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Abstract This chapter concerns applications of dense correspondences to images
of a very different nature than those considered in previous chapters. Rather than
images of natural or man-made scenes and objects, here, we deal with images
of texts. We present a novel, dense correspondence-based approach to text image
analysis instead of the more traditional approach of analysis at the character level
(e.g., existing optical character recognition methods) or word level (the so called
word spotting approach). We focus on the challenging domain of historical text
image analysis. Such texts are handwritten and are often severely corrupted by
noise and degradation, making them difficult to handle with existing methods. Our
system is designed for the particular task of aligning such manuscript images to their
transcripts. Our proposed alternative to performing this task manually is a system
which directly matches the historical text image with a synthetic image rendered
from the transcript. These matches are performed at the pixel level, by using SIFT
flow applied to a novel per pixel representation. Our pipeline is robust to document
degradation, variations between script styles and nonlinear image transformations.
More importantly, this per pixel matching approach does not require prior learning
of the particular script used in the documents being processed, and so can easily be
applied to manuscripts of widely varying origins, languages, and characteristics.
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1 Introduction

Recent large scale digitization and preservation efforts are producing vast image
collections of historical manuscripts. Such manuscripts provide important records
and artifacts from our shared cultural heritage. Taking European history as an
example, close to one million manuscript books along with countless archival
documents have survived to modern times from a period stretching back for over
a millennium. Taken together, these documents serve as valuable sources of history,
literature, philosophy, and scientific and medical literature, as well as art history
(considering illuminations often present in such manuscripts). They are additionally
important subjects of scientific inquiry in their own right, as they reflect scribal and
monastic culture, the history and development of writing systems, languages and
dialects, and the evolution of texts over time. Although efforts to digitally store
these manuscripts provide new means for both safeguarding the information buried
in them and making them widely accessible, searching through such manuscript
image archives remains a challenge.

Manuscript images, unlike printed text images, can be extremely difficult to read
by anyone other than experts skilled with a specific script or language type. They
are often written in old languages and hence training computer systems to recognize
or process them is challenging due to limited access to relevant training data.
Further limiting their accessibility are abbreviations and scribal signs, commonly
used by scribes. Many manuscripts have been severely degraded in quality over
the years and are often corrupted by dirt and moisture. The text itself often fades,
requiring specialized, sensitive imaging systems to capture. In other cases, ink
may bleed through from one side of a parchment to another, making it difficult
to differentiate between different texts on the same page. These and other concerns
have made optical character recognition (OCR) of historical documents notoriously
difficult [10].

All these challenges, as well as many more, are reflected in some of the most
valuable manuscript collections, recently digitized and made available online. Some
examples of these include the Dead Sea Scrolls (www.deadseascrolls.org.il), Greek
papyri (www.papyrology.ox.ac.uk/Ancient_Lives), Codex Sinaiticus (codexsinaiti-
cus.org), some of the Cairo Genizah documents (www.genizah.org), much of the
Tibetan Buddhist Canon (www.tbrc.org; idp.bl.uk), Taiwanese deeds and court
papers in the Taiwan History Digital Library (thdl.ntu.edu.tw), medieval Latin
and English manuscripts (scriptorium.english.cam.ac.uk/manuscripts), the Early
English Laws project (www.earlyenglishlaws.ac.uk), and the Papers of George
Washington (rotunda.upress.virginia.edu/founders/GEWN.html) and many others.
Our goal is to facilitate searching such manuscript archives, by proposing a system
for the task of determining letter-by-letter mappings between transcription texts and
their matching image regions in scanned manuscripts. By doing so, we provide
access on a character level to these manuscript images. To our knowledge, no fully
automatic method has previously been described for this task.

www.deadseascrolls.org.il
www.papyrology.ox.ac.uk/Ancient_Lives
codexsinaiticus.org
www.genizah.org
www.tbrc.org
idp.bl.uk
thdl.ntu.edu.tw
scriptorium.english.cam.ac.uk/manuscripts
www.earlyenglishlaws.ac.uk
rotunda.upress.virginia.edu/founders/GEWN.html
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In previous chapters of this book, dense correspondences were used to transfer
semantic information (e.g., depth, segmentation, scene labels) from reference
examples to query images. Here, the same approach is used to transfer character
labels from a synthetically rendered reference image to the manuscript image. We
describe a system which is general in the sense that it does not attempt to learn
how to identify graphemes in the manuscript. By using a robust “optical-flow”
technique to directly match the pixels of the historical image with a synthetic image
created from the text, it also avoids the assumption that one is provided with letter
segmentation, a challenge in itself, particularly in images of historical texts. Instead,
by transferring the (known) letter labels of pixels in the reference image to those in
the historical document image, the extents of each letter (i.e., its segmentation) are
obtained as part of our output.

The capabilities of our system were tested on images of a number of manuscripts
from a range of scripts, writing directions, writing styles, and languages. As a
possible extension to our method, we discuss how manual corrections of false
correspondences can be used to improve the correspondence estimation quality from
one line to the next. Beyond the specific application discussed here, our method
provides an idea of the potential capabilities of a per pixel, correspondence-based
approach in handling even extremely challenging text images.

This chapter is based on work which has previously been published in [11, 30].

2 Previous Work

Although previous work exists on the subject of matching text with images of
the same text [13, 34], this problem has received very little attention compared
to related problems of automatic text processing. In broad terms, existing systems
take one of the following general approaches to this problem. OCR can be applied
to the manuscript image in order to automatically extract the text appearing in it.
Following character recognition, alignment of text, and image is a straightforward
task. Although a number of effective, commercial quality OCR systems exist,
applying them to manuscript images is well known to be extremely challenging
(see, e.g., [3, 5, 28, 36] and many others).

One of the problems faced by OCR systems when applied to historical documents
is the challenge of segmenting individual letters in texts. To avoid this problem,
some have proposed systems which learn to recognize entire words rather than
single characters. Some such examples include the systems of [15, 22] and more
recently [2]. These systems all involve training on a collection of example word
images. These are not available in many cases, particularly when examples from the
same script and scribal hand do not exist.

Like us, some attempt to align text lines in their entirety. In [16, 19], as well as
in other works, a sequence of word images and the transcript are treated as time
series. Dynamic time warping (DTW) is used to align the sequence of word images
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and its transcript. Alternatively, hidden Markov models (HMM) have been used to
represent these sequences and then align them in [7, 29, 44]. These methods too
require sufficient examples of similar texts in order to produce models tuned to the
manuscripts being processed.

Character sizes, inter-character gaps, and other text punctuation characteristics
have been modeled using geometric models, in order to improve the quality of the
text segmentation, thereby providing better alignment quality. This approach has
been applied, for example, on Japanese texts in [43] and Chinese texts in [40]. These
methods are typically designed for a specific language and character properties, and
it is not clear how to generalize them from one language to another, where these
properties change.

The methods above are all fully automatic. A different approach which has been
gaining in popularity is to offer manuscript scholars convenient software systems for
transcript alignment. Several such tools include the text–image linking environment
(TILE) [33], the UVic image markup tool project [14], and the TextGrid system [21].
Though these software tools can be of immense help towards cataloging the text in
manuscript images, applying them to the huge collections of digitized manuscript
images may be too labor intensive.

In contrast to the methods mentioned above, ours does not use expert knowledge
of the properties of the language or typeface used by its characters. Furthermore,
our method does not require training data to adapt to a manuscript type. Instead, we
use direct, image-to-image, per pixel matching techniques between the manuscript
image and a rendered image produced using a font sufficiently similar to the one
used in the text. Though the quality of our alignments can depend on the suitability
of this user-selected font, our system is designed to be robust even in cases when it
is only a rough approximation to the typeface used by the scribe when writing the
manuscript. Finally, compared to the software tools described above, our system
is designed to be applied automatically, though it can be extended to allow for
manual corrections. Moreover, when processing long manuscripts, images, manual
corrections can be used to learn how to better estimate correspondences and improve
alignment from one manuscript line to the next.

3 Method Overview

Our pipeline is illustrated in Fig. 1. For an input manuscript image and a text file
containing its line-by-line transcript, our system performs the following steps. We
begin processing the manuscript image by applying the line detection method of
Wolf et al. [39] in order to obtain individual lines of text in the image. This method
first binarizes the manuscript image and then projects the binary values onto the
vertical axis. Peaks are then detected on these projected values in order to localize
each line. Lines are then individually trimmed at their horizontal boundaries,
detected by projecting the binary values of each line onto the horizontal axis (Fig. 1,
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Fig. 1 The stages of our transcript alignment method. Top row: Our input is a historical manuscript
image (left), along with a line-by-line transcript of the text in the image (right). Step 1, left: Each
manuscript line is horizontally projected and trimmed; right, each matching line of the transcript
is rendered using a suitable typeface, producing a matching reference image. Step 2: FPLBP
codes [37] are computed for the pixels of each image (codes color coded). Step 3: Each pixel is
represented by the frequency histogram of the codes in its elongated neighborhood. Step 4: Dense
correspondences are established between these two histogram matrices, using SIFT flow [23].
Bottom row: the output flow (shown here color coded) matches each pixel in the manuscript line
with a pixel in the rendered, reference image, providing access to its known character label

Step 1, left). The output of this step can then be manually adjusted using a graphical
user interface designed for this purpose.

Once lines are isolated, our problem becomes that of assigning transcript
character labels to each of the pixels of ink and of inter-word spaces in the line. To
this end we render the matching transcript text line, producing a synthetic, reference
image of the text (Fig. 1, Step 1, right). This is performed using a suitable font
chosen for the purpose. Font selection is performed in order to produce a reference
image in the same script and style (e.g., cursive, and print). In practice, the reference
image fonts are not expected to be identical to those in the manuscript and, as we
later show, can often be very different.

We maintain the spatial location of each character, as it is rendered onto the
reference image. We therefore have a per pixel character label for all the reference
image pixels. These labels are illustrated in Fig. 2 where a zoomed-in view of
the reference image is shown above the pixel labels, visualized as colors. The
transition from colder colors to warmer colors reflects the indices to the letters of the
transcript; colder colors represent lower indices and warmer colors, higher indices.
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Fig. 2 Reference image and matching character labels. Focusing on Fig. 1, Step 1, right:
A transcript line is rendered to produce a reference image along with a per pixel index to the
characters in the original transcript. Index values are visualized here by colors. Note that spaces
between words are also assigned with indices, matching them to the spaces appearing in the original
transcript. Please see text for more information

Note in particular that spaces and punctuation marks are also labeled with indices
to transcript letters.

Step 2 of our pipeline (Fig. 1) converts both the binarized manuscript image and
the synthetic reference image to Four-Patch LBP (FPLBP) code images C and C0,
respectively. These FPLBP codes [37] are discussed in detail below (Sect. 4). This
transformation converts each pixel to an integer value in the range Œ0::15�. In Step 3
of our pipeline, both code images are used to produce dense, per pixel descriptors
for both images. This is accomplished by replacing the code assigned to each image
with a histogram of the codes in the immediate neighborhood around the pixel. In
order to capture the horizontal ambiguity of horizontal scripts, these histograms are
computed using a vertical ellipse as their spatial support.

Finally, in Step 4 we use a robust dense correspondence estimation method, the
SIFT flow of Liu et al. [23] in order to match the pixels of the two images. Where
SIFT flow originally used Dense-SIFT (DSIFT) descriptors [35] to represent pixels,
we replace it with the FPLBP code histograms produced in Step 3. Correspondences
computed by SIFT flow from manuscript image to the reference image allow
transferring the per pixel character labels of the reference back onto the manuscript,
thereby providing the alignment from manuscript pixels to transcript letters. Key
steps of our method are detailed in the following sections.
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4 Pixel Encoding

4.1 Local Binary Patterns and Their Variants

Local binary patterns (LBP) [25–27] were originally designed as texture descriptors
characterized by an invariance to monotonic photometric changes. Recent years
have shown these representations to be highly effective in domains other than texture
recognition, particularly in face recognition tasks[1]. The success of LBP motivated
the development of LBP variants, which were later applied to a range of additional
applications, including object localization [42] and action recognition [17]. The
original LBP codes are computed at each pixel location by applying a threshold
over the 3 � 3 neighborhood around the pixel, using the central pixel’s intensity
value as the threshold value. The resulting pattern of eight bits is then treated as a
binary string and stored as an 8-bit number. An entire image is then represented by
counting occurrences of every LBP code, in nonoverlapping regions of the image.

4.2 Four-Patch LBP Codes

We employ an LBP variant called Four-Patch LBP (FPLBP) [37]. Its design
was motivated by a previous LBP variant called the center-symmetric LBP
(CSLBP) [12]. CSLBP compares four pairs of intensities arranged in a circle
around a central pixel. These four comparisons are represented as binary values
reflecting which of the two pixels in each pair has the higher intensity value. FPLBP
combines a similar circular sampling strategy, with the patch based approach of
another LBP variant, Multi-Block LBP [41], which provides better spatial support
for each comparison by sampling square patches, rather than pixels, and comparing
their mean values.

Though motivated by these previous methods, FPLBP is a very different repre-
sentation. Rather than encoding the relation between pixel or pixel-patch intensities,
it uses short binary strings to encode local self-similarities [32] of pixel patches.
FPLBP and the related Three-Patch LBP codes (TPLBP) [37] have been shown to
capture valuable local information which complements the information reflected by
the pixel-based descriptors, including the original LBP codes [38].

FPLBP encoding is performed by considering two concentric rings around each
pixel. Each ring is sampled at S evenly distributed w�w pixel patches. Two opposing
pairs consisting of an inner ring patch and an outer ring patch, separated by ˛

patches between them, are then compared by evaluating the L2 distances between
the patches in each pair. A single bit in the representation is set according to which
of these two pairs holds more similar patches (i.e., has a smaller L2 distance between
its two patches). The central pixel is then assigned with the S=2 bits resulting from
these comparisons.
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FPLBPr1,r2,8,3,1(p) =
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Fig. 3 (a) Visualizing how a single bit in the FPLBP code of pixel p is set (Step 2 of our pipeline,
Fig. 1). Two patch pairs are compared: one in dotted lines and green fill and the other in dashed
lines and blue fill. Patches in each pair are separated by ˛ D 1 patches. (b) Formal expression
for FPLBP codes with parameters S D 8, w D 3, and ˛ D 1. The Cij denote the various 3 � 3

patches; the first subscript indicates the ring (inner or outer) and the second denotes their location
on the ring, from index 0 at twelve o’clock. (c) Visualizing the vertical ellipse support region used
to construct the histogram of FPLBP codes (visualized in washed out colors) at each pixel

This entire process is summarized in Fig. 3a, b. It shows the standard case of
using S D 8 patches, resulting in only four bits per pixel. Despite this small size,
these codes have been shown to be extremely effective representations. In [8],
for example, FPLBP codes were used for face recognition and were shown to
perform nearly as well as the significantly more expensive collections of SIFT [24]
descriptors.

4.3 Why FPLBP?

Our choice of using the FPLBP codes here requires justification, especially in
comparison to the standard DSIFT [35] typically used with SIFT flow [23] or
alternative LBP code variants.

The Three-Patch LBP (TPLBP), presented with the FPLBP codes in [37], is also
a patch-based local binary pattern descriptor in which a central patch is compared
to a pair of patches in a manner designed to capture local self-similarities. It sets the
value of a code bit to 1 following a comparison of the similarity of a central patch to
two patches, ˛ patches away from each other on a ring around pixel p. Eight patches
are distributed on this ring, resulting in eight comparisons and an eight-bit code or
a number in the range Œ0::255�.

Previous work has shown that TPLBP captures more information than FPLBP
and produces superior representations when used for face recognition [37] and
texture recognition [6]. Our experiments with both these descriptors have shown that
this advantage is minor, providing only slightly better performance than SIFT flow
using DSIFT. The original LBP codes perform worst than both. This is unsurprising,
when considering that LBP is computed by comparing pixel pairs, rather than
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patches, making them more sensitive to noise—a major problem when considering
degraded manuscript images.

FPLBP, by comparison, has several appealing properties, making it ideal for
the task considered here. First, it is substantially smaller than any of the other
representations. As we will show next, this property is significant when extracting
descriptors on a dense grid; other representations require storage and processing
time that can quickly become unreasonable. Second, and more importantly, when
computed for document images, the range of codes produced by TPLBP (and
also LBP) is only partially represented in the codes computed in practice. This is
due to the far more restrictive nature of such images, which results in a smaller
local pattern variations. Thus, the comparisons performed by FPLBP of local
appearances between pairs in left/right, top/down, and both diagonals suffice to
capture meaningful information.

These observations are verified empirically in Fig. 4. It compares the variability
of code values computed by TPLBP vs. FPLBP. Evidently, the TPLBP histogram is
far more sparse than its FPLBP counterpart. It therefore uses different values more
efficiently in order to capture appearance variations.

4.4 From Codes to Dense Descriptors

Both manuscript and reference images are converted to code images C and C0
respectively (Sect. 4.2). We next convert the codes in these images to dense, per
pixel representations (Fig. 1, Step 3). This is performed in a manner similar to the
explode operator used by the distribution fields representation for object tracking
in [31]. Specifically, in order to account for local displacements of pixel codes,
each pixel is represented by the histogram of code frequencies in its immediate
neighborhood.

When considering horizontal scripts, the uncertainty of code appearances is
greater horizontally than vertically. This is because letters tend to preserve their
vertical appearance (similar image features would likely appear above or below each
other), whereas, the variability of letters appearing before or after an image location
implies greater horizontal feature variability. To account for this, our histograms
are produced by considering a vertical ellipse support region (Fig. 3c). Of course,
when considering vertical scripts, this may conceivably be changed to reflect vertical
uncertainty, though we did not perform such tests here. Additional uncertainty in
code values is introduced by weighing the influence of codes further away from the
central pixel. In practice, we use a 2D Gaussian filter, with sigmas 2.5 (horizontally)
and 1 (vertically), for this purpose.

We produce the dense, per pixel representation from FPLBP code images as
follows. First, each FPLBP code is converted to a 16D binary vector, with the
value 1 in the cell indexed by the code itself. We then consider the 16 binary
maps, representing each dimension of these binary vectors, taken over the entire
image. Each such map is processed by applying the elongated Gaussian filter
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Fig. 4 (a) A histogram of
TPLBP codes computed for a
set of document images. (b)
FPLBP code histogram
computed for the same
images, demonstrating a far
more uniform distribution of
code values
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described above. This is performed efficiently by using the fast, integral image-
based approximation to Gaussian filtering, described in [20]. Each pixel is then
represented by its values following this filtering.

Given the two histogram fields produced by the process described above, we form
dense correspondences between them using SIFT flow as a matching engine [23],
applied to our own representation. Previous chapters describe SIFT flow in detail.
Unlike other related methods (e.g., PatchMatch [4] and its variants [9, 18]), it explic-
itly seeks smooth correspondences with small displacements. These requirements
reflect a desire to match similar regions of the manuscript image to the reference
image and is therefore ideally suited for our purposes. Note that its complexity is
dominated by the size of the per-pixel representation. Here, by using the FPLBP,
the resulting representation is 16D, substantially smaller than other representations,
allowing for faster processing.
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5 Experiments

Experiments were performed to evaluate the effectiveness of our approach both
qualitatively and quantitatively. Quantitative tests were performed using a synthetic
data set produced in order to obtain an exact measure of the accuracy of our method,
when applied to a wide range of varying fonts. Qualitative tests were performed on
real data—historical documents from a wide range of sources.

5.1 Empirical Tests

We produced a synthetic data set from the Charles Dickens book, A Tale of Two
Cities. We rendered a page from the book using all 274 standard fonts installed on
our MS-Windows PC. This large collection of font types was then used to test the
robustness of our method to differences between appearances of text in manuscript
and reference images. With each rendered text we produced also the reference,
ground truth character labels, similar to those visualized in Fig. 2. We scaled all fonts
to the height of 19 pixels and the resulting image was at a resolution of 1140 � 716

pixels. The average width of a character was about nine pixels.
Our tests used a single reference image, which was the one produced using the

Times New Roman font. All other fonts, excluding non-English graphemes such as
Webdings, Wingdings, and Euclid Math, were used to represent manuscript images.
In total, 269 query images were tested, each one providing 50 lines of text. These
were processed automatically as described in Sect. 3.

Accuracy was empirically evaluated by considering the x; y pixel coordinates
of the center of each letter. We measure the distance between the center of
each manuscript image letter to the position of the corresponding reference letter
following warp. We note that this error measure cannot be zero, even when perfect
alignment is produced, since the center of mass of each character varies depending
on the font. Still, this value is expected to decrease as the alignment quality
improves. We report the mean (˙SD) distance over all letters in a document as
our alignment error rate.

Our results are summarized in Table 1. Besides the mean and standard deviation
of the per document distances, we provide the median distance as well as the percent
of manuscript fonts for which each method obtained the best results (smallest
distances). We compare the following methods: A baseline method, in which text
lines are linearly stretched or shrunk to match their extreme ends from reference
to manuscript; the original SIFT flow using DSIFT as the per pixel representation;
finally, our proposed method. Though we have also tested LBP-based and TPLBP-
based representations, neither one was competitive with those reported here and so
are excluded from the table.

We visualize our empirical tests in Fig. 5. It shows four example lines aligned
using our method. All these examples were produced using the same reference font
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Table 1 Summary of empirical results

Method Baseline SIFT flow Proposed

Mean error ˙ SD 10.21 ˙ 4.2 8.38 ˙ 3.8 6.18 ˙ 3.1

Median error 11.23 7.42 5.27

Percent best error (%) 6 17 77

Each manuscript font is matched to the reference font using three
tested methods. Accuracy was measured by considering the mean
displacement error between letter centroids. The table reports mean
(˙SD) distance per method over all 269 fonts tested. Also provided
are median displacement errors and the percentage of fonts for
which each method performs best compared to all others. As a
baseline we applied linear stretching or shrinking of the reference
text to match the horizontal dimensions of the tested text

Fig. 5 Empirical tests visualized. Four examples from our empirical tests, produced using our
system. Each example shows the synthetic (test) manuscript font on top and the reference at the
bottom. Lines connect the center of each reference font character to its estimated position in the test
font. Mistaken alignments are highlighted in the two middle examples. Note that by establishing
per pixel correspondences, we obtain alignments for the spaces between letters as well as for
punctuation marks

(bottom) and different test fonts, representing the manuscript. Lines connect the
centers of reference characters to their estimated locations in the test lines of text.
Evidently, for the most part, alignment succeeds, despite the differences in fonts
used. Noteworthy are the links established between spaces and punctuation marks,
and not just the letters themselves. We highlight a few alignment mistakes in the
two middle examples.

5.2 Qualitative Results

We used our system to align manuscripts from a variety of sources, representing
different languages and writing characteristics. Many such results are reported
in [11].
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Fig. 6 Graphic user interface for transcript alignment. A page from the Codex Sinaiticus following
processing of the first line using our graphical user interface. Left panel: The manuscript image.
Horizontal lines denote automatically detected text rows. Middle panel: Alignment result shown
for the current (first) line of text. From top to bottom are the current manuscript line; the
rendered reference image produced for the manuscript line; the current manuscript line, color
coded according to the character labels assigned through the correspondences; the synthetic
reference image, warped according to the correspondences from manuscript to reference; finally,
the synthetic reference image, color coded according to character labels. Right panel: Synthetically
produced reference lines for the entire manuscript page

We have developed a graphical user interface in order to provide convenient
means of loading manuscript and transcript images, as well as present alignment
results. Beyond row-by-row application of the method described in this chapter, the
interface allows human operators to correct alignment errors. Our system uses these
corrections to train a letter spotting mechanism that provides manuscript-specific
cues for alignment, improving the quality of alignment, and reducing the required
manual labor, from one line to the next. These novel features are described in depth
in [30].

A screen shot of our interface is provided in Fig. 6. It shows an alignment result
for the first row of a page from Codex Sinaiticus. Alignment results are visualized
in two ways. First, by warping the synthetic reference image, according to the
inferred correspondences. Here, good results should warp the reference to match the
appearance of the manuscript line, and in particular, reference letters should appear
beneath their corresponding manuscript lines. Second, reference character labels are
shown, color coded, over their matched manuscript image regions. The final result of
aligning all text lines of the same page is provided in Fig. 7. An additional example
in Hebrew MS Kaufmann A50 of the Mishnah is presented in Fig. 8.
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Fig. 7 Alignment result for an entire page from the Codex Sinaiticus. Left panel: The manuscript
image with per character labels visualized by the graphical user interface as colors overlaid on
image regions corresponding to each character. Right panel: Synthetically rendered reference rows
with their per character labels visualized as colors overlaid on each character. Good results show
the same color assigned to a transcript character on the right and to its corresponding manuscript
character (image region) on the left

6 Conclusion

This chapter presents a dense correspondence-based solution to the very specific
problem of transcript alignment. Despite the ostensibly narrow scope of the
problem considered here, the method we present suggests far wider prospects for
correspondence-based approaches in processing text images. Specifically, it marks
a change from processing text documents on a per character or per word level to a
per pixel level. It further demonstrates that with a suitable per pixel representation
and a robust correspondence estimation engine, even challenging texts may be
automatically processed. It remains to be seen if a similar approach can be applied
to more traditional text processing applications. Unlike the settings considered here,
these often do not have the privilege of a known transcript to match with the text
image. Rather than relying on transcripts, future extensions can instead assume a
fixed (possibly very large) vocabulary of known words and abbreviations using them
as potential references.

Acknowledgements MS Kaufmann A50 by courtesy of the Oriental Collection of the Library
and Information Centre of the Hungarian Academy of Sciences. This research was initiated at the
Dagstuhl Perspectives Workshop 12382, “Computation and Palaeography: Potentials and Limits”
and seminar 14302 on “Digital Palaeography: New Machines and Old Texts.”
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Fig. 8 Alignment result for an entire page from the MS Kaufmann A50 with the manuscript
image (left) and the synthetically rendered characters of the transcription (right). Corresponding
characters in the transcript and in the manuscript are labeled with similar color boxes
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