
Weighted Restarting Automata
and Pushdown Relations

Qichao Wang, Norbert Hundeshagen, and Friedrich Otto(B)

Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany
{wang,hundeshagen,otto}@theory.informatik.uni-kassel.de

Abstract. Weighted restarting automata have been introduced to study
quantitative aspects of computations of restarting automata. Here we
study the special case of assigning words as weights from the semiring of
formal languages over a given (output) alphabet, in this way generalizing
the restarting transducers introduced by Hundeshagen (2013). We obtain
several new classes of word relations in terms of restarting automata,
which we relate to various types of pushdown relations.

Keywords: Weighted restarting automaton · Restarting transducer ·
Pushdown relation · Quasi-realtime pushdown relation

1 Introduction

Analysis by reduction is a linguistic technique that is used to check the correct-
ness of sentences of natural languages through sequences of local simplifications.
The restarting automaton was invented as a formal model for the analysis by
reduction [7]. In order to study quantitative aspects of computations of restarting
automata, weighted restarting automata were introduced in [10]. These automata
are obtained by assigning an element of a given semiring S as a weight to each
transition of a restarting automaton. Then the product (in S) of the weights of
all transitions that are used in a computation yields a weight for that computa-
tion, and by forming the sum over the weights of all accepting computations for
a given input w ∈ Σ∗, a value from S is assigned to w. Thus, a partial function
f : Σ∗ ��� S is obtained. Here we consider the special case that S is the semiring
of formal languages over some finite (output) alphabet Δ. Then f is a transfor-
mation from Σ∗ into the languages over Δ. Thus, we obtain a generalization of
the notion of a restarting transducer as introduced in [6].

It is well known (see, e.g., [8]) that the class of languages that are accepted
by monotone RWW- and RRWW-automata (see Section 2 for the definitions)
coincides with the class of context-free languages. Accordingly, we are inter-
ested in the classes of transformations that are computed by various types of
weighted restarting automata that are monotone. In this paper we compare
some of these classes to each other and we relate them to the class of push-
down relations and some of its subclasses. In particular, we prove that mono-
tone weighted RRWW-automata compute strictly more transformations than
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 196–207, 2015.
DOI: 10.1007/978-3-319-23021-4 18

Weighted Restarting Automata and Pushdown Relations 197

monotone weighted RWW-automata. The latter in turn compute a class that
properly includes the quasi-realtime pushdown relations, which we will show to
coincide with the transformations that are computed by monotone RWW- and
RRWW-transducers.

This paper is structured as follows. In Section 2 we recall some basic notions
concerning weighted restarting automata, and in Section 3 we look at the push-
down relations and some of their subclasses. Then, in Section 4 we study the
classes of transformations that are computed by (monotone) restarting trans-
ducers, and in Section 5 we investigate the computational power of weighted
RWW- and RRWW-automata that are monotone. The paper closes with a short
summary and some problems for future work.

2 Weighted Restarting Automata

We assume that the reader is familiar with the standard notions and concepts of
theoretical computer science, such as monoids, finite automata, and semirings.
Throughout the paper we will use |w| to denote the length of a word w and λ
to denote the empty word. Further, P(X) denotes the power set of a set X, and
Pfin(X) denotes the set of all finite subsets of X.

A restarting automaton (or RRWW-automaton for short) is a nondetermin-
istic machine with a finite-state control, a flexible tape with endmarkers, and a
read/write window of a fixed finite size. Formally, it is described by an 8-tuple
M = (Q,Σ, Γ, c, $, q0, k, δ), where Q is a finite set of states, Σ is a finite input
alphabet, Γ is a finite tape alphabet containing Σ, the symbols c, $ �∈ Γ are
used as markers for the left and right border of the work space, respectively,
q0 ∈ Q is the initial state, k ≥ 1 is the size of the read/write window, and δ is
the (partial) transition relation that associates finite sets of transition steps to
pairs of the form (q, w), where q is a state and w is a possible content of the
read/write window. There are four types of transition steps. A move-right step
(MVR) causes M to shift its read/write window one position to the right and
to change the state. A rewrite step causes M to replace the content w of the
read/write window by a shorter string v, thereby reducing the length of the tape,
and to change the state. Further, the read/write window is placed immediately
to the right of the string v. However, occurrences of the delimiters c and $ can
neither be deleted nor newly created by a rewrite step. A restart step causes M
to place its read/write window over the left end of the tape, so that the first
symbol it sees is the left sentinel c, and to reenter the initial state q0, and, finally,
an accept step causes M to halt and accept.

If δ(q, w) is undefined for some pair (q, w), then M necessarily halts in a
corresponding situation, and we say that M rejects. Finally, if each rewrite step
is combined with a restart step into a joint rewrite/restart operation, then M is
called an RWW-automaton.

A configuration of M is a string αqβ, where q ∈ Q, and either α = λ and β ∈
{c}·Γ ∗ ·{$} or α ∈ {c}·Γ ∗ and β ∈ Γ ∗ ·{$}; here q is the current state, and αβ is
the current content of the tape, where it is understood that the window contains

198 Q. Wang et al.

the first k symbols of β or all of β when |β| ≤ k. A restarting configuration is of
the form q0cw$. If w ∈ Σ∗, then q0cw$ is an initial configuration.

We observe that any computation of M consists of certain phases. A phase,
called a cycle, starts in a restarting configuration, the head moves along the tape
performing move-right operations and a single rewrite operation until a restart
operation is performed and thus a new restarting configuration is reached. If
no further restart operation is performed, the computation necessarily finishes
in a halting configuration – such a phase is called a tail. It is required that in
each cycle M performs exactly one rewrite step. A word w ∈ Σ∗ is accepted
by M , if there is an accepting computation which starts from the initial config-
uration q0cw$. By L(M) we denote the language consisting of all (input) words
that are accepted by M .

Next we come to the notion of monotonicity. Let C := αqβ be a rewrite
configuration of an RRWW-automaton M , that is, a configuration in which a
rewrite step is to be applied. Then |β| is called the right distance of C, which
is denoted by Dr(C). A sequence of rewrite configurations S = (C1, C2, . . . , Cn)
is called monotone if Dr(C1) ≥ Dr(C2) ≥ · · · ≥ Dr(Cn), that is, if the distance
of the place of rewriting to the right end of the tape does not increase from one
rewrite step to the next. A computation of an RRWW-automaton M is called
monotone if the sequence of rewrite configurations that is obtained from the
cycles of that computation is monotone. Observe that here the rewrite config-
uration is not taken into account that corresponds to the possible rewrite step
that is executed in the tail of the computation considered. Finally, an RRWW-
automaton M is called monotone if all its computations that start with an initial
configuration are monotone. We use the prefix mon- to denote monotone types
of restarting automata.

For studying quantitative aspects of computations of restarting automata,
the weighted restarting automaton has been introduced in [10]. A weighted
restarting automaton of type X, a wX-automaton for short, is a pair (M,ω),
where M is a restarting automaton of type X, and ω is a weight function from
the transitions of M into a semiring S. This weight function assigns an element
ω(t) ∈ S as a weight to each transition t of M . Here we only consider the case
that S is the semiring S = (P(Δ∗),∪, ·, ∅, {λ}) of languages over Δ with the
operations of union and product.

Let M = (M,ω) be a weighted restarting automaton, where M = (Q,Σ, Γ, c,
$, q0, k, δ). Let ACM (w) = {A1, A2, · · · , Am} be the set of all accepting compu-
tations of M on input w. We assume that the computation Ai ∈ ACM (w)
(1 ≤ i ≤ m) uses the transitions ti,1, ti,2, · · · , ti,ni

of M . Then the weight of
a transition ti,j (1 ≤ j ≤ ni) is a language ω(ti,j) = Li,j over Δ, and the
weight of the computation Ai is ω(Ai) = Li,1 · Li,2 · . . . · Li,ni

= L̂i ∈ P(Δ∗).
Finally, fM

ω (w) = L̂1 ∪ L̂2 ∪ · · · ∪ L̂m ∈ P(Δ∗) is the language over Δ that is
associated by M to w, that is, fM

ω is a transformation from Σ∗ into P(Δ∗).
If w /∈ L(M), then ACM (w) = ∅, and accordingly, fM

ω (w) = ∅. In this
way, the weighted restarting automaton M = (M,ω) on Σ yields the relation

Weighted Restarting Automata and Pushdown Relations 199

Rel(M) = { (u, v) | u ∈ L(M), v ∈ fM
ω (u) } ⊆ Σ∗×Δ∗. By R(wX) we denote the

class of relations that are computed by weighted restarting automata of type wX.
As the weight of a transition of M can be any language over Δ, the general

model of weighted restarting automata is quite powerful. Therefore, we introduce
some more restricted types of weighted restarting automata.

Definition 1. A weighted restarting automaton M = (M,ω) of type wX is
called a finitely weighted restarting automaton (a wFINX-automaton for short),
if the weight function ω maps the transitions of M into a semiring of the form
S = (Pfin(Δ∗),∪, ·, ∅, {λ}). It is called a word-weighted restarting automaton (a
wwordX-automaton for short), if the weight of each transition t of M is of the
form ω(t) = {v} for some v ∈ Δ∗.

It is rather obvious that R(wwordX) = R(wFINX) � R(wX) for each type X ∈
{mon-RWW,mon-RRWW,RWW,RRWW}. We close this section with a simple
example of a relation that is computed by a weighted restarting automaton.

Example 2. Let M1 = (Q,Σ, Γ, c, $, q0, k, δ) be the mon-RWW-automaton that
is defined by taking Q := {q0}, Γ := Σ := {a}, and k := 2, where δ is defined
as follows:

t1 : (q0, ca) → (q0,MVR), t3 : (q0, aa) → (q0,MVR),
t2 : (q0, c$) → Accept, t4 : (q0, a$) → $.

Here t4 is the only (combined) rewrite/restart operation of M1. It is easily seen
that L(M1) = { an | n ≥ 0 }.

Let (Pfin(Δ∗),∪, ·, ∅, {λ}) be the semiring of finite languages over Δ = {c},
let ω1 be the weight function that assigns the set {c} to the MVR transitions
t1 and t3, and that assigns the set {λ} to all other transitions, and let M1 =
(M1, ω1). It follows easily that

fM1
ω1

(w) =
{{c

1
2 (n+1)n}, for w = an, n ≥ 0,

∅, for w �∈ L(M1),

and hence, Rel(M1) = { (an, c
1
2 (n+1)n) | n ≥ 0 }.

Finally, we recall the notion of restarting transducer from [3]. In analogy
to finite transducers and pushdown transducers, a restarting transducer is a
restarting automaton that is equipped with an additional output function which
gives an output word for each restart and each accept transition. Hence, restart-
ing transducers are a special type of word-weighted restarting automata. By
R(X-Td) we denote the class of relations that are computed by restarting trans-
ducers of type X.

3 Pushdown Relations

A pushdown transducer (PDT for short) is defined by an 8-tuple T =
(Q,Σ,Δ,X, q0, Z0, F,E), where Q is a finite set of states, Σ is an input alpha-
bet, Δ is an output alphabet, X is a pushdown alphabet, q0 ∈ Q is the initial

200 Q. Wang et al.

state, Z0 ∈ X is the bottom marker of the pushdown, F ⊆ Q is the set of final
states, and E ⊂ Q × (Σ ∪ {λ}) × X × Q × X∗ × Δ∗ is a finite transition relation
that produces a (possible empty) output word in each step (see, e.g., [2]). The
output produced during a computation is then simply the concatenation of all
outputs produced during that computation.

A configuration of T is written as a 4-tuple (q, u, α, v), where q ∈ Q is the
current state, u ∈ Σ∗ is the still unread part of the input, α ∈ X∗ is the current
content of the pushdown, and v ∈ Δ∗ is the output produced so far. The relation
Rel(T) computed by T is defined as

Rel(T) = { (u, v) ∈ Σ∗ × Δ∗ | ∃q ∈ F, α ∈ X∗ : (q0, u, Z0, λ) �∗ (q, λ, α, v) }.

A relation R ⊆ Σ∗ × Δ∗ is called a pushdown relation if R = Rel(T) holds for
some PDT T . By PDR we denote the class of all pushdown relations.

A pushdown relation R is called linearly bounded if there exists a constant
c ∈ N such that |v| ≤ c · |u| holds for all pairs (u, v) ∈ R. By lbPDR we denote
the class of all linearly bounded pushdown relations.

A pushdown relation R is called realtime if it is computed by a PDT T =
(Q,Σ,Δ,X, q0, Z0, F,E) that does not perform any λ-steps, that is, its set of
transitions E satisfies the condition E ⊂ Q × Σ × X × Q × X∗ × Δ∗. By rtPDR
we denote the class of all realtime pushdown relations.

Finally, a pushdown relation R is called quasi-realtime if it is computed by
a PDT T = (Q,Σ,Δ,X, q0, Z0, F,E) for which each λ-step pops a symbol from
the pushdown, that is, if (q, λ, x, q′, x′, v) ∈ E, then x′ = λ. By qrtPDR we denote
the class of all quasi-realtime pushdown relations.

Proposition 3. rtPDR � qrtPDR � lbPDR � PDR.

Proof. The first and the third inclusions are obvious. Concerning the second
inclusion, assume that R is computed by a quasi-realtime PDT T . Let (u, v) ∈ R.
On reading an input symbol, T can push a string of length c (for some constant
c ≥ 1) onto its pushdown, and so altogether at most c · |u| symbols are pushed.
Hence, T can execute at most c · |u| λ-transitions, which means that, on input u,
T executes at most (c + 1) · |u| steps. Thus, the output v produced during this
computation satisfies the inequality |v| ≤ d · (c + 1) · |u|, where d is the maximal
length of any output string produced by T in a single step.

It remains to prove that all the inclusions above are proper. The transduction
RuuR = { (u, uuR) | u ∈ {a, b}∗ } is quasi-realtime: a PDT T can output its input
u letter by letter, also pushing each letter onto the pushdown. At the end of the
input, which T can guess, it empties its pushdown letter by letter, producing
the output uR. On the other hand, this transduction is not realtime, as in a
realtime pushdown relation the final output syllable is produced when the last
input symbol is being read, which is not possible for the relation RuuR .

The relation Rambmcn = { (ambmcn, cnambm) | m,n ≥ 1 } is a linearly
bounded pushdown relation. A PDT T can first guess cn, outputting this factor
and pushing it onto the pushdown. Then it compares the syllables am and bm,

Weighted Restarting Automata and Pushdown Relations 201

producing the output ambm. Finally, it checks the syllable cn against the c-
syllable on its pushdown. However, Rambmcn is not quasi-realtime. The output
syllable cn must be produced first, but the pushdown must be used for compar-
ing am to bm, which are the first two syllables of the input. In addition, when
this comparison is made, then the output ambm must be produced. Hence, the
output syllable cn must already be produced before the input syllable cn is being
read, that is, the output cn is produced through λ-transitions that do not pop
from the pushdown.

Finally, the relation R+ = { (am, bnambn) | m,n ≥ 1 } is a pushdown relation.
Obviously, it is not linearly bounded. �

The class of pushdown relations can be characterized in terms of context-free
languages and morphisms. For that we recall the following concept from [1].

Definition 4. A language L ⊆ Γ ∗ characterizes a relation R ⊆ Σ∗ × Δ∗ if
there exist two morphisms h1 : Γ ∗ → Σ∗ and h2 : Γ ∗ → Δ∗ such that R =
{ (h1(w), h2(w)) | w ∈ L }.

In [1] it was shown that the pushdown relations are characterized by the
context-free languages. For the case that Σ and Δ are disjoint, an even stronger
result was shown that assumes that Γ = Σ∪Δ and that h1 (h2) is the projection
from Γ ∗ onto Σ∗ (Δ∗). In terms of [1] this is expressed by saying that the
pushdown relations are strongly characterized by the context-free languages. In
the following we extend this result to lbPDR.

Lemma 5. Every linearly bounded pushdown relation is strongly characterized
by a context-free language.

Proof. Let R ⊆ Σ∗ × Δ∗ be an lbPDR, and let c be a constant such that |v| ≤
c · |u| for all (u, v) ∈ R. From Definition 4 it follows that R is characterized
by a context-free language L ⊆ Γ ∗ and two morphisms h1 : Γ ∗ → Σ∗ and
h2 : Γ ∗ → Δ∗. Thus, for each pair (u, v) ∈ R, there is a word w ∈ L such
that h1(w) = u and h2(w) = v. Now a strong characterization would put the
additional restriction |w| ≤ |u| + |v| ≤ (c + 1) · |u| on the length of w, which is
not necessarily the case for the above characterization in terms of L.

To simplify the discussion, we assume that Γ , Σ, and Δ are pairwise disjoint.
We introduce an additional alphabet Γ ′ = {x′ | x ∈ Γ, h2(x) �= λ } and take
Γ0 = Γ ∪ Γ ′. Further, we define a morphism h : Γ ∗ → Γ ∗

0 , where x ∈ Γ :

h(x) =

⎧⎪⎨
⎪⎩

xx′, if h1(x) �= λ and h2(x) �= λ,

x′, if h1(x) = λ and h2(x) �= λ,

x, otherwise,

and we extend h1 and h2 to morphisms h′
1 : Γ ∗

0 → (Γ ′∪Σ)∗ and h′
2 : (Γ ′∪Σ)∗ →

(Σ ∪ Δ)∗ through h′
1(x) =

{
h1(x), x ∈ Γ
x, x ∈ Γ ′

}
and h′

2(x
′) =

{
h2(x), x′ ∈ Γ ′

x′, x′ ∈ Σ

}
.

Clearly, the language L′ = h′
2(h

′
1(h(L))) ⊆ (Σ ∪ Δ)∗ is context-free. Let πΣ

and πΔ be the projections from (Σ ∪ Δ)∗ onto Σ∗ and Δ∗. Then R is strongly
characterized by L′ and the two projections πΣ and πΔ. �

202 Q. Wang et al.

4 Pushdown Relations and Restarting Transducers

Every relation that is computed by a restarting transducer is linearly bounded
in the sense of the class lbPDR, as a restarting transducer outputs symbols only
during restart and accept steps, and any computation on an input of length n
contains at most n + 1 such steps. It follows that restarting transducers cannot
compute all pushdown relations. Naturally, the question arises of whether they
can at least compute all linearly bounded pushdown relations. In [3] it was
claimed that monotone RWW- and RRWW-transducers do exactly compute
these relations, but actually, only a weaker result was proven there. Here we show
that these transducers actually characterize the class qrtPDR. By Proposition 3
this means that they cannot realize all relations from the class lbPDR.

Theorem 6. R(mon-RWW-Td) = R(mon-RRWW-Td) = qrtPDR.

To prove this result we present two lemmas.

Lemma 7. qrtPDR ⊆ R(mon-RWW-Td).

Proof. Let R ⊆ Σ∗ × Δ∗ be the relation that is computed by the quasi-realtime
PDT T = (Q,Σ, Γ,Δ, δ, q0, Z0, F). We now simulate T by a mon-RWW-Td using
a construction from [9].

Let l := max{ |γ| | ∃(q, a,A, p, γ, v) ∈ δ }, and let Γ ′ := Γ ′
1 ∪ Γ ′

2, where
Γ ′
1 := { (x) | x ∈ Γ+, |x| ≤ 2l } and Γ ′

2 := { (y) | y ∈ Γ 2l }. Thus, a symbol
(x) ∈ Γ ′

1 encodes a word x ∈ Γ ∗ of length at most 2l, while a symbol (y) ∈ Γ ′
2

encodes a word y ∈ Γ ∗ of length 2l. Finally, let M be the RWW-Td M =
(QM , Σ, Γ ′,Δ, c, $, 4, δ′) that simulates T as follows.

In each cycle M simulates two steps of T . Assume that an accepting com-
putation of T on input w = a0a1 · · · an begins by first applying the transi-
tion (q1, B1 · · · Bm1C1, v1) ∈ δ(q0, a0, Z0) and then the transition (q2, Bm1+1 · · ·
Bm1+m2C2, v2) ∈ δ(q1, a1, C1). As m1 < l and m2 < l, |B1 · · · Bm1+m2C2| <
2l holds. Accordingly, starting with the input configuration corresponding to
input w, M can execute the rewrite step ca0a1a2 → c(xC2)a2, where x :=
B1 · · · Bm1+m2 , producing the output v1v2.

Assume that by executing the next two steps, the PDT T reaches the configu-
ration (q4, a4 · · · an, B1 · · · Bm1+m2−1x1), that is, the factor a2a3 is read from the
input tape, the internal state changes to q4, the two topmost symbols Bm1+m2C2

on the pushdown are rewritten into the string x1 ∈ Γ ∗, and the output v3v4 is
produced. If m1 + m2 − 1 + |x1| ≤ 2l, then M rewrites (xC2)a2a3a4 into (x′)a4,
where x′ = B1 · · · Bm1+m2−1x1, and if m1 + m2 − 1 + |x1| > 2l, then M rewrites
(xC2)a2a3a4 into (x′)(x′′)a4, where x′x′′ = B1 · · · Bm1+m2−1x1 and |x′| = 2l.

In addition, if T executes a λ-step, then it changes its state, pops a symbol
from the pushdown, and produces an output syllable. In order for M to simulate
this in a length-reducing fashion, we must combine up to 2l λ-steps of T (or
several λ-steps together with the next non-λ-step) into a single simulation step
of M . This is rather technical, but nevertheless fairly standard.

Weighted Restarting Automata and Pushdown Relations 203

Continuing in this way it follows that the tape content of M is always of
the form α(u)aj · · · an, where (u) ∈ Γ ′

1, and α ∈ Γ ′
2
∗. Here αu encodes the

current content of the pushdown of T , and aj · · · an is the suffix of the input
that T still has to read. As long as j < n−1, M can simulate the next two steps
of T by rewriting the four symbols (xi)(xi+1)ajaj+1 either into (xi)(xi+1)(xi+2),
into (xi)(xi+2), or into (xi+2), depending on the way in which the contents of
the pushdown of T is modified by these steps. This simulation continues until
either T rejects (and then M rejects as well), or until j = n − 1 is reached. At
that point M can detect whether T will accept or reject, and it will then act
likewise. It follows that M is monotone, and that Rel(M) = R holds. �
Lemma 8. R(mon-RRWW-Td) ⊆ qrtPDR.

Proof. Let M be a mon-RRWW-Td. Using the simulation technique from [8] it
can be shown that M can be simulated by a PDT T . Let cuqvw$ be a rewrite
configuration within an accepting computation of M , and assume that M now
executes the rewrite step (q′, v′) ∈ δ(q, v). Then the next cycle starts from the
restarting configuration q0cuv′w$, and as M is monotone, the next rewrite oper-
ation is performed within a suffix of uv′w of length at most |vw|. Thus, the
prefix uv′ can be stored on the pushdown of T , while the input contains the
suffix w still unread. As an RRWW-transducer, M moves to the right after per-
forming the above rewrite step, and (without loss of generality) it only restarts
and produces its output at the right end of the tape, provided the state reached
leads to a restart operation. As T cannot scan its input completely each time it
simulates a rewrite step, it guesses the output z produced by M at the end of
the current cycle, and it keeps the state q′ reached by the above rewrite step and
the output z guessed in its finite-state control. When it processes further letters
from w, it updates this state information. Finally, when w has been processed
completely, then T checks whether all the states of M stored in its finite-state
control correspond to restart steps and the corresponding output strings.

In fact, as M is monotone, it can be checked quite easily that T is quasi-
realtime, that is, whenever T executes a λ-transition, then it pops a symbol
from its pushdown. In addition, whenever T simulates a rewrite step of M , then
it must remember the state q′ that M enters through this rewrite step and the
output z that M will produce in the current cycle. Luckily, there are only finitely
many pairs of the form (q′, z) of M , and hence, T can actually store all the pairs
occurring in the computation being simulated in its finite-state control. �

As R(mon-RWW-Td) ⊆ R(mon-RRWW-Td), Lemmas 7 and 8 imply the
characterization in Theorem 6. Next it can be shown that all linearly bounded
pushdown relations are accepted by (non-monotone) RRWW-transducers.

Theorem 9. lbPDR ⊆ R(RRWW-Td).

Proof. Let R ⊆ Σ∗ × Δ∗ be a linearly bounded pushdown relation. W.l.o.g. we
assume that Σ and Δ are disjoint. By Lemma 5, R is strongly characterized by a
context-free language L ⊆ (Σ ∪Δ)∗ and the two projections hi : (Σ ∪Δ)∗ → Σ∗

204 Q. Wang et al.

and ho : (Σ ∪ Δ)∗ → Δ∗. Furthermore, there is a constant k such that, for
all (u, v) ∈ R, there exists a word w ∈ L such that |w| ≤ k · |u| and (u, v) =
(hi(w), ho(w)). Let M be a PDA for L. Now an RRWW-Td T for R can be
constructed that proceeds in two steps. For a given pair (u, v) ∈ R,

1. T guesses a characterizing word w of (u, v) and produces the output ho(w),
2. T verifies that w ∈ L by simulating the PDA M on w.

The main problem in constructing T is the fact that we have to ensure that these
steps are realized in a length-reducing manner. �

Actually, the inclusion in Theorem 9 has already been stated in [4] and its
journal version [5] by relating restarting transducers to transducing observer
systems. The proof above can easily be converted to the latter, in this way
correcting the proof given in these papers, which only proves a weaker result.

5 Relations Computed by Monotone Weighted RWW-
and RRWW-Automata

In the previous section we have shown that monotone RWW- and RRWW-
transducers compute the relations in qrtPDR. Are (word-weighted) RWW- and
RRWW-automata that are monotone more expressive?

We begin this investigation by studying the relation between the classes
R(mon-wRWW) and R(mon-wRRWW). Let τ1 ⊆ {a, b, c}∗ × {d, e}∗ be the rela-
tion

τ1 = { (akbkcm, dmek) | k,m ≥ 1 }.

Lemma 10. τ1 /∈ R(mon-wRWW).

Proof. Assume that τ1 ∈ R(mon-wRWW), that is, there exists a weighted mon-
RWW-automaton M and a weight function ω′ that maps the transitions of M
into subsets of {d, e}∗ such that τ1 = Rel((M,ω′)). As τ1 is actually a (partial)
function, we see that ω′ can be replaced by a weight function ω that maps each
transition of M into a singleton, which means that M = (M,ω) is a word-
weighted mon-RWW-automaton. Interpreting the weight ω(t) of a transition as
output, we see that, for an input of the form akbkcm, M first outputs the symbol
d m-times, which is the number of c-symbols in the input, and then it outputs
k e-symbols, which is the number of a- and b-symbols in the input.

As the language L = { akbkcm | k,m ≥ 1 } is not regular, M needs to execute
rewrite steps in all its accepting computations on input akbkcm, if k is sufficiently
large. At what position can the first of these rewrite steps be applied?
(1) Assume that the first rewrite step is applied within the suffix cm. While pro-
cessing this suffix, M can easily produce the output dm. Then M must compare
the prefix ak to the infix bk, and while doing so it should produce the output ek.
However, M is monotone, which means that the position of a rewrite step in a
cycle cannot have a larger right distance than the rewrite step in the previous

Weighted Restarting Automata and Pushdown Relations 205

cycle. Accordingly, the infix bk must be reduced by rewrites to a word that fits
into the window of M , which means that M cannot distinguish between bk and
bk+r for some positive integer r. Thus, together with akbkcm, M would also
accept the word akbk+rcm, contradicting our assumption on M .
(2) From the arguments above, it follows that the first rewrite step must be
executed within the prefix ak or at the border between the prefix ak and the
infix bk. This means that M must first compare the syllables ak and bk, and
since by this process the information on the exponent k is being destroyed, it
must produce the output ek during this process. However, as the output syllable
ek is preceded by the prefix dm, M must already output the syllable dm before
it starts to output e-symbols. As shown in [10], the length of any computation of
M on an input of length n is at most 1

2 (n+2)(n+3)−1. This means that during
the processing of the prefix akbk, M can perform at most 1

2 (2k + 2)(2k + 3) − 1
steps. Choose l ≥ 1 to be a constant such that |ω(t)| ≤ l for all transitions t
of M , and choose m such that m > (12 (2k+2)(2k+3)−1) · l. Then M is not able
to produce m d-symbols, while it is processing the prefix akbk. Thus, it either
stops producing d-symbols before it has erased all information on the number k,
which means that not enough d-symbols are produced, or it keeps on producing
d-symbols while erasing all information on k. In the latter case it will then not
be able to produce the correct number of e-symbols. �

Obviously, R(mon-wRWW) is contained in R(mon-wRRWW). We now prove
that this inclusion is proper.

Theorem 11. R(mon-xRWW) � R(mon-xRRWW) for all x ∈ {w,wFIN,wword}.
Proof. By Lemma 10, τ1 /∈ R(mon-wRWW). On the other hand, it is easy to
construct a monotone word-weighted RRWW-automaton M = (M,ω) such that
Rel(M) = τ1. This automaton M proceeds as follows. Let w = akbkcm be given
as input. In the first cycle, M places a marking on the prefix of w by encoding the
first two symbols into a combined (new) symbol, and then it moves to the suffix
cm of w. While scanning this suffix, it outputs a d-symbol for each c-symbol that
it encounters, and at the right delimiter, it restarts. In the subsequent cycles,
on seeing the marking at the left end of the tape, M realizes that it has already
produced the d-symbols. Hence, it now moves to the boundary between the prefix
ak and the infix bk to compare them. In each subsequent rewrite step, it removes
a single a-symbol and a single b-symbol, producing a single e-symbol as output
(via ω). It follows that Rel(M) = τ1, which completes the proof. �

We remark that Theorem 11 is the first result that establishes a difference in
the computational power between a model of the monotone RWW-automaton
and the corresponding model of the monotone RRWW-automaton.

The relation τ1 = { (akbkcm, dmek) | k,m ≥ 1 } considered above is a linearly
bounded pushdown relation that is not computed by any monotone weighted
RWW-automaton. On the other hand, the relation considered in Example 2 is
computed by a monotone word-weighted RWW-automaton. Its domain a∗ is
context-free, while its range { c

1
2 (n+1)n | n ≥ 0 } is not. Hence, this relation is

not a pushdown relation. Thus, we have the following incomparability result.

206 Q. Wang et al.

Theorem 12
For each prefix x ∈ {w,wFIN,wword}, the class of relations R(mon-xRWW) is
incomparable to the classes lbPDR and PDR with respect to inclusion.

Finally, we turn to the class of relations that are computed by monotone
wRRWW-automata. Let τ2 ⊆ {a, b, c}∗ × {d, e}∗ be the relation

τ2 = { (akbkcm+lal, dmekdmel) | k, l,m ≥ 1 }.

Lemma 13. τ2 /∈ R(mon-wRRWW).

Proof. The relation τ2 is a partial function. Thus, if τ2 is computed by a
monotone wRRWW-automaton, then it is also computed by a monotone word-
weighted RRWW-automaton M = (M,ω). Interpreting the weight ω(t) ∈
{d, e}∗ of a transition t as output, M first outputs the syllable dm, then ek,
then dm again, and finally el given the word akbkcm+lal as input.

As M is monotone, we see that M must first compare the prefix ak to the
infix bk (see the proof of Lemma 10). Since the information about the exponent
k is lost during this process, M must produce the output syllable ek during this
process. Hence, the prefix dm of the output must be produced before this process
starts, which means that M can only perform rewrites on the prefix ak of the
input while it produces the output dm.

The exact value of m is unknown, that is, while moving right across the input
syllable cm+l, M must guess it. After comparing the numbers of a- and b-symbols
and outputting correspondingly many e-symbols, M must again produce m d-
symbols, that is, it must somehow remember this number. However, as M must
not perform any rewrite steps on the suffix cm+lal before ak has been compared
to bk, it must encode the number m within the prefix ak. However, if m is
sufficiently large, then this is not possible. Hence, it follows that τ2 cannot be
computed by any weighted RRWW-automaton that is monotone. �

Clearly τ2 is a linearly bounded pushdown relation, too. Hence, from Exam-
ple 2 and Lemma 13 the following incomparability result follows.

Theorem 14
For each prefix x ∈ {w,wFIN,wword}, the class of relations R(mon-xRRWW) is
incomparable to the classes lbPDR and PDR with respect to inclusion.

6 Conclusion

We have studied the classes of (binary) relations that are computed by weighted
RWW- and RRWW-automata that are monotone, relating them to the classes of
relations that are computed by monotone RWW- and RRWW-transducers and
to some classes of pushdown relations. The inclusion results obtained are summa-
rized in the diagram in Figure 1. In particular, we have shown that the mono-
tone RWW- and RRWW-transducers characterize the class of quasi-realtime

Weighted Restarting Automata and Pushdown Relations 207

pushdown relations, and we have seen that monotone (word-) weighted RWW-
automata are strictly weaker in computational power than monotone (word-)
weighted RRWW-automata. The latter is the first known case where it has been
shown that a version of the (nondeterministic) monotone RWW-automaton dif-
fers in expressive power from the corresponding version of the (nondeterministic)
monotone RRWW-automaton. Of course, it remains to derive a characterization
of the classes of relations computed by these automata in terms of other types
of devices.

PDR

lbPDR

��

R(mon-wRWW) �� R(mon-wRRWW)

qrtPDR

��

R(mon-RWW-Td)

��

R(mon-RRWW-Td)

��

rtPDR

��

Fig. 1. Hierarchy of classes of (binary) relations that are computed by monotone
R(R)WW-transducers and (word-)weighted R(R)WW-automata. An arrow denotes a
proper inclusion, and classes that are not connected are incomparable with respect to
inclusion.

References

1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling.
Prentice-Hall Inc., Upper Saddle River (1972)

2. Choffrut, C., Culik II, K.: Properties of Finite and Pushdown Transducers. SIAM
J. Comput. 12(2), 300–315 (1983)

3. Hundeshagen, N.: Relations and Transductions Realized by Restarting Automata.
Ph.D. thesis, Fachbereich Elektrotechnik/Informatik, Universität Kassel (2013)

4. Hundeshagen, N., Leupold, P.: Transducing by observing and restarting transduc-
ers. In: Freund, R., Holzer, M., Truthe, B., Ultes-Nitsche, U. (eds.) NCMA 2012.
books@ocg.at, vol. 290, pp. 93–106. Österreichische Computer Gesellschaft, Vienna
(2012)

5. Hundeshagen, N., Leupold, P.: Transducing by Observing Length-Reducing and
Painter Rules. RAIRO - Theor. Inform. Appl. 48(1), 85–105 (2014)

6. Hundeshagen, N., Otto, F.: Characterizing the rational functions by restarting
transducers. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183,
pp. 325–336. Springer, Heidelberg (2012)

7. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)

8. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On Monotonic Automata with a Restart
Operation. J. Auto. Lang. Comb. 4(4), 287–312 (1999)

9. Kutrib, M., Messerschmidt, H., Otto, F.: On Stateless Two-Pushdown Automata
and Restarting Automata. Int. J. Found. Comp. Sci. 21, 781–798 (2010)

10. Otto, F., Wang, Q.: Weighted Restarting Automata. The results of this paper have
been announced at WATA 2014 in Leipzig, May 2014 (submitted)

	Weighted Restarting Automata and Pushdown Relations
	1 Introduction
	2 Weighted Restarting Automata
	3 Pushdown Relations
	4 Pushdown Relations and Restarting Transducers
	5 Relations Computed by Monotone Weighted RWW- and RRWW-Automata
	6 Conclusion
	References

