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Abstract This paper is concerned with the finite–dimensional approximation of a

fractional–order system represented in state–space form. To this purpose, resort is

made to the Oustaloup method for approximating a fractional–order integrator by a

rational filter. The dimension of the resulting integer–order model can be reduced

using an efficient algorithm for the minimization of the L2 norm of a weighted equa-

tion error. Two numerical examples are worked out to show how the desired approx-

imation accuracy can be ensured.

Keywords Fractional–order models ⋅Approximation ⋅Oustaloup method ⋅Model

reduction ⋅ Equation error

1 Introduction

Non–integer order systems have been recently considered with increasing attention

in the control literature because many plants can be described more satisfactorily by

models of this kind [2, 8, 9, 13]. However, such systems are infinite–dimensional

and their transfer function is irrational. Therefore, ad hoc methods and algorithms

are needed to simulate their behaviour. Since the approaches based on the numerical

solution of fractional differential equations are, in general, computationally hard,

most techniques resort to the approximation, over suitably–defined frequency ranges,

of these systems by means of integer–order models (see, e.g., [5, 12, 14]).

This paper considers a general (not necessarily commensurate) fractional–order

system given in the state–space form. By applying the integer–order approximation
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of the fractional integrator operator 1∕s𝛼 (𝛼 ∈ ℝ+) proposed in [14], a finite–

dimensional state–space model with block companion state matrix is obtained. The

sparsity of this matrix simplifies simulations. However, since the order of this model

tends to be high, it has been suggested to approximate it using a method developed

for finite–dimensional systems. For example, the model reduction method based on

the Singular Value Decomposition has been used in [7] and the method based on

the minimization of the unweighted L2 norm of the impulse–response error has been

used in [17]. Recently, the present authors have suggested to apply the iterative–

interpolation algorithm for L2 model reduction presented in [4]. In this paper, to

reduce the dimensionality of the integer–order model, the more efficient weighted

equation–error approach [3] is applied instead.

The rest of the paper is organized as follows. Section 2 briefly presents the formal

description of non–integer order linear time–invariant (LTI) systems. Some recent

approaches to the rational approximation of fractional operators and to model simpli-

fication are outlined and discussed in Sect. 3. The suggested approximation method is

presented in Sect. 4. Two meaningful examples taken from the literature are worked

out in Sect. 5 to show the performance of the suggested approximation. Some con-

cluding remarks are drawn in Sect. 6.

2 Non–Integer Order Linear Systems Recap

Fractional–order calculus is a generalization of integer–order differentiation and

integration. Many definitions of fractional–order differentiation and integration oper-

ators have been proposed. Especially successful have been those of Grünwald–

Letnikov, Riemann–Liouville and Caputo [11]. The last one is most commonly used

in engineering applications.

The Laplace transform of the fractional Caputo derivative D𝛼x(t) is

L {D𝛼x(t)} = s𝛼L {x(t)} −
[𝛼]−1∑

i=0
s𝛼−i−1 d

ix
dti

(0), (1)

where [𝛼] denotes the integer part of 𝛼.

Consider a scalar
1

LTI fractional–order system described by the differential equation

y(t) +
n∑

i=1
aiD𝛼i y(t) =

m∑

i=1
biD𝛽i u(t), (2)

where ai, bi ∈ ℝ, D𝜆 = d𝜆

dt𝜆
, 𝛼i, 𝛽i ∈ ℝ+.

1
This assumption is made to simplify the exposition. The case of MIMO systems can be treated in

a similar way.
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By applying (1)–(2) and assuming zero initial conditions, the system transfer

function turns out to be

G(s) = b(s)
a(s)

=
∑m

i=1 bis
𝛽i

1 +
∑n

i=1 ais𝛼i
. (3)

If all fractional orders are multiples of the same real number 𝛼 (which qualifies the

system as a commensurate fractional–order system), (3) can be written as

G(s) =
∑m

i=1 bi(s
𝛼)i

1 +
∑n

i=1 ai(s𝛼)i
. (4)

The state–space model corresponding to (3) is

D(𝛼)(x)(t) = Ax(t) + bu(t), (5)

y(t) = cx(t) + du(t), (6)

where

D(𝛼)(x) =
[
D𝛼1x1,D𝛼2x2,… ,D𝛼nxn

]T

and A ∈ ℝn×n
, b ∈ ℝn×1

, c ∈ ℝ1×n
.

In the commensurate case, Eqs. (5) and (6) become

D𝛼(x)(t) = Ax(t) + bu(t), (7)

y(t) = cx(t) + du(t), (8)

where

D𝛼(x) =
[
D𝛼x1,D𝛼x2,… ,D𝛼xn

]T
.

3 Fractional Order Model Simplification

The analysis of non–integer order models is made difficult by the irrational nature

of their transfer function and by the infinite dimensionality of their state–space rep-

resentations. Therefore, a number of methods have been proposed to simplify such

models. Two alternative kinds of methods can be used in this regard:

1. the methods leading to a simpler model hat is still described by an irrational

transfer function or an infinite–dimensional state–space representation,

2. the methods that approximate the non–integer order model by means of a finite

dimensional one.
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The first group of methods is useful for commensurate systems like (4): see, for

example, [16, 18]. Indeed, in this case, by setting s𝛼 = w, a transfer function that is

rational with respect to w is obtained:

Ĝ(w) =
∑m

i=1 biw
i

1 +
∑n

i=1 aiwi
(9)

to which any order reduction method can then be applied. However, this approach

does not guarantee the stability of the resulting model. An even more serious draw-

back is that this model may not be truly simpler than the original one. To show this,

consider the fractional system put forth in [15] whose transfer function is

G(s) = s1.56 + 4
s3.46 + 10s2.69 + 20s1.56 + 4

. (10)

Since 𝛼 = 1∕100, the rational transfer function (9) corresponding to (10) is of order

346. Even if its order could be reduced to 10, the denominator of this reduced transfer

function will consists of 11 terms, whereas the denominator in (10) consists of only

4 terms. Hence the above approach can be successful when almost all coefficients ai
in (4) or in (9) are non–zero, as in the following example considered in [16, 18]:

G(s) = (s0.8 + 4)(s1.6 + 2s0.8 + 4)(s1.6 + 3s0.8 + 1)
(s0.8 + 1)(s0.8 + 3)(s1.6 − 2s0.8 + 37)(s1.6 + 4s0.8 + 8)

. (11)

The methods of the second type are usually based on the rational approximation

of the operator s𝛼 . Among the various approaches of this kind (see, e.g., [5, 9]),

the most popular is almost certainly the one due to Oustaloup [10] by which the

fractional differentiator operator s𝛼 , 0 ≤ 𝛼 ≤ 1, is replaced by a rational filter 𝛼(s)
whose zeros and poles are distributed over a frequency band [𝜔m, 𝜔M] centred at

𝜔u =
√
𝜔m 𝜔M . (12)

Precisely, the approximating filter is formed by the cascade of 2N + 1 first–order

cells:


𝛼(s) = K

𝛼

N∏

k=−N

1 + s
𝜔

′
k

1 + s
𝜔k

, (13)

where 𝜔

′

k and 𝜔k are computed recursively according to

𝜔

′

0 = 𝛿
−1

2𝜔u, 𝜔0 = 𝛿

1
2𝜔u,
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𝜔

′

k+1

𝜔

′
k

=
𝜔k+1
𝜔k

= 𝛿 𝜂 > 1,

𝜔k

𝜔

′
k

= 𝛿 > 0,
𝜔

′

k+1
𝜔k

= 𝜂 > 0,

𝜔

′

−N = 𝜂

1
2𝜔m, 𝜔

′

N = 𝜂
−1

2𝜔M ,

with [12]

𝛿 =
(
𝜔M
𝜔m

) 𝛼

2N+1
, 𝜂 =

(
𝜔M
𝜔m

) 1−𝛼
2N+1

.

The gain K
𝛼

is chosen so as to ensure that 𝛼(s) has the same magnitude as s𝛼 at 𝜔u.

The number of filter cells is clearly related to the goodness of the approximation.

The fractional–order integrator operator 1∕s𝛼 can be approximated in a way con-

sistent with that adopted for the differentiator operator. Precisely, the approximation

of the fractional integrator operator can be chosen [14] as


𝛼(s) =

K
𝛼

s

N∏

k=−N

1 + s
𝜔

′
k

1 + s
𝜔k

, (14)

which behaves (almost) like 1∕s𝛼 in an interval [𝜔m, 𝜔M].
Functions 𝛼(s) and 𝛼(s) allow us to find rational models of practically any

fractional system. However, the direct application of these operators often leads to

high–dimensional models. Consider again the fractional transfer function (10). By

setting 𝜔m = 10−3, 𝜔M = 103, N = 10, and applying (13) to s0.56, s0.46 and s0.69,

the order of the integer–order approximating transfer function turns out to be 87.

Also, high–order transfer–function models tend to be ill–conditioned: for exam-

ple, the ratio of the largest to the smallest values of the transfer function coefficients

obtained according to the above procedure may be even higher than 1080. Therefore,

numerical difficulties are encountered with almost all order reduction algorithms.

These difficulties may be avoided if LTI state–space models (of both fractional and

integer order) are considered. Examples of such an approach can be found in [4, 6,

7, 14, 15, 18]. The integer order approximation of the non integer order model (5)–

(6) obtained according to the procedure in [4] is briefly outlined next. For details

see [4].

Consider the state equations (5) and let the fractional–order integrators 1∕s𝛼k be

approximated according to (14) as
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
𝛾k (s) =

∑m
j=0 fk,js

j

s
∑m

j=0 gk,jsj
, (15)

where m = 2N + 1. Then, define the matrices

A0 = −diag{f1,0, f2,0,… , f𝓁,0}A,

Ak = diag{g1,k−1, g2,k−1,… , g𝓁,k−1} − diag{f1,k, f2,k,… , f𝓁,k}A,

for k = 1,… ,m, and

Bk = diag{f1,k, f2,k,… , f𝓁,k} b,

for k = 0,… ,m. The following state–space integer order model approximating (5)–

(6) is obtained:

̇x̂(t) = Âx̂(t) + B̂u(t), (16)

ŷ(t) = Ĉx̂(t) + du(t), (17)

where x̂ ∈ ℝ(2N+2)𝓁
, and matrices Ā ∈ ℝ(2N+2)𝓁×(2N+2)𝓁

, B̄ ∈ ℝ(2N+2)𝓁×1
and

C̄ ∈ ℝ1×(2N+2)𝓁
are given by

Â =

⎡
⎢
⎢
⎢
⎢⎣

0 0 … 0 −A0
I 0 … 0 −A1
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 0 −Am−1
0 0 … I −Am

⎤
⎥
⎥
⎥
⎥⎦

, B̂ =

⎡
⎢
⎢
⎢
⎢⎣

B0
B1
⋮

Bm−1
Bm

⎤
⎥
⎥
⎥
⎥⎦

, Ĉ =
[
0 0 … 0 c

]
, (18)

with c and d as in the original representation (5).

4 Model Reduction

The only way to ensure a more accurate integer–order approximation of a given

fractional–order system is to increase the value of N. This, however, leads to high–

dimensional models that require the design of complex and expensive controllers.

To overcome this problem, resort can be made to the following two–step procedure.

First, a high–dimensional integer–order model corresponding to a large value of N
is determined, thus ensuring the desired accuracy. Then, a reduced–order model is

found from this high–order model by applying a suitable reduction algorithm.

The methods suggested in the literature to find L2-optimal reduced–order models

red (see, e.g., [4, 17]) are difficult to implement or depend crucially on the initial con-

ditions. To avoid these difficulties, resort can be made to a slightly different approach

that refers to the L2 norm of the so–called equation error [3].
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Let the triple (Ar,Br,Cr), where Ar ∈ ℝq×q
, Br ∈ ℝq×1

, Cr ∈ ℝ1×q
, represent

the low order model. The aforementioned procedure involves the determination of

two projection matrices Lr and Tr such that

Ar = LrÂTr, Br = LrB̂, Cr = ĈTr. (19)

Next, define

[−k∶q−k−1] ≐

⎡
⎢
⎢
⎢
⎢
⎢⎣

ĈÂ−k

⋮
Ĉ
⋮

ĈÂq−k−1

⎤
⎥
⎥
⎥
⎥
⎥⎦

. (20)

and assume that Wc is the controllability Gramian, which is the solution of the

Lyapunov equation:

ÂWc +WcÂT + B̂B̂T = 0 . (21)

The projection matrices in (19) may be determined in such a way that LTr spans

the range of 
T
[−k∶q−k−1] and Tr = WcLTr (LrWcLTr )

−1
. It can be shown [3] that, in this

way, model (Ar,Br,Cr) retains:

(i) the k time moments ĈÂ−iB̂, i = 1,… , k,
(ii) the q − k − 1 Markov parameters ĈÂiB̂, i = 0,… , q − k − 1,

(iii) the k low–frequency power moments ĈÂ−iWc(ÂT )−iĈT
, i = 1,… , k, and

(iv) the q−k−1 high–frequency power moments ĈÂiWc(ÂT )iĈT
, i = 1,… , q−k−1.

Matrix LTr can conveniently be determined using the Arnoldi algorithm, which

allows to construct an orthonormal basis for the Krylov space (F,X, n) = Im

[X,FX,… ,Fn−1X] generated by matrices F and X. In the present context, the

columns of LTr are determined so as to form an orthonormal basis for the Krylov

space (AT
, (CA−k)T , q).

The accuracy of the proposed approximation strongly depends on the selection

of parameters N, 𝜔m, 𝜔M and on the order reduction method used in the second

step. It has been proved [12] that for N sufficiently large the frequency responses

of 𝛼(s), 𝛼(s) tend to the ideal ones in the range between 𝜔m and 𝜔M . The order

reduction method used in the second step of the suggested procedure ensures that the

L2 norm of the difference between left and right hand sides of the input–output high

order model is minimal when the original response is replaced by the response of the

reduced model, which qualifies the method as an equation error method [3]. More-

over, as already observed, this method guarantees that a number of first–order and

second–order information indices (e.g., Markov parameters and power moments) are

retained by the reduced–order model.
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5 Examples

In the following, the advantages of the procedure proposed in Sect. 4 are demon-

strated by means of two examples taken from [15, 16, 18]. The step responses as well

as frequency responses (Bode plots) of the original non–integer order model and its

low order approximation are compared to show the desired accuracy is ensured. The

same examples have been considered in [4] where the L2–optimal model reduction

method is used.

Example 1 Consider the system given in the frequency domain by the transfer func-

tion (10). Its state–space equations are

⎡
⎢
⎢⎣

D1.56x1(t)
D1.13x2(t)
D0.77x3(t)

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

0 1 0
0 0 1
−4 −20 −10

⎤
⎥
⎥⎦
x(t) +

⎡
⎢
⎢⎣

0
0
1

⎤
⎥
⎥⎦
u(t), (22)

y(t) =
[
4 1 0

]
x(t). (23)

Choosing N = 10, 𝜔m = 10−3 and 𝜔M = 103, the procedure outlined in Sect. 3 leads

to a 66th order model. Next, this model has been reduced to a 5th order one by means

of the procedure outlined in Sect. 4 with k = 2, so that 2 time moments and low–

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5
Step Responses

Time (sec)

A
m

pl
itu

de

Fig. 1 Step responses for the original model (22)–(23) (solid line) and its 5–th order approximation

(dashed line) with k = 2
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Fig. 2 Comparison of the Bode plots for the original model (22)–(23) (solid line) and its 5–th

order approximation (dashed line) with k = 2

frequency power moments as well as three Markov parameters and high–frequency

power moments are retained.

The step response of the 5th order model is compared in Fig. 1 with the original

step response computed according to the Matlab code described in [1] whereas the

Bode plots are compared in Fig. 2. Since these responses practically coincide, the

5th order model can safely be used for controller design. The step response and Bode

plots for the high order model are almost exactly equal to those of the original non–

integer order model and, therefore, are not shown.

Example 2 The suggested approximation procedure has also been applied to the

state–space model:

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

D0.8x1(t)
D0.8x2(t)
D0.8x3(t)
D0.8x4(t)
D0.8x5(t)
D0.8x6(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

−6 −6 −4.4688 −7.3047 −6.1719 −3.4688
8 0 0 0 0 0
0 8 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

x(t)

+
[
2 0 0 0 0 0

]T u(t), (24)

y(t) =
[
0.5 0.5625 0.2422 0.2266 0.1172 0.0313

]
x(t), (25)
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Fig. 3 Step responses for the original model (24)–(25) (solid line) and its 7–th order approximation

(dashed line)
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corresponding to the transfer function (11). Choosing 𝜔m = 10−3, 𝜔M = 1000 and

N = 10 leads to a 132nd order model. Next, this model has been reduced to a 7–th

order one by means of the procedure outlined in Sect. 4 with k = 2, so that 2 time

moments and low–frequency power moments as well as 7 Markov parameters and

high–frequency power moments are retained.

The step response of the 7th order model is compared in Fig. 3 with the original

step response computed according to the Matlab code described in [1]. The Bode

plots are compared in Fig. 4. The responses practically coincide, so that the 7th order

model can be used safely for controller design. The step response and Bode plots for

the high order model are practically equal to those obtained for the original non–

integer order model and are not shown.

6 Conclusions

An efficient and easily implementable procedure to find integer–order models approx-

imating a fractional order system represented in the state-space form has been pre-

sented. It consists of two stages. First, a high order model whose state matrix exhibits

a sparse block–companion structure is determined. Next, an equation error method is

adopted to find a reduced model that retains a number of Markov parameters and time

moments as well as some low– and high–frequency power moments of the integer–

order model obtained in the first step. Simulations have shown that the procedure

leads to approximating models whose responses match well those of the original

system.
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