
More Than 1700 Years of Word Equations

Volker Diekert(B)

Institut Für Formale Methoden der Informatik,
Universität Stuttgart, Stuttgart, Germany

diekert@fmi.uni-stuttgart.de

Abstract. Geometry and Diophantine equations have been ever-present
in mathematics. According to the existing literature the work of Dio-
phantus of Alexandria was mentioned before 364 AD, but a systematic
mathematical study of word equations began only in the 20th century.
So, the title of the present article does not seem to be justified at all.
However, a Diophantine equation can be viewed as a special case of
a system of word equations over a unary alphabet, and, more impor-
tantly, a word equation can be viewed as a special case of a Diophantine
equation. Hence, the problem WordEquations: “Is a given word equa-
tion solvable?”, is intimately related to Hilbert’s 10th problem on the
solvability of Diophantine equations. This became clear to the Russian
school of mathematics at the latest in the mid 1960s, after which a sys-
tematic study of that relation began.

Here, we review some recent developments which led to an amazingly
simple decision procedure for WordEquations, and to the description of
the set of all solutions as an EDT0L language.

Word Equations

A word equation is easy to describe: it is a pair (U, V ) where U and V are
strings over finite sets of constants A and variables Ω. A solution is mapping
σ : Ω → A∗ which is extended to homomorphism σ : (A ∪ Ω)∗ → A∗ such
that σ(U) = σ(V ). Word equations are studied in other algebraic structures and
frequently one is not interested only in satisfiability. For example, one may be
interested in all solutions, or only in solutions satisfying additional criteria like
rational constraints for free groups [6]. Here, we focus on the simplest case of
word equations over free monoids; and by WordEquations we understand the
formal language of all word equations (over a given finite alphabet A) which are
satisfiable, that is, for which there exists a solution.

History

The problem WordEquations is closely related to the theory of Diophantine equa-
tions. The publication of Hilbert’s 1900 address at the International Congress of
Mathematicians listed 23 problems. The tenth problem (Hilbert 10) is:

c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 22–28, 2015.
DOI: 10.1007/978-3-319-23021-4 2



More Than 1700 Years of Word Equations 23

“Given a Diophantine equation with any number of unknown quantities
and with rational integral numerical coefficients: To devise a process
according to which it can be determined in a finite number of operations
whether the equation is solvable in rational integers.”

There is a natural encoding of a word equation as a Diophantine problem. It
is based on the fact that two 2×2 integer matrices ( 1 0

1 1 ) and ( 1 1
0 1 ) generate a free

monoid. Moreover, these matrices generate exactly those matrices on SL(2,Z)
where all coefficients are natural numbers. This is actually easy to show, and also
used in fast the “fingerprint” algorithm by Karp and Rabin [12]. A reduction
from WordEquations to Hilbert 10 is now straightforward. For example, the
equation abX = Y ba is solvable if and only if the following Diophantine system
in unknowns X1, . . . , Y4 is solvable over integers:

( 1 0
1 1 ) · ( 1 1

0 1 ) · (
X1 X2
X3 X4

)
=

(
Y1 Y2
Y3 Y4

) · ( 1 1
0 1 ) · ( 1 0

1 1 )

X1X4 − X2X3 = 1
Y1Y4 − Y2Y3 = 1

Xi ≥ 0 & Yi ≥ 0 for 1 ≤ i ≤ 4

The reduction of a Diophantine system to a single Diophantine equation is clas-
sic. It is based on the fact that every natural number can be written as a sum of
four squares. In the mid 1960s the following mathematical project was launched:
show that Hilbert 10 is undecidable by showing that WordEquations is unde-
cidable. The hope was to encode the computations of a Turing machine into
a word equation. The project failed greatly, producing two great mathematical
achievements. In 1970 Matiyasevich showed that Hilbert 10 is undecidable, based
on number theory and previous work by Davis, Putnam, and Robinson, see the
textbook [17]. A few years later, in 1977 Makanin showed that WordEquations
is decidable [15].

In the 1980s, Makanin showed that the existential and positive theories of free
groups are decidable [16]. In 1987 Razborov gave a description of all solutions for
an equation in a free group via “Makanin-Razborov” diagrams [21,22]. Finally, in
a series of papers ending in [13] Kharlampovich and Myasnikov proved Tarski’s
conjectures dating back to the 1940s:

1. The elementary theory of free groups is decidable.
2. Free non-abelian groups are elementary equivalent.

The second result has also been shown independently by Sela [24].
It is not difficult to see (by encoding linear Diophantine systems over the

naturals) that WordEquations is NP-hard, but the first estimations of Makanin’s
algorithm was something like

DTIME

(

22
22

2poly(n)
)

.



24 V. Diekert

Over the years Makanin’s algorithm was modified to bring the complexity down
to EXPSPACE [9], see also the survey in [5]. For equations in free groups the com-
plexity seemed to be much worse. Kościelski and Pacholski published a result
that the scheme of Makanin’s algorithm for free groups is not primitive recur-
sive [14]. However, a few years later Plandowski and Rytter showed in [20] that
solutions of word equations can be compressed by Lempel-Ziv encodings (actu-
ally by straight-line programs); and the conjecture was born that WordEquations
is in NP; and, moreover, the same should be true for word equations over free
groups. The conjecture has not yet been proved, but in 1999 Plandowski showed
that WordEquations is in PSPACE [18,19]. The same is true for equations in free
groups and allowing rational constraints we obtain a PSPACE-complete problem
[6,10].

In 2013 Jeż applied recompression to WordEquations and simplified all (!)
known proofs for decidability [11]. Actually, using his method he could describe
all solutions of a word equation by a finite graph where the labels are of two
types. Either the label is a compression c �→ ab where a, b, c where letters or
the label is a linear Diophantine system. His method copes with free groups and
with rational constraints: this was done in [7].

Moreover, the method of Jeż led Ciobanu, Elder, and the present author to an
even simpler description for the set of all solutions: it is an EDT0L language [3].
Such a simple structural description of solution sets was known before only for
quadratic word equations by [8].

The notion of an EDT0L system refers to Extended, Deterministic, Table,
0 interaction, and Lindenmayer. There is a vast literature on Lindenmayer sys-
tems, see [23], but actually we need very little from the “Book of L”.

Rational Sets of Endomorphisms

The starting point is a word equation (U, V ) of length n over a set of constants
A and set of variables X1, . . . , Xk (without restriction, |A| + k ≤ n). There is
an nondeterministic algorithm which takes (U, V ) as input and which works in
space NSPACE(n log n). The output is an extended alphabet C ⊇ A of linear
size in n and a finite trim nondeterministic automaton A where the arc labels
are endomorphisms over C∗. The automaton A accepts therefore a rational set
R = L(A) ⊆ End(C∗), and enjoys various properties which are explained next.
The arc labels are restricted. An endomorphism used for an arc label is defined
by mapping c �→ u where c ∈ C is a letter and u is some word of length at most
2. The monoid End(C∗) is neither free nor finitely generated, but R lives inside
a finitely generated submonoid H∗ ⊆ End(C∗) where H is finite. Thus, we can
think of R as a rational (or regular) expression over a finite set of endomorphisms
H as we are used to in standard formal language theory. For technical reasons it
is convenient to assume that C contains a special symbol # whose main purpose
is serve as a marker. The algorithm is designed in such a way that it yields an
automaton A accepting a rational set R such that

{h(#) | h ∈ R} ⊆ A∗# · · · #A∗
︸ ︷︷ ︸
k−1 symbols #

.



More Than 1700 Years of Word Equations 25

Thus, applying the set of endomorphisms to the special symbol # we obtain
a formal language in (A∗ {#})k−1A∗. The set {h(#) | h ∈ R} encodes a set of
k-tuples over A∗. Due to Asfeld [1] we can take a description like {h(#) | h ∈ R}
as the very definition for EDT0L. Now, the result by Ciobanu et al. in [3] is the
following equality:

{h(#) | h ∈ R} = {σ(X1)# · · · #σ(Xk) | σ(U) = σ(V )} .

Here, σ runs over all solutions of the equation (U, V ). Hence, the set of all
solutions for a given word equation is an EDT0L language.

The results stated in [3] are more general.1 They cope with the existential
theory of equations with rational constraints in finitely generated free products
of free groups, finite groups, free monoids, and free monoids with involution. For
example, they cover the existential theory of equations with rational constraints
in the modular group PSL(2,Z).

The NSPACE(n log n) algorithm produces some A whether or not (U, V ) has
a solution. (If there is no solution then the trimmed automaton A has no states
accepting the empty set.) This shifts the viewpoint on how to solve equations.
The idea is that A answers basic questions about the solution set of (U, V ).
Indeed, the construction in [3] is such that the following assertions hold.

– The equation (U, V ) is solvable if and only if L(A) 
= ∅.
– The equation (U, V ) has infinitely many solutions if and only if L(A) is

infinite.

In particular, decision problems like “Is (U, V ) satisfyable?” or “Does (U, V )
have infinitely many solutions” can be answered in NSPACE(n log n) for finitely
generated free products over free groups, finite groups, free monoids, and free
monoids with involution. Actually, we conjecture that NSPACE(n log n) is the
best complexity bound for WordEquations with respect to space. This conjecture
might hold even if the problem WordEquations was in NP.

How to Solve a Linear Diophantine System

Many of the aspects of our method of solving word equations are present in the
special case of solving a system of word equations over a unary alphabet. In
this particular case Jeż’s recompression is closely related to [2]. There are many
other places where the following is explained, so in some sense we can view the
rest of this section as folklore.

Assume that Alice wants to explain to somebody, say Bob, in a very short
time, say 15 minutes, that the set of solvable linear Diophantine systems over
integers is decidable. Assume that this fundamental insight is entirely new to
Bob. Alice might start to explain something with Cramer’s rule, determinants
or Gaussian elimination, but Bob does not know any of these terms, so better
not to start with a course on linear algebra within a time slot of 15 minutes.

1 Full proofs are in [4].



26 V. Diekert

What Bob knows is basic matrix operations and the notion of a linear Dio-
phantine system:

AX = c, where A ∈ Z
n×n, X = (X1, . . . , Xn)T and c ∈ Z

n×1.

Here, the Xi are variables over natural numbers. (This is not essential, and actu-
ally makes the problem more difficult than looking for a solution over integers.)

The complexity of the problem depends on the or values n, ‖c‖1 =
∑

i |ci|
and ‖A‖1 =

∑
i,j |aij |. Without restriction (by adding dummies) we have

‖c‖1 ≤ ‖A‖1 . (1)

Alice explains the compression algorithm with respect to a given solution
x ∈ N

n. Of course, the algorithm does not know the solution, so the algorithm
uses nondeterministic guesses. This is allowed provided two properties are sat-
isfied: soundness and completeness. Soundness means that a guess can never
transform a unsolvable system into a solvable one. Completeness means that for
every solution x, there is some choice of correct guesses such that the procedure
terminates with a system which has a trivial solution.

So we begin by guessing a solution x ∈ N
n. First, we can check whether x = 0

is a solution by looking at c. Indeed, x = 0 is a solution if and only if c = 0.
Hence, let us assume x 
= 0 (this might be possible even if c = 0.) We define

a vector b = c. The vector b (and the solution x) will be modified during the
procedure. Perform the following while-loop.

while x 
= 0

1. For all i define x′
i = xi − 1 if xi is odd and x′

i = xi otherwise. Thus, all x′
i

are even. Rewrite the system with a new vector b′ such that Ax′ = b′. Note
that

‖b′‖1 ≤ ‖b‖1 + ‖A‖1 . (2)

2. Now, all b′
i must be even. Otherwise we made a mistake and x was not a

solution.
3. Define b′′

i = b′
i/2 and x′′

i = x′
i/2. We obtain a new system AX = b′′ with

solution Ax′′ = b′′.
4. Rename b′′ and x′′ as b and x.

end while.

The clue is that, since ‖b‖1 ≤ ‖A‖1 by Equation (1), we obtain by Equa-
tion (2) and the third step an invariant:

‖b′′‖1 = ‖b′‖1 /2 ≤ ‖b‖1 /2 + ‖A‖1 /2 ≤ ‖A‖1 .

The procedure is obviously sound. It is complete because in each round ‖x‖1
decreases and therefore termination is guaranteed for every solution as long as
we make correct guesses. The final observation is that the procedure defines a



More Than 1700 Years of Word Equations 27

finite graph. The vertices are the vectors b ∈ Z
n with ‖b‖1 ≤ ‖A‖1 . There are

at most ‖A‖2n+1
1 such vectors. We are done! It is reported that the explanation

of Alice took less than 15 minutes. It is not reported whether Bob understood.
Alice explanation has a bonus: there is more information. We can label the

arcs according to our guesses with affine mappings of two types: either x �→ x+1
or x �→ 2x. Thus, we have a finite graph of at most exponential size where the
arc labels are affine mappings of x �→ λx + ε with λ ∈ {1, 2} and ε ∈ {0, 1}n.
Letting b = 0 be the initial state and the initial vector c the final state, we have
a nondeterministic finite automaton which accepts a rational set R of affine
mappings from N

n to itself. By construction, we obtain

{x ∈ N
n | Ax = c} = {h(0) | h ∈ R} .

References

1. Asveld, P.R.: Controlled iteration grammars and full hyper-AFL’s. Information
and Control 34(3), 248–269 (1977)

2. Boudet, A., Comon, H.: Diophantine equations, Presburger arithmetic and finite
automata. In: Kirchner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 30–43. Springer,
Heidelberg (1996)

3. Ciobanu, L., Diekert, V., Elder, M.: Solution Sets for equations over free
groups are EDT0L languages. In: Halldórsson, M.M., Iwama, K., Kobayashi, N.,
Speckmann, B. (eds.) ICALP 2015, Part II. LNCS, vol. 9135, pp. 134–145. Springer,
Heidelberg (2015)

4. Ciobanu, L., Diekert, V., Elder, M.: Solution sets for equations over free groups
are EDT0L languages. ArXiv e-prints, abs/1502.03426 (2015)

5. Diekert, V.: Makanin’s algorithm. In: Lothaire, M., (eds.) Algebraic Combinatorics
on Words. Encyclopedia of Mathematics and its Applications, vol. 90, chapter 12,
pp. 387–442. Cambridge University Press (2002)

6. Diekert, V., Gutiérrez, C., Hagenah, Ch.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Information and Com-
putation 202, 105–40 (2005). Conference version in STACS 2001. LNCS 2010,
pp. 170–182. Springer, Heidelberg (2001)

7. Diekert, V., Jeż, A., Plandowski, W.: Finding all solutions of equations in free
groups and monoids with involution. In: Hirsch, E.A., Kuznetsov, S.O., Pin,
J.É., Vereshchagin, N.K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 1–15. Springer,
Heidelberg (2014)

8. Ferté, J., Marin, N., Sénizergues, G.: Word-mappings of level 2. Theory Comput.
Syst. 54, 111–148 (2014)

9. Gutiérrez, C.: Satisfiability of word equations with constants is in exponential
space. In: Proc. 39th Ann. Symp. on Foundations of Computer Science (FOCS
1998), pp. 112–119. IEEE Computer Society Press, Los Alamitos (1998)

10. Gutiérrez, C.: Satisfiability of equations in free groups is in PSPACE. In: Pro-
ceedings 32nd Annual ACM Symposium on Theory of Computing, STOC 2000,
pp. 21–27. ACM Press (2000)

11. Jeż, A.: Recompression: a simple and powerful technique for word equations. In:
Portier, N., Wilke, T. (eds.) STACS. LIPIcs, vol. 20, pp. 233–244. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik. To appear in JACM, Dagstuhl, Germany (2013)



28 V. Diekert

12. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development 31, 249–260 (1987)

13. Kharlampovich, O., Myasnikov, A.: Elementary theory of free non-abelian groups.
J. of Algebra 302, 451–552 (2006)

14. Kościelski, A., Pacholski, L.: Complexity of Makanin’s algorithm. Journal of the
Association for Computing Machinery 43(4), 670–684 (1996)

15. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math.
Sbornik 103, 147–236 (1977). English transl. in Math. USSR Sbornik 32 (1977)

16. Makanin, G.S.: Decidability of the universal and positive theories of a free group.
Izv. Akad. Nauk SSSR, Ser. Mat. 48 735–749 (1984) (in Russian). nglish transla-
tion. In: Math. USSR Izvestija 25(75–88) (1985)

17. Matiyasevich, Yu.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
18. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE.

In: Proc. 40th Ann. Symp. on Foundations of Computer Science, FOCS 1999,
pp. 495–500. IEEE Computer Society Press (1999)

19. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE.
Journal of the Association for Computing Machinery 51, 483–496 (2004)

20. Plandowski, W., Rytter, W.: Application of lempel-ziv encodings to the solution
of word equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 731–742. Springer, Heidelberg (1998)

21. Razborov, A.A.: On Systems of Equations in Free Groups. PhD thesis, Steklov
Institute of Mathematics (1987) (in Russian)

22. Razborov, A.A.: On systems of equations in free groups. In: Combinatorial and
Geometric Group Theory, pp. 269–283. Cambridge University Press (1994)

23. Rozenberg, G., Salomaa, A.: The Book of L. Springer (1986)
24. Sela, Z.: Diophantine geometry over groups VIII: Stability. Annals of Math. 177,

787–868 (2013)


	More Than 1700 Years of Word Equations
	References


