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Abstract In this paper, the design of digital symmetric type-II linear-phase FIR low-
pass (LP) and band-pass (BP) filter is formulated using the L1 optimality criterion.
In order to obtain better filter performance we compute the optimal filter coefficients
using the L1-norm based fitness function. The use of L1 technique in digital filter
design applications has the advantages of a flatter passband and high stopband at-
tenuation over other gradient-based filter optimization methods. This technique is
applied to optimally design type-II FIR filters. Simulations and statistical analysis
have been performed for the 25th order LP and BP filters. It is observed, that the
L1-based filter results is an improved design in comparison with the filters obtained
using the equiripple, least-square and window techniques.

Keywords Finite impulse response · L1-error criterion · Stopband attenuation ·
Least-square · Window method

1 Introduction

Digital filtering is an important area of research from last few decades. Digital fil-
ters are applied in a variety of engineering applications such as, signal processing,
communication, control systems and many more. They carry out the process of at-
tenuating some band of frequencies and allow some frequencies to pass through
them. The digital filter is implemented by the discrete convolution of input signal
and filter coefficients. These are classified as: Finite Impulse Response (FIR) and
Infinite Impulse Response (IIR) [1], [2]. In this work, we intend to design the FIR
filter with optimal filter coefficients using the L1 algorithm explained below.
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FIR filter design, being an approximation problem, determines the filter solution
by approximating the frequency response of designed filter to the ideal response.
Such approximation techniques involves, the least-square method [3, 4], equiripple
design [5, 6], windowing techniques, frequency-sampling method and maximally-
flat design. The most applied techniques are based on the L2 (least-square) [7] and
L∞ (minimax) norms. In L2-norm based filters the stopband attenuation (Astop) is
high with flat passsband on the cost of high overshoot at the discontinuity of ideal
function. Whereas, the L∞-norm based filters yields equal magnitude ripples in both
passband and stopband.

In 2006, Grossmann and Eldar proposed a new method for the filter design, based
on the L1-norm [8]. The linear phase FIR filters are designed exploring the problems
of differentiability and uniqueness of solution associated with the L1 approach [9, 10,
11]. Considering type-II, the designed L1 filters possess a flat passband and stopband
with high Astop. On its comparison with other techniques, the L1 filter features with
a higher Astop than L2 and L∞-norms. It also eliminates the drawback of the high
overshoots at the point of discontinuity. Thus, implementing the L1 method provides
a better solution in the field of filter design [12].

In this paper, the optimal LP and BP FIR filters are designed with type-II filter
response using the L1-method so as to obtain a symmetric even length filter with high
Astop and a flat passband response. The purpose of designing type-II filter is to obtain
an even length filter which are necessary to be implemented in some applications
and are not possible to be designed using the generalized type-I filter response. The
obtained results are compared to the type-II equiripple filters, least-squares design
and with filters designed using the kaiser window.

The rest of the paper is organized as follows: In Section 2, the framework of type-II
filter design problem in mathematical formulated. The problem specific employed L1
algorithm is described in Section 3. The simulation results and analysis are presented
in Section 4. Finally, Section 5 concludes the paper.

2 Problem Formulation

In this section, the problem of designing the FIR filters with symmetric even length
(N) impulse response (Type-II) is considered. The amplitude response of such filters
has zero magnitude at ω = π . Due to this, the design of high-pass and band-stop
filters is not possible with type-II frequency response. In this paper,the design of
type-II LP and BS FIR filters using the L1 method is proposed. Here, the design
problem is considered as an optimization problem where the frequency response of
type-II filter, H(ω) is approximated to the ideal frequency response, Hid(ω). The
ideal response for the LP and BP filters are given as

HidLP(ω) =
{

1, ω ∈ [0, ωc]
0, ω ∈ (ωc, π ] (1)
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and

HidBP(ω) =
{

1, ω ∈ [ωc1, ωc2 ]
0, ω ∈ [0, ωc1) ∪ (ωc2 , π ] (2)

The transfer function of the approximating filter, H(z) is specified as

H(z) =
N−1∑
n=0

h(n)z−n (3)

The frequency response, derived from the transfer function is written as

H(ω) =
N−1∑
n=0

h(n)e− jωn (4)

Eq. (4) is written as

H(ω) = H̃(ω)e− jω N−1
2 (5)

where H̃(ω) is the amplitude response of the filter. Considering Type-II linear phase
FIR filter with even length and symmetric coefficient, {h(n) = h(N − 1 − n),
0 ≤ n ≤ N − 1}, the the amplitude response is defined as [2]

H̃(ω) = 2
M∑

n=1

h[M − n] cos

[
ω

(
n − 1

2

)]
(6)

where M = N/2. Assigning b(n) = 2h[M − n], 1 ≤ n ≤ M and writing H̃(ω) as
a function of ω and filter coefficients, b (where b = (b(1), b(2), . . . , b(M)), we get

H̃(ω) = H̃(ω, b) =
M∑

n=1

b(n) cos

[
ω

(
n − 1

2

)]
(7)

Various fitness function employed for the filter design as an approximation prob-
lem are

1. Weighted Least-Squares (LS)

‖E(ω, b)‖2 =
∫ π

0
W (ω)

∣∣H̃(ω, b) − Hid(ω)
∣∣2

dω (8)

2. Weighted Chebyshev
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‖E(ω, b)‖∞ = max
ω∈[0,π ]

{∫ π

0
W (ω)

∣∣H̃(ω, b) − Hid(ω)
∣∣ dω

}
(9)

3. Weighted L1-norm

‖E(ω, b)‖1 =
∫ π

0
W (ω)

∣∣H̃(ω, b) − Hid(ω)
∣∣ dω (10)

where W (ω) is the weighting function and ||.|| denotes the norm of the function.
E(ω, b) is the error, measured between the approximated filter response, H̃(ω, b)

and the ideal response, Hid(ω), defined as

E(ω, b) = H̃(ω, b) − Hid(ω)dω (11)

=
M∑

n=1

b(n) cos

[
ω

(
n − 1

2

)]
− Hid(ω)dω (12)

The error function given in eq. (10) represents the fitness function to be minimized
using the L1 method. It evaluates the fitness function and optimize the filter coeffi-
cients. The employed algorithm for the purpose of FIR filter designing is explained
in next section.

3 The L1 Algorithm

The L1 optimization technique remained unexplored for many years in the field of
filter designing due to the above mentioned reasons. With its implementation for
the optimization of filter coefficients, the error function turns out to be solvable
for the case of FIR filter design. The motive behind exploring and implementing
L1 optimization is due to the smaller overshoot it yields around the discontinuity
as compared with the most efficient techniques, minimax and least-squares [8]. In
passband, the L1 based filter results in a flatter response than least-square which
happens to be its most desirable property. The design and optimization of linear phase
FIR filters using L1 technique and its characteristic comparison with the minimax
method is being demonstrated in [13].

The linear L1 approximation method of continuous functions defined over an
interval by a finite number of basis functions was proposed in [14]. This algorithm
computes the optimal coefficients of basis functions with the use of modified New-
ton method. This estimate was generalized and the modified Newton method was
developed for the calculation of L1-based filter coefficients in [15]. This method is
described here for the design of type-II symmetric FIR filter.

The algorithm applied to formulate the L1 problem as a linear approximation
problem [15] demands for the evaluation of first and second order derivative of
the error function defined in eq. (10). The nth component of gradient (first-order
derivative) at b is given by
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Fig. 1 Flowchart for the L1 based FIR filter design method.

gn(b) = 〈cos(nω), sgn(E(ω, b))〉 (13)

where sgn(E(ω, b)) gives the Signum result of the function E(ω, b).
The Hessian matrix (second-order derivative) is computed over the entire digital

frequency, which takes one of three forms according to the number of zeros of
E(ω, b) and is given by

H(b) = RT H−1
id R (14)

here R is a t × M matrix with Ri j = cos(( j − 0.5)zi ) and zi denotes the zero of
E(ω, b) at i th position, equal to (2i−1)π

2M , i = 1, 2, . . . , M . Hid = diag{d1, . . . , dt }
having di = 2W(zi )

E ′(ω,a)
.

The modified Newton’s method consist of the iterations that generates a sequence
of coefficients bk
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Table 1 Algorithm for Filter Design using L1 norm

Step 1 Design the ideal frequency response defined in (1). Set M = (N + 1)/2.
Step 2 Calculate initial vector b1 ∈ 
M , set stopping condition factor, ε > 0, step-size

selection parameters as 0 < σ < 1/2, 0 < β < 1 and for the control of Hessian matrix,
set δ1 > 0, δ2 > 0 and μ > 0. Set k = 1 to determine b1.

Step 3 Determine the Hessian matrix Hk of size (M) × (M), based on the value of t .
i. If t = 0 or Hid is singular, then set Hessian matrix as identity matrix.
ii. If t ≥ M , Hid is non-singular and rank (Rk = M), then set Hk = (Rk)T (Hk

id)−1Rk .
iii. If 0 < t < M , Hid is non-singular and rank (Rk < M), then set
Hk = (Rk)T (Hk

id)−1Rk + αkI, where αk > 0.
Step 4 Determine the descent direction dk defined in eq. (16), that obtains the unique solution.
Step 5 Stop if |(dk)T gk| is less than given threshold, ε.
Step 6 Calculate step-size, αk detemined using Armijo rule.
Step 7 Set bk+1 = bk + αkdk and k = k + 1. Goto Step 2.
Step 8 The M coefficients are stored and the frequency response of designed N th order FIR LP

and BP filter is calculated.

bk+1 = bk − αk[Hk]−1gk (15)

assuming that the Newton direction

dk = −[Hk]−1gk (16)

is a descent direction, where gk is the gradient of function at bk , αk is the step
size, determined according to the Armijo rule [16] and Hk is the Hessian matrix
of ‖E(ω, b)‖1. Solving dk , the descent direction (also called the gradient method),
involves the solution of the linear equations with M unknowns (the length of dk).
To reduce these computations, the special structure of the matrix Hk in eq. (14) is
exploited based on the number of zeros of E(ω, b). This is explained in the steps
for the design of FIR LP and BP filter based on L1 criterion, summarized in Table
1. The process flow chart is pictured in Fig. 1.

4 Simulation Results and Analysis

This section presents extensive simulations performed using the MATLAB v.7.13
platform on intel core(TM) i5 CPU, 3.20GHz with 4 GB RAM for the design of
type-II 25th order FIR LP and BP filters.In order to demonstrate the superiority of
the proposed design based on L1-criterion, comparative analysis is carried out with
the equiripple, least-square and windowed methods. The design parameters values
used in the L1 algorithms are as follows, ε = 10−6, σ = 10−3, β = 0.5, δ1 = 10−15,
δ2 = 1015 and μ = 10−10. The design examples are analyzed below.
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Fig. 2 Magnitude Response (dB) for
25th order FIR LPF.
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Fig. 3 Enlarged Passband Response
(dB) for 25th order FIR LPF.
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Fig. 4 Magnitude Response (dB) for
25th order FIR BPF.
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Fig. 5 Enlarged Passband Response
(dB) for 25th order FIR BPF.

Filter specification specified are: For LPF, passband frequency, ωp = 0.474π ,
stopband frequency, ωs = 0.493π and cut-off frequency, ωc = 0.4835π . For BSF,
passband frequency, ωp1 = 0.28π,ωp2 = 0.68π , stopband frequency, ωs1 = 0.23π ,
ωs2 = 0.28π and cut-off frequency, ωc1 = 0.25π,ωc2 = 0.7π . The magnitude
response in dB of the proposed 25th order LPF and BSF is shown in Fig. 2 and 4,
respectively. The response is plotted with the response obtained using already existing
design methods, minimax, least-square and windowed method. Table 2 and 3 gives
the optimized filter coefficients for all applied methods for the LFP and BSF design,
respectively. To carry out the comparison, statistical results are analyzed and reported
in Table 4. It is observed from Table 4 that the minimum stopband attenuation incurred
with the L1-method is -21.98 and -34.85, for LPF and BPF, respectively. From the
stopband profile of the L1 based filters, it can be concluded that the highest stopband
attenuation is obtained with the proposed design. Furthermore, the passband ripples
are 0.4672 dB and 0.3599 dB, for LPF and BPF designs, respectively. These obtained
values are least among all the designs which results in the flattest passband with the
L1-based filters. The flatness in passband can be depicted from the enlarged view in
Fig. 3 and 5.
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Table 2 Optimized coefficients of 25th order FIR LPF filter.

Optimized L1 Criterion Minimax Least Kaiser
Coefficients Square Window

h(0) = h(25) −0.004304821875159 0.015009154932070 0.003346236484176 0.003353949812098
h(1) = h(24) −0.009945569482198 −0.159733218946615 −0.025832583651239 −0.026384058910212
h(2) = h(23) 0.002892064991698 −0.019972687908533 −0.007000222174646 −0.007087353251721
h(3) = h(22) 0.021425807571245 0.033344364352309 0.030978162778327 0.031656658601014
h(4) = h(21) −0.004771401539193 0.013239722254575 0.012372854572430 0.012579827879823
h(5) = h(20) −0.039463807888077 −0.040699493740147 −0.038297116225617 −0.039151796729370
h(6) = h(19) −0.003076249234356 −0.021837804969918 −0.020951741171072 −0.021352353618087
h(7) = h(18) 0.057415462699534 0.051858820599784 0.050174640982908 0.051307395738706
h(8) = h(17) 0.019794351740752 0.037642868368773 0.036871568337463 0.037631954977186
h(9) = h(16) −0.083462683176473 −0.075416760140064 −0.074476032718155 −0.076163795722620
h(10) = h(15) −0.056173676201219 −0.077933990820229 −0.077508700899409 −0.079182787368566
h(11) = h(14) 0.179179360425898 0.161468696856027 0.161077894993653 0.164710418330001
h(12) = h(13) 0.424754251606035 0.438344605836526 0.440344846920456 0.448081940261748

Table 3 Optimized coefficients of 25th order FIR BPF filter.

Optimized L1 Criterion Minimax Least Kaiser
Coefficients Square Window

h(0) = h(25) 0.013080208237528 0.062876101398056 0.015422936597621 0.024487776955131
h(1) = h(24) −0.005575502498038 −0.116269220084882 −0.015287846989148 −0.005579104536685
h(2) = h(23) −0.032670100914959 −0.085345777430859 −0.051481378623170 −0.049445991844001
h(3) = h(22) 0.001530829610940 −0.039914129234188 0.001827636127389 −0.000997752658279
h(4) = h(21) −0.011134308330060 −0.001174900404477 −0.011267776603452 −0.018418438692279
h(5) = h(20) −0.018306785726551 −0.005719565444857 −0.002754812073954 −0.012640620625559
h(6) = h(19) 0.075542485873412 0.081156678895356 0.093059429848611 0.086412261623438
h(7) = h(18) 0.032384920124126 0.042306512734840 0.022096288818837 0.025221316879272
h(8) = h(17) −0.007921998215940 −0.024729352404448 −0.01246705795282 −0.004696219641479
h(9) = h(16) 0.048396103447932 0.041439930403364 0.044780368623445 0.051389148435767
h(10) = h(15) −0.195302535995375 −0.196488532016674 −0.210850541558666 −0.194403327017152
h(11) = h(14) −0.221064614224406 −0.241391281601754 −0.223813361579707 −0.214944678903213
h(12) = h(13) 0.328305105982610 0.339512411966533 0.331916468646392 0.303651115520570

Table 4 Statistical results for the 25th order FIR LP and BP filter.

Filter Method Stopband Attenuation (dB) Passband ripple

Minimum Mean Variance Standard deviation (dB)

Low-Pass L1 Criterion -21.98 -24.8977 -35.1392 -17.5556 0.4672
Least-Square -21.14 -23.2482 -35.9720 -17.9926 0.6806
Kaiser Window -21.04 -23.7017 -35.7562 -17.8626 0.8746
Minimax -10.80 -14.1637 -38.1315 -19.0467 2.2081

Band-Pass L1 Criterion -34.85 -20.1843 -30.4865 -15.2441 0.3599
Least-Square -25.88 -20.7526 -31.8352 -15.9122 0.7977
Kaiser Window -24.62 -21.0611 -31.6042 -15.8043 0.3232
Minimax -10.82 -13.2948 -36.1933 -18.0896 2.1980
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5 Conclusion

In this paper, the efficient design of type-II FIR LP and BP filter using the L1-method
is presented. The requirement of even length filters for specific application can be
fulfilled using the proposed type-II filter design. The performance assessment for the
designed filters is expressed in terms of minimum stopband attenuation and highest
passband ripple. The obtained results with the L1-method attained highest stopband
attenuation and the passband with least ripples as compared to the renowned minimax,
least-squares and windowed method. This method can be applied to design 2-D filters
to enhance their applicability in other fields of engineering like image processing.
In addition, the method can also be used to design digital differentiator and Hilbert
transformer.
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