solvency Approval cust. cust.→ cust.→ amount rating
# (CA) Check (CO) App.(CA) Solv.C

1 ε ε ε ε ε

A! � 124 Smith ε ε 15.000 ε

B! � 592 John ε ε 27.000 ε

C � 124 � 234 Brown Smith ε Smith 15.000 high

D � 592 234 Brown John ε Smith 27.000 ε

E � 592 453 Muller John Smith ε 27.000 ε

F � 124 � 234 Brown � 453 Muller Smith ε Smith 15.000 high

G � 124 � 453 Muller Smith Smith ε 15.000 high

H � 124 � 234 Brown 642 Brown Smith ε Smith 15.000 ε

I � 592 � 642 Brown John John ε 27.000 ε

J � 124 642 Brown Smith John ε 25.000 ε

Fig. 10. Data conflict

Fig. 11. Resource conflict

Fig. 12. Control flow conflict

Fig. 13. Time conflict

Compliance assessments and metrics. Based on the described set of markings,
we can identify the different activations of an eCRG and derive their state of
compliance. In turn, activations correspond to the minimal markings, which
satisfy the antecedence pattern, but do not satisfy any element of the antecedence
absence pattern (cf. Sect. 2). In particular, an activation is satisfied if there
exists another marking extending the activation and satisfying the consequence
pattern. We omit a formal specification here and refer to [11] instead.



Visually Monitoring Multiple Perspectives 275

Table 3. Compliance assessments and metrics

# Extensions Activated Violable Pending PerSatisf. PerViol.
A {C,F,G,J} 39-. . . 39-95 95-. . .
B {D,E,H,I} 58-. . . 58-99 99-. . .

date time μ1 μ2
1/7/2013 15:00 n.d. n.d.
2/7/2013 15:00 0% 100%
2/7/2013 18:18 50% 50%
2/7/2013 19:00 50% 0%

Table 3 highlights the properties of both activated markings A and B along
the log from Fig. 2. In particular, Table 3 shows that c1 is activated twice;
once satisfied and once violated. Furthermore, Table 3 indicates the events that
complete the activations (39 and 58), the fulfillment (95), and the violation (99).
Note that it is easy to specify metrics based on the states of compliance based on
the number of activated markings in a particular compliance state Property:
#(M,Property) := |{M ∈ M|Property(M)}|; e.g., Table. 3 refers to the

compliance rate μ1 := #(M,Satisfied)
#(M,Activated) and

critical rate μ2 := #(M,Violable)+#(M,Pending)
#(M,Activated) .

4 Evaluation

The eCRG language has been evaluated with respect to different aspects (cf. [8,
12]). In particular, its expressiveness allows modeling different sets of compliance
patterns (e.g. [13]). In turn, a case study in the medical domain revealed that a

Fig. 14. Proof-of-concept implementation
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business analyst was able to properly use eCRG [9]. Finally, current empirical
studies indicate that there is no significant difference between computer experts
and business analysts in understanding eCRGs.

To verify the feasibility of the presented compliance monitoring framework,
we implemented an advanced proof-of-concept prototype [14]. The latter incre-
mentally processes event logs, unfolds the markings (cf. Sect. 3), and visualizes
them. Note that the prototype supports additional features, not discussed in
this paper due to space limitations; e.g., beyond end-start control flow con-
straints, start-start, start-end, and end-end constraints are supported as well.
We applied the prototype to different scenarios including the presented order-
to-delivery example as well as real world compliance scenarios obtained in the
context of a case study in the healthcare domain [9]. Note that the benefits of
the framework come with the cost of a high, up-to exponential computational
complexity of O(|Events||Nodes|). Fig. 14 provides a screenshot of the eCRG
execution engine.

5 Related Work

In recent years, business process compliance has gained increasing attention and
several surveys have been provided [7,15,16]. Accordingly, interest in compliance
monitoring and continous auditing [17] has increased as well. [18] enriches pro-
cess models with a semantic layer of internal controls. In [19,20], the detailed
architecture of an online auditing tool (OLAT) is described. The latter allows
monitoring the operations of an organization in detective, corrective and preven-
tive modes. The broad spectrum of techniques enabling compliance monitoring
include behavioural profiles [21] (i.e., to utilize ordering relations), Supervisory
Control Theory [22] (i.e., to prevent from actions leading to compliance viola-
tions), and visual declarative constraints [23], which are transformed into Event
Calculus and LTL. To enable fine-grained compliance diagnostics at run-time,
Compliance Rule Graphs [10] and colored automata [24] are utilized, focusing on
control flow. Finally, [4] compares approaches for monitoring business compli-
ance based on 10 compliance monitoring functionalities (CMF). In particular, it
emphasizes that none of the existing approaches provides a satisfactory solution
that combines an expressive language with full traceability (cf. RQ2+RQ3). In
turn, the presented approach for monitoring compliance with the eCRG language
supports all 10 CMFs (cf. Table 4) [4].

However, [13,25,26] a posteriori verify the compliance of execution logs with
a set of constraints. Some approaches not only focus on the control flow per-
spective, but consider other perspectives as well. A priori or design time com-
pliance checking is addressed by a multitude of approaches, which commonly
apply model checking; e.g., [27–30]. Some of them use visual compliance rules
and address multiple perspectives. To specify compliance rules, formal lan-
guages (e.g., LTL [28]), pattern-based approaches (e.g., [13,31]) are applied.
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Table 4. Compliance Monitoring Functionalities [4]

CMF 1 CMF 2 CMF 3 CMF4 CMF 5 CMF 6 CMF 7 CMF 8 CMF 9 CMF 10
time data resources non life- multi- reactive proactive root compl.

Approach atomic cycle instance mgmt mgmt cause degree

Mubicon LTL [24] +/- - - + - - + + + +/-
Mubicon EC [36] + +/- + + + + + - +/- +/-
ECE Rules [37] + +/- + + - - + - +/- +
SCT [22] +/- - + + + - - + - -
SeaFlows [10] +/- +/- +/- + +/- + + + + +/-

eCRG Monitoring + + + + + + + + + +

Further, visual notations [10,27] as well as methodologies to relate the latter with
informal and textual specifications [32] have been proposed. Note that declara-
tive languages [33,34] can be also applied to specify compliance rules. Finally,
the integration of business process compliance throughout the entire process
lifecycle [2,3] as well as monitoring of performance measures in the context of
artifact-centric process models in real-time [35] have been addressed.

6 Summary and Outlook

In recent years, business process compliance has gained an increasing interest.
A multitude of approaches focus on compliance monitoring at run time [10,17–
19,24,36]. However, existing approaches do not provide a satisfactory solution
that combines an expressive language with full traceability [4].

To remedy this drawback, we proposed, developed and demonstrated a com-
pliance monitoring framework that utilizes the extended compliance rule graph
(eCRG) language, which enables the visual modeling of compliance rules with
the support of the control flow, data, time, and resource perspectives as well as
interactions with partners (RQ2). In particular, the presented approach marks
eCRG with text, color and symbols to visually highlight the current state of com-
pliance, whereas the informally presented operational semantics specifies how
observed events evolve these markings (RQ1) Finally, formal criteria for compli-
ance assessments are provided in a related report [11] and compliance metrics
were introduced (RQ3). As opposed to existing approaches, the framework com-
bines full traceability with an expressive visual notation. Moreover, we provide
a proof-of-concept implementation that was applied to different scenarios.

Beyond the identification and highlighting of particular compliance viola-
tions in detail, another important task is to summarize and present the latter in
abstract compliance reports. Hence, we aim at a user-friendly navigation through
different levels of granularity. Furthermore, we will conduct further empirical
studies as well as usability experiments.
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Abstract. Temporal workflows are becoming increasingly important in many 
real-world applications. In such workflows, activity durations and times are 
specified and it is necessary to ensure both at design time and run time that 
temporal constraints are not violated. However, in real-time workflows, such as 
in a medical process or emergency situations, some violations are unavoidable. 
Hence, a more nuanced view of violations should be taken. Here we introduce 
the notion of controlled violations as the ability to monitor a running process 
and develop an approach based on constraint satisfaction to determine the best 
schedule for its completion in a way so as to minimize the total penalty from the 
violations. The violations are evaluated in terms of metrics like number of vi-
olations, delay in process completion, and penalty of weighted violations. We 
also relate our work to the concept of controllability in literature and show how 
it can be checked using our method. Finally, the expressive power of our ap-
proach is discussed. 

1 Introduction 

Many real-world workflows need to run under time constraints. In modeling such 
time-aware processes [3,4,10,18,13], the duration of each activity (or task) is provided 
as a range, or just a lower or upper limit. For example in a medical process the dura-
tion of the patient admission activity is, say, between 10 and 20 minutes. By associat-
ing such durations with each activity one can determine expected minimum and max-
imum times for each execution path of the workflow from start to end. Moreover, 
deviations from the expected times can be monitored, and appropriate messages and 
alerts can be generated to draw attention. Another aspect of temporal workflows re-
lates to inter-activity constraints that impose restrictions on the elapsed time between 
one activity and another. Further they may be specified with reference to the start or 
finish time of the respective activities.  A variety of temporal constraints can be im-
posed on a workflow [11]. While general types of semantic constraints have been 
studied in literature [9,16,17], there is less work on temporal constraints.  

Some examples of such constraints that arise in a medical process (say for a frac-
ture treatment) are:  

• A radiologist’s report must be submitted within 24 hours of a CT scan 
• If surgery is needed it must take place within a week of the radiologist’s report 
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• Antibiotics must be taken for 3 days before surgery 
• A blood thinner like Aspirin must be stopped 24 hours before surgery 
• The patient must recover in the hospital for 2 days before being discharged 
• The total time from patient admission to discharge should not exceed 7 days 

A temporal workflow should represent various temporal patterns and relationships 
among activities. Temporal patterns and ways of reasoning with them are discussed in 
[1,2].  To some extent, planning a temporal workflow is like scheduling with con-
cepts like early (late) start times and finish times for various activities [6,7].  Another 
concept in the context of temporal workflows is the idea of controllability [4,8,10,15] 
which relates to the flexibility present in a workflow schedule. The work on control-
lability is based on the notion of conditional simple temporal networks [20] which 
were developed in the context of planning. A workflow that allows activity durations 
to fall anywhere within their allowed range and still complete successfully is said to 
be dynamically controllable. Algorithms for dynamic controllability are discussed in 
[8,10,15].  

In this paper, we take the view that the prescribed time duration ranges for an ac-
tivity should not be very strict. Some unexpected delays may occur for various rea-
sons at run time (e.g. patient admissions is backed up; CT machine has broken down, 
etc.) and lead to violations of constraints.  If a task deviates slightly from its range, it 
does not mean that the workflow is uncontrollable. The natural question to pose then 
is: how will this deviation or violation affect the rest of the workflow? If the effect is 
small then the workflow can continue normally. Our goal in this paper is to develop a 
model that can take into account the possibility of violation of various constraints and 
explore the tradeoffs among the violations.  Thus, if antibiotics medication has to be 
taken for three days before surgery and this will delay the surgery, there is a tradeoff 
between reducing the duration of the medication and delaying the surgery.   

The novel aspect of our work is that we allow for constraints to be violated by in-
troducing relaxation variables in our model, thus allowing for “graceful degradation.” 
Our approach is based on constraint satisfaction with respect to an objective function. 
Each temporal constraint (both intra-activity and inter-activity) can be expressed as a 
linear equation(s). By checking if the constraints are consistent one can verify if they 
will all be satisfied. These variables assume values equal to the amount of violation in 
a constraint to force satisfaction. At the same time we also associate penalties with 
each violation, e.g. for every time unit of delay in start of surgery beyond the guide-
lines. Finally, these penalties are aggregated and minimized in an objective function.  

There are several contributions of this work. First, we develop a new approach to 
temporal workflow consistency and illustrate it in detail. Second, we introduce the 
notion of controlled violations of constraints and show how it can be applied in prac-
tice along with “what-if” analysis. Third, we relate our work to controllability and 
show how our method can be used to check for controllability. Finally, we argue that 
this approach is complete in terms of expressiveness since it can cover a variety of 
temporal patterns.  

This paper is organized as follows. In section 2 we discuss a basic model for de-
scribing temporal constraints and show how it can be translated into structural and  
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temporal constraint equations. Then, in Section 3, we describe how the approach was 
implemented and tested. Later, Section 4 extends our approach for managing viola-
tions of constraints and develops a formal optimization model based on penalties. 
Section 5 discusses how our approach can be extended to more complex control flow 
structures involving overlapping and repetitive activities. Finally, Section 6 discusses 
related work, and the last section gives the conclusions and shares some thoughts for 
future work.  

2 Modeling Approach 

2.1 A Simple Temporal Model 

To create a temporal model of a process two types of constraint models are combined: 
(1) a basic structural constraint model, and (2) temporal constraint model. The struc-
tural constraints capture the control flow of the process to coordinate the proper se-
quence in which the tasks occur. The temporal flow model considers the permitted 
durations of each activity and the minimum or maximum gaps between them.  

Def. 1. A general temporal process model TP can be represented as: 
TP = (T, A, X, E, TI, C) 

Where 
T: set of task nodes, T1, T2, … 
A: set of AND control nodes, A1, A2, … 
X: set of XOR control nodes, X1, X2, … 
E: set of edges among the nodes in {T, A, X} 
TI: set of task duration ranges:{(i, Dimin, Dimax),…} 
C: set of additional inter-task constraints. 
 

 

Fig. 1. A basic temporal model with XOR and AND connectors 



 Managing Controlled Violation of Temporal Process Constraints 283 

Fig. 1 gives an example of a simple temporal model. It shows the control flow, along 
with [min,max] durations of each task and inter-task constraints. It can be expressed as: 

T: {T1, T2, …, T6} 
A: { A1, A2} 
X: { X1, X2, X3, X4} 
E: {(start, X1), (X1, T1), (X1, T2), (T1, A1), (A1, T3), (A1, T4), (T3, A2), (T4, A2),…} 
TI: {(T1, D1min, D1max), (T2, D2min, D2max), (T3, D3min, D3max), …} 
C: {(T1, T5, S, S, TI1min, TI1max), (T4, T5, S, F, TI2min, TI2max) } 

Note that while we only consider durations of, and delays between pairs of, activities, 
fixed time activities can also be modeled by setting their relative time with respect to the 
start of a process and converting them into delays with respect to the start activity.  

2.2.1   A Constraint Satisfaction Approach 
Next we show how to map the above model into a series of constraint equations that 
can be solved using a constraint satisfaction approach. We need to consider two types 
of constraints: structural flow constraints and temporal constraints. The flow con-
straints capture the coordination sequence among tasks, while the temporal constraints 
specify the durations for a task and also the inter-task gaps or delays.  

2.2 Structural Constraints (SC) 

Structural constraints are represented by structural equations to capture the flow of a 
process. Each node in a process is represented by a binary 0-1 variable.  

Def. 2. Structural constraint representation. SC constraints are represented by 
structural balance equations of a process. The equations for sequence, choice and 
parallel patterns are shown in Fig. 2. All processes also have two special tasks or 
events, “Start” and “End.” We add a constraint “Start = 1” to denote that the process 
is triggered. Also, constraint “End = 1” must hold true to indicate proper completion 
of a process instance.  
 
  Sequence  

 2 1; 
Choice  
 1 1; 1 2 3;  2 2 3; 4 2 

 

Parallel 
 1 1; 2 1;  3 1 2 2; 4 2 

 

Fig. 2. Structural balance equations for process modeling structures  

Additional structural patterns are described in Table 1.  
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2.2.2   Basic Temporal Constraints (TC) 
The temporal constraints express a variety of temporal relationships. Here we consid-
er three types of constraints: flow constraints, task duration constraints and the inter-
task gap constraints. We will discuss each one separately.   

Def. 3. Temporal Flow (TF) constraints. These constraints are derived from the 
edge set E.  For every node ni and successive node pair (ni, nj) in E, we add a con-
straint as: 

TSi  TFi 
TFi  TSj 
where  
TSi: start time of node i relative to the start time of the workflow instance 
TFi: finish time of node i relative to the start time of the workflow instance 

Table 1. Additional structural constraints 

Constraint Meaning  Formal Specification  
mandatory ( ) Task Ti must be executed.  1 
prohibited (Ti) Task Ti must not to be executed.  0 
coexist (Ti, ) Both or none of Ti and  are 

executed.  
 

choice (T1, T2, …, 
Tn, m)  

Exactly m of T1,T2, …, Tn should 
be executed. 

1 2  

exclusion (Ti, ) At most one of Ti or  can be 
executed.  

1 

 
Def. 4. Task duration (TD) constraints. These constraints ensure that the duration of 
an activity i lies between the permitted range [Dimin, Dimax]. They are specified as: 
Dimin  TFi – TSi  Dimax.  

 

Def. 5. Inter-task (TI) constraints. These constraints ensure that the gap or delay 
between the start (end) of an activity pair (i,j) lies between the permitted range 
[Gij_min, Gij_max]. They are specified as:  
Gij_min  TFi (TSi) TSj (TFj)  Gij_max 
 

Def. 6. Duration constraints for A and X connectors.  

(i) For X connectors, the duration is XFi – XSi = 0.  
(ii) For A-split connectors also, AFi – ASi = 0.  
(iii)    For A-join connectors, AFj = Max(TFi), TFi s.t. (TFi, AFj)  E. 

 

Next, we define temporal consistency and show that our approach is correct. It is also 
possible to give non-zero times to the X and A connector durations, and our approach 
will not be affected by it.  

Def. 7. Temporal consistency. A temporal process model is temporally consistent if 
for every valid and complete execution path (from start to end) there exists a solution 
that satisfies the duration and inter-task constraints.  

Lemma 1: Combining the SC and TC constraints and solving them leads to a tempo-
rally consistent solution.  
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Proof sketch. To argue correctness of our formulation, we note that the SC constraints 
ensure that: (i) a structurally valid set of tasks is selected; and (ii) that it represents a 
complete process instance from start to end (by Def. 2). Moreover, with the TC con-
straints, we define: (i) the durations for all tasks and connectors (by Def. 4, 6); and (ii) 
the finish-start time relationships between task-task, task-connector, connector-task and 
connector-connector (by Defs. 3 and 5). Since all variables for task and connector 
start/finish times are included in the formulation, all possible paths are evaluated. 
Hence, a solution to this system of equations will be a temporally consistent and structu-
rally correct solution. If no solution is found, then it implies that one does not exist.  

This is a weak consistency in that it shows that a schedule exists for the temporal 
workflow for one combination of durations for each activity. It does not show that all 
combinations of durations in the allowed range will lead to a valid solution as in dynam-
ic controllability [8]. Moreover, solving this system of equations will give one solution 
but other solutions can be found by assigning specific values to certain variables.  

2.3 Additional Temporal Constraints  

Table 2 gives a summary of various kinds of temporal constraints, categorized in 
three groups: basic constraints, overlap constraints and repetition constraints. The 
constraints 1 and 2 are the basic ones discussed above. Constraints 3-5 are overlap 
constraints. Finally, constraints 6-9 are repetition constraints. This shows that we can 
also represent more complex constraints involving combined durations of activities 
and overlap among activities, as well as express loops and restrict the number of times 
a loop is repeated. All of these constructs have practical applications which will be 
discussed later. We will also argue completeness of our approach later too.  

Table 2. Summary of modeling constructs for temporal constraints 

 Constraint Meaning  Formal  
Specification  

B 
a 
s 
i 
c 

1.Duration of a task  Duration of a task  is between t1 and t2 tmin  tmax 

2. Minimum (maximum) 
gap between ( , ) 

Specify minimum (maximum) gap between 
two tasks 

g (  g) 

O
v 
e 
r 
l 
a 
p 

3. (CO) Combined overlap 
( , , ,…)  

Duration for which all n tasks are overlap-
ping with one another 

Min( , , , …) – 
Max( , , , …) 

4. (CD) Combined duration 
( , , ,…)  

Duration from the start of the first to start, 
to the end of the last to finish (Time span) 

Min ( , , , …) – 
Max( , , ,  …) 

5. Pair-wise overlap 
( , , ,…)  

Duration for which at least two or more 
tasks overlap 

 ∑ ) – CD 

R 
e 
p 
e 
t 
i 
t 
i 
o 
n 

6. rt-dependency 

( , , g) 

Occurrences o, o+1 of a repeatable task  should be separated by time gap (g)  
 

7. Alternating ( , )  Every occurrence k of ( , ) alternates    

8. Maximum number of 
repetitions of a loop 

Task Ti must not repeat more than r times. ∑  r 

9. Max repetitions in a time 
interval 

No more than two successive occurrences 
must occur within a duration D  

For all k = 1, 2, … 
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3 Building and Solving the Constraint Satisfaction Model 

Above we presented a general approach for constructing a set of structural and tem-
poral constraint equations to describe a temporal process model. The two sets of con-
straints are combined to obtain a complete model and solved to check for consistency 
by a constraint satisfaction tool such as CPLEX [5].  If a solution is found it means 
that the model is temporally consistent; otherwise, it is not.  

To illustrate our approach, the example in Fig. 3 of a patient suspected of having a 
proximal femoral fracture will be used as a running example.  This figure shows a 
simplified clinical pathway in BPMN notation. This process model consists of 14 
tasks coordinated by sequential flows along with choice and parallel structures in 
BPMN notation. Briefly, after a patient is admitted (T1), she undergoes anamnesis 
and examination (T2). Depending upon the result of the examination, if the patient is 
under suspicion of having a proximal femoral fracture, she has to take a CT scan test 
(T5); otherwise, she is diagnosed further and prepared for therapy (T3), followed by 
customized therapy A (T4). Alternatively, depending on the results of her imaging 
diagnosis (T6), she is either treated with therapy B (T7) or by surgery (T11). If sur-
gery is needed, then it must be scheduled (T8), and two prerequisite tasks surgical 
planning (T9) and administering pain medication (T10), are carried out. Recovery 
(T12) follows surgery (T11). Finally, the case is documented (T13) and the patient is 
discharged (T14). 

 

Fig. 3. A medical process for proximal femur fracture 

The duration for each task is written in square brackets adjacent to it (in time 
units). If a value is blank it does not apply. An inter-task constraint is represented by a 
dashed line connecting the pair of tasks to which it applies. In Fig. 3, there is a con-
straint between T1 and T2 that requires that T2 must finish no more than 30 time units 
after the start of T1.  When the dashed line connects the left boundary of a task, it 
means that the constraint applies to its start time, while if it connects the right boun-
dary of a task it applies to its finish time.   
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Following the general approach described above, the formulation is given in Fig. 4.  
It shows four groups of constraints. These constraints form a system of equations in 
14 binary task variables (T1, T2, …) for the presence or absence of the 14 tasks and 
14 start (TS1, TS2, …) and 14 finish time (TF1, TF2, …) floating point variables for 
the 14 tasks also. In addition there are corresponding variables for the connector 
nodes as well such as X1, XS1, XF1, …, A1, AS1 AF1, …. All the TD and TI con-
straints are preceded by a condition check to see if the task(s) to which they apply are 
activated in the process path. Otherwise, the conditions would not apply.  

This system of equations can be solved for constraint satisfaction. However, in 
general this problem will have an infinite number of solutions since we are dealing 
with floating point variables for generality.  Hence, we added an objective function 
to create a mixed integer programming formulation (MILP), where the objective is to 
minimize the finish time of the last task 'End'.  

We used the tool CPLEX to solve the formulation. CPLEX is a well-known tool 
for solving such MILP models. It offers several operators such as if-then, min, max, 
count, etc. for representing various constraints.  
  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 4. A (partial) formulation of a temporal workflow 

3.1 Design Time Solution  

Fig. 4 shows the (partial) formulation for the process model of Fig. 3. To create this 
formulation we combine the TF, TD, TI and connector duration constraints (see Def. 
3-6). In addition, we add the objective function.   

Minimize TS['End']    //Minimize end time of process
s.t. 
//Structural constraints (SC) 
Start. Start = 1; 
End. End = 1; 
SF1. T2 = T1;  
SF2. X1 = T2;  
SF3. T3+T5 = X1;  
SF4. T4=T3; T15=T5; X2 = T15; 
… 
//Temporal flow constraints (TF) 
TF1. TF1  TS1; 
TF2. TS2  TF1; 
TF3. XS1  TF2; 
… 
//Temporal duration constraints (TD) 
TD1. T1 == 1 => TF1 – TS1  5;  
TD2. T1 == 1 => TF1 – TS1  10; … 
//Temporal inter-task constraints (TI) 

TI1. T1 == 1 && T2 == 1 => TF2 – TS1  30; 

TI2. T11 == 1 && T8 == 1 => TS11 – TS8 100; 

TI3. T11 == 1 && T8 == 1 => TS11 – TS8 140; 
TI4. T11 == 1 && T10 == 1 => TF11 – TS10 250; 

TI5. T11 == 1 && T10 == 1 => TS11 –TF10  20; 
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We used CPLEX to solve this MILP model and got an objective function value of 
210. This is a design time solution showing that the problem is feasible. Tasks 1-4, 
13-14 are present in this solution. This corresponds to the path in Fig. 3 where the 
upper outgoing branch is taken at X1. The solution also shows the start and finish 
times of each activity in this solution.   

Clearly, other outgoing branches could have been taken at X1 and then at X2. To 
find a design time solution that shows whether these paths are feasible and the actual 
solution, we can force the lower outgoing path at X1 by adding a constraint T5 = 1. 
This produced a solution with an objective function value of 465 and included tasks 
1-2, 5-6, and 8-14. Finally, we tried forcing a solution with the upper outgoing branch 
at X2 by adding T7 = 1. In this case the objective function value is 255 and it includes 
tasks T1-T2, T5-T7, and T13-T14.  

3.2 Run-Time Solution  

Above we developed an "ideal," design time solution that can be planned even before 
the process starts running. At run time changes have to be made to the formulation in 
a running process based on its actual progress. So, say we have just completed task T8 
(schedule surgery) and while its scheduled completion time was 45, the actual com-
pletion time was 65 because the scheduling became complicated for various reasons 
and manual intervention was needed. We wish to find out what constraints if any will 
be violated on account of this delay and how the process will run from here on. 
Hence, we make changes to the formulation in the following steps: 

(i) Add the start and finish times of each task that has been completed. 
(ii) Remove any duration constraints for these tasks as they do not apply any more.  

Next, we solve the formulation again to see if a feasible solution can be found. If so, it 
will give us the new schedule taking into account the runtime delay.  

Run-Time Scenario 1. Consider the situation where task T8 is delayed. Its normal 
duration is [10,20], but in this case it has taken 30 time units as shown below:  

TS1= 0; TS1 = 5; TS5=10; TS6=30; TS8= 35; 

TF1=5; TF2=10; TF5=30; TF6= 35; TF8 = 65; 

To analyze the subsequent run-time behavior of this process, we add these constraints 
to our formulation and remove the duration constraints for these tasks (i.e. 1,2,5,6, 8) 
since they are already completed. Upon solving the new formulation, a new solution 
with a finish time for the process of 485 is found. When we set TF8 = 75 the finish 
time became 495. However, when we set TF8 = 85, no solution was found. On further 
inspection it was realized that constraint TI3 (see Fig. 4) was being violated.  

In general, if a design-time solution exists, but a run-time solution is not found then 
it means that the problem has become infeasible on account of either duration or inter-
task constraints. In this situation it is helpful to know the reason for the violation and 
its extent. For instance we would like to know that a certain constraint C1 is violated 
by X1 time units. To deal with such situations we will introduce the notion of con-
straint violations in the next section. 
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Process changes. Our approach can also deal with process changes easily. If the 
process changes through insertions and deletions of activities, or if activity durations 
are modified, only the link and activity information file needs to reflect these changes 
and then a new formulation can be generated easily with our program. Moreover, it is 
very easy to force certain branches in the process, say, at an X-split connector, by 
adding a constraint like Ti = 1 where Ti is the first task on the desired path.   
“What-if” analysis. Further, various kinds of what-if analyses can be performed with 
this approach. To find the maximum possible duration of a task (say, T5) without 
violating any constraints, we modify the objective function to: Maximize (T5- 

TS['End']), and solve the new MILP.  We can also assign specific duration values to 
a combination of tasks and check if these values still lead to a feasible solution.  

4 Model for Temporal Constraint Violations 

4.1 Relaxation Variables 

So far, we assumed that every constraint was strict and could not be violated. The 
main idea for dealing with violations is to introduce relaxation variables for each con-
straint in such a way that if a constraint is violated then the variable takes on a posi-
tive non-zero value, and otherwise it is 0. Thus a duration constraint such as, say, 
“schedule surgery” (T8) with a duration of [10, 20] is expressed as: 8  8 10 

By introducing a constraint variable 8, we may rewrite this constraint as: 8  8 8 10 

Now, CD8 is simply a relaxation variable that assumes a non-negative value. If the 
actual duration of T8 is less than 10, say, the duration is 5, then CD8 = 5. Thus the 
constraint is satisfied and CPLEX can find a solution for the formulation.  CD8 is an 
example of a lower bound relaxation variable. The upper bound constraint in our ex-
ample on the duration of T8 is 20. In this case a similar relaxation variable, say 8  
is introduced as follows: 8  8 8 20 

Notice that the negative sign before 8  means that the relaxation allows us to sa-
tisfy the upper bound constraint by again assuming a positive value. If the duration 
lies between 10 and 20, then 8  is 0.  

Relaxation for inter-task constraints is modeled in the same way.  Constraint TI2 
of Fig. 4, for instance, is:  11  8 100 

 
Again, by adding a new relaxation variable, say, 2 we can rewrite this constraint as: 11  8 2 100 
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The corresponding upper bound constraint TI3 in Fig. 4 is relaxed by another re-
laxation variable 3 as follows: 11  8 3 140 

Run-Time Scenario 2. When we revised these constraints by adding the relaxation 
variables in the ILP formulation, and solved it for the case where TF8=85, we found a 
solution with an objective function value of 505 for TF14. Moreover, the value for 3  was 10 indicating that constraint TI3 was violated by 10 time units due to the 
delay in completion of T8.  

Relaxation can also be applied to TF and TD constraints if some flow and duration 
requirements are not very strict. In addition, the amount of relaxation can be restricted 
by imposing limits on the amount of violation that is allowed. Thus, we could add a 
constraint like CD10  20 to specify that the maximum lower end relaxation allowed 
in the duration range constraint for pain medication (T10) is 20. Thus, the duration of 
the pain medication can be decreased from 80 to 60, but no more.  

4.2 Controlled Violation with Penalties 

Our notion of controlling a temporal process subject to violations is that it is not suffi-
cient to simply detect a violation and stop there. It is necessary to explore the effects 
of a violation that has occurred further and suggest corrective action.  In the above 
example for Run-time scenario 2 we noticed that the delay in the surgery scheduling 
activity leads to the violation of constraint TI3 by 10 and also an overall delay of 50 
in the completion of the process. Hence, it is necessary to explore further to see if 
there is any corrective action possible to: (1) rectify the violation in constraint TI3 by 
making changes to the succeeding tasks; (2) reduce the delay in completion time of 
the process. It is also useful here to distinguish between strict and violable constraints.  

Run-Time Scenario 3. If, say, the constraint TI3 is strict, then we would like to see 
whether there is an alternative solution that would restore TI3 but force changes in 
another constraint. In order to check for this we remove the relaxation variable CI3 
for the constraint TI3 to make it a strict constraint and add relaxation variables to the 
remaining constraints TI1, TI2, TI4, TI5. In addition we also add the corresponding 
relaxation variables CI1, CI2, CI4 and CI5 to the objective function because we wish 
to minimize the extent of the violation. Now, we found a solution in which CD10 = 
10 and TF14 = 495. This means that by reducing the duration of Pain medication 
(T10) by 10 time units, we are able to satisfy constraint TI3 and find a solution.  

4.3 Associating Penalties with Slack Variables 

Above in Run-time scenario 3, we assumed that the objective function was:  

Minimize TS['End'] + ∑  + ∑  

This means we added the violations due to each relaxation variable taking a non-
zero value to the finish time of the process. However, this objective function treats 
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each violation equally. In real practice, it is likely that the various constraint viola-
tions might have a differential impact on the outcome. Hence, in general a different 
penalty may be assessed for the violation of each constraint. Such penalties would  
be determined by the domain experts. Therefore the revised objective function should 
be: 

Minimize TS['End'] + ∑  + ∑  

Run-Time Scenario 4. In our running example, a doctor may feel that violation of 
constraint CI5 is less important than a violation of the other constraints.  Hence, we 
could assign say a penalty of just 0.5 to CI5 and of 1 to the other constraints. When 
we rerun the MILP with this change we get a solution in which CI5 = 20. Now the 
process completion time TF[14] drops to 485.  Clearly, since the penalty for CI5 is 
smaller the optimal solution is one which relaxes this constraint.  

In general, each constraint may have a different penalty assigned to it based on the 
domain knowledge. In this way it is possible to evaluate the tradeoffs between differ-
ent constraints and find different solutions at run time.  

5 Further Extensions 

A key feature of our optimization based approach is that a variety of temporal patterns 
can be handled with this method. The various patterns were organized in Table 2 into 
three categories: basic, overlap and repetition. So far the focus of this paper was on 
the basic patterns. Now, we will discuss the other two in some detail. 

5.1 Overlap Patterns 

Overlap patterns allow constraints that specify a minimum or maximum amount of 
overlap between two or more activities. Take the example in Fig. 5 that is a variant of 
our running example in Fig. 3. Here we have added a second pain medication (T15) in 
parallel with the first one (T10), but with the additional requirement that two medica-
tions (say, aspirin and marcumar) may be taken together only for 20 time units.  
 

 

Fig. 5. An example to illustrate the overlap constraint 
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To capture this idea, we can write a constraint such as: 

Min(TF10, TF15) – Max(TS10, TS15)  20 

Overlap Scenario 1. We modified the MILP formulation to include this change and 
solved it for design time. CPLEX still gave us a best solution of 465 for the revised 
process.  On further inspection, it was realized that the new task T15 is scheduled in 
such a way that TS10=45; and TS15=105.  Further, TF10=125; and TF15=145.  
Since there is a gap of 20 between T10 and its successor T11 by inter-task constraint 
TI5, the allowed maximum overlap of 20 between T10 and T15 ensures that the total 
process time does not increase. However, if we increase the overlap between T10 and 
T15 to 0, then the process completion time increases to 485.   

In general, for n overlapping tasks, the combined period overlap among (when at 
least two or more tasks overlap is given by: 

Min( , ,  , …) – Max( , ,  , …) 

It should also be noted that containment is a special case of overlap. If task i is con-
tained in task j then TSi  TSj; and TFi  TFj.  

5.2 Repetition Patterns 

Repetitive patterns also arise frequently and must be handled appropriately. One form 
of this pattern is shown in Fig. 6 in the context of our running example.  

Repetition Scenario 1. In the example of Fig. 6 a CT scan is performed and then 
evaluated. If there was a problem in the scan and the report was not complete, the 
scan must be repeated. However, the repetitions must be separated by an interval of 
150.  Moreover, there cannot be more than three repetitions.  

 

Fig. 6. Modeling a loop pattern 

Such patterns can be expressed in our framework. In general, the successive incar-
nations of task T5 (and, similarly, of T6) are denoted as T5(1), T5(2), T5(3), …. They 
take on binary values just like other tasks. Now, 1  T5(1) + T5(2) + T5(3)  3.  Also, 
the start and finish times of these incarnations are related as: TS5(i+1)  TF6(i); and the 
temporal condition between successive iterations of the T5 loop is: TS5(i+1)–TS5(i)   
150, i  1. Finally, as shown in Fig. 6, T5 itself is a super task that can still relate to 
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other tasks through inter-task constraints. Thus, we need additional constraints in our 
formulation to capture the semantics of T5 (and T6) as tasks in themselves: 

T5 ==1 => T5(1) + T5(2) + T5(3)  1 
T5 ==1 => TS5 = Min(TS5(1), TS5(2), TS5(3)) 
T5 ==1 => TF5 = Max(TF5(1), TF5(2), TF5(3)) 

Now, T5 (and T6) relate to the other tasks as shown in the Fig. 6. Once these con-
straints are incorporated we can solve the optimization model in the same way as the 
models without loops. The main limitation with our approach in theory is that it re-
quires a cap on the number of repetitions. However, in actual practice such a limit 
always exists as in the situation described here.  

6 Discussion and Related Work 

The approach presented above is general and extensible. Not only does it apply to 
structured processes with AND and XOR connectors, it can also be extended to new 
types of connectors such as inclusive ORs by defining the formal structural balance 
equations for them. It would simply require changing Def. 2. Moreover, this approach 
applies to unstructured processes as well where split and join connectors are not well-
nested or matched since we treat each connector separately. The MILP problem is 
NP-complete; however, very efficient solution techniques for it are known.  

Although a formal proof is beyond the scope of our current work, yet we can in-
formally argue completeness of our approach in terms of expressive power as follows. 
With the overlap feature we can describe any reasonable interval of time by combin-
ing durations of multiple tasks and the delays between them. Further we can write 
constraints across intervals, like "interval 1 is larger than interval 2." Moreover, we 
can handle repetitions. This gives us a powerful capability for modeling temporal 
constraints that covers the space of possibilities from a modeling point of view.  

The first efforts towards developing temporal patterns are due to Allen [1] who de-
veloped a general theory of action and time for reasoning about actions based on  
temporal logic. He also introduced relationships like before, equal, meets, overlaps, 
during, starts and finishes as a way of relating two or more time intervals, and then 
reasoning about them. However, the work of Allen was not done in the context of 
workflows. Temporal reasoning in the context of workflows is discussed in [1]. By 
far, the early efforts on introducing time into workflow systems were due to Sadiq, et 
al. [18] and Eder, et al. [6,7]. The approach in [6,7] relies on ideas from project plan-
ning and critical path methods to determine various metrics like earliest start date, 
latest finish date, etc. for various activities. Zhao and Stohr [22] also developed a 
framework and algorithms for temporal workflow management in the context of a 
claims handling system based on turnaround time prediction, time allocation and task 
prioritization. They used reward functions to guide workers’ behavior.  

Lanz et al. presented several time patterns (TP) that represent temporal constraints 
of time-aware processes [12,13]. These patterns are in four groups: durations and time 
lags; restricting execution times; variability; and recurrent process elements. Most 
research however has focused on the first group.  The approach of [12,13] and others 
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towards dealing with time-aware processes have relied on the conditional simple tem-
poral networks (CSTN) as a representational technique [20]. These networks allow a 
mapping from time points at which observations are taken to propositional statements 
attached to nodes. These statements are checked for their truth values at the observa-
tion times and the corresponding actions at the nodes are performed if the statements 
are true. The propositions are Boolean combinations of simple range constraints. 
Techniques for checking such networks are discussed in the work of Combi et al. [8] 
where they have also extended the CSTN’s to CSTNU’s (CSTNs with uncertainty) 
which are more general CSTNs.  In CSTNUs the uncertainly arises from the fact that 
some contingent edges become applicable only if a condition is satisfied.  

CSTNs were developed in the context of planning problems and have also been 
applied to workflows. Since the main idea is to partition the nodes in a CSTN based 
on the truth values of propositions, they do not always follow a workflow like struc-
ture. The idea of constraint violation and relaxation that we presented here does not 
exist in the context of CSTNs.  Moreover, to the best our knowledge, extensions like 
overlap and iteration using special functions like max and min are also not present 
since they restrict the constraints to simple range constraints. 

Another related concept in the context of temporal workflows is that of dynamic 
controllability [10,20,15]. In this view, a temporal workflow consists of contingent 
links whose actual duration is determined by nature within a given range, and agent-
controlled links whose actual value is under the control of and determined by an agent 
at execution time. The actual values of the durations of the contingent links are known 
only at run-time. A CSTN or CSTNU network corresponding to a workflow process 
is dynamically controllable if there exists a viable agent strategy to successfully com-
plete the execution of the workflow for all combinations of values of the contingent 
link durations. Algorithms for ensuring controllability are described in [4, 
8,10,20,15]. It is not possible to compare our approach directly with dynamic control-
lability because in our formulation there are no contingent links. All our task duration 
and inter-task duration ranges are determined based on, say, medical (or some other 
kind of) guidelines. However, it would be interesting to explore how our approach can 
be applied to solve the dynamic controllability problem as part of future work.  

Another interesting constraint based approach for modeling clinical pathways is 
discussed in [21]. It considers resources and various scheduling patterns with setup 
costs and temporal constraints, but it does not use a process focus and does not  
provide a solution methodology.  

7 Conclusions 

We presented a new approach for temporal process modeling based on constraint 
satisfaction. It can be used to check temporal consistency at both design and run 
times. A unique aspect of our approach is that it can allow controlled violation of 
constraints by allowing relaxation of some constraints and associating penalties with 
the violations. It was illustrated with a realistic example of a clinical workflow. How-
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ever, the approach is general. We also showed that it can express a variety of temporal 
patterns and deal with changes in the process.  

Further investigation is needed to compare our approach with the ones based on 
dynamic controllability and CSTN networks. More work is also needed in developing 
methods for associating the right penalties with constraints and optimal ways of reco-
vering from violations. Compensation and substitution based methods may also be 
used for this purpose and costs can be included in the model as well. As an example, 
in a process running late, it may be possible to substitute an expensive procedure or 
diagnostic test that runs faster, say, in two days versus another less expensive one that 
takes four days. There is also need for faster solution techniques for the MILP formu-
lation.   

Finally, activity durations, path choices, violation types, degrees and frequencies, and 
temporal patterns can all be statistically characterized. This would allow for a stochastic 
approach to managing constraint violations along the lines of the work in [19].  
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Abstract. This paper addresses the problem of predicting the outcome
of an ongoing case of a business process based on event logs. In this set-
ting, the outcome of a case may refer for example to the achievement of a
performance objective or the fulfillment of a compliance rule upon com-
pletion of the case. Given a log consisting of traces of completed cases,
given a trace of an ongoing case, and given two or more possible out-
comes (e.g., a positive and a negative outcome), the paper addresses the
problem of determining the most likely outcome for the case in question.
Previous approaches to this problem are largely based on simple symbolic
sequence classification, meaning that they extract features from traces
seen as sequences of event labels, and use these features to construct
a classifier for runtime prediction. In doing so, these approaches ignore
the data payload associated to each event. This paper approaches the
problem from a different angle by treating traces as complex symbolic
sequences, that is, sequences of events each carrying a data payload. In
this context, the paper outlines different feature encodings of complex
symbolic sequences and compares their predictive accuracy on real-life
business process event logs.

Keywords: Process mining · Predictive monitoring · Complex symbolic
sequence

1 Introduction

Process mining is a family of methods for analyzing business processes based on
event logs consisting of traces, each representing one execution of the process
(a.k.a. a case). A trace consists of a sequence of (possibly timestamped) events,
each referring to an execution of an activity (a.k.a. an event class). Events in a
trace may have a payload consisting of attributes such as the resource(s) involved
in the execution of an activity or other data recorded with the event.
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Predictive business process monitoring [14] is a category of process mining
methods that aims at predicting at runtime and as early as possible the outcome
of a case given its current (incomplete) trace. In this context, an outcome may
be the fulfillment of a constraint on the cycle time of the case, the validity of a
temporal logic constraint, or any predicate over a completed case. For example, in
a sales process, a possible outcome might be the placement of a purchase order
by a potential customer, whereas in a medical treatment process, a possible
outcome is the recovery of the patient upon completion of the treatment.

Existing approaches to predictive monitoring [7,14] essentially map the prob-
lem to that of early sequence classification [24]. The idea is to train a classifier
over the set of prefixes of historical traces. This classifier is used at runtime in
order to predict the outcome of an ongoing case based on its current (incomplete)
trace. A key step is to extract features from prefixes of historical traces. In this
respect, existing approaches treat traces as simple symbolic sequences, meaning
sequences of symbols, each representing an event but without its payload. When
data is taken into account, only the latest payload of data attributes attached
to the event at the end of each trace prefix is included in the feature vector of
the classifier, but the evolution of data attributes as the case unfolds is ignored.

This paper investigates an alternative approach where traces are treated as
complex symbolic sequences, that is, sequences of events each carrying a data pay-
load consisting of attribute-value pairs. A crucial design choice in this approach is
how to encode a complex symbolic sequence in terms of vectors of features. In this
respect, the paper proposes two complex sequence encodings. The first encoding is
based on indexes. This encoding specifies, for each position in the case, the event
occurring in that position and the value of each data attribute in that position. The
second encoding is obtained by combining the first one with an encoding based on
Hidden Markov Models (HMMs), a well-known generative probabilistic technique.
As this work deals with the problem of case classification, a discriminative HMM
approach is adopted. In particular, separate HMMs are trained for each possible
outcome (e.g., one HMM for positive cases and one for negative cases). Then, the
likelihood of a trace prefix to belong to each of these two models is measured. The
difference in likelihoods is expressed in terms of odds-ratios, which are then used
as features to train the classifier. The proposed methods are evaluated in terms of
their accuracy at different points in a trace based on two real life logs: (i) a patient
treatment log provided for the BPI challenge 2011 [1] and (ii) an insurance claim
process log from an insurance company [22].

The paper is structured as follows. Section 2 reviews previous work on pre-
dictive business process monitoring and introduces HMMs, which are used later
in the paper. Section 3 presents the proposed methods while Section 4 discusses
their evaluation. Finally, Section 5 draws conclusions and outlines future work.

2 Background and Related Work

This section provides an overview of existing predictive business process mon-
itoring approaches (Section 2.1) and briefly introduce Hidden Markov Models
(HMMs), which we use for complex symbolic sequence encoding (Section 2.2).
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2.1 Predictive Monitoring: The Related Work

Existing techniques for predictive business process monitoring can be broadly
classified based on the type of predicted outcome. In this respect, a first group of
works concentrates on the time perspective. In [2,3], the authors present a set of
approaches in which annotated transition systems, containing time information
extracted from event logs, are used to: (i) check time conformance while cases
are being executed, (ii) predict the remaining processing time of incomplete
cases, and (iii) recommend appropriate activities to end users working on these
cases. In [10], an ad-hoc predictive clustering approach is presented, in which
context-related execution scenarios are discovered and modeled through state-
aware performance predictors. In [20], the authors use stochastic Petri nets for
predicting the remaining execution time of a process.

A second group of works focuses on approaches that generate predictions
and recommendations to reduce risks. For example, in [7], the authors present
a technique to support process participants in making risk-informed decisions,
with the aim of reducing the process risks. Risks are predicted by traversing deci-
sion trees generated from the logs of past process executions. In [16], the authors
make predictions about time-related process risks, by identifying (using statisti-
cal principles) and exploiting indicators observable in event logs that highlight
the possibility of transgressing deadlines. In [21], an approach for Root Cause
Analysis through classification algorithms is presented. Decision trees are used
to retrieve the causes of overtime faults on a log enriched with information about
delays, resources and workload.

An approach for prediction of abnormal termination of business processes
is presented in [12]. Here, a fault detection algorithm (local outlier factor) is
used to estimate the probability of a fault to occur. Alarms are provided for
early notification of probable abnormal terminations. In [6], Castellanos et al.
present a business operation management platform equipped with time series
forecasting functionalities. This platform allows for predictions of metric values
on running process instances as well as for predictions of aggregated metric values
of future instances (e.g., the number of orders that will be placed next Monday).
Predictive monitoring focused on specific types of failures has also been applied
to real case studies. For example, in [8,15], the authors present a technique for
predicting “late show” events in transportation processes. In particular, they
apply standard statistical techniques to find correlations between “late show”
events and external variables related to weather conditions or road traffic.

A key difference between these approaches and our technique is that they
rely either on the control-flow or on the data perspective for making predictions
at runtime, whereas we take both perspectives into consideration. The two per-
spectives have been considered together only in [14], where a framework for the
predictive monitoring of constraint fulfillment and violation has been proposed.
In this approach, however, only the payload of the last executed event is taken
into account, while neglecting the evolution of data values throughout the exe-
cution traces. The present paper aims at addressing this latter limitation by
treating the input traces as complex symbolic sequences.
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2.2 Hidden Markov Models

Hidden Markov Models (HMMs) [18] are a class of well-studied models of sequen-
tial observations that have been widely applied in the context of sequence clas-
sification [24]. HMMs are probabilistic generative models, meaning that there
is an assumption that an observed sequence is generated by some process that
needs to be uncovered via probabilistic reasoning. The idea behind HMM is
that a sequence consists of observed events, generated by some hidden factors.
Assume, for example, that two coins – a fair one and a biased one – are tossed in
some unknown order. Only a sequence of heads and tails can be observed. Our
goal is to figure out which parts of the sequence were produced by the fair and
which by the biased coin. This process can be described by:

• observed events O = {O1, O2, ..., OT } - resulting sequence consisted of heads
and tails;

• set of discrete symbols - the finite alphabet size V = {V1, V2, ..V|M |} - {head,
tail} in our example;

• number of hidden states N , where each state is denoted as S =
{S1, S2, ..S|N |} - represented by fair and biased coin in our example;

• vector of initial probabilities π - how often, in general, each coin is chosen;
• matrix of emission probabilities B - probabilities for each symbol to occur in

a particular hidden state - for example, the probability of tails of the biased
coin;

• matrix transition probabilities A - probability to move from one state to
another or to stay in the same state - transition probabilities answer the
question “how often the coins were switched”.

The common HMM construction procedure is to specify parameters N and
V and to train a model λ = {A,B, π} using a maximum likelihood method such
as the standard Baum-Welch algorithm [18].

3 Predictive Monitoring: The Proposed Approach

In this section, the proposed approach for predictive monitoring is described.
In particular, in Section 3.1, an overview of the entire approach is given. In
Section 3.2, the core part of the proposed approach is introduced, i.e., the encod-
ing of log cases as complex symbolic sequences.

3.1 Overview

Fig. 1 shows an overview of the proposed approach. To predict the outcome of an
ongoing case, its current (incomplete) trace (say of length n) is encoded using
complex symbolic sequences. As explained in detail in Section 3.2, a complex
symbolic sequence carries information about the control flow and the data flow
of the trace.

In the approach, a log of historical (completed) cases is supposed to be avail-
able. From these cases, all the prefixes of length n are extracted and, in turn,
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Fig. 1. Overview of the proposed approach.

encoded in the form of complex symbolic sequences. In addition, these sequences
are labeled using a binary or categorical value according to their outcome. These
“historical complex symbolic sequences” are used to train a classifier. The cur-
rent ongoing trace is then used to query the classifier that returns the label that
is the most probable outcome for the current case according to the information
derived from the historical cases. In this work, we use random forest as classifier
that belongs to the class of ensemble methods [5]. At the core of the method
is the concept of decision tree. However, instead of training a single tree on a
dataset, it grows a pre-defined number of trees and let them vote for the most
popular outcome. Random forest is easy to train as it requires less input parame-
ters to tune compared to other classification algorithms.1 Moreover, it has shown
superior results over other well-known classification algorithms like support vec-
tor machines (SVM) and generalized boosted regression models (GBM) [19,23]
in several cases [9]. A comparison of the performances of these algorithms when
applied to one of the datesets used in this paper is shown in Fig. 8.

3.2 Complex Symbolic Sequence Encodings

Each case of a log corresponds to a sequence σi of events describing its control
flow. Each event is also associated with data in the form of attribute-value pairs.
Moreover, each completed case is associated to an outcome - a label, which can
assume binary or categorical values. We represent a case in the following form:

sequence(event{associated data},...,event{associated data}): label

As running example, we consider the log in Fig. 2 pertaining to a medical
treatment process. Each case relates to a different patient and the correspond-
ing sequence of events indicates the activities executed for a medical treatment
of that patient. In the example, consultation is the first event of sequence σ1.
Its data payload “{33, radiotherapy}” corresponds to the data associated to

1 Random forest requires two parameters: Number of trees to grow (ntrees) and num-
ber of features to use for each tree (mtry).
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σ1 (consultation{33, radiotherapy},...,ultrasound{33, nursing ward}):false
...

σk (order rate{56, general lab},..., payment{56, clinic}):true

Fig. 2. Running example.

attributes age and department. Note that the value of age is static: It is the
same for all the events in a case, while the value of department is different for
every event. In the payload of an event, always the entire set of attributes avail-
able in the log is considered. In case for some event the value for a specific
attribute is not available, the value unknown is specified for it.

The goal of predictive business process monitoring is to build a classifier
that learns from a set of historical cases L how to discriminate classes of cases
and predict as early as possible the outcome of a new, unlabeled case. More
specifically, we are interested in automatically deriving a function f that, given
an ongoing sequence σx provides a label for it, i.e., f : (L, σx) → {labelx}. To
achieve this goal, a random forest classifier is trained on all sequence prefixes of
the same length of σx derived from historical cases in L. In order to train the
classifier, each (prefix) sequence σi, i = 1...k has to be represented through a
feature vector gi = (gi1, gi2, ...gih).

In the most straightforward encodings, sequences are treated as simple sym-
bolic sequences, while additional information related to data and data flow is
neglected. This work combines and exploits both the control and the data flow
dimension by considering the sequences as complex symbolic sequences. In par-
ticular, two different encodings (the index-based encoding and the HMM-based
encoding) are taken into consideration. In the following sections, first, four clas-
sical baseline encodings are sketched and then the two new encodings are illus-
trated in detail.

Table 1. Baseline encodings for the example in Fig. 2.

(a) boolean encoding.

consultation ultrasound ... payment label

σ1 1 1 ... 0 false
...
σk 0 0 ... 1 true

(b) frequency-based encoding.

consultation ultrasound ... payment label

σ1 2 1 ... 0 false
...
σk 0 0 ... 4 true

(c) simple index encoding.

event 1 ... event m label

σ1 consultation ultrasound false
...
σk order rate payment true

(d) index latest payload encoding.

age event 1 ... event m ... department last label

σ1 33 consultation ultrasound ... nursing ward false
...
σk 56 order rate payment ... clinic true

3.3 Baselines

The first two approaches we use as baselines in our experiments describe
sequences of events as feature vectors, where each feature corresponds to an
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event class (an activity) from the log. In particular, the boolean encoding rep-
resents a sequence σi through a feature vector gi = (gi1, gi2, ...gih), where, if gij

corresponds to the event class e, then:

gij =
{

1 if e is present in σi

0 if e is not present in σi

For instance, the encoding of the example reported inFig. 2 with the boolean encod-
ing is shown in Table 1a. The frequency-based encoding, instead of boolean values,
represents the control flow in a case with the frequency of each event class in the
case. Table 1b shows the frequency-based encoding for the example in Fig. 2.

Another way of encoding a sequence is by taking into account also informa-
tion about the order in which events occur in the sequence, as in the simple
index encoding. Here, each feature corresponds to a position in the sequence
and the possible values for each feature are the event classes. By using this type
of encoding the example in Fig. 2 would be encoded as reported in Table 1c.

The fourth baseline encoding adds to the simple index baseline the data of
the latest payload. Here, data attributes are treated as static features without
taking into consideration their evolution over time. Table 1d shows this encoding
for the example in Fig. 2.

Table 2. Encodings for the example in Fig. 2.

(a) index-based encoding.

age event 1 ... event m ... department 1 ... department m label

σ1 33 consultation ultrasound radiotherapy nursing ward false
...
σj 56 order rate payment general lab clinic true

(b) HMM-based encoding.

age event 1 ... event m ... department 1 ... department m LLR event ... LLR department label

σ1 33 consultation ultrasound radiotherapy nursing ward 0.12 ... 0.56 false
...
σj 56 order rate payment general lab clinic 4.3 ... 1.7 true

3.4 Index-Based Encoding

In the index-based encoding, the data associated with events in a sequence is
divided into static and dynamic information. Static information is the same for
all the events in the sequence (e.g., the information contained in case attributes),
while dynamic information changes for different events (e.g., the information
contained in event attributes). The resulting feature vector gi, for a sequence
σi, is:

gi = (s1i , .., s
u
i , eventi1, eventi2, ..eventim, h1

i1, h
1
i2...h

1
im, ..., hr

i1, h
r
i2, ...h

r
im),
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where each si is a static feature, each eventij is the event class at position j and
each hij is a dynamic feature associated to an event. The example in Fig. 2 is
transformed into the encoding shown in Table 2a.

3.5 HMM-Based Encoding

The core idea of HMMs is to provide an abstraction of the information con-
tained in a sequence. However, in general, HMMs are used to describe sequential
data, not to classify it. Moreover, they usually deal only with simple symbolic
sequences. The aim of the proposed approach, in contrast, is to be able to dis-
criminate between complex symbolic sequences with respect to their outcome
and make predictions for new, unlabeled sequences.

In order to overcome these limitations of HMMs, we propose some extensions.
In order to shift from generative (descriptive) to discriminative models, we take
an approach similar to the one presented in [11,13]. Here, the main idea is
to use discriminative HMMs to represent a sequence through a measure that
captures in some way the relation of the sequence with its outcome. To deal
with complex symbolic sequences, the data associated to events is separated
into static and dynamic information and the evolution of each dynamic feature
(and the sequence of event classes) is expressed as a simple symbolic sequence.
In addition, to encode a case with HMM-based encoding, a training set is needed
to train the HMMs. In particular, the following steps need to be performed:

• the sequences of event classes and sequences related to each dynamic fea-
ture of both the case to be encoded and to the ones in the training set are
transformed into simple symbolic sequences;

• the simple symbolic sequences of each dynamic feature (or event class) from
the training set are partitioned according to the labels of the cases they
belong to. For example, in the binary case one subset corresponds to all
sequences that have a positive label and another subset to the sequences
with a negative label;

• for each subset of simple symbolic sequences corresponding to a dynamic
feature (or event class), a HMM is trained. For example, in the binary case
two different HMMs, HMMpositive and HMMnegative, are generated;

• for each simple symbolic sequence derived from the case to be encoded, the
log-likelihood ratio (LLR) is computed. LLR expresses the likelihood of the
sequence to belong to one of the trained models. In the binary case, it shows
the likelihood of the sequence to belong to the model describing the positive
sequences (HMMpositive) over the likelihood to belong to the HMM of the
negative ones (HMMnegative). Intuitively, the greater the value of LLR is,
the greater is the chance that the sequence belongs to a case with a positive
outcome. For a case σi, and for a given dynamic feature (or event class) hj ,
the corresponding log-ratio is defined as:

LLR(σhj

i ) = log(
HMM(σhj

i )positive

HMM(σhj

i )negative

),
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where σ
hj

i is the simple symbolic sequence extracted from σi related to hj .
The information contained in a simple symbolic sequence is, hence, con-
densed into one number, expressing the relationship of the sequence with a
given label value.

The result of applying this procedure to all the information that can be con-
sidered as a simple symbolic sequence in a case (sequences of event classes and
dynamic data) is a set of LLR values, which are added to the feature vector
obtained with the index-based encoding. In particular, the input vector for the
classifier is, in this case:

gj = (s1j , .., s
u
j , eventj1, eventj2, ..eventjm, h1

j1, ...h
1
jm, ..., hr

j1, ...h
r
jm, LLR1

j , ..LLRr
j ),

where each si is a static feature, each eventij is the event class at position j
and each hij is a dynamic feature associated to an event. Each LLRi

j is the log-
likelihood ratio computed based on the simple symbolic sequence corresponding
to an event class or a dynamic feature of the original case. Table 2b shows an
encoding for the example in Fig. 2 obtained by using log-likelihood ratio values.

4 Evaluation

In this section, we provide a description of the carried out experimentation. In
particular, our evaluation focuses on the following research questions:

RQ1. Do the proposed encodings provide reliable results in terms of predictions?
RQ2. Do the proposed encodings provide reliable predictions at early stages of

the running case?
RQ3. Are the proposed encodings stable with respect to the quality of the results

provided at different stages of the running case?

The three questions focus on three intertwined aspects. The first one relates to
the quality of the results (in terms of prediction correctness) provided by the
proposed encodings. The second one investigates how early the encodings are
able to provide reliable results. The third one focuses on the stability of the
quality of the results when computed at different stages of an ongoing case. In
the following, we describe the experiments carried out to answer these research
questions.

4.1 Datasets

We conducted the experiments by using two real-life logs: The BPI challenge 2011
[1] log (herein called dataset1) and an event log (herein called dataset2) of an
Australian insurer. The former log pertains to a healthcare process and describes
the executions of a process related to the treatment of patients diagnosed with
cancer in a large Dutch academic hospital. Each case refers to the treatment of a
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Table 3. Case study datasets.

Log # Cases # Events # Event Classes

dataset1 1,143 150,291 624

dataset2 1,065 16,869 9

different patient. The event log contains domain specific attributes that are both
case attributes and event attributes in addition to the standard XES attributes.2

For example, Age, Diagnosis, and Treatment code are case attributes (that we
consider as static features) and Activity code, Number of executions, Specialism
code, and Group are event attributes (that we consider as dynamic features). The
second log relates to an insurance claims handling process and covers about one
year of completed cases. The insurance claims log includes only event attributes
like Claim type, Claim reason, and Amount. Table 3 summarizes the character-
istics of the two logs (number of cases, number of events, and number of event
classes).

4.2 Evaluation Measures

In order to assess the goodness-of-fit for the trained classifiers, we used the Area
Under the ROC Curve (AUC) measure [4]. A ROC curve is defined starting from
a standard notion of confusion matrix, i.e., the matrix in which each column
represents the predicted outcomes of a set of cases, while each row represents
the actual outcomes and cells represent:

• true-positive (TP : cases with positive outcomes predicted correctly);
• false-positive (FP : cases with negative outcomes predicted as positive);
• true-negative (TN : cases with negative outcomes predicted correctly);
• false-negative (FN : cases with positive outcomes predicted as negative).

To draw a ROC curve, two derivatives of the confusion matrix should be
defined, i.e., the true positive rate (TPR), represented on the y-axis, and the
false positive rate (FPR), represented on the x-axis of the ROC curve. The TPR
(or recall), TP

(TP+FN) , defines how many positive outcomes are correctly predicted
among all positive outcomes available. On the other hand, the FPR, FP

(FP+TN) ,
defines how many negative outcomes are predicted as positive among all negative
outcomes available. AUC condenses the information provided by a ROC curve
into a single measure of performance. A classifier of the random guess, expressed
as a ROC curve, is represented by a diagonal line with AUC of 0.5, while the
perfect classifier would score AUC of 1 and is represented by the ROC curve
crossing the coordinates (0, 1) - where FPR = 0 and TPR = 1.

The measure we use to evaluate the earliness of a prediction is based on the
number of events that are needed to achieve a minimum value for AUC. Finally,
2 XES (eXtensible Event Stream) is an XML-based standard for event logs proposed

by the IEEE Task Force on Process Mining (www.xes-standard.org).

www.xes-standard.org
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Table 4. Distribution of labels in the datasets.

LTL # Positive cases # Negative cases

ϕ1 459 684

ϕ2 894 249

ϕ3 260 883

ϕ4 320 823

γ1 788 277

we use standard deviation to evaluate the stability of the results computed at
different stages of an ongoing case.

4.3 Evaluation Procedure

In our experimentation, first, we have ordered the cases in the logs based on the
time at which the first event of each case has occurred. Then, we have split the
logs in two parts. We have used the first part (80% of the cases) as training set,
i.e., we have used these cases as historical data. Note that the training set was
used differently in the experiments based on the different encodings. For most of
them, the entire training set was used to train the random forest classifier. The
only exception is the HMM-based encoding that uses 75% of the training set for
training the HMMs and 25% for training the random forest. We have used the
remaining cases (remaining 20% of the whole log) as a test set (used as ongoing
cases).

Next, we have defined 4 temporal constraints corresponding to the following
linear temporal logic rules [17] over event classes in dataset1:

• ϕ1 = F(“tumor marker CA − 19.9”) ∨ F(“ca − 125 using meia”),
• ϕ2 = G(“CEA − tumor marker using meia” → F(“squamous cell carcinoma using eia”)),
• ϕ3 = (¬“histological examination−biopsies nno”)U(“squamous cell carcinoma using eia”),
• ϕ4 = F(“histological examination − big resectiep”).

and we have used them to label cases in the training set from dataset1 as com-
pliant or non-compliant (one labeling for each rule). This set of (realistic) rules
encompasses all the main linear temporal logic operators. Cases in the training
set of dataset2 have been labeled with respect to a constraint corresponding to
a rule γ1 formalizing a regulation internal to the insurance company. This rule
requires a claimant to be informed with a certain frequency about the status of
his or her claim. The distribution of labels in the datasets is shown in Table 4.

In our experiments, a few input parameters had to be chosen. For random
forest classifier, the number of trees was fixed to 500 and the optimal number of
features to use for each tree (mtry) was estimated separately using 5-fold cross-
validation on the training set. The optimal number of hidden states for HMMs
was estimated in a similar way. In particular, the original training set was split,
in turn, into training and testing cases and, using these cases, different parameter
configurations were tested. The optimal ones – with highest AUC, were chosen
for the experiments.
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In order to measure the ability of the models to make accurate predictions
at an early stage, we computed the AUC values using prefixes ranging from 2
to 20. This choice is justified by the observation that for the defined formulas,
encodings based on the sole control flow are able to provide correct predictions
after about 20 events.

4.4 Results and Discussion

Figures 3-6 show the trend of the AUC values when predicting the compliance
of cases in the test set from dataset1, with respect to ϕ1-ϕ4. In particular, each
plot shows the evolution of the AUC values for the encodings under examination
when using the first 20 prefixes of each case in the test set. In Fig. 3, we plot the
AUC trend for predictions over the fulfillment of ϕ1. For very early predictions
the baseline based on the latest data payload gives an AUC that is compara-
ble to the one obtained with complex symbolic sequences. However, for longer
prefixes, when more data is available referring to the trend of the attribute val-
ues attached to events, this information is exploited by the encodings based on
complex symbolic sequences that diverge from the baseline that remains approx-
imately constant. Note that starting from prefixes of length 7 the AUC for both
the encodings based on complex symbolic sequences is above 0.9.

Similar trends can be observed in Figures 4-5 referring to the case labeling
based on the compliance with respect to ϕ2 and ϕ3. In the last plot, in Fig. 6,
referring to the case labeling based on the compliance with respect to ϕ4, the
divergence of the encodings based on complex symbolic sequences with respect
to the one that considers only the latest data payload is more evident. Here, the
HMM-based encoding slightly outperforms the one that considers only indexes.

Fig. 7 shows the AUC trend obtained for the case labeling based on the com-
pliance with respect to γ1 of cases in dataset2. We can observe that also for this
dataset, for early predictions the baseline encoding based on the latest data pay-
load gives a good AUC, while the other baselines have a lower AUC. For slightly
longer prefixes (between 6 and 13), the AUC values of all the baseline encod-
ings is comparable with the one of the encodings based on complex symbolic
sequences. From prefixes of length 11 the AUC values for the boolean encoding
and for the one based on the latest data payload decrease again. This case study
shows that, although baseline encodings can perform very well for certain prefix
lengths, their performance is not stable. On the other hand, encodings based on
complex symbolic sequences are able to provide a reasonable AUC (around 0.8
in this case) even for short prefixes and to keep it constant or slightly improve
it for longer prefixes.

Summing up, the case studies show that the baseline based on the latest
data payload and the encodings based on complex symbolic sequences provide,
in general, reliable predictions. Table 5, reporting the average AUC values for
all the encodings under examination, confirms these results. However, while the
baseline encoding is not always able to reach an average AUC value of 0.8, the
two encodings based on complex symbolic sequences have an average AUC that
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Fig. 3. AUC values using prefixes of dif-
ferent lengths. Labeling based on compli-
ance with respect to ϕ1.

Fig. 4. AUC values using prefixes of dif-
ferent lengths. Labeling based on compli-
ance with respect to ϕ2.

Fig. 5. AUC values using prefixes of dif-
ferent lengths. Labeling based on compli-
ance with respect to ϕ3.

Fig. 6. AUC values using prefixes of dif-
ferent lengths. Labeling based on compli-
ance with respect to ϕ4.

is always higher than 0.82. Based on these results, we can, hence, positively
answer RQ1.

Our experimentation also highlights that some of the presented encodings
are able to provide reliable predictions at a very early stage of an ongoing case.
As shown in Table 6 (left), the baseline based on the latest data payload and
the encodings based on complex symbolic sequences are able to provide an AUC
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Fig. 7. AUC values using prefixes of dif-
ferent lengths. Labeling based on compli-
ance with respect to γ1.

Fig. 8. AUC values using different clas-
sification algorithms. Labeling based on
compliance with respect to ϕ1.

Table 5. AUC trends. Bold values show the highest average AUC values (higher than
0.8) and the lowest AUC standard deviation values (lower than 0.02).

mean across prefixes st. deviation across prefixes

encoding ϕ1 ϕ2 ϕ3 ϕ4 γ1 ϕ1 ϕ2 ϕ3 ϕ4 γ1

boolean 0.614 0.610 0.714 0.655 0.690 0.027 0.018 0.063 0.036 0.111
frequency-based 0.609 0.610 0.735 0.679 0.816 0.025 0.021 0.022 0.043 0.084
simple index 0.590 0.627 0.656 0.631 0.814 0.013 0.025 0.018 0.036 0.080
index latest payload 0.863 0.908 0.892 0.831 0.787 0.009 0.008 0.012 0.018 0.060
index-based 0.917 0.928 0.935 0.876 0.828 0.016 0.006 0.004 0.006 0.013
HMM-based 0.907 0.932 0.931 0.890 0.835 0.018 0.009 0.003 0.010 0.013

Table 6. Min. number of events needed for an AUC > 0.8 (left) and > 0.9 (right).

min(prefix) for AUC = 0.8 min(prefix) for AUC = 0.9

encoding ϕ1 ϕ2 ϕ3 ϕ4 γ1 ϕ1 ϕ2 ϕ3 ϕ4 γ1

boolean 8

frequency-based 6

simple index 6

index latest payload 2 2 2 2 2 2 2

index-based 2 2 2 2 3 7 2 2

HMM-based 2 2 2 2 2 7 2 2 18

higher than 0.8 in all the cases under examination at a very early stage of an
ongoing case (starting from prefixes of length 2 in most of the cases). This is
not the case for the other baseline encodings. The encodings based on complex
symbolic sequences are also able in most of the cases to reach an AUC higher
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Table 7. Execution times per prefix length in seconds.

HMM Training RF Training Predictions

2 5 10 15 20 2 5 10 15 20 2 5 10 15 20

index-based avg 1.08 5.05 26.29 79.20 176.65 0.23 1.43 6.46 13.37 24.21

index-based s.d. 0.09 0.22 2.46 5.54 12.28 0.05 0.13 0.57 0.78 1.72

HMM-based avg 23.14 34.11 49.03 65.95 83.51 0.99 4.88 26.55 81.74 186.41 0.24 1.45 6.34 13.69 26.40

HMM-based s.d. 1.24 2.53 4.02 4.75 8.23 0.20 0.55 1.18 6.25 11.22 0.05 0.14 0.56 0.92 2.96

than 0.9, though not always and at a very early stage of an ongoing case. In
fact, both these encodings require 7 events for predicting the fulfillment of ϕ1.
The HMM-based encoding is the only one able to predict the fulfillment of ϕ4

with an AUC of 0.9 (after 18 events). Starting from these observations, we can
positively answer RQ2.

Finally, the experiments highlight that some of the encodings have a trend
that is more stable than others when making predictions at different stages of
the ongoing cases. Table 5 shows that the encodings based on complex symbolic
sequences have the most stable AUC trends (the standard deviation for AUC
is lower than 0.02 in all the cases). This is not always true for the baseline
encodings. We can then provide a positive answer to RQ3.

Execution Times All experiments were conducted using R version 3.0.3 on a
laptop with processor 2,6 GHz Intel Core i5 and 8 GB of RAM. Table 7 shows
the average execution time (in seconds) and the standard deviation (with respect
to the time needed to predict the fulfilment for each of the investigated rules)
required by the index-based and the HMM-based methods for different prefix
lengths. The execution times for constructing the classifiers (off-line) is between
1.08 seconds and 186.41 seconds across all the experiments for the index-based
encoding and between 0.99 and 186.41 seconds for the HMM-based encoding.
Note that, in addition, the HMM-based encoding also requires time for training
the HMMs, ranging from 23.14 to 83.51 seconds. At runtime, the process time for
making a prediction on a given prefix of a case is in the order of milliseconds for
the runtime prediction on short cases (in the order of seconds for longer cases).

5 Conclusion

The paper has put forward some potential benefits of approaching the problem of
predictive business process monitoring using complex symbolic sequence encod-
ings. The empirical evaluation has shown that an index-based encoding achieves
higher reliability when making early predictions, relative to pure control-flow
encodings or control-flow encodings with only the last snapshot of attribute val-
ues. The evaluation has also shown that encodings based on HMMs may add in
some cases an additional margin of accuracy and reliability to the predictions,
but not in a significant nor systematic manner.

A threat to validity is that the evaluation is based on two logs only. Although
the logs are representative of real-life scenarios, the results may not generalize
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to other logs. In particular, the accuracy may be affected by the definition of
positive outcome. For logs different from the ones used here and other notions of
outcome, it is conceivable that the predictive power may be lower. A direction
for future work is to evaluate the methods on a wider set of logs so as to better
understand their limitations.

The methods considered in this paper are focused on the problem of intra-case
predictive monitoring, where the aim is to predict the outcome of one individual
ongoing case seen in isolation from others. A macro-level version of this problem
is the inter-case predictive monitoring, where the goal is to make predictions on
the entire set of ongoing cases of a process, like for example predicting what
percentage of ongoing cases will be delayed or end up in a negative outcome.
Initial work on inter-case predictive monitoring [7] has approached the problem
using control-flow encodings plus the last snapshot of attribute values. An avenue
for future work is to investigate the use of complex symbolic sequence encodings
in this context.
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Abstract. Business Process Management (BPM) as a discipline covers
a wide spectrum of tasks, from the definition of strategic process objec-
tives to the technical implementation of process execution infrastructure.
This paper compares and contrasts the process roles demanded by indus-
try with the backgrounds of BPM professionals. We perform a content
analysis of advertised job positions in order to compare the skill sets
demanded by industry with those found in an extensive study of BPM
practitioner profiles. Our findings suggest several discrete roles: Chief
Process Officer, Process Owner, Process Architect, Process Consultant,
and Process Analyst. We find that while consultants and analysts are
the most sought-after positions, they also represent the largest pool of
available BPM professionals on the market. Roles that indicate a higher
level of maturity such as Process Architects are solicited much less fre-
quently, but are used by job seekers as advertising labels. We find Chief
Process Officers to be a desirable role from an organizational maturity
perspective, but also the rarest and highest qualified role on the supply
side. Our findings provide initial insight for BPM education programs
and potential BPM career trajectories.

Keywords: BPM capability · BPM education · BPM maturity · BPM
role modeling

1 Introduction

Business processes integrate and coordinate organizational workflows in order to
create and deliver customer value [2]. Business Process Management (BPM) is
a dynamic capability that comprises the skills and knowledge necessary to gov-
ern and change business processes [14]. BPM has become a distinguishing fea-
ture of companies that succeed in competitive industries. Zara’s ability to quickly
refresh its clothing collections [5], Disney’s competency to derive multiple revenue
streams from its movies [16], or Uber’s global expansion of ride-sharing services [8]
are just some examples of companies that demonstrate maturity regarding their
BPMcapability.Proponents ofBPMmaturitymodels regardhigher organizational
c© Springer International Publishing Switzerland 2015
H.R. Motahari-Nezhad et al. (Eds.): BPM 2015, LNCS 9253, pp. 317–332, 2015.
DOI: 10.1007/978-3-319-23063-4 22
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maturity as a precondition for the effective and repeatable execution of process
change projects, the systematic gathering of actionable process performance met-
rics, and abetter alignmentbetween organizationalworkflows and their supporting
execution infrastructure [4,18].

BPM maturity models receive widespread attention as an assessment tool to
evaluate the level of sophistication of BPM activities and to decide on further
action for underdeveloped activities [17]. The BPM Capability Framework (see
Fig. 1) is a maturity model comprised of 30 capabilities necessary to govern and
change business processes [18]. Unlike other BPM maturity models that either
focus on the discovery of opportunities for the improvement of processes such
as the Process and Enterprise Maturity Model [4], or that describe prescriptive
guidelines for the management of particular processes such as the Business Pro-
cess Maturity Model [21], the BPM Capability Framework is a maturity model
designed to establish BPM as a structured practice for the process-oriented man-
agement of companies [18]. Although it is recognized as rigorously researched and
practically relevant, the framework provides little practicable advice on when and
where to develop the suggested capabilities [17].

Fig. 1. The BPM Capability Framework [18]

Starting from a strategic decision to pursue BPM, a company typically devel-
ops BPM capabilities through a mix of learning experience and investments in
people and technology. BPM investments typically involve the deployment of
dedicated personnel responsible for carrying out BPM activities, organized in a
special function such as a Center of Excellence, which should ensure a focal point
for the accumulation of BPM knowledge [2,22] although it must be mentioned
that not all companies succeed in this type of setup. It may also involve the hire
of skilled BPM professionals from the labor market to acquire or enhance capa-
bilities and to further train existing personnel [22]. The aim of this paper is to
investigate the types of BPM professionals demanded by process functions and
to compare them with the market of process professionals. The questions that
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motivated this study are: (RQ.1) What skills do companies seek in BPM profes-
sionals? (RQ.2) Are there distinct roles of BPM professionals, as evidenced by
sought-after skill bundles? (RQ.3) To what extent do BPM professionals on the
market match these roles?

Several studies suggest positions and associated responsibilities required by
mature process functions. Melenowsky and Hill [10] (Gartner Research) provide
a list of responsibilities of the Process Director, Process Architect, Process Con-
sultant, and Process Analyst. Antonnucci and Goeke [1] validate these roles by
surveying 111 BPM practitioners associated with the Association of Business
Process Management Professionals. Olding and Searle [13] (Gartner Research)
extend Melenowsky and Hill’s findings with the Process Champion, Executive
Sponsor, Process Owner, and Process Project Manager. While these studies pro-
vide a comprehensive survey of process roles found in industry, what they not
address is how these individual roles contribute to BPM maturity. We believe
this missing link between people-based skills and organizational BPM capability
is one reason why companies show different returns on BPM investment dur-
ing their journey to becoming truly process-oriented [12], being confronted with
unnecessary uncertainty regarding where to develop BPM capabilities. A criti-
cal decision to be made addresses the question of when to deploy new process
positions and when to further train existing BPM personnel in their roles what
(new) skills in order to progress in BPM maturity.

Given the dominance of prior studies surveying BPM practitioners, this paper
supplements the existing BPM governance body of knowledge and investigates
the question of roles and skills using descriptive data. We performed a content
analysis of BPM positions advertised by companies on a major national employ-
ment website (Monster.com). We also conducted a survey of key process roles
identified in these job advertisements using public résumés posted by BPM pro-
fessionals on the largest business-oriented social network (LinkedIn.com) to get
a better understanding of the demographics of BPM professionals assuming cer-
tain process positions in industry. The remainder is structured as follows. In the
next section we describe the research methods used for data collection and anal-
ysis. We then summarize our analysis of advertised BPM positions in section
3 and suggest a classification of process roles and their contribution of BPM
capabilities, as derived from the job advertisements. In section 4 we present the
demographic characteristics of BPM professionals, as derived from their publicly
available résumés. We discuss our findings in section 5 and conclude with study
limitations and suggestions for future research.

2 Data Collection and Analysis

We employed Content Analysis as the research method. Content Analysis is often
used to identify the skills companies seek in Information Systems professionals
[3,11]. It is a technique that allows for making rigorous and replicable inferences
from (textual) data based on a specified coding scheme that reflects the research
context. Content Analysis can be characterized as a soft positivism scientific app-
roach [6,9], meaning it is designed to interpretively reveal preexisting variables in
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the data. The coding scheme may be derived from existing theory, expert experi-
ence, or prior research [7]. The coding variables must be mutually exclusive and
provide an exhaustive account of the research context. This means, the coding
scheme must be unambiguous and cover all relevant aspects of BPM [7].

2.1 Sampling of Advertised BPM Positions

We collected job advertisements from Monster.com that were published between
October 29, 2013 and December 6, 2013. Monster.com is generally recognized
among the largest and most often cited employment websites [15]. In order to
avoid restricting the search to specific job titles, we searched for the following
keywords: Business Process Management, Process Management, and BPM. The
search resulted in a total of 900 job advertisements. We rejected 447 duplicates
and those that were not BPM-related such as positions of the Industrial Engineer
or Manufacturing Analyst. In order to analyze the remaining 161 job advertise-
ments, we adopted the BPM Capability Framework as the coding scheme for two
reasons. Firstly, the suggested capabilities satisfy the requirements of being mutu-
ally exclusive and exhaustive. The framework was developed through a series of
Delphi studies with internationally renowned BPM experts from academia and
industry with the goal to develop a holistic view of BPM, covering such critical
success factors as Strategic Alignment, Governance, Methods, Information Tech-
nology (IT), People, and Culture [18]. Secondly, the capabilities allow to general-
ize from the job advertisements without loosing too much details about the skills,
qualifications, knowledge requirements, or responsibilities required of the BPM
position advertised. We iteratively coded each advertisement and assigned a cod-
ing variable when we identified a match of a word, phrase, or sentence with a capa-
bility. We normalized the frequency of each variable in an advertisement, treating
the occurrence of a variable as a binary decision [7].

2.2 Sampling of Profiles of BPM Professionals

We collected résumés of BPM professionals from LinkedIn.com between February
3, 2015 and February 26, 2015. While LinkedIn allowed us to identify individu-
als who self-declare their relationship to a process position, the proprietary Dun
& Bradstreet database (Data.com) allowed us to cross-reference certain individ-
uals to determine their official job title. In order to establish the baseline pop-
ulation, we searched both databases for the process roles identified in the BPM
job advertisements: Chief Process Officer, Process Owner, Process Architect, Pro-
cess Consultant, Process Analyst, both with and without the prefix Business. We
also searched for related job families in order to establish the relative frequency
of process-related jobs. These job families included the (General) Manager, Pro-
cess Manager, Enterprise Architect, Business Architect, Business Consultant, and
Business Analyst. Having established the relative frequency of each position, we
randomly collected 225 résumés of individuals with the roles of the Chief Pro-
cess Officer (25), Process Owner (50), Process Architect (50), Process Consultant
(50), and Process Analyst (50). For each résumé we coded the industry sector and
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country of the employer, the prior work experience until the individual attained
the process position, the experience in the process position, the educational back-
ground, and prior and subsequent job titles (in cases where the position was no
longer the current position), as well as whether the individual had switched com-
panies to attain the position. We excluded résumés with incomplete work histories,
education profiles, or mismatched job titles. For Process Owners, however, we also
included individuals whose title was different from Process Owner, but who stated
in their résumés the ownership of a specific business process.

3 Process Roles and Skills Demanded by Industry

The skills advertised in the BPM positions are heat-mapped in Fig. 2. Process
improvement and innovation is a major area of concern for companies, followed
by process design and modeling skills. In theory, process improvement and inno-
vation are two distinct skills. The purpose of process improvement is to modify
and existing process. It refers to the ability to continuously adjust day-to-day
business operations. Process innovation regards to the ability of either replacing
an existing process with a redesigned, new one or deploying a new process in a
previously underdeveloped area. 124 job advertisements seek process improve-
ment skills, while just 16 expect process innovation experience. 90 advertisements
seek (Lean) Six Sigma experience for process improvement.

The skill sets companies expect in the BPM positions suggest several discrete
process roles (see Table 1). Most job advertisements refer to the Process Consul-
tant position (75), followed by Process Analyst (56). Ten advertisements try to
fill a position that relates to the Chief Process Officer. Seven job advertisements
refer to the Process Architect position and three advertisements seek a Process
Owner. We summarize the skills required of these positions in the following, but
omit the Process Owner from further analysis because of the too small number
of job advertisements.

Fig. 2. Skills Described in the BPM Job Advertisements
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Table 1. Classification of process roles and job titles. We classified an advertised BPM
position as Other when it addressed some BPM capabilities, but the described skill set
had too little in common with those of the remaining process roles.

Process Role Job Titles (Number of Occurrences) Total
Chief Process Officer Business Process Director, Director Continuous Improvement, Direc-

tor of Process Improvement, Director of Programs, Director of Pro-
cess Management, Global Process Excellence Manager, Senior Man-
ager IT Strategy and Planning, Vice President Operations, Man-
ager Quality Improvement, Vice President Quality Management and
Improvement

10

Process Owner Business Process and Quality Manager, Supply Chain Manager,
Senior IAM Process Manager

3

Process Architect Business Process Architect, Business Architect, Business Architect
Lead, IT Architect, Manager Enterprise IT Business Alignment (3)

7

Process Consultant Improvement Manager (11), BPM Project Manager (8), Senior
Business Analyst (7), Lean-Six Sigma Black Belt (5), Business
Process Consultant (4), IT Consultant (3), Process Improvement
Manager (3), BPM Program Manager (3), Improvement Lead (2),
Senior Business Systems Analyst (2), Senior Healthcare Consultant
(2), Senior Quality Engineer (2), Manufacturing Engineering Man-
ager (2), Business Process Reengineering Expert, Business Advisor,
Business Analysis Manager, Improvement Consultant, Improvement
Specialist, IT Lean Manager, Logistics Specialist, Management
Systems Facilitator, Manager of Quality, Operational Excel-
lence Consultant, Operational Excellence Manager, Organizational
Improvement Consultant, Process Engineering Manager, Process
Expert, Process Improvement Specialist, Senior IT Consultant,
Senior Manager Business Process Control, Senior Quality Analyst,
Senior Process Engineer, Senior Supply Chain Analyst, Six Sigma
Site Leader

75

Process Analyst Business Analyst (16), Quality Engineer (8), Improvement Engineer
(6), Process Analyst (6), IT Analyst (4), Business Process Analyst
(3), Process Engineer (3), Functional Analyst (2), Improvement Ana-
lyst (2), IT Business Analyst (2), Business Systems Analyst, Solu-
tions Analyst, Solutions Engineer, Systems Analyst

56

Other Production Unit Manager, Manager Business Sales, Pharmacy Direc-
tor, Application Administrator, Business Model Professional, IT
Global Lead, Sourcing Manager, IT Risk Management Consultant,
Business Intelligence Administrator, Software Engineer

10

3.1 The Chief Process Officer

The Chief Process Officer (CPO) is advertised as a position that drives the
BPM practice in the company. A typical description found expects the CPO to
“define quality requirements with business executives to align strategy, resources,
goals, priorities, and overall improvement.” The CPO is accountable for ensuring
a continuous process of process improvement and innovation. As head of the
process function, the advertisements describe the CPO as a positions that models
process roles and associated activities, and that allocates BPM personnel to
process change projects. The advertisements also require the CPO to identify
the right methodology for improvement and innovation. The CPO is expected
to keep abreast with current Industry standards and technology trends. Given
prior practical BPM experience, the CPO may be responsible for developing
and conducting workshops that enhance organization-wide process-awareness,
as several job advertisements recognize.

Fig. 3 illustrates the skills required of the CPO. As an executive position, the
advertisements see the CPO as a position that builds coalitions and consensus



BPM Skills and Roles: An Investigation of the Demand 323

Fig. 3. Skills Required of the Chief Process Officer

for business improvement and innovation among business executives, promoting
a customer- and stakeholder-orientation in process change projects. The CPO
contributes to the long-term strategy planning, evaluating business process capa-
bilities against the achievement of strategic goals. The advertisements mention
decision-making authority for setting and executing the process improvement plan.
Several job advertisements also require the CPO to possess “strong project man-
agement skills, with experience in organizing, planning, and executing large-scale
projects from vision through implementation, involving internal personnel, contrac-
tors, and vendors.” The CPO is expected to work with technology companies in
order to “identify and drive technology-based process improvement opportunities.”

3.2 The Process Architect

The Process Architect is advertised as a position that is responsible for maintain-
ing the link between strategy and process capabilities. A typical advertisement
expects the Process Architect to “develop roadmaps for business and support-
ing applications [...] that align the business and IT to resolve any risks, gaps,
dependencies, and drive strategic investment recommendations.” The job titles
suggest that the Process Architect is typically a Business Architect or (some-
times) an IT Architect. Having oversight over the enterprise architecture from
either a process or technology angle, the Process Architect is expected to man-
age synergies across process improvement and innovation alternatives, ensuring
that different process change projects are executed in concert. Some job adver-
tisements assign responsibility for organizing the process improvement plan to
the Process Architect.

Fig. 4 illustrates the skills required of the Process Architect. Expected to be
an experienced Process Analyst, the Process Architect is described as a role that
brings business- or technology-architectural oversight for process modeling and
documentation into the lines of business. For example, a typical advertisement
describes the Process Architect as a position that “drive[s] [the] organizational
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adoption of BPM concepts and technology, and work[s] with the BPM practition-
ers to mature BPM delivery methodology and adapt best practices.” This may
comprise the set-up of regular process design and modeling reviews into the busi-
ness units, as demanded by several job advertisements. The Process Architect
recommends opportunities for improved and innovative process design based on
the process architecture, while the IT Architect seems to be accountable for the
actual delivery of process change projects. If business rules are modeled, their
maintenance and implementation may also be part of the accountabilities of the
Process Architect and IT Architect, respectively. In this regard, we see the first
signs of an emerging Decision Architect role that consolidates Business Decision
Management (BDM) [20] activities and that advises the lines of business in the
creation and maintenance of integrated decision models to “ensure [the] optimal
standardization and re-use of decisions across [processes]”.

Fig. 4. Skills Required of the Process Architect

3.3 The Process Consultant

The Process Consultant is described as a position that “assist[s] process owners
and improvement teams in the definition, documentation, measurement, anal-
ysis, improvement and control of business processes.” The Process Consultant
delivers process education and learning, promoting process values and beliefs
among business managers. As an advisor to the Process Owner, the Process
Consultant is a position that evaluates needs for improvement and supports the
Process Owner in the creation of business cases for process change.

Fig. 5 illustrates the skills required of the Process Consultant. The Process
Consultant is either as a Business or IT Consultant. Those that seek a business-
oriented Process Consultant can be further grouped according to their view on
improvement. Having an outside look on such external value drivers as quality [2],
the Process Consultant is expected to develop key performance indicators that
measure customer satisfaction and to recommend process change opportunities
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Fig. 5. Skills Required of the Process Consultant

that contribute to improved customer experience. In contrast, the advertisements
that emphasize such internal value drivers as operational efficiency [2] expect the
Process Consultant to apply more methodology-driven approaches for improve-
ment, focusing on (statistical) data-driven process control and measurement to
reduce variations in business operations. In this regard, the Process Consultant is
seen as a position that “facilitate[s] and collaborate[s] with cross-functional teams
to create and evaluate recommendations to improved process design.” Example
job titles for this type of Process Consultant focusing on executing the process
improvement plan are Lean Six Sigma Black Belt, Improvement Manager, or
BPM Project Manager.

The job advertisements seeking technology-oriented Process Consultants
describe a position that is responsible for the technical implementation of process
change projects. In this regard, the Process Consultant is expected to “facilitate
the design of integrated software solutions [...] and drive the definition, testing,
training, and implementation of functional requirements.” This involves the defi-
nition of technology assets and resources necessary for process execution, but also
the recommendation of process changes by applying Lean practices to the tech-
nology landscape, as several job advertisements describe. Some advertisements
also mention involvement in the development and implementation of process
control and measurement efforts, bringing into the team knowledge about the
technical infrastructure enacting business processes.

3.4 The Process Analyst

The Process Analyst is typically a Business Analyst or (sometimes) an IT Ana-
lyst, as the job titles suggest. Fig. 6 illustrates the skills required of the Process
Analyst. Liaising with the lines of business, a typical advertisement expects the
Process Analyst to “analyze business and user needs, and document specifica-
tions to meet those needs, [and] conduct user testing or processes to understand
data input to a process step, the process decisions, and the data output to a
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Fig. 6. Skills Required of the Process Analyst

process step.” Modeling major process decisions to be made for process compli-
cation, we see first signs of an emerging Decision Analyst role that “analyze[s],
determine[s], implement[s] and test[s] decision models to meet business require-
ments”, and that “actively seek[s] out ways to improve processes, reduce risk,
increase productivity, and lower costs” through the automation of operational
decisions utilizing BDM concepts.

Some job advertisements see the Process Analyst as an assistant to the Pro-
cess Consultant, being involved in process data-driven process improvement
projects. In this regard, the Process Analyst is seen as a position responsible
for the development and implementation of process control and measurement
within a business unit. A job title found for this type of Process Analyst is
Quality Engineer. While the business-oriented Process Analyst is seen as a posi-
tion that creates process (and/or decision) specifications, the job advertisements
describe the technology-oriented Process Analyst as a position that analyzes the
underlying process execution (and/or decision services) infrastructure as part
of the technical implementation of process change projects. We find that when
companies demand modeling skills they are much more likely to advertise for
Process Analysts than Process Modelers. The Process Analyst is also expected
to ensure process standardization, including the training of business units in
changed process designs and process-related software.

4 Profiles of BPM Professionals on the Market

Given the process roles identified from the advertised BPM positions, we find
Process Analysts (∼ 61K) to be the largest group among BPM professionals on
LinkedIn, followed by Process Consultants (∼ 27,8K). Compared to the total
population of Business Analysts (∼ 1M) and Business Consultants (∼ 295K),
they only make a diminishing small subset of these more general roles. Process
Architects are less frequent (∼ 4,8K), but represent about 12% of the total popu-
lation of Enterprise Architects and 36% of Business Architects. Process Owners
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Table 2. Frequency of Process Roles in Résumés

Process Role
Population Sample Work Sample Role

Global United States Exp. [Years] Exp. [Months]
Chief Process Officer 241 91 21.2 33.7
Process Owner 12,501 3,924 19.5 39.2
Process Architect 4,776 2,155 19.4 47.8
Process Consultant 27,779 10,809 14.5 47.3
Process Analyst 60,972 24,877 14.4 46.7

Reference Role
Population

Global United States
Manager 39,627,963 16,499,740
Process Manager 69,676 24,887
Enterprise Architect 38,792 18,966
Business Architect 13,293 4,758
Business Consultant 295,381 102,235
Business Analyst 1,019,176 437,842

(∼ 12,5K) represent about 18% of the total population of Process Managers.
Detailed results, including the average prior work as well as role experience of
our sample population, are shown in Table 2.

4.1 The Chief Process Officer

The CPO has an average work experience of 21 years before being promoted
and holds this position for about 34 months. The position is filled by an internal
candidate in 75% of the companies, predominantly by an individual from Oper-
ations or IT. If the CPO has a background in the IT function, the position is
most often assumed by an executive with IT leadership authority such as Chief
Information Officer (CIO). In contrast, if the CPO has a career in Operations,
the role holder seems to be also Chief Operations Officer (COO). The educa-
tional background found most often is Finance and Economics. While some hold
a PhD or advanced degree such as MBA or MS, most are BS graduates. The
CPO is the rarest role on LinkedIn. Many of the role holders can also be found in
Dun & Bradstreet’s executive directory, which suggests that CPO is a bona-fide
executive position and companies may see this position as a stepping stone for
other C-level careers. We find that when CPO was a former position of an indi-
vidual, the subsequent position is most often that of a Chief Executive Officer or
COO. Surprisingly, none of the role holders have a held such previous positions
in the process function as Process Architect or Process Analyst. This raises the
question whether process-oriented leadership and general management skills are
more important than actual BPM experience.

4.2 The Process Owner

The Process Owner has an average work experience of 19 years and holds this
position for about 39 months. The position is generally filled internally by a
senior executive from the line of business. It is therefore not surprising that we
collected only three job advertisements for this position. The Process Owner
mostly holds an MBA or MS in a business-related field. While the CPO seems
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to be either a full-time position or a part-time role of the CIO or COO, the
Process Owner is a senior-level, part-time role with job titles such as Senior
VP & Business Process Owner Procurement or Senior VP & Business Pro-
cess Owner Demand to Supply. Most Process Owners are assigned to classical
Enterprise Resource Planning (ERP)-type business processes such as Order-to-
Cash, Purchase-to-Pay, Procurement-to-Pay, or Plan-to-Inventory. We also see
Process Owners responsible for such processes as Supply Chain or Accounts
Payable. Industries that promote this position seem to be ERP-heavy sectors
such as Chemicals, Electronics, as well as Healthcare, but we also find Pharma-
ceuticals nominating Process Owners for heavily regulated research and approval
processes such as Regulatory Compliance Tracking or (Pre-)Clinical Trials.

4.3 The Process Architect

The Process Architect has an average work experience of 19 years and holds this
position for about 48 months. The Process Architect generally has a background
outside of the line of business, typically in consulting, project management, and
(sometimes) business analysis. The Process Architect had to switch companies
in 80% of the cases in order to attain this position. The educational background
is very diverse, from Management via Information Systems, Industrial and Sys-
tems Engineering to Computer Science. Some Process Architects are certified as
Project Management Professionals, ITIL, or (Lean) Sig Sigma Black Belt. Many
individuals declaring themselves as Process Architects seem to be architects for
specific process-aware information systems, being employed by technology ven-
dors such as SAP, IBM, or PegaSystems. In this regard, we find job titles such
as IBM Architect or SAP Business Process Architect. Further, we see some evi-
dence that job seekers use the role title as a marketing label to advertise their
BPM skills. The title also seems to be used by individuals employed by manage-
ment consulting companies to bolster their BPM credentials, as the job profile
described in their résumés tend to reflect more the skill set required of a Process
Consultant or Process Analyst.

4.4 The Process Consultant

The Process Consultant has an average work experience of 14 years and holds
this position for about 47 months. The position tends to be filled externally by
a candidate with a background in Sales or Business Development and who has
held a mid-level management position. We also see individuals being internally
promoted, holding job titles such as Process Improvement Consultant or Pro-
cess Consultant Lean Six Sigma. In this regard, the Process Consultant has a
background in project management or industrial engineering, being certified as
Project Management Professionals or (Lean) Six Sigma Green or Black Belt.
Only a small number of Process Consultants actually have a prior career in
business analysis or an outside management consulting company. The industries
appointing Process Consultants relate to a variety of sectors such as Chemicals,
Finance, Healthcare, Insurance, or Telecommunications.
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4.5 The Process Analyst

The Process Analyst has an average work experience of 14 years and holds this
position for about 47 months. The positions is generally held by prior Business
Analysts that have evolved into a more process-oriented role. In order to attain
this positions, individuals had to switch companies in 65% of the sample. 50% of
the Process Analysts hold an advanced degree such as MBA and MS, while the
remainder as BS graduates. The educational background is typically Information
Systems, Computer Science, or Business Accounting. A variety of industries
employ Process Analysts such as Consumer Goods, Food, Energy, Healthcare,
or Pharmaceuticals. However, 14 years of prior work experience means that the
Process Analyst is not an entry-level position, but requires work experience and
business domain knowledge.

5 Discussion and Conclusion

The purpose of this paper is to investigate the types of BPM practitioners
demanded by companies and to compare these with the market situation of
available process professionals, answering the three questions questions (RQ.1–
RQ.3). Firstly, we sought to identify the skills companies seek in BPM pro-
fessionals by analyzing advertised BPM positions. Secondly, we classified these
positions into distinct process roles based on similar skill sets and revealed that
different roles address different subsets of BPM capabilities. Thirdly, we inves-
tigated the demographics of BPM professionals to better understand the char-
acteristics of key process positions in industry. While we generally find a match
between the demand and supply side of BPM professionals, we see a mismatch
with the Process Architect. This means, we see a lot of Process Architects on
the market, but just a few positions openly advertised. This raises the question
whether companies have not reached a level of BPM maturity that necessitates
the skills and knowledge of this role or whether they rely on external consulting
contracts to acquire the architecture skills on an ad-hoc basis.

5.1 Insights for Practice

While actively managing roles and skills is a complicated challenge for the CPO
to mature BPM that goes beyond the scope of this paper [14], it seems that com-
panies are confronted with a chicken-and-egg dilemma of BPM maturity. This
means, it is unclear whether BPM maturity is a pre-requisite for the existence
of certain process roles, or whether it is more the effect of their organizational
existence. Our analysis of advertised BPM positions suggests the latter causality,
meaning that the appointment of skilled people attaining certain process roles
may lead to progress in BPM maturity. While this would imply BPM maturity to
be a function of the strategic commitment to (dis-)invest in human capital more
than process-aware information systems (PAIS) [19], we see some evidence for
this proposition in industry, where a change in a Chief Executive Officer position
is associated with the shutdown of the company’s BPM Center of Excellence.
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To maintain BPM maturity generally warrants both industry-specific busi-
ness knowledge and technology expertise in order to effectively decide on what
BPM projects to execute as well as appropriate methodology for their efficient
delivery [18]. Our findings suggest that BPM professionals in their roles either
address method or (business) process-related skills and knowledge. The profiles of
BPM professionals also suggest their roles to be either vendor- (i.e., technology-)
or business-driven, which leads to a taxonomy of roles. Fig. 7 illustrates this clas-
sification as well as possible career trajectories via demanded skills of advertised
BPM positions and existing careers of BPM professionals.

Method-oriented vs. process-oriented roles: Method-oriented roles require
skills and experience in approaches and techniques that enable the consistent exe-
cution of the process management lifecycle across a business process portfolio.
Examples of this type of roles are the Process Architect, who harmonizes and
standardizes BPM concepts and activities across the company, and the method-
oriented Process Consultant who focuses on the exploitation of processes through
the use of process-data driven improvement techniques such as Six Sigma or Lean
Management to increase operational efficiency. Process-oriented roles require ana-
lytical skills and business or technology expertise in order to translate or imple-
ment business or regulatory requirements into process capabilities. Examples of
this type of roles are the CPO who works with business executives on strategic
business (process) objectives, the Process Consultant who advises Process Own-
ers on tactical business process objectives, and the Process Analyst who liaises
with the business units on operational issues that involve process change.

Technology-driven vs. business-driven roles: Process roles may be defined
by best practice recommendations of technology vendors and specializations of
BPM professionals, being certified experts in PAIS such as IBM, SAP, or Peo-
pleSoft. Examples of this type of technology-driven roles are IBM Architect
or SAP Business Process Consultant, but also Process Owners appointed to
control classical ERP-type business processes such as Purchase-to-Pay or Order-
to-Cash that can be characterized by low innovativeness. In contrast, business-
driven roles are appointed for business processes that are less generic, but allow

Fig. 7. A Classification of Process Roles and Possible Career Trajectories
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a company to distinguish itself from its competitors or to maintain regulatory
compliance. Examples for this type of roles are Process and Decision Analysts,
Process Consultants, or Process Owners appointed to control and proactively
change highly regulated or idiosyncratic processes such as Clinical Trials, (Trade)
Clearing & Settlement, or Client On-boarding, but also Supply Chain that shape
competitive advantage.

We see some evidence that clearly defined career paths of BPM professionals
are not yet widespread, as 65% of Process Analysts and 80% of Process Archi-
tects had to switch companies in order to attain these positions. Moreover, some
roles tend to be hired with internal candidates such as Process Owner or CPO,
while others such as Process Architect or Process Consultant are more often
hired from the outside. Although we see mixed results with regard to the hiring
of Process Analysts, this position is not an entry-level position for university
graduates but a specialization of the Business Analyst. We believe Process Ana-
lysts would make good Process Architects given their skills gained as an analyst,
but would require further education in BPM methodology and fundamentals of
PAIS. Those Process Analysts that assist methodology-oriented Process Consul-
tants require further education and certification in Six Sigma or Lean Manage-
ment to assume this position. There exists a different career trajectory for the
CPO, where leadership and general managerial skills seem to outweigh specific
BPM expertise. However, the range of skills and expertise required of the this
position are more diverse than this paper implies, ranging from the strategic
supply chain design to the technical management of process implementations.
Indeed, we expect to see different types of CPOs in industry.

5.2 Limitations and Future Research

To our knowledge, this is the first paper to use descriptive data to clarify the rela-
tionship between organizational BPM capabilities and individual-level skills and
roles. The process roles found in practice generally match those discussed in the
academic literature and our research approach that aims towards generalizability
invites the academic and practitioner BPM community to further verify or falsify
our interpretations of the contribution of people-based roles to BPM maturity. It
must be mentioned that both the advertised BPM positions as well as BPM prac-
titioner profiles reside largely in the United States, even though they represent less
than half of the population for the identified process roles on LinkedIn. We believe
a global study would be very valuable, but possess certain logistical challenges. In
order to obtain a representative global sample, we would have to take into account
different country terminologies as well as localized language settings for interna-
tional LinkedIn sites and other professional network sites (e.g., Xing.com). While
our study focuses on the U.S. population, we believe it represents a fair sample of
BPM professionals in English-speaking countries, and our analysis of CPOs has
a broad global footprint. We believe that specifically the chicken-and-egg causal-
ity dilemma of BPM maturity as well as the Process Architect and Chief Process
Officer roles warrant further academic investigation, as their skill sets and career
trajectories differ from the other roles analyzed.
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Abstract. The Business Process Model and Notation (BPMN) is a
standard for modeling and executing business processes with human or
machine tasks. The semantics of tasks is usually discrete: a task has
exactly one start event and one end event; for multi-instance tasks, all
instances must complete before an end event is emitted. We propose a
new task type and streaming connector for crowdsourcing able to run
hundreds or thousands of micro-task instances in parallel. The two con-
structs provide for task streaming semantics that is new to BPMN, enable
the modeling and efficient enactment of complex crowdsourcing scenar-
ios, and are applicable also beyond the special case of crowdsourcing. We
implement the necessary design and runtime support on top of Crowd-
Flower, demonstrate the viability of the approach via a case study, and
report on a set of runtime performance experiments.

Keywords: Crowdsourcing processes ·Task instance streaming ·BPMN

1 Introduction

BPMN [15] is the most representative example of the state of the art in busi-
ness process modeling. Its core modeling constructs are tasks and control flow
connectors. Both constructs follow semantics that stem from their roots in office
automation: tasks are atomic. They express indivisible pieces of work that have
a well-defined start and end, and do not provide insight into what is going on
inside a task while in execution. In the basic setting, one task corresponds to one
runtime instance of the task. However, the notation also supports multi-instance
tasks that allow the execution of multiple runtime instances either in parallel or
in sequence. State-of-the-art engines commonly implement multi-instance tasks
following the same atomic start/end semantics of basic tasks (the end event fires
only when all instances have completed), although the BPMN specification [15]
also envisions intermediate instance termination events for complex behavior
definitions (p. 432).

There are however modeling scenarios that would benefit from more trans-
parency, in order to be executed more efficiently. This is, for instance, the case
c© Springer International Publishing Switzerland 2015
H.R. Motahari-Nezhad et al. (Eds.): BPM 2015, LNCS 9253, pp. 333–349, 2015.
DOI: 10.1007/978-3-319-23063-4 23
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of processes that run multiple instances of tasks in parallel. An extreme exam-
ple is crowdsourcing, that is, the outsourcing of a unit of work to a crowd of
people via an open call for contributions [8]. Thanks to the availability of crowd-
sourcing platforms, such as Amazon Mechanical Turk (https://www.mturk.com)
or CrowdFlower (http://www.crowdflower.com), the practice has experienced a
tremendous growth over the last years and demonstrated its viability in different
fields, such as data collection and analysis or human computation – all practices
that leverage on micro-tasks, which are tasks that ask workers to complete sim-
ple assignments (e.g., label an image or translate a sentence) in exchange for
an optional reward (e.g., few cents or dollars). The power of crowdsourcing is
represented by the crowd, which may be huge and span the World, and its ability
to process even thousands of task instances in short time in parallel.

However, not all types of work can easily be boiled down to simple micro-
tasks, most platforms still require significant amounts of manual work and con-
figuration, and there is only very limited support for structured work, that is,
work that requires the integration of different tasks and multiple actors, such
as machines, individuals and the crowd. We call these kinds of structured work
crowdsourcing processes, since they require the coordination of multiple tasks,
actors and operations inside an integrated execution logic [17].

Crowdsourcing processes therefore represent a problem where business pro-
cess management (BPM) is expected to excel. The modeling and efficient enact-
ment of crowdsourcing process is however still not well supported [11]. In par-
ticular, BPMN does not provide the right means to model processes that are as
simple as, for example, asking the crowd to upload a thousand images in one task
and then to label them in another task. The labeling task would start only once
all images have been uploaded, not benefiting from the evident parallelization
opportunities of the scenario. The tokens of Petri Nets [18] would allow one to
deal with this kind of dynamic state, but BPMN does not support tokens.

In [17], we proposed BPMN4Crowd, a BPMN extension for the modeling of
crowdsourcing processes that can be executed on our own crowdsourcing plat-
form, the Crowd Computer; the approach uses the standard task termination
semantics of BPMN. In this paper, we instead study the problem of micro-task
parallelization in generic BPMN engines, making the following contributions:

– An extension of BPMN with a new task and connector type that provides full
support for the streaming of outputs of completed micro-task instances to
subsequent micro-task instances without requiring an overall task end event.

– An implementation of a runtime environment for crowdsourcing processes
with micro-task instance streaming. The environment is distributed over a
BPMN engine for the coordination of work, a state-of-the-art crowdsourcing
platform for the micro-tasks, and an intermediate middleware.

– An implementation of a visual design environment with support for the
extended BPMN modeling notation and the translation of extended models
into standard BPMN for the engine and configuration instructions for the
crowdsourcing platform and the middleware.

https://www.mturk.com
http://www.crowdflower.com
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– A demonstration of the viability of the approach via a concrete crowdsourc-
ing case study complemented by a performance analysis reporting on the
execution time improvements that can be achieved.

2 Crowdsourcing Processes

2.1 Scenario: Transcription of Receipts

The reimbursement of a business trip, such as the attendance of a scientific
conference, is subject to the documentation of the incurred expenses. This doc-
umentation are the receipts that can be scanned and transcribed for the pro-
cessing of the reimbursement. Transcribing a receipt is a small task that can be
crowdsourced at low cost and with fast response times.

Let’s imagine we would like to support the following crowdsourcing process:
The admin reimbursing the travel expenses initiates the process by feeding it
with the receipts (e.g., 40) collected from traveling employees. This causes the
process to upload photos/images of the receipts onto an online crowdsourcing
platform and to instantiate a transcription request for each individual receipt.
Since the work by workers cannot be trusted in general, for each 2 transcriptions
the process creates another task for the crowd that asks workers to check the
transcriptions and fix them if necessary. Checking and fixing takes less time than
transcribing, so each worker can process 2 items. Another task is used to classify
the receipts, e.g., into flight tickets, hotel receipts, restaurant receipts, or similar.
Classifying is simple, and it is reasonable to ask a worker to classify 4 receipts.
The two tasks can be performed in parallel once transcriptions are available.
Upon completion, an automatic email notifies the admin about the results.

2.2 Crowdsourcing Processes and Streaming Opportunities

The described scenario presents all the characteristics of a crowdsourcing process
as defined in the introduction, which indicates a process that, next to optional
human and machine tasks, also contains tasks executed by the crowd, so-called
crowd tasks. A crowd task represents a set of micro-tasks that are jointly per-
formed by the crowd via an online crowdsourcing platform. A micro-task is per-
formed by an individual worker, is commonly interpreted as a task that requires
limited skills and limited time (from seconds to few minutes), and is remunerated
with limited rewards (from cents to few dollars). Crowd tasks can be seen like
BPMN multi-instance tasks that typically require large numbers of instances to
be performed in parallel (we focus on micro-tasking and do not further study
the case of contest- or auction-based crowdsourcing models). For example, the
above scenario asks for 40 transcriptions, 20 controls of transcriptions (2 per
task), and 10 classifications of receipts (4 per task).

Figure 1 illustrates the dependencies among the crowd tasks of the scenario
and the benefits that could be achieved if the process supported the streaming
of micro-task instances. With the term micro-task instance streaming we denote
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Fig. 1. The parallelization benefits of task instance streaming in crowdsourcing

the streaming of micro-task instance end events while the respective crowd task
is still in execution, that is, other micro-task instances of the crowd task are still
in execution. Completed instances can be streamed, that is, their end events and
output data, from a crowd task A to a crowd task B, causing the instantiation
of micro-tasks of B as soon as the necessary number of micro-task instances of A
have completed. For example, the transcription of 4 receipts causes the instan-
tiation of 1 classification and 2 checks. The number of instances to be created
thus depends on the data transformation logic between two crowd tasks: group-
ing outputs reduces the number of micro-task instances of the subsequent crowd
task; multiplying outputs or splitting grouped outputs increases the number of
micro-task instances of the subsequent crowd task. Data transformations may
be needed to accommodate the mismatch between output and input data sizes
of different crowd tasks, as exemplified in our reference scenario. The goal of
grouping/splitting is usually that of keeping the overall effort of a micro-task
constant in response to changing efforts required to process an input data item,
e.g., one transcription requires roughly the same effort as four classifications of
receipts. Multiplying outputs creates redundancy that can be used to increase
the quality of outputs, e.g., a same receipt can be given to two different workers
and their outputs can be checked for consistency.

3 Assumptions and Approach

This work assumes that the crowdsourcer has working knowledge of both busi-
ness process modeling with BPMN and crowdsourcing with a micro-tasking
platform like CrowdFlower. Human and machine tasks are enacted by the busi-
ness process engine running the BPMN process; crowd tasks are enacted by the
crowdsourcing platform. The design of the UIs for the crowd tasks is done by
the crowdsourcer inside the crowdsourcing platform. The platform provides pro-
grammatic access (via API) to the following abstract micro-task management
functions: uploadData to associate micro-tasks with input data, startInstance
to instantiate micro-tasks, getInstanceStatus to query the runtime status of
micro-task instances, and getInstanceOutput to download results produced by
a worker. For instance, both CrowdFlower and Amazon Mechanical Turk provide
implementations of these abstract functions.
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Fig. 2. Proposed modeling convention for micro-task instance streaming in BPMN

The approach to provide support for crowdsourcing processes is similar to the
one already successfully adopted in prior works [6]: In order to provide insight
into micro-task instance terminations, we extend the syntax and semantics of
BPMN with two new modeling constructs, a crowd task and a streaming connec-
tor, that are specifically tailored to the needs of crowdsourcing. The streaming
connector answers the need for a novel data passing technique that supports the
grouping, splitting and multiplication of streaming data as well as the passing
of data between the process and the crowd tasks. We complement the language
with a visual editor that allows the crowdsourcer to model his crowdsourcing
process and equip the editor with a process deployment tool that transforms the
process model with extended semantics into (i) a standards-compliant BPMN
process and (ii) a set of configurations able to steer the crowdsourcing platform
and to establish a communication channel between the platform and the engine.
The extended BPMN process model contains the necessary logic for micro-task
and communication management. Data streaming among crowd tasks is imple-
mented via a simple middleware placed in between the BPMN engine and the
crowdsourcing platform and able to monitor micro-task instance completions and
to group, split or multiply respective output data. As soon as the monitor detects
an expected number of micro-task instance completions, it assembles the respec-
tive data and sends to the process engine a message that can be intercepted
by the process. Reacting to messages allows the process to create micro-task
instances of dependent crowd tasks and to progress.

The goal is to provide crowdsourcing support as an extension of existing
BPM practice, so as to be able to leverage on modeling conventions and software
infrastructure that are already familiar to the BPMN-skilled crowdsourcer.

4 Streaming Crowd Tasks

Next, we introduce the BPMN modeling constructs that enable the modeling
of crowsourcing processes, we discuss the options we have to transform crowd-
sourcing processes into standard BPMN processes, and we describe the concrete
runtime infrastructure we implemented to support process execution.
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4.1 Modeling Micro-task Instance Streaming

Modeling crowdsourcing processes requires expressing tasks for the crowd and
the propagation of outputs between workers. We propose to satisfy these require-
ments with two new constructs (Figure 2): crowd tasks and streaming connectors.

Crowd tasks are tasks that represent micro-tasks to be executed by workers
inside a crowdsourcing platform. We identify crowd tasks using a crowd logo
in the top left corner of the BPMN task construct. Crowd tasks cannot be
expressed as simple multi-instance tasks, since these do not provide insight into
the completion of task instances and can therefore not be used to implement
the expected streaming logic. The deployment and execution of crowd tasks
further asks for a mediation between the process engine and the crowdsourcing
platform, an aspect that goes beyond the conventional semantics of tasks in
BPMN. We therefore opt for a new construct for crowd tasks that (i) provides
for the execution of multiple instances of micro-tasks equipped with respective
instance completion events, (ii) the deployment of the micro-tasks’ input data
on the crowdsourcing platform, and (iii) the start of the micro-task instances.

Fig. 3. Streaming data
transformation functions.

Streaming connectors connect two crowd tasks A
and B and express that they are “followed” multi-
ple times at runtime. How many times, depends on
the data transformation function (Figure 3). If A has
l micro-task instances and the connector groups m
instances, B has l/m micro-task instances; if it multi-
plies instances of A by n (creating n copies by value)
B has l × n micro-task instances. If it splits the out-
puts of A into its l items, B has l micro-task instances.
The flat function hands items over as they are.

The choice of a new type of connector is again justified by the need to express
a logic that is not yet captured by any of the other BPMN constructs: the con-
nector actually represents events (one for each individual data object generated
by the data transformation function) that can only be handled by the internal
logic of the subsequent crowd task B, which creates a micro-task for each event
it receives from A. In addition, the event carries the output data produced by
A, which task B uses to provide its micro-tasks with the necessary inputs. This
turns the streaming connector into a data streaming connector for crowd tasks.

With the help of these two new constructs and the common constructs of
BPMN, we are now able to model the crowdsourcing process described in our
reference scenario as illustrated in Figure 4. The process starts with a com-
mon human task for uploading the receipts, followed by a crowd task for their
transcription. The Check and improve and Classify receipt crowd tasks are
executed in parallel and followed by a machine task sending the notification email
with the results. The first crowd task takes as input the 40 receipts and produces
respective transcriptions as output. Similarly, the outputs of the checking and
classification crowd tasks are used as inputs of the final machine task. The very
novel aspect of the model is the use of the streaming connector from the first to
the other two crowd tasks. Check and improve is executed once for each couple
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Fig. 4. Extended BPMN model of the receipt transcription crowdsourcing process

Fig. 5. Model transformation options

of transcriptions (note the annotation of the connector) and Classify receipt
once for each four transcriptions. Due to the data flow nature of the streaming
connector there is no need to explicitly model data objects exchanged between
crowd tasks. The data object in output of a crowd task (e.g., Transcriptions) is
filled during task execution and is ready only when the last instance of its micro-
tasks has completed, which also corresponds to the completion of the crowd task
itself. This complies with the conventional semantics of BPMN.

4.2 Model Transformation

To provide BPMN modelers with an as familiar as possible modeling paradigm,
we leverage on a standard BPMN engine and let it manage all and only those
process execution aspects that are needed to coordinate the work of actors,
machines, and the crowd. To do so we transform the process model created
with abstract crowd tasks and streaming connectors into a BPMN-compliant
model that can be executed and managed by an engine extended with runtime
support for crowd tasks. The challenge is to overcome the mismatch between
the requirement of providing insight into the execution of micro-task instances
and the assumption that tasks are atomic. Next, we show how we approach the
model transformation, then we focus on propagating and transforming data.

Transforming the crowdsourcing-specific constructs into executable BPMN
constructs may be achieved in several ways. In particular, we identify the three



340 S. Tranquillini et al.

approaches depicted in Figure 5 to make explicit the multiplicity of task
instances at both model and execution level:

(a) Parallel branches: The straightforward option to execute several tasks inde-
pendently in parallel is to create multiple parallel branches, each one
executing a single crowd task instance in the crowdsourcing platform. The
termination of instances can be captured via dedicated events by the stream-
ing middleware. This approach in principle gives access to the results of
each task instance individually. Yet, it is not convenient, since the number
of branches to be created is proportional to the number of micro-tasks of
the crowd task, and the process model is only hard to read and manage.
Especially the number of required instances may be large and can explode
when more than a single crowd task is to be streamed. The approach also
makes execution expensive, since all the branches are instantiated as soon
as the process execution reaches the preceding gateway.

(b) Multi-instance sub-processes: This transformation option overcomes the
problem of having several branches with the same logic modeled in parallel.
The multi-instance sub-process behaves similar to the parallel branches: the
full number of expected sub-processes is instantiated together at runtime
when the first instance of the sub-process is started. However, the model is
more modular, uses only one event type, and is better readable and main-
tainable.

(c) Non-blocking event sub-processes: To limit the number of parallel instances of
sub-processes, it is possible to use a sub-process with a non-blocking event
sub-process. The event sub-process is instantiated only upon a respective
start event, and it does not block or alter the execution of the parent process.
The start events can be generated dynamically at runtime as soon as the
necessary input data are available; the Instance end event communicates
task instance completions, the Task end event terminates the parent sub-
process when all the instances have been processed.

Option (c) stands out as the most efficient transformation of the streaming
constructs. However, although part of the BPMN standard, non-blocking event
sub-processes are not (yet) reliably supported by state-of-the-art BPMN engines
(our implementation is based on the open-source BPM platform Activiti). We
therefore follow option (b), the multi-instance sub-processes, to transform models
into executable format.

Given the resulting event-based nature of micro-task instance stream-
ing, propagating data among crowd tasks requires (i) having access to
the data items produced by each micro-task instance, (ii) enabling the
grouping/splitting/multiplication of data items, and (iii) progressing the process
based on events. Figure 6(a) shows a model pattern making use of the streaming
connector; Figure 6(b) shows its transformed, executable model. Connector-
crowd task pairs are mapped depending on their nature (streaming connectors
connect crowd tasks only):
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Fig. 6. Implementing micro-task instance streaming with data transformations

– Standard control flow connectors followed by a crowd task are transformed
into one crowd task representing the execution of the micro-tasks inside the
crowdsourcing platform and a multi-instance sub-process intercepting the
respective micro-task instance terminations. The events to be intercepted
are generated by the streaming middleware and contain the output data
of the terminated micro-tasks. The Store variables script task takes the
received data items and stores them in the global data object (if needed).

– Streaming connectors followed by a crowd task are transformed into a multi-
instance sub-process that first intercepts instance terminations of the preced-
ing micro-tasks and then runs the own micro-task instances and intercepts
their terminations. Again, upon reception of each event the two script tasks
store the respective data into a data object. The first script task uses a local
data object, the second one fills again the global data object.

Note how the source sequence of crowd tasks is transformed into parallel
branches of sub-processes that are synchronized via events. Incidentally, this
resembles the streaming logic illustrated in Figure 1(b) also graphically.

In the executable model, crowd tasks have the following execution semantics:
(i) read the data items specified as input, (ii) upload data to crowdsourcing
platform, (iii) bind micro-task completions to suitable events in the middleware,
(iv) start micro-tasks for each data item. The middleware and crowdsourcing
platform start execution in parallel to the process engine. The engine waits for
events from the middleware and processes them as specified in the model.

The model transformation logic further provides a convenient way to imple-
ment the data transformation functions illustrated in Figure 3. The key lies
in the sensible use of events and the configuration of the streaming middleware:

– Flat : Micro-task instances are streamed as they terminate without apply-
ing any data transformation. This requires the generation and handling of
one event for each termination. For instance, the transcribe flat event in
Figure 6(b) intercepts all instances of the Transcribe receipt micro-task.

– Group: Micro-task instance terminations are streamed only in groups. This
requires the middleware to buffer instance terminations till the required
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number of terminations is reached and to emit an event that carries the
collection of data items produced by the grouped instances. The process
reacts to group events, like in the case of the transcribe group event in
Figure 6(b).

– Split : Micro-task instances are streamed as they terminate and their output
data collections are split into their constituent elements, requiring the mid-
dleware to emit multiple events per termination. This function only applies to
micro-tasks that produce collections of data items in output, as for instance
the task Classify receipt in our reference scenario (four classifications).

– Multiply : The implementation of this data transformation function is similar
to the split function, with the difference that data items are forwarded as
they are, yet multiple events with data copied by value are generated and
handled as separated events in the process.

Thanks to this mapping logic, it is further possible to compute at transfor-
mation time the number of instances of each sub-process in the final model,
starting from the number of micro-tasks of the first crowd task in the source
model. We already discussed the necessary arithmetic in Section 4.1.

For a complete understanding of the proposed transformation logic, it is
important to recall that the streaming connector can only be used between two
crowd tasks and to note that a crowd task followed by a standard control flow
connector implements the standard semantics of BPMN: the control flow con-
nector is enacted only once all the micro-task instances of the preceding crowd
task have terminated. This convention may lead to independent “islands” of
streaming areas inside a process if multiple crowd tasks are separated by stan-
dard control flow constructs. For example, the crowdsourcing process modeled
in Figure 4 could make use of other crowd tasks after the notification of the user
about the completion of the transcription of the receipts. Each of these islands
is transformed into a set of parallel branches and woven into the regular control
flow structure of the source model as exemplified in Figure 6.

4.3 Runtime Environment

Figure 7 illustrates the software architecture we implemented to run crowdsourc-
ing processes. It is composed of three main blocks: (i) a BPMN engine where
the processes are executed; (ii) a streaming middleware that manages the events
and transforms data; and (iii) CrowdFlower, the crowdsourcing platform where
micro-tasks are deployed and executed. To model a crowdsourcing process, the
developer uses the IDE (an extension of the Activiti Modeler) that supports
the modeling extensions presented previously. The process model is then trans-
formed into an executable process and deployed into the BPMN engine. The
engine is equipped with a runtime extension for the interaction with the mid-
dleware. Human actors and Web services are managed by the engine (Activiti,
http://activiti.org) using its own user interface and service adapters.

The streaming middleware is composed of three blocks: The micro-task
launcher deploys micro-tasks via the CrowdFlower API, given a task identi-
fier, respective input data (if any), and a task template. The message handler

http://activiti.org
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Fig. 7. Architecture of runtime environment for crowdsourcing processes with stream-
ing support. The middleware deploys micro-tasks and manages events and data.

and event buffer receive webhook calls from the CrowdFlower API when a task
instance is completed, buffer output data, and create events for the BPMN
engine.

CrowdFlower is the crowdsourcing platform where the streaming middle-
ware deploys the micro-tasks for execution by the crowd. To enable the runtime
deployment in CrowdFlower, task templates are designed at process modeling
time and linked via suitable parameters to the crowd tasks in the BPMN model.
Each template has to be designed to handle the correct number of data items
in input. For example, the Check and improve template has two forms, one for
each receipt to be processed. At runtime, the launcher feeds the templates with
data from the BPMN engine, which are then available to workers as micro-tasks.

5 Case Study and Evaluation

5.1 Modeling and Implementation

Modeling the process shown in Figure 4 in the extended Activity Modeler is a
conventional BPMN modeling exercise with three exceptions: First, the crowd
tasks make use of a new, dedicated modeling construct that allows the mod-
eler to clearly identify them inside the model and to configure it’s internal logic
(remember Figure 2(a)). Second, streaming connectors are modeled as control
flow connectors with a suitable annotation, as shown in Figure 2(b). The anno-
tation turns the connector into a streaming connector. Third, the input and
output data objects of each crowd task are set again via suitable parameters.
The resulting model is almost identical to Figure 4, except for the missing nota-
tion for the streaming connector and the data objects that are referenced via
parameters.

One of the key configurations of the crowd tasks is their binding with their
task templates in CrowdFlower. This requires creating three task templates for
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Fig. 8. Screen shots of the three micro-task pages as rendered in CrowdFlower

the process and setting the crowdflower task id for each crowd task. The tem-
plates are created to accept as input and to provide as output the correct data
expected by the process execution. The screen shots in Figure 8 show an excerpt
of the three templates instantiated with concrete receipts. For all the tree tem-
plates we set the reward to 10 dollar cents, which is high for this type of micro-
task, so as to attract more workers and have results in a short time.

Given the process model and the implemented task templates, it is pos-
sible to transform the process into its executable form. Specifically, Figure
9 shows the transformed model of Figure 4. In line with the transformation
logic described previously, the three crowd tasks are transformed into three
parallel branches containing the sub-processes managing the instances of the
micro-tasks completed in CrowdFlower. The topmost branch corresponds to the
original Transcribe receipt task and feeds the other two branches with events
that group two and four micro-task completions, respectively. The numbers of
instances are also computed, and the process is ready for execution.

5.2 Performance Evaluation

To evaluate the performances of this implementation, we performed a set of
experiments in which we focused on the crowd tasks only (the process without
the Upload receipts and Notify user tasks). We uploaded the 40 receipts
manually, and ran the process 6 times: 3 times without streaming and 3 times
with streaming (as illustrated in Figure 1). We ran the two settings on two
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Fig. 9. Transformed BPMN process model with the micro-task instance streaming logic
resolved into a set of crowd tasks for micro-task deployment and event handlers and
multi-instance sub-processes for instance management and data transformation.

Fig. 10. Performance analysis of no streaming vs. streaming. The colored vertical lines
indicate the end of the respective micro-task execution (the deployed batches).

different days (Thursday and Friday, 19/20 March, 2015) in three different
batches at 12:00, 16:00, and 20:00 CET, and stopped micro-tasks after max
1.5 hours of execution. Independently of streaming or not, our experience has
shown that a same micro-task can be executed within very different times (from
minutes to hours). In order to prevent overlapping batches, we applied the cut-off
time and manually completed outstanding instances. The cost of each execution
was of approximately 8 USD, with a reward of 0.10 USD per micro-task instance.

The runtime behavior of the process executions is illustrated in Figure 10,
which plots the histogram of micro-task instances performed per time unit (2:25
minutes, for best readability) for each crowd task. In all tasks, the major-
ity of micro-task instances is completed during the productivity peak immedi-
ately after deployment, and almost all instances are completed within one hour.
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However, in some runs the last one or two instances took several hours to com-
plete, and the figure applies the cutoff of 1.5 hours (for presentation purposes).
We did not compare the quality of outputs between the streaming and non-
streaming conditions, which is out of the scope of this work (speed).

The charts clearly show the benefit of streaming: approximately 90% of all
receipts passed through all three crowd tasks within the first 10 minutes of
execution, while in the no streaming condition the same amount of receipts
passed only through the transcription task. With streaming, it takes only a
couple of minutes to transcribe, check and fix, and classify the first receipt;
without streaming it takes about one and a half hours. The two peaks in the no
streaming condition happen in correspondence of the respective terminations of
the prior transcription task. Note that without streaming almost all micro-task
instances are processed very fast, while with streaming the last few instances
are more dispersed in time. This is in line with the findings by Chilton et al. [5]
that workers tend to select micro-tasks (i) that appear on the first two pages
in the crowdsourcing platform and (ii) that have a high number of instances.
The last few instances of a micro-task, especially in the streaming setting where
micro-tasks are deployed at the rate of individual instances, the last condition
is not met. With hundreds or thousands of instances, the benefits of streaming
however clearly outweigh this shortcoming.

6 Related Work

The need for support for crowdsourcing processes is acknowledged by the
recent emergence of a set of advanced crowdsourcing approaches: Turkit [13]
and AutoMan [3] propose dedicated programming languages (a JavaScript-like
language and Scala, respectively) that allow one to programmatically deploy
micro-tasks on Mechanical Turk and to pass data among them. AutoMan, in
particular, allows the crowdsourcer to define confidence levels for the quality of
results and automatically manages the scheduling and pricing of micro-tasks as
well as the acceptance and rejection of results. Jabberwocky [1] is a MapReduce-
based human computation framework that consists of (i) a human and machine
resource layer (Dormouse), (ii) a parallel programming framework (ManRe-
duce), and (iii) a high-level scripting language for micro-task definition (Dog).
CrowdDB [7] is an SQL-extension that allows one to embed crowd interrogations
into SQL queries. Based on schemas and annotations of tables in a database, it
transforms queries into workflows of crowd tasks for Mechanical Turk, gener-
ates appropriate user interfaces, and manages data integration. AskSheet [16]
is a Google Spreadsheet extension with functions that allow the spreadsheet
to leverage on crowdsourced work. For instance, data enrichment micro-tasks
deployed on Mechanical Turk can be used to check prices or products in given
grocery stores. Turkomatic [12] delegates not only work to the crowd but also
work management operations. The crowdsourcer and workers alike can arbitrar-
ily split micro-tasks into subtasks, aggregate subtasks, or perform them. The
result is a self-managed workflow executed in Mechanical Turk. CrowdForge
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[10] is a Django-based crowdsourcing framework for composite tasks similar to
Turkomatic that however follows the Partition-Map-Reduce approach. Each step
in the resulting process is a crowd task performed on Mechanical Turk. Crowd-
Searcher [4] is a crowdsourcing system that leverages on reusable design patterns
and on tasks performed by machines or people on crowdsourcing platforms or
on Facebook.

In the specific context of business process management, CrowdLang [14] is a
BPMN-inspired programming language with crowdsourcing-specific constructs.
It helps one to design and run composite tasks using tasks performed by both
machines and people sourced from various crowdsourcing platforms. Similarly,
CrowdWeaver [9] allows the crowdsourcer to visually design workflows of both
crowd tasks deployed on CrowdFlower and machine tasks. Finally, in our own
prior work we proposed Crowd Computer [17], a BPMN-based design and run-
time environment for complex crowdsourcing processes and the design of custom
crowdsourcing models (e.g., from micro-tasking to auctions and contests). Com-
posite tasks are expressed graphically as business processes and may make use
of human, crowd and machine tasks as well as the full power of BPMN.

None of these approaches, however, supports the streaming of micro-task
instances. To the best of our knowledge, only Appel et al. [2] focused on event
stream processing in the context of BPMN. The focus of their work is on so-called
event stream processing units that represent machine tasks processing real-time
data streams. The focus of our work is specifically on the peculiarities of crowd
work and the typical data transformations that characterize that domain.

7 Conclusion

The work described in this paper advances the state of the art in business process
management with three contributions: an extension of BPMN for the modeling
of streaming crowdsourcing processes, a BPMN engine with support for crowd
tasks, and a streaming middleware able to overcome the impedance mismatch
between the business process engine and the crowdsourcing platform. The ana-
lyzed case study demonstrates the convenience of the new modeling constructs
and the runtime performance gains that can be achieved.

One of the limitations of the implementation so far is the lack of support
for non-blocking event sub-processes, due to the lack of a respective implemen-
tation in the BPMN engine we used as starting point. Without being able to
dynamically create sub-process instances at runtime, the modeler must guaran-
tee at design time that all data transformations (splitting and grouping) can
be mapped to a correct number of respective runtime events, e.g., the process
in Figure 4 requires multiples of 4 data items in input. From a modeling point
of view, it is currently possible to branch streaming connectors but not to join
them again (joins can be implemented using the standard control flow connec-
tors of BPMN). This limitation is due to the fact that this kind of join is no
longer a simple join of the control flow but a join of data streams. Joining them
asks for joining data items with different multiplicities or group sizes. This asks
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for logics to deal with redundancy (e.g., averaging outputs) and the correlation
of data items. Another limitation that is intrinsic to the approach is that we
can control only those aspects of the process execution that are handled by the
BPMN engine; we do not have control over the execution semantics of the crowd-
sourcing platform, e.g., of how micro-tasks are instantiated, managed, canceled,
assigned to workers, etc. We can thus not manage exceptions that are internal
to the crowdsourcing platform, e.g., micro-tasks that are never completed.

In our future work, we intend to solve these shortcomings and to support
the joining of data streams using different join logics, to provide for a model
transformation that is fully integrated into the modeling environment, and to
integrate support for micro-task instance streaming into our prior work on the
Crowd Computer. We intend to conduct additional experiments with hundreds or
thousands of micro-tasks to stress-test and fine-tune the runtime environment. In
order to attack the high variance of micro-task durations, we want to understand
better the reasons for slow durations, so as to dynamically re-deploy problematic
micro-tasks and to speed up overall execution times.

The data and streaming middleware of this work are open-sourced on https://
github.com/Crowdcomputer/ and can be adapted to different BPM engines,
crowdsourcing platforms, and application domains.
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Abstract. Discovering and reasoning about deviations of business pro-
cess executions (from intended designs) enables organizations to contin-
uously evaluate their execution/performance relative to their strategic
goals. We leverage the observation that a deviating process instance can
be viewed as a valid variant of the intended process design provided it
achieves the same goals as the intended process design. However, organi-
zations often find it difficult to categorize and classify process execution
deviations in a goal-based fashion (necessary to decide if a deviation rep-
resents a valid variant). Given that industry-scale knowledge-intensive
processes typically manifest a large number of variants, this can pose a
problem. In this paper, we propose an approach to help decide whether
process instances in execution logs are valid variants using the goal-
based notion of validity described above. Our proposed approach also
enables analysis of the impact of contextual factors in the execution of
specific goal-aligned process variants. We demonstrate our approach with
an Eclipse-based plugin and evaluate it using an industry-scale setting
in IT Incident Management with a process log of 25000 events.

Keywords: Variability · Goals · Business Process Mining

1 Introduction

A business process management framework seeks to ensure that the desired out-
comes are achieved from the execution of business processes in the organization [9].
Typically, any industry-scale business process admits multiple variants, each of
which ideally help achieve goals in an organizational goal model. Therefore, ade-
quate management of process models with large scale variations, mandates treat-
ing each process variant as an independent model entity [12,25]. Currently, there
is an increasing trend of unintended deviations specifically in the execution of
Knowledge intensive processes [7] from optimal paths. Discovering such devia-
tions (both accepted and unaccepted) and reasoning them in terms of organiza-
tion’s objectives remain a challenge. In time or resource constrained domains such
c© Springer International Publishing Switzerland 2015
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as Incident Management and other call center support scenarios, not addressing
such a challenge will result in adverse business impact. Works such as [28] focus on
minimizing such deviations through dedicated change patterns. This we see as an
important aspect of variability management (VM) and specifically in business pro-
cess management. VM has received considerable research and industry attention
over the past decade [6] due to increasing need for differing alignments to organiza-
tion’s strategies and goals. In the context of organization’s goal alignment, an ade-
quate (and formal) definition of what makes a process instance a variant of another
has remained elusive [14]. In our earlier paper [24], we have proposed a formal goal
oriented variability management approach towards enabling this. However, min-
ing and classifying goal alignments of executed process instances from process logs
is still required to continuously improve process designs [26] and governing goal
models [22]. Such bottom-up exercises enable organizations to ensure better goal
adherence of process executions [8]. Therefore, our main objective in this paper is
to propose a formal approach to mine, validate, categorize and reason variants of
knowledge-intensive processes [7] using contextual factors with the underpinning
of a goal model.

1.1 Preliminaries

A knowledge-intensive process is a sequence of automated or human tasks, with
each task producing an effect in the form of a state transition. Effects are viewed
as : normative - as they state required outcomes (i.e., goals); and descriptive in
that they describe the normal, and predicted, subset of all possible outcomes. We
assume that the effect annotations have been represented in conjunctive normal
form (CNF) [15].

A goal O =< G,R > is basically an organization level root goal, which is a
formal assertion (a condition or a partial state description) that an organization
seeks to realize. The root goal O is refined into a set of sub goals, where each sub
goal can further be refined depending on the complexity of function associated
with a goal. Here G denotes the set of goals that satisfies O , and R ⊆ 2G denotes
the set of refinements that exist between a parent goal and child goal. We define
the goals of a business process as a combination G1 ∧ G2 ∧ . . . ∧ Gn of boolean
conditions in CNF, all of which need to be satisfied at the end of the process
execution. We leverage the goal refinement procedure discussed in our earlier
work [10] to refine the overall goals of a business process alternatively using
conjunctive and disjunctive clauses, until all sub-goals have been completely
specified to the user’s satisfaction.

A process goal model thus refined is captured as a directed hyper graph [4]. A
hyper edge e ∈ E is merely a set of vertex, i.e. e ⊆ V , such that | e |≥ 2. While
we subscribe to the KAOS methodology for goal decomposition, we leveraged
the hyper graph representation for distinguishing OR-refinements (| e |= 2) from
AND-refinements (| e |≥ 2). Given that, there will be a single parent goal and
one or more child goal as nodes, the hyper graph we generate is of type backward
hyperarc, or B-arc. Here, Tail(ε) denotes the set of from vertex, and Head(ε)
denotes the set of to vertex. If there is only one from vertex , the hyperarc is
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referred to as a backward hyperarc, or B-arc. Execution of resource constrained
processes such as incident management may deviate due to periodic changes
(“Friday afternoon preceding a long weekend there are fewer agents available) or
due to changing external factors(e.g., “ competitors offering increased warranty
period with free support”). Such changes impact the selection of one process
variant over another and it is vital to detect and analyze them. Correlating
variants with contextual factors enables the correct matching between processs
vairant and context, which is another interesting outcome of our work.

1.2 Key Contributions

In this paper, we propose a bottom-up approach for goal oriented classification
of process variant instances discovered from execution logs. The benefit of our
approach is to clearly categorize valid process instances based on their specific
goal alignments. We assume the following inputs to our proposed approach:
(a) a goal model hyper graph with goals and associated decomposition of sub
goals (AND, OR) represented as a collection of boolean conditions in conjunctive
normal form (CNF) [15] and (b) an event log containing multiple process instance
execution data. With this, we achieve the following: 1. Identification of unique
process variants executed out of this process design. 2. Alignment of each process
variant(and its associated instances) with a specific OR-refinement sub goal in
the goal decomposition model. 3. Discover the contextual factors to reason the
goal alignments of each process variant.

This paper is organized as follows. We discuss the related work in this area
in section 5. Section 2 discusses our evaluation setting, which is drawn from IT
incident and problem management. In section 3, we discuss how we leverage
goal oriented variability models to categorize process instances in terms of goal
alignment. We also discuss the impact of contextual factors associated with valid
clusters of process instances. In Section 4, we evaluate our proposed approach by
running experiments on an real world industry setting. We conclude the paper
in section 6.

2 Running Example

We consider an industrial setting involving IT incident resolution process as our
running example. This is illustrated in Fig. 1. We have leveraged the eclipse based
BPMN modeling tool for capturing the process design. End effect annotations
are associated with each task in the process design. We consider the goal model
depicted in Fig. 2 to validate and categorize the executed process instances of
this process. Like the process annotation exercise, each leaf goal in the goal
decomposition model is annotated with corresponding end effects achieved by
realizing the goal. The “VAGAI” tool is designed to parse the process design
and the goal model along with the annotations. The annotations are basically
clauses in CNF form and the terms are specific to Incident Management domain
in this case. The goal model mandates the following : When a new incident
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Fig. 1. Annotated Incident Resolution Process in VAGAI Tool

is reported, it needs to be determined whether there was an earlier reported
incident matching with this new incident. If there is a match, then the new
incident is linked with the problem of the matched incident. Basically a problem
is a higher level classification for a group of incidents. Depending on the status of
the linked problem,the new incident is either stated as unresolved or in progress.
If there exists no similar incident or no linked problem, then the reported system
or application is subjected to a standard list of diagnostic tests to enrich the
incident description. If the reported issue is solved, the incident is closed. An
AND link in Fig. 2 specifies that all sub-goals of a goal need to be satisfied for
the goal to be satisfied; an XOR link specifies that the sub-goals are mutually
exclusive, and only one is needed to satisfy the goal.

3 Goal-Driven Variant Mining

We describe the goal-driven variant mining approach in detail in this section.
We leverage the event log associated with the process execution machinery to
establish correlation between goals and process instances. We note that an event
log can be viewed as being composed of 2 kinds of events: (1) events that record
the execution of activities and (2) events that record state changes in the objects
impacted by a process. In some circumstances, there is a one-to-one correspon-
dence between the execution of a task and a state change in an object impacted
by the process, but often the execution of a task leads to potentially many state
transitions in multiple objects. Our intent is to leverage events of the second
kind, by viewing these as representations of the effects of a process. Without
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Fig. 2. Example Goal Model

loss of generality, we will view each effect event as a pair 〈φ, t〉 where φ is an
effect assertion in the underlying first-order language (referring to the state of an
object impacted by the process) and t is a time-stamp. The underlying first-order
language is in effect an ontological schema that is domain-specific.

Our focus here is on determining the goals (in an organization’s goal model)
that a given process instance helps satisfy. This in turn determines whether that
process instance is a valid variant of another process instance or of a process
design. To determine goal satisfaction, we need access to the end effects that
accrue when a process instance executes to completion (we then check if these
end effects entail the goals in question). The determination of the end effects of a
process instance can be straightforward if the event logging machinery logs both
changes and non-changes (i.e., we periodically log the states of all objects of
interest). In such settings, the final set of object states represent the end effects
of the process instance. More commonly, though, we can expect the event logging
machinery to log only the changes (but not the non-changes). In such settings,
we need specialized techniques to determine which changes persist and which are
overriden by subsequent changes. We use techniques developed in the literature
on reasoning about action for this purpose, where state update operators are used
to determine how a knowledge-base describing a state of the world is updated as
a consequence of the execution of an action. A number of state update operators
have been reported in the literature, such as the Possible Models Approach
[29] and the Possible Worlds Approach [11]. Our overall strategy is as follows.
We define a partial state to be the set of effect assertions that hold after the
execution of one task and prior to the execution of the next (we assume that the
same object is not concurrently impacted by multiple process instances, so that
we are able to segregate the effects of distinct process instances). Note that we
can obtain effect assertions from effect events merely by removing the associated
time-stamp. Given a partial state S and a set of effect assertions e obtained from
effect events accruing from the execution of a task, the resulting partial state is
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given by S⊕e where ⊕ is a state update operator. In our work, we use the Possible
Worlds Approach for state update (although any other state update operator
could be validly used instead). This ⊕ operator is defined as follows (we assume,
in the following, that each effect assertion is written in the Conjunctive Normal
Form). We also use a knowledge-base KB of domain constraints. If S ∪ e ∪ KB
is consistent, then S ⊕ e = S ∪ e. Otherwise, S ⊕ e = e ∪ {s | s ⊆ S, s ∪ e ∪ KB
is consistent, and there does not exist any s′ where s ⊂ s′ ⊆ S such that
s′ ∪ e ∪ KB is consistent}. We start with an initial partial state description
(which may potentially be empty) and incrementally update it (using ⊕) until
we reach the partial state immediately following the final task in the process
instance. These represent the end effects of the process instance. Note that the
output of the state update operator is potentially non-deterministic. Thus we
might obtain multiple sets of end of effects. We could perform goal satisfaction
analysis with each of these (as in some of our definitions below), or we could
do additional sensing to determine which of these competing sets of end effects
actually transpired.

Correlating Processes with Goal Models: An organizational goal model
provides an effective basis for categorizing (and hence developing a deeper under-
standing of) each process instance that we encounter in a log of past process exe-
cutions. By correlating each process instance (and indeed, each process model)
with a goal in the organizational goal model, we can obtain insight into the
intent underpinning that particular instance, and, as shown below, also under-
stand which process models/instances it was a variant of. We will correlate a
process instance to its maximally refined correlated goal in the organizational
goal model, as defined below. Given a goal model (AND-OR goal graph) G, a
goal Gi will be referred to as the maximally refined correlated goal for a process
instance p if and only if all of the following conditions hold:

– Condition C1: For every set of end effects e of p, e |= Gi.
– Condition C2: There exists no goal G′

i in G that can be obtained via
(AND/OR-) refinement of Gi such that for every set of end effects e of
Sj , e |= G′

i.

Determining Valid Variants: We now need to define formally the conditions
under which we will deem a process instance to be a valid variant of another
process instance, or of another process design. Multiple competing intuitions
can be brought to bear in defining these. We will explore three of these below.
We will assume that the test for validity of a variant is a commutative binary
test involving a pair of process instances and/or designs (recall that a process
design can also be annotated with post-conditions/effects at design time and
thus subject to similar analysis). Let E be the set of sets of end effects of one
process and E′ be the corresponding set for the other process.

Post-condition Entailment: For every e′ ∈ E′, there exists an e ∈ E such that
e′ |= e and for every e ∈ E, there exists an e′ ∈ E′ such that e′ |= e. This notion
makes no reference to the organizational goal model, but requires instead that
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Algorithm 1. GoalAlign
1: Input Goal Model - G,List of Event Groups - L, Map [Event Group,List[Goals]]

M1, Map [Event Group,Goal] M2, List PIGA.
2: for all event groups S1..Sn in L do
3: for all goals G1..Gm in Goal Model G do
4: bEntailed = CheckGoalEntailment(Gi, Si)
5: if (bEntailed = true)
6: Add Si as key, Gi as value in M1
7: M1.put(Si,Gi,)
8: end for
9: M2.Put(Si,getMaxCorrelatedGroup(M1,Si))

10: end for
11: PIGA.add(M2)
12: Return PIGA

all end effects of one process to be realized by another for the pair to be deemed
to be variants. This may be an overly strong condition in some settings.

Goal Entailment: Both processes share the same maximally refined correlated
goal G in the organizational goal model. This is a weaker notion, requiring that
processes realize the same goal to be deemed to be variants.

Disjunctive Entailment: There exists a goal G in the organizational goal model
such that for every e′ ∈ E′, e′ |= G and for every e ∈ E, e |= G. A corollary
of this condition is that both processes have maximally refined correlated goals
which are related via a sequence of OR-refinements to a common ancestor goal
in the goal model. The variants thus represent alternative ways of realizing the
common ancestor goal.

Analyzing how a Process Instance Realizes a Goal: The end effects of
a process instance can be a rich source of information on how that instance
realized a particular goal. We could investigate the reasons for different (non-
functional) performance profiles of different instances (for example, why certain
instances executed quickly or cheaply, while others took a longer time). We
could investigate differences in levels of client satisfaction for different process
instance variants. Key to this analysis is the ability to correlate the precise set
of end effects of a process that contributed to the realization of a particular goal.
To this end, we define the notion of a goal-realizing effect group to be a minimal
subset of the set of end effects that realize a given goal. Given a set of end effects
E of a process and a goal G, the goal-realizing effect group gr for G is a set of
effect assertions such that: (1) gr ⊆ E, (2) gr |= G and (3) there exists no gr′

where gr′ ⊆ E, gr′ ⊂ gr and gr′ |= G. A goal-realizing effect group provides
a valuable unit of analysis, as we shall demonstrate in the section on empirical
evaluation.

Process Instance Goal Alignment (PIGA) In this section, we discuss iden-
tification of correlation or alignment of event transitions with goals termed as
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Process Instance Goal alignment (PIGA). PIGA is formalized basically as a
conjunctive normal form satisfiability (CSAT) problem, which is NP-complete.
Therefore, given a goal-realizing effect group S, finding correlation with a goal G
in formal terms is simply finding the truth assignments in the CNF expression of
G using the cumulative end effects of S. The Algorithm 1 outlines the steps for
generating PIGA. We take the list of state transitions and the goal decomposition
model as input. We create two map objects M1, M2 to store the set of goal event
correlations in the form of key value pairs. The function CheckGoalEntailment
takes a goal (annotated with intended set of effects in CNF) and a event group
(annotated with actual set of effects) to compute the entailment as a truth sat-
isfactory exercise. For each event group in the process log, we validate the truth
assignments of all goals in the goal model. We repeat this for all groups in the
process log. Each event group and the list of correlated goals will be stored as
a key value pair in Map M1. The function getMaxCorrelatedGroup takes this
map M1 and identify the maximally correlated group (based on satisfying the
conditions C1, C2 and C3) for each goal. We repeat this evaluation for each
of the mined process instance to identify the “valid process instances”. The
representation of each process instance as a list of maximally refined correlated
goals constitutes the completion of generating Process Instance Goal Alignment
(PIGA). At the end of this exercise, if any of the mandatory sub goals of root
goal G is not correlated, it implies that the process instance P is not correlated
with the goal G and is rejected.

Correlating Process Variants with Contextual Factors: An additional
class of analyses becomes feasible as a consequence of oour approach - one that
identifies correlations between contextual factors and process variants. These
correlations (which are easy to establish via the application of association rule
mining) can lead to recommendation rules which suggest which process variant
might be most appropriate under a given set of contextual conditions.

4 Evaluation

The purpose of the evaluation is to establish that our approach is useful in
achieving the following:

– Correctly identifying valid variants of processes via reference to a goal model.
– Effectively categorizing process instance variants via their goal correlations.
– Associating contextual factors with identified process variants that can pro-

vide guidance in selecting the correct variant for the context.

For our evaluation, we considered a process log consisting of 25000 events,
representing part of the execution history of a help desk division in an IT orga-
nization dealing mainly with end user technical issues. The process log contains
1400 process instances with an of average 14 events per case. Fig. 3 plots the
number of process instances against the number of state transitions (effects)
per instance, where all the process instances involve incident resolution. The
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Fig. 3. state transitions of incident tickets

figure suggests that some incident resolution process instances involve consid-
erable work (a large number of effects) while others involve very little (a small
number of effects). These variations can be due to the complexity of the inci-
dents, but may also suggest that there is poor matching between the incident
and the process variant being used to deal with it. Each process instance in
the log indicates how after receiving a complaint from a customer, an incident
ticket is created and how subsequent state transitions (effects) are achieved by
the (human) agent assigned to the incident ticket, till the ticket is closed. Our
intention is to determine whether these instances are goal aligned, which of these
are variants of each other and the contextual factors that guide the choice of a
variant (many of these instances conform to the process design in Fig. 1). The
organizational goal model is depicted in Fig. 2.

The evaluations is done on a 64 bit Windows 7 machine with Intel Celeron @
1.07 Ghz, 4 GB RAM on which the VAGAI tool was executed. For our evaluation,
we have borrowed the same terminology that have been used in the event records
for annotating the goal model and process model using our tool as illustrated
in Fig. 1. The terminology based on a well known standard called Common
Information Model (CIM)1. This enables leveraging the VAGAI tool to evaluate
goal correlation for each process instance(containing set of state transitions) with
the annotated goal model depicted in Fig. 2.

1 dmtf.org/standards/cim
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First, we start with evaluating the generation of PIGA with a sample set
of process instances from the running example. In Table 1, we observe that the
process instance INS0001 helps achieve three distinct goals (“Detect Problem”,
“Fix Problem”, “Verify Problem”) with three corresponding goal-realizing effect
groups GR1, GR2 and GR3 respectively. Each group correlates with one of the
mandatory sub-goals in the goal model in Fig. 2. Therefore, INS0001 is a valid
goal preserving process instance of Fig. 1 as it satisfies the conditions C1 and
C2. Similarly, the instance INS0096 associated with groups GR1, GR7,GR10
is also a valid process instance. However, unlike INS0096, INS0001 is a variant
realization of process design in Fig. 1 as the groups GR2, GR3 are alternate
realizations of goals Fix Problem and Verify Problem respectively. Now let
us look at some examples of invalid process instances such as INS0015 and
INS0024. Even though in these instances, logically the tickets are closed, there is
no entailment of both the mandatory sub-goals Fix Problem, Verify Problem.
Similarly the instances INS0033, INS0066 are not valid instances as they don not
entail the goal Verify Problem. The verification of fix was not performed in
these instance. Instances such as these were false positives, that were declared
as correct execution in the manual auditing of process executions, as the tickets
were actually termed as closed.

Let us compare the process instances INS0001 and INS0034 in Table 1. By
observing their correlation groups alignment to mandatory sub-goals, we estab-
lish that both are valid process instances that adhere to the root goal in 2.
We can obviously infer that these two instances are not executed similarly. In
the case of INS0001, the identified solution is locally applied by the support
executive and only confirmed by the user. But in the case of INS0034, given the
nature of the customer system, the customer is instructed to follow the guide-
lines to apply the fix and fixing is subsequently confirmed. These two are two
different realizations of the goal and belong to two categories (Remote fix, Local
fix with guidance) of process variations. We establish that the instance INS0001
is a derived variant of the instance INS0034.

The tool runs in an iterative mode to evaluate all the 1400 process instances
given in the process log for goal alignment. The generated PIGA for all the
1562 event instances contains a total of 74 goal-realizing effect groups. Out of
which, 55 groups were correlating with a mandatory sub-goal from the goal
model depicted in Fig. 2. This resulted in only 681 instances being categorized
as valid instances out of the total set. The remaining instances were termed as
invalid as they do not correlate all the mandatory goals.

Subsequent to the categorization of valid process instances into different data
sets, we proceed to identify context factors that can be associated with each cat-
egory. For this, we transformed the free text ticket description and summary
fields into high frequency parse tokens leveraging the tool discussed in [21]. We
restricted the number of such tokens associated with each state transition to
a maximum of 5. When a maximally refined correlation group is constructed,
we extract the high frequency tokens from individual records and associate
with the group. For each event group, the contextual factors with maximum
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Table 1. Process Instance Goal Alignment

Event
Groups

State Transitions Instance ID Goal

GR1
(Start,Open Notification, Ticket Opened,
Acknowledge Notification, Investigation
Started)

INS0001,INS0015,
INS0034,INS0066,
INS0096

Detect
Problem

GR2

(Tech Note Identified, Solution Identi-
fied, Fixing Started, Pending Customer,
Incorrect Solution, Tech Note Identified,
Solution Identified, Fixing Started, Pend-
ing Customer)

INS0001 Fix Problem

GR3 (Service Restored, Ticket Closed) INS0001 Verify
Problem

GR4

(Start,Open Notification Not Sent,
System Alerted, Notification Sent,
Ticket Opened, Acknowledge Notifi-
cation, Investigation Started, Problem
Identified)

INS0024 Detect
Problem

GR6

(Start, Open Notification Not Sent,
System Alerted, Notification Sent,
Ticket Opened, Acknowledge Notifi-
cation, Investigation Started, Problem
Identified)

INS0033 Detect
Problem

GR7
(Tech Note Identified, Solution Identi-
fied, Fixing Started, Problem Fixed)

INS0033,INS0066,
INS0096

Fix Problem

GR9
(Reassigned-Additional Work, Solution
Identified, Customer Notified)

INS0034 Fix Problem

GR10 Customer Confirmed, Ticket Closed INS0034,INS0096 Verify
Problem

support and confidence is associated. As we observe in Table 2, most of cus-
tomer self-help fixes have been contributed by remote system connection issues.
Also issues due to third party software have been raised taking considerable
effort in diagnosing and closing the problem. Most of the escalation issues have
been contributed by either wrong email addresses or wrong ticket assignments.
For the instance INS0034, we can identify that Email Notification, Remote
Connection Issues and Manual Solution Fix are the associated contextual
factors. We can infer that the factors Remote Connection Issues and Manual
Solution Fix leads to adherence of goal Fix Problem. Such observations can
eventually lead to augmenting the current goal model with creating additional
OR-Refinement child goals for the goal Fix Problem.

We discuss the generalization of our approach and the threats to its validity
as follows. Firstly, we expect that the semantic annotations of process models,
goal models in terms of the end effects are precisely applied for any given domain.
We demonstrated this in our prototype implementation, by leveraging standard
property fields associated with the tasks or goals to specify the annotations.
Secondly, the validation of goal alignment is two staged, one between the process
model and goal model, the other between the goal model and state transition
groups from mined process instances. In our tool, we subject the process model
and goal model to a basic level of validation for completeness and correctness
in terms of the specified annotations.This is basically to validate whether a
given goal model is the right candidate for validating a larger data set of process
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Table 2. Categorization of variant instances based on goal alignment

Goal
Aligned
Groups

Category Associated
Variant
Instances

Contextual factor

Name Max.Support Max. Confidence
5 Customer

Self-Fix
62 Remote Connection Issues .07 .9

20 Execute
Diagnostic
Fix

155 Known Solution, Email Sent .08 1.0

9 Discard Inci-
dents

11 Third party Vendor Issues .09 0.9

10 Define New
Problems

51 Event Trace Missing .07 .8

1 Escalate
Problem

10 Wrong Ticket Assignment .009 0.6

6 Enrich
Existing
Problem

5 Additional Diagnostics .05 0.7

4 Pending
Closer

31 Wrong Email Note 0.06 .9

instance records. Our approach in this aspect is generalized and is not restrictive
to process models or goal models of any scale or any domain. This is clearly
demonstrated with the scale of our case study involving 1400 process instances.
Therefore, we argue that the threat to its validity (both construct and internal) in
terms of systematic errors or data measurement is minimal. The only limitation
we foresee is by leveraging our approach with incompletely annotated goal model
or not using a valid semantic matching tool. But ensuring the completeness of
annotations and correctness of matching can help address this limitation by
establish correct correlation between a goal model and process instance.

5 Related Work

The area of process mining leverages data mining techniques on one hand, and
process modeling and analysis techniques on the other hand [27]. The existing
works in the area of process mining have efficiently focused on the data mining
aspects [3,26] such as control flow discovery, process artifact evolution and model
conformance. In comparison, we focus on concept and goal conformance drift that
arises with evolutionary changes in process executions. [20] discusses techniques
for extracting categories from process model repositories. In [5], a configurable
process model as a family of process variants is discovered from a collection of
event logs. Approaches for process variability support at design time, such as
Provop [13], focus on managing large collections of process variants of a single
process model. In comparison, in our proposed approach, we validate and catego-
rize the discovered family of variants with the underpinning of goal model. Our
approach can leverage works such as [17] that focus on enriching process designs
with goal driven configurations. This is a crucial aspect in knowledge-intensive
processes, where there can be significant drift from valid(goal aligned) work flows
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due to manual errors and environmental constraints. [18] focus on alignments to
generate a well-defined classification problem per decision point. In contrast, we
leverage the goal model and its OR-refinement decomposition to generate cate-
gories of process deviations before hand and associate case instances mined from
event logs to one of these categories. Works such as [23] propose techniques, where
the mined event correlations from instances are utilized to construct a common
reference model. Our approach compliments such work to derive event correla-
tion groups that are aligned to the goal decomposition model. In addition, we also
augment different OR-refinement sub goals through correlation and provide goal
driven assessment of differentiation between the variant models derived from the
common process model. Our proposed approach leverage and compliment work
on goal annotated process modeling [2] by extending the notion of goal entail-
ment through semantic end effect annotations and subsequent correlation. In [16],
the authors propose the use of probabilistic models for discovering the intentions
behind the execution traces and to compare them to the prescribed intentional
process model. We focus on a different category of process models which are mostly
user knowledge driven but subscribe to a well defined process model with pre-
defined decision points. In [19], the authors clearly establish the need for a general
framework for mining and correlating business process characteristics from event
logs. Our proposed work subscribe to such a notion and propose goal alignment to
provide additional reasoning on process characteristics. In [1], the authors thor-
oughly analyze various process variability approaches and our proposed approach
compliments such frameworks for successful validation and reasoning for genera-
tion of different process variants.

6 Conclusion

Organizations increasingly tend to analyze the adherence of the day to day exe-
cution of internal business processes with their stated goals. The emergence of
Knowledge-intensive processes have enabled dynamic adaptations to process exe-
cution, but also contributed to arising challenges of non-conformance and mis-
alignment to organization goals and strategies. In this paper, we have proposed
a goal oriented process variability mining and categorization approach. This
bottom-up approach enables the organizations to study the depth and breadth
of goal adherence in their organizations. In our future work, we would like to
study the impact of any proposed change in the goal decomposition model on
process execution based on the PIGA model and also focus on goal augmentation
based on instance variants.
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Abstract. Process Mining techniques rely on the existence of event
data. However, in many cases it is far from trivial to obtain such event
data. Considerable efforts may need to be spent on making IT systems
record historic data at all. But even if such records are available, it may
not be possible to derive an event log for the case notion one is interested
in, i.e., correlating events to form process instances may be challenging.
This paper proposes an approach that exploits a commonly available
and versatile source of data, i.e. database redo logs. Such logs record the
writing operations performed in a general-purpose database for a range
of objects, which constitute a collection of events. By using the relations
between objects as specified in the associated data model, it is possible
to turn such events into an event log for a wide range of case types. The
resulting logs can be analyzed using existing process mining techniques.

Keywords: Process mining · Database · Redo log · Historical data ·
Trace creation · Transitive relations · Data model

1 Introduction

Process mining heavily depends on event data. But to get proper data, it is
either necessary (i) to build a customized storage facility oneself or (ii) to rely
on data that is already stored by existing IT systems. The former approach
requires extensive knowledge of the application domain and a potentially hybrid
technology landscape to create a facility that records all possible events that are
related to a pre-defined notion of a case. This is potentially costly and not very
flexible.

The second approach requires the transformation of available data – which
is not specifically stored for process mining purposes – into an event log.
Approaches exist to accomplish this for the data stored in and generated by
SAP systems [6,13,14], EDI messages [4], and ERP databases in general [16].
Some efforts for generalization have been made here, as can be seen in [15]:
XESame is a tool that allows transforming database records into events, traces
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and logs, prior definition of the mappings between database elements and log
concepts like timestamp, case, activity and resource. Nonetheless, the drawback
of these approaches is that they are restricted to the specific IT system or data
format that they are developed for.

Artifact-centric approaches are more generic and also fit within the second
strategy [3,5,8–11]. These techniques provide a way to get insights into the
contents of a database, showing the life-cycle of objects without presenting data
convergence (one event is related to multiple cases) and data divergence (several
events of the same type are related to a single case) issues, as happens in classical
log extraction. However, both issues are not fully solved in the artifact field.
In fact, one could argue that the key problems are evaded by restricting the
contents of a single artifact, in order to avoid data divergence, and hiding data
convergence in the discovered relations between them.

The technique explained in this paper, based on the ideas introduced in [1],
also relies on the use of existing data. However, it exploits so-called redo logs
that several Data Base Management Systems (DBMSs), like Oracle RDBMS
and MySQL, maintain for data integrity and recovery reasons. This source of
data has the potential to create a full historic view on what has happened dur-
ing the handling a wide range of data objects. Note that by simply looking at
the regular content of a DBMS, one cannot see which events led to its current
state. Fortunately, redo logs provide an opportunity to learn about the historical
evolution of data on the basis of a generic-purpose data source, exactly tuned to
the purpose of the process mining analysis one wishes to perform.

Redo logs already contain a list of events, but the challenge is how to correlate
these events to create the traces one is interested in. In this paper, we explain
how to create a trace on the basis of a configurable concept of a case (i.e. the
process instance), exploiting the relations expressed in the data model of the
DBMS in question. The result is a log which represents a specific point of view
on the objects in the database, including the stages of their historical evolution
and the causal relations between them.

The analysis technique presented in this paper can be used, whenever redo
logs are available, as an alternative to building a specific recording facility.
The approach is also generic, in the sense that it can be used to extract data
from a technology that is used by a wide variety of organizations. Addition-
ally, it is a viable alternative for artifact-centric approaches, since it allows for a
much richer behavior discovery due its incorporation of the data model to infer
causal relations between events. Finally, the nature of the extracted logs (events
with unique IDs and availability of data schemas) opens the door to develop-
ing new discovery techniques that could exploit the additional information that
databases provide, in order to solve data convergence and divergence issues.

The paper is structured as follows. Section 2 presents a walkthrough of the
approach on a simple example to explain the various phases of creating an event
log. Section 3 provides the formalization of the important concepts that this
work builds upon. Section 4 describes the tool that implements these concepts
to generate an event log. Section 5 provides an example case to show how the
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technique can be flexibly applied to solve a range of business questions. Finally,
Section 6 presents the conclusion and future work.

2 Walkthrough

The aim of this work is to analyze database redo logs, which can be seen as a
list of modifications performed on the database content, so that we use these
to generate event logs. These event logs will be used to perform process mining
analyses like process discovery, conformance checking, and process enhancement.
To explain the idea of redo log analysis, a step by step walk-through using a
simple case is performed in this section.

Let us consider as an example a database that stores information on a por-
tal for selling concert tickets. At this point, we will focus on three tables only:
customer, booking, and ticket. These tables contain information about the cus-
tomers of the portal, the bookings made by these customers, and the tickets
being booked by them.

2.1 Event Extraction

An example of a fragment of a redo log is shown in Table 1. This fragment
contains six changes made to the records of the three tables. Each of these
events indicates (a) the time at which it occurred, (b) the operation performed
and on which table this was done, (c) an SQL sentence to redo the change, and
(d) another SQL sentence to undo it. We claim that these basic fields provide
enough information to reconstruct the state of the database at any intermediate
stage. Also, they allow us to perform an in-depth analysis to detect patterns
on the behavior of the process or processes that rely on the support by this
database.

The first thing we need to do is to transform each of the records in the redo
log in Table 1 to an event that we can manipulate. To do so, it is necessary to
split the contents of redo and undo sentences into different attributes. Table 2
shows the attributes for each event extracted from the redo and undo columns
in Table 1. The rows with the symbol = for “Value after event” indicate that the
value for an “Attribute name” did not change after the event. Also, the values
between braces {} in the “Value before event” column were extracted not from
the present event but from previous ones. This is, for instance, the case in the
second event: It is an update on the name of the customer, the record of which
was already inserted in the first event in the table. Finally, the values between
parentheses () identify the ones that could not be extracted directly from the
redo log, but only from the database content itself. This is because those columns
were not modified in that event, as is the case in events 4 and 6, where only the
field “ticket:booking id” is updated. Therefore, the other values remain equal
and it is not necessary to specify them in the redo and undo sentences. It is still
necessary to identify on which row of the database the change must be applied.
To do so, the redo log system provides a RowID identifier to find it. In addition to
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Table 1. Fragment of a redo log: each line corresponds to the occurrence of an event

# Time + Redo Undo
Op + Table

1 2014-11-27
15:57:08.0 +
INSERT +
CUSTOMER

insert into "SAMPLEDB".

"CUSTOMER" ("ID", "NAME",

"ADDRESS", "BIRTH_DATE")

values (’17299’, ’Name1’,

’Address1’, TO_DATE(

’01-AUG-06’, ’DD-MON-RR’));

delete from "SAMPLEDB".

"CUSTOMER" where "ID"

= ’17299’ and "NAME" =

’Name1’ and "ADDRESS" =

’Address1’ and "BIRTH_DATE"

= TO_DATE( ’01-AUG-06’,

’DD-MON-RR’) and ROWID =

’1’;
2 2014-11-27

16:07:02.0 +
UPDATE +
CUSTOMER

update "SAMPLEDB".

"CUSTOMER" set "NAME" =

’Name2’ where "NAME" =

’Name1’ and ROWID = ’1’;

update "SAMPLEDB".

"CUSTOMER" set "NAME" =

’Name1’ where "NAME" =

’Name2’ and ROWID = ’1’;

3 2014-11-27
16:07:16.0 +
INSERT +
BOOKING

insert into "SAMPLEDB".

"BOOKING" ("ID",

"CUSTOMER_ID") values

(’36846’, ’17299’);

delete from "SAMPLEDB".

"BOOKING" where "ID" =

’36846’ and "CUSTOMER_ID" =

’17299’ and ROWID = ’2’;

4 2014-11-27
16:07:16.0 +
UPDATE+
TICKET

update "SAMPLEDB". "TICKET"

set "BOOKING_ID" = ’36846’

where "BOOKING_ID" IS NULL

and ROWID = ’3’;

update "SAMPLEDB". "TICKET"

set "BOOKING_ID" = NULL

where "BOOKING_ID" =

’36846’ and ROWID = ’3’;

5 2014-11-27
16:07:17.0 +
INSERT +
BOOKING

insert into "SAMPLEDB".

"BOOKING" ("ID",

"CUSTOMER_ID") values

(’36876’, ’17299’);

delete from "SAMPLEDB".

"BOOKING" where "ID" =

’36876’ and "CUSTOMER_ID" =

’17299’ and ROWID = ’4’;

6 2014-11-27
16:07:17.0 +
TICKET +
UPDATE

update "SAMPLEDB". "TICKET"

set "ID" = ’36876’ where

"BOOKING_ID" IS NULL and

ROWID = ’5’;

update "SAMPLEDB". "TICKET"

set "ID" = NULL where

"BOOKING_ID" = ’36876’ and

ROWID = ’5’;

it, an extra column C has been added, which encodes a numeric vector for each
event representing which columns had its value (1) not modified, (2) changed
from a value to NULL, (3) from NULL to a value or (4) inserted/updated.

2.2 Exploiting the Data Model

After extracting the events from the redo log, the next step required is to
obtain the data model from the database. This will be a main ingredient used
to correlate events. Finding these correlations will tell us which sets of events
can be grouped into traces to finally build an event log. Obtaining the data
model involves querying the tables, columns, and keys defined in the database
schema. Figure 1 shows the extracted data model. For the selected tables cus-
tomer, booking and ticket, we see that two key relations exist between them:
(a) (booking customer fk, customer pk) and (b) (ticket booking fk, booking pk).
This means that we must use the first pair of keys (a) to correlate customer and
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Table 2. Fragment of a redo log: each line corresponds to the occurrence of an event

# Attribute name Value after event Value before event C

1 Customer:id 17299 - 4
Customer:name Name1 - 4
Customer:address Address1 - 4
Customer:birth date 01-AUG-06 - 4
RowID = 1 -

2 Customer:id = {17299} 1
Customer:name Name2 Name1 4
Customer:address = {Address1} 1
Customer:birth date = {01-AUG-06} 1
RowID = 1 -

3 Booking:id 36846 - 4
Booking:customer id 17299 - 4
RowID = 2 -

4 Ticket:booking id 36846 NULL 3
Ticket:id = (317132) 1
Ticket:belongs to = (172935) 1
Ticket:for concert = (1277) 1
RowID = 3 -

5 Booking:id 36876 - 4
Booking:customer id 17299 - 4
RowID = 4 -

6 Ticket:booking id 36876 NULL 3
Ticket:id = (317435) 1
Ticket:belongs to = (173238) 1
Ticket:for concert = (1277) 1
RowID = 5 -

booking events, and the second pair of keys (b) to correlate booking and ticket
events. Both pairs (a) and (b) must be used to correlate the events of the three
tables.

When using pairs of primary and foreign keys, we can consider the attributes
referred by them as equivalent for our purposes, i.e. relating to the same event.
We will do so to actually relate events that belong to different tables, but use
different column names (attributes in the events) to store the same values. There-
fore, attributes customer:id and booking:customer id are considered to be equiv-
alent, and the same can be said of the pair booking:id and ticket:booking id. Then,
using these equivalences and observing the value after event column in Table 2,
we see that every event is related to at least one other event by means of some
attribute value. That is the case, for instance, for events 1 and 2, given that
they share the same value for the attribute customer:id. Also, event 3 is related
to events 1, 2 and 5, sharing the same value for the attributes customer:id and
booking:customer id, and to event 4, sharing the same value for the attributes
booking:id and ticket:booking id. Event 6 is related to event 5 by means of the
attributes booking:id and ticket:booking id as well. A graph in which events are
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Fig. 1. Database schema for the Ticket selling example.

(a) Connected graph of related events. (b) Graphs for the two final traces.

Fig. 2. Traces as graphs of related events (events e1 to e6 refer to Table 2.

the vertexes and edges show relations between them would look like the one in
Figure 2a. This graph helps to understand the structure of a trace we wish to
extract. What needs to be taken care of still is that it contains events of two
different ticket bookings (events 3-4 and events 5-6), which is behavior that we
would like to see separately.

2.3 Process Instance Identification

To decide which events go into which traces, it is necessary to define which view
is desired to obtain on a process. In this case, let us assume that it is interesting
to see how tickets are booked by customers. Using relations Fig 1.a and Fig 1.b,
we can say that individual traces should contain behavior for the same user,
booking and ticket: our case notion. Applying that notion, we see that events
1 and 2 point to a single customer. Events 3 and 4 point to a single pair of
booking and ticket, and still relate to the customer of events 1 and 2. However,
events 5 and 6 represent a different pair of booking-ticket but do relate to the
customer in events 1 and 2. Therefore, this leads to two separated but not disjoint
graphs in which events 1 and 2 are common, as observed in Figure 2b. Each of
these graphs represent the structure of a trace for a separate case in our event
log.

From the initial change log CL = 〈e1, e2, e3, e4, e5, e6〉 we obtain two traces
t1 = (e1, e2, e3, e4) and t2 = (e1, e2, e5, e6) following the above reasoning. In
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this case, applying a discovery algorithm to these two traces will result in a
very simple sequential model. In Section 5, we will present samples of questions
and answers to understand the process extending the same technique to a more
extensive dataset and choosing different views on the data. This way we can find
patterns and obtain interesting insights regarding the observed behavior. What
follows now is the formal basis that precisely captures the ideas discussed so far.

3 Formalizations

The basic idea to use redo logs for the creation of an event log has been intro-
duced in the previous section. This section provides a formal description of the
underlying notions. Some of the notation used in this part originate from [1].
First, we need to define the data model.

Definition 1 (Data Model). Assume V to be some universe of values. A data
model is a tuple DM = (C, A, classAttr, val, PK, FK, keyClass, keyRel, keyAttr,
refAttr) such that
– C is a set of class names,
– A is a set of attribute names,
– classAttr ∈ C → P (A) is a function mapping each class onto a set of

attribute names. Ac is a shorthand denoting the set of attributes of class
c ∈ C, i.e., Ac = classAttr (c),

– val ∈ A → P (V ) is a function mapping each attribute onto a set of values.
Va = val (a) is a shorthand denoting the set of possible values of attribute
a ∈ A,

– PK is a set of primary key names,
– FK is a set of foreign key names,
– PK and FK are disjoint sets, that is PK ∩ FK = ∅. To facilitate further

definitions, the shorthand K is introduced, which represents the set of all
keys: K = PK ∪ FK,

– keyClass ∈ K → C is a function mapping each key name to a class. Kc is
a shorthand denoting the set of keys of class c ∈ C such that Kc = {k ∈ K |
keyClass (k) = c},

– keyRel ∈ FK → PK is a function mapping each foreign key onto a primary
key,

– keyAttr ∈ K → P (A) is a function mapping each key onto a set of
attributes, such that ∀k ∈ K : keyAttr (k) ⊆ AkeyClass(k),

– refAttr ∈ FK × A �→ A is a function mapping each pair of a foreign key
and an attribute onto an attribute from the corresponding primary key. That
is, ∀k ∈ FK : ∀a, a′ ∈ keyAttr (k) : (refAttr(k, a) ∈ keyAttr(keyRel(k)) ∧
(refAttr(k, a) = refAttr(k, a′) =⇒ a = a′).

Definition 2 (Notations). Let DM = (C, A, classAttr, val, PK, FK, keyClass,
keyRel, keyAttr, refAttr) be a data model.
– MDM = {map ∈ A �→ V | ∀a ∈ dom (map) : map (a) ∈ Va} is the set of

mappings,
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– ODM = {(c,map) ∈ C × MDM | dom (map) = classAttr (c)} is the set of
all possible objects of DM.

A data model defines the structure of objects in a database. Such objects can
belong to different classes and varied relations can exist between them. A col-
lection of possible objects constitutes an object model.

Definition 3 (Object Model). Let DM = (C, A, classAttr, val, PK, FK,
keyClass, keyRel, keyAttr, refAttr) be a data model. An object model of DM is
a set OM ⊆ ODM of objects. UOM (DM) = P (

ODM
)

is the set of all object
models of CM.

The objects in an object model must have a specific structure according to a cer-
tain data model. Also, some rules apply to ensure that the object model respects
the rules stated by the data model. This is covered by the notion of a valid object
model.

Definition 4 (Valid Object Model). Let DM = (C, A, classAttr, val, PK,
FK, keyClass, keyRel, keyAttr, refAttr) be a data model. V OM ⊆ UOM (DM)
is the set of valid object models. We say that OM ∈ V OM if the following
requirements hold:
– ∀(c,map) ∈ OM : (∀k ∈ Kc ∩ FK : (∃(c′,map′) ∈ OM :

keyClass(keyRel(k)) = c′ ∧ (∀a ∈ keyAttr(k) :
map(a) = map′(refAttr(k, a))))), i.e., referenced objects must exist,

– ∀(c,map), (c,map′) ∈ OM : (∀k ∈ Kc ∩ PK : ((∀a ∈ keyAttr(k) :
map(a) = map′(a)) =⇒ map = map′)), i.e., PK and UK values must be

unique.

Different vendors offer DataBase Management Systems (DBMSs) like Oracle
RDBMS, Microsoft’s SQL server, MySQL, etc. All of them allow to store objects
according to a specific data model. The work of this paper focuses on the analysis
of redo logs, being conceptually independent of the specific implementation.
These redo logs can contain information about changes done either on the data
or the structure of the database. We will focus here on the changes on data, which
include insertions of new objects, updates of objects, and deletions. Each of
these changes represent an event, which has a type (Definition 5) and mappings
for the value of objects before and after the change (Definition 6). Also, the
combination of an event and a specific time stamp represents an event occurrence
(Definition 7).

Definition 5 (Event Types). Let DM = (C, A, classAttr, val, PK, FK, key-
Class, keyRel, keyAttr, refAttr) be a data model and VOM the set of valid object
models. ET = ETadd ∪ ETupd ∪ ETdel is the set of event types composed of the
following pairwise disjoint sets:
– ETadd = {(⊕, c) | c ∈ C} are the event types for adding objects,
– ETupd = {(�, c) | c ∈ C} are the event types for updating objects,
– ETdel = {(�, c) | c ∈ C} are the event types for deleting objects.
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Definition 6 (Events). Let DM = (C, A, classAttr, val, PK, FK, keyClass,
keyRel, keyAttr, refAttr) be a data model, VOM the set of valid object models
and mapnull ∈ {Ø} → V a function with the empty set as domain. E = Eadd ∪
Eupd ∪ Edel is the set of events composed of the following pairwise disjoint sets:
– Eadd = {((⊕, c),mapold,mapnew)) | (c,mapnew) ∈ ODM ∧ mapold = mapnull}
– Eupd = {((�, c),mapold,mapnew)) | (c,mapold) ∈ ODM ∧ (c,mapnew) ∈ ODM}
– Edel = {((�, c),mapold,mapnew)) | (c,mapold) ∈ ODM ∧ mapnew = mapnull}

Definition 7 (Event Occurrence, Change Log). Let DM = (C, A, clas-
sAttr, val, PK, FK, keyClass, keyRel, keyAttr, refAttr) be a data model, VOM
the set of valid object models and E the set of events. Assume some uni-
verse of timestamps TS. eo = (e, ts) ∈ E × TS is an event occurrence.
EO(DM,E) = E × TS is the set of all possible event occurrences. A change
log CL = 〈eo1, eo2, ..., eon〉 is a sequence of event occurrences such that time is
non-decreasing, i.e., CL = 〈eo1, eo2, ..., eon〉 ∈ (EO(DM,E))∗ and tsi ≤ tsj for
any eoi = (ei, tsi) and eoj = (ej , tsj) with 1 ≤ i < j ≤ n.

Definition 8 (Effect of an Event). Let DM = (C, A, classAttr, val, PK,
FK, keyClass, keyRel, keyAttr, refAttr) be a data model, VOM the set of valid
object models and E the set of events. For any two object models OM1 ∈ V OM
and OM2 ∈ V OM and event occurrence eo = (((op, c),mapold,mapnew), ts) ∈
EO(DM,E), we denote OM1

eo→ OM2 if and only if OM2 = {(d,map) ∈ OM1 |
map �= mapold ∨ op = ⊕} ∪ {(c,mapnew) | op �= �}.

Event e is permissible in object model OM, notation OM
e→, if and only if

there exists an OM’ such that OM
e→ OM ′. If this is not the case, we denote

OM
e

�→, i.e., e is not permissible in OM. If an event is not permissible, it will
fail and the object model will remain unchanged. Relation e⇒ denotes the effect
of event e. It is the smallest relation such that (a) OM

e⇒ OM ′ if OM
e→ OM ′

and (b) OM
e⇒ OM if OM

e

�→.

When, in Definition 8, we say that OM1
eo→ OM2, it means that OM2 must

contain (1) all the objects in OM1 except the one that the event occurrence eo
refers to, and (2), the object inserted if eo is an insertion or the modified object
if it is an update. If eo is a deletion, the object is not included in OM2.

Definition 9 (Effect of a Change Log). Let DM = (C, A, classAttr, val, PK,
FK, keyClass, keyRel, keyAttr, refAttr) be a data model, VOM the set of valid
object models, E the set of events and OM0 ∈ V OM the initial valid object model.
Let CL = 〈e1, e2, ..., en〉 ∈ (EO(DM,E))∗ be a change log. There exist object
models OM1, OM2, ..., OMn ∈ V OM such that OM0

e1⇒ OM1
e2⇒ OM2...

en⇒
OMn. Hence, change log CL results in object model OMn when starting in OM0.
This is denoted by OM0

CL⇒ OMn.

Definitions 1 to 9 establish the basis to understand data models, events and
change logs, among other concepts. However, a mechanism to relate events to
each other to build traces is still missing. For that purpose, and as one of the main
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contributions of this paper, the concept of trace id pattern is introduced. Then,
subsequent definitions will be presented to show the trace building technique.

In a classical approach, the notion of case id is given by an attribute com-
mon to all the events in a trace. If traces do not exist yet, they can be created
grouping events by the value of the selected attribute. However, in our setting,
we have a collection of events of different classes with disjoint attribute sets.
This means that it will be impossible to find a single common attribute to be
used as case id. A trace id pattern substitutes the idea of a case id attribute for
a set of attributes and keys. By its use, it becomes possible to find a common set
of attributes between events of different classes using foreign-primary key rela-
tions. This relations establish the equivalence between pairs of attributes. The
example presented in Section 2.2 illustrates this idea using the pair of keys cus-
tomer pk and booking customer fk to set the equivalence between the attributes
customer:id and booking:customer id. Each trace id pattern configures a view of
a process to focus on, determining also which is the central element of the view,
called root. This root element will determine the start event for each trace and
will allow, in further steps, to build traces according to such a view.

Definition 10 (Trace ID Pattern). Let DM = (C, A, classAttr, val, PK,
FK, keyClass, keyRel, keyAttr, refAttr) be a data model. A Trace ID Pattern on
DM is a tuple TPDM = (TPA, TPK,ROOT ) such that
– TPA ⊆ A is a subset of the attributes in the data model,
– TPK ⊆ K is a subset of the keys in the data model,
– ROOT ∈ TPK is a key of the data model.

To find the equivalence between different attribute names, we define a canonical
mapping (Definition 11), i.e., a way to assign a common name to all the attributes
linked, directly or transitively, through foreign-primary key relations. To show
a simple example, the canonical mapping of the attribute booking:customer id
would be customer:id since both are linked through the foreign-primary pair of
keys booking customer fk and customer pk.

Definition 11 (Canonical Mapping). Let DM = (C, A, classAttr, val, PK,
FK, keyClass, keyRel, keyAttr, refAttr) be a data model and TP = (TPA, TPK,
ROOT) a trace id pattern on DM. A canonical mapping canon ∈ A → A is a
function mapping each attribute to its canonical attribute such that:

canon(a) =

⎧⎨
⎩

a if a �∈ ⋃
k∈FK keyAttr(k),

canon(refAttr(fk, a)) if a ∈ ⋃
k∈FK keyAttr(k).

withfk ∈ {k ∈ FK | a ∈ keyAttr(k)}
The combination of a trace id pattern and the canonical mapping results in the
canonical pattern attribute set, i.e., the set of canonical attributes for each of the
elements (keys and attributes) configured in the trace id pattern. This allows us
to obtain a minimum set of attributes to identify traces, avoiding the presence
of attributes which, despite being different, map to the same canonical form.
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Definition 12 (Canonical Pattern Attribute Set). Let DM = (C, A, clas-
sAttr, val, PK, FK, keyClass, keyRel, keyAttr, refAttr) be a data model and TP =
(TPA, TPK, ROOT) a trace id pattern on DM. The canonical pattern attribute
set of TP is a set CPASTP = {canon(a) | a ∈ TPA ∪ (

⋃
k∈TPK keyAttr(k))}.

Definition 13 (Notations II). Let DM = (C, A, classAttr, val, PK, FK,
keyClass, keyRel, keyAttr, refAttr) be a data model, TS some universe of times-
tamps and eo = (((op, c),mapold,mapnew), ts) an event occurrence. We define
the following shorthands for event occurrences:
– eventClass(eo) = c denotes the class of an event occurrence,
– time(eo) = ts denotes the timestamp of an event occurrence,
– mapV aleo denotes the right mapping function to obtain the values of the

event in an event occurrence such that

mapV aleo =
{

mapnew if op ∈ {⊕,�},
mapold if op = �

Each trace we want to build represents a process instance. However, a process
instance, which is formed by event occurrences, needs to comply with some rules
to guarantee that they actually represent a meaningful and valid trace.The first
thing we need to accomplish is to build a set of traces that do not contain too
much behavior according to the selected view (trace id pattern). We will call this
the set of well-formed traces.

Definition 14 (Traces, Well-Formed Traces). Let DM = (C, A, classAttr,
val, PK, FK, keyClass, keyRel, keyAttr, refAttr) be a data model, TPDM =
(TPA, TPK,ROOT ) a trace id pattern on DM, CL a change log of event
occurrences and T = {t ∈ P({eoi | 1 ≤ i ≤ n})} the set of possible traces
on that change log. WFTCL ⊆ T is the set of well-formed traces such that
WFTCL = {t ∈ T | (∀eoi, eoj ∈ t : ∀ai ∈ AeventClass(eoi), aj ∈ AeventClass(eoj) :
(ai ∈ dom(mapV aleoi)∧ aj ∈ dom(mapV aleoj ) ∧ {canon(ai), canon(aj)} ⊆
CPASTP ∧ canon(ai) = canon(aj)

)
=⇒ mapV aleoi(ai) = mapV aleoj (aj)

)},
i.e., the traces that do not contain event occurrences with different values for
an attribute of which its canonical form is in the canonical pattern attribute set.

The same way that a trace id pattern configures a view of the process, each
process instance will be represented by a unique trace id. This concept (Defini-
tion 15) allows us to distinguish different traces. These traces aggregate events
holding relations that can exist even between events of different classes.

Definition 15 (Trace ID). Let DM = (C, A, classAttr, val, PK, FK, keyClass,
keyRel, keyAttr, refAttr) be a data model, TPDM = (TPA, TPK,ROOT ) a trace
id pattern on DM and t ∈ WFT a well-formed trace. TIDTP

t ⊆ CPASTP × V
is a set of pairs attribute-value for a trace t according to a trace id pattern TP
such that TIDTP

t = {(a, v) ∈ CPASTP × V | eo ∈ t ∧ a = canon(b) ∧ b ∈
dom(mapV aleo) ∧ v = mapV aleo(b)}.
The second goal of the trace building process is to avoid the creation of traces
containing events that do not belong to the same instance, according to the
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selected view (trace id pattern). Definition 17 sets such rules. Some of these
rules require a way to find connections between events. Such connections or
properties are stated in Definition 16 as trace id properties.

Definition 16 (Trace ID Properties). Let DM = (C, A, classAttr, val, PK,
FK, keyClass, keyRel, keyAttr, refAttr) be a data model, TPDM = (TPA, TPK,
ROOT ) a trace id pattern on DM, {t, t′} ⊆ WFT are two well-formed traces
and {TIDTP

t , T IDTP
t′ } their corresponding trace ids. We define the following

properties
– TIDTP

t ∼ TIDTP
t′ ⇐⇒ ∃(a, v) ∈ CPASTP ×V : (a, v) ∈ TIDTP

t ∧ (a, v) ∈
TIDTP

t′ , i.e., TIDTP
t and TIDTP

t′ are related if and only if an attribute
exists with the same value in both trace ids,

– TIDTP
t

∼= TIDTP
t′ ⇐⇒ ∀((a, v), (a′, v′)) ∈ TIDTP

t ×TIDTP
t′ : (a = a′∧v =

v′)∨(a �= a′), i.e., TIDTP
t and TIDTP

t′ are compatible if and only if for each
common attribute the value is the same in both trace ids,

– TIDTP
t �� TIDTP

t′ ⇐⇒ TIDTP
t ∼ TIDTP

t′ ∧ TIDTP
t

∼= TIDTP
t′ , i.e.,

TIDTP
t and TIDTP

t′ are linkable if and only if they are compatible and
related,

– TIDTP
t ≤ TIDTP

t′ ⇐⇒ TIDTP
t ⊆ TIDTP

t′ , i.e., TIDTP
t is a subtrace of

TIDTP
t′ if and only if all the attributes in TIDTP

t are contained in TIDTP
t′

with the same value,

Definition 17 (Valid Traces,Event Logs). Let DM = (C, A, classAttr,
val, PK, FK, keyClass, keyRel, keyAttr, refAttr) be a data model, TPDM =
(TPA, TPK,ROOT ) a trace id pattern on DM, CL a change log of event
occurrences, WFTCL the set of well-formed traces on that change log and
RootCAN ⊆ CPASTP is the set of canonical attributes of root such that
RootCAN = {b ∈ CPASTP | ∃a ∈ keyAttr(ROOT ) : canon(a) = b}.
We define V T (PT,CL) ⊆ WFTCL as the set of valid traces for TP such
that V T (PT,CL) = {t ∈ WFTCL | ∀eo ∈ t : ((∀c ∈ RootCAN :
∃(c, v) ∈ TIDTP

{eo}) ∧ (�eo′ ∈ t : time(eo′) < time(eo))) ∨ (TIDTP
{eo} ��

TIDTP
{eo′∈t|time(eo′)<time(eo)}))}.

Finally, we define an event log LPT as the maximum subset of V T (PT,CL)
such that ∀t, t′ ∈ LPT : (TIDTP

t ⊆ TIDTP
t′ =⇒ t = t′), i.e., the set of valid

traces that does not contain any pair in which one of the traces is a subtrace of
the other.

In the end, we guarantee that the resulting event log contains the minimum set
of traces with the maximum behavior (LPT ) for a certain view trace id pattern
TP ). The traces in this event log start with an event containing values for the
configured root element of the TP . Also, each of these traces contain events that
are directly or transitively related (∼) and compatible (∼=).

4 Implementation

The techniques presented in this paper allow for the extraction of events from
any type of RDBMS with redo logs. Our implementation, however, is specific for
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Fig. 3. Architecture of the Redo Log Inspector tool.

Oracle technology. We can obtain data models directly from an Oracle DBMS,
which makes it possible to design the trace id pattern (Definition 10) needed to
generate an event log in accordance to Definition 17 from an event collection.
The Redo Log Inspector 1 tool that we developed to demonstrate the feasibility
of our ideas, fully implements the approach described in the previous sections
and provides a user interface to control all the aspects of the analysis.

The Redo Log Inspector is composed of different components (see Figure 3).
It uses a Oracle Connector component to communicate with the Oracle database
and with the Oracle Log Miner functions. This component is used by the Redo
Log extractor to generate an Event Collection from the desired tables. The Data
model extractor also makes use of the Oracle connector to automatically obtain
a Data Model. This last element is used by the Trace ID Pattern editor to design
the desired Trace ID Pattern. Then, the three objects (Event collection, Data
model and Trace ID Pattern) are used by the Log splitter to compute the traces
to form a Event log. Finally, the Event log can be analyzed with existing process
mining tools, such as ProM2 [2] and Disco3. Figure 4 shows a screenshot of the
tool while splitting an event collection into traces using a Trace ID Pattern.

5 Demonstration

The database we will use to demonstrate our approach is part of an imaginary
portal for selling concert tickets. As stated, the database stores information
about customers, bookings, and tickets. In addition, the concert venues are rep-
resented in the database, along with the collection of seats they offer. Each
concert is also stored in it, with the list of bands performing. Figure 1 shows
the data schema of the database. It is composed of eight different tables with
several columns each, and a number of relations between them:

– Concerts: date and start time of the concert and the venue in which it will
take place.

– Band: name and address of bands, which could perform in different concerts.
– Band playing: relates bands to concerts, indicating which ones will perform.
– Hall: details of the venues in which concerts can take place.

1 Redo Log Inspector v1.0: http://www.win.tue.nl/∼egonzale/projects/rlpm/
2 ProM: http://www.promtools.org
3 Disco: http://fluxicon.com/disco/

http://www.win.tue.nl/~egonzale/projects/rlpm/
http://www.promtools.org
http://fluxicon.com/disco/
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Fig. 4. Screenshot of the tool while splitting an event collection into traces.

– Seat: each of the seats available in a venue.
– Ticket: the product being sold to users. They link a concert to a specific seat

in a venue. Also, they refer to a booking if they have been acquired.
– Booking: objects created by customers when buying tickets.
– Customer: address, name and birth date. Each entry represents an user

account.
Tables may be linked to other tables by means of foreign keys. For instance,
the table ticket contains a foreign key named ticket concert fk : It associates the
column ticket:for concert to the primary key of table concert, specifically the
column concert:id. This field relates a ticket to a specific concert in a n : 1
relation, which means that a ticket must refer to a concert, but a concert can be
related to many tickets.

In this database, like in many other settings, only the last state of the process
is stored. This means we are able to answer questions of the following types:
1. How many concerts have been organized in the past?
2. Which venue has hosted most events in the last year?
3. What is the average number of tickets bought per customer in a month?

However, we would also like to find answers to other kinds of questions as well.
In particular, we wish to pose questions that do not focus so much on the data
facts, but on the underlying process that created and modified the data. Some
of these questions are:

Q1. Which are the steps followed by a user to book a ticket?
Q2. Do customers book tickets before all the bands were confirmed?
Q3. Do bands ever cancel their performances in concerts?
Q4. Are venues being reserved before or after the bands have confirmed their

performance?
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It is evident that in order to find answers the inclusion of additional fields in
the data schema would have been helpful. That data could be recorded explic-
itly in the database, adding timestamps to rows in every table and recording
historical data of operations. It would be the equivalent of explicitly recording a
log in the database. However, not every system has been designed to exploit the
benefits of data and process mining. In other words, there are situations where
we cannot rely on explicitly recorded logs of sorted events.

For instance, the fourth question could be answered querying the database
only if the timestamps of execution of every operation are being recorded. How-
ever, Figure 1 shows that such timestamps are not present in the data schema
of the proposed example. Something similar applies to the third question, which
inquires if bands can cancel their performance at concerts. This requires the
database to keep record of all the bands that were to perform in concerts and
also the ones that canceled, for instance, by means of a status flag. Unfortu-
nately the data schema does not store such information. What happens in case
of a cancellation is that the corresponding entry will be removed from the table
band playing. This makes it impossible to know afterward which bands were once
scheduled to perform but not anymore.

The focus of this section is to use database redo logs to answer the proposed
questions using the technique presented in this paper. To do so, a dataset4 of
8512 events has been generated based on a simulated environment interacting
with the Oracle database presented in Figure 1. CPN tools [12] was used to
model the creation of concerts and customers, the selling of tickets, and other
operations on the elements of the database. The activities of such a process
connect through a socket to a Java application managing the communication
with an Oracle database. This way the environment of the system is simulated.
This last one also generated the set of redo log files used to extract the events
in our dataset. In the remainder the four questions are answered step-by-step.

5.1 Which are the Steps Followed by a User to Book a Ticket?

In order to answer this first question, we need to obtain the process describing
the customer actions from the moment the selling portal is reached until the
moment the ticket is sold. To do so, a log that contains traces showing that
behavior has to be generated. This question will be answered in the next section
in conjunction with the second one for the sake of brevity.

5.2 Could Customers Book Tickets Before all the Bands were
Confirmed?

To answer this second question, two parts of the system must be involved: the
ticket booking by customers and the concert organizing parts. For the first part,
we can assume that the tables customer, booking and ticket must be involved in

4 http://www.win.tue.nl/∼egonzale/projects/rlpm/datasets/ticket-selling-dataset.
zip

http://www.win.tue.nl/~egonzale/projects/rlpm/datasets/ticket-selling-dataset.zip
http://www.win.tue.nl/~egonzale/projects/rlpm/datasets/ticket-selling-dataset.zip
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the process. Using the data schema in Figure 1, we see that tables customer and
booking are linked by means of the pair of primary and foreign keys customer pk
and booking customer fk (Figure 1.a). Also, the tables booking and ticket are
linked by means of the pair of keys booking pk and ticket booking fk (Figure 1.b).
Now, it is necessary to complete it with the concert organizing part. To do so,
we have to relate each ticket to the concert it belongs to, and the later one to the
bands playing. Observing Figure 1 we see that there is a relation between tables
ticket and concert by means of the pair of keys ticket concert fk and concert pk
(Figure 1.c). Also, tables concert and band playing share a relation by means of
keys concert pk and bp concert fk (Figure 1.d). Therefore, we should add these
three keys to the Trace ID Pattern TP = (TPA, TPK,ROOT ), resulting in the
following configuration:

– TPA = Ø,
– TPK = {customer pk, booking customer fk, booking pk,

ticket booking fk, concert pk, ticket concert fk, bp concert fk},
– ROOT = customer pk.

Given that we want to cover the process from the moment a customer enters
the system until the ticket is bought, it makes sense to select as root element of
our Trace ID Pattern the primary key customer pk in table customer. In other
words, the customer is the case we want to follow through the process.

After this, the splitting process that follows generates a log with 149 cases.
In this case the Inductive Miner [7] is used, and the log is replayed on it. Then,
the activity 44+BAND PLAYING+INSERT is highlighted, which filters the log
to show statistics using only the traces that contain the selected activity. The
result is the annotated model in Figure 5. In it we observe that an insertion
in the customer table can be followed either by modifications on it, or by an
insertion in the booking table. An update in the ticket table can only be preceded
by a booking creation. This means that, according to the evidence, the process
followed by a customer to buy a ticket is as follows: (1) Create an account, which
results in the insertion of a record in the table customer. (2) Create a booking,
inserting a record in the table booking. (3) Buy the selected ticket, updating the
booking id field in the desired record in the table ticket. It can be also observed
that modifications on the details of a customer profile can be made at almost
any point in time, but not between the insertion of a booking and the update
of a ticket. This suggests that both steps are performed automatically and in
a strict sequence (Q1). To answer the second question it is interesting to see
that insertions in the table band playing can happen at any moment, before or
after tickets are booked. This means that new bands are added to the concert
not only after a concert is created, but also after a ticket has been booked. This
does not require a causal relation in the sense that bands are added because
a ticket is booked. However, it shows that both activities can happen in that
order, answering the second proposed question (Q2).
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Fig. 5. Model of the ticket purchase and part of the concert organizing process.

5.3 Do Bands Ever Cancel Their Performance in Concerts?

To find out the answer to the third question, we should look at the band playing
table and see if any entry has been removed. This would not be possible when
just inspecting the current content of the database. Fortunately, thanks to the
redo logs, we can reconstruct the life-cycle of concerts. For the sake of brevity,
the answer will be provided using the same experiment to answer the fourth
question.

5.4 Are Venues Being Reserved Before or After the Bands have
Confirmed Their Performance?

To solve the fourth question, we need to see how halls are being assigned to
concerts at the same time that bands are being confirmed to perform on concerts.
To do so, we have to focus on tables concert, hall and band playing. Observing the
data schema in Figure 1, we see that tables concert and hall are linked by means
of the pair of primary and foreign keys concert hall fk and hall pk (Figure 1.e).
Also, there is a link between the tables concert and band playing by means of
the pair of keys concert pk and bp concert fk (Figure 1.d). Therefore, we will use
the four of them in our Trace ID Pattern TP = (TPA, TPK,ROOT ):

– TPA = Ø,
– TPK = {hall pk, concert hall fk, concert pk, bp concert fk},
– ROOT = concert pk.

Knowing that concerts are the main object in this view, concert pk will be
selected as the root element. Splitting the dataset using these settings generates
a log with 18 traces. Using the Inductive Miner and replaying the log, the anno-
tated model in Figure 6 is obtained. It is evident that no deletions of records on

Fig. 6. Model showing the process of organizing a concert.
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table band playing have been recorded. Therefore, as far as we can tell, none of
the bands ever canceled their performance within a concert (Q3). We can also
see that hall column in concerts can be updated before, after, or at the same
time that bands confirm their performance in concerts. Therefore, there are no
restrictions on the order of both events (Q4).

6 Conclusion

This work proposes to systematically use database redo logs as a new source of
event data. The benefits include the existence of a data model and the histori-
cal view we obtain from the database. This represents a considerable innovation
compared to the analysis of plain database content. To make sense of the events
and obtain logs, the new concepts of trace id pattern and trace id have been intro-
duced, which enable the discovery of transitive relations between data objects
and the causal dependencies of the data modifications. An innovative approach
to group the events in traces has been provided as well. Also, the feasibility of
the approach has been shown in the form of a prototype. This prototype has
been applied on a synthetic dataset to demonstrate its potential usefulness to
answer a range of business questions that could not be directly answered by
querying the database.

The technique is characterized by some drawbacks. First, the splitting algo-
rithm produces a log where the same event may appear in different traces. This
causes the existing process discovery algorithms to generate statistics that must
be interpreted from the view we selected on the process. This is due to the fact
that they consider events to be unique and only present in a single trace, when,
in our case, they can be repeated and be counted more than once. If not inter-
preted correctly, the numbers could lead to the wrong conclusions. Also, the
algorithm produces a number of traces that in some cases exceed the number of
original events. These traces need to be analyzed by the discovery algorithms to
produce models. This means that, in the end, we are going through the log many
times. It would be useful to reduce the analysis to a single pass through the event
collection to compute the structures needed by the discovery algorithms, e.g. a
Directly-follows Graph. The analysis of real-life event logs is an obvious next
task. Performing a case study on non-artificial redo logs will, hopefully, support
the value of the techniques presented in this paper.

References

1. van der Aalst, W.M.P.: Extracting event data from databases to unleash process
mining. In: vom Brocke, J., Schmiedel, T. (eds.) BPM - Driving Innovation in a
Digital World. Management for Professionals, pp. 105–128. Springer International
Publishing (2015)

2. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Rozinat, A., Verbeek, E.,
Weijters, T.: Prom: the process mining toolkit. In: Proceedings of the BPM Demon-
stration Track (BPMDemos 2009), Ulm, Germany, September 8, 2009



ProcessMining on Databases: Unearthing Historical Data from Redo Logs 385

3. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling busi-
ness operations and processes. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering 32(3), 3–9 (2009)

4. Engel, R., van der Aalst, W.M.P., Zapletal, M., Pichler, C., Werthner, H.: Mining
inter-organizational business process models from EDI messages: a case study from
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Abstract. This paper addresses the problem of explaining behavioral
differences between two business process event logs. The paper presents a
method that, given two event logs, returns a set of statements in natural
language capturing behavior that is present or frequent in one log, while
absent or infrequent in the other. This log delta analysis method allows
users to diagnose differences between normal and deviant executions of
a process or between two versions or variants of a process. The method
relies on a novel approach to losslessly encode an event log as an event
structure, combined with a frequency-enhanced technique for differencing
pairs of event structures. A validation of the proposed method shows
that it accurately diagnoses typical change patterns and can explain
differences between normal and deviant cases in a real-life log, more
compactly and precisely than previously proposed methods.

1 Introduction

Process mining is a family of methods to extract insights from business pro-
cess execution logs. One problem type addressed by process mining methods is
deviance mining [1]: understanding differences between executions that lead to a
positive outcome vs. those that lead to a negative outcome, such as understand-
ing what differentiates executions of a process that fulfill a service-level objective
vs. those that violate it.

In previous case studies [2,3], deviance mining has been approached using
model delta analysis. The idea is to apply automated process discovery tech-
niques to the traces of positive cases and to those of negative cases separately.
The discovered process models are visually compared to identify distinguishing
patterns. This approach does not scale up to complex logs. For example, Fig. 1
shows the models discovered by the Disco tool [4] for positive and negative cases
of a patient treatment log at an Australian hospital – where a positive execution
concerns a treatment that completes in less than a given timeframe. Manual
comparison of these models is tedious and error-prone, calling for an automated
method to distill differences that explain the observed deviance.
c© Springer International Publishing Switzerland 2015
H.R. Motahari-Nezhad et al. (Eds.): BPM 2015, LNCS 9253, pp. 386–405, 2015.
DOI: 10.1007/978-3-319-23063-4 26
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(a) Negative cases (b) Positive cases

Fig. 1. Model discovered from a hospital log for positive and negative cases

This paper approaches the problem of deviance mining via a log delta anal-
ysis operation defined as follows: Given two event logs L1 and L2, explain the
differences between the behavior observed in L1 and that observed in L2. As the
output is intended to inform business analysts, it should be compact and inter-
pretable. Accordingly, the proposed method produces a set of simple statements,
each capturing a behavior observed (frequently) in one log but not observed (or
observed less frequently) in the other.

The proposal relies on a novel approach to losslessly encode an event log
as an event structure [5]: a directed acyclic graph where nodes represent event
occurrences sharing a common history. We enhance this representation with
frequency information to capture how often a given event occurrence is observed
in the log. Given the frequency-enhanced event structures of two event logs, the
method calculates their differences based on an extended version of a technique
for event structure differencing [6]. The latter step leads to a set of statements
capturing behavior that is observed with some frequency in one log and with
lower frequency (or not at all) in the other log.

The proposal has been evaluated on artificial logs capturing different types of
change patterns [7] and combinations thereof, as well as on the hospital log from
which the models in Fig. 1 are generated. The evaluation puts forward advan-
tages of the proposed approach over an alternative method based on sequence
classification.
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The paper is structured as follows. Section 2 discusses related work and
introduces event structures. Sections 3 and 4 present the construction of event
structures from logs and their differencing for the purpose of log delta analysis.
Section 5 discusses the evaluation while Section 6 draws conclusions.

2 Background and Related Work

This section discusses previous work on deviance mining and introduces the
notion of event structure used in the rest of the paper.

2.1 Deviance Mining

Approaches to deviance mining can be classified into two categories [1]: model
delta analysis and sequence classification. As explained in Section 1, model delta
analysis [2,3,8] requires manual comparison of automatically discovered process
models. As such, it is error-prone and does not scale up to complex logs.

Sequence classification methods construct a classifier (e.g. a decision tree)
that can determine with sufficient accuracy whether a given trace belongs to
the positive or the negative class. The crux of these methods is the choice of
features. In this respect, these methods fall into three categories: activity-based
feature encoding, frequent sequence mining and discriminative sequence mining.
In activity-based feature encoding, each trace is encoded as a vector containing
one feature per activity referenced in the event log. The value of the feature
corresponding to activity A is the number of times A appears in the trace.
Frequent sequence mining methods [3,9,10] extract frequent patterns from the
set of positive cases and that of negative cases separately. A possible pattern is
that activity A occurs before activity B. Each pattern becomes a feature. The
value of a feature for a trace is the number of times the pattern in question occurs
in the trace. Discriminative sequence mining methods [11] operate similarly but
extract patterns based on their discriminative power: a pattern is selected if it
is a characteristic of positive cases but not of negative ones, or vice-versa.

In [1], we evaluated the above sequence classification methods on real-life
logs. We found that a discriminative sequence mining method outperformed
others (accuracy wise), but in all cases the obtained sets of rules were overly
complex. For the patient treatment log in Section 1, between 106 and 130 rules
are produced – each rule consisting of a conjunction of patterns possibly involving
multiple activities. This observation motivates the development of a method to
produce a compact set of statements explaining the differences between two
groups of traces (e.g. positive vs. negative).

The problem of deviance mining could in theory be addressed based on the
notion of behavioral profiles [12], where a process is represented via a matrix of
behavioral relations between pairs of task labels. The idea would be to construct
a behavioral profile for the normal cases and one for the deviant cases (as in
model delta analysis), and then to calculate a difference between the two matri-
ces. This approach however would be hindered by the fact behavioral profiles
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have limited expressive power: they sometimes fail to capture “task skipping”
behavior and cannot distinguish an acyclic process with a similar process with an
added cycle [12]. Thus the resulting difference statements would be incomplete.
To avoid this limitation, the log delta analysis method adopts a more powerful
representation of behavior, namely event structures.

2.2 Event Structures

A Prime Event Structure (PES) [5] is a graph of events, where an event e repre-
sents the occurrence of an action (e.g. task) in the modeled system (e.g. business
process). If a task occurs multiple times in a run, each occurrence is represented
by a different event. The order of occurrence of events is defined via binary
relations: i) Causality (e < e′) indicates that event e is a prerequisite for e′;
ii) Conflict (e#e′) implies that e and e′ cannot occur in the same run; iii) Con-
currency (e ‖ e′) indicates that no order can be established between e and e′.

Definition 1 (Labeled Prime Event Structure [5]). A Labeled Prime
Event Structure over the set of event labels L is the tuple E = 〈E,≤,#, λ〉
where
– E is a set of events (e.g. tasks occurrences),
– ≤ ⊆ E × E is a partial order, referred to as causality,
– # ⊆ E × E is an irreflexive, symmetric conflict relation,
– λ : E → L is a labeling function.

We use < to denote the irreflexive causality relation. The concurrency relation of
E is defined as ‖ = E2 \ (< ∪ <−1 ∪ #). Moreover, the conflict relation satisfies
the principle of conflict heredity, i.e. e#e′ ∧ e′ ≤ e′′ ⇒ e#e′′ for e, e′, e′′ ∈ E.

(a) BPMN

e0:A

e1:B e2:C e3:D

e4:E e5:E e6:E

(b) Prime event struc-
ture E 1

Fig. 2. Sample process model

For illustration, Fig. 10 presents side-by-side a BPMN process model and
a corresponding PES E 1. Nodes are labelled by an event identifier followed by
the label of the represented task, e.g. “e2:C” tells us that event e2 represents an
occurrence of task “C”. The causality relation is depicted by solid arcs whereas
conflict is depicted by dotted edges. For simplicity, transitive causal and hered-
itary conflict relations are not depicted. Every pair of events that are neither
directly nor transitively connected are in a concurrency relation. Note that three
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different events refer to the task with label “E”. This duplication is required to
distinguish the different states where task “E” occurs.

A state of an event structure (a.k.a. configuration) is characterized by the set
of events that have occurred so far. For example, set {e0:A, e1:B} – highlighted
in Fig. 2(b) – is the configuration where tasks A and B have occurred. In this
configuration, event {e3:D} can no longer occur because it is in conflict with
{e1:B}. Meanwhile, events {e2:C} and {e4:E} can occur, but the occurrence of
one precludes that of the other.

Definition 2 (Configuration). Let E = 〈E,≤,#, λ〉 be a prime event struc-
ture. A configuration of E is the set of events C ⊆ E such that
– C is causally closed, i.e. ∀e′ ∈ E, e ∈ C : e′ ≤ e ⇒ e′ ∈ C, and
– C is conflict-free, i.e. ∀e, e′ ∈ C ⇒ ¬(e#e′).

The local configuration of an event e ∈ E is the set e� = {e′ | e′ ≤ e}. Similarly,
the (set of) strict causes of an event e ∈ E is defined as e) = e� \ {e}.

Set inclusion forms a partial order on configurations. We denote by Conf(E )
the set of all possible configurations of E and by MaxConf(E ) the subset of
maximal configurations with respect to set inclusion. In the running example,
MaxConf(E 1) = {{e0, e1, e2, e5}, {e0, e1, e4}, {e0, e3, e6}}.

3 Constructing Event Structures from Logs

In an event log, events are related via a total order induced by their timestamps.

Definition 3 (Event log, Trace). Let L be an event log over the set of labels L ,
i.e. L ∈ B(L ∗). Let E be a set of event occurrences and λ : E → L a labelling
function. An event trace σ ∈ L is defined in terms of an order i ∈ [0, n − 1] and a
set of events Eσ ⊆ E with |Eσ| = n such that σ = 〈λ(e0), λ(e1), . . . , λ(en−1)〉.

Trace Ref N
A B C E t1 3
A C B E t2 2
A B E t3 2
A D E t4 3

Fig. 3. Event log

Consider the event log in Fig. 3. The event log consists of
10 traces, with three instances of trace t1 (cf. column “N”), two
instances of t2, etc. Herein, we write σ = 〈A,B,C,E〉 to refer to
any of the three instances of t1 such that Eσ = {e0, e1, e2, e3}
and {(e0,A), (e1,B), (e2,C), (e3,E)} ⊂ λ.

To construct an event structure from a log, we start by
transforming the log into a set of partially ordered runs by extracting concur-
rency relations between pairs of events. Several approaches have been proposed
to extract concurrency relations between pairs of events from an event log [13,14].
Here, we use the so-called alpha concurrency approach [14], but other approaches
can be applied instead. Alpha concurrency is a relation over event labels appear-
ing in a log. Specifically, two event labels a and b are alpha-concurrent if a is
sometimes observed immediately after b and vice-versa.

Definition 4 (Alpha concurrency [14]). Let L be an event log over the set
of event labels L and σ ∈ L be a log trace. A pair of tasks with labels a, b ∈ L
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are said to be in alpha directly precedes relation, denoted A ≺α(L) B, iff there
exists a trace σ = 〈λ(e0), λ(e1), . . . , λ(en−1)〉 in L, such that A = λ(ei) and
B = λ(ei+1). A pair of tasks A,B ∈ L are alpha concurrent, denoted A ‖α(L) B,
iff A ≺α(L) B ∧ B ≺α(L) A.

In the example log, B ≺α C because of trace t1 = 〈A,B,C,E〉 and C ≺α B
because of t2 = 〈A,C,B,E〉, hence B ‖α C. To construct partially ordered runs
from traces, we take as input an oracle χ that defines a concurrency relation
‖χ over event occurrences (as opposed to event labels). Specifically, we use the
concurrency relation ‖χ = {(e, e′) | λ(e) ‖α(L) λ(e′)} for an event log L and
its alpha concurrency relation ‖α(L). Given this, Def. 5 captures how traces are
transformed into partially ordered runs.

Definition 5 (Transformation of a trace into a partially ordered run).
Let L be an event log over the set of event labels L and ‖χ be a concurrency
relation. Moreover, let E be a set of event occurrences, λ : E → L a labelling
function. We say that event ei directly precedes event ei+1, denoted ei � ei+1, iff
there exists a trace σ = 〈λ(e0), λ(e1), . . . , λ(en−1)〉 in L with index i ∈ [0, n − 2].
Thus, tuple π = 〈Eπ,≤π, λπ〉 is the partially ordered run corresponding to trace
σ, induced by the concurrency relation ‖χ and the directly precedes relation �,
where:
– Eπ is the set of events occurring in σ,
– ≤π is the causality relation defined as ≤π = E2

π ∩ (�+\ ‖χ)∗, and
– λπ : Eπ → L is a labelling function, i.e. λπ = λ|Eπ

.
Πχ(L) is the set of partially ordered runs induced by ‖χ over the traces in L.

The crux of the transformation of a trace into a run is the computation of the
causality relation ≤π. Fig. 4 illustrates how this is done for t1 = 〈A,B,C,E〉. First,
Fig. 4(a) presents the direct precedes relation � for t1, which is directly derived
from the sequential order in the event trace. Fig. 4(b) presents the (irreflex-
ive) transitive closure of �, that is, �+. Note that the blue edges in Fig. 4(b)
correspond to the transitive relations.

A A A

B B B

C C C

E E E

(a) (b) (c)

Fig. 4. Transforma-
tion of t1 into π1

The set difference �+\ ‖χ results in removing the edge
connecting B with C as shown in Fig. 4(c). We can then
remove the edge connecting A with E (shown in grey) by
computing the transitive reduction of the causality rela-
tion. The concurrency relation ‖π for a partially ordered
run π is derived from ≤π, i.e. ‖π = E2

π \ (<π ∪ <−1
π ).

Observe that ‖π coincides with ‖χ.
A partially ordered run resembles a prime event struc-

ture, with the exception that it does not have conflicting
relations. This is because a run records the set of events
that have actually occurred in an execution. Fig. 5 shows
the set of partially ordered runs {π1, π2, π3} derived from the log in Fig. 3
and its corresponding alpha concurrency, where π1 encodes the traces t1 and
t2 and, therefore, is associated with 10 different cases. Similarly, π2 encodes t3,
π3 encodes t4 and correspond to two and three cases respectively.
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e0:A

e1:B e2:C

e3:E

f0:A

f1:B

f2:E

g0:A

g1:D

g2:E

(a) π1 (b) π2 (c) π3

Fig. 5. Partially ordered runs of
the event log in Fig. 3

The merging of runs Π(L) to derive a prime
event structure relies on an equivalence relation
∼. This relation partitions the set of events E =
∪π∈Π(L)Eπ, in a way that preserves the labelling
of events as well as their “computation context”.
Labelling preserving implies that all the events
in an equivalence class have the same label. The
“computation context” is again related with a
configuration. Informally, we require that if two
events e, e′ ∈ E are equivalent, written e ∼ e′,

all events in the local configuration of e have an equivalent event in the local
configuration of e′. As is customary, we write [e]∼ = {e′ | e ∼ e′} to denote the
equivalence class of event e and for simplicity, we write [S]∼ = {[e′]∼ | e ∈ S} to
denote the set of equivalence classes for all the events in the set S. The following
definition formalizes the intuition above.

Definition 6 (Configuration-based prefix merging equivalence).
Let ei ∈ Eπi

and ej ∈ Eπj
be event occurrences in two different partially ordered

runs. The configuration-based prefix merging equivalence is an equivalence rela-
tion ∼ over E, with the following properties:

(i) ∼ is a reflexive, transitive and symmetric relation,
(ii) ei ∼ ej is label-preserving, i.e. λ(ei) = λ(ej), and
(iii) ei ∼ ej is configuration preserving, i.e. [ei)]∼ = [ej)]∼.

We now define a transformation to derive a prime event structure from an
event log.

Definition 7 (Log-based Prime Event Structure). Let L be an augmented
event log. Let Π(L) be its set of partially ordered runs. The prime event structure
induced by equivalence relation ∼ is the tuple E (L)∼ = 〈E∼,≤∼,#∼, λ∼〉 s.t.
– E∼ = { [e]∼ | e ∈ ∪π∈Π(L)Eπ },
– ≤∼ = { ([e]∼, [e′]∼) | ∃π ∈ Π(L) : e ≤π e′ },
– ‖∼ = { ([e]∼, [e′]∼) | ∃π ∈ Π(L) : e ‖π e′ },
– #∼ = E2

∼ \ (≤∼ ∪ ≤−1
∼ ∪ ‖∼), and

– λ∼ = { ([e]∼, λ(e)) | [e]∼ ∈ E∼ }

{e0, f0,g0}:A

{e1, f1}:B {e2}:C {g1}:D

{ f2}:E {e3}:E {g2}:E

Fig. 6. PES induced by ∼
over the runs in Fig. 5

Let us now illustrate how the prime event struc-
ture for the set of runs in Fig. 5 is built. As usual,
we assume that ∅ ∈ ∼. It should be clear that
{e0, f0, g0} ∈ ∼: all those events share the label “A”;
the events in the strict causes of each of those events
form also an equivalence class (please consider that e0) = f0) = g0) = ∅);
and the causality relation is preserved (this result is trivial because only one
event has been considered so far). Note that [e0]∼ = [f0]∼ = [g0]∼ = {e0, f0, g0}.
Let us now consider the set of events sharing the label “B”, namely {e1, f1}.
Note that e1) = {e0} and f1) = {f0} and since [e0]∼ = [f0]∼, we can conclude
that {e1, f1} is configuration preserving. Moreover, the equivalence class {e1, f1}
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preserves causal order because e0 ≤π1 e1 and f0 ≤π2 f1. Fig. 6 depicts the entire
PES induced by ∼ over the set of runs in Fig. 5. To further illustrate the con-
cepts, let us consider the set of events sharing the label “E”, namely {e3, f2, g2}.
Please note that the partition {e3, f2, g2} has to be refined because their cor-
responding configurations do not coincide, e.g. [e3)]∼ = {[e0]∼, [e1]∼, [e2]∼} is
different to [f2)]∼ = {[e0]∼, [e1]∼}. Therefore, one equivalence class for each of
those events is required, i.e. {[e3]∼, [f2]∼, [g2]∼} ⊂ ∼. One can easily check that
the PES in Fig. 6 is isomorphic to the PES in Fig. 2(b) and, hence, the sample
event log could have been generated by executing the process model depicted in
Fig. 2(a).

h0:A i0:A

i1:B

{h0, i0}:A

{i1}:B {h1}:�

{i3}:�

(a) π4 (b) π5 (c) E (L̂2)∼

Fig. 7. Runs and PES for ̂L2

As formally proved later, Def. 7 ensures
that each input run is represented as a con-
figuration of the resulting PES. Unfortunately,
it does not necessarily warranties that a run
will be represented as a maximal configu-
ration. To illustrate this issue, consider the
event log L2 = {〈A〉, 〈A,B〉}. L2 gives rise
to two runs, namely π4 and π5, which are
shown in Fig. 7. Moreover, the subgraph in
red corresponds to E (L2). One can easily ver-
ify that Conf(E (L2) = {{[i0]∼}, {[i0]∼, [i1]∼}}
and MaxConf(E (L2)) = {{[i0]∼, [i1]∼}}. Since
h0 ∼ i0, we have that {[h0]∼} is also a configuration of E (L2). Somehow, we
can say that E (L2) generalizes the behavior observed in L2. In order to fix this
limitation, we append an artificial end event to each trace in the input log, giving
rise to an augmented log. Moreover, we use a special label, i.e. �, to keep track
of the artificial end events. Formally, for each σ = 〈λ(e0), . . . , λ(en−1)〉 from an
event log L, we build a new trace σ̂ = 〈λ̂(e0), . . . , λ̂(en−1), λ̂(en)〉 where en is a
fresh event and λ̂ = λ ◦ {(en,�)}. We write L̂ to refer to the augmented log of
L. Fig. 7(c) presents the PES for log L̂2. One can easily check that the artificial
event h1 preserves the maximality of the configuration corresponding to the run
π4. The following Theorem formalizes the intuition above and one of the major
contributions of this work: E (L̂) is a lossless representation of L.

Theorem 1 (Lossless representation). Let Π(L̂) be the set of partially
ordered runs of the augmented event log L̂, and E = ∪π∈ΠEπ its correspond-
ing set of events. Moreover, let E (L̂)∼ = 〈E∼,≤∼,#∼, λ∼〉 be the prime event
structure induced by the equivalent relation ∼.

For every run π ∈ Π(L̂) it holds [Eπ]∼ ∈ MaxConf(E (L̂)∼).

Proof. We first prove that [Eπ]∼ is a configuration of E (L̂)∼.
– (Causal closedness) Take e ∈ Eπ and f ∈ E \Eπ s.t. e ∼ f . By Def. 6(iii), we

have [e)]∼ = [f)]∼, that is, all strict causes of event e form also an equiva-
lence class ∼. Therefore, [e)]∼ ⊆ E∼ (cf. Def. 7). Recall e) = {e′ | e′ <π e}.
Hence, [Eπ]∼ is causally closed.
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– (Conflict freeness) Take e ∈ Eπ and f ∈ E\Eπ s.t. λ(e) = λ(f) and [f)]∼ ⊆
[e)]∼. Assume that [f ]∼#∼[e]∼. Recall [Eπ]∼ is causally closed and hence
consistent with ≤∼. Since ‖∼ is derived from ‖π, by construction of #∼, we
require [f ]∼ �= [e]∼ or equivalently ¬(f ∼ e). If [f)]∼ = [e)]∼, by Def. 6(ii)
it holds f ∼ e, reaching contradiction. Conversely, if [f)]∼ �= [e)]∼, then it
holds ¬(f ∼ e) and [f ]∼ �∈ [Eπ]∼. Hence, [Eπ]∼ is conflict free.

Next, we prove by contradiction that [Eπ]∼ is a maximal configuration of E (L̂)∼.
Let z ∈ Eπ be the artificial end event of π. Assume there exists a run π′ ∈
Π(L̂), with z′ ∈ Eπ′ , s.t. [Eπ]∼ ⊆ [Eπ′ ]∼, i.e. [Eπ]∼ is not maximal w.r.t.
⊆, and [Eπ′ ]∼ ∈ Conf(E∼). Note that [z)]∼ ⊆ E∼ and also [z′)]∼ ⊆ E∼. If
[z)]∼ = [z′)]∼, then z ∼ z′, which preserves maximality. Conversely, if [z)]∼ �=
[z′)]∼ (yet [z)]∼ ⊂ [z′)]∼), then ¬(z ∼ z′) and [z]∼#∼[z′]∼. Moreover, if
{[z]∼, [z′]∼} ⊆ [Eπ′ ]∼, then [Eπ′ ]∼ is not conflict free and, therefore, not a
configuration, reaching contradiction. Hence, [Eπ]∼ is maximal. ��

4 Comparing Event Structures

In this section, we describe our approach to identify and verbalize differences
between two logs. These logs can concern two logs with variance, two logs from
different organizations or one log with two classes: one regular, one deviant. The
control-flow of both variants of the log is compared and verbalized in Section 4.1.
Subsequently, the logs are transformed into a Frequency-enhanced Prime Event
Structure (FPES) in Section 4.2, which allows to verbalize the branching fre-
quency differences between the logs.

4.1 Control-Flow Comparison

In [6], we presented a technique for differencing pairs of event structures. This
technique performs a Partial Synchronized Product (PSP) of the event struc-
tures, which is a synchronized simulation starting from the empty configurations.
At each step, the events that can occur given the current configuration in each
of the two event structures (i.e. the enabled events) are matched. If the events
match, the simulation adds the matching events to the current configurations
and continues. If an enabled event in the current configuration of one event struc-
ture does not match with an enabled event in the current configuration in the
other event structure, a mismatch is declared. The unmatched event is “hidden”
and the simulation jumps to the next matching configurations.

Fig. 9 presents an excerpt of the PSP for E 1 and E 2, shown in Fig. 10 and
Fig. 8 respectively. Note that MaxConf(E 2) = {{f0, f1, f2, f4}, {f0, f3, f5}}.
Clearly, all maximal configurations of E 2 can be matched to configurations of
E 1. The right-hand leaf node in the PSP illustrates the matching of configuration
{e0, e1, e2, e5} from E 1 and {f0, f1, f2, f4} from E 2. There, the set m records the
fact that all the events in both configurations have been matched, lh records
that none of the events from E 1 (the one to the left of the “product”) has been
hidden, and rh records that no event from E 2 has been hidden. Similarly, the
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f0:A

f1:B f2:C f3:D

f4:E f5:E

Fig. 8. PES E 2

lh= ,0/ rh= / 0
m= {(e0 , f0)A ,(e1 , f1)B}

lh= ,0/ rh= / 0
m= {(e0 , f0)A ,(e1 , f1)B ,(e2 , f2)C}

lh= ,0/ rh= { f2:C}
m= {(e0 , f0)A ,(e1 , f1)B}

lh= ,0/ rh= / 0
m= {(e0 , f0)A ,(e1 , f1)B ,(e2 , f2)C ,(e5 , f4)E}

lh= ,0/ rh= { f2:C}
m= {(e0 , f0)A ,(e1 , f1)B ,(e4 , f4)E}

match B

match Crhide C

match Ematch E

Fig. 9. Fragment of PSP of the PESs in Figs. 2(b) and 3

leaf node at the left-hand side corresponds to the best matching of configurations
{e0, e1, e4} and {f0, f1, f2, f4}, respectively from E 1 and E 2. The cloud in the top
indicates that some states precede to the matching of a pair of events sharing the
label “B”. The label on the edge from the cloud to the node just below records
such matching. The configuration {e0, e1} enables the occurrence of e4:E, but
that occurrence precludes the occurrence of e2:C. This gives rise to a behavioral
mismatch, that is resolved by hiding f2:C. The red arrow in the PSP captures
this hiding: the event f2:C from E 2 (right-hand side model in the product) is
hidden. In the target box, m remains the same, i.e. no additional matching,
whereas rh records the hiding of f2:C. The reader is referred to [6] for further
details on the technique.

In [7], a number of simple change patterns are catalogued (shown in Table 1).
Each simple change will be used to identify the unique observation in the PSP,
which is subsequently translated into a statement in natural language. How-
ever, change R3 concerns a branching frequency change instead of a control-flow
change and will be discussed in Section 4.2. An overview of the control-flow
changes is presented in Table 2.

Table 1. Change patterns applied to the base model to produce the variants.

Insertion Resequentialization Optionalization
1. Add / remove 1. Loop 1. Parallel / sequence
2. Duplicate 2. Skip 2. Conditional / sequence
3. Substitute 3. Change branching frequency 3. Synchronize

4.2 Frequency-Enhanced Comparison

In addition to control-flow variance, differences in branching probabilities are
another type of variance that needs to be identified. To this end, we enhance the
PES of a log with the branching frequencies as follows.
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Table 2. Translation from PSP observations to natural language expressions.

Definition 8 (Frequency-enhanced Prime Event Structure (FPES)).
Let E (L)∼ = 〈E∼,≤∼,#∼, λ∼〉 be the prime event structure induced by equiva-
lence relation ∼ on the set of partially ordered runs Π(L) of log L. A frequency-
enhanced prime event structure is a tuple F (L)∼ = 〈E (L)∼,O,P〉 where

– O : E → N is a function that associates an event [e]∼ with the number
of times its event label occurs in the event log, and corresponds with the
cardinality of the equivalence class, i.e. O([e]∼) = |[e]∼|.

– P : E × E → [0, 1] is a function that associates a pair of events [e1]∼ and
[e2]∼ with the probability of occurrence of [e2]∼ given that event [e1]∼ has
occurred. This function is defined as:

P([e1]∼, [e2]∼) =
{
O([e2]∼)/O([e1]∼) if [e1]∼ <red

∼ [e2]∼
0 Otherwise

Fig. 10 presents the FPES for the log L that we have used as our running
example. For each event in the graph there is a grey circle close to the event
indicating the corresponding number of occurrences (i.e. O) on the input log.
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{e0, f0,g0}:A

{e1, f1}:B {e2}:C {g1}:D

{ f2}:E {e3}:E {g2}:E

0.7 0.5 0.3

0.29 0.71 1 1

10

3

32 5

7

5

Fig. 10. FPES F (L)

For instance, event {e2}:C occurs a total of
five times. This value can be tracked back to
the log as follows: e2 comes from run π1, which
in turn comes from traces t1 and t2. Since t1
and t2 represent three and two cases each, we
have a total of five occurrences. The branching
frequency (i.e. P) is also shown Fig. 10, with
labels close to the edge representing a direct
causal relation (i.e. <red

∼ ). Note that includ-
ing transitive causal relations during the ver-
balization would result in a large number of
difference statements. Most of them, however, would most likely be redundant.
Therefore, we only consider direct causal relations.

Algorithm 1. Obtain frequency differences
1: function obtainDifferences(F1, F2)
2: diffSet ← ∅
3: λ̄F1 ← getEventDepthLabelSet(F1); λ̄F2 ← getEventDepthLabelSet(F2)

4: BP1 ← getAverageBranchingProbabilitySet(F1, λ̄F1 )

5: BP2 ← getAverageBranchingProbabilitySet(F2, λ̄F2 )

6: for e, e′ ∈ EF1 s.t. (〈λ̄F1 [e], λ̄F1 [e
′]〉 �→ p1) ∈ BP1 do

7: for f, f ′ ∈ EF2 s.t. (〈λ̄F2 [f ], λ̄F2 [f
′]〉 �→ p2) ∈ BP2 do

8: if λ̄F1 [e] = λ̄F2 [f ] ∧ λ̄F1 [e
′] = λ̄F2 [f

′] ∧ p1 �= p2 then � Probability mismatch?

9: diffSet ← diffSet ∪ {(λ̄F1 [e], λ̄F1 [e
′], λ̄F2 [f ], λ̄F2 [f

′], p1, p2)}
10: end if
11: end for
12: end for
13: end function
14: function getAverageBranchingProbabilitySet(F , λ̄F )
15: sums ← ∅; probs ← ∅
16: for e, e′ ∈ EF s.t. e <red

F e′ do
17: sums[〈λ̄F [e], λ̄F [e′]〉] ← sums[〈λ̄F [e], λ̄F [e′]〉] + PF (e, e′) � ∅ is interpreted as 0
18: end for
19: for e, e′ ∈ EF s.t. (〈λ̄F [e], λ̄F [e′]〉 �→ p) ∈ sums do
20: probs[〈λ̄F [e], λ̄F [e′]〉] ← p / |{e′′ ∈ EF | e′′ < e′ ∧ λ̄F [e′′] = λ̄F [e]}|
21: end for
22: return probs
23: end function
24: function getEventDepthLabelSet(F)
25: return { 〈 e �→ (λF (e), |{e′ | e′ ≤ e ∧ λF (e) = λF (e′)}|) 〉 | e ∈ EF }
26: end function

The logs to be compared are each transformed into an FPES according to
Def. 8. Subsequently, Algorithm 1 is used to obtain the set of frequency dif-
ferences. As FPESs contain all event occurrences, repeated activities in a trace
show up as separate events in the FPES with shared labels. Hence, we first
create a set λ̄ for each FPES, which holds each label along with the depth of
the event occurrence in the respective run, determined based on the causality
relation between each of these events (lines 3 and 25). As such, labels that are in
conflict (and hence occur on different branches) will not be counted as consecu-
tive occurrences. Function getAverageBranchingProbabilitySet (lines 4,
5 and 14) calculates the average branching frequency of an activity based on
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the frequencies of occurrence of events. For instance, the branching activity may
occur in multiple mutually exclusive branches, whereas the originating activity
may also correspond to multiple event occurrences. As such, the frequencies of
the respective event occurrences of a particular label are summed (line 17) and
divided by the number of originating event occurrences that lead to an event
with that label (line 20).

Next a set of difference statements can be created between events using the
average frequency obtained. The differences are verbalized by referring to the
frequency of branching between two activities in one variant, versus the same
branching in the other variant. Consider the two event structures from Fig. 2(b)
and Fig. 8, which we refer to as variant 1 and variant 2 respectively. We are
interested in the frequency differences between event A and D. In variant 1, the
frequency is 0.5, while in variant 2 the frequency is 0.7. This results in the follow-
ing: (〈e0 �→ [A, 1]〉, 〈e3 �→ [D, 1]〉, 〈f0 �→ [A, 1]〉, 〈f3 �→ [D, 1]〉, 0.5, 0.7) ∈ diffSet.
Based on the diffSet, the branching frequency differences can be verbalized, as
shown in Table 3.

Table 3. Translation from FPES observations to natural language expressions.

Note that some differences between occurrence frequencies (R3) in the com-
pared logs may be insignificant (cf. for example branching frequencies of 43.1%
for variant 1 vs. 43.8% for variant 2). In addition, reported differences may
include activities that only occur very rarely, e.g. in only 0.3% of all process
instances. Accordingly, we apply a filter to the set of statements that removes
those referring to frequency differences below a user-specified threshold.
Complexity analysis. The complexity of the approach has several elements. The
transformation of the input event log into partially order runs (cf. Def. 5) is
dominated by the computation of the transitive closure of the causality relation.
This step has a complexity of O(|σm|3), where |σm| is the length of the longest
trace in the event log.

Prime event structures can be built using a partition-refinement approach
via a breadth-first traversal of the graph induced by the direct causal relation
of the event structure being computed. This traversal strategy guides the par-
titioning of events in a way that it eases the verification of the “preservation of
configurations” required by ∼ (cf. Def. 6(ii)). Checking “preservation of configu-
rations” is in worst case O(|E|2) and the breadth-first traversal is O(|E|·| <red

∼ |).
However, the complexity of this step is dominated by the computation of the
transitive reduction of the causality relation in the resulting event structure,
that is O(| <red

∼ |3), which is used in subsequent steps.
The above steps are polynomial. It turns out that the overall complexity

of the log-delta analysis method is dominated by the computation of the PSP,
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which relies on the well-known A* heuristic search algorithm. The state space
to be explored by A* is O(3|Conf(E1)|·|Conf(E2)|), since each configuration from
E1 is associated with each configuration from E2 via three possible operations
(i.e. match, lhide and rhide). However, this worst case complexity only occurs
when the event structures are completely different. Conversely, when the event
structures are identical, the heuristic search converges in linear time. In our
setting, the input logs are expected to exhibit a high overlap in behavior and
hence a reasonable performance.

5 Evaluation

We implemented the proposed method in the Apromore platform1. Using this
implementation, we conducted a two-pronged validation. First, using synthetic
datasets we assessed the method’s ability to diagnose variations corresponding to
typical process change patterns and combinations thereof. Second, using a real-
life log, we qualitatively assessed the difference diagnosis produced by the method
and compared it to rules produced using a sequence classification method.

5.1 Evaluation on Synthetic Logs

We generated synthetic logs by simulating BPMN process models using the
BIMP simulator2. As a base model, we used a textbook example of a loan
application process [15] comprising a representative set of control-flow patterns:
sequence, choice, skipping, parallelism and repetition (cf. Fig. 11). Subsequently,
we generated nine variants of this model by applying each of the simple change
patterns (Table 1). We performed a 1000-traces simulation of the base model
and each of its variants. Next, we applied the delta analysis method to compare
the log of the base model against the log of each variant.

Fig. 11. Base model (branching probabilities are shown inside circles)

1 Available at http://www.apromore.org/platform/tools
2 http://bimp.cs.ut.ee

http://www.apromore.org/platform/tools
http://bimp.cs.ut.ee
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Next, we generated 6 logs by combining the 9 simple change patterns into
composite (nested) changes. Specifically, we applied a randomly chosen change
pattern from one of the three categories (say “I”), then nested a second pattern
randomly chosen from another category (say “O”) inside the fragment modified
by the first pattern, and a third pattern randomly chosen from the last category
(“R”). This led to one composite change (and corresponding log) for each per-
mutation of the three categories. For example, a variant “IRO” was obtained by
adding an activity (“Insert”) then putting it in parallel with an existing activity
(“Resequencing’) and skipping the latter (“Optionalization”).
Results: Table 4 shows the diagnosis produced for each of the nine variants
corresponding to the simple changes. In all cases, the diagnosis matches the
corresponding change pattern. Each diagnosis contains one statement per task
affected by the change, e.g. in the case of R1 where the loop comprises three
tasks, the diagnosis contains three statements. In R3, the branching frequencies
in the diagnosis do not exactly match the ones in the BPMN diagrams, due to
the stochastic nature of the simulation.

Table 5 shows the diagnosis for three of the six composite changes. For space
reasons, we omit the other composite changes (all results are packaged with
the software tool). As expected, the composite changes lead to more difference
statements than the simple changes (cf. Table 4), but in every case the diagnosis
matches the corresponding change. Some difference statements refer to minor
variations in frequencies (e.g. one branch is taken 48.1% of times in one variant
and 49.2% in the other). This again comes from the stochastic nature of the
simulation. Such spurious statements can be filtered by setting the frequency
delta threshold to e.g. 10% (cf. Section 4.2).

Execution times: Each log comparison took between 10.06 and 11.18 seconds on
a laptop with Intel i7 2.5GHz, running JVM 8 with 16GB of allocated memory.

5.2 Evaluation on Real-Life Logs

We evaluated the method on the sub-logs of positive and negative cases of the
patient treatment process discussed in Section 1 (Fig. 1). Variant 1 (448 cases,
7329 events) corresponds to the negative (slow) cases, while variant 2 (363 cases,
7496 events) corresponds to the positive cases. The logs cover a period of 1.5
years.

Results: An evaluation of sequence classification methods using this log is pre-
sented in [1], where it is shown that sequence classification methods require
between 106 and 130 statements to explain the differences between these sub-
logs. In contrast, our method requires 48 statements to explain all differences
(without filtering) and 42 statements with a frequency delta threshold of 20%.
Moreover, the statements produced by sequence classification approaches pro-
duce rules referring to the number of occurrences of a given event or event pattern
in a variant, without specifying where exactly the difference occurs. For example,
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Table 4. Simple changes and their verbalization.

I1

In variant 2, “Assess eligibility” occurs after “Assess loan risk” and “Appraise property”, while in
variant 1 it does not occur.

I2

In variant 2, after the occurrence of “Verify repayment agreement”, “Assess loan risk” is repeated,
while in variant 1 it is not.

I3

In variant 2, after the occurrence of “Send home insurance quote”, “Verify repayment agreement”
is substituted by “Replaced activity”.

R1

In variant 2, “Check credit history” is repeated multiple times, while in variant 1 it is not.

In variant 2, “Assess loan risk” is repeated multiple times, while in variant 1 it is not.

In variant 2, “Appraise property” is repeated multiple times, while in variant 1 it is not.

R2

In variant 2, “Prepare acceptance pack” can be skipped, while in variant 1 it cannot.

In variant 2, “Check if home insurance quote is requested” can be skipped, while in variant 1 it
cannot.

R3

In variant 1, after the occurrence of “Check if home insurance quote is requested” the branching
frequency to “Send home insurance quote” is 50.2%, while in variant 2, after the occurrence of
“Check if home insurance quote is requested” the branching frequency to “Send home insurance
quote” is 24.7%.

O1

In variant 1, “Assess loan risk” and “Appraise property” are in parallel, while in variant 2, “Assess
loan risk” precedes “Appraise property”.

O2

In variant 1, “Check credit history” precedes “Assess loan risk”, while in variant 2, “Check credit
history” and “Assess loan risk” are mutually exclusive.

O3

In variant 1, “Appraise property” is in parallel with “Check credit history” and “Assess loan risk”,
while in variant 2, “Appraise property” is in parallel with “Check credit history”.
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Table 5. Composite changes and their verbalization.

IRO

In variant 2, after the occurrence of “Approve application”, “Verify repayment agreement” is
repeated, while in variant 1 it is not.

In variant 2, “Prepare acceptance pack” is repeated after “Approve application”, while in variant
1 it is not.

In variant 2, “Added activity” occurs after “Verify repayment agreement” and “Prepare acceptance
pack”, while in variant 1 it does not occur.

In variant 1, after the 1st occurrence of “Verify repayment agreement” the branching frequency
to the 1st occurrence of “Approve application” is 48.1%; while in variant 2, after the 1st occur-
rence of “Verify repayment agreement” the branching frequency to the 1st occurrence of “Approve
application” is 13.6%

ORI

In variant 2 “Check if home insurance quote is requested” is repeated multiple times, while in
variant 1 it is not.

In variant 1 “Send home insurance quote” can be skipped, while in variant 2 it is always executed.

In variant 2 “Send home insurance quote” is repeated multiple times, while in variant 1 it is not.

In variant 2 “Verify payment agreement” is repeated multiple times, while in variant 1 it is not.

In variant 2 “Added activity” occurs after “Send home insurance quote”, while in variant 1 it does
not occur.

In variant 1, after the occurrence of “Check if home insurance quote is requested” the branching
frequency to “Send home insurance quote” is 47.7%; while in variant 2, after the execution of
“Check if home insurance quote is requested” the branching frequency to “Send home insurance
quote” is 15.9%.

In variant 1, after the 1st occurrence of “Verify repayment agreement” the branching frequency
to the 1st occurrence of “Approve application” is 48.1%; while in variant 2, after the 1st occur-
rence of “Verify repayment agreement” the branching frequency to the 1st occurrence of “Approve
application” is 32.0%.

In variant 1, after the execution of “Send home insurance quote” the branching frequency to the
1st occurrence of “Verify repayment agreement” is 100.0%; while in variant 2, after the execution of
“Send home insurance quote” the branching frequency to the 1st occurrence of “Verify repayment
agreement” is 42.8%.

In variant 1, after the 1st occurrence of “Verify repayment agreement” the branching frequency
to the 1st occurrence of “Cancel application” is 51.9%; while in variant 2, after the 1st occur-
rence of “Verify repayment agreement” the branching frequency to the 1st occurrence of “Cancel
application” is 23.2%.

RIO

In variant 2, after the occurrence of “Send home insurance quote”, “Prepare acceptance pack” is
repeated, while in variant 1 it is not.

In variant 1, after the execution of “Check if home insurance quote is requested” the branching
frequency to the 1st occurrence of “Verify repayment agreement” is 52.3%; while in variant 2, after
the execution of “Check if home insurance quote is requested” the branching frequency to the 1st
occurrence of “Verify repayment agreement” is 71.5%.

In variant 1, after the 1st occurrence of “Verify repayment agreement” the branching frequency
to the 1st occurrence of “Approve application” is 48.1%; while in variant 2, after the 1st occur-
rence of “Verify repayment agreement” the branching frequency to the 1st occurrence of “Approve
application” is 49.2%.

In variant 1, after the 1st occurrence of “Verify repayment agreement” the branching frequency
to the 1st occurrence of “Cancel application” is 51.9%; while in variant 2, after the 1st occur-
rence of “Verify repayment agreement” the branching frequency to the 1st occurrence of “Cancel
application” is 50.8%.
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using the approach in [9], the following statements are produced – where “Nurs-
ing Progress Notes”, “Nursing Primary Assessment”, etc. refer to the number of
occurrences of the corresponding tasks3:

– IF “Nursing Progress Notes” > 7.5 THEN variant 1.
– IF “Nursing Progress Notes” ≤ 7.5 AND “Nursing Primary Assessment” > 1.5

THEN variant 2.
– IF “Nursing Progress Notes” ≤ 5.5 AND “Pre Arrival Note” ≤ 0.5 AND “Blood

tests” ≤ 1.5 THEN variant 2.

Meanwhile, our method produces statements that point to the exact state in the
process where a behavioral difference occurs. For example:

– In variant 1, “Nursing Primary Assessment” is repeated after “Medical Assign
Start” and “Triage Request”, while in variant 2 it is not.

– In variant 2, “Blood tests” occurs after “Triage Request”, while in variant 1 it does
not occur.

– In variant 1, after the 1st occurrence of “Pathology” the branching frequency to the
2nd occurrence of “Nursing Primary Assessment” is 15.0%, while in variant 2, after
the 1st occurrence of “Pathology” the branching frequency to the 2nd occurrence
of “Nursing Primary Assessment” is 33.3%.

Execution time: The comparison of the two variants of the hospital log took 7.82
seconds, which is in the same order of magnitude as in the synthetic logs.

6 Conclusion

The paper presented a method for diagnosing the differences between two event
logs via natural language statements capturing behavior present in one log but
not in the other. This diagnostics is built on top of a lossless encoding of logs
in the form of frequency-enhanced event structures. Based on this encoding, the
method detects and diagnoses mismatching behavior, specifically: (i) events that
occur in one log but not in the other; (ii) events occurring with different frequen-
cies; (iii) events repeated in one log but not in the other; and (iv) behavioral
relations that hold in one log but not in the other.

The validation on synthetic logs shows that the method accurately diagnoses
typical change patterns, while the validation on a real-life log shows that it can
explain differences between normal and deviant executions more compactly and
precisely than sequence classification techniques considered in prior work (over
60% fewer statements).

A limitation of the method is that it does not fully recognize cyclic behavior.
While the method detects that an activity occurs multiple times in traces of
one log but not in those of the other, it does not identify the boundaries of

3 Even though the number of occurrences is always an integer, some rules contain
decimals because the decision tree learning algorithm may use decimals as split
thresholds.



404 N.R.T.P. van Beest et al.

cycles. This leads to multiple difference statements concerning the same cycle
(cf. change R1 in Table 4). Another limitation is that the method treats the
input log as consisting of sequences of event labels, ignoring timestamps and
event payloads. Hence, directions for future work include designing cycle-aware,
temporal and data-aware extensions of the method.

The current transformation from traces to partially ordered runs relies on the
alpha concurrency oracle. While useful in relatively simple scenarios, this oracle
can sometimes confuse concurrency with loops [14]. Another direction for future
work is to comparatively evaluate this oracle against alternative ones such as
the one in [13].

Finally, we plan to evaluate the method with domain experts so as to assess
the usefulness of the generated statements for understanding deviance in prac-
tical scenarios.
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Abstract. Business processes are prone to continuous and unexpected
changes. Process workers may start executing a process differently in
order to adjust to changes in workload, season, guidelines or regulations
for example. Early detection of business process changes based on their
event logs – also known as business process drift detection – enables
analysts to identify and act upon changes that may otherwise affect pro-
cess performance. Previous methods for business process drift detection
are based on an exploration of a potentially large feature space and in
some cases they require users to manually identify the specific features
that characterize the drift. Depending on the explored feature set, these
methods may miss certain types of changes. This paper proposes a fully
automated and statistically grounded method for detecting process drift.
The core idea is to perform statistical tests over the distributions of runs
observed in two consecutive time windows. By adaptively sizing the win-
dow, the method strikes a trade-off between classification accuracy and
drift detection delay. A validation on synthetic and real-life logs shows
that the method accurately detects typical change patterns and scales
up to the extent that it works for online drift detection.

1 Introduction

Business processes are prone to evolution in response to various factors, includ-
ing changes in the regulatory environment, competitive environment, supply,
demand and technology capabilities, as well as seasonal factors. Some process
changes are planned and documented, but others may occur unexpectedly and
remain unnoticed by some process stakeholders. For example, this may be the
case of changes undertaken by the initiative of individual process workers in
order to adapt to variations in workload or in resource capacity, changes brought
about by replacement of human resources, changes in the frequency of certain
types of (problematic) cases, or exceptions that in some cases give rise to new
workarounds that over time solidify into norms. Undocumented process changes
like those described above may over time affect process performance.
c© Springer International Publishing Switzerland 2015
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In this setting, process analysts and managers require methods and tools that
allow them to detect and pinpoint process changes as early as possible. Business
process drift detection [1–5] is a family of process mining techniques to detect
changes based on observations of business process executions recorded in event
logs consisting of traces, each representing one execution of the business process.

Existing methods for business process drift detection are based on the idea
of extracting features (e.g. patterns) from traces. One possible feature is for
example that task A occurs before task B in the trace, while another type of
feature is for example that B occurs more than once in the trace. To achieve
a suitable level of accuracy, these techniques either explore large feature spaces
automatically or they require the users themselves to identify the specific features
that are likely to characterize the drift – implying that the user already has an
a priori idea of the characteristics of drift. In all cases, these methods may miss
certain types of changes that are not covered by the types of features employed.
Furthermore, the scalability of these techniques is hindered by the need to extract
and analyze a potentially large set of high-dimensional feature vectors. As a
result, existing techniques are not suitable for real-time drift detection.

This paper proposes a fully automated and scalable method for detecting
concept drift in business process event logs. The core idea is to perform statistical
hypothesis testing over the distributions of runs observed in two consecutive time
windows. The underpinning assumption is that if a change occurs at a given time
point, the distribution of runs before and after this time point will be statistically
different, provided that the number of traces in the time window is sufficiently
large for statistical testing. By adaptively sizing the window, the method strikes
a trade-off between classification accuracy (F-score) and drift detection delay.
The proposed method has been empirically evaluated on synthetic and real-life
logs in order to assess its accuracy and scalability.

The paper is structured as follows. Section 2 discusses related work. Section 3
introduces the proposed method while Sections 4 and 5 present its evaluation
on synthetic and real-life logs. Section 6 concludes the paper.

2 Related Work

Bose et al. [1,3] propose a method to detect process drifts based on statistical
testing over feature vectors. This method is however not automated. Instead, the
user is asked to identify the features to be used for drift detection, implying that
the user has some knowledge of the possible nature of the drift. Furthermore,
given the types of features supported, this method is unable to identify certain
types of drifts such as inserting a conditional branch or a conditional move.
Finally, this method requires the user to set a window size for drift detection.
Depending on how this parameter is set, some drifts may be missed. This latter
limitation is partially addressed in a subsequent extension [4], which introduces a
notion of adaptive window. The idea is to increase the window size until it reaches
a maximum size or until a drift is detected. However, this latter method requires
that the user sets a minimum and a maximum window size. If the minimum
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window size is too small, minor variations (e.g. noise) may be misinterpreted as
drifts (false positives). Conversely, if the maximum window size is too large, the
execution time is affected and some drifts may go undetected.

Accorsi et al. [5] propose a drift detection method based on trace clustering.
The idea is to cluster the traces based on the average distance between each
pair of activities in the traces. Similar to Bose et al. [1,3], this method heavily
depends on the choice of window size, such that a low window size leads to false
positives while a high window size leads to false negatives (undetected drifts), as
drifts happening inside the window go undetected. In addition the method is not
designed to deal with loops, and may fail to detect types of changes that do not
cause significant changes to the distances between activity pairs, e.g. changes
involving an activity being skipped.

Carmona et al. [2] propose another process drift detection method based on
an abstract representation of the process as a polyhedron. This representation
is computed for prefixes in a random sample of the initial traces in the log. The
method checks the fitness of subsequent prefixes of traces against the constructed
polyhedron. If a significant number of these prefixes do not lie in the polyhedron,
a drift is declared. To find a second drift after the first one, the entire detection
process has to be executed from the start, thus hindering on the scalability of
the method. In experiments we conducted with the logs used in Sections 4 and 5,
the implementation of this method took hours to complete. Another drawback
of this method is its inability to pinpoint the exact moment of the drift.

Burattin et al [6] address the problem of online discovery of process models
from event streams. The goal is to discover a process model from the log and to
update the discovered process model as new events are produced. The authors
adapt an automated process discovery method, namely the Heuristics Miner, so
as to handle incremental updates. Our proposal is complementary as it allows
drifts to be detected accurately and efficiently, and can be used as an oracle to
identify points in time when the process model should be updated.

The problem of drift detection has also been studied in a broader context in
the field of data mining [7], where a widely studied challenge is that of designing
efficient learning algorithms that can adapt to data that evolves over time (a.k.a.
concept drift). This includes for example changes in the distributions of numer-
ical or categorical variables. However, the methods developed in this context
deal with simple structures (e.g. numerical or categorical variables and vectors
thereof), while in business process drift detection we seek to detect changes in
more complex structures, specifically behavioral relations between tasks (concur-
rency, conflict, loops). Thus, methods from the field of concept drift detection
in data mining cannot be readily transposed to business process drift detection.

3 Drift Detection Method

From a statistical viewpoint, the problem of business process drift detection
can be formulated as follows: identify a time point when there is a statistically
significant difference between the observed process behavior before and after this
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point. A key design choice to turn this formulation into a decision procedure is to
define what we mean by a difference in the observed process behavior. If we turn
around this problem, the question becomes when are two processes the same? [8].
A number of equivalence notions have been proposed to address this question,
borrowed from the field of concurrency theory [9]. One widely accepted notion
of process equivalence is trace equivalence: two processes are the same if they
have the same set of traces, thus they are different if their set of traces exhibits
a (statistically significant) difference. However, this trace-based representation
can be over-sensitive in our context because it does not capture concurrency.
Indeed, any significant variation in the frequency of relative ordering of two
activities that are anyways in parallel is treated as a drift. For example, if two
activities b and c are in parallel, any significant variation in the frequency of
occurrence of b followed by c vs. c followed by b gives rise to a drift, even though
the parallel relation between these activities still holds. From this perspective,
a more suitable approach is to reason in terms of runs (a.k.a. configurations)
of a process, where concurrency is explicitly captured. For example, the two
traces abcd and acbd characterize the process where a is followed by b and c in
parallel and these are followed by d. In a run-based representation, only one run is
needed to represent both traces: the run where a is followed by b and c in parallel
and these are followed by d. As business processes typically contain concurrent
activities, we opt for a run-based representation of logs and thus a notion of
run-equivalence, known as configuration equivalence or pomset equivalence [9].

Given the above, we map the problem of process drift detection to that of
finding a time point such that the set of runs before this point is statistically
different from the set of runs after (for a given time window size). This formu-
lation leads to a two-staged approach. First, we calculate a set of runs from a
given sub-log, and then we apply statistical testing to find significant differences
between the adjacent sets of runs. The next two sub-sections discuss these two
stages in turn, while the third sub-section discusses the window size.

3.1 From Event Logs to Partial Order Runs

An event log consists of a set of traces, each capturing the sequence of events for
a given case of the process ordered by timestamp. For example, L =

[
σ2
1 , σ

3
2

]
,

where σ1 = 〈a, b, c, d〉 and σ2 = 〈a, c, b, d〉, defines a log containing 5 traces and a
total of 20 events (for simplicity we used the simple event log representation [10]).
It is formally defined as follow:

Definition 1 (Event log, Trace). Let L be an event log over the set of labels
L, i.e. L ∈ B(L∗). Let E be a set of event occurrences and λ : E → L a labeling
function. An event trace σ ∈ L is defined in terms of an order i ∈ [0, n − 1] and
a set of events Eσ ⊆ E with |Eσ| = n such that σ = 〈λ(e0), λ(e1), . . . , λ(en−1)〉.

While a trace defines a total order of events, encoding the concurrency rela-
tionship in it results into a partial order run. For simplicity, in the following we
formalize the concurrency relationship using the Alpha concurrency from [11]. It
is possible however to use a more accurate definition of concurrency such as the
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Alpha+ [12] or Alpha++ [13], or the one proposed in [14]. These alternative defi-
nitions do not suffer from the issue of confusing concurrency with short loops [12].

Definition 2 (Alpha concurrency). Let L be an event log over the set of
event labels L and σ ∈ L be a log trace. A pair of tasks with labels a, b ∈ L
are said to be in alpha directly precedes relation, denoted A ≺α(L) B, iff there
exists a trace σ = 〈λ(e0), λ(e1), . . . , λ(en−1)〉 in L, such that A = λ(ei) and
B = λ(ei+1). We say that a pair of tasks A,B ∈ L are alpha concurrent, denoted
A ‖α(L) B, iff A ≺α(L) B ∧ B ≺α(L) A.

Note that the Alpha concurrency is a symmetric relation, and is applied over
labels and not over event occurrences. For instance, we can identify that b ≺α c
from trace σ1 = 〈a, b, c, d〉, and c ≺α b from trace σ2 = 〈a, c, b, d〉. Therefore, b
and c are considered to be parallel, noted b ‖α c.

In the following, we assume there exists an oracle χ which provides the con-
currency relation ‖χ. We will consider that ‖χ = {(e, e′) | λ(e) ‖α(L) λ(e′)} for
an event log L and its alpha concurrency relation ‖α(L).

As mentioned before, based on the concurrency relationship a trace is (loss-
lessly) transformed to a partial order representation of its events. Definition 3
describes formally how, given a relation ‖χ, a trace can be transformed into a
partially ordered run.

Definition 3 (Transformation of a Trace Into a Run). Let L be an event
log over the set of event labels L and ‖χ be the concurrency relation provided by
an oracle χ. Moreover, let E be a set of event occurrences, λ : E → L a labelling
function. We say that event ei directly precedes event ei+1, denoted ei � ei+1,
iff there exists a trace σ = 〈λ(e0), . . . , λ(e1), . . . , λ(en−1)〉 in L with an order
i ∈ [0, n − 1]. Therefore, the tuple π = 〈Eπ,≤π, λπ〉 is the partially ordered run
corresponding to trace σ, induced by the concurrency relation ‖χ and the directly
precedes relation �, where:
– Eπ is the set of events occurring in σ,
– ≤π is the causality relation defined as ≤π = E2

π ∩ (�+\ ‖χ)∗,1 and
– λπ : Eπ → L is a labelling function, i.e. λπ = λ|Eπ

.
We write Πχ(L) to denote the set of all partially ordered runs induced by ‖χ

over the set of traces in L.

a

b c

d

Fig. 1. Example of a
run (π1)

In order to illustrate the operation of building a run
from a trace, let us consider the example event log L
and apply the definition step-by-step. We first compute
the directly precedes relationship � by representing the
sequencing captured by the event traces, resulting in the
set {(aσ1 , bσ1), (bσ1 , cσ1), (cσ1 , dσ1), (aσ2 , cσ2), (cσ2 , bσ2),
(bσ2 , dσ2)}. Second, we compute the (irreflexive) transitive
closure �+ by adding to the previous set the following new
relations: {(aσ1 , cσ1), (bσ1 , dσ1), (aσ1 , dσ1), (aσ2 , bσ2), (cσ2 ,

1 + indicates the transitive closure and ∗ indicates the transitive reduction of a
relation.
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dσ2), (aσ2 , dσ2)}. Third, we compute the concurrency relation ‖χ, and obtain
{(b, c)}. Forth, we compute the causality relation ≤π1 for the run π1 correspond-
ing to trace σ1 by computing set �+\ ‖χ, which leads to removing the relation
(bσ1 , cσ1). Similarly, we remove (cσ2 , bσ2) for ≤π2 for run π2 from σ2. Finally, we
remove the unnecessary transitive relations (aσ1 , dσ1) for π1 and (aσ2 , dσ2) for
π2 by applying the transitive reduction of the causality relation.

The result of this transformation applied on σ1 = 〈a, c, b, d〉 is the run
π1 defined by the following causality relation ≤π1= {(a, b), (a, c), (b, d), (c, d)}
implicitly inferring that b ‖χ c (cf. Figure 1). Since each transformation of a
trace in L results in the exact same run represented by π1, we obtain that
Π(L) =

[
π5
1

]
.

Armed with this definition of run, we treat an event log as a continuous
stream of traces. For each new trace we transform it to a run based on the alpha
relationship that is dynamically computed on the basis of the traces observed
until that point. Thus, the stream of traces is transformed into a stream of runs.

3.2 Statistical Testing Over Runs

In order to detect a drift in a stream of runs, we monitor any statistically sig-
nificant change in the distribution of the most recent runs. This test is done on
two populations of the same size built from the most recent runs in the stream.
Basically the most recent runs are divided into a reference (less recent) and a
detection (more recent) populations. Then, we evaluate the statistical hypothesis
of whether or not the reference and detection populations are similar.

In this regard, we define two juxtaposed sliding windows, namely the refer-
ence and detection windows of length w, forming together the composite window
of 2w most recent runs. Figure 2 depicts the two sliding windows over a stream
of runs with a drift point. For every new run is observed in the stream, we slide
both the reference and detection windows to the right in order to read the new
run and perform a new statistical test. We keep iterating this process as long
there are new runs observed in the stream.

Fig. 2. Statistical test over two sliding windows

Since there is no a-priori knowledge of the run distributions (and their param-
eters) within the reference and detection windows population, we apply a non-
parametric hypothesis statistical test. Moreover, given that an observation of the
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statistical variable is a run, the statistical test has to be applicable to a categor-
ical variable. For these reasons, we selected the Chi-square test of independence
between two variables.

The goal of a two-variable Chi-square test is to determine whether the refer-
ence variable and detection variable are similar. The reference variable (resp., the
detection variable) is represented by the observations from the reference window
(resp., the detection window). A contingency matrix is built to report the fre-
quencies of each distinct run in each window. The Chi-square test is performed
on this contingency matrix. The result of the test is the significance probability
(the P–value). A drift is detected when the P–value is less than the significance
level α (the threshold), and localized at the point of juxtaposition of the refer-
ence and detection windows. The value of α is set to the typical value of the
Chi-square statistical test, which is 0.05 [15].

The delay d shown in Figure 2 is a notion from concept drift in data min-
ing [16]. It is not the distance between the actual drift and the location where
the drift is detected. Rather, it indicates how long it takes for the statistical test
to detect the drift after it has occurred, and is measured as the number of runs
between the drift and the end of the detection window.

Since any statistical test is subject to sporadic stochastic oscillations, we
introduced an additional filter to discard abrupt drops in the P–value. An abrupt
stochastic oscillation is caused by the noise present in the event log, e.g. in the
form of infrequent events or data gaps. Accordingly, we detect a drift only if
a given number φ of successive statistical tests have a P–value < α. In other
terms, a persistent P–value under the threshold is much more reliable than a
sparse value happening abruptly. Our tests showed that a value of φ equal to w/3
provides the best results in terms of accuracy. More sophisticated approaches to
filter out stochastic oscillations are however available, e.g. from the financial
domain [17], and could be used instead.

The only independent parameter that needs to be manually set is the window
size w. Below we discuss a technique to automatically modify this parameter as
new runs are observed at runtime.

3.3 Adaptive Window

As discussed in Section 2, the choice of window size is critical in any drift detec-
tion method as a small window size may lead to false positives while a large one
may lead to false negatives as well difficulty in locating the exact point of the
drift. Our method strikes this trade-off by adapting the window size in order to
have a more reliable statistical test. It is inspired by [18], where the authors pro-
vide rigorous guarantees on the performance of the adaptive window technique.

Our method is motivated by the fact that a low variation does not need
too many data points to remain statistically representative, whereas a higher
variation would need more data points to be statistically representative. In other
words, if a high (resp. low) variation is captured within the composite window
then we will need more (resp. less) observations to statistically express this
distribution, and this is done by increasing (resp. decreasing) the window size.
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The variation (named variability as well) of a statistical variable is a concept
that aims to measure the dispersion of the observations. Regarding categorical
data, [19] defined a set of properties and proposed a set of measures of variability
(that can be alternatively used). We simply measure the variability of a given
composite window by dividing the number of distinct runs (categories) by the
number of the runs in this composite window (number of observations). In order
to keep this rate constant from a statistical test to the next one, then the sliding
composite window size needs to be adjusted if the number of distinct runs varies.
Thus the evolution of the distinct number of runs over two consecutive statistical
tests is captured and replicated on the window size based on a simple cross-
multiplication.

Formally, given two consecutive statistics tests T1 and T2, the evolution ratio
between T2 and T1 is defined as the ratio between the numbers of distinct runs
in the composite window of T2 over the number of distinct runs in the composite
window of T1. If the evolution ratio is equal to 1, this means that there was
no evolution in the variation between T1 and T2. However, an evolution ratio
less than 1 means that there is less variation in the T2 composite window as
compared to T1, whereas an evolution ratio greater than 1 means the opposite.

The composite window size is adjusted according to the evolution ratio,
specifically the new window size is equal to the current size multiplied by
the ratio (cross-multiplication), i.e. nextWindowSize = currentWindowSize ·
evolutionRatio. Every time that the reference and detection windows are shifted
forward to incorporate a new run in the stream, the method adjusts the window
size based on this formula. In order to initialize the procedure, we start with a
given window size, which can be set empirically as discussed in the next section.

4 Evaluation on Synthetic Logs

We implemented the proposed method on top of the Apromore platform2 and
used this tool to assess the goodness of our method in terms of accuracy and
scalability in a variety of settings. This tool can read a complete event log or a
continuous stream of event traces. Each new trace is used to dynamically update
the alpha-relationships for each pair of events, and then transformed to a partial
order run, resulting in a stream of runs. This stream of runs is then used as
input for the statistical test.

4.1 Setup

To assess accuracy we used two established measures in concept-drift detection
in data mining [16], namely the F-score, measured as the harmonic mean of
recall and precision, and the mean delay. The latter, computed as the average
number of log traces after which a drift is detected, not only measures how late
we detect the drift with regard to where it actually happens, but it also indicates
how far in the log traces are read to be able to detect a drift.
2 Available at http://apromore.org/platform/tools

http://apromore.org/platform/tools
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To simulate the presence of a drift in a log, we generated a benchmark of 72
event logs by varying different parameters as follows. First, we used a textbook
example of a business process for assessing loan applications [20] as the “base”
model. This model, illustrated in Figure 3, has 15 activities, one start event and
three end events, and exhibits different control-flow structures including loops,
parallel and alternative branches.

Fig. 3. Base BPMN model of the loan application process

Next, in order to assess the ability of our method to detect drifts determined
by different types of control-flow changes, we systematically altered the base
model by applying in turn one out of twelve simple change patterns described
in [21].3 These patterns, summarized in Table 1, describe different change oper-
ations commonly identified in business process models, such as adding, remov-
ing or looping a model fragment, swapping two fragments, or parallelizing two
sequential fragments.

Table 1. Simple control-flow change patterns

Code Simple change pattern Category

re Add/remove fragment I
cf Make two fragments conditional/sequential R
lp Make fragment loopable/non-loopable O
pl Make two fragments parallel/sequential R
cb Make fragment skippable/non-skippable O
cm Move fragment into/out of conditional branch I
cd Synchronize two fragments R
cp Duplicate fragment I
pm Move fragment into/out of parallel branch I
rp Substitute fragment I
sw Swap two fragments I
fr Change branching frequency O

Further, in order to emulate more complex drifts, we organized the simple
changes into three categories: Insertion (“I”), Resequentialization (“R”) and
Optionalization (“O”) as shown in Table 1, so as to give rise to six possible
composite change patterns by randomly applying one pattern from each category

3 Non-applicable patterns such as inlining or extracting a subprocess were excluded.
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in a nested way (“IOR”, “IRO”, “OIR”, “ORI”, “RIO”, “ROI”). For example,
the composite pattern “IOR” was obtained by first adding a new activity (“I”),
then making this activity in parallel with an existing activity (“O”) and finally
by putting the whole parallel block into a loop structure (“R”).

Finally, in order to vary the distance between drifts in the log, we generated
four logs of 250, 500, 750 and 1,000 traces for the “base” model as well as for
each of the 18 “altered” models, using the BIMP simulator,4 and combined each
group of 5 base logs with each group of 5 altered logs by alternating base and
altered logs, in order to obtain four logs of sizes 2,500, 5,000, 7,500 and 10,000
traces for each of the 18 change patterns, leading to a total of 72 logs.5 Figure
4 depicts an application of this operation to generate a log of 5,000 traces. Each
log has 9 drifts located at multiples of 10% of the log size, thus with an inter-drift
distance ranging from 250 to 1,000 traces (500 in the example). Knowing the
number and position of each drift in the logs provides a gold standard against
which we can evaluate the accuracy of our method.

Fig. 4. Event log generation with embedded concept drift

4.2 Impact of Window Size on Accuracy

First, we evaluated the impact of the window size on accuracy. For this, we
executed our method with different fixed window sizes ranging from 25 to 150
traces in increments of 25, against each of the 72 logs. Figure 5.a reports the
F-score obtained with the four log sizes (2,500 to 10,000 traces), where for each
log the F-score was averaged over the logs produced by the 18 change patterns.
We observe that the F-score increases as the window size grows and eventually
plateaus at a window size of 150. As expected, the more data points are included
in the reference and detection windows, the more reliable is the statistical distri-
bution, and thus the more accurate is the statistical test, leading to the detection

4 http://bimp.cs.ut.ee
5 All the BPMN models used for simulation, the synthetic logs and the detailed eval-

uation results are available with the software distribution

http://bimp.cs.ut.ee
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of all concept drifts (recall of 1), with few or no false positives (precision of 0.9
or above).

Not surprisingly, for a window size of 25 traces, the F-score is low
(around 0.45). This is because the Chi-square does not converge if more than
20% of the data points have frequency below 5 [22], which is often the case with
a window size of 25 traces, where the distinct runs might be as low as 5-10. This
results in both low recall and precision. The drop in F-score at a window size
of 150 for logs of 2,500 traces is not an inherent limitation of our method, but
is due to having set a drift every 10% of the log, which equates to 250 traces
for a log of 2,500 traces. Given that with a window size of 150 traces reference
and detection windows aggregate 300 traces, in certain cases two drifts will be
included within this set of traces. As a result, the method will treat the two
drifts as one leading to a low recall.

Fig. 5. F-score (a) and mean delay (b) obtained with different fixed window sizes.

Figure 5.b plots how the mean delay varies based on different window sizes,
where the mean delay is averaged over the logs produced by the 18 different
change patterns, according to the four log sizes. Interestingly, after an initial
high mean delay, due to the unreliability of the statistical test with low numbers
of data points, the mean delay grows very slowly as the window size increases.
This shows that the method is very resilient in terms of mean delay to increases
in windows size, having a relatively low delay of around 40 traces when the
window size is 50 or above. Similar to the results for F-score, we observe a drop
in the mean delay at a window size of 150, for logs of 2,500 traces. This positive
effect is due to the second drift in the composite window of 300 traces being
discovered before it happened with regards to the gold standard.

In summary, our method achieves high levels of accuracy both in terms of
F-score (above 0.9) and mean delay (below 40 traces) in the presence of different
types of drift and for different log sizes. This happens when employing a fixed
window size that is at least 75 traces long, with the best trade off between F-score
and mean delay being achieved with windows of 100 traces.

We also conducted experiments using the trace-based representation of logs
(instead of the run-based one). We observed that the obtained accuracy with the
trace-based representation was consistently lower than the one with runs. This
observation confirms the intuition discussed in Section 3.
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4.3 Impact of Adaptive Window Size on Accuracy

Next, we assessed the impact of the adaptive window method on F-score and
mean delay. For this, we compared the results obtained with the fixed window
size shown in Figure 5, averaged over the three log sizes of 5,000, 7,500 and
10,000 traces, with the results obtained using an adaptive window. For example,
we compared the results obtained with a fixed window size of 25, with those
obtained with an adaptive window initialized to 25 traces. We did not use the
log size of 2,500 traces to avoid the effects of the interplay between window size
and number of drifts observed in logs of this size in the previous tests.

Fig. 6. F-score (a) and mean delay (b) obtained with different fixed window sizes
(FWIN) vs. adaptive window sizes (AWIN).

Figure 6 reports the results of this comparison for F-score (a) and mean
delay (b). The adaptive window method outperforms the fixed window method
both in terms of F-score and mean delay. Indeed, the ability to dynamically
change the window size based on the variation observed in the log (measured as
the ratio between number of distinct runs and total number of runs in the com-
bined window), allows us to obtain an adequate number of runs (not too small,
not too large) in the reference and detection windows to perform the statistical
test. This leads to a higher F-score, since more data points are automatically
added to the window when the variation is high. At the same time, it leads to a
lower mean delay as the window size is shrank when the variation is low, since in
these cases a low number of runs is sufficient to perform the statistical test. As
an advantage, the adaptive window method overcomes the low accuracy (both
in terms of F-score and mean delay) obtained when fixing the window size to
values as low as 25 traces (F-score of 0.85 instead of 0.45, and mean delay of
28 instead of 110). This enables the method to be employed in those scenarios
where the distance between drifts in the log is expected to be very low (i.e. in
the presence of very frequent drifts) and thus keeping the mean delay as low as
possible becomes essential to identify as many drifts as possible.

4.4 Accuracy Per Change Pattern

As a further test on accuracy, we evaluated the relative levels of F-score and
mean delay for each of the twelve simple change patterns and the six composite
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change patterns. For this we fixed the window size to 100 traces, which proved to
provide the best trade off in terms of F-score and mean delay, and averaged the
results obtained with the fixed window, and with the adaptive window initialized
to 100 traces, over the three log sizes of 5,000, 7,500 and 10,000 traces.

Fig. 7. F-score (a) and mean delay (b) per change pattern, obtained with fixed window
size of 100 (FWIN) vs. adaptive window size initialized to 100 (AWIN).

Figure 7 shows the results. From these we can draw the following observa-
tions. First, the adaptive window method enhances F-score and mean delay for
the majority of patterns (16 out of 18 for F-score and 12 out of 18 for mean
delay), with the F-score often being 1. Second, the method experiences a sensi-
bly lower F-score both for fixed and adaptive windows for the frequency change
pattern (“fr”). This pattern modifies the frequency of certain event relations in
the log. The low F-score is due to a low precision (lots of false positives). This
is because our method is sensitive to frequency changes caused by the stochas-
tic interference present in an event log. For example, even if the probabilities
of taking two alternative branches in a process are observed to be 50% each in
the entire log, when looking at an individual window, which is a small extract
of the log, these probabilities are likely to be slightly different (e.g. they could
be 40%-60% instead of 50%-50%). This interference tricks the detection of a
frequency-based drift, but can be resolved by choosing a larger window size. For
example, using a fixed window of 200 traces, we obtain an F-score of 0.98 (1 if
using the adaptive window) for the “fr” pattern.

4.5 Execution Times

We conducted all tests on an Intel i7 2.20GHz with 16GB RAM (64 bit), run-
ning Windows 7 and JVM 8 with standard heap space of 512MB. The time
required to update the alpha-relationships, extract the runs, and perform the
Chi-square test, ranges from a minimum of 0.26 milliseconds to a maximum of
2.3 milliseconds with an average of 0.5 milliseconds. These results show that the
method is suited for online concept drift detection, including scenarios where
the inter-arrival time between completed traces is in the order of milliseconds.
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4.6 Comparison with Baseline

Lastly, we compared the results obtained by our adaptive window method , with
those obtained by the method of Bose et al. [1,3], since this is the most mature
method for process drift detection available at the time of writing. Thus, we used
the synthetic logs that we had previously generated for each of the 18 change
patterns, set the window size to 100 and averaged the results over the three
different log sizes of 5,000, 7,500 and 10,000 traces.

As discussed in Section 2, the method in [1,3] has the disadvantage that it
requires to manually select the order relations between event labels to be used as
features to build the feature space which in turn is required to detect the drifts.
Thus, knowing the specific changes made in the altered models, we manually
selected the most appropriate features for each log. Figure 8 shows the results
of the comparison.

Our method outperforms the method in [1,3] both in terms of F-score and
mean delay, achieving substantial F-score differences for ten change patterns,
including “lp” (make fragment loopable/non-loopable), “cp” (duplicate frag-
ment), “pm” (move fragment into/out of parallel branch) and composite patterns
such as “IOR” and “RIO”. This is due to the large number of false positives iden-
tified by method in [1,3]. Further, this method fails to identify drifts based on the
following changes: “cb” (make fragment skippable/not skippable) and “cm” (move
fragment into/out of conditional branch), even if appropriate features are chosen.

Fig. 8. F-score (a) and mean delay (b) per change pattern, obtained with our adaptive
window method with size initialized to 100 (AWIN) vs. [1,3] with fixed window size of
100 (BOSE).

As a final test, we selected all features available from each log in order to
simulate a fully-automated application of this method. However in this case the
method fails to identify any drift due to a high level of false negatives, and
construction of the feature space becomes an expensive task (over 15 minutes
with window size of 100 traces).

5 Evaluation on Real-Life Log

We employed our method to detect concept drifts in an event log originated from
the claims management system of a large Australian insurance company. The log
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Fig. 9. Plot of the Chi-square test results (a) and adaptive window size (b).

consists of 4,509 traces with 29,108 total events of which 12 are distinct events. It
records claim handling processes for motor insurance that were performed over
a period of 13 months between 2011 and 2012.

We initialized the adaptive window to 100 traces. The method took 4.51
seconds to check the whole log and returned three drifts at 1,769, 1,911 and
3,763 traces, as shown by the results of the Chi-square test in Figure 9.a. In this
plot we can also see a number of stochastic oscillations that were automatically
filtered out by our method, as described in Section 3.2.

We then validated the results with a business analyst from the insurance
company, who confirmed that the three drifts correspond to a new major release
(Drift 1) and two minor releases (Drifts 2 and 3) of the claims management
system. These releases led to various changes in the claim handling process
supported by the system, e.g. the removal of a manual task for reviewing the
claim correspondence and the replacement of a manual task for checking the
invoice with an automated one, with the purpose of reducing the total number
of open claims. The effects of these changes are confirmed by the distribution of
the number of active cases over the log timeline, shown in Figure 10, which we
have annotated with the position of the drifts identified by our method and the
delays in reporting these drifts. We can see that each drift is associated with a
drop in the number of active cases, which confirms the effectiveness of the new
releases on process performance.

Fig. 10. The position and delay of the three drifts identified by our method, noted on
active cases over log timeline
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The delay in detecting the first two drifts is longer than the delay in detecting
the last drift. This is due to a higher level of variation in the first part of the log
(due to the more manual nature of the business process), which led our method
to increase the size of the adaptive window. This is confirmed by Figure 9.b,
which shows how the window size varies according to the number of completed
traces. Here we can see that the detection of Drift 1 and 2 is associated with a
larger window size (131 and 143) than the size used to detect Drift 3 (size 109).

6 Conclusion

The paper proposed a fully automated method for business process drift detec-
tion based on statistical testing of distributions of runs. The proposed method –
especially in its “adaptive window” variant – accurately discovers typical process
changes and combinations thereof, consistently outperforming a state-of-the art
baseline. The evaluation results on a complex real-life log demonstrate the
method’s ability to detect drifts that correspond to user-recognizable process
changes, as well as its scalability. The execution times in the order of millisec-
onds make it applicable for online drift detection.

In its present form, the proposed method treats event logs as consisting of
sequences of event labels. In doing so, it does not take into account process
execution data and resource allocations – usually encoded as event payloads. An
avenue for future work is to make the method data-aware.

Another avenue for future research is to enhance the method in order to
provide input to the user to understand the process change(s) underpinning a
detected drift. One possibility to explain a drift is to present to the user the runs
with the highest frequency differentials between the reference and the detection
windows. This input may help the user to gain a partial and initial understanding
of the process change(s), but it is unlikely to provide a comprehensive picture in
the case of complex business processes. A possible direction to tackle this problem
is to apply automated process discovery before and after the drift, and to use a
process model comparison technique [23] in order to derive a diagnostics of the
differences between the discovered pre-drift and the post-drift process models.
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ment of Communications. This research is funded by the Australian Research Council
Discovery Project DP150103356 and the Estonian Research Council.

References

1. Bose, R.P.J.C., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.: Handling
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Abstract. Large engineering processes need to be monitored in detail
regarding when what was done in order to prove compliance with rules
and regulations. A typical problem of these processes is the lack of con-
trol that a central process engine provides, such that it is difficult to
track the actual course of work even if data is stored in version control
systems (VCS). In this paper, we address this problem by defining a
mining technique that helps to generate models that visualize the work
history as GANTT charts. To this end, we formally define the notion of a
project-oriented business process and a corresponding mining algorithm.
Our evaluation based on a prototypical implementation demonstrates
the benefits in comparison to existing process mining approaches for this
specific class of processes.

Keywords: Process mining · Projects · Project mining · Version control
systems

1 Introduction

Business process management plays an important role for improving the perfor-
mance and compliance of various types of processes. In practice, many processes
are executed with clear guidelines and regulatory rules, but without an explicit
centralized control imposed by a process engine. In particular, it is often impor-
tant to exactly know when which work was done. This is, for instance, the case
for complex engineering processes in which different parties are involved. We
refer to this class of processes as project-oriented business processes.

Such project-oriented business processes are difficult to control due to the
lack of a centralized process engine. However, there are various unstructured
pieces of information available to analyze and monitor their progress. One type
of data that are often available these processes is event data from version control
systems (VCS). While process mining techniques provide a useful perspective on
how such event data can be analyzed, they do not produce output that is readily
organized according to the project orientation of these processes.
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In this paper, we define formal concepts for capturing project-oriented pro-
cesses. These concepts provide the foundation for us to develop an automatic
discovery technique which we refer to as project mining. The output of our
project mining algorithm is organized according to the specific structure typ-
ically encountered in project-oriented business processes. With this work, we
extend the field of process mining towards the coverage of this specific type of
business process.

The paper is structured as follows. Section 2 describes the research prob-
lem and summarizes insights from prior research upon which our project mining
approach is built. Section 3 defines the preliminaries of our work and presents
an algorithm to mine project-oriented business processes. Section 4 describes
the implementation of this algorithm and discusses the results from its applica-
tion to VCS logs from a real-world engineering project. Section 5 highlights the
implications of this work before Section 6 concludes.

2 Background

Here, we describe the addressed problem and related work.

2.1 Problem Description

The class of processes that we discuss in this paper are long-term engineering
projects. These processes have specific requirements for monitoring. First, they
are executed only once according to the specific needs of a particular project, and
only partially according to recurring process descriptions. Second, they involve
various actors that typically document their work in a semi-structured way using
text and tables. Third, work in the project is usually subject to constraints
regarding the start and end and the temporal order. Fourth, there is typically
no process engine controlling the execution. Fifth, even though these limitations
in terms of traceability exist, there are usually strong requirements in terms of
tracking when which work was conducted.

In line with these observations, a project-oriented business process can be
defined as an ad-hoc plan that specifies the tasks to be performed within a limited
period of time and with a limited set of resources for achieving a specific goal.
Unlike repetitive business processes for which notations such as BPMN [12] or
EPC [1] are commonly used, project-oriented business processes may be properly
represented with PERT or GANTT models. The concept is illustrated in Fig. 1.

Documentation is required not only explicitly as part of some activities but
also to comply with norms and regulations that may require some evidence of
the actions being performed in the organization. Documents are usually free
of format or contain tables, at best. The unstructuredness of data makes it
difficult to monitor processes and check rules on them. A starting point for
analysis of project-oriented processes can be data logs that are stored in Software
Configuration Management (SCM) systems that help tracking the evolution of
data and restore information if needed [19]. However, hundreds of versions of
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Fig. 1. Problem illustration

thousands of files are common in a single project [20], which makes it impractical
to browse this data manually.

Let us see an example inspired by a real scenario of a process to write a
project proposal that uses a Version Control System (VCS) to store the data.
The project history, and hence, the data produced, starts when people begin to
work on the proposal, which involves a description of the project goals and mile-
stones, a division of tasks into work packages, an estimation of cost and resources
required, etcetera. This information is spread in the repository over several fold-
ers containing different documents, which are later merged into a single file.
If the proposal is accepted, the first step is to organize a kickoff meeting and
assign specific resources to the work packages. A hierarchical set of folders is
then created in the repository in order to store the information generated for
each work package. As the project evolves over time, resources contribute by
adding, removing or modifying information to the VCS repository. Project evo-
lution is guided by specific norms that impose the execution of predefined steps.
For instance, the European norm EN5016 requires a preliminary Reliability,
Availability and Maintainability (RAM) analysis to support targets.

Table 1 depicts an excerpt of the log data generated, where the first column
(on the left hand side) indicates the commit identifier, the second column indi-
cates the person who committed changes, the third column indicates the commit
date, and the fourth column indicates the files affected and the type of action
performed among added (A), modified (M) and deleted (D). For the sake of
simplicity, the table shows the log data of a specific time period and the actions
related to a specific task, namely, Define example. That task was assigned to
resource X and was supervised by resource Y and, later on, also by resource Z.
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Table 1. Excerpt from VCS log data for the referenced time period

CID Resource Date List of changes

1 Y 2014-11-12 11:57:46
A /example

A /example/SHAPE/ToyStationExample.docx

. . . . . . . . . . . .

3 X 2014-11-14 16:34:07
M /example/ToyStation.bpmn

M /example/ToyStation.png

4 W 2014-12-15 13:49:11 D /example/Download

5 W 2015-01-08 16:06:41 A /example/Download2

6 X 2015-01-13 11:47:09
M /example/ToyStation 0Loop.bpmn

M /example/ToyStation nLoop.bpmn

7 Z 2015-01-16 16:50:29
A /example/ToyStation 0Loop.pdf

A /example/ToyStation-feedbackZ.pdf

Existing frameworks, such as Subversion or Git, allow to access their logs
in different ways. However, the covered information is limited to (roughly) that
depicted in Table 1. Especially for big projects that are frequently updated
over a large period of time, these logs are complex to analyze. Therefore, the
problem to address is how to analyze and visualize the information produced
in project-oriented business processes such that it can be represented in an
understandable and manageable way by project experts and enable, a.o., the
automation of mechanisms for compliance checking. The following properties of
project-oriented process logs must be taken into account to achieve this goal: (i)
VCS repositories consist of a hierarchy of folders and files which are logically
organized such that work is grouped in a specific way; (ii) process activities are
not registered in VCS log entries. Therefore, such information must be inferred
by reasoning on the repository structure and/or the content of the log entries;
(iii) the granularity of the events is unknown a priori and it needs to be defined
before analyzing the data.

2.2 Related Work

The problem described has been addressed in the literature from different per-
spectives. The first category of related work tackles the problem by transforming
it into a process mining problem. Consequently, approaches have been developed
to preprocess VCS data such that process mining techniques can be applied, and
hence, a business process can be derived from the log data. In this group, Kindler
et al. [9,10] developed an algorithm for extracting software processes that are
mapped to Petri Nets. Activities, which are not explicit in the logs, are dis-
covered from their input and output artifacts. However, strong assumptions are
made on the filenames as well as on the software process lifecycle. Rubin et al.
in [15] addressed the problem of engineering processes that are not well doc-
umented and are usually unstructured. They provided a bridge from Kindler
et al.’s approach to ProM [5] in order to mine different process perspectives,
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such as performance social network analyses. Rubin et al. [16] applied process
mining to the touristic industry and obtained user processes from web client logs
pursuing the goal of improving the software system by analyzing the underlying
process. Poncin et al. [14] developed the FRASR framework for preprocessing
software repositories to transform the VCS data to logs that conform to the
process mining event log meta model [4] as utilized in ProM [5]. However, these
approaches disregard the single-instance nature of project-oriented business pro-
cesses and treat them as procedures that can be repeated over time.

The second category of related work focuses on the visualization of VCS data
for different purposes. Several approaches study the interaction among develop-
ers over time from a visualization point of view. For instance, Ogawa and Ma
[11] drew storyline pathways to show the story of each developer’s contribution.
Other approaches analyze and visualize VCS data at file level in order to discover
file version evolution. Voinea and Telea [20] introduced an interactive navigation
method to surf file version evolution as well as two methods to cluster versions
of the same file in an abstraction layer. Wu et al. [22] also visualized the evolu-
tions of entire projects at file level, emphasizing the evolution moments. Finally,
several approaches study change prediction with the aim of discovering predic-
tion patterns that can help in the process of software development [23,24]. The
approaches mentioned in this category as well as others that apply similar tech-
niques [3,6,8] focus on studying software evolution from different standpoints.
However, the goal pursued differs in all cases from our goal in that they are not
interested in discovering projects tasks out of the log data, and hence, they lack
an explicit notion of work structure that we need to consider for our purpose.

Our approach combines ideas from both areas, as we aim at identifying tasks
like in the approaches that rely on process mining, but we must cluster the data
in an appropriate way, for which techniques developed in the approaches that
pursue visualization may be adapted or extended.

3 Mining VCS Event Data

Here, we first formalize the notions encountered in the project mining setting.
Then we develop an approach to acquire a hierarchical overview on the project
from a repository perspective.

3.1 Preliminaries

Version control systems (VCSs) are used in projects to ensure reliable collabo-
ration. We build our approach on VCS. Typically, the workflow in VCS is that
people work on files (e.g., text, source code, spread sheets) and commit them to
the central repository. Project participants comment on their commits so that
other participants can better understand the nature of the changes to the files.

Let F be the universe of files. Files are organized in a file tree. Therefore,
each file f ∈ F has one parent file. The only file without a parent file is the
root file. We capture this information in the parent relation Parent : F × F .
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For example, let fp ∈ F be the parent of file fc ∈ F , then (fp, fc) ∈ Parent . The
transitive closure on the parent files is given by the function ancestor : F → 2F

that returns the set of files along the path to the root.
When project members did a certain amount of work and want to save their

current progress, they commit the changes to the VCS. We define changes on
files as the events of interest on the lowest granularity.

Definition 1 (Event). Let E be the set of events. An event e ∈ E is a four-
tuple (f, o, ts , k), where
– f ∈ F is the affected file of the event.
– o ∈ O = {added, modified, deleted} is the change operation on the file with

obvious meaning.
– ts ∈ TS = N0 represents a unix time stamp marking the time of the event

occurrence.
– k ∈ Σ∗ is a comment in natural language text.

For events e = (f, o, ts , k) we overload f, o, ts , and k to be used as accessor
functions. For example, f is the function f : E → F mapping an event to its
affected file.

Project participants can commit a number of changes to different files at one
step. Therefore, we define the notion of commits as follows.

Definition 2 (Commit). A commit C is a set of events sharing the same time
stamp and comment, i.e., ∀e, e ′ ∈ C : ts(e) = ts(e ′)∧k(e) = k(e ′). Additionally,
each event in a commit affects different files, i.e., ∀e, e ′ ∈ C : e �= e ′ → f(e) �=
f(e ′).

Usually, it is in the hands of project participants, when they decide to commit
changes to the VCS. In the extreme case, there could be only a single commit
made in a project that adds all files to the repository. Note that this extreme
practice would render the use of a VCS obsolete. On the contrary, it is common
practice to regularly perform commits in order to securely store work progress
and to reduce the chance of conflicts [7,13]. Conflicts occur, when another par-
ticipant committed changes to a file that is being committed and can cause
extra work. Based on these insights, we make the assumption that commits are
regularly made during work.

Projects are decomposed into work packages. We assume a hierarchical work
package structure of a project, such that a work package can have sub work
packages. Further, the amount of work in a single work package need not be
done in one single time span, but it can be split into several activities. Activities
have a start and end time, and subsequent activities can have idle periods in
between. Thus, we define projects as follows.

Definition 3 (Project). A project P is a tuple (W,S,A, α, ω, β), where
– W is the set of work packages in the project.
– S ⊆ W ×W is the relation that hierarchically decomposes work packages into

a tree structure.
– A is the set of activities that are conducted in the work packages.
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– α : A → TS is the function that assigns a start time to activities. Activities
are ordered by their start times.

– ω : A → TS is the function that assigns an end time to activities.
– β : A → W is the mapping function that maps activities to their correspond-

ing work packages.

Note that this definition reflects an activity centric view on projects. The
definition deliberately omits further dimensions, e.g., costs, resources, risks. The
idea is not to capture projects in every detail, but to focus on the work packages
of a project to obtain an overview of the work that is being done. We are inter-
ested in when work has been started in a work package, and when work packages
have been done. This information can be derived from the activities associated
to the workpackages. An obvious assumption is that the work package starts
with its first activity, and ends when its last activity is completed.

Based on these notions, we can define the task of project discovery as recon-
structing the project P from a set of low level event data E . In the following,
we present an approach to this problem.

3.2 Project Discovery Technique

For project discovery from the VCS commit history, we need to identify activities
that are performed, associate the activities to work packages and recreate the
work package structure of the project. Our aim is to create a hierarchical model
that provides an overview of the project work. Therefore, we have to identify the
start and end times of activities and of work packages before we can visualize
the project work. The input to the technique is the log that is stored in the VCS.
The challenge is that the raw log only records commits on the file system level
and information on activity level is missing. However, we can deduce activity
information from events based on the following assumptions.

A1: Meaningful file tree structure. The file tree structure in a project rep-
resents its work package structure. That is, the knowledge workers organize
their work in a file hierarchy that reflects the project structure.

A2: Local changes. Activities in a work package affect only files of the work
package folder, or in the corresponding sub-tree in the file tree structure.

A3: Frequent commits. Commits to the VCS are regularly performed, when
conducting work in an activity.

Fig. 2. Project discovery technique overview as BPMN process model.
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Note that assumption A1 can be seen as a strong assumption on the file
tree structure. Nevertheless, we argue that even if A1 is not entirely met, the
aggregation of work information on the file tree hierarchy provides a valuable
view on the project. Figure 2 shows the different steps of the technique. We
describe each of them in detail.

Step 1: Preprocessing. The first step is to transform raw logs of version
control systems (which might be grouped by commits) into a list of events as
specified in Definition 1. This step is easily done by replicating the information
on commit level to be contained in the events. The output is a set of events E .

Step 2: Aggregating events to activities. Given the set of events E that we
gathered from a version control system, the next step is to identify the activities
to which the events belong. Note that we do not know the activities of the
project in advance, but need to infer them based on the events. Each event
affects a single file in the file hierarchy.

Fig. 3. Adjustment of activity start time α.

Based on assumption A2, we are interested in activities conducted in a work
package, that is, we filter for the events that are contained in the given file or its
children. For every file f of interest, we select the set of events affecting the file or
its children as Ef = {e ∈ E | f = f(e)∨f ∈ ancestor(f(e))}. The task is then to
find the activities which emitted the set of events Ef . We rely on assumption A3,
which states that during an activity, we expect multiple commits. Assumption
A3 allows us to conclude that if we do not observe commits for a longer period
of time, there is no activity being performed in the work package.

To this end, we adopt the abstraction technique by Baier et al. [2] and allow
the domain expert to formulate rules for aggregating events to activities based
on boundary conditions. Assuming that people frequently commit their progress
(A3), we can specify a boundary condition based on the temporal distance to
previous events. For example, we can specify that a time period of seven days
without a commit is a boundary condition. As the result, we obtain the mapping
from events to these activities, which we call γf : Ef → Af in the remainder of
the paper. The set of discovered activities identified for the work package based
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on given boundary conditions is then Af = {a | e ∈ Ef , γf (e) = a}. We also
define the inverse mapping, that is, the mapping from an activity to its events
as γ−1

f : Af → 2Ef .
With the events mapped to activities, we need to find the temporal bound-

aries of the target activities. That is, we define the functions α and ω for each
activity. The challenge here is that we do not know when an activity actually
started, because the start of the activity is not recorded in the VCS. We can
only observe the time of the first commit in that activity, but commits usually
mark progress of an already running activity.

To address the challenge of missing start times, we impute the missing start
time by prepending the expected active time t̂c before a commit, as illustrated
by Figure 3. This notion assumes that project participants commit their work
progress after a certain amount of time. However, we cannot compute t̂c by
looking at the average commit rate in a work package, because this average is
based on busy periods and idle periods. We need to factor out the idle periods
in the computation of this measure. We know the end time of the activities, as
the last commit marks the completion of work. Therefore, each activity a based
on given boundary conditions has the associated end time ω(a) = max({ts(e) |
e ∈ γ−1

f (a)}). Further, we write the first event’s timestamp of an activity as the
function α′(a) = min({ts(e) | e ∈ γ−1

f (a)}). Then, we define c : Af → N
+ as the

number of commits in one activity, formally c(a) = |{C | e ∈ C ∧ γf (e) = a}|.
With this information the expected active time between commits t̂c is given

as follows.

t̂c =

∑
a∈Af

(ω(a) − α′(a))∑
a∈Af

(c(a) − 1)
(1)

We assume that there is at least one activity spanning over at least two
commits, i.e., ∃a ∈ Af | c(a) > 1. Translated to our boundary condition, this
assumption is that there is at least one week in each work package, in which
there were at least two commits made. Otherwise, we set t̂c to 0 for the current
file f due to lack of information.

Given the expected active time between commits t̂c , we can finally adjust
the start time of each activity. Therefore, we set the associated start time for
each activity as α(a) = α′(a)− t̂c . That is, we subtract the expected active time
from the first commit’s timestamp.

We apply Step 2 to all files f in the file tree to get Af . For the remainder
of this paper, we define the function ψ : A → F that contains the mapping
information of the discovered activities to their originating files. Finally, we set
the activities A in the project to be the union of the activity sets per file

⋃
f∈F Af .

Steps 3 and 4: Mapping activities to work packages and aggregating.
Once activities have been identified, we want to climb to the next abstraction
layer: the work packages. Assumption A1 allows us to specify a one-to-one map-
ping κ : F → W between files in the file tree structure and work packages. More
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precisely, we construct the set of work packages W isomorphic to the set of files
F , such that the Parent relation is preserved in the work package structure S
relationship.

The mapping β of activities to work packages is simply β(a) = κ(ψ(a)).
That is, the corresponding work package of the activity that was discovered for
a file. In this way, we provide an activity based view on work packages, and
we can aggregate on each level in the file system to see active periods of the
corresponding hierarchy level.

Step 5: Computing work package characteristics. In this final step, we
compute measures of interest for the discovered work packages. First, we obtain
the temporal boundaries of a work package by the functions α and ω of the
associated activities.

Let β−1 : W → 2A be the inverse of the mapping function β of the project.
The start and end time of a work package (αW and ωW ) are functions from work
packages to timestamps. The start time is defined as αW (w) = min({α(a) | a ∈
β−1(w)}), and the end time function of work packages ωW is analogously defined
using the maximum of the end times ω(a) of the activities. We call the duration
of a work package τ that is the difference between ωW and αW .

Moreover, we are interested in the ratio of active working periods (i.e., the
time spans of activities) to the total work package duration. This quantity helps
to estimate the average work intensity in a work package.

Definition 4 (Coverage). The coverage χ of work packages by activities is a
function χ : W → [0, 1] and is defined as follows.

χ(w) =

∑
a∈β−1(w) (ω(a) − α(a))

τ(w)
(2)

With this final step, we lifted the information hidden in low level events to a
high-level Gantt chart perspective, with which project managers are familiar. In
the following, we compare our technique to existing process mining approaches.

4 Evaluation

In this section we evaluate our solution to the project mining problem, and show
results for the example presented in Section 2.

4.1 Experimental Setup

We evaluate our technique by a visual perspective and by comparison to possible
different approaches. To this end we implemented our technique as a prototype.
We used JAVA as a programming language to code the logic of our technique.
For the visualization part we made use of custom SWT widgets provided by the



Mining Project-Oriented Business Processes 435

Nebula Project1. Our program can deal with logs from Subversion (SVN) [13]
and Git[17], but it can be extended to other version control systems by providing
an implementation of the preprocessing step discussed in Section 3.2. We ran the
software in an Intel R©Core TM i5-4570 CPU @ 3.20 GHz x 4 machine with 15.6
GiB of RAM and Linux kernel 3.13.0-46-generic 64-bit version.

4.2 Input Data Description

We tested our prototype with real-world log data taken from the SHAPE project.
Logs were exported from the SVN and Git repositories of different projects. They
come from the railway domain and describe engineering processes. Documenta-
tion stored in the repositories consists of manually produced text files, diagrams,
and files coming from proprietary tools that are typically used in the domain.

We will display results for the SVN log that describes the process oriented
project for SHAPE. Data span over one year, going from January 2014 to Jan-
uary 2015. This time window covers the phases of project definition and planning,
and a part of the project execution. In the first phase, feasibility of the project
was studied and budget, schedule and resources were determined. Proposal sub-
mission marked the end of this phase. The second phase started with a kickoff
meeting in October 2014 and is still ongoing.

The total number of participants who actively contributed to the work pack-
ages stored in the SVN repository was 8 people in the beginning, with new
resources joining the project after the kickoff date. The total number of files and
directories counts up to 156 objects and 226 overall commit events. The total
number of extracted change events after preprocessing (i.e. atomic changes on
all the files) was 453.

The last part of the log data contains the task Define example, introduced
in Section 2.1. For our showcase we assume that this task is contained in a work
package named example.

4.3 Output Data

To monitor the project execution, we visualize the work progress that was done
for each work package. Monitoring is performed by managers who want to have
an overview on the project (which work packages are done, when and for how
long, and where idleness or congestion occurs). Gantt charts offer a graphical
representation for displaying schedules and jobs that were done on the various
work packages [21] in a way that can easily be communicated to managers.

Figure 4 is a screenshot of how our tool presents the data. The tree structure
on the left represents the Parent relation in the file tree. Events belonging to
the same commit have the same color. On the top part of the chart we can see
the result of merging events to activities with our aggregation method. Here
we have merged the events of the example scenario on their highest abstraction
level. The chart shows the three main activities and the idle times between them.

1 https://www.eclipse.org/nebula/

https://www.eclipse.org/nebula/
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Fig. 4. Data representation from our tool. Atomic events are drawn as dot with a
minimal duration and different color per commit.

On the other hand, in correspondence to expanded directories we show only their
status before the aggregation. That is, every time a directory is fully expanded
we apply a disaggregation into the corresponding activities. In this way, we can
also show the finest granularity of work, i.e. the atomic events.

4.4 Project Analysis

Next, we apply our algorithm to the example case from Table 1 and check how
it helps to identify work packages. The data is aggregated according to our
threshold of seven days. We can observe three groups of events being temporally
close to each other according to our threshold. That is, we expect the event data
to be grouped into three activities.

The second step of our algorithm takes care of adjusting the starting time
of the activities. Furthermore, we vertically order the events and activities in
the Gantt chart according to the directory structure to show the mapping from
the objects on the Gantt chart to each work package in the tree structure. The
last step, computing work package characteristics is done automatically when
we collapse a node of a tree.

Figure 5 shows a comparison of the case when we do not implement the
activity adjustment to the case which adjusts it. In the upper part, activity

Fig. 5. Before and after the prepending the expected time before commit. Coverage
factor increases when we adjust the starting times of the activities.
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boundaries are based only on the first commit time that we see in the data. In
the lower part, we observe that the start times were adjusted by approximately
one day. The tool automatically adjusted the start time of the activities. As
a consequence, the coverage factor increases because we expect that there was
more work than what we observe by only considering the first commit time.

4.5 Coverage Tests on Available Open Projects

Finally, we apply our approach on different input data from open source projects.
We are interested in exploring how the coverage factor varies in different existing
projects. Hence, we take the work package w as our controlled variable and set
it to the highest level of aggregation. Then, we analyze each project of the data
set and observe the dependent variable χ(w). Another variable of interest is the
t̂c since it gives an idea of the average work speed (commit frequency) during
active times.

Table 2. Coverage results for different open source projects

Log Duration Idle periods Files Commits t̂c χ(w)
File name Days Number Number Number Hours %

MiningCVS 24 0 89 63 9 100
Whitehall 1279 6 6539 15566 2 95
Petitions 834 17 1562 914 13 59

Study 624 13 7501 736 11 58
The Guardian 1667 59 12889 621 30 44

Book 414 15 154 592 5 32
Papers 1859 55 1791 649 20 30

Requirements 771 22 505 231 17 21
Yelp 206 6 24 54 20 20

Adobe 1076 13 356 237 24 15

The data we used stems from the following projects. MiningVCS is our tool.
It consists of daily commits and was developed over 24 days. Whitehall is the
code name for the Inside Government project, which aims to bring Government
departments online in a consistent and user-friendly manner. Petitions is a Dru-
pal 7 code base used to build an application on ”We The People”, the platform
to create and sign petitions of the White House. Study is an SVN log about
Healthcare domain, taken from SHAPE. The guardian is the log data from the
Git repository of the well-known British national daily newspaper. Book is the
log data that describes the writing of the book Crypto 101 by Laurens Van
Houtven, taken from Git. Papers is taken from SHAPE project for building a
paper archive. Requirements log data is taken from the the Git repository of
OpenETCS and belongs to the railway domain. Yelp is the main Github page of
Yelp were they showcase all their projects. Adobe is the Adobe Github Homepage
v2.0, which is a central hub for Adobe Open sources projects.
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Table 2 shows our experiments on the above-mentioned logs and the corre-
sponding coverage factors. Projects that score a high coverage factor are charac-
terized by continuous work. This can be further seen by looking at their average
idle times tIdle . Let nc be the number of commits per work package. We compute
the average idle time as follows.

tIdle =
τ − nc · t̂c

n
, n > 0 (3)

where n is the number of idle times in the work package. If n = 0, then we
trivially assign tIdle = 0, because there were no break periods over time.

Applying the formula to the above projects, we can observe how projects
with a higher coverage factor have actually low values of tIdle . For instance,
Whitehall scores a tIdle of 11 days, whereas Adobe scores a tIdle of 36 days. This
supports the usage of the coverage factor χ as an indicator for work package
time utilization.

5 Discussion

In this section we compare our method to other alternatives for mining data out
of logs and interpret our results.

Well known tools that are used in academia and practice include ProM[5]
and Disco2. Both tools require input data to be in the XES [18] format. Thus,
we convert our data from the Define example case into XES. To show events per
objects of the project structure, we choose the file path as the caseId. To flatten
the logs we extract all the file paths and build a mapping from each file to the
set of changes done to it.

Figure 6 depicts the results of the Dotted chart plugin of ProM applied to
our log data. Also here, we observe different changes of each file of the repository.
While the files and their corresponding events are shown, the plugin does not
allow to rearrange the data in order to understand the file structure, nor does it
allow to perform any kind of aggregation or connection between data, to observe
them from a higher level perspective.

Figure 7 shows the results from mining our log data with the Disco tool. Here
we can see a plot that displays the events that happen over time. The plot has
some peeks in correspondence to active times of the example work package. They
can be grouped in three clusters: an initial cluster with a few amount work, an
intermediate cluster with the most significant part of the work, and a final cluster
that again is not very active. In this way, clusters can be associated to activities.
As a drawback, when the number of work packages and activities increase, the
number of peeks grows and generate identifying clusters of activities by look at
active (or idle) times becomes unworkable.

Our approach to mining the work progress of project-oriented business pro-
cesses complements these techniques with metrics and a corresponding visual-
ization that is informative to managers.
2 http://fluxicon.com/disco/

http://fluxicon.com/disco/
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Fig. 6. Dotted chart from ProM

Fig. 7. Chart from Disco plotting the events over time.

6 Conclusion

In this paper we addressed the problem of mining and visualizing project-
oriented business processes in a way that is informative to managers. We define
an approach that takes VCS logs as input to generate Gantt charts. Our algo-
rithm works under the assumptions that repositories reflect the hierarchical
structure of the project, each work package is contained in a corresponding
directory and project members commit their work regularly during active work-
ing times. The approach was implemented as a prototype and evaluated based
on real-world data from open source projects.

In future work, we aim to extract further details of the VCS logs in order to
calculate metrics that approximate the work effort. We plan to investigate on how
the project mining approach is affected by project characteristics. Furthermore,
we want to utilize statistical methods to better estimate the boundaries of the
activities and work packages. Finally, we have already incorporated feedback
from managers and plan to extend these to full user studies.
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Abstract. In recent years, process mining has become one of the most impor-
tant and promising areas of research in the field of business process manage-
ment as it helps businesses understand, analyze, and improve their business 
processes. In particular, several proposed techniques and algorithms have been 
proposed to discover and construct process models from workflow execution 
logs (i.e., event logs). With the existing techniques, mined models can be built 
based on analyzing the relationship between any two events seen in event logs. 
Being restricted by that, they can only handle special cases of routing constructs 
and often produce unsound models that do not cover all of the traces seen in the 
log. In this paper, we propose a novel technique for process discovery using 
Maximal Pattern Mining (MPM) where we construct patterns based on the 
whole sequence of events seen on the traces—ensuring the soundness of the 
mined models. Our MPM technique can handle loops (of any length), duplicate 
tasks, non-free choice constructs, and long distance dependencies. Our evalua-
tion shows that it consistently achieves better precision, replay fitness and  
efficiency than the existing techniques. 

1 Introduction 

Process mining has become a promising field of research that helps businesses better 
understand, analyze, monitor and improve their workflow processes. Process discov-
ery in particular is a core component of process mining that focuses on constructing 
process models based on the analysis of processes using event log data produced from 
information systems, such as workflow systems and business process management 
systems. The discovered process models (e.g., in form of Workflow-net which is a 
special class of Petri-net), can then be used for conformance checking, auditing, mod-
el enhancement, configuring a WFM/BPM system, and process improvement [1]. 

Since the mid-nineties, several techniques have been proposed to automatically 
discover process models from event logs in both software processes and business 
process domains [2, 3, 4]. Several algorithms are variants of the -algorithm (e.g., in 
[8, 9, 10, 11]), which can be seen as a well-known technique where process discovery 
was first studied in the field. Nevertheless, due to the fact that the -algorithms face 
problems dealing with complicated routing constructs, noise, and incompletes [1], 
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more advanced techniques, such as region-based approaches (e.g., [21, 22, 25, 28]), 
heuristic mining [12], fuzzy mining [13], and genetic mining [37], have been pro-
posed to tackle those aforementioned problems. 

We argue that the existing algorithms for discovering process models are still una-
ble to efficiently and accurately handle loops (of any length), duplicate tasks, concur-
rency, long dependencies and complex routing constructs. In fact, some of such  
algorithms may produce unsound models. To address these problems, we propose a 
novel process discovery technique called Maximal Pattern Mining (MPM). Instead of 
mining the relationship between two events, MPM mines a set of patterns that could 
cover all of the traces seen in an event log. We have implemented the algorithm and 
compared the results with the existing algorithms. Our evaluation shows that the 
MPM always produces sound process models with better precision and replay fitness. 
The processing time of our algorithm to mine and generate a process model is also 
significantly shorter than all the existing algorithms. 

The remainder of the paper is organized as follows. Section 2 reviews and discusses 
the work that has been done in the process mining area. Section 3 proposes our MPM 
technique for process discovery and its algorithm. Section 4 discusses a technical evalu-
ation and results. Finally, the conclusion and future works are given in Section 5. 

2 Background and Related Work 

In this section, we give some background and discuss related work in process mining, 
especially techniques for process discovery (a.k.a. control-flow discovery). Several 
discovery techniques have been developed based on algorithmic, machine learning, 
and probabilistic approaches. Very early process discovery approaches have been 
proposed by Cook and Wolf [3], Agrawal et al. [2], and Datta [4]. Cook and Wolf 
proposed RNet, Ktail and Markov software process discovery approach using event-
based data based on statistical, algorithmic and probabilistic methods. Agrawal et al. 
and Datta studied graph-based discovery approaches in the context of workflow 
processes. Manilla and Meek [5] present a method for finding partial orders that de-
scribe the ordering relationships between the events in a collection of sequences and 
applying mixture modeling techniques to obtain a descriptive set of partial orders. 
However, their techniques cannot deal with concurrency, decision splits, synchronous 
and asynchronous joins, and other common issues found in a process mining field. 
Later, Schimm [6, 7] proposed a procedural approach using data mining techniques to 
mine a complete and minimal process algoschema from workflow logs that contains 
concurrent processes. However, the approach is restricted to block-structured 
processes. Van der Aalst et al. [8] proposed -algorithm to learn structured workflow 
nets from complete event logs. However, the -algorithm cannot cope with noise, 
incompleteness of workflow logs, short loops, and non-free choice constructs. Later, 
Alves de Medeiros et al. [9] developed -algorithm, an improved version of the -
algorithm, which is capable of detecting short loops. Further, Wen et al. [10, 11] pro-
posed -algorithm to discover non-free choice constructs and -algorithm to detect 
concurrency. Due to the fact that all the -algorithms face a robustness problem, 
Weijters et al. [12] proposed Heuristics Miner by extending the -algorithm to ana-
lyze the frequency of the three types of relationships between activities in a workflow 
log: direct dependency, concurrency, and not-directly connectedness. It is claimed 
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that Heuristics Miner is able to mine short loops and non-local dependencies. In con-
trast to the -algorithms, Gunther and van der Aalst [13] proposed Fuzzy Miner, an 
adaptive technique to discover behavior models from an event log using significance 
and correlation measures. Their technique is capable of mining unstructured 
processes. Asides from these techniques, Rembert and Omokpo [26] proposed a 
process discovery technique using the -algorithm with Bayesian statistics to incorpo-
rate prior knowledge supplied by a domain expert to discover control-flow model in 
the presence of noise and uncertainty.  

Herbst and Karagiannis [23] proposed a discovery algorithm to construct a stochastic 
activity graph and then convert it into a structured process model. Their algorithm can 
discover duplicate activities but not non-local dependencies. Folino et al. [24] proposed 
the Enhanced WFMiner algorithm to deal with noise, duplicate tasks and non-free 
choice. Ferreira and Gillblad [27] proposed a technique to tackle the problem of unla-
beled event logs (without a case identifier) by using the Expectation–Maximization 
procedure. Van der Werf et al. [25] proposed a discovery technique using Integer Linear 
Programming (ILP) based on the theory of regions. Van der Aalst et al. [21] proposed a 
Finite State Machine (FSM) Miner/Petrify two-step approach to find a balanced trade-
off between generalization and precision of discovered process models. The theory of 
region is used in their approach as a method to bridge FSM and Petri-Net models as also 
proposed in [22]. Sole and Carmona [28] presented an aggressive folding region-based 
technique, which is based on the theory of region, to reduce the total number of states of 
a transition system and speed up the discovery process.  

Several machine leaning techniques have been used in the process discovery do-
main. Maruster et al. [14] proposed to use propositional rule induction, i.e., a uni-
relational classification learner, to predict dependency relationships between activities 
from event logs that contain noise and imbalance. Ferreira and Ferreira [15] apply a 
combination of Inductive Logic Programming learning and partial-order planning 
techniques to discover a process model from event logs. In addition, Lamma et al. 
[16] applied Inductive Logic Programming to process discovery by assuming negative 
sequences while searching. Due to the limitations of local search, these approaches 
were unable to detect non-free choice constructs, duplicate tasks, and hidden tasks. 
Therefore, in order to discover such constructs, Buijs et al. [37] proposed a genetic 
algorithm which performs a global search based on the use of alignment fitness func-
tion to find the best matched models. Genetic Miner can detect non-local patterns and, 
due to its post-pruning step, it has a reasonable robustness. Similarly, Goedertier et al. 
[17] proposed AGNEsMiner to deal with problems such as expressiveness, noise, 
incomplete event logs, and the inclusion of prior knowledge by representing process 
discovery as a multi-relational classification problem [18] on event logs supplemented 
with Artificially Generated Negative Events (AGNEs). This technique can learn the 
conditions that distinguish between the occurrence of either a positive or a negative 
event. Furthermore, Greco et al. [19] proposed DWS mining to improve precision. 
The technique is implemented in an iterative procedure that refines the process model 
in each step, based on clustering of similar behavior patterns. In [20], Greco et al. 
proposed an approach for producing taxonomy of workflow models to capture the 
process behavior at different levels of abstraction by extending traditional discovery 
methods and an abstraction method. 
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Based on the above discussions, we have observed that only Genetic Miner [37] 
can tackle all the typical problems in process mining, i.e., noise, duplicate tasks, hid-
den tasks, non-free choice constructs, and loops. However, because of the nature of 
the genetic algorithm, it consumes more processing time and space in order to learn 
and construct a model. Mining efficiency is considered a major drawback of this ap-
proach in which it is undesirable, especially when it is applied to a complicated real-
life log. To overcome such issues, we need to develop a better technique that can not 
only solve all of the typical process mining problems but also takes much less time to 
process. 

3 Maximal Pattern Mining (MPM) 

As discussed earlier, the well-known α-algorithm and its variants can be considered 
the most substantial techniques in the field of process mining [1, 8]. The model was 
built based on the relationship of an event A with the event’s direct predecessors and 
successors. However, those algorithms have problems with complex control-flow 
constructs, such as non-free-choice constructs (where concurrency and choice meet), 
arbitrary nested loops, duplicate tasks, etc.   

Bose et al. [33] proposes an algorithm to discover common patterns on events in 
traces, especially loops. Pattern similarity is calculated by using edit distance. Al-
though their evaluation shows promising results, it was not clear how it would handle 
other control-flow constructs such as long distance dependencies and duplicate tasks, 
or how accurate and robust their algorithm is compared to other existing process-
mining algorithms.    

In this paper we use a similar pattern matching technique called Maximal Pattern 
Mining (MPM) to construct a workflow model. Instead of looking at the relationship 
between 2 events, we consider the whole sequence of events in all of the traces and 
find the optimal set of “regular expression”-like patterns that will cover them. There-
fore, our algorithm can handle complex constructs such as non-free choice constructs, 
nested loops of any length (as opposed to short one or two length loops), duplicate 
tasks and long distance dependencies. It also uses a stricter rule than the edit distance 
uses in [33] to find similar patterns. 

We overview and detail the MPM technique in Sections 3.1 and 3.2. Then, the as-
sumptions and limitations of our technique are discussed in Section 3.3. 

3.1 Overview 

Let T = {t0, t1 … tn} be the collections of all the traces in an event log in which they 
are ordered by the type of the events in the trace and then by the number of events in 
the trace. A trace tn is an ordered sequence of events or completed tasks, tn = z0, z1 … 
zm. We denote |tn| as the number of events in a trace. An event zm only contain 1 event 
type, i.e. |zm| = 1. Possible event types include create, schedule, assign, revoke, start, 
addFact, removeFact, updateFact, and complete [17]. All the traces in T are not 
unique and a trace tn may contain particular events more than once, i.e. it is possible 
to have T = {a,b,c,b,b,c,d,e, a,b,c,b,b,c,d,e, a,b,b,c,e,d}. 
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Given an input T, our algorithm will first create a list of unique patterns P = {p0, 
p1 … pi} and then generate a graph based on P. The following sections will describe 
each of them. 

A pattern pi = e0, e1 … ej is an ordered sequence of elements, |pi| is the number of 
elements in the pattern and pi.support is the number of traces covered by the pattern.  

An element ej = {v0, v1 … vk} contains k number of unique event types (i.e. |ej| = k) 
and ej.loop is a list of vk: w tuples that indicate whether vk is self-looping (w = {vk}) 
and/or is the last element of a sequence-loop (w = {ex ex+1 … ex+y} and ex+y = vk). The 
loop list is ordered first by event value and then by the number of elements in w (|w|). 
An element’s value vk only contains 1 event type. 

All the elements inside pi may not be unique. For instance, given the T = 
{a,b,c,b,b,c,d,e, a,b,c,b,b,c,d,e, a,b,b,c,e,d} specified above, our algorithm will 
only produce 1 pattern in P. p0 = e0, e1, e2, e3, where e0 = a and e0.loop = ∅;  e1 = b 
and e1.loop = {<b: b>}; e2 = c and e2.loop = {c: {bc}}; and e3 = {d, e} and e3.loop = ∅. Elements with more than one event type indicate a parallelization. In our example, 
e3 shows that in the last 2 events of our model the values could be either de or ed. 
Because p0 covers all the traces in T, p0.support = 3. 

Our graph algorithm will then generate the following model (Fig. 1) based on p0. 
We use the operator AND to indicate the set of tasks that are running at the same 
time, and XOR to indicate a path selection. 

 

 

Fig. 1. The generated model for {a,b,c,b,b,c,d,e,a,b,c,b,b,c,d,e,a,b,b,c,e,d} 

The algorithm we use to construct the most optimal patterns for a given trace of 
events has five main components: finding self and/or sequence loops, storing the pattern 
in a vertical format, identifying events that should be done concurrently, investigating 
whether a trace is covered by a pattern in P, and pruning non-maximal patterns. 

Loops. A sequence of elements S = s0, s1 … sq is in a loop in the trace tn = z0, z1 … 
zm or in the pattern pi = e0, e1 … em if and only if there is a sequence of elements 
such that for all b  {0…q}and q ≤ (m – a)/2, za+b = sb and za+q+b = sb or ea+b = sb and 
ea+q+b = sb, where a is the starting index where S occurs in the trace or in the pattern (0  
≤ a  ≤ m). The first phase of our pattern mining is to identify these loops. For every 
S+ occurring in tn and pi, we replace it with S and set the loop property of the last 
element in S. For instance, given a pattern a,b,b,c,d,{e,f},c,d,{e,f}c,d,{e,f}g, the pat-
tern becomes a,b,c,d,{e,f}g where the loop property for b is b, and the loop property 
for {e,f} is cd{e,f}. We keep iterating on the pattern until there are no more loops in 
the pattern.  All the loops in the pattern  a,b,d,d,c,b,b,b,d,c,b,d,c,e  will be identified 
in 2 iterations: 1) a,b,d*,c,b*,d,c,b,d,c,e, 2) a,(b,d*,c)*,e. By identifying loops 
first, MPM will be able to deduce that traces a,b,d,d,c,b,b,b,d,c,b,d,c,e and 
a,b,d,c,b,d,d,c,e are the same and are both covered by the pattern a,b,d,c,e. 
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Vertical Representation. Existing process mining algorithms require several scans of 
the event log or need to maintain large amounts of intermediate candidates in the 
main memory to generate a process model [10, 11, 37, 18]. To alleviate this problem, 
MPM stores all patterns in the vertical format as an IdList in bitset representation [31] 
where each entry represents an element, the id of the trace where the element appears 
(id) and the positions (pos) where it appears. The support of a pattern is calculated by 
making joint operations with IdLists of smaller patterns. Thus, MPM would only need 
to perform a single scan through the log to generate IdLists of patterns containing 
single elements (see [31] for details). To make it more verbose, MPM uses the symbol 
$ to indicate the end of a trace. Given T = {a,b,c,b,b,c,d,e,a,a,b,b,c,e,d,a,e,d,a}, 
the vertical representation (VT) of it is represented as follow:  

 
A  b  c  D  e  $ 

id pos  id pos  id pos  id pos  id pos  id pos 
0 0, 5  0 1  0 2  0 3  0 4  0 6 
1 0, 5  1 1  1 2  1 4  1 3  1 6 
2 2        2 1  2 0  2 3 

 

Concurrency. A set of events V = {v0, v1 … vq} are performed at the same time (or 
parallel) if and only if there are at least q number of unique traces with the following 
sequence z0, z1 … za-1 za, za+1 … za+q za+q+1, za+q+2 … zm, where the sequence z0, z1 … 
za-1 and za+q+1, za+q+2 … zm have the same pattern across those traces, there are no 
events mentioned more than once in za, za+1 … za+q, and for all b  {0…q}and q ≤ 
(m – a), za+b ⊆ V, where a is the starting index where a combination of all the events 
in V occur (0  ≤ a  ≤ m). Sequence z0, z1 … za-1 and za+q+1, za+q+2 … zm may be ∅. 
Instead of za+b  V, we relax the criteria to za+b ⊆ V with the assumption that if we see 
almost all of V possible events combination in T, it must just be the case that the trace 
log is incomplete. For example, given a set of traces {a,b,c,d,e, 
a,b,d,c,e,a,c,d,b,e}. We first look at the first two traces where we get a,b,{c,d},e 
as it is possible to switch the position of task c and d around. We then compare it with 
the last trace where we get a,{b,c,d},e as we can switch the position of task c and d 
around with b. In the future, we may use the trace frequency to help us decide when 
we should use the strict or relaxed criteria. 

Coverage. A pattern pi = e0, e1 … en specifies the sequence of patterns that covers 
some of the traces in T and it can be represented as a deterministic finite automata 
DFAi with (a) well-defined start state, (b) one or more accepted states and (c) deter-
ministic transitions across states on symbols of the event values. A trace tn = z0, z1 … 
zm is covered by the pattern pi if and only if the sequence of transitions for the ele-
ments of tn from the start state results in an accept state. Fig. 2 illustrates the determi-
nistic finite automaton for the pattern a,b,{c,d},e with the loop property for b to be b. 
We use > to indicate the start state and double circles for the accept state. The dia-
gram shows that the pattern covers the following set of traces {a, b, c, d, e, a, b, d, 
c, e, a, b, b, c, d, e, a, b,…,b, c, d, e, a, b,…,b, d, c, e}. However, it will reject the 
following set of traces {a,b, e, a,b,h, a,b,c,d, a,b,b,d,c, a,b,a,d,c,e}.  
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Fig. 2. The deterministic finite automata model for pi = a,b,{c,d},e 

Maximal Patterns. A pattern pi is said to be maximal if and only if there is no other 
pattern pj in P that has the same start and accept states and covers the same or more 
traces in T. Given P =  {a,b,c,d,a,{b,c},d,a,b,c}, only p1 and p2 are maximal be-
cause p0 is a sub-pattern of p1.  

Optionality. A sequence of elements S0 = s0, s1 … sq in the pattern pj = z0 … zm, s0, 
s1 … sq, zp … zr is in an XOR (optionality) relations with a sequence of elements S1 = 
s’0, s’1 … s’t in the pattern pk = z’0 … z’n, s’0, s’1 … s’t, zu … zv if and only if  zm = 
z’n and zp = zu. In some cases, zm and z’n could be a start state, and zp = zu could be the 
accept state. For example, if P =  {a,b,c,d,a,e,d,g,f,g,h}, the resulted graph will 
be XOR(a  XOR(b  c, e)   d, g XOR(f, h)). 

Noise (Frequent Patterns and Events). To further filter P from noisy data, we set a 
support threshold value, thresh, so that we will only keep frequent pattern pi and event 
vk, i.e. pi.support ≥ thresh and vk.support ≥ thresh. All patterns and events are ac-
cepted if the threshold value is 0. To find out what the best threshold value is, we split 
the traces that we used for generating the pattern into 2 sets: training and validation. 
Our MPM algorithm generates maximal patterns only based on the traces found in the 
training sets. We then evaluate the performance of all the patterns generated by MPM 
on the traces of events in the validation set. If we are unhappy with the results, we 
change the threshold value of our algorithm, re-generate the pattern of the training 
traces based on the new threshold value and evaluate it on the validation traces. We 
keep doing this until we find the optimal threshold value. 

3.2 Generating Maximal Patterns 

The pseudo-code of the MPM algorithm is shown in Alg. 1. MPM takes as input an 
event log (T) and the support threshold value (thresh). For each trace tn, it identifies 
all the loops, constructs the vertical representation of the log (VT) and get the set of 
frequent events (E) as described in Section 3.1. Events in E, except for $, are ordered 
from the most common to the least. For each event v in E, the procedure calls the 
EXPAND procedure with v, E and thresh. 

The EXPAND procedure takes as parameters a sequential pattern (p), a set of items 
(S) to be appended to p to generate candidates and minimum support value (thresh). 
Each item (si) in the set S is appended to p as the next sequential item of p. Each of 
the newly generated patterns are called pi’. Because any infrequent sequential patterns 
cannot be extended to form a frequent pattern, the procedure uses IdList join opera-
tion [31] to calculate the number of traces where the pattern pi’ appears. If pi’.support 
≥ thresh, pi’ is then used in a recursive call to EXPAND to generate patterns starting 
with pi’. All the frequent pi’ are passed onto the RESOLVE procedure.  



448 V. Liesaputra et al. 

Algorithm 1. The procedure of the Maximal Pattern Mining algorithm 

 
 

MPM (T, thresh) 
 VT = ∅ 
 FOR each trace tn  T 
  tn = SOLVE_LOOP (tn) 
  VT = INSERT_TRACE (VT, tn) 
 E = GET_FREQUENT_EVENTS (VT) 
 PT = ∅ 
 FOR each event v  E 
  PT = PT ∪ EXPAND (v, E, thresh) 
 PT = RESOLVE (PT, 0) 
 DRAW_GRAPH (PT) 
 
EXPAND (p, S, thresh) 
 ST = ∅ 
 PT = ∅ 
 FOR each item si  S 
  pi’ = p ∪ si 
  IF pi’.support ≥ thresh  THEN 
   ST = ST ∪ si  
 FOR each item si  ST 
  PT = PT ∪ EXPAND (p ∪ si, ST, thresh) 
 PT = RESOLVE (PT, |p|) 
 Output PT 
 
RESOLVE (FP, idx) 
 CP = Copy of FP 
 FOR each item pi  FP 
  FOR each item pj  FP AND i < j ≤ FP.length 
   IF pi [idx] ≠ $ AND pj [idx] ≠ $ AND  
    pi [idx ... pi.length] = pj [idx ... pj.length] THEN  
    pi = SOLVE_CONCURRENCY (pi, pj) 
    pi = SOLVE_LOOP (pi) 
    Remove pj from FP 
   ELSE IF pj is sub-pattern of pi  THEN 
    Remove pj from FP 
   ELSE IF pi is sub-pattern of pj  THEN 
    Remove pi from FP 
    Go to the next item in FP 
 IF CP ≠ FP  THEN 
  RESOLVE (FP, idx) 
 Output FP 
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3.3 Assumptions and Limitations 

An event in a transactional log usually contains information such as the event 
type/value (e.g. apply for a drivers licence or update patient information), the 
agent/performer that is doing the event, the requestor/client that initiates the whole 
sequence of events, timestamp and the data element being modified or accessed (e.g. 
the age of a patient, the driving test result). A trace of events is a sequence of events, 
sorted by the timestamp, done for a client. Because the goal of MPM is to find all 
possible orderings of the logged events in the system, only the event type/value are 
mined. Once we have organized the log into sets of traces, other information, such as 
timestamp and agent, are ignored. In this paper, the term event type and event value 
are used interchangeably.     

In an experimental setting, we know the original model that our algorithm should 
strive to construct, the complete list of traces that the model could generate, and the 
instances in a log that are negative examples. But in real life scenarios no original 
models will be available; logs may contain noise such as mislabelled events and in-
correctly logged sequences of events and exceptions. In fact, a particular trace of  
observed events does not have to be reproduced by the model. Furthermore, in a com-
plex process with many possible paths, only a fraction of those paths may be present 
in the log, i.e., the log is incomplete. Thus, it is undesirable to construct a model that 
allows only for the observed instances in the log. Since we do not know which in-
stance in the log is noise, we assume that every trace/event recorded in the log that 
appears no less than a user’s specified threshold frequency is correct (positive exam-
ples). However, unobserved traces of events are not considered as negative examples. 
Our MPM algorithm can construct a model that can explain all the traces of events 
found in the log while also allowing for any unobserved behaviour. 

As shown in Section 4.4., because we are always trying to solve loops before par-
allel tasks, just like α++, AGNEs and Heuristic Miners, our algorithm is incapable of 
generating a model that can accurately represents duplicate tasks in a parallel process 
structure. 

4 Experimental Result 

In this paper, we evaluate the quality of the mined model produced by MPM, α++, 
Genetic miner, Integer Linear Programming (ILP), AGNEs and heuristic miners ac-
cording to logs that are mentioned in the respective publications. We did not perform 
the evaluation on α and α+ as [10, 11] have reported that α++ can construct a model 
that handles more complex control-flow constructs.  

4.1 Criteria 

Buijs et al. [34] reviewed all the existing criteria used by various researchers to vali-
date their process mining techniques and found that they all shared the notions of 
simplicity, replay fitness, precision and generalization. Therefore, we have also used 
these criteria along with time to evaluate the performance of our algorithm. 

Replay fitness measures how well the model can generate the traces in the event 
log. Alignment distance function defined by van der Aalst, et al. [35] is used to calcu-
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late fitness of a process model. The generated process model should be simple, i.e. it 
only includes the necessary number of events and links to explain anything [35]. The 
simplicity measures defined in Buijs et al. [34] is used.  Precision estimates how 
much the model accepts additional behaviour that is not seen in the log. Align preci-
sion metrics by Adriansyah, et al. [36] is used to test whether the generated model 
under-fits. In contrast to Precision, generalization addresses an overly precise model. 
As mentioned previously, it is not likely that a log is complete and noise-free. There-
fore, the mined model should be robust enough so that the removal or addition of 
small percentage of traces in the log will not lead to a remarkably different model. 
Most importantly, processing time is also considered one of the critical criteria, we 
include the time taken by an algorithm to mine a process model as one of our quanti-
tative criteria.  

4.2 k-fold Cross Validation 

Based on the existing techniques, evaluating the quality of a mined model is achieved 
by calculating the replay fitness, the simplicity, the precision, and the generalization 
measures of the model on all of the traces found in a log, and usually the log used 
during the evaluation is the same log that is used to build the model. However, it is 
well-known in the statistics and machine learning communities that it is a methodo-
logical mistake to learn and test the performance of a prediction function on the same 
data as the generated model will in all likelihood get 100% accuracy on the training 
data but perform very poorly on a new set of input data. This phenomenon is called 
over-fitting. To avoid over-fitting, the available data should be separated into a train-
ing data set that is used to generate the model, and a test data set that is used to evalu-
ate the quality of the generated model. The most common approach to do this is called 
k-fold cross validation and this is the evaluation method that we use to evaluate the 
generalization measures of each model [35]. 

With k-fold cross validation, the log is split into k approximately equal sized parti-
tions. Each partition is used exactly once as the test set while the remaining data is used 
as the training set. The performance of the algorithm is the average of the values com-
puted on each iteration. For example, in 3-fold cross validation, the log is divided into 3 
equal sized groups (A, B, C). First, the algorithm uses A and B as training data. The 
performance of the generated model (P1) is then tested on C. Next, the algorithm uses B 
and C as training data, and evaluates the performance of the constructed model (P2) on 
A. Finally, A and C are used as training data, and the performance of the generated 
model (P3) is tested on B. The overall performance of the algorithm is measured by 
averaging P1, P2 and P3. In our evaluation, we use 10-fold cross validation. Because  
k-fold cross validation ensures that our model does not over-fit the training data (i.e. the 
model is general enough), the performance measured in each iteration is simplicity, 
replay fitness, and precision. The overall performance of a technique on a log is calcu-
lated by averaging the performance of that technique on each fold. 

In the process mining area, some researchers avoid over-fitting by evaluating the 
performance of their generated model on “noisy” logs. These logs are created by  
adding noise (such as artificial start and end events, incorrect event labelling, event 
mutation, traces addition and removal, etc.) to original logs. However, as mentioned 
previously, without an explicit reference model, we do not know which specific  
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instances in the original logs is noise. Therefore, artificial logs may actually generate 
positive examples that we did not observe in the original log and we may incorrectly 
label them as negative instances [18]. This is also the reason why we do not think 
stratified k-fold cross validation, where we artificially create negative examples, as 
proposed by [30] is appropriate. 

A one-way analysis of variance and paired t-tests is then used to examine statisti-
cally significant differences in the performance of each algorithm. This way we can 
generate a process model on several data sets. 

4.3 Setup 

Similar to other discovery algorithms, our MPM algorithm is implemented as a plugin 
of ProM [29]. In our evaluation, we use synthetics and real event log data to demon-
strate the fact that the MPM algorithm can significantly improve the performance of the 
existing approaches, especially the α-algorithm and its variants. We do not use parame-
ter fine-tuning or metadata to enhance the performance of our algorithm. We have also 
used the default settings for α++, genetic miner, ILP and AGNEs. To further extend the 
capability of Heuristic Miner, we configure it to discover long distance dependencies 
based on completed events’ values and positions on a trace. 

4.4 Synthetic Data 

We compare the performance of MPM, α++, Genetic miner, ILP, AGNEs and Heuris-
tic Miners on the artificial logs example that are used in [10, 11, 37, 18]. There are 
about 300 to 350 traces and maximum 10 unique events in each log. 

 

 

Fig. 3. Log T = {ABCE, ACBE, ABDDCE} 

 

Fig. 4. Log T = {ABDEHFI, ADBEHFI, ACDFGEI, ADCFGEI} 

Due to the fact that the α++ algorithm builds a process model based on the relation-
ship between any two events so that it does not allow an event to occur more than once 
in the model, it requires additional heuristics to handle long distance dependencies, short 
loops (maximum of two events) and non-free-choice constructs (combination of choice 

a) α++ algorithm b) MPM algorithm

a) α++ algorithm
b) MPM algorithm
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and concurrency); and assumes that two or more events must occur concurrently if they 
have the same parents (i.e. bad precision). Therefore, it is possible for the α++ algorithm 
to produce unsound workflow nets as shown in Figures 3 and 4. Similarly, because 
Heuristic Miners also builds a casual matrix that represents the relationship between any 
two events, it cannot handle duplicate tasks as illustrated in Figure 5. Although AGNEs 
is more versatile than Heuristic Miners, it is still incapable of handling complex non-
free choice constructs such as displayed in Figure 6. 

 

 

Fig. 5. Log T = {ADAF, AEAF, AHBAG, AHCAG} 

 

Fig. 6. Log T = {ABC, ABDE, ADBE} 

Our MPM algorithm discovers a process model by reading patterns from the whole 
sequence of events in traces. Thus, it has more stringent criteria than Heuristic Miners 
or α++; it can handle duplicate tasks, long distance dependencies, loops of any length 
and non-free choice constructs. The process model discovered by MPM is always 
sound, and it is generally more accurate than the models mined by AGNEs, ILP, Heu-
ristic Miners or α++. However, MPM is incapable of generating a model that accu-
rately represents duplicate tasks in a parallel process structure, as shown in Figure 7. 
Genetic Algorithm was the only algorithm that correctly mined this log. 

 

 

Fig. 7. Log T = {ACBA, ACAB, CAAB, CABA, ABCA} 

 
 

A
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As displayed in Table 1, ILP and MPM are the only algorithms that can consis-
tently produce perfectly fitting models across all the synthetic data. Followed closely 
by Genetic, Heuristics and AGNEs miner. A paired t-test evaluation showed that there 
are significant differences at the 95% level in fitness performance between the ILP or 
MPM to α++. 

Table 1. The average replay fitness, precision, simplicity and run-time comparisons for the 
artificial logs 

 Fitness Precision Simplicity Time 

α++ 0.7 0.5 1.0 250 ms 
Genetic 0.9 0.9 0.7 1 hour 
Heuristics 0.8 0.7 0.8 10 s 
AGNEs 0.8 0.8 0.6 5 mins 
ILP 1.0 0.6 0.9 2 mins 
MPM 1.0 0.9 0.7 150 ms 

 
ILP, α++ and Heuristic Miners tend to create overly general models making them 

much less precise. AGNEs can produce models that are more precise than α++, ILP 
and Heuristic Miners so there is only a 90% level of significant difference between 
Genetic Algorithm and MPM to AGNEs.  

Simplicity of Genetic Miner, AGNEs and MPM is rather low due to the duplication 
of several events. There are no significant differences at the 95% level in terms of the 
average simplicity between these algorithms compared to Heuristics miner. α++ and 
ILP are significantly better at the 95% level compared to Genetic Miner, AGNEs and 
MPM.  

While Genetic Miner will sometimes produce a model that is more accurate than 
MPM, MPM can generate a similar model in significantly less time. Unlike ILP, 
MPM always generated sound model. Furthermore, MPM can incrementally build 
and improve the mined model in near real time as it receives new traces of events, i.e. 
the model becomes more accurate as it sees more unique traces of events. 

4.5 Real-Life Log Data 

Similar to the previous section, to evaluate the performance of MPM, α++, Genetic 
miner, AGNEs, ILP and Heuristic Miners we used the real-life Hospital log obtained 
from [32].  For each log, we let each of the algorithms run for 5 days and if they ex-
ceeded that we counted them as DNF (Did Not Finish). 

From Table 2, we can see a similar pattern to the one that we found with the syn-
thetic data. Genetic Miner is the algorithm that takes the longest to finish. It takes at 
least 5 days for Genetic Miner to return any sort of result. Therefore, we could not 
comment on the simplicity, precision and replay fitness of the model generated by 
Genetic Miner. The worst performing algorithm in terms of fitness and precision is 
α++. Even though the model generated by ILP can replay the trace log perfectly with 
just enough number of nodes, the model tend to under-fit. Unlike with the synthetic 
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data, Heuristic Miners significantly outperforms AGNEs in terms of fitness, precision, 
simplicity and running time with the real-life log data analysis at the 95% level. Heu-
ristic Miners could generate a model significantly faster than AGNEs, and the model 
is significantly more accurate and robust than that generated from AGNEs. We argue 
that this difference is caused by the introduction of incorrect false negative examples 
in AGNEs. Real-life logs contain much noise and tend to be incomplete. As such, it is 
fairly easy for AGNEs to regard an unobserved positive behaviour as a negative ex-
ample. On the other hand, Heuristic Miners decides the relationship between two 
processes based on the probability of process B following process A given the evi-
dence of prior processes as such it is more robust to noise. However, MPM is still 
significantly better than Heuristic Miners at the 95% in terms of fitness and run-time. 

Table 2. Average replay fitness, precision, simplicity and run-time of different techniques 
across multiple logs 

 Fitness Precision Simplicity Time 

α++ 0.3 0.4 0.9 10 mins 
Genetic DNF DNF DNF >5 days 
Heuristics 0.7 0.8 0.8 1 hour 
AGNEs 0.5 0.6 0.3 20 hours 
ILP 1.0 0.5 0.8 2 hours 
MPM 0.9 0.9 0.7 9 mins 

5 Conclusion and Future work 

In this paper, we propose a novel technique called Maximum Pattern Mining (MPM) 
to discover a process model from event logs. We implemented our technique and 
evaluated it against the well-known process discovery algorithms: α++, Genetic miner, 
ILP AGNEs and Heuristic Miners algorithms. The results from our experiments show 
that MPM performs better or comparable in terms of fitness, precision, simplicity and 
run-time efficiency. It can handle much more general cases, such as loops of any 
length and long distance dependencies. However to achieve high fitness and preci-
sion, MPM tends to use duplicate events in the model which caused low simplicity 
score. In the future, we will implement a graph that will allow users to define the 
tasks’ abstraction level and hopefully increase MPM’s simplicity score. As MPM was 
able to efficiently generate an accurate model from a real-life log in near real time, 
event-stream mining is feasible. 
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Abstract. The visualization of models is essential for user-friendly
human-machine interactions during Process Mining. A simple graphical
representation contributes to give intuitive information about the behav-
ior of a system. However, complex systems cannot always be represented
with succinct models that can be easily visualized. Quality-preserving
model simplifications can be of paramount importance to alleviate the
complexity of finding useful and attractive visualizations.

This paper presents a collection of log-based techniques to simplify
process models. The techniques trade off visual-friendly properties with
quality metrics related to logs, such as fitness and precision, to avoid
degrading the resulting model. The algorithms, either cast as optimiza-
tion problems or heuristically guided, find simplified versions of the initial
process model, and can be applied in the final stage of the process mining
life-cycle, between the discovery of a process model and the deployment
to the final user. A tool has been developed and tested on large logs, pro-
ducing simplified process models that are one order of magnitude smaller
while keeping fitness and precision under reasonable margins.

1 Introduction

The understandability of a process model can be seriously hampered by a poor
visualization. Many factors may contribute to this, being complexity a crucial
one: models that are unnecessarily complex (incorporating redundant compo-
nents, or components with limited importance) are often not useful for under-
standing the process behind. On the other hand, process models are expected to
satisfy certain quality metrics when representing an event log: fitness, precision,
simplicity and generalization [1]. In this paper we present techniques to simplify
a process model while retaining the aforementioned quality metrics under rea-
sonable margins. We focus on the simplification of Petri nets, a general formalism
onto which several other process models can be essentially mapped.

Given a complex process model, one can simply remove arcs and nodes until
a nice graphical object is obtained. However, this naive technique has two main
drawbacks. First, the capability of the simplified model to replay the process exe-
cutions may be considerably degraded, thus deriving a highly unfitting model.
Second, the model components, arcs and places in a Petri net, are not equally
important when replaying process executions, and therefore one may be inter-
ested in keeping those components that provide more insight into the real bound-
aries on what is allowed by the process (i.e., its precision).
c© Springer International Publishing Switzerland 2015
H.R. Motahari-Nezhad et al. (Eds.): BPM 2015, LNCS 9253, pp. 457–474, 2015.
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(a) Initial process model.

(b) Simplified fitting proc. model. (c) Simplified series-parallel process model.

Fig. 1. Log-based simplification of an spaghetti-like process model.

Given a Petri net and an event log, this paper first ranks the importance of
places and arcs using a simple simulation of the log by the Petri net, and then
simplifies the model by retaining those arcs and places that are important in
restricting the behavior allowed by the model. Several alternatives are presented,
which render the preservation of fitness as a user decision, or extract certain Petri
net subclasses (State Machines, Free-Choice) or structural subclasses (Series-
Parallel graphs). The goal of these techniques is similar to that of [2]. However
the techniques presented in this paper require a lower computational cost and
exhibit better scalability when managing large problems, while producing results
of competitive quality, as shown by the experimental results.

1.1 Motivating Example

We will illustrate one of the techniques presented in this paper with the help
of an example. We have used the general-purpose tool dot [3] to render all the
examples. Figure 1a reports a process model that has been discovered by the
ILP miner from a real-life log, a well-known method for process discovery [4].
This miner guarantees perfect fitness (i.e., the model is able to reproduce all the
traces in the log), but its precision value is low (31.5%) which indicates that the
model may generate many traces not observed in the log.

Clearly, this model does not give any insight about the executions of the
process behind. Hence, although it is a model having perfect fitness, some of
the other quality metrics (precision, simplicity) are not satisfactory. Applying
the simplification techniques of this paper, a process model can be transformed
with the objective of improving its understandability. The process models at the
bottom of Fig. 1 are the result of applying two of the techniques proposed in
this paper. In Figure 1b the model is simplified while preserving as much as
possible the quality metrics of the original model. The model has 6 times fewer
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places and arcs, making it much easier to understand. The resulting fitness is
still perfect, but the precision has been reduced to 22.5%.

In Figure 1c we reduce the model to a series-parallel graph, further improving
its simplicity and understandability. The fitness has been reduced to 64.1%, but
on the other hand its precision has improved considerably (now 48.7%).

The paper is organized as follows. Section 2 introduces the required back-
ground of the paper. Section 3 gives an overview of the proposed simplification
algorithms. In Section 4, a log-based technique to estimate the importance of arcs
and places is described, which is used by some of the simplification algorithms,
detailed in Section 5. Section 6 describes the remaining, non log-based simpli-
fication techniques. All techniques are evaluated in Section 7. Finally, related
work and conclusions are discussed in Sections 8 and 9, respectively.

2 Preliminaries

2.1 Process Models

Process models are formalisms to represent the behavior of a process. Among the
different formalisms, Petri nets are perhaps the most popular, due to its well-
defined semantics. In this paper we focus on visualization of Petri nets, although
the work may be adapted to other formalisms like BPMN, EPC or similar.

A Petri Net [5] is a 4-tuple N = 〈P, T,F ,m0〉, where P is the set of places, T
is the set of transitions, F : (P × T ) ∪ (T × P ) → {0, 1} is the flow relation, and
m0 is the initial marking. A marking is an assignment of a non-negative integer
to each place. If k is assigned to place p by marking m (denoted m(p) = k), we
say that p is marked with k tokens. Given a node x ∈ P ∪ T , its pre-set and
post-set are denoted by •x and x• respectively.

A transition t is enabled in a marking m when all places in •t are marked.
When t is enabled, it can fire by removing a token from each place in •t
and putting a token to each place in t•. A marking m′ is reachable from m
if there is a sequence of firings t1t2 . . . tn that transforms m into m′, denoted
by m[t1t2 . . . tn〉m′. A sequence t1t2 . . . tn is feasible if it is firable from m0. A
Petri net N is a: Marked graph if ∀p ∈ P : |•p| = |p•| = 1, State machine
if ∀t ∈ T : |•t| = |t•| = 1 and Free-Choice if ∀p1, p2 ∈ P : p•

1 ∩ p•
2 	= ∅

⇒ |p•
1| = |p•

2| = 1.

2.2 Process Mining

A trace is a word σ ∈ T ∗ that represents a finite sequence of events. An event
log L ∈ B(T ∗) is a multiset of traces1. Event logs are the starting point to apply
process mining techniques, guided towards the discovery, analysis or extension

1 B(A) denotes the set of all multisets over A.
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of process models. Process discovery is one of the most important disciplines in
process mining, concerned with learning a process model (e.g., a Petri net) from
an event log. Although a novel discipline, there are several discovery techniques
that have appeared in the last decade, most of them summarized in [1].

The second family of techniques in process mining is conformance checking,
i.e., comparing observed and modeled behavior. There are four quality dimen-
sions for comparing model and log: (1) replay fitness, (2) simplicity, (3) precision,
and (4) generalization [1]. A model has a perfect replay fitness if all traces in the
log can be replayed by the model from beginning to end. The simplest model
that can explain the behavior seen in the log is the best model, a principle known
as Occam’s Razor. Fitness and simplicity alone are not sufficient to judge the
quality of a discovered process model. For example, it is very easy to construct
an extremely simple Petri net (“flower model”) that is able to replay all traces in
an event log (but also any other event log referring to the same set of activities).
Similarly, it is undesirable to have a model that only allows for the exact behav-
ior seen in the event log. A model is precise if it does not contain “too much”
behavior that has not been observed in the log. A model that is not precise is
“underfitting”[6]. In contrast to precision, a model should generalize and not
restrict behavior to just the examples seen in the log.

In this paper, we consider simplifications that may preserve replay fitness
which we will simply refer to as fitness. Metrics for fitness have been defined as
indicators of how every trace in the log fits a model [7]. Likewise, metrics for
precision exist in the literature [6].

Definition 1 (Fitting Trace and Log). A trace σ ∈ T ∗ fits a Petri net N if
σ is a feasible sequence in N . An event log L fits N if for all σ ∈ L, σ fits N .

3 Overview of Proposed Simplification Techniques

In this section, we introduce the 3 different approaches to the simplification
problem that are the main contributions of this work. Figure 3 illustrates these
approaches by applying each one to the input model shown in Fig. 2a. The
first approach reduces the input to a Petri net that is visually close to a series-
parallel graph [8] by removing the least important arcs and places (Fig. 2b).
However, it has the greatest computational cost. We introduce a second app-
roach that reduces the simplification problem to an Integer Linear Programming
(ILP) optimization problem that is more efficient and optionally guarantees the
preservation of fitness (Fig. 2c and 2d). These two techniques require an esti-
mation of the importance of arcs and places. In Section 4 we explain how this
scoring is computed, while Section 5 describes the techniques in more detail.

The third technique, however, does not consider any information from the
log. Instead, the Petri net is projected into different structural classes: free choice
(Fig. 2e) and state machine (2f). This approach is described in Section 6.
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(a) Original model using algorithm in [4]. (b) Simplified to series-parallel.

(c) Simplified using ILP model. (d) Simplified using ILP model
(preserving fitness).

(e) Simplified to free choice. (f) Simplified to state machine.

Fig. 2. Overview of the different simplification techniques.

4 Log-Based Arc Scores

Given a Petri net and an event log, in this section we introduce a technique to
obtain a scoring of the arcs (and, indirectly, places) of the net with respect to
their importance in describing the behavior underlying in the log.

The idea of the proposed technique is simple: when a Petri net replays a
particular trace in the log, some arcs may have more importance than others
for that particular trace. Hence, triggering and utilization scores will be defined
to provide an estimation of the importance of the arcs in replaying the log.
Arcs F(p, t) 	= 0 with high trigger score correspond to frequent situations in the
model where more behavior should not be allowed (i.e., the arc, and therefore p, is
frequently disabling certain transitions to occur). By keeping these arcs/places
in the model, one aims at deriving a model where precision is not degraded.
Conversely, an arc F(t, p) 	= 0 with high utilization score denotes a situation
where transition t is frequently fired (thus frequently adding tokens to p), and
therefore should not be removed to avoid degrading fitness.

Definition 2 (Trigger Arc). Let N = 〈P, T,F ,m0〉 be a Petri net, σ a fitting
trace for N , and t′ ∈ σ a transition represented by firing m[t′〉m′ in N . For any
pair p ∈ P, t ∈ T , an arc F(p, t) 	= 0 is trigger in m[t′〉m′ iff t is not enabled in
m but enabled in m′ and m(p) < F(p, t) but m′(p) ≥ F(p, t).

Intuitively, an arc F(p, t) 	= 0 is trigger at every transition t′ ∈ σ in which t
becomes enabled and p is in the set of places which, in that transition t′, received
the last tokens required for enabling t. Thus, a frequently-trigger arc indicates
p is important in restricting the behavior allowed by the model, and that p or
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F(p, t) cannot be removed without sacrificing precision. Note that for a single
transition t there may be more than one trigger arc, even in the same transition
t′ ∈ σ. To use this information, we define a trigger score which characterizes the
frequency of an arc in playing the trigger role. In the following definition, we
include the score for arcs between transitions and places, the utilization score,
which is based on the frequency of firing:

Definition 3 (Trigger/Utilization Score of an Arc). Given a Petri net
N = 〈P, T,F ,m0〉 and fitting log L, the trigger score of an arc F(p, t) 	= 0,
denoted by T (p, t), is the number of transitions from L in which F(p, t) is trigger.
The utilization score of an arc F(t, p) 	= 0, denoted by U(t, p), is the number of
times transition t is fired in L.

Given a log and a Petri net, obtaining the trigger/utilization scores can be
done by replaying all traces in the log. Algorithm 1 shows how to compute trigger
scores: for every transition in the log, the scores are updated by comparing the
markings from the predecessor places of all newly enabled transitions.

Algorithm 1. TriggerScores
Input: An event log L and a Petri net N = 〈P, T, F, m0〉
Output: A score T (p, t) for every arc F(p, t) �= 0

1 for σ ∈ L do
2 Let m0[t1〉m1[t2〉 . . . [tn〉mn = σ
3 for i ← 1 to n do
4 for t ∈ T do
5 if t is enabled in mi ∧ t was not enabled in mi−1 then
6 for p ∈ •t do

// t is enabled in mi =⇒ mi(p) ≥ F(p, t)
7 if mi−1(p) < F(p, t) then T (p, t) ← T (p, t) + 1
8

9 return T
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(b) Petri net with trigger/utilization scores

Fig. 3. Trigger and utilization score computation for an example trace and model.

Figure 3 shows the results of computing, on an example trace and model,
both trigger and utilization scores. Utilization scores are shown in italics.
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Finally, notice that in the definitions of this section we consider fitting traces.
Given an unfitting trace (i.e., a trace that cannot be replayed by the model), an
alignment between the trace and the model will provide a feasible sequence that
is closest to the trace [7]. This allows widening the applicability of the scoring
techniques of this section to any pair (log, model).

5 Simplification Techniques Using Log-Based Scores

5.1 Simplification to a Series-Parallel Net

A series-parallel net is one obtained by the recursive series or parallel composition
of smaller nets. Series-parallel Petri nets are amongst the most comprehensible
types of models. In a series-parallel net, forks and choices (and thus concurrency)
are immediately visible. In fact, existing documentation often uses series-parallel
nets as examples to illustrate concepts related to Petri nets.

For this reason, one of the main contributions in this work is a heuristic
that reduces a complex Petri net into an almost series-parallel net. The algo-
rithm iteratively removes the least important edges until the graph is either
strictly series-parallel, or no additional reduction can be applied without losing
the connectedness of the net. The importance of every arc is determined by their
trigger score T (p, t), for place-transition arcs, and their utilization score U(t, p)
for transition-place arcs. The approach is grounded in the notion of a set of
reduction rules, explained below.

(a) Reduction rule

(1)

(2)

(b) Source petri net
(with rule violations).

(c) Transformed net

Fig. 4. Applying a transformation and transformation cost.

Reduction Rules. In [5] a set of reduction rules used for the analysis of large
Petri net systems is introduced. Each of the transformations preserves liveness,
safeness and boundedness of a Petri net. Thus, verification of these properties can
be done in the simplified net instead of the original one. The transformations pro-
posed are: fusion of series places/transitions, fusion of parallel places/transitions
and elimination of self-loop places/transitions. A rule can be applied only when
its preconditions are satisfied. An example of the fusion of parallel places rule
can be seen in Fig. 4a.
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Because of the construction of a series-parallel Petri net, it is possible to
reduce such a net to a single place or transition by recursive application of
these transformations. Therefore, every violation of the preconditions of a rule
indicates a subnet which is not series-parallel.

To reduce a Petri net to a series-parallel skeleton, this work uses these reduc-
tion rules in an indirect way. We do not use the transformed Petri net that
results from the application of the rules. Instead, the proposed method removes
those arcs and places which prevent the rules from being applied. For every one of
the reduction rules, a transformation cost is defined: the sum of the trigger and
utilization scores of all the arcs that would need to be removed in order to apply
such transformation. The transformation cost therefore models the importance
of the arcs that would need to be removed.

Figure 4 shows an example rule, the computation of its transformation cost,
and the resulting graph after applying the transformation rule. This rule can
only be applied in this input Petri net if two arcs (dashed lines in Fig. 4b) are
removed. Thus, the transformation cost is equal to the trigger score of arc (1)
and utilization score of arc (2).

Algorithm. Algorithm 2 describes the main iteration of the method. Function
ApplicableTransformations identifies all possible applications of the reduction
rules, and computes the transformation cost for each of the possible applications.

At every iteration we select the transformation m with the least cost, that
is, the one that requires removing the least amount of important arcs in order
to be applied. Function ApplyTransformation applies such transformation m.
If applying the transformation breaks the net into more than one connected
component, the next best transformation is selected instead. Otherwise, function
PreconditionViolatingArcs enumerates all the arcs that had to be removed in
order to satisfy the preconditions of transformation m. Those arcs are removed
them from the original Petri net N0. The next iteration repeats the process on
the transformed net N ′, finding new ApplicableTransformations only around
the nodes that were changed on the previous iteration.

Algorithm 2. Series-Parallel algorithm
Input: A Petri net N0 = 〈P, T, F, m0〉, a trigger score T (p, t) for every (p, t) arc, and a

utilization score U(t, p) for every (t, p) arc
Output: A simplifed Petri net

1 N ← N0
2 M ← ApplicableTransformations(N)
3 while |M | > 0 do
4 m ← transformation with least cost from M

5 N ′ ← ApplyTransformation(N, m)

6 if N ′ is disconnected then
7 M ← M \ {m}
8 continue

9 N0 ← N0 \ PreconditionViolatingArcs(N, m)

10 N ← N ′

11 M ← ApplicableTransformations(N)

12 return N0
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Once no additional reduction rules can be applied (e.g. because the net is
now a single place or transition), the algorithm stops. The currently transformed
graph is discarded, and the result of the algorithm is the simplified Petri net N0.
A final postprocessing step removes unneeded places (e.g. without incident arcs).

The nets generated by this heuristic are not necessarily fully series-parallel,
since we never remove any arc that would result into an unconnected graph. This
is the only method from this work that presents such a global guarantee, with
the other methods providing weaker connectivity constraints. It is also possible
to configure the method to generate strictly series-parallel models.

5.2 Simplification Using ILP Models

In this section we show a different approach to simplify a Petri net for visualiza-
tion. The selection of which arcs to remove is seen as an optimization problem,
and modeled as an Integer Linear Program (ILP). The use of ILP allows for
highly efficient solving strategies. On the other hand, some constraints cannot
be modeled using ILP. For example, the models attempt to preserve connectiv-
ity of the net at a localized level (i.e. ensuring transitions maintain at least one
predecessor and successor place), but cannot guarantee global net connectivity.

The aim of the ILP model is to reduce the number of arcs as much as pos-
sible. The inputs are a Petri net N = 〈P, T,F ,m0〉, trigger scores T (p, t) and
utilization scores U(t, p). We define a binary variable S(p) for every p ∈ P , and a
binary variable A(p, t) or A(t, p) for every arc in N . In a solution of this model,
variable S(p) is 0 when place p is to be removed from the input graph (similarly
for arc variables A(p, t) and A(t, p)). Below we describe the ILP model in detail.

min
∑

F(p,t)>0

A(p, t) +
∑

F(t,p)>0

A(t, p) (1)

s.t. ∀p ∈ P : S(p) ⇐⇒
∑

t∈p•
A(p, t) > 0 ∧

∑

t∈•p

A(t, p) > 0 (2)

∑

F(p,t)>0

T (p, t)A(p, t) >= Γ (3)

∑

F(t,p)>0

U(t, p)A(t, p) >= Φ (4)

∀t ∈ T :
∑

p∈t•
A(t, p) > 0 ∧

∑

p∈•t

A(p, t) > 0 (5)

∀p ∈ P : M(p) > 0 =⇒ S(p) (6)
∀t ∈ T, p ∈ P : F(t, p) > 0 ∧ S(p) =⇒ A(t, p) (7)

The objective function, Eq. 1, minimizes the number of preserved arcs. Con-
straint 2 encodes the relationship between A and S variables. A place is retained
in the output net iff at least one predecessor or successor arc is retained.
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The model ensures that the most important arcs, according to the trigger
scores T , are preserved. To implement this, constraint 3 imposes a minimum
number of preserved arcs: where Γ can be configured as a percentage of the
combined trigger score from all place transition arcs. A similar threshold constant
Φ is imposed using the utilization score U for transicion place arcs (Eq. 4).

A fully connected graph cannot be guaranteed by the ILP model. Instead,
Eq. 5 models a weaker constraint: every transition will preserve at least one
predecessor and successor arc. In addition, every place marked in m0 is always
preserved, to avoid deriving a structurally deadlocked model (Eq. 6).

Preserving Fitness (Optional). The ILP model as described so far does not
guarantee preservation of fitness from the original Petri net. A simple modifica-
tion can ensure that the existing fitness is preserved, at the cost of being able to
remove only a reduced number of arcs from the model. Following a well-known
result in Petri net theory, removing only F(t, p) arcs never reduces the fitness of
a model for any given log. Constraint 7 implements this restriction.

6 Simplification by Projection into Structural Classes

In this section we present ILP models to reduce Petri nets to two types of struc-
tural classes: free choice and state machines [5]. These methods do not require a
log as they do not use trigger or utilization scores. Therefore, these proposals can
be used to simplify Petri nets for visualization even when logs are not available,
albeit their results may be of lower quality since scoring information is not used.

Note that [4] can also be configured to generate state machines or marked
graphs, but this approach requires having a log. In addition, the models extracted
may still be complex because of the requirement to preserve fitness.

6.1 Free Choice

In this method, we simplify Petri nets by converting them into free choice nets.
This method preserves the fitness of the model, but reduces precision. While this
reduction does not necessarily result in models simple enough for visualization,
complexity is reduced while mantaining most structural properties. Thus, reduc-
ing a dense net into free choice both opens the door to efficient analysis and to
further decomposition (state machine or marked graph covers) techniques [9].

We encode this definition as a set of constraints and create a ILP problem
which maximizes the number of arcs. For every p ∈ P, t ∈ T , we define a binary
variable A(p, t) which indicates whether arc F(p, t) is preserved.

Equation 9 guarantees a free choice net. If |p•| > 1 (it is a choice) and •|p•| >
1 (it is not free), then p contains a non-free choice, and one of the conditions must
be removed. Either only one of the successor arcs of p is preserved, eliminating
the choice, or it is turned free by removing every predecessor arc of p• except for
the ones originating from p itself. Because F(t, p) arcs are never being removed,
this simplification preserves fitness.
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max
∑

F(p,t)>0

A(p, t) (8)

s.t.

∀p ∈ P : |p•| > 1 ∧ |•(p•)| > 1 =⇒
∑

t∈p•
A(p, t) = 1 ∨ ∀t ∈ p•, p′ ∈• t : p �= p′ =⇒ ¬A(p′, t) (9)

6.2 State Machine

In a state machine Petri net, every transition has exactly one predecessor arc
and one successor arc. To encode this requirement into an ILP model, we again
define a binary variable A(p, t) or A(t, p) for every arc in N .

max
∑

F(p,t)>0

A(p, t) +
∑

F(t,p)>0

A(t, p) (10)

s.t. ∀t ∈ T :
∑

F(p,t)>0

A(p, t) = 1 (11)

∀t ∈ T :
∑

F(t,p)>0

A(t, p) = 1 (12)

Constraints 11 and 12 encode the definition of a state machine. However,
note that this method may reduce the fitness of the model. A similar ILP model
can be created to extract a marked graph.

7 Experimental Evaluation

The methods proposed in this work have been implemented in C++. The
ILP-based methods have been implemented using a commercial ILP solver,
Gurobi [10]. To obtain the input models, the ILP miner [4] available in ProM
6.4 was used over a set of 10 complex logs. The publicly available dot utility [3]
has been used to generate the visualizations of all the models of the paper. The
measurements of fitness and precision have been done using alignment-based
conformance checking techniques [7]. Both the logs and our implementation are
publicly available at http://www.cs.upc.edu/∼jspedro/pnsimpl/.

7.1 Comparison of the Different Simplification Techniques

In Section 5 (Fig. 3), an artificial model was used to illustrate the different
simplification techniques presented in this work. Table 1 shows the details for
each one of the simplified models.

http://www.cs.upc.edu/~jspedro/pnsimpl/
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Several metrics are used to evaluate the results from the simplification tech-
niques. To evaluate the understandability and simplicity of a model, we use the
size of the graph, in number of nodes and arcs, as well as the number of cross-
ings. This is the number of arcs that intersect when the graph is embedded on a
plane. Thus, a planar graph has no crossings. A graph with many crossing arcs
is clearly a spaghetti that is poorly suited for visualization. To approximate the
number of crossings, the mincross algorithm from dot [3] is used.

Table 1. Simplicity, precision and fitness comparison for models in Fig. 3.

Nodes Arcs Crossings Fitness Precision
(a) Original net 13 35 7 100% 43.1%
(b) Series-parallel 13 17 0 100% 37.9%
(c) ILP model 12 16 0 68% 75.4%
(d) ILP (fitting) 11 21 0 100% 40.7%
(e) Free choice 13 24 1 100% 31.3%
(f ) State machine 13 13 0 49.2% 81.3%

To measure how much the simplified Petri nets model the behavior of the
original process we use fitness and precision, as defined in [7]. In this example,
the series-parallel reduction offers perfect fitness, and only 5% loss of precision
while removing half of the arcs and all crossings. However, the other methods
also remain interesting. For example, the state machine simplification offers the
best reduction in simplicity and increases the precision of the model to 80%, at
the cost of reducing the fitness by 50%.

Figure 5 shows the Petri nets produced by the different techniques on a real-
life log that is more spaghetti -like. The high number of crossings in the original
model make it unsuitable for visualization. In this example, the series-parallel
method no longer offers perfect fitness but still shows a good trade-off between
complexity and fitness/precision. The other methods may be used if for example
strict fitness preservation is required, at the cost of more complex models.

In Fig. 6, we compare numerically the techniques of this paper for the 10 logs.
For most of the logs, the series-parallel reduction and the ILP-based techniques
are able to reduce the number of crossing edges by several orders of magnitude
(note the logarithmic scale), creating small visualizable graphs from models that
would otherwise be impossible to layout. On the other hand, the simplification to
free choice results in very large and complex models. As mentioned, the benefits
of deriving free choice models come from the ability to apply additional reduc-
tion strategies. Simplifying to state machines generally produces poorly fitting
models, but they tend to have very few crossings and high precision.

Figure 6 also includes a comparison with some of the previous work in the
area: the Inductive Miner (IM) [11] and a unfolding-based method [2]. The IM is
a miner guided towards discovering block-structured models and which we see as
a promising technique (see Section 8) since it can be tunned to guarantee perfect
fitness. Generally, models generated by the IM contain fewer crossings, caused
by the addition of a significant number of silent transitions2 which increase the
2 A silent activity in the model is not related to any event in the log.
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(a) Original Petri net. (b) Simplified to Free Choice.

(c) Using ILP model, 60% threshold. (d) Using ILP model (fitting), 60% thresh-
old.

(e) Simplified to Series-parallel.

Nodes Arcs Crossings Fitness Precision
(a) 54 448 9805 100% 31.5%
(b) 54 320 5069 100% 19.4%
(c) 44 93 76 76.7% 42.2%
(d) 37 163 728 100% 15.6%
(e) 39 54 2 74.5% 37.8%

(f) Fitness and precision results.

Fig. 5. Running all methods on real-life log (incidenttelco).

size of the model. For example, in the incidenttelco example the number of
transitions of the model derived by the IM is 37, whilst the original model (and,
correspondingly, those generated by the simplification techniques) has 22. The
addition of silent activities can be beneficial for visualization, specially if the
underlying process model is meant to be block-structured.

On the other hand, the unfolding procedure is more closely related to the
methods proposed in this work. This technique uses an unfolding process to
simplify an existing Petri net, and has been evaluated using the same nets as
with our proposed methods. In general, it produces better results in terms of
fitness and precision with respect to the ILP models, at the expense of longer
computation time. When compared with the series-parallel method, the results
in fitness and precision are comparable, but the unfolding method requires more
computation time and the results are worst in terms of visualization.



470 J. De San Pedro et al.

Fig. 6. Simplicity (logarithmic scale on the number of crossings), fitness and precision
comparison between the different techniques using 10 real-life logs.

Fig. 7. Execution runtimes for the different simplification techniques.
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In Fig. 7 we compare the runtimes of the different methods. The ILP solver
resolved all the ILP simplification models in less than 1 minute, even for the
largest of the input Petri nets from the test set (25K nodes and arcs). The
series-parallel simplification, which is not ILP based, has a lower performance.
However, there are many parts where the algorithm could be optimized. Still,
the total execution runtime for the largest graph (25 minutes) was less than the
1 hour required for the miner in [4] to generate the input Petri net from the
log, and significantly less than the 5 hours required by the unfolding technique
presented in [2] (also shown in the plot).

The experiments presented in this section show the proposed simplification
ILP models to be highly efficient and able to generate models that are orders
of magnitude simpler than the original models. If additional simplification is
required, the series-parallel method can be used with an increased runtime.

7.2 Effect of the Threshold Parameter on the ILP Model

The ILP simplification model presented in Section 5.2 contains a threshold
parameter (Γ and Φ) which can be used to tune the complexity and size of
the simplified models. In previous experiments and figures, a threshold was set
manually so that models with approximately 2|T | arcs were generated (where T
is the set of transitions from the input Petri net).

To illustrate how varying these thresholds affects the model complexity and
quality, the ILP simplification model was executed for each of the input logs,
with varying threshold parameters. Fig. 8 shows the number of crossings and the

Fig. 8. Simplicity and fitness comparison using different thresholds for the ILP model.
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fitness for each combination. Generally the fitness decreases with the threshold
parameter, but there are some models where the trend reverses. This is because
nothing in the model ensures that a log with a given threshold Γ will strictly
capture all the behavior of a log simplified using Γ ′ with Γ > Γ ′.

8 Related Work

The closest work to the methods of this paper is [2], where a technique was
presented for the simplification of process models that controls the degree of
precision and generalization. It applies several stages. First, a log-based unfold-
ing of the model is computed, deriving a precise unfolded model. Second, this
unfolding is then filtered, retainning only the frequent parts. Finally, a folding
technique is applied which controls the generalization of the final model. Fur-
ther simplifications can be applied, which help on alleviating the complexity of
the derived model. There are significant differences between the two approaches:
while in our case, the techniques rely on light methods and can be oriented
towards different objectives, the approach in [2] requires the computation of
unfoldings, which can be exponential on the size of the initial model [12]. Also,
the filtering on the unfolding is done on simple frequency selection on the unfold-
ing elements, while in this paper the importance of model elements is assessed
with the frequency but also triggering information, which is related to the pre-
cision dimension. On the other hand, the techniques of this paper may need to
verify model connectedness at each iteration. In conclusion, both techniques can
be combined to further improve the overall simplification of a model.

The simplification of a process model should be done with respect to qual-
ity metrics, and in this paper we have focused on fitness and precision. An
alternative to this approach would be to include these quality metrics in the
discovery, a feature that has only been considered in the past by the family of
genetic algorithms for process discovery [13–15]. All these techniques include
costly evaluations of the metrics in the search for an optimal process model, in
order to discard intermediate solutions that are not promising. This makes these
approaches extremely inefficient in terms of computing time.

Furthermore, there exist discovery techniques that focus on the most frequent
paths [16,17]. These approaches are meant to be resilient to noise, but on the
other hand give no guarantees on the quality of the derived model. Additionally,
these approaches are oriented towards less expressive models, which makes the
simplification task easier than the one considered in this paper. A recent tech-
nique that is guided towards the discovery of block-structured models (process
trees) and that addresses these issues may be a promising direction [11]. However,
this technique is guided towards a particular class of Petri nets (workflow and
sound), describing a very restricted type of behaviors. Finally, the techniques of
this paper can be combined with abstraction mechanisms to further improve the
visualization of the underlying process model.
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9 Conclusions

A collection of techniques for the simplification of process models using log-
based information has been presented in this paper. The techniques proposed
tend to improve significantly the visualization of a process model while retain-
ing its main qualities in relation with an event log. This contribution may be
used on the model derived by any discovery technique, as an intermediate step
between discovery and visualization. Also, the analysis of simplified models may
be considerably alleviated (e.g., if deriving a free-choice net). The experiments
done on dense models have also shown a significant simplification capability in
terms of visualization metrics like density or edge-crossings.
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