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Abstract. The incidence matrix between two sets of vectors in F2 has
a great importance in different areas of mathematics and sciences. The
rank of these matrices are very useful while computing the algebraic
immunity(AI) of Boolean functions in cryptography literature [3,7]. With
a proper ordering of monomial (exponent) vectors and support vectors,
some interesting algebraic structures in the incidence matrices can be
observed. We have exploited the lower-block triangular structure of these
matrices to find their rank. This structure is used for faster computation
of the AI and the low degree annihilators of an n-variable Boolean func-
tions than the known algorithms. On the basis of experiments on at least
20 variable Boolean functions, we conjecture about the characterization
of power functions of algebraic immunity 1, could verify the result on
the AI of n-variable inverse S-box presented in [6](i.e., �2√

n� − 2), and
presented some results on the AI of some important power S-boxes.

Keywords: Cryptography · Boolean function · Power function ·
Algebraic immunity

1 Notation

In this section, we introduce the basic notations and definitions which are
required to read the later part of the article.

Vn: The n dimensional vector space over the two element field F2 = {0, 1}.
wt(v): The weight of a vector v = (v1, v2, . . . , vn) ∈ Vn is wt(v) = |{vi : vi = 1}|.
Vn,d: The set of vectors in Vn of weight d or less i.e., Vn,d = {v ∈ Vn : wt(v) ≤ d}.
u ⊆ v: For u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Vn, we denote u ⊆ v if

ui = 1 implies vi = 1 for 1 ≤ i ≤ n.
+,

∑
: The addition operators on F2 or, on reals R, which is context based.

int(u): The integer value of the binary string representation of the vector u ∈ Vn.

Ordering of vectors: If u, v ∈ Vn, then
1. Lexicographic ordering: u < v if int(u) < int(v).
2. Weighted ordering: u <w v if (wt(u) < wt(v)) or, (wt(u) = wt(v) and

int(u) < int(v)).
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Incidence matrix (MX
V ): For v, x ∈ Vn, x is incident on v if x ⊆ v. We denote

vx = 1 if x ⊆ v and 0 otherwise. For given two ordered sets of vectors V,X,
the incidence matrix MX

V of V on X is defined as MX
V [i, j] = v

xj

i , where vi and
xj are i-th and j-th element in V and X respectively. We call X as exponent
vector set and V as support vector set.

Incidence matrix (Md
V ): If the exponent vector set X = Vn,d, then the inci-

dence matrix MX
V is denoted as Md

V .
Boolean function: A function f : Vn �→ F2 is called n variable Boolean func-

tion. The set of all Boolean functions on n-variable is denoted as Bn. The
polynomial form of a Boolean function can be represented as an element of
binary quotient ring on n-variables F2[x1, . . . , xn]/ 〈x2

1 − x1, . . . , x
2
n − xn〉 and

this form is called the algebraic normal form (ANF) of the Boolean function.
The degree of f ∈ Bn (i.e., deg(f)) is the algebraic degree. We also denote
Bn,d = {f ∈ Bn : deg(f) ≤ d} and mn,d is the set of all monomials of degree
d or less. The evaluations of f at each vector in Vn with an order is known as
the truth table representation of f and the representation can be viewed as a
2n-tuple binary vector. The support set and the weight of f ∈ Bn is defined
as S(f) = {v ∈ Vn : f(v) = 1} and wt(f) = |S(f)| respectively.

Algebraic immunity (AI): Given f ∈ Bn, a nonzero g ∈ Bn is called an
annihilator of f if f.g = 0, i.e., f(v)g(v) = 0 for all v ∈ Vn. The set of all
annihilators of f ∈ Bn is denoted by An(f). The algebraic immunity of f ∈ Bn

is defined as AI(f) = min{deg(g) : g ∈ An(f) ∪ An(1 + f)}.
wt(M), den(M): The weight and density of an m×n binary matrix M are defined

as wt(M) = |{M [i, j] : M [i, j] = 1}| and den(M) = wt(M)
mn respectively.

2 Introduction

The incidence matrix MX
V is an interesting tool in the study of several branches

in mathematics and computer sciences like combinatorics, coding theory, cryp-
tography and polynomial interpolation. The incidence matrix Md

V has an impor-
tant role in the study of algebraic cryptanalysis. The problem to find the rank
of this matrix is equivalent to compute the AI of a Boolean function [7]. Some
algorithms are available in [4,5,7] to find the rank of Md

V and the solution of the
system of equations Md

V γ = 0 to find the annihilators of degree d of the Boolean
function of support set V .

From the point of view of algebraic cryptanalysis, f ∈ Bn should not be used
to design a cryptosystem if AI(f) is low [1,7]. It is known that for any f ∈ Bn,
AI(f) ≤ 
n

2 �. Thus, the target of a good design is to use a f ∈ Bn such that
neither f nor 1 + f has an annihilator of degree much less than 
n

2 �.
If g ∈ Bn is an annihilator of f ∈ Bn then g(v) = 0 for v ∈ S(f). To find

a d or lesser degree annihilator g ∈ Bn,d, one has to solve the system of linear
equations
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∑

α∈Vn,wt(α)≤d

aαvα = 0 for v ∈ S(f) i.e.,
∑

α∈Vn,wt(α)≤d,α⊆v

aα = 0 for v ∈ S(f).

That is, Md
S(f)γ = 0. (1)

where the transpose of γ is the unknown row vector (aα). If rank(Md
S(f)) <

|mn,d| =
∑d

i=0

(
n
i

)
then f has a d or lesser degree annihilator.

For f ∈ Bn, the incidence matrix Md
S(f) is a particular case of MX

V , whose
rank tells about the AI(f). In this article, we study the rank of MX

V , with special
attention on Md

S(f). Some structures of MX
V , which are not seen in a random

binary matrix are addressed in [2]. Thus, the system of equations in Equation 1
can be solved faster as compared to solving an arbitrary system of equations
of same order if the algebraic structures in MX

V are carefully exploited. For
example, in [4], some structures have been exploited to make it constant time
faster in average case.

In Section 3, we have proposed a technique on the ordering of vectors in
X and V which makes the matrix MX

V and Md
S(f) a lower block triangular.

The Section 3.2 and 3.3 contain the main results of this article to reduce the
computation time. Experimental results of some important exponent S-boxes
are presented in Section 4. On the basis of experiments, we conjecture about
the complete characterization of power functions of algebraic immunity 1. We
too verified the result on the AI of inverse power function in [6] till 20 variable
Boolean functions which was conjectured in [6]. Some experimental results on
some important power functions are too presented in this section.

3 Lower-Block Triangular Nature of MX
V

An n × m matrix M is a lower-block triangular if its form is as

M =

⎛

⎜
⎜
⎜
⎝

M11 M12 . . . M1l

M21 M22 . . . M2l

. . . . . .
. . . . . .

Ml1 Ml2 . . . Mll

⎞

⎟
⎟
⎟
⎠

(2)

where Mij are ni × mj sub-matrices for 1 ≤ i, j ≤ l with
∑l

i=0 ni = n and
∑l

j=0 mj = m and Mi,j are zero sub-matrices for j > i.

3.1 Using the Ordering <w

Consider two ordered sets of vectors V,X ⊆ Vn with the ordering <w. Let
V 0, V 1, . . . , V n and X0,X1, . . . , Xn be the disjoint partitions of V and X such
that V i = {v ∈ V : wt(v) = i} and Xi = {x ∈ X : wt(x) = i}, 0 ≤ i ≤ n
respectively. If v ∈ V i, x ∈ Xj and i < j, it is clear that v <w x and x � v.
Hence, from the definition of incidence, we have the following theorem.
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Theorem 1. The incidence matrix MX
V is a lower block triangular matrix with

Mij = MXj

V i on the ordering <w of elements of V and X.

Since MX
V is lower block triangular, block wise Gaussian row elimination can be

performed to find its rank. Consider that V and X are chosen randomly such
that |V | = |X| = 2n−1. Here, |Xi| and |V i| are approximately 1

2

(
n
i

)
for 0 ≤ i ≤ n.

The time complexity for ith block wise row elimination is O(2n
(
n
i

)2). Hence, the
time complexity for finding the rank of MX

V is O(2n
∑n

i=0

(
n
i

)2) = O(2n
(
2n
n

)
).

For the case of Md
S(f), X = Vn,d and V = S(f). So, |Xi| =

(
n
i

)
for 0 ≤ i ≤ d

and |Xi| = 0 for d + 1 ≤ i ≤ n. If f ∈ Bn is a randomly chosen Boolean
function, then |V i| ≈ 1

2

(
n
i

)
, for 0 ≤ i ≤ n. During each block wise row operation

of matrix Md
S(f) from down to top, all columns in the block should be eliminated

to have the rank equal to the number of columns. So, the same number of rows
are eliminated and rest of the rows augmented to the next block of rows. For
0 ≤ j < n − d, no computation is needed for the jth block wise row elimination
as |Xn−j | = 0. For n − d ≤ j ≤ n, the number of rows in jth block operation is

rj = |V n−j | + (
j−1∑

i=0

|V n−i| −
j−1∑

i=n−d

|Xn−i|)

=
j∑

i=0

|V n−i| −
j−1∑

i=n−d

|Xn−i| ≈ 1
2

j∑

i=0

(
n

i

)

−
j−1∑

i=n−d

(
n

i

)

.

For d < n
2 ,

rj ≈ 1
2
(
(

n

j

)

+
j−1∑

i=n−d

(
n

i

)

+
n−(d+1)∑

i=d+1

(
n

i

)

+
d∑

i=n−(j−1)

(
n

i

)

+
n−j∑

i=0

(
n

i

)

)−
j−1∑

i=n−d

(
n

i

)

=
1
2
(
(

n

j

)

+
n−(d+1)∑

i=d+1

(
n

i

)

+
n−j∑

i=0

(
n

i

)

) = O(2n).

During the jth block wise operation, the sub matrix has rj many rows and
∑n−j

i=0

(
n
i

)
many columns and from there

(
n

n−j

)
many columns (and as many

rows ) to be eliminated. The time complexity in the jth block wise row elim-
ination is O(rj

(
n

n−j

)
(
∑n−j

i=0

(
n
i

)
)) = O(rj

(
n
j

)2) and hence, the time complexity

for finding the rank of Md
S(f) is O(

∑n
j=n−d(rj

(
n
j

)2)) = O(2n
∑n

j=n−d

(
n
j

)2) =

O(2n
∑d

j=0

(
n
j

)2).
Moreover, as discussed in [2, Section3.2], each sub-matrix is sparser by O(2d)

than a random matrix, which can further be exploited to speed up the process by
O(2d). Moreover, there is advantage in space complexity as only the sub-matrix
of size rj × (

n
j

)
= O(2n

(
n
j

)
) is needed during the jth block operation in stead of

the whole 2n−1 × 2n−1 matrix.
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3.2 Using the Ordering <

Consider two ordered subsets V,X of Vn with the ordering <. Here onwards,
we mean the notation K = 2k − 1 and N = 2n − 1. Let V 0, V 1, . . . , V K , and
X0,X1, . . . , XK , k ≤ n, be disjoint subsets of V and X, partitioned on the value
of left most k coordinates of the vectors in V and X respectively. The superscript
i of V i and Xi denotes the integer value of left most k-coordinates of vectors in
V and X. If v ∈ V i, x ∈ Xj and i < j, then v < x and that implies x � v. Let
denote vect(i) is the vector form of binary representation of i. Hence, we have
the following lemma.

Lemma 1. The incidence matrix MXj

V i is a zero matrix if vect(j) � vect(i) for
0 ≤ i, j ≤ K.

Since vect(j) � vect(i) for j > i, MXj

V i is zero matrix for j > i and we have the
following theorem.

Theorem 2. The incidence matrix MX
V is a lower block triangular matrix with

Mij = MXj

V i on the ordering < of elements of V and X.

Since MX
V is lower block triangular, block wise Gaussian row elimination from

down to top can be implemented for reducing the computation time. Hence we
have the following results on the rank of MX

V .

Corollary 1. rank(MX
V ) < |X| iff rank(MX

V
) < |X| where V = ∪p

i=0V
K−i and

X = ∪p
i=0X

K−i for some 0 ≤ p ≤ K.

Corollary 2. If
∑p

i=0 |V K−i| <
∑p

i=0 |XK−i| for some 0 ≤ p ≤ K, then
rank(MX

V ) < |X|. Therefore, if |V | = |X| and
∑p

i=0 |V i| >
∑p

i=0 |Xi| for some
0 ≤ p ≤ K, then rank(MX

V ) < |X|.
Corollary 2 classifies some Boolean functions of having low AI. It can be used
in better way by finding a possible permutation on the variables x1, x2, . . . , xn,
such that

∑p
i=0 |V K−i| <

∑p
i=0 |XK−i| for a some p.

Corollary 3. If rank(MX
V ) = |X| then for every permutation on variables

x1, x2, . . . , xn and k, p, 0 ≤ k ≤ n, 0 ≤ p < 2k,
∑p

i=0 |V K−i| ≥ ∑p
i=0 |XK−i|.

Example 1. Let X = {1, 2, 3, 4, 8, 9, 10, 14} and V = {0, 3, 4, 5, 7, 9, 12, 15} be
two subsets of V4. Here, the vectors are shown in their integer form. If we
fix the left most two coordinates, then X0 = {1, 2, 3},X1 = {4},X2 =
{8, 9, 10},X3 = {14} and V 0 = {0, 3}, V 1 = {4, 5, 7}, V 2 = {9}, V 3 = {12, 15}.
Here, |V 0| + |V 1| = 5 and |X0| + |X1| = 4. Hence, following the corollary 2, we
have rank(MX

V ) < |X|. To find the exact value of rank(MX
V ) the block wise row

reduction of MX
V can be done as following. The block of rows enclosed by double

lines are to be reduced.
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MX
V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0
1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0
1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Here rank(MX
V ) = 6 i.e., there are two free monomials corresponding to the

vectors 2 and 10 in X i.e., x2 and x2x4. So, there are 2 linearly independent anni-
hilators on the monomials of exponent vectors from X of the Boolean function
having support set V .

Now consider that V and X are chosen randomly such that |V | = |X| = η.
Fixing k variables, there are 2k blocks of rows of size approximately η

2k
. The time

complexity for row elimination of each block is O(η×( η
2k

)2) = O(η32−2k). Hence,
the time complexity for finding the rank of MX

V is O(2k×η32−2k) = O(η32−k). If
|V | = |X| = 2n−1, the time complexity for finding the rank of MX

V is O(23n−k).
If one fixes all n variables, the theoretical time complexity becomes O(22n),
i.e., quadratic time complexity on number of monomials. Moreover, the space
complexity for the computation is O(2n) (i.e., linear) as only one block of rows
is needed during the computation. Hence, we have the following theorem.

Theorem 3. For a randomly chosen subsets V and X of Vn such that |V | =
|X| = 2n−1, the expected time complexity and space complexity to compute the
rank of the 2n−1 × 2n−1 matrix MX

V is O(22n) and O(2n) i.e., quadratic time
complexity and linear space complexity on the |X| respectively.

Now we shall discuss about the rank of Md
S(f), which is needed to compute AI(f)

for f ∈ Bn. In this case, X = Vn,d and V = S(f). Since the exponent set X is
not a random set, the time and space complexity is not expected as the described
one in Theorem 3. For 0 ≤ k ≤ n, we have |Xi| = |V i

n,d| = bi =
∑d−wt(i)

j=0

(
n−k

j

)
,

0 ≤ i < 2k. If f ∈ Bn is randomly chosen, then we have |V i| ≈ 2n−k−1,
0 ≤ i < 2k. In each block wise row operation (from down to top) of matrix
Md

S(f), every time all columns in the block need to be eliminated. So, the same
number of rows are also eliminated and rest of the rows are augmented to the next
block of rows. Hence, during the j-th block wise row operation, for 0 ≤ j ≤ K,
the number of rows is

rj = |V K−j | +
j−1∑

i=0

(|V K−i| − bK−i)

=
j∑

i=0

|V K−i| −
j−1∑

i=0

bK−i ≈ (j + 1)2n−k−1 −
j−1∑

i=0

bK−i.

At the j-th block operation, the sub-matrix contains rj rows, cj =
∑K−j

i=0 bi

columns and bK−j columns from these cj columns to be eliminated. So, the time
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complexity for the jth block row elimination is O(rjcjbK−j) and hence, time
complexity to find the rank of Md

S(f) is O(
∑K

j=0 rjcjbK−j).
If k = n, then the time to compute the rank of Md

S(f) is

O(
∑N

j=0 rjcjbN−j). In this case bi =
d−wt(i)∑

i=0

(
0
i

)

=

{
1 if wt(i) ≤ d

0 if wt(i) > d,
i.e.,

bN−j =

{
1 if wt(j) ≥ n − d

0 if wt(i) < n − d.

So,

cj =
N−j∑

i=0

bi =
∑

0≤i≤N−j

wt(i)≤d

1 =
d∑

i=0

(
n

i

)

−
∑

0≤i≤j−1
wt(i)≥n−d

1

and

rj ≈ j + 1
2

−
j−1∑

i=0

bN−i =
j + 1

2
−

∑

0≤i≤j−1
wt(i)≥n−d

1.

When wt(j) < n − d i.e., bN−j = 0, there is no column to eliminate and
hence no operation is done. When wt(j) ≥ n−d, i.e., bN−j = 1, there is only one
column to eliminate. So, the time complexity for j-th block operation is O(rjcj).
Therefore, the time complexity to find the rank of Md

S(f) is O(
∑

0≤j≤N

wt(j)≥n−d
rjcj).

Simplifying it, we have
∑

0≤j≤N

wt(j)≥n−d

rjcj =
∑

0≤j≤N

wt(j)≥n−d

(
j + 1

2
−

∑

0≤i≤j−1
wt(i)≥n−d

1)(
d∑

i=0

(
n

i

)

−
∑

0≤i≤j−1
wt(i)≥n−d

1)

≤
∑

0≤j≤N

wt(j)≥n−d

(
j + 1

2
−

∑

0≤i≤j−1
wt(i)≥n−d

1)(
d∑

i=0

(
n

i

)

).

Now, we will find the value of the summation
∑

0≤j≤N

wt(j)≥n−d
j. If j is in the

summation, then j has wt(j) many non-zero positions in the binary expansion of
j and each non-zero position k contributes the value 2k to the summation. In the
summation, each position occurs 1

n

∑n
i=n−d i

(
n
i

)
=

∑n
i=n−d

(
n−1
i−1

)
many times.

So, for 0 ≤ k < n, k-th position contributes the value 2k
∑n

i=n−d

(
n−1
i−1

)
to the

summation. Hence,
∑

0≤j≤N

wt(j)≥n−d
j =

∑n
i=n−d

(
n−1
i−1

)∑n−1
k=0 2k =

∑n
i=n−d

(
n−1
i−1

)
N .

So,
∑

0≤j≤N

wt(j)≥n−d

j + 1

2
=

1

2
(
∑

0≤j≤N

wt(j)≥n−d

j +

n∑

i=n−d

(
n

i

)
) =

1

2
(

n∑

i=n−d

(
n − 1

i − 1

)
N +

n∑

i=n−d

(
n

i

)
)

Now, in the summation
∑

0≤j≤N

wt(j)≥n−d

∑
0≤i≤j−1

wt(i)≥n−d
1, an integer i with wt(i) ≥

n − d, is counted l times, where l = |{j : i < j ≤ N,wt(j) ≥ n − d}|. Let
i1 < i2 < · · · < N are integers with weight at least n − d, then i1 is counted
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∑n
i=n−d

(
n
i

) − 1 times, i2 is counted
∑n

i=n−d

(
n
i

) − 2 times and so on.
So,

∑
0≤j≤N

wt(j)≥n−d

∑
0≤i≤j−1

wt(i)≥n−d
1 = (

∑n
i=n−d

(
n
i

) − 1) + (
∑n

i=n−d

(
n
i

) − 2) + · · · + 0

= 1
2

∑n
i=n−d

(
n
i

)
(
∑n

i=n−d

(
n
i

) − 1).
Hence,

∑
0≤j≤N

wt(j)≥n−d
rjcj ≤ (2n

∑n
i=n−d

(
n
i

) − (
∑n

i=n−d

(
n
i

)
)2)

∑d
i=0

(
n
i

)

= (
∑d

i=0

(
n
i

)
)2

∑n
i=d+1

(
n
i

)
.

Theorem 4. For a randomly chosen Boolean function f ∈ Bn, the expected
time complexity and space complexity to compute the rank of the matrix Md

S(f)

is O((
d∑

i=0

(
n

i

)

)2
n∑

i=d+1

(
n

i

)

) and O( max
0≤j≤N

rjcj) respectively.

Since the simplification of the above expression is not very easy, the time com-
plexity bound given in the Theorem 4 is not a tight upper bound. Hence the
theoretical time complexity mentioned in Theorem 4 is not a significant improve-
ment over other algorithms. However, in practice, it is very fast and can be used
to compute for n = 20. Moreover, exploiting the sparseness of the sub-matrices,
the computation speed can further be improved.

3.3 Ordering < and Dalai-Maitra Algorithm [4]

As we discussed in above, to find AI of f ∈ Bn, one needs to compute the rank
of Md

S(f). The involutory property of M
Vn,d

Vn,d
(i.e., (MVn,d

Vn,d
)2 = I) is exploited to

reduce the size of incidence matrix Md
S(f) to compute its rank in Dalai-Maitra

algorithm [4]. Instead of computing the rank of Md
S(f) of order |Vn,d| × |S(f)|, it

is proposed to compute the rank of a smaller matrix Id
f of order |S(f) \ Vn,d| ×

|Vn,d \ S(f)|. Given a f ∈ Bn and d ≤ n the matrix Id
f is defined as

Id
f [v, x] =

{∑d−wt(x)
i=0

(
wt(v)−wt(x)

i

)
mod 2 if x ⊆ v

0 if x � v,

where v ∈ Y = S(f) \ Vn,d and x ∈ Z = Vn,d \ S(f).

Theorem 5. [4] The matrix Md
S(f) is of full rank (i.e., |Vn,d|) iff the matrix

Id
f is of full rank (i.e., |Z|).

We can see that the order of matrix Id
f is reduced by half in average in both the

number of rows and columns. To find AI(f), finding rank of Md
S(f) can speed

up the process approximately by 8 times. We further speed up the process by
observing the lower block triangular nature of Md

S(f) by proper ordering of the
vectors in Y and Z.

Let the vectors in Y and Z be ordered by <. For 0 ≤ k ≤ n, let Y 0, . . . , Y 2k−1

and Z0, . . . , Z2k−1 be the partitions of Y and Z on their left most k coordinates
of vectors in Y and Z respectively. Let denote Id

f [Y i, Zj ] be the sub-matrix in
Id
f corresponding to the vector subsets Y i and Zj .
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Lemma 2. The sub-matrix Id
f [Y i, Zj ] is a zero matrix if vect(j) � vect(i) for

0 ≤ i, j ≤ K.

Since vect(j) � vect(i) for j > i, Id
f [Y i, Zj ] is zero matrix for j > i and we have

the following theorem.

Theorem 6. The matrix Id
f is a lower block triangular matrix with submatrices

Id
f ij

= Id
f [Y i, Zj ], 0 ≤ i, j ≤ 2k − 1 on the ordering < of elements of Y and Z.

Comparing the partitions in matrix Md
S(f) in subsection 3.2, here we have

|Y i| ≈ |V i|
2 and |Zi| ≈ |Xi|

2 . Therefore, the computation in this technique is
expected to be 8 times faster than the technique described in the earlier sub-
section. Therefore, the technique presented here is so far the best technique to
evaluate AI of a Boolean function. It is possible to find AI of a Boolean function
of 20 variables or, a few more variables with less memory.

4 Experiments on the AI of Power Functions

Since the vector space characteristic of finite field F2n can be viewed as Vn = F
n
2 ,

every function F : F2n �→ F2n can be viewed as an ordered collection of n Boolean
function. That is, F (x) = (F1(x), F2(x), · · · , Fn(x)), where the Boolean func-
tions Fis are called the co-ordinate Boolean functions of F . The nonzero linear
combination of the co-ordinate functions, (i.e.,

∑n
i=1 aiFi, ai ∈ F2 but not all ai

are zero) are called component Boolean functions of F . The component func-
tions of F can too be algebraically represented as Tr(λF ) for non-zero constants
λ ∈ F

∗
2n .

Definition 1. Let F : F2n �→ F2n be a function. The algebraic immunity of F
is AI(F ) = min(a1,...,an)∈Vn\{(0,...,0)}{AI(

∑n
i=1 aiFi)} i.e., the minimum of AI of

the component functions of F .

A function F : F2n �→ F2n is called a power function if F is of the form F (x) = xd

for x ∈ F2n and d is an integer. The degree of power function xd is defined as the
weight of the vect(d), which is the degree of each component function of xd. In
this section, we present some experimental results on the AI of power functions.

During the experiments, we observed a nice result for power functions of
having algebraic immunity 1. It is known that AI(xd1) = AI(xd2) if d1 and d2 are
in same 2-cyclotomic coset modulo 2n − 1 i.e., d2 = 2id1 mod 2n − 1 for some
integer i. The size of each 2-cyclotomic coset is a divisor of n. It is very clear
that the AI of linear power functions, i.e., AI(x2i mod 2n−1), is 1. We present a
conjecture on the nonlinear power functions of algebraic immunity 1.

Conjecture 1. Let n ≥ 4 and xd be a power function from F2n to F2n . Then
AI(xd) = 1 iff one of the followings happens for d.

i. d ∈ {1, 2, . . . , 2n−1} i.e., xd is a linear power function.
ii. The size of 2-cyclotomic coset modulo 2n − 1 of d is a proper divisor of n.
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Based on this conjecture, we have the following example and corollary.

Example 2. Let take n = 6. Here AI(xd) = 1 iff

1. d ∈ {1, 2, 4, 8, 16, 32} (when xd is linear) or,
2. d ∈ {9, 18, 36} ∪ {21, 42} ∪ {27, 54, 45} (when xd is not linear).

Corollary 4. If n is prime , then there is no non-linear power functions of
algebraic immunity 1.

Further, using the proposed technique, we computed AI of some cryptographic
important power functions like inverse functions, Kasami exponents and Niho
exponents up to 21 variables. The AI of n-variable inverse function, x−1, is
upper bounded by 
2√

n� − 2, Kasami and Niho exponents are upper bounded
by 
2√

n� [8]. Experimentally, we checked that the AI of the inverse function is
exactly 
2√

n� − 2 for n ≤ 21 which is proved in [6].
A Kasami exponent K : F2n �→ F2n is of the form x22k−2k+1 for k ≤ n

2
and gcd(n, k) = 1. The degree of Kasami exponent is k + 1. Therefore, AI(K) ≤
min{k+1, 
2√

n�}. The following table presents the experimental result of AI(K)
for the largest k ≤ n

2 and gcd(n, k) = 1.

n k deg(K) 
2√
n� AI(K) n k deg(K) 
2√

n� AI(K)
10 3 4 7 4 14 5 6 8 6
11 5 6 7 5 15 7 8 8 7
12 5 6 7 5 16 7 8 8 7
13 6 7 8 6 17 8 9 9 8

For odd n = 2s + 1, a Niho exponent N : F2n �→ F2n is of the form x2s+2
s
2 −1

if s is even and x2
3s+1

2 +2s−1 if s is odd. The degree of Niho exponent is d = n+3
4 if

n ≡ 1 mod 4 and d = n+1
2 if n ≡ 3 mod 4. Therefore, AI(N) ≤ min{d, 
2√

n�}.
The following table presents the experimental results of AI(N).

n deg(N) 
√n� AI(N) n deg(N) 
√n� AI(N)
9 3 7 3 15 8 8 7
11 6 7 5 17 5 9 5
13 4 8 4 19 10 9 9

Then we do experiments to find power functions of optimal AI (i.e., 
n
2 �) and

we found that there are power functions of optimal AI but it becomes rarer as n
increases. The experiment is tabulated below.

n m = |{xd : AI(xd) = 
n
2 �, 0 ≤ d ≤ 2n − 2}| m

2n−1 n m m
2n−1

3 3 ≈ 0.4286 4 4 ≈ 0.2667
5 15 ≈ 0.4839 6 12 ≈ 0.1905
7 21 ≈ 0.1654 8 48 ≈ 0.1882
9 45 ≈ 0.0881 10 260 ≈ 0.2542
11 154 ≈ 0.0752 12 1236 ≈ 0.3018
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