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Abstract. We show that the uniform membership problem of context-
free tree grammars is PSPACE-complete. The proof of the upper bound is
by construction of an equivalent pushdown tree automaton representable
in polynomial space.With this technique, we also give an alternative proof
that the respective non-uniform membership problem is in NP. A corollary
for uniform membership of ε-free indexed grammars is obtained.

1 Introduction

Context-free tree grammars (cftg) [3,10] generalize the concept of context-free
rewriting to the realm of tree languages. They have been studied, among others,
for their close connection to indexed grammars: their yield languages are pre-
cisely the indexed languages [1,10]. Recently, there has been renewed interest in
cftg within the area of natural language processing, as they – and related for-
malisms such as tree adjoining grammars – allow modelling particular linguistic
phenomena.

In this paper, we investigate the computational complexity of the uniform
membership problem of cftg. In Section 5, this problem is shown to be PSPACE-
complete. In order to prove containment in PSPACE, an equivalent pushdown tree
automaton (pta) M† [4] is constructed from G in a succession of intermediate
steps (Section 4). We demonstrate that M† can be implemented in polynomial
space. The idea behind M† is taken from Aho’s proof that the indexed languages
are context-sensitive [1, Sec. 5]. Note that in [1], the construction is given directly
by means of a rather complex Turing machine, and without proof of correctness.
In contrast, by employing pta, we can provide a formal proof; moreover, we think
that this presentation is easier to understand. As a corollary, we establish the
PSPACE-completeness of uniform membership of ε-free indexed grammars.

To show that the constructed pta M† is also of potential interest besides
the paper’s main theorem, we use M† in Section 6 for an alternative proof of
the fact that the non-uniform membership problem of cftg is in NP. Note that
this result already follows from the containment of the indexed languages in NP,
whose proof in [11] rests, however, upon the correctness of the Turing machine
mentioned above. In [7], containment in NP was proven for the class of output
languages of compositions of macro tree transducers, which contains the context-
free tree languages properly.
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 176–188, 2015.
DOI: 10.1007/978-3-319-23021-4 16



Complexity of Uniform Membership of Context-Free Tree Grammars 177

Recall that there are two restricted modes of derivation for cftg, the OI and
the IO mode. In fact, the OI mode is equivalent to the unrestricted mode used
in this paper [3]. For complexity results on cftg under the IO mode cf. [2,14].

2 Preliminaries

The set of natural numbers with zero is denoted byN, and the set {1, . . . , n} by [n],
for every n ∈ N. Note that [0] = ∅, the empty set. Let A be a set. Given relations
R, S ⊆ A×A, their product R◦S is the relation {(a, c) ∈ A×A | ∃b ∈ A : (a, b) ∈
R, (b, c) ∈ S}. An alphabet is a finite nonempty set. The set of words over A is A∗,
the empty word is ε, and A+ = A∗ \ {ε}. Let w = a1 . . . an with a1, . . . , an ∈ A
for some n ∈ N. Then |w| = n, and w̃ = an . . . a1, the reversal of w.

An alphabet Σ equipped with a function rkΣ : Σ → N is a ranked alphabet.
Let Σ be a ranked alphabet. When Σ is obvious, we write rk instead of rkΣ . Let
k ∈ N. Then Σ(k) = rk−1(k). We often write σ(k) and mean that rk(σ) = k. We
assume tacitly that there are some α(0) and σ(n) ∈ Σ such that n ≥ 2. Let U be a
set and Λ denote Σ∪U ∪C, where C is made up of the three symbols ‘(’, ‘)’, and
‘,’. The set TΣ(U) of trees (over Σ indexed by U) is the smallest set T ⊆ Λ∗ such
that U ⊆ T , and for every k ∈ N, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ T , we also have that
σ(ξ1, . . . , ξk) ∈ T . A tree α() is abbreviated by α, a tree γ(ξ) by γξ, and TΣ(∅)
by TΣ . Let ξ, ζ ∈ TΣ(U). The set of positions (Gorn addresses) of ξ is denoted
by pos(ξ) ⊆ N

∗. The size |ξ| of ξ is |pos(ξ)|. Denote the label of ξ at its position
w by ξ(w), and the subtree of ξ at w by ξ|w. The result of replacing the subtree
ξ|w in ξ by ζ is ξ[ζ]w. Given k ∈ N, ξ, ξ1, . . . , ξk ∈ Λ∗, and pairwise different
u1, . . . , uk ∈ U , denote by ξ[u1/ξ1, . . . , uk/ξk] the result of substituting every
occurrence of ui in ξ with ξi, where i ∈ [k]. If ξ, ξ1, . . . , ξk are trees in TΣ(U),
then so is ξ[u1/ξ1, . . . , uk/ξk]. We will use the sets of variables X = {x1, x2, . . .}
and Y = {y}. For each k ∈ N, let Xk = {xi | i ∈ [k]}. Unless specified, Σ and N
denote arbitrary ranked alphabets, and Γ an arbitrary alphabet.

We presuppose the basic definitions and results from computational com-
plexity theory, cf. e.g. [8]. In particular, we will use the same concept of reduc-
tion as in [8]; i.e., many-one reductions that are computable by a deterministic
multi-tape Turing machine with work tape space in O(log n). Functions that
are computable in this manner are logspace-computable. Assuming a reasonable
encoding, operations on trees such as determining the j-th subtree of a node, or
substitution at a given position, are logspace-computable, cf. [6, Lem. 2].

3 Context-Free Tree Grammars and Pushdown Automata

A context-free tree grammar (cftg) over Σ is a tuple G = (N,Σ, S, P ) such that
Σ and N are disjoint ranked alphabets (of terminal resp. nonterminal symbols),
S ∈ N (0), and P is a finite set of productions of the form A(x1, . . . , xk) → ξ
for some k ∈ N, A ∈ N (k), and ξ ∈ TN∪Σ(Xk). Let G = (N,Σ, S, P ) be a cftg.
Given ζ1, ζ2 ∈ TN∪Σ , we write ζ1 ⇒G ζ2 if there are (A(x1, . . . , xk) → ξ) ∈ P
and w ∈ pos(ζ1) such that ζ1(w) = A and ζ2 = ζ1[ξ[x1/ζ1|w1, . . . , xk/ζ1|wk]]w.
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Table 1. Membership problems of cftg (over Σ)

Uniform Membership Membership

Input cftg G over Σ, ξ ∈ TΣ ξ ∈ TΣ

Question Is ξ ∈ L(G)? Is ξ ∈ L(G) for a fixed cftg G over Σ?

The tree language of G, denoted by L(G), is the set {ξ ∈ TΣ | S ⇒∗
G ξ}. In this

situation, we call L(G) a context-free tree language. The size of G, denoted by
|G|, is |N | +

∑

(l→r)∈P (|l| + |r|).
In this work, we will investigate the uniform membership problem, as well as

the (non-uniform) membership problem of cftg (over Σ), as defined in Tab. 1.
A pushdown tree system (pts) is a tuple M = (Q,Σ, Γ, q0, R) such that Q is

an alphabet (of states), Σ is a ranked alphabet, Γ is a nonempty set, q0 ∈ Q,
and R is a set of rules of the following three forms:

(i) q(y) → σ(p1(y), . . . , pk(y)), (ii) q(y) → p(γy), (iii) q(γy) → p(y),

where y ∈ Y , σ ∈ Σ(k) for some k ∈ N, q, p, p1, . . . , pk ∈ Q, and γ ∈ Γ . We call
M a pushdown tree automaton (pta) when Γ (and thus R) is finite.1 The set of
rules from R of form (i) (resp. (ii), (iii)) is denoted by RΣ (resp. by R↑, R↓),
and their elements are called stay, push, and pop rules.

Given a pts M = (Q,Σ, Γ, q0, R), let CM = {q(η) | q ∈ Q, η ∈ Γ ∗} and
DFM = TΣ(CM ), the sets of configurations and derivation forms of M . Given a
rule ρ ∈ R of the form l → r, and ζ1, ζ2 ∈ DFM , we write ζ1 ⇒ρ

M ζ2 if there
are some w ∈ pos(ζ1) and η ∈ Γ ∗ such that ζ1|w = l[y/η], ζ2 = ζ1

[

r[y/η]
]

w
,

and w is the leftmost position in ζ1 which is labeled by an element of Q. We
let ⇒M=

⋃

ρ∈R ⇒ρ
M . Let ζ, ζ ′ ∈ DFM . A derivation of ζ ′ from ζ in M is a

sequence ρ1 . . . ρm ∈ R∗ such that there are ζ0, . . . , ζm ∈ DFM where ζ = ζ0,
ζi−1 ⇒ρi

M ζi for every i ∈ [m], and ζ ′ = ζm. If d is of this form, we write
ζ0 ⇒d

M ζm. The set of all derivations of ζ ′ from ζ in M is denoted by DM (ζ, ζ ′).
We let DM =

⋃

ζ∈CM ,ξ∈TΣ
DM (ζ, ξ). The tree language of M , denoted by L(M),

is the set {ξ ∈ TΣ | q0(ε) ⇒∗
M ξ}, and the size of M , which is denoted by |M |,

is |Q| + |Γ | +
∑

(l→r)∈R(|l| + |r|).
Let Z1 be a cftg or a pts, and Z2 be a cftg or a pts. Then Z1 and Z2 are

equivalent if L(Z1) = L(Z2). If not specified otherwise, G will denote an arbitrary
cftg (N,Σ, S, P ) in the sequel, and M an arbitrary pta (Q,Σ, Γ, q0, R).

As proven in [4, Thm. 1], pta accept exactly the context-free tree lan-
guages. A close inspection of the proof shows that all constructions are logspace-
computable.
1 In fact, pta as given here are in two ways a special case of the restricted pushdown tree
automata (rpta) of [4]. First, the pushdowns of rpta are monadic trees from TΓ ({Z})
for some distinct nullary symbol Z, while pta use words over Γ . Both approaches are
clearly equivalent. Second, the rules of pta are more restricted than those of rpta.
However, in the construction of an equivalent rpta from a cftg in [4, Thm. 3], only
rules of type (i)–(iii) are created, so the restriction has no impact.
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Lemma 1 ([4]). Let L ⊆ TΣ. There is a cftg G such that L = L(G) iff there is
a pta M such that L = L(M). Also, M is logspace-computable from G, and vice
versa.

4 Compact pts and Finite Representations

Both in our analysis of uniform and non-uniform membership of cftg, the proof of
containment in the respective complexity class rests on the successive application
of certain transformations to the pta M that is obtained from an input cftg G
by using Lem. 1.

We introduce these transformations in the following subsections, drawing
upon ideas Aho used in the construction of the linear bounded automaton that
demonstrates the context-sensitivity of the indexed languages [1, Sec. 5]. We
apply these ideas directly at the level of pta instead of building a complex Turing
machine, and provide formal proofs of correctness.

4.1 Augmented pta

Later on, we will require for our proofs that the amount of steps in a derivation
of a tree ξ ∈ TΣ in the pta M is bounded. However, for an arbitrary pta, it seems
difficult to find the respective bound. This is due to the presence of unnecessary
turns of M . Take, e.g., the following derivation in some pta M :

q(γ) ⇒M q1(δγ) ⇒M q2(τδγ) ⇒M q3(δγ) ⇒M q4(γ) ⇒M p(ε) .

Clearly, the turn q(γ) ⇒∗
M q4(γ) was in some sense unnecessary, and we could

have avoided it if there was already some rule q(γy) → p(y) in R, because then
q(γ) ⇒M p(ε). The existence of such rules to avoid unnecessary turns is exactly
what constitutes an augmented pta. Formally, a pta M is augmented if for every
q1, q2, q3 ∈ Q and γ ∈ Γ such that q1(ε) ⇒M q2(γ) ⇒M q3(ε), and for every
rule q3(l) → r in R, the rule q1(l) → r is also in R.

Lemma 2. For every pta M , an equivalent augmented pta M ′ is constructible
in polynomial time.

Proof. Given a pta M , define the pta M ′ = (Q,Σ, Γ, q0, R
′), where R′ results

from the following fixed-point iteration. Initially, let R′ = R. Then, while there
are q1, q2, q3 ∈ Q, γ ∈ Γ , and (q3(l) → r) ∈ R′ such that q1(ε) ⇒M ′ q2(γ) ⇒M ′

q3(ε) and (q1(l) → r) /∈ R′, insert (q1(l) → r) into R′.
It is easy to see that every iteration respects the invariant L(M ′) = L(M).

Moreover, after termination of the algorithm, M ′ is obviously augmented.
Observe that the maximal number of rules of a pta over the terminal alphabet

Σ is in O(|Q|2 ·|Γ |+|Σ|·|Q|m+1), where m is the maximal rank of a symbol from
Σ. As a rule is added in every iteration, the algorithm terminates eventually.
Since Σ is fixed, the number of iterations is polynomial in the input. ��
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A derivation with no unneccessary turns is called succinct. More precisely,
d ∈ DM is succinct if there are e1 ∈ R∗

↓, e2 ∈ R∗
↑, ω ∈ RΣ , k ∈ N and d1,

. . . , dk ∈ DM such that d = e1e2ωd1 . . . dk and for every i ∈ [k], di is succinct.
The set of succinct derivations of ξ ∈ TΣ from q(η) ∈ CM in M is denoted by
DSM (q(η), ξ), and the set of all succinct elements of DM by DSM . The following
lemma means that in an augmented pta M , we need only consider succinct
derivations. We omit its proof, which is based on the observation that in a
derivation d of M , it is not necessary to apply a push rule ρ1 right before a pop
rule ρ2, as we can always replace ρ1ρ2 in d by some other rule ρ′ of M .

Lemma 3. Let M be augmented, q(η) ∈ CM , and ξ ∈ TΣ. If q(η) ⇒∗
M ξ, then

there is also a succinct derivation d ∈ DSM (q(η), ξ).

4.2 Compact pts

Besides avoiding unnecessary turns of M , there is still one problem to solve. We
might refer to it as M being too verbose in its pushdowns. E.g., in the derivation

q(ε) ⇒M q′(γ) ⇒M q′′(δγ) ⇒M σ
(

u(δγ), p(δγ)
) ⇒2

M σ
(

α, p(γ)
) ⇒M σ

(

α, p(ε)
)

one could save time and space – i.e., derivation steps and pushdown cells – if
there was some pushdown symbol [δγ] such that

q(ε) ⇒M q′′([δγ]) ⇒M σ
(

u([δγ]), p([δγ])
) ⇒2

M σ
(

α, p(ε)
)

.

We will construct a pts M � with such pushdown symbols, i.e., with all symbols
of the form [η], where η ∈ Γ+. It is said to be a compact pts, since, as will
be proved later on, for every tree ξ ∈ L(M �), only polynomially many steps in
|ξ| are required for a derivation of ξ in M �, and the sizes of the pushdowns in
the derivation can also bounded in this manner. Evidently, M � can be infinite.
However, considering M � makes the following proofs easier, hence we stick with
it for now, and deal with the question of a finite representation of M � later.

The pushdown words of M � can be understood as subdivisions of those of M .
Because we must subdivide M �’s pushdown words even further in some proofs,
the following definitions are needed. Choose two symbols ‘[’ and ‘]’ not from Γ ,
and let S(Γ ) = {[η] | η ∈ Γ+}. Let η = γ1 . . . γn from Γ+, where γi ∈ Γ for
i ∈ [n]. Given k0, . . . , km ∈ N with 0 = k0 < · · · < km = n for some m > 0,
the (k0, . . . , km)-subdivision of η is the word [γk0+1 . . . γk1 ] . . . [γkm−1+1 . . . γkm

] ∈
S(Γ )+. Moreover, the ε-subdivision of ε is ε. An η′ ∈ S(Γ )∗ is a subdivision of
an η ∈ Γ ∗, denoted by η′  η, if η′ is an E-subdivision of η for some E ∈ N

∗.
This E is unique; we denote it by E(η′). If E(η′) = (k1, . . . , km), then let
E(η′) = {k1, . . . , km}. Define ι : Γ ∗ → S(Γ )∗ by ι(ε) = ε and ι(η) = [η] for
η ∈ Γ+. Let now η ∈ Γ ∗ and η′, η′′ ∈ S(Γ )∗ with η′, η′′  η. We write η′  η′′

if E(η′) ⊇ E(η′′). We denote the unique κ  η with E(κ) = E(η′) ∪ E(η′′) by
η′ � η′′. Note that η′ � η′′  η′ and η′ � η′′  η′′. Regarding the length of η′ � η′′

as an element of S(Γ )∗,

|η′ � η′′| = |E(η′ � η′′)| − 1 ≤ |E(η′)| + |E(η′′)| − 3 = |η′| + |η′′| − 1 (1)
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whenever η ∈ Γ+, and if η = ε, then obviously |η′ � η′′| = |η′| + |η′′| = 0.
Finally, if η′ ∈ S(Γ )∗ is the (k1, . . . , km)-subdivision of η, then let η̃′ denote the
(|η| − km, . . . , |η| − k1)-subdivision of η̃.

Now we define the compact pts M � = (Q,Σ, Γ�, q0, R�) of M , where Γ� =
S(Γ ), and R� contains the rules (i) q1(y) → q2([η]y) for every η ∈ Γ+ such that
q1(ε) ⇒r1...rk

M q2(η) with r1, . . . , rk ∈ R↑, denote the resulting rule by [r1 . . . rk];
(ii) q1([η]y) → q2(y) for every η ∈ Γ+ such that q1(η) ⇒r1...rk

M q2(ε) with r1, . . . ,
rk ∈ R↓, denote the resulting rule by [r1 . . . rk]; (iii) and for every rule ω ∈ RΣ ,
the rule [ω], which is identical to ω.

Obviously, L(M �) = L(M). By the notation for the rules of M �, we have
R� ⊆ S(R). The notion of subdivision, of the relation , and of the operation �,
carries over to derivations of M � in a straightforward manner. In a derivation d
in M �, a subdivision η′ of a pushdown η determines a corresponding subdivision
d′ of d, and vice versa. The following lemma circumstantiates this observation.

Lemma 4. Let q, p ∈ Q, η ∈ Γ ∗, and d ∈ R∗. Moreover, let d′  d and η′  η.

(i) If d ∈ R∗
↓ with q(η) ⇒d

M p(ε), then q(η′) ⇒d′
M� p(ε) iff E(η′) = E(d′).

(ii) If d ∈ R∗
↑ with q(ε) ⇒d

M p(η), then q(ε) ⇒d′
M� p(η′) iff E(η̃′) = E(d′).

The following restricted mode of derivation is important as well. Let μ ∈ N and
ζ ∈ DFM . We say that ζ has μ-bounded pushdowns if there is no infix κ ∈ Γ ∗ of
ζ with |κ| > μ. Thus the size of every pushdown occurring in ζ is at most μ. Let

moreover ζ1, ζ2 ∈ DFM . We write ζ1
(μ)
==⇒ρ

M ζ2 if ζ1 ⇒ρ
M ζ2 and both ζ1 and ζ2

have μ-bounded pushdowns. The relations
(μ)
==⇒M and

(μ)
==⇒d

M , for some d ∈ R∗,
are defined analogously. In the latter case, all intermediate derivation forms of
d are required to have μ-bounded pushdowns.

In the following lemmas, we establish polynomial bounds for the lengths of
successful derivations in M �, and for the sizes of the pushdowns “along the way.”

Lemma 5. Let M be augmented, and let q(η) ∈ CM , η′  η, d ∈ DSM , d′  d,

ξ ∈ TΣ, and μ ∈ N with q(η) ⇒d
M ξ and q(η′)

(μ)
==⇒d′

M� ξ. For every η′′  η′, there

is a d′′  d′ such that q(η′′)
(μ′)
==⇒d′′

M� ξ, and μ′ = μ + |η′′| − |η′|.
Proof. Presume η, η′, d, d′, q, ξ, and μ as above, and let η′′  η′ and μ′ =
μ + |η′′| − |η′|. The proof is by structural induction on ξ, hence suppose k ∈ N,
σ ∈ Σ(k) and ξ1, . . . , ξk ∈ TΣ such that ξ = σ(ξ1, . . . , ξk). As d ∈ DSM , there
are e1 ∈ R∗

↓, e2 ∈ R∗
↑, ω ∈ RΣ , u, p ∈ Q, pi(θ) ∈ CM and di ∈ DSM (pi(θ), ξi) for

every i ∈ [k] such that d = e1e2ωd1 . . . dk and

q(η1η2) ⇒e1
M u(η2) ⇒e2

M p(η3η2) ⇒ω
M σ(p1(θ), . . . , pk(θ)) ⇒d1

M · · · ⇒dk

M ξ ,

for some η1, η2, η3 ∈ Γ ∗ with η = η1η2 and θ = η3η2.
By definition of M �, we have d′ = e′

1e
′
2[ω]d′

1 . . . d′
k for some e′

1  e1, e′
2  e2,

and d′
i  di, for every i ∈ [k]. Furthermore, q(η′)

(μ)
==⇒e′

1e′
2

M� p(θ′), where η′ = η′
1η

′
2,
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θ′ = η′
3η

′
2, and η′

i  ηi for every i ∈ [3]. Observe that |θ′| ≤ μ. As η′′  η′, there
must be η′′

1  η′
1 and η′′

2  η′
2 such that η′′ = η′′

1η′′
2 . Note that |η′′

1 | ≥ |η′
1|. Let e′′

1

be the E(η′′
1 )-subdivision of η1, then q(η′′

1 η′′
2 ) ⇒e′′

1
M� u(η′′

2 ). In fact,

|η′′| = |η′| + |η′′| − |η′| ≤ μ + |η′′| − |η′| ,

hence q(η′′
1η′′

2 )
(μ′)
==⇒e′′

1
M� u(η′′

2 ). Moreover, u(η′′
2 ) ⇒e′

2
M� p(η′

3η
′′
2 ). Let θ′′ = η′

3η
′′
2 , then

|θ′′| = |η′
3| + |η′

2| + |η′′
2 | − |η′

2| = |θ′| + |η′
1| + |η′′

2 | − (|η′
1| + |η′

2|)
≤ μ + |η′′

1 | + |η′′
2 | − (|η′

1| + |η′
2|) = μ + |η′′| − |η′| ,

and thus u(η′′
2 )

(μ′)
==⇒e′

2
M� p(η′

3η
′′
2 ). Since θ′′  θ′, the induction hypothesis implies

that for every i ∈ [k], there are some d′′
i  d′

i such that pi(θ′′)
(μ′′)
==⇒d′′

i

M� ξi and
μ′′ = μ + |θ′′| − |θ′|. We have

μ′′ = μ + |θ′′| − |θ′| = μ + |η′
3| + |η′′

2 | − |η′
3| − |η′

2|
≤ μ + |η′′

1 | + |η′′
2 | − |η′

1| − |η′
2| = μ + |η′′| − |η′| = μ′ .

The inequation holds because |η′′
1 | ≥ |η′

1|. Thus for each i ∈ [k], pi(θ′′)
(μ′)
==⇒d′′

i

M� ξi.

We set d′′ = e′′
1e′

2[ω]d′′
1 . . . d′′

k , yielding q(η′′)
(μ′)
==⇒d′′

M� ξ. ��
In the following, we denote the number 2 · |ξ| by μ(ξ), for every tree ξ ∈ TΣ .

Lemma 6. Suppose that M is augmented. For every q(η) ∈ CM , ξ ∈ TΣ and

d ∈ DSM (q(η), ξ), there are η′  η and d′  d such that q(η′)
(μ(ξ))
===⇒d′

M� ξ.

Proof. Assume q(η), ξ and d as given above. The proof is by structural induction
on ξ, therefore let ξ = σ(ξ1, . . . , ξk) for some k ∈ N, σ ∈ Σ(k) and ξ1, . . . , ξk ∈ TΣ .
Moreover, let d = e1e2ωd1 . . . dk such that e1 ∈ R∗

↓, e2 ∈ R∗
↑, ω ∈ RΣ , and d1,

. . . , dk ∈ DSM . Thus there are η1, η2, η3, and θ ∈ Γ ∗ with η = η1η2 and
θ = η3η2, as well as u, p, p1, . . . , pk ∈ Q, satisfying

q(η1η2) ⇒e1
M u(η2) ⇒e2

M p(η3η2) ⇒ω
M σ(p1(θ), . . . , pk(θ)) ⇒d1

M · · · ⇒dk

M ξ .

By the induction hypothesis, for every i ∈ [k], there are a θ′
i  θ and a d′

i  di

such that |θ′
i| ≤ μ(ξi) and pi(θ′

i)
(μ(ξi))====⇒d′

i

M� ξi. Set θ′ = θ′
1 � · · ·� θ′

k � (ι(η3)ι(η2)).
Note that if k = 0, then θ′ = ι(η3)ι(η2). By applying (1) k times,

|θ′| ≤
(

∑

i∈[k]

|θ′
i|
)

+ 2 − k ≤
(

∑

i∈[k]

μ(ξi)
)

+ 2 − k = μ(ξ) − k ≤ μ(ξ) . (2)

Thus p(θ′)
(μ(ξ))
===⇒[ω]

M� σ(p1(θ′), . . . , pk(θ′)). Let j ∈ [k]. Because θ′  θ′
j , by Lem. 5,

there is some d′′
j  d′

j such that pj(θ′)
(μ′)
==⇒d′′

j

M� ξj , and where

μ′ = μ(ξj) + |θ′| − |θ′
j | ≤ μ(ξj) +

(

∑

i∈[k]

|θ′
i|
)

+ 2 − |θ′
j | ≤

(

∑

i∈[k]

μ(ξi)
)

+ 2 = μ(ξ) .
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Thus also pj(θ′)
(μ(ξ))
===⇒d′′

j

M� ξj . By definition of θ′, there must be some η′
2  η2

and η′
3  η3 such that θ′ = η′

3η
′
2. Set η′ = ι(η1)η′

2. If k = 0, then clearly
|η′

2| = 1 < μ(ξ). If k > 0, then by (2), |η′
2| ≤ |θ′| < μ(ξ). Thus in both cases

|η′| ≤ μ(ξ). Hence q(η′)
(μ(ξ))
===⇒ι(e1)

M� u(η′
2). Moreover, as η′

3  ι(η3), by Lem. 4,

there is some e′
2  e2 with u(η′

2)
(μ(ξ))
===⇒e′

2
M� p(η′

3η
′
2). Set d′ = ι(e1)e′

2[ω]d′′
1 . . . d′′

k ,

then q(η′)
(μ(ξ))
===⇒d′

M� ξ, and the proof is concluded. ��
Lemma 7. Let M be augmented. For every ξ ∈ L(M), there is a derivation
d′ ∈ DM�(q0(ε), ξ) with |d′| ≤ μ(ξ)2 + μ(ξ).

Proof. Let ξ ∈ L(M), let d ∈ DSM (q0(ε), ξ), and consider the derivation d′ as
constructed in Lem. 6. Let w ∈ pos(ξ), and let d′′ be an infix of d′ such that d′′ ∈
DM�(q(η′), ξ|w), for some q(η′) ∈ CM� . We prove that |d′′| ≤ (μ(ξ)+1) ·μ(ξ|w) by
well-founded induction using the relation “is child node of” on pos(ξ). For this
purpose, let ξ|w = σ(ξ1, . . . , ξk) for some k ∈ N, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ .
Observe that d′′ is of the form e1e2[ω]d′

1 . . . d′
k for some e1 ∈ (R�)∗

↓, e2 ∈ (R�)∗
↑,

ω ∈ RΣ , u, p1, . . . , pk ∈ Q, κ′, θ′ ∈ Γ ∗
� , and d′

i ∈ DM�(pi(θ′), ξi), for i ∈ [k], and

q(η′)
(μ(ξ))
===⇒e1

M� u(κ′)
(μ(ξ))
===⇒e2

M� p(θ′)
(μ(ξ))
===⇒[ω]

M� σ(p1(θ′), . . . , pk(θ′)) .

As the pushdowns η′ and θ′ are bounded in their size by μ(ξ), we must have
|e1e2[ω]| ≤ 2 ·μ(ξ)+1. By the induction hypothesis, |d′

i| ≤ (μ(ξ)+1) ·μ(ξi), thus

|d′′| ≤ 2 · (μ(ξ) + 1) +
∑

i∈[k]

(

(μ(ξ) + 1) · μ(ξi)
)

= (μ(ξ) + 1) · μ(ξ|w) .

The lemma follows with w = ε and d′′ = d′. ��

4.3 Representing M � by a Finite Object

Finally we show how to construct from M a finite representation M† of M �. Let
Γ† = P(Q × Q) and define a mapping h : Γ → Γ† such that, for every γ ∈ Γ ,
h(γ) =

{

(q, p) | q(γy) → p(y) in R
}

. We set M† = (Q,Σ, Γ†, q0, R†), where R†
is the smallest set R′ such that (i) RΣ ⊆ R′, (ii) for every rule q(y) → p(γy)
in R, the rule q(y) → p

(

h(γ)y
)

is in R′, (iii) whenever q(y) → p(Uy) and
p(y) → u(V y) are in R′, then also q(y) → u

(

(V ◦ U)y
)

is in R′, (iv) for every
U ∈ Γ† and (q, p) ∈ U , the rule q(Uy) → p(y) is in R′. Note that R† is given
effectively by these conditions. The size of M† is in general exponential in |M |.

We show that M† is indeed a faithful representation of M �. Extend h to
h̃ : Γ+ → Γ† by h̃(γ1 . . . γk) = h(γ1) ◦ · · · ◦ h(γk) for k > 0 and γ1, . . . , γk ∈ Γ .
Further, extend h̃ to ĥ : Γ ∗

� → Γ ∗
† by ĥ([η1] . . . [ηk]) = h̃(η1) . . . h̃(ηk) for every

k ∈ N and η1, . . . , ηk ∈ Γ+. We identify h, h̃, and ĥ in the following. There
is the following close relation between M � and M†; the uncomplicated proof is
omitted.
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Algorithm 1. Nondeterministic decision procedure for uniform membership
Input: pta M = (Q, Σ, Γ, q0, R), ξ ∈ TΣ

Output: “Yes” if ξ ∈ L(M), diverges otherwise
ζ ← q0(ε)
loop

select leftmost w ∈ pos(ζ) such that ζ(w) = q(η) for some q(η) ∈ CM†
either

choose a rule q(y) → σ(p1(y), . . . , pk(y)) ∈ R
ζ ← ζ[σ(p1(η), . . . , pk(η))]w

or
choose a rule q(y) → p(γy) ∈ R and set u ← p, U ← h(γ)
repeat n times for some n ∈ N

choose a rule u(y) → v(γy) ∈ R and set u ← v, U ← h(γ) ◦ U
end repeat
ζ ← ζ[u(Uη)]w

or if η = Uκ for some U ∈ Γ†, κ ∈ Γ ∗
†

choose some (u, p) ∈ U such that u = q
ζ ← ζ[p(κ)]

end either
if ζ = ξ then return “Yes” else if ζ ∈ TΣ then diverge endif

end loop

Lemma 8. For every n, μ ∈ N, q(η) ∈ CM� , and for every ξ ∈ TΣ, we have that

q(η)
(μ)
==⇒n

M� ξ iff q
(

h(η)
) (μ)

==⇒n
M† ξ.

Suppose that M is augmented. Then the lemma implies together with
Lem. 6 and 7 that while |M†| may be exponential in |M |, we may assume nev-
ertheless that for every ξ ∈ L(M), there is a derivation d of ξ in M† such that
both the length of d, as well as the size of every configuration in d, are bounded
by a polynomial in |ξ|.

5 The Uniform Membership Problem

Employing M†, we can now investigate the complexity of the uniform member-
ship problem of cftg. We begin with the upper bound.

Theorem 1. The uniform membership problem of cftg over Σ is in PSPACE.

Proof. Let ξ ∈ TΣ and let G be a cftg over Σ. Construct an augmented pta
M = (Q,Σ, Γ, q0, R) with L(M) = L(G). By Lem. 1 and 2, this takes time
(and thus space) polynomial in |G|. Recall the mapping h : Γ+ → Γ† from the
definition of M†. Alg. 1 contains a nondeterministic procedure which decides
ξ ∈ L(M) in space restricted to 2 · |ξ|2 ·Q2. It works by emulating a derivation d′

in the compact pta M† as constructed above. The construction of d′ is “on-the-
fly.” In each loop, the leftmost configuration q(η) in the current derivation form
ζ is selected, and a rule ρ is chosen. We may choose ρ to be a stay or pop rule of
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M†, it is then applied to q(η). Then again, we may choose a nonzero number of
push rules of M with compatible states, apply h to the symbols they push, and
combine the results by the product of binary relations. Clearly, this procedure
can emulate exactly the derivations in M†.

If ξ ∈ L(M), then there is a succinct derivation d ∈ DSM (q0(η), ξ), and, by
Lem. 6 and 8, a derivation d′  d in M† that has (2 · |ξ|)-bounded pushdowns.
Each pushdown symbol that occurs in d′ is a subset of Q × Q, and can thus
be stored within space |Q|2. As the number of configurations occurring in an
intermediate derivation form ζ of d is bounded by |ξ|, the space bound of 2 · |ξ|2 ·
|Q|2 is sufficient to store ζ. By [12, Thm. 1], the procedure is also computable
in deterministic space polynomial in |ξ| and |M |. ��
Theorem 2. The uniform membership problem of cftg over Σ is PSPACE-hard.

Proof. Recall the following decision problem. Let Δ be an alphabet. The inter-
section problem is specified as follows.

Input: Deterministic finite-state automata A1, . . . , Ak over Δ for some k ∈ N

Question: Is
⋂k

i=1 L(Ai) = ∅?
This problem is PSPACE-complete [5]. We give a reduction of its complement to
the uniform membership problem of cftg. Then, as PSPACE = coPSPACE, the lat-
ter problem is PSPACE-hard. The reduction’s idea is to construct a pta M which
guesses some w ∈ Δ∗ on its pushdown, copies it as often as needed (by stay rules
with some symbol σ of at least binary rank), and then simulates the automata
A1, . . . , Ak on the respective copies. If Ai accepts w, M outputs some symbol α
on the i-th branch, else it blocks. The search for w ∈ ⋂k

i=1 L(Ai) is thus reduced
to the question ξ ∈ L(M), for a tree ξ ∈ TΣ that is independent of w.

Formally, assume deterministic finite-state automata Ai = (Qi,Δ, qi
0, Fi, δi),

defined as usual, for some k ∈ N and each i ∈ [k]. We require the state sets
Qi to be pairwise disjoint, and α /∈ Δ. By assumption, Σ contains some α(0)

and σ(n) with n ≥ 2. Construct the pta M = (Q,Σ,Δ ∪ {#}, q0, R) where
Q = {q0} ∪ {u0, . . . , uk} ∪ ⋃k

i=1 Qi, with q0, u0, . . . , uk distinct states, and R
contains the rules

q0(y) → uk(#y) , uk(y) → uk(by), ui(y) → σ
(

qi
0(y), ui−1(y), u0(y), . . . , u0(y)

)

for every i ∈ [k] and b ∈ Δ. Moreover, for every i ∈ [k], b ∈ Δ, q, p ∈ Qi such that
δi(q, b) = p, and f ∈ Fi, the rule set R contains q(by) → p(y) and f(#y) → α.
Finally, for every γ ∈ Δ ∪ {#}, the rule u0(γy) → α is in R. Let ξ be the tree
σ
(

α, σ(α, · · · σ(α, . . . , α) · · · , α, . . . , α), α, . . . , α
)

with exactly k occurrences of σ.
Both M and ξ are logspace-computable from the input. It is easy to show that
ξ ∈ L(M) iff there is some w ∈ Δ∗ such that w ∈ ⋂k

i=1 L(Ai). ��

5.1 Uniform Membership of ε-free Indexed Grammars

Following suit to earlier research, established results on cftg can also give new
insight on indexed languages.
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Let us recall indexed grammars [1]. In the spirit of [11], an indexed grammar
is a tuple G = (N,Σ, Γ, S, P ), where N , Σ, and Γ are alphabets, S ∈ N ,
and P is a finite set of productions of the forms (i) A(y) → B1(y) . . . Bk(y),
(ii) A(y) → B(γy), (iii) A(γy) → B(y), and (iv) A(y) → a, for A, B, B1, . . . ,
Bk ∈ N , k ∈ N, γ ∈ Γ , and a ∈ Σ. We call G ε-free if all its productions of form
(i) satisfy k ≥ 1.

The similarity of indexed grammars to pta is apparent, and ⇒G, as well as
L(G), are defined analogously. This similarity is captured in the “yield theorem”
[10, p. 115]. Although its original formulation applies to cftg, we restate it for
pta, cf. [4, Prop. 8]. The remark on logspace-computability is easily reexamined.

Lemma 9 ([4,10]). Let L ⊆ (Σ(0))∗. Then, there is a pta M over Σ such that
L = yield(L(M)) iff there is an ε-free indexed grammar G over Σ(0) such that
L = L(G). Also, G is logspace-computable from M , and vice versa.

The following corollary is then a direct consequence of Thms. 1 and 2 together
with the yield theorem.

Corollary 1. The uniform membership problem of ε-free indexed grammars is
PSPACE-complete.

In contrast, the uniform membership problem of indexed grammars with ε-rules
is EXP-complete [13].2

6 The Non-Uniform Membership Problem

In this section, we intend to show that the pta M† may also be useful for other
means, by presenting an alternative proof of the NP upper bound of non-uniform
membership of cftg. Note that this bound is already known: the class of output
languages of compositions of macro tree transducers, a proper superclass of the
context-free tree languages, is in NP [7, Thm. 8].

If we regard trees from TΣ as well-parenthesized words over Σ ∪C, as defined
in the preliminaries, then a context-free tree language can be also understood
as an indexed string language. Therefore, the following upper bound is as well
a consequence of the containment of the indexed languages in NP. Its proof in
[11] rests on the correctness of the Turing machine from [1].

Theorem 3. The membership problem of cftg over Σ is in NP.

Proof. Let G be the cftg fixed in the membership problem. Construct an equiv-
alent augmented pta M , as well as M† as defined above. As G is not part
of the input, M† is constructible in constant time. Consider the nondetermin-
istic decision procedure in Alg. 2. By Lem. 8, L(M†) = L(M �), and more-
over L(M �) = L(M). So if the procedure returns “Yes”, then there is some
2 Still, the emptiness problem of ε-free indexed grammars remains EXP-complete. This
follows from a small modification of the indexed grammar witnessing EXP-hardness
in [13]. Hence, by Lem. 9, the emptiness problem of cftg is EXP-complete, too.
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Algorithm 2. Nondeterministic decision procedure for membership of cftg
Input: ξ ∈ TΣ

Output: “Yes” if ξ ∈ L(M), diverges otherwise
choose some d ∈ R∗

† with |d| ≤ μ(ξ)2 + μ(ξ) and μ(ξ)-bounded pushdowns

if q0(η) ⇒d
M† ξ then return “Yes” else diverge endif

d ∈ DM†(q0(ε), ξ), and hence ξ ∈ L(M). Conversely, if ξ ∈ L(M), then
there must be some d′ ∈ DM�(q0(ε), ξ), and by Lem. 7, we may assume that
|d′| ≤ μ(ξ)2 + μ(ξ). By Lem. 8, there is a d ∈ DM†(q0(ε), ξ) with equal length
bound. Thus the procedure returns “Yes”. ��

Hardness of the problem can be demonstrated in the same manner as for
indexed grammars [11, Prop. 1], by devising a cftg G such that L(G) encodes
the set of all satisfiable propositional formulas in 3-conjunctive normal form. For
the sake of completeness, we restate the respective theorem.

Theorem 4. There are a ranked alphabet Σ and a cftg G over Σ such that the
membership problem of G is NP-hard.

7 Conclusion

In this paper, the complexity of the uniform membership problem of cftg was
proven to be PSPACE-complete. A corollary for uniform membership of indexed
grammars was obtained. As a by-product, we could state an alternative proof
for the NP-completeness of the non-uniform membership problem of cftg.
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