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Preface

“Thus it follows that d
1
2x will be equal to x

ffiffiffiffiffiffiffiffiffi
dx: x

p
, an apparent paradox, from which

one day useful consequences will be drawn.” This first remark on the idea of a
non-integer order derivative was found in a letter from Gottfried Wilhelm Leibnitz
to the Guillaume de l’Hôpital dated 1695.1 It has become a motivation for future
generations of mathematicians to create basics of the non-integer order (fractional)
calculus. And since the mid-twentieth century this mathematical apparatus has been
used for creation of increasingly better models of simple and very complex physical
phenomena systems and processes. As we know from numerous studies, fractional
order models can depict the physical plant better than the classical integer order
ones. This covers different research fields such as modeling of insulator properties,
visco-elastic materials, electrodynamic, electrothermal, electrochemical, economic
processes, etc.

Despite a huge increase of research activities and many remarkable theoretical
achievements in the area of fractional calculus, we still face theoretical and practical
challenges. The complicity of the non-integer order calculus causes most of the
work to be theoretically oriented. This can also be seen in the contents of the
previous2,3 and this conference volume. All this shows that we are still in the early
stages of development of non-integer order control systems. However, increasing
potentialities offered by modern automation equipment gives hope of developing
effective control techniques that could be applied and implemented also for
non-integer order modeled processes.

1Oldham, K.B. and Spanier, J.: The Fractional Calculus. Academic Press, 1974.
2Mitkowski, W., Kasprzyk, J., Baranowski, J.: Advances in the Theory and Applications of
Non-integer Order Systems, the 5th Conference on Non-integer Order Calculus and Its Applica-
tions, Cracow, Poland; Springer, Lecture Notes in Electrical Engineering, vol. 257.
3Latawiec, J.K., Łukaniszyn, M., Stanisławski, R.: Advances in Modelling and Control of
Non-integer Order Systems, the 6th Conference on Non-integer Order Calculus and Its Applica-
tions, Opole, Poland; Springer, Lecture Notes in Electrical Engineering, vol. 320.
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Some new ideas and examples of modeling, synthesis, and practical realizations
of fractional order systems may be found in this study. This volume contains 24
papers divided into four parts covering: mathematical fundamentals, modeling and
approximations, controllability, observability and stability problems, and practical
applications of fractional control systems.

Part 1 expands the base of tools and methods of the mathematical basis for
non-integer order calculus.

Malgorzata Klimek (“Fractional Sturm-Liouville Problem in Terms of Riesz
Derivatives”) formulates a regular fractional Sturm-Liouville problem on a bounded
domain in terms of Riesz derivatives. The considered case includes vanishing
Dirichlet boundary conditions. They prove that its eigenvalues are real, eigen-
functions are continuous, and form orthogonal sets of functions in the respective
Hilbert spaces. In addition, boundedness results for eigenvalues are derived and a
connection between the discussed fractional Sturm-Liouville equations and
Euler-Lagrange equations for the corresponding action functionals is established.

Agnieszka B. Malinowska and Tatiana Odzijewicz (“Multidimensional Discrete-
Time Fractional Calculus of Variations”) introduce a discrete-time multidimen-
sional fractional calculus of variations. They define fractional operators in the sense
of Grünwald–Letnikov. Then they derive necessary optimality conditions and give
examples illustrating the use of obtained results.

Dominik Sierociuk, Wiktor Malesza, and Michal Macias (“On a New Symmetric
Fractional Variable Order Derivative”) present particular definitions of symmetric
fractional variable order derivatives. The AD and DA types of the fractional vari-
able order derivatives and their properties are introduced. Additionally, they show
the switching order schemes equivalent to these types of definitions. Finally, the
theoretical considerations are validated on numerical examples.

Piotr Ostalczyk (“Linearization of the Non-linear Time-Variant Fractional-Order
Difference Equation”) discusses a linearization procedure of the fractional-order
nonlinear time-variant discrete system. Starting from the nonlinear fractional-order
difference equation he derives its equivalent state-space form and assuming the
knowledge of the nominal trajectory evaluates the linear state-space model. The
investigations are supported by numerical examples.

Ewa Girejko, Ewa Pawłuszewicz, and Małgorzata Wyrwas (“The Z-Transform
Method for Sequential Fractional Difference Operators”) discuss the linear
Caputo–type sequential difference fractional-order systems. They use a classical
Z-transform method to show the general solutions of sequential systems in the form
Δα
*ðΔα

*xÞ
� �ðnÞ+ b Δα

*x
� �ðnÞ+ cxðnÞ=0, where b, c∈ℝ. In proofs they base on the

formula for the image of the discrete Mittag-Leffler function in the Z-transform.
Part 2 focuses on new methods and developments in process modeling and

fractional derivative approximations.
Wojciech Mitkowski and Krzysztof Oprzędkiewicz (“An Estimation of

Accuracy of Charef Approximation”) present a new accuracy estimation method
for Charef approximation. Charef approximation allows them to describe
fractional-order systems with the use of an integer-order, proper transfer function.
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They estimate the accuracy of approximation by comparing step responses of the
plant and Charef approximation. The step response of the plant was calculated with
the use of an accurate analytical formula and it can be interpreted as a standard. The
presented approach can be applied for effective tuning of Charef approximant for a
given plant. The use of the proposed method does not require knowing the step
response of the modeled plant. The proposed methodology can be easily general-
ized to other known approximations.

Wieslaw Krajewski and Umberto Viaro (“A New Method for the Integer Order
Approximation of Fractional Order Models”) concern themself with the
finite-dimensional approximation of a fractional-order system represented in
state-space form. To this purpose, resort is made to the Oustaloup method for
approximating a fractional-order integrator by a rational filter. They reduce the
dimension of the resulting integer-order model using an efficient algorithm for
minimization of the L2 norm of a weighted equation error. Two numerical examples
are worked out to show how the desired approximation accuracy can be ensured.

Jerzy Baranowski, Waldemar Bauer, and Marta Zagórowska (“Stability
Properties of Discrete Time-Domain Oustaloup Approximation”) present an anal-
ysis of discrete time domain realization of Oustaloup approximation. They present
the scheme for realization along with a method of implementation of discretization
formulas. The authors analyze also the stability considering influences of sampling
frequency, order, and bandwidth. Analysis is illustrated with behavior of spectral
radius of the discretized system.

Konrad Andrzej Markowski and Krzysztof Hryniów (“Digraphs Minimal
Positive Stable Realisations for Fractional One-Dimensional Systems”) present a
method of the determination of positive stable realization of the fractional
continuous-time positive system. The algorithm finds a complete set of all possible
realizations instead of only a few realizations. They show that all realizations in the
set are minimal and stable. The method proposed by them uses a parallel computing
algorithm based on a digraphs theory, which is used to gain much needed speed and
computational power for a numerical solution. The presented procedure is illus-
trated with a numerical example.

Marek Rydel, Rafał Stanisławski, Grzegorz Bialic, and Krzysztof J. Latawiec
(“Modeling of Discrete-Time Fractional-Order State Space Systems Using the
Balanced Truncation Method”) present a new method of approximation of linear
time-invariant discrete-time fractional-order state space systems by means of the
Balanced Truncation Method. This reduction method is applied to the rational form
of fractional-order system in terms of expanded state equation. As an approximation
result the authors obtain rational and relatively low-order state space system.
Simulation experiments show very high accuracy of the introduced methodology.

Dominik Sierociuk, Michal Macias, and Pawel Ziubinski (“Experimental Results
of Modeling Variable Order System Based on Discrete Fractional Variable Order
State-Space Model”) present experimental results of modeling fractional variable
order system using Discrete Fractional Variable Order State-Space Model. Exper-
imental results given were obtained on the basis of modified multi-order switching
analog realization of the constant parameter case introduced in this work. During
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the identification process two algorithms were used: direct and dual. Finally they
present joint estimation results for parameter estimation, in order to verify constant
parameters for the proposed analog model.

Part 3 provides a bunch of papers which raise problems of controllability,
observability, and stability of non-integer order systems.

Tadeusz Kaczorek (“Positivity and Stability of a Class of Fractional Descriptor
Discrete-Time Nonlinear Systems”) proposes a method of analysis of the fractional
descriptor nonlinear discrete-time systems with regular pencils of linear part. The
method is based on the Weierstrass-Kronecker decomposition of the pencils. He
establishes necessary and sufficient conditions for the positivity of the nonlinear
systems. Then he proposes a procedure for computing the solution to the equations
describing the nonlinear systems. Using an extension of the Lyapunov method to
positive nonlinear systems, he derives sufficient conditions for the asymptotic
stability.

Małgorzata Wyrwas and Dorota Mozyrska (“Stability of Linear Discrete–Time
Systems with Fractional Positive Orders”) study the problem of the stability of the
Grünwald–Letnikov-type linear discrete-time systems with fractional positive
orders. The method of reducing the considered systems by transforming them to the
multi-order linear systems with the partial orders from the interval (0,1] is pre-
sented. For the reduced multi-order systems the authors formulate conditions for
stability based on the Z-transform as an effective method for stability analysis of
linear systems.

Yassine Boukal, Michel Zasadzinski, Mohamed Darouach, and Nour-Eddine
Radhy (“Robust H∞ Observer-Based Stabilization of Disturbed Uncertain
Fractional-Order Systems Using a Two-Step Procedure”) consider the problem of
robust H∞ observer-based stabilization for a class of linear Disturbed Uncertain
Fractional-Order Systems (DU-FOS) using H∞-norm optimization. Based on the
H∞-norm analysis for FOS, they establish a new design methodology to stabilize a
linear DU-FOS using robust H∞ Observer-Based Control (OBC). The existence
conditions are derived, and using the H∞-optimization technique, the stability of the
estimation error and stabilization of the original system are given in an inequality
condition, where all the observer matrices gains and the control law can be com-
puted by solving a single inequality condition in two steps. Finally, the authors give
a simulation example to illustrate the validity of their results.

Zbigniew Zaczkiewicz (“Relative Observability for Fractional Differential-
Algebraic Delay Systems within Riemann-Liouville Fractional Derivatives”) pre-
sents the problems of relative R-observability for linear stationary fractional
differential-algebraic delay system (FDAD). FDAD system consists of fractional
differential equation in the Riemann-Liouville sense and difference equations. He
introduces the determining equation systems and their properties. Applying the
Laplace transformation he obtains solution representations into series of their
determining equation solutions and presents effective parametric rank criteria for
relative R-observability. He also formulates a dual controllability result.
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Part 4 is devoted to the presentation of different fractional order control
applications.

Jerzy Klamka (“Minimum Energy Control of Linear Fractional Systems”)
considers the minimum energy control problem of infinite-dimensional
fractional-discrete time linear systems. He establishes necessary and sufficient
conditions for the exact controllability of the system and gives sufficient conditions
for the solvability of the minimum energy control of infinite-dimensional fractional
discrete-time systems. Finally, he proposes a procedure for computation of the
optimal sequence of inputs that minimizes the quadratic performance index.

Adam Makarewicz (“Use of Alpha-Beta Filter to Synchronization of the Chaotic
Ikeda Systems of Fractional Order”) considers a problem of signal filtering used in
synchronization of two-fractional delay Ikeda systems, combined linearly by cou-
pling. The synchronization uses Alpha-Beta filter, which operates on predicting the
next value, based on the measured signal in a current point in time. He uses
numerical simulations to investigate effects of fractional order and coupling rate on
synchronization. Simulations are performed using Ninteger Fractional Control
Toolbox for MatLab.

Paweł Dworak (“On Dynamic Decoupling of MIMO Fractional Order Systems”)
considers problems with a dynamic decoupling of multi-input multi-output frac-
tional order systems. He shows their similarities and differences to integer order
decoupling methods. Basing on a few examples he carries out simulations of
decoupled fractional order systems to show the applicability of the considered
methods. He ends his work with some final remarks on a practical implementation
of decoupling methods for fractional order systems.

Łukasz Wach and Wojciech P. Hunek (“Perfect Control for Fractional-Order
Multivariable Discrete-Time Systems”) analyze the perfect control method for
multi-input/multi-output MIMO fractional-order discrete-time systems in state
space. The presented simulation example for nonsquare MIMO system carried out
in a Matlab/Simulink environment confirms the correctness of the proposed
algorithm.

Waldemar Bauer (“Implementation of Non-Integer Order Controller Using
Oustaloup Parallel Approximation for Air Heating Process Trainer”) presents a new
implementation method of non-integer order controller. This controller is designed
and analyzed for the model of air heating process trainer system. The author shows
that the proposed controller is suitable for control of the inertial system with
time-delay and time-varying gain. He also presents a new method of implemen-
tation of Oustaloup approximation and shows it usefulness, which allows operation
of non-integer order controller in real-time environment.

Bogdan Broel-Plater, Krzysztof Jaroszewski, and Paweł Dworak (“Classical
Versus Fractional Order PI Current Controller in Servo Drive”) compare the frac-
tional order PI current controller of the servo drive with its classical counterpart.
They analyze structures of such a fractional order controller without as well as with
antiwindup blocks. They present and discuss results of simulations carried out in
Matlab/Simulink environment.
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Marta Zagórowska (“Parametric Optimization of Non-Integer Order PDμ

Controller for Delayed System”) analyzes a new tuning method for PDα control-
ler using approximation with Laguerre functions. She performs the optimization for
various sets of parameters and also analyzes the convergence of chosen optimiza-
tion parameters. The results are tested for a first-order system with delay.

Jerzy Baranowski, Waldemar Bauer, Marta Zagórowska, Aleksandra
Kawala-Janik, Tomasz Dziwiński, and Paweł Piątek (“Adaptive Non-Integer
Controller for Water Tank System”) consider a new method of designing adaptive
controller for non-integer order systems. The theoretical approach was verified with
a computer simulation of three-tank system.

Stefan Domek (“Model-Plant Mismatch in Fractional Order Model Predictive
Control”) shows the effect of various plant-model mismatches on the performance
of fractional order model predictive control (FOMPC) systems. He presents an
algorithm of a FOMPC and describes different types of plant-model mismatches for
fractional-order systems. His analysis is illustrated by results obtained from simu-
lation tests.

This volume is a result of fruitful and stimulating discussions during the
RRNR’2015, the 7th Conference on Non-integer Order Calculus and Its Applica-
tions organized by the Faculty of Electrical Engineering, West Pomeranian Uni-
versity of Technology, Szczecin, Poland. The conference gathered a number of
researchers active in the fields of fractional calculus, here those interested in the-
oretical aspects of mathematical fundamentals, modeling, and approximations and
those focused on the practical issues that have to be solved during control system
implementation. Such a wide spectrum of interests displayed by the outstanding
participants exploded in stimulation of lively discussions across the field and
contributed to the success of the conference. We are grateful to the conference
participants for sharing their research results and active and inspiring discussion.
We would also like to acknowledge the contribution of the anonymous referees,
whose comments allowed us to improve the final form of the papers. Finally, we
wish to thank Dr. Thomas Ditzinger and Holger Schäpe from Applied Sciences and
Engineering at Springer for their assistance and support in this editorial work.

Szczecin Stefan Domek
Autumn 2015 Paweł Dworak
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Mathematical Fundamentals



Fractional Sturm-Liouville Problem
in Terms of Riesz Derivatives

Malgorzata Klimek

Abstract In the paper, a regular fractional Sturm-Liouville problem on a bounded

domain is formulated in terms of Riesz derivatives. The considered case includes

vanishing Dirichlet boundary conditions and we prove that its eigenvalues are real,

eigenfunctions are continuous and form orthogonal sets of functions in the respective

Hilbert spaces. In addition, a boundedness results for eigenvalues are derived and a

connection between the discussed fractional Sturm-Liouville equations and Euler-

Lagrange equations for the corresponding action functionals is established.

Keywords Riesz derivative ⋅ Fractional Sturm-Liouville problem ⋅ Eigenvalue

problem ⋅ Eigenfunctions and eigenvalues

1 Introduction

The aim of this paper is to formulate a regular fractional Sturm-Liouville problem

(FSLP) including Riesz derivative and discuss its fundamental properties. We shall

restrict our study to the case with vanishing Dirichlet boundary conditions and to

one-term fractional Sturm-Liouville operator (FSLO). It is a new variant of varia-

tional construction, introduced in [6, 7]. Our results show that the proposed con-

struction of FSLO leads to real eigenvalues and orthogonal sets of eigenfunctions in

the respective Hilbert spaces.

FSLPs were first discussed as fractional deformations of classical problems in

papers [1–3, 12, 14, 15]. The formulation based on one-sided fractional deriva-

tives, however, does not lead to orthogonal eigenfunctions. This fact was the main

motivation for a variational approach started in [6]. The characteristic feature of the

constructed regular and singular FSLPs [6–10, 16, 18] is mixing of the left and the

right differential operators appearing in the fractional Sturm-Liouville operator. It
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is a known fact that fractional differential equations (FDEs), mixing the left and the

right derivatives arise in the fractional calculus of variations (FVC) [5, 13]. FSLPs

are important class of such FDEs as linear eigenvalue problems constructed within

the framework of FVC. Similar to the classical Sturm-Liouville problems they pro-

duce orthogonal bases in the respective function spaces. Thence, we expect that they

will be important and useful tools in analytically and/or numerically solving many

equations appearing in the mathematical modelling of real-world phenomena (for

classical results in integer-order calculus compare [21]). Preliminary results on non-

integer order numerical methods can be found in [18–20]. Preliminary applications

in partial FDEs theory and in anomalous diffusion theory are enclosed in [7–11].

We begin by recalling definitions, properties and facts from fractional calculus.

2 Preliminaries

First, we recall the definitions and properties of fractional integral and differential

operators [4, 17]. Fractional operators can be defined for complex orders but in our

study we discuss fractional eigenvalue problems of real order and accordingly we

quote the respective definitions and properties.

Definition 1 The left and the right Riemann–Liouville fractional integrals are

defined as follows when 𝛼 > 0

I𝛼a+f (x) ∶=
1

𝛤 (𝛼) ∫
x

a

f (t)dt
(x − t)1−𝛼

, x ∈ (a, b], (1)

I𝛼b−f (x) ∶=
1

𝛤 (𝛼) ∫
b

x

f (t)dt
(t − x)1−𝛼

, x ∈ [a, b), (2)

where 𝛤 (𝛼) denotes Euler’s gamma function. In the case b = ∞, the right Riemann-

Liouville integral becomes the right Liouville integral: I𝛼−.

The following results on fractional integrals will be useful in further considerations.

Lemma 1 (cf. Lemma 2.1 [4]) Riemann-Liouville integrals are bounded operators
in the Lp(a, b)- space for p ≥ 1:

||I𝛼a+f ||Lp ≤ K
𝛼
||f ||Lp ||I𝛼b−f ||Lp ≤ K

𝛼
||f ||Lp , (3)

where constant K
𝛼
= (b−a)𝛼

𝛤 (𝛼+1) .

Lemma 2 (cf. Lemma 2.7 [4]) Let f ∈ Lp(a, b), g ∈ Lq(a, b) and 1
p + 1

q ≤ 1 + 𝛼

(p ≠ 1 and q ≠ 1 in the case, when 1
p + 1

q = 1 + 𝛼). Then,
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∫
b

a
f (x)I𝛼a+g(x)dx = ∫

b

a

(
I𝛼b−f (x)

)
g(x)dx. (4)

Having defined the fractional integrals we can construct Riemann-Liouville and

Caputo fractional derivatives.

Definition 2 The left and the right Riemann–Liouville fractional derivative of order

𝛼 ∈ (0, 1) of a function f , denoted by D𝛼

a+f and D𝛼

b−f respectively, are given by

∀x ∈ (a, b], D𝛼

a+f (x) ∶= D I1−𝛼a+ f (x), (5)

∀x ∈ [a, b), D𝛼

b−f (x) ∶= −D I1−𝛼b− f (x), (6)

where we denoted D = d
dx

. In the case a = 0, b = ∞ the above derivatives are

called Liouville derivatives in ℝ+.

The left and the right Caputo fractional derivatives of order 𝛼 ∈ (0, 1) are given by

∀x ∈ (a, b], cD𝛼

a+f (x) ∶= D𝛼

a+
[
f (x) − f (a)

]
, (7)

∀x ∈ [a, b), cD𝛼

b−f (x) ∶= D𝛼

b−
[
f (x) − f (b)

]
. (8)

Let us note that for functions vanishing at ends of interval [a, b], we obtain:

f (a) = 0 D𝛼

a+f =
cD𝛼

a+f (9)

f (b) = 0 D𝛼

b−f =
cD𝛼

b−f . (10)

For 𝛼 ∈ (0, 1) and f ∈ AC[a, b], the Caputo fractional derivatives satisfy the follow-

ing relations:

cD𝛼

a+f (x) = I1−𝛼a+ Df (x) cD𝛼

b−f (x) = −I1−𝛼b− Df (x). (11)

Next, we formulate results on composition rules for derivatives and integrals of non-

integer order.

Lemma 3 (cf. Lemma 2.4 and 2.21 [4]) If 𝛼 > 0 and f ∈ Lp(a, b), (1 ≤ p ≤ ∞),
then the following composition rules are valid:

D𝛼

a+I
𝛼

a+f (x) = f (x), D𝛼

b−I
𝛼

b−f (x) = f (x), (12)

for almost all x ∈ [a, b]. If function f is continuous, then the composition rules hold
for all x ∈ [a, b].
If f is continuous on interval [a, b], then

cD𝛼

a+I
𝛼

a+f (x) = f (x), cD𝛼

b−I
𝛼

b−f (x) = f (x). (13)

Now, we recall the notion of Riesz potentials.
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Definition 3 Riesz potentials in halfaxis ℝ+ and in ℝ are defined as follows, when

𝛾 ∈ (0, 1):

I𝛾0 f (x) ∶= 𝛾0 ∫
∞

0
|x − t|𝛾−1f (t)dt (14)

I𝛾 f (x) ∶= 𝛾0 ∫
∞

−∞
|x − t|𝛾−1f (t)dt (15)

with coefficient 𝛾0 ∶= (2𝛤 (𝛾) cos(𝜋𝛾∕2))−1.

The lemma below connects Liouville integrals in ℝ+ and Riesz potentials.

Lemma 4 (cf. Theorem 12.4 [17]) Let 𝛾 ∈ (0, 1) and f ∈ Lp(ℝ+) with p ∈ [1, 1∕𝛾).
Then, the following formula holds:

I𝛾0 f = I𝛾∕2− I𝛾∕20+ f , (16)

with Liouville integrals described in Definition 1.

We shall formulate the fractional Sturm-Liouville problem in terms of Riesz deriv-

atives. It is a special case of Riesz-Feller derivative with skewness equal to zero.

Definition 4 Riesz derivative of order 𝛾 ∈ (0, 2) is given for suitable functions as

D𝛾

Rf (x) ∶= −−1 [|k|𝛾 f̂
]
(x), (17)

where−1
denotes the inverse Fourier transform and f̂ denotes the Fourier transform

of function f .

We define the function space, where we shall study FSLPs with Riesz derivative.

Definition 5 We say that g ∈ 𝛺1 ⊆ L2(ℝ;ℂ) iff it fulfills the following conditions:

supp(g) ⊆ [0, b], (b − x)1−𝛼g|[0,b] ∈ C[0, b]. (18)

In addition, f ∈ I𝛼0+(𝛺1) iff there exists function g ∈ 𝛺1 such that f = I𝛼0+g a.e.

Now, we prove a fundamental result on solutions of the regular FSLPs including the

composition of the left and the right fractional derivative. It appears that starting

from the assumption that the solution belongs to the L2(0, b) space we arrive at the

fact that it belongs to the subspace I𝛼0+(𝛺1).

Proposition 1 Let y ∈ L2(0, b), order 𝛼 ∈ (1∕2, 1), functions p, q,w ∈ C ([0, b];ℝ)
and p > 0, w > 0. If function y solves FSLP:

p(x)D𝛼

b−
cD𝛼

0+y(x) + q(x)y(x) = 𝛬w(x)y(x) (19)

with y(0) = y(b) = 0, then y ∈ I𝛼0+(𝛺1).



Fractional Sturm-Liouville Problem in Terms of Riesz Derivatives 7

Proof From Eq. (19) we obtain the equality

cD𝛼

0+y(x) = I𝛼b−

(
q(x)
p(x)

y(x) − 𝛬

w(x)
p(x)

y(x)
)

dx + A(b − x)𝛼−1

and we note that as 𝛼 ∈ (1∕2, 1), then the derivative of the solution of Eq. (19)

belongs to the Hilbert space, namely

cD𝛼

0+y ∈ L2(0, b).

As y(0) = 0 we can rewrite FSLE in the form of

D𝛼

b−D
𝛼

0+y(x) +
q(x)
p(x)

y(x) = 𝛬

w(x)
p(x)

y(x)

and apply the composition rules from Lemma 3:

D𝛼

b−D
𝛼

0+

[

y(x) + I𝛼0+I
𝛼

b−

(
q(x)
p(x)

y(x) − 𝛬

w(x)
p(x)

y(x)
)]

= 0.

The resulting fractional integral equation is:

y(x) + I𝛼0+I
𝛼

b−

(
q(x)
p(x)

y(x) − 𝛬

w(x)
p(x)

y(x)
)

= A1x𝛼−1 + A2I𝛼0+(b − x)𝛼−1.

By using boundary conditions y(0) = y(b) = 0 we get:

A1 = 0 A2 =
𝛤 (𝛼)(2𝛼 − 1)

b2𝛼−1
⋅ I𝛼0+I

𝛼

b−

(
q(x)
p(x)

y(x) − 𝛬

w(x)
p(x)

y(x)
)

|x=b.

Thence, eigenfunction y can be expressed as follows:

y(x) = −I𝛼0+I
𝛼

b−

(
q(x)
p(x)

y(x) − 𝛬

w(x)
p(x)

y(x)
)

+ A2I𝛼0+(b − x)𝛼−1. (20)

We note that for functions p, q,w fulfilling assumptions, we have

q
p
y ∈ L2(0, b) w

p
y ∈ L2(0, b)

and for 𝛼 ∈ (1∕2, 1) also (b − x)𝛼−1 ∈ L2(0, b). Therefore, I𝛼0+(b − x)𝛼−1 ∈ C[0, b]
as well as

I𝛼b−

(
q(x)
p(x)

y(x) − 𝛬

w(x)
p(x)

y(x)
)

∈ C[0, b]
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and

I𝛼0+I
𝛼

b−

(
q(x)
p(x)

y(x) − 𝛬

w(x)
p(x)

y(x)
)

∈ C[0, b].

Taking into account the above integral form of eigenfunction y given by (20), we

conclude that assuming y ∈ L2(0, b) we arrive at y ∈ C[0, b] and y ∈ I𝛼0+(𝛺1). ⊓⊔

In the lemma below, we show two representations for Riesz derivative in the case

when a function belongs to the I𝛼0+(𝛺1) space.

Lemma 5 For functions f ∈ I𝛼0+(𝛺1), the following relations hold provided 𝛼 ∈
(1∕2, 1):

− D2𝛼
R f = D𝛼

b−
cD𝛼

0+f , (21)

D2𝛼
R f = −1

2 cos(𝜋𝛼)
D
(
I2−2𝛼0+ + I2−2𝛼b−

)
Df . (22)

Proof First, we show the connection between FSLO including Riesz potential and

the one constructed using the left and right Liouville derivatives:

−DI2−2𝛼Df = −DI2−2𝛼0 Df = −DI1−𝛼− I1−𝛼0+ Df

which is valid as 2 − 2𝛼 ∈ (0, 1). Next, we recall that any function f ∈ I𝛼0+(𝛺1) can

be represented as f = I𝛼0+g with g ∈ 𝛺1. Therefore, we obtain

−DI1−𝛼− I1−𝛼0+ Df = −DI1−𝛼− DI1−𝛼0+ I𝛼0+g

= −DI1−𝛼− DI10+g = −DI1−𝛼− g = −DI1−𝛼b− g

= −DI1−𝛼b−
cD𝛼

0+f = D𝛼

b−
cD𝛼

0+f .

We check Eq. (21) by calculating the Fourier transform of the fractional differential

operator on the right-hand side:

 [
−DI2−2𝛼Df

]
= k2|k|2𝛼−2 f̂ = |k|2𝛼 f̂ .

Thus, we conclude that for functions from the I𝛼0+(𝛺1) space the relation from Eq.

(21) is valid.

The relation given in (22) follows from the definitions of Riemann-Liouville inte-

grals in [0, b] and Riesz potentials. ⊓⊔
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Lemma 6 Let 𝛼 ∈ (1∕2, 1). For functions f , g ∈ C[0, b] fulfilling boundary condi-
tions:

f (0) = f (b) = 0 g(0) = g(b) = 0 (23)

the following formula is valid:

∫
b

0
f (x)D2𝛼

R g(x) dx = ∫
b

0

(
D2𝛼
R f (x)

)
g(x) dx. (24)

Proof The above formula of integration by parts results from formula (22), the

assumed boundary conditions and properties of fractional integration given in

Lemma 2. ⊓⊔

3 Main Results

In this section, we formulate a one-term fractional Sturm-Liouville problem (FSLP)

in terms of Riesz derivatives. Here, we only consider a case with vanishing Dirichlet

conditions and describe some of its important properties. The problem can be for-

mulated twofold. In the first version we look for a nontrivial solutions of eigenvalue

problem belonging to the I𝛼0+(𝛺1)-space:

−p(x) D2𝛼
R y(x) + q(x)y(x) = 𝛬w(x)y(x) (25)

y(0) = 0 y(b) = 0 (26)

y ∈ I𝛼0+(𝛺1). (27)

An analogous version is the FSLP in the form of

− D2𝛼
R p(x)y(x) + q(x)y(x) = 𝛬w(x)y(x) (28)

y(0) = 0 y(b) = 0 (29)

y ∈ I𝛼0+(𝛺1). (30)

The proposition below tells that eigenfunctions of the above problems, considered

on space I𝛼0+(𝛺1) are continuous in [0, b]. In the above formulation of FSLPs and the

following theorems and proofs we assume that

(H1) order 𝛼 ∈ (1∕2, 1), functions p, q,w ∈ C ([0, b];ℝ) and p > 0, w > 0.

The first proposition results from Proposition 1 and Lemma 5.

Proposition 2 Let (H1) be fulfilled. Eigenfunctions of the fractional eigenvalue
problem (25–27) and (28–30) are continuous in [0, b].
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Similar to FSLPs, considered in [6, 7, 9–11], the eigenvalues of problems (25–27)

and (28–30) are real. This fact is proved in the two propositions below.

Proposition 3 Let (H1) be fulfilled and q ≠ 0. Eigenvalues of the fractional eigen-
value problem (25–27) are real. The set of eigenvalues is bounded below, namely

𝛬 ≥ minx∈[0,b]
q(x)
p(x)

𝛩

, (31)

where 𝛩 = ||
w
p || when minx∈[0,b] q(x) < 0 and 𝛩 = minx∈[0,b]

w(x)
p(x) otherwise.

Proof Let us note that p, q and w are real–valued functions. Therefore, if solution

y corresponds to eigenvalue 𝛬 then conjugate function ȳ is a solution of the prob-

lem (25–27) corresponding to eigenvalue 𝛬̄. The following equations are fulfilled by

functions y and ȳ in [0, b]:

−p(x) D2𝛼
R y(x) + q(x)y(x) = 𝛬w(x)y(x) (32)

−p(x) D2𝛼
R ȳ(x) + q(x)ȳ(x) = 𝛬̄w(x)ȳ(x). (33)

We multiply the first equation with ȳ and the second with y, subtract and obtain the

relation

ȳ(x)D2𝛼
R y(x) − y(x)D2𝛼

R ȳ(x) = (𝛬̄ − 𝛬)w(x)
p(x)

y(x)ȳ(x).

We integrate both sides of this equality and obtain

∫
b

0

(
ȳ(x)D2𝛼

R y(x) − y(x)D2𝛼
R ȳ(x)

)
dx = (𝛬̄ − 𝛬)∫

b

0

w(x)
p(x)

y(x)ȳ(x)dx.

Now, we apply the property of fractional differentiation from Lemma 6 and arrive at

the equality

(𝛬̄ − 𝛬) ||y||w∕p = 0

which yields 𝛬̄ − 𝛬 = 0, therefore 𝛬 ∈ ℝ.

To prove estimation (31), we multiply Eq. (25) with ȳ and integrate over interval

[0, b]:

∫
b

0

(

−ȳ(x)D2𝛼
R y(x) +

q(x)
p(x)

ȳ(x)y(x)
)

dx = ∫
b

0
𝛬

w(x)
p(x)

y(x)ȳ(x) dx.
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We obtain the following inequality for eigenvalue 𝛬:

𝛬 =
∫ b
0

(

−ȳ(x)D2𝛼
R y(x) + q(x)

p(x) ȳ(x)y(x)
)

dx

∫ b
0

w(x)
p(x) y(x)ȳ(x) dx

=
∫ b
0

(

|cD𝛼

0+y(x)|
2 + q(x)

p(x) |y(x)|
2
)

dx

∫ b
0

w(x)
p(x) |y(x)|

2 dx

≥ ∫ b
0

q(x)
p(x) |y(x)|

2dx

∫ b
0

w(x)
p(x) |y(x)|

2 dx
≥ minx∈[0,b]

q(x)
p(x)

𝛩

and this ends the proof. ⊓⊔

The proof for FSLP (28–30) is analogous so we only formulate the result.

Proposition 4 Let (H1) be fulfilled and q ≠ 0. Eigenvalues of the fractional eigen-
value problem (28–30) are real. The set of eigenvalues is bounded below, namely

𝛬 ≥ minx∈[0,b] q(x)p(x)
𝜃

, (34)

where 𝜃 = ||w p|| when minx∈[0,b] q(x) < 0 and 𝜃 = minx∈[0,b] w(x)p(x) otherwise.
When q = 0 FSLPs given in (25–27) or (28–30) can be rewritten in the form includ-

ing the left and right fractional derivatives and introduced in our previous papers

[6, 7, 9–11]. In addition, we prove a general boundedness result.

Proposition 5 Let (H1) be fulfilled. Eigenvalues of FSLPs:

−p(x) D2𝛼
R y(x) = 𝛬w(x)y(x) (35)

y(0) = 0 y(b) = 0 (36)

y ∈ I𝛼0+(𝛺1) (37)

and

−D2𝛼
R p(x)y(x) = 𝛬w(x)y(x) (38)

y(0) = 0 y(b) = 0 (39)

y ∈ I𝛼0+(𝛺1) (40)

are positive and fulfill the inequality

𝛬 ≥ 1
K2
𝛼
⋅ ||wp ||

, (41)

where || ⋅ || denotes the supremum norm in space C[0, b].
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Proof We multiply Eq. (35) with ȳ, integrate over interval [0, b] and obtain by apply-

ing Lemma 5:

−∫
b

0
ȳ(x)D2𝛼

R y(x)dx = ∫
b

0
ȳ(x)D𝛼

b−
cD𝛼

0+y(x)dx = ∫
b

0
𝛬

w(x)
p(x)

ȳ(x)y(x)dx.

Next, we transform the part including fractional derivatives using the fractional and

classical integration by parts formulas and boundary conditions:

∫
b

0

cD𝛼

0+ȳ(x) ⋅
cD𝛼

0+y(x)dx = 𝛬∫
b

0

w(x)
p(x)

|y(x)|2dx.

Thence, eigenvalue 𝛬 can be expressed and estimated as follows:

𝛬 =
∫ b
0
|
|
|
cD𝛼

0+y(x)
|
|
|

2
dx

∫ b
0

w(x)
p(x) |y(x)|

2dx
> 0.

Let us note that as y ∈ C[0, b] and y(0) = 0, we have

∫
b

0

w(x)
p(x)

|y(x)|2dx = ∫
b

0

w(x)
p(x)

|I𝛼0+
cD𝛼

0+y(x)|
2dx ≤ K2

𝛼
⋅ ||

w
p
|| ⋅ ||cD𝛼

0+y||
2
L2 .

From the above inequality we obtain for eigenvalue 𝛬 estimation (41), namely:

𝛬 ≥ ||cD𝛼

0+y||
2
L2

K2
𝛼
⋅ ||wp || ⋅ ||

cD𝛼

0+y||
2
L2

= 1
K2
𝛼
⋅ ||wp ||

.

The proof of the second part of the proposition is analogous. ⊓⊔

Next, we show that the FSLPs with the assumed vanishing Dirichlet boundary con-

ditions have orthogonal sets of eigenfunctions.

Proposition 6 Let (H1) be fulfilled. Eigenfunctions of the fractional eigenvalue
problem (25–27) corresponding to distinct eigenvalues are orthogonal in the
L2w∕p(0, b)-space.

Proof Let functions y1, y2 be eigenfunctions, corresponding to eigenvalues 𝛬1 and

𝛬2. Thence, y1 and ȳ2 fulfill equations:

−p(x) D2𝛼
R y1(x) + q(x)y1(x) = 𝛬1w(x)y1(x) (42)

−p(x) D2𝛼
R ȳ2(x) + q(x)ȳ2(x) = 𝛬2w(x)ȳ2(x). (43)

We multiply the above equations by ȳ2 and y1 respectively and subtract to obtain the

following relation
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−ȳ2(x)D2𝛼
R y1(x) + y1(x)D2𝛼

R ȳ2(x) =
w(x)
p(x)

(𝛬1 − 𝛬2)y1(x)ȳ2(x).

Now, we integrate both sides:

∫
b

0

(
−ȳ2(x)D2𝛼

R y1(x) + y1(x)D2𝛼
R ȳ2(x)

)
dx = (𝛬1 − 𝛬2)∫

b

0

w(x)
p(x)

y1(x)ȳ2(x)dx

and by using Lemma 6, for 𝛬1 ≠ 𝛬2, we arrive at

∫
b

0

w(x)
p(x)

y1(x)ȳ2(x)dx = 0.

Therefore, eigenfunctions corresponding to distinct eigenvalues are orthogonal in

the L2w∕p(0, b)-space. ⊓⊔

We omit the proof of the analogous result.

Proposition 7 Let (H1) be fulfilled. Eigenfunctions of the fractional eigenvalue
problem (28–30) corresponding to distinct eigenvalues are orthogonal in the
L2wp(0, b)-space.

Finally, by applying Lemma 6, we note that FSLEs (25, 28) are in fact Euler-

Lagrange equations for respective actions.

Proposition 8 Let (H1) be fulfilled. Consider the following action functional:

S1 = ∫
b

0

1
2

[

−f (x)D2𝛼
R f (x) + f (x)

(
q(x)
p(x)

− 𝛬

w(x)
p(x)

)

f (x)
]

dx (44)

on the space of real-valued functions with a support bounded by interval [0, b], con-
tinuous in [0, b] and fulfilling vanishing Dirichlet boundary conditions. Then, FSLE
(25) is its Euler-Lagrange equation.
Consider the following action functional:

S2 = ∫
b

0

1
2
[
−p(x)f (x)D2𝛼

R p(x)f (x) + f (x) (q(x)p(x) − 𝛬w(x)p(x)) f (x)
]
dx (45)

on the space of real-valued functions with a support bounded by interval [0, b], con-
tinuous in [0, b] and fulfilling vanishing Dirichlet boundary conditions. Then, FSLE
(28) is its Euler-Lagrange equation.

Proof Let us assume that 𝜂 ∈ C[0, b] is an arbitrary continuous function obeying

𝜂(0) = 𝜂(b) = 0. Then

(f + 𝜂)(0) = (f + 𝜂)(b) = 0
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and the corresponding variation of the action functional is:

𝛿S1(𝜂) = −∫
b

0

1
2
[
𝜂(x)D2𝛼

R f (x) + f (x)D2𝛼
R 𝜂(x)

]
dx

+∫
b

0
𝜂(x)

(
q(x)
p(x)

− 𝛬

w(x)
p(x)

)

f (x)dx.

From Lemma 6 it follows that

𝛿S1(𝜂) = ∫
b

0
𝜂(x)

[

−D2𝛼
R +

(
q(x)
p(x)

− 𝛬

w(x)
p(x)

)]

f (x)dx.

As variation 𝜂 was arbitrary we infer from the extremal condition 𝛿S1(𝜂) = 0 that:

[

−D2𝛼
R +

q(x)
p(x)

− 𝛬

w(x)
p(x)

]

f (x) = 0, x ∈ [0, b].

Under assumption (H1) the above equation coincides with (25).

To prove the second part of the thesis let us note that the arbitrary variation 𝜂 ∈
C[0, b] obeying 𝜂(0) = 𝜂(b) = 0 leads to the following variation of action func-

tional S2

𝛿S2(𝜂) = −∫
b

0

1
2
[
p(x)𝜂(x)D2𝛼

R p(x)f (x) + p(x)f (x)D2𝛼
R p(x)𝜂(x)

]
dx

+∫
b

0
𝜂(x) (q(x)p(x) − 𝛬w(x)p(x)) f (x)dx.

Applying Lemma 6 we obtain

𝛿S2(𝜂) = ∫
b

0
p(x)𝜂(x)

[
−D2𝛼

R p(x) + (q(x) − 𝛬w(x))
]
f (x)dx

and the principle 𝛿S2(𝜂) = 0 leads to the equation

[
−D2𝛼

R p(x) + q(x) − 𝛬w(x)
]
f (x) = 0, x ∈ [0, b]

which coincides with (28).
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4 Conclusions

In the paper, we introduced a simple regular fractional Sturm-Liouville problem on a

bounded domain, constructed using the Riesz derivative. We only studied it assum-

ing the vanishing boundary conditions and show that this version of FSLP retains the

important properties of classical SLPs and FSLPs formulated previously in [6, 7].

We proved that its eigenvalues are real and eigenfunctions are continuous and form

an orthogonal set of functions in the respective L2-spaces. The results, discussed

here, will be extended to the formulation with a generalized version of boundary

conditions as well as to many-term FSLPs. The important feature of the classical

and fractional SLPs is the existence of a purely discrete, countable spectrum and

the eigenfunctions’ bases under suitable boundary conditions. We expect that it is

also valid in the case of FSLPs (25, 27) and (28, 30) and we shall follow this line of

investigation in our subsequent paper.
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Multidimensional Discrete-Time Fractional
Calculus of Variations

Agnieszka B. Malinowska and Tatiana Odzijewicz

Abstract In this paper a discrete-time multidimensional fractional calculus of

variations is introduced. The fractional operators are defined in the sense of Grünvald–

Letnikov. We derive necessary optimality conditions and then give examples illus-

trating the use of obtained results.

Keywords Backward fractional difference ⋅ Forward fractional difference ⋅
Grünvald–Letnikov fractional difference, Euler–Lagrange equations

1 Introduction

The continuous-time fractional calculus of variations (CFCV) has been widely devel-

oped since 1996 when the seminal paper [1], by Fred Riewe, about this subject was

published. The literature on the CFCV is vast and covers problems with different

types of fractional integrals and/or derivatives. We refer the reader to [2, 3] for a

general treatment of CFCV. Significantly less works is devoted to the discrete-time

fractional calculus of variations (DFCV). Bastos et al. [4, 5] published in 2011 papers

introducing the DFCV. They proved first and second order necessary optimality con-

ditions for the basic problems of the calculus of variations depending on the right

and left Riemann–Liouville fractional differences [6, 7]. The fractional difference

considered in this paper is based on the Grünvald–Letnikov fractional derivative
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[8–10] and it is defined in the following way: let function f ∶ {0, 1,… , k} → ℝ,

then the fractional α-order (backward) difference on f is given by

0𝛥
α
k f (k) ∶=

k∑

i=0
(−1)iα(α − 1)⋯ (α − i + 1)

i!
f (k − i).

An interest in the DFCV with the fractional α-order (backward) difference has been

shown by Bourdin et al. [11, 12], who discussed in [11] the Gauss Grünvald–

Letnikov embedding and the corresponding variational integrators on fractional

Lagrangian systems. In this context they defined the forward fractional difference

of order α as follows:

k𝛥
α
Nf (k) ∶=

N−k∑

i=0
(−1)iα(α − 1)⋯ (α − i + 1)

i!
f (k + i),

where f ∶ {0, 1,… ,N} → ℝ, (note that here we assume that h = 1). In [12] a

fractional Noether-type theorem without transformation of time was proved. Those

two papers coincide with an opinion presented in [13] by Ortigueira: “most of the
articles that appear in the scientific literature, in the framework of the fractional cal-
culus and their applications, the authors use those derivatives (Riemann–Liouville
and/or Caputo) but at the end they contrast their model using a numerical approach
based in a finite number of terms from the series that define the Grünvald–Letnikov
derivative”. This can be also observed in framework of the CFCV (see, e.g., [14]).

Therefore, we consider pertinent to develop the theory of the DFCV with the frac-

tional α-order difference.

The paper is organized as follows. In Sect. 2, we define partial backward and for-

ward fractional differences, and remind results that will be useful in the sequel. Our

results are presented in Sect. 3: we prove necessary and sufficient optimality condi-

tions for basic and isoperimetric two-dimensional problems of the DFCV. Clearly,

those results can be easily generalized to the high-dimensional case. Finally, in

Sect. 4, we illustrate our results through examples.

2 Preliminaries

Let K1 = {0, 1, 2,… ,N}, K2 = {0, 1, 2,… ,M} be two given subsets of ℤ and put

D = {(k1, k2) ∶ k1 ∈ K1, k2 ∈ K2}, which is a complete matric space with the metric

d defined by

d((k1, k2), (k
′

1, k
′

2)) =
√

(k′1 − k1)2 + (k′2 − k2)2
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for (k1, k2), (k
′

1, k
′

2) ∈ D. For a given δ, the δ-neighborhood of (k′1, k
′

2) is given by

Uδ(k
′

1, k
′

2) = {(k1, k2) ∈ D ∶ d((k′1, k
′

2), (k1, k2)) < δ}.

In what follows α,β ∈ ℝ and 0 < α,β ≤ 1. Moreover, we set

a(α)i =

{
1, if i = 0
(−1)i α(α−1)⋯(α−i+1)

i! , if i = 1, 2,…

and

b(β)j =

{
1, if j = 0
(−1)j β(β−1)⋯(β−j+1)

j! , if j = 1, 2,… .

The definition of the fractional backward (or forward) difference can be extended

to discrete functions of two variables.

Definition 1 The first-order partial backward fractional difference of order α with

respect to k1 of function f ∶ D → ℝ is defined by

0𝛥
α
k1
f (k1, k2) ∶=

k1∑

i=0
a(α)i f (k1 − i, k2),

while

0𝛥
β
k2
f (k1, k2) ∶=

k2∑

j=0
b(β)j f (k1, k2 − j)

is first-order partial backward fractional difference of order β with respect to k2 of

function f .

Next we define partial forward fractional differences.

Definition 2 The first-order partial forward fractional difference of order α with

respect to k1 of function f ∶ D → ℝ is defined by

k1𝛥
α
Nf (k1, k2) ∶=

N−k1∑

i=0
a(α)i f (k1 + i, k2),

while

k2𝛥
β
Mf (k1, k2) ∶=

M−k2∑

j=0
b(β)j f (k1, k2 + j)



20 A.B. Malinowska and T. Odzijewicz

is first-order partial forward fractional difference of order β with respect to k2 of

function f .

Example 1 (cf. [10]) Let

f (k1, k2) =

{
0, if k1, k2 < 0
1, if k1, k2 ≥ 0.

Then

0𝛥
α
k1
f (k1, k2) =

k1∑

i=0
a(α)i , 0𝛥

β
k2
f (k1, k2) =

k2∑

j=0
b(β)j ,

and

k1𝛥
α
Nf (k1, k2) =

N−k1∑

i=0
a(α)i , k2𝛥

β
Mf (k1, k2) =

M−k2∑

j=0
b(β)j .

Fractional backward (or forward) differences are linear operators.

Theorem 1 (cf. [10]) Let f , g be two real functions defined on D and a, b ∈ ℝ. Then

0𝛥
α
k1
[af (k1, k2) + bg(k1, k2)] = a0𝛥α

k1
f (k1, k2) + b0𝛥α

k1
g(k1, k2).

Similar results hold for 0𝛥
β
k2
, k1𝛥

α
N and k2𝛥

β
M.

In order to obtain an analogue of the Euler–Lagrange equation for fractional prob-

lems we need the following formula of the summation by parts for one dimensional

fractional operators.

Lemma 1 (cf. [11]) Let f , g be two real functions defined on K1. Then

N∑

k=0
g(k)0𝛥α

k f (k) =
N∑

k=0
f (k)k𝛥α

Ng(k).

If f (0) = f (N) = 0 or g(0) = g(N) = 0, then

N∑

k=1
g(k)0𝛥α

k f (k) =
N−1∑

k=0
f (k)k𝛥α

Ng(k). (1)
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3 Main Result

Let a function L ∶ ℝ3 × D → ℝ, (x,w, v, k1, k2) ↦ L(x,w, v, k1, k2) be given. We

assume that L has continuous first order partial derivatives with respect to x, w, v,

those derivatives we denote by: Lx, Lw, Lv. Function L is called a Lagrangian. The

problem under our consideration is to extremize (minimize or maximize) functional

[x] =
N∑

k1=1

M∑

k2=1
L(x(k1, k2), 0𝛥α

k1
x(k1, k2), 0𝛥

β
k2
x(k1, k2), k1, k2) (2)

on  = {x ∶ D → ℝ ∶ x|
bdD = g}, where g is a fixed function defined on bdD.

Definition 3 A function x̃ ∈  is called a local minimizer (or maximizer) for func-

tional  on  provided there exists δ > 0 such that [x̃] ≤ [x] (or [x̃] ≥ [x])
for all x ∈  such that ‖x̃ − x‖ < δ, where ‖f‖ = max(k1,k2)∈D |f (k1, k2)|.

Definition 4 A function η ∶ D → ℝ is called an admissible variation provided

η ≠ 0 and η|
bdD = 0.

For a fixed function x ∈  and a fixed admissible variation η we define a function

𝛷 ∶ ℝ → ℝ by

𝛷(ε) = 𝛷(ε; x, η) = [x + εη].

By assumptions imposed on L, 𝛷 is continuously differentiable. The first variation

of the functional  at x we define by

1[x, η] = 𝛷
′(0; x, η).

It follows that

1[x, η] = 𝛷
′(0)

=
N∑

k1=1

M∑

k2=1

(

Lx(⋅)η(k1, k2) + Lw(⋅)0𝛥α
k1

η(k1, k2) + Lv(⋅)0𝛥
β
k2

η(k1, k2)
)

, (3)

where (⋅) = (x(k1, k2), 0𝛥α
k1
x(k1, k2), 0𝛥

β
k2
x(k1, k2), k1, k2). The next standard theorem

serves a necessary optimality condition for local minimizers (or maximizers) of .

Theorem 2 If x̃ ∈  is a local minimizer (or maximizer) of , then 1[x̃, η] = 0
for all admissible variations.

Now we can derive a necessary optimality condition of the Euler–Lagrange type.
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Theorem 3 If x̃ ∈  is a local minimizer (or maximizer) of , then it satisfies the
Euler–Lagrange equation of the following form:

Lx(⋅) + k1𝛥
α
NLw(⋅) + k2𝛥

β
MLv(⋅) = 0 (4)

for all (k1, k2) ∈ {1, 2,… ,N − 1} × {1, 2,… ,M − 1}, where
(⋅) = (x(k1, k2), 0𝛥α

k1
x(k1, k2), 0𝛥

β
k2
x(k1, k2), k1, k2).

Proof By Theorem 2 we have 1[x̃, η] = 0 for all admissible variations. Therefore,

0 =
N∑

k1=1

M∑

k2=1

(

Lx(⋆)η(k1, k2) + Lw(⋆)0𝛥α
k1

η(k1, k2) + Lv(⋆)0𝛥
β
k2

η(k1, k2)
)

, (5)

where (⋆) = (x̃(k1, k2), 0𝛥α
k1
x̃(k1, k2), 0𝛥

β
k2
x̃(k1, k2), k1, k2). Since η|

bdD = 0, using

(1) we have

N∑

k1=1

M∑

k2=1
Lw(⋆)0𝛥α

k1
η(k1, k2) =

N−1∑

k1=1

M∑

k2=1
k1𝛥

α
NLw(⋆)η(k1, k2)

and
N∑

k1=1

M∑

k2=1
Lv(⋆)0𝛥

β
k2

η(k1, k2) =
N∑

k1=1

M−1∑

k2=1
k2𝛥

β
MLv(⋆)η(k1, k2).

Consequently, remembering that η|
bdD = 0, we get from (5):

0 =
N−1∑

k1=1

M−1∑

k2=1

(

Lx(⋆) + k1𝛥
α
NLw(⋆) + k2𝛥

β
MLv(⋆)

)

η(k1, k2).

Since the value of η is arbitrary on {1, 2,… ,N − 1} × {1, 2,… ,M − 1}, the Euler–

Lagrange equation (4) holds along x̃.

Definition 5 A function x̃ ∈  that is a solution to the Euler–Lagrange equation (4)

we call an extremal of .

The next theorem provides a sufficient condition for an extremal to be a global

minimaizer (maximizer).

Theorem 4 Let function L in (2) be jointly convex (concave) with respect (x,w, v)
for all (k1, k2) ∈ D. If x̃ ∈  is a solution to the Euler–Lagrange equation (4), then
it is a global minimaizer (maximizer) of functional (2) on .
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Proof Assume that L is jointly convex with respect (x,w, v) for all (k1, k2) ∈ D, then

for any h such that x̃ + h ∈ , we have

[x̃ + h] − [x̃] =
N∑

k1=1

M∑

k2=1

[

L(x̃(k1, k2) + h(k1, k2), 0𝛥α
k1
(x̃(k1, k2) + h(k1, k2)),

0𝛥
β
k2
(̃x(k1, k2), k1, k2) + h(k1, k2)) − L(̃x(k1, k2), 0𝛥α

k1
x̃(k1, k2), 0𝛥

β
k2
x̃(k1, k2), k1, k2)

]

≥
N∑

k1=1

M∑

k2=1

(

Lx(⋆)h(k1, k2) + Lw(⋆)0𝛥α
k1
h(k1, k2) + Lv(⋆)0𝛥

β
k2
h(k1, k2)

)

,

where (⋆) = (x̃(k1, k2), 0𝛥α
k1
x̃(k1, k2), 0𝛥

β
k2
x̃(k1, k2), k1, k2). Proceeding as in the proof

of Theorem 3, we obtain

[x̃ + h] − [x̃] ≥
N−1∑

k1=1

M−1∑

k2=1

(

Lx(⋆) + k1𝛥
α
NLw(⋆) + k2𝛥

β
MLv(⋆)

)

h(k1, k2).

As x̃ satisfies Eq. (4) we have (x̃ + h) − (x̃) ≥ 0.

Now we shall consider the isoperimetric problem, one of the oldest and interesting

class of variational problems with roots in the Queen Dido problem of the calculus of

variations. The discrete fractional isoperimetric problem is defined in the following

way: extremize (minimize or maximize) functional

[x] =
N∑

k1=1

M∑

k2=1
L(x(k1, k2), 0𝛥α

k1
x(k1, k2), 0𝛥

β
k2
x(k1, k2), k1, k2) (6)

on  = {x ∶ D → ℝ ∶ x|
bdD = g}, where g is a fixed function defined on bdD and

subject to the isoperimetric constraint

[x] =
N∑

k1=1

M∑

k2=1
G(x(k1, k2), 0𝛥α

k1
x(k1, k2), 0𝛥

β
k2
x(k1, k2), k1, k2) = ξ, (7)

where ξ ∈ ℝ is given, and L, G have continuous first order partial derivatives with

respect to x, w, v.

Theorem 5 If x̃ ∈  is a local minimizer (or maximizer) of (6) subject to the
isoperimetric constraint (7), then there exist two real constants, λ0 and λ, not both
zero, such that x̃ satisfies the following equation:

Hx(⋅) + k1𝛥
α
NHw(⋅) + k2𝛥

β
MHv(⋅) = 0

for all (k1, k2) ∈ {1, 2,… ,N − 1} × {1, 2,… ,M − 1}, where
(⋅) = (x(k1, k2), 0𝛥α

k1
x(k1, k2), 0𝛥

β
k2
x(k1, k2), k1, k2) and H = λ0L + λG.
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Proof Can be done by using the abnormal Lagrange multiplier rule [[15], Theorem

4.1.3].

Remark 1 If x̃ is a normal extremizer to the isoperimetric problem, that is, x̃ is not

a solution to equation

Gx(⋅) + k1𝛥
α
NGw(⋅) + k2𝛥

β
MGv(⋅) = 0,

where (⋅) = (x(k1, k2), 0𝛥α
k1
x(k1, k2), 0𝛥

β
k2
x(k1, k2), k1, k2), then we can choose λ0 =

1 in Theorem 5. For abnormal extremizers, Theorem 5 holds with λ0 = 0. The

condition (λ0,λ) ≠ 0 guarantees that Theorem 5 is a useful necessary optimality

condition.

4 Example

In this section we present three illustrative examples. In the first example the two-

dimensional problem is considered. We show that the Lagrangian is invariant under

a gauge transformation. Therefore, we can expect that the Euler–Lagrange equations

do not uniquely determine a solution to this problem (see, e.g., [16]). The next exam-

ple shows that the solutions of the fractional problems coincide with the solutions of

the corresponding non-fractional variational problems when the order of the discrete

derivatives is an integer value [17]. Moreover, we observe that, in this particular case,

solutions obtained by us are very similar to those presented in [4], where problems

with the Riemann–Liouville fractional differences were considered. In Example 4

the isoperimetric problem is considered. This problem leads us to the discrete frac-

tional Sturm–Liouville eigenvalue problem.

Example 2 Let us consider the following problem: minimize

[x1, x2] =
N∑

k1=1

M∑

k2=1

(

0𝛥
α
k1
x2(k1, k2) − 0𝛥

β
k2
x1(k1, k2)

)2
(8)

on  = {(x1, x2) ∶ D → ℝ2 ∶ (x1, x2)|bdD = (g1, g2)}, where g1, g2 are fixed real

functions defined on bdD. Necessary conditions for a minimizer are as follows:

k1𝛥
α
N

(

0𝛥
α
k1
x2(k1, k2) − 0𝛥

β
k2
x1(k1, k2)

)

= 0,

k2𝛥
β
M

(

0𝛥
α
k1
x2(k1, k2) − 0𝛥

β
k2
x1(k1, k2)

)

= 0

for all (k1, k2) ∈ {1, 2,… ,N − 1} × {1, 2,… ,M − 1}. Note that, the Lagrangian is

invariant with respect to a gauge transformation:
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x̄1(k1, k2) = x1(k1, k2) + 0𝛥
α
k1
f (k1, k2),

x̄2(k1, k2) = x2(k1, k2) + 0𝛥
β
k2
f (k1, k2)

where f ∶ D → ℝ is an arbitrary function. Indeed,

(

0𝛥
α
k1
x̄2(k1, k2) − 0𝛥

β
k2
x̄1(k1, k2)

)2

=
(

0𝛥
α
k1
(x2(k1, k2) + 0𝛥

β
k2
f (k1, k2)) − 0𝛥

β
k2
(x1(k1, k2) + 0𝛥

α
k1
f (k1, k2))

)2

=
(

0𝛥
α
k1
x2(k1, k2) + 0𝛥

α
k10

𝛥
β
k2
f (k1, k2) − 0𝛥

β
k2
x1(k1, k2) − 0𝛥

β
k20

𝛥
α
k1
f (k1, k2)

)2
.

Since

0𝛥
α
k10

𝛥
β
k2
f (k1, k2) = 0𝛥

β
k20

𝛥
α
k1
f (k1, k2),

by Theorem 5.2.1 [10], the desired equality holds.

Example 3 Let us consider the following problem: minimize

[x] =
N∑

k=1

(
0𝛥

α
k x(k)

)2
(9)

subject to  = {x ∶ D → ℝ ∶ x(0) = A, x(N) = B}, where D = {0,… ,N} and

N,A,B are fixed. In this case the Euler–Lagrange equation takes the form

k𝛥
α
N0𝛥

α
k x(k) = 0, k = 1,… ,N − 1.

For N = 2, the solution to the considered problem is:

x(0) = 0, x(1) =
αA + αB + 1∕2α2(α − 1)A

1 + α2 , x(2) = B.

Observe that for α = 1: x(1) = A+B
2 , as one can expect. Indeed, for α = 1 our

problem coincides with a discrete problem: minimize

2∑

k=1
(x(k) − x(k − 1))2

on  = {x ∶ D → ℝ ∶ x(0) = A, x(2) = B}.

Let us choose now A = 0, B = 1 and N = 4. Table 1 and Fig. 1 present solutions to

the considered problem for different values of α.
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Table 1 Minimizer values of Example 3 with A = 0, B = 1, N = 4, and different α’s:

1∕4, 1∕2, 3∕4, 1
α x̃(1) x̃(2) x̃(3) [x̃]
0.25 0.007181731484 0.1454300624 0.2668462100 0.9185395467
0.50 0.1293800539 0.3234501348 0.5229110512 0.6788674886
0.75 0.2267883116 0.4544228483 0.68702895690 0.4255906641
1 0.25 0.50 0.75 0.25

Fig. 1 Minimizer x̃ of

Example 3 with A = 0,

B = 1, N = 4, and different

α’s: 1∕4, 1∕2, 3∕4, 1

Note that the smallest value of  occurs for α = 1 (for the classical non-fractional

case). However, the values of function x̃ are respectively the biggest in the case of

α = 1.

Example 4 As the third example we consider the isoperimetric problem: minimize

[x] =
N∑

k=1

[

p(k)
(
0𝛥

α
k x(k)

)2 + q(k)x2(k)
]

(10)

on  = {x ∶ D → ℝ ∶ x(0) = 0, x(N) = 0}, and

N∑

k=1
r(k) (x(k))2 = 1 (11)
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where D = {0,… ,N}, N is fixed, and p, r ∶ D → ℝ+, q ∶ D → ℝ. By Theorem 5

and Remark 1 every nontrivial solution to this problem has to satisfy the following

equation:

k𝛥
α
N
(
p(k)0𝛥α

k x(k)
)
+ q(k)x(k) = λr(k)x(k), k = 1,… ,N − 1, (12)

for some λ. It is easily seen that Eq. (12) together with the boundary condition:

x(0) = 0, x(N) = 0,

is a kind of the Sturm–Liouville eigenvalue problem (see, e.g., [18–20]). Let us

choose D = {0,… , 3}, p = r = 1, q = 0. Then extremizers for considered isoperi-

metric problem have to satisfy the following conditions:

k𝛥
α
3 0𝛥

α
k x(k) = λx(k), k = 1, 2, (13)

3∑

k=1
(x(k))2 = 1, (14)

x(0) = 0, x(3) = 0. (15)

Note that solutions to the system (13)–(15) depend on λ. Table 2 presents examples

of solutions for different values of α and for chosen values of λ.

Table 2 Examples of solutions to to system of Eqs. (13)–(15) for different values of α’s:

1∕4, 1∕2, 3∕4, 1
α x(1) x(2) λ

0.25 −0.7002167868 −0.7139302847 0.8402894156
0.50 −0.7007659037 −0.71339130098 0.8202427511
0.75 −0.7048172168 −0.7093889560 0.8871928247
1 −0.7071067812 −0.7071067812 1
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On a New Symmetric Fractional Variable
Order Derivative

Dominik Sierociuk, Wiktor Malesza and Michal Macias

Abstract The paper presents particular definitions of symmetric fractional variable

order derivatives. The  and  types of the fractional variable order derivatives

and their properties have been introduced. Additionally, the switching order schemes

equivalent to these types of definitions have been shown. Finally, the theoretical con-

siderations have been validated on numerical examples.

Keywords Fractional calculus ⋅ Variable order derivative

1 Introduction

Fractional calculus is a generalization of traditional integer order integration and

differentiation actions onto non-integer orders fundamental operator. Nowadays, has

been widely used by engineers and researchers in many areas. In [1], fractional cal-

culus was applied to modeling behavior of ultracapacitors more efficiently than in

classical way. In similar manner and effect was used to modelling a mechanical sys-

tem, e.g. results for electrical drive system with flexible shaft [3].

When the order is not constant but depends on time, then the various types of

fractional variable order derivatives can be distinguished. In literature plenty of such

definitions can be encountered, however, authors put only minor emphasis on their

interpretations. In [7], nine different variable order derivative definitions are given

and in [2, 18], three general types of variable order definitions can be found but with-

out clear interpretation of them. In papers [4, 11, 12, 14–16] the explanation for two
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main types and two recursive types of derivatives in the form of switching schemes

are given. The equivalence between particular types of definitions and appropriate

switching strategies are proven by authors. Moreover, based on these strategies, ana-

log models of proper types derivatives were build and validated according to their

numerical implementations. Another methods for numerical realization of fractional

variable order integrators or differentiators can be found in [8, 17]. Paper [9] shows

comparison of control system behavior with fractional variable order PID controller

designed according to few types of fractional variable order derivatives.

It is worth to mention that for variable order derivatives, known in literature, the

opposite orders composition does not hold for one type of derivative, but is only

satisfied between dual derivatives [13]. It can yield some difficulties, e.g., in analysis

of variable order differential equations. It rises to the problem: if it is possible to

derive alternative definitions of variable order derivatives for which the opposite

orders composition hold, that is a composition of two derivatives of the same type,

and of opposite orders, gives original function.

In this work, we will solve this problem by defining symmetric fractional vari-

able order derivatives. The duality property between particular types of definitions

presented with details in [13] are used to achieve some properties of symmetric oper-

ators. Additionally, the switching order schemes equivalent to these types of defini-

tions have been shown.

The paper is organized as follows. In Sect. 2 particular types of fractional vari-

able order derivatives are introduced. Section 3 contains the main contribution of

the paper—symmetric variable order definitions, their basic properties and switch-

ing schemes. At the end the theoretical considerations are validated on numerical

example.

2 Fractional Variable Order Grunwald-Letnikov
Type Derivatives

As a base of generalization of the constant fractional order 𝛼 ∈ ℝ derivative onto

variable order case, the following definition is taken into consideration:

0D𝛼

t f (t) = lim
h→0

1
h𝛼

n∑

r=0
(−1)r

(
𝛼

r

)

f (t − rh), (1)

where h > 0 is a step time, and n = ⌊t∕h⌋.

The matrix form of the fractional order derivative is given as follows [5, 6]:

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0D𝛼

0 f (0)
0D𝛼

hf (h)
0D𝛼

2hf (2h)
⋮

0D𝛼

khf (kh)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= lim
h→0

W(𝛼, k)

⎛
⎜
⎜
⎜
⎜
⎝

f (0)
f (h)
f (2h)
⋮

f (kh)

⎞
⎟
⎟
⎟
⎟
⎠

,
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where

W(𝛼, k) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h−𝛼 0 0 … 0
w
𝛼,1 h−𝛼 0 … 0

w
𝛼,2 w

𝛼,1 h−𝛼 … 0
w
𝛼,3 w

𝛼,2 w
𝛼,1 … 0

⋮ ⋮ ⋮ … ⋮
w
𝛼,k w𝛼,k−1 w

𝛼,k−2 … h−𝛼

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

W(𝛼, k) ∈ ℝ(k+1)×(k+1)
, w

𝛼,i =
(−1)i(𝛼i)

h𝛼 , and h = t∕k, k is a number of samples.

For the case of order changing with time (variable order case), many different

types of definitions can be found in the literature [2, 18]. Among them, we present

only two. The first one is obtained by replacing in (1) a constant order 𝛼 by variable

order 𝛼(t). In that approach, all coefficients for past samples are obtained for present

value of the order, and is given as follows:

Definition 1 The  -type of fractional variable order derivative is defined as

follows:


0 D

𝛼(t)
t f (t) = lim

h→0
1

h𝛼(t)

n∑

r=0
(−1)r

(
𝛼(t)
r

)

f (t − rh). (2)

The matrix form of the 1st type of fractional-variable order derivative [10] is given by

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝


0 D

𝛼(t)
0 f (0)


0 D

𝛼(t)
h f (h)


0 D

𝛼(t)
2h f (2h)
⋮


0 D

𝛼(t)
kh f (kh)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= lim
h→0

W(𝛼, k)

⎛
⎜
⎜
⎜
⎜
⎝

f (0)
f (h)
f (2h)
⋮

f (kh)

⎞
⎟
⎟
⎟
⎟
⎠

, (3)

where

W(𝛼, k) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

h−𝛼(0) 0 0 … 0
w
𝛼(h),1 h−𝛼(h) 0 … 0

w
𝛼(2h),2 w

𝛼(2h),1 h−𝛼(2h) … 0
w
𝛼(3h),3 w

𝛼(3h),2 w
𝛼(3h),1 … 0

⋮ ⋮ ⋮ … ⋮
w
𝛼(kh),k w

𝛼(kh),k−1 w
𝛼(kh),k−2 … h−𝛼(kh)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (4)

Let us consider the following so-called output-reductive switching scheme [10,

16] presented in Fig. 1 based on the chain of derivatives blocks related by the fol-

lowing switching rule. The switches Si, i = 1,… ,N, take the following positions

Si =

{
b for ti−1 ≤ t < ti,
a otherwise,

i = 1,… ,N,
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α̂1α̂2
S2

a

b

S3

a

b

S1

a

b

o-r
0 Dα(t)

t f(t)

αN

SN

a

b

f(t)

o-r
serΞ{α(t)}

Fig. 1 Structure of output-reductive switching order scheme in serial form
o−r
ser Ξ{𝛼(t)} (presented

configuration: switching from 𝛼1 to 𝛼2)

and

𝛼i = 𝛼i+1 + 𝛼̂i, i = 1,… ,N − 1.

Theorem 1 ([16]) The -type of variable order derivative (given by Definition 1)
is equivalent to output-reductive switching order scheme presented in Fig. 1, i.e.,


0 D

𝛼(t)
t f (t) ≡ o-r

0 D𝛼(t)
t f (t).

Second type of variable order derivative, we will consider, is given by the follow-

ing definition:

Definition 2 ([16]) The -type of fractional variable order derivative is defined as

follows:


0 D

𝛼(t)
t f (t) = lim

h→0

(
f (t)
h𝛼(t)

−
n∑

j=1
(−1)j

(
−𝛼(t)
j

)

0 D

𝛼(t)
t−jhf (t)

)

. (5)

The -type fractional derivative can be expressed in the following matrix form

[16]:

⎛
⎜
⎜
⎜
⎜
⎝


0 D

𝛼(t)
0 f (0)


0 D

𝛼(t)
h f (h)
⋮


0 D

𝛼(t)
kh f (kh)

⎞
⎟
⎟
⎟
⎟
⎠

= lim
h→0

𝔔k
0(𝛼)

⎛
⎜
⎜
⎜
⎝

f (0)
f (h)
⋮

f (kh)

⎞
⎟
⎟
⎟
⎠

, (6)

where

𝔔k
0(𝛼) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h−𝛼0 0 0 ⋯ 0 0
𝔮2,1 h−𝛼1 0 ⋯ 0 0
𝔮3,1 𝔮3,2 h−𝛼2 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮
𝔮k,1 𝔮k,2 𝔮k+1,3 ⋯ h−𝛼k−1 0
𝔮k+1,1 𝔮k+1,2 𝔮k+1,3 ⋯ 𝔮k+1,k h−𝛼k

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (7)

where, for i, j = 1,… , k + 1,



On a New Symmetric Fractional Variable Order Derivative 33

𝔮i,j =
⎧
⎪
⎨
⎪
⎩

qi−1(𝔮1,j,… , 𝔮i−1,j)T for i > j,
h−𝛼i for i = j,
0 fori < j,

(8)

and for r = 1,… , k

qr = (−v−𝛼r ,r,… ,−v−𝛼r ,1) ∈ ℝ1×r
, (9)

v−𝛼r ,l = (−1)l
(
−𝛼r
l

)

, l = 1,… , r, (10)

that is, the pth element of qr, p = 1,… , r, is

(qr)p = −v−𝛼r ,r−p+1 = (−1)r−p+1
(

−𝛼r
r − p + 1

)

. (11)

Let us consider the following so-called input-reductive switching order scheme

in the serial form, denoted
i-r

ser
Ξ{𝛼(t)} and presented in Fig. 2. The switches Si, i =

1,… ,N, take the following positions

Si =

{
b for ti−1 ≤ t < ti,
a otherwise,

i = 1,… ,N.

and

𝛼i = 𝛼i+1 + 𝛼̂i, i = 1,… ,N − 1.

Theorem 2 ([16]) The -type of variable order derivative (given by Definition 2)
is equivalent to input-reductive switching order scheme presented in Fig. 2, i.e.,


0 D

𝛼(t)
t f (t) ≡ i-r

0 D𝛼(t)
t f (t).

α̂N−1 αN

SN

a

b

SN−1
a

b
i-r
0 Dα(t)

t f(t)
α̂1

S2
a

b

S1
a

b

f(t)
i-r
serΞ{α(t)}

Fig. 2 Structure of input-reductive switching order scheme
i-r

ser
Ξ{𝛼(t)} (presented configuration:

switching from 𝛼1 to 𝛼2)
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Remark 1 For a fractional constant order 𝛼 = const, the fractional derivatives given

by Definitions 1 and 2 are numerically identical with constant order fractional deriv-

ative given by (1).

Remark 2 What is crucial for both -type and -type derivative is that they are, in

general—for variable order 𝛼(t), not symmetric, i.e.,


0 D

𝛼(t)
t


0 D

−𝛼(t)
t f (t) ≠ f (t)

and 
0 D

𝛼(t)
t


0 D

−𝛼(t)
t f (t) ≠ f (t).

However, the following duality properties [13] hold


0 D

𝛼(t)
t


0 D

−𝛼(t)
t f (t) = f (t) (12)

and 
0 D

𝛼(t)
t


0 D

−𝛼(t)
t f (t) = f (t). (13)

3 Main Result—symmetric Variable Order Derivatives

This section contains the main contribution of the paper, that is introducing def-

initions of variable order derivatives possessing fundamental property—opposite

orders composition for one type of derivative. The operators satisfying this prop-

erty will be called symmetric variable order derivatives, and we will introduce two

types of them: so-called -type and -type.

Definition 3 The -type and -type of symmetric fractional variable order

derivative are defined, respectively, as follows:


0 D𝛼(t)

t f (t) = 
0 D

𝛼(t)
2

t

0 D

𝛼(t)
2

t f (t) (14)

and


0 D𝛼(t)

t f (t) = 
0 D

𝛼(t)
2

t

0 D

𝛼(t)
2

t f (t), (15)

where

0 D

𝛼(t)
2

t f (t) and

0 D

𝛼(t)
2

t f (t) are given by (2) and (5), respectively.

Remark 3 For a fractional constant order 𝛼 = const, the -type and -type

symmetric fractional variable order derivatives are numerically identical with con-

stant order 𝛼 fractional derivative given by (1). Indeed,
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
0 D𝛼

t f (t) =

0 D

𝛼

2
t

0 D

𝛼

2
t f (t)

= 0D
𝛼

2
t 0D

𝛼

2
t f (t) = 0D𝛼

t f (t),

and


0 D𝛼

t f (t) =

0 D

𝛼

2
t

0 D

𝛼

2
t f (t)

= 0D
𝛼

2
t 0D

𝛼

2
t f (t) = 0D𝛼

t f (t).

The -type and -type fractional derivatives can be expressed, respectively,

in the following matrix forms:

⎛
⎜
⎜
⎜
⎜
⎜
⎝


0 D𝛼(t)

0 f (0)

0 D𝛼(t)

h f (h)
⋮


0 D𝛼(t)

kh f (kh)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= lim
h→0

𝔚k
0 (𝛼)

⎛
⎜
⎜
⎜
⎜
⎝

f (0)
f (h)
⋮

f (kh)

⎞
⎟
⎟
⎟
⎟
⎠

, (16)

where 𝔚k
0 (𝛼) =

W
(
𝛼

2

)𝔔k
0

(
𝛼

2

)

;

and

⎛
⎜
⎜
⎜
⎜
⎜
⎝


0 D𝛼(t)

0 f (0)

0 D𝛼(t)

h f (h)
⋮


0 D𝛼(t)

kh f (kh)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= lim
h→0

𝔚k
0 (𝛼)

⎛
⎜
⎜
⎜
⎜
⎝

f (0)
f (h)
⋮

f (kh)

⎞
⎟
⎟
⎟
⎟
⎠

, (17)

where

𝔚k
0 (𝛼) =

𝔔k
0

(
𝛼

2

)W
(
𝛼

2

)

,

and
W and

𝔔k
0 are given by (4) and (7), respectively.

Let us consider the following so-called output-input-reductive and input-output-

reductive switching order schemes in the serial forms, denoted
o-i-r

ser
Ξ{𝛼(t)} and

i-o-r

ser
Ξ{𝛼(t)}, presented in Figs. 3 and 4, respectively.
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f(t)
i-r
serΞ{α(t)

2 } o-r
serΞ{α(t)

2 }
i-r
0 D

α(t)
2

t f(t) o-i-r
0 Dα(t)

t f(t)

o-i-r
ser Ξ{α(t)}

Fig. 3 Structure of output-input-reductive switching order scheme
o-i-r

ser
Ξ{𝛼(t)}

f(t)
o-r
serΞ{α(t)

2 } i-r
serΞ{α(t)

2 }
o-r
0 D

α(t)
2

t f(t) i-o-r
0 Dα(t)

t f(t)

i-o-r
ser Ξ{α(t)}

Fig. 4 Structure of input-output-reductive switching order scheme
i-o-r

ser
Ξ{𝛼(t)}

Proposition 1 The-type and-type derivatives are equivalent, respectively,
to o-i-r

ser
Ξ{𝛼(t)} and i-o-r

ser
Ξ{𝛼(t)} switching schemes, i.e.,


0 D𝛼(t)

t f (t) ≡ o-i-r

0 D𝛼(t)
t f (t)

and 
0 D𝛼(t)

t f (t) ≡ i-o-r

0 D𝛼(t)
t f (t).

Proof It follows directly from the fact that the switching schemes
o-r

ser
Ξ{𝛼(t)} and

i-r

ser
Ξ{𝛼(t)} are equivalent, respectively, to -type and -type derivatives.

Proposition 2 The -type and -type derivatives are symmetric, i.e.,


0 D𝛼(t)

t

0 D−𝛼(t)

t f (t) = f (t)

0 D𝛼(t)

t

0 D−𝛼(t)

t f (t) = f (t)

Proof We have


0 D𝛼(t)

t

0 D−𝛼(t)

t f (t) = 
0 D

𝛼(t)
2

t

0 D

𝛼(t)
2

t

0 D

−𝛼(t)
2

t

0 D

−𝛼(t)
2

t f (t)

= 
0 D

𝛼(t)
2

t

0 D

−𝛼(t)
2

t f (t)
= f (t)

using the duality properties, first (12), and then (13).
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Similarly,


0 D𝛼(t)

t

0 D−𝛼(t)

t f (t) = 
0 D

𝛼(t)
2

t

0 D

𝛼(t)
2

t

0 D

−𝛼(t)
2

t

0 D

−𝛼(t)
2

t f (t)

= 
0 D

𝛼(t)
2

t

0 D

−𝛼(t)
2

t f (t)
= f (t)

using the duality properties, first (13), and then (12).

Corollary 1 There is no duality property between -type and -type deriva-
tives, i.e.,


0 D𝛼(t)

t

0 D−𝛼(t)

t f (t) ≠ f (t)

0 D𝛼(t)

t

0 D−𝛼(t)

t f (t) ≠ f (t).

4 Numerical Example

Below we present an example of plots of -type and -type symmetric vari-

able order derivatives compared with results obtained from equivalent switching

schemes.

Let us consider the following fractional variable order integrals:

0 D𝛼(t)

t f (t) and


0 D𝛼(t)

t f (t), for Heaviside step function f (t) = H(t) and

𝛼(t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−1
8 for t ∈ [0, 0.3)

−3
4 for t ∈ [0.3, 0.6)

−1 for t ∈ [0.6, 0.8)
−1

4 for t ∈ [0.8, 1).

The graphs of integration are depicted in Fig. 5. From the plots in Fig. 5, we can see

that the behavior of -type and -type of derivative is similar to -type and

-type derivative, respectively.

The graphs of -type and -type derivatives composition properties

are depicted in Fig. 6. From the plots in Fig. 6, we can see that the compositions


0 D𝛼(t)

t

0 D−𝛼(t)

t H(t) ⋅ t and

0 D𝛼(t)

t

0 D−𝛼(t)

t H(t) ⋅ t yields the original functions

H(t) ⋅ t, i.e., the symmetry property holds, and the duality between - and -

type derivatives does not hold, i.e.,

0 D𝛼(t)

t

0 D−𝛼(t)

t H(t) ⋅ t ≠ H(t) ⋅ t.
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Fig. 5 Integration plots of


0 D𝛼(t)

t H(t) (solid line) and


0 D𝛼(t)

t H(t) (dashed line)

compared with integration

plots realized, respectively,

by means of switching

schemes
o-i-r

ser
Ξ{𝛼(t)} and

i-o-r

ser
Ξ{𝛼(t)} (circles lines)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 6 Numerical

solution plots of


0 D𝛼(t)

t

0 D−𝛼(t)

t (H(t) ⋅ t)
(dashed-dotted line),
0 D𝛼(t)

t

0 D−𝛼(t)

t (H(t) ⋅ t)
(dashed line), and
0 D𝛼(t)

t

0 D−𝛼(t)

t (H(t) ⋅ t)
(solid line) compared with

plots realized by means of

corresponding switching

schemes compositions

(circles lines)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

5 Conclusions

In the paper, the -type and -type of symmetric variable order derivatives

were given. The switching order schemes equivalent to these type of definitions were

presented as the output-input reductive and input-output reductive structures as well.

Then, the numerical example comparing particular definitions with their switching

schemes were shown. It was also proven that, there is no duality property between

-type and -type derivatives.
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Linearization of the Non-linear
Time-Variant Fractional-Order
Difference Equation

Piotr Ostalczyk

Abstract In this paper a linearization procedure of the fractional-order non-linear

time-variant discrete system is discussed. Starting from the non-linear fractional-

order difference equation one derives its equivalent state-space form. Then assuming

a knowledge of the nominal trajectory one evaluates the linear stat-space model. The

investigations are supported by numerical example.

Keywords Discrete fractional calculus ⋅ Fractional difference equation ⋅ Discrete

fractional state-space model ⋅ Linearization

1 Introduction

The fractional calculus [7, 10, 12] has become a widely used mathematical tool in

control theory and technical applications. Currently, the research of dynamic sys-

tem control is concentrated upon the fractional-order mathematical models [9, 11,

13, 15]. In the classical approach the non-linear models are linearized to simplify

the closed—loop system synthesis [1, 3]. In the time-variant dynamic system the

steady-state solution is generalized to the so called nominal solution. The Taylor

series expansion leads to the linear model. The numerical example shows that this

procedure is useful for specified parameter ranges.

The paper structure is as follows. First fundamental definitions of the fractional-

order (FO) backward difference (BD) in the Grunwald-Letnikov (GL) related to the

FO form the left GL derivative are given. A simple approximation of the FO non-

linear differential equation by the FO difference equation (DE) is introduced.
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2 Mathematical Preliminaries

Definition 1 (Grünwald-Letnikov form of the FOBD) For a discrete-variable,

bounded function f (k) the Grunwald-Letnikov FOBD is defined as a sum

GL
k0

𝛥
(𝜈)
k f (k) =

k∑

i=k0

a(𝜈)(i − k0)f (k + k0 − i)

=
k−k0∑

i=0
a(𝜈)(i)f (k − i), (1)

where a function a(𝜈)(k) is defined as follows

a(𝜈)(k) =
⎧
⎪
⎨
⎪
⎩

0 for k < 0
1 for k = 0

(−1)k 𝜈(𝜈−1)…(𝜈−k+1)
k! for k = 1, 2, 3,…

(2)

and
[
k0, k

]
is the FOBD calculation range, 𝜈 ∈ ℝ+ is an order. A superscript

“GL” stands for the Grünwald—Letnikov form. The Grünwald—Letnikov FO left-

derivative (LD) is related to the FOBD as follows.

Definition 2 (Grünwald-Letnikov form of the FOLD) For a continuous-variable,

bounded function f (t) the Grünwald-Letnikov FOLD of order 𝜈 ∈ ℝ is defined as a

limit

GL
t0

D(𝜈)
t f (t) = lim

h → 0+
kh = t − t0

GL
k0

𝛥
(𝜈)
k f (kh)

h𝜈

= lim
h → 0+

kh = t − t0

∑k
i=0a

(𝜈)(i)f [(k − i)h]
h𝜈

(3)

It is worth to note that for 𝜈 = n = 1 Definitions 1 and 2 denotes first-order backward

difference [14] 𝛥f (k) and first-order left derivative
df (t)
dt , respectively. Classical non-

linear time-variant pth order differential equation [8]

F
[
dpy(t)
dtp

,

dp−1y(t)
dtp−1

,… ,

y(t)
dt

, y(t), d
qu(t)
dtq

,

dq−1u(t)
dtq−1

,… ,

u(t)
dt

, u(t), t
]

= 0, (4)

where p ⩾ q can be generalized to the FO differential equation
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F
[
GL
t0

D
𝜈p
t y(t),GLt0 D

𝜈p−1
t y(t),… ,

GL
t0

D𝜈1
t y(t), y(t), ×

× GL
t0

D
𝜇q
t u(t)… ,

GL
t0

D𝜇1
t u(t), u(t), t

]

= 0, (5)

where

𝜈p > 𝜈p−1 > · · · > 𝜈1 > 0, 𝜇p > 𝜇p−1 > · · · > 𝜇1 > 0. (6)

where 𝜈p ⩾ 𝜈q. Performing a substitution of the Grüwald-Letnikov fractional left

derivative by the FOBD divided by a sampling time (which should be relatively

small) in (3)

GL
t0

D(𝜈i)
t y(t) ≈

GL
k0h

𝛥
(𝜈i)
kh y(kh)

h𝜈i
,
GL
t0

D
(𝜇j)
t u(t) ≈

GL
k0h

𝛥

(𝜈j)
kh u(kh)

h𝜇j
, (7)

for i = 1, 2,… , p, j = 1, 2,… , q one obtains the FO difference equation (FODE)

F
[
GL
k0h

𝛥

(𝜈p)
kh y(kh),… ,

GL
k0h

𝛥
(𝜈1)
kh y(kh), y(kh),×

× GL
k0h

𝛥

(𝜇q)
kh u(kh),… ,

GL
k0h

𝛥
(𝜇1)
kh u(kh), u(kh), kh

]

= 0. (8)

For a known and constant sampling time h = const there be used a simplified nota-

tion omitting h. Hence the FODE (5) takes a form

F
[
GL
k0

𝛥

(𝜈p)
k y(k),… ,

GL
k0

𝛥
(𝜈1)
k y(k), y(k),GLk0 𝛥

(𝜇q)
k u(k),… ,

GL
k0

𝛥
(𝜇1)
k u(k), u(k), k

]

= 0
(9)

Further one considers only the commensurate systems, i.e., systems described by

FODE with

𝜈i =
ni
d

= ni𝜈 for i = 1, 2,… , p, and ei, di ∈ ℤ+ (10)

𝜇i =
mi
d

= mi𝜈 for j = 1, 2,… , q, and gi, fi ∈ ℤ+ (11)

where

𝜈 = 1
d
. (12)
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and d is the least common denominator of all FOs. Then (9) takes the form

F
[
GL
k0

𝛥

(np𝜈)
k y(k),GLk0 𝛥

(np−1𝜈)
k y(k),… , y(k), ×

× GL
k0

𝛥

(mq𝜈)
k u(k),… ,

GL
k0

𝛥

(mq−1𝜈)
k u(k),… , u(k), k

]

= 0. (13)

In a wide class of the FODE one can extract from (13) the FOBE of the highest

order. Then an equivalent form is as follows

GL
k0

𝛥

(np𝜈)
k y(k) = f

[
GL
k0

𝛥

(np−1𝜈)
k y(k),GLk0 𝛥

(np−2𝜈)
k y(k),… , y(k), ×

× GL
k0

𝛥

(mq𝜈)
k u(k),… ,

GL
k0

𝛥

(mq−1𝜈)
k u(k),… , u(k), k

]

. (14)

Defining a set of equations

x1(k) = y(k),
x2(k) =GL

k0
𝛥
(𝜈)
k x1(k) =GL

k0
𝛥
(𝜈)
k y(k),

x3(k) =GL
k0

𝛥
(𝜈)
k x2(k) =GL

k0
𝛥
(2𝜈)
k y(k),

⋮ (15)

xnp (k) =
GL
k0

𝛥
(𝜈)
k xnp−1(k) =

GL
k0

𝛥
((p−1)𝜈)
k y(k).

one obtains the so-called state-space equation of the non-linear FOS

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

GL
k0

𝛥
(𝜈)
k x1(k)

GL
k0

𝛥
(𝜈)
k x2(k)
⋮

GL
k0

𝛥
(𝜈)
k xp−1(k)

GL
k0

𝛥
(𝜈)
k xp(k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=GL
k0

𝛥
(𝜈)
k

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1(k)
x2(k)
⋮

xnp−1(k)
xnp (k)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x2(k)
x3(k)
⋮

xnp (k)

fp
[

xnp (k), xnp−1(k),… , x2(k), x1(k),GLk0 𝛥

(mq𝜈)
k u(k),… , u(k), k

]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (16)

The first equation in (15) denoting the FODE solution remains unchanged but ex-

pressed in opposite order

y(k) =
[
x1(k)

]
. (17)
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The non-linear SSE can be generalized to more general form

GL
k0

𝛥
(𝜈)
k 𝐱(k) = 𝐟 [𝐱(k),𝐮(k), k] , (18)

and

𝐲(k) = 𝐠 [𝐱(k),𝐮(k), k] , (19)

where

𝐱(k) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1(k)
x2(k)
⋮

xnp−1(k)
xnp (k)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, 𝐮(k) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u1(k)
u2(k)
⋮

umq−1(k)
umq

(k)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, 𝐲(k) =

⎡
⎢
⎢
⎢
⎢
⎣

y1(k)
y2(k)
⋮

yr−1(k)
yr(k)

⎤
⎥
⎥
⎥
⎥
⎦

(20)

𝐟 [𝐱(k),𝐮(k), k] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

f1 [𝐱(k),𝐮(k), k]
f2 [𝐱(k),𝐮(k), k]

⋮
fnp−1 [𝐱(k),𝐮(k), k]
fnp [𝐱(k),𝐮(k), k]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1
[

xnp (k),… , x1(k), umq
(k)… , u1(k), k

]

f2
[

xnp (k),… , x1(k), umq
(k)… , u1(k), k

]

⋮

fnp−1
[

xnp (k),… , x1(k), umq
(k)… , u1(k), k

]

fnp
[

xnp (k),… , x1(k), umq
(k)… , u1(k), k

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)

𝐠 [𝐱(k),𝐮(k), k] =

⎡
⎢
⎢
⎢
⎢
⎣

g1 [𝐱(k),𝐮(k), k]
g2 [𝐱(k),𝐮(k), k]

⋮
gr−1 [𝐱(k),𝐮(k), k]
gr [𝐱(k),𝐮(k), k]

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g1
[

xnp (k),… , x1(k), uq(k)… , u1(k), k
]

g2
[

xnp (k),… , x1(k), uq(k)… , u1(k), k
]

⋮

gr−1
[

xnp (k),… , x1(k), uq(k)… , u1(k), k
]

gr
[

xnp (k),… , x1(k), uq(k)… , u1(k), k
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22)
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3 Linearization of the Non-linear Time-Variant FOS

Suppose that 𝐮s(k) is a given input (nominal input) to a system described by (18) and

(19) and 𝐱s(k) is a nominal trajectory satisfying

GL
k0

𝛥
(𝜈)
k 𝐱s(k) = 𝐟

[
𝐱s(k),𝐮s(k), k

]
, (23)

Then form (19) one gets

𝐲s(k) = 𝐠
[
𝐱s(k),𝐮s(k), k

]
, (24)

The linearisation procedure of the non-linear FODE assumes a “small” change (a

small perturbation) around the known input function 𝐮s(k). This perturbation will be

denoted as

𝐮(𝐤) = 𝐮s(k) + 𝛿𝐮(k) (25)

Here 𝛿𝐮(k) denotes a relatively “small” perturbation (positive or negative) around

the steady-state value of the input signal 𝐮(k). A response of Eq. (18) is “slightly”

changed due to (25) and will be denoted as

𝐱(k) = 𝐱s(k) + 𝛿x(k), 𝐲(k) = 𝐲s + 𝛿𝐲(k). (26)

The expressions 𝛿𝐱(k) and 𝛿y(k) represent induced “small” changes around the nom-

inal solutions 𝐱s(k) and ys(k) caused by a change of (25). Then by (18)

GL
k0

𝛥
(𝜈)
k 𝐱(k) =GL

k0
𝛥
(𝜈)
k

[
𝐱s(k) + 𝛿𝐱(k)

]
=GL
k0

𝛥
(𝜈)
k 𝐱s(k) +GL

k0
𝛥
(𝜈)
k 𝛿𝐱(k) (27)

and

GL
k0

𝛥
(𝜈)
k 𝐱(k) = 𝐟

[
𝐱s(k) + 𝛿𝐱(k),𝐮s(k) + 𝛿𝐮(k)

]
, (28)

𝐲s(k) + 𝛿𝐲(k) = 𝐠
[
𝐱s(k) + 𝛿𝐱(k),𝐮s(k) + 𝛿𝐮(k)

]
. (29)

Making a Taylor expansion of 𝐟
[
𝐱s(k) + 𝛿𝐱(k),𝐮s(k) + 𝛿𝐮(k), k

]
one obtains

𝐟
[
𝐱s(k) + 𝛿𝐱(k),𝐮s(k) + 𝛿𝐮(k)

]
= 𝐟

[
𝐱s(k),𝐮s(k), k

]

+ 𝐉𝐱
[
𝐱s(k),𝐮s(k), k

]
𝛿𝐱(k) + 𝐉𝐮

[
𝐱s(k),𝐮s(k), k

]
𝛿𝐮(k) + 𝐡(k) (30)
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where 𝐉𝐱
[
𝐱s(k),𝐮s(k), k

]
and 𝐉𝐮

[
𝐱s(k),𝐮s(k), k

]
are the Jacobian matrices of the

function 𝐟 [𝐱(k),𝐮(k)] with respect to 𝐱(k) and 𝐮(k), respectively, that is,

𝐉𝐱
[
𝐱s(k),𝐮s(k), k

]
= 𝐉𝐱 [𝐱(k),𝐮(k), k]||𝐱(k) = 𝐱s(k)

𝐮(k) = 𝐮s(k)

= 𝐀(k) =

⎡
⎢
⎢
⎢
⎢
⎣

a11(k) a12(k) … a1,np(k)
a21(k) a22(k) … a2,np(k)
⋮ ⋮ ⋮

anp,1(k) anp,2(k) … anp,np(k)

⎤
⎥
⎥
⎥
⎥
⎦

(31)

where

aij(k) =
𝜕fi [𝐱(k),𝐮(k), k]

𝜕xj

|
|
|
|
|
𝐱(k) = 𝐱s(k)
𝐮(k) = 𝐮s(k)

, (32)

and

𝐉𝐮
[
𝐱s(k),𝐮s(k), k

]
= 𝐉𝐮 [𝐱(k),𝐮(k), k]||𝐱(k) = 𝐱s(k)

𝐮(k) = 𝐮s(k)

= 𝐁(k) =

⎡
⎢
⎢
⎢
⎢
⎣

b11(k) b12(k) … b1,mq
(k)

b21(k) b22(k) … b2,mq
(k)

⋮ ⋮ ⋮
bnp,1(k) bnp,2(k) … bnp,mq

(k)

⎤
⎥
⎥
⎥
⎥
⎦

(33)

where

bij(k) =
𝜕fi [𝐱(k),𝐮(k), k]

𝜕uj

|
|
|
|
|
𝐱(k) = 𝐱s(k)
𝐮(k) = 𝐮s(k)

, (34)

The term 𝐡(k) is an expression that is supposed “very small” with respect to 𝛿𝐱(k)
and 𝛿𝐱(k). Neglecting 𝐡(k) and substituting (30), (28) into (23) yields

GL
k0

𝛥
(𝜈)
k 𝛿𝐱(k) = 𝐀(k)𝛿𝐱(k) + 𝐁(k)𝛿𝐮(k), (35)

Analogous procedure performed on (24) gives

𝛿𝐲(k) = 𝐂(k)𝛿𝐱(k) + 𝐃(k)𝛿𝐮(k), (36)
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with

cij(k) =
𝜕gi [𝐱(k),𝐮(k), k]

𝜕xj

|
|
|
|
|
𝐱(k) = 𝐱s(k)
𝐮(k) = 𝐮s(k)

,

dij(k) =
𝜕fi [𝐱(k),𝐮(k), k]

𝜕uj

|
|
|
|
|
𝐱(k) = 𝐱s(k)
𝐮(k) = 𝐮s(k)

. (37)

4 Numerical Example

Consider the non-linear time-invariant discretized Verhulst’s equation [4]

y(k′ + 1) = (1 − r)y(k′) − ry2(k′). (38)

This equation models the population restricted growth. The quantity r is called the

growth rate [2]. Substituting k = k′ − 1 on gets

y(k) = (1 − r)y(k − 1) − ry2(k − 1). (39)

and after elementary transformations one obtains

y(k) − y(k − 1) =GL
k0

𝛥
(1)
k y(k) = −ry(k − 1)

[
1 + y(k − 1)

]
. (40)

This is the first-order homogenous non-linear DE. To find its unique solution one

should have an initial state (the initial population) y−1. The initial conditions [5]

should be recounted to the discrete-time equation. The growth modeling adequacy

can be improved by admitting FO 𝜈 ∈ [𝜈min, 𝜈max], 𝜈min < 1, 𝜈max > 1, rmin, rmax > 0
and time-varying growth rate r(k) ∈ [rmin, rmax]. This lead to the FODE

GL
k0

𝛥
(𝜈)
k y(k) = −r(k)y(k − 1)

[
1 + y(k − 1)

]
. (41)

4.1 Non-linear Time-Invariant FODE of the Restricted
Growth

In further investigations one assumes initial time k0 = 0. First, one validates the sim-

ulation tools by simulating the solution of (41) for 𝜈 = 1, and r ∈ {0.1, 1.8, 2.5, 2.8}.

The related plots are given in Figs. 1, 2, 3, 4, respectively.
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Fig. 1 Solution of (41) for

𝜈 = 1, and r = 0.1 and

y−1 = −0.25
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Fig. 2 Solution of (41) for

𝜈 = 1, and r = 1.8 and

y−1 = −0.25
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Remark 1 The simulation results confirm the correctness of the software because

for r ∈ (0, 2] one gets a stable growth, for r ∈ (2, 2.57] there is a cyclic growth and

for r ∈ (2.57, 3] the growth is chaotic [2].

Now one shows the FO transient behavior of (41) for two FOs 𝜈 ∈ {0.9, 1.1}. The

orders are close to the 1. In Figs. 5 and 6 related plots are presented, respectively.
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Fig. 3 Solution of (41) for

𝜈 = 1, and r = 2.5 and

y−1 = −0.25
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Fig. 4 Solution of (41) for

𝜈 = 1, and r = 2.8 and

y−1 = −0.25
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Remark 2 According to the FOs adjacency the related plots are also close to the

integer order DE solution. One can realize very small overshoot for 𝜈 = 1.1 and

monotonic growth for 𝜈 = 0.9. Such transient behavior is in accordance with the FO

dynamics [6].

The FODE describing restricted growth have also stable oscillations and chaotic

properties. These are presented in Figs. 7 and 8, respectively.
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Fig. 5 Solution of (41) for

𝜈 = 0.9, and r = 0.1 and

y−1 = −0.25
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Fig. 6 Solution of (41) for

𝜈 = 1.1, and r = 0.1 and

y−1 = −0.25
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4.2 Linearized Time-Variant FODE of the Restricted Growth

By way of confirmation of the linarization procedure one performs necessary steps

on the FO restricted growth Eq. (41) to get the linear model. Related to (41) state-

space equations of a non-linear model are trivial

GL
k0

𝛥
(𝜈)
k

[
xn,1(k)

]
= −r(k)xn,1(k − 1)

[
1 + xn,1(k − 1)

]
, y(k) = xn,1(k), (42)
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Fig. 7 Solution of (41) for

𝜈 = 0.75, and r = 2.3 and

y−1 = −0.25
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Fig. 8 Solution of (41) for

𝜈 = 0.75, and r = 2.6 and

y−1 = −0.25
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with

f1
[
x1(k)

]
= −r(k)x1(k − 1)

[
1 + x1(k − 1)

]
. (43)

hence, according to (32)

a11(k) =
𝜕f1

[
x1(k)

]

𝜕x1(k)
= −r(k) − 2r(k)x1(k − 1) = −r(k)

[
1 + 2x1(k)

]
. (44)
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To evaluate matrix (31) one should calculate the nominal solution. For a given

initial state y1 = x1,−1 one gets a series representing a nominal solution values xs,1(k).
Hence the linearized model is as follows

GL
k0

𝛥
(𝜈)
k

[
𝛿xl,1(k)

]
=
[
−r(k) − 2r(k)xs,1(k − 1)

]
𝛿xl,1(k). (45)

This is linear time-variant state-space model. Numerical simulations effects of the

non-linear and linear approximation for r(k) = r = const are given in Figs. 9 and 10,

respectively.

Remark 3 Simulation results indicate that the non-linear system possessing stable

oscillations and chaotic response properties cannot be approximated by the linear

system, even by the time-variant one.

Fig. 9 Solution of (45) for

𝜈 = 0.75, and r = 0.1 and

y−1 = −0.25
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Fig. 10 Solution of (45) for

𝜈 = 0.75, and r = 0.9 and

y−1 = −0.25
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Fig. 11 Solution of (45) for

𝜈 = 0.75, and r = 0.1 and

y−1 = −0.25
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Fig. 12 Solution of (45) for

𝜈 = 0.75, and r = 0.8 and

y−1 = −0.25
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4.3 Non-linear Time-Variant FODE of the Restricted Growth

In practice, the growth rate r is not a constant. It is a time function r(k), so one can

simulate the response of the non-linear time-variant FODE. Assuming that r(k) =
r [1 + 𝛼 sin(𝛽k)] one performs the linearization procedure on the time variant FODE.

For 𝛼 = 1, 𝛽 = 𝜋

10 , y1 = 0.25 and two selected values r = 0.1 and r = 0.8 one

gets the non-linear and linearized solutions, which are presented in Figs. 11 and 12,

respectively.
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5 Final Conclusions

For the FODE one may apply the classical linearization procedure though the effects

are satisfactory only for selected parameter ranges. Linear model cannot cover typi-

cal non-linear system transient behavior as a statical nonlinearity or chaos. Keeping

in mind these limitations, however, the linearization procedure can be used for non-

linear systems characterized by monotonic responses. The model simplicity com-

pensates inaccuracies of the system response.
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The Z-Transform Method for Sequential
Fractional Difference Operators

Ewa Girejko, Ewa Pawłuszewicz and Małgorzata Wyrwas

Abstract The linear Caputo–type sequential difference fractional-order systems are

discussed. The classical -transform method is used to show the general solutions

of sequential systems in the form
(
𝛥
𝛼

∗(𝛥
𝛼

∗x)
)
(n) + b

(
𝛥
𝛼

∗x
)
(n) + cx(n) = 0, where

b, c ∈ ℝ. In proofs we base on the formula for the image of the discrete Mittag-

Leffler function in the -transform.

1 Introduction

Roots of the fractional calculus are so old as the classical calculus is. The con-

cept of the classical derivative is traditionally associated to an integer, i.e. one can

differentiate a given function an integer times. The fact that Leibnitz was interested

in the possibility of differentiating the given function a real number of times gives

the beginning for the theory of fractional calculus. In the recent years the fractional

calculus is viewed as a more adequate and better tool in descriptions of real sys-

tem’ behaviors, see for example [1, 6, 7, 10, 13, 18]. In modeling the real phe-

nomena authors emphatically use generalizations of n-th order differences to their

fractional forms. For this goal the study problems concerning solving methods for

fractional differential and difference equations are important task. It can be noticed

that many solution methods have been transferred from differential and integral equa-

tions theory.

The goal of the present work is to develop and discuss an approach to the solution

of sequential difference equations with constant coefficients of a fractional orders.

The idea of sequential fractional order differentiation came from [11, 17]. During
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last years the solutions for a class of sequential differential equations of fractional

order are under strong consideration, see for example [5, 8, 9] and the references

within. In [12] the method of approximation of this type of differential equation was

given. Due to our knowledge, the study of methods of solving sequential difference

equations of fractional order are still not enough developed.

On the basis of the classical theory of difference equations (see for example [3])

we investigate and discuss the existence and form of solutions for sequential differ-

ence systems with the Caputo-type fractional discrete operator. We assume that in the

given equation coefficients are constant. For this purpose the -transform method

is used. Some properties of -transform for Caputo-type fractional difference are

given in Sect. 2, more can be found in [16]. In Sect. 3 the solution of considered se-

quential equation is discussed. Once the solutions are delivered they can be used in

further research: in formulating conditions providing existence of viable solutions to

difference equations, also based on discretization of systems with continuous time.

2 Preliminaries

The necessary definitions and technical propositions that are used in the sequel of

the paper are recalled.

Let a ∈ ℝ and ℕa ∶= {a, a+1, a+2,…}. For a function x ∶ ℕa → ℝ the forward

difference operator is defined as (see [4]) (𝛥x)(t) = x(t +1) − x(t), where t ∈ ℕa and

(𝛥0x)(t) ∶= x(t). Let q ∈ ℕ0 and 𝛥
q ∶= 𝛥 ◦ ⋯ ◦𝛥 is q-fold application of operator

𝛥. Then

(𝛥qx)(t) =
q∑

k=0
(−1)q−k

(
q
k

)
x(t + k).

Let us introduce the family of binomial functions on ℤ parameterized by 𝜇 > 0
and given by the values:

𝜑̃𝜇
(n) ∶=

{(n+𝜇−1
n

)
, for n ∈ ℕ0

0, for n < 0.
(1)

Definition 1 For a function x ∶ ℕa → ℝ the fractional sum of order 𝛼 > 0 is

given by (
a𝛥

−𝛼x
)
(t) ∶=

(
𝜑̃
𝛼
∗ x

)
(s) ,

where t = a + s, x(s) ∶= x(a + s), s ∈ ℕ0 and “∗” denotes a convolution operator, i.e.

(
𝜑̃
𝛼
∗ x

)
(s) ∶=

s∑

k=0

(
s − k + 𝛼 − 1

s − k

)
x(k).

Additionally, we define
(

a𝛥
0x
)
(t) ∶= x(t).

http://dx.doi.org/10.1007/978-3-319-23039-9_2
http://dx.doi.org/10.1007/978-3-319-23039-9_3
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For a = 0 we will write shortly 𝛥
−𝛼

instead of 0𝛥
−𝛼

. Note that a𝛥
−𝛼x ∶ ℕa → ℝ.

Let us recall that the -transform of sequence {y(n)}n∈ℕ0
is a complex function

given by

Y(z) ∶= [y](z) =
∞∑

k=0
y(k)z−k

,

where z ∈ ℂ is a complex number for which the series
∑∞

k=0 y(k)z−k
converges

absolutely. Note that since
(k+𝛼−1

k

)
= (−1)k

(−𝛼
k

)
, then for |z| > 1 we have


[
𝜑̃
𝛼

]
(z) =

∞∑

k=0

(
k + 𝛼 − 1

k

)
z−k =

(
z

z − 1

)𝛼

. (2)

Proposition 1 ([16]) For t = a + s ∈ (ℤ)a let us define y(s) ∶=
(

a𝛥
−𝛼x

)
(t) and

x(s) = x(a + s). Then


[
y
]
(z) =

(
z

z − 1

)𝛼

X(z) , (3)

where X(z) ∶= 
[
x
]
(z).

The definition of the Caputo–type fractional h-difference operator can be found,

for example, in [2]. Here we use operators that do not change the domain of a func-

tion.

Definition 2 Let 𝛼 ∈ (q − 1, q], q ∈ ℕ1 and a ∈ ℝ. The Caputo–type fractional
difference operator a𝛥

𝛼
of order 𝛼 for a function x ∶ ℕa → ℝ is defined by

(
a𝛥

𝛼

∗x
)
(t) =

(
a𝛥

−(q−𝛼) (𝛥qx)
)
(t) , (4)

where t ∈ ℕa.

Moreover, for 𝛼 = q ∈ ℕ1 we have
(

a𝛥
q
∗x
)
(t) = (𝛥qx) (t). In the case a = 0

we write: 𝛥
𝛼

∗ ∶=0 𝛥
𝛼

∗ . Note that for 𝛼 ∈ (0, 1] the Caputo–type fractional difference

operator is as follows

(
a𝛥

𝛼

∗x
)
(t) =

(
a𝛥

−(1−𝛼) (𝛥x)
)
(t),

where t ∈ ℕa.

In general case we get the following result that is proven in [15].

Proposition 2 ([15]) For a ∈ ℝ, 𝛼 ∈ (q − 1, q], q ∈ ℕ1 let us define y(s) ∶=(
a𝛥

𝛼

∗x
)
(t), where t ∈ ℕa and t = a + s, s ∈ ℕ0. Then


[
y
]
(z) = zq

(
z

z − 1

)−𝛼
(

X(z) − z
z − 1

q−1∑

k=0
(z − 1)−k (

𝛥
kx
)
(a)

)

, (5)

where X(z) = [x](z) and x(s) ∶= x(a + s).
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From Proposition 2 it follows that for 𝛼 ∈ (0, 1] we get the following result:

Corollary 1 For a ∈ ℝ, 𝛼 ∈ (0, 1] let us define y(s) ∶=
(

a𝛥
𝛼

∗x
)
(t), where t ∈ ℕa

and t = a + s, s ∈ ℕ0. Then


[
y
]
(z) =

(
z

z − 1

)1−𝛼
((z − 1)X(z) − zx(a)) , (6)

where X(z) = [x](z) and x(s) ∶= x(a + s).

We restrict our consideration to sequential fractional operators with order 𝛼 ∈
(0, 1], so in this case q = 1. Applying the -transform to the composition of two

Caputo-type fractional operators with orders 𝛼, 𝛽 ∈ (0, 1] we get:

Proposition 3 For a ∈ ℝ, 𝛼, 𝛽 ∈ (0, 1] let us define w(s) ∶=
(

a𝛥
𝛽

∗
(

a𝛥
𝛼

∗x
))

(t),
where t ∈ ℕa and t = a + s, s ∈ ℕ0. Then

 [w] (z)=z2
(

z − 1
z

)𝛼+𝛽
X(z) − z

(
z − 1

z

)𝛽−1[
z
(

z − 1
z

)𝛼

x(a) +
(
𝛥
𝛼

∗x
)
(0)

]
,

where X(z) = [x](z) and x(s) ∶= x(a + s).

Proof By (6) we get

 [w] (z) = z
(

z − 1
z

)𝛽


[
𝛥
𝛼

∗x
]
(z) − z

(
z − 1

z

)𝛽−1 (
𝛥
𝛼

∗x
)
(0)

= z
(

z − 1
z

)𝛽
{

z
(

z − 1
z

)𝛼

X(z) − z
(

z − 1
z

)𝛼−1
x(a)

}

− z
(

z − 1
z

)𝛽−1 (
𝛥
𝛼

∗x
)
(0)

= z2
(

z − 1
z

)𝛼+𝛽
X(z) − z2

(
z − 1

z

)𝛽+𝛼−1
x(a)

− z
(

z − 1
z

)𝛽−1 (
𝛥
𝛼

∗x
)
(0).

Therefore the thesis holds.

Observe that for 𝛼 = 𝛽 = 1 we have
(
𝛥
𝛼

∗x
)
(0) = x(1) − x(0) and consequently,

 [w] (z) = (z − 1)2 X(z) − z2x(0) − zx(1) agrees with the transform of difference 𝛥
2

of x.
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Now, for q = 1 let us define the discrete Mittag-Leffler two-parameter function
(similarly as in [14]) as follows:

E(𝛼,𝛽)(𝜆, n) ∶=
∞∑

k=0
𝜆

k
𝜑̃k𝛼+𝛽(n − k) =

n∑

k=0
𝜆

k
𝜑̃k𝛼+𝛽(n − k), (7)

where 𝜑̃k𝛼+𝛽 is given by (1) and the second equality only claims that for n < k we

have values of 𝜑̃k𝛼+𝛽(n − k) = 0. In particular cases we have

E(𝛼,𝛼)(𝜆, n) =
∞∑

k=0
𝜆

k
𝜑̃k𝛼+𝛼(n − k) =

∞∑

k=0
𝜆

k
(

n − k + (k + 1)𝛼 − 1
n − k

)
, (8)

E(𝛼)(𝜆, n) ∶= E(𝛼,1)(𝜆, n) =
∞∑

k=0
𝜆

k
𝜑̃k𝛼+1(n − k) =

∞∑

k=0
𝜆

k
(

n − k + k𝛼
n − k

)
, (9)

E(𝛼,0)(𝜆, n) =
∞∑

k=0
𝜆

k
𝜑̃k𝛼(n − k) =

∞∑

k=0
𝜆

k
(

n − k + k𝛼 − 1
n − k

)
. (10)

Functions E(𝛼,𝛼), E(𝛼) and E(𝛼,0) are important in the solutions of sequential fractional

difference equations that are considered in the next section.

Based on (2), for family of functions 𝜑̃k𝛼+𝛽 we can state the following result for

discrete Mittag-Leffler function.

Proposition 4 ([14]) Let 𝛼 ∈ (0, 1] and 𝜈 = 𝛼 − 1. Then

1. E(𝛼,𝛽)(𝜆, 0) = 1.
2. For z such that |z| > 1 we have


[
E(𝛼,𝛽)(𝜆, ⋅)

]
(z) =

(
z

z − 1

)𝛽 (
1 − 𝜆

z

(
z

z − 1

)𝛼)−1
,

where |z| > 1 and |z − 1|𝛼|z|1−𝛼 > |𝜆|.

Observe that for 𝛼 ∈ (0, 1], by Corollary 1 and Proposition 4, we get

(
𝛥
𝛼

∗E(𝛼)(𝜆, ⋅)
)
(n) = 𝜆E(𝛼)(𝜆, n). (11)
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3 Solutions of Sequential Fractional Difference Equations
Derived by -transform method

Let us consider for 𝛼 ∈ (0, 1] the following sequential fractional difference equation:

(
𝛥
𝛼

∗(𝛥
𝛼

∗x)
)
(n) + b

(
𝛥
𝛼

∗x
)
(n) + cx(n) = 0 , (12)

where b, c ∈ ℝ.

Our goal is to find the function x ∶ ℕ0 → ℝ that is a solution to (12).

Let
(
𝛥
𝛼,𝛼

∗ x
)
∶=

(
𝛥
𝛼

∗(𝛥
𝛼

∗x)
)
. Then by (11) for x(n) = E(𝛼)(𝜆, n) we get

(𝛥𝛼

∗x)(n) = 𝜆E(𝛼)(𝜆, n)
(
𝛥
𝛼,𝛼

∗ x
)
(n) = 𝜆

2E(𝛼)(𝜆, n).

Hence the solution x(⋅) = E(𝛼)(𝜆, ⋅) of (12) that we search for satisfies the following

equality

𝜆
2E(𝛼)(𝜆, n) + b𝜆E(𝛼)(𝜆, n) + cE(𝛼)(𝜆, n) = 0. (13)

Let us assume that E(𝛼)(𝜆, n) ≠ 0. Then we get the following form of characteristic

equation for (12)

𝜆
2 + b𝜆 + c = 0. (14)

We will examine three cases for square roots of (14).

First, let b2 − 4c > 0, then solutions to (14) are 𝜆1 = −b−
√

b2−4c
2 , 𝜆2 =

−b+
√

b2−4c
2 ∈ ℝ and we get the general solution of (12) as follows

x(n) = C1E(𝛼)(𝜆1, n) + C2E(𝛼)(𝜆2, n) = C1x1(n) + C2x2(n).

Since 𝜆1 ≠ 𝜆2, the solutions x1(n) = E(𝛼)(𝜆1, n) and x2(n) = E(𝛼)(𝜆2, n) are

linearly independent.

Now, let b2 − 4c = 0. Then Eq. (12) can be rewritten as follows

[(
𝛥
𝛼

∗ − 𝜆
)2 x

]
(n) = 0 , (15)

where 𝜆 = − b
2 ∈ ℝ. By Corollary 1 we get


[
𝛥
𝛼,𝛼

∗ x
]
(z) = z

(
z − 1

z

)𝛼


[
𝛥
𝛼

∗x
]
(z) − z

(
z − 1

z

)𝛼−1
y(0)

= z
(

z − 1
z

)𝛼
{

z
(

z − 1
z

)𝛼

X(z) − z
(

z − 1
z

)𝛼−1
x(0)

}
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− z
(

z − 1
z

)𝛼−1
y(0)

= z2
(

z − 1
z

)2𝛼
X(z) − B1(z)

where y(0) ∶=
(
𝛥
𝛼

∗x
)
(0) and B1(z) = z2

(
z−1

z

)2𝛼−1
x(0) + z

(
z−1

z

)𝛼−1
y(0). More-

over, we have



[(
𝛥
𝛼

∗ − 𝜆
)2 x

]
(z) = 

[(
𝛥
𝛼,𝛼

∗ − 2𝜆𝛥𝛼

∗ + 𝜆
2) x

]
(z)

= z2
(

z − 1
z

)2𝛼
X(z) − B1(z) − 2𝜆z

(
z − 1

z

)𝛼

X(z)

+ 2𝜆z
(

z − 1
z

)𝛼−1
x(0) + 𝜆

2X(z).

After taking the -transform of both sides of (15) we get

z2
(

z − 1
z

)2𝛼 [
1 − 𝜆

z

(
z

z − 1

)𝛼]2
X(z) = B(z) ,

where

B(z) = B1(z) − 2𝜆z
(

z − 1
z

)𝛼−1
x(0)

= z2
(

z − 1
z

)2𝛼−1
x(0) − 2𝜆z

(
z − 1

z

)𝛼−1
x(0) + z

(
z − 1

z

)𝛼−1
y(0).

Consequently,

X(z) = 1
z2

(
z − 1

z

)−2𝛼 [
1 − 𝜆

z

(
z

z − 1

)𝛼]−2
B(z)

= z
z − 1

[
1 − 𝜆

z

(
z

z − 1

)𝛼]−1 [
1 − 𝜆

z

(
z

z − 1

)𝛼]−1
x(0)

− 2𝜆
z

(
z

z − 1

)[
1 − 𝜆

z

(
z

z − 1

)𝛼]−1
x(0)

(
z

z − 1

)𝛼 [
1 − 𝜆

z

(
z

z − 1

)𝛼]−1

+ 1
z

(
z

z − 1

)[
1 − 𝜆

z

(
z

z − 1

)𝛼]−1( z
z − 1

)𝛼 [
1 − 𝜆

z

(
z

z − 1

)𝛼]−1
y(0)
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and by Proposition 4 we get

x(n) = E(𝛼)(𝜆, n) ∗
[
E(𝛼,0)(𝜆, n)x(0) − 2𝜆E𝜌

(𝛼,𝛼)(𝜆, n)x(0) + E𝜌

(𝛼,𝛼)(𝜆, n)y(0)
]
,

where E𝜌

(𝛼,𝛼)(𝜆, n) ∶= E(𝛼,𝛼)(𝜆, n − 1). Therefore the general solution of (12) is as

follows:

x(n) = C1
(
E(𝛼)(𝜆, ⋅) ∗ E(𝛼,0)(𝜆, ⋅)

)
(n) + C2

(
E(𝛼)(𝜆, ⋅) ∗ E𝜌

(𝛼,𝛼)(𝜆, ⋅)
)
(n) ,

where 𝜆 = − b
2 .

Finally, let b2 −4c < 0. Then c > 0 and 𝜆1,2 = − b
2 ±

√
4c−b2
2 i. Hence |𝜆1,2| =

√
c.

Additionally, for 𝜆 = − b
2 +

√
4c−b2
2 i =

√
cei𝜁

we have

E(𝛼)(𝜆, n) ∶= E(𝛼)

(

−b
2
±

√
4c − b2
2

i, n

)

= E(𝛼)(|𝜆|ei𝜁
, n)

=
∞∑

k=0
(
√

c)keik𝜁
𝜑̃k𝛼+1(n − k)

=
∞∑

k=0
(
√

c)k cos(k𝜁 )𝜑̃k𝛼+1(n − k) + i
∞∑

k=0
(
√

c)k sin(k𝜁 )𝜑̃k𝛼+1(n − k)

Consequently, the general solution of (12) is as follows

x(n) = C1

∞∑

k=0
(
√

c)k cos(k𝜁 )𝜑̃k𝛼+1(n − k) + C2

∞∑

k=0
(
√

c)k sin(k𝜁 )𝜑̃k𝛼+1(n − k) ,

where 𝜁 = arg
(

−b+i
√
4c−b2
2

)
.

Remark 1 Observe that in the particular case when b = 0 we get the following

sequential fractional difference equation:

(
𝛥
𝛼

∗(𝛥
𝛼

∗x)
)
(n) + cx(n) = 0 , (16)

where c ∈ ℝ⧵{0}. Then the general solution of (16) for c < 0 has the following

form:

x(n) = C1E(𝛼)(−
√
−c, n) + C2E(𝛼)(

√
−c, n) = C1x1(n) + C2x2(n)
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and similarly as in the general case we get −
√
−c ≠

√
−c, the solutions x1(n) =

E(𝛼)(−
√
−c, n) and x2(n) = E(𝛼)(

√
−c, n) are linearly independent. In the case when

c > 0 we get that the general solution of (16) is:

x(n) = C1

∞∑

k=0
(
√

c)k cos(k𝜋
2
)𝜑̃k𝛼+1(n − k) + C2

∞∑

k=0
(
√

c)k sin(k𝜋
2
)𝜑̃k𝛼+1(n − k).

Now, let us discuss the case when 𝜆 = 0 is the root of (14). Then we have two

possibilities, namely b ≠ 0, c = 0 and b = c = 0

Remark 2 Let us observe that in the situation when b ≠ 0 and c = 0 we have the

following sequential fractional difference equation:

(
𝛥
𝛼

∗(𝛥
𝛼

∗x)
)
(n) + b

(
𝛥
𝛼

∗x
)
(n) = 0 , (17)

and its characteristic equation is of the form

𝜆
2 + b𝜆 = 0.

Note that x1(n) = const satisfies (17) because for all n ∈ ℕ0 we get (𝛥x1)(n) = 0 and

consequently,
(
𝛥
𝛼

∗x1
)
(n) = 0 and

(
𝛥
𝛼

∗(𝛥
𝛼

∗x)
)
(n) = 0. Hence the general solution to

Eq. (17) takes the following form

x(n) = C1 + C2E(𝛼)(−b, n) ,

what after applying formula (7) can be rewritten as

x(n) = C1 + C2

∞∑

k=0
(−b)k𝜑̃k𝛼+1(n − k).

Remark 3 Note that in the situation when b = c = 0 we have the following sequen-

tial fractional difference equation:

(
𝛥
𝛼

∗(𝛥
𝛼

∗x)
)
(n) = 0. (18)

After taking the -transform of both sides of (18) we get

z2
(

z − 1
z

)2𝛼
X(z) = z2

(
z − 1

z

)2𝛼−1
x(0) + z

(
z − 1

z

)𝛼−1
y(0) ,
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where y(0) ∶=
(
𝛥
𝛼

∗x
)
(0). Consequently,

X(z) = 1
z2

(
z − 1

z

)−2𝛼
[

z2
(

z − 1
z

)2𝛼−1
x(0) + z

(
z − 1

z

)𝛼−1
y(0)

]

= z
z − 1

x(0) + 1
z

(
z

z − 1

)𝛼+1
y(0)

and

x(n) = x(0) + 𝜑̃𝛼+1(n − 1)y(0).

Therefore the general solution of (18) is of the form:

x(n) = C1 + C2𝜑̃𝛼+1(n − 1).

4 Conclusions

The problem of finding solutions of the linear sequential difference fractional order

systems with Caputo–type operator was discussed. The obtained formulas for solu-

tion to the given problem extends the class of solutions of standard difference equa-

tions with forward time difference to the fractional case. To this aim the -transform

method was used.

This approach and results are the first step in the way on investigation on solutions

of s, s ≥ 2, linear sequential difference fractional order nonhomogeneous systems.

It is also a good starting point in formulating conditions providing existence of

viable solutions to difference equations, also based on discretization of systems with

continuous time.
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An Estimation of Accuracy of Charef
Approximation

Wojciech Mitkowski and Krzysztof Oprzędkiewicz

Abstract In the paper a new accuracy estimation method for Charef approximation
was presented. Charef approximation allows us to describe fractional-order systems
with the use of integer-order, proper transfer function. The accuracy of approxi-
mation can be estimated with the use of comparison step responses of plant and
Charef approximation. The step response of the plant was calculated with the use of
an accurate analytical formula and it can be interpreted as a standard. Approach
presented in the paper can be applied to effective tuning of Charef approximant for
given plant. The use of proposed method does not require to know a step response
of the modeled plant. The proposed methodology can be easily generalized to
another known approximations. Results are by simulations illustrated.

Keywords Fractional order transfer function ⋅ Charef approximation

1 An Introduction

Fractional order models are able to properly and accurate describe a number of
physical phenomena from area of electrotechnics, heat transfer, diffusion etc.
Fractional—order approach can be interpreted as generalization of known
integer-order models. Fractional order systems has been presented by many Authors
([2, 3, 7, 10]), an example of identification fractional order system can be found in
[4, 5] the proposition of generalization the Strejc transfer function model into
fractional area was given in [8].
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A modeling of fractional—order transfer function in MATLAB/SIMULINK
requires us to apply integer order, finite dimensional, proper approximations. An
important problem is to assign parameters of approximation and estimating its
accuracy. The most known approximations presented by Oustaloup or Charef (see
for example [1, 2, 9, 11, 12]) base onto frequency approach. This is caused by a
fact, that for fractional order systems the Bode magnitude plot can be drawn exactly
and its parameters can be applied to approximants calculation.

Additionally, for elementary fractional-order elements an analytical form of step
and impulse responses is known (see [11]). These responses can be applied as
reference to estimate a correctness of built approximant.

However models obtained with the use of Charef approximation not always are
fully satisfying. This is caused by the fact, that their accuracy is determined by
proper selecting maximal permissible error and order of approximation with respect
to considered, certain values of modeled transfer function.

The goal of this paper is to present a new, simple method of accuracy estimation
for Charef approximation. The presented method uses analytical formulas of step
response of fractional order system, proposed by authors cost functions and
numerical calculations done with the use of MATLAB. The approach shown in the
paper can be applied to effective selecting parameters of the Charef approximation
during modeling real plants, described with the use of fractional-order models.
Additionally it does not require the use a step response of modeled plant.

Particularly, in the paper the following problems will be presented:

• Transfer function of fractional order plant and analytical form of step response,
• The Charef approximation,
• Cost functions describing the accuracy of approximation,
• An example.

2 A Transfer Function of Fractional Order Plant

Let us consider a an elementary fractional—order inertial plant described with the
use of transfer function (1). This transfer function can be applied to modeling of
high-order inertial plants, for example heat plant described in [5, 6].

GαðsÞ= 1
Tαs+1ð Þα ð1Þ

In (1) Tα > 0 is a time constant, α ∈ (0;1) is a fractional order of the plant.
The analytical form of the step response ya(t) for plant described with the use of

(1) is described as follows (see [2, pp. 8, 9]):
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yaðtÞ=L− 1 1
s
GαðsÞ

� �
=

1
Tαð Þα ⋅

Γ α, t
Tα

� �
Γ αð Þ ð2Þ

where Γ(..) denotes incomplete and complete Gamma functions:

Γ α,
t
Tα

� �
=

Z t
Tα

0

e− xxα− 1dx ð3Þ

Γ αð Þ=
Z∞

0

e− xxα− 1dx ð4Þ

Let us assume, that the step response described by (2)–(4) is the accurate response.
This implies, that it can be applied as a standard to estimate the accuracy of
approximation.

3 The Charef Approximation

The Charef approximation allows us to approximate fractional order transfer
function, described by (1) with the use of integer order transfer function
Gchar(s) described as underneath (see [1]):

GcharðsÞ=
∏
N − 1

i=0
1+

s
zi

� �

∏
N

i=0
1+

s
pi

� � ð5Þ

In (5) N denotes order of approximation, zi and pi denote zeros and poles of
approximation. They can be calculated with the use of transfer function (1) pole pα
and fractional order α:

pα =
1
Tα

p0 = pα
ffiffiffi
b

p

pi = p0ðabÞi, i=1..N

zi = ap0ðabÞi i=1..N − 1

ð6Þ
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where:

a=10
Δ

10ð1− αÞ
b=10

Δ
10α

ð7Þ

In (7) Δ denotes a maximal permissible error of approximation, defined as the
maximal difference between Bode magnitude plots model and plant, expressed in
[dB].

The order N of Charef approximation is assigned to minimize the assumed,
maximal approximation error Δ (See [1]):

N =
log ωmax

p0

� �
logðabÞ

2
4

3
5+1 ð8Þ

In (8) ωmax denotes the pulsace, for which the maximal error is achieved. If the
value of N with respect to (8) is non-integer, it should be rounded to nearest integer.

Denote the step response of approximation (5) by ychar(t). It can be written as
underneath:

ycharðtÞ= L− 1 1
s
GcharðsÞ

� �
ð9Þ

The general form of the step response (9) is determined by poles and zeros of
transfer function Gchar(s) described by (6). They are real and different. This implies,
that the general form of (9) can be easily expressed as follows:

ycharðtÞ= k ⋅ 1ðtÞ+ ∑
N

i=1
cie− pit ð10Þ

In (10) k denotes the steady-state gain of the approximation, ci denote coefficients of
transfer function (5) factorization.

The step response (9) or (10) can be evaluated numerically with the use of
MATLAB/SIMULINK.

4 Cost Functions Describing the Accuracy
of Approximation

Let us assume, that the step response ya(t) described by (2)–(4) is the accurate
response. Next, ychar(t) is the step response of approximation, described by (9) and
(10). Then the approximation error e(t) can be defined as follows:
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eaðtÞ= yaðtÞ− ycharðtÞ ð11Þ

Furthermore, let us introduce the following cost functions, describing the accuracy
of approximation:

ImaxðΔ,NÞ= max
t

eaðtÞÞj j

I2ðΔ,NÞ=
Z∞

0

e2aðtÞdt
ð12Þ

In (12) ea(t) denotes the approximation error described by (11).
The both cost functions (12) for given plant (described by Tα and α) are func-

tions of approximation parameters: order N and maximal permissive error of
approximation Δ expressed in [dB]. The N order is associated to Δ by (8), but in a
number of situations it can be set independently. It can be expected, that increasing
N for constant Δ should increase an approximant quality, described by cost func-
tions (12). However, results of simulations point, that too high value of N can cause
bad conditioning of a model and consequently, make it useless.

The fastest method to check proper setting the approximation parameters N and
Δ is to calculate the both proposed cost functions (12). An example of proper
tuning a Charef approximant with the use of simulations will be shown in the next
section.

5 An Example

As an example let us consider the application of Charef approximation to modeling
the fractional-order transfer function described by (13):

GαðsÞ= 1
25s+1ð Þα ð13Þ

Values of both cost functions (12) for different Δ, N and α are given in Table 1. The
following values of model parameters were tested: Δ = 0.5[dB], 1.0[dB], N = 5, 10,
15, 25, α = 0.2, 0.5, 0.9.

Let ea(t) be an approximation error described by (11). Exemplary diagrams
ea(t) as a function of a time t for selected values of parameters: α, Δ, and N are
shown in Figs. 1, 2, 3, 4 and 5.

From Table 1 and Figs. 1, 2, 3, 4 and 5 we can conclude at once, that the good
approximant can be obtained with the use of lower orders N and the smaller
permissible error Δ requires higher value of order N to assure the good performance
of approximation.
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Table 1 Values of cost functions (12) for different α, Δ, and N

Δ [dB] N Fractional order α
0.2 0.5 0.9
Imax I2 Imax I2 Imax I2

1.0 5 0.1398 0.0651 0.1466 0.2550 0.0825 0.0854
10 0.1410 0.0659 0.1505 0.2683 0.0825 0.0854
15 0.1410 0.0659 0.1505 0.2684 0.5750 83.7787
25 0.1399 0.0602 0.1505 0.2684 NaN NaN

0.5 5 0.2599 0.0597 0.0952 0.0952 0.1662 0.4288
10 0.0810 0.0600 0.0904 0.1647 0.1662 0.4292
15 0.0816 0.0608 0.0933 0.1748 0.1662 0.4292
25 0.0816 0.0608 0.0936 0.1759 0.1662 0.4283
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approximation error

Fig. 1 Approximation error ea(t) described by (11) for: α = 0.2, Δ = 0.5[dB], and N = 5 (^),
N = 10(+), N = 15(−)
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Fig. 2 Approximation error ea(t) described by (11) for: α = 0.2, Δ = 1.0[dB], and N = 5 (^),
N = 10(+), N = 15(−)
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Fig. 3 Approximation error ea(t) described by (11) for: α = 0.5, Δ = 0.5[dB], and N = 5 (^),
N = 10(+), N = 15(−)
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Fig. 4 Approximation error ea(t) described by (11) for: α = 0.5, Δ = 1.0[dB], and N = 5 (^),
N = 10(+), N = 15(−)

0 10 20 30 40 50 60 70 80 90 100
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time [s]

approximation error

Fig. 5 Approximation error ea(t) described by (11) for: α = 0.9, Δ = 0.5[dB], and N = 5 (^),
N = 10(+), N = 15(−)
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6 Final Conclusions

The final conclusions for the paper can be formulated as follows:

• In the paper the analysis of accuracy the Charef approximation as a function of
its parameters (order N and maximal permissive error Δ) was presented. Dif-
ferent fractional orders were also tested.

• The accuracy of Charef approximation is stronger dependent on maximal per-
missive error Δ, than approximation order, described by N.

• The low order of approximation N, equal 5 assures the good accuracy of
approximation. The improving of this order does not improve this accuracy.

• Too high order of approximation causes numerical errors (see Table 1—results
described as “Nan”—this result is returned by MATLAB if the result is not
mathematically defined, for example 0/0). Causes of this phenomenon are not
known, but they were observed many times during modeling of fractional order
systems at MATLAB/SIMULNK platform.

• Decreasing of maximal permissive error Δ improves the accuracy of approxi-
mation in the sense of considered cost functions.

• Method presented in the paper can be applied to effective tuning of Charef
approximant for given plant, described by time constant and fractional order.
Notice, that the use of the proposed method does not require to know the step
response of a modeled plant.

• The approach presented in this paper can be applied to another typical
approximations, both continuous (ORA approximation) and discrete (PSE and
CFE approximations) used to modeling fractional order elements. This problem
is going to be considered by authors.

• As an another area of further investigations will be formulating analytical
conditions directly associating the cost functions (12) with plant parameters Tα
and α and approximation parameters N and Δ.
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A New Method for the Integer Order
Approximation of Fractional Order Models

Wieslaw Krajewski and Umberto Viaro

Abstract This paper is concerned with the finite–dimensional approximation of a

fractional–order system represented in state–space form. To this purpose, resort is

made to the Oustaloup method for approximating a fractional–order integrator by a

rational filter. The dimension of the resulting integer–order model can be reduced

using an efficient algorithm for the minimization of the L2 norm of a weighted equa-

tion error. Two numerical examples are worked out to show how the desired approx-

imation accuracy can be ensured.

Keywords Fractional–order models ⋅Approximation ⋅Oustaloup method ⋅Model

reduction ⋅ Equation error

1 Introduction

Non–integer order systems have been recently considered with increasing attention

in the control literature because many plants can be described more satisfactorily by

models of this kind [2, 8, 9, 13]. However, such systems are infinite–dimensional

and their transfer function is irrational. Therefore, ad hoc methods and algorithms

are needed to simulate their behaviour. Since the approaches based on the numerical

solution of fractional differential equations are, in general, computationally hard,

most techniques resort to the approximation, over suitably–defined frequency ranges,

of these systems by means of integer–order models (see, e.g., [5, 12, 14]).

This paper considers a general (not necessarily commensurate) fractional–order

system given in the state–space form. By applying the integer–order approximation
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of the fractional integrator operator 1∕s𝛼 (𝛼 ∈ ℝ+) proposed in [14], a finite–

dimensional state–space model with block companion state matrix is obtained. The

sparsity of this matrix simplifies simulations. However, since the order of this model

tends to be high, it has been suggested to approximate it using a method developed

for finite–dimensional systems. For example, the model reduction method based on

the Singular Value Decomposition has been used in [7] and the method based on

the minimization of the unweighted L2 norm of the impulse–response error has been

used in [17]. Recently, the present authors have suggested to apply the iterative–

interpolation algorithm for L2 model reduction presented in [4]. In this paper, to

reduce the dimensionality of the integer–order model, the more efficient weighted

equation–error approach [3] is applied instead.

The rest of the paper is organized as follows. Section 2 briefly presents the formal

description of non–integer order linear time–invariant (LTI) systems. Some recent

approaches to the rational approximation of fractional operators and to model simpli-

fication are outlined and discussed in Sect. 3. The suggested approximation method is

presented in Sect. 4. Two meaningful examples taken from the literature are worked

out in Sect. 5 to show the performance of the suggested approximation. Some con-

cluding remarks are drawn in Sect. 6.

2 Non–Integer Order Linear Systems Recap

Fractional–order calculus is a generalization of integer–order differentiation and

integration. Many definitions of fractional–order differentiation and integration oper-

ators have been proposed. Especially successful have been those of Grünwald–

Letnikov, Riemann–Liouville and Caputo [11]. The last one is most commonly used

in engineering applications.

The Laplace transform of the fractional Caputo derivative D𝛼x(t) is

L {D𝛼x(t)} = s𝛼L {x(t)} −
[𝛼]−1∑

i=0
s𝛼−i−1 d

ix
dti

(0), (1)

where [𝛼] denotes the integer part of 𝛼.

Consider a scalar
1

LTI fractional–order system described by the differential equation

y(t) +
n∑

i=1
aiD𝛼i y(t) =

m∑

i=1
biD𝛽i u(t), (2)

where ai, bi ∈ ℝ, D𝜆 = d𝜆

dt𝜆
, 𝛼i, 𝛽i ∈ ℝ+.

1
This assumption is made to simplify the exposition. The case of MIMO systems can be treated in

a similar way.
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By applying (1)–(2) and assuming zero initial conditions, the system transfer

function turns out to be

G(s) = b(s)
a(s)

=
∑m

i=1 bis
𝛽i

1 +
∑n

i=1 ais𝛼i
. (3)

If all fractional orders are multiples of the same real number 𝛼 (which qualifies the

system as a commensurate fractional–order system), (3) can be written as

G(s) =
∑m

i=1 bi(s
𝛼)i

1 +
∑n

i=1 ai(s𝛼)i
. (4)

The state–space model corresponding to (3) is

D(𝛼)(x)(t) = Ax(t) + bu(t), (5)

y(t) = cx(t) + du(t), (6)

where

D(𝛼)(x) =
[

D𝛼1x1,D𝛼2x2,… ,D𝛼nxn

]T

and A ∈ ℝn×n
, b ∈ ℝn×1

, c ∈ ℝ1×n
.

In the commensurate case, Eqs. (5) and (6) become

D𝛼(x)(t) = Ax(t) + bu(t), (7)

y(t) = cx(t) + du(t), (8)

where

D𝛼(x) =
[

D𝛼x1,D𝛼x2,… ,D𝛼xn

]T
.

3 Fractional Order Model Simplification

The analysis of non–integer order models is made difficult by the irrational nature

of their transfer function and by the infinite dimensionality of their state–space rep-

resentations. Therefore, a number of methods have been proposed to simplify such

models. Two alternative kinds of methods can be used in this regard:

1. the methods leading to a simpler model hat is still described by an irrational

transfer function or an infinite–dimensional state–space representation,

2. the methods that approximate the non–integer order model by means of a finite

dimensional one.
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The first group of methods is useful for commensurate systems like (4): see, for

example, [16, 18]. Indeed, in this case, by setting s𝛼 = w, a transfer function that is

rational with respect to w is obtained:

Ĝ(w) =
∑m

i=1 biw
i

1 +
∑n

i=1 aiwi
(9)

to which any order reduction method can then be applied. However, this approach

does not guarantee the stability of the resulting model. An even more serious draw-

back is that this model may not be truly simpler than the original one. To show this,

consider the fractional system put forth in [15] whose transfer function is

G(s) = s1.56 + 4
s3.46 + 10s2.69 + 20s1.56 + 4

. (10)

Since 𝛼 = 1∕100, the rational transfer function (9) corresponding to (10) is of order

346. Even if its order could be reduced to 10, the denominator of this reduced transfer

function will consists of 11 terms, whereas the denominator in (10) consists of only

4 terms. Hence the above approach can be successful when almost all coefficients ai
in (4) or in (9) are non–zero, as in the following example considered in [16, 18]:

G(s) = (s0.8 + 4)(s1.6 + 2s0.8 + 4)(s1.6 + 3s0.8 + 1)
(s0.8 + 1)(s0.8 + 3)(s1.6 − 2s0.8 + 37)(s1.6 + 4s0.8 + 8)

. (11)

The methods of the second type are usually based on the rational approximation

of the operator s𝛼 . Among the various approaches of this kind (see, e.g., [5, 9]),

the most popular is almost certainly the one due to Oustaloup [10] by which the

fractional differentiator operator s𝛼 , 0 ≤ 𝛼 ≤ 1, is replaced by a rational filter 𝛼(s)
whose zeros and poles are distributed over a frequency band [𝜔m, 𝜔M] centred at

𝜔u =
√
𝜔m 𝜔M . (12)

Precisely, the approximating filter is formed by the cascade of 2N + 1 first–order

cells:

𝛼(s) = K
𝛼

N∏

k=−N

1 + s
𝜔

′
k

1 + s
𝜔k

, (13)

where 𝜔

′

k and 𝜔k are computed recursively according to

𝜔

′

0 = 𝛿
−1

2𝜔u, 𝜔0 = 𝛿

1
2𝜔u,
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𝜔

′

k+1

𝜔

′
k

=
𝜔k+1
𝜔k

= 𝛿 𝜂 > 1,

𝜔k

𝜔

′
k

= 𝛿 > 0,
𝜔

′

k+1
𝜔k

= 𝜂 > 0,

𝜔

′

−N = 𝜂

1
2𝜔m, 𝜔

′

N = 𝜂
−1

2𝜔M ,

with [12]

𝛿 =
(
𝜔M
𝜔m

) 𝛼

2N+1
, 𝜂 =

(
𝜔M
𝜔m

) 1−𝛼
2N+1

.

The gain K
𝛼

is chosen so as to ensure that 𝛼(s) has the same magnitude as s𝛼 at 𝜔u.

The number of filter cells is clearly related to the goodness of the approximation.

The fractional–order integrator operator 1∕s𝛼 can be approximated in a way con-

sistent with that adopted for the differentiator operator. Precisely, the approximation

of the fractional integrator operator can be chosen [14] as

𝛼(s) =
K
𝛼

s

N∏

k=−N

1 + s
𝜔

′
k

1 + s
𝜔k

, (14)

which behaves (almost) like 1∕s𝛼 in an interval [𝜔m, 𝜔M].
Functions 𝛼(s) and 𝛼(s) allow us to find rational models of practically any

fractional system. However, the direct application of these operators often leads to

high–dimensional models. Consider again the fractional transfer function (10). By

setting 𝜔m = 10−3, 𝜔M = 103, N = 10, and applying (13) to s0.56, s0.46 and s0.69,

the order of the integer–order approximating transfer function turns out to be 87.

Also, high–order transfer–function models tend to be ill–conditioned: for exam-

ple, the ratio of the largest to the smallest values of the transfer function coefficients

obtained according to the above procedure may be even higher than 1080. Therefore,

numerical difficulties are encountered with almost all order reduction algorithms.

These difficulties may be avoided if LTI state–space models (of both fractional and

integer order) are considered. Examples of such an approach can be found in [4, 6,

7, 14, 15, 18]. The integer order approximation of the non integer order model (5)–

(6) obtained according to the procedure in [4] is briefly outlined next. For details

see [4].

Consider the state equations (5) and let the fractional–order integrators 1∕s𝛼k be

approximated according to (14) as
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𝛾k (s) =
∑m

j=0 fk,js
j

s
∑m

j=0 gk,jsj
, (15)

where m = 2N + 1. Then, define the matrices

A0 = −diag{f1,0, f2,0,… , f𝓁,0}A,

Ak = diag{g1,k−1, g2,k−1,… , g𝓁,k−1} − diag{f1,k, f2,k,… , f𝓁,k}A,

for k = 1,… ,m, and

Bk = diag{f1,k, f2,k,… , f𝓁,k} b,

for k = 0,… ,m. The following state–space integer order model approximating (5)–

(6) is obtained:

̇x̂(t) = Âx̂(t) + B̂u(t), (16)

ŷ(t) = Ĉx̂(t) + du(t), (17)

where x̂ ∈ ℝ(2N+2)𝓁
, and matrices Ā ∈ ℝ(2N+2)𝓁×(2N+2)𝓁

, B̄ ∈ ℝ(2N+2)𝓁×1
and

C̄ ∈ ℝ1×(2N+2)𝓁
are given by

Â =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 … 0 −A0
I 0 … 0 −A1
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 0 −Am−1
0 0 … I −Am

⎤
⎥
⎥
⎥
⎥
⎦

, B̂ =

⎡
⎢
⎢
⎢
⎢
⎣

B0
B1
⋮

Bm−1
Bm

⎤
⎥
⎥
⎥
⎥
⎦

, Ĉ =
[
0 0 … 0 c

]
, (18)

with c and d as in the original representation (5).

4 Model Reduction

The only way to ensure a more accurate integer–order approximation of a given

fractional–order system is to increase the value of N. This, however, leads to high–

dimensional models that require the design of complex and expensive controllers.

To overcome this problem, resort can be made to the following two–step procedure.

First, a high–dimensional integer–order model corresponding to a large value of N
is determined, thus ensuring the desired accuracy. Then, a reduced–order model is

found from this high–order model by applying a suitable reduction algorithm.

The methods suggested in the literature to find L2-optimal reduced–order models

red (see, e.g., [4, 17]) are difficult to implement or depend crucially on the initial con-

ditions. To avoid these difficulties, resort can be made to a slightly different approach

that refers to the L2 norm of the so–called equation error [3].
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Let the triple (Ar,Br,Cr), where Ar ∈ ℝq×q
, Br ∈ ℝq×1

, Cr ∈ ℝ1×q
, represent

the low order model. The aforementioned procedure involves the determination of

two projection matrices Lr and Tr such that

Ar = LrÂTr, Br = LrB̂, Cr = ĈTr. (19)

Next, define

[−k∶q−k−1] ≐
⎡
⎢
⎢
⎢
⎢
⎢
⎣

ĈÂ−k

⋮
Ĉ
⋮

ĈÂq−k−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (20)

and assume that Wc is the controllability Gramian, which is the solution of the

Lyapunov equation:

ÂWc +WcÂT + B̂B̂T = 0 . (21)

The projection matrices in (19) may be determined in such a way that LTr spans

the range of T
[−k∶q−k−1] and Tr = WcLTr (LrWcLTr )

−1
. It can be shown [3] that, in this

way, model (Ar,Br,Cr) retains:

(i) the k time moments ĈÂ−iB̂, i = 1,… , k,
(ii) the q − k − 1 Markov parameters ĈÂiB̂, i = 0,… , q − k − 1,

(iii) the k low–frequency power moments ĈÂ−iWc(ÂT )−iĈT
, i = 1,… , k, and

(iv) the q−k−1 high–frequency power moments ĈÂiWc(ÂT )iĈT
, i = 1,… , q−k−1.

Matrix LTr can conveniently be determined using the Arnoldi algorithm, which

allows to construct an orthonormal basis for the Krylov space (F,X, n) = Im

[X,FX,… ,Fn−1X] generated by matrices F and X. In the present context, the

columns of LTr are determined so as to form an orthonormal basis for the Krylov

space (AT
, (CA−k)T , q).

The accuracy of the proposed approximation strongly depends on the selection

of parameters N, 𝜔m, 𝜔M and on the order reduction method used in the second

step. It has been proved [12] that for N sufficiently large the frequency responses

of 𝛼(s), 𝛼(s) tend to the ideal ones in the range between 𝜔m and 𝜔M . The order

reduction method used in the second step of the suggested procedure ensures that the

L2 norm of the difference between left and right hand sides of the input–output high

order model is minimal when the original response is replaced by the response of the

reduced model, which qualifies the method as an equation error method [3]. More-

over, as already observed, this method guarantees that a number of first–order and

second–order information indices (e.g., Markov parameters and power moments) are

retained by the reduced–order model.
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5 Examples

In the following, the advantages of the procedure proposed in Sect. 4 are demon-

strated by means of two examples taken from [15, 16, 18]. The step responses as well

as frequency responses (Bode plots) of the original non–integer order model and its

low order approximation are compared to show the desired accuracy is ensured. The

same examples have been considered in [4] where the L2–optimal model reduction

method is used.

Example 1 Consider the system given in the frequency domain by the transfer func-

tion (10). Its state–space equations are

⎡
⎢
⎢
⎣

D1.56x1(t)
D1.13x2(t)
D0.77x3(t)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0 1 0
0 0 1
−4 −20 −10

⎤
⎥
⎥
⎦

x(t) +
⎡
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎦

u(t), (22)

y(t) =
[
4 1 0

]
x(t). (23)

Choosing N = 10, 𝜔m = 10−3 and 𝜔M = 103, the procedure outlined in Sect. 3 leads

to a 66th order model. Next, this model has been reduced to a 5th order one by means

of the procedure outlined in Sect. 4 with k = 2, so that 2 time moments and low–
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1.5
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A
m
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de

Fig. 1 Step responses for the original model (22)–(23) (solid line) and its 5–th order approximation

(dashed line) with k = 2
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Fig. 2 Comparison of the Bode plots for the original model (22)–(23) (solid line) and its 5–th

order approximation (dashed line) with k = 2

frequency power moments as well as three Markov parameters and high–frequency

power moments are retained.

The step response of the 5th order model is compared in Fig. 1 with the original

step response computed according to the Matlab code described in [1] whereas the

Bode plots are compared in Fig. 2. Since these responses practically coincide, the

5th order model can safely be used for controller design. The step response and Bode

plots for the high order model are almost exactly equal to those of the original non–

integer order model and, therefore, are not shown.

Example 2 The suggested approximation procedure has also been applied to the

state–space model:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D0.8x1(t)
D0.8x2(t)
D0.8x3(t)
D0.8x4(t)
D0.8x5(t)
D0.8x6(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−6 −6 −4.4688 −7.3047 −6.1719 −3.4688
8 0 0 0 0 0
0 8 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x(t)

+
[
2 0 0 0 0 0

]T u(t), (24)

y(t) =
[
0.5 0.5625 0.2422 0.2266 0.1172 0.0313

]
x(t), (25)
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corresponding to the transfer function (11). Choosing 𝜔m = 10−3, 𝜔M = 1000 and

N = 10 leads to a 132nd order model. Next, this model has been reduced to a 7–th

order one by means of the procedure outlined in Sect. 4 with k = 2, so that 2 time

moments and low–frequency power moments as well as 7 Markov parameters and

high–frequency power moments are retained.

The step response of the 7th order model is compared in Fig. 3 with the original

step response computed according to the Matlab code described in [1]. The Bode

plots are compared in Fig. 4. The responses practically coincide, so that the 7th order

model can be used safely for controller design. The step response and Bode plots for

the high order model are practically equal to those obtained for the original non–

integer order model and are not shown.

6 Conclusions

An efficient and easily implementable procedure to find integer–order models approx-

imating a fractional order system represented in the state-space form has been pre-

sented. It consists of two stages. First, a high order model whose state matrix exhibits

a sparse block–companion structure is determined. Next, an equation error method is

adopted to find a reduced model that retains a number of Markov parameters and time

moments as well as some low– and high–frequency power moments of the integer–

order model obtained in the first step. Simulations have shown that the procedure

leads to approximating models whose responses match well those of the original

system.
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Stability Properties of Discrete
Time-Domain Oustaloup Approximation

Jerzy Baranowski, Waldemar Bauer and Marta Zagórowska

Abstract The paper presents an analysis of discrete time domain realization of

Oustaloup approximation. The scheme for realization is presented along with method

of implementation of discretization formulas. Discussion for need for such realiza-

tion is also presented. Finally the stability analysis is given, considering influences

of sampling frequency, order and bandwidth. Analysis is illustrated with behavior of

spectral radius of the discretized system.

1 Introduction

Non-integer (fractional) order systems are becoming a staple of modern control the-

ory applications. They are very attractive for possible application allowing design of

controllers with high robustness and great design flexibility. Unfortunately there are

certain problems with efficient realization of these controllers. Non-integer order

controllers cannot be realized directly with use of non-integer differentiators and

integrators because of infinite memory requirements. That is why implementation

needs efficient approximation. The standard approach is to use method by Oustaloup,

which relies on approximating the non-integer order system in the frequency domain

for the selected band. It replaces the non-integer order system of order 𝛼 with a one

of high integer order N, with accuracy increasing with rising N. Unfortunately both

increasing the order of approximation and frequency band leads to transfer func-

tions that cannot be practically realized in digital environment, because of stability

problems [21].
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The goal of this paper is to develop a new method of using the Oustaloup approx-

imation. Our method is based in the time domain in order to avoid the problems with

realization, especially to preserve the stability. The results are continuation of author

earlier research [2]

General results concerning theory of non-integer order systems can be found in

[8, 13, 22]. Oustaloup method was presented in [18] and is analyzed among the oth-

ers in [17, 19]. This approximation can be efficiently used in simulations [6, 7, 10]

and with appropriate care experiments [9]. Its sensitivity and stability problems dur-

ing discretization were discussed in [21]. Different methods based on definitions of

non-integer order also exhibit sensitivity, especially towards quantisation [20]. Dif-

ferent method of approximation is based on Laguerre functions and does not poses

this sensitivity [1, 4, 25] however it is much more adequate for filters than for the

controllers.

Other method of approximation of non-integer order system in time domain were

described in [15, 24] and [23]. In [15, 24] the approximation arising from so called

‘distributed’ frequency model was considered. In that case a numerical integration of

arising improper integral is realized on a logarithmically spaced grid. This results in

formulas for Oustaloup approximation. In considered papers transfer function real-

ization is based on simple fractions transformation of product of first order rational

transfer functions into a sum. This approach however is very sensitive numerically,

significantly impacting the frequency response of the system (however stability is

kept). In [23] the Oustaloup transfer function is realized with Frobenius matrix form.

This approach does not address the problems with rounding errors of coefficients.

The approach presented in this paper does not exhibit sensitivity to discretization.

Moreover it allows approximations of very high order and very large bands without

any instability.

The rest of the paper is organized as follows. The classical method of Oustaloup is

presented with brief discussion of its properties. Then typical discretization schemes

are discussed with justification of their shortcommings. Then the method of time

domain realization is presented and its merits are discussed. Two schemes allowing

stable discretization are presented. Stability of the approximation is analyzed on an

example of a non-integer order differentiator analyzing the influence of sampling

period, approximation order and approximation bandwidth. Finally the limits of the

method are discussed and conclusions are drawn.

2 Oustaloup Method

Oustaloup filter approximation to a fractional-order differentiatorG(s) = s𝛼 is widely

used in applications [17]. An Oustaloup filter can be designed as

Gt(s) = K
N∏

i=1

s + 𝜔
′
i

s + 𝜔i
(1)
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where:

𝜔
′
i = 𝜔b𝜔

(2i−1−𝛼)∕N
u

𝜔i = 𝜔b𝜔
(2i−1+𝛼)∕N
u

K = 𝜔
𝛼

h

𝜔u =

√

𝜔h

𝜔b

(2)

Approximation is designed for frequencies 𝜔 ∈ [𝜔b, 𝜔h] and N is the order of the

approximation. As it can be seen its representation takes form of a product of a series

of stable first order linear systems. As one can observe choosing a wide band of

approximation results in large 𝜔u and high order N result in spacing of poles spac-

ing from close to −𝜔h to those very close to −𝜔b. This spacing is logarithmic with

a grouping near −𝜔b and causes problems in discretization. Wide band of approx-

imation is on other hand desirable, because approximation behaves the best in the

interior of the interval and not at its boundary, so certain margins need to be kept.

3 Discretization of Transfer Function

In applications, especially when using Matlab/Simulink environment for real time

control two methods of implementing continuous time controllers are established:

1. Use them as continuous blocks in simulink, then use a fixed step explicit solver

(for example RK4) to evaluate blocks in real time.

2. Create discrete transfer functions using some discretization scheme—usually

Tustin because it should preserve stability.

The problem with first approach, that is using explicit solvers, for Oustaloup filters

comes from the fastest pole of the transfer function. If the band of approximation is

wide, and includes high frequencies this pole can be located very far to the right. It

can be observed [12] that Runge-Kutta type algorithms preserve stability of linear

differential equation for such eigenvalues 𝜆 and discretization step T that stability

function of the algorithmR(T𝜆) is less than one. For classical Runge-Kutta algorithm

the stability function is

R(z) = 1 + z + 1
2
z2 + 1

6
z3 + 1

24
z4 (3)

That means, that for real 𝜆, T𝜆 must belong to interval (−2.785293..., 0). In con-

sidered case and wide bands the sampling frequency must be relatively close to the

upper end of the approximation band, which often cannot be practically realized

(usually for PC controlled plants the limit is 1 KHz).
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Problems with the seconds approach come from different reasons. Poles of con-

tinuous transfer function have a tendency to group near 0 (especially when lower

frequency is small). Those poles will be mapped close to 1 during discretisation. In

that case, discretizing every pole separately, denominator of of the entire system will

include a group of discrete poles with the following form

(z − 1 + 𝜀i)(z − 1 + 𝜀i+1)(z − 1 + 𝜀i+2)…

where 𝜀i > 0 are distances of the pole from stability boundary, and they are usually

very small (orders of magnitude from 10−4 to 10−9 are not uncommon). In that case

final denominator will include numbers that will be products of 𝜀i with each other,

resulting in numbers close to, or below 2.22×10−16 which is a smallest number that

can be added to another in Matlab (in different computation systems the number is of

similar magnitude). That results in automatic rounding error, which with high sensi-

tivity of polynomial roots to coefficient values leads to automatic instability. These

rounding errors are unavoidable, even when substituting to symbolic computation

results.

4 Time Domain Approximation

The proposed approach is to realize every block of the transfer function (1) in form

of a state space system. Those first order systems will be then collected in a sin-

gle matrix resulting in full matrix realization. This continuous system of differential

equations will be then discretized.

4.1 Realization

One can easily observe that for zero initial condition

s + 𝜔
′
k

s + 𝜔K
⟺

{
ẋk = Akxk + Bkuk
yk = xk + uk

where

Ak = − 𝜔k

Bk = 𝜔
′
k − 𝜔k

Ci = 1
Di = 1
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This can be written in vector matrix notation

𝐱̇ =

⎡
⎢
⎢
⎢
⎢
⎣

A1 0 0 … 0
B2 A2 0 … 0
B3 B3 A3 … 0
⋮ ⋮ ⋮ ⋱ ⋮
BN BN … BN AN

⎤
⎥
⎥
⎥
⎥
⎦

𝐱 +

⎡
⎢
⎢
⎢
⎢
⎣

KB1
KB2
KB3
⋮

KBN

⎤
⎥
⎥
⎥
⎥
⎦

u

y =
[
1 1 … 1 1

]
𝐱 + Ku

(4)

or in brief

𝐱̇ = 𝐀𝐱 + 𝐁u
y = 𝐂𝐱 + Du

(5)

What can be immediately observed is that the matrix 𝐀 is lower triangular. This is

an extremely important in the case of this problem, as all its eigenvalues (poles of

transfer function (1) are on its diagonal, so there is no need for eigenvalue products,

which would lead to rounding errors. That is why discretization of (4) should have

a structure preserving property.

4.2 Structure Preserving Discretization

Choice of discretization is important, in order to both preserve structure and stability.

Explicit methods generally preserve structure (Euler forward, RK4) but they are still

susceptible to problems with fast eigenvalues. That is why implicit methods have to

be used. For state space discretization the most natural was to use backward Euler

and Tustin approximations. Both these methods preserve structure and should pre-

serve stability. Euler is the most stable method of all—it transform left open complex

half plane into a subset of unit circle, and Tustin has a very good frequency domain

behavior. However while both these methods are very easy to implement in transfer

functions through appropriate substitutions of s ← z−1
Tz and s ← 2(z−1)

T(z+1) respectively

their time domain application is more complicated. Essentially these methods do

not preserve natural state variables but introduce new ones that include both origi-

nal state and input signal [16]. Fortunately, the input output mapping is unchanged,

which is satisfactory for our purposes.

Discretized system takes form (for simplicity e.g. u(Tk) is written as u(k))

𝐰(k + 1) = 𝚽𝐰(k) + 𝚪u(k)
y(k) = 𝐇𝐰(k) + Ju(k)

(6)
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where for Euler approximation

𝐰 = (𝐈 − 𝐀T)𝐱 − T𝐁u
𝚽 = (𝐈 − 𝐀T)−1

𝚪 = (𝐈 − 𝐀T)−1𝐁T
𝐇 = 𝐂(𝐈 − 𝐀T)−1

J = D + 𝐂(𝐈 − 𝐀T)−1𝐁T

and for Tustin approximation

√
T𝐰 = (𝐈 − 𝐀T

2
)𝐱 − T

2
𝐁u

𝚽 = (𝐈 + 𝐀T
2
)(𝐈 − 𝐀T

2
)−1

𝚪 = (𝐈 − 𝐀T
2
)−1𝐁

√
T

𝐇 =
√
T𝐂(𝐈 − 𝐀T

2
)−1

J = D + 𝐂(𝐈 − 𝐀T
2
)−1𝐁T

2

As it can be observed in both methods matrix 𝚽 consists of either inverse of lower

triangular matrix which is lower triangular itself or product of two lower triangular

matrices, which also preserves structure. Because of that diagonal consists of discrete

system eigenvalues which are discretized individually, so the field for rounding errors

is severely reduced. Also because the method is implicit, the fastest eigenvalue is

mapped well into unit circle.

It should be noted, that Tustin method is implemented in Matlab c2d function,

however this implementation is not optimized for detecting matrix structure and

resulting matrix is not fully triangular (there are nonzero elements with order of

magnitude 10−12 above diagonal). Implementation using efficient matrix inversion

algorithms with structure detection solved the problem.

4.3 Method of Analysis

In order to quantize the stability properties of considered approximations two quan-

tities will be considered:

∙ For systems where loss of stability is expected it will be a spectral radius that is

𝜌 = max |zi|, where zi are poles of approximating system.

∙ For introduced time domain based approximation loss of stability was not observed

- that is why a stability margin is introduced. It is defined as 𝜂 = 1 − 𝜌.
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4.4 Numerical Experiments

Method was tested for multiple non-integer orders, orders of approximation, sam-

pling periods and bandwidths. Here because of space reasons only analysis of a sin-

gle non integer order case will be presented. The considered system is a differentiator

of order 𝛼 = 0.7. The following tests were conducted:

1. For bandwidth [10−6, 106] and approximation order of 6 the sampling frequency

was being increased with logarithmic spacing from 100 Hz to 100 kHz.

2. For bandwidth [10−6, 106] and sampling frequency of 1 kHz the approximation

order was increased from 1 to 20.

3. For sampling frequency of 1 kHz and approximation order of 6 the bandwidth

was being increased. The compared approximation had symmetric bandwidth

centered at 1 Hz and it was increased by decade per experiment.

Results of tests are presented in Figs. 1, 2 and 3 respectively. In all of the figures

for time domain approximations vertical scale is logarithmic. the reason for such

presentation, is that the differences between points are of small magnitude but vary-

ing orders. They would be indistinguishable in linear scale. In the Fig. 1 illustrates

influence of sampling frequency on the stability. Frequency is presented logarithmi-

cally on the x-axis. In the Fig. 1a one can observe very interesting effect of irregular

changing of spectral radius with sampling frequency. It can be connected with the

highly nonlinear effect of rounding errors on polynomial root (and in consequence

pole) locations. Because of structural properties of proposed time domain realization

the influence of sampling frequency on stability is much more regular. As it can be

observed in the Fig. 1b the stability margin reduces with increased frequency, and

this reduction is linear on logarithmic scale.

In the Fig. 2 one can observe that increasing order also influences stability, how-

ever rounding errors in the frequency domain approach lead to quick destabilization,

the time domain approach asymptotically tends to the stability boundary. Similar
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Fig. 3 Comparison of approximations for different bandwidths. a Frequency domain approxima-

tion b Time domain approximations

tendency is observed in Fig. 3. Increasing the bandwidth leads to problems with sta-

bility for the transfer function, but proposed state space realization is immune.

4.5 Method Limitations

Certain main limitations of the method has been discovered. One of them is the

number of coefficients needed for implementation. In case of transfer function it is

O(N) and time domain method requires O(N2). It can be troublesome for very high

orders of approximations. Also the implementation requires matrix multiplication

or multiple difference equations, so number of operations is also increased. Second

area of limitations is present in frequency characteristics near the Nyqvist frequency,

it is especially visible for Euler discretization. We think that these limitations can be

worked around in order to create efficient controllers.
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5 Conclusion

Presented method is very promising for future applications. It was already tested

in real-time control environment and behaved correctly. Method was also tested for

very high orders, like N = 20 and still resulted in stable and well behaving discrete

approximation. What was not presented here, directly discretized transfer function

for lower orders can keep stability, but frequency response is not consistent with

continuous one.

There is a broad field for improvement of the method, as the proposed realiza-

tion is basic. There are results in realization theory that at least require analysis.

Especially in the context of possible implementation in embedded systems. Further

experiments in real time control environment are necessary. Also comparison with

other robustification method developed by the authors are in order—namely ‘fre-

quency separation method’. Also discretization schemes are worth revisiting in order

to improve behavior of the method. Natural directions are Al-Alaoui method and

implicit Runge-Kutta methods.
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Digraphs Minimal Positive Stable
Realisations for Fractional One-Dimensional
Systems

Konrad Andrzej Markowski and Krzysztof Hryniów

Abstract This paper presents a method of the determination of positive stable reali-

sation of the fractional continuous-time positive system. The algorithm finds a com-

plete set of all possible realisations instead of only a few realisations. In addition, all

realisations in the set are minimal and stable. The proposed method uses a parallel

computing algorithm based on a digraphs theory which is used to gain much needed

speed and computational power for a numeric solution. The presented procedure has

been illustrated with a numerical example.

Keywords Stable realisation ⋅Minimal realisation ⋅ Fractional system ⋅ Positive ⋅
Digraphs ⋅ Algorithm

1 Introduction

In the recent years many researchers have been interested in positive linear systems

[3, 6, 15, 16, 20]. In positive systems inputs, state variables and outputs take only

non-negative values [4]. Positive linear systems are defined on cones and not on lin-

ear spaces, therefore the theory of positive systems is more complicated than stan-

dard systems [2, 3, 6, 15, 17, 18]. The realisation problem is a very difficult task.

In many research studies, we can find a canonical form of the system, i.e. constant

matrix form, which satisfies the system described by the transfer function. With the

use of this form we are able to write only one realisation of the system, while there
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exists a set of solutions. The state of the art in positive systems theory is given in

the monographs [6, 16, 20], while in [10–12] a solution for finding a set of possible

realisations of the characteristic polynomial was proposed, that allows for finding

many sets of matrices which fit into a system transfer function.

The first definition of the fractional derivative was introduced by Liouville and

Riemann at the end of the 19th century [22]. Mathematical fundamentals of frac-

tional calculus are given in the monographs [5, 19, 21–24].

In this paper, a new method of determination of positive minimal realisation for

the fractional continuous one-dimensional system will be proposed and the proce-

dure for computation of the minimal realisation will be given. The procedure will be

illustrated with a numerical example.

This work has been organised as follows: Sect. 2 presents some notations and

basic definitions of digraph theory. Section 3 presents basics of fractional order sys-

tems theory. In this section is defined fractional continuous-time system as the state-

space representation. In Sect. 4, we construct algorithm for the determination of posi-

tive minimal realisation of the fractional continuous-time system. Finally we demon-

strate the workings of the algorithm on two numerical examples in Sect. 5 and at the

end we present some concluding remarks, open problems and bibliography positions.

2 Notion and Digraph Basic Definitions

2.1 Notion

In this paper the following notion will be used. The matrices will be denoted by the

bold font (for example 𝐀, 𝐁, ...), the sets by the double line (for example 𝔸, 𝔹, ...),

lower/upper indices and polynomial coefficients will be written as a small font (for

example a, b, ...) and digraph will bee denoted using a mathfrak font 𝔇.

The set n × m of real matrices will be denoted by ℝn×m
and ℝn = ℝn×1

. If

𝐆 = [gij] is a matrix, we write 𝐆 ≫ 0 (matrix 𝐆 is called strictly positive), if gij > 0
for all i, j; 𝐆 > 0 (matrix 𝐆 is called positive), if gij > 0 for all i, j; 𝐆 ⩾ 0 (matrix

𝐆 is called non-negative), if gij ⩾ 0 for all i, j. The set of n × m real matrices with

non-negative entries will be denoted by ℝn×m
+ and ℝn

+ = ℝn×1
+ . The n × n identity

matrix will be denoted by 𝐈n. The set n × n of Metzler matrix will be denoted by

𝐌n×n
. For more information about the matrix theory, an interested reader may be

referred to, for instance: [4, 9].

2.2 Digraph

A directed graph (or just digraph) 𝔇 consists of a non-empty finite set 𝕍 (𝔇) of

elements called vertices and a finite set 𝔸(𝔇) of ordered pairs of distinct vertices
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Fig. 1 One-dimensional

digraphs

s1 v1 v2 v3

called arcs [1]. We call 𝕍 (𝔇) the vertex set and 𝔸(𝔇) the arc set of digraph 𝔇. We

will often write 𝔇 = (𝕍 ,𝔸) which means that 𝕍 and 𝔸 are the vertex set and arc

set of 𝔇, respectively. The order of 𝔇 is the number of vertices in 𝔇. The size of

𝔇 is the number of arcs in 𝔇. For an arc (v1, v2) the first vertex v1 is its tail and the

second vertex v2 is its head.

There exists 𝔄-arc from vertex vj to vertex vi if and only if the (i, j)th entry of the

matrix 𝐀 is nonzero. There exists 𝔅-arc from source s to vertex vj if and only if the

lth entry of the matrix 𝐁 is nonzero.

Example 1 Let be given the positive system single input described by the following

matrices

⎡
⎢
⎢
⎣

1 0 1
1 0 1
0 1 0

⎤
⎥
⎥
⎦

⏟⏟⏟

𝐀

,

⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦

⏟⏟⏟

𝐁

(1)

we can draw one-dimensional digraph 𝔇(1)
consisting of vertices v1, v2, v3, v4 and

source s1. One-dimensional digraph corresponding to system (1) is presented in

Fig. 1.

We present below some basic notions from graph theory which are used in further

considerations. A walk in a digraph 𝔇(1)
is a finite sequence of arcs in which every

two vertices vi and vj are adjacent or identical. A walk in which all of the arcs are

distinct is called a path. The path that goes through all vertices is called a finite path.

If the initial and the terminal vertices of the path are the same, then the path is called

a cycle.

More information about use digraph theory in positive system is given in [7, 8,

12, 13].

3 Fractional Order System

3.1 Model and Representation

The equation for a continuous-time dynamic system of the fractional-order can be

written as follows:
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H(𝔇𝛼0𝛼1…𝛼m)(y1, y2,… , yl) = G(𝔇𝛽0𝛽1…𝛽n )(u1,u2,… , yk) (2)

where yi, ui are the functions of time and H(⋅), G(⋅) are the combinations of the

fractional-order derivative operator. If we describe the linear time-invariant single-

variable case we obtain the following equation:

H(𝔇𝛼0𝛼1…𝛼m)(yt) = G(𝔇𝛽0𝛽1…𝛽n )(ut) (3)

with

H(𝔇𝛼0𝛼1…𝛼n ) =
n∑

k=0
ak𝔇𝛼k , ak ∈ ℝ (4)

G(𝔇𝛽0𝛽1…𝛽m ) =
m∑

k=0
bk𝔇𝛽k , bk ∈ ℝ.

or

an𝔇𝛼ny(t) + an−1𝔇𝛼n−1y(t) + · · · + a0𝔇𝛼0y(t) = (5)

= bm𝔇𝛽mu(t) + bm−1𝔇𝛽m−1u(t) + · · · + b0𝔇𝛽0u(t)

Applying the Laplace transform to (5) with zero initial conditions, the input-output

representation of fractional-order system can be obtained. The fractional-order sys-

tem as the transfer function have the following form:

G(s) = Y(s)
U(s)

=
bms𝛽m + bm−1s𝛽m−1 + · · · + b0s𝛽0
ans𝛼n + an−1s𝛼n−1 + · · · + a0s𝛼0

. (6)

In the case of a commensurate-order system, the continuous-time transfer function

(6) is given in the following form

G(s) =

m∑

k=0
bk(s𝛼)k

n∑

k=0
ak(s𝛼)k

. (7)

The transfer function (7) can be considered as a pseudo-rational function H(𝜆) of the

variable 𝜆 = s𝛼 in the form:

H(𝜆) =

m∑

k=0
bk𝜆k

n∑

k=0
ak𝜆k

=
b0 + b1𝜆 + b2𝜆2 + · · · + bk−1𝜆k−1 + bk𝜆k

a0 + a1𝜆 + a2𝜆2 + · · · + ak−1𝜆k−1 + ak𝜆k
. (8)
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3.2 State-Space Representation

Let us consider the continuous-time fractional linear system described by state-space

equations:

0𝔇𝛼

t x(t) = 𝐀x(t) + 𝐁u(t), 0 < 𝛼 ⩽ 1 (9)

y(t) = 𝐂x(t) + 𝐃u(t)

where x(t) ∈ ℝn
, u(t) ∈ ℝm

, y(t) ∈ ℝp
are the state, input and output vectors

respectively and 𝐀 ∈ ℝn×n
, 𝐁 ∈ ℝn×m

, 𝐂 ∈ ℝp×n
and 𝐃 ∈ ℝp×m

. The following

Caputo definition of the fractional derivative will be used:

C
a𝔇

𝛼

t = d𝛼
dt𝛼

= 1
𝛤 (n − 𝛼) ∫

t

a

f (n)(𝜏)
(t − 𝜏)𝛼+1−n

d𝜏 (10)

where 𝛼 ∈ ℝ is the order of fractional derivative, f (n)(𝜏) = dnf (𝜏)
d𝜏n and 𝛤 (x) =

∫ ∞
0 e−ttx−1dt is the gamma function.

Theorem 1 The Laplace transform of the derivative-integral (10) has the form

 [C
0𝔇

𝛼

t
]
= s𝛼F(s) −

n∑

k=1
s𝛼−kf (k−1)(0+) (11)

The proof of the Theorem 1 is given in [19].

Definition 1 The fractional system (9) is called the internally positive fractional

system if and only if x(t) ∈ ℝn
+ and y(t) ∈ ℝp

+ for t ⩾ 0 for any initial conditions

x0 ∈ ℝn
+ and all inputs u(t) ∈ ℝm

+ for t ⩾ 0.

Definition 2 A square real matrix 𝐀 =
[
aij
]

is called the Metzler matrix if its off-

diagonal entries are non-negative, i.e. aij ⩾ 0 for i ≠ j.

Definition 3 The fractional system (9) is positive if and only if

𝐀 ∈ 𝕄n×n
, 𝐁 ∈ ℝn×m

+ , 𝐂 ∈ ℝp×n
+ , 𝐃 ∈ ℝp×m

+ (12)

In [19] the basic definitions of the positive realisation problem has been presented

in detail.

Using the Laplace transform to (9), Theorem 1 and taking into account

X(s) =  [x(t)] = ∫
∞

0
x(t)e−stdt, (13a)

 [
𝔇𝛼x(t)

]
= s𝛼X(s) − s𝛼−1x0 (13b)
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we obtain:

X(s) =
[
𝐈ns𝛼 − 𝐀

]−1 [s𝛼−1x0 + 𝐁U(s)
]

Y(s) = 𝐂X(s) + 𝐃U(s) (14)

U(s) =  [u(t)] .

Using (14) we can determine transfer matrix of the system in the following form:

𝐓(s) = 𝐂
[
𝐈ns𝛼 − 𝐀

]−1 𝐁 + 𝐃. (15)

We can present the transfer matrix (15) in the form of (8). In this case the transfer

matrix is the function of the operator 𝜆 = s𝛼 and for multi-input multi-output system

the transfer function has the following form:

𝐓(𝜆) = 𝐂
[
𝐈n𝜆 − 𝐀

]−1 𝐁 + 𝐃 =
⎡
⎢
⎢
⎣

𝐓11(𝜆) … 𝐓1,m(𝜆)
⋮ ⋱ ⋮

𝐓p,1(𝜆) … 𝐓p,m(𝜆)

⎤
⎥
⎥
⎦

(16)

where:

𝐓i,j(𝜆) =
ni,j(𝜆)
di,j(𝜆)

=
bi,j0 + bi,j1 𝜆 + · · · + bi,jn−1𝜆

n−1 + bi,jn 𝜆n

ai,j0 + ai,j1 𝜆 + · · · + ai,jn−1𝜆
n−1 + 𝜆

n
(17)

The matrix 𝐃 can be found by the use of the formula

lim
𝜆→∞

𝐓(𝜆) = 𝐃 ∈ ℝp×m =

⎡
⎢
⎢
⎢
⎢
⎣

b110 ∕a110 … b1,m0 ∕a1,m0
⋮ ⋱ ⋮

bp,10 ∕ap,10
… bp,m0 ∕ap,m0

⎤
⎥
⎥
⎥
⎥
⎦

. (18)

Using (18) and transfer matrix (16) we can determine strictly proper transfer matrix

in the following form:

𝐓sp(𝜆) = 𝐓(𝜆) − 𝐃 =
⎡
⎢
⎢
⎣

̃𝐓11(𝜆) … ̃𝐓1,m(𝜆)
⋮ ⋱ ⋮

̃𝐓p,1(𝜆) … ̃𝐓p,m(𝜆)

⎤
⎥
⎥
⎦

(19)

where:

̃𝐓i,j(𝜆) =
ñi,j(𝜆)
di,j(𝜆)

=
b̃i,j1 𝜆 + · · · + b̃i,jn−1𝜆

n−1 + b̃i,jn 𝜆n

ai,j0 + ai,j1 𝜆 + · · · + ai,jn−1𝜆
n−1 + 𝜆

n
(20)
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Matrices (12) are called positive realisation of the transfer matrix if they satisfy

the equality (16). The realisation is called minimal if the dimension of the state

matrix 𝐀 is minimal among all possible realisation of T(𝜆).

3.3 Problem Formulation

For given transfer matrix (15) determine minimal stable positive realisation of the

system (9) using one-dimensional 𝔇(1)
digraph theory. The dimension of the system

must be the minimal among possible.

4 Problem Solution

By multiplying nominator and denominator of (19) by 𝜆
−n

we obtain:

𝐓sp(𝜆−1) = 𝐂
[
𝐈n − 𝐀𝜆−1

]−1 𝐁 =
⎡
⎢
⎢
⎣

̃𝐓11(𝜆−1) … ̃𝐓1,m(𝜆−1)
⋮ ⋱ ⋮

̃𝐓p,1(𝜆−1) … ̃𝐓p,m(𝜆−1)

⎤
⎥
⎥
⎦

(21)

where:

̃𝐓i,j(𝜆−1) =
ñi,j(𝜆−1)
di,j(𝜆−1)

=
b̃i,j1 𝜆

1−n + · · · + b̃i,jn−1𝜆
−1 + b̃i,jn

ai,j0 + ai,j1 𝜆 + · · · + ai,jn−1𝜆
n−1 + 𝜆

n
. (22)

In the first step the proposed method finds state matrix 𝐀 using decomposition of the

characteristic polynomial di,j(𝜆−1) into a set of simple monomials. For each simple

monomial we create a digraph representation. Then we can determine all possible

characteristic polynomial realisations using all combinations of the digraph mono-

mial representations.

Theorem 2 There exists positive state matrix 𝐀 of the fractional continuous-time
linear system (9) corresponding to the characteristic polynomial d(𝜆−1) if:
∙ (C1) the 𝔻1 and 𝔻2 sets corresponding to two one-dimensional digraphs repre-
senting the monomial are not disjoint;

∙ (C2) the obtained digraph does not have additional cycles;
∙ (C3) the poles of the characteristic polynomial are distinct real and negative.

Proof Condition (C1): The sets 𝔻1 and 𝔻2 are disjoint if 𝔻1∩𝔻2 = ∅. Then we have

a digraph whose vertices can be divided into two disjoint sets (bipartite digraph). It

means that we obtain an additional simple monomial in a characteristic polynomial

d(𝜆−1). In this situation, we obtain a new polynomial. Condition (C2): Each mono-

mial is represented by one cycle. If after combining all digraphs (each corresponding
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to one monomial) we obtain an additional cycle, this means that in the polynomial

additional simple monomial appears. Condition (C3): If the state matrix 𝐀 have the

following structure 𝐀 = diag
[
𝐈n1𝜆

−1
1 𝐈n2𝜆

−1
2 … 𝐈nn𝜆

−1
n

]
then 𝜆

−1
1 , 𝜆

−1
2 , … , 𝜆

−1
n are

real negative and the matrix 𝐀 is stable and is a Metzler matrix. □

The Algorithm 1 consist from three parts: the first (lines 2–6), in which we con-

struct all possible digraph representations for every monomial from a characteristic

polynomial; the second (lines 7–19), in which we create all possible digraph struc-

tures using all combinations of the monomial digraph representations; the third part

(lines 20–31), in which we determine minimal realisation of the system and check

the positivity.

Let assume thet the matrix 𝐁 and matrix 𝐂 have the following form:

𝐁 =
⎡
⎢
⎢
⎢
⎣

b11 b12 … b1,m
b21 b22 … b2,m
⋮ ⋮ ⋱ ⋮
bn,1 bn,2 … bn,m

⎤
⎥
⎥
⎥
⎦

∈ ℝn×1
+ , 𝐂 =

⎡
⎢
⎢
⎢
⎣

c11 c12 … c1,n
c21 c22 … c2,n
⋮ ⋮ ⋱ ⋮
cp,1 cp,2 … cp,n

⎤
⎥
⎥
⎥
⎦

∈ ℝp×n
+ . (23)

After determining state matrix 𝐀 from the Algorithm 1 and inserting matrices (23)

to the equation 𝐓(𝜆−1) = 𝐂
[
𝐈n − 𝐀𝜆−1

]−1 𝐁 + 𝐃 we obtain the polynomial matrix

̃𝐍(𝜆−1). Comparing variables with the same power of 𝜆 polynomials ñi,j(𝜆−1) =
ni,j(𝜆−1) we receive the set of equations. After solving the equation we obtain matri-

ces (12).

4.1 Complexity

For polynomials consisting only of 1D monomials (m−1) operations are needed for

the first part of the algorithm (creating monomial digraphs) making in solvable in

linear time and creating polynomial digraphs is executed on

n∏

1

1
n
( (m − 1)!
x1!x2!… xc!

∗
m∏

i=0
(V − i)) (24)

kernels and takes

V(n(m + V)) + V2 + m logm + VlogVn
(25)

operations on each of them. Overall, the algorithms has linearithmic complexity that

can be denoted as 𝐓(𝐕) = 𝐎(VlogVn) in big O notation. Analysis of algorithms

complexity in detail is presented in [13] and [14].
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Algorithm 1 DetermineMinimalRealisation()
1: monomial = 1;

2: Determine number of cycles in characteristic polynomial;

3: for monomial = 1 to cycles do
4: Determine digraph 𝔇(1)

for all monomial;

5: MonomialRealisation(monomial);
6: end for
7: for monomial = 1 to cycles do
8: Determine digraph as a combination of the digraph monomial representation

9: PolynomialRealisation(monomial);
10: if PolynomialRealisation ! = cycles then
11: Digraph contains additional cycles or digraph contains disjoint union

12: BREAK
13: else if PolynomialRealisation == cycles then
14: Digraph satisfies characteristic polynomial;

15: Determine weights of the arcs in digraph;

16: Write state matrix 𝐀;

17: return (PolynomialRealisation, 𝐀);
18: end if
19: end for
20: for PolynomialRealisation = 1 to j do
21: Input - state matrix 𝐀;

22: Determine polynomial ñ(𝜆−1);
23: Compare variables with the same power of the n(𝜆−1);
24: Solve non-linear set of the equations;

25: if Matrix 𝐁 ⩾ 0 AND matrix 𝐂 ⩾ 0 then
26: return (MinimalRealisation, 𝐀,𝐁,𝐂);
27: else if Matrix 𝐁 < 0 OR matrix 𝐂 < 0 then
28: Realisation is not positive;

29: BREAK
30: end if
31: end for

5 Numerical Examples

5.1 Example I

Find a positive minimal realisation of the strictly proper transfer function

Tsp(s) =
3.138s1.2 + 24.86s0.6 + 20.33
s1.8 + 11.5s1.2 + 15.5s0.6 + 5

. (26)

The transfer function can be considered as a pseudo-rational function T(𝜆) of the

variable 𝜆 = s0.6 in the form:

Tsp(𝜆) =
3.138𝜆2 + 24.86𝜆 + 20.33
𝜆
3 + 11.5𝜆2 + 15.5𝜆 + 5

. (27)
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v1

w(v1, v1)A1λ−1
(a)

v1

w(v1, v1)A2λ−1
(b)

v1

w(v1, v1)A3λ−1
(c)

Fig. 2 One-dimensional digraphs corresponding to characteristic polynomials (29)

Multiplying the nominator and denominator of the transfer function (27) by 𝜆
−3

we

obtain:

Tsp(𝜆−1) =
3.138𝜆−1 + 24.86𝜆−2 + 20.33𝜆−3

1 + 11.5𝜆−1 + 15.5𝜆−2 + 5𝜆−3
= n(𝜆−1)

d(𝜆−1)
(28)

where

d(𝜆−1) = (1 + 0.5𝜆−1)(1 + 10𝜆−1)(1 + 𝜆
−1) (29)

is the characteristic polynomial. The characteristic polynomial can be presented in

the following form d(𝜆−1) = d1(𝜆−1)d2(𝜆−1)d3(𝜆−1). In this case, our task can be

divided into three subtasks.

Consider the polynomial d1(𝜆−1) = 1 + 0.5𝜆−1. In the first step we write the

following initial conditions: number of colours in digraphs: colour = 1; monomial

M1 = −0.5𝜆−1.

In this example we have only one realisation of the characteristic polynomial

d1(𝜆−1) presented in Fig. 2a. The condition (C1) and (C2) of the Theorem 2 are sat-

isfied. Finally we must verify the third condition. In considered polynomial d1(𝜆−1)
the pole equal to 𝜆1 = −0.5 is real and negative. Described realisation satisfies Con-

dition (C3). The realisation does satisfy all conditions and is correct. In the same

way we determine realisations of the characteristic polynomial d2(𝜆−1) presented in

Fig. 2b and d3(𝜆−1) presented in Fig. 2b.

From the obtained digraphs, we can write state matrix 𝐀 in the form:

𝐀 =
⎡
⎢
⎢
⎣

𝐀1 0 0
0 𝐀2 0
0 0 𝐀3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

w(v1, v1)𝔄1
0 0

0 w(v1, v1)𝔄2
0

0 0 w(v1, v1)𝔄⦔

⎤
⎥
⎥
⎦

= (30)

=
⎡
⎢
⎢
⎣

−0.5 0 0
0 −10 0
0 0 −1

⎤
⎥
⎥
⎦

Inserting matrices (23) and (30) to the equation (19) we obtain the polynomial

ñ(𝜆−1). After comparison of the coefficients of the same power 𝜆 polynomials

ñ(𝜆−1) = n(𝜆−1) we receive the set of the equations. Solving them, we obtain the

following matrices:
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Fig. 3 Step response and Nyquist characteristic of the system (26)

𝐁 =
⎡
⎢
⎢
⎣

b1
b2
b3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1.8283
1.0004
0.3093

⎤
⎥
⎥
⎦

, 𝐂 =
[
c1 c2 c3

]
=
[
1 1 1 .

]
(31)

The desired positive realisation of the (26) is given by (30) and (31). The obtained

realisation is stable, as can be seen on Fig. 3, showing the step response of the system

and the Nyquist characteristic.

5.2 Example II

Find a positive minimal realisation of the strictly proper transfer matrix

𝐓sp(𝜆−1) =

⎡
⎢
⎢
⎢
⎢
⎣

2𝜆−1

1 + 0.1𝜆−1
𝜆
−1

1 + 0.2𝜆−1

𝜆
−1

1 + 0.2𝜆−1
𝜆
−1

1 + 0.3𝜆−1

⎤
⎥
⎥
⎥
⎥
⎦

(32)

with the variable 𝜆 = s𝛼 , 0 < 𝛼 < 1. The problem of determination of the minimal

characteristic polynomial realisation can be divided into four smaller sub-problems.

In the first step we write the following initial conditions:
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v1

w(v1, v1)A1λ−1
(a)

v1

w(v1, v1)A2λ−1
(b)

v1

w(v1, v1)A3λ−1
(c)

v1

w(v1, v1)A4λ−1
(d)

Fig. 4 One-dimensional digraphs corresponding to characteristic polynomials (33)

∙ number of colours in digraphs: colour = 1;

∙ characteristic polynomials:

d1(𝜆−1) = 1 + 0.1𝜆−1; d2(𝜆−1) = d3(𝜆−1) = 1 + 0.2𝜆−1; (33)

d4(𝜆−1) = 1 + 0.3𝜆−1.

It should be noted that characteristic polynomial d1(𝜆−1), consists of one monomial

M1. Since the polynomial consists of one monomial there is only one possible real-

isation. Digraph realisation for the characteristic polynomial d1(𝜆−1) is presented

in Fig. 4a. Te realisation meets conditions (C1) and (C2) of the Theorem 2. Finally

we must verify the third condition. In considered characteristic polynomial the poles

are real and negative. Described realisation satisfies Condition (C3). The realisation
does satisfy all conditions and is correct. In the same way we determine realisa-

tions of the characteristic polynomial d2(𝜆−1) presented in Fig. 4b, d3(𝜆−1) presented

in Fig. 4c and polynomial d4(𝜆−1) presented in Fig. 4d.

From the obtained digraphs, we can write state matrix 𝐀 in the form:

𝐀 = diag
(
𝐀i|i=1,…4

)
= diag

(
w(v1, v1)𝔄i|i=1,…4

)

= (34)

=
⎡
⎢
⎢
⎢
⎣

−0.1 0 0 0
0 −02 0 0
0 0 −0.2 0
0 0 0 −0.3

⎤
⎥
⎥
⎥
⎦

Inserting matrices (23) and (34) to the equation (19) we obtain the polynomial matrix

̃𝐍(𝜆−1). After comparison of the coefficients of the same power 𝜆 in polynomials

ñp,m(𝜆−1) = np,m(𝜆−1) we receive the set of equations. Solving them, we obtain the

following matrices:

𝐁 =
⎡
⎢
⎢
⎢
⎣

2 0
0 1
1 0
0 1

⎤
⎥
⎥
⎥
⎦

, 𝐂 =
[
1 1 0 0
0 0 1 1

]

(35)

The desired positive realisation of the (32) is given by (34) and (35).
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6 Concluding Remarks

The paper presents a method, based on one-dimensional digraph theory and parallel

computing, for finding the complete set of one-dimensional characteristic polyno-

mial realisations, that can be used to solve the minimal positive realisation problem

of one-dimensional continuous-time fractional system which includes single-input

and single-output (SISO). The difference between the proposed in this paper algo-

rithm and currently used methods based on canonical forms of the system (i.e. con-

stant matrix forms) is the creation of not one (or few) minimal realisations, but a set

of every possible minimal realisation.

Further work includes extension of the algorithm to find all possible solutions

(and not only all possible minimal solutions), solving the realisation problem, reach-

ability and controllability of systems using the fast graph-based method. There is

also very difficult open problem of the analysis of systems dynamics for realisations

on a different number of nodes in digraphs. Currently, the method of determining a

positive polynomial realisation using GPU units and digraphs methods is optimized

and in the next step will be implemented in the memory-efficient way.
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Modeling of Discrete-Time
Fractional-Order State Space Systems
Using the Balanced Truncation Method

Marek Rydel, Rafał Stanisławski, Grzegorz Bialic
and Krzysztof J. Latawiec

Abstract This paper presents a new method of approximation of linear time-inva-

riant (LTI) discrete-time fractional-order state space systems by means of the Bal-

anced Truncation Method. This reduction method is applied to the rational form

of fractional-order system in terms of expanded state equation. As an approxima-

tion result we obtain rational and relatively low-order state space system. Simulation

experiments show very high accuracy of the introduced methodology.

1 Introduction

Fractional-order dynamic models have attracted a considerable research interest. It

is due to specific properties of fractional-order system that can make them more ade-

quate in modeling of selected industrial systems. However, discrete-time fractional-

order difference (FD) may lead to computational explosion. Therefore, a number of

various concepts have been developed to modeling discrete-time fractional differ-

ence systems. Those concepts are mainly based on two types of applications, where

(1) approximators are used to modeling of discrete-time fractional-order difference

involved in fractional-order system and (2) the whole fractional order has been mod-

eled by rational, integer-order approximator. In the first case, the solution has led to

e.g. least-squares (LS) fit of an impulse/step response of a discrete-time integer-order

IIR filter [3, 4, 23]. On the other hand, a fit of a FIR filter to FD has been analyzed in

the frequency and time domains [6, 7, 21], also in terms of time-varying filters [17].

Another approach has been the employment of an approximating filter incorporating

discrete-Laguerre filters [9, 15, 19]. In the second case, applications are based on

orthonormal basis functions (OBF) methods [2, 8, 16, 18], and a number of other

applications [5, 12, 13].
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The main problem of approximation of a discrete-time fractional-order system is

that it leads to very high order of rational, ‘integer-order’ approximators. Therefore,

accurate description of dynamic behavior of fractional dynamical systems causes

higher complexity of the mathematical models. Despite increasing computational

speed of computers, simulation, optimization or controller designing for large–scale

systems is difficult because of system requirements, long time simulation and numer-

ical errors. For this reason, an ability to properly reduce the model complexity with-

out the loss of its dominant dynamic behavior becomes highly significant [20]. There

are several techniques for complex model reduction [1, 11]. Among reduction meth-

ods, a great attention has been given to the SVD-based methods, which use the

balanced model realization theory and the Krylov-based approximation methods,

based on moment matching of the impulse response [1, 14]. In this paper, an SVD-

based technique for complex model reduction is applied in modeling of discrete-time

fractional-order state space systems.

The paper is organized as follows. Having introduced the approximation prob-

lem for discrete-time fractional-order systems in Sect. 1, the discrete-time fractional-

order state space systems involving FD and its approximations, are recalled in

Sect. 2. An application of the Balanced Truncation Approximation (BTA) method

for fractional-order system is presented in Sect. 3. A simulation example which con-

firms the effectiveness of the introduced methodology is shown in Sect. 4 and con-

clusions of Sect. 5 complete the paper.

2 System Representation

Consider fractional-order discrete-time state space system

𝛥
𝛼x(t + 1) = Af x(t) + Bu(t), x0

y(t) = Cx(t) + Du(t) (1)

where x(t) ∈ ℜn
is the state vector, u(t) ∈ ℜnu and y(t) ∈ ℜny are input and output

vectors, respectively, Af ∈ ℜn× n
, B ∈ ℜn× nu , C ∈ ℜny × n

and D ∈ ℜny × nu .

Fractional order difference 𝛥
𝛼

is represented as the well known Grünwald-Letnikov

frational-order difference (FD)

𝛥
𝛼x(t + 1) = x(t + 1) +

t∑

j=1

(
𝛼

j

)

x(t − j + 1) (2)

with
(
𝛼

j

)

=

{
1 j = 0
𝛼(𝛼−1)...(𝛼−j+1)

j! j > 0
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The main problem encountered in application of the fractional-order difference

is that the sum is calculated from 0 to t, so each incoming sample increases a com-

plication of equation (3). Therefore, in practical applications finite approximation of

the fractional-order difference, called Finite Fractional Difference (FFD), have been

used , where the sum is limited to the upper bound J

𝛥
𝛼

FFDx(t) = x(t) +
J∑

j=1
Pj(𝛼)x(t)q−j (3)

where J = min(t, J).

2.1 Expanded State Model of a Fractional-Order
State Space System

The state space system (1) for the FFD approximation (3) can be described as a

regular (integer-order) system in the expanded state space form as follows

x(t + 1) = Ãx(t) + B̃u(t)
y(t) = C̃x(t) + Du(t) (4)

with

Ã =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A −𝛽2 −𝛽3 −… −𝛽J−1 −𝛽J
I 0 0 … 0 0
0 I 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … I 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5)

B̃ =
[
BT 02nu × n … 0Jnu × n

]T
(6)

C̃ =
[
C 02ny × n … 0Jny × n

]
(7)

where A = Af + 𝛼I, 𝛽j = Pj(𝛼)I, j = 2, ...J, and the null matrices in (5) are n × n.

Note that the dimensions of the vectors are as follows x(t) ∈ ℜnJ
, u(t) ∈ ℜnu and

y(t) ∈ ℜny and matrices Ã ∈ ℜnJ × nJ
, B̃ ∈ ℜnJ × nu , C̃ ∈ ℜny × nJ

and D ∈ ℜny × nu .

Approximation of the fractional order system by implementation of FFD-based

systems results in a complex model of high order and is not useful from the computa-

tional viewpoint. Despite increasing computational speed of computers, simulation,

optimization or controller designing for large-scale systems is difficult because of

system requirements, long time and numerical errors. However, the expanded space
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equation results in representation of fractional-order system as regular (integer-

order) state space form. Therefore, we can use classical, Gramians-based methods

to reduction of the expanded state model.

3 Model Order Reduction

The task of reduction of linear discrete-time model can be presented as follows: for

the model of order nJ (4), a reduced model of order k should be determined, where

k << nJ, such as the determined approximation error norm ‖
‖y(t) − yr(t)‖‖ reaches

the minimum value:

xr(t + 1) = Ã r xr(t) + B̃r u(t)
yr(t) = C̃r xr(t) + Dr u(t) (8)

where: Ã r∈ℜk× k
, B̃r∈ℜk× nu , C̃r∈ℜny × k

, Dr∈ℜny × nu .

There are several techniques for complex model reduction. Among them high

popularity was obtained by SVD-methods, which were introduced in Moore’s works

[10]. The concept of balanced model realization is an easy way to determine the dom-

inating part of the model and reduction by ‘cutting’ the matrices, describing dynam-

ics of the model in state space (Balanced Truncation Approximation). An important

consideration in model reduction is the ability to classify states according to their

degree of reachability and observability. It can be achieved with the help of control-

lability and obervability Gramians of the system.

If the discrete-time system is stable, the Gramians of the system are defined for

t → ∞:

P = SST =
∞∑

k=0
ÃkB̃B̃T (ÃT)k

Q = RRT =
∞∑

k=0

(
ÃT)k C̃T C̃Ãk

(9)

The states that are difficult to reach (i.e. require a large amount of energy to reach)

and difficult to observe (i.e. yield small amounts of observation energy) correspond

to small eigenvalues of controllability and observability Gramians. On this basis

reduced-order model can be obtained by eliminating states which are difficult to

reach and are simultaneously difficult to observe. In this purpose, the following trans-

formation T of Gramians are necessary:

TPTT =
(
TT)−1QT−1 = 𝛴 = diag

(
𝜎i
)

(10)

where 𝜎i are called the Hankel singular values of the system.
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Table 1 Balancing-free square root algorithm

1. Compute a Cholesky factorization of controllability and observability Gramians (9)

2. Compute the SVD-decompositions of SR∗
as:

SR∗ =
[

U1 U2

]
[
𝛴1 0
0 𝛴2

][
V1
V2

]

where: 𝛴1 = diag
(
𝜎1, 𝜎2,⋯ , 𝜎k

)
, 𝛴2 = diag

(
𝜎k+1, 𝜎k+2,⋯ , 𝜎n

)
,

𝜎1 ≥ ⋯ ≥ 𝜎k > 𝜎k+1 ≥ ⋯ ≥ 𝜎n > 0
3. Compute the QR-decompositions of S∗U1 and R∗V1 as:

S∗U1 =

[
W1
W2

]

X R∗V1 =

[
Z1
Z2

]

Y

4. Compute the SVD-decompositions of Z∗
1W

∗
1 as:

Z∗
1W1 = UE𝛴EV∗

E
5. Create transformation matrices:

T = 𝛴

− 1
2

E U∗
EZ

∗
1 L = W1VE𝛴

− 1
2

E

For balanced system (A = TÃT−1
, B = TB̃, C = C̃T−1

), for which Gramians are

equal to a diagonal matrix, it is possible to partition the system as follows:

[
x1(t + 1)
x2(t + 1)

]

=
[
A11 A12
A21 A22

] [
x1(t)
x2(t)

]

+
[
B1
B2

]

u(t)

y =
[
C1 C2

]
[
x1(t)
x2(t)

]

+ Du(t) (11)

The reduction system can be obtained through cutting matrices:

Ãr = A11 B̃r = B1 C̃r = C1 Dr = D (12)

Transformation of Gramians is not a unique operation and there are many different

algorithms for determining the transformation matrix T and its inverse T−1
(size

nJ × nJ) described in the literature [1]. For complex models of high order, the trans-

formation matrix often has properties similar to a singular matrix, which results in

large numerical errors for inverse transformation matrix. Therefore, robust numerical

algorithms calculate simultaneously two rectangular transformation matrix (T and

L) with dimensions respectively k × nJ and nJ × k. This allows to balance and reduce

high-order model at the same time (e.g. Balancing-free square root algorithm) [22]

(Table 1).

Reduced-order system obtained by balancing truncation has the following prop-

erties:

∙ reduced model has poles in the closed unit circle (reduction preserves stability),

∙ if 𝜎min
(
𝛴1

)
> 𝜎max

(
𝛴2

)
the reduced system is reachable an observable,
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∙ h∞-norm of difference between full and reduced-order models is upper bounded

by twice the sum of the neglected Hankel singular values:

‖
‖𝛴 − 𝛴1‖‖h∞

≤ 2
(
𝜎k+1 +⋯ + 𝜎n

)
(13)

∙ 1-norm of the impulse response of the error system can be derived as follows:

‖
‖h − hk‖‖1

≤ 2

(

4
n∑

𝓁=k+1
𝓁𝜎𝓁 − 3

n∑

𝓁=k+1
𝜎𝓁

)

(14)

4 Simulation Example

Consider the discrete-time fractional-order state space system
(
Af ,B,C,D

)
of order

𝛼 = 0, 9 with:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2.37 −4.3849 2.602023 −0.5886251 1
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
1 −1.8 0.9 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The system is modeled by use (1) FFD-based expanded state-space model with J =
200 and reduced models obtained by using BTA reduction method of order k = 2,

k = 4 and k = 6, applied to the FFD-based expanded state space model with 1000

parameters.

The frequency responses of the FD-based system and FFD-based fractional model

and BTA-based models are presented in Fig. 1.

Table 2 shows the values of the approximation errors for the reduced models.

The abbreviations in Table 2 are as follows:

∙ DCE—steady state error of reduced model,

∙ RMSAE—relative mean square approximation error for the model adequacy range

𝜔 ∈ (10−3 − 𝜋),
∙ MSE—the mean square error of step response.

The resuls of Table 2 show that the BTA-based model of order k = 2 gives bet-

ter time-domain results than FFD-based counterpart of order 800. The BTA-based

model of order k = 6 gives a very good approximation accuracy both in frequency

and time domains. This model gives similar time-domain results to the FFD-based

model of order 4000. Good results of the FFD-based model in terms ofRMSAE come

from good high-frequency approximation accuracy, at the cost of low-frequency per-

formance.
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Fig. 1 Frequency responses, step responses and approximation errors for the reduced models

Table 2 Model reduction results

DCE RMSAE MSE
FFD-based (J = 200) model 2.0458 0.0098 0.8731

BTA-based (J = 1000, k = 2) model 1.5375 0.3864 0.3288

BTA-based (J = 1000, k = 4) model 0.4882 0.3475 0.0212

BTA-based (J = 1000, k = 6) model 0.4797 0.0132 1.0462e-04

5 Conclusion

This paper has presented a method for approximation of discrete-time fractional-

order state space system by use of the SVD-based reduction method in terms of

Balanced Truncation Approximation. As a result we obtain a regular, relatively low-

order state space system. A simulation example presents that the introduced method-

ology can yield a very good approximation performance.
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Experimental Results of Modeling Variable
Order System Based on Discrete Fractional
Variable Order State-Space Model

Dominik Sierociuk, Michal Macias and Pawel Ziubinski

Abstract The paper presents experimental results of modelling fractional variable

order system with using Discrete Fractional Variable Order State-Space Model.

Experimental results were obtained based on modified multi-order switching ana-

log realization for a case of constant parameter case, that is also introduced in this

paper. During identification process two algorithms were used: direct and dual. Addi-

tionally, joint estimation results for parameter estimation were presented, in order to

verification of constant parameter for proposed analog model.

Keywords Fractional calculus ⋅ Variable order derivative ⋅ Analog model ⋅ Iden-

tification

1 Introduction

Fractional calculus is a generalization of traditional integer order integration and dif-

ferentiation actions onto non-integer order. The idea of such a generalization has been

mentioned in 1695 by Leibniz and L’Hospital. In the end of 19th century, Liouville

and Riemann introduced first definition of fractional derivative. However, only just in

late 60’ of the 20th century, this idea drew attention of engineers. Fractional calculus

was found a very useful tool for modelling behavior of many materials and systems,

especially those based on the diffusion processes. The description and experimental

results of modelling heat transfer processes were presented in [1, 2].
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When the fractional order of derivative is not constant but depends on time, then

the various types of fractional variable-order derivatives can be distinguished. In [3],

nine different variable-order derivative definitions are given and in [4, 5], three gen-

eral types of variable order definitions can be found but without clear interpretation

of them. In papers [6–10] the explanation for two main types and two recursive types

of derivatives in the form of switching schemes are given. The equivalence between

particular types of definitions and appropriate switching strategies are proven by

authors. Moreover, based on these strategies, analog models of proper types deriv-

atives were build and validated according to their numerical implementations.Clear

interpretation of some definitions in the form of switching schemes was presented

in [6, 11]. Based on those papers, it is possible to categorize fractional order deriv-

atives into three switching strategies. Moreover, analog models, based on proposed

switching schemes, and its experimental validation have been presented in [6, 7, 11].

The experimental results show high accuracy for modelling the appropriate types of

variable-order definitions.

In [12] analog realization of variable order derivative for multiple-switching order

case was introduced, however, presented model gives non-stationary (variable para-

meter) system. In this paper, modification of this analog realization for constant para-

meter case is introduced. Obtained analog model will be experimentally validated

based on Discrete Fractional Variable Order State-Space Model (DFVOSS), due to

confirm accuracy of obtained analog model, and ability of DFVOSS to model real

plant. Additionally, experimental results of parameter estimation will be presented,

in order to emphasize constant parameter of introduced analog model.

The paper is organized as follows. In Sect. 2 particular types of fractional variable-

order derivatives are introduced. Section 3 introduces analog realization of variable

fractional order derivative with constant parameter. In Sect. 4 basic properties of Dis-

crete Fractional Variable Order State-Space Model are recalled. Finally, in Sect. 5

experimental results of modelling—the main contribution of this paper—are pre-

sented.

2 Fractional Variable-Order Grunwald-Letnikov Type
Derivatives

As a base of generalization of the constant fractional order 𝛼 ∈ ℝ difference onto

variable-order case, the following definition is taken into consideration:

0𝛥
𝛼

k fk =
1
h𝛼

k∑

r=0
(−1)r

(
𝛼

r

)

fk−r, (1)

where h > 0 is a step time.

For the case of order changing with time (variable order case), many different

types of definitions can be found in the literature [4, 5]. Among them, we present

only two. The first one is obtained by replacing in (1) a constant-order 𝛼 by variable
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order 𝛼(t). In that approach, all coefficients for past samples are obtained for present

value of the order, and is given as follows:

Definition 1 The -type of fractional variable order difference is defined as fol-

lows:

A
0𝛥

𝛼k
k fk =

1
h𝛼k

k∑

r=0
(−1)r

(
𝛼k
r

)

fk−r. (2)

Dual type of variable order derivative, that we will consider, is given by the fol-

lowing definition:

Definition 2 ([8]) The -type of fractional variable order difference is defined as

follows:

D
0 𝛥

𝛼k
k fk =

(
fk
h𝛼k

−
k∑

j=1
(−1)j

(
−𝛼k
j

)
D
0 𝛥

𝛼k−j
k−j fk−j

)

. (3)

Remark 1 For a fractional constant-order 𝛼 = const, the fractional derivatives given

by Definition 1 and 2 are numerically identical with constant-order fractional deriv-

ative given by (1).

3 Analog Model

In experimental setup an analog model equivalent to -type fractional variable order

definition presented in Fig. 1 were used. The analog model in such configuration

allows to keep the constant value of system parameter. Then, based on this the frac-

tional variable order inertial system shown in Fig. 2 were design. All measurement

data for both fractional variable order systems were gathered with time sample equal

to 0.001 s.

3.1 Realization of the Multi-switching Integral System

Multi-switching analog model, designed according to -type fractional variable

order integral is presented in Fig. 1.

Passive elements such as: R1, R2 and C1, C2 were used to build a half-order

impedance according to the algorithm meticulously described in [13]. Structure used

in experimental setup consists of 200 elements.

It is worth to notice that the presented realizations are the multi-switching analog

models. Position of switches (S1, S2 and S3) can be change in any time t. To elim-

inate the variable system parameter the S3 switch were applied. Depends on order

of system the switch can be directly connected to resistor Ra or Rb to keep the same

value of system parameter.



132 D. Sierociuk et al.

−

+
A1

R2

R1

R2

+

−
A3

−

+
A2

u(t)

C1

C2

C1

C2

R

R
R1Ra

Rb

S3

1

2

S2

2

1

2

1
S1

y(t)

uc
uR

Fig. 1 Multi-switching analog realization of the -type fractional variable-order integral

Fig. 2 Realization of the

fractional variable order

inertial system based on

fractional variable order

system presented in Fig. 1

FOS−
+

y(t)u(t)

Depending on switches position marked as Si, (i = 1, 2, 3) in Fig. 1, the circuit can

be described by fractional order integral system (𝛼 = −0.5) or traditional integral

system (𝛼 = −1).

1. For a case, when all Si switches are connected to terminals marked as 1, the

following fractional order derivative function has been obtained:

y1(t) =
1
T 0D−1

t u(t), (4)

where T is a time constant.

2. For a case, when all Si switches are connected to terminals marked as 2, the

following transfer function has been obtained:

y2(t) =
1
T 0D−0.5

t u(t), (5)

where T is a time constant of the half order integral
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To invert polarization of output signal, the A2 operational amplifier has been used.

Based on switches position, the system can be switched in two ways:

1. switching from terminals 1 to 2: In this case, the system described by the first

order integral y1(t) is switched to system of order half described by function y2(t).
To keep the behavior of the -type definition, it is necessary to maintain a con-

tinuous voltage of capacitors in the rest branches, between terminals marked as

1. The voltages of capacitors are set to the value of voltage on the capacitor in the

first order integral system (the first capacitor).

2. switching from terminals 2 to 1: In this case the system described by function y2(t)
(half-order) is switched to system described by the function y1(t) (first order). In

this configuration, branches in closed-loop are connected to terminals marked as

2, and after switching, the terminals are changed to 1.

3.2 Realization of the Fractional Variable-Order Inertial
System

Realization of the fractional variable order inertial system based on fractional vari-

able order integral system presented in Fig. 1 has been shown in Fig. 2. The order

of the system depends on position of S1 and S2 switches presented in Fig. 1. Switch

S3 is used to keep the constant parameter of fractional variable-order inertial sys-

tem. When switches do not changes their positions during experiment the system is

considering as a fractional constant order inertial system.

4 Discrete Variable Fractional Order State-Space System

Let us consider a linear discrete fractional variable order state-space (DFVOSS) -

type system

A
0𝛥

𝛼k+1
k+1 xk+1 = Axk + Buk , (6)

xk+1 = A
0𝛥

𝛼k+1
k+1 xk+1

− h𝛼k+1
k+1∑

j=1
(−1)j

(
𝛼k+1
j

)

xk−j+1 , (7)

yk = Cxk , (8)

where 𝛼k ∈ ℝ is the fractional variable-order of the system, uk ∈ ℝd
is a system

input, yk ∈ ℝp
is a system output, A ∈ ℝN×N

, B ∈ ℝN×d
and C ∈ ℝp×N

are the

state system, input, and output matrices, respectively, xk ∈ ℝN
is a state vector, N is

a number of state equations, and h is a time sampling.
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Basic properties of the constant order DFOSS can be found in [14–16].

Let us consider the following DFVOSS system

A
0𝛥

𝛼k+1
k+1 xk+1 = uk . (9)

This can be expanded into (assuming h = 1)

k+1∑

j=0
(−1)j

(
𝛼k+1
j

)

xk−j+1 = uk (10)

and rewritten as

xk+1 = uk −
k+1∑

j=1
(−1)j

(
𝛼k+1
j

)

xk−j+1 . (11)

The solution of the system given by the -type definition has the structure of -type

definition, namely

D
0 𝛥

𝛽k
k+1wk = wk −

k∑

j=1
(−1)j

(
−𝛽k
j

)
D
0 𝛥

𝛽k−j
k+1uk−j . (12)

Comparison of these two relations, along with substitutions

wk+1 = uk , −𝛼k+1 = 𝛽k+1 ,

and

xk+1 = D
0 𝛥

𝛼k+1
k+1 wk+1

yields

xk+1 = D
0 𝛥

−𝛼k+1
k+1 uk .

This leads us to the conclusion (as it was presented in [17]), that in order to

model system build using -type integrals a DFVOSS based on -type definition

is needed.

4.1 Parametric Identification

For simplicity, let us consider single state variable system

A
0𝛥

𝛼k+1
k+1 xk+1 = axk + buk .
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The parameter b can be retrieved from the following equation

⎡
⎢
⎢
⎢
⎢
⎣

A
0𝛥

𝛼k+1
k+1 xk+1
A
0𝛥

𝛼k
k xk
⋮

A
0𝛥

𝛼1
1 x1

⎤
⎥
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

≡𝛥X

=
⎡
⎢
⎢
⎢
⎣

xk uk
xk−1 uk−1
⋮
x0 u0

⎤
⎥
⎥
⎥
⎦

[
a
b

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

≡U

. (13)

Exploiting duality relations discussed in [17], and taking into account (13), one

obtains

⎡
⎢
⎢
⎢
⎣

xk+1
xk
⋮
x1

⎤
⎥
⎥
⎥
⎦

⏟⏟⏟

≡X

=

⎡
⎢
⎢
⎢
⎢
⎣

D
0 𝛥

−𝛼k+1
k+1 xk D

0 𝛥
−𝛼k+1
k+1 uk

D
0 𝛥

−𝛼k
k xk−1 D

0 𝛥
−𝛼k
k uk−1

⋮
D
0 𝛥

−𝛼1
1 x0 D

0 𝛥
−𝛼1
1 u0

⎤
⎥
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≡𝛥U

[
a
b

]

. (14)

5 Experimental Results

In this section comparison of data collected from the analog model for the fractional

order inertial system and the results of identification will be presented. Parameter

identification was made for the two cases, for direct method case based on formula

13 and dual method case based on formula 14.

Figure 3 presents the way in which the order was switched. For -type definition

in direct equation order is switched between 0.5 and 1, and for -type definition dual

equation order was switched between −0.5 and −1.

Numerical results, presented in this section, were obtained in Matlab/Simulink

environment using the FSST Toolkit [18].

time [sec.]
0 10.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

-1

O
rd

er

-0.5

0

0.5

1
alpha
-alpha

Fig. 3 Variable system order used in experiments
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5.1 Identification Results

Results of parameters identification based on formula 13 were obtained by pseudoin-

version of matrix U in equation p = pinv(U)𝛥X, where p =
[
a
b

]

is a vector of

parameters. The solution error e was obtained in the following way e = 𝛥X − Up.

Identified parameters are a = −2.9839 and b = 2.9951. For parameters identifi-

cation based on dual formula (given by Eq. 14), pseudoinversion of matrix 𝛥U in

equation p = pinv(𝛥U)X was necessary. The solution error of identification equa-

tion was defined as follows e = X−𝛥Up. Identified parameters are a = −3.0457 and

b = 3.02207. Figure 4a, b presents results of solution error for Eqs. 13 and 14.

As it can be seen in Fig. 4 the solution error for dual method is much smaller than

for direct method (this conclusion is similar to this presented in [17]).

Example of comparison between analog model and numerical implementation is

presented in Figs. 5 and 6 for identification methods given in Eqs. 13 and 14.
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Fig. 4 Solution error for direct method: direct (based on Eq. 13) and dual (based on Eq. 14).

a Solution error for direct method. b Solution error for dual method
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Fig. 5 Comparison between analog model and numerical implementation for direct method based

on formula 13
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Fig. 6 Comparison between

analog model and numerical

implementation for dual

method based on formula 14
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Fig. 7 Results for joint

estimation of parameter a
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5.2 Parameter Estimation Results

In this Section estimation results obtained accordingly to the joint estimation with

Extended Fractional Kalman Filter algorithm is presented. The joint estimation algo-

rithm assumed that the state vector is extended with the parameter a which is also

estimated as another state variable (Fig. 7).

6 Conclusions

In this paper experimental results of modelling fractional variable order system with

using Discrete Fractional Variable Order State-Space Model were presented. For

modelling the fractional variable order system a modified multi-order switching ana-

log realization was used. The main feature of proposed realization was a constant

parameter case. For identification of parameters two algorithms were used. The first

based directly on difference equation, and the second based on dual definition differ-

ence equation. Obtained results presents ability of Discrete Fractional Variable Order

State-Space Model to describe variable-order dynamics, and confirm also efficiency
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of used identification algorithms. Additionally, joint estimation results for parame-

ter estimation were presented. Obtained results confirm constancy of parameter for

proposed analog realization.
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Positivity and Stability of a Class
of Fractional Descriptor Discrete-Time
Nonlinear Systems

Tadeusz Kaczorek

Abstract A method of analysis of the fractional descriptor nonlinear discrete-time
systems with regular pencils of linear part is proposed. The method is based on the
Weierstrass-Kronecker decomposition of the pencils. Necessary and sufficient
conditions for the positivity of the nonlinear systems are established. A procedure
for computing the solution to the equations describing the nonlinear systems are
proposed. Using an extension of the Lyapunov method to positive nonlinear sys-
tems, sufficient conditions for the asymptotic stability are derived.

Keywords Fractional ⋅ Descriptor ⋅ Nonlinear ⋅ System ⋅ Weierstrass-
Kronecker decomposition ⋅ Positivity ⋅ Lyapunov method ⋅ Stability

1 Introduction

Descriptor (singular) linear systems have been considered in many papers and
books [1–17]. The eigenvalues and invariants assignment by state and output
feedbacks have been investigated in [4, 15, 18] and the minimum energy control of
descriptor linear systems in [19–21]. The computation of Kronecker’s canonical
form of singular pencil has been analyzed in [16]. The positive linear systems with
different fractional orders have been addressed in [20]. Selected problems in theory
of fractional linear systems has been given in monograph [13].

A dynamical system is called positive if its trajectory starting from any non-
negative initial state remains forever in the positive orthant for all nonnegative
inputs. An overview of state of the art in positive theory is given in [22]. Variety of
models having positive behavior can be found in engineering, economics, social
sciences, biology and medicine, etc.
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Descriptor standard positive linear systems by the use of Drazin inverse has been
addressed in [1–4, 13, 14, 23]. The shuffle algorithm has been applied to checking
the positivity of descriptor linear systems in [24]. The stability of positive descriptor
systems has been investigated in [17]. Reduction and decomposition of descriptor
fractional discrete-time linear systems have been considered in [11]. A new class of
descriptor fractional linear discrete-time systems has been introduced in [12]. The
standard and positive descriptor discrete-time nonlinear systems have been
addressed in [10].

In this paper a method of analysis of the fractional descriptor standard and
positive nonlinear discrete-time systems with regular pencils will be proposed. The
method is based on the Weierstrass-Kronecker decomposition of the pencil of the
linear part of the equation describing the nonlinear system and on an extension of
the Lyapunov method to positive nonlinear systems.

The paper is organized as follows. In Sect. 2 the Weierstrass-Kronecker
decomposition is applied to analysis of the descriptor nonlinear systems. Necessary
and sufficient conditions for the positivity of the nonlinear systems are established
in Sect. 3. In Sect. 4 the stability of positive nonlinear systems by the use of
extended Lyapunov method is analyzed. Concluding remarks are given in Sect. 5.

The following notationwill be used:ℜ—the set of real numbers,ℜn×m
—the set of

n×m—real matrices, Z+—the set of nonnegative integers, ℜn×m
+ —the set of n×m

matrices with nonnegative entries and ℜn
+ =ℜn×1

+ , In—the n× n identity matrix.

2 Fractional Descriptor Discrete-Time Nonlinear Systems
and Their Solution

Consider the fractional descriptor discrete-time nonlinear system

EΔαxi+1 =Axi + f ðxi, uiÞ, i∈Z+ = f0, 1, . . .g, 0 < α<1 ð2:1aÞ

yi = gðxi, uiÞ, ð2:1bÞ

where xi ∈ℜn, ui ∈ℜm, yi ∈ℜp, i∈Z+ are the state, input and output vectors,
f ðxi, uiÞ∈ℜn, gðxi, uiÞ∈ℜp are continuous and bounded vector functions of xi and
ui satisfying the conditions f ð0, 0Þ=0, gð0, 0Þ=0 and E,A∈ℜn× n and

Δαxi = ∑
i

j=0
ð− 1Þ j α

j

� �
xi− j ð2:1cÞ

α
j

� �
=

1
αðα− 1Þ . . . ðα− j+1Þ

j!

for
for

j=0
j=1, 2, . . .

(
. ð2:1dÞ

is the fractional α∈ℜ order difference of xi.
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It is assumed that detE=0 and the

det½Ez−A�≠ 0 for some z∈C the field of complex numbersð Þ. ð2:2Þ

Substituting (2.1c) into (2.1a) we obtain

Exi+1 =Aαxi + ∑
i+1

j=2
cjExi− j+1 + f ðxi, uiÞ ð2:3aÞ

where

Aα =A+Eα, cj = ð− 1Þj+1 α
j

� �
. ð2:3bÞ

It is well-known [14] that if (2.2) holds then there exist nonsingular matrices
P,Q∈ℜn× n such that

P½Ez−Aα�Q=
In1z−A1α 0

0 Nz− In2

� �
,A1α ∈ℜn1 × n1 ,N ∈ℜn2 × n2 ð2:4Þ

where n1 = °fdet½Ez−Aα�g, n2 = n− n1 and N is the nilpotent matrix with the index
μ, i.e. Nμ− 1 ≠ 0, Nμ =0.

The matrices P and Q can be computed using procedures given in [14, 16].
Premultiplying (2.3a) by the matrix P and introducing the new state vector

x ̄i =
x ̄1, i
x2̄, i

� �
=Q− 1xi, x1̄, i ∈ℜn1 , x2̄, i ∈ℜn2 . ð2:5Þ

From (2.3a) and (2.5) we obtain

PEQQ− 1xi+1 =PAαQQ− 1xi + ∑
i+1

j=2
cjPEQQ− 1xi− j+1 +Pf ðQxī, uiÞ, ð2:6Þ

and

x1̄, i+1 =A1αx1̄, i + ∑
i+1

j=2
cjx1̄, i− j+1 + f 1̄ðxī, uiÞ, ð2:7aÞ

Nx2̄, i+1 = x2̄, i + ∑
i+1

j=2
cjNx2̄, i− j+1 − f 2̄ðxī, uiÞ, ð2:7bÞ

Positivity and Stability of a Class of Fractional Descriptor … 145



where

f 1̄ðxī, uiÞ
− f 2̄ðxī, uiÞ

� �
=Pf ðQxī, uiÞ. ð2:7cÞ

Note that if 0 < α<1 then

cj = ð− 1Þj+1 α
j

� �
>0 for j=1, 2, . . . , i+1. ð2:8Þ

To simplify the notation it is assumed that the nilpotent matrix contains only one
block, i.e.

N =

0 1 0 . . . 0
0 0 1 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 . . . 1
0 0 0 . . . 0

2
66664

3
77775∈ℜn2 × n2 . ð2:9Þ

In this case the solution to the Eqs. (2.1a), (2.1b), (2.1c), (2.1d) for given initial
conditions x0 ∈ℜn and input ui ∈ℜm for i = 0,1,… can be computed iteratively as
follows.

From (2.7b) and (2.9) for i = 0 we have

x ̄22, 1 = x2̄1, 0 − f21ðx0̄, u0Þ
x2̄3, 1 = x2̄2, 0 − f22ðx0̄, u0Þ
⋮
x2̄n2, 1 = x2̄n2 − 1, 0 − f2n2 − 1ðx0̄, u0Þ

ð2:10aÞ

x2̄n2, 0 = f2n2ðx0̄, u0Þ ð2:10bÞ

where

x2̄, i = ½ x2̄1, i x2̄2, i . . . x ̄2n2, i �T ð2:10cÞ

f 2̄ðx0̄, u0Þ= ½ f21ðx0̄, u0Þ f22ðx0̄, u0Þ . . . f2n2ðx0̄, u0Þ �T . ð2:10dÞ

From (2.10a) and (2.10c) it follows that x2̄1, 1 can be chosen arbitrary and x ̄2n2, 0
should satisfy the condition (2.10b).

Next using (2.7a) for i = 0 we have

x1̄, 1 =

x1̄1, 1
x1̄2, 1
⋮

x ̄1n1, 1

2
664

3
775=A1αx1̄, 0 + f 1̄ðx0̄, u0Þ.
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Knowing x1̄ we can compute from (2.7b) for i = 1

x ̄22, 2 = x2̄1, 1 + c2x2̄2, 0 − f21ðx1̄, u1Þ
x2̄3, 2 = x2̄2, 1 + c2x2̄3, 0 − f22ðx1̄, u1Þ
⋮
x2̄n2, 2 = x2̄n2 − 1, 1 + c2x2̄n2, 0 − f2n2 − 1ðx1̄, u1Þ

ð2:12aÞ

x2̄n2, 1 = f2n2ðx1̄, u1Þ ð2:12bÞ

and next from (2.7a)

x1̄, 2 =

x1̄1, 1
x1̄2, 1
⋮

x ̄1n1, 1

2
664

3
775=A1αx1̄, 1 + c2x1̄, 0 + f1ðx1̄, u1Þ ð2:14Þ

where c2 =
αð1− αÞ

2 .
Repeating the procedure we may compute the state vector x ̄i for i = 1,2,… and

next from the equality

xi =Qxī ð2:12Þ

the desired solution xi of the Eq. (2.1a).

3 Positive Fractional Descriptor Nonlinear Systems

Consider the descriptor discrete-time nonlinear system (2.1a), (2.1b), (2.1c), (2.1d).

Definition 3.1 The fractional descriptor discrete-time nonlinear system (2.1a),
(2.1b), (2.1c), (2.1d) is called positive if xi ∈ℜn

+ , yi ∈ℜp
+ , i∈ Z+ for any con-

sistent initial conditions x0 ∈X0 ∈ℜn
+ and all admissible inputs ui ∈Ua ∈ℜm

+ .

Note that for positive systems (2.1a), (2.1b), (2.1c), (2.1d) xī =Q− 1xi ∈ℜn
+ if

and only if the matrix Q∈ℜn× n
+ is monomial. In this case Q− 1 ∈ℜn× n

+ .
Note that for fractional positive systems (2.7a) xī =Q− 1xi ∈ℜn

+ for i∈Z+ if
and only if

A1α ∈ℜn1 × n1
+ and f 1̄ðxī, uiÞ∈ℜn1

+ for all x ̄i ∈ℜn
+ and, ui ∈ℜm

+ i∈ Z+ . ð3:1Þ

From the structure of the matrix (2.9) and the Eq. (2.7b) it follows that
x2̄, i ∈ℜn2

+ , i∈Z+ if and only if
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f 2̄ðxī, uiÞ∈ℜn2
+ for all xī ∈ℜn

+ and ui ∈ℜm
+ , i∈ Z+ . ð3:2Þ

The solution of the Eqs. (2.7a), (2.7b), (2.7c) xī ∈ℜn
+ if and only if the con-

ditions (3.1) and (3.2) are satisfied.
Therefore, the following theorem of the positivity of the system (2.1a), (2.1b),

(2.1c), (2.1d) has been proved.

Theorem 3.1 The fractional descriptor nonlinear system (2.1a), (2.1b), (2.1c),
(2.1d) is positive if and only if the conditions (3.1) and (3.2) are satisfied, the matrix
Q∈ℜn× n

+ is monomial and

gðxi, uiÞ∈ℜp
+ for xi ∈ℜn

+ and ui ∈ℜm
+ , i∈ Z+ . ð3:3Þ

Remark 3.1 If the nilpotent matrix N consist of q block then the condition (2.10b)
should be substituted by suitable q conditions of each for the blocks.

Remark 3.2 If the nilpotent matrix N consists of q blocks then for each of the
blocks one state variable can be chosen arbitrarily.

Example 3.1 Consider the fractional descriptor nonlinear system (2.1a), (2.1b),
(2.1c), (2.1d) with α=0.5 and

E=

0 0 0.5 − 0.5

0.4 0 0 0

0 0 0.5 0.5

0.2 0 0 0

2
6664

3
7775, A=

0.5 − 0.5 − 0.25 0.25

0.6 0 0.4 − 0.2

0.5 0.5 − 0.25 − 0.25

0.3 0 0.2 0.4

2
6664

3
7775,

f ðxi, uiÞ=

0.5x23, i − x22, i + e− i − 0.5

0.2x21, i +0.2e− i +0.4ð1+ i2Þ
x22, i +0.5x23, i +0.5

0.2ð1+ i2Þ− 0.4x21, i − 0.4e− i

2
66664

3
77775,

ð3:4aÞ

with the initial conditions

x0 =

x1, 0
x2, 0
x3, 0
x4, 0

2
664

3
775=

1
0
1
2

2
664

3
775. ð3:4bÞ
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The assumption (2.2) is satisfied since

detE=

0 0 0.5 − 0.5
0.4 0 0 0
0 0 0.5 0.5
0.2 0 0 0

��������

��������
=0 ð3:5Þ

and

det½Ez−Aα�=
− 0.5 0.5 0.5z − 0.5z

0.4z− 0.8 0 − 0.4 0.2
− 0.5 − 0.5 0.5z 0.5z

0.2z− 0.4 0 − 0.2 − 0.4

��������

��������
=0.1z2 − 0.2z− 0.1≠ 0.

ð3:6Þ

In this case

P=

1 0 1 0
0 2 0 1
− 1 0 1 0
0 − 1 0 2

2
664

3
775, Q=

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

2
664

3
775. ð3:7Þ

Using (2.4), (2.7a), (2.7b), (2.7c) and (3.7) we obtain

P½Ez−Aα�Q=
In1z−A1α 0

0 Nz− In2

� �
,A1α =

0 1
1 2

� �
,N =

0 1
0 0

� �
, n1 = n2 = 2

ð3:8Þ

xī =

x ̄1, i
x2̄, i
x3̄, i
x4̄, i

2
664

3
775=Q− 1xi =

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

2
664

3
775

x1, i
x2, i
x3, i
x4, i

2
664

3
775=

x3, i
x1, i
x2, i
x4, i

2
664

3
775, ð3:9Þ

Pf ðxī, uiÞ= f 1̄ðxī, uiÞ
− f 2̄ðxī, uiÞ

� �
=

x2̄1, i + e− i

1+ i2

2x2̄3, i − e− i +1
x2̄2, i + e− i

2
664

3
775 ð3:10Þ

and

x1̄, i+1

x2̄, i+1

� �
=

0 1
1 2

� �
x ̄1, i
x2̄, i

� �
+ ∑

i+1

j=2
cj

x1̄, i− j+1

x2̄, i− j+1

� �
+

x2̄1, i + e− i

1+ i2

� �
, ð3:11Þ
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0 1
0 0

� �
x ̄3, i+1

x4̄, i+1

� �
=

x ̄3, i
x4̄, i

� �
+ ∑

i+1

j=2
cj

0 1
0 0

� �
x ̄3, i− j+1

x4̄, i− j+1

� �
+

2x2̄3, i − e− i +1
− x2̄2, i − e− i

� �

ð3:12Þ

with the initial conditions

x ̄0 =Q− 1x0 =

1
1
0
2

2
664

3
775. ð3:13Þ

The fractional descriptor system (2.1a), (2.1b), (2.1c), (2.1d) with (3.4a), (3.4b)
is positive since the conditions (3.1) and (3.2) are satisfied and the matrix Q defined
by (3.7) is monomial.

Using the procedure presented in Sect. 3 we obtain the following:
From (3.12) for i = 0 we have

x4̄, 1 = x3̄, 0 + 2x ̄23, 0 − e0 + 1= 0, ð3:14aÞ

and the condition (3.2) is satisfied since

x4̄, 0 = x ̄22, 0 + 1= 2. ð3:14bÞ

Using (3.11) for i = 0 and (3.13) we obtain

x1̄, 1 = x2̄, 0 + x ̄21, 0 + e0 = 3,

x2̄, 1 = x1̄, 0 + 2x2̄, 0 + 1= 4
ð3:15Þ

and from (3.12) for i = 1

x4̄, 2 = x3̄, 1 + 0.125x4̄, 1 + 2x ̄23, 1 − e− 1 + 1,

x4̄, 1 = x ̄22, 1 + e− 1
ð3:16Þ

for arbitrary x3̄, 1 ≥ 0.
From (3.11) for i = 1 we have

x ̄1, 2 = x2̄, 1 + 0.125x1̄, 0 + x ̄21, 1 + e− 1,

x2̄, 2 = x1̄, 1 + 2x2̄, 1 + 0.125x ̄2, 0 + 2
ð3:17Þ

and from (3.12) for i = 2
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x4̄, 3 = x3̄, 2 + 0.125x4̄, 1 + 0.0625x ̄4, 0 + 2x ̄23, 2 − e− 2 + 1,

x4̄, 2 = x ̄22, 2 + e− 2
ð3:18Þ

for arbitrary x3̄, 2 ≥ 0.
Continuing the procedure we may compute the solution x ̄i of the Eqs. (3.11) and

(3.12) and next the solution

xi =Qxī =

x ̄2, i
x3̄, i
x1̄, i
x4̄, i

2
664

3
775 ð3:19Þ

of the Eqs. (2.1a), (2.1b), (2.1c), (2.1d) with (3.4a), (3.4b).

4 Stability of Positive Nonlinear Systems

Consider the fractional descriptor nonlinear system (2.1a) decomposed into two
nonlinear subsystems (2.7a) and (2.7b) of the form

x1̄, i+1 =A1αx1̄, i + ∑
i+1

j=2
cjx1̄, i− j+1 + f 1̄ðx1̄, iÞ, ð4:1Þ

Nx2̄, i+1 = x2̄, i + ∑
i+1

j=2
cjNx2̄, i− j+1 − f 2̄ðx1̄, i, x2̄, iÞ, ð4:2Þ

where f 1̄ðx1̄, iÞ= f 1̄ðx1̄, i, 0Þ and f 2̄ðx1̄, i, x2̄, iÞ= f 2̄ðx1̄, i, x2̄, i, 0Þ.
Definition 4.1 The positive nonlinear system (2.1a) is called asymptotically stable
in the region D if xi ∈ℜn

+ , i∈ Z+ satisfies the condition

lim
i→∞

xi =0 for any finite x0 ∈ℜn
+ . ð4:3Þ

Note that the positive nonlinear system (2.1a) is asymptotically stable if and only
if the positive nonlinear subsystem (4.1) and (4.2) are asymptotically stable, since
from (2.5) for the monomial matrix Q we have

lim
i→∞

xi =0 if and only if lim
i→∞

xī =0. ð4:4Þ

Remark 4.1 The positive nonlinear system (2.1a) is asymptotically stable only if
the linear part of the system (4.1), (4.2) (for f 1̄ðx1̄, iÞ=0, f 2̄ðx1̄, i, x2̄, iÞ=0) is
asymptotically stable. The asymptotic stability of this positive linear system
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x1̄, i+1 =A1αx1̄, i + ∑
i+1

j=2
cjx1̄, i− j+1, ð4:5aÞ

Nx2̄, i+1 = x2̄, i + ∑
i+1

j=2
cjNx2̄, i− j+1, ð4:5bÞ

can be verified using the tests presented in [13].
The subsystem (4.5b) is asymptotically stable since its solution x ̄2, i =0 for

i=1, 2, . . ..
To investigate the asymptotic stability of the positive nonlinear subsystem (4.1)

we will apply the Lyapunov method. As a candidate of the Lyapunov function for
the subsystem (4.5a) we choose

Vðx1̄, iÞ= dx ̄1, i >0 for x1̄, i ∈ℜn1
+ , i∈ Z+ , ð4:6Þ

where d= ½ d1 . . . dn1 �T is a strictly positive vector with dk >0 for
k=1, 2, . . . , n1.

Using (4.6) and (4.1) we obtain

ΔVðx1̄, iÞ=Vðx1̄, i+1Þ−Vðx1̄, iÞ= d ðA1α − In1Þx1̄, i + ∑
i+1

j=2
cjx1̄, i− j+1 + f 1̄ðx1̄, iÞ

" #
.

ð4:7Þ

From (4.7) it follows that ΔVðx1̄, iÞ<0 if

ðA1α − In1Þx1̄, i + ∑
i+1

j=2
cjx1̄, i− j+1 + f 1̄ðx1̄, iÞ<0 for x1̄, i ∈D∈ℜn1

+ and i∈ Z+ ð4:8Þ

since d is a strictly positive vector.
Therefore, the following theorem has been proved.

Theorem 4.1 The positive nonlinear system (4.1) is asymptotically stable in the
region D if the condition (4.8) is satisfied.

Theorem 4.2 The positive nonlinear system (4.2) is asymptotically stable if the
positive nonlinear system (4.1) is asymptotically stable and

lim
i→∞

f 1̄ðx1̄, iÞ=0. ð4:9Þ

Proof If the positive nonlinear subsystem (4.1) is asymptotically stable then
lim
i→∞

x1̄, i =0 and from (4.2) it follows that lim
i→∞

x2̄, i =0 if the condition (4.9) is

satisfied. □
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Example 4.1 Consider the fractional nonlinear subsystems for α=0.5

x1, i+1

x2, i+1

� �
=

0.1 0.3
0 0.2

� �
x1, i
x2, i

� �
+ ∑

i+1

j=2
cj

x1, i− j+1

x2, i− j+1

� �
+ x21, i

x2, ix2, i

� �
, ð4:10aÞ

0 1
0 0

� �
x3, i+1

x4, i+1

� �
=

x3, i
x4, i

� �
+ ∑

i+1

j=2
cj

0 1
0 0

� �
x3, i− j+1

x4, i− j+1

� �
−

2x24, i
x22, i

� �
. ð4:10bÞ

From comparison of (4.10a), (4.10b) and (4.1) it follows that

x1̄, i =
x1, i
x2, i

� �
, A1α =

0.1 0.3
0 0.2

� �
, f 1̄ðxīÞ= x21, i

x2, ix2, i

� �
, ð4:11aÞ

and

x ̄2, i =
x3, i
x4, i

� �
, N =

0 1
0 0

� �
, f 2̄ðxīÞ=

2x24, i
x22, i

� �
. ð4:11bÞ

The nonlinear system (4.10a), (4.10b) is positive since A1α ∈ℜ2× 2
+ , f 1̄ðxīÞ∈ℜ2

+ ,
f 2̄ðxīÞ∈ℜ2

+ for x ̄i ∈ℜ2
+ , ui ∈ℜ+ , i∈ Z+ and the conditions of Theorem 3.1 are

satisfied.
Note that the linear part of the nonlinear system (4.11a) is asymptotically stable

since the eigenvalues of the matrix A1α are z1 = − 0.1, z2 = − 0.2.
The nonlinear subsystem (4.11b) is also asymptotically stable since the condition

(4.9) is satisfied i.e.

lim
i→∞

f 2̄ðxīÞ= lim
i→∞

2x24, i
x22, i

� �
=

0
0

� �
. ð4:12Þ

5 Concluding Remarks

A method of analysis of the fractional descriptor nonlinear discrete-time systems
described by the Eqs. (2.1a), (2.1b), (2.1c), (2.1d) with regular pencils (2.2) based
on the Weierstrass-Kronecker decomposition of the pencil has been proposed.
Necessary and sufficient conditions for the positivity of the nonlinear systems have
been established (Theorem 3.1). A procedure for computing the solution to the
Eqs. (2.1a), (2.1b), (2.1c), (2.1d) with given initial conditions and input sequences
has been proposed and illustrated by numerical example. Using an extension of the
Lyapunov method to positive nonlinear systems sufficient conditions for the
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asymptotic stability have been derived (Theorems 4.1, 4.2). The proposed method
can be applied for example to analysis of descriptor nonlinear discrete-time elec-
trical circuits. The considerations can be extended to fractional descriptor nonlinear
discrete-time systems.
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Stability of Linear Discrete–Time Systems
with Fractional Positive Orders

Małgorzata Wyrwas and Dorota Mozyrska

Abstract The problem of the stability of the Grünwald–Letnikov–type linear

discrete-time systems with fractional positive orders is studied. The method of reduc-

ing the considered systems by transforming them to the multi-order linear sys-

tems with the partial orders from the interval (0, 1] is presented. For the reduced

multi-order systems the conditions for the stability are formulated based on the

-transform as an effective method for stability analysis of linear systems.

Keywords Grünwald–Letnikov–type difference operator, Discrete-time fractional-

order systems, Stability

1 Introduction

The applications of fractional calculus can be found in different fields of science and

engineering, see for example [2–5, 7, 10, 11] and references therein. Basic informa-

tion on fractional calculus, ideas can be found for example in [6, 7, 10]. Recently,

systems with fractional difference operators are discussed in many papers but usu-

ally their properties are presented for fractional orders from the interval (0, 1]. In

the paper we study the stability of linear discrete-time systems with the Grünwald–

Letnikov–type difference operator for any order 𝛼 > 0. Similarly as in the classical

theory the -transform can be used as an effective method for the stability analy-

sis of linear fractional order difference systems, see for instance [1, 9, 12, 13]. In

this paper we take into account fractional orders that are greater than one. We show

that one can reduce the order of the considered systems by transforming them to the

systems with the partial orders from the interval (0, 1]. Then the results given for

linear difference systems with fractional order 𝛼 ∈ (0, 1] can be used for the reduced
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multi-order systems and consequently, we get the conditions for stability of linear

Grünwald–Letnikov difference systems with fractional orders 𝛼 > 0.

The paper is organized as follows. In Sect. 2 we gather some definitions, notations

and results needed in the sequel. Section 3 contains the method of reduction of lin-

ear systems with positive higher orders to the multi-order systems with partial orders

from the interval (0, 1] and the stability analysis of linear Grünwald–Letnikov dif-

ference systems with positive fractional orders. Additionally, the examples illustrate

our results. Finally, the conclusions are drawn.

2 Preliminaries

Let us recall that the -transform of a sequence {y(n)}n∈ℕ0
is a complex func-

tion given by Y(z) ∶= [y](z) =
∑∞

k=0 y(k)z−k
, where z ∈ C is a complex

number for which the series
∑∞

k=0 y(k)z−k
converges absolutely. Note that since

(k+𝛼−1
k

)
= (−1)k

(−𝛼
k

)
, then for |z| > 1 we have

 [
𝜑̃
𝛼

]
(z) =

∞∑

k=0

(
k + 𝛼 − 1

k

)

z−k =
(

z
z − 1

)
𝛼

. (1)

Definition 1 Let 𝛼 ∈ ℝ. The Grünwald–Letnikov–type difference operator a𝛥
𝛼of

order 𝛼for a function x ∶ ℕa → ℝ is defined by

(
a𝛥

𝛼x
)
(t) ∶=

t−a∑

k=0
c(𝛼)k x(t − k) ,

where c(𝛼)k = (−1)k
(
𝛼

k

)
with

(
𝛼

k

)
=

{
1 fork = 0
𝛼(𝛼−1)⋯(𝛼−k+1)

k! fork ∈ ℕ .

For a = 0 we write: 𝛥
𝛼 ∶=0𝛥

𝛼
. It is important to observe that for 𝛼 = 1 we have

that
(

a𝛥
1x
)
(t) ∶= x(t)−x(t−1), that agrees with the classical nabla operator. In order

to have the classical difference operator △ the nabla operator should be composed

with the shift operator 𝛿, in the sense that
(
△x

)
(t) ∶= x(t + 1) − x(t) = (𝛿◦∇x) (t).

Proposition 1 ([9]) For a ∈ ℝ, 𝛼 ∈ (0, 1] let us define y(s) ∶=
(

a𝛥
𝛼x
)
(t), where

t ∈ ℕa and t = a + s, s ∈ ℕ0. Then

 [
y
]
(z) =

(
z

z − 1

)−𝛼
X(z) , (2)

where X(z) = [x](z) and x(s) ∶= x(a + s).

Usually there are considered the following fractional order systems of order 𝛼 ∈
(0, 1] with the Grünwald-Letnikov–type difference operator:
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(𝛥𝛼x) (t + 1) = Ax(t) , t ∈ ℕ0 , (3)

with initial condition x(0) = x0 ∈ ℝn
, where x = (x1,… , xn)T ∶ ℕ0 → ℝn

is a

vector function and A ∈ ℝn×n
.

We consider also systems with multi-order (𝛼) = (𝛼1,… , 𝛼n), 𝛼i ∈ (0, 1] in the

following form:

(
𝛥
𝛼i xi

)
(t + 1) =

n∑

j=1
Aijxj(t) , t ∈ ℕ0 , (4)

where i = 1,… , n, n ∈ ℕ1 and with initial condition (x1(0),… , xn(0))T = x0 ∈ ℝn
.

Taking into account Proposition 1 we can write the general result.

Proposition 2 ([9]) Let 𝛼 ∈ (0, 1]. Then

 [(
𝛿◦𝛥𝛼i xi

)]
(z) = z

((
z

z − 1

)−𝛼i

Xi(z) − xi(0)
)

, (5)

where (𝛿◦f )(t) ∶= f (t + 1), i = 1,… , n, n ∈ ℕ1, Xi(z) = [xi](z).

Proposition 3 Let 𝛼i ∈ (0, 1], (𝛼) = (𝛼1,… , 𝛼n) and 𝛷 be the fundamental matrix
for system (4) such that x(t) = 𝛷(t)x0 is the solution of (4) with the initial condition
x0 ∈ ℝn. Then

[𝛷](z) =
(

𝛬(𝛼) −
1
z

A
)−1

, (6)

where 𝛬(𝛼) = diag{
(

1 − 1
z

)
𝛼1
,… ,

(

1 − 1
z

)
𝛼n
}.

Proof Taking the –transform of each equation of system (4) and using formula (5)

we get the following system of algebraic equations:

z
((

z
z − 1

)−𝛼i

Xi(z) − xi(0)
)

=
n∑

j=1
AijXj(z) ,

where i = 1,… , n and n ∈ ℕ1. Gathering the equations and writing in the matrix

form we have (
zIn − 𝛬(−𝛼)A

)
X(z) = z𝛬(−𝛼)x0 ,

where 𝛬(𝛼) = diag{
(

1 − 1
z

)
𝛼1
,… ,

(

1 − 1
z

)
𝛼n
}, X(z) =

[
X1(z) … Xn(z)

]T
, A =

(Aij) ∈ ℝn×n
. Then

X(z) =
(

𝛬(𝛼) −
1
z

A
)−1

x0 =  [𝛷] (z)x0

for arbitrary initial condition x0 ∈ ℝn
. Hence we get the thesis.
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3 Stability of Systems with Positive Order

We say that the constant vector xeq =
(
xeq1 ,… , xeqn

)T
is an equilibrium point of

fractional difference system (4) if and only if

(
𝛥
𝛼i xeqi

)
(t + 1) =

n∑

j=1
Aijx

eq
j ,

where i = 1,… , n and t ∈ ℕ0. Note that the trivial solution x ≡ 0 is an equilibrium

point of system (4). Of course, if the determinant of the matrix A =
(
Aij

)
∈ ℝn×n

,

is nonzero, then the systems (4) have only one equilibrium point xeq = 0.

Definition 2 The equilibrium point xeq = 0 of (4) is said to be

(a) stable if, for each 𝜖 > 0, there exists 𝛿 = 𝛿 (𝜖) > 0 such that ‖x(0)‖ < 𝛿 implies

‖x(t)‖ < 𝜖, for all t ∈ ℕ0.

(b) attractive if there exists 𝛿 > 0 such that ‖x(0)‖ < 𝛿 implies

lim
s→∞

x(s) = 0 .

(iv) asymptotically stable if it is stable and attractive.

The fractional difference system (4) is called stable/asymptotically stable if their

equilibrium points xeq = 0 are stable/asymptotically stable.

Proposition 4 Let R be the set of all roots of the equation

det
(

𝛬(𝛼) −
1
z

A
)

= 0 , (7)

where 𝛬(𝛼) = diag{
(

1 − 1
z

)
𝛼1
,… ,

(

1 − 1
z

)
𝛼n
}. Then the following items are satis-

fied.

(a) If all elements from R are strictly inside the unit circle, then system (4) is asymp-
totically stable.

(b) If there is z ∈ R such that |z| > 1, then system (4) is not stable.

Proof The proof is similar to those presented in [9]. Here we need to base the proof

on the formula of –transform of function 𝛷(⋅) from Proposition 3.

The following comparison has been proven in [8]:

Proposition 5 Let 𝛼 ∈ (0, 1]. Then
(
∇
(
𝛥
−(1−𝛼)x

))
(s) = (𝛥𝛼x) (s) , where s ∈ ℕ0

and (∇x) (s) ∶= x(s) − x(s − 1).
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Proposition 6 Let 𝛼 ∈ (q − 1, q] and 𝛽 = 𝛼 − q + 1. Then

(𝛥𝛼x) (t) =
(
∇q−1 (

𝛥
𝛽x
))

(t) , (8)

where t ∈ ℕ0.

Proof It is easily to show that for any positive order 𝛼 > 0 we have that

(∇ (𝛥𝛼x)) (t) =
(
𝛥
𝛼+1x

)
(t) .

This follows from the fact that
(
𝛼

k

)
+
(

𝛼

k−1

)
=
(
𝛼+1

k

)
. Hence for 𝛽 = 𝛼−q+1 ∈ (0, 1]

we have that (𝛥𝛼x) (t) =
(
∇q−1 (

𝛥
𝛽x
))

(t).

Observe that to have the uniqueness of the solution to the system with higher

orders we need to introduce the following problem. Let 𝛼 ∈ (q − 1, q], q ∈ ℕ1, then

we need q initial conditions and we use the shift operator of order q:

(𝛥𝛼x) (t + q) = Ax(t) , t ∈ ℕ0 , (9)

with initial condition x(0), x(1),… , x(q − 1) ∈ ℝn
, A ∈ ℝn×n

. Note that for natural

values 𝛼 = q we have that the Grünwald–Letnikov–type difference operator agree

with classical q-fold application of difference operator △, i.e.

(𝛥qx) (t + q) = (△qx)(t) ∶=
q∑

k=0
(−1)q−k

(
q
k

)

x(t + k) ,

where △q ∶= △◦⋯◦△ is q-fold application of operator △. Therefore we get

𝛿
q◦𝛥qx = △qx, where q ∈ ℕ1 and (𝛿q◦𝛥qx) (t) = (𝛥qx) (t + q). Observe that(
𝛥
1x
)
(t + 1) = (△x)(t) = (∇x)(t + 1).

We construct the condition for stability of linear discrete–time fractional systems

with order 𝛼 ∈ (q − 1, q], where q ∈ ℕ1. Our goal is to present given systems with

positive orders and state x ∈ ℝn
into systems with multi–order that are partial orders

from (0, 1] and new state y ∈ ℝqn
. Now, let us consider the following systems with

positive order 𝛼 ∈ (q − 1, q]:

(𝛥𝛼x) (t + q) = A1x(t) +
q−1∑

k=1
Ak+1

(
∇k−1 (

𝛥
𝛽x
))

(t + k) , (10)

where 𝛽 = 𝛼 − q + 1 ∈ (0, 1] and the operator 𝛥
𝛼

is defined by Definition 1. Addi-

tionally, for q = 1 we treat that in (10) the part with summation is equal to zero.

Moreover, let y1(t) ∶= x(t) ∈ ℝn
, y2(t) ∶=

(
𝛥
𝛽y1

)
(t + 1), and for k = 2,… , q − 1

let us define yk+1 ∶= 𝛿◦𝛥1yk. Then we write system (10) as system with multi–order

(𝛼̃) = (𝛽, 1,… , 1):
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⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
𝛥
𝛽y1

)
(t + 1) = y2(t)(

𝛥
1y2

)
(t + 1) = y3(t)

⋮(
𝛥
1yq−1

)
(t + 1) = yq(t)(

𝛥
1yq

)
(t + 1) = A1y1(t) +

∑q−1
k=1 Ak+1yk+1(t)

(11)

or equivalently in the matrix form

(
𝛥
𝛼i yi

)
(t + 1) =

n∑

j=1
Ãijyj(t) , t ∈ ℕ0 , (12)

where i = 1,… , q, q ∈ ℕ1, 𝛼1 = 𝛽, 𝛼k = 1, 2 ≤ k ≤ q and then
(
𝛥
𝛼i yi

)
(t + 1) =

(
∇yi

)
(t + 1) and with initial condition y0 ∶= (y1(0),… , yq(0)) ∈ ℝqn

and

Ã =
(
Ãij

)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 In 0 … 0 0
0 0 In … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … In 0
0 0 0 … 0 In

A1 A2 A3 … Aq−1 Aq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (13)

From Proposition 4 the following facts for systems with operators with higher

orders follow immediately.

Proposition 7 Let R be the set of all roots of the equation

det
(

𝛬(𝛼̃)Iqn −
1
z

Ã
)

= 0 , (14)

where Ã is given by Eq. (13) and

𝛬(𝛼̃) = diagblocks

{(

1 − 1
z

)
𝛽

In,

(

1 − 1
z

)

In,… ,

(

1 − 1
z

)

In

}

.

Then the following items are satisfied.

(a) If all elements from R are strictly inside the unit circle, then system (10) is asymp-
totically stable.

(b) If there is z ∈ R such that |z| > 1, then system (10) is not stable.

Additionally, we have:

Proposition 8 For 𝛼 ∈ (q−1, q], where q ∈ ℕ1, A1 = A and Ai = 𝟎 for i = 2,… , q
and q ≥ 2, let R be the set of all roots of the equation
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det
(

Inq −
1
z
𝛬(𝛼̃)Ã

)

= det
(

In −
1
zq

(
z

z − 1

)
𝛼

A
)

. (15)

where Ã is given by Eq. (13) and

𝛬(𝛼̃) = diagblocks

{(

1 − 1
z

)
𝛽

In,

(

1 − 1
z

)

In,… ,

(

1 − 1
z

)

In

}

.

Then the following items are satisfied.

(a) If all elements from R are strictly inside the unit circle, then system (10) is asymp-
totically stable.

(b) If there is z ∈ R such that |z| > 1, then system (10) is not stable.

Proof For 𝛼 ∈ (q − 1, q], where q ∈ ℕ1, A1 = A and Ai = 𝟎 for i = 2,… , q and

q ≥ 2, the Eq. (14) takes the following form:

det

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

In −1
z

z
z−1 In 𝟎 … 𝟎 𝟎

𝟎 In −1
z

z
z−1 In … 𝟎 𝟎

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝟎 𝟎 𝟎 … In −1

z
z

z−1 In

−1
z

(
z

z−1

)
𝛽

A 𝟎 𝟎 … 𝟎 In

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0 . (16)

Moreover, using also the operations on block matrices we receive that:

det
(

Inq −
1
z
𝛬(𝛼̃)Ã

)

= det
(

In −
1
zq

(
z

z − 1

)
𝛼

A
)

. (17)

In the particular case when (𝛥𝛼x) (t + 2) = 𝜆x(t) the conditions for nonstability of

this system are presented in the following example.

Example 1 Let us consider the case with n = 1, q = 2, so 𝛼 ∈ (1, 2] and with A1 = 𝜆

and A2 = 0. Then the condition (14) takes the form

1 − 1
z2

(
z

z − 1

)
𝛼

𝜆 = 0 .

Moreover, then 𝜆 = z2
(

1 − 1
z

)
𝛼

. Hence we can easily conclude that if

|𝜆| > 2𝛼 ,

then the system is not stable.

Now, let us present a numerical example that illustrates our results.
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Example 2 Let us take n = 1, q = 2 and 𝛼 ∈ (1, 2], and consider system (𝛥𝛼x) (t +
2) = 𝜆x(t). Then 𝛽 = 𝛼 − 1, hence 𝛽 ∈ (0, 1]. Let y1(t) ∶= x(t) ∈ ℝ, and y2(t) ∶=(
𝛥
𝛽y1

)
(t + 1). Then the considered system can be written as a system with multi–

order (𝛼̃) = (𝛽, 1): {(
𝛥
𝛽y1

)
(t + 1) = y2(t)(

𝛥
1y2

)
(t + 1) = 𝜆y1(t)

(18)

with initial condition

y(0) =
[

x(0)(
𝛥
𝛽x
)
(0)

]

∈ ℝ2
.

By Proposition 7 we get that the stability of the considered systems depends on

order 𝛼. Figures 1, 2 and 3 present the phase trajectories for the considered systems

with different fractional positive order 𝛼. Solving system (18) we use the recurrence

representation of it

⎧
⎪
⎨
⎪
⎩

y1(t + 1) = y2(t) +
t∑

i=0
(−1)t−i( 𝛽

t+1−i

)
y1(i)

y2(t + 1) = y2(t) + 𝜆y1(t)
(19)

for t ∈ ℕ0. For 𝜆 = −0.5, the numerically checked highest value of 𝛼 that confirms

stability is 𝛼 = 1.48. And oppositely the biggest |𝜆| that preserves stability for 𝛼 =
1.5 is 0.48, where at Fig. 2 we use 𝜆 = −0.47 to have no doubts that we see that

solution is stable.

(a) (b)

Fig. 1 The solution of the initial value problem for the system (18) with initial condition x(0) = 0.2,

y2(0) = 0.2, and 𝜆 = −0.5. a Phase trajectory—stable, 𝛼 = 1.45. b Phase trajectory—unstable,

𝛼 = 1.5
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(a) (b)

Fig. 2 The solution of the initial value problem for the system (18) with initial condition x(0) = 0.2,

y2(0) = 0.2, and 𝜆 = −0.47. a Phase trajectory—stable, 𝛼 = 1.5. b The graph of x for n = 100
steps, 𝛼 = 1.5

(a) (b)

Fig. 3 The solution of the initial value problem for the system (18) with initial condition x(0) = 0.2,

y2(0) = 0.2, and 𝜆 = −0.5. a Phase trajectory—unstable, 𝛼 = 1.5. b The graph of x for n = 100
steps, 𝛼 = 1.5

4 Conclusions

The stability of the Grünwald–Letnikov–type linear discrete-time systems with frac-

tional positive orders is discussed. An effective method for stability analysis of linear

discrete-time systems is the -transform, so in the case of considered fractional sys-

tems we also use this method. We present the method of transforming the considered

systems with arbitrary positive orders to the systems with multi-orders where the par-

tial orders are from the interval (0, 1]. It is possible to extend the presented results

for linear fractional order systems with various step h. Additionally, one can com-
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pare the stability of systems with continuous–time fractional operators with their

discretization.
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Robust H∞ Observer-Based Stabilization
of Disturbed Uncertain Fractional-Order
Systems Using a Two-Step Procedure

Yassine Boukal, Michel Zasadzinski, Mohamed Darouach
and Nour-Eddine Radhy

Abstract The main objective of this work is the problem of robust H∞ observer-

based stabilization for a class of linear Disturbed Uncertain Fractional-Order

Systems (DU-FOS) by using H∞-norm optimization. Based on the H∞-norm analy-

sis for FOS, a new design methodology is established to stabilize a linear DU-FOS

by using robust H∞ Observer-Based Control (OBC). The existence conditions are

derived, and by using the H∞-optimization technique, the stability of the estimation

error and stabilization of the original system are given in an inequality condition,

where all the observer matrices gains and the control law can be computed by solv-

ing a single inequality condition in two step. Finally, a simulation example is given

to illustrate the validity of the results.

Keywords Fractional-order system ⋅ Observer-based control ⋅ H∞-norm, H∞
Observer design

1 Introduction

For past centuries, fractional calculus has been a very interesting topic, but just for

mathematicians, to make the subject well understandable for engineers or scientists

point of view [1–4]. Only in the last decades, fractional calculus have been caught

much attention, because it has been shown that non-integer models can be both the-

oretically challenging and pertinent for many fields of science and technology such
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as chemistry [5–7], biology [8, 9], economics [10, 11], psychology [12, 13], mass

diffusion, heat conduction, physical and engineering applications [14, 15] etc.

In some real models, output feedback control may not guarantee the stability of

the closed loop, because the system output measurements do not provide a com-

plete information on the internal state of the system. For this reason, observer design

for estimating the states of a system has received considerable attention in the past

[16–18]. Observer-based controllers are generally used to stabilize unstable systems

or to improve the system performances. Recently, the research activities for the OBC

have been developed for FOS [19–21].

The H∞ theory was generally restricted to integer-order systems. In the recent

years, some works about the extension of the H∞-norm computation to FOS have

been appeared [22], where the authors defined the pseudo Hamiltonian matrix of a

fractional order system, and they proposed two methods to compute FOS H∞-norm

based on this pseudo Hamiltonian matrix. The first one was a dichotomy algorithm

and the second one used LMI formalism. Based on these analysis results, methods

to design H∞ state feedback controllers and H∞ observer were proposed in [23–26].

The main idea of our study is to design robust H∞ observer-based controllers for

DU-FOS, affected by disturbances that are supposed to have finite energy. After sta-

ting OBCs design objectives, our results are given in matrix inequalities. Firstly, the

existence conditions of the OBC of such systems are given. In the second section,

by using the H∞-optimization technique, the stability of the estimation error and

stabilization of the original system are given in inequality condition, where all the

observer gains and the control law can be computed by solving this inequality con-

dition in two step. The method proposed have two objectives, the first one, satisfies

the H∞ performance index, and the second one is the stabilization of the DU-FOS.

Notation: Rn
and Rn×m

denote the n dimensional Euclidean space and the set

of all n × m real matrices, respectively; AT
and A∗

denote the transpose and the

conjugate transpose of matrixA, respectively; matrixA is symmetric positive definite

if and only if AT = A and A > 0; A+
means the generalized inverse of matrix A which

satisfies AA+A = A; ‖‖∞ is the H∞ norm; I and 0 denote the identity matrix and zero

matrix, respectively, of appropriate dimension. Sym{X} is used to denote X∗+X. The

notation (∗) is the conjugate transpose of the off-diagonal part.

2 Preliminaries

The fractional-order derivative definition introduced by Caputo for a function f (t)
can be given as [27]

C
a D

𝛼

t f (t) =
1

𝛤 (𝛼 − n) ∫
t

a

f n(𝜏)
(t − 𝜏)𝛼−n+1

d𝜏 , (n − 1) < 𝛼 < n (1)

with n ∈ ℕ∗
and 𝛼 ∈ R+

, where 𝛤 (.) is the Gamma function.
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Consider the following linear fractional-order system

{
D𝛼x(t) = A0x(t) + B0u(t)
y(t) = C0x(t) + D0u(t)

, 0 < 𝛼 < 2 (2)

where x(t) ∈ Rn
is the state vector, u(t) ∈ Rm

is the control input vector, y(t) ∈ Rp

is the measured output and D𝛼
is used to denote the fractional derivative of order 𝛼.

A0, B0, C0 and D0 are known constant matrices and with appropriate dimensions.

Two tools of H∞ norm computation for FOS were firstly proposed in [22], and

the calculation of L2-gain for FOS was initially presented in [22] and it was extended

to give a new formulation in [28]. The following lemmas show these computations.

Lemma 1 ([22]) H∞-norm of a fractional-order system G = (A,B,C,D, 𝛼) is
bounded by a real positive number 𝛾 if and only if the eigenvalues of matrix A

𝛾

lie in the stable domain defined by s ∈ C ∶ |arg(s)| > 𝛼
𝜋

2 .

A
𝛾
=
(

(A + BRDTC) 𝛯BRBT

CT (I + DRDT )C 𝛯(AT + CTDRBT )

)

(3)

where
𝛯 = e−𝛼j𝜋 and R = (𝛾2I − DTD)−1

Lemma 2 ([28]) For a LTI-FOS G = (A0,B0,C0,D0, 𝛼), the L2-gain is bounded by
𝛾 , if there exists a positive definite Hermitian matrix P, such that

𝛤1 =
[
𝛯1PA0 + 𝛯

∗
1A

T
0P PB0 𝛯

∗
1C

T
0

BT
0P −𝛾2I DT

0
𝛯1C0 D0 −I

]

< 0 (4)

with
𝛯1 = e(1−𝛼)j𝜋∕2and𝛯∗

1 = e−(1−𝛼)j𝜋∕2

Lemma 3 ([29]) Let D,E and F be real matrices of appropriate dimensions and F
satisfies FTF ⩽ I. Then for any scalar 𝜖 > 0 and vectors x, y ∈ Rn, we have

2xTDFEy ⩽ 𝜖
−1xTDDTx + 𝜖yTETEy (5)

3 Main Results

3.1 H∞-norm Computation for FOS with Uncertainties

Let us consider the following linear systems with uncertainties and disturbances:

{
D𝛼x(t) = (A + 𝛥A)x(t) + (Bw + 𝛥Bw)w(t)
y(t) = (C + 𝛥C)x(t) + (Dw + 𝛥Dw)w(t)

, 0 < 𝛼 < 2 (6)
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The terms 𝛥A, 𝛥Bw, 𝛥C, and 𝛥Dw are unknown matrices representing time-

varying parameter uncertainties.

Assumption 1 In this paper, we will consider the following structure for the uncer-

tainties [
𝛥A 𝛥Bw
𝛥C 𝛥Dw

]

= MF(t)
[
NA NBw
NC NDw

]

(7)

where M, NA, NBw , NC, and NDw
are known real constant matrices and of appropriate

dimensions and F(t) is an unknown real-valued time-varying matrix satisfying

FT (t)F(t) ≤ I (8)

when the elements of F(t) are Lebesgue measurable.

Lemma 4 The L2-gain of an uncertain LTI-FOS (6) is bounded by 𝛾 , if there exists
a positive definite Hermitian matrix P and two positive scalars 𝜇1 and 𝜇2 such that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛩11
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[
Sym{𝛯1PA} PM PBw+

1
𝜇1

NT
ANBw

∗ −𝜇1I 0
∗ ∗ −𝛾2I

]

𝛩12
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[ NT
A NT

C 0 0 𝛯
∗
1 I

T 0
0 0 0 0 0 0
0 0 NBw NDw Dw 0

]

∗

𝛩22
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
𝜇1

I 0 0 0 0 0

∗ − 1
𝜇2

I 0 0 0 0

∗ ∗ − 1
𝜇1

I 0 0 0

∗ ∗ ∗ − 1
𝜇2

I 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −𝜇2I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (9)

with
𝛯1 = e(1−𝛼)j𝜋∕2, 𝛯∗

1 = e−(1−𝛼)j𝜋∕2, 𝛯1 × 𝛯
∗
1 = 1

Proof By letting A0 = A+𝛥A, B0 = Bw +𝛥Bw, C0 = C+𝛥C and D0 = Dw +𝛥Dw,

the inequality (4) can be written as

𝛤1 = 𝛺1 + Sym{X1F(t)Y1 + X2F(t)Y2} < 0 (10)

with

𝛺1 =
⎡
⎢
⎢
⎣

𝛯1PA + 𝛯
∗
1A

TP PB 𝛯
∗
1C

T

BTP −𝛾2I DT

𝛯1C D −I

⎤
⎥
⎥
⎦

X1 =
⎡
⎢
⎢
⎣

PM
0
0

⎤
⎥
⎥
⎦

X2 =
⎡
⎢
⎢
⎣

0
0
M

⎤
⎥
⎥
⎦

Y1 =
[
𝛯1NA NBw 0

]
Y2 =

[
𝛯1NC NDw

0
]



Robust H∞ Observer-Based Stabilization … 171

According to Lemma 3, we obtain the following inequality

𝛤1 < 𝛤1 = 𝛺1 + 𝜇1X1XT
1 + 𝜇

−1
1 YT

1 Y1 + 𝜇2X2XT
2 + 𝜇

−1
2 YT

2 Y2 (11)

One can see from the above results that the inequality (10) is verified, if there

exists two positive scalars 𝜇1 and 𝜇2 such that

𝛺1 + 𝜇1X1XT
1 + 𝜇

−1
1 YT

1 Y1 + 𝜇2X2XT
2 + 𝜇

−1
2 YT

2 Y2 < 0 (12)

Then, the inequality (12) is equivalent to

𝛤1 = 𝛺1 +
⎡
⎢
⎢
⎣

1
𝜇1

NT
ANA+

1
𝜇2

NT
CNC+𝜇1PM(PM)T 1

𝜇1
NT
ANBw+

1
𝜇2

NT
CNDw 0

∗ 1
𝜇1

NT
Bw

NBw+
1
𝜇2

NT
Dw

NDw 0

∗ ∗ 𝜇2MMT

⎤
⎥
⎥
⎦

< 0 (13)

According to Schur complement, one can see that the equivalence between the

above inequality (13) and the the following

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Sym{𝛯1PA} NT
A NT

C PM PBw+
1
𝜇1

NT
ANBw+

1
𝜇2

NT
CNDw 0 0 𝛯

∗
1C

T 0

∗ − 1
𝜇1

I 0 0 0 0 0 0 0

∗ ∗ − 1
𝜇2

I 0 0 0 0 0 0
∗ ∗ ∗ −𝜇1I 0 0 0 0 0
∗ ∗ ∗ ∗ −𝛾2I NT

Bw
NT
Dw

DT
w 0

∗ ∗ ∗ ∗ ∗ − 1
𝜇1

I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ − 1
𝜇2

I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I M
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜇2I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (14)

We can easily deduce by permuting some rows and columns, the equivalence between

the inequalities (9) and (14).

One can see from the above results that a sufficient condition for L2-gain of the

LTI-FOS (6) to be bounded by 𝛾 is that if there exist a positive definite Hermitian

matrix P and two positive scalars 𝜇1 and 𝜇2 such that LMI (9) must hold, which

completes the proof. □

3.2 Robust H∞ Observer-Based Controller Parametrization

Without loss of generality, we consider the DU-FOS represented by the following

form:

{
D𝛼x(t) = (A + 𝛥A)x(t) + Buu(t) + Bww(t)
y(t) = Cx(t) (15)
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where x(t) ∈ Rn
is the state vector, u(t) ∈ Rm

is the input vector, y(t) ∈ Rq
the

measurement output vector and w(t) ∈ Rp
is the disturbance input vector. A, Bu, Bw

and C are known matrices of appropriate dimensions. The term 𝛥A is an unknown

matrix uncertainty, assumed to respect the Assumption 1.

Assumption 2 We assume that w(t) ∈ L2, where the L2-norm is defined as

||w||L2 =
(

∫
∞

0
w(t)Tw(t)dt

) 1
2

(16)

To allow the stabilization of system using measurement feedback, we need to

reconstruct the state variable. For this, we consider a robust H∞ observer with a

linear feedback control law of the form

⎧
⎪
⎨
⎪
⎩

D𝛼
𝜂(t) = N𝜂(t) + Hu(t) + Jy(t)
x̂(t) = 𝜂(t) + Ey(t)
u(t) = Kux̂(t)

(17)

where 𝜂(t) ∈ Rn
is the state vector of robust H∞ observer, x̂(t) ∈ Rn

is the estimate

of x(t) and u(t) ∈ Rm
is the feedback control law. The matrices N, J, H and E are

observer unknown matrices of appropriate dimensions which must be determined,

such that x̂(t) converges asymptotically to x(t) for w(t) = 0 and
||e||2
||w||2

< 𝛾 , for w(t) ≠
0. The matrix Ku ∈ Rm×n

is the controller gain to be determined.

Before designing the robust H∞ observer, the estimation error is defined as

e(t) = x(t) − x̂(t) (18)

and has the fractional-order dynamic

D𝛼e(t) = D𝛼x(t) − D𝛼 x̂(t) (19a)

or equivalently

D𝛼e(t) = Ne(t) + (RA − NR − JC + R𝛥A)x(t)
+ (RBu − H)u(t) + RBww(t) (19b)

where R = In − EC.

We can easily deduce that the input control law stabilizing the system (15) has

the following form

u(t) = Kux(t) − Kue(t) (20)
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The system (15) can be rewritten as

D𝛼x(t) = (A + BuKu + 𝛥A)x(t) − BuKue(t) + Bww(t) (21)

System (15) and estimation error (19b) can be combined in the following augmented

system

D𝛼

[
x(t)
e(t)

]

=
([

A + BuKu −BuKu
𝛩1 N

]

+
[
𝛥A 0
R𝛥A 0

])[
x(t)
e(t)

]

+
[
Bw
RBw

]

w(t) +
[
0
𝛩2

]

u(t)

(22)

where

𝛩1 = NR + JC − RA
𝛩2 = H − RBu

Problem 1 Get, if possible, an OBC (17), i.e. determine all the observer and con-

troller gain matricesN, J,H, E andKu of appropriate dimensions such that the uncer-

tain system (15) is stabilized for all initial states values.

Proposition 1 System (17) is a robust H∞ observer-based controller of the system
(15), with respect to the Assumption 2 and for any finite x(0) and x̂(0) if

(i) The L2-gain of the augmented system (22) is bounded by 𝛾 > 0.
(ii) NR + JC − RA = 0
(iii) H = RBu

where R = In − EC.

By using the definition of R, the expression of 𝛩1 can be rewritten as

N + ECA + KC = A (23a)

where K = J − NE.

Now, equation (23a) can be written as

[
N K E

]1 = 2 (24)

where

1 =
⎡
⎢
⎢
⎣

In
C
CA

⎤
⎥
⎥
⎦

and 2 =
[
A
]

(25)

The necessary and sufficient condition for the existence of the solution of (24)

can be given by the following lemma.
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Lemma 5 ([30]) There exists a solution to (24) if and only if

rank
[12

]

= rank
[1

]
. (26)

If (26) is satisfied, the general solution of (24) is given by

[
N K E

]
= 2+

1 − Z(I −1+
1 ) (27)

where +
1 is a generalized inverse matrix of 1 [30] (i.e. 1 = 1+

11) and

Z is an arbitrary matrix of appropriate dimension.

From (28a), we obtain

N = 𝔸N − Z𝔹N (28a)

K = 𝔸K − Z𝔹K (28b)

E = 𝔸E − Z𝔹E (28c)

where

𝔸N = (2+
1 )

[
I 0 0

]T 𝔹N = (I −1+
1 )

[
I 0 0

]T

𝔸K = (2+
1 )

[
0 I 0

]T 𝔹K = (I −1+
1 )

[
0 I 0

]T

𝔸E = (2+
1 )

[
0 0 I

]T 𝔹E = (I −1+
1 )

[
0 0 I

]T

Matrices J and H are obtained from

{
J = K + NE
H = (In − EC)B (29)

By using this results, all the parameters of the Robust H∞ fractional-order

observer (17) can be computed if matrix parameter Z is known.

3.3 Robust H∞ Observer-Based Controller Design

Now, if conditions (ii and iii) in Proposition 1 are satisfied, then the augmented sys-

tem (22) can be expressed as

D𝛼

[
x(t)
e(t)

]

=
([

A + BuKu −BuKu
0 N

]

+
[
𝛥A 0
R𝛥A 0

])[
x(t)
e(t)

]

+
[
Bw
RBw

]

w(t) (30)
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or equivalently

D𝛼X̃(t) =
(
Ã + 𝛥Ã

)
X̃(t) + B̃w(t) (31)

with

X̃(t) =
[
x(t)
e(t)

]

Ã =
[
A + BuKu −BuKu

0 N

]

B̃ =
[
Bw
RBw

]

𝛥Ã = M̃F(t)ÑA M̃ =
[
M
RM

]

ÑA =
[
NA 0

]

Lemma 6 System (17) is a robust H∞ observer-based controller of the uncertain
disturbed system (15) with disturbance attenuation given by 𝛾 , if there exist two pos-
itive definite hermitian matrices P1 and P2, two matrices X1 and X2, and a positive
scalar 𝜇1, such that the following matrix inequality holds

[
𝛺11 𝛺12
∗ 𝛺22

]

< 0 (32)

where

𝛺11 =
[
Sym{𝛯1(AP1 + BuX1)} −BuKu

∗ Sym{𝛯1(P2𝔸N − X2𝔹N)}

]

𝛺12 =
[[

M
P2𝔸RM + X2𝔹RM

] [
P−1
1 NT

A
0

] [
Bw

P2𝔸RBw + X2𝔹RBw

]

𝛯
∗
1 I
]

𝛺22 =

⎡
⎢
⎢
⎢
⎢
⎣

−𝜇1I 0 0 0
∗ − 1

𝜇1
I 0 0

∗ ∗ −𝛾2I 0
∗ ∗ ∗ −I

⎤
⎥
⎥
⎥
⎥
⎦

with

𝔸R = In −𝔸2C X1 = KuP−1
1

𝔹R = 𝔹2C X2 = P2Z

Proof The detailed proof of this result is omitted for space limitation. However, the

proof can obtained by replacing all system matricesA,Bw,NA andM in the inequality

(9) by their expression given in the augmented system (30) Ã, B̃w, ÑA and M̃, respec-

tively. Then, the inequality (32) is obtained by pre and post multiplication of the

above inequality with the following matrices, respectively

[
P−1
01 0
0 I

]

and

[
P−1
01 0
0 I

]T
,

with P−1
01 = P1. Which complete the proof. □



176 Y. Boukal et al.

We can remark that the robust H∞ observer based control problem given by the

inequality (32) is a non convex problem. The product between the two decision matri-

ces P1 and Ku, and the presence of matrices P1 and its inverse P−1
1 leading to a bilin-

ear matrix inequality (BMI) structure. Then, the inequality (32) can not be solved

for (P1, P2, X1, X2, Ku) in the same time. According the Schur lemma, all diagonal

component must satisfy the inequality. Therefore, we propose to resolve this problem

in two step. Firstly, we start by solving the first component in 𝛺11. After obtaining

P1 and X1, replacing them into the inequality (32) by their value leads to a feasible

LMI.

4 Numerical Example

In this section, the performance of the proposed robust H∞ observer-based stabiliz-

ing controller is presented via a numerical example.

Consider the disturbed uncertain fractional-order system described by

{

D1.5x(t) =
([

0 10
15 −20

]

+ 𝛥A
)

x(t) +
[
0
0.5

]

u(t) +
[

1
0.25

]

w(t)

y(t) =
[
1 0

]
x(t)

(33)

The uncertainty matrix 𝛥A is given as

𝛥A = MF(t)NA =
[
0.1 −0.5
0.25 0.4

]

F(t)
[
−0.1 0
0 0.5

]

(34)

with F(t) = diag(0.15 sin(25t), 0.15 sin(25t)).
The inequality condition (32) can be solved by using a two-step procedure. The

obtained results for 𝛾 = 0.41 are given by

P1 =
[
375.02 −27.3
−27.3 18.9

]

,X1 =
[
−12342 970.71

]
P2 =

[
20449 −0.025
−0.025 26.4

]

,

X2 =
[
14460 2024.2 −14460 −202.37
198.19 568.19 −198.18 −56.54

]

Finally, the dynamic of the estimate x̂(t) and the controller law are given by the

following observer

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

D1.5
𝜂(t) =

[
−0.7 −3e − 06
−0.01 −21.7

]

𝜂(t) +
[
0
0.5

]

u(t)

+
[
−7e − 07

11.2

]

y(t)

x̂(t) = 𝜂(t) +
[
1 0.2

]
y(t)

u(t) =
[
−32.6 4.3

]
x̂(t)

(35)
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Fig. 1 States trajectories

x1(t) and x2(t) of the open

loop unstable systems (33)
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Fig. 2 Evolution of the
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Fig. 3 Evolution of the

vector x2(t) and its estimate
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Figure 1 show the open loop response of the unstable system. In addition, (Figs. 2,

3, 4 and 5) show the performances in the time domain of the proposed robust H∞
OBC to ensure the stability of the DU-FOS in the closed loop. The actual states are

shown with their estimates, and the estimation errors obtained by using the proposed

method. It is clear that the estimate state x̂(t) converges to the actual state x(t).
One can see in (Figs. 2, 3, 4 and 5) that disturbance w(t) is activated in the time

interval between five and ten seconds. In this time interval, the estimate x̂(t) tracks

the actual state x(t) with a small error. This is in agreement with the small value of

the disturbance attenuation criterion given by 𝛾 = 0.41.
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Fig. 4 Evolution of the

estimation error for state

x1(t)
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Fig. 5 Evolution of the

estimation error for state
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5 Conclusion

In this paper it has been shown how that a robustH∞ observer can be used to design a

controller such that the robust stabilization of the DU-FOS is ensured. The existence

conditions of an observer and the robust stabilization satisfying the performance

requirement of closed loop in the presence of uncertainties and disturbances are

investigated. When the system is subject to uncertainties and bounded disturbances,

the robust H∞ OBC must ensure the stabilization of the closed loop, and minimize

the effect of disturbances on the estimation error and the system. By adopting anH∞-

norm approach for FOS, and on the basis of the algebraic constraints derived from the

analysis of the estimation error dynamics, sufficient conditions formed in inequal-

ity are given to satisfy the two above requirements. Finally, a numerical example is

provided to show the effectiveness of the proposed method.
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Relative Observability for Fractional
Differential-Algebraic Delay Systems Within
Riemann-Liouville Fractional Derivatives

Zbigniew Zaczkiewicz

Abstract The paper presents the problems of relative R-observability for linear

stationary fractional differential-algebraic delay system (FDAD). FDAD system con-

sists of fractional differential equation in the Riemann-Liouville sense and differ-

ence equations. We introduce the determining equation systems and their properties.

Applying the Laplace transformation we obtain solutions representations into series

of their determining equation solutions and present effective parametric rank criteria

for relative R-observability. A dual controllability result is also formulated.

Keywords Observability ⋅ Fractional differential equations ⋅ Determining

equations ⋅ Differential-algebraic systems

1 Introduction

In the paper, we consider related observability for fractional differential-algebraic

delay systems. Observability concept was introduced by R. Kalman in 1960. This is

qualitative property of observation systems and is of great importance in control the-

ory. The basic concepts of observability play an important role in dynamical systems

analysis.

Recently, a huge research attention has been paid to fractional control systems

(see the monograph [1–7] and the papers [8–14] and [15–17]).

The paper deals with linear fractional differential-algebraic delay systems within

Riemann-Liouville fractional derivatives (FDAD). FDAD systems consist of some

equations being fractional differential in the Riemann-Liouville sense, the other-

difference and discrete. We introduce the determining equations the same as for

differential-algebraic systems (for example see [18] or [19]). To obtain solutions

representations we apply fractional differential calculus especially dealing with the
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Laplace transform. By this result we obtain effective parametric rank criterions for

ℝ-observability with respect to x1. The relative ℝ-observability is dual to relatively

controllability with respect to x1 (see [17] for more details). Our results can be con-

sidered as a generalization of the known corresponding results for the integer order

case [20] and the fractional order in the Caputo sense [15].

The paper is organized as follows. In Sect. 2 the state equations of FDAD sys-

tems is presented. The deterministic equations and representation of solutions into

series of determining equations solutions are introduced in Sect. 3. The observability

problem is analyzed in Sect. 4. The duality result is given in Sect. 4. Finally, Sect. 5

contains an example.

2 Preliminaries

Let us introduce the following notation:

D𝛼

t is the left-sided Riemann-Liouville fractional derivatives of order 𝛼 defined

by

D𝛼

t f (t) = 1
𝛤 (1 − 𝛼)

d
dt ∫

t

0

f (𝜏)
(t − 𝜏)𝛼

d𝜏,

where 0 < 𝛼 < 1, 𝛼 ∈ ℝ and 𝛤 (t) = ∫ ∞
0 e−𝜏𝜏 t−1d𝜏 is the Euler gamma function

(see [5] for more details). Tt = lim
𝜖→+0

[
t−𝜖
h

]

, where the symbol [z] means entire

part of the number z; In is the identity n by n matrix.

In this paper, we concentrate on the stationary FDAD system in the following

form:

D𝛼

t x1(t) =A11x1(t) + A12x2(t), t > 0, (1a)

x2(t) =A21x1(t) + A22x2(t − h), t ≥ 0, (1b)

y(t) = B1x1(t) + B2x2(t), (1c)

where x1(t) ∈ ℝn1 , x2(t) ∈ ℝn2 , u(t) ∈ ℝr
,A11 ∈ ℝn1×n1 , A12 ∈ ℝn1×n2 , A21 ∈

ℝn2×n1 , A22 ∈ ℝn2×n2 , B1 ∈ ℝr×n1 , B2 ∈ ℝr×n2 are constant (real) matrices, 0 < h
is a constant delay. We regard an absolute continuous n1-vector function x1(⋅) and

a piecewise continuous n2-vector function x2(⋅) as a solution of System (1) if they

satisfy the equation (1a) for almost all t > 0 and (1b) for all t ≥ 0.

System (1) should be completed with finite initial conditions:

[D𝛼−1
t x1(t)]t=0 = x10, x2(𝜏) = 𝜓(𝜏), 𝜏 ∈ [−h, 0), (2)

where x10 ∈ ℝn1 ; 𝜓 ∈ PC([−h, 0),ℝn2 ) and PC([−h, 0),ℝn2 ) denotes the set of

piecewise continuous n2-vector-functions in [−h, 0]. Observe that x2(t) at t = 0 is

determined from Eq. (1b).
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3 Representation of Solutions into Series of Determining
Equations Solutions

Let us introduce the determining equations of System (1) (see [19] for more details).

X1,k(t) = A11X1,k−1(t) + A12X2,k−1(t) + Uk−1(t), (3a)

X2,k(t) = A21X1,k(t) + A22X2,k(t − h), k = 0, 1,…; (3b)

Yk(t) = B1X1,k(t) + B2X2,k(t), (3c)

with initial conditions

X1,k(t) = 0,X2,k(t) = 0, Yk(t) = 0 for t < 0 or k ≤ 0;
U0(0) = In1 , Uk(t) = 0 for t2 + k2 ≠ 0. (3d)

Here, we establish some algebraic properties of X1,k, X2,k.

Proposition 1 ([16]) The following identities hold:

(

A11 + A12(In2 − 𝜔A22)−1A12

)k
=

+∞∑

j=0
X1,k+1(jh)𝜔j

, k = 1, 2,…;

(In2 −𝜔A22)−1A21

(

A11 + A12(In2 − 𝜔A22)−1A12

)k

=
+∞∑

j=0
X2,k+1(jh)𝜔j

, k= 1, 2,…;

where |𝜔| < 𝜔1 and 𝜔1 is a sufficiently small real number.

Theorem 2 A solution to System (1) with finite initial conditions (2) for t ≥ 0 exists,
is unique and can be represented in the form of a series in power of solutions to
determining systems (3), in the following form:

x1(t, x10, 𝜓) =
+∞∑

k=0

∑

j
t−jh>0

(t − jh)𝛼(k+1)−1

𝛤 (𝛼(k + 1))
X1,k+1(jh)x10+

+∞∑

k=0

∑

i,j
t−(i+j)h>0

X1,k+1(ih)A12(A22)i+1∫
t−(i+j)h

0

(t−𝜏− (i+j)h)𝛼(k+1)−1

𝛤 (𝛼(k+1))
𝜓(𝜏−h)d𝜏,
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x2(t, x10, 𝜓) =
+∞∑

k=0

∑

j
t−jh>0

(t − jh)𝛼(k+1)−1

𝛤 (𝛼(k+1))
X2,k+1(jh)x10+

+∞∑

i=0
(A22)i+1𝜓(t−(i+1)h))+

+∞∑

k=0

∑

i,j
t−(i+j)h>0

X2,k+1(ih)A12(A22)i+1∫
t−(i+j)h

0

(t−𝜏−(i+j)h)𝛼(k+1)−1

𝛤 (𝛼(k+1))
𝜓(𝜏−h)d𝜏

where 𝜓(𝜏) ≡ 0 for 𝜏 ∉ [−h, 0).

Proof First we use the classical formula for the Laplace transformation of the frac-

tional derivative of Eq. (1a)

∫
∞

0
e−ptD𝛼

t x1(t)dt = p𝛼 x̆1(p) − [D𝛼−1
t x1(t)]t=0 = p𝛼 x̆1(p) − x10.

We apply the Laplace transform to System (1)

p𝛼 x̆1(p) − x10 =A11x̆1(p) + A12x̆2(p), (4)

x̆2(p) = A21x̆1(p)+A22e−phx̆2(t) + A22e−ph ∫
0

−h
e−p𝜏

𝜓(𝜏)d𝜏, (5)

where x̆1(p), x̆2(p) are Laplace transforms of functions x1(t), x2(t) respectively. Solv-

ing (5), we obtain

x̆2(p)=
(

In2 −A22e−ph
)−1

A21x̆1(p)+
(

In2 −A22e−ph
)−1

A22e−ph ∫
0

−h
e−p𝜏

𝜓(𝜏)d𝜏

x̆1(p) =
(

p𝛼In1 − A11 − A12

(

In2 − A22e−ph
)−1

A21

)−1
×

[

A12

(

In2−A22e−ph
)−1

A22e−ph∫
0

−h
e−p𝜏

𝜓(𝜏)d𝜏 + x10

]

=

+∞∑

k=0

1
(p𝛼)k+1

(

A11 + A12

(

In2 − A22e−ph
)−1

A21

)k
×

[

A12

(

In2 − A22e−ph
)−1

A22e−ph ∫
0

−h
e−p𝜏

𝜓(𝜏)d𝜏 + x10

]

.

Applying Propositions 1 we obtain
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x̆1(s) =
+∞∑

k=0

1
s𝛼k+𝛼

+∞∑

j=0
e−jshX1,k+1(jh)A12(In2 − A22𝜔)−1A22e−sh

× ∫
0

−h
e−s𝜏

𝜓(𝜏)d𝜏 +
+∞∑

k=0

1
s𝛼k+𝛼

+∞∑

j=0
e−jshX1,k+1(jh)x10,

x̆2(s) =
+∞∑

k=0

1
s𝛼k+𝛼

+∞∑

j=0
e−jshX2,k+1(jh)A12(In2 − A22𝜔)−1A22e−sh

× ∫
0

−h
e−s𝜏

𝜓(𝜏)d𝜏 +
+∞∑

k=0

1
s𝛼k+𝛼

+∞∑

j=0
e−jshX2,k+1(jh)x10

+ (In2 − A22𝜔)−1A22e−sh ∫
0

−h
e−s𝜏

𝜓(𝜏)d𝜏.

By applying inverse Laplace transform the proof is complete. □

4 Observability

Here, by [18] we establish some algebraic properties of Yk(t).

Proposition 3 The solutions Yk(t), t ≥ 0, of the determining equation (3c) satisfy
the condition

Yk(lh) = −
𝛩l∑

j=1
r0jYk((l − j)h) −

n1∑

i=0

𝛩l∑

j=0
rijYk−i((l − j)h)

for l = 0, 1,…, where 𝛩l = min{l, n1n2} and k = n1 + 1, n1 + 2,… .

Proposition 4 Solutions Yk(lh), k ≥ 1, l ≥ 0, of determining equation (3c) satisfy
the following conditions:

Yk(lh) = −
𝜃k∑

j=1
p0jYk−j(lh) −

n2∑

i=1

𝜃k∑

j=0
pijYk−j((l..i)h),

where k = 1, 2,… , l = n2 + 1, n2 + 2,…, and 𝜃k = min{k − 1, n1(n2)2}.

Let x1(t; x10, 𝜓), x2(t; x10, 𝜓) be the solution at time t > 0 of System (1) correspond-

ing to finite initial conditions (2). Similarly, y(t) = y(t; x10, 𝜓), ỹ(t) =
ỹ(t; x̃10, 𝜓) denote the observing function corresponding to the solutions

x1(t) = x1(t; x10, 𝜓), x2(t) = x2(t; x10, 𝜓) and x̃1(t) = x̃1(t; x̃10, 𝜓),
x̃2(t) = x̃2(t; x̃10, 𝜓), respectively.
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Definition 5 System (1) is said to be ℝn1-observable with respect to x1 if for

every x10, x̃10 ∈ ℝn1 , the condition y(t; x10, 𝜓) ≡ ỹ(t; x̃10, 𝜓); for every 𝜓 ∈
PC([−h; 0); n2) and for t ≥ 0 implies that x10 = x̃10.

For the sequel, we need the following result:

Proposition 6 ([15]) Functions fkj(t) =
(t−jh)𝛼k+𝛼−1

𝛤 (𝛼(k+1)) for t − jh > 0 and fkj(t) = 0
for t − jh ≤ 0, where k = 0, 1,…; j = 0, 1,…, are linearly independent for t > 0.

Now we may formulate the main result:

Theorem 7 System (1) is ℝn1 -observable with respect to x1 if and only if

rank
[

Yk+1(lh),
k = 0, 1,… , n1; l = 0, 1,… , n2

]

= n1. (6)

Proof By Theorem 2 and (1c), y(t; x10, 𝜓) ≡ ỹ(t; x̃10, 𝜓) is equivalent to the follow-

ing:

B1

+∞∑

k=0

∑

j
t−jh>0

(t − jh)𝛼(k+1)−1

𝛤 (𝛼(k + 1))
X1,k+1(jh)x10

+B2

+∞∑

k=0

∑

j
t−jh>0

(t − jh)𝛼(k+1)−1

𝛤 (𝛼(k + 1))
X2,k+1(ih)x10

= B1

+∞∑

k=0

∑

j
t−jh>0

(t − jh)𝛼(k+1)−1

𝛤 (𝛼(k + 1))
X1,k+1(jh)x̃10

+B2

+∞∑

k=0

∑

j
t−jh>0

(t − jh)𝛼(k+1)−1

𝛤 (𝛼(k + 1))
X2,k+1(ih)x̃10.

It follows from here that

+∞∑

k=0

∑

j
t−jh>0

(t − jh)𝛼(k+1)−1

𝛤 (𝛼(k+1))
[B1,B2]

[
X1,k+1(jh)
X2,k+1(jh)

]

(x10 − x̃10) =

+∞∑

k=0

∑

j
t−jh>0

(t − jh)𝛼(k+1)−1

𝛤 (𝛼(k+1))
Yk+1(jh)(x10−x̃10)=0.

By Lemma 4, ℝn1 -observable with respect to x1 is equivalent to

[
Yk+1(lh),

k = 0, 1,…; i = 0, 1,…

]

(x∗0 − x̃∗0) = 0 ⇒ (x∗0 − x̃∗0) = 0.
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Thus, we have

rank
[

Yk+1(lh),
k = 0, 1,…; i = 0, 1,…

]

= n1.

Taking into account Propositions 3 and 4, we may claim that the property of ℝn1 -

observability with respect to x1 is saturated and this completes the proof. □

5 Duality

Let us introduce the stationary FDAD Control System (dual to System (1)) in the

following form:

D𝛼

t x∗1(t) = AT
11x1(t) + AT

21x∗2(t) + BT
1 u(t), t > 0, (7)

x∗2(t) = AT
12x∗1(t) + A22x∗2(t − h) + BT

1u(t), t ≥ 0,

with finite initial conditions

[D𝛼−1
t x∗1(t)]t=0 = x∗0, x∗2(𝜏) = 𝜓

∗(𝜏), 𝜏 ∈ [−h, 0),

where x∗1(t) ∈ ℝn1 , x∗2(t) ∈ ℝn2 , u(t) ∈ ℝr
, x∗0 ∈ ℝn1 ; 𝜓 ∈ PC([−h, 0),ℝn2 ).

Let us consider determining equations

X∗
1,k(t) = AT

11X1,k−1(t) + AT
21X∗

2,k−1(t) + BT
1Uk−1(t), (8)

X∗
2,k(t) = AT

12X∗
1,k(t) + AT

22X∗
2,k(t − h) + BT

2Uk−1(t), k = 0, 1,…;

with initial conditions

X∗
1,k(t) = 0,X∗

2,k(t) = 0 for t < 0 or k ≤ 0;

U∗
0 (0) = In, U∗

k (t) = 0 for t2 + k2 ≠ 0.

Definition 8 ([15]) Control System (7) is called relatively controllable with respect

to x1 if for any initial data x∗0, 𝜙
∗

and any x∗∗ ∈ ℝn2 there exist a time moment t∗ > 0
and a piecewise continuous control u(⋅), such that for the corresponding solution

x∗1(t) = x∗1(t, x
∗
0, 𝜙

∗
, u), t > 0 the condition x∗1(t∗) = x∗∗ is valid.

The following two statements hold [15].

Proposition 9 The solution X∗
1,k(t), t ≥ 0 of the determining equations (8) satisfy

the following equations:
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(AT
11 + AT

21(In2 − AT
22𝜔)

−1AT
12)

i(BT
1 + AT

21(In2 − AT
22𝜔)

−1BT
2 ) (9)

≡
+∞∑

j=0
X∗
1,i+1(jh)𝜔

j
, (10)

where |𝜔| < 𝜔1; 𝜔1 is a sufficiently small real number.

Proposition 10 Control System (7) is relatively controllable with respect to x1 if
and only if

rank
[

X∗
1,𝜂(𝜉h), 𝜉 = 0,… , n2; 𝜂 = 0,… , n1

]

= n1, (11)

where by the symbol
[

X∗
1,𝜂(𝜉h), 𝜉 = 0,… , n2; 𝜂 = 0,… , n1

]

we denote a block
matrix of columns X∗

1,𝜂(𝜉h), for 𝜉 = 0,… , n2; 𝜂 = 0,… , n1.

Now, we can state the duality result.

Theorem 11 System (1) is ℝn-observable with respect to x1 if and only if Control
System (7) is relatively controllable with respect to x∗1.

Proof Transposing (10), we have:

(B1 + B2(In2 − A22𝜔)−1A21)(A11 + A12(In2 − A22𝜔)−1A21)k

=
+∞∑

j=0
X∗T
1,k+1(jh)𝜔

j
, k = 0, 1,…; (12)

By (3c) and Proposition 1 we obtain:

+∞∑

l=0
Yi+1(lh)𝜔l ≡

(B1+B2(In2 −A22𝜔)−1A21)(A11+A12(In2 −A22𝜔)−1A21)i, i = 0, 1,… , (13)

Then, comparing coefficients of the same power of 𝜔 in (12) and (13) we have:

X∗T
1,k+1(jh) = Yk+1(jh).

It follows that

[
Yk+1(lh),

k = 0, 1,… , n1; i = 0, 1,… , n2

]

=
[

X∗
1,𝜂+1(𝜉h), 𝜉 = 0,… , n2; 𝜂 = 0,… , n1

]T
.

This proves the theorem. □
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6 Example

Let us consider the following system:

D𝛼

t x1(t) = [1]x1(t) +
[
0 −1

]
x2(t), t > 0, (14)

x2(t) =
[
0
1

]

x1(t) +
[
0 2
0 0

]

x2(t − 5), t ≥ 0.

y(t) =
[
1
]

x1(t) +
[
1 0

]
x2(t).

System (14) should be completed with final initial conditions:

x10 = x10, 𝜓(𝜏) =
[
𝜓1(𝜏)
𝜓2(𝜏)

]

, 𝜏 ∈ [−h, 0), (15)

First we present the determining equations of System (14):

X1,k(t) = [1]X1,k−1(t) +
[
0 −1

]
X2,k−1(t) + Uk−1(t),

X2,k(t) =
[
0
1

]

X1,k(t) +
[
0 2
0 0

]

X2,k(t − 5),

Yk(t) = [1]X1,k(t) +
[
1 0

]
X2,k(t),

for k = 0, 1,…; t ≥ 0 with initial conditions

X1,k(t) = 0,X2,k(t) = 0, Yk(t) = 0 for t < 0 or k ≤ 0;
U0(0) = In1 ,Uk(t) = 0 for t2 + k2 ≠ 0.

Now we compute the solutions of the determining system:

[
X1,1(0)
X2,1(0)

]

=
⎡
⎢
⎢
⎣

1
0
1

⎤
⎥
⎥
⎦

;
[

X1,k(0)
X2,k(0)

]

=
⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦

, k ≥ 2;
[

X1,1(5)
X2,1(5)

]

=
⎡
⎢
⎢
⎣

0
2
0

⎤
⎥
⎥
⎦

;

[
X1,k(5)
X2,k(5)

]

=
⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦

, k ≥ 2;
[

X1,i(5j)
X2,i(5j)

]

=
⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦

, i ≥ 0, j ≥ 2;

Y1(0) = [1], Y1(5j) = [0], j = 1, 2… ;
Yi(5j) = [0], i = 2, 3,…; j = 0, 1,… .
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By Theorem 2

for 0 ≤ t < 5 we have

x1(t) =
t𝛼−1
𝛤 (𝛼)

x10,

x2(t) =

[
𝜓2(t − h)

t𝛼−1
𝛤 (𝛼)x10

]

;

for 5 ≤ t we have

x1(t) =
t𝛼−1
𝛤 (𝛼)

x10,

x2(t) =
⎡
⎢
⎢
⎣

2 (t−h)𝛼−1
𝛤 (𝛼) x10
t𝛼−1
𝛤 (𝛼)x10

⎤
⎥
⎥
⎦

.

Let us compute (6):

rank
[

Yk(lh),
k = 0, 1,… , n1; i = 0, 1,… , n2

]

= n1.

rank

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y1(0)
Y2(0)
Y1(5)
Y2(5)

Y1(10)
Y1(10)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= rank

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1 = n1.

Thus System (14) is ℝn
-observable with respect to x1.

Let us consider the dual system (see [17] for more details):

D𝛼

t x∗1(t) = [1]x∗1(t) +
[
0 1

]
x∗2(t) + [1]u(t), t > 0, (16)

x2(t) =
[
0
−1

]

x∗1(t) +
[
0 0
2 0

]

x∗2(t − 5) +
[
1
0

]

u(t), t ≥ 0.

y(t) = [1]x1(t) + x∗2(t).

System (16) should be completed with final initial conditions:

x∗10 = x∗10, 𝜓
∗(𝜏) =

[
𝜓

∗
1 (𝜏)

𝜓
∗
2 (𝜏)

]

, 𝜏 ∈ [−h, 0),
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First we present the determining equations of System (16):

X∗
1,k(t) = [1]X∗

1,k−1(t) +
[
0 1

]
X∗
2,k−1(t) + [1]U∗

k−1(t),

X∗
2,k(t) =

[
0
−1

]

X∗
1,k(t) +

[
0 0
2 0

]

X∗
2,k(t − 5) +

[
1
0

]

U∗
k (t),

for k = 0, 1, ...; t ≥ 0 with initial conditions

X∗
1,k(t) = 0,X∗

2,k(t) = 0, for t < 0 or k < 0;

U∗
0 (0) = In1 ,U

∗
k (t) = 0 for t2 + k2 ≠ 0.

Next we present the determining equations of homogenous System (16):

X̃∗
1,k(t) = [1]X̃∗

1,k−1(t) +
[
0 1

]
X̃∗
2,k−1(t),

X̃∗
2,k(t) =

[
0
−1

]

X̃∗
1,k(t) +

[
0 0
2 0

]

X̃∗
2,k(t − 5),

for k = 0, 1,…; t ≥ 0 with initial conditions

X̃∗
1,k(t) = 0, X̃∗

2,k(t) = 0, for t < 0 or k ≤ 0;

X̃∗
1,1(0) = In1 , X̃

∗
1,1(𝜏) = 0 if 𝜏 ≠ 0.

Now we compute the solutions of the above determining systems:

[
X∗
1,0(0)

X∗
2,0(0)

]

=
⎡
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎦

;

[
X∗
1,0(5)

X∗
2,0(5)

]

=
⎡
⎢
⎢
⎣

0
0
2

⎤
⎥
⎥
⎦

;

[
X∗
1,0(5j)

X∗
2,0(5j)

]

=
⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦

; j ≥ 2;

[
X∗
1,1(0)

X∗
2,1(0)

]

=
⎡
⎢
⎢
⎣

1
0
−1

⎤
⎥
⎥
⎦

;

[
X∗
1,1(5)

X∗
2,1(5)

]

=
⎡
⎢
⎢
⎣

2
0
−2

⎤
⎥
⎥
⎦

;

[
X∗
1,1(5j)

X∗
2,1(5j)

]

=
⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦

, j ≥ 2;

[
X∗
1,k(5j)

X∗
2,k(5j)

]

=
⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦

; k ≥ 2, j ≥ 0;

[
X̃∗
1,1(0)

X̃∗
2,1(0)

]

=
⎡
⎢
⎢
⎣

1
0
−1

⎤
⎥
⎥
⎦

,

[
X̃∗
1,1(5j)

X̃∗
2,1(5j)

]

=
⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦

, j ≥ 1;

[
X̃∗
1,k(5j)

X̃∗
2,k(5j)

]

=
⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦

, k ≥ 2, j ≥ 0.
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By [17] Theorem 3

for 0 ≤ t < 5 we have

x1(t) =
t𝛼−1
𝛤 (𝛼)

x∗10 + ∫
t

0

(t − 𝜏)𝛼−1

𝛤 (𝛼)
(
u(𝜏) + 2𝜓∗

1 (𝜏 − 5)
)

d𝜏,

x2(t) =

[
u(t)

2𝜓∗
1 (t − 5) − t𝛼−1

𝛤 (𝛼)x
∗
10 − ∫ t

0
(t−𝜏)𝛼−1
𝛤 (𝛼)

(
u(𝜏) + 2𝜓∗

1 (𝜏 − 5)
)

d𝜏

]

;

for 5 ≤ t < 10 we have

x1(t) =
t𝛼−1
𝛤 (𝛼)

x∗10 + 2∫
t−5

0

(t − 𝜏 − 5)𝛼−1

𝛤 (𝛼)
u(𝜏)d𝜏 + ∫

t

0

(t − 𝜏)𝛼−1

𝛤 (𝛼)
u(𝜏)d𝜏

+ 2∫
t

0

(t − 𝜏)𝛼−1

𝛤 (𝛼)
𝜓

∗
1 (𝜏 − 5)d𝜏,

x2(t) =

[
u(t)

− t𝛼−1
𝛤 (𝛼)x

∗
10 − 2 ∫ t−5

0
(t−𝜏−5)𝛼−1

𝛤 (𝛼) u(𝜏)d𝜏 − ∫ t
0

(t−𝜏)𝛼−1
𝛤 (𝛼) u(𝜏)d𝜏

+0
+2u(t − 5) − 2 ∫ t

0
(t−𝜏)𝛼−1
𝛤 (𝛼) 𝜓

∗
1 (𝜏 − 5)d𝜏

]

for 10 ≤ t we have

x1(t) =
t𝛼−1
𝛤 (𝛼)

x∗10 + 2∫
t−5

0

(t − 𝜏 − 5)𝛼−1

𝛤 (𝛼)
u(𝜏)d𝜏 + ∫

t

0

(t − 𝜏)𝛼−1

𝛤 (𝛼)
u(𝜏)d𝜏,

x2(t) =

[
u(t)

− t𝛼−1
𝛤 (𝛼)x

∗
10 − 2 ∫ t−5

0
(t−𝜏−5)𝛼−1

𝛤 (𝛼) u(𝜏)d𝜏

0
− ∫ t

0
(t−𝜏)𝛼−1
𝛤 (𝛼) u(𝜏)d𝜏 + 2u(t − 5)

]

.

Let us compute (11):

rank
[
X1,k(ih), k = 0, 1,… , n1; i = 0, 1,… , n2

]
= [0, 0, 1, 2] = 1 = n1;

Thus System (16) is relatively t1−controllable with respect to x1 and the duality

holds.
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7 Conclusions

Representations of solutions for for linear fractional differential-algebraic systems

with delay (FDAD) has been presented (Theorem 2). Effective parametric rank cri-

teria for relative observability has been established (Theorem 7). The dual control-

lability result has been also formulated (Theorem 11). These considerations can be

extended to systems with many delays.
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Minimum Energy Control of Linear
Fractional Systems

Jerzy Klamka

Abstract The minimum energy control problem of infinite-dimensional
fractional-discrete time linear systems is addressed. Necessary and sufficient con-
ditions for the exact controllability of the system are established. Sufficient con-
ditions for the solvability of the minimum energy control of the infinite-dimensional
fractional discrete-time systems are given. A procedure for computation of the
optimal sequence of inputs minimizing the quadratic performance index is
proposed.

Keywords Fractional ⋅ Infinite-dimensional discrete-time ⋅ Linear system ⋅
Minimum energy control ⋅ Controllability

1 Introduction

Controllability plays an essential role in the development of the modern mathe-
matical control theory. There are important relationships between controllability,
stability and stabilizability of linear control systems. Controllability is also strongly
connected with the theory of minimal realization of linear time-invariant control
systems. Moreover, it should be pointed out that there exists a formal duality
between the concepts of controllability and observability.

Moreover, controllability is strongly connected with so-called minimum energy
control problem [9]. It should be pointed out that in the literature there are many
results concerning controllability and minimum energy control, which depend on
the type of dynamical control system [9].

The reachability, controllability and minimum energy control of positive linear
discrete-time systems with time-delays have been considered in [1] and [27]. The
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realization problem for cone systems has been addressed in [3]. The reachability
and controllability to zero of positive fractional linear systems have been investi-
gated in [2], [4–7], [12, 13].

Mathematical fundamentals of fractional calculus are given in the monographs
and papers [14–17], [19], [21–23]. The fractional order controllers have been
developed in [19].

A generalization of the Kalman filter for fractional order systems has been
proposed in [24]. Some other applications of fractional order systems can be found
in [18], [20, 21], [25, 26]. The minimum energy control problem has been solved
for different classes of linear systems in [8–11].

In this paper the minimum energy control problem will be addressed for
infinite-dimensional fractional discrete-time linear systems.

The paper is divided into five sections and organized as follows. In Sect. 2 the
solution of the difference state equation the infinite-dimensional fractional systems
is recalled. Necessary and sufficient conditions for the exact controllability of the
infinite-dimensional fractional systems are established in Sect. 3. The main result of
the paper is presented in Sect. 4, in which the minimum energy control problem is
formulated and solved. Concluding remarks are given in Sect. 5.

To the best knowledge of the author the minimum energy control problem for
the infinite-dimensional fractional discrete-time linear systems have not been
considered yet.

2 Fractional Systems

The set of nonnegative integers will be denoted by Z+ . Let X and U be the
separable generally infinite-dimensional Hilbert spaces and xk ∈X, uk ∈U, k∈ Z+ .
In finite-dimensional case X = Rn and U = Rm.

In this paper the fractional difference operator [5] is extended for
infinite-dimensional operators and presented in the following form

Δαxk = ∑
k

j=0
ð− 1Þ j α

j

� �
xk− j, ð1Þ

n− 1< α< n∈N = f1, 2, . . .g, k∈ Z+

where similarly as in finite-dimensional case α∈R is the order of the fractional
difference and

α
j

� �
=

1 for j=0
αðα− 1Þ⋯ðα− j+1Þ

j ! for j=1, 2, . . .

�
ð2Þ
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Consider the fractional discrete linear system, described by the
infinite-dimensional state-space equations

Δαxk +1 =Axk +Buk, k∈Z+ ð3Þ

where xk ∈X, uk ∈U are the state and input and A:X→X, B:U→X are given linear
and bounded operators. In finite dimensional case A and B are n × n and
n × m constant matrices, respectively.

Using definition (1) we may write the Eqs. (3) in the equivalent form

xk+1 + ∑
k+1

j=1
ð− 1Þ j α

j

� �
xk− j+1 =Axk +Buk, k∈Z+ ð4Þ

Lemma 1 [4]. The solution of Eq. (4) with initial condition x0 ∈X is given by

xk =Φkx0 + ∑
k− 1

i=0
Φk− i− 1Bui ð5Þ

where linear and bounded operators Φk:X→X are determined by the equation

Φk+1 = ðA+ InαÞΦk + ∑
k+1

i=2
ð− 1Þi+1 α

i

� �
Φk− i+1 ð6Þ

with initial condition Φ0 = I, where I is the identity operator.

Remark 1 It should be pointed out that in finite-dimensional case operators
Φk:Rn →Rn are constant n × n dimensional matrices.

3 Controllability

First of all, in order to define controllability concepts let us introduce the notion of
reachable set in q steps for infinite-dimensional discrete-time fractional control
system (4).

Definition 1 For fractional system (4) reachable set in q steps from x0 = 0 is
defined as follows

Kq = fx∈X: x is a solution of equation ð4Þ for k= q and for sequence of controls

u0, u1, . . . uk , . . . , uq− 1g
ð7Þ
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Remark 2 It should be pointed out, that since there are not any constraints on the
admissible controls, than reachable set is a linear subspace in the state space.
Moreover, in infinite-dimensional case it is necessary to distinguish between exact
and approximate controllability. It follows from the fact, that in infinite-dimensional
cases there are linear subspaces which are not closed.

Definition 2 The fractional system (4) is exactly controllable in q-steps if

Kq =X ð8Þ

Definition 3 The fractional system (4) is approximately controllable in q-steps if

clðKqÞ=X ð9Þ

where cl(Kq) means the closure of the set Kq.

Theorem 1 The fractional infinite-dimensional system (4) is exactly controllable in
q steps if and only if the image ImRq of controllability operator

Rq: = ½B, Φ1B, . . . ,Φq− 1B� ð10Þ

is the whole space X.

Corollary 1 The fractional system (4) is exactly controllable in q steps if and only
RqR*

q is invertible operator, i.e. there exist linear and bounded operator

RqR*
q

� �− 1
. ð11Þ

Corollary 2 The fractional system (4) is approximately controllable in q steps if
and only if cl(ImRq) of controllability operator (10) is the whole state space X, or
equivalently if and only if the reachable set in q steps Kq is dense in the Hilbert
space X.

Since for finite-dimensional case X = Rn approximate controllability in q-steps
and exact controllability in q-steps coincide, we say shortly controllability in
q-steps. Therefore, taking into account Theorem 1 we have the following Corollary.

Corollary 3 The fractional finite-dimensional system (4) is controllable in q steps
if and only if n × nm dimensional controllability matrix

Rq: = ½B, Φ1B, . . . ,Φq− 1B� ð12Þ

has full row rank n.

It contains two linearly independent monomial columns and is nonsingular.
Therefore, the fractional system is reachable in two steps.
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4 Minimum Energy Control

As it was mentioned in the introduction minimum energy control problem is
strongly connected with controllability concept. Moreover, it should be stressed,
that controllability operator plays an essential role in the mathematical solution of
minimum energy control problem.

Consider the fractional infinite-dimensional system given by difference state
Eq. (4). If the system is exactly controllable in q steps then generally there exist
many different input sequences that steer the initial state of the system from x0 = 0
to the final state xf ∈X.

Among these input sequences we are looking for the sequence ui∈U,
i=0, 1, . . . , q− 1, i∈Z+ that minimizes the quadratic performance index

IðuÞ= ∑
q− 1

j=0
u*j Quj ð13Þ

where Q:U→U is a self-adjoint positive define operator, q is a given number of
steps in which the state of the system is transferred from x0 = 0 to xf ∈X and u* ∈U
denotes adjoint element, which in finite dimensional case denotes vector
transposition.

The minimum energy control problem for the infinite-dimensional fractional
system (4) can be stated as follows. For a given linear bounded operators A, B and
the order α of the fractional system (4), the number of steps q, final state xf ∈X and
the self-adjoint operator Q of the performance index (14), find a sequence of
admissible inputs ui∈U, i=0, 1, . . . , q− 1, that steers the state of the system from
given initial state x0 = 0 to given final state xf ∈X and minimizes the given qua-
dratic performance index (14).

In order to solve the minimum energy problem we define selfa-adjoint operator

Wðq,QÞ=RqQ ̄R*
q ð14Þ

where Rq is controllability operator defined by (10) and self-adjoint operator

Q ̄: U ×U × . . . ×U|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
q− times

→ U ×U × . . . ×U|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
q− times

is defined as follows

Q ̄= blockdiag Q− 1,Q− 1, . . . ,Q− 1� 	 ð15Þ

From (16) it follows that operator W(q,Q) is invertible if and only if RqR*
q is

invertible operator, i.e. there exist linear and bounded operator RqR*
q

� �− 1
and

therefore, fractional system (4) is exactly controllable in q steps.
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For the case when the condition of Theorem 1 is met then the system is exactly
controllable in q steps. In this case we may define for a given xf ∈X the following
sequence of admissible inputs

u⌢0q =

u⌢q− 1

u⌢q− 2

⋮
u⌢0

2
664

3
775=Q

↼

R*
qW

− 1ðq,QÞxf ð16Þ

Theorem 2 Let the fractional system (4) be exactly controllable in q steps.
Moreover let uī ∈U, i=0, 1, . . . , q− 1 be a sequence of inputs that steers the state
of the system from x0 = 0 to xf ∈X. Then the sequence of inputs u⌢i ∈U,
i=0, 1, . . . , q− 1 defined by (17) also steers the state of the system from x0 = 0 to
xf ∈X and minimizes the performance index (14), i.e.

Iðu ̂Þ≤ Iðu ̄Þ ð17Þ

The minimal value of performance index (14) for the minimum energy control
(17) is given by

Iðu⌢Þ= xTf W
− 1ðq,QÞxf ð18Þ

Proof If the fractional system (4) is exactly controllable in q steps, then for xf ∈X
we shall show that the sequence of controls given by equality (17) steers the state of
the system (4) from initial state x0 = 0 to final state xf ∈X. □

Using equality (5) for k= q, x0 = 0 and (13), (17) we obtain

xq =Rqu
⌢
0q =RqQ ̄R*

qW
− 1ðq,QÞxf = xf ð19Þ

since

RqQ ̄R*
qW

− 1ðq,QÞ= I

The both sequences of inputs u0̄q and u0̂q steer the state of the system from x0 = 0
to the same final state xf . Hence xf =Rqu0̂q =Rqu0̄q and

Rq½u ̂0q − u0̄q�=0 ð20Þ
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Using (21) we shall show that

½u0̂q − u0̄q�TQ̂u0̂q =0 ð21Þ

where Q ̂=block diag ½Q, . . . ,Q�.
Therefore, (22) yields

u⌢0q − uōq
� �T

R*
q =0 ð22Þ

Multiplying the above equality by W − 1ðq,QÞxf we obtain

u⌢0q − u0̄q
� �T

R*
qW

− 1ðq,QÞxf =0 ð23Þ

Using (17) and (24) we obtain (25) since

u⌢0q − u0̄q
� �T

Q
⌢

u⌢0q

= u⌢0q − u0̄q
� �T

Q
⌢

Q̄R*
qW

− 1ðq,QÞxf

= u⌢0q − u0̄q
� �T

R*
qW

− 1ðq,QÞxf =0

and Q
⌢

Q ̄= I
It is easy to verify that

u ̄T0qQ̄u0̂q = u ̂T0qQ ̂u0̂q + ½u ̄0q − u0̂q�TQ̂½u ̄0q − u0̂q� ð24Þ

From (25) it follows that the inequality (22) holds, since

½u ̄0q − u0̂q�TQ ̂½u ̄0q − u0̂q�≥ 0

In order to find the minimal value of the performance index we substitute (17)
into (19) and next we use (16). Then we obtain

Iðu⌢Þ= u⌢
T
0qQ

⌢

u⌢0q

= Q ̄RT
qW

− 1ðq,QÞxf
� �T

Q
⌢

Q ̄R*
qW

− 1ðq,QÞxf
� �

= xTf W
− 1ðq,QÞRqQ̄R*

qW
− 1ðq,QÞxf

= xTf W
− 1ðq,QÞxf

since Q
⌢

Q̄= I and W − 1ðq,QÞRqQ̄R*
q = I.
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Example Given finite dimensional fractional system (4)

A=
− α 0
1 2


 �
, B=

1
0


 �
, ðn=2Þ

for 0 < α<1 with (5).

Find an optimal sequence of inputs that steers the state of the system from x0 = 0

to xf =
1
1


 �
in two steps ðq=2Þ and minimizes the performance index (13) for

Q = [4].
It was shown [7] that the system is reachable in two steps. It is easy to see that

the conditions of Theorem 2 are met. Using Procedure presented above we obtain
the following.

Step 1. In this case

R2 = ½B, Φ1B�= 1 0
0 1


 �

and

Q= diag½Q− 1,Q− 1�= 1
4

1 0
0 1


 �

Step 2. Using (14) we obtain

W =RqQ ̄RT
q = Q̄=

1
2

1 0
0 1


 �

Wðq,QÞ=Wð2, 4Þ=R2Q ̄RT
2 = Q̄

Step 3. Using (16) we obtain

u0̂2 =
u1̂
0


 �
= Q̄RT

2W
− 1xf =

1
1


 �
ð25Þ

It is easy to verify that the sequence (25) steers the state of the system in two steps
from x0 = 0 to xf = ½1 1�T .
Step 4. The minimal value of the performance index in this case is equal to

Iðu ̂Þ= xTf W
− 1xf = 1 1½ � 2 0

0 2


 �
1
1


 �
=4
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5 Concluding Remarks

The minimum energy control problem of infinite-dimensional fractional discrete
linear systems has been addressed. Moreover, necessary and sufficient conditions
for the exact controllability in q steps of the systems have been established.

Under assumption on exact controllability in q steps solvability of the minimum
energy control of the infinite-dimensional fractional discrete-time linear systems
have been given and a procedure for computation of the optimal sequence of inputs
minimizing the quadratic performance index has been proposed.

Finally, it should be mentioned, that the considerations can be extended for
infinite-dimensional fractional discrete-time linear systems with delays both in
control and state variables and for infinite-dimensional fractional continuous-time
linear systems with constant parameters.

Acknowledgment This paper was supported by National Research Center under decision
DEC-2012/07/B/ST7/01404.
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Use of Alpha-Beta Filter
to Synchronization of the Chaotic Ikeda
Systems of Fractional Order

Adam Makarewicz

Abstract The paper considers a problem of signal filtering used in synchronization
of two fractional delay Ikeda systems, combined linearly by coupling. Synchroni-
zation used Alpha-Beta filter, which operates on predicting the next value, based on
measured signal in a current point in time. Using numerical simulations effects of
fractional order and coupling rate on synchronization, is investigated. Simulations
are performed using Ninteger Fractional Control Toolbox for MatLab.

Keywords Alpha-Beta filter ⋅ Fractional ⋅ Stability ⋅ Synchronization

1 Introduction

The paper will present a filtration of chaotic signals, using Alpha-Beta filter, that
operates on a prediction of next value, based on a measured signal in the current
point in time, on the basis of measurements from a previous time instant [2, 14].
The Alpha-Beta filter is characterized by its simple implementation, it does not
require an estimation equation of state, as in case of the Kalman filter [13]. Filter
will be presented on example of a chaotic system synchronization Ikeda [1, 3–13,
14–20]. Use of Alpha-Beta filter in a feedback loop, will reduce synchronization of
two coupled, identical systems, working at a different initial conditions.

In this paper, using numerical simulations, we considered a synchronization
problem of two coupled—fractionally ordered—Ikeda chaotic systems. Simulations
were performed using Ninteger Fractional Control Toolbox for MatLab [18].
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2 Preliminaries and Problem Formulation

The Alpha-Beta filtration is based on assumption, that the motion of an object, can
be expressed by means of two state components where one component is derived
from another. State vector, consisting of position and velocity component. Filter
equations have the form of:

y ̂ðt+1 j tÞ= y ̂ðt j tÞ+ΔTv ̂ðt j tÞ ð1Þ

v⌢ðt+1 j tÞ= v ̂ðt j tÞ ð2Þ

y ̂ðt j tÞ= y ̂ðt j t− 1Þ+ αFðyðtÞ− y ̂ðt j t− 1ÞÞ ð3Þ

y ̂ðt j tÞ= v ̂ðt j t− 1Þ+ βF
ΔT

ðyðtÞ− y ̂ðt j t− 1ÞÞ ð4Þ

where y represents a measured position, y ̂ is an estimation of a location and v ̂ is an
estimate speed. Time step between consecutive measurements was determined by
ΔT . Description ðt j tÞ means the value of current point in time, based on mea-
surement of current point in time; ðt+1jtÞ means the value in next point in time,
based on measurements of current point in time and ðt j t− 1Þ means a value of
current point in time, based on measurements of previous point in time.

Filter αF and βF parameters, are used to tune a filter. Their values change from 0
to 1. Values of these parameters, are typically selected experimentally. It is
assumed, that higher values αF and βF result in faster response to changes in
finishing tracking, while smaller values result in reducing the level of noise inter-
ference. Main goal of this paper is to investigate the impact of Alfa-Beta filter, in
order to synchronize chaotic Ikeda system, fraction an order configuration with
combined transmitter/receiver. Single Ikeda equation have a form:

0Dα
t = − axðtÞ+ b sin xðt− hÞ, ð5Þ

where 0Dα
t xðtÞ denotes the Caputo fractional derivative, of a fraction al order α

satisfying 0< α≤ 1 and h>0 is a constant delay.
In the paper, fractional Ikeda model will be used, which introduces Caputo

derivative 0Dα
t xðtÞ defined by:

0Dα
t xðtÞ=

1
Γðp− αÞ

Z t

0

xðpÞðτÞdτ
ðt− τÞα+1− p, p− 1≤ α≤ p, ð6Þ

where xðpÞðtÞ= dpxðtÞ d̸tp; p is a positive integer and ΓðαÞ is the Euler gamma
function:
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ΓðαÞ=
Z∞

0

e− t tα− 1dt ð7Þ

In addition, it is assumed that 0 < α<2 from formula (6) for p = 1 and p = 2 we
have respectively:

0Dα
t xðtÞ=

1
Γð1− αÞ

Z t

0

xð1ÞðτÞ
ðt− τÞαdτ, 0 < α<1, ð8Þ

0Dα
t xðtÞ=

1
Γð2− αÞ

Z t

0

xð2ÞðτÞdτ
ðt− τÞα− 1, 0 < α<2. ð9Þ

Dynamics of this system (5) has been studied in [8] for fractional order between
0< α<1 and of 0< α<2 [2, 3].

In this paper we assumed, that coefficients of the system (5) are a following
values:

a=1, b=5, h=1.5. ð10Þ

Use of numerical simulations as shown in [3], proves that the system (5) with a
values (10), have a chaotic behavior for all values of α equation, fractional value in
the range of 0.1–1.9 in steps of Δα=0.1.

Examples of trajectories for fractional order: α=0.9 and α=1.5 with the initial
condition x0ðτÞ=0.1 for time constant h= − 1.5. Those results are reported in
Figs. 1 and 2.
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Fig. 1 Plots for α=0.9: a chaotic trajectory; b plot of x(t) [4]

Use of Alpha-Beta Filter to Synchronization of the Chaotic Ikeda Systems … 209



In reference [4], a study of chaotic synchronization, during a connection of two
Ikeda systems, combined as a transmitter/receiver according to equation:

0Dα
t x ̄ðtÞ= − ax ̄ðtÞ+ b sin x ̄ðt− hÞ+ kðxðtÞ− x ̄ðtÞÞ ð11Þ

where parameter k is a gain in feedback loop. Such a combined system, examined
deviation value eðtÞ= xðtÞ− x ̄ðtÞ during synchronization, based on the fractional
order of functional dependence, described by equation:

0Dα
t eðtÞ= − a eðtÞ+ b½sin xðt− hÞ− sin x ̄ðt− hÞ�+ keðtÞ ð12Þ

Chaotic system is considered to be synchronized, if deviation is set to a
minimum:

minjeðtÞj≤ 0.01 ð13Þ

3 Main Results

In a simulation study, we investigated a synchronization of two chaotic systems,
connected to Ikeda feedback loop. At the output of feedback loop, there was a
measured deviation of eðtÞ= xðtÞ− x ̄ðtÞ, for the assessment of entire system syn-
chronization. In order to shorten a time synchronization on the output loop, use an
Alpha-Beta filter. Simulation studies examined, at which of the parameter values
αF , βF time synchronization is the shortest. Tests were performed by measuring
system environment using Matlab/Simulink, as shown on Fig. 3.

For a simulations in Matlab/Simulink, toolbox was used Ninteger fractional the
order control circuits by block called nid [20]. Filter parameters as αF , βF are
experimentally chosen on the basis of Eqs. (14–17). During the calculations, a value

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

x(t)

x(
t-
h)

(a)

0 10 20 30 40 50 60 70 80 90 100
-6

-4

-2

0

2

4

6

Time

x(
t)

(b)

Fig. 2 Plots for α=1.5: a chaotic trajectory; b plot of x(t) [4]
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of prediction error at 99 %, noise variance σw2 process variance σv2 and a value of
tracking λ at level of fractional values:

λ=
σwT2

σv
ð14Þ

r=
4+ λ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8λ+ λ2

p

4
ð15Þ

αF =1− r2 ð16Þ

Fig. 3 The model system in Matlab/Simulink based on basis of Eqs. (5), (11), (12) of chaotic
Ikeda systems, combined in feedback loop
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βF =2ð2− αFÞ− 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− αF

p
ð17Þ

The aim of the simulation is to explore how the same measured signal x(t)
affected by Alpha-Beta filter in which the changed parameter αF . For example
experimentally checked how changes to quality of filtration for the three case,
where parameter βF it was calculated according to the formula (17):

(a) αF =5× 10− 4; βF =1.25 × 10− 7;
(b) αF =3× 10− 4; βF =4.5 × 10− 8; (c) αF =1× 10− 4; βF =5× 10− 9;

The estimated signal after filtration marked xs(t). The best result was obtained
for case (c) where the parameter filtration: αF =1×10− 4; βF =5× 10− 9; Simu-
lation results are given in Figs. 4, 5 and 6. On the figure adopted designation: x(t)
signal before filtration; xs(t) signal after filtration.

Then, the filter was tested how it affects filter Alpha-Beta to shorten the time
synchronization according e(t) for the formula (13). Ikeda synchronization test
system using the filter, was performed for a fraction α = 1.9. Simulation results are
shown on Figs. 7 and 8. Shortest time of synchronization, was observed for a value
of filter parameters, where αF =8× 10− 4; βF =3.2 × 10− 7; which was less than
8 ms (Fig. 8).

Fig. 4 Time course measured at the output of Ikeda model parameter values for α = 1.9; k = 22;
a x(t) before filtration b xs(t) after filtration for αF =5× 10− 4; βF =1.25× 10− 7
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Fig. 5 Time course measured at the output of Ikeda model parameter values for α = 1.9; k = 22;
a x(t) before filtration; b xs(t) after filtration for αF =3×10− 4; βF =4.5 × 10− 8

Fig. 6 Time course measured at the output of Ikeda model parameter values, for α = 1.9; k = 22;
a x(t) before filtration; b xs(t) after filtration for αF =1×10− 4; βF =5× 10− 9
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4 Concluding Remarks

For more detailed information on a state of object, there are to be made on the basis
of data measurement estimation. This is particularly important, when selecting a
values of filter parameters as αF , βF and their deviation from a nominal value,

Fig. 7 Time course of cardiovascular Ikeda synchronization for a parameter values of α = 1.9;
k = 22; a e(t) before filtration; b es(t) after filtration for αF =3× 10− 3; βF =4.5× 10− 6;

Fig. 8 Time course of cardiovascular Ikeda synchronization for a parameter values of α = 1.9;
k = 22; a e(t) before filtration; b es(t) after filtration for αF =8× 10− 4; βF =3.2× 10− 7
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chosen experimentally. Parameter values determines a quality of filtering interfer-
ence, in particular, determine the time synchronization of two chaotic objects.
Deviation filter parameters αF , βF nominal value, resulting in a lack of filtration and
also can create an additional distortions. Sensitivity of the filter can change a
parameter values of less than ten thousand, demonstrates sensitivity of an entire
filter system. Main result of work, is to obtain a minimum of time synchronization
of two coupled chaotic systems in less than 8 ms.
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On Dynamic Decoupling of MIMO
Fractional Order Systems

Paweł Dworak

Abstract In the paper problems with a dynamic decoupling of multi-input multi-

output MIMO fractional order systems are discussed. Similarities and differences

to integer order decoupling methods are shown. Basing on a few examples taken

from a literature simulations of decoupled fractional order systems were caried out.

Te paper ends with some final remarks on a practical implementation of decoupling

methods for fractional order systems.

Keywords Dynamic decoupling ⋅ Fractioanl order systems ⋅ MIMO

1 Introduction

One of the main problems encountered in the practical application of dynamic decou-

pling methods is the accuracy of mathematical models describing properties of the

controlled plants. Inaccuracy between plant model and its real behavior may make

full decoupling impossible or lead directly to the system instability. As we know from

numerous studies the fractional order models can depict the physical plant better than

the classical integer order ones. This covers different research field such as insulator

properties, visco-elastic materials, electrodynamic, electrothermal, electrochemical,

economic processes modelling etc. [1, 9, 12, 14, 19–21, 26, 28, 31].

Strong interest in the subject led to the creation of tools for synthesis and simula-

tion of fractional systems, and the most popular are those prepared to work in Matlab

environment [3, 4, 24, 33, 34].

Despite the very high interest in a fractional order calculus and its usage in the

synthesis of the control system, works directly devoted to control of a fractional

MIMO arose relatively few [15, 16, 18, 22, 32]. This may be due to less interest in

the specificity of MIMO systems as well as difficulties with the transfer and extension

P. Dworak (✉)

West Pomeranian University of Technology, ul. 26 Kwietnia 10,

71-126 Szczecin, Poland

e-mail: pawel.dworak@zut.edu.pl

© Springer International Publishing Switzerland 2016

S. Domek and P. Dworak (eds.), Theoretical Developments and Applications
of Non-Integer Order Systems, Lecture Notes in Electrical Engineering 357,

DOI 10.1007/978-3-319-23039-9_18

217



218 P. Dworak

of the methods developed for the integer order systems to fractional ones. Problems

of dynamic decoupling of fractional MIMO plants have been raised so far, according

to the author’s knowledge, only in [16] and related to the transfer of decoupling

methods for integer order TITO plants to their factional counterparts.

The paper presents limitations and differences in analysis of fractional MIMO

plants in the context of a dynamic decoupling. To do that the paper is organized

as follows. In Sect. 2 basic definitions and fractional calculus are presented. Then

in Sect. 3 a static decoupling and RGA indices for fractional plants are analyzed.

Different examples of dynamic decoupling for fractional TITO and MIMO plants

are presented in Sect. 4. A conclusion and final remarks on future research are given

in Sect. 5.

2 Basics of Calculus and Modeling of Fractional
Order Systems

Fractional order calculus introduces an operator toD
r
t which is a generalization of the

integer order differentiation and integration. to and t are the time limits for differen-

tiation and integration and r ∈ R describes the order of the operator. In general, the

rank r may be a complex number [25]. The continuous operator is defined as [3]

toD
r
t =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

dr
dtr

r > 0

1 r = 0
t∫

to
(dτ )r r < 0

(1)

There are many definitions of the integro-differential operator. The most popular

are the Grunwald-Letnikov, Riemann-Liouville and Caputo [13, 23, 27]. A particu-

lar practical importance in the control systems has a definition of Grunwald-Letnikov

toD
r
t f (t) = lim

h→0
h−r

[
t−to
h

]

∑

j=0
(−1)j

(
r
j

)

f (t − jh) (2)

where [⋅] stands for an integer part.

Assuming a recursive form of the binomial coefficient as

{
cro = 1

crj = crj−1
(

1 − r+1
j

)

, j = 1, 2,… (3)
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the Grunwald-Letnikov integro-differential operator may be written in the following

form

toD
r
t f (t) = lim

k→∞

( t − to
k

)−r k∑

j=0
crj f (t − j

t − to
k

) (4)

In practice the sum in the above definition must have a finite number of values L
(number of samples of f (t)) and an estimation error ε can be calculated from

L ≥
(

M
ε|𝛤 (1 − r)|

)1∕r
(5)

where M denotes maximum value of function f (t) at particular points.

The Laplace transform of the Grunwalda-Letnikova fractional operator (4) can be

calculated for r ∈ [0, 1] only and is given by [13]

∞

∫
0

e−stt0D
r
t f (t)dt = srF(s) (6)

Dynamics of the modeled control object may be described by fractional differen-

tiation equation [27]

anDαny(t) + an−1Dαn−1y(t) +⋯ + a0Dα0y(t) =
bmDβmu(t) + bm−1Dβm−1u(t) +⋯ + b0Dβ0u(t)

(7)

where Dγ≡0D
γ
t , ak and αk k = 0, 1,… , n , bl and βl l = 0, 1,… ,m are real numbers.

A continuous transfer function of a fractional plant may be described by

G(s) =
y(s)
u(s)

=
bmsβm + bm−1sβm−1 +⋯ + b0sβ0
ansαn + an−1sαn−1 +⋯ + a0sα0

(8)

where y(s) and u(s) are the Laplace transforms of the output and input signals respec-

tively.

A fractional linear time-invariant LTI plant may be also depicted by the state and

output equations

0Dr
t 𝐱(t) = 𝐀𝐱(t) + 𝐁𝐮(t)
𝐲(t) = 𝐂𝐱(t) (9)

with a state vector 𝐱(t) ∈ Rn
, 𝐮(t) ∈ Rm

and 𝐲(t) ∈ Rl
vectors of input and output

signals respectively.

As it was shown in [22] conversion between models (8) and (9) may be done in

the same manner like for the integer order systems. Rank r should be equal for all

model states 𝐱(t) ∈ Rn
. In general it might be an operator 0D

q
t with q = {q1,… , qn}.
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A discrete version of a fractional model (8) needs a discrete equivalent of the

integro-differential operator (w(z−1))—which is a function of the complex variable

z or shift operator z−1—takes the form

G(z) =
bm(w(z−1))

βm + bm−1(w(z−1))
βm−1 +⋯ + b0(w(z−1))

β0

an(w(z−1))
αn + an−1(w(z−1))

αn−1 +⋯ + a0(w(z−1))
α0

(10)

By defining a discrete fractional difference of rank r of a discrete function f (t) as

[5, 29]

t0𝛥
r
t f (t) =

t−t0∑

j=0
crj f (t − j) (11)

with crj defined by (3) one obtain a discrete linear fractional model of the plant in a

state space

𝐱(t + 1) = 𝐀d𝐱(t) + 𝐁𝐮(t) −
t+1∑

j=1
crj 𝐱(t + 1 − j)

𝐲(t) = 𝐂𝐱(t)
(12)

where 𝐀d = 𝐀 − 𝐈n.

Matrix of discrete transfer functions for a fractional MIMO plant may be then

calculated from the formula [5]

𝐆(z−1) =
⎡
⎢
⎢
⎣

g11(z−1) ... g1m(z−1)
... ... ...

gl1(z−1) ... glm(z−1)

⎤
⎥
⎥
⎦

= 𝐂
[

𝐈n
L∑

j=0
crj z

−j+1−𝐀d

]−1

𝐁 (13)

where L, as in (5), means a finite number of state values.

The presented above methods of modeling of fractional systems seems very like

the traditional integer order systems ones. However, it does not mean we can directly

use an integer order static and dynamic decoupling methods for fractional plants.

The differences arise naturally from another nature of plant dynamic and from the

numeric problems with estimation of value of the fractional-order operator (5).

Adopting a fractional model for a controlled plant changes different indicators

used in analysis and synthesis of the MIMO control systems. One of them is a very

popular Relative Gain Array (RGA) [2]. Authors [16] observe and give a suitable

example that RGA value and the way of its change is different for fractional and inte-

ger order processes model. Moreover, as we will present later, adopting a fractional

plant model and the level of accuracy of the fractional-order operator estimation may

also change adopted in the synthesis plant properties and further affect the regulation

quality.
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3 Static Decoupling of Fractional MIMO Plants

Let us consider a stable discrete fractional order system described by (13). As for

integer order systems it can be statically decoupled by a static precompensator G ∈
Rm×l

satisfying the equation

KPG = Il (14)

where KP ∈ Rl×m
is a gain matrix of the decoupled plant. Its numerical values can

be determined for the model (13) from the relation

KP = [C(𝐈n
L∑

j=0
crj z

−j+1−𝐀d)−1B + D]
|z=1

= C(𝐈n
L∑

j=0
crj−𝐀d)−1B + D (15)

From which it follows that the number of elements in the sum L (and model accu-

racy) affects value of the gain matrix and further value of the precompensator matrix

𝐆. To illustrate this potential control system synthesis problem let us assume an inte-

ger order plant described by state and output equations with matrices

𝐀 =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
0 0 1 0 0
−1 −2 −1 0 0
0 0 0 −1 0
0 0 0 −1 2

⎤
⎥
⎥
⎥
⎥
⎦

,𝐁 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0
0 0 0
0 1 1
0 0 1
0 1 0

⎤
⎥
⎥
⎥
⎥
⎦

,𝐂 =
⎡
⎢
⎢
⎣

1 0 1 0 0
0 1 0 0 1
0 1 0 0 0

⎤
⎥
⎥
⎦

,𝐃 = 𝟎 (16)

The plant RGA matrix for a steady state takes the form

RGA(0) =
⎡
⎢
⎢
⎣

0.6 0.1333 0.2667
0 0.5333 0.4667
0.4 0.3333 0.2667

⎤
⎥
⎥
⎦

(17)

However assuming the fractional order rank r = 0.4 for all plants states the val-

ues of RGA matrix parameters will change with the assumed modeling accuracy

depending on L as in Fig. 1.

Methods of modeling of the fractional plants, including changes of gain matri-

ces of the modeled plant, may influence a control performance, particularly in the

adaptive control systems with controllers switching [30].
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Fig. 1 RGA as the function of L

4 Dynamic Decoupling of Fractional MIMO Plant

4.1 Dynamic Decoupling of TITO Plants

Dynamic decoupling of fractional TITO plants has been analyzed in a [16] only. It

was realized by methods used for an integer order TITO processes with a transfer

function matrix

𝐆(s) =
[
g11(s) g12(s)
g21(s) g22(s)

]

(18)

where the particular transfer functions gij(s) has the form

gij(s) =
Kij

Tijs
αij + 1

; i, j = 1, 2,… (19)

From among three typical decoupling methods [10, 16] for the described by

model (18) plant the simples two need to calculate the precompensators
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Fig. 2 Scheme of the inverted (left) and simplified (right) decouplers

d12(s) = −
g12(s)
g11(s)

and d12(s) = −
g12(s)
g11(s)

(20)

and their use in structures of simplified and inverted decoupling (Fig. 2).

Then the closed loop transfer function has the form

𝐊(s) =
⎡
⎢
⎢
⎣

g11(s) −
g12(s)g21(s)

g22(s)
0

0 g22(s) −
g12(s)g21(s)

g11(s)

⎤
⎥
⎥
⎦

(21)

for a simplified decoupling and

𝐊(s) =
[
g11(s) 0
0 g22(s)

]

(22)

for inverted one.

However, just to realize such constructed precompensators the process model (18)

has to satisfy the conditions [16]

α11 ≤ α12 and α22 ≤ α21 (23)

In case of integer order plants such constructed control system allows to fully

decouple the plant. These results for fractional plants are difficult (if possible) to

achieve.

Example 1—Dynamic Decoupling of the Thermoelectric TITO Plant

After authors of [16] we show an example of decoupling of the thermo-electric tem-

perature plant described as following [17]

𝐏(s) =
[ 1.2

2s0.5+1
0.6

3s0.7+1
0.5

s0.8+1
1.5

3s0.6+1

]

(24)
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Fig. 3 Result of simulations of the decoupled plant with inverted (left) and simplified (right)
decouplers

The precompensator elements (20) have then the form

d12(s) = − 2s0.5 + 1
2(3s0.7 + 1)

, d21(s) = − 3s0.6 + 1
3(s0.8 + 1)

(25)

and the simulation results in structures presented in (Fig. 2) are presented in (Fig. 3).

The simulations have been carried out in Matlab/Simulink environment with the use

of Ninteger toolbox [33, 34]. As we see in both figures in relation to the results shown

in [16] the accuracy of modeling the fractional operator may have an influence on

incomplete plant decoupling. This is illustrated clearly by another example.

Example 2—Dynamic Decoupling of a Nonsquare MIMO Plant

Let us take under consideration one from the plants analyzed in [11]. It is the integer

order plant with four inputs and three outputs described by the following transfer

matrix

𝐏(s) =

⎡
⎢
⎢
⎢
⎢
⎣

−(s+1)
s−1

s+1
s−1

−(s+1)
s−1

−2
s−1

0 0 0 s−1
(s−1)2

−1 1 2
s−1

−2
s+1

⎤
⎥
⎥
⎥
⎥
⎦

(26)

The plant has unstable pole s = 1, and zeros at s = 1 and ∞. According to the the-

oretical analysis presented in [11] the existing pole zero coincidence is non-structural

and one can find a precompensator 𝐂(s), for which the full dynamic decoupling will

be possible. For a one of possible precompensators

𝐂(s) =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
2

s+1
2

s+1 1
−(s−1)
s+1 0 1
0 1 0

⎤
⎥
⎥
⎥
⎥
⎦

(27)
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Fig. 4 General scheme of

the control system with a

dynamically decoupled plant

q yFeedforward
compensator Plant

u
Controller

eyo

y

+

_

a diagonal transfer matrix of the decoupled system 𝐃(s), 𝐏(s)𝐂(s) = 𝐃(s) takes the

form

𝐃(s) =
⎡
⎢
⎢
⎢
⎣

s+1
s−1 0 0
0 s−1

(s+1)2
0

0 0 s+1
s−1

⎤
⎥
⎥
⎥
⎦

(28)

The decoupled system is unstable and nonminimumphase but its stabilization and

control are possible. Example taking three separate PI controllers with the following

parameter values: kr1 = 4, Ti1 = 10 in firs loop, kr2 = 0.1, Ti2 = 10 in second loop

and kr3 = 3, Ti3 = 10 for third one we obtained a closed loop system (Fig. 4) which

simulation results are presented in Fig. 5.

Using a polynomial approach with operator s replaced by ν = sr for r = 0.5 we

obtain matrix of transfer functions 𝐃(ν) similar to that of integer order (28). The

practice of control system synthesis for fractional plants shows that controllers for

such plants may be both integer and fractional order. Despite this for the discussed

fractional plant neither integer nor fractional PI controller does not ensure closed

loop stability (Fig. 6). The controller settings were adopted as for the integer order

system. In both cases, it is clear that the methods of decoupling of the integer order

plants may not be capable of full application to the fractional plants.

Fig. 5 Result of simulation

of the integer order

decoupled system
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Fig. 6 Result of simulation of the decoupled fractional system with integer order (left) and frac-

tional order (right) controller

4.2 Dynamic Decoupling of Fractional MIMO Plants
with a State Feedback

As the plant may be modeled by a fractional LTI state and output equations (9), it

seems to be able to decouple the plant by using a state feedback. It opens a lot of

possibilities as the state feedback methods are very popular in decoupling integer

order counterparts. One of them is a method presented in [6, 8]. This algorithm

may be used for the synthesis of dynamic decouplers for LTI plants which could

be unstable, non-minimum phase or both, described by rectangular proper rational

full rank transfer matrices. It is a polynomial method where a transfer matrix of the

MIMO plant and another system elements are presented in the form of a relatively

right or left polynomial matrix fraction description (MFD)

𝐓(⋅) = 𝐂(⋅𝐈n − 𝐀)−1𝐁 + 𝐃 = 𝐁1(⋅)𝐀1
−1(⋅) = 𝐀2

−1(⋅)𝐁2(⋅) (29)

with polynomial matrices: denominator 𝐀1(⋅) ∈ ℝ[⋅]m×m, 𝐀2(⋅) ∈ ℝ[⋅]p×p and

numerator 𝐁1(⋅) ∈ ℝ[⋅]p×m, 𝐁2(⋅) ∈ ℝ[⋅]p×m here for fractional plants with respect

to the ν = sr for continuous systems and ν = w(z−1) for discrete-time systems.

(w(z−1)) as in (10) describes a discreet version of a Laplace operator s expressed

as a function of the variable z or shift operator z−1. It should be noted that rank r
should have the same value for all fractional states. A method of calculating MFD

transfer functions for plants with different values q = {q1,… , qn} of the opera-

tor 0D
q
t in (9)—according to the author’s knowledge—has not been developed. It is

quite important limitation of the applicability of integer order decoupling methods

for fractional systems and is a major open research problem.

Example 3—Dynamic Decoupling of Fractional MIMO Plants
with a State Feedback

Let us assume a plant described by a continuous state space model (9) with matrices

as in (16) and 0D
q
t with r equal for all model states. The plant is unstable with poles
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ν1 = 2, ν2,3 = −0.2150 ± i1.3071, ν4 = −1, ν5 = −0.5698 and non-minimum

phase with one transmission zero νo
1 = −2. Its transfer function matrix 𝐓(ν) may be

described by relatively right polynomial MFD (29) with matrices

𝐁1(ν) =
⎡
⎢
⎢
⎣

ν − 2 ν − 8 4
1 ν + 4 −1
0 1 0

⎤
⎥
⎥
⎦

, 𝐀1(ν) =
⎡
⎢
⎢
⎣

ν2 − 2ν −8ν − 1 4ν
ν − 2 ν2 + ν − 6 −ν + 3
0 0 ν + 1

⎤
⎥
⎥
⎦

(30)

Before starting the synthesis procedure it was assumed that the control system

will be diagonalized with the following poles: ν1 = −0.5 for the first, ν2 = −0.4
for the second and ν3 = −0.6, ν4 = −0.4 for the third block (loop) which gives the

denominator matrix 𝐃(ν) of the decoupled system

𝐃(ν) =
⎡
⎢
⎢
⎣

ν + 0.5 0 0
0 ν + 0.4 0
0 0 ν2 + ν + 0.24

⎤
⎥
⎥
⎦

(31)

With the numerator matrix of the decoupled system𝐍(ν) = 𝐈3 the method allowed

to calculate a static (in general dynamic) precompensator 𝐆−1(ν)𝐋(ν) described by

𝐃w =
⎡
⎢
⎢
⎣

0.5 0 −0.24 1 0 −1
0 0.4 0 0 1 0
0 0.4 0.24 0 −1 1

⎤
⎥
⎥
⎦

(32)

and feedback matrix 𝐅

𝐅 =
⎡
⎢
⎢
⎣

0.5 1 0.5 0 0
0 −0.4 −1 1 −2.4
1 1.76 0 0 0

⎤
⎥
⎥
⎦

(33)

Figure 7 shows results of simulations of the diagonalized systems. However,

according to the theoretical predictions the above method does not allow for dynamic

decoupling in the case of different ranks of operators 0Dr
t for the particular states. It

is illustrated in Fig. 8 where for the same fractional plant and the decoupled system

the fractional rank of the second state was changed to r2 = 0.5—with r1,3,4,5 = 0.9.

4.3 Interconnection Transmission Zeros in a Dynamic
Decoupling of a Fractional MIMO Plant

The above example shows the possibility of using the discussed algorithm to decou-

ple a fractional LTI plant. However, its effectiveness depends also on its ability to

meet another requirements, i.e. input/output pairing and grouping, decoupling of left
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Fig. 7 Result of simulations of the decoupled plant a r = 0.9, b r = 0.8, c r = 0.7, d r = 0.6,

e r = 0.5, f r = 0.4

invertible plants and/or dealing with interconnection transmission zeros. It is illus-

trated by the following example.

Example 4 Let us consider a continuous state space model (9) with matrices as in

(16) for which a failure of second input occurred. After crossing out a second column

from an input matrix 𝐁 the plant transfer function takes the form
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Fig. 8 Result of simulation

of the decoupled plant with

the rank of the second state

r2 = 0.5

𝐁1(s) =
⎡
⎢
⎢
⎣

ν2 + 2 −ν − 4
−1 0
−1 1

⎤
⎥
⎥
⎦

, 𝐀1(s) =
[
ν3 + ν2 + 2ν + 1 −2ν2 − 4ν − 1

0 ν2 − ν − 2

]

(34)

As a full (row-by-row) decoupling of the left invertible plant is not possible and

also an appropriate theory presented in [7, 35] is not satisfied then to calculate a

decoupler we have to cross out any row from matrix 𝐁1(s). When the second output

is omitted then 𝐁1(s) from (34) takes the form

𝐁m(s) =
[
ν2 + 2 −ν − 4
−1 1

]

(35)

with two virtual interconnection squaring down zeros νo
1 = −1 and νo

2 = 2 [7]. As

νo
2 has its real part in the right part of the complex plane then the dynamic prec-

ompensator cannot be static. Eventually for I/O pairing (q1 → y1; q2 → y3) and

the assumed poles ν1 = −0.5, ν2 = −0.4, ν3 = −0.6 for the first and ν4 = −0.4,

ν5 = −1.5, ν6 = −1.3, ν7 = −1 for the second block we obtain a transfer function

of the decoupled system 𝐓yq(ν) = 𝐍(ν)𝐃−1(ν) with matrices

𝐍(ν) =
[
ν2 − ν − 2 0

0 ν2 − ν − 2

]

(36)

𝐃(ν) =
[
ν3 + 1.5ν2 + 0.74ν + 0.12 0

0 ν4 + 4.2ν3 + 6.27ν2 + 3.85ν + 0.78

]

It is realized as in Fig. 9 by a dynamic precompensator described by state and

output equations with matrices
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Fig. 9 General scheme of

the control system with a

dynamically decoupled plant

q yFeedforward
compensator Plant

u

f

F

x

𝐀w =
[
9.1311 −0.0768
5.1810 −0.8782

]

, 𝐁w =
[

0 −0.4171 0 1.0695
1.7490 7.4747 −29.1498 −19.1660

]

,

𝐂w =
[
−15.8782 0.1148
7.3827 −0.0559

]

, 𝐃w =
[
−0.0600 0.3900 1 −1

0 −0.3900 0 1

]

and the feedback matrix

𝐅 =
[
0.2153 0.3482 −0.0506 10.4800 −31.2000
−0.6306 −1.6865 −0.9388 −13.8600 41.5800

]

.

As it is shown in Fig. 10, also in this case all of the assumed design objectives

are achieved. Change in the value of the first input q1(t) at t = 10s influences the

first y1(t) and the second (omitted in calculation) y2(t) output. Similarly input q2(t)
influences outputs y2(t) and y3(t) only.

The above simulations have been carried out in Matlab/Simulink with the use of

Ninteger toolbox [33, 34]. The condition of obtaining presented here results is the

same way to approximate the operator ν = sr both for modeled plant and the dynamic

precompensator. Different approximations make the system unstable. It seems to be a

serious drawback as it demands a very precise plant model identification and partic-

ular numeric precision during control of the plant with Interconnection transmission

zeros.

Fig. 10 Result of simulations of the goup decoupled systems; integer order (left) and fractional

r = 0.6 (right)
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5 Summary

The presented in the paper examples of dynamic decoupling of fractional MIMO

plants prove the possibility of using methods developed for integer order systems. It

was shown that both state space and output feedback dynamic decoupling methods

may be applicable. However, there are some limitations which may make the decou-

pling difficult or almost impossible to realize. The main problem with that is the

numeric approximation of the fractional differentiation and integration which makes

it very difficult to deal with plant structural characteristics, e.g. pole-zero coinci-

dence, interconnection transmission zeros. A fractional modeling changes indica-

tors such as RGA used in analysis of the MIMO plants. An open research problem is

also to find a method of dynamic decoupling with the use of state feedback for plant

models witch different states fractional ranks.
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Perfect Control for Fractional-Order
Multivariable Discrete-Time Systems

Łukasz Wach and Wojciech P. Hunek

Abstract In the paper the perfect control for multi-input/multi-output fractional-

order discrete-time systems in state space is introduced. A simulation example for

nonsquare MIMO system in Matlab/Simulink environment confirms the correctness

of the proposed algorithm.

Keywords Perfect control ⋅ Fractional-order system ⋅ Discrete-time state space

system ⋅ Nonsquare MIMO system

1 Introduction

In this paper the perfect control algorithm for multivariable fractional-order non-

square systems, that is systems whose numbers of input and output variables are dif-

ferent, is given. It is emphasized that after some assumption the algorithm reduces to

the perfect control of an integer-order discrete-time system in state space framework.

The simulation example in Matlab/Simulink environment confirms the correctness

of the presented method.

2 Fractional-Order State Space System [9, 10]

Consider an LTI system with nu-inputs, ny-outputs and n-state vector in discrete time

k described by

{
𝛥

α𝐱(k + 1) = 𝐀𝐝𝐱(k) + 𝐁𝐮(k), 𝐱(0) = 𝐱𝟎
𝐲(k) = 𝐂𝐱(k) (1)
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where the discrete-time difference operator 𝛥
α

is the Grünwald-Letnikov difference

of a fractional order α, with 0 < α < 2, as follows

𝛥
α𝐱(k) =

k∑

j=0
(−1)j

(
α
j

)

𝐱(k − j) (2)

where

(
α
j

)

=

{
1 j = 0
α(α−1)…(α−j+1)

j! j > 0 (3)

and 𝐀𝐝 = 𝐀 − 𝐈𝐧. Assume also the system is controllable and observable.

3 Fractional-Order Perfect Control

Observe that the Eq. (2) can be rewritten into the form

𝐱(k + 1) = 𝛥
α𝐱(k + 1) −

k+1∑

j=1
(−1)j

(
α
j

)

𝐱(k − j + 1). (4)

After minimizing the (noise-free) control performance index (for time delay d = 1)

J(u) =
∞∑

k=0

{[
𝐲(k + 1) − 𝐲𝐫𝐞𝐟 (k + 1)

]T [𝐲(k + 1) − 𝐲𝐫𝐞𝐟 (k + 1)
]}

(5)

where 𝐲(k+1) = C

[

𝛥
α𝐱(k + 1) −

k+1∑

j=1
(−1)j

(
α
j

)

𝐱(k − j + 1)

]

and 𝐲𝐫𝐞𝐟 (k + 1) are

the one-step deterministic output predictor and reference/setpoint, respectively, we

obtain the perfect control law (for nu > ny)

𝐮(k) = (𝐂𝐁)R
[

𝐲𝐫𝐞𝐟 (k + 1) − 𝐂𝐀𝐝𝐱(k) + 𝐂
k+1∑

j=1
(−1)j

(
α
j

)

𝐱(k − j + 1)

]

(6)

where symbol ‘R’ denotes any right inverse of 𝐂𝐁 generating the so-called ‘control

zeros’ [1–8].

Remark 1 It should be noted that in our considerations the nonsquare (with nu > ny)
product 𝐂𝐁 of full rank is used (see Sect. 4). Therefore, any nonunique right inverses

can be applied in Eq. (6). Of course, for systems with the same numbers of inputs
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and outputs variables the mentioned inverses reduce to the regular one. Generally,

for left-invertible (nu < ny) or non-full rank 𝐂𝐁 the perfect control does not exist.

Remark 2 For α = 1 the Eq. (6) reduces to the perfect control of integer-order sys-

tems as follows

𝐮(k) = (𝐂𝐁)R[𝐲𝐫𝐞𝐟 (k + 1) − 𝐂𝐀𝐱(k)]. (7)

4 Simulation Research

Consider a two-input one-output system with 𝐀𝐝 =
[
−1.0 −0.9
1.0 −0.8

]

, 𝐂 =
[
0 2

]
,

𝐁 =
[
−0.025 −0.085
0.5 0.5

]

, α = 0.5 and 𝐱T𝟎 =
[
5 −8

]
. After employing the familiar

minimum-norm right inverse of 𝐂𝐁, for 𝐲𝐫𝐞𝐟 (k + 1) = 2, the output remains at the

reference/setpoint for k ≥ d = 1 under the (identical) stabilizing fractional-order

perfect controls depicted in Fig. 1. Figure 2 shows the n-state vector 𝐱(k). Note that

the fractional difference has been implemented here in form of FIR filter.

Fig. 1 Fractional-order

perfect control: plots of the

input signals u1 and u2
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Fig. 2 Fractional-order

perfect control: plots of the

state signals x1 and x2

5 Conclusion

In this paper the perfect control for fractional-order discrete-time MIMO systems in

state space has been presented. The objective of future research is synthesis of afore-

mentioned control strategy in terms of its minimum/nonminimum phase behavior

and possible control zeros to be obtained.
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Implementation of Non-Integer Order
Controller Using Oustaloup Parallel
Approximation for Air Heating Process
Trainer

Waldemar Bauer

Abstract Nowadays, non-integer controllers are a widely researched problem. One

of questions, that is of great importance, is the design of non-integer order con-

trollers and their approximation. In this paper the author presents a new implementa-

tion method of non-integer order controller. This controller is designed and analysed

for the model of air heating process trainer system belonging to the Department

of Automatics and Biomedical Engineering of AGH University and Science and

Technology.

1 Introduction

Non-integer controllers are a broadly researched topic. Questions of great impor-

tance are the design of non-integer order controllers and their approximation allow-

ing discrete implementation (see [1, 20]).

There are some popular methods of realisation of non-integer order systems in the

form of integer order transfer functions. There are however certain issues with their

discretisation and subsequent implementation. In this paper, the author proposes a

new method of approximation of non-integer order systems based on a method pro-

posed by Oustaloup (see [19]).

Theory of non-integer order systems can be found e.g. in [5, 9, 13, 18, 22].

Oustaloup method was described in [19]. This approximation can be used in simula-

tions [7, 8, 11, 15, 24], filtering [3, 12, 14] and with appropriate care in experiments

[10, 17]. Its sensitivity and stability problems during discretization were discussed

in [2, 6, 21]. Different method of approximation is based on Laguerre functions [1,

4, 23]. The implementation of the algorithm requires the discretization of the control

system designed in a continuous time domain. Earlier results [21] show that transfer
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function cannot be directly implemented. That is why a new method of implemen-

tation was used.

The rest of the paper is organized as follows. The classical method of Oustaloup

is presented with brief discussion of its properties. Then the parallel method of

Oustaloup aproximation is presented. Results of experiments are presented and dif-

ferences between classical and parallel Oustaloup are discussed. Finally the conclu-

sions are drawn.

2 Air Heating Process

Air heating process is a Linear Time Invariant system (LTI) with time delay, and its

simplified model can be expressed by transfer function:

P(s) = K
(T1s + 1)(T2s + 1)

e−s𝜏 , (1)

where K=18.8, T1=7.783, T2=0.0014 and 𝜏=0.5842. The considered model has

been precisely identified in work [10].

The considered system is depicted in Fig. 1 and consists of a hollow tube, a tem-

perature sensor, a heater and a fan enforcing the movement of heated air. A photog-

raphy of air heating process trainer system, which was used in experiments, is shown

in Fig. 2.

The designing of control system for a this plant is associated with two major

problems. First, the dynamical system of a plant is non-stationary, due to varying

gain while the heater and transmission tube are warming-up. Secondly, the study of

stability becomes an infinite-dimensional problem, by the presence of continuous

time-delay in a dynamical system.

Fig. 1 System schema:

1—thermoresistive sensor,

2—heating element, 3—fan
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Fig. 2 Process Trainer

PT326

3 Design Non-Integer Controller

3.1 Non-Integer Order PID Controller

This section describes a more generalized structure for the classical PID controller.

Podlubny proposed a generalization of the PID, namely the PI
𝜆
D
𝜇

controller, in-

volving an integrator of order 𝜆 and a differentiator of order 𝜇. In time domain the

equation for the PI
𝜆
D
𝜇

controller’s output has the form (see [22]):

u(t) = Kpe(t) + Ki
C
0 D

−𝜆
t e(t) + Kd

C
0 D

𝜇

t e(t) (2)

where:

∙ Kp is proportional gain

∙ Ki is integral gain

∙ Kd is derivative gain

∙ e(t) is control deviation in time t
∙ 𝜆, 𝜇 > 0

And the transfer function is given by the equation:

G(s) = Kp + Kis−𝜆 + Kds𝜇 (3)

As can be observed, when 𝜆 = 1 and 𝜇 = 1 we obtain a classical PID controller,

similar when 𝜆 = 0 and 𝜇 = 1 give PD, 𝜆 = 0 and 𝜇 = 0 give P, 𝜆 = 1 and 𝜇 = 0
give PI.

All these classical types of PID are the particular cases of the non-integer PI
𝜆
D
𝜇

.

The PI
𝜆
D
𝜇

is more flexible.
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4 Oustaloup Approximation

Oustaloup filter approximation with a fractional-order differentiator G(s) = s𝛼 is

widely used in applications [16]. An Oustaloup filter can be designed as:

Gt(s) = K
N∏

i=1

s + 𝜔
′
i

s + 𝜔i
(4)

where:

𝜔
′
i = 𝜔b𝜔

(2i−1−𝛼)∕N
u (5)

𝜔i = 𝜔b𝜔
(2i−1+𝛼)∕N
u (6)

K = 𝜔
𝛼

h (7)

𝜔u =

√

𝜔h

𝜔b
(8)

Approximation is designed for frequencies range 𝜔 ∈ [𝜔b, 𝜔h] and N is the order

of the approximation. As it can be seen, its representation takes form of a product

of a series of stable first order linear systems. As one can observe choosing a wide

band of approximation results in large 𝜔u and high order N result in spacing of poles

spacing from close to −𝜔h to those very close to −𝜔b. This spacing is not linear

(there is a grouping near −𝜔b) and causes problems in discretisation process.

5 Oustaloup Parallel Approximation

The method proposed in this paper aims to improve the spacing of poles. Instead of

creating a high-order approximation (for N > 5) on the entire [𝜔b, 𝜔h] interval it is

proposed to create a sum of the two approximations: one for lower (L(s)) and one for

higher (H(s)) frequencies, both of order n = ⌊N∕2⌋.

L(j𝜔) ≈ j𝜔𝛼
, 𝜔 ∈ [𝜔b, 𝜔c] (9)

H(j𝜔) ≈ j𝜔𝛼
, 𝜔 ∈ [𝜔c, 𝜔h] (10)

The division is located in the central frequency 𝜔c. Both of these approximations

should be connected in a series with lowpass and highpass filters respectively (both

with cutoff frequency 𝜔c). Those connections are then connected in parallel. Such

construction is presented in Fig. 3.

Because low and high bands are approximated separately such parallel connection

is consistent with approximation on the entire band, but with differently spaced poles.

In this paper classical first order filters were used.
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Fig. 3 Oustaloup parallel

approximation schema

6 Experiments Results

An experiment has been conducted to compare the performance of classical and

parallel Oustaloup approximation of the control for air heating process trainer. De-

scribed Oustaloup approximations has been discretaized and implemented in a real-

time environment (use RT-DAC and MATLAB/RT-CON). The non-integer order

PID settings and Oustaloup approximation parameters are:

∙ Kp = 0.0035
∙ Ki = 0.1268
∙ Kd = 0.0206
∙ 𝛼 = 0.7229
∙ 𝜇 = 0.7307
∙ N = 8
∙ 𝜔 ∈ [10−6, 106]

The considered PID settings has been precisely described in work see [11].

Controllers performance for real plant system has been investigated based on the

following experiments. Step response of closed-loop system is shown in Figs. 4 and

5. In the first case we can see that parallel Oustaloup approximation has better nu-

merical performance that classical Oustaloup for the same parameters. This can be

seen in figure Fig. 4 in 40th second. This is due to the fact of grouping of poles near

−𝜔b in classical Oustaloup method. In parallel implementation this problem does

not exist.

The last experiment, presented in Fig. 6 shows the tracking mode of the tempera-

ture for the implemented controllers. The comparison of the tracking mode between

the basic and author’s method shows that parallel implementation can much better

control the system in time domain.
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Fig. 4 Comparison of

controllers performance for

constant reference value

Fig. 5 Comparison of step

response

Fig. 6 Comparison of

tracking performance
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7 Conclusion and Further Research

It has been shown, that PI𝛼D𝜇
controller is suitable for control of the inertial system

with time-delay and time-varying gain.

New method of implementation of Oustaloup approximation was successful and

allows operation of non-integer order controller in real time environment. Further

work will include implementation of controller in different real time platform and

development of methodology for tuning rules of controller.
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Classical Versus Fractional Order PI
Current Controller in Servo Drive

Bogdan Broel-Plater, Paweł Dworak and Krzysztof Jaroszewski

Abstract In the paper a fractional order PI current controller of the servo drive is

compared with its classical counterpart. The main focus is put on structures of such

a fractional order controller without as well as with different antiwindup blocks.

Results of simulations carried out in Matlab/Simulink are presented and discussed.

Keywords Servo drive ⋅ Fractional order controller ⋅ Saturation

1 Introduction

Nowadays servo drives are involved in wide areas of industry. Hence, the DC servo

drives have been intensively investigated for many years. For such drives demand-

ing requirements are formulated, especially for these used in robotic and micro ma-

chining solutions. For example, servo drives used in machining should fulfil many

different expectations, among which the most elementary ones are: high precision of

motion in whole spectrum of velocities, loads and operation conditions; high stiffness

mechanic characteristic; high ability of start; overload robustness; high dynamics; as

well as step-less and smooth motion control in wide range. The highest precision of

micro movements are highly desirable also in cases of permanent changes of value of

friction due to changes of load mass and torque on the shaft of the drive. Among oth-

ers, the most essential phenomena which suspends smooth and fast start of motion

is dry friction. It also impacts on the drive in case of switching the rotary direc-

tion and during operations executed with very small velocities and / or in the case
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of very small movements [5–8]. For drives with mechanical gear drifts elimination

by means of modification of construction is rather expensive. Hence, sophisticated

control systems have to be used in order to provide expected motion quality at low

costs. Moreover, internal values of signals in servo drive control structures are very

important. Hence, controller parameters or type of used controller is also very im-

portant. On the other hand, the most frequently used is a classical cascade structure

with three PI type controllers of: position, velocity and current of the servo drive [5].

Hence, the motivation for authors is to find the best controller and its parameters

in order to use it in as many as possible, available on the shelf, servo drive systems

with the classical cascade control structure. Many different approaches were used

to achieve better servo drive operation efficiency [1, 3, 5, 12, 21]. Proposed in [7]

Start-Aid method is one of solutions, especially in case of small motions. Some in-

teresting results may also be obtained by using a fractional order calculus [2, 18].

In [2] authors show positive effects of fractional order controller in the velocity con-

trol of a servo system. Following this path in this paper we investigate impact of the

fractional order current controller on the control quality. To do that the paper is orga-

nized as follows. In Sect. 2 basic definitions and fractional order PID controller are

briefly presented. Then in Sect. 3 classical PI controller as well as different structures

with fractional order controller are described. Figures presented curves of signals in

servo drive control system for all investigated controllers are shown and compared

in Sect. 4. A conclusion and final remarks on future research are given in Sect. 5.

2 Basics of Fractional Order Calculus

Fractional order calculus is a generalization of the integer order differentiation and

integration. The continuous fractional order operator toD
r
t is defined as [20]

toD
r
t =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

dr
dtr r > 0
1 r = 0

t
∫
to
(d𝜏)r r < 0

(1)

where to and t are the time limits for differentiation and integration and r ∈ R
describes the order of the operator. There are many definitions of the integro-

differential operator. The most popular are the Grunwald-Letnikov, Riemann-

Liouville and Caputo [14, 16, 20].

Utilizing the fractional calculus the dynamics of the modeled control object may

be described by fractional differentiation equation [20]

http://dx.doi.org/10.1007/978-3-319-23039-9_2
http://dx.doi.org/10.1007/978-3-319-23039-9_3
http://dx.doi.org/10.1007/978-3-319-23039-9_4
http://dx.doi.org/10.1007/978-3-319-23039-9_5
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anD𝛼ny(t) + an−1D𝛼n−1y(t) +⋯ + a0D𝛼0y(t) =
bmD𝛽mu(t) + bm−1D𝛽m−1u(t) +⋯ + b0D𝛽0u(t) (2)

where D𝛾≡0D
𝛾

t , ak and 𝛼k k = 0, 1,… , n , bl and 𝛽l l = 0, 1,… ,m are real numbers.

After the Laplace transform of the fractional derivative the continuous transfer

function of a plant may be described by

G(s) =
y(s)
u(s)

=
bms𝛽m + bm−1s𝛽m−1 +⋯ + b0s𝛽0
ans𝛼n + an−1s𝛼n−1 +⋯ + a0s𝛼0

(3)

where y(s) and u(s) are the Laplace transforms of the output and input signals re-

spectively.

2.1 Fractional Order Controller

As it was shown in many works a more efficient control of the fractional order system

may be obtained by the use of fractional order controller [15, 19]. In [19] a gener-

alization of the classic PID controller to the fractional form PI𝛼D𝜇
was proposed. It

involves an integrator of order 𝛼 and differentiator of order 𝜇. The transfer function

of such controller takes then the form

G(s) = u(s)
e(s)

= kp + kis−𝛼 + kds𝜇 (4)

where 𝛼, 𝜇 > 0. This PI𝛼D𝜇
controller is very flexible than the integer order one

(obtained for 𝛼 = 1, 𝜇 = 1) and gives possibility for better plant control.

In many practical application, especially in servo drive systems, are used simpler

control algorithm—PI. Scheme of the fractional order PI controller is presented in

Fig. 1.

In practice most important issue is minimizing or even eliminating overshooting.

One of typical method allowing obtain such effect is using anti-windup. However,

such solution may be realized in many different ways [4, 11, 15, 22, 25]. In the paper

two of which was investigated in connection with fractional order PI controller. In

first one anti-windup covers only integral action what is presented in Fig. 2. In second

one anti-windup influences directly on control error—Fig. 3.

Fig. 1 Scheme of the

fractional order PI controller
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Fig. 2 Scheme of the

fractional order PI controller

with an anti-windup I

Fig. 3 Scheme of the

fractional order PI controller

with an anti-windup II

3 Servo Drive

Typical servo drive structure with linear motor is presented in Fig. 4. In that structure

there are cascade of three PI controllers responsible for control of: position, velocity

and current (torque).

High quality of the control is hard to obtain due to nonlinear friction in servo

motor, especially in case of minimal velocity and small motion. In order to take into

account above mentioned factors structural model of servo drive motor was used

during researches Fig. 5.

Used in simulation model of a DC motor is described by following equations

{
U(t) = R ⋅ I(t) + L ⋅ dI(t)

dt + ke ⋅ V(t)
J(m) ⋅ dV(t)

dt = TD(I(t)) − TB(V(t),m)
(5)

where: m mass of moving detail, TD and TB drive and breaking torque, respectively,

J moment of inertia, U(t) and I(t) voltage and current of motor supply, respectively,

Fig. 4 Scheme of typical servo drive cascade PI controller structure
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Fig. 5 Scheme of structural model of servo drive motor

R, L, ke electrical parameters of the motor. At the Fig. 6 the relationship between

moment of inertia J and mass m of moving detail is presented.

Relationship between breaking torque TB and velocity V and mass m is described

by equation [13]

TB(V ,m) = (A1(m) + (A2(m) − A1(m)) ⋅ e−V
2⋅A3(m)) ⋅ sgn(V) + A4(m) ⋅ V

where: A1(m), A2(m), A3(m) and A4(m) are coefficients dependent of mass of moving

detail. Above relationship is presented in Fig. 7.

In simulation nonlinear relationship, presented in the Fig. 8, between drive torque

TD and drive current I was taken into account.

Fig. 6 Relative relationship

J(m)
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Fig. 7 Relationship between breaking torque TB and velocity V and mass m

Fig. 8 Relationship TD(I)

4 Research Assumptions

In typical servo drives control structure classical PI controllers are used. End users of

servo drive commonly do not tune current controller. Its parameters are set by servo

drive producer. Hence, during researches only current controller were investigated.

Parameters of position and velocity controllers were constant as well as its type. The
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main aim of researches was to compare quality of control obtained by using classical

PI controller and fractional order ones.

To compare classical and fractional order controllers in first step classical one

were tuned and set parameters were also used in case of fractional one. Such approach

were used due to the fact that there are no widely known methods of tuning fractional

order controllers. Hence, the only one rest parameters 𝛼 of fractional controller as

well as gain ks in the anti-windup action were investigated and results of its change

were observed taking into consideration the curves of current and position of servo

drive obtaind in case of step change (10 mm) of set point position.

5 Results of the Simulations

Strong interest in the fractional order calculus led to the creation of tools for synthesis

and simulation of fractional systems, and the most popular are those prepared to work

in Matlab environment [9, 10, 17, 23, 24]. The presented below simulations have

been carried out in Matlab/Simulink environment with the use of Ninteger toolbox

[23, 24].

In Fig. 9 curves obtained in case of use classical (integer order) current controller

are presented, that was treated by authors as a reference (Kp = 10, Ki = 1500) for

comparison with efficiency of fractional order controllers.

In first step of our investigation best 𝛼 pramater of fractional order controller were

investigated. To do that controller presented in Fig. 1 were used. In Figs. 10, 11, 12

curves of position and current, respectively, for different 𝛼 (equal 0.1, 0.5 and 0.9,

respectively) values are presented.

As the best 𝛼 was chosen value 0.5 because it ensured luck of position oversooting

and accepted current curve. It is observed that too big integral action signal, due

to the luck of anti-windup, influences on position—not smooth curve. Ocurring big

negative value of current (in time 0.2 s that may be seen on Fig. 11) causes in stopping

change of position (maybe seen on Fig. 11). To elimnate this behaviour structures

with anti-windup were tested. In such structures the value of 𝛼 = 0.5.

Fig. 9 Curves of servo drive position and current for integer order controller
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Fig. 10 Curves of servo drive position and current for fractional order controller with 𝛼 = 0.1

Fig. 11 Curves of servo drive position and current for fractional order controller with 𝛼 = 0.5

Fig. 12 Curves of servo drive position and current for fractional order controller with 𝛼 = 0.9

The efficiency of anti-windup action was firstly check using controller shown in

Fig. 2. In such case the value of ks coefficient were investigated in the interval [1, . . . ,

1000]. In Fig. 13, 14, 15 curves of position and current, respectively, are presented.

It was observed, on the basis of mentioned curves, that examined controllers are

characterized by a high effectiveness and ensure high quality of control of position

and current of servo drive independently on the value of ks coefficient.

In the same way controller presented in Fig. 3 were investigated. The curves of

position and current, respectively, for such controller are presented on Fig. 16, 17, 18.

The quality of control motion of servo drive and current in servo motor are similar

to previous system.
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Fig. 13 Curves of servo drive position and current for fractional order controller—anti-windup

according to Fig. 2, ks=1

Fig. 14 Curves of servo drive position and current for fractional order controller—anti-windup

according to Fig. 2, ks=10

Fig. 15 Curves of servo drive position and current for fractional order controller—anti-windup

according to Fig. 2, ks=100
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Fig. 16 Curves of servo drive position and current for fractional order controller—anti-windup

according to Fig. 3, ks=1

Fig. 17 Curves of servo drive position and current for fractional order controller—anti-windup

according to Fig. 3, ks=10

Fig. 18 Curves of servo drive position and current for fractional order controller—anti-windup

according to Fig. 3, ks=100
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6 Summary

In the paper it was proved that using fractional order controller makes quality of

servo drive control better. The curves of servo drive position are without overshoot-

ing and servo motor current are less variant. Such features are higly demanded in

many practical applications. Additionally using anti-windup in case of fractional

order controller makes servo drive position curves smooth. What is more, simul-

taneously curves of current become less changeable. Another advantage was luck of

sensitivity in wide range of coefficient ks. It means that fractional order controller

parameters selection kp and ki may be achieved on the way of using tuning methods

of classical (integer order) controller. In practice, it follows from this that using frac-

tional order controller do not require different procedure of tuning in comparison

with others controllers in servo drive cascade control structure. Furthermore, end

user of servo drive obtain better working servo drive ensuring luck of overshooting.
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Parametric Optimization of Non-Integer
Order PD𝝁 Controller for Delayed System

Marta Zagórowska

Abstract In this paper, we analysed a new tuning method for 𝑃𝐷
𝛼

controller using

approximation with Laguerre functions. The optimization was performed for vari-

ous sets of parameters. We also analysed the convergence of chosen optimization

parameters. The results were tested for a first-order system with delay.

1 Introduction

Non-integer (fractional) order systems are one of developing branches of modern

control theory. They are widely investigated not only as a direct replacement of clas-

sical control systems, but they allow also an extension of existing concepts.

In this article, we investigated a method for optimizing parameters of 𝑃𝐷
𝛼

con-

trollers. We wanted to find a methodology for determining the parameters minimis-

ing the L2[0,+∞) norm of impulse response of closed loop system. In order to

achieve this goal, we used an approximation method consisting of Laguerre func-

tions. For illustration of this methodology two sample systems with delay were pro-

posed.

General works concerning non-integer order systems are e.g. [10, 16, 23, 25].

Most focus is oriented on their properties (see for example [2, 3, 6, 12, 22]) and

applications (see for example [4, 5, 8, 11, 24]). Earlier works on parametric opti-

misation of non-integer order controllers can be found in [7, 9, 11, 17, 21, 25,

27]—both in simulational and in experimental setups. An interesting approach to

non-integer fractional controllers was investigated in [18–20], where a concept of

robust non-integer controllers is investigated. The delayed systems were analysed

i.a. [1, 13, 15]

The main contribution of this paper is the use of previously developed method of

approximation [2, 5, 26] in new application allowing efficient controller parameter
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optimisation. Also, the convergence of the method is investigated and its potential

sensitivity.

The remainder of this paper is organised as follows, first the design problem is

formulated and chosen test systems are presented. Next, the approximation method

is presented along with the method of determining the performance index. Then

the optimisation algorithm is given. Algorithm details are illustrated with numerical

experiments, showing results of optimisation and analysing convergence behaviour.

Finally concluding remarks and plan for future works are given.

2 Problem Description

2.1 Analysed System

We analysed an integer order system from Fig. 1 with

G0(s) =
1

Ts + 1
(1)

It can be seen that the controller was placed in the feedback loop instead of classi-

cal position after the summation. In our case it results with the same system as we

analyse zero reference value.

The block Gd(s) denotes a delay of value 𝜏 with transfer function

Gd(s) = e−s𝜏 (2)

The transfer function GR(s) denotes the non-integer order 𝑃𝐷
𝛼

controller

GR(s) = KP + KDs𝛼 (3)

The open-loop system has the form

Gop(s) =
e−s𝜏
Ts + 1

(4)

Fig. 1 Closed-loop system
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The transfer function of a closed-loop system is

G(s) = e−s𝜏
Ts + 1 + KDs𝛼e−s𝜏 + KPe−s𝜏

(5)

We have analyzed two sets of parameters for system (1) and (2) with different

behaviour depending ratio between T and 𝜏.

2.2 Optimization Problem

The main goal of this article is to find optimal controller parameters: 𝛼, KD and KP in

order to efficiently bring the system to zero. For this purpose we chose the following

objective function

J(𝛼,KD,KP) =
∞

∫
0

g2(t)dt (6)

where g(t) denotes the impulse response of (5).

3 Approximation Method

Method of impulse approximation can be analysed for the equations of the following

type (see [25]):

C
0 D

𝜎n
t x(t) +

(n−1∑

j=1
pn−jC0 D

𝜎n−j
t x(t)

)

+ p0x(t) =

qmC
0 D

𝛾m
t u(t) +

(m−1∑

j=1
qm−jC0 D

𝛾m−j
t u(t)

)

+ q0u(t)

(7)

where j ≤ 𝜎j ≤ j + 1, j = 1, 2,… , n, j ≤ 𝛾j ≤ j + 1, j = 1, 2,… ,m, pj,qj ∈ R. The

initial conditions are zero. It is also assumed that |u(t)| ≤ umax for t ≥ 0 and u(t) = 0
for t < 0 [2]. Because the initial conditions are assumed to be zero, the differential

operator can be either of Riemann-Liouville or Caputo type.

The transfer function of (7) is

ĝ(s) =
qms𝛾m + qm−1s𝛾m−1 +⋯ q0
s𝜎n + pn−1s𝜎n−1 +⋯ p0

(8)
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and the solution to (7) is given by a convolution

x(t) = u ∗ g =
t

∫
0

u(t − 𝜃)g(𝜃)d𝜃 (9)

It can be shown that the solution (9) of Eq. (7) can be approximated with a solution

of a system of n linear ordinary differential equation [2].

Theorem 1 gives the conditions that must be fulfilled in order to find the approx-

imation with minimal error.

Theorem 1 If g ∈ 1(0,∞) ∪ 2(0,∞) and |u(t)| ≤ umax then:

1. The solution of (7) can be approximated with

xn(t) =
n∑

k=0
𝛽k𝜉k(t) (10)

where functions 𝜉k(t) ∶ [0,∞) → R are solution of a system

𝜉̇k = − 𝜇𝜉k − 2𝜇
k−1∑

i=0
𝜉i +

√
2𝜇u

𝜉k(0) = 0, k = 0, 1, 2,… , n

(11)

and

𝛽k =
∞

∫
0

g(𝜃)ek(𝜃, 𝜇)d𝜃. (12)

2. For every 𝜀 > 0 there exists a number n0 dependant on g, 𝜀 and umax that approx-
imation error 𝜖n(t) = x(t) − xn(t) fulfils the inequality

|𝜖n(t)| < 𝜀 (13)

for all n ≥ n0 and t ≥ 0

Proof For the proof see [2].

The functions ek(𝜃, 𝜇) form orthonormal set of Laguerre functions parametrised by

𝜇 > 0 given by

ek(𝜃, 𝜇) =
√
2𝜇Lk(2𝜇𝜃) (14)

where Lk are Laguerre polynomials, and k = 0, 1, 2,….
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The formula (12) for calculating the coefficients is not convenient for numerical

implementation. In [2] the authors presented the recurrence formula allowing effi-

cient computation. This method was used in the following computation.

It is worth noting that the choice of parameter𝜇 is crucial for the quality of approx-

imation. It should be chosen in such way that the objective function

I(𝜇) =
n∑

k=0
𝛽
2
k (𝜇) (15)

is maximized with respect to 𝜇 (for details see [2]).

Regarding the optimisation of performance index (6) one can observe directly

from formula (12) that

g(t) =
n∑

i=1
𝛽iek(t, 𝜇) (16)

Taking into account that ek(𝜃, 𝜇) are orthonormal in L2[0,+∞)

⟨ei, ej⟩ = 0, i ≠ j
⟨ei, ej⟩ = 1, i = j

(17)

where

⟨a, b⟩ =
∞

∫
0

a(𝜃)b(𝜃)d𝜃 (18)

It can be then observed that

∞

∫
0

g2(t)dt =
∞

∫
0

( n∑

i=1
𝛽iei(t, 𝜇)

)2

dt

=
n∑

i=1
𝛽
2
i ⟨ei, ei⟩ +

n∑

i, j = 1,
i ≠ j

𝛽i𝛽j⟨ei, ej⟩

=
n∑

i=1
𝛽
2
i

(19)
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It can be then easily observed that

J(𝛼,KD,KP) =
n∑

i=1
𝛽
2
i (20)

It can be easily seen that (15) and (20) are equal and that optimisation of impulse

response is a minmax problem—we need to maximise the objective function with

respect to 𝜇, then we perform minimisation over the parameters of the controller.

4 Optimisation Algorithm

Optimisation can be performed with any type of optimisation algorithm. In our case

Matlab/Optimization Toolbox implementation of Nelder-Mead algorithm was used.

1. Choose initial values for 𝛼, KD and KP.

2. Perform initial maximization of the function (15) with respect to 𝜇.

3. Perform the step of optimisation method.

4. Before evaluating (20) perform maximisation with respect to 𝜇.

5. Update the values of 𝛼, KD and KP according to chosen optimization method.

6. Repeat the steps 2–5 until the convergence criteria are achieved.

5 Results

We performed the optimization for two cases denoted in Table 1. We have fixed the

values of 𝛼 and wanted to find optimal controller minimizing the objective function

(20). We have chosen the following values: 0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3. As one can

see, we omitted 𝛼 = 1 as integer order optimization is not the purpose of the analysis.

We also fixed the order of approximation n = 10. Such value allows sufficient accu-

racy of approximation and in the same time is small enough not to cause numerical

errors concerning factorials. We also fixed the interval where we assumed we can

find optimal value of 𝜇—we maximized the quality index over interval 𝜇 ∈ [0, 7].
In Tables 2 and 3 we have presented the results of optimization for fixed 𝛼 for two

sets of parameters, respectively: T = 1, 𝜏 = 0.1 and T = 0.1, 𝜏 = 1.

Table 1 Analyzed values and T∕𝜏 ratio

T 𝜏 Ratio T∕𝜏
1 0.1 10

0.1 1 0.1
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Table 2 Result of optimization for T = 1, 𝜏 = 0.1
𝛼 Kp KD 𝜇 Index value

0.6 7.8332 −0.2213 4.1661 0.1195

0.7 7.5076 −0.0263 4.3263 0.1196

0.8 7.4760 −0.0204 7 0.1197

0.9 7.4527 −0.0162 4.3246 0.1197

1.1 7.4613 −0.0111 4.3227 0.1198

1.2 7.4411 −0.0092 4.3237 0.1197

1.3 634.8787 −0.4181 3.2891 1.1895 × 10−4

Table 3 Result of optimization for T = 0.1, 𝜏 = 1
𝛼 Kp KD 𝜇 Index value

0.6 1.081 −0.1034 1.3026 3.0239

0.7 0.6316 −0.0288 3.4079 2.4246

0.8 0.6442 −0.0275 3.4234 2.4204

0.9 −0.1619 −0.0257 5.2270 2.31

1.1 0.6843 −0.0253 6.6106 2.3982

1.2 0.6882 −0.0238 3.4819 2.3871

1.3 8.3654 −0.5903 2.2508 14.7381

In Table 2 it can be seen that the quality index remained almost the same for

most values of 𝛼. The only exception that is worth notice occurred for 𝛼 = 1.3. In

the same time, its value for this 𝛼 is also the smallest. The worst case happens for

𝛼 = 1.1, where the index value is greater than in most cases and equals 0.1198. This

disproportion may be caused by not optimal choice of initial values of parameters

for given 𝛼. Moreover, also the choice of 𝜇 plays a significant role—if performance

index (20) is a non-convex function, the optimization algorithm finds sometimes only

local optima.

These two cases, for 𝛼 = 1.3 and 𝛼 = 1.1 are depicted in Figs. 2 and 3.

It is also worth notice, that for 𝛼 = 0.8 the parameter 𝜇 reaches the maximal pre-

set value 𝜇max = 7. An extension of this interval may cause numerical problems and

requires further investigation.

Table 3 presents the results for second set of parameters. T = 0.1 and 𝜏 = 0.1.

In this case, we do not see any exceptional values (earlier the difference was three

orders of magnitude). However, we notice that the best result is obtained for 𝛼 = 0.9
and the worst for 𝛼 = 1.3. Both cases are visible in Figs. 4 and 5.

The figures clearly present the differences between performance indices in every

case.
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Fig. 2 Impulse response for

𝛼 = 1.3, T = 1, 𝜏 = 0.1
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Fig. 3 Impulse response for

𝛼 = 1.1, T = 1, 𝜏 = 0.1
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Fig. 4 Impulse response for

𝛼 = 0.9, T = 0.1, 𝜏 = 1
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5.1 Convergence of 𝝁

One of the most interesting aspects in analysis of this method is the behaviour of

𝜇 during optimisation. Because effectively we have a saddle-node optimisation, it

is difficult to choose appropriate strategy that would allow finding optimal solution

with respect to parameters with minimal approximation error (dependent on 𝜇). In
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Fig. 5 Impulse response for

𝛼 = 1.3, T = 0.1, 𝜏 = 1
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Fig. 6 Optimization of 𝜇

for 𝛼 = 0.9, T = 0.1, 𝜏 = 1

Fig. 7 Optimization of 𝜇

for 𝛼 = 1.3, T = 1, 𝜏 = 0.1

Figs. 6 and 7 one can observe the evolution of 𝜇 through iterations of the method. As

one can see it converges to the optimal value quickly. Steps of method which signifi-

cantly modify the impulse response and require modification of 𝜇 were subsequently

rejected because of no improvement in the values of performance index.

We have chosen the best scenarios for each set of parameter. In both cases, the

optimization hit the limit 𝜇 = 7. In first case, for 𝛼 = 0.9, it was rejected, whereas

in the second, 𝜇 = 7 gave the best performance index value.
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6 Conclusion and Further Research

In this paper, a new method for tuning non-integer order controllers was analysed.

We used the approximation method for finding optimal parameters for a relatively

simple system, a first-order system with delay. This method proved to be efficient,

however, there are some details, which need further investigation. For example, we

want to analyse stability region of optimized system in order both to avoid the numer-

ical problems and to find appropriate initial values for optimization procedures. It

is also worth consideration, how different methods of optimization perform in this

application.

Also different controller structures and different performance indices will be

investigated. Effectively all integral performance criteria with infinite horizon can

be used, however, their determination will require operation on the approximated

system (10)–(11). Also application of different set of approximating functions can

lead to interesting results.

We would also like to compare the results obtained from this optimization with

the parameters’ range for integer order system (see e.g. [14]). Ensuring global opti-

mization is also a part of further research—in this case, the optimization might have

stopped in a local minimum.

One of the areas that require attention is also optimization with respect to 𝛼 in

order to find the best order of the controller. One can suppose that it will require

significant numerical calculations, but also calculating analytically the derivatives

of transfer function with respect to 𝛼 seem promising.
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Tank System
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Abstract In this article, the authors consider a new method of designing adaptive

controller for non-integer order systems. The theoretical approach was verified with

computer simulation of three-tank system. Further research will include implemen-

tation in a real system.

1 Introduction

General results concerning theory of non-integer order systems can be found in [14,

19, 31]. Oustaloup method was presented in [28] and is analyzed among the others in

[27, 29]. This approximation can be efficiently used in simulations [11, 12, 16] and

with appropriate care experiments [15]. Its sensitivity and stability problems during

discretization were discussed in [30]. Different method of approximation is based on

Laguerre functions and does not poses this sensitivity [3, 9, 36] however it is much

more adequate for filters than for the controllers.
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Stability of non-linear non integer order systems was investigated in [10, 24, 37].

Applications of non-integer order subsystems was investigated among the others in

[7, 9, 15]). Works on tuning of non-integer order controllers for linear systems can

be found in [12, 15, 20, 26, 31]—both in simulational and in experimental setups.

An interesting approach to non-integer fractional controllers was investigated in [21–

23], where a concept of robust non-integer controllers is described.

Water tank system is well described in [8] where a survey of literature concerning

its investigation is also given.

Adaptive control is a well celebrated area of control theory. Classical results can

be found in [2, 33, 35]. Certain interesting results in the theory of non-integer adap-

tive control can be found in [32, 34]. Results of successful applications can be found

in [1, 13, 18, 25].

This paper is organized as follows. In the first part, we present the system of tanks

along with its mathematical description. Then the Oustaloup method is introduced,

we included also time-domain approach. The last part of theoretical analysis con-

sists of description of adaptive controllers of non-integer order. Then we present the

results of simulation of this approach. In the last part, some extensions and further

work are proposed.

2 Laboratory Hydraulic Cascaded Three-Tank System

A laboratory hydraulic cascaded three-tank system considered in the paper is

depicted on the photograph in the Fig. 1. In the same figure its schematic diagram is

presented as well. The system is located in the Department of Automatics and Bio-

medical Engineering of AGH. The installation consists of three vertically arranged

tanks: upper, middle and bottom. A side wall of each container have a different shape:

Fig. 1 A photograph and a schematic diagram of the laboratory installation
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(a) (b)

Fig. 2 Shapes and dimensions of three water tanks: a upper, b middle

rectangular, trapezoidal and quarter circular respectively. Their dimensions are given

in the Fig. 2. The area of a water surface in the upper tank is constant but in two

remaining tanks it varies with the water level. There is a fourth tank as well, located

in the lowest position, serving as a water buffer. A sliding-vane pump driven by a

electric DC permanent magnet brush motor pumps water from the buffer to the upper

tank. From there the water flows through a constant valve to the middle tank and then

to the lower and eventually to buffer tank in a similar fashion. These flows are driven

by gravity force and governed by the Torricelli’s law. The electric motor is driven

by a PWM signal from a power amplifier. Water levels in the three tanks are mea-

sured with three pressure sensors and their signals are conditioned in an appropri-

ate electronic interface. There is a PC computer dedicated to the laboratory system,

equipped with a universal digital-analog input-output extension card RT DAC 4 PCI

which measures analog water level signals and provides digital PWM control signal

for the pump DC motor. A MATLAB-Simulink environment with Real-Time Work-
shop (RTW) and Real-Time Windows Target (RTWT) toolboxes is used to develop,

build and test a real-time application.

2.1 Mathematical Model of the System

A mathematical model of the laboratory installation can be derived from the law

of mass conservation which for the three cascaded tanks takes the form of the two

following differential equations

d
dt

(
𝜚V1

)
= 𝜚 q0 − 𝜚 q1 (1)

d
dt

(
𝜚V2

)
= 𝜚 q1 − 𝜚 q2 (2)

where 𝜚 is a water density, V1, V2 are water volumes in two consecutive tanks, q0 is a

control-dependent pump voluminal flow and q1, q2 are level-depen-

dent valves voluminal flows. For a partially filled open tank a derivative of a vol-
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ume V with respect to time t can be expressed as follows

dV(h(t))
dt

= dV(h)
dh

|
|
|
|h=h(t)

⋅
dh(t)
dt

= S(h(t)) ḣ(t) (3)

where S is an area of an open water surface in the tank and h is a water level measured

from the bottom. With an additional assumption of a constant water density one can

obtain from (1)–(2) and (3) the following state space equations

ḣ1(t) =
1
S1

(

q0(u) − q1
(
h1(t)

))

(4)

ḣ2(t) =
1

S2
(
h2(t)

)

(

q1
(
h1(t)

)
− q2

(
h2(t)

))

(5)

where state variables h1(t) and h2(t) are the water levels in cm in upper and middle

tank respectively. Symbols S1, S2(h2) are the areas in cm3
of open water surfaces

given by following formulae

S1 = a d = const (6)

S2(h2) = d
(

n + m − n
c

h2
)

(7)

where c, d,m, n and r are tanks physical dimensions defined on Fig. 2. Function q0(u)
characterizes the relationship between a duty factor u ∈ [0, 1] of a PWM signal and

a voluminal water flow q0 in cm3∕s produced by the pump. This mapping can be

approximated with a polynomial of fifth degree

q0(u) = w5 u5 + w4 u4 + w3 u3 + w2 u2 + w1 u + w0 (8)

Functions q1(h1), q2(h2) and q3(h3) describe dependencies between water levels and

water flows through valves. According to the slightly modified Torricelli’s law these

relationships can be approximated as

qi(hi) = Ci
√
Di + hi, i ∈ {1, 2} (9)

where Ci and Di are constants which need to be identified and i is the tank index (1

for upper, 2 for middle).

Results of identification are gathered in Table 1 and Table 2.

3 Oustaloup Method

Oustaloup filter approximation to a fractional-order differentiatorG(s) = s𝛼 is widely

used in applications [27]. An Oustaloup filter can be designed as
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Table 1 Results of the identification of the pump—coefficients wj of the polynomial q0(u)
w5 1.9287

w4 −6.5254
w3 8.9191

w2 −6.2047
w1 2.4298

w0 −0.258

Table 2 Results of the identification of valves—parameters Ci and Di in relationships hi =
Ci

√
Di + hi

i Ci Di

1 29.405 5.9217
2 33.260 4.0083

Gt(s) = K
N∏

i=1

s + 𝜔
′
i

s + 𝜔i
(10)

where:

𝜔
′
i = 𝜔b𝜔

(2i−1−𝛼)∕N
u

𝜔i = 𝜔b𝜔
(2i−1+𝛼)∕N
u

K = 𝜔
𝛼

h

𝜔u =

√

𝜔h

𝜔b

(11)

Approximation is designed for frequencies 𝜔 ∈ [𝜔b, 𝜔h] and N is the order of the

approximation. As it can be seen its representation takes form of a product of a series

of stable first order linear systems. As one can observe choosing a wide band of

approximation results in large 𝜔u and high order N result in spacing of poles spac-

ing from close to −𝜔h to those very close to −𝜔b. This spacing is logarithmic with

a grouping near −𝜔b and causes problems in discretization. Wide band of approx-

imation is on other hand desirable, because approximation behaves the best in the

interior of the interval and not at its boundary, so certain margins need to be kept.

4 Time Domain Approximation

The proposed approach is to realize every block of the transfer function (10) in form

of a state space system. Those first order systems will be then collected in a sin-

gle matrix resulting in full matrix realization. This continuous system of differential

equations will be then discretized.
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4.1 Realization

One can easily observe that for zero initial condition

s + 𝜔
′
k

s + 𝜔K
⟺

{
ẋk = Akxk + Bkuk
yk = xk + uk

where

Ak = − 𝜔k

Bk = 𝜔
′
k − 𝜔k

Ci = 1
Di = 1

Full Oustaloup approximation can be then realised as

𝐱̇ =

⎡
⎢
⎢
⎢
⎢
⎣

A1 0 0 … 0
B2 A2 0 … 0
B3 B3 A3 … 0
⋮ ⋮ ⋮ ⋱ ⋮
BN BN … BN AN

⎤
⎥
⎥
⎥
⎥
⎦

𝐱 +

⎡
⎢
⎢
⎢
⎢
⎣

KB1
KB2
KB3
⋮

KBN

⎤
⎥
⎥
⎥
⎥
⎦

u

y =
[
1 1 … 1 1

]
𝐱 + Ku

(12)

or in brief

𝐱̇ = 𝐀𝐱 + 𝐁u
y = 𝐂𝐱 + Du

(13)

What can be immediately observed is that the matrix 𝐀 is lower triangular. This is

an extremely important in the case of this problem, as all its eigenvalues (poles of

transfer function (10) are on its diagonal, so there is no need for eigenvalue prod-

ucts, which would lead to rounding errors. That is why discretization of (12) has a

structure preserving property [5].

5 Adaptive Non-Integer Controller

In this paper a new approach to to adaptive non-integer controllers is considered. In

literature most popular approach is to either use the fractional variant of MIT rule

(with non-integer derivative for evolution of adapted parameter) or using combining

non-integer derivative of deviation with steepest descent as a part of adaptation gain.
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We propose different approach—use the classical MIT rule for adapting parameters

of non-integer order controller, however the steepest descent is computed using vari-

ational equation.

The proposed controller structure is

e(t) = r − h2(t)

u(t) = Ke(t) + I ∫
t

0
e(t)dt + 𝜃

C
0 D

𝜇

t e(t)
(14)

where r is the reference value 𝜇 ∈ (0, 1) is a fixed derivative order and 𝜃 is the

adapted parameter. This controller structure was chosen because of system specifics.

Integer order integration is needed for elimination of steady state errors, while influ-

ence of non-integer derivative term can vary depending on the conditions system

is in. It was verifie, that strong derivative action is not needed, and 𝜇 = 0.1 was

completely satisfactory. Gain was chosen using adaptive algorithm.

Adaptation of 𝜃 was realized by the celebrated MIT rule [2].

𝜃̇ = −𝛾e(t)𝜕e(t)
𝜕𝜃

(15)

Because the controlled system is nonlinear, standard application of adaptation for-

mulas is not possible. That is why a variational equation (see for example [4]) is

used. With variational equation derivative of deviation with respect to parameters is

given by:

𝜕e(t)
𝜕𝜃

= −𝜑2(t) (16)

where

𝝋̇ = 𝐉(h1, h2, e)𝝋 + 𝜃𝐂𝝍 − 𝜃D𝜑2 + 𝐂𝐱 + De (17)

𝝍̇ = 𝐀𝝍 − 𝐁𝜑2 (18)

where 𝐱, 𝐀, 𝐁, 𝐂,D are given by (12)–(13). 𝐉(h1, h2, e) is the Jacobi matrix of non-

linear system with PI part of the controller.

6 Simulation Result

We implemented the above described method in a simulational analysis of tank sys-

tem. The adaptive controller was compared with two more controllers—classic, inte-

ger order PI and fractional PID controller with non-integer derivative. The reference

values was 10 and 11 centimetres and we wanted to verify the performance of each

type of control.
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Fig. 3 Simulation

result—comparison of three

types of controllers

As we can see in Fig. 3, the adaptive controller has the smallest maximal value.

However, it introduces visible oscillations. It is also quite effective concerning trac-

ing of a given curve—despite oscillations it reaches the reference values faster than

non-integer order PID and classical PI.

7 Conclusions

This article summarizes an early stage of research concerning fractional adaptive

control. The proposed approach works fine for this simulation, however, there are

some issues that need further consideration. First of all, the choice of adaptation

parameter is an still an open question. Moreover, in order to implement this solution

in a real-time system and then in existing system of tanks, we need to take into

account the numerical part of implementation (see e.g. [5, 6, 17, 30]). Also, one of

the main drawbacks that need further analysis is the fact, that this adaptive approach

requires use of mathematical model and its linearisation.
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Model-Plant Mismatch in Fractional
Order Model Predictive Control

Stefan Domek

Abstract The effectiveness of model predictive control (MPC) depends on the
accuracy of the process model, which is utilized directly to compute the manipu-
lated variable. The effect of various model-plant mismatches on the performance of
the classic predictive controller is well known. However, many industrial processes
exhibit very complex properties, and determining an adequate model for them is not
an easy task. In recent years it has been suggested to employ non-integer order
models to describe difficult processes. This leads to fractional order model pre-
dictive control (FOMPC) systems. Their properties, e.g. stability, robustness,
control quality, have become one of the active research topics in control theory and
applications. In the paper, the effect of various plant-model mismatches on the
performance of FOMPC is illustrated through a simulation experiment.

Keywords Non-integer order systems ⋅ Fractional order model predictive
control ⋅ Model-plant mismatch

1 Introduction

The idea of model predictive control (MPC) is one of the most universal and
effective control methods. In MPC the future control actions u t+ jjtð Þ are to be
found at each instant t∈ℤ+ within the control horizon from j=0 to j=Nu − 1 in
order to minimize the differences between the reference values yr t+ jjtð Þ and the
predicted values yp t+ jjtð Þ within the prediction horizon from j=N1 to j=N2.
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The optimal control sequence is computed in the open loop mode with the use of
the plant model. Only the first value of the computed sequence is fed to the input of
the real plant, and the whole procedure is repeated at the next discrete time instants
(receding horizon principle) [7].

MPC enables various signal constraints and various kinds of disturbances to be
taken into account, and may be employed to control processes with practically any
number of inputs and outputs. However, especially in the case of processes with
particularly complex properties, its effectiveness depends on the accuracy of the
process model, which is utilized directly to compute the manipulated variable [2].

From the other side, it has been known for several years that actual properties of
many complex phenomena and nonlinear industrial processes can be effectively
modeled using the fractional order differential calculus [1, 5, 10]. Thus, taking this
circumstance into account at the stage of synthesizing the system may increase
naturally the applicability of the controller, which can be regarded as a fractional
order model predictive controller (FOMPC) in such a case [2, 11]. Such a controller
with a small set of coincidence points was described in [4]. In [3] the possibility of
FOMPC to be employed for control of fractional order nonlinear plants was pre-
sented. On the other hand, a possibility to include the concept of a fractional order
performance index proposed in [12] into the FOMPC algorithm was shown in [11].

In the FOMPC system, like in the classic MPC of integer order, the accuracy of
the process model determines the control quality. The effect of various model-plant
mismatches on the performance of the classic MPC controller was illustrated in
several papers, for example in [8, 14]. In this paper the effect of the model-plant
mismatch on the FOMPC performance is studied.

First, the fractional order predictive control algorithm to be considered is pre-
sented in Sect. 2. Then, types of model-plant mismatch adopted for the study are
described in Sect. 3. The results obtained from simulation tests are displayed in
Sect. 4. Finally, the paper is summarized in conclusions.

2 Fractional Order Model Predictive Control

In the predictive control algorithm of integer order the cost function depends on the
sum of the weighted squared prediction errors over the prediction horizon and on
the sum of the weighted squared control signal increments to be sought within the
control horizon

JðtÞ= ∑
N2

j=N1

μðjÞ yp t+ jjtð Þ− yr t+ jjtð Þ½ �2 + ∑
Nu − 1

j=0
λðjÞ Δu t+ jjtð Þ½ �2 ð1Þ

with Δu t+ jjtð Þ=0 for j≥Nu, and μðjÞ>0, λðjÞ≥ 0.
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The cost function (1) may be rewritten in vector-matrix form

JðtÞ= Yp
→ ðtÞ−Yr

→ ðtÞ� �TM Yp
→ ðtÞ− Yr

→ ðtÞ� �
+ ΔU→ ðtÞ½ �TΛΔU→ ðtÞ ð2Þ

where vector ΔU→ ðtÞ∈ℝmNu denotes the unknown future increments of the
manipulated variable (from Δu tjtð Þ to Δu t+Nu − 1jtð Þ) and vectors
Yp
→ ðtÞ∈ℝp N2 −N2 + 1ð Þ, Yr

→ ðtÞ∈ℝp N2 −N2 + 1ð Þ stand for future (from the instant
t+N1 till the instant t+N2) values of the predicted response of the model and those
of the reference trajectory, respectively, and

M = diag diag μ N1ð Þð Þ ⋯ diag μ N2ð Þð Þ½ �∈ℝ N2 −N2 + 1ð Þp × N2 −N2 + 1ð Þp ð3Þ

Λ=diag diag λð0Þð Þ ⋯ diag λ Nu− 1ð Þð Þ½ �∈ℝNum×Num ð4Þ

In order to determine the plant output prediction in the FOMPC controller use is
made of a non-integer order generalized model of a linear process with different
orders of backward differences for individual state variables of the state vector
xðtÞ∈ℝn, which may be defined in state space as [6]:

ΔΥx t+1ð Þ=AdxðtÞ+BuðtÞ ð5Þ

yðtÞ=CxðtÞ ð6Þ

The definition (5) may be written in a generalized form by adopting different
orders of backward differences for individual state variables of the state vector:

ΔΥx t+1ð Þ= Δα1x1 t+1ð Þ ⋯ Δαnxn t+1ð Þ½ �T ð7Þ

where

Ad =A− In ð8Þ

and A∈ℝn× n
—system state matrix, B∈ℝn×m

—system input matrix, C∈ℝp× n
—

system output matrix, In ∈ℝn× n
—identity matrix, with the definition of the real

non-integer order α∈ℝ backward difference for the state vector xðtÞ based on the
Grünwald-Letnikov definition [9]:

ΔαxðtÞ= ∑
t

i=0
ð− 1Þi α

i

� �
x t− ið Þ, 0 < α ð9Þ

α
i

� �
=

1 for i=0
α α− 1ð Þ.... α− i+1ð Þ

i! for i=1, 2, . . .

�
ð10Þ
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or alternatively

x t+1ð Þ=AdxðtÞ+BuðtÞ− ∑
t+1

i=1
ð− 1ÞiΥ ix t+1− ið Þ ð11Þ

Υ j =diag
α1
j

� �
⋯ αn

j

� �� �
ð12Þ

and

yðtÞ=CxðtÞ ð13Þ

For the model (11)–(13) it can be found the predicted model output for the
instant t+ j calculated at the current instant t:

yp t+ jjtð Þ=C ∑
j− 1

i=0
∑
i

k=0
ΦΥ j− i− 1ð ÞBΔu t+ kð Þ

�

+ΦΥ ðjÞxðtÞ+ ∑
j− 1

i=0
ΦΥ j− i− 1ð ÞBu t− 1ð Þ

+ ∑
t+1

i=2
∑

− i+1

k= − 1
ð− 1Þi+1ΦΥ j− k− ið Þx t+ kð Þ

�
ð14Þ

with the transition matrix

ΦΥ ð1Þ= Ad +Υ1ð Þ, ΦΥ ð0Þ= In ð15Þ

ΦΥ t+1ð Þ= Ad +Υ1ð ÞΦΥ ðtÞ+ ∑
t+1

j=2
ð− 1Þj+1Υ jΦ

Υ t− j+1ð Þ,
t=1, 2, . . . j=1, 2, . . . ,N2

ð16Þ

From (14) the vector of the predicted response can be expressed as

Yp
→ ðtÞ=EΔU→ ðtÞ+ Y0

→ ðtÞ ð17Þ

with

E=BEC ð18Þ

where

B=diag B, . . . ,Bð Þ∈RNun×Num,

C=diag C, . . . ,Cð Þ∈R N2 −N2 + 1ð Þp × N2 −N2 + 1ð Þn ð19Þ
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E is the process dynamic matrix of the fractional order model defined by [2]:

E=

∑
N1 − 1

i= 0
ΦΥðiÞ ⋯ ⋯ ⋯ 0n

⋮ ⋮ ⋱ ⋮ ⋮
⋮ ⋯ Ad +Υ1 In ⋮

∑
Nu − 1

i= 0
ΦΥðiÞ ⋯ ⋯ Ad +Υ1 In

∑
Nu

i= 0
ΦΥ ðiÞ ⋯ ⋯ ⋯ Ad +Υ1

⋮ ⋮ ⋮ ⋮ ⋮

∑
N2 − 1

i= 0
ΦΥðiÞ ⋯ ⋯ ⋯ ∑

N2 −Nu

i= 0
ΦΥðiÞ

2
666666666666666664

3
777777777777777775

ð20Þ

and Y0
→ ðtÞ∈ℝp N2 −N2 + 1ð Þ is the vector of prediction for the natural response of the

model output.
By introducing the disturbance vector within the prediction horizon, as in the

case of the integer order DMC algorithm [7]

D→ ðtÞ=
yðtÞ− yp tjt− 1ð Þ
yðtÞ− yp tjt− 1ð Þ

⋮
yðtÞ− yp tjt− 1ð Þ

2
664

3
775∈ℝp N2 −N2 + 1ð Þ ð21Þ

it is obtained from (14), (17) and (21)

Y0ðtÞ→ =D→ ðtÞ+C
ΦΥ N1ð Þ

⋮
ΦΥ N2ð Þ

2
64

3
75xðtÞ+

∑
N1 − 1

i=0
ΦΥ N1 − i− 1ð Þ

⋮

∑
N2 − 1

i=0
ΦΥ N2 − i− 1ð Þ

2
666664

3
777775
Bu t− 1ð Þ

2
666664

+

∑
t

i=1
ð− 1ÞiΦΥ N1 − ið Þ ⋯ −ΦΥ N1 − 1ð Þ

⋮ ⋮

∑
t

i=1
ð− 1ÞiΦΥ N2 − ið Þ ⋯ −ΦΥ N2 − 1ð Þ

2
666664

3
777775
X←ðtÞ

3
777775

ð22Þ

where X←ðtÞ denotes the vector of past values of the plant state vector. Hence,
according to the cost function (2), the optimal control is given by

ΔUopt→ ðtÞ= ETME+Λ
	 
− 1ETM Yr

→ ðtÞ−Y0
→ ðtÞ� � ð23Þ
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and finally

Δu tjtð Þ= Im 0m ⋯ 0m½ �ΔUopt→ ðtÞ ð24Þ

It is pertinent to note that (23) resembles the solution for predictive control of
integer order in its structure. This makes it possible to extend easily the proposed
algorithm to include the case with signal constraints [2].

3 Model-Plant Mismatch

As already mentioned, in model predictive control, the accuracy of the process
model determines in principle the control quality. To investigate the effect of
various model-plant mismatches on the effectiveness of FOMPC controller a class
of mismatches to be considered is to be adopted.

Let us consider a non-integer order plant (5), (6), (7) with

αi = α for i∈ 1, . . . , nf g ð25Þ

Such a plant is defined by matrices A, B, C and by a fractional order of the
backward difference α, as Eq. (11) indicates in taking the form:

x t+1ð Þ=AdxðtÞ+BuðtÞ− ∑
t+1

j=1
ð− 1Þ j α

j

� �
x t+1− jð Þ ð26Þ

Therefore, one can investigate, as in the case of integer order predictive control,
the effect produced by the plant-model mismatch on dynamic parameters (entries of
the plant A, B, C and model AM , BM , CM matrices), and, additionally, on the
fractional order exhibited by the plant α and the model αM , i.e.

xM t+1ð Þ=AdM xMðtÞ+BMuðtÞ− ∑
t+1

j=1
ð− 1Þ j αM

j

� �
xM t+1− jð Þ ð27Þ

In the case of fractional order control systems there exists the problem of a
practical implementation of the discrete-time fractional order difference (9). There is
known a dozen of methods to approximate the difference, for example [4, 10], all of
which lead to a reduction of the model memory that is increasing with time (in the
sum in Eq. (26)). Therefore, the effect of plant-model mismatch on the control
performance can be studied in terms of the adopted method for practical imple-
mentation of a fractional order model.

The most common approximation method used in practice adopts the fractional
difference model with a finite memory of length L. Equation (26) assumes then the
form:
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xM t+1ð Þ=AdM xMðtÞ+BMuðtÞ− ∑
min t,Lð Þ

j=1
ð− 1Þ j αM

j

� �
xM t+1− jð Þ ð28Þ

or the normalized finite memory fractional difference model, in which the
steady-state error is minimized [13]:

xM t+1ð Þ=AdM xM tð Þ+BMu tð Þ− 1
N Lð Þ ∑

min t, Lð Þ

j=1
ð− 1Þ j αM

j

� �
xM t+1− jð Þ ð29Þ

where the normalized factor is given by

NðLÞ=1 ̸∑
L

j=1
ð− 1Þ j αM

j

� �
ð30Þ

Note, that approximation of the fractional order system by implementating
models (28) or (29) results in a complex model of high order, not useful from the
computational point of view [1]. However, the expanded state space equation
results in representation of fractional order system as an integer order state model.
Therefore, the well-known methods for reduction of the model order, e.g. the
method based on the Singular Value Decomposition (SVD) and the Frobenius norm
[7], can be used here. The extent of the reduction of the model order also may affect
the model-plant mismatch.

In the next Section the effect of the mismatch exhibited by the discussed
parameters of fractional order models (27)–(29) on the control performance will be
demonstrated.

4 Simulation Experiments

Let us consider a dynamic plants

A=
2.7756 − 1.2876 0.7985

2 0 0
0 0.5 0

2
4

3
5, B=

0.0313
0
0

2
4

3
5, C= 1 0 0½ � ð31Þ

with various values of the fractional order

α∈ 0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20f g ð32Þ

Figure 1 shows step responses of the plants under study.
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For the set-point tracking the FOMPC controller (23), (24) with the following
parameters N1 = 1, N2 = 10, Nu =2, μi =0.1 for i=1, 2, . . . , 10, λi =1 for i=1, 2,
Tp =4s, has been used.

For each plant the following factors:

• model-plant mismatch in the fractional order,
• model-plant mismatch caused by an improper choice of the finite memory

length,
• model-plant mismatch caused by an improper choice of the reduced order of the

approximated integer-order model,

have been tested for their effect on the control performance.
In Fig. 2 the effect of the model-plant mismatch Δα= α− αM from −10 to +10 %

is shown. The ISE and IAE indices have been used here to assess the control
performance.

Figure 3 shows examples of step responses in the control system with a selected
plant for several values Δα, and Fig. 4 gives IAE values for the same cases.

Figure 5 exemplifies the effect produced by the model-plant mismatch caused by
an improper choice of the finite memory length L on the control performance.

In Fig. 6 it is shown to what extent the reduced order αr of the approximated
integer-order model determined by the SVD method affects the control
performance.

As we see in the figures the impact of the particular model-plant mismatch on the
control performance is different. It seems that the biggest impact has the mismatch
in fractional order and the finite memory length. At the same time we can see that
the approximation of the fractional-order model by a reduced integer order one can
be effective in practical applications.

Fig. 1 Step responses of the plants under study
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Fig. 2 The effect of the model-plant mismatch Δα= α− αM

Fig. 3 Step responses in the control system with a selected plant for several values Δα
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Fig. 4 IAE indices in the control system with a selected plant for several values Δα

Fig. 5 IAE indices in the control system with a fractional order plant ðα=0.8Þ for several finite
memory length L

Fig. 6 ISE indices in the control system with a fractional order plant ðα=0.8Þ for several reduced
order αr of the approximated integer-order model determined by the SVD method
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5 Conclusions

In MPC applications, the accuracy of the process model plays a crucial role in
providing a satisfactory control performance. Mismatch between the process model
and the plant may produce a significant effect on the control quality. The problem is
even more important in the case of FOMPC, where there can be much more types of
model-plant mismatch. This is corroborated by the results of simulation tests shown
as examples. Therefore, it is necessary to conduct further research, including the-
oretical analysis of FOMPC robustness to plant parameter variations that lead to
model-plant mismatch.
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