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Abstract. Finite state transducers over semigroups can be regarded as a
formal model of sequential reactive programs. In this paper we introduce
a uniform technique for checking effectively functionality, k-valuedness,
equivalence and inclusion for this model of computation in the case when
a semigroup these transducers operate over is embeddable in a decidable
group.

1 Introduction

Finite state transducers extend the finite state automata to model functions
on strings or lists, that is why they are used in fields as diverse as computa-
tional linguistics and model-based testing. In software engineering transducers
provide a suitable formal model for various device drivers for manipulating with
strings, transforming images, filtering dataflows, inserting fingerprints, etc. (see
[1,10]). Algorithms for building compositions of transducers, checking equiva-
lence, reducing their state space considerably enhance the effectiveness of design-
ing, testing, verification and maintenance of such software routines.

Transducers may be used also as simple models of sequential reactive
programs. These programs operate in the interaction with the environment per-
manently receiving data (requests) from it. At receiving a piece of data such pro-
gram performs a sequence of actions. When certain control points are achieved
a program outputs the current results of computation as a response. It is signif-
icant that different sequences of actions may yield the same result. Therefore,
the basic actions of a program may be viewed as generating elements of some
appropriate semigroup, and the result of computation may be regarded as the
composition of actions performed by the program.

Imagine, for example, that a radio-controlled robot moves on the earth sur-
face. It can make one step moves in any of 4 directions N,E, S,W . When such
robot receives a control signal syg in a state q it must choose and carry out a
sequence of steps (say, N,N,W,S), and enter to the next state q′. At some dis-
tinguished states qfin robot reports its current location. The most simple model
of computation which is suitable for designing such a robot and analyzing its
behaviour is non-deterministic finite state transducer operating on free Abelian
group of rank 2.
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These considerations give rise to the concept of a transducer which has some
finitely generated semigroup S for the set of outputs. In this paper we study the
equivalence checking problem and some related problems for finite state trans-
ducers over semigroups. The study of these problems for classical transducers
that operate on words began in the early 60s. First, it was shown that the equiva-
lence checking problem is undecidable for non-deterministic transducers [6] even
over 1-letter input alphabet [8]. But the undecidability displays itself only in the
case of unbounded transduction when an input word may have arbitrary many
images. At the next stage bound-valued transducers were studied. It was proved
that it is decidable in polynomial time whether the cardinality of the image of
every word by a given transducer is bounded [15] and whether it is bounded
by a given integer k [7]. The equivalence checking problem was shown also to
be decidable for deterministic [3], functional (single-valued) transducers [2,13],
and k-valued transducers [5,16]. In a series of papers [4,11,12,14] a construction
to decompose k-valued transducers into a sum of functional and unambiguous
ones was developed and used for checking bounded valuedness, k-valuedness and
equivalence of finite state transducers over words.

This paper offers an alternative technique for the analysis of finite state
transducers over semigroups. To check the equivalence of transducers π1 and π2

we associate with them a Labeled Transition System Γπ1,π2 . Each path in this
LTS represents all possible runs of π1 and π2 on the same input word. Every
node u of Γπ1,π2 keeps track of the states of π1 and π2 achieved at reading some
input word and the deficiency of the output words computed so far. If both
transducers reach their final states and the deficiency of their outputs is nonzero
then this indicates that π1 and π2 produce different images for the same word,
and, hence, they are not equivalent. The nodes of Γπ1,π2 that capture this effect
are called rejecting nodes. Thus, the equivalence checking of π1 and π2 is reduced
to checking the reachability of rejecting nodes in LTS Γπ1,π2 . We show that one
needs to analyze only a bounded fragment of Γπ1,π2 to certify (un)reachability of
rejecting nodes. The size of this fragment is polynomial of the size of π1 and π2 if
both transducers are deterministic, and single-exponential if they are k-bounded.
The same approach is applicable for checking k-valuedness of transducers over
semigroups.

Initially, this LTS-based approach was introduced and developed in [17] for
equivalence checking sequential programs in polynomial time. The concept of
deficiency and a similar way of its application to the analysis of classical trans-
ducers was independently introduced in [4] and used in [12,14] under the names
“Advance or Delay Action” (ADA), or “Lead or Delay Action” (LDA). The
main advantage of our approach (apart from the fact that it is applicable to a
more general type of transducers) is twofold. First, unlike one used in [11,16],
it does not require a pre-processing (decomposition) of transducers to be ana-
lyzed and can be applied to any given transducers at once. Second, the checking
procedure does not rely on the specific features of internal structures (like the
analysis of strongly connected components used in [12,14]) of transducers under
consideration and makes a plain depth-first search of rejecting nodes in the
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corresponding LTS. Complexity issues of our technique are shortly discussed in
the conclusion.

2 Preliminaries

Given a finite alphabet A, denote by A∗ the set of all finite words over A. A finite
state automaton over A is 5-tuple A = 〈A,Q, init, F, ϕ〉, where Q is a finite set of
states, init is an initial state, F is a subset of final states, and ϕ,ϕ ⊆ Q×A×Q,
is a transition relation. An automaton A accepts a word w = a1a2 . . . an if
there exists a sequence of states q0, q1, . . . , qn such that q0 = init, qn ∈ F , and
(qi−1, ai, qi) ∈ ϕ holds for every i, 1 ≤ i ≤ n. A language L(A) of A is the set of
all words accepted by A. We write A[q] for the automaton 〈A,Q, q, F, ϕ〉 which
has q for the initial state.

Let S = (B, ·, e) be a semigroup generated by a set of elements B and
having the identity element e. A finite state transducer over S is 6-tuple π =
〈A,S,Q, q0, F, T 〉, where Q is a finite set of states, q0 is an initial state, F is a
subset of final states, and T, T ⊆ Q × A × S × Q, is a finite transition relation.

Quadruples (q, a, s, q′) in T are called transitions and denoted by q
a/s−→ q′. We

will denote by Aπ the underlying finite state automaton 〈A,Q, q0, F, ϕπ〉, where

ϕπ = {(q, a, q′) : q
a/s−→ q′ for some s in S}.

A run of π on a word w = a1a2 . . . an is a sequence of transitions of the form

qi
a1/s1−→ qi+1

a2/s2−→ · · · an−1/sn−1−→ qi+n−1
an/sn−→ qi+n . (1)

The element s = s1 ·s2 · · · sn of the semigroup S is called an image of w, and the

pair (w, s) is called the label of a run (1). We will use notation qi
w/s−→ qi+n for a

run of a transducer. If qi = q0 then (1) is an initial run. If qi+n ∈ F then (1) is a
final run. A run which is both initial and final is called complete. By Lab(π) we
denote the transduction relation realized by π which is the set of labels (w, s)
of all complete runs of π. A state q is useful if at least one complete run passes
via q. In what follows we will assume that all states of the transducers under
consideration are useful; in [4] such transducers are called trim. A transducer π
is deterministic if for every letter a and a state q the set T contains at most one

transition of the form q
a/s−→ q′. A transducer π is k-valued, where k is a positive

integer, if for every input word w the transduction relation Lab(π) contains at
most k labels of the form (w, s). A 1-valued transducer π is also called functional.
Transducers π′ and π′′ are equivalent (π′ ∼ π′′ in symbols) if Lab(π′) = Lab(π′′).

In the rest of the paper we define and study procedures for checking equiv-
alence and k-valuedness of finite state transducers over a semigroup S which
can be embedded in a group. A semigroup S is embeddable in a group G if this
group includes a semigroup S′ isomorphic to S. The set of necessary and suf-
ficient conditions for the embeddability of a semigroup in a group were given
in [9]. The conditions are countably infinite in number and no finite subset will
suffice. In fact, a free semigroup is embeddable in a free group, and any commu-
tative semigroup can be embedded in a group iff it is cancellative. Without loss
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of generality in what follows it will be assumed that the transducers under con-
sideration operate over a finitely generated decidable group G (i.e. there exists
an algorithm for checking whether two words in the generators of G represent
the same element), and, given an element s, we write s− for the element of G
which is inverse of s.

3 Equivalence Checking Deterministic Transducers

Let π = 〈A,G,Q, q0, F, T 〉 and π′ = 〈A,G,Q′, q′
0, F

′, T ′〉 be deterministic trans-
ducers over a finitely generated decidable group G. To check their equivalence
we define the Labeled Transition System (LTS) Γ 0

π,π′ = 〈Q × Q′ × G,⇒〉. The
nodes of Γ 0

π,π′ are triples of the form (q, q′, g), where q ∈ Q, q′ ∈ Q′, and g ∈ G.
The third component g in this triple is called a deficiency (of initial runs arriving
at the states q and q′).

The transition relation ⇒ is defined as follows: for every pair of nodes v1 =
(q1, q′

1, g1) and v2 = (q2, q′
2, g2), and for every letter a a relation v1

a⇒ v2 holds iff

q1
a/s−→ q2 and q′

1

a/s′
−→ q′

2 are transitions in π and π′ respectively, and g2 = s−g1s
′.

Given a word w = a1a2 . . . an and a pair of nodes v = (q1, q′
1, g1) and u =

(q2, q′
2, g2) we write v

w⇒ u as shorthand notation of a sequence v
a1⇒ v1

a2⇒
· · · an−1⇒ vn−1

an⇒ u which is called a path in Γ 0
π,π′ . In this case we say that a node

u is reachable from a node v. It is easy to see that v
w⇒ u holds iff q1

w/s−→ q2,

q′
1

w/s′
−→ q′

2, and s−g1s
′ = g2.

The node vsrc = (q0, q′
0, e), where e is the identity element of G, is called the

source node of Γ 0
π,π′ . Denote by V 0

π,π′ the set of nodes reachable in LTS Γ 0
π,π′

from vsrc. A node (q, q′, g) is called rejecting if it satisfies at least one of the
following requirements:

1. both q and q′ are final states of π and π′, and g 
= e;
2. exactly one of the states q or q′ is final;
3. for some letter a only one of the states q or q′ has a a-transition, whereas

the other state does not.

The set of all rejecting nodes of LTS Γ 0
π,π′ is denoted by R0

π,π′ .

Lemma 1. Deterministic transducers π and π′ are equivalent iff V 0
π,π′ ∩R0

π,π′ = ∅.
Proof. Follows immediately from the definitions of LTS Γ 0

π,π′ , V 0
π,π′ , R0

π,π′ and
the equivalence ∼ in view of the fact that π and π′ are both deterministic and
trim. �

Thus, the equivalence checking of deterministic trim transducers is reduced
to the searching of rejecting nodes in the set of reachable nodes of LTS Γ 0

π,π′ .
Next we show how to cut down the search space.

Lemma 2. If the set V 0
π,π′ contains a pair of nodes v1 = (q, q′, g1) and v2 =

(q, q′, g2) such that g1 
= g2 then V 0
π,π′ ∩ R0

π,π′ 
= ∅.
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Proof. Suppose, to the contrary, that V 0
π,π′ ∩ R0

π,π′ = ∅, and, hence, π ∼ π′.

By the definition of Γ 0
π,π′ there is such a word w0 that q0

w0/s0−→ q, q′
0

w0/s′
0−→ q′,

and g1 = s−
0 s′

0. Since the state q is useful, there is such a word w that q0
w0/s0−→

q
w/s−→ p is a complete run of π. As far as π ∼ π′ and π′ is deterministic, the

run q′
0

w0/s′
0−→ q′ w/s′

−→ p′ of π′ is complete and s0s = s′
0s

′. Hence, g1 = s(s′)−.

Inasmuch as q
w/s−→ p and q′ w/s′

−→ p′, there is a path v2
w⇒ (p, p′, g) in Γ 0

π,π′ , where
g = s−g2s

′. Having in mind that (p, p′, g) is in V 0
π,π′ , both states p and p′ are

final, and assuming that V 0
π,π′ ∩ R0

π,π′ = ∅, we arrive at the equality g = e.
Therefore, g2 = s(s′)− = g1 which contradicts the premise of Lemma. �

By Lemmata 1 and 2, to check the equivalence of deterministic trim trans-
ducers π and π′ it is sufficient to analyze at most |Q||Q′| + 1 nodes reachable
from the source node of LTS Γ 0

π,π′ . This consideration brings us to

Theorem 1. The equivalence problem for deterministic transducers over finitely
generated decidable group G is decidable. Moreover, if the word problem for G
is decidable in polynomial time then the equivalence problem for deterministic
transducers over G is decidable in polynomial time as well.

4 Checking Functional Transducers

To check the functionality of a transducer π = 〈A,G,Q, q0, F, T 〉 we also take
advantage of LTSs. Let π = 〈A,G,Q, q0, F, T 〉 and π′ = 〈A,G,Q′, q′

0, F
′, T ′〉 be

a pair of transducers. Define a LTS Γ 1
π,π′ = 〈Q × Q′ × G,⇒〉 as follows: for

every pair of nodes v1 = (q1, q′
1, g1) and v2 = (q2, q′

2, g2), and for every letter a,

a relation v1
a⇒ v2 holds iff there exist transitions q1

a/s−→ q2 and q′
1

a/s′
−→ q′

2 such
that g2 = s−g1s

′, and L(Aπ[q2]) ∩ L(Aπ′ [q′
2]) 
= ∅. The set of all nodes of LTS

Γ 1
π,π′ reachable from the source node (q0, q0, e) is denoted by V 1

π,π′ . We say that
(q1, q2, g) is a rejecting node if q1 and q2 are final states, and g 
= e. The set of
all rejecting nodes of LTS Γ 1

π,π′ is denoted by R1
π,π′ . The lemmata below can be

proved using the same reasoning as in previous section.

Lemma 3. A transducer π is functional iff V 1
π,π ∩ R1

π,π = ∅.
Lemma 4. If the set V 1

π,π includes a pair of nodes v1 = (q, p, g1) and v2 =
(q, p, g2) such that g1 
= g2 then V 1

π,π ∩ R1
π,π 
= ∅.

As it follows from Lemmata 3 and 4, to check functionality of a transducer
π one needs only to analyze at most |Q|2 + 1 nodes reachable from the source
node of Γ 1

π,π.

Theorem 2. The functionality of transducers over finitely generated decidable
group G can be checked effectively. Moreover, if the word problem for G is decid-
able in polynomial time then the functionality checking can be performed in poly-
nomial time as well.
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The equivalence of functional transducers π and π′ can be checked in the
same way by means of LTS Γ 1

π,π′ . But now we need to check in advance that
L(Aπ[q0]) = L(Aπ′ [q′

0]) since, unlike the case of deterministic transducers, the
nodes (q1, q2, g) in Γ 1

π,π′ such that exactly one of the states q1 and q2 is final can
not be regarded as rejecting ones.

Lemma 5. If L(Aπ[q0]) = L(Aπ′ [q′
0]) then functional transducers π and π′ are

equivalent iff V 1
π,π′ ∩ R1

π,π′ = ∅.
Lemma 6. If the set V 1

π,π′ includes a pair of nodes v1 = (q, q′, g1) and v2 =
(q, q′, g2) such that g1 
= g2 then V 1

π,π′ ∩ R1
π,π′ 
= ∅.

Theorem 3. The equivalence problem for functional transducers over finitely
generated decidable group G is decidable. Moreover, if the word problem for G is
decidable in polynomial time then the equivalence problem for functional trans-
ducers is PSPACE-complete.

5 Checking 2-Valuedness of Transducers

The LTS-based techniques put forward in Sections 3 and 4 for checking the
equivalence of deterministic and functional transducers can be developed further
to cope with the analysis of k-valued transducers. For the sake of clarity we
consider in details only the case of k = 2; the same arguments supplied with
a bit more cumbersome combinatorics gives a general solution to the checking
problems for k-valued finite state transducers.

We begin with checking 2-valuedness of transducers over a decidable group.
Given a transducer π = 〈A,G,Q, q0, F, T 〉 define a LTS Γ 2

π = 〈Q × (Q × G)2,⇒
〉 as follows: for every pair of nodes v1 = (q1, (q2, g12), (q3, g13)) and v2 =
(q′

1, (q
′
2, g

′
12), (q

′
3, g

′
13)), and a letter a, a transition v1

a⇒ v2 takes place if there

exist transitions q1
a/s1−→ q′

1, q2
a/s2−→ q′

2, and q3
a/s3−→ q′

3 such that the equalities
g′
12 = s−

1 g12s2 and g′
13 = s−

1 g13s3 hold, and L(Aπ[q′
1])∩L(Aπ[q′

2])∩L(Aπ[q′
3]) 
= ∅.

A triple of states (q1, q2, q3) will be called a type of a node
(q1, (q2, g12), (q3, g13)). As in the case of 1-valuedness, we define the set V 2

π of all
nodes reachable in LTS Γ 2

π from the source node (q0, (q0, e), (q0, e)). From the
definitions of Γ 2

π and V 2
π it follows that a node v = (q1, (q2, g12), (q3, g13)) is in

V 2
π iff there exists such a word w that q0

w/s1−→ q1, q0
w/s2−→ q2, q0

w/s3−→ q3, and
g12 = s−

1 s2, g13 = s−
1 s3.

The set R2
π of rejecting nodes includes all such nodes (q1, (q2, g), (q3, h)) that

q1, q2, q3 are final states, and g 
= e, h 
= e, g 
= h hold.

Lemma 7. A transducer π is 2-valued iff V 2
π ∩ R2

π = ∅.
Proof. Follows from the definitions of V 2

π , R2
π, and 2-valuedness property. �

Now we need to cut off the space of V 2
π for searching the rejecting nodes.

This is achieved by means of the following two lemmata. Their proofs are based
on the pigeonhole principle and basic group-theoretic properties.
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Lemma 8. Suppose that V 2
π includes four nodes vi = (q, (q′, g′

i), (q
′′, g′′

i )), 1 ≤
i ≤ 4, of the same type such that the inequalities g′

i 
= g′
j, g′′

i 
= g′′
j , and g′

i(g
′′
i )− 
=

g′
j(g

′′
j )− hold for every pair of indices i, j, 1 ≤ i < j ≤ 4. Then V 2

π ∩ R2
π 
= ∅.

Proof. Since all nodes vi, 1 ≤ i ≤ 4, are in V 2
π then L(Aπ[q]) ∩ L(Aπ[q′]) ∩

L(Aπ[q′′]) 
= ∅. Hence, there exists such a word w that q
w/s−→ p, q′ w/s′

−→ p′, and

q′′ w/s′′
−→ p′′ are final runs of the transducer π. Then, by definition of Γ 2

π , the set of
reachable nodes V 2

π includes four nodes ui = (p, (p′, s−g′
is

′), (p′′, s−g′′
i s′′)), 1 ≤

i ≤ 4. If u1 is not a rejecting node then at least one of the equalities hold:
s−g′

1s
′ = e, s−g′′

1 s′′ = e, or s−g′
1s

′ = s−g′′
1 s′′. Without loss of generality consider

the case of s−g′
1s

′ = e (two other possibilities are treated in the similar way).
Since g′

1 
= g′
2, this case implies s−g′

2s
′ 
= e. Therefore, if u2 is not a rejecting

node then this is due to one of the equalities s−g′′
2 s′′ = e, or s−g′

2s
′ = s−g′′

2 s′′.
Consider the case of s−g′′

2 s′′ = e (the other possibility is treated similarly).
Since g′

1 
= g′
3 and g′′

2 
= g′′
3 , the above equalities s−g′

1s
′ = e and s−g′′

2 s′′ = e
imply s−g′

3s
′ 
= e and s−g′′

3 s′′ 
= e. Therefore, if u3 is not a rejecting node
then s−g′

3s
′ = s−g′′

3 s′′. But, taking into account that g′
1 
= g′

4, g′′
2 
= g′′

4 , and
g′
3(g

′′
3 )− 
= g′

4(g
′′
4 )−, the equalities s−g′

1s
′ = e, s−g′′

2 s′′ = e, and s−g′
3s

′ = s−g′′
3 s′′

bring us to the conclusion that s−g′
4s

′ 
= e, s−g′′
4 s′′ 
= e, and s−g′

4s
′ 
= s−g′′

4 s′′,
which means that v4 ∈ R2

π. �
Lemma 9. Let vi = (q, (q′, g′

i), (q
′′, g′′

i )), 1 ≤ i ≤ 4, be four pairwise different
nodes in LTS Γ 2

π that satisfy one of the following requirements:
a) g′

i = g′
j holds for every pair i, j, 1 ≤ i < j ≤ 4;

b) g′′
i = g′′

j holds for every pair i, j, 1 ≤ i < j ≤ 4;
c) (g′

i)
−g′′

i = (g′
j)

−g′′
j holds for every pair i, j, 1 ≤ i < j ≤ 4.

If a rejecting node is reachable from v4 then some rejecting node is reachable
from one of the nodes v1, v2, v3.

Proof. We consider only the case when all nodes satisfy the first requirement
g′

i = g′ for every i, 1 ≤ i ≤ 4. The similar reasoning is adequate for the other
alternatives.

Suppose that a rejecting node u4 = (p, (p′, h′), (p′′, h′′
4)) is reachable from v4

through some word w. Then there are three final runs q
w/s−→ p, q′ w/s′

−→ p′, and

q′′ w/s′′
−→ p′′ of π such that h′ = s−g′s′ and h′′

4 = s−g′′
4 s′′. Since u4 is a rejecting

node, we have h′ 
= e.
The definition of Γ 2

π guarantees that for every i, 1 ≤ i ≤ 3, there is a path
from the node vi to the node ui = (p, (p′, h′), (p′′, h′′

i )), where h′′
i = s−g′′

i s′′. If
u1 /∈ R2

π then either h′′
1 = e or (h′)−h′′ = e. Consider only the case h′′

1 = e (the
other possibility is treated in the same way). Since g′′

2 
= g′′
1 and g′′

1 
= g′′
3 , we

have h′′
2 
= e and h′′

3 
= e. Therefore, if u2 /∈ R2
π then (h′)−h′′

2 = e. But, as far as
g′′
2 
= g′′

3 , it is true that (h′)−h′′
3 
= e. Thus, we conclude that u3 is a rejecting

node. �
With Lemmata 8 and 9 in hand we are able to prove
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Theorem 4. If G is a finitely generated decidable group then 2-valuedness is a
decidable property of transducers over G.

Proof. By Lemma 7 we can check 2-valuedness of a transducer π through
the reachability analysis of rejecting nodes in LTS Γ 2

π . To this end we intro-
duce a depth-first search of rejecting nodes. It begins with the source node
(q0, (q0, e), (q0, e)) and keeps track of useful nodes only. Suppose that at some
step the traversal reaches a node v = (q, (q′, g′), (q′′, g′′)) in Γ 2

π which has not
been visited yet. Then the following 4 cases are possible.
1) If v is a rejecting node then the search stops and announces that π is not
2-valued.
2) Otherwise, check if there exist 3 previously visited useful nodes vi =
(q, (q′, g′

i), (q
′′, g′′

i )), 1 ≤ i ≤ 3, of the same type as v that satisfy one of the
following requirements:

a) g′ = g′
i for every i, 1 ≤ i ≤ 3;

b) g′′ = g′′
i for every i, 1 ≤ i ≤ 3;

c) (g′)−g′′ = (g′
i)

−g′′
i for every i, 1 ≤ i ≤ 3.

If so then v is regarded as useless and a backtracking step is made from this
node.
3) Otherwise, if 27 useful nodes vi = (q, (q′, g′

i), (q
′′, g′′

i )), 1 ≤ i ≤ 27, of the same
type as v has been already visited then the search stops and announces that π
is not 2-valued.
4) Otherwise, the node v is regarded as useful, and the search procedure continues
its depth-first traversal of LTS Γ 2

π .
If the search backtracks finally to the source node then π is recognized 2-valued.

As it can be seen from the definition of the search procedure, it always
terminates at visiting at most 27|Q|3 useful nodes of Γ 2

π . Lemma 9 guarantees
that by skipping useless nodes we do not miss possible paths to some rejecting
nodes. This certifies the completeness of our search. To prove its correctness we
need to show that case 3) of the search is correct. Indeed, simple combinatorial
considerations disclose that if we have 28 nodes (v and vi, 1 ≤ i ≤ 27) such
that neither 4 nodes of them fall under the premise of Lemma 9 (i.e., the nodes
are useful) then this set of nodes includes a quadruple of nodes that satisfy the
assumptions of Lemma 8. �
Corollary 1. If the word problem for a group G is decidable in polynomial time
then 2-valuedness property of transducers over G can be checked in polynomial
time.

Both Lemmata 8 and 9, as well as the decision procedure defined in Theo-
rem 4 can be readily extended to the case of an arbitrary k: the nodes of LTS
Γ 2

π are (k + 1)-tuples (q0, (q1, h1), . . . , (qk, hk)), and to certify the reachability

of a rejecting node in Γ 2
π it suffices to visit at most

(
k+1
2

)(k+1
2 )|Q|k+1 + 1 useful

nodes.
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6 Checking the Equivalence of 2-Valued Transducers

Instead of solving the equivalence checking problem for finite state transducers
we study a more general inclusion checking problem: given a pair of transducers
π and π′ check whether Lab(π′) ⊆ Lab(π). The LTS-based approach is invoked
once again.

Let π = 〈A,G,Q, q0, F, T 〉 and π′ = 〈A,G,Q′, q′
0, F

′, T ′〉 be a pair of trim
2-valued transducers. Clearly, if Lab(π′) ⊆ Lab(π) then L(Aπ′) ⊆ L(Aπ).
Therefore, in this section we deal only with the case of π and π′ such that
L(Aπ′) ⊆ L(Aπ).

To define an LTS Γ 3
π,π′ corresponding to the inclusion checking problem for

transducers π and π′ we introduce a concept of block of states. Let Q̂ be some
multiset of states of transducer π. Then a block of states in Q̂ is any maximal
(i.e., inextensible) subset B of Q̂ such that

⋂

q∈B

L(Aπ[q]) 
= ∅, i.e. some word is

accepted by every automaton Aπ[q], q ∈ B, but no such words are accepted by
an automaton Aπ[q′] for any q′, q′ ∈ Q̂ \ B.

LTS Γ 3
π,π′ = 〈V,⇒〉 is defined as follows. The set of nodes V consists of

all such pairs u = (q′,X), where q′ ∈ Q′, and X = {(q1, g1), . . . , (qm, gm)} ⊆
Q × G, that satisfy the requirement L(Aπ′ [q′]) ∩

m⋂

i=1

L(Aπ[qi]) 
= ∅. The pair

(q′, {q1, . . . , qm}) will be referred to as a type of the node u. For every letter a
and a pair of nodes u = (q′,X) and v = (p′, Y ) of types (q′, Bu) and (p′, Bv)
respectively a transition u

a⇒ v takes place iff

1. there is transition q′ a/s′
−→ p′ in the transducer π′,

2. Bv is a block of states in the multiset Q̂ = {q̂ : ∃q (q ∈ Bu and q
a/s−→ q̂ ) },

and
3. a pair (p, h) is in Y if and only if p ∈ Bv and there exists such a pair (q, g)

in X that q
a/s−→ p is a transition of transducer π and h = (s′)−gs.

As usual, given a word w we write u
w⇒ v for the composition of corresponding

1-letter transitions of LTS. The node vsrc = (q′
0, {(q0, e)}) is the source node of

LTS Γ 3
π,π′ . By V 3

π,π′ we denote the set of all nodes reachable from vsrc. A node
(q′,X) such that q′ ∈ F ′, and for every pair (q, g) in X either q /∈ F , or g 
= e, is
called a rejecting node. The set of rejecting nodes of Γ 3

π,π′ is denoted by R3
π,π′ .

The intended meaning of LTS Γ 3
π,π′ with regard to the inclusion checking of π

and π′ is clarified in the propositions below.

Proposition 1. Let w0 and w1 be arbitrary words, and q′
0

w0/s′
0−→ q′

1

w1/s′
1−→ q′

2 be
a complete run of transducer π′. Then there exists such a node v = (q′

1,X) that

vsrc
w0⇒ v and for every complete run q0

w0/s0−→ q1
w1/s1−→ q2 of transducer π the

multiset X includes a pair (q1, (s′
0)

−s0).
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Proposition 2. Suppose that vsrc
w0⇒ (q′,X). Then there exist such a word w1

and a complete run q′
0

w0/s′
0−→ q′

1

w1/s′
1−→ q′

2 of transducer π′ that for every complete run

q0
w0/s0−→ q1

w1/s1−→ q2 of transducer π the multiset X includes a pair (q1, (s′
0)

−s0).

Both propositions can be proved by induction on the length of w0 relying on
the definition of transition relation ⇒ only. The correctness of these propositions is
due to the fact that the type of every reachable node is specified as block of states.

Lemma 10. Lab(π′) ⊆ Lab(π) ⇐⇒ V 3
π,π′ ∩ R3

π,π′ = ∅.
Proof. Follows from Propositions 1,2 above and the definition of rejecting
node. �

We show that, even though the set V 3
π,π′ may be infinite, only finitely many

nodes must be checked to verify (un)reachability of rejecting nodes.
Consider an arbitrary reachable node v of type (q′, B). Since the transducer

π is 2-valued, for every state q of π at most two copies of q may occur in the
multiset B. Therefore, |B| ≤ 2|Q|, and the total number of types of reachable
nodes in Γ 3

π,π′ does not exceed |Q′|3|Q|.
Consider the language L = L(Aπ′ [q′]) ∩ ⋂

q∈B

L(Aπ[q]); it will be called a

language of type (q′, B). By definition of Γ 3
π,π′ , this language is non-empty. The

set of types of all reachable nodes can be divided into three classes depending
on the properties of L. A type (q′, B) will be called A-type iff there exists such
a word w in L which has two different images s′

1 and s′
2 of w in two final runs

q′ w/s′
1−→ p′

1 and q′ w/s′
2−→ p′

2 of transducer π′. A type (q′, B) will be called B-type
iff it does not belong to the class A and there exist a state q in the multiset B
and a word w in L which has two different images s1 and s2 in two final runs

q
w/s1−→ p1 and q

w/s2−→ p2 of transducer π. All other types will be called C-types.
Lemmata below elucidate some properties of these classes that are crucial for
the solution of the inclusion checking problem.

Lemma 11. Suppose that Lab(π′) ⊆ Lab(π), and (q′, B) be a A-type. Then at
most 2|B| nodes of this type are reachable from the source node.

Proof. Let L be the language of type (q′, B). Consider an arbitrary node v =
(q′,X) of type (q′, B) such that vsrc

w0⇒ v, and an arbitrary pair (q, g) from
X. Since (q′, B) is A-type, there exists such a word w in L which has different

images s′
1 and s′

2 in two final runs q′ w/s′
1−→ p′

1 and q′ w/s′
2−→ p′

2 of transducer π′.

By definition of L, the transducer π has a final run q
w/s−→ q1. Notice, that

the elements s′
1, s

′
2 and s depend on the type (q′, B) and the state q only. By

Proposition 2, transducers π and π′ have initial runs q0
w0/s0−→ q and q′

0

w0/s′
0−→ q′ such

that g=(s′
0)

−s0. Then the transducer π′ has two complete runs q′
0

w0/s′
0−→ q′ w/s′

1−→ p′
1

and q′
0

w0/s′
0−→ q′ w/s′

2−→ p′
2, and the transducer π has a complete run q0

w0/s0−→ q
w/s−→q1.
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Since π is a 2-valued transducer, s′
0s

′
1 
= s′

0s
′
2, and Lab(π′) ⊆ Lab(π), we may be

sure that at least one of the equalities s0s = s′
0s

′
1 or s0s = s′

0s
′
2 holds. Hence,

either g = s′
1s

−, or g = s′
2s

−. The assertion of the Lemma follows from the
fact that both possible values of g depend on the type (q′, B) and the state q
only. �
Lemma 12. Suppose that Lab(π′) ⊆ Lab(π), and (q′, B) is a B-type. Then at
most 3|B| nodes of this type are reachable from the source node.

Proof. Let L be the language of type (q′, B). Consider an arbitrary node v =
(q′,X) of type (q′, B) such that vsrc

w0⇒ v. Let a pair (q, g) in X be such that for

some word w in L final runs q
w/s1−→ p1 and q

w/s2−→ p2 of transducer π yield different
images of w. Consider an arbitrary pair (p, h) in X. Since w ∈ L, there exist final

runs p
w/s−→ p3 and q′ w/s′

−→ p′ of π and π′. By referring to Proposition 2 we conclude
the following. Since Lab(π′) ⊆ Lab(π), exactly one of the equalities s′ = gs1 or
s′ = gs2 holds. Since π is a 2-valued transducer, exactly one of the equalities
gs1 = hs or gs2 = hs is valid. Hence, either h = s′s−, or h = s′(s1)−s2s

−,
or h = s′(s1)−s2s

−. The assertion of Lemma follows from the fact that these
possible values of h depend on the type (q′, B) and the states q and p only. �

Let (q′,B) be a C-type, where B = {q1, . . . , qm}, and L be the language of
this type. Associate with (q′,B) any word w0 from L and consider a final run

q′ w0/s′
−→ p′ of transducer π′ and final runs qi

w0/si−→ pi for every i, 1 ≤ i ≤ m. The
tuple (s′, s1, . . . , sm) of elements in S will be called a w0-characteristics of the
type (q′, B). This characteristics will help us to narrow the search space. Suppose
that u = (q′, {(q1, g1), . . . , (qm, gm)}) is a reachable node of the C-type (q′, B).
If s′ 
= gisi holds for every i, 1 ≤ i ≤ m, then, by definition of LTS Γ 3

π,π′ , a
rejecting node is reachable from u. We will say that such a node u is pre-rejecting
node of the type (q′, B). Otherwise, the set X can be split into two subsets
X0 = {(qi, gi) : s′ = gisi, 1 ≤ i ≤ m} and X1 = {(qj , gj) : s′ 
= gjsj , 1 ≤ j ≤ m}
such that X0 
= ∅. We will use a notation (q′,X0 ⊕ X1) for such a node u.
Note that since π is a 2-valued transducer, gisi = gjsj holds for every two pairs
(qi, gi), (qj , gj) from X1.

Lemma 13. Let (q′, B) be a C-type, B = {q1, . . . , qm}, and k = 2m. Suppose
that k + 1 nodes u1 = (q′,X0 ⊕ X1), . . . , uk+1 = (q′,X0 ⊕ Xk+1) of type (q′, B)
are reachable from the source node. Then a rejecting node is reachable from one
of the nodes u1, . . . , uk+1 iff a rejecting node is reachable from one of the nodes
u1, . . . , uk.

Proof. Let (s′, s1, . . . , sm) be a characteristics of the type (q′, B). Assume that
X0 = {(q1, g1), . . . , (q�, g�)} and Xj = {(q�+1, g�+1j), (qm, gmj)} for every j, 1 ≤
j ≤ k + 1.

Suppose that uk+1
w⇒ v holds for some rejecting node v and a word w. Then,

by definition of Γ 3
π,π′ , the transducer π′ has a final run q′ w/s′

−→ p′ and for every
i, 1 ≤ i ≤ m, the transducer π either has no final runs on the word w from
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the state qi, or every final run qi
w/ti−→ pi yields an image ti of w such that

s′ 
= gik+1ti (actually, at most two such images ti1 and ti2 are possible due to
the fact that π is a 2-valued transducer). We analyze the worst case when the
second alternative is achieved for every state qi, 1 ≤ i ≤ m. Thus, we have at
most 2(m − 1) elements tiσ, σ ∈ {1, 2} from G that are images of w on final
runs from the states q�+1, . . . , qm.

If a rejecting node is not reachable from, say, a node u1 then for some (qi, gi1)
from X1 and for some image t of the word w the equality s′ = gi1t holds, i.e.
gi1 = s′t−. Recall that for any other pair (qj , gj1) we have gi1si = gj1sj , i.e.
gj1 = s′t−sis

−
j . This means that the image t completely defines all elements

gj1, � + 1 ≤ j ≤ m, in X1. Clearly, different images of the word w define the
elements in the different sets Xi. Since the amount of images of w does not
exceed 2(m−1) < k, there exists such node ui, 1 ≤ i ≤ k, that s′ 
= gjitjσ holds
for every component (qj , gji) of Xi and image(s) tjσ of the word w. The latter
means that a rejecting node is reachable from ui. �
Theorem 5. If G is a finitely generated decidable group G then inclusion prob-
lem Lab(π′) ⊆ Lab(π) for 2-valued transducers over G is decidable.

Proof. The search of rejecting nodes in Γ 3
π,π′ begins with the source node vsrc.

Suppose that at some step the traversal reaches a node u = (q′,X) of a type
(q′, B), and u has not been visited yet. Then the following 6 cases are possible.
1) If u ∈ R3

π,π′ then the search stops and announces that π does not include π′.
2) Otherwise, if (q′, B) is a A-type and 2|B| nodes of the same type have been
already visited then the search stops and announces that π does not include π′.
3) Otherwise, if (q′, B) is a B-type and 3|B| nodes of the same type have been
already visited then the search stops and announces that π does not include π′.
4) Otherwise, if (q′, B) is a C-type, and u is a pre-rejecting node of this type
then the search stops and announces that π does not include π′.
5) Otherwise, if (q′, B) is a C-type, u = (q′,X0 ⊕ X1), and 2|B| nodes of the
form ui = (q′,X0 ⊕ X1i) have been already visited then the search backtracks
from u.
6) Otherwise, the search procedure continues its depth-first traversal of LTS Γ 2

π .
If the backtracking ends in the source node then the inclusion Lab(π′) ⊆ Lab(π)
holds.

Termination, correctness and completeness of this search procedure follow
from Lemmata 10-13. As it can be seen from the description of the search pro-
cedure, to check the inclusion Lab(π′) ⊆ Lab(π) less than |Q′|8|Q| nodes of LTS
Γ 3

π,π′ have to be analyzed. �
Corollary 2. The equivalence checking problem for 2-valued transducers over
finitely generated decidable group G is decidable. Moreover, if the word problem
for G is decidable in polynomial time then the equivalence checking problem for
2-valued transducers over G is decidable in single exponential time.

The same approach is applicable to equivalence checking of k-valued trans-
ducers for an arbitrary k. But till now the author did not find adequate means
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for presenting the general solution of this problem in short terms; this remains
the topic for further research.

7 Conclusion

The complexity of checking procedures defined in Sections 3-6 depends on the
complexity of the word problem for a group G. The time complexity of our
algorithms for the cases when G is the free group is estimated below on the
following parameters: n (number of states), m (number of transitions), and �
(maximal length of the outputs of transitions).

– deterministic equivalence checking: O(�n3),
– functionality checking: O(�m2n2),
– k-valuedness checking: O((k + 1)2(k+1)2�mk+1nk+1),
– functional equivalence checking: 2O(n);
– 2-valued equivalence checking: 2O(n log m).

One can compare these complexity estimates with previously known upper
bounds for the complexity of k-valuedness checking O(2(k+1)4�mk+1nk+1)
obtained in [12] and equivalence checking of k-valued transducers 2O(�k5nk+4)

presented in [14]. As is easy to see, even the best known algorithms for the
analysis of k-valued transducers have the complexity which is exponential of k.
So, an open question is if it is possible to check k-valuedness and equivalence of
nondeterministic transducers in time polynomial of k.

The author would like to thank the anonymous referees whose keen and
valuable comments helped him to improve the original version of the paper.
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