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Università di Catania, Viale Andrea Doria 6/a, 95125 Catania, Italy

madonia@dmi.unict.it

Abstract. The notion of unbordered picture generalizes to two dimen-
sions the notion of unbordered (or bifix-free) string. We extend to
two dimensions Nielsen’s construction of unbordered strings ([23]) and
describe an algorithm to construct the set U(m,n) of unbordered pic-
tures of fixed size (m,n). The algorithm recursively computes the set of
quasi-unbordered pictures Q(m,n), i.e. pictures that can possibly have
some “large” borders.
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1 Introduction

The study of the structure and special patterns of the strings plays an important
role in combinatorics of strings, both from theoretical and applicative side. Given
a string s, a bifix or a border of s is a substring x that is both prefix and suffix
of s. A string s is bifix-free or unbordered if it has no other bifixes besides the
empty string and s itself.

Bifix-free strings are connected with the theory of codes [9] and are involved
in the data structures for pattern matching algorithms [15,19]. From a more
applicative point of view, bifix-free strings are suitable as synchronization pat-
terns in digital communications and similar communications protocols [23]. The
combinatorial structure of bifix-free strings over a given alphabet was studied
by P.T. Nielsen in [23]: he provided an algorithm to enumerate recursively all
bifix-free strings of the same length n over a given alphabet. A set of strings
X in which no prefix of any string is the suffix of any other string in X is
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called a cross-bifix-free code. Constructive methods for cross-bifix-free codes are
investigated in [7,10,13].

The increasing interest for pattern recognition and image processing has
motivated the research on two-dimensional languages of pictures. A two dimen-
sional string is called picture and it is given by a rectangular array of sym-
bols taken from a finite alphabet Σ. The set of all pictures over Σ is usually
denoted by Σ∗∗. Extending results from the formal (string) languages theory
to two dimensions is a very challenging task. The two-dimensional structure in
fact imposes some intrinsic difficulties even in the basic concepts. For example,
between two pictures we can define two concatenation operations (horizontal and
vertical concatenations) but they are only partial operations and do not induce
a monoid structure to the set Σ∗∗. The definition of “prefix” can be extended
to a picture by considering its rectangular portion in the top-left corner: never-
theless, if one deletes a prefix from a picture, the remaining part is not a picture
anymore.

Several results from string language theory can be worthy extended to pic-
tures. Many researchers have investigated how the notion of recognizability by
finite state automata can be transferred to two dimensions to accept picture
languages ([2,4–6,11,17,18,20,24,25]). Two dimensional codes were studied in
different contexts ([1,8,12,21] and recently two-dimensional prefix codes were
introduced as the two-dimensional counterpart of prefix string codes ([3,6]).
Matrix periodicity plays a fundamental role in two-dimensional pattern match-
ing (see e.g. [15,22]), while two-dimensional quasi-periodicity was very recently
studied in [16].

In this paper we investigate the notion of unbordered picture that is some-
how connected both to picture codes and to two-dimensional pattern matching.
Observe that the notion of border extends very naturally from strings to pictures
since it is not related to any scanning direction. Informally we can say that a
picture p is bordered if a copy p′ of p can be overlapped on p by putting a corner
of p′ somewhere on some position in p. The border of p will be the subpicture
corresponding to the portion where p and p′ match. The two dimensions of the
structure allow several possibilities to specialize this notion. The simplest one
is when the matching is checked only by sliding the two picture copies with a
horizontal or a vertical move: in this case we allow only borders with the same
number of columns or rows of the picture p itself. Notice that this case is not
really interesting, since pictures can be handled as they were thick strings on
the alphabet either of the columns or of the rows: then the string algorithm
by Nielsen can be directly applied to calculate all unbordered pictures. A more
intriguing case is taking square pictures and allow only overlaps that put a cor-
ner of p′ on positions of the diagonals of p. This corresponds to consider only
square borders as defined in ([14]). Also in this special case some properties of
string borders still hold for pictures.

We consider the more general situation when the overlaps can be made on
any position in p and therefore the borders can be of any size. This leads to a
different scenario with respect to the string case. It can be proved that if a string
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s of lenght n has a border, then it can be written in the form s = xvx, i.e. s
admits also a “small” border of length less than or equals to n

2 . Unfortunately
this property does not hold in general in two dimensions. Borders of a picture
p of size (m,n), can be of three types: borders with dimensions both greater or
both smaller than the half of the corresponding dimensions of p (say “large” or
“small” borders) and borders with only one dimension greater than the half of
the corresponding dimension of p (say a “medium” border). We can only prove
that the presence of a “large” border implies also a medium or a small border.
For this reason it is not possible to directly generalize Nielsen’s construction for
unbordered strings to pictures. In this paper we use quasi-unbordered pictures as
intermediate concept: they can have only certain types of borders that become
unlikely when the size of the pictures grows. We describe a recursive procedure
to calculate all quasi-unbordered pictures of a given size: the (pure) unbordered
pictures can then be easily extracted from this set.

The paper is organized as follows: Section 2 reports the recursive construction
of bifix-free strings given by Nielsen in [23], together with all the needed nota-
tions and definitions on pictures. In Section 3 the notion of unbordered picture
is introduced as two-dimensional extension from the string case. Some related
properties are stated together with some examples. Section 4 contains the recur-
sive construction for the set of all unbordered pictures of a given size. Some
conclusions together with a table of experimental results are given in Section 5.

2 Preliminaries

In this section we first report the formal definition of unbordered strings together
with their recursive construction given by Nielsen. Then, we recall all definitions
on pictures needed for the main results of the paper.

2.1 Unbordered Strings and Nielsen’s Construction

A string is a sequence of zero or more symbols from an alphabet Σ. A string w
of length h is a substring of s if s = uwv for u, v ∈ Σ∗. Moreover we say that
a string w occurs at position j of s if and only if w = sj . . . sj+h. A string x of
length m < n is a prefix of s if x is a substring that occurs in s at position 1; a
string y is a suffix of s if it is a substrings that occurs in s at position n−m+1.
A string x that is both prefix and suffix of s is called a border or a bifix of s.
The empty string and s itself are trivial borders of s. A string s is unbordered
or bifix-free if it has no borders unless the trivial ones.

Unbordered strings have received very much attention since they occur in
many applications as message synchronization or string matching. In [23] P. T.
Nielsen proposed a recursive procedure to generate all bifix-free strings of a given
length that is based on a property of string borders. We report briefly the main
steps that will be used as base for the results of this paper.

The bifix indicator hi of a string s of length n, 1 ≤ i < n, is equal to 1 if s
has a border of size i, and hi = 0 otherwise. Then the following results hold.
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Lemma 1. A string s ∈ Σ∗ is unbordered if and only if hi = 0 for 1 ≤ i ≤
�n/2�.

Saying differently, the previous lemma states that if a string is not unbor-
dered, then it must have a “short” border, i.e. of length less than the half of the
length of the string. Let s = s1s2 . . . sn ∈ Σ∗ be a unbordered string of even
length n, sL = s1s2 . . . sn/2 and sR = sn/2+1 . . . sn. Consider now the strings
s′ = sLasR and s′′ = sLabsR, with a, b ∈ Σ. Then Lemma 1 is used to prove the
following one.

Lemma 2. The string s is unbordered if and only if s′ is unbordered. If s′′ is
unbordered then s is unbordered. If s is unbordered, then s′′ has a border if and
only if the following conditions are satisfied: a = sn, b = s1 and s2 . . . sn/2 =
sn/2+1 . . . sn−1 for n ≥ 4.

Lemma 2 is then exploited to construct all bifix-free strings of length n from
bifix-free strings of shorter length, by inserting extra symbols in the central
positions. The starting set of bifix-free strings of length 2 is simply the set of
all strings ab with a, b ∈ Σ and a �= b. Remark that Lemmas 1 and 2 and the
deriving construction hold for alphabets of any cardinality.

2.2 Basic Notations on Pictures

We recall some definitions about pictures (see [18]). A picture over a finite alpha-
bet Σ is a two-dimensional rectangular array of elements of Σ. Given a picture
p, |p|row and |p|col denote the number of rows and columns, respectively while
size(p) = (|p|row, |p|col) denotes the picture size. The pictures of size (m, 0) or
(0, n) for all m,n ≥ 0, called empty pictures, will be never considered in this
paper. The set of all pictures over Σ of fixed size (m,n) is denoted by Σm,n,
while the set of all pictures over Σ is denoted by Σ∗∗.

Let p be a picture of size (m,n). The set of coordinates dom(p) =
{1, 2, . . . ,m} × {1, 2, . . . , n} is referred to as the domain of a picture p. We let
p(i, j) denote the symbol in p at coordinates (i, j). We assume the top-left corner
of the picture to be at position (1, 1). Moreover, to easily detect border positions
of pictures, we use initials of words “top”, “bottom”, “left” and “right”: then,
for example, the tl-corner of p refers to position (1, 1) while the br-corner refers
to position (m,n).

A subdomain of dom(p) is a set d of the form {i, i+1, . . . , i′}×{j, j+1, . . . , j′},
where 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ j′ ≤ n, also specified by the pair [(i, j), (i′, j′)].
The portion of p corresponding to positions in subdomain [(i, j), (i′, j′)] is
denoted by p[(i, j), (i′, j′)]. Then a non-empty picture x is subpicture of p if
x = p[(i, j), (i′, j′)], for some 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ j′ ≤ n; we say that x
occurs at position (i, j) (its tl-corner).

Several operations can be defined on pictures (cf. [18]). Let p, q ∈ Σ∗∗ be
pictures of size (m,n) and (m′, n′), respectively, the column concatenation of p
and q (p q) and the row concatenation of p and q (p�q) are partial operations,
defined only if m = m′ and if n = n′, respectively, as:
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p q = p q p � q =
p
q

The reverse operation on strings can be generalized to pictures and give
rise to two different mirror operations (called row - and col -mirror) obtained by
reflecting with respect to a vertical and a horizontal axis, respectively. Another
operation that has no counterpart in one dimension is the rotation. The rotation
of a picture p of size (m,n), is the clockwise rotation of p by 90◦, denoted by
p90

◦
. Note that p90

◦
has size (n,m). All the operations defined on pictures can

be extended in the usual way to sets of pictures.
We conclude by remarking that any string s = y1y2 · · · yn can be identified

either with a single-row or with a single-column picture, i.e. a picture of size (1, n)
or (n, 1). In the sequel it will be used the notation [y1y2 · · · yn] to indicate a single-
row picture, while a single-column picture will be denoted by [y1y2 · · · yn]90

◦
.

3 Bordered and Unbordered Pictures

We first generalize the notion of border from strings to pictures. Note that the
notions of prefix and suffix of a string implicitly assume the left-to-right reading
direction. On the other hand the notion of border is completely independent
from any preferred direction. A string has a border when we can find the same
substring at the two ends of the string. We extend these concepts to two dimen-
sions.

Informally we say that a picture p is bordered when we can find the same
rectangular portion at two opposite corners. Remark that there are two different
kinds of borders depending on the pair of opposite corners that hold the border.

More formally we state the following definition.

Definition 3. Given pictures p ∈ Σm,n and x ∈ Σm′,n′
, with 1 ≤ m′ ≤ m and

1 ≤ n′ ≤ n, the picture x is a tl-border of p, if x is a subpicture of p occurring
at position (1, 1) and at position (m−m′ +1, n−n′ +1); picture x is a bl-border
of p, if x is a subpicture of p occurring at position (m−m′ +1, 1) and at position
(1, n − n′ + 1) Moreover x is a border of p if it is either a tl- or a bl-border.

As special cases, p is a trivial border of itself, and x is a proper border of p
if it is not trivial. A tl-border is called a diagonal border in [14]. Notice that
a tl-border x of a picture p of size (m,n) can be univocally detected either by
giving the position where it occurs in p (besides position (1, 1)) or by giving its
size. The same holds for bl-borders. Examples of pictures together with their
borders are given below.

p =

0 1 0 0 0 0
1 1 0 1 1 1
0 0 1 1 1 0
0 1 1 0 1 0
1 1 1 1 1 0

q =

1 0 0 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 1 0
1 1 1 1 0
0 0 0 1 0

r =
0 0 1
1 1 1
0 1 1

s =

0 1 0 0
1 1 1 1
0 0 1 1
0 1 0 0
1 1 1 1
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Note that if a picture p has a tl-border x, then the rotation p90
◦

has a bl-
border (that coincides with x90◦

). In the figure above q = p90
◦
.

Definition 4. A picture p ∈ Σm,n is bordered if there exists a picture x that
is a proper border of p. Picture p is unbordered (or border-free) if it is not
bordered.

The set of all unbordered pictures of size (m,n) over an alphabet Σ is denoted
by UΣ(m,n), or simply U(m,n), when the alphabet can be omitted.

Few simple results can be immediately listed.

Proposition 5. Let Σ be an alphabet. For any m,n ≥ 1, the set UΣ(m,n)
is closed with respect to the rotation, col- and row-mirror operations, and with
respect to permutation or renaming of symbols in Σ. Moreover, UΣ(m,n)90

◦
=

UΣ(n,m).

Remark 6. The opposite corners of an unbordered picture p of size (m,n) must
contain different symbols otherwise p would have a border of size (1, 1). Moreover
the first row (column, resp.) must be different from the last one: otherwise p
would have a border of size (1, n) ((m, 1), respectively).

The aim of the rest of the paper will be to construct all the unbordered
pictures of a fixed size (m,n). The unbordered pictures of size (1, n) or (m, 1)
coincide with the unbordered strings and therefore can be calculate using tech-
niques described in Section 2.1. Before studying the general case let us consider
the case of the binary alphabet Σ = {0, 1} and of pictures of “small” size. It
is immediate to see that there are no unbordered pictures of size (2, 2): there
is no way to have different opposite corners and different first and last row
(see Remark 6). For similar reasons there are no unbordered pictures of sizes
(2, 3), (3, 2) and (3, 3). The “smallest” unbordered pictures are of size (4, 2) and
are all listed below:

0 0
1 0
0 1
1 1

,

0 0
0 1
1 0
1 1

,

1 1
0 1
1 0
0 0

,

1 1
1 0
0 1
0 0

.

Notice that they can be obtained from the first one by applying mirror oper-
ations.

Then the 40 unbordered pictures of size (4, 3) can be obtained by somehow
generalizing Nielsen’s construction of unbordered strings: it is possible to con-
struct them by inserting a suitable middle column in the unbordered pictures
of size (4, 2) listed above. Unfortunately this procedure does not work anymore
when the size of pictures grows, as shown by the following example.

Example 7. The picture of size (5, 4) below is unbordered. Nevertheless all the
pictures obtained by deleting some columns in the “middle” of the picture (the
second column or the third one or both) are all bordered ones. Note that also
by deleting the middle (the third) row, one obtains a bordered picture.



Unbordered Pictures: Properties and Construction 51

0 1 0 1
0 1 0 0
0 1 1 1
0 0 0 0
0 0 1 1

The main reason why Nielsen’s construction of unbordered strings can not be
directly generalized to pictures (as in Example 7), is that it is based on Lemma 1,
that does not hold in two dimensions. For pictures we have the following weaker
result.

Lemma 8. Let p ∈ Σm,n. If p has a border of size (i, j) with i ≥ �m/2�+1 and
j ≥ �n/2� + 1 then p has a border of size (h, k) with h ≤ �m/2� or k ≤ �n/2�.
Proof. Let b be a border of size (i, j) with i ≥ �m/2� + 1 and j ≥ �n/2� + 1.
Then p has a border x of size (h, k) = (2i − m, 2j − n). The border x is given
by the “intersection” of the two occurrences of the border b in p. More formally,
if b is a tl-border then x = p[(r, s), (r′, s′)] where [(r, s), (r′, s′)] = [(1, 1), (i, j)] ∩
[(m − i + 1, n − j + 1), (m,n)]. The case of bl-border is analogous.

Note that h < i and k < j. Now, if x is still “large” (i.e. h ≥ �m/2� + 1 and
k ≥ �n/2� + 1) one can iterate the reasoning until a border, with at least one of
the dimension that satisfies the desired inequality, is obtained. 
�

Informally Lemma 8 claims that if a picture has a “large” border then it
necessarily has a “small” or a “middle” border. Indeed, according to its size,
a border of a picture p can be of three types: a border with both dimensions
greater (smaller, resp.) than the half of the corresponding dimensions of p, say a
“large” (“small”, resp.) border; or a border with only one dimension greater than
the half of the corresponding dimension of p, say a “medium” border. It is the
presence of these medium borders that does not allow a simple generalization.

4 Construction of Unbordered Pictures

In this section we present a construction of the class U(m,n) of all unbordered
pictures of given size (m,n), that takes inspiration from Nielsen’s construction
of unbordered strings given in [23] (see Section 2.1). With this aim we introduce
the class of quasi-unbordered pictures and present its recursive construction. The
set U(m,n) will be extracted from the set of quasi-unbordered pictures.

Informally a picture is quasi-unbordered if it has no border occurring in its
right side.

Definition 9. A picture p ∈ Σm,n is quasi-unbordered if p has no border at
position (i, j) with 1 ≤ i ≤ m and �n/2 + 1 ≤ j ≤ n.
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The set of all quasi-unbordered pictures of size (m,n) over an alphabet Σ
is denoted by QΣ(m,n), or simply Q(m,n), when the alphabet can be omitted.
Examples of quasi-unbordered pictures can be found in Example 13. Observe
that U(m,n) ⊆ Q(m,n).

In the following the set Q(m,n) is constructed in a recursive way by the
insertion of one column in the middle of pictures in Q(m,n − 1). We introduce
first some formal notations. For any picture p ∈ Σm,n, the left side of p is the
subpicture pL = p[(1, 1), (m, �n/2)], containing the first �n/2 columns of p,
and the right side of p is the subpicture pR = p[(1, �n/2+1), (m,n)] containing
the remaining columns. Hence p = pL pR.

The picture obtained by inserting in the “middle” of p a column c ∈ Σm,1

is denoted p‖c = pL c pR. We also define the inverse operation of removing
the central column in a picture. More exactly, if n is odd, then p∦ denotes the
picture obtained by removing the �n/2-th column; if n is even, then p∦ denotes
the picture obtained by removing the (n/2 + 1)-th column.

Let us now focus on quasi-unbordered pictures and show the properties used
for their recursive construction.

Proposition 10. Let p ∈ Σm,n. If p is quasi-unbordered then p∦ is quasi-
unbordered.

Proof. Suppose by contradiction that p∦ has a tl-border x that occurs at position
(i, j) in its right side. It is easy to see that the same tl-border x occurs at position
(i, j +1) of p, contradicting the hypothesis that p is quasi-unbordered (note that
�n/2 + 1 ≤ j + 1 ≤ n). The case of bl-borders is analogous. 
�
Proposition 11. Let p be a quasi-unbordered picture, p ∈ Q(m,n), and c be a
column, c ∈ Σm,1.

1. If n is even then p‖c ∈ Q(m,n + 1)
2. If n is odd then p‖c has a border in its right side if and only if the border

occurs at a position in c.

Proof. 1. Arguing by contradiction, suppose that there exist i and j, with 1 ≤
i ≤ m and �(n+1)/2+1 ≤ j ≤ n+1, such that p‖c has a tl-border x that occurs
at the position (i, j). It is easy to see that the same tl-border border x occurs at
the position (i, j−1) of p contradicting the hypothesis that p is quasi-unbordered
(note that �n/2 + 1 ≤ j − 1 ≤ n). The case of bl-borders is analogous.

2. Suppose first that p‖c has a border x in its right side, and suppose w.l.o.g.
that x is a tl-border. If x occurs at a position (i, j) not in c, then we can find
the same tl-border x at position (i, j − 1) of p, that is a position in the right
side of p, and this contradicts the assumption p quasi-unbordered. Suppose now
that p‖c has a border that occurs at a position in c. Since n is odd, then all the
positions of c belong to the right side of p‖c and this concludes the proof. 
�

Consider now the basis case of the recursion, that is quasi-unbordered pic-
tures with one or two columns. Quasi-unbordered pictures with one column are
indeed unbordered strings. Quasi-unbordered pictures with two columns can be
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characterized in terms of special unbordered strings, that we call heart-free. An
unbordered string of even length w ∈ Σ2m is heart-free if w = w1w2, with
|w1| = |w2| = m and there exists no x ∈ Σ∗ that is a suffix of w1 and a prefix of
w2. In other words both w1w2 and w2w1 are unbordered.

Proposition 12. Let p ∈ Σm,2 for some m ≥ 2, p = c1 c2 with c1, c2 ∈ Σm,1.
Then p is quasi-unbordered if and only if (c1 � c2)90

◦
is a heart-free unbordered

string.

Proof. By definition p is quasi-unbordered if p has no border in its right side, i.e.
c2. Then p has a tl-border of size (i, 1) iff (c1 � c2)90

◦
is a string with a border

of length i; and p has a bl-border of size (i, 1) iff (c2 � c1)90
◦

has a border of
length i. 
�

Thanks to Proposition 12, all quasi-unbordered pictures in Σm,2, for any
m ≥ 2, can be constructed as follows. Use Nielsen’s construction to obtain all
unbordered strings over Σ of length 2m−2. For any unbordered string w = w1w2,
with w1, w2 ∈ Σm−1, insert in the middle only pairs of symbols (a, b) with a �= b,
that satisfy the heart-free and unbordered requirements. Then w1a and bw2 are
the columns of the pictures.

We are now ready to sketch the algorithm that provides the set Q(m,n) of
quasi-unbordered pictures of a given size (m,n). It consists in the following two
steps.

1. Construct Q(m, 2) (following Proposition 12).
2. Recursively construct Q(m,n) from Q(m,n − 1) as follows.
If n is odd then define Q(m,n) as the set of all pictures p‖c for all p ∈

Q(m,n − 1), c ∈ Σm,1.
If n is even then define Q(m,n) as the set of all pictures p‖c for all p ∈

Q(m,n − 1), c ∈ Σm,1, such that p‖c has no border occurring at a position in c.
Let us roughly estimate the complexity of the algorithm. Observe that Step 2

when n is odd requires no comparisons. On the other hand, for k = 2, · · · �m/2�,
the pictures in Q(m, 2k) are obtained by inserting in any p ∈ Q(m, 2k − 1) a
column c = [cmcm−1 . . . c1]90

◦
; symbols in c must be taken so that no border

occurs at c. First consider tl-borders. To avoid a tl-border of size (i, k), for
i = 1, · · · ,m, the algorithm does ik comparisons at most. The same number
of comparisons is then necessary to avoid also bl- borders at positions in c.
Hence the algorithm does 2

∑
i=1,··· ,m ik ≤ 2km2 comparisons for any picture in

Q(m, 2k−2). The construction of Q(m,n) from Q(m, 2), needs in total a number
of comparisons C(m,n) ≤ ∑

k=1,··· ,n/2 |Q(m, 2k − 2)|2km2.

A simple bound on |Q(m,n)| is |Q(m,n)| ≤ 1/4|Σm,n|, for any m,n ≥
2, since opposite corners in quasi-unbordered pictures must be different (in
an analogous way as for unbordered ones, Remark 6). Applying this bound
and some mathematical formulas on summations, one can obtain C(m,n) ≤

1
2|Σ2m|m

2
∑

k=1,··· ,n/2 |Σ2m|kk and finally C(m,n) = O(m2n|Σ|mn).
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Example 13. As an example of the algorithm sketched above, let us show how
to obtain some pictures in Q(3, 4) for Σ = {0, 1}. Note that |Q(3, 4)| = 196 (see
Section 5).

The basis case is the construction of Q(3, 2). Applying Proposition 12, take
the 20 unbordered binary strings, extract the 6 heart-free unbordered strings
and obtain:

Q(3, 2) =

⎧
⎨

⎩

0 1
0 0
0 1

,
0 1
0 1
0 1

,
0 1
1 1
0 1

,
1 0
1 1
1 0

,
1 0
1 1
1 0

,
1 0
0 0
1 0

⎫
⎬

⎭
.

Then, using Proposition 11 (case 1) we have:

Q(3, 3) =

⎧
⎨

⎩
pL c pR with p = pL pR ∈ Q(3, 2) and c ∈ Σ3,1

⎫
⎬

⎭
.

Let us give now the construction of some pictures in Q(3, 4) from pictures in

Q(3, 3). Consider for example pictures p =
0 0 1
0 0 0
0 0 1

and q =
0 0 1
0 0 0
0 1 1

in Q(3, 3)

that show a different behavior. From Proposition 11 (case 2), we know that, for
any c ∈ Σ3,1, p‖c has a border in its right side if and only if the border occurs at
a position in c. Observing the picture p‖c, one notes that no border can occur at

a position in c. Hence, p‖c ∈ Q(3, 4), for any c ∈ Σ3,1, i.e.
0 0 x 1
0 0 y 0
0 0 z 1

∈ Q(3, 4),

for any x, y, z ∈ Σ.

Consider now q and q‖c =
0 0 x 1
0 0 y 0
0 1 z 1

with c =
x
y
z

∈ Σ3,1. No tl-border of

size (1, 2), (2, 2), and (3, 2) can occur in q‖c, for any choice of z, y, x. On the
other hand, in order to have no bl-border of size (1, 2), necessarily x = 1, while
y, z can be chosen arbitrarily.

Let us now come back to unbordered pictures. The unbordered pictures of
a given size can be obtained from the quasi-unbordered ones of the same size.
All pictures in Q(m,n) have no border in their right side. Then the bordered
pictures in Q(m,n) to be removed are the ones with a border in their left side.
From Lemma 8, it can be argued that it is sufficient to remove pictures with
borders of size (i, j), with i ≤ �m/2 and j > �n/2�. So only a limited number
of comparisons are needed on pictures in the set Q(m,n).

Example 14. (continued) Unbordered pictures in U(3, 4) are obtained from pic-
tures in Q(3, 4). Consider again pictures p and q in Example 13. We noted that
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p‖c ∈ Q(3, 4), for any c ∈ Σ3,1, i.e.
0 0 x 1
0 0 y 0
0 0 z 1

∈ Q(3, 4), for any x, y, z ∈ Σ.

For x �= z, these pictures in Q(3, 4) are unbordered pictures. Moreover, the

pictures
0 0 1 1
0 0 y 0
0 1 z 1

obtained from q belong to U(3, 4) if and only if z = 0.

We conclude the section with a simple result that in fact can be obtained as
corollary of Proposition 10, but it sheds light on the original motivation to intro-
duce the class of quasi-unbordered pictures, when interested in the construction
of unbordered pictures.

Proposition 15. Let p ∈ Σm,n. If p is unbordered then p∦ is quasi-unbordered.

Moreover it is worthwhile to remark that in the special case of one-
row pictures, that are strings, Q(1, n) = U(1, n) for any n ≥ 1, thanks to
Lemma 1. Hence the construction presented here coincides with Nielsen’s con-
struction when applied to strings.

5 Final Remarks

We presented general definitions for unbordered pictures by imposing that all
possible overlaps between two copies of such pictures are forbidden. This exploits
the “bi-dimensionality” of the structures. As a result, the definition imposes
many constrains to the pictures. Below we present a table reporting the cardi-
nality of the sets of unbordered and quasi-unbordered pictures over a 2-letters
alphabet. The rate with respect to the whole set of pictures of corresponding
size is also shown.

Few considerations can be done. First of all, notice that unbordered pictures
of size (m,n) are very few with respect to the whole set Σm,n (remember that
we had only a rough estimation of 1/4 given by Remark 6). Regarding the basic
step of our recursive construction, Proposition 12 states an interesting bijection
between quasi-unbordered pictures with two columns and heart-free unbordered
strings. In particular it allows to estimate |Q(m, 2)| as the cardinality of heart-
free unbordered strings of length 2m. By some clever considerations on Nielsen’s
construction it can be observed that the heart-free unbordered strings of given
length are at most 1/2 than the unbordered strings of same size. Moreover denote
vn = |U(1,n)|

|Σ1,n| and recall that vn is a not increasing sequence with v4 = 3
8 ([23]).

Hence |Q(m,2)|
|Σm,2| ≤ 1

2 · v2m ≤ 1
2 · 3

8 = 3
16 . This bound is completely reflected in the

table.
Finally, observe that the table reports also the rate |U(m,n)|

|Q(m,n)| : this is important
to estimate the overhead complexity of calculating set Q(m,n) as intermediate
step for U(m,n). Notice that, already for those small values of n, the two sets
are not so different in size. This can be easily understood if we think that the
probability that a picture has a border with more than n/2 columns sensibly
decreases when n grows.



56 M. Anselmo et al.

m n |U(m,n)| |Q(m,n)| |Σm,n| |U(m,n)|
|Σm,n|

|Q(m,n)|
|Σm,n|

|U(m,n)|
|Q(m,n)|

2 2 0 2 16 0,00% 12,50% 0,00%
2 3 0 8 64 0,00% 12,50% 0,00%
2 4 4 18 256 1,56% 7,03% 22,2%
2 5 24 72 1024 2,34% 7,03% 33,3%
2 6 120 200 4096 2,93% 4,88% 60,0%
2 7 528 800 16384 3,22% 4,88% 66,0%
2 8 2220 2734 65536 3,39% 4,17% 81,2%
...

...
...

...
...

...
...

...
3 2 0 6 64 0,00% 9,38% 0,00%
3 3 0 48 512 0,00% 9,38% 0,00%
3 4 40 196 4096 0,98% 4,79% 20,4%
3 5 512 1568 32768 1,56% 4,79% 32,7%
3 6 5048 8542 262144 1,93% 3,26% 59,1%
3 7 44880 68336 2097152 2,14% 3,26% 65,7%
3 8 376768 465266 16777216 2,25% 2,77% 81,0%
...

...
...

...
...

...
...

...
4 2 4 22 256 1,56% 8,59% 18,2%
4 3 40 352 4096 0,98% 8,59% 11,4%
4 4 864 2720 65536 1,32% 4,15% 31,8%
4 5 16712 42920 1048576 1,59% 4,09% 38,9%
4 6 303976 472990 16777216 1,81% 2,82% 64,3%
4 7 5164176 7567840 268435456 1,92% 2,82% 68,2%
4 8 85346944 103001874 4294967296 1,99% 2,40% 82,9%
...

...
...

...
...

...
...

...
5 2 24 80 1024 2,34% 7,81% 30,0%
5 3 512 2560 32768 1,56% 7,81% 20,0%
5 4 16712 39646 1048576 1,59% 3,78% 42,2%
5 5 563584 1268672 33554432 1,68% 3,78% 44,4%
5 6 19057664 27609768 1073741824 1,77% 2,57% 69,0%
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